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Abstract 

Color quantization is an image processing technique which reduces the 

number of colors used to represent an image at a minimum quality penalty. It has been 

widely used in a number of applications such as displaying an image in a low-end 

display, delivering images over the Internet and producing hardcopies of color images. 

To a certain extent, color quantization can be considered as a lossy 

compression process in which bits per pixel are reduced. A color-quantized image 

cannot be perfectly reconstructed so as to produce its original version. The restoration 

of a color-quantized image is hence necessary. Image restoration is a field in which 

people concern the reconstruction or estimation of an uncorrupted image from its 

distorted version. Conventional restoration algorithms are dedicated for restoring 

noisy blurred images. Direct application of existing restoration techniques are 

generally inadequate to deal with the restoration of compressed images since the 

degradation models of the two cases are completely different. Though some dedicated 

algorithms for restoring JPEG-encoded images and halftoned images have been 

proposed recently, little effort has been seen in the literature for restoring color-

quantized images. 

This thesis presents four novel algorithms for restoring color-quantized images. 

When an image is color-quantized, a palette is used to define the available colors that 

can be produced in the output. The smaller the palette size, the more artefacts are 

introduced in the output. Halftoning is an image processing technique which reduces 

these artefacts by making use of the property of our human visual system. 
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In the four presented restoration algorithms, two of them were proposed for 

restoring color-quantized images in which no error diffusion are involved and the 

other two handle the case when error diffusion is involved. These algorithms were 

developed independently by tackling the technical problems with different techniques 

including Regularization, Projection onto Convex Sets (POCS) and Simulated 

Annealing (SA) separately. All these algorithms make a good use of the available 

color palette to derive useful a priori information for restoration. 

As mentioned before, color quantization is commonly used in printing 

applications to produce high quality hardcopies of color images. In this particular 

application, without lose of generality, a full color image is decomposed into three 

color planes and each plane is halftoned with binary halftoning algorithm 

independently. Multiscale error diffusion is a recently proposed halftoning technique. 

This technique was known to be superior to conventional halftoning techniques such 

as error diffusion by eliminating directional hysteresis completely. To evaluate its 

performance and explore its application in producing color hardcopies, a detailed 

analysis on multiscale error diffusion was carried out. This thesis presents a report of 

our analysis. 

In order to efficiently render halftone images for various printers and displays 

which support different resolutions, it is desirable that halftoning results of different 

scales can be produced at a time and all of them can be embedded in a single full-

scale halftone image such that a simple down-sampling process can extract images of 

suitable resolutions from the full-scale halftone image if necessary. This scalable 

property was addressed in this thesis. Based on the aforementioned analysis on 

multiscale error diffusion, we extended its idea and proposed a binary scalable 
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multiresolution halftoning algorithm. This algorithm can produce scalable color prints 

by handling different color planes separately. 

With the rapidly evolving computer and communication technologies, the 

Internet has become the most popular media for information exchange among remote 

sites throughout the world. There are many forms of information available over the 

Internet today and digital color images are very popular among them. Images are 

compressed before its delivery over the Internet, which results in different output 

image file formats. GIF format is a popular image format generated with color 

quantization. Since networks of different channel bandwidth and clients of different 

capability scattered over the Internet, it is desirable to make the color-quantized 

materials scalable so as to save the channel bandwidth and other resources. 

A multiscale vector error diffusion algorithm for color quantization was 

proposed in this thesis. Unlike those halftoning algorithms for printing color images, 

the proposed algorithm does not handle color planes separately and is able to handle 

color quantization using any arbitrary palettes. This proposed algorithm was used as a 

framework for generating scalable color-indexed images and a multiscale 

multiresolution vector error diffusion algorithm was proposed accordingly. Images 

possessing this scalable property support transmission over the Internet which 

contains clients with different display resolutions, system with different caching 

resources and networks with varying bandwidths and QoS capabilities. 
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Statement of Originality 

The following contributions reported in this thesis are claimed to be original 

1. Restoration of color-quantized images is rarely addressed in literature, and 

direct applications of existing restoration techniques are generally 

inadequate to deal with the problem. The degradation process of color 

quantization in which no error diffusion is involved is formulated and a 

priori information about the original image is devised in Chapter 3, 

Section 3.2. 

2. Based on the a priori information we obtained, a restoration algorithm is 

specially devised by using the regularization theory in Chapter 3, Section 

3.4 for restoring color-quantized images in which error diffusion is not 

involved. It has been demonstrated by the detailed simulation results that 

the algorithm can achieve a remarkable improvement. 

3. A POCS-based restoration algorithm is developed in Chapter 4, Section 

4.4 to restore color-quantized images in which error diffusion is not 

involved. It was shown by simulation results that the algorithm could 

improve the quality of the restored images as compared with other existing 

restoration approaches. 

4. A novel restoration algorithm is proposed in Chapter 5, Section 5.3 for 

restoring images which were color-quantized with error diffusion. The 

proposed algorithm is based on the POCS theory. The algorithm makes use 

of the available color palette and the mechanism of a error diffusion 

process to derive useful a priori information for restoration. It was 
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demonstrated by simulation results that it could improve the quality of a 

halftoned color-quantized image remarkably. 

5. The noise introduced by color quantization in which error diffusion is 

involved is basically signal dependent and is not white. This violates the 

assumptions adopted in most of the current multichannel restoration 

algorithms. A dedicated restoration algorithm for restoring halftoned 

color-quantized images is developed in Chapter 6, Section 6.2. The 

developed algorithm is based on simulated annealing which very well on 

solving discrete optimization problems. 

6. A constrained halftoning framework for multiscale error diffusion 

algorithms to generate scalable color halftones for printing applications is 

proposed in Chapter 7, Section 7.2. The proposed algorithm can produce a 

set of color prints of different resolutions and embeds those of lower 

resolutions into the full-scale color print. It was shown in the detailed 

simulation results that the proposed algorithm can provide good color 

prints at different resolutions. 

7. A multiscale vector error diffusion algorithm for color quantization is 

proposed in Chapter 8, Section 8.2. This does not handle color planes 

separately and is able to handle color quantization in which any arbitrary 

palettes can be used. The proposed algorithm can completely eliminate 

directional hysteresis and reduce more color impulses as compared with 

other algorithms. It is demonstrated in the detailed simulation results that 

better image quality of halftoned color-quantized image can be obtained.  
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8. A color quantization algorithm for generating scalable color-indexed 

images was proposed in Chapter 8, Section 8.3 which is based on a 

multiscale vector error diffusion framework proposed in Chapter 8, 

Section 8.2. Images of lower resolutions are embedded in the outputs such 

that a simple down-sampling process can extract images of any desirable 

resolutions. It was shown in the simulation results that the algorithm can 

produce a high-quality directional-hysteresis free output and 

simultaneously embed a set of color quantization results of the 

downsampled versions. 
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Chapter 1.  

Introduction 

1.1. Background 

Color quantization is the process of reducing the number of colors in a digital 

image by replacing them with a representative color selected from a palette [Orchard 

91]. It is widely used nowadays as it lessens the burden of massive image data on 

storage and transmission bandwidth in many multimedia applications and the palette 

involved is usually image dependent and can be of any arbitrary size and contain 

arbitrary colors.  

In color quantization, each pixel vector of full color image is compared with 

a set of representative color vectors which are stored in a previously generated color 

palette. The best-matching color is then selected based on a criterion, which is usually 

the minimum Euclidean distance criterion, to represent the input full color vector. 

Once the best-matching colors for all pixel vectors of the source image have been 

selected from the color palette, the indices of the selected colors are transmitted to the 

receiver with the color palette. At the receiver, with the same color palette, the color-

quantized image can be reconstructed based on the received indices.  
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 When color quantization is performed, certain types of degradation are 

introduced due to the limited colors used to produce the output image. The most 

common artefact is false contour. False contour occurs when the available palette 

colors are not sufficient to represent a gradually changing region. Another common 

artefact is color shift. In general, the smaller the color palette size, the more severe the 

defects are.  

 Digital halftoning  [Ulichney 91, Lau 01] would be helpful to eliminate these 

defects by making use of the fact that human eyes act as spatial low-pass filters. 

During color quantization, the quantization error of a pixel is diffused to neighboring 

pixels so as to hide the defects and to achieve a more faithful reproduction of colors. 

At the moment, the most popular halftoning method is error diffusion and several 

well-known error diffusion filters such as Floyd–Steinberg filter [Floyd 76], Jarvis-

Judice-Ninke filter [Jarvis 76] and Stucki filter [Stucki 81] are generally used to 

achieve the goal.  

 Applications of color quantization can be found in three major areas. They are 

(1) displaying a color image with a low-end display device, (2) delivering color 

images over the Internet and (3) producing hardcopies of color images.  

To reduce its hardware cost, a display device may want to reduce the size of 

its high-speed display memory buffer or limit the color resolution of its digital-to-

analog converter. In both cases, it limits the number of displayable colors of the 

display device. Color quantization reduces the number of colors at a minimum cost of 

image quality to make a color image displayable. 

With the rapidly evolving computer and communication technologies, the 

Internet has become the most popular media for exchanging information among near 
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and remote sites throughout the world. There are many forms of information available 

over the Internet today and digital color image is very popular. Besides, the increasing 

demand of large image databases would lead to the requirement of efficient storage 

and rapid transmission of digital color images. In order to reduce the bandwidth and 

the storage requirements, images are usually compressed before being transmitted 

over the Internet and stored in the database. The GIF format is a popular image format 

generated with color quantization and has been widely used in a number of Internet 

applications. It is because it inherits the advantage that the decompression process of a 

compressed image is just a simple index mapping with the given palette and it can 

faithfully report the color of the source image as the image producer designs in most 

cases. 

Color quantization is also commonly used in a printing system to produce high 

quality hardcopies of color images. A printer cannot produce a multi-color image due 

to its printing mechanism. The number of colors that a printer can support depends on 

the number of its available ink cartridges. Color quantization is hence required to 

reduce the colors when printing a color image. In practice, a true color image is first 

decomposed into three-color planes and each plane is halftoned with a binary 

halftoning algorithm independently. By incorporate digital halftoning in color 

quantization, the hardcopy of a color image can be emulated by printing three 

different halftoned binary color planes separately.  

1.2 Problems Addressed 

Four main issues on color quantization are addressed in this thesis. 

Specifically, they are 1) Restoration of color-quantized images in which no error 

diffusion is involved, 2) Restoration of color-quantized images in which error 
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diffusion is involved, 3) Formation of scalable color prints and 4) Formation of 

halftoned color-quantized images and scalable halftoned color-indexed images  

1.2.1 Restoration of Color-quantized Images 

Color quantization introduces distortion and hence is a kind of degradation to 

the original full-color image. Sometimes it is necessary to recover the original image 

from its color-quantized version. This is especially true when the color-quantized 

version is required to be further processed or compressed.  

Processing a color-quantized image is different from processing a continuous 

tone image because even a simple process may cause severe degradation to the color-

quantized image. For instance, directly downsampling a halftoned color-quantized 

image would result in a very poor output while a much better output can be obtained 

with a true color image. A restored color-quantized image is closer to the original 

image and can also provide a better processing result as compared with the color-

quantized image. 

Another example is color palette conversion. A user may want to render a 

color-quantized image for display units of different color resolutions. Color 

quantization is then required to convert a color-quantized image into another color-

quantized image in which a switch of color palettes is involved. Both the content and 

the size can be different in both palettes. To have a new color palette for the color 

quantization, it would be better to restore the color-quantized image into its original 

first and then color-quantize it again afterward to suit for a particular application.  

Though there are a lot of reported works on the restoration of noisy and 

blurred color images  [Altunbasak 01, Angelopoulos 94, Barni 00, Galatsanos 89, 

Galatsanos 91a, Galatsanos 91b, Hunt 84, Kaulgud 99], little effort has been seen in 
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the literature for restoring color-quantized images and halftoned color-quantized 

images. Obviously, their degradation models are different from that of blurring and 

additive noise. The degradation model of color quantization is nonlinear as the 

quantization process involved is basically a nonlinear error source. Hence, direct 

adoption of conventional restoration algorithms does not work effectively. In order to 

have a good restoration performance, dedicated restoration algorithm should be 

developed.  

In this thesis, restoration of color-quantized images and halftoned color-

quantized images are addressed differently as their degradation models are different. 

Various approaches are exploited to tackle the problems and two effective restoration 

algorithms are proposed for each of them. 

1.2.2 Formation of Scalable Color Prints  

To produce a hardcopy of a color image, the color image is first decomposed 

into three-color planes and each plane is halftoned with a binary halftoning algorithm 

independently.  

In order to efficiently render halftone images for various printers and displays 

which support different resolutions, it is desirable that the output can be scalable in a 

way that it embeds low resolution halftone images into a full-scale halftone image and, 

through a very simple procedure such as down-sampling, the low resolution halftone 

images can be obtained from the high resolution halftone image directly. This so-

called multi-resolution halftoning issue was first addressed by Wong in [Wong 96] 

and [Wong 03]. To achieve this objective, Wong deals with it as a constrained 

halftoning (CH) problem. 
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 In general, a constrained halftoning problem can be solved as follows. First, a 

halftone of lower resolution, say I, is generated by whatever means. This image then 

defines the down-sampled pixels of the halftone of higher resolution to be generated. 

In the generation of the halftone of higher resolution, pixels are processed in a 

predefined order with error diffusion. When the pixel encountered corresponds to a 

pixel of the halftone of lower resolution, say ),( jiI , after down-sampling, its output 

value is assigned to be the binary value of ),( jiI . Otherwise, it is determined by the 

thresholding result of the quantizer as usual. In either case, the error is then diffused 

with a causal filter. For the sake of reference, those pixels whose values are 

determined by the halftone image of lower resolution instead of the thresholding 

result of the quantizer during error diffusion are referred to as constrained pixels in 

this thesis. 

This constrained halftoning framework (CH) can work with any conventional 

error diffusion algorithms which process pixels in a predefined scanning order, 

producing scalable halftone images of different quality. However, since pixels are 

processed one by one according to a predefined order and this framework does not 

take a constrained pixel into account until the pixel is encountered in the course, it is 

very likely that the value assigned to a constrained pixel is against the natural result of 

thresholding. This mismatch disturbs the harmony of a local region and degrades the 

quality of the output.  

In [Wong 96], Wong successfully reduces this problem by using an adaptive 

error diffusion filter. However, pattern artefacts and directional hysteresis still exist 

due to the causal nature of the error diffusion filter used in his approach. In this thesis, 
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based on our analysis on the constrainted halftoning, we address this issue and present 

an approach for producing scalable color prints of higher quality. 

1.2.3 Formation of Halftoned Color-quantized Images 

Most halftoning algorithms are originally proposed for binary halftoning 

which emulates a gray level image with a binary image [Ulichney 91, Lau 00, Floyd 

76, Jarvis 76, Stucki 81]. To apply them to color quantization, the most 

straightforward approach is to consider each color component plane as an individual 

grey scale image and handle them separately [Gentile 90, Zakhor 93, Damera-Venkata 

03].  

However, this approach may only work in printing applications in which the 

output colors are composed of 3 or 4 bi-level fixed color components (CMY or 

CMYK). Color quantization is actually a vector quantization instead of a bi-level 

uniform scalar quantization as in the case of binary halftoning. It is not a combination 

of several independent bi-level uniform scalar quantization processes either.  

The color reduction process involved in printing applications is only a special 

case of color quantization in where the three-dimensional color space is separated into 

three one-dimensional spaces and processed separately. In this special case, the 

involved palette contains colors which are uniformly distributed over the color space. 

In practice, the aforementioned straightforward extension of binary halftoning only 

works when a uniform palette is used in a color quantization process. 

In general, when a low-end display unit such as a VGA monitor is involved, 

the palette colors are not uniformly distributed in the color space and hence the 

extension of binary halftoning to color halftoning is not as straightforward as most 
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people assume. Besides, this approach is not an effective approach as it does not take 

the correlation among color components into account.  

When one delivers media information to diverse clients over heterogeneous 

networks such as the Internet, clients may support different display resolutions and 

systems may have different caching capabilities. In that case, it is desirable to make 

media information scalable such that it can be delivered efficiently and reliability. 

Since color-quantized images are widely used in multimedia applications nowadays, it 

is desirable to make them scalable such that their downscaled versions can be 

obtained directly with the images through some simple operations. 

In this work, we devote part of our effort in search of a better color 

quantization algorithm to generate a halftoned color quantized image without 

directional hysteresis and extend it to produce a scalable output for Internet 

applications.. 

1.3 Organization of the Thesis 

This thesis is composed of four sections according to the issues addressed. It is 

organized as follows.  

Chapter 2 provides a brief review of relevant works on which the present 

works is based. It covers various important streams of image restoration techniques, 

digital halftoning algorithms and color quantization methods.  

Chapters 3 and 4 present two proposed solutions for restoring color-quantized 

images. They are devoted to the case in which no error diffusion is involved in the 

color quantization process. The one presented in Chapter 3 tackles the problem with 

regularization theory while the one presented in Chapter 4 tackles the problem with 

POCS theory. 
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Chapters 5 and 6 present another two algorithms for restoring color-quantized 

images. They are devoted to the case in which error diffusion is involved. A POCS-

based algorithm is introduced in Chapter 5. Chapter 6 presents an algorithm which is 

developed based on simulated annealing.  

Chapter 7 presents an algorithm for producing scalable color prints. An 

analysis on the performance of various multiscale error diffusion algorithms on which 

the presented algorithm is based are also provided in this Chapter.  

Chapter 8 presents the framework of multiscale vector error diffusion 

algorithm for color quantization. The idea presented in Chapter 7 is also extended in 

this Chapter to work with the proposed framework to generate scalable halftoned 

color-quantized images. 

Finally, the thesis is concluded in Chapter 9 with a summary of the work 

which was done in this project. Future possible extensions of the present work are also 

discussed in this final Chapter. 
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Chapter 2. 

A Comprehensive Literature Review 

2.1  Introduction 

This Chapter provides reviews on some existing works that are relevant to our 

present works. First, in Section 2.2, the background of image restoration and some 

common restoration techniques are reviewed. Second, in Section 2.3, the background 

of digital halftoning and algorithms are reviewed. Third, in Section 2.4, the 

background of color quantization and some related color quantization methods that 

appeared in the literature are reviewed.  

2.2 Image Restoration 

Image restoration is a field of concerning the reconstruction or estimation of 

an uncorrupted image from a distorted and noisy one. It is known as an ill-posed 

problem because small data changes can cause large changes in the results. There are 

two basic tasks. The first one is to estimate the information that is available in the 

uncorrupted image but not in the data. The second is to present the information 

retained in the data in the same format as the uncorrupted image. To achieve these 

two tasks, utilization of a priori information is necessary.  
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In image restoration, a priori information are quantitatively formulated and 

incorporated into restoration. In general, three different areas of a priori information 

are involved. The first one is the information about the degradation. It is used in the 

modelling of image formation process so that we can quantitatively describe how the 

observed image is related to the uncorrupted image. In general, the image formation 

process can be adequately modelled by a linear degradation model as shown in Figure 

2.1. 

 

 

 

 

 

Figure 2.1. Linear degradation model 

where ),( jix  denotes the ideal image, ),( jih  represents a deterministic degradation 

which is also known as the Point Spread Function (PSF) with a finite support say kR , 

),( jin  is the statistical degradation introduced by the imaging system and ),( jiy  is 

the degraded image. In formulation, the model is given as 

∑
∈

+−−=
kRlk

jinljkixlkhjiy
),(

),(),(),(),(    (2.1) 

Usually, the linear degradation model in Eq. (2.1) is reordered lexicographically by 

stacking either the rows or the columns of the image into a vector and is rewritten in 

terms of a matrix-vector form as 

nHxy +=      (2.2) 
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Noise 

Observed Image 
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where y , x  and n  are the observed image, the ideal image and the noise, respectively. 

If the original image is of size NN × , then x , y  and n  are represented by vectors of 

size 12 ×N , and H  is represented by a 22 NN ×  matrix [Andrews 77] and [Banham 

97].  

The second a priori information is the characteristics of the ideal image such 

as smoothness, non-negativity and boundedness. Based on this information, an image 

model is established and is used to express our a priori knowledge about the ideal 

image. Then it will be applied in the restoration process to convey our expectation on 

the restoration result.  

The third a priori information is the statistical information about the noise 

such as its variance. This information expresses uncertainty about the observed data. 

It is useful in image restoration when a decision has to be made on the trade-off 

between the fidelity to the observed data and that to the ideal image.  

Since each piece of a priori information has it owns distinct function in 

restoration and imposes different requirement on the solution that may be in conflict 

with each other. In order to make a good use of them, all available a priori 

information should be collectively applied in a complementary fashion.  

In general, by assuming that the deterministic degradation is known a priori, 

three basic tasks are involved in image restoration. The first is the formulation of a 

priori information about the noise and the ideal image. The second is the estimation of 

noise statistics and the parameters of the image model and the third is the formation of 

a restoration algorithm which makes the best use of the formulated a priori 

information to counteract the distortion in the observed image. 
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2.2.1 Image Restoration Techniques 

 Plenty of techniques have been proposed to solve the image restoration 

problems in the literature [Hunt 77, Trussell 79, Miller 70, Youla 82, Geman 84, 

Dines 77, Hunt 73, Sezan 90, Sezan 91] and they span a large variety of mathematical 

and heuristic concepts. So, it is too ambitious to give a comprehensive review of them. 

This Section aims to provide a review on some techniques that are related in our 

present works. Specifically, they are Miller Regularization [Miller 70], Projection 

onto Convex Sets (POCS) [Youla 82] and Simulated Annealing (SA) [Geman 84, 

Ingber 93]. 

2.2.1.1 Miller Regularization 

Image restoration using Miller Regularization [Miller 70] is formulated as 

finding the image that satisfies both of the following constraint sets 

}ˆˆ{ 2 ε≤= xH-y:xnS     (2.3) 

and 

}ˆˆ{ 2 eSs ≤= xC:x      (2.4) 

and minimizes objective functional 

22 ˆ)/(ˆ)ˆ( xCxHyx eJ ε+−=    (2.5) 

The choice of operator C  in sS  reflects the incorporation of some kind of a priori 

knowledge about the ideal image. In general, the smoothness property of an image is 

applied by choosing C  to be the Laplacian operator. Parameters ε  and e  are 

assumed to be known a priori, and this implies further use of a priori knowledge 
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about the image and the noise. In practice, these parameters can be determined from 

an estimate of the signal-to-noise ratio. 

The minimization of )ˆ(xJ  leads to the following solution, 

yHxCCHH ttt e =+ ˆ])/([ ε     (2.6) 

The commonly used technique to determine x̂  is the iterative algorithm based on the 

method of successive approximation which is given by 

]ˆ)ˆ([ˆˆ 1 k
t

k
t

kk xCCxHyHxx αβ −−+=+    (2.7) 

where e/εα = , and β  is a relaxation parameter of the iteration, which controls the 

rate of convergence. It can be proved that the iteration will converge to x̂  when 

max/20 λβ << , where maxλ  is the largest eigenvalue of )( CCHH tt α+  [Katsaggelos 

89]. 

2.2.1.2 Projection onto Convex Sets (POCS) 

The method of Projection onto Convex Sets (POCS) is a successive projection 

algorithm which is used extensively in a number of areas such as image coding [Yu 

98] and image restoration [Youla 82]. In image restoration, a number of sets are first 

defined based on a priori constraints on the ideal image. Then, any image that 

satisfies all these constraint sets is considered as a feasible solution or an estimate of 

the ideal image. In such a method, any a priori information concerning the image 

formation process, the noise, and the ideal image can be incorporated into image 

restoration, provided that it can be expressed in the form of a closed convex set 

[Youla 82] called a convex constraint set. There are some useful convex constraints 

for image restoration [Sezan 90, Sezan 91, Trussell 84]. They are, respectively, that 

the norm of the residual Hxy −  is bounded, that the image has a bounded and 
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positive intensity range, and that the norm of the modelling error for an image model 

is bounded. 

 

 

Figure 2.2. Projections among different closed convex constraint sets 

 Given a set of convex constraint sets for image restoration, it is generally 

impossible to find an analytical expression for an image that satisfies all the constraint 

sets. The theory of the projection onto convex sets was developed to find an image in 

the intersection of a number of closed convex sets [Bregman 65]. As shown in Figure 

2.2, a restored image is obtained by performing successive projections onto each of 

the constraint sets from an initial estimate 0x̂ . This process is repeated iteratively until 

it converges to a feasible solution in the intersection of all the constraint sets [Sezan 

82]. Mathematically, the image restoration process can be described as 

021 ˆ)(ˆ xx k
mk PPP L=      (2.8) 
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where kx̂  denotes the restored image after k  iteration, and iP  represents a non-

expansive projector of the thi  convex set iS  [Sezan 82, Youla 82]. The POCS 

algorithm converges to the intersection I iS=S , i∀  as long as the intersection of 

the constraint sets is non-empty. If the intersection is empty, the POCS algorithm will 

reach a limit cycle. Two basic features of the POCS that make it distinct from other 

restoration methods are that the restoration solution is affected by the choice of 0x̂ , 

and that the restoration is a non-linear process since the projectors are in general non-

linear operators. 

2.2.1.3 Simulated Annealing (SA) 

 Simulated annealing (SA) [Ingber 93] is a general adaptive heuristic iterative 

technique that exploits an analogy between the way in which a metal cools and 

freezes into a minimum energy crystalline structure for solving optimization problems 

and is belonging to the class of non-deterministic algorithms. It has been applied to 

several combinatorial optimization problems from various fields of science and 

engineering. One of its typical features is that, besides accepting solutions with 

improved cost, it also, to a limited extent, accepts solution with deteriorated cost. This 

gives the heuristic the hill climbing capability. Initially the probability of accepting 

inferior solutions is large, but as the search progresses, only smaller deteriorations are 

accepted, and finally only good solutions are accepted. It is both effective and robust. 

Regardless of the choice of the initial configuration it produces high-quality solutions.  

2.3 Digital Halftoning and Its Analysis 

Digital halftoning technique converts gray-level image into bilevel image by 

maintaining the visual appearance as close as possible to the original and has been 
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widely used in a number of applications such as printing devices and fax machines. It 

is necessary for displaying gray-level images on device in which direct rendition of 

gray-level is impossible. It relies on the properties of the human visual system, 

especially those properties relating to its frequency response.  There are a number of 

digital halftoning methods such as clustered-dot ordered dithering, dispersed-dot 

ordered dithering and error diffusion. Among them, error diffusion is widely used 

because it can provide a better quality image than order dithering with a reasonable 

computational cost. 

2.3.1 Analytical Tools 

Since different halftoning algorithms would introduce different distribution of 

quantization error into an image, it is difficult to justify which one is better. In  1988, 

Ulichney [Ulichney 88] surveyed various halftoning methods and analyzed the 

frequency content of their outputs. In his work, two spectral statistics were used to 

analyze a halftone pattern. Both of them rely on estimating the power spectrum 

through Bartlett’s method of averaging periodograms.  

The first used spectral statistic is radially averaged power spectrum density 

(RAPSD) )( pfP  [Ulichney 88]. It is defined to be the average power in an annular 

ring with center radius pf . In formulation, we have 

∑
∈

=
)(

)(ˆ
))((

1)(
pfRfp

p fP
fRN

fP     (2.9) 

where )( pfR  is an annular ring of width p∆  partitioned from the spectral domain, 

))(( pfRN  is the number of frequency samples in )( pfR  and )(ˆ fP  is the average 

magnitude square of the Fourier transform coefficient of the pattern.  
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The second used spectral statistic is anisotropy )( pfA [Ulichney 88]. It is 

defined as 

∑
∈

−

−
=

)(
2

2

)(
))()(ˆ(

1))((
1)(

pfRf p

p

p
p fP

fPfP
fRN

fA   (2.10) 

It is the noise-to-signal ratio of the frequency samples of )(ˆ fP  in )( pfR . It was 

purposed to measure the strength of directional artefact. Ulichney found that 

halftoning methods that could produce noise with a blue noise characteristic 

[Ulichney 88] were the ideal methods from a perceptual point of view. He also 

showed that halftones created by error diffusion [Floyd 76] have such a characteristic. 

The idea is based on the fact that eyes act as low pass filters. If most of the noisy 

energy is in the low frequency regions, then the artefacts will be highly visible.  

Lau [Lau 01] introduced a spatial domain statistic for the analysis of halftones. 

It offers a more intuitive understanding of the underlying point process as compared 

with the conventional spectral domain statistics. In particular, Lau [Lau 01] developed 

a directional distribution function )(
21 , αrrD  to measure the directional distribution of a 

pattern and it is defined as 

)(/}|)({
)(/}|)({)(

21 ,
mm

a
m

a
m

rr NyE
NyED

Γ∈Γ
Γ∈Γ

=
φφ
φφα     (2.11) 

It is actually the expected number of points per unit area in a segment a
mΓ  of the ring 

},||:{ 21 φ∈<−≤=Γ mrmnrnm . In )(
21 , αrrD , inner radius 1r  and outer radius 2r  

define a ring region for analysis, and angular parameter α indexes a particular segment 

in the region. Note that )(
21 , αrrD >1 and )(

21 , αrrD <1, respectively, indicate a favoring 
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and an inhibition of dots in direction α. In ideal case, we have )(
21 , αrrD =1 for all α, 

which indicates an isotropic distribution in the output. 

2.3.2 Digital Halftoning Methods 

 The aim of this Section is to provide reviews of some digital halftoning 

methods that are related in our present works. Three state of the art digital halftoning 

methods are reviewed in details in this Section. They are, respectively, error diffusion 

[Floyd 76], adaptive error diffusion [Wong 96] and multiscale error diffusion [Peli 91, 

Katsavounidis 97, Chan 98, Chan 04]. 

2.3.2.1 Stardand Error Diffusion Algorithm 

 Error diffusion was introduced by Floyd and Steinberg in 1976 [Floyd 76]. It 

is an image halftoning method that produces higher quality outputs than order 

dithering. The algorithm processes the image in a raster scanning fashion in which 

pixels are scanned from left to right and top to bottom. For each pixel, the algorithm 

performs thresholding and the quantization error of that pixel is diffused to its 

neighbours with a casual filter. 

    

 

 

Figure 2.3: The system of error diffusion 

 Figure 2.3 shows the error diffusion system for digital halftoning. The input 

pixel nmx ,  with a pixel value in the range of [0,1], is processed in a raster scanning 

fashion. As the algorithm proceeds, each input pixel is modified with the weighted 
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error diffused from the previously processed pixels to produce nmu , . Then 

thresholding is performed to output nmb ,  and the quantization error nme ,  is diffused to 

neighbouring pixels of nmx ,  with a casual filter lkh ,  as shown in Figure 2.3. 

Mathematically, the process can be formulated as  

∑
∈

−−−=
Rlk

lnkmlknmnm ehxu
),(

,,,,      (2.12) 

⎩
⎨
⎧ ≥

==
otherwise
uif

uQb nm
nmnm 0

2/11
)( ,

,,

 
    (2.13) 

nmnmnmnmnm uuQube ,,,,, )( −=−=     (2.14) 

where nme ,  is the binary quantization error and nmu ,  is the state variable representing 

the modified input of the error diffusion system.  

 Though Floyd and Steinberg error diffusion [Floyd 76] can provide better 

image quality than order dithering, it suffers from some artefacts such as worm like 

texture, pattern noise and directional hysteresis. There are some other filters such as 

Jarvis, Judice and Ninke [Jarvis 76] and Stucki [Stucki 81] proposed to reduce these 

artefacts.  Artefacts can also be reduced if the scanning order is switched from a raster 

scanning order to a serpentine order [Ulichney 88] or a Peano scanning order [Witten 

82].  

Kolpatzik and Bouman [Kolpatzik 92] use a weighted mean square error 

(MSE) criterion 

))]([( ,,, lklklk xbvE −∗=ε     (2.15) 

to consider the optimization of an error diffusion system. The lkv ,  is an impulse 

response specified by the characteristics of the human visual system. As a result, ε  



 21

can be interpreted as the error between nmx ,  and nmb ,  as perceived by the human 

visual system. Because the exact characteristics of nme ,  are not known, Kolpatzik and 

Bouman make an assumption that nme ,  is white noise. The optimum lkh ,  that 

minimize ε  are then derived based on this assumption and is used for error diffusion. 

2.3.2.2 Adaptive Error Diffusion Algorithm 

 Wong proposed an adaptive error diffusion system [Wong 96] in which a local 

error criterion was minimized concurrently with the error diffusion process by 

adjusting the error diffusion kernel. As a result, one does not need to make an 

assumption on the behaviour of nme , . Furthermore, since the minimization is 

performed locally along with the error diffusion procedure, the error criterion can be 

refined so that it reflects more precisely the local characteristics of the images. To 

minimize the cost subject to the error criterion, the error diffusion kernel is adjusted 

along the error diffusion process and techniques in adaptive signal processing are 

applied to perform the error minimization and adjust the kernel.  

One of the applications of adaptive error diffusion is to embed lower 

resolution halftone images into higher resolution halftone images. By doing so, when 

the larger image  is downsampled, a halftone image of lower resolution can be 

obtained directly. 

2.3.2.3 Multiscale Error Diffusion Algorithm 

 Peli’s algorithm [Peli 91] combined the best properties of order dithering and 

error diffusion for halftoning gray level images.  Its basic idea is to quantize the image 

first, and then refine it by readjusting certain pixels. The pixels are the centers of 

overlapping square windows over which a weighted average is taken. If switching the 



 22

center pixel’s value results in a lowering of the average error in the window, then the 

value is readjusted. 3x3 windows are used initially, then, 5x5, 7x7 and 9x9 are used 

subsequently.  

 Kat’s algorithm [Katsavounidis 97] is an iterative method that repeatly 

searches the brightest region of a given image via “maximum intensity guidance” to 

assign dots and diffuses the quantization error at each iteration until the total energy 

of the processing output is equivalent to that of the given image. This method is 

superior to conventional error diffusion methods in a way that no sequential 

predetermined order is required for error diffusion. Accordingly, non-casual filters 

can be used in diffusing quantization error to avoid directional hysteresis.  

Chan’s algorithms [Chan 98, Chan 04] are modified versions of Kat’s 

algorithm [Katsavounidis 97]. Instead of iteratively dividing an input image into four 

non-overlapping segments, Chan [Chan 98] divides it into nine overlapping regions. 

By doing so, boundary effect becomes less prominent. Besides, it was found by Chan 

[Chan 98] that error leakage occurred during error diffusion process in [Katsavounidis 

97] and it affected the quality of the halftoned image. A solution for solving this 

problem was proposed and better performance was provided. 

The modification made in [Chan 04] puts its focus on feature preserving. 

Instead of using maximum error intensity guidance to locate a pixel position for a new 

dot, it uses extreme error intensity guidance to avoid the bias caused by only assigning 

white dots. Conceptually, minority dots in a local region provide features in the region 

and should be taken care of it no matter whether they are white dots or black dots. A 

simple trick is also introduced to reduce the boundary effect. 
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2.4 Color Quantization 

Color quantization is an image processing technique which uses a limited set 

of colors to represent a true color image with as little degradation as possible. Two 

steps are involved in color quantization. The first step is to design a color palette 

which selects the best possible set of colors for a particular image and is normally 

based on the content of the image being quantized. The second step is pixel mapping 

in which each color pixel of the original color image is quantized with a color from 

the palette to yield the output image. 

A color palette can be a system palette or a custom palette. A system palette is 

provided by a display system for all images to be displayed. By sharing a system 

palette, different images can be simultaneously displayed with compromised quality. 

A custom palette is an optimized palette designed individually for a color image. With 

a custom palette, the quality of a quantized image can be approximated as close as 

possible. The problem is that most of the displaying hardware devices can only 

support one color palette at a time. It is also possible that a custom palette can not be 

supported by the display unit. In short, the generation of a color palette is application-

dependent and is subject to both quality criterion and practical constraints.  

Pixel mapping can be done in one of the two ways with a color palette. The 

first way is to simply replace the input image by mapping the color of each pixel 

directly to a representative color that is stored in the palette. However, certain types of 

degradation can be introduced due to the limited colors used to produce the output 

image. There are two most disturbing defects. One is the false contour which appears 

in smoothly changing regions and the other is the color shift in a color-quantized 

image. The smaller the color palette size, the more severe the defects are. For the sake 
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of reference, a color image quantized in this way is referred as a color-quantized 

image.  

The second way of pixel mapping is to make use of the spatial integration 

technique to create the illusion of varying shades of colors where none actually exists. 

Small areas of colors in the original image are manipulated first before they are 

quantized. It exploits the lower sensitivity of eyes to spatial resolution and exchanges 

higher color resolution with lower spatial resolution. The eye averages the colors in a 

neighborhood of the point of interest and creates the illusion of more colors. This 

spatial integration technique is commonly termed to halftoning. For the sake of 

reference, we will refer the images produced with this technique as halftoned color-

quantized images. 

When a custom palette is used, [Özdemir 01, Akarun 96, Scheunders 98, 

Puzicha 00, Akarun 97, Özdemir 00, Breaux 99] it is possible to jointly optimizes the 

palette generation and the halftoning processes so as to optimize a halftoned color-

quantized image [Özdemir 01, Akarun 96, Scheunders 98, Puzicha 00]. For example, 

Özdemir‘s algorithms [Özdemir 01] take the quantization error into account in 

training the palette for color quantization by making use of the fuzzy quantization 

technique. In [Scheunders 98], Scheunders proposed a competitive learning scheme to 

embed a dithering process in the color quantization process. In [Puzicha 00], Puzicha 

proposed a new model to simultaneously quantize and halftone color images. It is 

based on a rigorous cost-function that optimizes a quality criterion derived from a 

simplified model of human perception. These algorithms can provide good halftoned 

color-quantized images. However, since dedicated palettes for corresponding 

algorithms have to be used, the applications of these algorithms are restricted to a 

certain extent. Not any display device can support a dedicated palette. Besides, the 
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palette-training processes involved in these algorithms are usually very time-

consuming. 

It would be more flexible if an algorithm can handle any arbitrary given 

palettes without restriction [Akarun 97, Özdemir 00, Breaux 99]. The approach 

presented by Orchard  [Orchard 91] forms a common framework that most of these 

algorithms adopt. Both Akarun’s algorithm [Akarun 97] and Özdemir algorithm 

[Özdemir 00] adopt this framework. Akarun’s algorithm [Akarun 97] uses an adaptive 

error diffusion filter to prevent textural contours, color impulses and color shifts. 

Instead of the conventional Euclidean distance criterion, Özdemir’s algorithm 

[Özdemir 00] uses a weighted sum of the distances among color vectors as a 

searching criterion in color quantization process to prevent excess accumulation of 

quantization errors. 

2.4.1  Color Quantization Methods 

The aim of this Section is to provide a review of some color quantization 

algorithms that are related in our present works. In particular, we will address Color 

Quantization of Images [Orchard 91], Adaptive Methods for Dithering Color Images 

[Akarun 97] and Fuzzy Error Diffusion [Özdemir 00] in this Chapter. 

2.4.1.1 Color Quantization of Images 

Color quantization can be carried out with or without error diffusion. They are, 

respectively, introduced as follows. 
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2.4.1.1.1 Color Quantization Without Error Diffusion 

 

Figure 2.4.  Color quantization without error diffusion 

A pixel of a full color image X  generally consists of three color components. 

The intensity values of these three components form a vector in a 3D space. In color 

quantization, each pixel vector is compared with a set of representative color vectors 

ci Nifor ,,2,1,ˆ L= v . There representive color vectors are stored in a previously 

generated color palette. The best-matching representive color is selected based on the 

minimum Euclidean distance criterion, where the Euclidean distance measure 

between vectors 1vr  and 2vr  is defined as 2121 ),( vvvv rrrr
−≡d . In other words, a pixel 

vector vr  is represented by color kv̂  if and only if )ˆ,()ˆ,( jk dd vvvv rr
≤  for all 

c,N,,j L21= . Once the best-matching colors for all pixel vectors of the source 

image have been selected from the color palette, the indices of the selected colors are 

recorded or transmitted to the receiver with the color palette. With the same color 

palette, the color-quantized image can be reconstructed based on the stored or 

received indices.  

2.4.1.1.2 Color Quantization With Error Diffusion 

A 24-bit full-color image X  generally consists of three 8-bit color planes, say, 

rX , gX  and bX , which represents the red, the green and the blue color planes of the 

image respectively. A pixel is then a vector represented as )(i,jX
r

=( bi,jgi,jri,j )()()( ,, XXX ), 

where ]1,0[)( ∈ci,jX  is the intensity value of the thc color component of the thi,j)(  

cQ
X Y
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pixel. Here, we assume that the image is of size NN ×  and the maximum and the 

minimum intensity values of a pixel are, respectively, 1 and 0 . 

 

Figure 2.5.  Color quantization with error diffusion 

Figure 2.5 shows the system which performs color quantization with error 

diffusion proposed by Orchard [Orchard 91]. The input image X  is scanned in a row-

by-row fashion and processed as follows to produce the encoded image Y . 

 ∑
∈

−−−=
Slk

cljkiclkcjicji
),(

),(),(),(),( EHXU  (2.16) 

 ][ ),(),( jicji Q UY
rr

=  (2.17) 

and   ),(),(),(),(),( ][ jijicjijiji Q UUUYE
rrrrr

−=−=                        (2.18) 

where ),( jiU
r

 is a state vector of the system, ),( jiE
r

 is the quantization error of the pixel 

at position ),( ji  and clk ),(H  is a coefficient of the error diffusion filter for the thc  

color component. S  is the casual support region of clk ),(H . The operator ][•cQ  

performs a 3D vector quantization. Specifically, the 3D vector ),( jiU
r

 is compared 

with a set of representative color vectors stored in a previously generated color palette 

=C { iv̂ : i=1,2, … cN }. The best-matched vector in the palette is selected based on 

the minimum Euclidean distance criterion. In other words, a state vector ),( jiU
r

 is 
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represented by color kv̂  if and only if ||ˆ||||ˆ|| ),(),( ljikji vUvU −≤−
rr

 for all 

cNl K2,1= . Once the best-matched vector is selected from the color palette, its 

index is recorded and the quantization error ),( jiE
r

= kv̂ - ),( jiU
r

 is diffused to pixel 

),( ji ’s neighborhood with eqn. (2.16). To handle the boundary pixels, ),( jiE
r

 is 

defined to be zero when ),( ji  falls outside the image. After the scanning is finished, 

the recorded indices can be used in the future to reconstruct the color-quantized image 

with the same color palette. 

2.4.1.2 Adaptive Method for Dithering Color Images 

Akarun’s algorithm [Akarun 97] is an adaptive method for dithering color 

images. It is developed to improve the performance of Orchard’s algorithm [Orchard 

91]. The coefficients of the error diffusion filter are updated by a normalized LMS -

type algorithm to prevent textural contours, color impulse and color shift. The error 

diffusion filter matrix H
r

 is obtained by minimizing the mean square error (MSE) 

between the average color value of the original image and the dithered image. The 

optimum error diffusion filter coefficients can be obtained by minimizing the 

following functional 

})({
2

),(),( jicji Q UXE
rr

−     (2.19) 

where ),( jiX
r

 is the input pixel, ),( jiU
r

 is the state vector in the system and cQ  is the 

quantization process.  
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2.4.1.3 Fuzzy Error Diffusion 

 Özdemir’s algorithm [Özdemir 00] is a fuzzy error diffusion algorithm 

proposed for color quantization with error diffusion. It makes use of a membership 

function for pixels. The amount of error to be diffused is determined by considering 

the relative location of the pixel not only to the closest codebook vector, but also to all 

other palette entries. Its objective is to hide the quantization errors by error diffusion, 

while preventing the excess accumulation of errors. It is achieved through an 

attraction repulsion scheme according to a fuzzy membership function. 
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Chapter 3 

A Constrained Least Square Restoration 

Algorithm for Restoring Color-quantized 

Images 

3.1 Introduction 

Chapters 3 and 4 address the restoration of color-quantized images. As 

mentioned in Chapter 1, Section 1.2.1, restoration of color-quantized image is rarely 

addressed in literature and direct applications of existing restoration techniques are 

generally inadequate to deal with the problem. These two Chapters are devoted to 

formulating the problem of color-quantized image restoration and developing 

dedicated restoration algorithms for the restoration of color-quantized images. In 

particular, the restoration algorithm presented in this Chapter is based on the 

regularization theory [Miller 70]. 

 This Chapter is organized as follows. In Section 3.2, we formulate the a priori 

information about the degradation process of color quantization and about the original 

image. Then, in Section 3.3, we formulate the constraints for restoration. In Section 

3.4, we present the derivation of a restoration algorithm for restoring color-quantized 
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images. In Section 3.5, simulation results and comparative study are provided to 

evaluate the performance of the proposed algorithm. Finally, a summary is given in 

Section 3.6. 

3.2 Formulation of A priori Information 

This section formulates the a priori information of a system of color 

quantization in which no error diffusion is involved with the model presented in 

Section 2.4.1.1.1.  

Consider the case that image X  is encoded as Y  by color quantization with a 

color palette C  containing cN  colors: 

},,2,1|ˆ{ ci NiC L== v     (3.1) 

According to color quantization theory, the cN  colors in the palette partition the 

whole color vector space, say Γ , into cN  non-overlapped Voronoi regions. 

 

Figure 3.1. The local coordinate system associated with a Voronoi region kR . 
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Without loss of generality, let Γ∈= vv rr |{kR and  vvvv )ˆ,()ˆ,( jk dd rr
≤  for 

}ˆ Cj ∈∀v , where Ck ∈v̂ , be a particular Voronoi region in the R-G-B space as 

shown in Figure 3.1. Here, we assume that the maximum and the minimum intensity 

values of each color component of a pixel are, respectively, 1 and 0. In this Figure, the 

surface mounted to the framework shows the border of the Voronoi region and the 

dots in the region represent the pixels of the image X  which belong to kR . All these 

pixels form a set of vectors denoted as )( XkR . 

Through a principal component analysis [Jolliffe 86], the three principal 

components of the elements in }|ˆ{ )( Xkk R∈− vvv rr  can be obtained. In the analysis, 

we assume that the mean of )( XkR∈vr  is kv̂ . In vector quantization, the codeword 

associated with a Voronoi region is selected to be the mean of the training vectors in 

the Voronoi region such that it can be the best representative of the training vectors in 

MSE sense [Gersho 90]. Since training vectors are considered to be typical examples 

of the input vectors to be encountered, this assumption is plausible. The three arrows 

marked in Figure 3.1 show the directions of the three principal components in such a 

case and their intersection point corresponds to kv̂ . Accordingly, a local coordinate 

system of kR  can be defined by using them as the three axes. 

Voronoi region kR  is then moved to align this local coordinate system to the 

R-G-B coordinate system with a linear transformation kM . Specifically, it is realized 

by  

kkkk RforTM ∈−= v     vvv rrr )ˆ()(    (3.2) 
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where kT  is a 33×  matrix whose rows are the corresponding eigenvectors of matrix 

kA  whose element ),( jiAk  is defined as 

}3,2,1{)ˆ)(ˆ(1),(
)(

,,
,

       
v

∈−−= ∑
∈

i,jforvvvv
N

jiA
XkR

jkjiki
ko

k
r

.  (3.3) 

Here, koN ,  is the total number of vectors in )( XkR , iv  and jv  are, respectively, 

the thi  and thj  color components of vr , and, ikv ,ˆ  and jkv ,ˆ  are, respectively, the thi  and 

thj  color components of kv̂  where }3,2,1{, ∈ji . The first, the second and the third 

color components of a pixel correspond to its red, green and blue components, 

respectively. Note that kT  is actually the KL transform kernel for the elements in 

}|{ )( Xkk R∈− vvv rrr . The inverse of transformation kT  is given as t
kT . 

After the transformation, the first most, the second most and the least 

significant principal components align, respectively, with the R-, G- and B-axis. Then, 

for all )( XkR∈vr , a corresponding variance vector can be defined as 

),,( 2
3,

2
2,

2
1, kkkk σσσσ =

r      (3.4) 

where 

[ ]( ) }3,2,1{)ˆ(1

)(

2

,

2
, ∈−= ∑

∈

sforT
N

XkR
skk

ko
sk     vv

vr

rσ .  (3.5) 

Here, [ ]skkT )ˆ( vv −r  denotes the ths  most significant principal component of 

)ˆ( kkT vv −r . Note 2
,skσ  is actually the variance of the ths  most significant principal 

component of }|ˆ{ )( Xkk R∈− vvv rr , which provides us an important constraint to seek 

the original image X . 
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In practice, X  is not available and hence )( XkR  has to be estimated. Different 

approaches of estimation provide different results. The most straightforward approach 

is to select some typical images to form a training set tΩ  and then approximate kσr  

with vectors in kt R∩Ω  instead of )( XkR . In our approach, we blur the available Y , 

the color-quantized image on hand, with a low pass filter and then estimate )( XkR  to 

be kXk RR ∈=′ vv rr |{)(  and vr  is a pixel in the blurred }Y .  

By doing so, the training pixel vectors are biased to the blurred Y  and, to a 

certain extent, X  instead of the training images, which may be very different from X . 

Besides, the correlation among adjacent pixels in a particular local region of Y  can 

be taken into account to estimate a particular pixel of X  in a corresponding position. 

After obtaining )( XkR′ , all )( XkR -dependent parameters such as ),( jikA , kT  and kσr  can 

be approximated with vectors in )( XkR′ instead of )( XkR . 

Note that all the kσr s are solely determined by the available image Y  and the 

color palette which is attached with the image or known by default. No extra 

information is required for their estimation. 

3.3 Formulation of Constraints for Restoration 

Let t
bmgmrmm xxx ),,( ,,,=xr  and t

bmgmrmm yyy ),,( ,,,=yr  be the 3-dimensional 

vectors representing the thm  pixels of the original image X  and the encoded image 

Y , respectively. If Ck ∈v̂  is the color used to represent mxr , then we will have 

km vy ˆ=
r , and the distance between myr  and mxr  will be bounded by the boundary of 

the Voronoi region kR . More specifically, any particular principal component of 

mm yx rr
− , say, smmkT )]([ yx rr

− , is also bounded. In formulation, we have 
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smsmmkT ,
2))](([ ε≤− yx rr     (3.6) 

where sm,ε  is the corresponding bound. 

Since we have km vy ˆ=
r , the bound sm,ε  can be estimated to be a function of 

2
,skσ . By assuming that sm,ε  is proportional to 2

,skσ , we have 2
,, sksm Kσε = , where K  

is a constant. Note that this assumption can easily be satisfied as long as K  is 

sufficiently large. In practice, by assuming a normal distribution, 10≈K  is a 

reasonable estimate as the range of ]3,3[ ,, sksk σσ−  covers more than 99% of the 

possible values of smmkT )]([ yx rr
− . 

The information carried by 2
,skσ  provides us an important constraint to seek 

the original image X . To formulate this constraint, we first rewrite equation (3.6) as 

KT smmksm ≤− 22
, ))](([ yx rrω     (3.7) 

where 2
,

2
, /1 sksm σω = . The overall distortion in Y  can then be described as 

d

N

m s
smmmsm NK εω ≡≤−∑∑

= =

3))](([
1

3

1

22
, yxT rr    (3.8) 

where N  is the total number of pixels of the original image, and mT  is the KLT 

kernel associated with the codeword used to represent mxr . 

In matrix-vector formulation, we have 

ddJ ε≤−≡ 2)( xyAT rr     (3.9) 

where t
bNrbgr yyyyy ),,,,,( ,,2,1,1,1 L

r
=y , t

bNrbgr xxxxx ),,,,,( ,,2,1,1,1 L
r
=x , A  is a 

NN 33 ×  diagonal matrix whose diagonal elements are },,,,,{ 1,1,23,12,11,1 Nωωωωω L  

and 
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Typical images would generally have weak high frequency components as the 

intensity of neighboring pixels is highly correlated. This feature can be exploited as an 

additional a priori information in the restoration of color-quantized images. To 

incorporate this information into restoration, we assume that the total energy of the 

high frequency components of a particular image color plane, say cX , is bounded. In 

formulation, the smoothness constraint for the restored image can be described by 

3/
3

1

2 ≤≡ ∑
=c

scs c
J εxHM r     (3.11) 

where 
csε  is the upper energy bound of the high frequency components of cX , H  is 

a linear highpass operator, which is generally a spatial 2D Laplacian filter, and cM  is 

a NN 3×  matrix whose element is defined as 

3,2,1},,1{
0

331
),(                 

  
 M ==
⎩
⎨
⎧ +−=

= candNifor
else

cijif
 jic L         (3.12) 

Note xM r
1 , xM r

2  and xM r
3  are, respectively, the lexicographically ordered red, green 

and blue color planes of X . 

3.4 Formulation of Restoration Algorithm 

Based on the a priori information concerning the color quantization process 

and the original image, two constraint sets have been defined for the restoration of 

color-quantized images. By assuming that constraints (3.9) and (3.11) are equally 
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important, the restored image can then be obtained by minimizing the objective 

function 

∑
=

′+′−=′
3

1

22)()(
c

ccJ xHMxyATx rrrr α    (3.13) 

where x′r  is the estimate of xr  and 
csdc εεα 3/=  [Tikhonov 77]. The minimization of 

)(x′rJ  with respect to x′r  leads to the normal equation 

yATATx HMHMATAT rr tt
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3
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In practice, an iterative technique is applied to successively approximate the 

solution. Different iterative algorithms can be formulated with different techniques. 

When the steepest descent method [Gilyazov 00] is used, it results in the following 

iteration for the restoration solution: 

⎭
⎬
⎫

⎩
⎨
⎧ ′−′−+′=′ ∑

=
+

3

1
)()()()1( )(

c
kc

tt
cck

tt
kk xHMHMxyATATxx rrrrr αβ , (3.15) 

where k  is the iteration index ),2,1,0( K  =k  and β  is the relaxation parameter. A 

sufficient condition for the convergence of this iteration is 

max/20 λβ <<     (3.16) 

where maxλ  is the largest eigenvalue of matrix ⎟
⎠

⎞
⎜
⎝

⎛
+∑

=

3

1c
c

tt
cc

tt HMHMATAT α  

[Schafer 81]. 

In order to make sure that the color-quantized output of the estimate is yr , 

iteration (3.15) is modified to be 
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where [ ]•P  is a projection defined as 
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where mx′r  is the current estimate of mxr  and [ ]•Q  is the color quantization operator. 

Since [ ]•P  is a projection onto a closed convex set, the convergence of iteration (3.17) 

can also be guaranteed as long as (3.16) is satisfied [Biemond 90]. It is common to set 

the initial estimate )0(x′r  to be yr .  

Parameters cα  should be determined prior to performing the iteration. Recall 

that parameter cα  is defined as 
csNK ε/)( , where 

csε  is the bound of the smoothness 

constraint set defined in (3.11), N  is the image size, and K  is a constant to make (3.6) 

hold. In practice, since image X  is unavailable, we set 
csε  to be 2yHM r

cK ′ , where 

K ′  is a tuning parameter for image smoothness. As for K , as we have mentioned 

previously, 10=K  is a reasonable estimate. 

We note here that the iteration given in eqn.(3.15) is derived with the steepest 

descent method [Gilyazov 00]. The convergence speed of this method is slow. To 

improve the efficiency, one can make use of some conjugate direction methods such 

as the conjugate gradient method [Gilyazov 00] to derive another iteration algorithm. 

In this Chapter, only the approach using the steepest descent method is presented as 

the focus of the Chapter is on the restoration performance. 

In this Chapter, the proposed algorithm is formulated in R-G-B space. This is 

based on the observation that a palette for a video color display is usually defined in 
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R-G-B space and the color space associated with a video color display is generally R-

G-B. The algorithm can also be formulated in other color spaces such as Y-I-Q space 

with a similar approach presented in the Chapter. 

3.5 Performance Evaluation 

In this Section, some performance evaluation of the proposed algorithm is 

provided. Firstly, in Section 3.5.1, the details of the realization of the proposed 

algorithm in our evaluation are described. Secondly, in Section 3.5.2, some other 

restoration algorithms used for comparative studies are introduced. Finally, in Section 

3.5.3,  evaluation results are  provided and analyzed. 

3.5.1 Realization Details of the Proposed Algorithm 

Simulation was carried out to evaluate the performance of the proposed 

algorithm on a set of color-quantized images. In our simulation, a number of 24-bit 

full color test images were first color-quantized with a color palette of 256 colors. In 

our study, three color palettes were generated with median cut algorithm [Heckbert 82] 

and octree algorithm [Gervautz 90] respectively. They were used to investigate if the 

proposed algorithm worked with inputs obtained with different color palettes. The test 

images applied were a set of de facto standard 24-bit full color images of size 

256256×  each. 

The proposed restoration algorithm was applied to restore the color-quantized 

images. In the realization of the proposed algorithm, the observed color image Y  was 

blurred with a lowpass filter to generate a training set to estimate kT  and kσr . Both 

Gaussian and average filters of size 3x3 and 5x5 were tried in our simulations to study 

the influence of filter type and filter support to the restoration performance. It was 
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found that their performance were more or less the same. In this Chapter, only the 

results obtained with a 3x3 average filter is presented. K ′  was assigned to be 0.5 and 

H  was a 3x3 Laplacian filter defined as [0,-1,0;-1,4,-1;0,-1,0]. Iterative terminated 

when 62

)(

2

)()1( 10−
+ <− kkk ''' xxx rrr  was satisfied.  

By considering that the extreme case happens when the whole color space is 

uniformly partitioned into slices of equal width and that colors are uniformly 

distributed in the color space, the lower bound of 2
,skσ  is set to be 

2
1

12
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

cN
, where 

cN  is the total number of colors in the palette. 

3.5.2 Algorithms for Comparative Study 

Some other restoration algorithms which were originally proposed for 

restoring noisy and blurred color images were also evaluated for comparison. They 

were simulated here for comparative study as few schemes had been proposed for 

restoring color-quantized images and they are typical examples of the type  

[Altunbasak 01, Angelopoulos 94, Barni 00, Galatsanos 91a, Galatsanos 89, 

Galatsanos 91b, Hunt 84, Kaulgud 99]. In particular, Galatsanos’s algorithm 

[Galatsanos 91a] is based on the constrained least square approach and Hunt’s 

algorithm [Hunt 84] is based on Wiener filtering. Two algorithms were presented in 

Altunbasak’s work [Altunbasak 01]. One makes use of the correlation among the 

color components of a pixel while the other one does not during the restoration. They 

are, respectively, referred to as KL and IND in [Altunbasak 01]. Both algorithms take 

the colorimetric aspects into account and try to minimize the error in CIELAB space 

[CIE 78]. Kim’s Algorithm [Kim 01] was designed for restoring vector quantized 
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image and it was realized for comparison here due to that the problem nature of vector 

quantization is similar to color quantization. 

In realizing Galatsanos’s algorithm [Galatsanos 91a], the noise power of each 

channel was estimated with the original full-color image. In realizing Hunt’s 

algorithm [Hunt 84], three separate Wiener filters were used in three different 

channels and, during the design of the filters, the noise spectrum of each channel was 

estimated with the original full-color image. Similarly, the original full-color image 

was used to estimate the power spectra of different channels in realizing Altunbasak’s 

algorithms [Altunbasak 01]. In a practical situation, no original image is available and 

hence all parameters must be estimated from the degraded image. In other words, in 

practice, the restoration results of  [Galatsanos 91a, Hunt 84, Altunbasak 01]  may not 

be as good as those presented in this Chapter. In realising Kim’s algorithm, [Kim 01], 

the blurred version of the observed image was used as the training set and the 

projection ratio η  was set to be 0.05. As it is not necessary to use the original full-

color image to extract information for the realization of Kim’s algorithm [Kim 01] 

and the proposed algorithm, additional credit should be added to the simulation results 

of these algorithms indeed. 

There could be some other approaches to restore a color-quantized image. For 

instance, one can use some training images to pre-train a linear prediction filter and 

then use the trained filter to restore a color-quantized image later on. Chang’s [Chang 

01] and Mese’s [Mese 01] algorithms are typical examples of this approach though 

they are actually algorithms for restoring binary halftoned images instead of color-

quantized images. Specifically, the former trains the filter with a LMS adaptive 

filtering algorithm while the latter does it with a best linear estimator. These 

algorithms were also evaluated in our study for comparison. However, they were 
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modified to handle color-quantized images. Since these algorithms assumes bilevel 

halftones as input, the number of input patterns appeared in the filter support is 

expected to be very limited and hence they try to construct a lookup table with the 

training images to reduce the computation effort with a table lookup technique in 

future restoration. This is not practical when the input is a color-quantized image. 

Accordingly, we eliminated this part in our simulations.  

Standard images Fruits and Peppers, and their corresponding color-quantized 

outputs, were used for training in realizing Chang’s and Mese’s algorithms. 

3.5.3 Simulation Results 

The SNR improvement (SNRI) achieved by different algorithms are used to 

compare their performance in color quantization. Mathematically, SNRI is defined as 

2

2

log10
XX

YX
SNRI

′−

−
=     (3.19) 

where X , Y  and X′  are the original, the color-quantized and the restored images, 

respectively. Table 3.1 shows the simulation results. 

From Table 3.1, one can see that the performance of the proposed algorithm is 

better as compared with the others and it is consistent even though the input is color-

quantized with different color palettes. Two schemes of the proposed algorithm were 

evaluated and their results are presented in the Table. Scheme A uses the observed Y  

as the initial estimate in the realization of iteration (3.17) while Scheme B uses a 

blurred Y . Specifically, the blurred Y  was obtained by filtering Y  with a 3x3 

Gaussian filter. 
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On average, by applying scheme A of the proposed algorithm to restore the 

color-quantized images, a SNRI of 2.0dB and a SNRI of 2.0dB in image quality were, 

respectively, achieved for inputs color-quantized with median-cut [Heckbert 82], 

octree [Gervautz 90]. Note the improvements with respect to the second best 

algorithm are, respectively, 0.72 and 0.68dB for different types of input.  

When scheme B of the proposed algorithm was used, the restoration 

performance was even better when the color-quantized inputs were obtained with a 

median cut algorithm [Heckbert 82] or an octree algorithm [Gervautz 90]. 

Table 3.2 and Table 3.3 show the performance of the evaluated algorithms in 

terms of the CIELAB color difference )( E∆  metric. The CIELAB color difference 

)( E∆  metric is defined as the Euclidean distance between the original color of a pixel 

and its reproduction in CIELAB color metric space [CIE 78]. In formulation, we have 

222 )()()( baLE ∆+∆+∆=∆ , where L∆ , a∆  and b∆  represent the difference in L , 

a  and b  values of the colors. The L , a  and b  values of a color are, respectively, 

defined as 16116
31
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Yb , where X , Y  and Z  are defined according to the color’s 

red ( R ), green (G ) and blue ( B ) components as 
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9393.01296.00202.0
0713.07068.02219.0
1784.03416.04303.0

   (3.20) 

( nnn ZYX ,, ) denotes the ),,( ZYX  that corresponds to a white point. It is well 

accepted that a rule of thumb for visually detectable color errors is 3>∆E  
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[Altunbasak 01, Connolly 95]. Table 3.2 shows the average of the E∆  values of all 

pixels in a restoration output and Table 3.3 shows the percentage of pixels whose 

color error is not visually detectable in a restoration output. Again, one can see that 

the proposed algorithm is superior to the others no matter which color palette is used 

to color-quantize the testing inputs. With this metric, it can be found that scheme B of 

the proposed algorithm is always better than scheme A no matter which color-

quantization algorithm is used to generate the inputs. Based on the observations we 

have in the Tables, it is recommended to use scheme B instead of scheme A in 

restoring a color-quantized image. 
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SNR Improvement (dB)  
[Galatsanos  

91a] 
[Hunt 

84] 
[Altunbasak 

01]-IND 
[Altunbasak 

01]-KL 
[Kim 
01] 

[Mese 
01] 

[Chang 
01] 

Proposed 
Scheme A

Proposed 
Scheme B

          

Baboon 0.2082 0.2381 0.6678 0.6302 0.5558 -1.1673 0.1737 1.0313 1.0588 
Boat 0.1985 0.3990 1.0932 1.0244 0.6423 0.6611 -0.6937 1.6678 1.8548 
Couple 0.4932 1.1115 1.5100 1.4709 0.6700 1.7842 0.0949 2.2979 2.3840 
Cycles 0.1333 1.2146 1.4514 1.3206 0.5573 -0.9133 -1.6107 1.5446 2.5069 
Fruits 0.3048 0.8707 0.8959 0.6666 0.8438 0.7930 -0.0569 2.2209 3.0551 
Girl 0.4993 1.0614 1.9525 1.9037 0.8186 2.1615 0.6053 2.7451 2.6816 
Lenna 0.3881 1.4077 1.6075 1.6334 0.9283 1.1651 -0.0913 2.5159 3.1592 
Peppers 0.1881 1.5510 2.1667 2.1799 0.9787 2.1976 0.4693 3.2713 3.9301 
Tiffany 0.1744 0.2217 0.9405 0.8640 0.7539 -0.3670 -1.3948 1.4691 2.0945 
Melon 0.0516 0.1304 0.9403 0.9846 0.7118 0.6324 -0.6235 1.6176 2.0908 
          

Average 0.2639 0.8206 1.3226 1.2678 0.7461 0.6947 -0.3128 2.0381 2.4816 
(a) 

 
SNR Improvement (dB)  

[Galatsanos  
91a] 

[Hunt 
84] 

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] 

Proposed 
Scheme A

Proposed 
Scheme B

          

Baboon 0.1592 0.6033 0.9306 0.8715 0.5567 -0.6193 0.3205 1.0728 1.0100 
Boat 0.2956 0.1443 1.0104 0.8662 0.6533 0.3747 -1.1013 1.4712 1.5766 
Couple 0.5472 0.8953 1.3941 1.1468 0.7507 1.7055 0.0233 2.1436 2.1747 
Cycles 0.2109 0.9742 1.1289 0.9894 0.4232 -1.0389 -1.8684 1.2543 1.4674 
Fruits 0.1269 0.9274 0.8008 0.3399 0.8560 0.8228 -0.1856 2.2235 3.0747 
Girl 0.6852 1.2057 2.1050 2.0058 0.8837 2.3444 0.7137 2.8174 2.7059 
Lenna 0.3493 0.8224 1.2142 1.0759 0.8824 0.4260 -0.9558 2.1136 2.6365 
Peppers 0.3453 1.4042 2.1813 2.0777 0.9802 2.1482 0.3870 3.3549 4.1353 
Tiffany 0.3020 0.5585 1.4366 1.5018 0.7773 0.0270 -1.5021 2.1900 2.5674 
Melon 0.3515 0.2716 1.2461 1.1271 0.7737 0.7294 -0.7874 1.7390 2.1415 
          

Average 0.3373 0.7807 1.3648 1.2002 0.7537 0.6920 -0.4956 2.0480 2.3490 

(b) 
 

Table 3.1. SNR Improvements of various algorithms in restoring images color-
quantized with (a) median cut algorithm [Heckbert 82], (b) octree algorithm 
[Gervautz 90]  
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Average of CIELAB difference E∆  
restored image 

 
input  

Y [Galatsanos  
91a] 

[Hunt 
84] 

[Altunbasa
k 01]-IND 

[Altunbasa
k 01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] 

Proposed 
Scheme A

Proposed 
Scheme B

           

Baboon 3.8271 3.7852 3.5682 3.4950 3.5002 3.7238 3.4496 3.6058 3.4851 3.3999 
Boat 3.5413 3.5091 3.2857 3.1313 3.1432 3.4094 3.0860 3.3955 3.1223 3.0037 
Couple 7.0907 6.8206 6.1153 6.3761 6.3850 6.7513 6.1148 6.4367 5.8507 5.4060 
Cycles 4.7788 4.7711 4.1709 4.1886 4.2097 4.6213 4.2765 4.5756 4.0683 3.8300 
Fruits 2.6968 2.6651 2.4459 2.4196 2.4363 2.5887 2.4093 2.5613 2.2958 2.1817 
Girl 5.9561 6.0030 5.2304 5.1310 5.1466 5.6240 5.1419 5.4781 4.8609 4.5851 
Lenna 2.6766 2.5915 2.2659 2.2882 2.2897 2.5531 2.3343 2.5359 2.1605 2.0748 
Peppers 4.0172 4.0420 3.7577 3.6311 3.6303 3.8058 3.4798 3.8771 3.2641 3.0765 
Tiffany 1.3160 1.2974 1.2468 1.1754 1.1778 1.2607 1.2386 1.2881 1.1620 1.1076 
Melon 4.2157 4.2559 4.2600 3.8648 3.8620 4.0077 3.8012 3.9935 3.7326 3.5669 

           

Average 4.0116 3.9741 3.6347 3.5701 3.5781 3.8346 3.5332 3.7748 3.4002 3.2232 
(a) 

 
Average of CIELAB difference E∆  

restored image 
 

input  
Y [Galatsanos  

91a] 
[Hunt 
84] 

[Altunbasa
k 01]-IND 

[Altunbasa
k 01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] 

Proposed 
Scheme A

Proposed 
Scheme B

           

Baboon 3.9743 3.9381 3.6654 3.5961 3.6072 3.8698 3.5488 3.7527 3.6490 3.5460 
Boat 3.3683 3.3237 3.1713 3.0294 3.0436 3.2626 2.9865 3.2690 3.0235 2.9491 
Couple 6.0473 5.9530 5.9193 5.7894 5.8212 5.8641 5.4955 5.7416 5.4088 5.2330 
Cycles 4.8500 4.8214 4.3412 4.3300 4.3638 4.7673 4.4801 4.7325 4.3141 4.1666 
Fruits 2.8303 2.8084 2.5729 2.5466 2.5836 2.7366 2.5591 2.7388 2.4260 2.3138 
Girl 5.3507 5.2992 5.1688 4.8127 4.8270 5.1397 4.7698 5.0560 4.5897 4.4641 
Lenna 2.2740 2.2301 2.0712 2.0417 2.0563 2.1950 2.0617 2.2336 1.9685 1.9003 
Peppers 4.3351 4.2590 4.1693 3.9921 4.0101 4.2318 3.9336 4.2999 3.7224 3.6219 
Tiffany 1.6494 1.6091 1.5076 1.4414 1.4346 1.5854 1.5275 1.6187 1.4004 1.3319 
Melon 3.9534 3.9165 3.8945 3.5780 3.5902 3.7899 3.5957 3.8389 3.4764 3.3332 
           

Average 3.8633 3.8158 3.6482 3.5157 3.5338 3.7442 3.4958 3.7282 3.3979 3.2860 
(b) 

 
Table 3.2. CIELAB difference E∆  measurement of outputs of various algorithms in 
restoring images color-quantized with (a) median cut algorithm [Heckbert 82], (b) 
octree algorithm [Gervautz 90]  
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% of pixels whose CIELAB E∆ <3 
restored image 

 
input  

Y [Galatsanos  
91a] 

[Hunt 
84] 

[Altunbasa
k 01]-IND 

[Altunbasa
k 01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] 

Proposed 
Scheme A

Proposed 
Scheme B

           

Baboon 44.67 44.30 49.53 49.32 49.29 45.44 49.77 47.33 49.68 51.41 
Boat 52.96 52.80 57.04 58.38 58.13 54.06 58.38 54.07 58.14 60.11 
Couple 18.59 19.45 25.40 25.99 25.85 19.40 24.83 21.05 27.58 29.42 
Cycles 37.78 37.45 44.14 45.52 45.19 38.53 42.66 38.88 46.27 49.99 
Fruits 72.24 72.04 76.47 76.26 75.99 73.14 76.12 73.48 77.88 79.27 
Girl 29.02 30.04 32.98 35.49 35.38 30.46 34.53 31.11 37.71 38.85 
Lenna 66.65 67.58 75.55 74.90 74.86 68.68 73.86 69.44 77.81 79.48 
Peppers 47.05 46.11 52.82 55.60 55.62 49.68 56.00 49.59 60.31 63.77 
Tiffany 95.30 95.28 95.24 96.22 96.23 95.52 95.84 95.58 96.23 96.45 
Melon 44.53 44.04 48.64 49.12 49.16 45.82 48.53 46.18 49.01 51.90 

           

Average 50.88 50.91 55.78 56.68 56.57 52.07 56.05 52.67 58.06 60.07 
(a) 

 
% of pixels whose CIELAB E∆ <3 

restored image 
 

input  
Y [Galatsanos  

91a] 
[Hunt 

84] 
[Altunbasa
k 01]-IND 

[Altunbasa
k 01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] 

Proposed 
Scheme A

Proposed 
Scheme B

           

Baboon 38.42 38.10 45.37 43.98 43.84 39.17 44.61 40.87 42.90 30.31 
Boat 54.96 54.77 58.58 59.92 59.72 55.68 60.02 55.59 59.51 60.79 
Couple 20.07 20.65 24.26 25.09 24.69 20.95 24.51 21.96 25.66 26.97 
Cycles 40.48 40.16 45.25 46.13 45.58 41.19 43.91 41.05 47.11 50.39 
Fruits 65.11 64.60 71.99 71.41 70.63 66.19 69.87 66.16 73.43 76.29 
Girl 26.68 26.79 31.18 33.62 33.43 28.45 32.89 28.80 36.02 37.64 
Lenna 76.62 76.91 80.67 81.68 81.32 77.80 81.29 77.54 83.12 84.04 
Peppers 42.75 42.74 47.41 50.03 49.77 44.04 48.29 44.45 53.14 55.58 
Tiffany 92.73 93.27 93.66 95.33 95.62 93.62 94.35 93.47 95.95 96.23 
Melon 49.03 48.74 48.73 51.08 50.98 49.48 51.51 48.85 52.48 55.07 

           

Average 50.69 50.67 54.71 55.83 55.56 51.66 55.13 51.87 56.93 57.33 
(b) 

 
Table 3.3. Percentage of pixels whose CIELAB difference is not detectable ( E∆ <3) 
after restoration when testing images were color-quantized with (a) median cut 
algorithm [Heckbert 82], (b) octree algorithm [Gervautz 90]  
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Figure 3.2 shows the restoration results of different algorithms for visual 

evaluation. Figure 3.2b is the color-quantized version of Figure 3.2a. The palette was 

generated with median-cut algorithm. One can see the false contour and the color shift 

in the bikes. After restoration, the proposed algorithm removes most of the artefacts 

while some of the others cannot do the job. Scheme B of the proposed algorithm 

provides a better visual result as compared with scheme A and is the best among the 

algorithms.  

In the proposed algorithm, kσr  is estimated with the blurred Y  instead of the 

original X . A study was performed to study how well this estimation could be done. 

In our study, the used measure was normalized weighted error (NWE)  and it is 

defined as 
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where k"σr  and k'σ
r  are, respectively, the kσr ’s obtained with X  and the blurred Y , 

and kw  is the number of kv̂  found in Y . Table 4 shows the NWEs  when different 

testing images and their corresponding color-quantized sY'  were used. On average, it 

is around 0.08. Besides, it was found that the impact of the difference between k"σr  

and k'σ
r  to the final restoration result was little. The corresponding difference of the 

results is less than 0.1dB in SNRI on average. 
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(a) Original  (b) Color-quantized 
 

(c) [Galatsanos 91a]  (d) [Hunt 84] 
 

(e) [Altunbasak 01]-IND  (f) [Altunbasak 01]-KL 
Figure 3.2. Zoomed outputs of various approaches in restoring color-quantized Cycles 
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(g) [Kim 01]  (h) [Mese 01] 
 

(i) [Chang 01]  (j) Proposed (Scheme A) 
  

(k) Proposed (Scheme B)   
Figure 3.2 (Continue). Zoomed outputs of various approaches in restoring color-quantized Cycles 
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 NWE (%) 

 Median-cut 
[Heckbert 82] 

Octree 
[Gervautz 90] 

   

Baboon 3.145 3.591 
Boat 9.827 6.136 
Couple 8.489 7.778 
Cycles 5.902 6.636 
Fruits 8.564 10.497 
Girl 7.129 6.454 
Lenna 5.149 6.641 
Peppers 8.166 7.316 
Tiffany 13.628 7.027 
Melon 8.422 4.880 
   

Average 7.842 6.695 
 

Table 3.4. Discrepancy measured when kσ
r  is evaluated with the blurred observed 

image instead of the original image.  

 

3.6 Summary 

By far, very little research has been carried out to address the restoration of 

color-quantized images. Though there are some restoration algorithms for restoring 

blurred and noisy color images, they are generally not adequate to handle color-

quantized images. In this Chapter, we proposed a dedicated restoration algorithm for 

restoring color-quantized images. This algorithm makes good use of the color palette 

to derive useful a priori information for restoration. It has been demonstrated by 

simulation results that the proposed algorithm can achieve a remarkable improvement 

in the quality of a color-quantized image in terms of both SNR and CIELAB color 

difference )( E∆  metric. Its performance is obviously better than other existing 

restoration approaches such as  [Altunbasak 01, Galatsanos 91a, Hunt 84, Kim 01]. 

The proposed restoration algorithm requires no extra information other than 

the color palette to carry out the restoration. Besides, it is not tailor-made for a 

particular color quantization scheme and hence no a priori knowledge about the 
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construction of the color palette is required during the restoration. This makes it  

always able to provide a reasonable restoration performance whatever color 

quantization scheme with which it works. Simulation results verify that this is true. 
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Chapter 4 

A POCS-based Algorithm for Restoring 

Color-quantized Images 

4.1 Introduction 

This Chapter presents another restoration algorithm for restoring color-

quantized image by making use of POCS theory [Youla 82]. 

The organization of this Chapter is as follows. In Section 4.2, we formulate the 

a priori information we can have about the degradation process of color quantization 

and about the original image. In Section 4.3, we formulate the constraints for image 

restoration. In Section 4.4, we formulate the proposed algorithms for restoring color-

quantized images based on the theory of projection onto convex sets. Simulation 

results for comparative study are provided in Section 4.5. Finally, a brief summary is 

given in Section 4.6. 

4.2 Formulation of A Priori Information 

A color image X  generally consists of three color planes, say, rX , gX , and 

bX , which represent the red, green and blue color planes of the image, respectively. 
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The thji ),(  pixel of the image is hence a 3D vector represented by 

t
bjigjirjiji ),,( ),(),(),(),( XXXX =

r
 where ]1,0[),(  X ∈cji  is the intensity value of the thc  

color component of the thji ),(  pixel and t  denotes the transpose of a matrix. Here, we 

assume that the maximum and the minimum intensity values of a pixel are, 

respectively, 1 and 0.  

In this Chapter, all vectors in a 3D space are represented in a column vector 

form and the a priori information about the color quantization without error diffusion  

formulated in Chapter 3.2 is used.  

4.3 Formulation of Constraints for Restoration 

Let ),( jiX
r

 and ),( jiY
r

 be the 3-dimensional vectors representing the thji ),(  

pixels of the original image X  and the encoded image Y , respectively. If Ck ∈v̂  is 

the color used to represent ),( jiX
r

, then we will have kji vY ˆ),( =
r

, and the distance 

between ),( jiY
r

 and ),( jiX
r

 will be bounded by the boundary of the Voronoi region kR . 

More specifically, any particular principal component of ),(),( jiji YX
rr

− , say, 

sjijikT )]([ ),(),( YX
rr

− , is also bounded. In formulation, we have 

sjisjijikT ),(
2

),(),( ))](([ ε≤− YX
rr

    (4.1) 

where sji ),(ε  is the corresponding bound. 

Since we have kji vY ˆ),( =
r

, the bound sji ),(ε  can be estimated to be a function 

of 2
,skσ . By assuming that sji ),(ε  is proportional to 2

,skσ , we have 

sksjijikT ,),(),( )]([ βσ≤− YX 
rr

, where β  is a scaling parameter. This forms a constraint 
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set Γ∈= ),(1 { jiS I|I
r

 and sksjijikT ,),(),( )]([ βσ≤− YX 
rr

 for all },  ji , where k  is the 

index of the codeword ),(ˆ jik Yv
r

=  to restore X . 

Typical images would generally have weak high frequency components as the 

intensity of neighboring pixels is highly correlated. This feature can be exploited as an 

additional a priori information in the restoration of color-quantized images. The 

conventional approach to incorporate this information into restoration is to assume 

that the energy of the high frequency components of image X  is bounded.  

In our approach, we assume that the energy of each high frequency component 

of X  is bounded and the bound of each component is estimated with the low-pass 

filtered Y . In particular, we have ),(),( )](([)]([ wuwu FTT Y X ≤  for Hu,w Ω∈)( , 

where F  and T  are, respectively, a linear low-pass filtering operator and a 2D DCT 

operator, ),(][ wu•  denotes the thwu ),(  element in the transform domain and HΩ  

defines the set of high frequency components which should be bounded. This forms a 

smoothness constraint set Γ∈= ),(0 { jiS I|I
r

 and ),(),( )](([)]([ wuwu FTT Y I ≤  for 

})( Hu,w Ω∈  for restoring image X . 

Two more constraint sets can be used to restore X . One is that which confines 

the intensity value of a particular pixel to be valid. In formulation, we have 

Γ∈= ),(2 { jiS I|I
r

 and 10 ),( ≤≤ cjiI  for all },  ji . The other is Γ∈= ),(3 { jiS I|I
r

 and 

),(),( )( jijiQ YI
rr

=  for all },  ji , where Q  is the color quantization operator. This set 

makes sure that the color-quantized output of the restored X  is Y . 
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4.4 Formulation of the POCS Algorithm 

Based on the a priori information concerning the color quantization process 

and the original image, four constraint sets are defined in Section 4.3. All of these 

constraint sets are convex sets. Based on the theory of projection onto convex sets 

(POCS) [Youla 82], which states that a good estimate of the original image can be 

obtained by successively projecting an estimate onto each of convex constraint sets 

until it converges to an element in the intersection of all these sets, an iterative 

algorithm can be defined as 

)(
0123

)1( nn PPPP XX =+     (4.2) 

where )(nX  is the estimate of X  at iteration n  and iP  is a projection operator 

projecting a given image I  onto iS , where }3,2,1,0{∈i . In particular, they are 

defined as 

Hwuwuwuwu wuforFTTifFTTP Ω∈>= ),())](([)]([))](([)]([: ),(),(),(),(0     Y I           YI  

 (4.3) 

 
YI  Y
YI  Y

I
⎪⎩

⎪
⎨
⎧

−<−
+>+

=
sksjiksjiksksjik

sksjiksjiksksjik
sjik TTifT

TTifT
TP

,),(),(,),(

,),(),(,),(
),(1 ][][][

][][][
][:

βσβσ
βσβσ

rrr

rrr
r

 

),(},3,2,1{ jisfor ∀∈      (4.4)
  

where k  is the index of the codeword ),(ˆ jik Yv
r

= . 

),(},,,{
00
11

:
),(

),(
),(2 jibgrcfor

if
if

P
cji

cji
cji ∀∈

⎩
⎨
⎧

<
>

=               
I  
I  

I     (4.5) 

),()(: ),(),(),(),(3 jiQifP jijijiji ∀≠=         YI     YI
rrrr

     (4.6) 
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The initial estimate )0(X  is set to be )(YF , although theoretically no restriction is 

imposed on the initial estimate. 

Based on a similar idea presented in [Kim 01], it is desirable to keep 1S  to be a 

subset of 3S . At the same time, the size of 1S  should be as big as possible under the 

constraint so as not to exclude the original X  in the set of potential candidates. In our 

proposed algorithm, in order to achieve both goals, we first select an appropriate β  

such that 1S  and 3S  are of similar size at the beginning and then reduce the size of 1S  

by adjusting the value of β  at each iteration until 31 SS ⊂  is achieved. Specifically, 

projection 1P  is modified as 

⎪⎩

⎪
⎨
⎧

−<−
+>+

=
skksjiksjikskksjik

skksjiksjikskksjik
sjik TTifT

TTifT
TP

,),(),(,),(

,),(),(,),(
),(1 ][][][

][][][
][:

σβσβ
σβσβ

YI  Y
YI  Y

I rrr

rrr
r

  (4.7) 

During the realization of projection 3P , if ),(),( )( jijiQ YI
rr

≠  happens, the kβ  associated 

with codeword ),(ˆ jik Yv
r

=  is adjusted by kk αββ = , where )1(<α  is a scaling 

parameter which controls the rate of adjustment.  

Note that this adjustment does not affect the convergence. The adjustment 

reduces the size of 1S . The adjusted 1S  is a convex set and hence, at any time, all 

constraint sets are convex sets. Eventually, 1S  becomes a subset of 3S  and there will 

be no more adjustment. When this point is reached, it becomes a typical POCS 

algorithm and the convergence can be guaranteed. 

4.5 Simulation and Comparative Study 

In this Section, the performace evaluation of the proposed algorithm is 

evaluated and a comparative study on the performance of different algorithm is made. 
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First, the details of the simulations and comparative study are given in Section 4.5.1. 

Simulation results and their implications are discussed in Section 4.5.2. 

4.5.1 Realization Details of the Proposed Algorithm 

Simulation has been carried out to evaluate the performance of the proposed 

algorithm on a set of color-quantized images. In our simulation, a number of 24-bit 

full color test images were first color-quantized with a color palette of 256 colors. In 

our study, two color palettes were generated with median cut algorithm [Heckbert 82] 

and octree algorithm [Gervautz 90], respectively. They were used to investigate if the 

algorithm worked with inputs obtained with different color palettes. No halftoning 

was performed during the quantization. The test images applied were a set of de facto 

standard 24-bit full color images of size 256256×  each. 

The proposed restoration algorithm was then applied to restore the quantized 

images. In the realization of the proposed algorithm, the observed color image Y  was 

blurred with a 33×  average filter to generate a training set to estimate kσr . The 33×  

Gaussian filter was used as filter F  and HΩ  was defined as 

80000)256()256(|),{( 22 <−+− wuwu  and }256,0 <≤ wu . The initial value of kβ  

was assigned to be σβ /05.0=k  for all k , where σ  is the maximum of sk ,σ s for all 

k  and s , and α  was assigned to be 0.8. The threshold value 80000 was obtained 

empirically. 

By considering that the extreme case happens when the whole color space is 

uniformly partitioned into slices of equal width and that colors are uniformly 
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distributed in the color space, the lower bound of 2
,skσ  is set to be 

2
1

12
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

cN
, where 

cN  is the total number of colors in the palette. 

SNR Improvement (dB) 
[Chan 05] (Proposed 

Schemes in Chapter 3)

 

[Galatsanos 
91a] 

[Hunt 
84] 

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] A B 

Proposed 
           

Baboon 0.2082 0.2381 0.6678 0.6302 0.5558 -1.1673 0.1737 1.0313 1.0588 0.8340 
Boat 0.1985 0.3990 1.0932 1.0244 0.6423 0.6611 -0.6937 1.6678 1.8548 1.1627 
Couple 0.4932 1.1115 1.5100 1.4709 0.6700 1.7842 0.0949 2.2979 2.3840 2.1252 
Cycles 0.1333 1.2146 1.4514 1.3206 0.5573 -0.9133 -1.6107 1.5446 2.5069 1.5171 
Fruits 0.3048 0.8707 0.8959 0.6666 0.8438 0.7930 -0.0569 2.2209 3.0551 2.0592 
Girl 0.4993 1.0614 1.9525 1.9037 0.8186 2.1615 0.6053 2.7451 2.6816 2.7180 
Lenna 0.3881 1.4077 1.6075 1.6334 0.9283 1.1651 -0.0913 2.5159 3.1592 2.7183 
Peppers 0.1881 1.5510 2.1667 2.1799 0.9787 2.1976 0.4693 3.2713 3.9301 2.7374 
Tiffany 0.1744 0.2217 0.9405 0.8640 0.7539 -0.3670 -1.3948 1.4691 2.0945 1.3421 
Melon 0.0516 0.1304 0.9403 0.9846 0.7118 0.6324 -0.6235 1.6176 2.0908 1.3631 
           

Average 0.2640 0.8206 1.3226 1.2678 0.7460 0.6947 -0.3128 2.0382 2.4816 1.8577 
(a) 

 
SNR Improvement (dB) 

[Chan 05] (Proposed 
Schemes in Chapter 3)

 

[Galatsanos 
91a] 

[Hunt 
84] 

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] A B 

Proposed 
           

Baboon 0.1592 0.6033 0.9306 0.8715 0.5567 -0.6193 0.3205 1.0728 1.0100 1.1023 
Boat 0.2956 0.1443 1.0104 0.8662 0.6533 0.3747 -1.1013 1.4712 1.5766 0.8919 
Couple 0.5472 0.8953 1.3941 1.1468 0.7507 1.7055 0.0233 2.1436 2.1747 1.5417 
Cycles 0.2109 0.9742 1.1289 0.9894 0.4232 -1.0389 -1.8684 1.2543 1.4674 1.2023 
Fruits 0.1269 0.9274 0.8008 0.3400 0.8560 0.8228 -0.1856 2.2235 3.0747 2.0337 
Girl 0.6852 1.2057 2.1050 2.0058 0.8837 2.3444 0.7137 2.8174 2.7059 2.8007 
Lenna 0.3493 0.8224 1.2142 1.0759 0.8824 0.4260 -0.9558 2.1136 2.6365 2.0956 
Peppers 0.3453 1.4042 2.1813 2.0777 0.9802 2.1482 0.3870 3.3549 4.1353 2.2682 
Tiffany 0.3020 0.5585 1.4366 1.5018 0.7773 0.0270 -1.5021 2.1900 2.5674 2.2297 
Melon 0.3515 0.2716 1.2461 1.1271 0.7737 0.7294 -0.7874 1.7390 2.1415 1.6020 
           

Average 0.3373 0.7807 1.3448 1.2002 0.7537 0.6920 -0.4956 2.0380 2.3490 1.7768 
(b) 

 
Table 4.1. SNR Improvements of various algorithms in restoring images color-
quantized with (a) median cut algorithm [Heckbert 82], (b) octree algorithm 
[Gervautz 90] 
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Average of CIELAB difference E∆  
restored image 

[Chan 05] (Proposed 
Schemes in Chapter 3)

 

input 
Y 

[Galatsanos  
91a] 

[Hunt 
84] 

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] A B 

Proposed
            

Baboon 3.8271 3.7852 3.5682 3.4950 3.5002 3.7238 3.4496 3.6058 3.4851 3.3999 3.3882 
Boat 3.5413 3.5091 3.2857 3.1313 3.1432 3.4094 3.0860 3.3955 3.1223 3.0037 3.0048 
Couple 7.0907 6.8206 6.1153 6.3761 6.3850 6.7513 6.1148 6.4367 5.8507 5.4060 5.9214 
Cycles 4.7788 4.7711 4.1709 4.1886 4.2097 4.6213 4.2765 4.5756 4.0683 3.8300 4.1047 
Fruits 2.6968 2.6651 2.4459 2.4196 2.4363 2.5887 2.4093 2.5613 2.2958 2.1817 2.3520 
Girl 5.9561 6.0030 5.2304 5.1310 5.1466 5.6240 5.1419 5.4781 4.8609 4.5851 4.8354 
Lenna 2.6766 2.5915 2.2659 2.2882 2.2897 2.5531 2.3343 2.5359 2.1605 2.0748 2.1521 
Peppers 4.0172 4.0420 3.7577 3.6311 3.6303 3.8058 3.4798 3.8771 3.2641 3.0765 3.4618 
Tiffany 1.3160 1.2974 1.2468 1.1754 1.1778 1.2607 1.2386 1.2881 1.1620 1.1076 1.1480 
Melon 4.2157 4.2559 4.2600 3.8648 3.8620 4.0077 3.8012 3.9935 3.7326 3.5669 3.7724 

            

Average 4.0116 3.9741 3.6347 3.5701 3.5781 3.8346 3.5332 3.7748 3.4002 3.2232 3.4141 
(a) 

 
Average of CIELAB difference E∆  

restored image 
[Chan 05] (Proposed 

Schemes in Chapter 3)

 

input 
Y 

[Galatsanos  
91a] 

[Hunt 
84] 

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] A B 

Proposed
            

Baboon 3.9743 3.9381 3.6654 3.5961 3.6072 3.8698 3.5488 3.7527 3.6490 3.5460 3.4836 
Boat 3.3683 3.3237 3.1713 3.0294 3.0436 3.2626 2.9865 3.2690 3.0235 2.9491 3.0084 
Couple 6.0473 5.9530 5.9193 5.7894 5.8212 5.8641 5.4955 5.7416 5.4088 5.2330 5.4259 
Cycles 4.8500 4.8214 4.3412 4.3300 4.3638 4.7673 4.4801 4.7325 4.3141 4.1666 4.3217 
Fruits 2.8303 2.8084 2.5729 2.5466 2.5836 2.7366 2.5591 2.7388 2.4260 2.3138 2.4688 
Girl 5.3507 5.2992 5.1688 4.8127 4.8270 5.1397 4.7698 5.0560 4.5897 4.4641 4.5825 
Lenna 2.2740 2.2301 2.0712 2.0417 2.0563 2.1950 2.0617 2.2336 1.9685 1.9003 1.9937 
Peppers 4.3351 4.2590 4.1693 3.9921 4.0101 4.2318 3.9336 4.2999 3.7224 3.6219 3.9439 
Tiffany 1.6494 1.6091 1.5076 1.4414 1.4346 1.5854 1.5275 1.6187 1.4004 1.3319 1.4203 
Melon 3.9534 3.9165 3.8945 3.5780 3.5902 3.7899 3.5957 3.8389 3.4764 3.3332 3.5012 

            

Average 3.8633 3.8158 3.6482 3.5157 3.5338 3.7442 3.4958 3.7282 3.3979 3.2860 3.4150 
(b) 

 
Table 4.2. CIELAB difference E∆  measurement of outputs of various algorithms in 
restoring images color-quantized with (a) median cut algoroithm [Heckbert 82], (b) 
octree algorithm [Gervautz 90] 
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% of pixels whose CIELAB 3<∆E  
restored image 

[Chan 05] (Proposed 
Schemes in Chapter 3)

 

input 
Y 

[Galatsanos  
91a] 

[Hunt 
84] 

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] A B 

Proposed
 
 

           

Baboon 44.67 44.30 49.53 49.32 49.29 45.44 49.77 47.33 49.68 51.41 52.04 
Boat 52.96 52.80 57.04 58.38 58.13 54.06 58.38 54.07 58.14 60.11 60.66 
Couple 18.59 19.45 25.40 25.99 25.85 19.40 24.83 21.05 27.58 29.42 25.66 
Cycles 37.78 37.45 44.14 45.52 45.19 38.53 42.66 38.88 46.27 49.99 45.82 
Fruits 72.24 72.04 76.47 76.26 75.99 73.14 76.12 73.48 77.88 79.27 77.19 
Girl 29.02 30.04 32.98 35.49 35.38 30.46 34.53 31.11 37.71 38.85 37.64 
Lenna 66.65 67.58 75.55 74.90 74.86 68.68 73.86 69.44 77.81 79.48 78.53 
Peppers 47.05 46.11 52.82 55.60 55.62 49.68 56.00 49.59 60.31 63.77 57.69 
Tiffany 95.30 95.28 95.24 96.22 96.23 95.52 95.84 95.58 96.23 96.45 96.25 
Melon 44.53 44.04 48.64 49.12 49.16 45.82 48.53 46.18 49.01 51.90 48.58 
            

Average 50.88 50.91 55.78 56.68 56.57 52.07 56.05 52.67 58.06 60.07 58.01 
(a) 

 
% of pixels whose CIELAB 3<∆E  

restored image 
[Chan 05] (Proposed 

Schemes in Chapter 3)

 

input 
Y 

[Galatsanos  
91a] 

[Hunt 
84] 

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Kim 
01] 

[Mese 
01] 

[Chang 
01] A B 

Proposed
 
 

           

Baboon 38.42 38.10 45.37 43.98 43.84 39.17 44.61 40.87 42.90 30.31 46.95 
Boat 54.96 54.77 58.58 59.92 59.72 55.68 60.02 55.59 59.51 60.79 60.59 
Couple 20.07 20.65 24.26 25.09 24.69 20.95 24.51 21.96 25.66 26.97 26.15 
Cycles 40.48 40.16 45.25 46.13 45.58 41.19 43.91 41.05 47.11 50.39 46.69 
Fruits 65.11 64.60 71.99 71.41 70.63 66.19 69.87 66.16 73.43 76.29 72.32 
Girl 26.68 26.79 31.18 33.62 33.43 28.45 32.89 28.80 36.02 37.64 36.89 
Lenna 76.62 76.91 80.67 81.68 81.32 77.80 81.29 77.54 83.12 84.04 82.11 
Peppers 42.75 42.74 47.41 50.03 49.77 44.04 48.29 44.45 53.14 55.58 48.63 
Tiffany 92.73 93.27 93.66 95.33 95.62 93.62 94.35 93.47 95.95 96.23 95.75 
Melon 49.03 48.74 48.73 51.08 50.98 49.48 51.51 48.85 52.48 55.07 52.11 
            

Average 50.69 50.67 54.71 55.83 55.56 51.66 55.13 51.87 56.93 57.33 56.82 
(b) 

 
Table 4.3. Percentage of pixels whose CIELAB difference is not detectable ( E∆ <3) 
after restoration when testing images were color-quantized with (a) median cut 
algorithm [Heckbert 82], (b) octree algorithm [Gervautz 90] 
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(a) Original  (b) Color-quantized 
 

(c) [Galatsanos 91a]  (d) [Hunt 84] 
 

(e) [Altunbasak 01]-IND  (e) [Altunbasak 01]-KL 
Figure 4.1. Zoomed outputs of various approaches in restoring color-quantized Fruits. 
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(g) [Kim 01]  (h) [Mese 01] 
 

(i) [Chang 01]  (j) Proposed Scheme in Chapter 3 (Scheme A) 
 

(k) Proposed Scheme in Chapter 3 (Scheme B)  (l) Proposed 
Figure 4.1(continue). Zoomed outputs of various approaches in restoring color-quantized Fruits. 
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4.5.2 Algorithms for Comparative Study  

For comparison, the same set of evaluated restoration algorithms and 

measurements used in Chapter 3, Section 3.5.2 and Section 3.5.3 were used. Tables 

4.1-4.3 show the performance of various algorithms in restoring images color-

quantized with a 256-color palette. The palette was generated with a median cut 

algorithm [Heckbert 82] and octree algorithm [Gervautz 90].  

For easier comparison, we duplicate the result from the Chapter 3 here. From 

Tables 4.1, one can see that the performance of the proposed algorithm is better as 

compared with the others. On average, by applying the proposed algorithm to restore 

the color-quantized images, a SNRI of 1.9dB, a SNRI of 1.8dB in image quality were, 

respectively, achieved for inputs color-quantized with median-cut [Heckbert 82], 

octree [Gervautz 90]. 

Tables 4.2 and 4.3 show the performance of the evaluated algorithms in terms 

of the CIELAB color difference ( E∆ ) metric. Table 4.2 shows the average of the E∆  

values of all pixels in a restoration output and Table 4.3 shows the percentage of 

pixels whose color error is visually undetectable in a restoration output. 

Figure 4.1 shows the restoration results of different algorithms for visual 

evaluation. Figure 4.1b is the color-quantized version of Figure 4.1a. The palette was 

generated with median-cut algorithm. One can see the false contour and the color shift 

in the Fruits. After restoration, the proposed algorithm removes most of the artefacts 

while some of the others cannot do the job. 
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4.5.3 Simulation Results and Implications 

As compare with the restoration algorithm proposed in Chapter 3, the 

restoration results proposed in this Chapter are a little bit lower in various aspects. 

Based on the simulation results, we observed that the regularization approach could 

work better when images contain more low frequency contents. For images contain 

more high frequency contents such as testing image “Baboon”, the improvement of 

the regulatization approach over the POCS approach becomes less. In the 

regularization approach, spatial high pass filter was used as a smoothness measure to 

capture the local variation of the images to form the smoothness constraint. However, 

in POCS approach, sometimes the definition of certain types of constraint sets used to 

project onto is not straightforward. When smoothness constraint is used in POCS 

approach, spatial filtering cannot be used because it cannot be formed as a closed 

convex set, the projection cannot be defined and the convergence cannot be 

guaranteed. Instead, in the proposed POCS approach, frequency projection is used as 

the smoothness constraint set. However, the spatial information to capture the local 

variation is omitted.  

It is observed that the restoration problem becomes less ill-conditioned when 

more a priori knowledge about the original image is incorporated into the restoration 

algorithm, better solution will be obtained when more constraints are used or when 

the constraints are made tighter. The intersection is made smaller, thus reducing the 

deviation between the elements in the set. 

In image restoration problems, the more the a priori information available, the 

more the chance that the restoration output closed to the original. When the number of 

a priori knowledge is increased, regularization approach will get more complicated 
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and it may not be expressed in the form of a stabilizing linear objective functional, so 

it is not easy to formulate the problem with regularization approach. By using POCS, 

large number of a priori information can be incorporated into an image restoration 

algorithm easily only if the formulated constraint sets are closed convex sets. A 

nonexpansive mapping can then be defined to assocate with each of these constraint 

sets. Though the method of POCS is not really an optimization method, but it does 

allow for finding solutions to inverse problems that are not simply minima of some 

quadratic Tikhonov functional. Obviously, the intersection should be defined as 

tightly as possible. 

For tackling more complicated problem such as restoration of halftoned color-

quantized image, POCS approach can be used when the number of constraints is 

increased and this will be addressed in the following Chapter. 

4.6 Summary 

In this Chapter, a restoration algorithm for restoring color-quantized images is 

presented which is based on the POCS approach. This algorithm makes good use of 

the color palette to derive useful a priori information for restoration. It has been 

demonstrated by simulation results that the proposed restoration algorithm is capable 

of improving the quality of a color-quantized image. Besides, it provides a better 

restoration performance as compared with other existing restoration approaches such 

as in [Altunbasak 01, Galatsanos 91a, Hunt 84, Kim 01]. 

 The proposed restoration algorithm requires no extra information other than 

the available color quantized image Y  and the color palette to carry out the 

restoration. This makes it always able to provide a reasonable restoration performance 

irrespective of the color quantization scheme with which it works. 



 67

 

 

Chapter 5. 

A POCS-based Restoration Algorithm for 

Restoring Halftoned Color-quantized 

Images  

5.1 Introduction 

In Chapters 3 and 4, we proposed two restoration algorithms for restoring 

color-quantized images. These two algorithms [Chan 05, Fung 04a] do not take 

account of the case when error diffusion is involved in the quantization process. 

Obviously, the degradation model for color quantization without error diffusion is 

different from that for color quantization with halftoning. 

Inverse halftoning can be used to restore binary halftones to its original  

[Chang 01, Hein 95, Kite 00, Mese 01, Wong 95]. In printing applications, color 

images are decomposed into 3 or 4 color components (CMY or CMYK). Each color 

plane is then considered as an individual gray scale image and they are separately 

halftoned with a conventional binary halftoning algorithm. In such cases, a 

straightforward extension of a conventional inverse halftoning algorithm can do the 

job as one can restore each color plane with an inverse halftoning algorithm directly. 
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However, this straightforward approach only works for handling color prints in which 

the colors are composed of a few of bi-level fixed color components.  

Color quantization is actually a vector quantization instead of a bi-level 

uniform scalar quantization as in the case of binary halftoning. It is not a combination 

of several independent bi-level uniform scalar quantization processes either. In 

general, when a low-end display unit such as a VGA monitor is involved, the palette 

colors are not uniformly distributed in the color space. By considering this, restoring 

color halftones generated for printing applications is only a special case of the 

problem concerned in this Chapter. In particular, it is equivalent to the case that a 

palette {(C,M,Y)|C,M,Y=0,1}, where 0 and 1 denote the minimum and maximum 

intensity values respectively, is used in color quantization. 

Figure 5.1 shows how a color palette clusters a cross-section of a color space. 

As shown in Figure 5.1a, in the restoration of color prints generated for printing 

applications, one can easily define the bounds of a cluster in all dimensions and derive 

a simple constraint set for color restoration. However, in the general case with which 

we are tackling, since the involved palette can be of arbitrary size and contain 

arbitrary colors, clusters can be of arbitrary shape and size. Hence, it is not easy to 

precisely define their boundaries. Figure 5.1b shows an example of this general case. 

The solid lines in Figure 5.1b are the cluster boundaries which partition the cross-

section in this example.    

Even though an inverse halftoning algorithm is extended to handle halftones 

involving multi-level quantization, processing color planes separately does not work 

effectively. It is because, due to the implicit assumptions that this approach has, one 

has to approximate the clusters with rectangular column in restoration. The dotted 

lines in Figure 5.1b show the approximation result of the presented example. One can 
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see that the approximation error can be very large and hence processing color planes 

separately with inverse halftoning algorithms cannot provide a good restoration result 

in general. In other words, further extension of existing binary inverse halftoning 

algorithms for handling the general case is not as straightforward. 

Color 1
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r 

2

Color 1

 
 (a) (b) 
Figure 5.1.   How a cross-section of a color space is partitioned by a color palette: (a) 
in a color halftone generated for printing applications; (b) in general color 
quantization.   

 

 This Chapter is devoted to formulating the process of color quantization in 

which error diffusion is involved and developing a POCS-based restoration algorithm 

to restore corresponding degraded images. As mentioned in Chapter 4, a POCS 

algorithm is a good image restoration algorithm when the degradation model gets 

complicated and a linear objective function cannot be formulated. The proposed 

restoration algorithm is able to restore any images which are color-quantized with an 

arbitrary color palette and an error diffusion process. 

 The orgainization of this Chapter is as follows. In Section 5.2, we formulate 

the a priori information about the degradation process and the original image. In 

Section 5.3, we formulate our proposed restoration algorithm based on the theory of 

projection onto convex sets. Its performance is reported in Section 5.4. A summary is 

given in Section 5.5. 
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5.2 Formulation of A Priori Information  

The proposed algorithm is a POCS-based algorithm which makes an 

estimation of the original image X  with the observed Y  by projecting intermediate 

estimates among convex constraint sets iteratively. The constraint sets used in the 

algorithm are formulated in this Section. 

Section 2.4.1.1.2 presents the model of a system which realizes color 

quantization with error diffusion. In this Chapter, this model is used in the formulation 

of the a priori information of the degradation process. Suppose we have already made 

an estimation of X  to get an intermediate estimate X'  and are going to refine our 

estimate. The pixels of X'  are adjusted one by one in the refinement. The order in that 

the pixels are adjusted follows the order in that the pixels were color-quantized. Here, 

we assume that the degradation process chQ  is known. 

 Without loss of generality, consider we are now processing pixel ),( nm . As 

we have mentioned, pixels are adjusted one by one as they were processed in color 

quantization. All previously adjusted pixels and pixel ),( nm  of X'  form a partial 

image and can be color-quantized with operation chQ  (eqns.(2.16-2.18)) until pixel 

),( nm  is reached. For the sake of reference, this partial image is referred to as pI  and 

the set of the coordinates of the adjusted pixels and ),( nm  is referred to as pΩ  

hereafter. When pI  is color-quantized with eqns.(2.16-2.18), intermediate state 

vectors ),( lkU
r

 and error vectors ),( lkE
r

, where plk Ω∈),( , are generated. They are 

referred to as ),( lk'U
r

 and ),( lk'E
r

. 

 Obviously, since the observed image Y  is the color-quantized output of the 

original image X , the color-quantized output of our estimate of X  should also be Y . 
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In other words, we should have ][ ),( nmchQ 'X
r

 = ),( nmY
r

, where ][ ),( nmchQ I
r

 denotes the 

thm,n)(  pixel of the output when image I  is processed with eqns.(2.16-2.18) from 

pixel )11( ,  to pixel )(m,n . Accordingly, after adjusting pixel ),( nm , a convex 

constraint set in which the desirable output image should be can be formed as follows.  

 ),(,2 nmS  = { I  | ),(),( jiji "XI
rr

=  ),(\),( nmji pΩ∈∀ , 

 ),(),( jiji 'XI
rr

=   pji Ω∉∀ ),(    and  

 }][ ),(),( nmnmchQ YI
rr

=  (5.1) 

where ),( ji"X
r

 is the adjusted ),( ji'X
r

 in the refinement and I  is an image whose size is 

the same as X . 

Recall that ),( nm'X
r

 is the estimate of ),( nmX
r

 before adjustment. If 

][ ),( nmchQ 'X
r

= ),( nmY
r

 happens, the current state of the refined X'  will be a member of 

),(,2 nmS  and no adjustment of ),( nm'X
r

 will be required. However, it is possible that 

][ ),( nmchQ 'X
r

≠ ),( nmY
r

 as the ),( nm'U
r

 obtained with eqn.(2.16) is out of kR  as shown in 

Figure 5.2. Here, kR  is defined as the Voronoi region associated with palette color 

kv̂ (= ),( nmY
r

). In other words, we have ][ ),( nmcQ 'U
r

≠ ),( nmY
r

 in formulation. In such a 

case, a projection is necessary to project ),( nm'U
r

 onto the boundary of kR .  
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Figure 5.2. Projection of ),('U nm

r
 onto 'kR  

 The projection is carried out as follows. Starting from ),( nm'U
r

, we search along 

the straight line connecting ),( nm'U
r

 and ),( nmY
r

 to seek a new point newnm ),('U
r

 such that 

][ ),( newnmcQ 'U
r

= ),( nmY
r

 is satisfied. The search is conducted with estimates generated 

iteratively with 

 )( ),(),(),(),( nmnm
n

nmnewnm Y'UY'U
rrrr

−+= λ    (5.2) 

where nλ  is a relaxation parameter at iteration n . The convergence of the estimate 

can be guaranteed as long as 10 <≤ λ . After newnm ),('U
r

 is found, ),( nm'U
r

 is updated to 

be newnm ),('U
r

. 

 Note that this point-to-point projection may not be perpendicular to the surface 

of kR . However, this does not matter. As shown in Figure 5.2, one can define a plane 

which passes newnm ),('U
r

 and is perpendicular to the line connecting ),( nm'U
r

 and ),( nmY
r

. 

In formulation, the equation of the plane is given as 
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 ( ) ( ) 0),(),(),( =−• nmnmnewnm Y'U'U-p
rrrr  (5.3) 

where kR∈pr  is a pixel vector in the color space and •  denotes the dot product 

operator of two vectors. This plane cuts through Voronoi region kR  and splits it into 

two. The one containing point ),( nmY
r

 forms a new constraint set 'kR . By doing so, 

projection from ),( nm'U
r

 to newnm ),('U
r

 is equivalent to a projection onto a convex set 

'kR . 

 After determining ),( nm'U
r

, the adjusted ),( nm'X
r

 can be obtained by  

∑
∈

−−+=
Slk

clnkmclkcnmcnm
),(

),(),(),(),( E'HU'X"  for },,{ bgrc∈  (5.4) 

The adjusted image is then a member of ),(,2 nmS . The constraint set ),(,2 nmS  and its 

associated projection presented above is dedicated for handling halftoned color-

quantized images with POCS. 

 Figure 5.3 shows two examples of how the pixels of the current estimate X'  

are handled during the adjustment. Without loss of generality, in these examples, we 

assume gray-level images and use a two-color palette to make the examples simple 

enough to illustrate the approach clearly. Pixels (2,2) and (2,3) are, respectively, the 

pixels being handled in the first and the second examples. The shaded positions mark 

the pixels that were handled at the moment.  

 In the first example, )2,2('U
r

 is determined with eqn. (5.1). Since we have 

][ )2,2('U
r

cQ = )2,2(Y
r

=(0.2, 0.2, 0.2), no adjustment of )2,2('X
r

 is required. )2,2('E
r

 is 

updated with eqn. (2.18) then.  



 74

 In the second example, we have ][ )3,2('U
r

cQ ≠ )3,2(Y
r

. Adjustment of )3,2('X
r

 is 

hence necessary. The adjustment is carried out by iteratively adjusting )3,2('U
r

 with 

eqn. (5.2). At iteration n=3, )3,2('U
r

 is adjusted to be (0.51, 0.51, 0.51), which makes 

][ )3,2('U
r

cQ = )3,2(Y
r

=(0.8, 0.8, 0.8). The corresponding )3,2('X
r

 and )3,2('E
r

 can then be 

obtained with eqns. (5.4) and (2.18) respectively.   

u
rr

6.0' )2,2( =X u
rr

4.0' )2,2( =U

u
rr

2.0' )2,2( −=E

Current estimate X’

Palette = {0.2, 0.8}    ,  where

Diffusion filter H

uQc
rr

2.0]'[ )2,2( =U⇒

⇒

⇒

u
rr

4.0' )3,2( =X u
rr

4.0' )3,2( =U

u
rr

29.0' )3,2( =E

uQc
rr

2.0]'[ )3,2( =U⇒ ⇒

⇒

⇒

u
rr

51.0' )3,2( =U

9.0=λ

)3( =n

u
rr
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⇒

⇒
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 Figure 5.3. Examples of how pixels of an estimate of the original image are updated 
 

Typical images would generally have weak high frequency components as the 

intensity of neighboring pixels is highly correlated. This feature can be exploited as a 

priori information in the restoration of halftoned color-quantized images. In our 

approach, we assume that the energy of each high frequency component of X  is 
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bounded as given by ),(),( ))](([)]([ wuwu FTT YX ≤  for Hwu Ω∈),( , where F  and T  

are, respectively, a linear low-pass filtering operator and a 2D DCT operator, ),(][ wu•  

denotes the thwu ),(  element in the transform domain and HΩ  defines the set of high 

frequency components which should be bounded. This forms a smoothness constraint 

set 

),(),(1 ))](([)]([|{ wuwu FTTS YXI ≤=     for }),( Hwu Ω∈   (5.5) 

Another constraint set for restoring X  is the one that confines the intensity 

value of a particular pixel to be valid. In formulation, we have 

 )},(,|{ ),(3 jiS ji ∀Γ∈= II
r

  (5.6) 

where }.1,,0|),,{( ≤≤=Γ bgrbgr  

5.3 Formulation of POCS Algorithm 

 A POCS-based iterative algorithm can be defined based on the convex 

constraint sets defined in the previous Section. In formulation, we have 

 )(
1)1,1(,2),(,2),(,23

)1( m
jiNN

m PPPPP XX LL=+        (5.7) 

where )(mX  is the estimate of X  at iteration m , 1P , ),(,2 jiP  and 3P  are the projection 

operators to project a given image I  onto 1S , ),(,2 jiS  and 3S , respectively. In 

particular, they are defined as 

),(),(1 ))](([)]([: wuwu FTTP YI =  if ),(),( ))](([)]([ wuwu FTT YI >  for Hwu Ω∈),(     (5.8) 
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where ),( jiβ  is the corresponding nλ  for pixel ),( ji  to adjust ),( ji'U
r

 with eqn.(5.5) 

such that ),(),( ][ jijicQ Y'U
rr

=  can be satisfied. 
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cji

cji
cji if

if
P

I 
I 

I   for },,{ bgrc∈ , ),( ji∀             (5.10) 

Note that the pixels of the image were processed one by one from position 

)1,1(  to ),( NN  in a raster scanning order when projections ),(,2 jiP ’s are performed. 

This order corresponds to the order that the pixels were processed during its color 

quantization. The examples shown in Figure 5.3 correspond to projections )2,2(,2P  and 

)3,2(,2P . The initial estimate )0(X  is set to be )(YF  which is a filtered version of the 

observed image. Since all involved constraint sets are convex sets, the convergence of 

POCS algorithm can be guaranteed. 

The physical meaning of the projections is as follows. Projection 1P  

guarantees that the energy of the high frequency components of the restored image is 

less than the energy of the high frequency components of the low-pass filtering result 

of the observed image. Projection ),(,2 jiP  makes sure that the color-quantized result of 

the restored image is exactly the same as the observed image from the first processing 

pixel to the thji ),(  pixel. With the use of projection 3P , all pixels of the restored 

image are displayable. 
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 In this Chapter, the proposed algorithm is formulated in R-G-B color space. 

This is based on the observation that a palette for a video color display is usually 

defined in R-G-B domain. With an approach similar to the one presented in this 

Chapter, the proposed algorithm can be reformulated in other color spaces. 

5.4 Simulation and Comparative Study 

In this Section, the performance of the proposed algorithm is evaluated. The 

details of the realization of the proposed algorithm in the evaluation are described in 

Section 5.4.1. Some other restoration algorithms are used for comparative study in the 

evaluation. They are introduced in Section 5.4.2. Finally, simulation results are given 

and some discussions on the results are provided. 

5.4.1 Realization Details of the Proposed Algorithm 

Simulation was carried out to evaluate the performance of the proposed 

algorithm. In our simulation, a number of de facto standard 24-bit full-color images 

including Couple, Window, Peppers, Fruits, Lenna, House, Girl, Parrots, Pool, Caps, 

Baboon and Melon were used. Each of them is of size 256256× . The images were 

color-quantized to produce Y ’s. Color palettes of different size were used in color 

quantization and they were generated with different palette generation algorithms.  

In color quantization, halftoning was performed with error diffusion and 

Floyd-Steinberg diffusion filter [Floyd 76] was used. In the realization of the 

proposed algorithm, a 33×  Gaussian filter was used as filter F . HΩ  and λ  were, 

respectively, selected to be 2)256(|),{( uwu −  + 100000)256( 2 <−w  and 

}256,0 <≤ wu  and 0.9. The threshold value 100000 was obtained empirically. 
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5.4.2 Algorithms for Comparative Study 

To our best knowledge, there is no reported restoration algorithm directly 

proposed for restoring halftoned color-quantized images. Fung’s algorithms [Chan 05, 

Fung 04a] were proposed for restoring color-quantized images, but they assume that 

there is no error diffusion involved in color quantization. Mese’s algorithm [Mese 01] 

was originally proposed for inverse halftoning. It makes use of some training images 

to pre-train a linear prediction filter for filtering binary halftones. For comparison, it 

was modified here to handle halftoned color-quantized images. Some other restoration 

algorithms were also evaluated for comparison which including Galatsanos’s 

algorithm [Galatsanos 91a], Hunt’s algorithm [Hunt 84] and Altunbasak’s work 

[Altunbasak  01]. They were realized in the way presented in Section 3.4.2. 

Mese’s algorithm trains a linear prediction filter with best linear estimator 

[Mese 01]. In the training phase, Baboon, Melon, House, Lenna and their 

corresponding halftoned color-quantized images were used to train the filter. Note that 

in Fung’s algorithms [Chan 05, Fung 04a] and the proposed algorithm, no original 

full-color image is required to extract information and no training images are required 

to pre-train a linear prediction filter. Hence, additional credit should be added to the 

simulation results of these two algorithms. 

5.4.3 Simulation Results 

Tables 5.1, 5.2 and 5.3 show the restoration performance achieved with 

various algorithms when the involved palettes were obtained with octree algorithm 

[Gervautz 90]. Table 5.1 shows the SNRI performance which is defined as  
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where ),( jiX
r

, ),( jiY
r

 and ),( ji'X
r

 are, respectively, the thji ),(  pixel of the original, the 

halftoned color-quantized and the restored images. One can see that the proposed 

algorithm is superior to any other algorithms whatever color palette size is concerned. 

On average, the proposed algorithm achieved, respectively, a SNRI of 7.12, 8.16, 9.88 

and 9.25 dB when the involved palette is of size 256, 128, 64 and 32.  

In Chapter 3, we showed that, as compared with conventional image 

restoration algorithms such as [Altunbasak 01, Galatsanos 91a, Hunt 84], Fung’s 

algorithms [Chan 05, Fung 04a] worked well on restoring images that were color 

quantized without error diffusion. However, when error diffusion is involved in the 

quantization process, their restoration performance is lower than the algorithm 

proposed in this Chapter. This is because, similar to other conventional restoration 

algorithms, the degradation models assumed by Fung’s algorithms [Chan 05, Fung 

04a] does not take the error diffusion process into account as the proposed algorithm 

does. 
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 SNR Improvement (dB)  

 Proposed 
 

[Chan 05] 
(Proposed 
Scheme in 
Chapter 3) 

[Fung 04a] 
(Proposed 
Scheme in 
Chapter 4)

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL [Mese 01] [Galatsanos 

91a] [Hunt 84]

palette size: 256 
Lenna 6.421 5.703 4.972 3.630 3.313 3.790 1.547 2.701 
Baboon 0.902 3.274 2.720 2.162 2.010 2.757 0.474 1.671 
Peppers 9.187 6.856 4.226 5.791 5.518 4.404 1.891 4.034 
Fruits 9.424 6.663 4.745 4.507 3.976 4.320 1.521 3.834 
Couple 4.083 3.755 3.466 3.890 3.509 3.583 2.028 2.765 
Girl 6.168 5.170 4.671 4.672 4.472 3.866 2.409 3.149 
Parrots 11.930 7.324 6.099 5.043 4.435 4.400 2.006 4.474 
Pool 8.698 3.105 3.637 6.015 5.696 3.584 2.140 3.996 
Caps 9.253 5.270 4.129 5.303 4.741 3.996 1.669 4.304 
Window 5.110 4.909 4.218 4.005 3.237 3.890 2.120 3.352 
Average 7.118 5.203 4.288 4.502 4.091 3.859 1.781 3.428 
palette size: 128 
Lenna 9.933 6.230 5.638 5.101 4.725 5.201 2.852 3.934 
Baboon 3.009 3.851 2.669 2.698 2.456 3.548 0.618 2.193 
Peppers 8.773 6.771 2.866 5.968 5.727 5.365 2.148 4.392 
Fruits 9.694 6.552 4.361 5.049 4.587 5.699 1.883 4.139 
Couple 5.927 5.166 4.281 4.888 4.469 4.963 3.043 3.694 
Girl 7.281 5.900 4.829 5.192 4.811 4.749 3.520 3.832 
Parrots 8.835 5.788 4.595 4.421 3.657 4.729 2.187 3.853 
Pool 10.581 6.426 1.800 6.812 6.307 5.004 3.229 4.283 
Caps 10.329 5.459 4.080 6.450 6.000 5.484 2.133 5.239 
Window 7.199 5.899 4.664 4.978 4.239 5.644 3.073 4.063 
Average 8.156 5.804 3.978 5.156 4.698 5.039 2.469 3.962 
palette size: 64 
Lenna 9.488 6.917 6.062 5.562 5.156 7.210 3.277 4.383 
Baboon 5.099 4.226 3.160 3.839 3.462 5.490 0.851 3.294 
Peppers 11.435 7.227 2.452 7.296 7.077 7.948 2.586 5.619 
Fruits 11.990 6.700 4.375 6.083 5.632 7.664 3.143 5.069 
Couple 5.978 4.414 2.537 4.288 3.751 5.313 3.561 3.509 
Girl 8.347 6.357 4.262 5.814 5.418 6.494 4.203 4.468 
Parrots 12.812 6.242 3.144 6.567 6.031 7.504 2.898 5.475 
Pool 10.800 6.499 2.710 6.945 6.539 6.619 3.451 4.562 
Caps 14.203 6.734 3.037 8.077 7.984 7.529 3.333 6.582 
Window 8.652 6.404 4.387 5.627 5.016 7.165 4.554 4.492 
Average 9.880 6.172 3.613 6.010 5.607 6.894 3.186 4.745 
palette size: 32 
Lenna 12.172 7.076 3.581 6.807 6.695 10.260 4.547 5.591 
Baboon 3.690 2.668 2.093 2.676 1.977 4.641 1.246 2.483 
Peppers 10.721 6.011 2.330 7.257 6.977 8.943 2.765 5.790 
Fruits 10.952 5.323 3.918 5.785 5.344 8.720 3.029 4.871 
Couple 7.001 5.026 3.863 4.921 4.473 6.818 5.281 4.170 
Girl 7.044 4.728 2.669 4.614 4.341 5.860 3.867 3.961 
Parrots 11.202 5.223 3.178 6.132 5.740 7.929 2.632 5.087 
Pool 7.665 4.682 2.085 5.197 5.085 5.915 2.860 4.221 
Caps 15.005 6.235 2.412 9.199 9.124 9.633 3.498 7.609 
Window 7.070 4.967 4.051 5.345 4.793 7.301 5.475 4.472 
Average 9.252 5.194 3.018 5.793 5.455 7.602 3.520 4.826 
 
Table 5.1. SNR Improvements of various algorithms in restoring halftoned color-
quantized images 
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 Average of CIELAB difference E∆  

 Observed 
Y  Proposed 

[Chan 05] 
(Proposed 
Scheme in 
Chapter 3)

[Fung 04a] 
(Proposed 
Scheme in 
Chapter 4)

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL [Mese 01] [Galatsanos 

91a] [Hunt 84]

palette size: 256 
Lenna 2.730 1.822 1.959 2.110 2.210 2.260 2.304 2.559 2.306 
Baboon 4.625 3.458 3.617 3.802 3.922 3.956 3.911 4.511 4.071 
Peppers 5.104 3.446 3.722 4.214 4.161 4.236 4.367 4.799 4.562 
Fruits 3.539 2.084 2.436 2.717 2.755 2.829 2.926 3.375 2.931 
Couple 6.927 5.583 5.714 5.943 6.033 6.112 6.128 6.525 6.542 
Girl 6.161 4.346 4.654 4.898 5.032 5.086 5.316 5.810 5.665 
Parrots 4.365 2.096 2.775 3.058 3.196 3.306 3.566 4.061 3.387 
Pool 4.042 2.963 3.447 3.397 3.487 3.645 3.611 3.884 4.286 
Caps 2.845 1.856 2.145 2.301 2.280 2.330 2.447 2.771 2.506 
Window 2.292 1.630 1.741 1.881 1.831 1.931 1.968 2.190 1.914 
Average 4.263 2.928 3.221 3.432 3.491 3.569 3.654 4.049 3.817 
palette size: 128 
Lenna 3.760 2.167 2.472 2.633 2.888 2.988 2.790 3.337 3.074 
Baboon 5.829 4.109 4.550 4.929 4.740 4.810 4.717 5.626 4.970 
Peppers 5.988 4.263 4.471 5.253 4.883 4.979 4.959 5.546 5.322 
Fruits 4.143 2.423 2.881 3.258 3.146 3.231 3.226 3.876 3.351 
Couple 7.586 6.017 6.150 6.412 6.631 6.755 6.489 7.002 7.233 
Girl 8.507 6.085 6.572 6.996 6.761 6.910 7.252 7.656 7.350 
Parrots 5.091 2.570 3.338 3.713 3.568 3.740 3.937 4.689 3.875 
Pool 5.818 4.175 4.451 5.302 4.750 5.010 4.952 5.319 6.062 
Caps 3.820 2.325 2.809 3.092 2.872 2.947 3.086 3.666 3.229 
Window 3.065 2.022 2.205 2.483 2.337 2.469 2.459 2.842 2.472 
Average 5.361 3.616 3.990 4.407 4.258 4.384 4.387 4.956 4.694 
palette size: 64 
Lenna 4.190 2.507 2.860 3.055 3.153 3.296 3.063 3.661 3.353 
Baboon 7.347 4.900 5.790 6.109 5.719 5.895 5.522 7.044 5.961 
Peppers 7.805 5.247 5.890 7.014 6.312 6.403 6.032 7.272 6.894 
Fruits 5.882 3.429 4.318 4.759 4.420 4.538 4.340 5.301 4.723 
Couple 11.070 8.752 9.395 10.060 9.314 9.552 9.517 10.130 9.699 
Girl 9.024 6.383 6.928 7.595 7.164 7.336 7.314 8.031 7.889 
Parrots 6.820 3.246 4.736 5.637 4.706 4.897 4.882 6.221 5.254 
Pool 6.241 4.424 4.656 5.493 5.161 5.429 5.075 5.750 6.600 
Caps 4.890 2.884 3.554 4.168 3.624 3.810 3.767 4.707 4.171 
Window 3.691 2.427 2.664 3.056 2.796 2.956 2.891 3.254 3.010 
Average 6.696 4.420 5.079 5.695 5.237 5.411 5.240 6.137 5.756 
palette size: 32 
Lenna 6.189 3.358 4.258 4.994 4.437 4.626 3.920 5.141 4.694 
Baboon 9.055 6.175 7.363 7.642 6.895 7.262 6.618 8.623 7.296 
Peppers 9.075 6.312 7.247 8.246 7.406 7.547 6.879 8.526 8.006 
Fruits 7.458 4.146 5.637 6.018 5.270 5.494 5.040 6.677 5.704 
Couple 11.670 9.408 9.937 10.303 9.982 10.237 9.800 10.519 10.415 
Girl 14.264 10.530 11.669 12.739 11.313 11.639 11.675 12.779 11.906 
Parrots 8.093 4.189 6.074 6.799 5.617 5.817 5.622 7.413 6.222 
Pool 9.048 6.864 7.090 8.607 7.913 7.990 7.323 9.046 9.148 
Caps 6.337 3.969 4.999 5.682 4.823 5.032 4.729 6.178 5.473 
Window 5.495 4.024 4.398 4.619 4.288 4.515 4.264 4.887 4.540 
Average 8.668 5.898 6.867 7.565 6.794 7.016 6.587 7.979 7.340 

 
Table 5.2. CIELAB difference E∆  measurement of the outputs of various algorithms 
in restoring halftoned color-quantized images 
 



 82

 % of pixels whose CIELAB E∆  <3 

 Observed 
Y  Proposed 

[Chan 05] 
(Proposed 
Scheme in 
Chapter 3)

[Fung 04a] 
(Proposed 
Scheme in 
Chapter 4)

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL [Mese 01] [Galatsanos 

91a] [Hunt 84]

palette size: 256 
Lenna 65.242 84.030 81.467 78.764 77.094 75.774 74.466 68.141 75.061 
Baboon 32.175 48.209 46.223 42.702 39.848 39.365 40.320 32.669 39.020 
Peppers 35.840 63.052 57.280 47.939 50.362 49.396 44.299 38.222 43.388 
Fruits 55.803 82.997 75.800 69.995 68.971 67.807 65.100 57.716 66.568 
Couple 16.960 28.906 25.909 24.478 23.773 23.155 21.799 19.757 21.315 
Girl 22.423 40.277 37.058 34.949 31.149 30.699 28.796 25.214 27.176 
Parrots 42.917 80.273 67.841 62.196 55.959 53.972 51.640 45.317 51.947 
Pool 59.547 71.956 64.302 68.803 62.608 59.546 64.955 61.588 45.754 
Caps 71.916 84.808 79.982 79.036 78.549 77.803 76.718 72.197 74.263 
Window 76.498 86.749 84.554 82.753 84.401 82.553 81.105 77.873 83.594 
Average 47.932 67.126 62.045 59.162 57.271 56.007 54.920 49.869 52.809 
palette size: 128 
Lenna 44.666 77.856 71.841 68.423 60.689 58.819 63.997 50.713 56.793 
Baboon 24.685 40.737 36.627 32.131 32.349 31.624 33.487 25.275 30.542 
Peppers 24.790 50.957 44.939 32.763 39.548 38.362 35.255 27.105 33.269 
Fruits 49.148 77.227 69.200 62.616 63.028 62.056 60.991 52.089 60.266 
Couple 12.017 24.491 21.484 19.580 18.918 18.319 17.842 15.876 16.509 
Girl 15.514 32.123 27.808 24.787 23.827 23.028 21.570 19.820 20.349 
Parrots 31.705 70.021 55.780 49.901 47.922 45.493 43.604 34.984 42.433 
Pool 49.875 54.128 55.388 54.216 46.271 43.204 53.833 54.480 27.611 
Caps 60.262 77.037 71.436 69.666 68.306 67.679 67.679 60.960 62.082 
Window 67.217 81.619 78.719 75.182 77.025 75.275 74.715 70.641 74.770 
Average 37.988 58.620 53.322 48.927 47.788 46.386 47.297 41.194 42.462 
palette size: 64 
Lenna 38.791 71.770 64.101 59.491 55.985 53.632 57.278 45.557 51.787 
Baboon 15.416 32.446 25.221 22.269 22.051 21.211 25.084 16.180 20.406 
Peppers 15.533 40.479 31.726 20.789 25.822 25.307 27.052 16.440 20.334 
Fruits 39.839 67.514 55.742 50.711 50.221 49.542 52.138 43.216 46.478 
Couple 7.062 17.006 14.139 10.320 12.891 12.050 12.268 10.338 11.456 
Girl 13.445 29.186 25.209 21.196 20.738 20.056 21.123 18.063 17.209 
Parrots 18.955 58.690 39.369 31.004 30.760 29.744 32.440 22.157 24.637 
Pool 47.453 51.090 56.319 54.215 40.054 37.802 49.390 51.912 23.117 
Caps 49.161 68.636 63.083 57.643 53.322 52.113 57.100 48.041 44.424 
Window 60.097 76.592 73.067 68.224 69.693 67.995 69.525 66.052 65.103 
Average 30.575 51.341 44.798 39.586 38.154 36.945 40.340 33.796 32.495 
palette size: 32 
Lenna 20.183 56.981 41.634 30.269 34.897 33.077 41.145 26.172 31.113 
Baboon 5.714 17.087 11.856 9.892 11.177 9.784 12.691 6.772 9.564 
Peppers 11.470 29.569 22.385 15.674 19.302 18.605 22.220 11.731 14.442 
Fruits 16.261 53.395 35.657 29.390 33.232 31.328 36.087 19.965 28.351 
Couple 4.994 14.166 10.788 8.391 9.828 9.160 10.436 8.522 8.608 
Girl 4.733 19.981 12.311 8.499 11.903 11.256 11.493 7.695 9.508 
Parrots 15.419 47.014 30.048 24.864 24.966 24.109 26.218 17.999 19.821 
Pool 42.888 35.233 43.378 40.375 23.879 23.216 43.753 20.995 13.985 
Caps 43.073 55.789 49.933 48.920 41.521 40.753 49.390 41.200 32.968 
Window 40.736 56.862 50.359 49.876 49.411 47.699 52.416 45.419 44.013 
Average 20.547 38.608 30.835 26.615 26.012 24.899 30.585 20.647 21.237 

 
Table 5.3. Percentage of pixels whose CIELAB difference is not detectable ( 3<∆E ) 
after restoration  
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Tables 5.2 and 5.3 show the performance of the evaluated algorithms in terms 

of the CIELAB color difference )( E∆  metric. Table 5.2 shows the average of the E∆  

values of all pixels in a restoration output and Table 5.3 shows the percentage of 

pixels whose color error is visually undetectable in a restoration output. Again, one 

can see that the proposed algorithm is superior to the others. 

 Figures 5.4 and 5.5 show the restoration results of different algorithms for 

visual evaluation. Figures 5.4b and 5.5b were, respectively, obtained with a palette of 

size 64 and a palette of size 128. Though error diffusion can remove false contour and 

color shift to a certain extent, these artefacts still appear in the color-quantized outputs 

as the palette size is too small. Besides, pepper noise was introduced by error 

diffusion. After restoration, one can see that the proposed algorithm can remove most 

of the artefacts while the others are comparatively inferior in this aspect.   

5.4.4  Robustness Study 

 In color quantization, an image may be quantized with any given palette. In 

this section, we explore if the performance of the proposed algorithm is sensitive to 

the palette used in the color quantization process. 

Table 5.4 shows the average performance of various algorithms when the 

palettes were generated with median-cut algorithm [Heckbert 82]. The same set of 

standard testing images used to obtain the results presented in Tables 5.1 to 5.3 were 

used for evaluation. The figures in the Tables are the average values obtained with the 

restoration results of the color-quantized images. One can see that the proposed 

algorithm is still superior to the others. This simulation result shows that the proposed 

algorithm works with different palettes generated with different palette generation 

algorithms. 
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Restored ( X' )   
Palette 

size 

 
Observed 

( Y ) Proposed 
 

[Chan 05] 
(Proposed 
Scheme in 
Chapter 3)

[Fung 04a] 
(Proposed 
Scheme in 
Chapter 4)

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL [Mese 01] [Galatsanos

91a] [Hunt 84]

     

  Average of (SNR Improvement (dB)) 
256  - 7.258 5.661 4.543 4.460 4.195 3.946 1.494 3.377 
128  - 8.426 5.996 4.687 5.169 4.853 5.293 2.232 4.046 
64  - 9.847 6.218 4.512 5.788 5.448 6.628 3.127 4.636 

a 

 

32  - 10.058 5.527 3.904 5.883 5.635 7.705 3.951 4.867 
     

  Average of (Average of CIELAB difference E∆ ) 
256  4.876 2.615 3.083 3.406 3.627 3.692 3.945 4.496 3.903 
128  5.821 3.099 3.743 4.184 4.237 4.346 4.404 5.224 4.647 
64  7.285 3.730 4.708 5.418 5.174 5.349 5.169 6.287 5.751 

b 

 

32  8.951 4.979 6.399 7.031 6.473 6.718 6.268 7.698 7.115 
     

  Average of (% of pixels whose CIELAB 3<∆E ) 
256  42.044 70.220 63.48 58.664 56.007 55.048 51.430 45.028 51.860 
128  32.286 63.899 55.13 48.864 47.250 45.939 45.020 36.983 42.160 
64  24.169 56.583 44.88 36.989 37.012 35.571 37.685 29.837 31.771 

c 

 

32  15.247 44.498 31.61 25.659 26.329 24.920 28.894 21.796 21.540 

Table 5.4. Average performance of various algorithms in restoring halftoned color-
quantized images in various aspects (Palette was generated with median-cut algorithm 
[Heckbert 82]) 
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(a) Original (b) Color-quantized (with error diffusion) 

(c) [Galatsanos 91a]  (d) [Hunt 84] 

(e) [Altunbasak 01]-IND (f) [Altunbasak 01]-KL 
Figure 5.4. Restoration results of color-quantized “Caps” (palette is generated by 
median-cut algorithm [Heckbert 82] with size 64) 
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(g) [Chan 05] (Proposed Scheme in Chapter 3) (h) [Fung 04a] (Proposed Scheme in Chapter 4)

(i) [Mese 01] (j) Proposed 

Figure 5.4(continue). Restoration results of color-quantized “Caps” (palette is 
generated by median-cut algorithm [Heckbert 82] with size 64) 
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(a) Original (b) Halftoned Color-quantized 

(c) [Galatsanos 91a]  (d) [Hunt 84] 

(e) [Altunbasak 01]-IND (f) [Altunbasak 01]-KL 
Figure 5.5. Restoration results of color-quantized “Parrots” (palette is generated by 
Octree algorithm [Gervautz 90] with size 128) 
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(g) [Chan 05] (Proposed Scheme in Chapter 3) (h) [Fung 04a] (Proposed Scheme in Chapter 4)

(i) [Mese 01] (j) Proposed 

Figure 5.5(continue). Restoration results of color-quantized “Parrots” (palette is 
generated by Octree algorithm [Gervautz 90] with size 128) 
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Restored ( X' )   Palette 

size 

 Observed 
( Y ) Floyd- Steinberg  

[Floyd 76] 
Jarvis-Judice- Ninke  

[Jarvis 76] 
Stucki  

[Stucki 81] 
     

  Average of (SNR Improvement (dB)) 
256  - 7.258 6.621 6.750 
128  - 8.426 7.716 7.850 
64  - 9.847 9.022 9.159 

a 

 

32  - 10.058 9.142 9.269 
     

  Average of (Average of CIELAB difference E∆ ) 
256  4.876 2.615 2.703 2.686 
128  5.821 3.099 3.206 3.185 
64  7.285 3.730 3.870 3.843 

b 

 

32  8.951 4.979 5.154 5.125 
     

  Average of (% of pixels whose CIELAB 3<∆E ) 
256  42.044 70.220 68.908 69.187 
128  32.286 63.899 62.304 62.570 
64  24.169 56.583 54.371 54.729 

c 

 

32  15.247 44.498 42.295 42.637 
Observed Y  is color-quantized with a palette generated with median-cut algorithm and a 
Floyd- Steinberg filter. 

Table 5.5. Average performance of the proposed algorithm when different error 
diffusion filters are assumed in restoration (Palette was generated with median-cut 
algorithm  [Heckbert 82]) 

 

In the proposed algorithm, we assumed that the error diffusion filter used in 

color quantization is known in restoration. Sometimes this information may not be 

available and one has to estimate it from the observed images. The robustness of the 

proposed algorithm was studied. Table 5.5 shows the average restoration performance 

of the proposed algorithm when different error diffusion filters were exploited in the 

restoration of a color-quantized image which was obtained with a Floyd-Steinberg 

filter  [Floyd 76]. Note that the three error diffusion filters  [Floyd 76], [Jarvis 76] and 

[Stucki 81] involved in the study are all popular filters used in practice. It was found 

that a wrong assumption resulted in less than 1 dB drop in SNRI on average. Even so, 

as compared with the figures reported in Table 5.4, the proposed algorithm is still 

superior to the others. 
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5.5 Summary 

By far very little research has been carried out to address the restoration of 

halftoned color-quantized images. Although there are many restoration algorithms for 

restoring blurred and noisy color images and inverse halftoning, they are not adequate 

to handle halftoned color-quantized images. The noise introduced by color 

quantization with error diffusion is basically signal dependent and is not white, which 

violates the assumptions adopted in most current multichannel restoration algorithms. 

Though Fung’s algorithms [Chan 05, Fung 04a] was proposed to restore color-

quantized images, they do not take error diffusion into account and hence cannot 

handle the case well either.  

  In this Chapter, we proposed a dedicated restoration algorithm for restoring 

halftoned color-quantized images. This algorithm makes use of the available color 

palette and the a priori knowledge about the halftoning process to derive useful 

information for restoration. Unlike some other conventional restoration algorithms, it 

requires no estimation of parameters describing the nature of the original full-color 

image and no training image to pre-train prediction filters. Simulation results 

demonstrated that the proposed algorithm can achieve a remarkable improvement in 

the quality of a halftoned color-quantized image in terms of both SNR and CIELAB 

color difference E∆  metric irrespective of the size and the production of the color 

palette exploited in the color quantization. 

 

 

 

 



 91

 

 

Chapter 6. 

A Simulated Annealing Restoration 

Algorithm for Restoring Halftoned Color-

quantized Images  

6.1 Introduction 

Color quantization with error diffusion is a nonlinear process. Consequently, 

conventional gradient-oriented optimization algorithms may not be the best tools to 

solve the problem. Simulated annealing (SA) [Kirkpatrick 83] is an adaptive 

searching algorithm that works very well on discrete optimization problem. The basic 

idea of SA is to simulate an annealing process in a system. As compared with some 

other conventional methods, it accepts solution with deteriorated cost to a limited 

extent. This feature gives the heuristic the capability to escape from the local 

minimum. This Chapter is devoted to develop a simulated annealing restoration 

algorithm to a halftoned color-quantized image. 

The organization of this Chapter is as follows. Section 6.2 presents the 

derivation of the proposed SA-based restoration algorithm. In Section 6.3, simulation 
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results for comparative study are provided to evaluate the performance of the 

proposed algorithm. Finally, a summary is given in Section 6.4. 

6.2 Proposed Simulated Annealing Restoration Algorithm  

The model discussed in Section 2.4.1.1.2 is used again in this Chapter. Let S  

be the output image of the restoration. Obviously, when the restored image S  is color-

quantized with error diffusion, the output should be equal to Y . In formulation, we 

should have 

][SY chQ=      (6.1) 

where ][•chQ  denotes the operator which performs color quantization with error 

diffusion as shown in Figure 2.5. Based on this criterion, the cost function of a 

restored image is defined as  

[ ]][S-Y chQE Σ=     (6.2) 

where [ ]IΣ  denotes the total number of nonzero elements in image I.  

In our approach, S  is searched with simulated annealing to minimize cost 

function E. Without loss of generality, simulated annealing is a double-loop iterative 

algorithm that simulates an annealing process at a given temperature T . During 

simulated annealing, temperature T  is reduced in a controlled manner as given by 

kk TT α=+1      (6.3) 

where kT  is the temperature at stage k  and α  is a constant used to achieve cooling. 

At a particular temperature kT , the amount of time spent in annealing is gradually 

adjusted by 

kk MM β=+1      (6.4) 
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where kM  is actually the number of iterations performed at temperature kT  and β  is 

a constant used to do the adjustment. The algorithm is terminated at temperature mT  

when ∑ =

m

k kM
0

 is larger than a predefined threshold maxt . Here, we assume that the 

simulated annealing process starts at its initial stage 0=k . 

Let curS  be the current estimate of the restored image at a particular iteration 

at temperature kT  and curE  be its corresponding cost. The new estimate of the 

restored image is made with curS  by  

( )][ curchcurnew Q SYSS −+= γ    (6.5) 

where γ  is a controlling parameter used to control the amount of perturbation applied 

to the curS . It is based on the idea that, if any pixel of ][ curchQ S  does not equal to that 

of Y  at a particular pixel location, the corresponding pixel of curS  should be adjusted.  

The cost of newS , say, newE , is then evaluated with eqn. (6.2). When 

newE < curE  happens, curS  is updated to be newS . Furthermore, if newE < bestE  happens, 

where bestE  is the cost of the best estimate so far, say bestS , then bestS  will be replaced 

by newS . In formulation, we have 

 
⎩
⎨
⎧ <

=
otherwise

EEif

cur

curnewnew
cur S

  S
S     (6.6) 

and 
⎩
⎨
⎧ <

=
otherwise

EEif

best

bestnewnew
best S

  S
S   (6.7) 

When ≥newE curE  happens, curS  will be updated to be newS  only if TKEE Bnewcurer /)( −< , 

where r is a randomly generated value which is uniformly distributed between 0 and 1, 
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T  denotes the current temperature and BK  is the Boltzmann constant.  This criterion 

for accepting the new solution is known as the Metropolis criterion.  

At the beginning, temperature T  is high. This permits many uphill moves and 

provides chances for the solution to leave a local minimum. As temperature T  is 

reduced gradually, fewer and fewer uphill moves are permitted and only downhill 

moves are allowed eventually.  

6.3 Performance Evaluation and Comparative Study 

The performance of the proposed algorithm was evaluated and the evaluation 

results are provided in this Section. The details of the realization of the proposed 

algorithm are first described in Section 6.3.1. Some other restoration algorithms were 

also evaluated and a study of the impact of the relevant parameters to the restoration 

performance are given. Simulation results and a brief discussion on the simulation 

results is given in Section 6.3.3. 

6.3.1 Realization Details of the Proposed Algorithm 

Simulation has been carried out to evaluate the performance of the proposed 

algorithm. In our simulation, a number of de facto standard 24-bit full-color images of 

size 256256×  each were used. These testing images were color-quantized to produce 

Y ’s. Color palettes of different size were used for quantization and they were 

generated with different palette generation algorithms such as the median-cut 

algorithm [Heckbert 82] and octree algorithm [Gervautz 90]. In color quantization, 

error diffusion was performed with error diffusion and the Floyd-Steinberg diffusion 

filter [Floyd 76] was used. The proposed restoration algorithm was used to restore the 

halftoned color-quantized images ( Y ’s). 
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In the realization of the proposed algorithm, both the initial estimate of S  and 

bestS  were initialized to be the filtered output of the observed image Y . Specifically, 

a 33×  Gaussian filter was used to generate the initial estimate of S  and bestS . Initial 

temperature 0T  was selected to be ))95.0(log/(||
00 eBKEE S'S − , where 

0SE  and 
0S'E  

were, respectively, the cost of 0S  and 0S' . Here, 0S  denotes the initial estimate of 

S and 0S'  is the first estimate obtained with eqn. (6.8) based on 0S . In formulation, 

we have ])[( 000 SYSS' chQ−+= γ . This allows reasonable amount of uphill move at 

the beginning. Parameter α  was selected to be 0.9, the middle value of the selection 

range suggested in [Kirkpatrick 83]. To simplify the algorithm, we selected β  to be 1 

such that we had MM k =  for all 0≥k . 

Different combinations of M  and γ  were evaluated to study their impact to 

the restoration performance. Figure 6.1 shows some typical results of the study. 

Specifically, it shows the Signal-to-Noise Ratio Improvement (SNRI) that was 

achieved when the proposed algorithm was used to restore color-quantized “Lenna”, 

“Peppers” and “Couple”. The color quantization was realized with a 128-color palette 

generated with median-cut algorithm [Heckbert 82]. Here, SNRI is defined as 

∑
∑

−

−
=

),(

2

),(),(

),(

2

),(),(
log10

ji jibestji

ji jiji
SNRI

SX

YX
rr

rr

   (6.8) 

where ),( jiX
r

, ),( jiY
r

 and ),( jibestS
r

 are, respectively, the thji ),(  pixels of the original, the 

halftoned color-quantized  and the restored images.  In Figure 6.1, the broken lines 

correspond to the cases of 10=M  while the solid lines correspond to the cases of 

50=M  and 100 . Note the lines for 50=M  and 100=M  overlap with each other 

for any particular γ . For any γ  the value of which is larger than 0.002, it is difficult 
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to discriminate the line for 10=M  and the lines for 50=M  and 100 . It was also 

found that, when 50≥M , the smaller the value of γ , the more iterations were 

required for the estimate to converge but the better the converged output could be 

achieved in terms of SNRI. 

Based on the evaluation results of the study, it can be found that, the 

combination of 50=M  and 002.0=γ  is a reasonable choice for restoring halftoned 

color-quantized images. With this combination, the best SNRI performance can be 

achieved in around 1000 iterations. It is good enough for the estimates of the iterative 

algorithm to converge to its restoration result.  If complexity is a critical concern, one 

may select a combination of 50=M  and 05.0=γ , which can achieve a SNRI close 

to the one obtained with the previous selection in less than 100 iterations. In this 

Chapter, the presented results of the proposed algorithm were obtained with 9.0=α , 

1=β , 0T = ))95.0(log/(||
00 eBKEE S'S − , 1000max =t , 50=M  and 002.0=γ . 
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(a) 

(b) 

Figure 6.1: SNR Improvements achieved with various combinations of γ  and M  in 
restoring halftoned color-quantized (a) “Lenna “, (b) “Peppers” and (c) “Couple” 
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(c) 

Figure 6.1(continue). SNR Improvements achieved with various combinations of γ  
and M  in restoring halftoned color-quantized (a) “Lenna “, (b) “Peppers” and (c) 
“Couple” 

 

6.3.2 Simulation Results 

Some other restoration algorithms were also evaluated for comparison. They 

are, respectively, Galatsanos’s algorithm [Galatsanos 91a], Hunt’s algorithm [Hunt 

84], Altunbasak’s work [Altunbasak 01] and Mese’s algorithm [Mese 01]. Again, they 

were realized in the way presented in Section 3.4.2. Futuremore, restoration algorithm 

presented in Chapter 3, 4 and 5 are also presented for comparison. 
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 SNR Improvement (dB) 

 Proposed 
[Fung 04b] 
(Proposed 
Scheme in 
Chapter 5) 

[Chan 05] 
(Proposed 
Scheme in 
Chapter 3)

[Fung 04a] 
(Proposed 
Scheme in 
Chapter 4)

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL [Mese 01] [Galatsanos 

91] 
[Hunt 

84] 

Palette size: 256 
Lenna 7.2292 7.1522 6.1891 5.4038 4.0755 3.9394 4.1646 1.6259 3.1495 
Baboon 2.7570 1.4065 3.5355 2.6836 1.9198 1.7546 2.5360 0.5088 1.2670 
Boat 3.9082 3.5373 3.4822 3.4746 3.2372 3.1287 3.4953 0.8375 2.0733 
Peppers 8.5542 8.4536 6.0067 5.0088 5.3847 5.2902 4.1263 1.1409 3.8154 
Fruits 7.9054 7.9554 5.6862 4.4207 4.0514 3.6858 3.9884 1.4248 3.0521 
Couple 5.9121 5.2629 5.0616 4.6150 4.0953 3.9070 3.7473 2.1920 2.8439 
Girl 6.8524 5.9905 5.1438 4.4647 4.4029 4.2232 3.8023 2.0865 2.8951 
Average 6.1598 5.6798 5.0150 4.2959 3.8810 3.7041 3.6943 1.4023 2.7280 
Palette size: 128 
Lenna 8.5110 8.9303 6.5340 5.8254 4.9392 4.5433 5.7123 2.4357 3.8346 
Baboon 4.3958 2.9715 4.2906 3.7212 2.6872 2.4976 3.6064 0.8323 1.9535 
Boat 5.6739 5.0513 4.2341 3.7710 4.0782 3.8174 4.9277 1.4246 2.7164 
Peppers 10.206 10.134 6.9744 6.1409 6.2363 6.1193 5.6587 1.7904 4.5946 
Fruits 10.136 9.9116 5.8511 3.8925 5.1414 4.6937 5.6356 2.2694 3.8296 
Couple 7.6694 7.2605 5.9278 5.2696 4.9311 4.5735 5.3854 3.4066 3.8429 
Girl 8.6239 7.9857 5.7216 4.4373 5.3435 5.0748 5.1745 3.2783 3.8128 
Average 7.8880 7.4636 5.6477 4.7226 4.7653 4.4742 5.1572 2.2053 3.5121 
Palette size: 64 
Lenna 9.8515 10.342 6.6298 6.0192 5.6204 5.2254 7.0742 3.2720 4.5439 
Baboon 5.6862 4.3182 4.4730 4.2475 3.4326 3.1365 4.7706 0.9225 2.9029 
Boat 6.6932 6.5459 4.7235 4.4319 4.8928 4.5457 6.0329 2.3850 3.4323 
Peppers 11.285 11.388 7.1605 5.6258 6.7896 6.6543 7.0382 2.5847 5.2137 
Fruits 11.017 9.9350 5.5337 3.9601 5.6140 5.1302 6.8376 2.9100 4.3907 
Couple 9.8891 9.9129 6.9779 4.7026 5.8604 5.4856 7.0296 4.9702 4.5849 
Girl 10.079 9.8046 6.8762 4.9431 5.9710 5.7091 6.4191 4.1484 4.5656 
Average 9.2144 8.8924 6.0535 4.8472 5.4544 5.1267 6.4575 3.0275 4.2334 
Palette size: 32 
Lenna 11.741 11.732 6.6416 5.8347 5.9938 5.7719 8.9195 5.1395 4.9865 
Baboon 5.8750 5.0720 4.1535 3.5332 3.9324 3.5293 5.5499 1.2983 3.1871 
Boat 8.3006 8.3584 4.8256 4.4603 5.7094 5.3401 7.6022 3.3472 4.0502 
Peppers 10.985 10.911 5.8319 4.7372 6.6413 6.5218 7.9197 3.4330 5.2593 
Fruits 11.942 10.778 4.9044 3.0951 5.9704 5.6623 8.4185 4.2259 4.9070 
Couple 9.6600 9.2897 5.5657 4.8138 5.5600 5.2710 8.1417 6.2369 4.7835 
Girl 10.545 10.355 6.4679 4.7718 6.2691 6.0062 7.3840 5.6861 5.0606 
Average 9.8641 9.4994 5.4844 4.4637 5.7252 5.4432 7.7051 4.1953 4.6049 

 
Table 6.1. SNR Improvements of various algorithms in restoring halftoned color-
quantized images with the palette generated by median-cut algorithm [Heckbert 82]. 
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 Average of CIELAB difference E∆  

 Observed 
Y  

Proposed 
 

[Fung 04b] 
(Proposed 
Scheme in 
Chapter 5) 

[Chan 05] 
(Proposed 
Scheme in 
Chapter 3)

[Fung 04a] 
(Proposed 
Scheme in 
Chapter 4)

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Mese 
01] 

[Galatsanos 
91a] 

[Hunt 
84] 

Palette size: 256 
Lenna 3.2825 2.0043 1.881 2.1557 2.2942 2.4992 2.5408 2.6592 2.9921 2.6074 
Baboon 4.5157 3.4646 3.3987 3.5192 3.7660 3.8570 3.8893 3.8170 4.4015 4.0216 
Boat 4.3246 2.9612 2.9305 3.2147 3.3129 3.4187 3.4453 3.5574 4.1808 3.6966 
Peppers 4.8757 3.0295 2.9401 3.3548 3.7024 3.9070 3.9413 4.0404 4.7539 4.2931 
Fruits 3.4039 2.1027 2.0106 2.3463 2.6086 2.6524 2.7085 2.8116 3.2263 2.8190 
Couple 9.3832 4.7604 4.6214 5.3117 5.5639 6.8130 6.9349 7.5452 7.7575 7.0757 
Girl 7.1182 3.9498 3.9228 4.4710 4.8083 5.1771 5.2650 5.6876 6.6614 5.7108 
Average 5.2720 3.1818 3.1007 3.4819 3.7223 4.0463 4.1036 4.3026 4.8534 4.3177 
Palette size: 128 
Lenna 3.9581 2.3189 2.1498 2.5545 2.7375 2.8777 3.0124 2.9825 3.4767 3.0619 
Baboon 5.7313 3.9406 3.8648 4.2715 4.3301 4.5950 4.6499 4.4859 5.4871 4.7857 
Boat 5.1483 3.3552 3.3321 3.9222 4.0071 3.9664 4.0272 3.9847 4.8933 4.3653 
Peppers 6.2261 3.7152 3.6134 4.2171 4.5155 4.7408 4.8001 4.8953 5.8101 5.2532 
Fruits 4.4127 2.5316 2.4532 3.0595 3.4507 3.2907 3.3936 3.3813 4.0053 3.5722 
Couple 10.005 5.0681 5.012 5.7066 6.3255 7.3146 7.5623 7.4200 7.8051 7.7401 
Girl 8.4566 4.5556 4.5524 5.4591 6.2587 6.0465 6.2002 6.3329 7.5471 6.8269 
Average 6.2769 3.6407 3.5682 4.1707 4.5179 4.6902 4.8065 4.7832 5.5750 5.0865 
Palette size: 64 
Lenna 4.6383 2.7927 2.5514 3.129 3.3420 3.3728 3.5928 3.3759 4.0210 3.6044 
Baboon 7.2079 4.5986 4.4502 5.358 5.3470 5.4557 5.5802 5.2686 6.8561 5.6664 
Boat 6.3857 3.9120 3.8253 4.6258 4.8146 4.6909 4.7850 4.6646 5.7469 5.2097 
Peppers 7.2352 4.2868 4.0826 4.9982 5.3879 5.5308 5.6176 5.4084 6.5681 6.0995 
Fruits 5.4861 3.1426 3.1138 3.9798 4.3304 4.0054 4.1481 4.0384 4.8940 4.3324 
Couple 11.882 5.6279 5.5418 6.678 8.3154 8.5876 9.0331 8.0450 8.4878 9.3496 
Girl 11.157 5.6124 5.4433 6.7925 7.8426 7.4886 7.7466 7.7247 9.4510 8.5264 
Average 7.7132 4.2819 4.1441 5.0802 5.6257 5.5903 5.7862 5.5037 6.5750 6.1126 
Palette size: 32 
Lenna 5.7174 3.2258 3.0769 3.9978 4.2656 4.1548 4.3888 3.8653 4.5761 4.4620 
Baboon 8.1388 5.5644 5.3107 6.3545 6.4859 6.1560 6.3694 6.0041 7.7539 6.4359 
Boat 8.0848 4.6100 4.413 5.6254 6.0734 5.6439 5.8113 5.4462 7.0438 6.1993 
Peppers 10.180 6.3679 6.1713 7.7449 8.0440 7.7957 7.9312 7.5899 8.9396 8.4388 
Fruits 7.5845 4.1855 4.1967 5.8532 6.2373 5.3853 5.5915 5.2303 6.4358 5.8271 
Couple 10.961 6.3518 6.4344 7.3557 7.8506 8.6510 9.1970 7.5988 8.5580 8.9274 
Girl 13.329 6.8493 6.7354 8.7243 9.4531 8.9461 9.3961 8.8682 10.728 10.122 
Average 9.1422 5.3078 5.1912 6.5223 6.9157 6.6761 6.9550 6.3718 7.7193 7.2018 

 
Table 6.2. CIELAB difference E∆  measurement of the outputs of various algorithms 
in restoring haftoned color-quantized images with the palette generated by median-cut 
algorithm [Heckbert 82] of size 
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 % of pixels whose CIELAB E∆  <3 

 Observed 
Y  

Proposed 
 

[Fung 04b] 
(Proposed 
Scheme in 
Chapter 5) 

[Chan 05] 
(Proposed 
Scheme in 
Chapter 3)

[Fung 04a] 
(Proposed 
Scheme in 
Chapter 4)

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Mese 
01] 

[Galatsanos 
91a] 

[Hunt 
84] 

Palette size: 256 
Lenna 53.71 81.50 83.24 77.08 74.58 69.98 69.05 65.76 58.15 68.02 
Baboon 36.55 51.01 51.73 50.15 45.92 43.96 43.44 44.90 37.07 42.19 
Boat 45.43 60.81 61.03 55.26 56.17 55.08 54.75 53.26 46.84 52.29 
Peppers 37.36 68.47 68.41 61.13 54.90 53.51 52.94 47.67 38.28 45.78 
Fruits 63.48 81.08 82.64 77.42 73.81 73.60 72.72 70.84 65.67 71.34 
Couple 14.79 35.54 35.29 31.33 29.21 24.33 23.78 21.01 19.26 20.65 
Girl 21.72 45.58 44.55 39.71 36.69 33.02 32.30 29.14 26.45 28.25 
Average 39.01 60.57 60.98 56.01 53.04 50.50 49.85 47.51 41.67 46.93 
Palette size: 128 
Lenna 41.76 76.32 78.58 69.57 65.04 62.18 59.46 58.85 48.48 58.32 
Baboon 24.37 42.48 44.02 38.54 37.18 32.81 32.29 34.77 25.58 31.75 
Boat 37.33 56.05 56.24 48.11 48.12 48.33 47.57 47.86 39.72 44.61 
Peppers 26.59 60.97 61.63 52.16 46.38 43.92 43.11 39.97 30.13 35.93 
Fruits 50.42 76.20 78.17 69.66 63.20 64.79 63.17 63.38 55.27 60.46 
Couple 8.57 30.74 30.22 26.57 22.22 17.38 16.41 16.57 14.51 14.60 
Girl 13.39 37.71 36.94 29.90 24.62 24.72 23.72 22.40 19.35 19.81 
Average 28.92 54.35 55.11 47.79 43.82 42.02 40.82 40.54 33.29 37.93 
Palette size: 64 
Lenna 31.41 69.27 71.82 57.93 53.55 51.52 48.11 50.32 38.41 47.00 
Baboon 15.15 34.89 36.84 27.89 27.17 23.50 22.89 26.36 16.40 22.90 
Boat 29.25 50.01 51.33 41.12 40.69 41.18 40.22 41.50 34.55 37.03 
Peppers 16.78 52.18 54.19 39.87 34.07 33.82 32.74 32.23 20.72 26.77 
Fruits 38.88 70.80 72.78 60.42 53.87 56.28 54.02 56.94 43.95 51.01 
Couple 3.89 24.28 24.92 18.11 10.10 10.10 9.21 10.55 8.58 7.78 
Girl 4.95 30.32 32.11 20.50 13.95 15.26 14.52 13.44 9.60 12.13 
Average 20.04 47.39 49.14 37.98 33.34 33.10 31.67 33.05 24.60 29.23 
Palette size: 32 
Lenna 19.26 60.10 62.48 43.48 39.65 38.51 35.06 41.94 28.42 32.62 
Baboon 12.30 26.16 28.47 21.23 19.00 18.79 17.66 21.11 14.06 17.24 
Boat 23.37 44.30 47.22 34.26 33.06 34.89 33.80 38.34 29.65 30.28 
Peppers 8.51 37.56 40.52 24.13 20.04 21.42 20.30 21.88 11.90 16.11 
Fruits 24.26 58.35 58.86 40.26 35.00 39.43 37.80 43.74 31.28 33.97 
Couple 4.72 20.69 18.76 15.34 11.92 8.89 7.86 12.34 9.04 7.46 
Girl 3.51 24.07 26.76 13.02 9.64 11.03 10.01 10.82 6.81 8.60 
Average 13.70 38.75 40.44 27.39 24.04 24.71 23.21 27.17 18.74 20.90 

 
Table 6.3. Percentage of pixels whose CIELAB difference is not detectable ( 3<∆E ) 
after restoration when testing images were color-quantized with the palette generated 
by median-cut algorithm [Heckbert 82] of size 
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(a) Original (b) Halftoned Color-quantized 

(c) [Galatsanos 91a] (d) [Hunt 84] 

(e) [Altunbasak 01]-IND (f) [Altunbasak 01]-KL 
Figure 6.2. Restored halftoned color-quantized “Fruits” of various approaches (palette 
is generated by median-cut algorithm [Heckbert 82] with size 128) 
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(g) [Mese 01] (h) Proposed Scheme in Chapter 3 

(i) Proposed Scheme in Chapter 4 (j) Proposed Scheme in Chapter 5 
 

(k) Proposed  

Figure 6.2(continue). Restored halftoned color-quantized “Fruits” of various 
approaches (palette is generated by median-cut algorithm [Heckbert 82] with size 128) 
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Restored ( X')   
Palette 

size 

 
Observed 

( Y ) Proposed  
[Fung 04b] 
(Proposed 
Scheme in 
Chapter 5)

[Chan 05] 
(Proposed 
Scheme in 
Chapter 3)

[Fung 04a] 
(Proposed 
Scheme in 
Chapter 4)

[Altunbasak 
01]-IND 

[Altunbasak 
01]-KL 

[Mese 
01] 

[Galatsanos 
91a] 

[Hunt 
84] 

     

  Average of (SNR Improvement (dB)) 
256  - 6.5653 5.6935 5.2368 4.0159 4.0097 3.6977 3.7508 1.5941 2.8789
128  - 7.3868 6.9857 5.7450 4.0430 4.7119 4.3549 4.8697 2.2585 3.5493
64  - 8.8699 7.1172 5.9735 3.6709 5.4454 5.0258 6.6426 2.9054 4.2723

a 

 

32  - 8.7839 8.5174 5.1387 3.0231 5.4257 5.0174 7.5855 3.4035 4.4434
     

  Average of (Average of CIELAB difference E∆ ) 
256  4.7305 3.3756 3.3831 3.6837 3.8534 3.9139 3.9739 4.0520 4.4882 4.2346
128  5.8678 4.1237 4.1036 4.5161 4.8119 4.7375 4.8371 4.8130 5.4207 5.1096
64  7.3602 5.1048 5.0632 5.8635 6.2701 5.8456 5.9957 5.7979 6.7306 6.2729

b 

 

32  9.3714 6.5337 6.4828 7.6850 8.1267 7.3447 7.5776 7.1194 8.5231 7.8172
     

  Average of (% of pixels whose CIELAB 3<∆E ) 
256  39.46 57.95 58.38 53.96 50.75 49.68 48.88 47.06 41.56 46.55 
128  29.91 49.97 50.96 45.32 41.08 40.93 39.96 40.02 33.10 37.40 
64  22.77 42.94 43.67 36.02 31.53 32.42 31.44 33.60 25.94 28.72 

c 

 

32  12.79 32.06 33.25 22.44 19.04 22.15 20.99 24.54 15.60 18.67 
 
Table 6.4. Average performance of various algorithms in restoring halftoned color-
quantized images in various aspects (palette was generated by the octree algorithm 
[Gervautz 90]) 
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Table 6.1 shows the SNRI performance achieved by various algorithms when 

the involved palettes were obtained with the median-cut algorithm [Heckbert 82]. One 

can see that the proposed algorithm is superior to any other algorithms whatever color 

palette size is concerned. On average, the proposed algorithm achieved, respectively, 

a SNRI of 6.16, 7.89, 9.21 and 9.86dB when the involved palette is of size 256, 128, 

64 and 32. 

Tables 6.2 and 6.3 show the performance of the evaluated algorithms in terms 

of the CIELAB color difference )( E∆  metric. The CIELAB color difference )( E∆  

metric is defined as the Euclidean distance between the original color of a pixel and 

its reproduction in CIELAB color metric space [CIE 78]. Table 6.2 shows the average 

of the E∆  values of all pixels in a restoration output and Table 6.3 shows the 

percentage of pixels whose color error is visually undetectable in a restoration output. 

Again, one can see that the proposed algorithm is superior to the others. 

 Figures 6.2 shows the restoration results of different algorithms for visual 

evaluation. Figure 6.2b was obtained with a palette of size 128. Though error 

diffusion can remove false contour and color shift to a certain extent, these artefacts 

still appear in the color-quantized outputs as the palette size is too small. Besides, 

pepper noise was introduced by error diffusion. After restoration, one can see that the 

proposed algorithm can remove most of the artefacts while the others are 

comparatively inferior in this aspect. 

Table 6.4 shows the average performance of various algorithms when the 

palettes were generated with the octree algorithm [Gervautz 90]. The same set of 

standard testing images used to obtain the results presented in Tables 6.1 to 6.3 were 

used for evaluation. The figures in the Table are the average values obtained with the 

restoration results of the color-quantized images. One can see that the proposed 
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algorithm is still superior to the others. This simulation result shows that the proposed 

algorithm works with different palettes generated with different palette generation 

algorithms. 

The algorithm proposed in Chapters 3 and 4 do not take error diffusion process 

into account and hence their inferior performance in handling halftoned color-

quantized image is expected. 

As compare with the restoration algorithm presented in Chapter 5, the 

performance of the proposed algorithm is a little bit better in terms of the SNRI 

measurement. In the measurement of CIELAB color difference )( E∆  metric, the 

performance of the POCS approach is a little bit better. In the visual evaluation, the 

restoration outputs are more or less the same as shown in Figure 6.2i and 6.2j. Since 

the proposed SA restoration algorithm accepts solution with deteriorated cost to a 

limited extent, it gives the ability to approach the global optimial while POCS 

approach cannot. 

The number of parameters required to be determined in SA approach is 

relatively more compare with the POCS approach and the time required in SA 

approach to reach the same performance of POCS approach is longer.  

6.4 Summary 

In this Chapter, we presented a dedicated restoration algorithm for restoring 

halftoned color-quantized images based on Simulated Annealing. Like the algorithm 

proposed in Chapter 5, this algorithm makes a good use of the available color palette 

and the halftoning process to derive useful a priori information for restoration. 

Simulation results for comparative study demonstrate that the proposed algorithm can 

achieve a remarkable improvement in the quality of a halftoned color-quantized image 
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in terms of both SNRI and CIELAB color difference E∆  metric. The proposed 

algorithm can remove most of the artefacts introduced by color quantization in which 

error diffusion is involved and hence can improve the restoration result subjectively. 
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Chapter 7. 

On the Production of Scalable Color-

quantized Images for Printing Purpose  

7.1 Introduction 

Color-quantized images are mainly produced for printing purpose and 

displaying purpose. When they are produced for being displayed with a low end 

display unit, the color of each pixel is treated as a vector and a vector quantization 

process is performed to each pixel with a predefined or given palette. Halftoning may 

be used to improve the visual quality of the color-quantized image when the palette 

size is too small. 

However, the situation is different for printing application, when one wants to 

produce a hardcopy of a color image, the image is usually decomposed into 3 or 4 

separate color planes and each plane is halftoned separately as if they were gray level 

images. In such a case, producing a halftoned color-quantized image is equivalent to 

producing three separate gray level images and the involved halftoning algorithm 

plays a significant role in the color quantization process. 
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When one produces hardcopies for different clients over heterogenous 

networks, clients may need or only support hardcopies of different spatial resolutions 

under various constraints. In that case, it is desirable to make the halftoned color-

quantized images to be printed scalable such that they can be delivered efficiently 

over the network or stored efficiently if necessary. When one renders halftone images 

for different printers of different resolutions, the output should better be scalable in a 

way that it embeds low resolution halftone images into a full-scale halftone image and, 

through a very simple procedure such as down-sampling, the low resolution halftone 

images can be obtained from the high resolution halftone image directly. 

In this Chapter, we address this issue and propose an algorithm for producing 

scalable halftoned color-quantized images for printing applications. Note that, since 

scalable halftoned color-quantized hardcopies are produced by halftoning individual 

planes with a binary halftoning algorithm, the addressed problem can be turned into a 

problem concerning how to generate a scalable binary halftone and this is the reason 

why we devote the effort to formulating a scalable binary halftoning algorithm 

thoughout this Chapter.  

7.2 Proposed Framework for Generating Scalable Binary 

Halftones with MED Algorithms 

As mentioned in Chapter 1.2.2.2, the production of a scalable binary halftone 

can be modelled as a constrained halftoning problem. Multiscale error diffusion 

(MED) is a recently proposed halftoning technique and it was proven to be superior to 

conventional error diffusion as it can eliminate directional hysteresis completely 

[Katsavounidis 97]. Due to its frame-based nature, it is modified to realize constrained 

halftoning easily and effectively in this Chapter. 
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Suppose one wants to halftone a continuous-tone image X . Without loss of 

generality, we assume that X  is of size NN ×  and rX , the downscaled version of X , 

is of size )/()/( rr sNsN × , where ∈rs { Rrr K2,1|2 = ; <R2  NL =2 } is a desirable 

scaling factor. Note that this combination of N and rs  is picked for illustration only. 

In general, N and rs  can be any integer values and the framework presented here can 

be easily modified to handle it.  

The objective is to produce an output such that all rB  can be obtained by 

simply down-sampling B , where B  and rB  are, respectively, the halftone results of 

X  and rX . Note X  can be downscaled with any approach to obtain rX , producing 

different results. In our approach, rX  is obtained by averaging X  as follows. 
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where r
jiX ),(  and ),( jiX  are, respectively, the thji ),(  pixels of rX  and X . 

In the proposed framework, starting with Rr = , we iteratively generate rB  

with rX  and then use rB  as a constraint to produce 1−rB  in the next iteration until B  

is eventually obtained. As selected by the user, RB  is of the lowest resolution to be 

supported in the scalable B . There is no constraint to generate it and one can exploit 

any MED algorithms [Chan 98, Chan 04, Katsavounidis 97] by setting the input 

image to be RX . 

To obtain rB  with rX  for Rr <<0 , the same MED algorithm can be applied 

by applying a constraint in the initialization stage of generating rB . Suppose one has 

already obtained rB  with rX  and starts to produce 1−rB  with 1−rX . At the very 

beginning, we force the down-sampled elements of 1−rB  to be  
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r
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r
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where r
jiB ),(  is the thji ),(  element of rB  and 1

),(
−r

nmB  is the thnm ),(  element of 1−rB . 

Note assignment (7.2) guarantees that rB  can be obtained by simply down-sampling 

1−rB .  

1−rX  is then updated by 
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  for  each  constrained pixel ( ji, )  (7.3) 

where 1
),(

−r
nmX  is the thnm ),(  pixel of 1−rX  and W  is defined as W = 

[    )1,1()0,1()1,1( −−−− WWW ; )0,0()1,0( WW  − )1,0(W ; )1,1()0,1()1,1( WWW   − ] = [1,2,1;2,-12,2;1,2,1]/12.  

To handle corner or boundary pixels, W  is modified and filters such as 

[0,0,0;0,-5,2;0,2,1]/5 and [0,0,0;2,-8,2;1,2,1]/8 are used instead to avoid energy 

leakage. After updating 1−rX , the remaining unprocessed pixels are processed with 

the selected MED algorithm as usual to produce 1−rB .  

Note that this framework handles all constrained pixels before processing 

those non-constrained pixels. Besides, unlike CH, it does not confine the direction of 

error diffusion and hence provides more flexibility to compensate for the negative 

effect of assignment (7.2) in which a constrained pixel is assigned a value without 

concerning its original intensity. As a result, an output of higher image quality can be 

obtained. 
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7.3 Picking an Appropriate MED  

Though the proposed framework works with any MED algorithms, we found 

that not every MED algorithm could provide a good performance in multi-resolution 

halftoning. To look for a good multi-resolution halftoning algorithm, two analyses 

were carried out to evaluate the impact of various error diffusion algorithms in 

constrained halftoning. The first analysis was carried out to evaluate the general 

halftoning performance of different MED algorithms. The second analysis was carried 

out to evaluate the performance of different MED algorithm when they were used in 

constrained halftoning. Based on the analysis results, we propose an appropriate MED 

algorithm to work with the framework proposed in Section 7.2 to produce scalable 

binary halftones. 

7.3.1 Performance Analysis on MED Algorithms 

 In our analysis, various error diffusion algorithms were applied to a constant 

gray-level image of size 128x128 and the dot distributions in their outputs were 

studied in terms of the statistics mentioned in Section 2.3.1. In this Section, we will 

focus on the results of multiscale-based algorithms including Peli’s algorihm (PED) 

[Peli 91], Katsavounidis’s algorithm (MEDk) [Katsavounidis 97] and Chan’s 

algorithms (MEDc98) [Chan 98] and (MEDc04) [Chan 04]. Strictly speaking, PED is 

not a MED algorithm, but it distributes dots from a multiscale point of view.  
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(a) PED [Peli 91] (b) MEDk [Katsavounidis 97] 

  
(c) MEDc98 [Chan 98] (d) MEDc04 [Chan 04] 

Figure 7.1. Halftoning results of (a) PED, (b) MEDk, (c) MEDc98 and (d) MEDc04 for 
constant gray-level input (13/255) of size 128x128 

 

  
(a) PED [Peli 91] (b) MEDk [Katsavounidis 97] 

  
(c) MEDc98 [Chan 98] (d) MEDc04 [Chan 04] 

Figure 7.2. Halftoning results of (a) PED, (b) MEDk, (c) MEDc98 and (d) MEDc04 for 
constant gray-level input (95/255) of size 128x128 

 

Figure 7.1 shows the halftone results of a 128×128 image of constant gray 

level g=13/255. There are pattern artefacts in Figure 7.1b. Figures 7.1c and 7.1d are 

visually better than Figures 7.1a and 7.1b as they do not contain any directional 

ripples and pattern artefacts. As for Figure 7.1a, one can see that dots are denser than 

the other outputs. In fact, PED tends to introduce more minority dots than necessary, 
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which results in a brighter or darker output. Figure 7.2 shows another result when the 

constant gray level is 95/255. 

 
Figure 7.3. Performance in terms of Number of dots 

Figure 7.3 reports the deviation between the intensity of a constant input and 

the number of white dots in the corresponding halftone output. One can see that all 

presented algorithms can emulate the gray level except PED. 

 

(a) PED [Peli 91] (b) MEDk [Katsavounidis 97] 

(c) MEDc98 [Chan 98] (d) MEDc04 [Chan 04] 

Figure 7.4. Corresponding directional distribution functions of Figure 7.1 
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(a) PED [Peli 91] (b) MEDk [Katsavounidis 97] 

(c) MEDc98 [Chan 98] (d) MEDc04 [Chan 04] 

Figure 7.5. Corresponding directional distribution functions of Figure 7.2 

Figure 7.4 shows the directional distribution functions )(
21 , αrrD  of the 

patterns shown in Figure 7.1. Only the upper halves of the plots are shown. The lower 

half is the mirror image of the upper half. Figure 7.5 shows another result of the 

directional distribution functions )(
21 , αrrD  of the patterns shown in Figure 7.2. 

Theoretically, MEDk, MEDc98 and MEDc04 can eliminate directional 

hysteresis as no causal filter and no predetermined scanning path is used in these 

algorithms. One can see that the plots in Figures 7.4b-d are symmetric in all four 

directions (East, North, West and South). This supports the theory. However, when 

the same issue is addressed at a finer direction resolution, MEDc98 and MEDc04 are 

better than MEDk in a way that their plots are symmetric in 8 directions while 

MEDk’s one is not. In other words, MEDc98 and MEDc04 can eliminate directional 

hysteresis in more directions. PED’s performance is comparable to MEDc’s. 

To have a better picture of the directional hysteresis introduced by a halftoning 

algorithm, a measure called directional index function is defined as  

∑
=

−=
16

1

2
)3,max(,0

2 ))(1(
16
1)(

α
λ ασ Dg           g∀    (7.4) 
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where )()3,max(,0 αλD  is the directional distribution function values of the algorithm’s 

halftoning output of a constant input,  g is the gray level of the input and λ  is the 

principal wavelength of the input. This measure does not carry any information about 

the direction of the directional hysteresis in the output. It simply reflects how severe 

the direction hysteresis is in the output. The greater the value, the more severe the 

direction hysteresis is. In ideal case, its value should be zero.  

 
Figure 7.6. Performance in terms of directional distribution of dots 

Figure 7.6 shows the directional index functions of the presented algorithms at 

different gray levels. Logarithmic scale is used for the abscissa in the plot. In Figure 

7.6, one can see that PED, MEDc98 and MEDc04 can provide a good performance. 

Another interesting observation is that, though MEDk is symmetric in four directions, 

when the direction resolution is increased from 4 to 16, the directional index function 

values of MEDk are larger than those of the others in quite a number of gray level 

inputs.  
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(a) PED [Peli 91] (b) MEDk [Katsavounidis 97] 

(c) MEDc98 [Chan 98] (d) MEDc04 [Chan 04] 

Figure 7.7. Performance in terms of anisotropy (a) PED, (b) MEDk and (c) MEDc98 
and (d) MEDc04 

 

Figure 7.7 shows the performance of various algorithms in terms of the 

anisotropy of dots in their halftoning results of different constant gray-level inputs 

that )( pfA  is larger than 0 db is considered strong in directional components and it is 

noticeable to the human eye [Ulichney 88]. To provide a reference to study the 

performance of the algorithms, a surface defined by )( pfA =0 dB is added in each of 

the plots. The plots show that MEDc98 and MEDc04 are better than the other 

algorithms. Their corresponding anisotropy values are well below 0 dB in all 

combinations of gray levels and radial frequencies. 
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The output of blue noise halftoning is characterized by a distribution of binary 

pixels where the minority dots are spread as homogeneously as possible [Ulichney 88]. 

It is visually pleasant as it does not clash with the structure of an image. Pixels 

distributed in this way create an aperiodic and isotropic pattern and it does not contain 

any low-frequency spectral components.  

(a) PED [Peli 91] (b) MEDk [Katsavounidis 97] 

(c) MEDc98 [Chan 98] (d) MEDc04 [Chan 04] 

Figure 7.8. Performance in terms of RAPSD (a) PED, (b) MEDk, (c) MEDc98 and (d) 
MEDc04 

 

Figure 7.8 shows the performance of various algorithms in terms of RAPSD. 

For easier comparison, the range of RAPSD shown in all these plots is bounded to be 

less than 10. If a RAPSD value is larger than 10, it is clipped and the clipped value is 

displayed in the plots.  
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A good blue noise generator should produce a result which carries little or no 

low frequency spectral components, provides a flat high frequency spectral region and 

a spectral peak at blue noise principal frequency bf . In order to provide a clear 

picture of the performance of the algorithm, a white surface which marks the principal 

frequency bf  for a particular gray level is added in each of the plots as a reference for 

comparison. Figure 7.8c-d show that the outputs of MEDc98 and MEDc04 have all 

these features. The harmonics appeared in the plot shown in Figure 7.8b explain why 

there are so many pattern artefacts in the outputs of MEDk.  

7.3.2 Performance Analysis on Constrained MED 

Algorithms  

In another analysis, multi-resolution halftoning was applied to a constant gray-

level image of size 128x128 with various error diffusion algorithms and the dot 

distribution in their outputs was studied. Directional distribution function )(
21 , αrrD  

was used again to study the dot distribution in a halftone. In our analysis, the annular 

ring was defined by 1r =0 and 2r =3 and it was divided into 16 equal segments.  
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(i) 

  
   

(ii) 

  
   

(iii) 

 (a) (b) 
   

(i) 

  
   

(ii) 

  
   

(iii) 

 (c) (d) 

 

Figure 7.9. Halftoning results of (a) CH-SED, (b) CH-AED, (c) CHp-MED and (d) the 
proposed algorithm for constant gray-level input (31/255) of size 128x128: (i) full-
scale outputs, (ii) down-sampling results of (i) and (iii) directional distributions. 
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(i) 

  
   

(ii) 

  
   

(iii) 

 (a) (b) 
   

(i) 

  
   

(ii) 

  
   

(iii) 

 (c) (d) 

 

Figure 7.10. Halftoning results of (a) CH-SED, (b) CH-AED, (c) CHp-MED and (d) 
the proposed algorithm for constant gray-level input (88/255) of size 128x128: (i) 
full-scale outputs, (ii) down-sampling results of (i) and (iii) directional distributions. 
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Figures 7.9(i)a-c show some multi-resolution halftoning results when the gray-

level is 31/255 and Figures 7.9(ii)a-c show their corresponding down-sampling results. 

In particular, Figure 7.9(i)a shows the result of using framework CH and standard 

error diffusion [Floyd 76] (CH-SED) while Figure 7.9(i)b shows the result of [Wong 

03] (CH-AED), which actually exploits framework CH and adaptive error diffusion. 

There exist directional ripples in Figures 7.9(i)a and 7.9(i)b. Figure 7.9(i)c shows the 

case of using the proposed constrained halftoning framework for MED algorithms 

with the MED algorithm proposed in [Katsavounidis 97] (CHp-MED). It is visually 

smoother, but pattern artefacts can be observed. 

Figures 7.9(iii)a-c show the directional distribution functions of Figures 

7.9(i)a-c. One can see that all outputs suffer from directional hysteresis and dots are 

not uniformly distributed in all directions. For CH-SED and CH-AED, this is 

expected because of the reasons mentioned in Section 1.2.2.2. As for CHp-MED, 

though theoretically directional hysteresis can be eliminated by MED, it appears again 

after constrained halftoning. The fixed error diffusion filter exploited in 

[Katsavounidis 97] diffuses quantization error to the constrained pixels and this 

amount of error is trapped there forever. CHp-MED does not take care of the 

constrained pixels well in the course and error leakage happens in every constrained 

pixel.  

To solve the problem encountered in CHp-MED, an adaptive diffusion filter 

should be used to avoid diffusing error back to the constrained pixels. In this Section, 

we suggest using a modified version of the feature-preserving MED algorithm 

proposed in [Chan 04]. This algorithm detects whether white or black dots are 

minority dots in a local region and then assigns a minority dot to the region so as to 

preserve the local feature. In constrained halftoning, when generating the halftoning 
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result of higher resolution, constrained pixels are handled first without concerning any 

local feature. After that, the critical pixel positions in the region for displaying the 

local feature may have already been occupied by constrained pixels. Even though the 

feature-preserving mechanism of this algorithm is activated, there is not much gain in 

the quality and sometimes it may even make it worse. Hence, when this MED 

algorithm [Chan 04] works with constrained halftoning in our suggested multi-

resolution halftoning algorithm (CHp-MEDp), this feature-preserving mechanism is 

purposely off. Accordingly, no region-oriented detection of minority dots is 

performed and it always locates the minority dots of the whole image. Table 7.1 

contrasts the differences among the algorithms evaluated in the analysis. 

Algorithm Scanning order Error diffusion filter Constrained halftoning 
    

SED [Floyd 76] Raster Non-adaptive, causal No 
CH-SED Raster Non-adaptive, causal Scheme in Section 1.2.2.2
CH-AED [Wong 03] Raster Adaptive, causal Scheme in Section 1.2.2.2

CHp-MED Max intensity guidance 
[Katsavounidis 97] 

Non-adaptive, non-
causal Scheme in Section 7.2 

Proposed Max intensity guidance1 Adaptive, non-causal Scheme in Section 7.2 
1 The scheme used in [Chan 04] without turning the feature preserving mechanism on 

Table 7.1 Summary of the algorithms evaluated for comparison 

Figure 7.9(i)d shows the full-scale halftoning result of the proposed algorithm 

and Figure 7.9(ii)d shows its down-sampling result. There is no directional hysteresis 

and little, if any, pattern artefact in both images. The directional distribution function 

shown in Figure 7.9(iii)d also verifies that dots are evenly distributed in all directions. 

Figure 7.10 shows another result when the constant gray level is 88/255. 
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7.4 Comparative Study on the Performance of Different 

Constrainted Halftoning Algorithms 

Simulation was carried out to evaluate the performance of various multi-

resolution halftoning algorithms. This Section shows the performance in generating 

scalable binary halftones and scalable color prints. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 7.11. (a) Original ramp image and halftone results of (b) [Floyd 76], (c) CH-
SED, (d) CH-AED, (e) CHp-MED and (f) the proposed algorithm. 
 

 

   
(a) (b) (c) (d) (e) (f) 

Figure 7.12. Down-sampling results of Figures 7.11a-7.11f. 
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(a) (b) (c) (d) (e) (f) 

Figure 7.13. Down-sampling results of Figures 7.11a-7.11f. 
 

Figure 7.11a shows the original testing ramp image of size 200×218 and 

Figure 7.12a and 7.13a are its down-sampling results. As shown in Figures 7.11b, 

7.12b and 7.13b, a plain conventional halftoning algorithm such as standard error 

diffusion [Floyd 76] does not embed a low-resolution halftoning result into its output 

and hence the down-sampling results of its output can be very poor. Figures 7.11c-

7.11f show, respectively, the corresponding multi-resolution halftoning results of 

using CH-SED, CH-AED, CHp-MED and the proposed algorithm. Figures 7.12a-

7.12f and Figure 7.13a-7.13f are the down-sampling results of Figures 7.11a-7.11f. A 

down-sampling factor of 2 was applied to each direction. In the realization of CHp-

MED and the proposed algorithm, R  was selected to be 2. The performance of the 

proposed algorithm is the best in terms of both directional hysteresis and pattern noise.  

 
Figure 7.14. Performance in terms of directional distribution of dots of full-scale 
halftones 
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Figure 7.15. Performance in terms of directional distribution of dots of down-
sampled halftones 

 

Figure 7.14 and 7.15 show the performance of various algorithms in terms of 

the directional distribution of dots in their halftoning results and their down-sampled 

versions of different constant gray-level inputs. The performance is measured in terms 

of the variance of (1- )()3,max(,0 αλD ) for all α, where λ is the principle wavelength 

[Ulichney 88] of the input gray level. Logarithmic scale is used for the abscissa in the 

plot. The plot shows that the proposed algorithm outperforms the other approaches. 
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(a)  (b) 
 

(c)  (d) 
 

(e)  (f) 
Figure 7.16. (a) Original image “Parrots” and halftone results of (b) [Floyd 76], (c) 
CH-SED, (d) CH-AED, (e) CHp-MED and (f) the proposed algorithm. 
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(a)  (b) 

 

 
(c)  (d) 

 

 
(e)  (f) 

Figure 7.17. Down-sampling results of Figures 7.16a-7.16f. 

 

As mentioned in Section 7.1, the hardcopy of a color image is produced by 

halftoning the color planes of the color image independently with a binary halftoning 

algorithm. The binary algorithm presented in this Chapter can be easily extended to 

generate a color print of color image. 

Figure 7.16 shows color prints when testing image “Parrots” was used. In the 

evaluation, a true color image is first decomposed into three-color planes and each 

plane is halftoned with various multiresolution halftoning algorithms. We can see 

from the simulation results that the proposed algorithm is better than the others. 

Figure 7.17 shows the downsampled results of Figure 7.16 that R  was selected to be 

1.  
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7.5 Summary 

 In this Chapter, we presented a constrained halftoning framework for MED 

algorithms to realize multi-resolution halftoning. Based on this framework, we 

proposed a multi-resolution halftoning algorithm for producing scalable color-

quantized images for printing applications. Given an image, the algorithm produces a 

set of halftoning results of different resolution and embeds those of lower resolution 

into the full-scale one such that they can be extracted by direct down-sampling. 

Simulation results show that the proposed algorithm can provide good halftoning 

results at different resolutions. Some critical factors for achieving good constrained 

halftoning results are also discussed. 

 In the next Chapter, we will extend the proposed framework to produce 

scalable color-quantized images for display purpose. 
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Chapter 8. 

On the Production of General Scalable 

Halftoned Color-quantized Images 

8.1 Introduction 

Most halftoning algorithms are originally proposed for binary halftoning 

which emulates a gray level image with a binary image  [Ulichney 91, Lau 00, Floyd 

76, Jarvis 76, Stucki 81]. To apply them to color quantization, the most 

straightforward approach is to consider each color component plane as an individual 

gray scale image and handle them separately [Gentile 90, Zakhor 93, Damera-Venkata 

03].  

However, this approach may only work in printing applications in which the 

output colors are composed of 3 or 4 bi-level fixed color components (CMY or 

CMYK). Color quantization is actually a vector quantization instead of a bi-level 

uniform scalar quantization as in the case of binary halftoning. It is not a combination 

of several independent bi-level uniform scalar quantization processes either. The color 

reduction process involved in printing applications is only a special case of color 

quantization in where the three-dimensional color space is separated into three one-



 131

dimensional spaces and processed separately. In this special case, the involved palette 

contains colors which are uniformly distributed over the color space. In practice, the 

aforementioned straightforward extension of binary halftoning only works when a 

uniform palette [Heckbert 82] is used in a color quantization process. 

In general, when a low-end display unit such as a VGA monitor is involved, 

the palette colors are not uniformly distributed in the color space and hence the 

extension of binary halftoning to produce color-quantized image is not as 

straightforward as most people assume. Besides, this approach is not an effective 

approach as it does not take the correlation among color components into account.  

When one delivers media information to diverse clients over heterogeneous 

networks, clients may support different display resolutions and systems may have 

different caching capabilities. In that case, it is desirable to make media information 

scalable such that it can be delivered efficiently and reliability. Since color-quantized 

images are widely used in multimedia applications nowadays, it is desirable to make 

them scalable such that their downscaled versions can be obtained directly with the 

images through some simple operations. 

In this Chapter, a multiscale color error diffusion algorithm is proposed. 

Unlike those halftoning algorithms for printing color images, the proposed algorithm 

does not handle color planes separately and is able to handle color quantization in 

which any arbitrary palettes can be used. With any arbitrary palette, this algorithm is 

able to produce an output of high visual quality for any given full-color image. 

Directional hysteresis can be completely eliminated and color impulse can be greatly 

reduced. Based on the idea presented in Chapter 7, the proposed multiscale color error 

diffusion algorithm is then further extended to produce scalable halftoned color 

quantized images. 
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This Chapter is organized as follows. A multiscale color error diffusion 

algorithm is first proposed in Section 8.2. Section 8.3 presents an extension of the 

algorithm to generate scalable halftoned color-quantized image. The performance of 

the algorithm and its extension is evaluated in Section 8.4 and 8.5. A conclusion is 

given in Section 8.6. 

8.2 Multiscale Color Error Diffusion Algorithm 

In our proposed algorithm, color quantization is performed in YIQ color space 

so as to reduce the correlation among different color components. Another reason for 

doing so is that Euclidean distance in YIQ space matches HVS response more closely 

as compared with that in RGB space. This allows the color quantizer to select a 

visually more appropriate palette color with a given input. Without lose of generality, 

hereafter, we assume the color palette and the input image are defined in YIQ space. 

If they are not, color transformation will be required to transform their colors from 

their original domain to YIQ domain before color quantization. 

Let X  be a 24-bit NN ×  true-color image each pixel of which is represented 

as ),( jiX
r

= ( YjiX ),( , IjiX ),( , QjiX ),( ), where cjiX ),(  for },,{ QIYc∈  is the intensity 

value of the thc  primary color component of the thji ),(  pixel of the image.  

The proposed algorithm is an iterative algorithm developed based on 

Katsavounidis’s work [Katsavounidis 97]. Let U  be an image which reports the 

current status of the image being processed at the beginning of a particular iteration. 

At each iteration, the algorithm first locates a pixel location based on the maximum 

energy guidance with an energy pyramid E associated with U . The details of the 

pyramid will be elaborated later. The selected pixel is then color-quantized with a 

predefined set of colors (palette). The quantization error is diffused with a non-casual 
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filter to neighboring pixels to update U . These procedures are repeated until all pixels 

are color-quantized. At the start of the first iteration, U  is initialized to be X .   

8.2.1 Constructing Energy Pyramid E   

Let M  be a mask of size NN ×  which defines which pixels have been color-

quantized. Specifically, its element ),( jiM  is 0 if ),( jiX
r

has been color-quantized or 

else it is 1.  

A multiscale representation of a given color image U  is defined as a sequence 

of matrices },,{ 0 Ll UUU LL , where L  = N2log  and LU = U . lU  is of size 

ll 22 ×  and its thji ),(  element is a triplet ( l
YjiU ),( , l

IjiU ),( , l
QjiU ),( ) 

for 12,1,0, −= l,ji K . Elements of lU  for l = 0, 1 2−LL  is defined as 

 ∑ ∑
= =

+
++=

1

0

1

0

1
)2,2(),(

m n

l
cnjmi

l
cji UU             for },,{ QIYc∈  (8.1) 

while elements of 1−LU  is defined as 

⎪
⎩

⎪
⎨

⎧
≠= ∑ ∑

= =
++++−

else

SifUM
SU

m n
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cnjminjmiL

cji
0

01 1

0

1

0
)2,2()2,2(1

),(    for },,{ QIYc∈ (8.2) 

where 

 ∑ ∑
= =

++=
1

0

1

0
)2,2(

m n
njmiMS       (8.3) 

The energy pyramid E  associated with image U  is then constructed with 

{ lE | Ll L,1,0= }, where lE  is the energy plane of matrix lU . The thji ),(  element 

of lE  is defined as  
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for 12,1,0, −= l,ji K (8.4) 

8.2.2 Searching the Pixel for Color Quantization 

The location of a pixel to be color-quantized is determined via maximum 

energy guidance with energy pyramid E . The location is obtained by searching the 

energy pyramid from the coarsest level 0E  to the finest level LE . Note that 0E  

contains only one element 0
)0,0(E . 

Assume that we are now at position )),(,( jil which corresponds to the thji ),(  

element of a particular level l . We check { 1
)2,2(

+
++

l
njmiE | nm,  = 0,1} and proceed to 

the position ))2,2(,1( qjpil +++ such that 1
)2,2(

+
++

l
qjpiE  is maximum in 

{ 1
)2,2(

+
++

l
njmiE | nm,  = 0,1} and ∈qp, {0,1}. If more than one position satisfies the 

criterion, one of them will be randomly selected.  

8.2.3 Color Quantization and Error Diffusion 

Let )),(,( nmL  be the position that we finally reach at the finest level of the 

pyramid E  in the search and  },2,1:ˆ{ ci NiC L== v  be the given color palette. 

),( nmU
r

=( YnmU ),( , InmU ),( , QnmU ),( ) is then color-quantized. The best-matched 

color in the palette, say kv̂ , is selected based on the minimum Euclidean distance 

criterion in YIQ color space as follows.  

lnmknm vUvU ˆˆ ),(),( −≤−
rr

  Cl ∈∀ v̂  (8.5) 
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The quantization error ),(ˆ nmk Uv
rr

−=ε  is then diffused to ),( nmU
r

’s neighborhood to 

update image U  with a non-causal filter. In formulation, it is given as 

ε
rrr

),(),(),( jnimjiji W −−+= UU  

for  1±= mi  and 1±= nj  (8.6) 

where W  is defined as 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

−

−−−−

)1,1()0,1()1,1(

)1,0()0,0()1,0(

)1,1()0,1()1,1(

WWW
WWW
WWW

W = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

0833.01667.00833.0
1667.00000.11667.0
0833.01667.00833.0

. 

To handle the boundary and the corner pixels, W is modified to be 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

1250.02500.01250.0
2500.00000.12500.0
0000.00000.00000.0

 and 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

2000.04000.00000.0
4000.00000.10000.0
0000.00000.00000.0

 respectively to avoid 

energy leakage. 

8.3 Extension to Produce Scalable Halftoned Color-

quantized Images 

With the framework presented in the previous Section 8.2, a color quantization 

algorithm for generating scalable color quantization images is proposed in this Section. 

Consider the case that one wants to produce a color quantization result of a 

given image I  which embeds a set of color quantization results of downscaled 

versions of I . Let rI  be one of the downscaled versions of I . Without loss of 

generality, we assume that I  is of size NN ×  and rI  is of size )/()/( rr sNsN × , 

where };...2,1|2{ LRRrs r
r <=∈  is a desirable scaling factor. The objective of the 

proposed algorithm is to produce an output such that all rY  can be obtained by 

simply down-sampling Y , where Y  and rY  be, respectively, the color quantization 

result of I  and rI . 
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Note I  can be downscaled with any approach to obtain rI , producing 

different results. In our proposed algorithm, rI  is obtained by averaging I  as follows. 
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where r
cjiI ),(  and cjiI ),(  are, respectively, the thc  color components of the thji ),(  pixels 

of rI  and I . 

In the proposed algorithm, starting with Rr = , we iteratively generate rY  

with rI  and then use rY  as a constraint to produce 1−rY  in the next iteration until Y  

is eventually obtained. 

As selected by the user, RY  is of the lowest resolution to be supported in the 

scalable Y . There is no constraint to generate it and one can make use of the 

multiscale error diffusion algorithm presented in Section 8.2 to generate it with 

RIX = . 

To obtain rY  with rI  for Rr <<0 , the same multiscale error diffusion 

algorithm presented in Section 8.2 can be used by embedding a constraint in the 

initialization stage. Suppose one has already obtained rY  with rI  and starts to 

produce 1−rY  with 1−rI . At the start of the first iteration, after initializing U  to be 

1−= rIX , we force the down-sampled elements of 1−rY  to be 

r
cji

r
cji YY ),(

1
)2,2( =−  for 1)/,...(1,0, −= rsNji   (8.8) 

where r
clkY ),(  is the thc  color component of the thlk ),(  element of rY , and then diffuse 

the quantization error at positions )2,2( ji ’s with eqn.(8.6) to update U . Note 

assignment (8.8) guarantees that rY  can be obtained by simply down-sampling 1−rY . 
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This completes the first iteration and the following iterations are carried out as usual 

as it is presented in Section 8.2 until 1−rY  is obtained. 

8.4 Performance on Multiscale Color Error Diffusion 

In this Section, the performance of the proposed multiscale color error 

diffusion algorithm is evaluated. The focus is on its performance on generating non-

scalable halftoned color-quantized images. For the performance on generating 

scalable halftoned color-quantized images, it will be discussed in Section 8.5. 

8.4.1 Details of the Simulation 

Simulations were carried out on a number of de facto standard 24-bit full-color 

images of size 256256×  each to evaluate the performance of the proposed algorithm. 

These images were color-quantized with color palettes of different size. The color 

palettes were generated with different palette generation algorithms.  

For comparison, some other error diffusion algorithms for color quantization 

were also evaluated [Akarun 97, Breaux 99, Orchard 91, Özdemir 00]. Unlike most 

color halftoning algorithms which are dedicated for printing applications, these 

evaluated algorithms are not straightforward extension of binary halftoning and are 

able to handle color quantization in which any arbitrary palettes can be used. In the 

realization of Orchard’s algorithm [Orchard 91], Floyd-Steinberg filter [Floyd 76] was 

used in error diffusion.  

S-CIELab color difference ( E∆ ) metric [Zhang 96] is a spatial extension of 

the CIELab color difference ( E∆ ) metric [CIE 78] and it is defined as the Euclidean 

distance between the original color pixel and its reproduction in S-CIELab color 



 138

metric space. It is widely accepted and used for measuring color reproduction error 

when a continuous-tone color image is reproduced with halftoning. 

8.4.2 Simulation Results 

Tables 8.1 and 8.2 show the performance of different algorithms in terms of 

the average of the E∆  values of all pixels in the color quantization outputs. Table 8.1 

shows the case of using color palettes obtained with median-cut algorithm [Heckbert 

82] while Table 8.2 shows the case of using palettes obtained with octree algorithm 

[Gervautz 90]. The proposed algorithm is obviously superior to the others in both 

cases. In our simulation, the algorithm worked well with any tested palettes which 

were obtained with different palette generation algorithms. 

Parallel processing is very attractive in many real-time multimedia 

applications to reduce processing time. In order to take its advantage, the proposed 

algorithm can be modified to be block-based as follows. The input image is first 

partitioned into a number of non-overlapped blocks of size 3232×  each. Then, the 

proposed algorithm is applied to these blocks to produce the halftoned color-quantized 

output blocks separately. The second last columns of Tables 8.1 and 8.2 show the 

performance of this block-based approach. One can see that its performance is a bit 

poorer than that the original proposed approach but still much better than all the 

others. Since this block-based approach can reduce the processing time considerably 

with parallel processing, sometimes it would be even more suitable than the original 

proposed algorithm to process an image especially in real-time applications. 

Figures 8.1 and 8.2 show the halftoned color-quantized outputs of various 

algorithms when palettes of different sizes are used. The palettes were obtained with 

median-cut algorithm. It can be found that the proposed algorithm can eliminate the 



 139

directional hysteresis and reduce color impulses whereas these artefacts are highly 

visible in the outputs of Orchard’s [Orchard 91] and Akarun’s [Akarun 97] algorithms 

especially when the palette size is small. For example, in Figures 8.2b and 8.2c, in the 

sky, one can see ripple patterns that propagate from the top of the left to the middle of 

the right of the pictures. They are induced by directional hysteresis and composed of a 

number of ordered color impulses. The proposed algorithm does not generate 

directional hysteresis and it can significantly reduce color impulses as shown in 

Figure 8.2f. Özdemir’s algorithm [Özdemir 00] introduces directional hysteresis as 

well but its effect is less visible as compared with Orchard’s [Orchard 91] and 

Akarun’s [Akarun 97] algorithms. However, one can still find the ripple patterns 

under the blue ball in Figure 8.1d. Besides, severe pattern noise can be found in 

Figures 8.1d (e.g. above the yellow ball) and 8.2d (e.g. the yellow cap and the sky). 

Noticeable false contour and color shift can be found in the outputs of Breaux’s 

algorithm [Breaux 99]. In particular, they appear in the middle of Figures 8.1e and 

8.2e.  

Figures 8.1g and 8.2g show the results of our proposed block-based approach. 

The quality of its outputs is similar to that of the original proposed algorithm. In 

theory, this block-based approach introduces blocking artefact. However, it is found 

that this blocking artefact is invisible in the simulation results. When processing time 

is the most concern and parallel processing is allowed, it would be more appropriate 

to use this block-based approach. Besides, this approach is helpful to reduce the size 

of the required processing buffer during color quantization.  
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Table 8.1. Average of S-CIELab difference ( E∆ ) metric of the halftoned color-
quantized outputs of various algorithms (Palettes were generated with median-cut 
algorithm [Heckbert 82].) 
 
 
 

     Average of S-CIELAB difference E∆  
Palette 
Size 

  [Orchard 
91] 

[Akarun 
97]  

[Breaux 
99] 

[Özdemir 
00]  

Proposed  
(block-based) 

Proposed 
 

         

Lenna  28.932 28.691 27.349 29.786 26.103 26.234 
Baboon  38.544 37.492 38.602 40.300 38.253 38.265 
Fruits  48.323 47.141 49.759 51.069 47.633 47.846 
Cycles  38.573 37.385 37.458 40.845 36.453 36.560 
Airplane  23.251 21.944 21.913 30.349 21.437 21.452 
Caps  42.948 41.874 40.465 45.144 40.170 40.333 
Window  21.928 20.978 20.666 22.152 20.303 20.396 
Pool  33.662 34.552 31.617 32.476 30.436 30.423 

16 

Average  34.520 33.757 33.479 36.515 32.599 32.689 
 

Lenna  22.418 22.354 22.134 27.260 21.286 21.351 
Baboon  30.584 30.459 31.978 35.630 30.985 30.949 
Fruits  32.955 33.129 29.607 41.042 29.047 29.237 
Cycles  30.282 30.147 31.038 32.788 29.920 29.922 
Airplane  17.464 17.503 18.706 28.927 17.165 17.160 
Caps  34.332 34.280 31.172 34.704 30.765 30.860 
Window  15.346 15.296 15.188 17.815 14.777 14.922 
Pool  23.750 23.476 20.976 22.217 20.335 20.498 

32 

Average  25.891 25.831 25.100 30.048 24.285 24.362 
 

Lenna  18.666 18.558 17.740 20.493 17.264 17.277 
Baboon  26.978 26.711 27.779 33.028 26.021 26.092 
Fruits  23.086 22.974 20.538 33.233 20.282 20.361 
Cycles  22.976 22.783 23.941 27.456 22.792 22.772 
Airplane  14.251 14.155 13.99 18.000 13.229 13.193 
Caps  21.452 21.343 18.656 23.189 19.201 19.180 
Window  12.578 12.495 12.698 14.377 11.720 11.727 
Pool  16.581 16.396 15.311 15.889 15.002 15.009 

64 

Average  19.571 19.427 18.832 23.208 18.189 18.201 
 

Lenna  16.123 15.874 15.362 20.438 14.706 14.696 
Baboon  21.096 20.753 21.842 31.428 20.555 20.571 
Fruits  18.689 18.621 16.693 24.575 16.037 16.056 
Cycles  18.857 18.527 18.713 23.251 17.981 18.002 
Airplane  10.547 10.280 10.214 16.728 9.515 9.524 
Caps  16.490 16.334 14.616 20.761 14.317 14.353 
Window  10.726 10.561 10.816 14.894 10.291 10.270 
Pool  13.419 13.331 11.850 14.474 11.177 11.221 

128 

Average  15.743 15.535 15.013 20.819 14.322 14.337 



 141

 
Table 8.2. Average of S-CIELab difference ( E∆ ) metric of the halftoned color-
quantized outputs of various algorithms (Palettes were generated with octree 
algorithm  [Gervautz 90].) 
 

 

 

 

 

 

 

   Average of S-CIELAB difference E∆  
Palette 
Size 

  [Orchard 
91] 

[Akarun 
97]  

[Breaux 
99] 

[Özdemir 
00]  

Proposed  
(block-based) 

Proposed 
         

Lenna  31.056 31.246 26.266 31.303 26.914 27.162 
Baboon  38.406 38.761 40.176 38.309 38.285 38.214 
Fruits  52.095 51.788 51.680 51.848 52.846 53.120 
Cycles  39.834 39.756 37.813 39.404 36.407 36.413 
Airplane  34.237 34.220 33.141 33.648 33.369 33.376 
Caps  38.501 38.231 37.469 38.454 38.820 38.648 
Window  19.442 19.569 18.304 18.646 18.292 18.328 
Pool  28.543 28.483 27.472 28.195 26.350 26.227 

16 

Average  35.264 35.257 34.040 34.976 33.910 33.936 
 

Lenna  24.650 24.802 20.687 22.387 20.965 21.088 
Baboon  35.748 35.267 35.049 35.421 33.011 32.998 
Fruits  33.829 33.821 31.837 33.835 31.580 31.724 
Cycles  31.433 31.364 30.298 31.449 28.948 28.930 
Airplane  24.687 24.748 25.933 24.169 25.418 25.338 
Caps  17.714 17.705 15.042 19.451 15.240 15.271 
Window  17.139 17.235 16.770 16.988 16.035 16.072 
Pool  27.426 27.390 26.516 27.121 25.422 25.259 

32 

Average  26.578 26.542 25.266 26.353 24.577 24.585 
 

Lenna  17.028 16.902 15.714 16.028 15.428 15.453 
Baboon  28.286 28.200 28.226 26.609 25.768 25.725 
Fruits  24.589 24.534 22.203 23.448 21.887 21.943 
Cycles  21.266 21.118 19.940 20.495 19.206 19.197 
Airplane  20.755 20.750 22.666 20.600 22.053 21.968 
Caps  14.031 14.069 11.342 17.491 11.715 11.779 
Window  11.429 11.455 10.401 10.573 9.678 9.675 
Pool  15.156 15.095 12.839 14.438 12.584 12.571 

64 

Average  19.068 19.016 17.917 18.710 17.290 17.290 
 

Lenna  14.063 13.773 12.895 12.504 12.429 12.428 
Baboon  22.298 21.910 22.619 20.826 20.576 20.579 
Fruits  18.012 18.002 16.834 17.307 15.769 15.840 
Cycles  18.381 18.279 17.895 17.443 16.971 16.982 
Airplane  13.936 13.773 13.148 23.092 13.289 13.396 
Caps  11.043 11.081 9.440 9.702 9.251 9.301 
Window  9.599 9.501 9.348 9.347 8.643 8.593 
Pool  13.172 13.076 10.650 11.517 10.485 10.517 

128 

Average  15.063 14.924 14.104 15.217 13.427 13.455 
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(a) Original (b) [Orchard 91] 

(c) [Akarun 97] (d) [Özdemir 00] 
Figure 8.1. Color quantization results of “Pool” (Palette size = 16): (a) Original, (b) 
[Orchard 91], (c) [Akarun 97], (d) [Özdemir 00], (e) [Breaux 99], (f) the proposed 
algorithm and (f) the proposed block-based algorithm. 
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(e) [Breaux 99] (f) Proposed 
 

(g) Proposed (block-based)  
Figure 8.1(continue). Color quantization results of “Pool” (Palette size = 16): (a) 
Original, (b) [Orchard 91], (c) [Akarun 97], (d) [Özdemir 00], (e) [Breaux 99], (f) the 
proposed algorithm and (f) the proposed block-based algorithm. 
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(a) Original (b) [Orchard 91] 

(c) [Akarun 97] (d) [Özdemir 00] 
Figure 8.2. Color quantization results of “Caps” (Palette size = 32): (a) Original, (b) 
[Orchard 91], (c) [Akarun 97], (d) [Özdemir 00], (e) [Breaux 99], (f) the proposed 
algorithm and (g) the proposed block-based algorithm 
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(e) [Breaux 99] (f) Proposed  
 

(g) Proposed (block-based)  
Figure 8.2(continue). Color quantization results of “Caps” (Palette size = 32): (a) 
Original, (b) [Orchard 91], (c) [Akarun 97], (d) [Özdemir 00], (e) [Breaux 99], (f) the 
proposed algorithm and (g) the proposed block-based algorithm 
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8.5 Performance on Generating Scalable Halftoned Color-

quantized Images 

In this Section, performance evaluation of the proposed algorithm in 

generating scalable halftoned color-quantized image is given. The details of the 

realization of the proposed algorithm are first described in Section 8.5.1. Secondly, 

simulation results are given in Section 8.5.2. 

8.5.1 Details of the Simulation 

Simulation was carried out to evaluate the performance of the algorithm on a 

number of de facto standard 24-bit full color images. Each of them is of size 256×256. 

For each testing image, a set of color palettes of different size were generated with 

median-cut algorithm [Heckbert 82] for color quantization. The proposed algorithm 

was applied to all testing images to obtain their corresponding halftoned color 

quantization results with the generated color palettes to evaluate its performance. In 

its realization, parameter R was selected to be 4. 

For comparison, halftoned color quantization results were also produced with 

some other color quantization algorithms [Orchard 91, Akarun 97, Özdemir 00] and 

then down-sampled to produce various downscaled versions. Unlike most color 

halftoning algorithms which are dedicated for printing applications [Damera-Venkata 

03, Lau 00], these evaluated algorithms [Orchard 91, Akarun 97, Özdemir 00] are not 

straightforward extension of binary halftoning and are able to handle color 

quantization in which any arbitrary palettes can be used. Among them, Orchard’s 

algorithm [Orchard 91] forms a common framework that most of these algorithms 

adopt. In its realization, Floyd-Steinberg filter [Floyd 76] was used in error diffusion. 
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Both Akarun’s algorithm [Akarun 97] and Özdemir algorithm [Özdemir 00] adopt the 

framework presented in Orchard’s algorithm. In particular, Akarun’s algorithm 

[Akarun 97] uses an adaptive error diffusion filter to prevent texture contours, color 

impulses and color shift. Instead of the conventional Euclidean distance criterion, 

Özdemir’s algorithm [Özdemir 00] uses a weighted sum of the distances among color 

vectors as a searching criterion in its color quantization process to prevent excess 

accumulation of quantization errors. 

8.5.2 Simulation Results 

Table 8.3 shows the performance of various algorithms in terms of the average 

S-CIELAB difference ( E∆ ) value of all pixels in their color quantization outputs and 

their corresponding down-sampled versions. The palettes used to obtain Table 8.3 are 

of size 16. Tables 8.4, 8.5 and 8.6, respectively, show the case when palettes of size 

32, 64 and 128 were used. Simulation results show that the proposed algorithm can 

provide a better result than the other algorithms especially when downscaling is 

performed. Our proposed algorithm is obviously better and the superiority is very 

significant when the scaling factor is large. 

Figures 8.3b-8.3e show the processing results of different evaluated algorithms. 

Figure 8.3a is the original 256×256 24-bit full-color image for reference. The palette 

used to generate Figures 8.3b-8.3e is of size 64 and was obtained with Figure 8.3a 

using median-cut algorithm. The processing results of the algorithms are more or less 

the same except that some false contour can be found in Figure 8.3d. 

Figures 8.4 to 8.6 show the downscaled versions of Figure 8.3. The 

downscaling of Figures 8.3b-8.3e was carried out by simple down-sampling. Figures 

8.4a, 8.5a and 8.6a show rI  for =r 2, 3 and 4 respectively and are used as references 
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for evaluating how close the downscaling outputs of the color-quantization results 

obtained with different algorithms to the downscaled original. The corresponding 

downscaling ratios used to produce Figures 8.4, 8.5 and 8.6 were, respectively, 2, 4 

and 8. Accordingly, they are of size 128×128, 64×64 and 32×32 respectively. For 

easier inspection, these Figures are zoomed with nearest-neighbor interpolation to 

make their size as large as the original full-scaled version. One can see that the 

downscaled versions of Figure 8.3e (Figures 8.4e, 8.5e and 8.6e) can faithfully report 

the content of the downscaled versions of Figure 8.3a while the others cannot. 

Unlike the other algorithms  [Orchard 91, Akarun 97, Özdemir 00] in which 

causal diffusion filters and predefined processing sequences are used in the error 

diffusion process, the proposed algorithm color quantizes pixels in a so-called 

‘maximum energy guidance’ manner and diffuses the quantization errors with a non-

causal diffusion filter. This approach completely removes the artefacts caused by 

directional hysteresis. 
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Average of S-CIELAB difference E∆  
 [Orchard 

91] 
[Akarun 

97] 
[Özdemir 

00] Proposed [Orchard 
91] 

[Akarun 
97] 

[Özdemir 
00] Proposed

   

 Full-scaled (256x256)* Down-sampled versions rs =2 (128x128)* 
Lenna 28.9316 28.6911 29.7862 27.4111 30.6230 30.3740 31.3529 27.3935 
Baboon 38.5437 37.4918 40.3003 39.8194 40.8781 40.1357 43.1127 39.4561 
Peppers 40.7377 41.2408 39.6435 40.3174 42.6166 43.7538 41.9237 40.3149 
Fruits 48.3228 47.1405 51.0687 48.3742 49.5522 48.6611 52.3894 48.0071 
Cycles 38.5730 37.3853 40.8454 37.3234 40.5470 39.6401 42.6159 36.9831 
Airplane 23.2511 21.9437 30.3493 21.9443 24.5735 23.2945 31.4577 21.7703 
Parrots 36.9315 36.4938 42.0641 35.2689 37.5506 37.3442 42.5235 35.4676 
Caps 42.9482 41.8739 45.1439 40.6307 43.5955 43.0314 46.1908 40.4780 
Windows 21.9278 20.9777 22.1515 20.6720 22.9303 21.7949 22.3660 20.1365 
Pool 33.6615 34.5516 32.4756 30.9726 34.1458 36.1527 32.3452 30.8626 
   

Average 35.3829 34.7790 37.3829 34.2734 36.7013 36.4182 38.6278 34.0870 
 Down-sampled versions rs =3 (64x64)* Down-sampled versions rs =4 (32x32)* 
Lenna 34.7154 34.0515 34.3766 27.1739 41.1666 41.2214 39.9279 24.7768 
Baboon 43.4302 43.0038 45.1606 38.8943 48.4784 47.1034 49.1323 37.3437 
Peppers 47.2924 48.0682 46.3931 39.9708 55.8807 56.7514 55.0129 37.1602 
Fruits 51.0632 49.8831 53.4490 47.0863 54.7632 52.8876 57.1326 44.0221 
Cycles 43.2724 43.3180 43.8239 35.9865 47.4550 47.3311 47.0905 33.2558 
Airplane 25.7758 25.1903 31.7653 21.4674 27.3820 27.4064 31.2663 19.9550 
Parrots 39.0093 38.7003 43.0514 35.4608 43.8259 41.9619 46.7252 34.0159 
Caps 43.4285 42.4930 46.8236 39.9573 45.6638 45.5602 49.4209 39.7279 
Windows 24.4389 23.3427 23.7348 20.1155 26.2632 24.1583 25.4539 19.1232 
Pool 35.7304 38.1435 32.9412 30.5566 38.4069 40.2626 34.7212 29.7837 
   

Average 

 

38.8157 38.6194 40.1519 33.6669 42.9286 42.4644 43.5884 31.9164 
 
Table 8.3. Average of S-CIELAB color difference ( E∆ ) metric of the halftoned color-
quantized outputs of various algorithms with rs  = 1,2,3 and 4. (Palettes were 
generated with median-cut algorithm [Heckbert 82] of size 16.) 
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Average of S-CIELAB difference E∆  
 [Orchard 

91] 
[Akarun 

97] 
[Özdemir 

00] Proposed [Orchard 
91] 

[Akarun 
97] 

[Özdemir 
00] Proposed

   

 Full-scaled (256x256)* Down-sampled versions rs =2 (128x128)* 
Lenna 22.4175 22.3544 27.2595 22.5245 24.2977 24.2976 28.6136 22.8641 
Baboon 30.5843 30.4593 35.6299 32.3477 34.3662 33.9958 38.6649 31.6702 
Peppers 31.6980 31.7508 31.8524 31.2796 34.6418 34.7815 34.0940 31.6536 
Fruits 32.9554 33.1293 41.0423 30.1852 35.3753 35.4104 42.1195 30.0504 
Cycles 30.2819 30.1468 32.7884 30.6668 32.7247 32.8151 34.5624 30.3137 
Airplane 17.4641 17.5028 28.9268 17.6052 19.2816 19.2016 29.5116 17.5777 
Parrots 29.6796 30.0374 37.5147 30.5404 30.7102 31.1610 37.6660 30.5348 
Caps 34.3318 34.2797 34.7037 31.0265 35.2753 35.3314 35.2457 31.0604 
Windows 15.3460 15.2962 17.8146 15.4933 16.5484 16.5228 18.3259 15.5339 
Pool 23.7504 23.4761 22.2170 21.0557 25.2317 24.8715 22.7847 21.1863 
   

Average 26.8509 26.8433 30.9749 26.2725 28.8453 28.8389 32.1588 26.2445 
 Down-sampled versions rs =3 (64x64)* Down-sampled versions rs =4 (32x32)* 
Lenna 29.3368 29.2217 32.3329 23.2344 36.0307 36.1518 37.9147 21.3391 
Baboon 37.7552 37.5718 41.4138 31.4499 42.7903 43.4498 44.4923 29.7858 
Peppers 40.9603 41.0161 39.3051 31.8327 51.2370 51.3724 47.5772 28.5411 
Fruits 38.5338 39.1456 44.7961 30.0118 44.7680 46.3067 49.5972 28.0543 
Cycles 37.1760 37.4183 37.7353 29.1946 42.6326 42.3749 42.0244 25.7103 
Airplane 21.3561 21.1215 29.8527 17.4254 24.2762 24.0501 30.4577 16.4926 
Parrots 32.7922 33.3502 38.5964 30.5012 38.4354 38.9822 41.7222 28.6721 
Caps 36.3559 36.1046 35.7409 31.1569 38.5637 38.8126 37.7851 30.3367 
Windows 19.2987 19.0378 20.2223 15.5761 22.7904 22.2913 22.8106 15.0503 
Pool 27.7247 27.4291 24.2689 21.3982 32.5475 32.0929 28.4391 20.1785 
   

Average 

 

32.1290 32.1417 34.4264 26.1781 37.4072 37.5885 38.2821 24.4161 
 
Table 8.4. Average of S-CIELAB color difference ( E∆ ) metric of the halftoned color-
quantized outputs of various algorithms with rs  = 1,2,3 and 4. (Palettes were 
generated with median-cut algorithm [Heckbert 82] of size 32.) 
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Average of S-CIELAB difference E∆  
 [Orchard 

91] 
[Akarun 

97] 
[Özdemir 

00] Proposed [Orchard 
91] 

[Akarun 
97] 

[Özdemir 
00] Proposed

   

 Full-scaled (256x256)* Down-sampled versions rs =2 (128x128)* 
Lenna 18.6657 18.5575 20.4925 18.6208 20.9581 20.7883 21.8426 19.0129 
Baboon 26.9775 26.7113 33.0281 27.8488 32.0848 31.8978 36.7743 27.4917 
Peppers 23.4616 23.3081 29.3473 23.4029 26.8182 26.5622 31.0551 24.0759 
Fruits 23.0858 22.9736 33.2330 21.4357 25.5479 25.5183 34.6237 21.6159 
Cycles 22.9758 22.7825 27.4555 23.5371 26.5774 26.4171 29.3368 23.3967 
Airplane 14.2509 14.1547 18.0002 13.9584 15.9356 15.8684 19.1846 14.0700 
Parrots 20.5500 20.4900 30.0457 20.9540 21.8649 22.0246 30.5253 20.9501 
Caps 21.4520 21.3434 23.1885 19.5369 22.4616 22.5172 23.4974 19.5127 
Windows 12.5780 12.4953 14.3768 12.4579 14.3018 14.2672 14.9191 12.6608 
Pool 16.5812 16.3962 15.8892 15.6198 18.0645 18.0366 16.7088 15.8052 
   

Average 20.0578 19.9213 24.5057 19.7372 22.4615 22.3898 25.8468 19.8592 
 Down-sampled versions rs =3 (64x64)* Down-sampled versions rs =4 (32x32)* 
Lenna 25.9064 25.6385 26.0224 18.9407 33.3853 32.8163 32.5465 17.4808 
Baboon 36.3970 36.4102 39.5776 27.0497 41.7126 40.9524 42.0561 25.8955 
Peppers 34.1833 33.7415 35.9509 24.6303 46.2606 45.8069 44.4703 22.8059 
Fruits 29.6034 29.5295 37.0887 21.6121 36.9739 36.8846 41.8582 19.6450 
Cycles 32.2630 32.3674 32.6888 23.3430 39.0878 39.5178 37.2943 21.3194 
Airplane 18.8005 18.3783 20.8280 14.1276 23.0214 22.5154 23.2848 13.4145 
Parrots 24.5321 25.1225 31.8742 20.9267 31.5233 32.5357 36.9606 19.5793 
Caps 24.5855 24.0761 24.5514 19.9253 29.5883 28.3059 27.8746 18.9590 
Windows 17.8718 17.5988 17.4789 12.8881 22.1165 21.8629 20.5554 11.8399 
Pool 21.4229 21.3180 19.3507 16.0724 28.0546 28.5135 24.8562 14.9362 
   

Average 

 

26.5566 26.4181 28.5412 19.9516 33.1724 32.9711 33.1757 18.5876 
 
Table 8.5. Average of S-CIELAB color difference ( E∆ ) metric of the halftoned color-
quantized outputs of various algorithms with rs  = 1,2,3 and 4. (Palettes were 
generated with median-cut algorithm [Heckbert 82] of size 64.) 
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Average of S-CIELAB difference E∆  
 [Orchard 

91] 
[Akarun 

97] 
[Özdemir 

00] Proposed [Orchard 
91] 

[Akarun 
97] 

[Özdemir 
00] Proposed

   

 Full-scaled (256x256)* Down-sampled versions rs =2 (128x128)* 
Lenna 16.1225 15.8735 20.4377 16.3105 19.1181 19.0161 22.0774 16.7176 
Baboon 21.0958 20.7530 31.4279 22.5380 26.9982 26.8287 34.7378 22.1804 
Peppers 19.9866 19.8180 32.1305 20.8132 23.5107 23.3576 33.0290 21.6769 
Fruits 18.6890 18.6213 24.5754 17.3134 21.8485 21.8378 26.2477 17.8355 
Cycles 18.8566 18.5267 23.2508 19.1023 22.7989 22.3365 25.1983 19.3348 
Airplane 10.5471 10.2797 16.7275 10.3404 12.4678 12.2743 17.5030 10.6316 
Parrots 16.7393 16.6889 25.0309 16.5420 18.1145 18.1686 25.1460 16.6164 
Caps 16.4898 16.3344 20.7611 14.7842 17.5491 17.5269 21.0446 14.8646 
Windows 10.7261 10.5613 14.8944 11.0626 12.8276 12.5645 15.2334 11.3159 
Pool 13.4193 13.3309 14.4740 12.0818 15.3282 15.1016 15.2422 12.6234 
   

Average 16.2672 16.0788 22.3710 16.0888 19.0562 18.9013 23.5459 16.3797 
 Down-sampled versions rs =3 (64x64)* Down-sampled versions rs =4 (32x32)* 
Lenna 24.8135 24.8190 26.1226 16.8708 32.7471 32.3377 32.8690 14.7253 
Baboon 32.1874 32.2442 37.2683 21.9321 38.1254 38.0333 38.8644 20.9293 
Peppers 31.6937 31.2189 37.2750 22.5465 45.3312 44.2084 44.5471 20.7955 
Fruits 26.6113 26.5632 30.1573 17.8837 34.2962 34.2082 35.7380 16.0017 
Cycles 29.0977 28.3924 28.6367 19.5093 36.3676 36.3883 33.9957 17.4611 
Airplane 15.8925 15.7843 19.1479 10.7797 20.4903 20.3739 20.6309 9.6819 
Parrots 21.3384 21.6091 26.8414 16.7017 28.4869 28.5532 31.2748 15.9072 
Caps 19.7349 19.4825 22.2714 15.1887 24.7237 23.2565 25.0248 14.6449 
Windows 16.6058 16.4387 17.3283 11.3712 21.1030 21.1645 19.7571 10.5326 
Pool 19.5703 19.2888 18.4424 13.2590 27.0574 27.1062 24.0921 11.9816 
   

Average 

 

23.7546 23.5841 26.3491 16.6043 30.8729 30.5630 30.6794 15.2661 
 
Table 8.6. Average of S-CIELAB color difference ( E∆ ) metric of the halftoned color-
quantized outputs of various algorithms with rs  = 1,2,3 and 4. (Palettes were 
generated with median-cut algorithm [Heckbert 82] of size 128.) 
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(a) Original  

(b) [Orchard 91] (c) [Özdemir 00] 

(d) [Akarun 97] (e) Proposed 
Figure 8.3. Color quantization results of full-scaled “Caps” (palette size = 64): (a) 
Original (b) [Orchard 91], (c) [Özdemir 00], (d) [Akarun 97], (e) proposed algorithm 
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(a) Original  

(b) [Orchard 91] (c) [Özdemir 00] 

(d) [Akarun 97] (e) Proposed 
Figure 8.4. Color quantization results of down-sampled versions of “Caps” with rs  =2  
(Palettes were generated with median-cut algorithm [Heckbert 82] of size 64): (a) 
Original (b) [Orchard 91], (c) [Özdemir 00], (d) [Akarun 97], (e) proposed algorithm 
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(a) Original  

(b) [Orchard 91] (c) [Özdemir 00] 

(d) [Akarun 97] (e) Proposed 
Figure 8.5. Color quantization results of down-sampled versions of “Caps” with rs  =3  
(Palettes were generated with median-cut algorithm [Heckbert 82] of size 64): (a) 
Original (b) [Orchard 91], (c) [Özdemir 00], (d) [Akarun 97], (e) proposed algorithm 
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(a) Original  

(b) [Orchard 91] (c) [Özdemir 00] 

(d) [Akarun 97] (e) Proposed 
Figure 8.6. Color quantization results of down-sampled versions of “Caps” with rs  =4  
(Palettes were generated with median-cut algorithm [Heckbert 82] of size 64): (a) 
Original (b) [Orchard 91], (c) [Özdemir 00], (d) [Akarun 97], (e) proposed algorithm 
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8.6 Summary 

In this Chapter, a multiscale color error-diffusion algorithm for color 

quantization is proposed. It makes use of the multiscale technique to perform color 

quantization in YIQ color space with error diffusion using a non-casual filter. This 

eliminates directional hysteresis and reduces color impulses. Simulation results 

demonstrated that the proposed algorithm can achieve a remarkable improvement in 

the quality of halftoned color-quantized images both subjectively and objectively in 

term of S-CIELAB color difference ( E∆ ) metric [Zhang 96] as compared with the 

other available algorithms.  

The proposed algorithm can be modified to process an image in a block-based 

approach to save processing time when parallel processing is allowed. Simulation 

results show that the blocking artefact is invisible in the output of this block-based 

algorithm and its performance is comparable to that of the original proposed 

algorithm, which makes it suitable for real-time applications. 

It is always useful to produce scalable color-indexed images for delivering 

media information to diverse clients over heterogeneous networks reliably and 

efficiently. The proposed multiscale error diffusion framework for color quantization 

is extended to produce scalable color-indexed images. For any given image, this 

algorithm can produce a high-quality directional-hysteresis free output and 

simultaneously embed a set of color quantization results of the downscaled versions 

of the given image without any memory overhead. With the color-quantization output 

of the proposed algorithm, Images of desirable resolutions can be extracted by simply 

down-sampling the output. The proposed algorithm works with any arbitrary color 

palettes of different size. 
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Chapter 9. 

Conclusions 

9.1 The Work Done 

Color quantization reduces the number of colors used to represent an image 

[Heckbert 82] and has been widely used in a number of applications such as 

displaying a color image on a low-end display, delivering images over the Internet 

and producing hardcopies of color images. In this thesis, the main thrust of our 

present works is the investigation on the following areas where various problems are 

remained unsolved, not properly solved, or not effectively solved. 

(1) Restoration of color-quantized images in which no error diffusion is involved 

(2) Restoration of color-quantized images in which error diffusion is involved 

(3) Production of scalable color prints 

(4) Formation of color-quantized image and scalable color-indexed images. 

In Chapters 3 to 6, four restoration algorithms are proposed to tackle the 

problem of the restoration of color-quantized images. Among them, the two proposed 

in Chapter 3 and 4 are dedicated for restoring color-quantized images in which error 

diffusion is not involved. One of them is regularization-based and the other is POCS-
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based. These algorithms make a good use of the palette to derive useful a priori 

information and then uses the a priori information to formulate the restoration 

algorithms. Simulation results showed that the algorithms could provide good 

restoration performance in terms of SNRI and CIELAB color difference metrics [CIE 

78].  

Obviously, restoring a halftoned color-quantized image is different from 

restoring a color-quantized image in which error diffusion is not involved. It is 

because the degradation models of these two cases are different. Accordingly, 

dedicated restoration algorithms should be developed to handle the problem of 

restoring halftoned color-quantized image. Chapters 5 and 6 presented another two 

restoration algorithms to tackle this problem. One of them is based on POCS theory 

[Youla 82] while the other is based on simulated annealing [Kirkpatrick 83]. These 

algorithms make a good use of the involved color palette and the error diffusion 

process to derive useful a priori information to formulate the algorithms. Simulation 

results showed that the two restoration algorithms can handle halftoned color-

quantized images well and provide good restoration performance in terms of both 

SNRI and CIELAB color difference metrics.  

When one renders halftone images for different printers of different 

resolutions, it is desirable to make the output scalable in a way that it embeds low 

resolution halftone images into a full-scale halftone image, and, through a very simple 

procedure such as down-sampling, the low resolution halftone images can be obtained 

from the high resolution halftone image directly. Theoretically, this can be handled by 

constrained halftoning. We found that, due to their frame based nature, multiscale 

error diffusion algorithms could be modified to realize constrained halftoning easily 

and effectively. In Chapter 7, we extend the idea of multiscale error diffusion to 
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propose an algorithm for generating scalable color halftones for printing applications. 

Unlike those conventional error diffusion algorithms [Floyd 76, Wong 96], the 

proposed algorithm can take care of the constrained pixel very well before handling 

the unconstrained pixels. This allows one to compensate for the disturbance caused by 

the mismatch in the dot assignment of constrained pixels when handling the 

unconstrained pixels. Also, discussions of some critical factors for achieving good 

constrained halftoning results are also provided. Analysis and simulation results 

showed that good halftoning results could be provided by the proposed algorithm. 

 In Chapter 8, a multiscale vector error diffusion framework is proposed to 

produce halftoned color-quantized image. Unlike those color halftoning algorithms 

for printing purpose, the proposed algorithm does not handle color planes separately 

and is able to handle color quantization using any arbitrary palette. Furthermore, the 

proposed algorithm can completely eliminate directional hysteresis and reduce color 

impulses as compared with the other algorithms. In order to take the advantage of 

parallel processing, the proposed algorithm was modified to process an image in a 

block-based approach. Theoretically, blocking artefact will occur in any block-based 

approach, but simulation results showed that this blocking artefact is invisible. 

Furthermore, the proposed algorithm can be used as a framework for generating 

scalable color-indexed images and a multiscale multiresolution color error diffusion 

algorithm is proposed accordingly. The algorithm can produce a high quality 

directional hysteresis free output and simultaneously embed a set of color quantization 

results of the downscaled versions. 

 On the whole, we have developed a set of image processing techniques for 

restoration and formation of color-quantized images. The proposed techniques can 

accomplish significant improvement over many of the existing techniques. 
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9.2 Future Works 

The work presented in this thesis can be extended in different aspects. First of 

all, based on the proposed restoration algorithms developed in Chapters 3 to 6, we 

believe that an investigation on their applications in the area of image coding would 

be promising. In most current image coding systems, the compression stage and the 

restoration stage operate separately. Accordingly, the two processes cannot make use 

of each other to optimize the overall coding performance. It would be advantageous to 

take the contribution of the restoration to be performed in the decompression process 

into account during image compression. The compression and the restoration can then 

be jointly optimized by adjusting the parameters of the encoder according to the 

difference between the original and the compressed image. 

Various halftoning algorithms are proposed in this thesis to generate scalable 

color halftones. The statistical characteristics of their outputs are different from that of 

the halftones generated with conventional algorithms. It would be interesting to 

investigate if one can encode these scalable halftones more efficiently by making use 

of the correlation of halftones in different resolutions. 

Besides embedding lower resolution halftones into the full-scale halftone, the 

multiscale multiresolution error diffusion algorithm proposed in Chapter 7 can also be 

extended to embed a pattern into a halftone such that watermarking can be achieved. 

A further investigation on this extension is valuable.  

The degradation models of color quantization algorithms proposed in Chapters 

7 and 8 are completely different from the conventional algorithms. There should be 

some dedicated restoration algorithms for their outputs. In short, there is ample scope 

for much challenging work in these areas. 
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Appendix A (Testing Images) 
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