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Abstract 

The simulation of large deformations of the breast has great potential for 

applications in the medical field, such as breast cancer diagnosis, image guided 

surgery, surgery planning and breast image registration. However, the positioning of 

the patient body will differ during each screening modality. Large-scale 

deformations of the breast during movement mean that modeling of the breast is a 

difficult task. It is therefore necessary to formulate a mechanical model of the breast 

that can predict the deformations of the breast during scanning. 

In this thesis, I propose an individualized biomechanical model to predict large-scale 

deformations of the breast in the supine to prone positions. The model combines 

finite element analysis with affine transformation. The mechanical properties of the 

breast tissues are individually assigned by using an optimization process, which 

allows the model to be patient-specific.  

Image registration with the use of positron emission tomography (PET) and 

magnetic resonance imaging (MRI) has been extensively studied in the literature. 

The biomechanical model of the breast is thus evaluated by using MRI and 

PET/computed tomography images from Hong Kong and American samples. The 

differences in the breast volume and density are determined by the biomechanical 

model in this study. Deformations in the breast images of both the Asian and 

American samples due to the effect of gravity are successfully modeled by using the 

finite element method.   

The accuracy of the developed model is determined by using the target registration 

error (TRE) of the lesion. The TRE for the Hong Kong and American samples is 

4.77±2.20 mm and 8.40±7.15 mm, respectively. The results show that this model is 
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able to accurately predict deformations of the breast in the supine to prone positions 

for images from both populations. 

In addition, the TRE has been found to be correlated with the image density, which 

indicates that this model can more accurately predict deformations of breasts with 

less density. A decision tree has also been generated through data mining to predict 

the registration accuracy.   
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1 Introduction 

 Background information 

About one in eight women will develop breast cancer over the course of their 

lifetime. The treatment for breast cancer is to surgically remove the lesion(s) and 

some of the healthy tissue around the lesion(s). It is vital to identify the location of 

the cancer lesion(s) before and during surgery. Therefore, the patient will undergo 

medical image scanning prior to surgery. Registered medical images can provide 

clinically combined information from different imaging modalities. However, the 

positioning of the body of the patients will not be the same during each scan. 

Therefore, a biomechanical model that can simulate the movement of breasts to track 

the lesion(s) is greatly needed. 

Since the early diagnosis of breast cancer is also very important, molecular imaging 

such as positron emission tomography (PET) can detect the lesion(s) in the very 

early stages, but provides limited spatial information. Therefore, PET and magnetic 

resonance imaging (MRI) are used together to provide images with more detailed 

information. The PET image is usually taken in the supine position, and MR image 

in the prone position. A realistic biomechanical model can finish the registration of 

PET and MR images by predicting the deformations of the breasts in the supine to 

the prone positions. 

Finite element analysis (FEA) is widely used in engineering, such as civil and 

mechanical engineering. It is a numerical means for finding solutions to complicated 
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problems. The highlight of using FEA is that the technique allows researchers to 

simulate various practical problems or physical situations, such as stress analysis for 

simply supported beams, heat transfer, and deformation of various materials. In 

addition, FEA plays a dominant role in biomechanics, by which researchers can 

analyze the stress and strain of bonds under particular loading environments.   

This thesis endeavors to develop a technique to predict soft tissue movement. The 

primary clinical goal is to formulate a biomechanical model that can simulate the 

deformations of the breasts in the supine to prone positions, and register MR and 

PET images together to improve early diagnosis of breast cancer. It is anticipated 

that this model can also assist with image-guided breast surgery and therapy 

planning. 
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 Key contributions 

In this study, FEA is applied to formulate a biomechanical model of the breast. The 

model is validated by finishing the registration of MR and PET breast images, as 

image registration is very important for the diagnosis of breast cancer. Therefore, a 

hybrid PET/MR image registration model is established. The advantage of 

integrating FEA into a registration method is to obtain a high level of correlation 

with the material properties, which means that this FEA model is specific to the 

individual.  

This registration model which is based on FEA will take into consideration material 

properties. An inverse FEA is also conducted to noninvasively measure the tissue 

properties. This ability to noninvasively measure material property is quite useful in 

clinical settings.  

The established model is evaluated by using images from two countries. A 

correlation between density and accuracy is found. The registration accuracy can be 

predicted with nipple displacement and density before conducting the registration 

process.   
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 Thesis Structure 

The components of this dissertation are organized into a flowchart and shown in 

Figure 1.1. 

As the first step, the FEA is customized for biomedical purposes. Then, the 

theoretical details and background will be provided in Chapter 2. Related studies will 

also reviewed in this chapter. 

Chapters 3 to 5 include discussions on the development of patient specific FEA 

models and evaluation of their clinical applications. There are three major tasks: 

building of a biomechanical model, simulating of deformation under gravity, and 

evaluation.  

In Chapter 3, the features that need to be taken into consideration will be discussed. 

The influence of skin will be assessed to determine whether the modeling of skin is 

necessary. The method used to determine the reference state, mesh density and 

element shape will be provided. The Poisson’s ratio that represents the volume 

change of objects will also be determined. Finally, the process for processing images 

will be described. 

In Chapter 4, an FEA model that can simulate breast deformations from the supine to 

prone positions will be introduced. Since the mechanical properties greatly affect 

deformations in FEA, and every woman has her own mechanical properties, these 

properties also vary when metastasis takes place. Therefore, in this study, a 

biomechanical model of the breast that takes tissue properties into consideration will 

be formulated. As well, an evaluation method for examining deformed PET images 

is critical. PET images have a very low resolution. It is not possible to identify 
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enough landmarks for evaluation purposes. Therefore, an evaluation system for 

PET/MR image registration is also proposed in this study. 

In Chapter 5, I will use 28 sets of PET/ computed tomography (CT) and MR images 

from two different countries to further evaluate the breast model for the supine-prone 

positions. I will determine a correlation between model accuracy and image features. 

Data mining is also used to predict the registration accuracy. Chapter 6 will provide 

an overall conclusion and recommendations for future studies. 

This thesis will demonstrate that the developed individualized biomechanical model 

can predict deformations of the breast and accurately track the location of lesion(s) .  
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Figure 1.1 Thesis components. 
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2 Literature review 

 Breast imaging, breast anatomy and image registration 

2.1.1 Breast anatomy 

The mechanics of breasts vary due to their structure and the different mechanical 

properties of their constituents. In order to simulate breast deformations under 

different loading environments, a brief understanding of the breast anatomy is 

necessary. In this section, a general introduction on the anatomical structure of the 

breast will be provided.  

The classical definition of the female breast is restricted to the anterior and lateral 

parts of the chest, and the superior and inferior margins between the second to sixth 

or seventh ribs. Typically, breasts are teardrop shaped, with the axillary tail 

extending up to the mid-axillary line. 

The breast components can be classified as external and internal. External 

components include the nipples, areolas, tubercles and some glands.  Internal 

components consist of three major types of tissues: glandular, fat and fibrous, as 

shown in Figure 2.1. The glandular tissues of breasts are made up of 15-20 lobes that 

produce milk. The lobes consist of smaller components of fibrous walls, which are 

called lobules. There is a network of ducts that connects the lobules and nipples. 

These ducts are very tiny ductules at the beginning across the lobules, but become 

larger and larger when they approach the region near the nipples. The ducts and 

lobules are held in place by the fibrous tissues. The glandular and fibrous tissues are 

also known as fibro-glandular tissue. The fibro-glandular tissues are surrounded by 

fatty or adipose tissue. Depending on their age or even pathological changes, women 
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have different proportions of fibro-glandular to fatty tissue. Fatty tissue always 

accounts for a large proportion or at least one third of the breast tissue. Menopause 

also affects the mass of these two types of tissues because it will lead to the atrophy 

of the fibro-glandular tissues, which will result in a greater proportion of adipose to 

fibro-glandular tissue. 

When it comes to the mechanics of the breasts, Cooper’s ligaments play an 

important role in helping with the structural integrity of the breasts (Cooper, 1840). 

Cooper’s ligaments are connective tissues that hold the entire breast, and if these 

ligaments stretch, the breasts will sag. There is a large muscle beneath the breast 

which is called the pectoralis major (pectoral muscle), which separates the breast 

from the rest of the body.  
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Figure 2.1 Structure of the breast. (Source:(New World Encyclopedia, 2008)) . 
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2.1.2 Breast cancer imaging 

Breast cancer is the second most prevalent type of death causing cancer in women 

after lung cancer. Once diagnosed with breast cancer, the quality of life of the patient 

will be severely affected. The risk of developing breast cancer depends on many 

factors, including age, personal or family history of breast cancer, parity, age at first 

birth and use of hormonal replacements. Since over 70% of the breast cancer cases 

do not have any identifiable risk factors, the early diagnosis of breast cancer is of 

utmost importance. 

According to a 2014 publication on cancer facts and figures in the United States 

(American Cancer Society, 2014), the most common type of cancer is prostate 

cancer, with more than 238,000 new anticipated cases. The next most common type 

of cancer is breast cancer, with more than 232,340 anticipated new cases (Table 2.1). 
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Table 2.1. Estimated new cases of cancer and related deaths in the US: 2013. 

Cancer Type 
Estimated New 

Cases 
Estimated Deaths 

Bladder 72,570 15,210 

Breast (Female – 
Male) 

232,340 – 2,240 39,620 – 410 

Colon and Rectal 
(Combined) 

142,820 50,830 

Endometrial 49,560 8,190 

Kidney (Renal Cell) 
Cancer 

59,938 12,586 

Leukemia (All Types) 48,610 23,720 

Lung (Including 
Bronchus) 

228,190 159,480 

Melanoma 76,690 9,480 

Prostate 238,590 29,720 
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The most common used types of screenings for breast imaging are x-ray 

mammography, ultrasound, contrast-enhanced MRI (CE-MRI), and CT. 

Mammography is a diagnostic and screening tool which uses low energy x-rays to 

take images of the breasts. Breast cancer is detected with the development of 

characteristic masses and microcalcifications in the breast tissue. The sensitivity of 

mammography ranges from 83% to 95% (Mushlin et al., 1998). 

In the ultrasound process, ultrasound waves that are transmitted by using a probe, 

interact with the tissue. When these waves hit the interface of materials with 

different mechanical impedance, they are either absorbed or reflected back to the 

probe. Different materials can be distinguished based on the different amplitudes of 

the echoes. Breast ultrasound is performed on patients to further investigate 

suspicious lesions found during mammography, or from lumps felt in the breast by 

the patient herself during self examination or a physical examination. 

CT scanning is an x-ray technique that gives doctors information on the internal 

organs in 2-dimensional slices, or cross-sections. Currently, CT scans are not 

routinely used to examine the breasts. However, doctors may use CT scanning to 

assess whether cancer has spread into the chest wall. 

MRI is a diagnostic procedure which uses magnetic fields, radio waves, and field 

gradients along with a computer produces detailed images of the organs and 

structure of the body. To implement breast MRI, the female patient usually lies face 

down with her breasts positioned through an opening in the table.  

2.1.3 Need for better imaging tool to diagnose breast cancer 

Approximately 12% of women will face breast cancer in their lifetime. In the US, 

about 3.5 million women have had a history of invasive breast cancer (American 
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Cancer Society, 2016b). Furthermore, 246,660 new cases are estimated for 2016 

(American Cancer Society, 2016b). Breast cancer can be effectively treated when 

detected at the early stages, and the prognosis heavily depends on the tumor size 

(Brinkley & Haybittle, 1975). When a suspicious lesion is detected, a biopsy is 

carried out to confirm the presence of cancer and the stage (Mendez et al., 2004).  

Although breast biopsy is a highly specific and sensitive test for the diagnosis of 

breast cancer, it is invasive and will leave a scar that will affect future breast 

examinations. Moreover, biopsy has a relatively high false negative rate around 50%, 

probably due to technical errors and the inexperience of medical practitioners 

(Moskowitz, 1995). Therefore, it would be ideal to have other non-invasive imaging 

techniques in place for follow up with an occult breast lesion. Although there are 

different imaging modalities used to detect breast cancer, there are pros and cons 

when they are applied to detect breast cancer, as follows. 

2.1.3.1 X-ray mammography 

X-ray mammography is the main technique used to detect and diagnose breast 

malignancies (Moskowitz, 1995). The superimposition of breast tissue and 

parenchymal density, this limitation can obscure cancers or make normal structures 

appear suspicious. This shortcoming can reduces the sensitivity and increase the 

false-positive screening of mammography (Ciatto et al., 2013). These shortcomings 

have thus led to the investigation of alternative imaging modalities, such as 

ultrasound (Harper et al., 1981; Wu & Moon, 2008), MRI (Moskowitz, 1995; Orel & 

Schnall, 2001), CT (Boone & Lindfors, 2006), PET (Avril et al., 2000), and single-

photon-emission computed tomography (SPECT) (Wendler et al., 2010), for the 

detection and diagnosis of breast cancer. 
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2.1.3.2 Positron emission tomography  

PET is a type of molecular imaging modality that can reflect the metabolic pathways 

and dynamic processes in vivo. This technology can recognize breast cancer at the 

molecular level for an early diagnosis and prompt treatment. PET is sensitive and 

informative in the processing of diseases that are biological in nature. Measurements 

can be repeated many times during the day by using isotope with long half-life, 

because there is less radiation, due to the shorter half-life radiotracers which are 

commonly used in nuclear medicine and therefore PET scanning. The accuracy of 

PET diagnosis is 8 – 43% higher than that of the CT, mammography and other 

techniques (Phelps, 2000).  However, the localization of potential tumors is very 

difficult due to low spatial resolution of the PET images and limited anatomical 

information obtained (Antoch & Bockisch, 2009).  

2.1.3.3 Magnetic Resonance Imaging and Computed Tomography 

MRI and CT are both morphological imaging modalities that reveal the structure of 

tumors or organs.  However, because both techniques only provide morphological 

information, there is not enough functional information (Haberkorn & Schoenberg, 

2001). 

2.1.3.4 PET/MR imaging 

Different breast imaging modalities provide complementary information that can 

help to make a diagnosis or assist the clinician for a therapeutic gesture. Image 

registration obtained by the imaging modalities comprises inter-modality and intra-

modality registration. In this thesis, the focus will be on inter-modality image 

registration. Researchers have been working on inter-modality breast image 
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registration for a long time. The modalities involved are x-ray mammography, MRI 

and ultrasound imaging. The registration of x-ray mammograms is a 2-D/2-D 

problem, while that of MRI and ultrasound imaging is a 3-D/3-D problem. 

The inter-modality breast image registration techniques include: x-ray 

mammography and MRI registration, MRI and ultrasonography registration, PET 

and CT registration, PET and MRI registration, and X-ray mammography and 

ultrasonograph registration (Guo et al., 2006). 

Therefore, to enhance the image quality of PET, a registration process needs to be 

developed which can fuse PET images with another imaging modality. Efforts have 

been made to combine PET with CT to make use of the CT for attenuation correction, 

a major signal degradation in nuclear medicine imaging, and anatomical reference. 

These efforts aim to increase the resolution of the images in clinical practice. As a 

result, a multi-modality imaging system for clinical settings has been developed to 

fill the need. But the resolution of CT image for soft tissue is less than MRI. 

For over a decade, PET/CT as a multi-modal imaging technology has had great 

achievements in both scientific research and clinical settings. However, as MRI 

excels CT in many aspects, research on MRI has been more prevalent in recent years. 

Therefore, a combined PET/MRI scanner can significantly change health care and 

revolutionize clinical practice. This combined scanner excels the traditional PET/CT 

scanner, as the differentiation of soft-tissue can be contrasted. Also additional 

function information of MR image can be applied to PET/MRI registered image, and 

radiation of MRI is less than CT. 

F-18-FDG PET and MRI are both well-proven methods for breast cancer detection 

in their own right. MRI provides high sensitivity (95–99%) and various specificities 
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(50–92%), while F-18-FDG-PET demonstrates various sensitivities (63–95%) and 

high specificities (80–95%) (Moy et al., 2007). Therefore, it is reasonable to infer 

that combining F-18-FDG PET with MRI and perhaps with some other non-invasive 

breast examination methods (e.g. Breast SPECT imaging system or magnetic 

resonance spectroscopy) will constitute as significant methods for diagnosing breast 

cancer.  

The advantages to combining these different imaging methods could provide 

sufficient diagnostic specificities to reduce unnecessary breast biopsies with a set of 

non-invasive imaging procedures. Indeed, Rieber et al. (Rieber et al., 2002) noted 

that in doing so, this positively affects surgical treatment in 12.5–15% of the cases 

studied. Walter et al. reported that the combined use of F-18-FDG PET and MRI 

retrospectively reduces unnecessary biopsies from 55% to 17%(Walter et al., 2003). 

Moy et al. reported that the use of both PET and MRI to generate breast images 

increases the specificity (from 2% to 95%) but decreases the sensitivity (from 92% 

to 63%) when compared to the use of MRI alone(Moy et al., 2007). 

The combined use of PET and MRI can also provide clinicians with the opportunity 

to obtain both structural information and structural data in vivo, which are more 

specific than the image attained from a single imaging modality (Solis et al., 2010).  

However, although PET/MRI scanning has great potential, but this combined 

method is time consuming, expensive, and logistically demanding of patients and 

staff. As well, patient repositioning can cause inaccurate anatomic matching and 

side-by-side interpretation of images results in diagnostic inaccuracies.   

Nevertheless, MRI, on its own merits, is an imaging technology that can clearly 

reflect the anatomical structure. Since patients may not be able to undergo PET and 

MRI scanning at the same time, hence, registration of PET and MRI is still necessary. 
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2.1.4 Registration 

2.1.4.1 Image registration methods 

The goal of image registration is to determine the Euclidean motion between a set of 

images of a given object taken from different locations in order to represent them all 

with respect to a reference frame. Image registration is defined as spatial mapping 

between two images (Guo et al., 2006). Usually, image registration is classified into 

rigid registration and non-rigid registration, as shown in Figure 2.2. Non-rigid 

registration is the most suitable method for breasts. To achieve non-rigid registration, 

the deformable image registration (DIR) method can be used followed by using an 

FEA to build a mechanical model for predicting the deformation of organs and 

tissues with two parameters: boundary conditions and meshing. 
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Figure 2.2. Types of image registration.  
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2.1.4.2 Limitations of image registration: rigid registration of breast images 

Images can be registered through rigid registration where images are assumed to be 

objects that simply need to be rotated and translated with one another to achieve 

symmetry, or non-rigid registration where either through biological differences or 

image acquisition or both, correspondence between the structures in two images 

cannot be achieved without some localized stretching of the images.  

A number of the previous works on medical imaging registration registered brain 

images of the same subject taken with different modalities, such as MRI and CT or 

PET (Hill et al., 1991). For this purpose, rigid body approximation is sufficient, as 

there are merely slight alterations in brain shape or locations on the skull over the 

relatively short periods of time between scans. Today, rigid registration is often 

extended to include affine transformation, which includes scale factors and a number 

of shears, and can partially correct for the calibration differences across scanners or 

gross differences in scale between different subjects. Several studies have reviewed 

these areas in more detail (Hill et al., 2001). Clearly, the human body mostly does 

not conform to a rigid or even an affine approximation (Hawkes, 1998) and the most 

interesting and challenging work in registration today involves the development of 

non-rigid registration techniques for soft-tissue deformation during imaging or 

surgery (Crum et al., 2014).  

2.1.4.3 Deformable image registration  

Apart from accuracy and efficiency, image registration techniques need to 

incorporate deformable alignment, allow various regions of interest to behave 

differently, and maintain the geometric integrity of inter structures that are different 

in different imaging modalities. Deformable models have been used to predict the 
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mechanical deformations of tissues or organs based on biomechanical tissue 

properties and perform non-rigid image registration. They include brain-shift 

modelling (Ferrant et al., 2001); heart-kinetics modelling (Sermesant et al., 2006); 

breast-compression simulation, such as in x-ray mammography (Richard et al., 2006); 

and breast-image registration (Roose et al., 2006). 

As pre-treatment imaging becomes increasingly integrated into the treatment 

planning process and full three dimensional (3D) image guidance becomes part of 

the treatment delivery, demand for a DIR technique becomes more apparent.  

Currently, DIR comprises two categories, image-based DIR and physics-model-

based DIR. For the former, image information like landmarks and intensities has 

been used to locate the best voxel match between two images. It is an optimization 

problem that searches for a point-wise transformation, thus minimizing discrepancies 

between two data sets to be matched by using global voxel-based similarity metrics. 

In terms of biomechanical tissue properties, physics-based DIR has been applied to 

obtain advanced information on the mechanical deformations of tissues or organs. 

Thus non-rigid image registration is possible (Unlu et al., 2010). For the latter, image 

registration can use FEA. As organs are often considered to be elastic objects, FEA 

can be used to study their deformation. 

2.1.5 Supine to prone position registration 

Prone MRI and supine PET/CT are usually applied due to different consideration in 

using either one imaging. Therefore, there is a question, if know advance for 

required use of both imaging, supine MRI or prone PET/CT be applied in order to 

avoid the huge deformation difference. However, the PET and MR scan are not 

conducted simultaneously. Even the huge deformation of breast is avoid, there is still 
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body movement between this two scanning. Breath will also cause difference of 

breast shape. This difference caused by different pose and breast is harder to 

simulate.  

Registration of PET image in supine position and MRI in prone position can provide 

bias for retrospective study, also reverse finite element analysis can be used to 

estimate the mechanical properties of breast.  
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 Computer aided detection 

Biopsies have been considered as the golden standard for breast cancer diagnosis, 

but is a very painful process. Approximately 2/3 of the breast lumps turn out to be 

benign after a biopsy is performed. However, both early detection and the true 

positive rate of biopsies are related to the experience of radiologists. Radiologists are 

involved in radiology, reading images of mammograms and undertaking assessment 

clinics (Astley & Gilbert, 2004).  

Sometimes breast cancer signs can be ambiguous or even undetectable by 

radiologists, which may lead to misdiagnoses, such as by mistaking malignancy as 

benign. However, excessive attention to details in the original screening is time 

costly, thus leading to reductions in efficiency. Actually, the signs of breast cancer 

are overlooked in about 10-30% of the patients during routine screening (Cheng et 

al., 2003). 

Uncertainty is also very common in clinical practices, which means that patients who 

are suspected of having signs of breast cancer undergo a painful biopsy, but in fact, 

the tumor is benign. Hence, this is a waste of resources and human labor. 

These situations take place due to the radiologists. In mammographic film reading, 

radiologists are responsible for all of the details and symptoms found in the 

screening. The signs are often hard to detect and tumors do not have a regular shape. 

To overcome the difficulties in mammographic film reading, a double reading is 

recommended. Consequently, false-negative rates can be greatly reduced. Sometimes 

a third reader is necessary to make a decision when two readers cannot reach an 

agreement. This process will ensure the quality of the breast cancer diagnosis; 

however, the number of experienced radiologists is limited, so that double reading or 
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using a third reader is likely to be only possible when there are adequate radiologists 

available. Even if there is the desire to use double reading, experienced radiologists 

are very limited in comparison to the increasing number of patients. 

Computer aided detection (CAD) has been regarded as an alternative method to 

solve the labor shortage problem of radiologists. The current situation is that, on the 

one hand, many screening centers do not have a sufficient pool of radiologists to 

perform double reading of all the films. On the other hand, the difficulty also comes 

from a larger screening population and changes in screening practices. It is difficult 

for radiologists to provide both accurate and uniform evaluations for the increasingly 

large numbers of mammograms due to widespread screening. 

One possible solution is to computerize the process in clinical practices so as to 

detect abnormalities in images. As computerized processes are highly efficient, the 

shortage of labor then becomes a non-issue.  

CAD was developed to assist radiologists to carry out diagnosis as routine practices, 

and has been applied to different screening processes, such as that for lung cancer, 

and cervical and mammogram screening.  

The task of medical image interpretation is to seek abnormal lesions, then describe 

their characteristics. Then radiologists can diagnose based on these characteristics. 

CAD means that computers can assist in detecting abnormalities and characterizing 

lesions. Lesions also change over time, so CAD can also be used to monitor the 

changes. 

The most common sequence of the CAD process is: detection, description, diagnosis 

and prognosis. All four steps have corresponding systems, which are as follows.  

Detection 
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In terms of detection, the function is to identify abnormal signals that could be 

unnormal in an image. For example, the identification of suspicious micro 

calcifications in mammograms, or detection of colonic polyps in CT colonographies. 

Detection is usually used as a means of prompting, and thus suspected abnormalities 

are located by overlaying a medical image. 

Characterization/description 

Computer aided characterization (CAC) is designed to provide specific descriptions 

of lesions in a medical image. These descriptions should be renewable and accurate. 

This is when there is the need to evaluate some data sets that should be processed 

more than once during a period of time, such as the detection of enhanced 

characteristics of a breast nodule on MRI.  

Diagnosis  

The aim of computer-aided diagnosis (CADx) is to accurately describe a disease, 

especially the likelihood of a particular disease. An example is that in mammography, 

CADx can recognize clusters of microcalcifications based on criteria that have been 

previously determined, and then the probability of a malignant lesion will be 

provided. This helps radiologists to make a decision on whether the patient should 

undergo a tissue biopsy for further confirmation. There are limitations in the use of 

CADx in clinical practices because even if an abnormal lesion is detected, the 

number of potential diseases related to this lesion is limited.  

Prognosis 

The aim of computer-aided change detection (CACD) is to identify sequential 

changes in a specific region. For instance, comparison of the changes in a lesion 

after diagnosis. The CACD system is able to quantity the changes and determine the 
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magnitude of the changes after diagnosis. Actually, CACD systems do not replace 

physicians. Instead, they can work as a tool for physicians, and help them to make a 

more informed decision. The advantage of CACD systems is that they can combine 

the clinical experiences of radiologists with the computational power of computers, 

which can lead to a reduction in time required to read an image and variability in 

different observations will also decrease. The common procedure for carrying out 

CACD is as follows. First, digital images are acquired. Then some of the features 

will be extracted from the images. Finally, a clinical decision will be made based on 

the classified features. 

Feature classification includes the use of pattern recognition neural networks and 

information modeling to obtain a usable output, such as the likelihood of malignancy 

and differential diagnoses, from analyzing the features (Kagadis & Langer, 2011). 

This step mimics the work of a radiologist to recognize particular patterns and 

analyze their relationship with different diseases. To finish this process, commonly 

used methods include statistical methods and use of neural networks, so as to process 

large amounts of data, including numerous medical information. The accuracy of the 

diagnosis not only depends on the information in the images, but also takes into 

consideration the medical context of the patient who underwent the imaging to 

include all the diseases that are possible. When CACD is utilized in the image 

interpretation process by a physician, it can be applied either as a first, second or 

concurrent reader, but second reader is more common. 

Researchers have developed numerous algorithms to detect abnormalities in 

mammographs for a long time. CACD systems were initially developed to replace 

radiologists, but much evidence has shown that this cannot be done. It is easy for a 

computer to extract features but difficult to make the judgment between benign and 
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malignant as opposed to radiologists, who diagnose based on their experience. 

Nevertheless, CACD can be a supplementary tool for radiologists, due to its strong 

operational ability to analyze a large number of images without being tired. CACD 

systems can help to draw the attention of the film reader to suspicious areas (Kagadis 

& Langer, 2011). 

2.2.1 Challenge of building PET/MR image registration model of 

human breasts 

Breast images acquired at different times, or with different imaging modalities are 

often registered to help with the analysis or visualization of image. Image 

registration is widely used in many applications, such as for better visualization of 

lesions and combining breast images obtained from different modalities. The 

inhomogeneous, anisotropic nature of the soft-tissue in the breasts, their inherent 

non-rigid body behavior, the temporal changes in breast tissue, and various imaging 

conditions, render breast image registration a challenging task (Guo et al., 2006). 

Due to differences in the resolution obtained through PET and MRI, as well as large 

differences in the image formation processes, imaging intensity relationships in PET 

and MRI are ill defined. Therefore, such techniques, which rely on similarity 

measures, generally provide unsatisfactory results for non-rigid MR-to-PET 

registration of soft tissue. 

Accurate 3D registration and overlay of MR and PET images of the breast could 

provide important additional information by connecting functional information from 

PET images with the detailed anatomical information available in the MR images 

(Studholme et al., 1997). Interactive methods based on user guided registration or 
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user identification of landmarks are robust but time consuming, require observer 

skills and therefore rely on observer bias or error. 

In addition, variations in the image resolution and patient orientation can mean that 

the combining of image information is difficult for clinicians. To solve this problem, 

considerable research work has been conducted that use image registration 

techniques to combine images from different imaging modalities into one coordinate 

(Studholme et al., 1996).  

The existing registration method is very time-consuming which would affect the 

early diagnosis of breast cancer. Overprocessing of images can mean the loss of 

specific clinical features, and lead to inaccuracy of registration and later diagnosis 

and treatment. In this study, a registration method will be established for PET and 

MRI, which will reflect the specific features of patients, reduce the computation time 

and increase accuracy. The modeling process is completed by using commercial 

software, so that the whole process is more convenient and more adaptable for 

clinical diagnosis.  
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 Finite elasticity theory 

In recent years, there has been growing interest in using FEA for the modeling of the 

behavior of biological systems. The breasts consist of soft tissues, and are one of the 

most deformable organs in the human body. Deformations under gravity and 

compression are considered to be large deformations. Therefore, to examine these 

deformations, a theory of large elastic deformations, and the finite elasticity theory 

which is also known as the nonlinear elasticity theory will be used. The elasticity 

theory is based on the concepts of stress, which is a measure of internal pressure; and 

strain, which is a measure of internal stretching. Four key relations need to be 

considered for the simulation of large deformations of the breast: kinematics, stress 

equilibrium, boundary conditions and constitutive relations.  

2.3.1 Constitutive relations 

Constitutive relations are a mathematical relationship that can define the relationship 

between stress and strain. The form of the constitutive relation is based on specific 

material behavior, rather than a general relationship. The focus is on determining 

how particular materials behave under specific conditions. To identify the 

relationships, the modality of the body of interest, such as a solid, fluid or mixture, 

needs to be decided. For a solid body, the material could be elastic/ inelastic, 

isotropic/ anisotropic, linear/nonlinear, and homogeneous/ heterogeneous. The 

following is a brief introduction on some of the universal characteristics. 

Isotropic: Isotropic bodies respond to loading only relative to a prescribed 

configuration, and not the direction of loading. There is also a type of isotropic 

material that only responds to a single direction of loading, which is known as 

transversely isotropic material. 
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Orthotropic: Orthotropic materials only response to loading in three orthogonal 

directions. 

Homogeneous: The response of homogenous bodies should be the same, regardless 

where the loading is applied on the body. 

Heterogeneous: Also known as inhomogeneous bodies, which means that their 

response will depend on their position. 

Incompressible: The volume of an incompressible body remains constant in loading 

conditions. (Humphrey & Rajagopal, 2002) indicated that since most of the tissues in 

the human body contain plenty of water, tissues are thus almost incompressible. 

2.3.2 Boundary conditions 

The boundary conditions are the application of a force and/or constraint. They are 

the specified values of the field variables on the boundaries of the field. Typically, 

there are two kinds of boundary conditions: loads and constraints. Loads include 

forces, moments, pressures, temperatures, accelerations. Constraints resist the 

deformations induced by the loads. 

2.3.3 Kinematic equations 

Kinematic equations represent how a body of interest shifts when it is subjected to 

loads. In this study, the motion of the breasts under gravity from the supine to prone 

positions is the focus. The motion of an object from an undeformed state (X) to a 

deformed configuration (x) can be represented by using the deformation gradient 

tensor F: 

 � =
��

��
 (1)  
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Measurements of the strain in a system can be quantified by using the Green-

Lagrange strain tensor (E), which is related to the Cauchy-Green deformation tensor 

(C) and the identity tensor (I), as: 

 
� =

�

2(� − 1)
 

 

(2)  
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(3)  

2.3.4 Stress tensor for finite elasticity 

Stress tensors typically describe when a force is loaded on, and how much force that 

every unit surface area has endured. Actually, in large deformation mechanics, there 

are three ways to define stress, because the surface area and force can be measured 

either in the reference (undeformed) state or current configuration. These three ways 

are by using a Cauchy stress tensor, and two types of Piola Kirchhoff stress tensors 

(i.e., the 1st Piola Kirchhoff and 2nd Piola Kirchhoff stress tensors).  

2.3.5 Elastic function 

In the finite element method, approximation is carried out by using information at 

each node of a continuous model so that shape deformation can be calculated. This 

process basically consists of two steps: discretization and interpolation. 

Discretization is when a structure is divided into many smaller bodies or unites 

(finite element) interconnected at points common to two or more elements and/or 

boundary lines and/or surfaces. Interpolation is a process that discrete elements 

interpolated by shape functions.  
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The values of the field variables computed at the nodes are used to approximate the 

values at the non-nodal points by interpolating the nodal values. For the three node 

triangle, the field variable is described by using the approximate relation: 

 
	

�(�, �) = ��(�, �)�� + ��(�, �)�� + ��(�, �)�� 
 

(4)  

where ��, �� and �� are the values of the field variable at the nodes, and	��,	�� and 

�� are the interpolation functions, also known as the shape or blending functions. 

In the FEA, the nodal values of the field variables are treated as unknown constants 

that need to be determined. The interpolation functions are mostly polynomial forms 

of the independent variables, derived to satisfy certain required conditions at the 

nodes. 

The interpolation functions are predetermined, and the functions of the independent 

variables are also known, so these functions will describe the variations in the field 

variables within finite elements. 

2.3.6 Finite Element Model 

The FEA is a formidable calculation tool for modeling the deformation of soft tissue. 

This method has been validated for same-subject non-rigid image registration and 

anatomical based simulations. In fact, the FEA produces physically reasonable 

deformations of biomechanical tissue. The FEA can also greatly adapt to shapes and 

produced with a general computer program. Three-dimensional FE reconstruction 

has been applied in many areas in medical imaging; for example, to image the 

prostate, brain and breasts, as well as simulate maxillofacial and liver surgeries.  An 

FE model includes the material properties, geometries, and loadings. Displacement 

loadings are directly applied onto the surface of organs or the internal point positions.  
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However, there are two obstacles in using the FEA for the simulation of compression 

as follows: 

  (1) FEA often requires a good deal of manual work when a patient-specific 

anatomical image is required, and 

(2) it is difficult to find a suitable FE boundary condition for FEA.  

FE models include the material properties of an object and integrate with the 

underlying geometric model to accurately predict displacements and motion based 

on applied forces, or recover the loads given nodal displacements. Qiu et al. built 

two finite models in two different mesh resolutions (Qiu et al., 2004). Different 

tissue elasticity values, Poisson’s ratios and boundary conditions were separately 

defined in the two models to simulate the influence of these items on the quality of 

the simulation. In their testing, the breast was assumed to be both linear and non-

linear. Also, different finite element solvers were used to perform the analyses. The 

results showed that the performance of the FEM model is primarily affected by the 

Poisson’s ratio and boundary conditions, rather than the tissue properties, mesh 

resolution and finite element solver. However, when the models have highly accurate 

affined boundary conditions, the quality of the FEM model can be influenced less by 

the Poisson’s ratio. However, this test was only conducted on a compression model, 

rather than gravity-induced deformation models. 

2.3.6.1  Consideration of material properties in FEA 

The first step toward the use of the FEM is to determine the material properties for 

the solid model constructed in the previous steps. The modeling of biomechanical 

tissue has gained considerable interest for various clinical and research applications. 

According to the literature mentioned before, breasts are composed of biological soft 
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tissues, which are known to be incompressible. As mentioned earlier, the female 

breast is essentially composed of four structures: lobules or glands, milk ducts, and 

fatty and connective tissues as shown in Figure 2.1. Most biological tissues have a 

viscous and an elastic response to external deformations. As the scope of this study 

is limited to slow deformations, the response of the tissue can be considered entirely 

due to elastic forces (Azar et al., 2001). All of the tissues in the breast are considered 

to be isotropic, incompressible and inhomogeneous with nonlinear elastic properties 

in large deformations. The Young’s modulus represents how much a material will 

deform when a load is applied, and Poisson’s ratio expresses how much a material 

will shrink in one direction when it is stretched in the perpendicular direction. An 

incompressible material will maintain the volume, so the same volume stretched 

must be shrunk. Since breast tissues have a nonlinear behavior in large deformations, 

the Young’s modulus (E�) can be taken as a function of the strain for each tissue: 

 �� =
∂��

∂��
= ������� (5)  

where σ� is the nominal stress for tissue type n, 

ε�is the nominal strain for tissue type n, and 

b�and	m�	are fit parameters experimentally determined for tissue type n (Azar et al., 

2001) . 

The dynamics of the elastic body are determined by the following system of partial 

differential equations: 
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where (�, �, �) represents the displacement vector in the Cartesian coordinates, 

E represents the Young's modulus, 

v represents the Poisson's ratio, 

�� represents the force field, and 

�, � are Lamé constants, computed with the two following equations: 
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Depending on the tissue property, large deformations of biological tissues will have 

more or less strain hardening. In order to describe the deformation that is in response 

to an external solicitation, a tissue can be considered as an isotropic and linear 

continuous elastic medium. In this case, the relation between strain and stress can be 

expressed with tensor notation: 
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(9)  

where 
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σ�� represents the symmetric stress tensor, 

ε�� represents the symmetric strain tensor, 

δ�� represents the Kroneker delta defined as: 

 

 

δ�� = �
1, if	i = j
0, if	i ≠ j

	and	ε�� = � � ε��

�
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(10)  

and for i=j 
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  Related studies 

2.4.1 Material properties 

Many researchers have conducted studies that measure the elasticity parameters of 

soft tissues (Azar et al., 2001; Schnabel et al., 2001). Table 2.2 provides a summary 

of the material properties of the breast that have been measured in previous studies.  
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Table 2.2 Summary of previous studies on material properties of breast  

Han et al. (2012) 
E=10kPa, v=0.49, density=1000 
kg/m3 

Krouskop et al. (1998) 
E=18±7 kPa at 5% strain  
E=20±8 kPa at 20% strain 
ʋ=0.495 

Wellman et al. (1999) 
E=48±2.5 kPa at 1% strain 
E=17.4±8.4 kPa at 15% strain 

Azar et al.  (2001) 

E=b·emƐ if Ɛ<15.5% 
B=4.46 kPa 
m=7.4 if Ɛ≥ 15.5% 
b=15.1 kPa m=10 
ʋ=0.49999 

Samani et al. (2001) E=519.7Ɛ2+2.4Ɛ+4.9 

Samani & Plewes  (2004) 

C10=0.31 kPa 
C01=0.3 kPa 
C20=3.8 kPa 
C11=2.25 kPa 
C02=4.72 kPa 

Samani et al. (2007) E=3.25±0.9 kPa at 5% strain 

Palomar et al. (2008) C10=3.0 kPa 

Rajagopal et al. (2008) 
C10=0.08 kPa 
C10=0.13 kPa 

Lapuebla-Ferri et al. (2011) C10=0.54 kPa 
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2.4.1.1 Boundary conditions in FEA 

A complicated biomechanical model can be built to simulate the movement of the 

pectoral muscles (Tang et al., 2009), or by adding a displacement boundary that 

takes the movement of the muscles along the chest wall into consideration (Carter et 

al., 2008). A study published by (Han et al., 2014) added a sliding motion to 

simulate the muscles. 

2.4.1.2 Meshing in FEA 

Mesh generation is one of the key components in FEA simulation. A quality mesh is 

not only required to obtain good simulation results, but also has a significant impact 

on the computation time and efficient usage of computational resources. A mesh is a 

partition of a geometric region into a set of non-overlapping sub-regions. Each sub-

region is called an element and characterized by its points (also called vertices or 

nodes), edges and faces. Usually these elements are tetrahedrons or hexahedrons for 

3D volume meshing. These element types and their attributes are presented in Figure 

2.3.  

The automatic generation of a tetrahedral mesh that is patient-specific was proposed 

by (Mohamed & Davatzikos, 2004). The elements were built from multiple-label 

segmented medical images. A mesh refinement method based on quality guaranteed 

tetrahedral elements was proposed and a post-processing method to optimize the 

model via changes in the mesh topology was applied after the modelling process. 

Nevertheless, this method cannot ensure that the final mesh edges will lie on the 

surface features. On the other hand, (Sullivan et al., 1997) proposed a method to 

move mesh nodes to single point features but it is not easy to select such features 
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automatically. However, the accuracy of this approach is lacking to obtain accurate 

FE simulations. 

Theoretically, hexahedral meshed models have greater accuracy than tetrahedral 

meshed models (Ramos & Simoes, 2006).  In current practices, most commercial 

software packages cannot automatically generate hexahedral meshes from a complex 

geometry. Some researchers have therefore developed methods that use image 

voxels as the eight nodes of the hexahedral elements to directly convert images. 

However, this leads to less accurate results, especially on the surface of the model 

(Guldberg et al., 1998). 

A voxel-based hexahedral meshing method was proposed by (Keyak et al., 1993) for 

medical imaging applications, which is a selective way to generate hexahedral 

meshes from segmented medical image sets. Voxel hexahedral meshes can be 

directly generated from segmented images because they are made of solid discrete 

voxels. Such voxels in the range of interest (ROI) in pre-segmented images will form 

the basis of the mesh, and then a series of regular hexahedral elements can be 

generated without the help of surface contours. This meshing method is robust and 

simple and allows for the automatic construction of hexahedral meshes from medical 

images. However, the surface of the model generated by using this method is not 

very smooth, and numerical problems may be caused by the serrated inner and outer 

surfaces. A study showed that an unsmooth geometry may lack elements in the 

region with sharp geometrical discontinuities, thus leading to the errors in modelling 

(Marks & Gardner, 1993). Camacho et al. reported another surface smoothing 

algorithm, which is very simple, and the model generates fewer errors at the surface 

of the model (Camacho et al., 1997). Viceconti et al. indicated that a large number of 

degrees of freedom needed for voxel meshing will result in less accuracy (Viceconti 
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et al., 1998). Müller & Rüegsegger further proposed a voxel-based FEM in which 

the marching cubes algorithm in (Lorensen & Cline, 1987) was used, and linear 

tetrahedrons were used with the method to create meshes with smooth surfaces 

(Müller & Rüegsegger, 1995). 

Generally, meshes with hexahedral elements are superior to those with tetrahedral 

elements in terms of convergence, stability of the solution in nonlinear systems and 

accuracy. 
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Figure 2.3. Hexahedral and tetrahedral meshes. 
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2.4.2 Previous models of breasts 

As mentioned earlier, there are many types of breast imaging modalities, including 

x-ray mammography, MRI and ultrasound imaging, which are routine imaging 

modalities in clinical settings. Digital breast tomosynthesis (DBT) and PET have 

also recently become more available for imaging breasts. However, in each of these 

modalities, the positioning of the patient is different. In mammography and DBT, the 

breast is compressed. In MRI, the patient is in the prone position, and with PET 

scanning, in the supine position for an entire body scan. In ultrasound acquisition, 

the patient lies on a bed with her body rotated to the scanning side. The use of the 

ultrasound probe will compress the breast.  

In response, biomechnical modeling has been used to simulate and predict the 

movement of breasts, which can be used in surgical and radiotherapy planning, 

image guided interventions and multi-modality cancer diagnosis, staging and therapy. 

2.4.2.1 Compression model 

Zhang et al. developed a breast compression model from MR images to simulate x-

rays for a compressed situation. The model of the breast was built from 2D 

morphology extracted from the breast contours, and an adaptive meshing method 

was used to balance computation time and accuracy. Both the x-ray and MR images 

were from the same subject to reduce calibration errors. A model that enables the 

simulation of large deformations in the breast was subsequently established. A 

tetrahedral mesh was used, and the model was built based on the contours of the 

breast (Zhang et al., 2007). 
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Hopp et al. developed a breast image registration method by using biomechanical 

FEM models and intensity-based optimization. MR images were compressed to 

simulate x-ray mammograms. The stiffness of the glandular tissue was modeled 7.5 

times higher than that of fatty tissue. The Poisson’s ratio was set as 0.3. Since 

mechanical properties do not play an important role in compression simulation, the 

optimization process focused on the rotation parameter. The target registration error 

after intensity-based rotation optimization is 11.0±8.5 mm (Hopp et al., 2013).  

Samani et al. proposed a FEM to predict breast-tissue deformations based on 

biomechanical principles (Samani et al., 2001). They qualitatively carried out FEM 

simulations of the breast by using two different approaches. First, they used a linear 

elastic-tissue model to simulate a 50% deformation. Then, they simulated an 8 mm 

compression of the breast by using a nonlinear tissue model based on the 

measurements of the stress–strain relationships in breast tissue made by (Wellman et 

al., 2001).  

2.4.2.2 Gravity induced model 

A study (Carter et al., 2008) modelled breast deformation in the supine and prone 

positions with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 

There were three steps involved in this study. First, the breast was deformed under 

gravity loading by using FEA. Secondly, the surface of the deformed model and 

prone MR image were aligned by using an iteration process. Finally, after predicting 

the deformation, the images were then registered with an intensity-based registration 

algorithm. This is also a hybrid registration framework. The results showed a mean 

registration error between 5 mm and 10 mm. However, this model did not consider 
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the specifics of each patient and the breast surface was forced to match the real 

surface. 

Krol et al. developed a PET/MRI registration model with landmarks distributed on 

the breast skin during scanning. However, the model was built based on the surface 

of the breast without taking into consideration the variance of the mechanical 

properties. The model was then refined based on the landmarks that were placed on 

the breast (Krol et al., 2006).  

Eiben established a breast image registration framework for the prone-to-supine 

positions (Eiben et al., 2016). Both the prone and supine loaded breasts were 

unloaded, and then compared to updated material properties. For the loading 

environment, image force was also considered except for gravity. They used image 

force to drive the images towards the direction that registration requires. They also 

carried out a material optimization procedure to optimize the material parameters of 

the breast tissue. However, image force will reduce the reliability of optimized 

material properties. 

Han et al. developed a patient-specific biomechanical model to predict large breast 

deformations (Han et al., 2014). Based on image similarity between FE-predicted 

and experimentally acquired MR images, they also carried out an optimization 

procedure for the material parameters. The parameters optimized were the Young’s 

modulus, Poisson’s ratio and the strength of fiber reinforcement. However, this 

simultaneous optimization is time consuming, because image similarity has to be 

calculated for each iteration process. The dataset was also limited, which in this case, 

consisted of only five cases.  
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A simulation model for the supine to prone positions was proposed by Palomar (Del 

Palomar et al., 2008). Three-dimensional scanned images were compared, and the 

model was found to reasonably simulate breast response to gravity force. Landmarks 

were manually placed on the breast for better evaluation. However, this procedure 

cannot be applied in clinical settings. As well, only two patients were recruited for 

their study, and the same elastic parameters were assigned to both patients. However, 

elastic parameters should be individual-specific.  

Azar et al. simulated breast deformation for applications in MRI-guided biopsies 

(Azar et al., 2001). The geometry of the model was constructed from MR data, and 

mechanical properties were assigned by using a nonlinear material model defined by 

experiments. However, the large mesh created instability in the analysis. 

2.4.2.3 Limitations 

1. In a number of studies, the major limitations are that the mechanical 

properties are treated as a constant value for all of the models. Neglecting the 

heterogeneity of mechanical properties can lead to a reduction in the 

specificities of the breast model that is established.  

2. The reference state has not been identified in most of the discussed studies, 

or gravity is applied twice (Carter et al., 2008; Palomar et al., 2008). Only the 

importance of the unloaded reference state for biomechanics was addressed 

by (Rajagopal et al., 2006). Therefore, in this study, a stress releasing method 

which is commonly found in civil engineering is used to calculate the 

unloaded state of the breast. 

3. A validated quantitative evaluative method has not been provided in previous 

studies. Usually, the accuracy of deformed models is validated by using 
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manually defined landmarks; however, the placement of landmarks is very 

subjective. In this study, the images collected all have a lesion in their MR 

image, and therefore  the landmarks do not need to be manually defined. 

Various quantitative parameters that can be used as the standard have been 

identified, except for the registration error.  

 

 

 

  



 

47 

 

 Research questions and study objectives 

It is obvious that early diagnosis of breast cancer is essential and can significantly 

improve the chances of survival. Related studies have been mostly conducted in 

western contexts, and few have focused on the Chinese context or both western and 

eastern contexts. However, the breast shape, structure and properties are somewhat 

different among different racial groups. A model that applies to the general public 

will not suffice.   

In the modelling processes in previous studies, both PET and MR images undergo 

various binary and open algorithmic processing to extract the contours of the breast. 

The model obtained from these contours is not patient specific. In fact, some features 

of the patients have been lost, and simplification can lead to misregistration in the 

future. The surface of the breast models is not very smooth and refinement of the 

surface requires time. Unsmooth surfaces will affect the FEA, thus leading to 

registration inaccuracies. 

A general but patient-specific method with high efficiency is therefore necessary as a 

better solution. This study therefore aims to achieve this by addressing the following 

questions:  

1. Will this biomechanical model make good predictions of breast deformation 

induced by gravity? 

2. Will this patient-specific registration method improve the registration quality 

of breasts in clinical applications?  

The specific research objectives are listed below: 
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1) to develop a biomechanical model that can simulate tissue deformation in the 

breasts, which can improve the accuracy of image registration; 

2) to enhance the visualization of medical imaging, in particular, PET in 

combination with MRI for better diagnoses, which will improve the accuracy of 

breast cancer diagnosis  for patients in clinical practices, and 

3) to develop a biomechanical model that can non-invasively determine the 

mechanical properties of breast tissue. 
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 Chapter summary 

In this chapter, a review of the previous studies that have used FEA to model the 

breast has been provided and their results evaluated. CAD and the basics of the finite 

elasticity theory have been outlined. The breast anatomy which is very important for 

building a biomechanical model of the breast has also been described. Both the 

advantages and disadvantages of currently available imaging modalities are 

discussed. Finally, the research objectives and questions have been discussed. 
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3 Building biomechanical model of the breast 

 Image collection 

In total of 28 pairs of PET/CT images and MR images were collected from hospitals. 

Eight of them were from the Hong Kong Sanatorium Hospital (Siemens Biograph 40 

and Siemens Trio TIM) and 20 pairs were collected from the Duke University Health 

System in USA (GE Discovery STE and Siemens Avanto). All the images have 

receive ethic approval from the Hong Kong Polytechnic University Ethic Committee. 

The patient information is shown in Table 3.1.  
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Table 3.1 Patient information  

Case No. 
Lesion size   

(mm) 
Volume (ml) Density 

Weight 
(kg) 

US Case 

D1 22.7 687 0.17 51.7 

D2 23 1584 0.10 77.1 

D3 24.4 408 0.38 58 

D4 24.8 601 0.20 52.6 

D5 46.5 2476 0.10 99.7 

D6 36.2 742 0.16 74.8 

D7 4.7 493 0.17 58 

D8 14.5 597 0.25 56.7 

D9 18.1 924 0.49 74.8 

D10 66.6 1948 0.12 115.6 

D11 64.9 1442 0.26 73 

D12 11.7 918 0.14 77.6 

D13 15.7 1078 0.12 66 

D14 48.9 566 0.07 62.6 

D15 19 1055 0.08 95.3 

D16 38.2 3779 0.03 113.4 

D17 12.8 597 0.24 54 

D18 41 1728 0.03 113 

D19 28 3252 0.17 112 

D20 19 2851 0.10 85 

HK Case 

H1 37 386 0.46 70 

H2 14.8 1072 0.17 68 

H3 23.8 852 0.13 65 

H4 18.3 776 0.27 60 

H5 NA 766 0.13 33 

H6 30.1 582 0.13 60 

H7 22.5 670 0.57 75 

H8 61.3 757 0.37 65 
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 Effects of skin on modelling 

3.2.1 Introduction 

As stated in Chapter 2, the breast contains adipose tissue, fibro-glandular, skin, and 

Cooper’s ligaments. In the following, the effects of modeling the skin of the breasts 

are investigated. 

 A Study (Li et al., 2012) indicated in their study that skin comprises three layers: the 

epidermis, dermis and fatty subcutaneous layers. The deepest layer is the 

subcutaneous fat layer, which has the least stiffness (around 34 kPa) compared with 

the other layers of skin. The thickness is over 1.2 mm (Li et al., 2012). For the 

dermis layer, the Young’s modulus is around 88 to 300 kPa (Gennisson et al., 2004; 

L’Etang & Huang, 2006; Liang & Boppart, 2010) and its thickness is around 1 mm. 

Finally, the top layer is the epidermis layer, which has the highest Young’s modulus 

of approximately 1 MPa, with a thickness of 0.1 mm (Xu et al., 2008). 

3.2.2 Method 

Since it is difficult to completely segment skin from CT images, skin was modeled 

by adding a layer of shell elements that was 1 mm in thickness to the anterior face of 

the model. This layer of elements was tightly coupled with the elements of breast 

tissue. Skin was assigned a density of 1000 kg/m3 (ICRP, 2009), and Poisson’s ratio 

of 0.49. It obeys a Neo-Hookean constitutive relationship. 

The deformation was simulated on a half sphere phantom. Nine FEAs were carried 

out with a varying Young’s modulus of the skin from 40kPa to 1000kPa, and an 

additional study with no skin. At the same time, the mechanical properties of the 



 

54 

 

other parts of the breast were not varied. The node displacements of the nipple are 

listed in Table 3.2. 

3.2.3 Results 

Nine sets of Young’s moduli of the skin were applied to perform the analysis. The 

differences ranged from 3.3%-12.2%, and the maximum difference was with a 

Young’s modulus of 40 kPa. 

Table 3.2 Nipple displacement with different Young's moduli of skin 

Young’s  modulus 
(kPa) 

40 100 300 600 700 800 900 1000 
No 
skin 

Nipple 
displacement(mm) 

13.8 13.7 13.4 13.0 12.9 12.9 12.8 12.7 12.3 

 

3.2.4 Conclusion 

The node displacement changes either with the addition of a layer of skin or 

increased stiffness of the skin. The result indicates that by adding a layer of shell 

mesh as the skin to model breast deformations in the supine to prone positions will 

increase nipple displacement. A study (Gefen & Dilmoney, 2007) indicated that the 

range of the Young’s modulus of the skin is between 200-3000 kPa. In this study, I 

chose to use a Young’s modulus of 1000 kPa of the skin. 
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 Computing reference state 

To compute the reference state, the following methods can be used. The first method 

is to reverse the direction of gravity.  In linear elasticity domains, the reference state 

can be computed by reversing the direction of gravity. However, this does not apply 

to breast tissue since it is non-linear heterogeneous soft tissue. 

The second method is to estimate the initial stress. When a patient is in a supine or 

prone position, her breasts experience internal stress caused by gravity. Therefore, 

computing the internal stress of each node can be carried out. After adding these 

stresses to the breast model, the exact state of the breast is established.  

The third method is an iteration process.  A study (Rajagopal et al., 2006) used this 

method to identify the reference state of the breast. A load was added to the 

deformed breast to predict deformation, and then this breast model was compared 

with a real model, and the iteration process continued until matching. 

The use of an iteration process to identify the reference state means a large amount 

of computation work. Therefore, I will use the second method, which is estimating 

the initial stress, to build a reference state for the breast. A general material property 

of 1000 kPa was assigned as the Young’s modulus and 0.45 as the Poisson’s ratio. 
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 Mesh sensitivity study 

3.4.1 Introduction 

Mesh sensitivity can represent the quality of a finite element mesh. Technically, 

despite other inputs, high quality meshes produce results with an acceptable level of 

accuracy. Mesh density can control the accuracy of the model, and a model with a 

high density mesh has high accuracy. However, if the mesh density is too large, the 

computation time will greatly increase. Therefore, the mesh density can be measured 

to represent the mesh sensitivity. 

A way to evaluate the quality of meshes is to compare the results with test data or 

theoretical values. Unfortunately, both are not available for this research work. So, 

other means of evaluating mesh quality are needed. These could include mesh 

refinement and interpretations of results discontinuities. The most fundamental and 

accurate method for evaluating mesh quality is to refine the mesh until a critical 

result is obtained (Hale, 2014). As the maximum stress does not significantly change 

with each refinement, it is used as the standard. 

3.4.2 Method 

To evaluate the mesh quality, the mesh is refined until a critical result is acquired. In 

this study, as shown in Figure 3.1, the initial model is (a) and the deformed model is 

(b), different mesh density was assigned with the initial model to conduct analysis. 

According to the color bar of stress distribution (d), the maximum stress appears to 

be the edge of the bottom plate (c). The convergence of the results is the maximum 

stress. The density of the mesh is increased until the maximum stress converges. The 

density of mesh increased from 8 elements to 360 elements per unit area. The 
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Maximum von Mises stress at the junction between the bottom and the circular 

surface is calculated under each mesh density. 

3.4.3 Results 

To identify the suitable mesh size for this study, I measured the mesh sensitivity by 

reducing the mesh size until the changes in the maximum von Mises stress at the 

junction between the bottom and circular surface is the smallest. A series of mesh 

densities were used to generate meshes. After the FEA was carried out, the 

maximum von Mises stress of each density is plotted in Figure 3.2.  The results show 

that a mesh density that contains around 60 elements per unit area can provide the 

most stable model. 

3.4.4 Conclusion 

In this study, an increase from 61 elements to 110 elements per unit area yields only 

a 7.09% increase in stress, which is the smallest change. Further increases in the 

mesh density does not significantly increase the maximum von Mises stress. 

Therefore, the mesh density chosen is approximately 60 elements per unit area. 
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Figure 3.1 Hemisphere phantom in (a) unload state, and (b) deformed state, and (c) stress distribution and 
(d) color bar of stress. 
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Figure 3.2 Maximum von Mises stress for different mesh densities 
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 Element shape 

3.5.1 Introduction 

To build a biomechanical model for FEA, it is important to choose a mesh that is 

more accurate and efficient to carry out the analysis. There are two kinds of meshes 

that are commonly used to build a finite element model, which is tetrahedron and 

hexahedral meshes.  

In this section, a phantom is created to determine whether a hexahedral or tetrahedral 

mesh should be used to simulate the deformation of breasts from the supine to prone 

positions. 

3.5.2  Method 

The phantom is a hemisphere model. The density of the phantom was assigned as 

1000 kg/m3. The radius of the half sphere was 50 mm. The material of the phantom 

has a Neo-Hookean strain energy function. The material parameters were assigned a 

Young’s modulus value of 1000 kPa, and a Poisson’s ratio of 0.45. A gravity of 9.81 

m/s2 was applied perpendicular to the bottom face of the half sphere phantom. The 

direction was from the flat bottom face to the hemisphere. This model is regarded as 

the reference state. Both the hexahedral (C3D8R) and tetrahedral (C3D10) meshes 

were created respectively. The meshes were generated by obeying the following 

rules. 

1. The meshes have the same number of nodes. The hexahedral mesh has 

26,420 nodes and 24,300 elements. The tetrahedral mesh has 25,139 nodes and 

17,272 elements. 
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2. The meshes have the same number of elements. The hexahedral mesh has 

26,420 nodes and 24,300 elements, while the tetrahedral mesh has 35,212 nodes 

and 24,427 elements. 

There were no bad elements in both mesh models. 

3.5.3 Results 

The deformed and undeformed meshes are shown in Figure 3.4. According to the 

deformation of the hemisphere phantom, mesh type does not significantly affect 

deformation. Therefore, the mesh is chosen based on computation time. The 

calculation time is shown in Table 3.3. The tetrahedral mesh which has the same 

number of elements as the hexahedral mesh requires the longest computation time. 

When the number of nodes is the same, the hexahedral mesh requires the shortest 

computation time. 

3.5.4 Conclusion 

The hexahedral mesh requires less time to solve a problem, even with the same 

number of nodes or elements as the tetrahedral mesh. The hexahedral mesh also 

provides a structured mesh, with all the nodes distributed onto a grid. 

 

 

 

 

 



 

62 

 

 

 

 

 

     (a)               (b)              (c) 

Figure 3.3 Hemisphere phantom in reference state (upper) and deformed state (lower) for (a) hexahedral 
mesh with 24,300 elements, (b) tetrahedral mesh with 17,272 elements and (c) tetrahedral mesh with 
24,427 elements 
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Table 3.3 Computation time required for hexahedral and tetrahedral meshes due to gravity-induced 
deformation. 

Element shape 
Number of 
elements 

Number of nodes 
Calculation time 

(s) 

Hexahedral 24300 26420 59 

Tetrahedral 17272 25139 62 

Tetrahedral 24427 35212 103 

 

 

 

 

 

 

  



 

64 

 

 Compressibility 

3.6.1 Introduction 

The Poisson’s ratio reflects how much the volume of a material changes during 

deformation. Since biological tissue contains incompressible fluid (water), it is 

commonly described as ‘incompressible’ (Fung & Tong, 2001). However, when 

patients undergo PET/CT scanning in the supine position and MR scanning in the 

prone position, the length of time elapsed between the prone and supine imaging 

procedures means that the volume of the breast might have changed due to the 

changes in the fluid content.  

3.6.2 Method 

To identify the Poisson’s ratio of breast soft tissue, the volume changes of the breast 

in the supine to prone positions were examined. The MR images were cropped as a 

box in accordance with the CT image. The length of the box in the y direction was 

determined by the distance between the bottom lines and chest wall. This distance 

should be the same as that in the CT image. This is to ensure that the breast volume 

in the MR and CT scans is not affected by definition of the boundaries. The breast 

volume in both the MR and CT images was calculated for three pairs of images.  

Three pairs of CT images and MR images (D3, D4 and D6) of the 20 pairs of image 

cases collected from the US were used to calculate the volume change.  

3.6.3 Results 

The breast volume in the prone and supine images and the calculated changes in the 

volume for three subjects (D3, D4 and D6) of the 20 cases form the US are provided 
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in Table 3.4. The percentage of the volume change in the prone to supine positions 

ranges from 2% to 7%, which is very small. 

3.6.4 Conclusion 

The change in breast volume measured in this study is small. The results support the 

incompressible nature of breast tissue. Therefore, the Poisson’s ratio is assigned a 

value of 0.45. 
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Table 3.4 Breast volume change in prone to supine position. 

Subject Volume in prone 
(ml) 

Volume in supine 
(ml) 

Volume change 
from supine to 

D3 420 408 3% 

D4 614 601 2% 

D6 794 742 7% 
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 Image Preparation and Segmentation 

3.7.1 Image preparation 

The image resolution of MR images is 1.3 pixels per mm, the resolution of PET 

image is around 0.26 pixels per mm in this study. Hence, this large difference 

between the PET and MR images can reduce the accuracy of image registration later. 

Both CT and PET images were interpolated to a resolution of 1 pixel per mm, and 

the MR images were also interpolated to a resolution of 1 pixels per mm. When the 

resolution is the same, further processing becomes easier.  

3.7.2 Segmentation 

As mentioned in Chapter 2, the breast mainly consists of adipose and fibro-glandular 

tissues. Adipose tissue is apparently softer than fibro-glandular tissue. A general 

model that treats the entire breast as a homogenous entity that contains only one kind 

of material is therefore not realistic.  Therefore, the CT image was segmented before 

building the model. 

Three segmentation methods have been considered in this research work:  fuzzy-c 

means, Markov random field and histogram threshold segmentations. Image 

segmentation is one of the most challenging tasks in the field of image processing. It 

is basically the process of assigning a label to every pixel in an image, and all pixels 

that share the same label have the same visual characteristics.  

3.7.2.1 Histogram threshold segmentation 

In the modeling of intensity, it is assumed that there are three classes of glandular, 

fat and background tissues respectively. However the modeling of intensity alone 
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can only give accurate results when the intensities for different tissues are well 

separated. The problem with adipose and glandular tissues is that there are many 

voxels that represent these two types of tissues. 

3.7.2.2 Fuzzy-c means 

Fuzzy c-means (FCM) is a data clustering technique, in which datasets are grouped 

into a number of clusters. This method was developed by (Dunn, 1973) and amended 

by (Bezdek, 2013). FCM is a widely used unsupervised segmentation technique, and 

therefore can make good predictions and classifications based on the observation of 

a given image. 

3.7.2.3 Markov Random Field  

In real images, regions are often homogenous; neighboring pixels usually have 

similar properties (intensity, color and texture). Markov Random Field (MRF) is a 

probabilistic model which captures such contextual constraints(Kato & Pong, 2006). 

MRF theory provides a convenient and consistent way of modeling context-

dependent entitles such as image pixels and correlated features (Li, 2009). 

Segmentation that uses Markov random fields is also unsupervised segmentation, 

which extracts features from the inputted image, and also takes neighboring pixels 

into consideration. However, in a breast image, pixels on the edge of a tissue, for 

example, the adipose tissue may be erroneously misclassified as, for instance, the 

glandular tissue.  

To better identify the breast tissue, Markov random field regularization is an 

appropriate choice due to the anatomy of the fibro-glandular tissues. Since the breast 

ducts are connected in a tree-like structure inside the breast, the voxels that represent 
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the glandular tissue are more likely to be connected to other voxels of glandular 

tissue, rather than isolated inside the fatty tissue. 

Typically, a breast with a lesion should be subdivided into at least three parts: fatty 

tissue, tumor and fibro-glandular tissue. As it is difficult to identify the intensities of 

tumors in CT imaging, the breast is only segmented into two parts in this study, 

which are fatty and fibro-glandular tissues. However, as shown in Figure 3.4, the 

FCM segmented image has some black holes in the fibro-glandular tissue, but the 

whole fibro-glandular tissue will be used to build a solid fibro-glandular model. The 

computation times of a single slice with the use of these two methods are listed in 

Table 3.5. It can be seen that FCM requires less computation time. In some case, the 

image is over segmented, the pixels out of the boundary is also considered as adipose 

or fibro-glandular tissue. 

Therefore, based on the computation time and segmentation performance, FCM is 

applied in this research work to carry out fast segmentation.  

 

Table 3.5 Computation time for FCM and FRM 

 
D14 D11 D6 

FCM 0.39s 0.64s 0.71s 

MRF 6.77s 8.03s 7.56s 
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Figure 3.4 Segmentation results of FCM and FRM for three cases of the 20 US cases. 
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 Chapter summary 

This chapter has described the aspects considered when constructing a finite element 

model of the breast.   

To ensure the quality of breast modeling, I recorded the computation time required 

by  both the hexahedral and tetrahedral meshes. When the number of nodes is the 

same, the hexahedral mesh requires less computation time.  When the number of 

elements is the same, the hexahedral mesh again requires less computation time. 

Therefore, this result proves that the hexahedral mesh is more efficient in processing 

the analysis. 

After deciding on the element shape, the mesh size is also considered in this chapter. 

Technically, a smaller mesh size can result in higher accuracy compared to a larger 

mesh size. However, a dense mesh also means more computation time. The results 

show that a mesh density that contains around 60 elements per unit area can provide 

the most stable model.  

Another important parameter that was determined in this chapter is the Poisson’s 

ratio. The compressibility of the breast model is calculated by the breast volume in 

the prone to supine positions. There are minimal changes in the volume. Therefore, a 

Poisson’s ratio is assigned a value of 0.45. 

Finally, to build a patient-specific breast model, the breast image is segmented into 

the adipose and fibro-glandular tissues. The segmentation methods have been 

discussed and summarized. FCM segmentation is applied in this study because it has 

the ability to perform a fast and highly accurate segmentation. 
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4 Image registration for patient-specific biomechanical 
model of the breast  

 Introduction 

Breast cancer is the second most prevalent type of death causing cancer worldwide 

(40,450 (breast cases) out of 281,400 (all cancers)) (American Cancer Society, 

2016a). The diagnosis of breast cancer will have serious repercussions for a woman 

as her quality of life will be negatively affected. There are 246,660 anticipated new 

cases of breast cancer in the United States (American Cancer Society, 2016a). 

However, better treatment approaches can reduce mortality rates and lead to better 

quality of life.  Breasts are composed of soft tissues, which deform very easily when 

the body is in different positions. The simulation of large deformations of the breasts 

is a crucial element in many medical applications, such as image registration, image 

guided surgery, cancer diagnosis and surgical planning (Han et al., 2012). Building a 

mechanical model will greatly assist in these medical applications. 

FEA (Zienkiewicz et al., 1977) is widely used in engineering disciplines, such as 

civil and mechanical engineering. It is a numerical means for finding solutions to 

complicated problems. FEA is also widely used in medical research. It has a 

dominant role in biomechanics, a means by which researchers can use to analyze 

stress and strain of bone under particular loading environments. 

In this study, I have used FEA to establish a registration model of breast images, 

especially for MR and PET/CT images of the breast. CT image was used to form a 

patient-specific model based on the anatomical structure. As there is a high level of 

correlation with the material properties, a registration model by using FEA thus 

becomes more patient-specific.  
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The DIR technique has been widely applied for radiotherapy planning (Foskey et al., 

2005) and image guided therapy (Sarrut, 2006). The modeling of the deformation of 

breast tissue have been studied by many researchers (Azar et al., 2000; Gamage et al., 

2012; Gamage et al., 2011; Kuhlmann et al., 2013; Palomar et al., 2008; 

Pathmanathan et al., 2008; Rajagopal, 2007; Samani et al., 2001). Biomechanical 

modeling is used to simulate the deformation of breasts under gravity loading 

(Palomar et al., 2008; Rajagopal, 2007), compression in the mammography process 

(Pathmanathan et al., 2004; Pathmanathan et al., 2008), and in biopsy processes 

(Azar et al., 2000). However, none of these studies has considered material 

properties to be a patient-dependent parameter. Breast mainly consist of soft tissues; 

the adipose and fibro-glandular tissues. The latter is more stiffer than fat tissue. A 

breast with more adipose tissue is therefore softer, and the deformation will be 

greater. This is a challenging problem for researchers. Also, aside from the density 

differences of the adipose and fibro-glandular tissues, the distribution of fibro-

glandular tissues, Cooper’s ligaments and skin also affect the amount of deformation. 

This registration model based on an FEA will therefore take material properties into 

consideration. 

A study by Lee et al. showed that biomechanical modeling alone is not sufficient for 

accurately predicting deformation (Lee et al., 2010). A registration method that 

combines biomechanical modeling with a non-rigid transformation registration 

method will provide better results. In this study, a registration process that combines 

FEA and affine transformation to register PET images in the supine position and MR 

images in the prone position is proposed.  

Different imaging modalities have been used for detecting breast cancer, such as CT, 

MRI, x-ray mammography and PET. PET is a molecular imaging modality, which 
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can recognize breast cancer at the molecular level to provide an early diagnosis and 

thus treatment. The accuracy of PET diagnoses is 8-43% higher than those of CT and 

x-ray mammography (Moskowitz, 1995). However, PET images have low spatial 

resolution and show limited anatomical information which make it difficult to locate 

the potential lesion(s) (Smith et al., 2004). To enhance the image quality of PET, a 

registration process needs to be developed which combines PET imaging with 

another imaging modality such as MRI which shows anatomical structural 

information (Antoch & Bockisch, 2009). Although patients may not be able to 

undergo PET and MRI scanning at the same time, the registration of PET and MRI is 

still necessary. Due to the differences in the resolution of PET and MRI and image 

formation processes, the intensity relationship between PET and MR images cannot 

be defined. The registration of MR and PET images based on similarity measures 

provides unsatisfactory results (Unlu et al., 2010). Here, an FEA-based registration 

model for PET and MR images is proposed, which takes patient-specific features 

into consideration. 
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  Method 

The large-scale deformation of breast is predicted to register the PET/CT image in 

supine position with MR image in prone position. The registration procedure 

includes three part in total as shown in Figure 4.1. 

Part1: Generate an FE model from the CT image. 

Part2: FEA and optimize the mechanical properties, the process of FEA is shown in 

Figure 4.2. 

Part3: Align the FEA predicted image in prone position with the original MR image 

in prone position. 
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Figure 4.1 Flowchart of registration process 
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Figure 4.2 Flowchart of FEA. 
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4.2.1  Preprocessing 

Eight PET/CT and MR images were collected from Hong Kong Sanatorium Hospital 

(Siemens Biograph 40 and Siemens Trio TIM). In each case, the CT volume was 

cropped, and the left or right breast was selected based on a lesion on the MR image. 

Breast images between the second and the seventh ribs were used to build the breast 

model. The Cooper’s ligaments were neglected because they were not visible in the 

images. The CT breast image was segmented into the adipose and fibro-glandular 

tissues automatically by using an FCM algorithm (Bezdek et al., 1984). The chest 

wall and muscle were manually segmented from the breast, and then 3D models of 

the fatty and fibro-glandular tissues (Figure 4.3) were built based on these segmented 

images via marching cube operation respectively (Lorensen & Cline, 1987).  
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Figure 4.3 Segmented breast model (fatty tissue - dark gray color, fibro-glandular tissue - light gray color).  
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4.2.2 Patient-specific model 

As shown in Figure 4.3, the 3D breast model is generated by merging the modeling 

of the fatty tissue (green color) with the fibro-glandular tissue (gray color) together. 

Breast skin was modeled by adding a 1 mm mesh layer on the surface of the breast 

model. FEM was used to simulate the physical behavior of the breast during the 

deformation process. 

In order to improve the efficiency of operation during the FEA, the model was cut 

into cubes to generate finer hexahedral meshes as shown in Figure 4.4(a) and 4.4(b). 

The model was assigned a homogeneous isotropic material. The stiffness ratio of the 

fibro-glandular and fatty tissues was chosen based on published data. The Young’s 

modulus of the fibro-glandular tissue was modeled 7.5 higher than the fatty tissue 

(Hopp et al., 2013). The Poisson’s ratio used in this study is 0.45 because according 

to previous studies, breasts are considered incompressible (Azar et al., 2001; 

Palomar et al., 2008; Rajagopal et al., 2006; Samani et al., 2001). A neo-Hookean 

constitutive relationship was used to predict the nonlinear stress-strain behavior of 

hyperplastic materials (Bonet & Wood, 1997), and proven to be reliable in 

accurately representing the mechanical behavior of incompressible isotropic soft 

tissue (Chung, 2008; Chung et al., 2008). Physical behavior is also described by the 

boundary conditions, in which the surface that is connected to the chest wall is fixed 

in the anteroposterior direction to simulate the fixation at the chest wall (Hopp et al., 

2013).  
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Figure 4.4 3D model of breast and breast deformation simulation. (a) generated 3D breast model and 
segmented into small cubes for finer mesh; (b) hexahedral meshes created based on cubes, (c) simulation 
of breast deformation under gravity, and (d) nodal deformation vector plotted on each node to illustrate 
movement of nodes during deformation. 
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4.2.3  Deformation Simulation 

The deformation of the breast was predicted by using ABAQUS (Hibbett et al., 

1998). Displacements equal to zero were assigned to the surface that connected with 

the chest wall in the X, Y, and Z directions. Gravity loading was added along the 

vertical direction.  

All images of the breast were obtained under a gravity loading environment, 

regardless whether the imaging was CT, PET or MRI. Therefore, the model built 

from the images is a deformed model in loading conditions. Identifying the unloaded 

geometry of the breast is required to simulate the deformation of the breast from the 

supine to the prone positions. The reference state of the breast is a load-free state. 

Identifying the reference state allows for a more reliable prediction of deformation 

(Rajagopal et al., 2006). Rajagopal et al. (Rajagopal et al., 2006) developed a method 

to calculate the reference state of the breast by using an iteration process. In this 

study, the initial stress was estimated in ABAQUS, and the initial stress was released 

to calculate the reference state in ABAQUS.  

The initial material properties of the breast for inputting are shown in Table 4.1. The 

deformed model after FEA is carried out is shown in Figure 4.4(c).  

 

 

 

 



 

84 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 Initial material properties of breast. 

 Density (kg/m3) 
Young’s 

modulus (kPa) 
Poisson ratio 

Fatty 1000 250 0.45 

Fibro-glandular 1200 1875 0.45 
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4.2.4  Optimization and hybrid registration 

The differences in the resolution and intensities between PET/CT and MRI make it 

difficult to define the correspondence between PET/CT and MR images. There are 

no distinct landmarks except for the nipple, fibro-glandular tissues and lesion.  

Fibro-glandular tissue and the lesion were used as the landmarks to evaluate the 

registration, therefore nipple was used as a landmark to identify the correspondence 

between the CT and MR images. A rigid pre-registration of the MR images for the 

prone position and CT scans for the supine position was performed to calculate the 

displacement of the nipple. This displacement could be treated as the criterion of 

model deformation performances during optimization. 

Young’s modulus has been considered as an important factor that could influence the 

deformation of the breast. However, the density of a material changes the overall 

deformability of the breast, therefore, density is also an important factor. 

Analyses were conducted to calculate the weight proportion of density, Poisson's 

ratio, and Young’s modulus. Since these three parameters are independent variables, 

three rounds of studies were designed. In each round, one factor was changed ten 

times while the other two factors were kept constant, and nipple displacement was 

calculated in each round. The correlation of density, the Young's modulus, and 

Poisson's ratio with nipple displacement is 0.7, 0.6 and 0.1 respectively as shown in 

Figure 4.5. This means that the simulation of the deformation is also very sensitive 

to the tissue density. However, density and the Young’s modulus are both 

mechanical properties. A material with a higher Young’s modulus tends to have a 

higher density as shown in Figure 4.6 (University of Cambridge/Department of 

Engineering, 2002). Here, the effects of density are neglected because the density 
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cannot be determined based on the Young’s modulus. Also, lightweight material also 

has the tendency to have a lower Young’s modulus. 
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Figure 4.5 Effects of tissue density, Poisson’s ratio, and Young's modulus during breast deformation under 
same loading environment. Note that effects of tissue density and Young’s modulus are much higher than 
Poisson’s ratio. 
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Figure 4.6 Young’s modulus and density (University of Cambridge/Department of Engineering, 2002) 
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An optimization process was carried out after the first round of FEA simulations. 

Optimization was realized by using MATLAB (MATLAB2015, The MathWorks 

Inc., Natick, MA). The displacement vector of the nipple calculated in the pre-

registration step was taken as the standard for iteration. The factor optimized was the 

Young’s modulus of the adipose and fibro-glandular tissues. The iteration procedure 

is shown in Figure 4.7. The optimization process was stopped when the difference 

between the simulated and actual nipple displacements was within 1 mm.  Equation 

12 is used to determine the stopping criteria of the optimization process of the 

Young’s modulus: 

 Argmin-Vn	subject	to	lb < E < ub (12)  

where Vn represents the deformation vector of the nipple, E denotes the Young’s 

modulus, lb is the lower bound constraint for E, and ub is the upper limit constraint 

for E. The boundary conditions were assigned in accordance with Equation 2: 

 0.5kPa < E < 500kPa (13)  
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Figure 4.7 Optimization process: customized FE model built with CT images. After first round of analysis, 
predicted nipple displacement compared with real displacement in MR image. Model then updated by 
refining material properties until nipple displacements converged. 
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After optimization, the node coordinates of the deformation and pixel intensity 

values of the CT images were linearly interpolated to generate the predicted CT 

image in the prone position.  

Affine transformation was combined with the registration of the deformities 

simulated by the use of FEA to create a hybrid registration, which would further 

improve the quality of the registration. As CT and PET share the same coordinate 

system, the affine transformation was conducted on the CT images and then 

transferred to the PET images. 

Scale invariant feature transform (SIFT)-based registration can be used to register 

objects that are located in different regions in a robust manner. Two separate images 

of the same object but with different spatial information are aligned (Liu et al., 2011). 

This method has been used in previous studies to perform mammography and MRI 

registration (Zhong & Chen, 2014); (Martel et al., 2007). SIFT-based registration is 

therefore applied for comparing the groups of MR and PET images in this study. 

4.2.5 Evaluation metrics 

To evaluate the performance of the CT and PET images of the deformation, six 

parameters were used, namely: mutual information (MI), correlation ratio (CR), 

structural similarity index (SSIM), dice coefficient (DICE), target registration error 

(TRE) and the relative target registration error (TRErel). The landmark used to 

calculate the TRE and TRErel was the lesion displacement. 

The DICE value is the sum of the overlapping points divided by the total number of 

points. It is calculated based on CR/MR and PET/MR images.  DICE was calculated 
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from area A in the MRI landmark, and defined as polygon P
MRI

 and the PET 

landmark defined as polygon PPET:  

 
D =

2�(���� ∩ ����)

�(����) + �(����)
 (14)  

The graphic centroid of the landmark in both the predicted PET and MR images was 

identified. The TRE is defined as the Euclidean distance between the centroid of the 

landmark in the MR image (C
MR

) and PET image (CPET). TRE can be used to 

evaluate the registration performance. It is calculated from PET/MR and CT/MR. 

 TRE = ||��� − ����|| (15)  

Since the size of the landmark also affects the accuracy, TRE
rel

 is calculated per 

(Hopp et al., 2013), which is defined as the TRE divided by the diameter of the 

landmark in MRI DMRI. It is calculated from PET/MR and CT/MR. 

  

 ������ =
���

����
 (16)  

The definition of CR, MI and SSIM, is showing below. This three metrics are 

calculated from CT/MR images. 

 CR =
∑ 	� ∑ (���� − ������)(���� − �������)�

�(∑ 	∑ (���� − ������
�� )�)(∑ 	∑ (���� − �������)��

�
)

 (17)  

 MI(MR;CT)=H(MR)+H(CT)-H(MR|CT) (18)  

 SSIM(CT, MR) =
(2���������

)(2����� + ��)

(���
� + ���

� + ��)(���
� + ���

� + ��)
 (19)  
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  Results 

Eight breast image sets were used in this study. Each set of images consists of 

patient CT/PET and MR images. The related information is shown in Table 4.2. 
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Table 4.2 Breast image basic information: volume and density of the breast image, the age of the patient, 
the lesion diameter, and the fibro-glandular tissue diameter. 

Case no. 
Volume 

(ml) 
Age 

(years) 

Lesion 
diameter 

(mm) 

Fibro-
glandular 
diameter 

(mm) 

Densitya 

 

H1 386.131 41 37 37 0.4600 

H2 1072.997 46 14.8 68 0.1700 

H3 852.087 77 23.8 106 0.1300 

H4 776.251 63 18.3 143 0.2700 

H5 766.586 33 4.6 167 0.1300 

H6 582.337 27 30.1 60 0.5700 

H7 670.094 39 22.5 185 0.3600 

H8 757.159 34 61.3 103 0.4600 

a Density in this form is a volume of glandular tissue divided by volume of breast.   
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4.3.1  Image performance 

Figure 4.8 shows how the established method predicts breast deformation from the 

supine to prone positions. The method used in this study successfully registers MR 

images in the prone position and PET/CT images in the supine position. Figure 4.9 

presents the registered PET/MR images, with the lesion in the PET image colored in 

red. The PET and MR images were also registered by using SIFT-based registration 

for comparison purposes (Figure 4.10). The lesion cannot be clearly observed in the 

MR and PET images for S5, so the registered PET/MR image is not shown in Figure 

4.9. As can be observed, the method in this study accurately predicts the location of 

the lesion with a TRE=4.77±2.20 mm, which is not the case for SIFT-based 

registration. The reason will be elaborated in the discussion section.  
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Figure 4.8 Registration performance. First column: real MR images in prone position. Second column: 
predicted CT images in prone position. Third column: registered MR/CT images, fibro-glandular tissues 
colored in red. Fourth column: overlapping images that compare contours of predicted CT images with 
real MR images. Last column: mapping of local SSIM values. 

 

 

 

 

 

 

 



 

97 

 

 

 

 

 

 

 

Figure 4.9 Registered PET/MR images. Lesions in PET images colored red. 
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Figure 4.10 SIFT registration of PET and MR images: incompletion of registration due to large 
deformation of breast. 
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4.3.2  Evaluation 

As mentioned before, there is no universal consensus for evaluating image 

registration. Therefore, six parameters are proposed in this study to evaluate the 

established process. The parameters and their mean values, standard deviations (SD), 

and SD/mean are presented in Table 4.3. 
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Table 4.3 The evaluation matrix. (mutual information (MI), correlation ratio (CR), image structural similarity index (SSIM), dice coefficient (DICE), and target 
registration error (TRE and TRErel.) 

Case No. MIa CRb SSIMc DICEd TRE (g) 
/mme TRErel (g)f tre(l) /mm trerel(l) DICE(l) 

H1 0.491 0.744 0.894 0.842 5.98 0.145 4.47 0.121 0.721 

H2 0.965 0.705 0.696 0.939 9.93 0.162 2.23 0.151 0.644 

H3 0.675 0.840 0.759 0.890 13.1 0.165 2.67 0.112 0.556 

H4 0.594 0.907 0.829 0.921 9.27 0.083 6.71 0.367 0.468 

H5 0.574 0.739 0.767 0.903 2.51 0.017 NA NA NA 

H6 0.373 0.831 0.810 0.841 8.83 0.162 4.06 0.135 0.641 

H7 0.539 0.817 0.750 0.782 12.604 0.075 9.04 0.402 0.464 

H8 0.466h 0.319 0.839 0.867 8.01 0.116 4.24 0.069 0.668 

Mean 0.585 0.738 0.793 0.873 8.27 0.1156 4.77 0.19 0.59 

SD 0.166 0.169 0.058 0.047 2.87 0.049 2.20 0.12 0.09 

SD/Mean 0.285 0.229 0.07 0.05 0.35 0.0438 0.45 0.64 0.16 

 

aMI is the mutual information. 
bCR is the correlation ratio. 
cSSIM is the image structural similarity imdex. 
dDICE is the dice coefficient. 
eTRE is the target registration error. 
fTRErel is the relative target registration error.
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The MI, CR, SSIM, and DICE values range between zero and one. MI has the lowest 

value of 0.585±0.166. The average CR, SSIM and DICE is all greater than 0.7, 

which indicates that the predicted image has a good overall performance. The TRE(g) 

of the fibro-glandular tissues is 8.27±2.87 mm, and TRErel(g) is 0.116±0.049 mm. 

The TRE(l) of the lesion is 4.77±2.19 mm, which is only about 3 pixels in an MR 

image (resolution:1.3 pixels per mm). The DICE and TRErel(l) of the lesion is 

0.59±0.09, and 0.19±1.12 respectively. 
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Figure 4.11 Case registration errors: MI, CR, SSIM, DICE(g), TRE(g), TRErel(g), DICE(l), TRE(l), 
TRErel(L). MI, CR, and SSIM: errors for overall image performance. DICE, target registration errors of 
landmarks (TRE(g) and TRE(l): registration performance of internal features.  
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To determine the correlation between the six parameters, Pearson’s correlation 

coefficient (R) was calculated for all of the parameters. Parameters with a higher R-

value are shown in Table 4.4, along with the correlated parameters and their 

significance.  It can be observed that MI is negatively correlated with SSIM (R=-

0.7216, p<0.05). TRErel(l) and Dice(l) are negatively correlated (R=-0.8626, p<0.05). 
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Table 4.4 Parameters with high correlation coefficient. 

Pearson’s correlation coefficient 

MI SSIM -0.7216 0.0432 

TRErel(l) Dice(l) -0.8626 0.0125 
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4.3.3 Dataset analysis 

To determine whether the image features can predict the simulation performance 

(TRE of the fibro-glandular tissues and lesion) before registration was conducted, six 

image features (image density, breast volume, patient age, distance of lesion from 

the chest wall, and diameter of lesion) were extracted from the CT and PET images, 

and plotted in Figure 4.12. The correlation coefficient was calculated between TRE 

and each feature. However, no correlation was found.  
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Figure 4.12 Plotting of image features vs. TRE (TRE(g) of fibro-glandular tissues and TRE(l) of lesion 
colored gray). No correlation found. 
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4.3.4 Mechanical properties 

In this section, an inverse FEA and optimization process were combined to predict 

the elastic properties of the adipose and fibro-glandular tissues. This method can 

predict the mechanical properties, which may not necessarily be a real value, but 

provide an overall trend. 

The predicted moduli of the breast tissue compared with the values found in the 

literature are listed in Table 4.5. It can be observed that the range of material 

properties predicted in this study is smaller than the range predicted by Roose, 

Tanner and Gefen. The material properties range of this study is close to the 

properties predicted by Guillaume.  
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Table 4.5 Predicted moduli of breast tissue compared with values in literature. 

Young’s 
modulus 

(kPa) 

Roose 
(2005) 

Tanner et 
al. (2006) 

Gefen and 
Dilmoney 

(2007) 

Guillaume 
et al. 

( 2013) 

Study 
results 

Glandular 1.7-500 1-20 7.5-66 0.5-10 3.75-39.2 

Adipose 1.7-500 1 0.5-25 0.1-2 0.5-5.2 
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  Discussion 

4.4.1 Modeling process 

In this chapter, I have presented a hybrid approach to register MR images in the 

prone position and PET/CT images in the supine position. Large deformations were 

firstly simulated by using FEM, with 3D/3D surface-based registration. The structure 

and mechanical properties of both the fatty and fibro-glandular tissues were taken 

into consideration. Then, affine transformation was applied to the deformed image to 

complete the hybrid registration.  

An iteration process to optimize the Young’s modulus was integrated into the 

method. To determine the mechanical properties that were to be optimized, the 

impact of the values of the Poisson’s ratio, Young’s modulus, and density was 

calculated respectively. The impact of the Young’s modulus and density is greater 

than that of the Poisson’s ratio. However, most materials with a higher density have 

a higher Young’s modulus, so only that Young’s modulus of the fatty and fibro-

glandular tissues was optimized. The optimization process of the Young’s modulus 

stopped  when the difference between the simulated and actual nipple displacements 

was within 1 mm, and no extra calculations were needed. Han et al. calculated 

normalized mutual information as the terminating condition (Han et al., 2014). As 

FEA was used to simulate the deformation process, deformation used as the 

terminating condition of optimization provides a better quality optimization; 

therefore, nipple displacement rather than intensity based parameters was used as the 

optimization criterion. 
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4.4.2 Performance analysis 

Different images from the same object with different spatial information can be 

registered by using SIFT registration. SIFT registered MR and PET images are 

therefore used for comparison purposes in this study. However, the resolution of the 

PET images was too low for SIFT registration to obtain the spatial information, and 

the deformation of the breast was too large, so registration by using SIFT could not 

be completed. 

In clinical practices, image registration can help radiologists to more readily identify 

lesions. The parameters used to assess the image registration, MI, CR, TRE, SSIM, 

DICE and TRE
rel

 , were therefore used. In thesis evaluation metrics, the parameters 

with the highest average mean value is DICE (0.873±0.047). 

The Pearson’s correlation coefficient of all of the parameters were calculated in the 

evaluation matrix. The parameters with high correlation (p<0.05) are shown in Table 

4.4. MI and SSIM were found to be negatively correlated. TRErel(l) and DICE(l) 

were found to be negatively correlated, which shows that when using smaller sized 

landmark, DICE is  another parameter that can be used to evaluate the performance 

of the registration. 

A comparison between the method in this study and that of previous studies is shown 

in Table 4.6. The TREs of both the fibro-glandular and fatty tissues with the use of 

the method proposed in this study are lower than those of earlier studies. The overall 

image similarity of the eight image sets in this study is 0.793±0.058, which also 

indicates that the rebuilt images of deformation have high similarities with the MR 

images.  
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The highly accurate registration indicates that the established mechanical model of 

the breast in this study can simulate deformations of the breast from the supine to 

prone positions. This proposed model also addresses patient-specific properties of 

the human tissues. The application of this model is not restricted to image 

registration. It can also be used to enhance image-guided surgery and plastic surgery 

of the breast, as well as medical device development.    
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Table 4.6 Comparison of target registration errors. 

Registration error 
Method in this 

study 
Han et al. (2012) Hopp et al.  (2013) 

TRE(g)/mm 8.27±2.87 

9.86±2.77 11.0±8.3 
TRE(l)/mm 4.77±2.20 

TRErel(l) 0.19±0.12  0.73±0.90 
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 Conclusion 

A patient-specific biomechanical model of the breast has been established in this 

study. A 3D breast model is formulated with sufficient meshes and a smooth surface 

in a very convenient way in comparison to previous studies. This method uses 

ABAQUS software which can reduce the time demand for modeling and increase 

accuracy at the same time.  

Eight sets of images are used to evaluate the proposed model. The average TRE of 

the fibro-glandular tissues in the images is 8.27±2.87 mm, and 4.77±2.20 mm for the 

lesion, with an overall image similarity of 0.738±0.169. The performance of this 

model excels that of previous studies. The advantage of using this method is that 

applications are not limited to PET/MR image registration, but any deformation in 

the supine to prone positions. This established patient-specific mechanical model can 

accurately register the breast from the supine to prone positions and help with the 

early detection of breast cancer, and also has the potential to improve radiotherapy 

planning.  
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5 Images from two institutions for model validation  

 Introduction 

A biomechanical model that can accurately reflect the deformations of the breast in 

the supine to prone positions has been established (see Chapter 4).  In reflecting the 

deformations, clinicians can better analyze the images and make appropriate 

diagnoses. 

However, the breast size of Asian and Caucasian women is usually different because 

of their different diets and genetic variants, and fat/glandular tissue composition, and 

contouring of breast. Normally, Asian women have smaller, denser breasts than 

Caucasian women (Nie et al., 2010). 

To identify whether the model developed in this study is applicable to patients with 

different breast size and of different race, 20 additional sets of images were collected 

from an American institution.  
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 Method 

As the density and volume may affect the performance of the proposed 

biomechanical model of the breast. To identify this, twenty more PET/CT and 

matching MR image sets were collected from Duke University Health System in 

USA (GE Discovery STE and Siemens Avanto). The scans were acquired within 6 

months of each other as part of routine clinical practice. The breast volume was 

measured from the 3D CT model. Two pairs of images (D19 and D20) were 

excluded from the former because the deformation was extremely large so that 

contact was made with the breast MR coil (as shown in Figure 5.1). Thus, the 

deformation of the breast is not only a result of gravity but also the holding force 

from the coil. However, this is not the scope of this study. In the evaluation stage, 

one pair of breast images from the Hong Kong sample (H5) was excluded, because 

there is no clear cancer lesion in the MR image that can be used to perform 

evaluation. Therefore, a total of 25 image sets (both PET/CT and MR) are used to 

evaluate the model. The information of the images are shown in Table 5.1. The 

volume and density of these cases are plotted in Figure 5.2. 
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Table 5.1 Information of the US patients. 

Case No. 
Lesion size 

(mm) 
Volume 

(ml) 
Density 

Nipple 
displaceme

nt (mm) 

Weight 
(kg) 

D1 22.7 687 0.17 82 51.7 

D2 23 1584 0.10 79 77.1 

D3 24.4 408 0.38 77 58 

D4 24.8 601 0.20 35 52.6 

D5 46.5 2476 0.10 138 99.7 

D6 36.2 742 0.16 60 74.8 

D7 4.7 493 0.17 40 58 

D8 14.5 597 0.25 75 56.7 

D9 18.1 924 0.49 103 74.8 

D10 66.6 1948 0.12 65 115.6 

D11 64.9 1442 0.26 122 73 

D12 11.7 918 0.14 90 77.6 

D13 15.7 1078 0.12 65 66 

D14 48.9 566 0.07 61 62.6 

D15 19 1055 0.08 75 95.3 

D16 38.2 3779 0.03 118 113.4 

D17 12.8 597 0.24 70 54 

D18 41 1728 0.03 118 113.4 
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The breast volume of the American sample was compared with that of the Hong 

Kong sample. As shown in Table 5.2, the median of the breast volume of the former 

is 990ml, the density has a median value of 0.15. The median value of the breast 

volume of the latter is 762ml, the median value of density is 0.27. The density of the 

American sample is significant smaller than that of the Hong Kong sample (p<0.05). 

It is hypothesized that the volume size and density may affect the performance of the 

mechanical model of the breast developed in this study. To determine whether this is 

true, the correlation coefficient values were calculated. 
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Figure 5.1 Excessive deformation in excluded MRI image.  
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Figure 5.2 Scatter plot of volume vs. density. 
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Table 5.2 Comparison of breast volume and density: American vs. Hong Kong women 

 
American 

Hong 

Kong 

Median of breast 

volume (ml) 
990 762 

Median of breast 

density 
0.15 0.27 
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5.2.1 Modeling 

Following the same modeling method provided in Figure 4.1, eighteen more 3D 

models were created. First, all of the CT images were cropped in accordance with 

the location of the lesion. Then the images were segmented into the adipose and 

fibro-glandular tissues by using a fuzzy-c means algorithm. The 3D modeling of the 

fatty and fibro-glandular tissues was based on the segmented CT images respectively. 

The skin was modeled by adding an extra 1 mm layer of mesh onto the surface of the 

breast model. The material properties and boundary conditions obey the same rules 

as mentioned in Section 4.2.2. The adipose tissues and skin were assigned a density 

of 1000 kg/m3 and fibro-glandular tissues a density of 1200 kg/m3. Both the adipose 

and fibro-glandular tissues obeyed the Neo-Hookean constitutive relationship. Two 

landmarks were recognized in the PET/CT images, which is the nipple in the CT 

image and lesion in the PET image. Since the lesion is used as a landmark for the 

evaluation of registration error, nipple displacement was used as the standard to 

optimize the model. Nipple displacement in the supine to prone positions was 

calculated by using rigid pre-registration for each image pair. After the first round of 

FEA, the nipple displacement was compared with that of the calculated displacement. 

The material properties of the fatty and fibro-glandular tissues were determined 

through an exhaustive search to minimize the nipple displacement differences. After 

completing the optimization, the optimized node displacement was exported to 

interpolate with the pixel value of the PET image and form a PET image of the 

deformation. 



 

123 

 

The specific steps in ABAQUS software are: input model, assign material properties, 

and cut the model into little cube, generate meshes, assign boundary conditions and 

loading, the last step is analysis. 

5.2.2 Affine transformation and registration 

Intensity based registration has been widely used in medical image registration. 

Nevertheless, for objects that have large-scale deformation, it is difficult to complete 

the combining of images based on only intensity.  However, if the image is deformed 

before intensity based registration is conducted, the accuracy will greatly increase. 

Therefore, FEA can provide the basis for intensity based registration.  

Affine transformation was applied along with FEA because, first of all, affine 

transformation is easy to apply. Also, affine transformation does not overly depend 

on image intensity, as PET images are low in resolution. 

To simplify the registration process, in contrast to Chapter 4, registration was 

directly applied to PET and MR images in this chapter. CT images were used in 

Chapter 4 because some evaluation metrics such as mutual information, correlation 

ratio and SSIM can only be calculated based on CT image or MR image. But TRE is 

found to be the main metric used in the evaluation process, therefore, only TRE is 

needed in this chapter. This means only register PET with MRI is enough in this 

chapter. The landmarks used to calculate the transformation were three points on the 

contours of the chest wall. These three points were manually selected according to 

the shape features. This transformation was then applied to the PET images to 

generate new deformed PET images. The new images were then overlapped with 

MR images to complete registration. The lesion in the PET images was also colored 

in red so that it can be readily identified.  
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5.2.3 Machine learning 

Generally, machine learning is a process that analyzes data from different 

perspectives, categorizes the data, and summarizes the data to extract useful 

information. The purpose of machine learning is to extract information based on 

various rules and transform this information into a comprehensible structure. 

In this section, I used an open source data mining software WEKA (Hall et al., 2009) 

to determine the means to classify the data based on the extracted features, so that 

the registration accuracy can be predicted before registration takes place. 

Cross validation (Picard & Cook, 1984) is a process in which the data are split into 

two parts. One part is used as the training set to fit the model and another part is used 

for validation.  

The features that were extracted from the images include: patient weight, lesion size, 

nipple movement displacement, location of lesion, image density, and breast volume. 

The location of the lesion is defined as a ratio of the distance of the lesion to the 

chest wall over the distance of the farthest vertices to the chest wall. When the lesion 

is near the chest wall, this value is close to zero. When the lesion is near the surface 

of the breast this value is close to one.  
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 Results 

5.3.1 Model performance 

Two random chose pairs (case D6 and case D11) of the predicted deformed breast 

models before affine transformation and real breast models of the prone position are 

shown in Figure 5.3. The pink colored model is formulated based on MR images in 

the prone position and the green colored model is the predicted CT breast model in 

prone position. The blue colored model from the corresponding CT images in the 

supine position. The difference between the CT images in the supine position (e), (j) 

and the MR images in the prone position (b), (l) is extremely large, which means that 

simulation of the deformation is quite difficult. The predicted model for the prone 

position (c, d), (h, i) and real model of the prone position (a, b), (f, g) in the superior-

inferior and lateral-medial directions were compared. It was found that the 

performance of the developed model is good enough to predict a general 

deformation of the breast. 
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Figure 5.3 Comparison of predicted (green; (c,d,h,k)) and real (pink, MR images) breast models in prone 
position. Breast model in supine position (e and j; CT images).  
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5.3.2 Registration error 

An evaluation matrix with six parameters (mutual information (MI), correlation ratio 

(CR), structural similarity index (SSIM), dice coefficient (DICE), target registration 

error (TRE) and the measured relative error of the target registration (TRErel)) was 

provided in Chapter 4. However, due to the low resolution of PET images, MI, CR, 

DICE and SSIM are not available.  Therefore, only TRE of the lesion was calculated 

and discussed in this chapter, the TRE in this chapter represents TRE of the lesion. 

The TRE of the lesion was calculated with 3D coordinates, rather than in a 2D plane. 

The target registration error of the lesion was calculated in three-dimensional 

coordinates, rather than within a 2D plane. The value of 3D TRE is provided in 

Table 5.3, with a mean value of 8.05 mm and a SD of 6.6 mm. According to the 

Breast Imaging Reporting and Data System (BI-RAD), the 25 cases were divided 

into low density group (LD) and high density group (HD) with a threshold of  

density equal to 25%.  The median value of volume was used as the threshold that 

divided all the cases into small volume group (SV) and large volume group (LV). 

The TRE value in LD group is significantly smaller than the HD group (unpaired t 

test, p<0.05). However, there is no significant difference between SV and LV group, 

and the US and HK group (Figure 5.4). The predicted location of the lesion 

compared to use of the MR images is shown in Figure 5.5. The lesion in the PET 

images is red in color.  

The TRE of the US cases range from 3.11mm to 34.18mm, with a mean value of 

9.14mm and a SD of 7.41mm. The TRE value of the HK cases is 5.17±2.34mm.  

Three random chose registered images are shown in Figure 5.6, with green 

representing deformed PET images and purple representing the MR images. It can be 
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observed that with the use of the deformed PET images, the location of the lesion 

can be accurately predicted. The registered PET/MR images provide detailed 

structural information as well functional information on the lesion. 
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Figure 5.4 3D TRE compared between HK and US group, 3D TRE compared between small volume ( SV) 
group and large volume (LV). 3D TRE compared between  low density (LD) group and high density (HD) 
group. No significant difference was found in the last two group. 
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Table 5.3 Registration accuracy and patient-specific information extracted from image. 

Case No. 
Lesion size 
(mm) 

Lesion 
location 

Volume(ml) Density 
Nipple 
displacement 
(mm) 

Weight 
(kg) 

TRE (mm) Accuracy 

D1 22.7 0.14 687 0.17 82 51.7 6.88 good 
D2 23 0.02 1584 0.10 79 77.1 3.84 good 
D3 24.4 0.41 408 0.38 77 58 15.12 suboptimal 
D4 24.8 0.48 601 0.20 35 52.6 8.02 good 
D5 46.5 1.41 2476 0.10 138 99.7 5.22 good 
D6 36.2 0.48 742 0.16 60 74.8 10.09 good 
D7 4.7 0.39 493 0.17 40 58 3.77 good 
D8 14.5 0.48 597 0.25 75 56.7 6.89 good 
D9 18.1 0.30 924 0.49 103 74.8 15.71 suboptimal 
D10 66.6 0.69 1948 0.12 65 115.6 7.60 good 
D11 64.9 0.43 1442 0.26 122 73 34.18 suboptimal 
D12 11.7 0.12 918 0.14 90 77.6 5.31 good 
D13 15.7 0.31 1078 0.12 65 66 14.64 suboptimal 
D14 48.9 0.32 566 0.07 61 62.6 4.69 good 
D15 19 0.45 1055 0.08 75 95.3 5.92 good 
D16 38.2 0.25 3779 0.03 118 113.4 3.11 good 
D17 12.8 0.15 597 0.24 70 54 3.91 good 
D18 41 0.79 1728 0.03 118 113.4 10.03 good 
H1 37 0.30 386 0.46 31 70 4.58 good 
H2 14.8 0.81 1072 0.17 69 68 2.53 good 
H3 23.8 0.64 852 0.13 93 65 3.03 good 
H4 18.3 0.70 776 0.27 39 60 7.13 good 
H6 30.1 0.44 582 0.57 27 60 5.17 good 
H7 22.5 0.79 670 0.36 18 75 9.26 good 
H8 61.3 0.42 757 0.46 29 65 4.5 good 
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Figure 5.5 Predicted lesion location. Lesion from PET image in red. 

 

 

 

 

 

 

 

 



 

132 

 

 

 

 

 

 

Figure 5.6 PET/MR registered images: MR image – purple; PET image - green; image overlapping - white. 
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5.3.3 Correlation analysis 

Six image features extracted from the PET/CT images and the TRE were plotted to 

identify their relationships. However, no correlation was found when plot the HK 

cases and the US cases together. While, the density and TRE of the HK case has a 

correlation of 0.67, but due to the small sample size of HK cases, this correlation is 

not significantly. The density of the US case was found to be correlated with the 

TRE value in all the 18 cases (R=0.47 p<0.05). However, other features include the 

volume did not show any significant correlation with TRE. The TRE and 

corresponding density are plotted in Figure 5.7. 
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Figure 5.7 TRE vs. density. 

  



 

135 

 

5.3.4 Prediction of registration accuracy 

The registration accuracy classification was predicted by the six image features using 

logistic regression. According to the mean value of TRE, the registration error was 

classified as having good accuracy with a TRE less than 10 mm, and a suboptimal 

accuracy with a TRE greater than 10 mm for all the US cases, the threshold of HK 

group was set as 6mm. The results showed that for the American sample (18 cases), 

there are 66.7% correctly classified instances with a sensitivity of 62% and a 

specificity of 65.1%. For Hong Kong sample, there are 71.4% correctly classified 

instances with a sensitivity of 90% and a specificity of 92.9%. 
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5.3.5 Mechanical properties 

The predicted moduli of the breast tissue in the American sample are between 0.5-

1.7 kPa for the adipose tissue and 3.75-12.75 kPa for the fibro-glandular tissue. It is 

0.5-5.2 kPa for the HK adipose and 3.75-39.2 for the HK fibro-glandular tissue as 

shown in Table 5.4. 
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Table 5.4 Comparison of predicted moduli of breast tissue compared with values in literature. 

Young’s 
modulus 
(kPa) 

Roose 
(2005) 

Tanner et 
al.( 2006) 

Gefen and 
Dilmoney 
(2007) 

Guillaume 
et al. 
(2013) 

This 
method 

Glandular 1.7-500 1-20 7.5-66 0.5-10 

3.75-39.2 
for HK 
case 
3.75-12.75 
for the US 
case 

Adipose 1.7-500 1 0.5-25 0.1-2 

0.5-5.2 for 
HK case 
0.5-1.7 for 
the US 
case 
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 Discussion  

The model that was formulated in Chapter 4 has been evaluated with an additional 

18 cases from the Duke University. The most significant difference is that the breast 

density is different amongst the images. The breast images collected from the 

American sample of women show much lower breast density than those of the Hong 

Kong sample (p<0.05). This is the first study according to our knowledge that 

images from more than one ethnic group are used to evaluate a biomechanical model. 

The versatility of the model is therefore validated. 

The TRE is 77% greater than that of the Hong Kong case in Chapter4, but still 

demonstrates a good result compared to previous studies (see Table 4.6). The reason 

might be due to the shape of the breast in the supine position. In some cases, the 

breast sags towards the abdomen which makes the modeling difficult. This may have 

effects on the deformation performance. Another reason might be the volume and 

density of the breast, which differs between the American and Hong Kong samples. 

In addition, I have found that the density is correlated to the TRE (R=0.47, p<0.05). 

Moreover, the TRE in the low density group is significantly smaller than the high 

density group. This indicates that the developed biomechanical model in this study 

can more accurately predict the deformation of breasts with less density. Even 

though, the TRE of the American sample is greater than that of the Hong Kong 

sample, but still demonstrates a good result compared to previous studies (Han et al., 

2014; Hopp et al., 2013). The TRE in Han’s study is 9.86±2.77 mm (Han et al., 

2014), the TRE of a compression model by Hopp et al (Hopp et al., 2013) is 

11.0±8.3 mm (in XY domain), and the TRE of our method (8.05±6.60 mm) is 

smaller than these two studies. The sample size in this study is 25 in total, while 

Han’s has eight samples and Hopp’s has 79 datasets, our sample size is smaller than 
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Hopp’s. But our study collected samples from two institutions on two countries.  As 

shown in Table 5.3, the highest TRE value is Case 11. According to the prediction of 

the lesion as shown in Figure 5.5, the lesion is blurred. This blurred lesion can lead 

to large errors. When Case 11 is excluded, the TRE is 6.95±3.81 mm, which is 14% 

smaller. 

The range of the predicted moduli of the breast tissue of the American sample is 

slightly less than that of the Hong Kong sample, which is 0.5-1.7 for the adipose 

tissue. 

Data mining has also been applied to classify the features that were extracted from 

images in a way that can be related to the TRE. The results showed 88.9% correctly 

classified instances with a sensitivity of 73.2% and a specificity of 80.8%. However, 

this ratio is also dependent on the standard used to determine the performance of the 

registration. In this study, a TRE greater than 11 mm is considered suboptimal. 

However, if the standard is changed, the ratio will also change. 

Therefore, if data mining is used to predict registration errors, a criterion must be 

developed to denote the level of accuracy. 
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 Conclusion 

This chapter focuses on evaluating the established biomechanical model. Twenty 

cases from an American sample have been collected but two excluded. The 

registration error is 77% higher than that of the Hong Kong sample, but still has a 

relatively low mean TRE. The TRE is found to be correlated to the image density. 

Logistic regression shows that the six image features can predict the registration 

error. 

In conclusion, this developed model can accurately predict the deformation of the 

breast from the supine to prone positions for both the Hong Kong and the American 

samples by logistic regression. 
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6 Conclusions and recommendations for future work 

 Summary of thesis 

The overall goal of this thesis is to develop a mechanical model of the breast that can 

be used to assist with clinical diagnoses and treatment.  In addition, the model will 

aid clinicians in reading the breast images derived from multiple modalities. A 

biomechanical model of the breast has therefore been developed and used to 

simulate the deformation of the breast under gravity from the supine to prone 

positions. In this thesis, FEA and affine transformation are integrated to develop a 

registration framework. The model is validated by using twenty-five MR and 

PET/CT images of breasts collected from both the Hong Kong and American 

samples, which means that this model is evaluated by using the data of both Asian 

and American women. The accuracy for both samples is very high. A correlation 

between density and TRE has been identified, which can be used to predict the 

performance of deformation simulation and accuracy of registration before the 

analysis is conducted. 
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 Modelling gravity-induced deformations 

In this study, an approach to formulate a mechanical model for breasts is presented 

to determine the possibility of whether a finite element model can accurately 

simulate large-scale deformation induced by gravity. The parameters that need to be 

taken into consideration have been identified during the building of the model. A 

good number of images are used to construct the model. In this study, a larger 

database is used as opposed to that in previous studies. 

A method to construct a finite element model of the breast which can simulate 

deformation is proposed in Chapter 3. This model is constructed from CT images of 

patients in the supine position. Since gravity already acts on the breast when the 

images were acquired due to the position of the patient, the initial loading 

environment has to be taken into account during the simulation. This initial loading 

is considered by determining a reference state with no internal stress, which means a 

state that has no loading applied onto the breast model. Three ways as mentioned in 

Section 3.3 are discussed to calculate the reference state. I have chosen an effective 

way, which is very common in engineering, which can be finished by ABAQUS. 

In Chapter 3, I also considered the effect of many parameters on the simulated 

deformation because there is a tradeoff between the mesh size and efficiency. 

Apparently, a smaller mesh can lead to higher accuracy, while also increasing the 

time needed to finish the analysis. The mesh size is determined by testing the mesh 

sensitivity and computation time. Finally, a mesh density of 60 elements per unit 

area is used. To choose a mesh type from the tetrahedron and hexahedron shapes, I 

have calculated the computation time for both mesh types. The computation time for 

a hexahedral mesh is less when the mesh size is the same for both meshes. Thus, a 

hexahedral mesh is used in this study to build an FE model of the breast. 
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When CT/PET images of a patient are captured in the supine position, the patient 

may be in the same position for a long time. Therefore, the volume of the breast 

might have changed due to the changes in the fluid content with time.  Consequently, 

I compared the effect of different Poisson’s ratios. The Poisson’s ratio is usually 

0.45-0.49 due to the incompressibility of the breast.  On the examined cases in this 

study, I have found that the volume of the breast in the supine to prone positions 

does not change very much, which is in agreement with the fact that the breast is 

incompressible. The Poisson’s ratio is therefore assigned a value of 0.45. 

I have also described the preparation of breast imaging processes in Chapter 3, and 

the most important component in building a patient-specific breast model is to 

segment the breast image. In this study, I have evaluated three image segmentation 

methods to segment the CT images used for breast modeling. Given its efficiency 

and accuracy, I have chosen the fuzzy-c means algorithm for segmentation, which 

can clearly and quickly locate the adipose and glandular tissues. 

6.2.1 Registration of CT/PET and MR images in supine and prone 

positions 

The PET/CT images of the breast are acquired in the supine position, while the MR 

images in the prone position. However, the latter can provide more details on the 

breast features and deformation. In order to align the PET and MR images together, 

the PET images are combined with the MR images. 

In Chapter 4, I discuss the entire process of building a mechanical model for the 

breast. Moreover, the model is applied to complete the registration of breast images 
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taken from multiple image modalities. The entire process is semi-manual, so that the 

chest wall can be manually excluded from the final image.  

The model developed in Chapter 4 can be used as the basis for a registration method. 

Intensity based registration methods can be realized after applying this deformation 

approach to further complete registration. I have tried SIFT-based registration to 

align images in the supine and prone positions, which does not work. The problem 

could be that the initial overlapping region is too small and the structural information 

in CT images is quite limited.  

The most important part of the whole process is the optimization process. I have 

identified the proportion of Young’s modulus, density and Poisson’s ratio, which is 

0.7, 0.6 and 0.1 respectively. As the Young’s modulus and density are somewhat 

related, only Young’s modulus is optimized in this study. The optimization criteria 

are spatial information (nipple displacement) that is different from that in previous 

studies. The TRE for the lesion in this study is 4.77±2.19 mm, which is very good. 

In Chapter 4, I have also used six evaluation standards to formulate an evaluation 

matrix, which contains MI, CR, SSIM, DICE, and TRE and TRErel. However, only 

DICE is correlated with the TRE of the lesion.  

To further evaluate the possibility of the model to predict breast deformation, six 

features of the patients, namely, image density, breast volume, patient age, distance 

of lesion from the chest wall, and diameter of lesion, are extracted from the images. 

However, as the sample number is small, no correlation is found. 
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6.2.2 Evaluation of established model: American vs. Hong Kong 

samples 

In Chapter 5, I used additional images taken from the American sample to evaluate 

the model. Some improvements are made, 3D TRE was calculated, and registration 

was processed on PET and MR images directly. The focus is mainly on evaluation 

and data analysis. The image density is found to be correlated with TRE (R=0.47, 

p<0.05). The TRE of the lesion is 8.05±6.60 mm. This suggests an overall 

registration accuracy that ranges between 2.50 mm and 34.18 mm.  

By using machine learning, I find that the six images features can be used to predict 

the registration error before conducting the registration.  
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 Future directions 

In this study, I have established a patient-specific biomechanical model that can 

simulate breast deformation from the supine to prone positions. The model is 

evaluated by comparing the registration of breast images between the supine and 

prone images. The standard used to validate the quantitative data is the measurement 

of the TRE. Twenty cases collected from the Duke University are processed to 

evaluate the established model. However, further studies should focus on improving 

the sensitivity and applicability of the model in clinical settings. 

6.3.1 Improvement of modeling 

To improve the robustness and reliability of the modeling, the boundary conditions 

in the FEA can be optimized by adding a sliding boundary condition along the chest 

wall. A more detailed model can thus be constructed by including Cooper’s 

ligaments and muscles to better simulate the movement of the breasts. 

As I have simulated the supine to prone positions in this thesis, future studies can 

consider the establishing of a general model that can be used to simulate the 

deformation of the breast with any movement, such as prone to supine, and 

compression. The studies can focus on the boundary conditions applied to the edges 

between the breast and chest wall. 

6.3.2 Clinically integrated platform 

The established mechanical model of the breast has the potential to assist with the 

diagnosis made by clinicians on breast cancer and improve surgery planning. Further 

studies can also focus on the development of an application platform that combines 

image recruitment, image preparation, modeling, simulation, and registration. The 
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accuracy of breast deformation simulation can be predicted by the density. Therefore, 

this platform can provide an overall prediction before conducting the analysis, and is 

more convenient for applications in clinical settings. 

The images do not need to be limited to MR scans. A surface scanner can be 

integrated into the system, the smoothed out surface model exported from the 

scanner can be used as the target model, which is far more safer and faster than MR 

scanning. In addition, the surface scanner can be used during surgery to 

simultaneously complete simulation of the deformation, in order to have the most 

updated information on the lesion during surgery.  

6.3.3 Other potential areas 

AFM combined imaging  

In this study, I have optimized a mechanical property, the Young’s modulus, of both 

the adipose and fibro-glandular tissues. However, the results are taken from an 

inverse FEA, and thus the average value reflected by the deformation. 

Atomic-force microscopes (AFM) can measure force, carry out imaging and 

manipulate images. When a probe is used in the AFM, it is pressed down on the 

object measured and according to the probe displacement and force, a stress-strain 

curve can be developed, which can be used to calculate the Young’s modulus.  

However, if an AFM is used to measure the stiffness of cells, it is difficult for the 

cells to survive. Even if they can be kept alive, the properties have already changed. 

This is because the cells are not in an in vivo environment. However, inverse FEA 

can measure the average stiffness of objects. A relationship between inverse FEA 

predicted stiffness and AFM measured stiffness might be identified by combining 
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atomic force microscopy with inverse FEA. Therefore, a new approach that can 

measure the stiffness of cell and soft tissue in vivo can be developed.  
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