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ABSTRACT

Two Essays on Liner Shipping Network Design

by

Jun Xia

Liner shipping network design is a comprehensive decision problem for the car-

rier to plan their service operations. A series of related decisions from tactical and

operational levels are coordinated to maximize the profits. In this thesis, we study

two network design problems for carriers in liner shipping. The first work focuses

on the joint decision makings for the network design, in which a general fuel con-

sumption function is assumed. The second work studies the solution to a compact

optimization model for the network design, in which the transshipment cost is taken

into account. In this thesis, we have developed novel optimization techniques to solve

both problems.

In the first study, we develop a mathematical programming model that addresses

fleet deployment, speed optimization, and cargo allocation jointly, so as to maximize

total profits for carriers at the strategic level. To capture fuel costs precisely, our

model adopts a general fuel consumption function that depends on both vessel speed

and vessel load. To overcome intractability caused by nonlinear terms in the model,

we separate fuel consumption costs into two terms associated with ship speed and
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ship load, respectively, so as to obtain a mixed integer linear programming formu-

lation for approximation. Based on column generation techniques, we develop an

iterative search algorithm that adaptively reorganizes the approximated formulation.

We conduct extensive experiments using generated data sets from actual liner ship-

ping services in different regions of the world to show the effectiveness of our approach

as well as the significant impact of speed-load factors on fuel consumptions. Manage-

rial insights are obtained by testing the model under different scenarios, which may

greatly assist decision makers in the liner shipping industry.

In the second study, we study a problem that aims at creating a set of regular

services for a designated fleet of oceangoing ships to transport the containerized car-

gos among seaports. Containers can be transshipped from one ship to another at an

intermediate port in order to improve the transportation efficiency. The objective of

the problem is to maximize the revenues from the satisfied demands while minimizing

the operating cost including the transshipment cost. For this issue, many solution

methods known to be effective for problems assuming zero transshipment cost cannot

directly apply, because the calculation of transshipment cost has significantly com-

plicated the problem and its mathematical formulation. To tackle this challenge, we

develop for this problem a new compact mixed-integer linear programming model.

However, the new model may contain exponentially many variables and constraints,

making its solution very challenging. Therefore, we propose a novel application of

simultaneous column-and-row generation to solve the linear programming relaxation

of the new model, so as to derive an upper bound for the profit of an optimal network

design. Based on this, we have developed a branch-and-price to find optimal or near-

optimal integer solutions for this problem. Results from experiments have shown the

effectiveness and efficiency of our models and solution methods.
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Publications arising from this thesis

The second chapter of this thesis is based on the following publication [78]:

• Joint Planning of Fleet Deployment, Speed Optimization and Cargo Alloca-

tion for Liner Shipping, co-authored with Kevin Li, Hong Ma and Zhou Xu,

Transportation Science, 49(4), 922-938, 2015
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CHAPTER 1

Introduction

Liner Shipping Network Design (LSND) is regarded as an important decision

problem for carriers to plan their service operations. In the past few decades, the

service network hold by the global liner shipping carrier continued to expand [24].

New capacities were constantly ordered and deployed to satisfy the booming cargo

demands [20]. Due to capricious nature of the shipping industry, both supply and

demand had frequent fluctuations in the market. In response to the changing market,

carriers required adjusting their service networks to keep the competitiveness.

Ever since the global financial crisis in 2008, demand for container shipping ser-

vices has shrunk significantly [67]. As a result, carriers are faced with a huge surplus

of tonnage. This overcapacity in the shipping industry is probably here to stay for

some considerable time because the capacity coming up in the pipeline cannot be

fully absorbed within a short while by restoration of the growth in demand. In ad-

dition to capacity surplus, the profit margins of carriers have come under pressure

because of the increase in fuel prices and the cost of emission taxes. In order to save

on fuel costs and to absorb excess capacity, as of January 2011, over 90 percent of

the Far East-North Europe loops and over 70 percent of the Far East-US East Coast

loops have adopted an extra slow steaming strategy in their daily operations [15].

Due to steady growth in both the U.S. and European economies, the industry saw
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an increase in trans-Pacific and Asia-Europe volumes during 2013, but huge capacity

growth widens the supply-demand gap, and therefore, during the year 2014 the slow

steaming strategy has still dominated container shipping [8].

However, speed reduction for cost saving is not sustainable. This is because,

when ships operate at a low speed, saved fuel costs can barely offset the increased

operating costs due to having to deploy additional ships. As well as adopting slow

steaming, carriers are also systematically coordinating their service networks in order

to make their fleets not only cost efficient but also market oriented. This is what

has motivated this thesis to address an aggregate model for the planning of fleet

operations with speed optimization. In Chapter 2, we have a particular attention on

a joint optimization for LSND where the ship sailing speed is an important issue to

be considered.

Transshipment operations also play an important role in liner shipping. According

to [69], less than 20% of the country pairs are connected with each other through a

direct service. As shown in Figure 1.1, from 1990 to 2012, the growth of total port

throughput has accompanied with an increased share of transshipment cargos from

17.6% to 28%. Note that the transshipment operation and its cost will affect the

decisions for network design. Some important transshipment operations can signifi-

cantly reduce the transit times as well as the operating costs for the cargo demand

fulfillment. Moreover, in the practice, since terminal operation costs vary from port

to port, the transshipment cost cannot be overlooked in the planning as it will influ-

ence the decisions in LSND, such as which port to call and where to transship the

cargos. In Chapter 3, we focus on the LSND that captures the transshipment cost in

the optimization.

In the first study, a comprehensive mathematical programming model has been

addressed to optimize fleet deployment, speed optimization, and cargo allocation

jointly, so as to maximize total profits for carriers at the strategic level. Different
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Figure 1.1: Growth of transshipment share over the total port throughput [52]

from the existing work, we consider a general fuel consumption function that depends

on both vessel speed and vessel load. Due to the nonlinear fuel consumption function,

the original model formulation is intractable. We thus introduce new techniques to

handle the nonlinear terms so that a mixed integer linear programming formulation

is then obtained for approximation.

Although a commercial solver, such as CPLEX [21], could directly tackle the ap-

proximate formulation, it is impossible to solve even for moderate sized instances

since the number of both variables and constraints grows exponentially with the net-

work size. By aggregating the route dependent constraints, we study a new linear

programming relaxation which is solved by a column generation approach. Based on

column generation techniques, we develop an iterative search algorithm that adap-

tively reorganizes the approximated formulation. We conduct extensive experiments

using generated data sets from actual liner shipping services in different regions of the

world. The effectiveness of our approach as well as the significant impact of speed-load

factors on fuel consumptions can be observed from the experimental results. We test
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the model under different fleet deployment strategies, which may produce managerial

insights to assist decision makers in the liner shipping industry.

In the second study, we investigate a general liner shipping network design prob-

lem. The objective of this decision problem is to maximize the revenues from the

satisfied demands while minimizing the operating cost including the transshipment

cost. We develop for this problem a new compact mixed-integer linear programming

model. However, in the new model, the numbers of decision variables and constraints

are both proportional to the number of rotations, and solving it becomes challeng-

ing. Therefore, we propose to applying an optimization technique, referred to as

simultaneous column-and-row generation, to solving the linear programming relax-

ation of this model. Using this technique, we have developed several new solution

methods to find optimal or near-optimal integer solutions for this problem. Numer-

ical experiments are conducted to show the effectiveness and efficiency of our model

and solution methods. Results from the numerical experiments show that our exact

solution method solves more and larger instances and averagely consumes less run-

ning time than CPLEX’s MIP-Solver. Our solutions also significantly outperform the

existing benchmark solutions.

The remainder of this thesis is organized as follows. We first present the joint

optimization problem of LSND with the consideration of a general fuel consumption

function in Chapter 2. The network design problem with transshipment cost is then

studied in Chapter 3. In Chapter 4, we summarize the above two studies together

with a discussion on some future research directions.
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CHAPTER 2

Joint Planning of Fleet Deployment, Speed

Optimization, and Cargo Allocation for Liner

Shipping

2.1 Introduction

The planning of liner shipping services has been studied for years, and a review

of such literature was conducted by [63, 16, 17, 18, 48]. Liner shipping fleet deploy-

ment (LSFD) is an important decision-making issue that assigns containerships on

a service network based on expected capacities and frequencies on loops. There is

much literature focusing on LSFD. Two early representative studies by [55] and [31]

discussed fleet deployment in liner shipping. The authors provided a comprehensive

investigation of the relevant objectives, considerations and models for LSFD. Their

work was then extended by Powell and Perkins [58], where the number and type of

ships to serve each enumerated route were determined using an integer programming

model. Christiansen et al. [17] later summarized a mixed integer linear programming

(MILP) formulation to design voyages and lay-up times for each ship type in a given

planning period.

LSFD is also studied along side other decisions made in liner shipping. Ship
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scheduling and cargo routing are typical decisions to be made when fleet deployment

is studied along with network designs. Agarwal and Ergun [1] presented a MILP model

to optimize the routes for both ships and cargos. They deployed ships on each cycle

of a route, observing the frequency requirements. Three algorithms, including greedy

heuristic, column generation and benders decomposition were investigated. Álvarez

[3] consolidated ship routing, cargo routing and fleet deployment into one optimization

problem. They developed an iterative framework that uses a meta-heuristic to control

ship routing and fleet deployment at a master level, while solving cargo routing by

mathematical programming at a secondary level. Gelareh and Pisinger [29] designed a

hub and spoke network for liner service routes. An integrated model was proposed to

determine hub locations, port connections, cargo flows and fleet deployment, for the

purpose of profit maximization. They decomposed the model into a master problem

for network design and fleet deployment, and a subproblem that optimizes cargo flow

via linear programming. Liu et al. [37] considered both nonempty and empty container

flows in fleet deployment decisions. In addition to a sequential model, they also

developed a joint model solving the ship deployment and cargo flow simultaneously,

in which the formulation of cost is independent from the ship speed. Wang and Meng

[71] focused particularly on cargo transshipment operations, and they developed a

MILP model to resolve fleet deployment directly using commercial solver.

Fuel consumption of a containership is significantly influenced by its operating

speed, which for the most part follows an exponential function when sailing at a

speed of above 14 knots [26, 41, 53, 64, 80]. Therefore, fuel cost is saved at the

expense of increased traveling time. Among numerous studies focused on shipping

speed optimization [62, 25, 51, 70], only a few have investigated LSFD by considering

speed optimization. Meng and Wang [43] studied the optimal operating strategy

including frequency, speed and number of ships deployed on a service route. They

employed a piecewise linear function to approximate the relationship between fuel
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consumption and speed. A branch and bound method was proposed to obtain a

near optimal solution with a guaranteed gap to the global optimum for a single liner

service. Álvarez [3] defined a run as a combination of ship type, speed and service, and

then assigned ships on a set of runs by enumeration. Gelareh and Meng [28] assumed

the unit cargo cost on each individual link was correlated to the speed of the ship.

Binary variables were set to decide the speed at which the ship will travel on different

legs of service. In comparison, Álvarez [3] did not optimize the speed on each leg of a

route. Gelareh and Meng [28] predetermined cargo allocations before developing the

model, and therefore, their model can only be applied for a short term case. This work

strives to overcome these limitations, that is, in addition to determining the optimal

ship speed on each link of the route, we will also provide an integrated model that

jointly optimizes ship routing, fleet deployment, cargo distribution and frequency for

a complete liner shipping service network.

In addition to the operating speed, the fuel consumption of a containership is also

affected by the amount of cargo loaded on board. “Load factor” has become even

more important nowadays, because statistics show that, in practice, containerships

are not making full use of available capacity, due to trade imbalance among regions

and overcapacity in the market [56, 68, 39]. Kontovas and Psaraftis [34] showed

that a realistic fuel consumption function consists of the load factor and transit time

over the shipping legs. Wang et al. [77] linked the fuel consumption function with

the ship displacement. Psaraftis [59] and Psaraftis and Kontovas [60] developed an

explicit formulation for the general fuel consumption function that jointly depends

on speed and load. Psaraftis and Kontovas [60] modeled the speed-load dependent

fuel consumption function in their speed optimization model. The optimal speed

was found to minimize the summation of fuel cost, inventory cost and charter cost.

Among the other speed models reviewed by [60], very few works had investigated the

speed-load dependent fuel cost. There is, therefore, still a gap in research as how
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to incorporate the speed-load fuel cost into the planning of a liner shipping service

network, and our work seeks to fill this gap.

In our work, we aggregate globally distributed ports into a small number of regions

according to their geographic locations, so as to decrease demand uncertainty and to

facilitate planning. Network aggregation also appears both in practice and in the

literature. For example, Hapag-Lloyd, a global liner shipping carrier, divides the

entire market into nine regions. Their services and offices were also classified and

searched by region. In the literature, Jepsen et al. [32] formulated a liner shipping

network design model based on a novel view of demands on a trade basis instead of the

origin-destination (o-d) pairs. The aggregation of demand can be further fine tuned

to cater for both detailed networks for a smaller region and coarse network designs

for a larger region. Mulder and Dekker [49] developed a specific way to cluster the

ports based on a list of central ports; they first determined the network design based

on port clusters, and then implemented cluster disaggregation in cargo routing. The

service network aggregation approach that we take is to cluster ports into a smaller

number of regions, and to rotate ships among these regions to fulfill the inter-regional

demands. By alternating the aggregation scope, our proposed model is applicable to

planning at different levels.

In summary, the contribution of this study is multi-fold. We implement aggre-

gation to represent the carrier’s service network, where the aggregation scope can

be altered to make it compatible with different planning levels. Besides the fleet

deployment decision, we strive to optimize ship routing, cargo allocation, speed and

frequency simultaneously. Furthermore, based on the general fuel consumption func-

tion introduced in [60], this work is new within in extant literature in that it also

incorporates the speed-load dependent fuel cost into the planning of liner shipping

services. Effective models and solution methods are developed and examined to study

the new problem, and managerial insights are acquired from extensive numerical stud-
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ies for different liner shipping scenarios.

The rest of this work is organized as follows. In Section 2.2, we introduce an

aggregate shipping network and the joint effect of speed and load on fuel consumption.

An aggregate planning model is developed in Section 2.3. In Section 2.4, we study

the solution techniques that can efficiently solve the proposed model. Computational

results based on extensive data are presented in Section 2.5, followed by the summary

in Section 2.6.

2.2 Problem Description

Consider a General Service Network (GSN) of two liner shipping routes, as shown

in Figure 2.1(a), which consists of ports, links and services. From the perspective

of a liner shipping carrier, nearby and competing ports within a specific maritime

range could be grouped as regional clusters. Hence, for efficiency considerations, the

carrier may opt to bypass one port so as to gain the advantage of another in the same

regional cluster. An Aggregated Service Network (ASN) with two regions is then con-

ceptualized as shown in Figure 2.1(b). Nodes in the ASN could be continental areas

(e.g. Asia, Europe), oceanic areas (e.g. Far East, US West Coast, Mediterranean)

or national areas (e.g. China, Australia), based on different division rules. In this

work, we set the aggregate regional clusters based on the regional separations adopted

in [30].

Based on the concept of regional clusters, the liner service routes in a GSN can

be considered as a combination of inter-regional and intra-regional links in a ASN.

In Figure 2.1, for example, FE-FE-USWC-USWC-FE is a feasible region rotation

service route after the aggregation. The solid directed links between FE and USWC

are inter-regional while the dashed undirected links FE-FE and USWC-USWC are

intra-regional.

Without loss of generality, consider that an ASN has a set of regions Z indexed
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Figure 2.1: Aggregation of a network with two transpacific liner shipping services
from [30]

by z, and a set of links A indexed by e. For each e ∈ A, let `e denote the average

voyage length of the link e. Here `e is assigned by mean values from practical existing

service routes. See Figure 2.2 for example, where a GSN of two shipping services and

nine ports is illustrated in Figure 2.2(a) and its corresponding ASN of three regions

is illustrated in Figure 2.2(b). In Figure 2.2(b), the intra-regional link B-B has a

length of (2 + 3 + 3)/2 = 4 and the inter-regional link A-C has a length of 15/1 = 15.

Note that there exist errors for a region rotation route in an ASN so as to represent a

realistic service route in a GSN. We ignore such errors because of their minor effects

at an upstairs planning level.

It is worth noting that while cargo demand is usually identified by an origin port

and a destination port, within the ASN cargo demand is aggregated accordingly. Let

D denote a set of cargo demand generated on a weekly basis. Each cargo demand

(o, d) ∈ D is identified by its origin region o and destination region d, which generates

a freight rate pod per TEU of cargos. A maximum of qmax
od TEUs of cargos are generated

for (o, d), among which a contracted amount of qmin
od TEUs must be fulfilled. We denote

the route set by R, each route r ∈ R bypasses the links e ∈ A(r). Consider a fleet

of containerships with ship type set S. The ship of type s ∈ S has a capacity of ms

10
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Figure 2.2: An illustrative example from GSN to ASN

TEUs, a maximum fleet size of ns, and a net weight ws. Let as, bs and τs denote the

weekly operating cost, weekly idle cost and daily port stay cost, respectively for such

a ship of type s.

Represent a certain liner service by a particular combination (s, r, k, v) that implies

a total of k ships of type s operating on route r under a speed strategy v which

maintains the service once a week. To guarantee a weekly frequency of k ships, the

total voyage time of service (s, r, k, v) must be equal to k weeks. Define v = [ve :

e ∈ A(r)] is a speed vector that contains the ship sailing speed on each link of the

route. We assume the sailing speed of a ship is selected from a set of discrete values.

In abbreviation, we use indicator i to differentiate and identify a particular liner

service, while the associated combination is denoted by (si, ri, ki, vi). Let Ω represent

the total set of services, and define Ω(o, d) for candidate services reaching demand

(o, d). Let A(i, o, d) denote the set of links traveled by service i to serve (o, d). Let

D(i, e) denote the set of cargo demand shipped on link e of service i. We consider

two types of decision variables in the model: xodi denotes the TEUs of cargo demand

(o, d) allocated to service i and yi denotes the service frequency (number of sailing

per week) of deploying service i.

In the aggregate planning, we hold the following assumptions: (i) The weekly

11



demand is stabilized and deterministic; (ii) the fuel oil price is known; (iii) the daily

port stay cost is identical in each region; and (iv) transshipments between two dif-

ferent services are not considered. We consider assumption (i) because the forecast

of aggregate demand has relatively smaller uncertainties. In the planning, we settle

the fuel oil price at an average value over the period so that assumption (ii) holds.

Assumption (iii) is given to simplify the presentation. Assumption (iv) is considered

to simplify the development of our model and solution method. To consider cargo

transshipment operations, the model without transshipments can be extended such

that the cargo flow on each link of the route is determined by the flow conservation

constraints. Based on that, the solution techniques proposed in this chapter can still

handle the extended model.

Based on the ASN, our aggregate planning is able to cope with a set of services

with specific frequencies (speeds), and simultaneously allocates cargos to services in

such a way that total profit is maximized. Considering an undetermined planning

period, the objective becomes the amount of profit earned in a week, so that the

total profits over a given period are equivalent to the weekly profits multiplied by the

number of weeks involved in the planning period.

Speed and load are two important factors that determine the amount of fuel con-

sumed during the transportation. Bektaş and Laporte [10] modeled the influence of

load weight on vehicle fuel consumption in a classic vehicle routing problem. However,

in extant fleet deployment and speed optimization literature, the fuel consumption

of a ship is usually computed with respect to speed, while the displacement of loads

is largely overlooked. As a particular concern of this work, we will study the fuel

consumption of a ship by jointly considering speed and load. Define the fuel con-

sumption rate γ by the tonnage of fuel oil used per sailing unit nautical mile. v is

the operating speed of a ship, w is the weight of the ship without loads, and x is

the amount of cargo loaded on the ship. Psaraftis and Kontovas [60] formulate the

12



general fuel consumption function of a ship by γ = (β0 + βvn)(w + x)
2
3 , where w

and x are regarded as the total tonnages of the ship. Since the fuel consumption

per unit time is mostly studied proportional to the cubic of sailing speed, for ease of

presentation, we set β0 = 0 and n = 2. The following exact formulation is used to

calculate the speed-load dependent fuel consumption in our problem.

γ(v, x) = βv2(w + x)
2
3 . (2.1)

In the problem, w is counted in tons while x is counted in TEUs. To uniform the

unit, we approximately measure the total tonnages of the ship in TEUs by assuming

that the the average-loaded TEU container weighs about 8-13 tons.

2.3 Model Formulation

For the link e of a service i, let γ(xie) denote the associated fuel consumption rate,

where xie =
∑

(o,d)∈D(i,e) xodi denotes the total TEUs of cargos to be allocated. We

use φi(xi) to represent a round trip cost to operate service i, and xi = [xie : e ∈ A(ri)]

denotes a cargo vector indicating the TEUs of cargos on each link of service i. We

next formulate the round trip operating cost of service i as follows.

φi(xi) = asiki + τsi(7ki −
∑

e∈A(ri)

1

24

`e
vie

) +
∑

e∈A(ri)

α`eγ(xie). (2.2)

In Eq. (2.2), α denotes the fuel oil price. The summation of transit times on both

inter-regional and intra-regional links should be no greater than the total voyage time,

that is,
∑

e∈A(ri)
1
24

`e
vie
≤ 7ki must be satisfied. While the first term denotes the fixed

cost of a ship of type si for ki weeks, the second term formulates the total port stay

cost, calculated by multiplying the daily stay cost by the number of days of the stay.

The third term denotes the total fuel cost during the round trip.
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For each service i, the weekly operating cost is calculated by taking the round trip

cost multiplied by the number of ships operating on it, and averaged by the number

of weeks. Remember that each service is of weekly frequency, such that the number of

weeks is equal to the number of ships operated on that service. This implies that the

weekly operating cost is numerically equivalent to the round trip cost as formulated

in Eq. (2.2). In a way similar to [3] and [37], we integrate all decision variables,

constraints and objectives, and formulate the LSFD as a non-linear integer program.

(LSFD) max
∑

(o,d)∈D

∑
i∈Ω(o,d)

podxodi −
∑
i∈Ω

φi(xi)yi −
∑
s∈S

bs(ns −
∑

i∈Ω:si=s

kiyi)

(2.3a)

s.t. qmin
od ≤

∑
i∈Ω(o,d)

xodi ≤ qmax
od , ∀(o, d) ∈ D (2.3b)

∑
(o,d)∈D(i,e)

xodi ≤ msiyi, ∀i ∈ Ω, ∀e ∈ A(ri) (2.3c)

∑
i∈Ω:si=s

kiyi ≤ ns, ∀s ∈ S (2.3d)

xodi ≥ 0, yi ∈ Z+ ∪ {0}. ∀(o, d) ∈ D, ∀i ∈ Ω (2.3e)

The objective function shows the maximization of weekly profits obtained by sub-

tracting weekly operating costs and weekly idling costs from weekly revenues. Con-

straints (2.3b) restrict the fulfillment of cargo demand to no smaller than a mandatory

volume and no greater than a maximum volume. Constraints (2.3c) provide capacity

limits for cargo flows on each link of the operated service routes. Constraints (2.3d)

restrict the number of ships of each type to be deployed under the given fleet sizes.

The decision variables are given in Eq. (2.3e).

Note that the model is computationally difficult due to its non-linearity and non-

convexity. Moreover, there are a large number of integer columns in the model which

also increases the complexity. We thus need to carry out some preliminary work to

properly transform the model so that the problem can be tackled by existing solution
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techniques in an efficient way. We first approximate the fuel consumption function γ

by µ(v) + ωx, where µ(v) can be any function of v, and x is formulated in a linear

form with coefficient ω. Substitute γ(xie) by µ(vie) +ωxie in Eq. (2.2) and we obtain

the operating cost function in a separated form as follows.

φi(xi) = asiki + τsi(7ki −
∑

e∈A(ri)

1

24

`e
vie

) +
∑

e∈A(ri)

α`eµ(vie) +
∑

e∈A(ri)

α`eωxie.

Let ci(vi), a function of speed vector vi, denote the summation of the first three

terms of φi(xi).

ci(vi) = asiki + τsi(7ki −
∑

e∈A(ri)

1

24

`e
vie

) +
∑

e∈A(ri)

α`eµ(vie).

By replacing xie with
∑

(o,d)∈D(i,e) xodi, the operating cost function is then repre-

sented as follows.

φi(xi) = ci(vi) +
∑

e∈A(ri)

∑
(o,d)∈D(i,e)

α`eωxodi

= ci(vi) +
∑

(o,d)∈D

ηodixodi,

where ηodi is a known constant that equals to
∑

e∈A(i,o,d) α`eω. Due to Constraints (2.3c),

xodi is equal to zero if yi = 0. Therefore, in all cases, we have that φi(xi)yi =

ci(vi)yi +
∑

(o,d)∈D ηodixodiyi = ci(vi)yi +
∑

(o,d)∈D ηodixodi. Substituting it into LSFD,

we then obtain an approximate model denoted by LSFDA as follows.

(LSFDA) max
∑

(o,d)∈D

∑
i∈Ω(o,d)

(pod − ηodi)xodi −
∑
i∈Ω

ci(vi)yi −
∑
s∈S

bs(ns −
∑

i∈Ω:si=s

kiyi)

s.t. (2.3b), (2.3c), (2.3d), (2.3e).

We thus get the following proposition.
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Proposition 2.1. If γ is separated by two terms that depend on x and v and the

term of x is linear, then LSFD can be approximated to an MILP.

Proposition 2.1 provides an approximation condition of γ that approximates the

original non-linear LSFD to an MILP formulation. It enables us to focus our work

on LSFDA instead of LSFD. More importantly, as long as the approximation gap of

γ is small, the optimum of LSFDA is able to provide a reliable benchmark which is

intuitively close to the optimum of LSFD.

2.4 Solution Method

Our solution method for obtaining a heuristic solution of LSFD is structured as

follows. In Section 2.4.1, we introduce an approximation of γ that allows the ap-

proximation model LSFDA to be an MILP. Since LSFDA consists of a huge number

of decision variables and the constraints are associated with services, it is difficult

to tackle it directly. In Section 2.4.2, we therefore propose a relaxation of LSFDA

by relaxing integer variables and aggregating capacity constraints. In Sections 2.4.3

and 2.4.4, we discuss a column generation algorithm for solving the resulting linear

programming model, with its pricing problem being solved by a path searching al-

gorithm. This column generation algorithm generates a significantly smaller number

of services, enabling us to select the best subset of services to construct a heuristic

solution to LSFDA and LSFD. The solution can be further improved by a speed opti-

mization procedure and an iterative search algorithm, which are discussed in Sections

2.4.5 and 2.4.6, respectively.

2.4.1 Approximation of γ

By conducting a series of sample fitting tests, we define µ(v) = ω′′ + ω′v2 and

approximate the fuel consumption rate function by Eq. (2.4), which, on average, has
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the R-square as no less than 0.96.

γ(v, x) = ω′′ + ω′v2 + ωx. (2.4)

Eq. (2.4) allows LSFDA to be an MILP, and we can further derive a valid upper

bound on the optimal objective value of LSFD. We begin by establishing a lower

bound for the approximation of γ. Let the coefficients ω′ and ω be fixed from the

regression, and then we can move the surface down by reducing the constant term of

(2.4) to ω̄′′, in such a way that the entire surface of (2.1) is always standing over the

lower approximation surface among feasible x and v. Let γ̄(v, x) = ω̄′′+ω′v2 +ωx be

the lower bound approximation. Let F (v, x) = v2(w + x)
2
3 − ω′v2 − ωx, and we then

have the following proposition:

Proposition 2.2. Given [vmin, vmax] as the speed interval and m as the maximum

capacity of a ship, γ̄(v, x) ≤ γ(v, x) for any v ∈ [vmin, vmax] and x ∈ [0,m], if the

condition ω̄′′ = min{F (vmin, 0), F (vmin,m), F (vmax, 0), F (vmax,m)} is satisfied.

Proof. We prove this proposition by discussing the following two cases. (i) Suppose

v is fixed by a value in [vmin, vmax]; then we have F ′′(x) = −2
9
v2(w + x)−

4
3 which

is always negative. This thus shows that F (x) is concave and that the minimum

point should be located on the extreme points of x; (ii) Suppose x is fixed by a value

in [0,m], we then have F ′(v) =
(

2(w + x)
2
3 − 2ω′

)
v. Since v only takes a positive

value, the function F (v) must be monotonic. Thus the minimum point of F (v) must

be located at the extreme points of v as well. In summary, the minimum point of

F (v, x) must be found from the four extreme points (vmin, 0), (vmin,m), (vmax, 0) and

(vmax,m).

Substituting γ̄(v, x) into Eq. (2.2), we get a lower bound φi(x) for the operating

cost function. Further substituting φ̄(x) into LSFD, we then obtain an MILP whose

optimal objective value is an upper bound for LSFD.
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2.4.2 Relaxation of LSFDA

Although LSFDA is an MILP after an approximation of γ, the number of decision

variables and constraints it has are still proportional to the number of services, which

grow exponentially with the number of regions in an ASN. We find it not feasible, us-

ing a commercial solver, to directly solve LSFDA or its linear programming relaxation,

when the number of regions grows large. Moreover, in LSFDA, Constraints (2.3c) are

associated with services, so it is also not feasible to directly apply the classical column

generation approach to the linear programming relaxation. Therefore, we here relax

LSFDA further by aggregating the capacity constraints with respect to the same ship

type s and link e, so as to obtain a new relaxation model (P) as follows.

(P) max
∑

(o,d)∈D

∑
i∈Ω(o,d)

(pod − ηodi)xodi −
∑
i∈Ω

(ci(vi)− bsiki) yi −
∑
s∈S

bsns(2.5a)

s.t.
∑

i∈Ω(o,d)

xodi ≤ qmax
od , ∀(o, d) ∈ D (2.5b)

∑
i∈Ω(o,d)

xodi ≥ qmin
od , ∀(o, d) ∈ D (2.5c)

∑
i∈L(s,e)

∑
(o,d)∈D(i,e)

xodi ≤ ms

∑
i∈L(s,e)

yi, ∀s ∈ S,∀e ∈ A (2.5d)

∑
i∈Ω:si=s

kiyi ≤ ns, ∀s ∈ S (2.5e)

xodi ≥ 0, yi ≥ 0. ∀(o, d) ∈ D, ∀i ∈ Ω (2.5f)

In the aggregated capacity constraints (Constraints (2.5d)), L(s, e) is the subset

of services which traverse link e and are operated by ships of type s. It is worth

noting that the relaxation model (P) is a linear programming model, and that Con-

straints (2.5d) are not associated with services. The total number of constraints in

the relaxation model (P) is reduced to O(|D|+ |S||A|).
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2.4.3 Column Generation Based Heuristic

In this section, we propose a column generation based heuristic. It first employs

a column generation procedure to solve the relaxation model (P), and then from

the generated services (columns), it selects a subset of them to construct a solution

to LSFDA and LSFD using an MILP solver. Similar approaches have been applied

and shown in the literature to be competitive for solving various large-scaled MILP

problems [1, 22].

Given the LP relaxation model of LSFDA, we initialize the Restricted Master

Problem (RMP) that includes only a subset of columns Ωa. Let θod and θ′od be

the dual variables of Constraints (2.5b) and (2.5c). Let πse and ρs denote the dual

variables of Constraints (2.5d) and (2.5e). Solving the RMP to optimality, we obtain a

corresponding dual solution (θ, θ′, π, ρ)a with respect to Ωa. Note that if (θ, θ′, π, ρ)a

is feasible to the dual problem of (P), which is presented in Eq. (2.6a)-(2.6d), the

optimal solution to the RMP associated with Ωa is then optimal to (P). Otherwise,

there exist columns in Ω \Ωa such that Constraints (2.6b) or (2.6c) are violated, and

we shall add these columns to the RMP to improve its optimal value.

(D) min
∑

(o,d)∈D

qmax
od θod −

∑
(o,d)∈D

qmin
od θ′od +

∑
s∈S

nsρs (2.6a)

s.t. θod − θ′od +
∑

e∈A(i,o,d)

πsie ≥ pod − ηodi,∀(o, d) ∈ D, ∀i ∈ Ω(o, d),(2.6b)

−
∑

e∈A(ri)

msiπsie + kiρsi ≥ −ci(vi) + bsiki,∀i ∈ Ω, (2.6c)

θod, θ
′
od, πse, ρs ≥ 0.∀(o, d) ∈ D, ∀s ∈ S,∀e ∈ A. (2.6d)

We next formulate the pricing problem to identify the columns that violate the

dual constraints. Define violation values ∆′od(i) and ∆(i), respectively, as the amount

by which Constraints (2.6b) (for each (o, d) pair and service i) and Constraint (2.6c)

(for each service i) are violated. Based on the dual solution obtained from solving
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the RMP optimally, we compute ∆′od(i) and ∆(i) in Eq. (2.7)-(2.8).

∆′od(i) = pod − ηodi − θod + θ′od −
∑

e∈A(i,o,d)

πsie, (2.7)

∆(i) = −ci(vi) + bsiki +
∑

e∈A(ri)

msiπsie − kiρsi . (2.8)

Note that for each column i (service i) and each (o, d) pair inD(i), Constraints (2.6b)

are violated if, and only if ∆′od(i) > 0, and that Constraints (2.6c) are violated if, and

only if ∆(i) > 0. Define the total violation value for column i as the weighted

sum of violation values of those violated constraints, i.e., δmax{∆(i), 0} + (1 −

δ)
∑

(o,d)∈D(i) max{0,∆′od(i)}, where δ ∈ (0, 1). It can be seen that if this value is

equal to 0, column i does not violate any dual constraints, and otherwise, column

i must violate at least one of the dual constraints. The pricing problem is then to

find a column of the maximal total violation value. If this value is positive, we find

a column that violates Constraints (2.6b)-(2.6c). Otherwise the dual constraints are

all satisfied and (P) reaches optimality.

When no constraints in (D) are violated, the relaxation model of LSFDA is solved

to optimality, and the column generation procedure obtains a set of generated services.

The total number of generated services is significantly smaller than that of all possible

services, and therefore we can use an MILP solver to select a best subset of them to

construct a heuristic solution to LSFDA, which is also a heuristic solution of LSFD.

2.4.4 Solving the Pricing Problem

It can be seen that the pricing problem defined in Section 2.4.3 is to determine

a service combination (s, r, k, v) that achieves the maximal total violation value with

regards to Constraints (2.6b) and (2.6c). Correspondingly, we can solve the problem

for each ship type s. Given s, the problem can be formulated as a path search problem

on a time-space network Gs (Figure 2.3), where the time horizon is discretized by T
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time points, denoted by 0, 1, ..., T , with the length between adjacent time points being

one day. In the space dimension, each region z is duplicated to two copies z− and

z+, and let Z− and Z+ indicate the set of these two types of copies. In Gs, a node

is denoted by a region-time pair (z−, t) or (z+, t), indicating that a service may enter

region z, or leave region z, respectively, at day t. Each edge (z−u , t, z
−
u , t + 1) from

node (z−u , t) to node (z−u , t+ 1) indicates a one-day port stay in region zu during the

period from t to t+ 1, while each edge (z+
u , t, z

−
v , t

′) from node (z+
u , t) to node (z−v , t

′)

indicates an inter-regional voyage of a total t′− t days, leaving region zu at day t and

entering region zv at day t′. Similarly, each edge (z−u , t, z
+
u , t

′) from node (z−u , t) to

node (z+
u , t

′) indicates an intra-regional voyage of a total t′ − t days, within region

zu during the period from t to t′. It can be seen that for each edge indicating an

inter-regional or intra-regional voyage, the speed of the voyage associated with the

edge can be determined by the ratio between the distance and the transit time of the

corresponding voyage.

1
z

−

1
z

+

2
z

−

0 1 2 3 4 5 6 7

2
z

+

3
z

−

3
z

+

Figure 2.3: Time-space network representation of the pricing subproblem

Accordingly, a feasible path on the time-space network from (z−u , 0) to (z−u , 7k)
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for a particular k with 7k ≤ T can represent a feasible service (s, r, k, v), with the

route r following the same region sequence as the path, and with the vessel speed of

each voyage equal to the speed associated with the corresponding voyage edge. For

example, in Figure 2.3 the solid-line path starts at region z3 and takes one day to sail

to region z2, then stays at port in region z2 for one day, followed by a one day voyage

in region z2. The service returns back to region z3 after traveling for two days, and

afterwards spends one day at port and another day sailing in region z3. The solid-line

path forms a closed region sequence r′ = {z3 − z2 − z3} with speed v′ determined

by corresponding edges, and ends at (z+
3 , 7), implying k = 1. On the Gs, it thus

corresponds to a feasible service (s, r′, 1, v′). Similarly, we can see the dashed-line

path does not represent a feasible service since it starts at (z−1 , 0) but does not end

at any (z−1 , 7k) with 7k ≤ T .

Therefore, the pricing problem for a given ship type s is equivalent to finding

an optimal feasible path on Gs that represents a service combination with the total

violation value maximized. To solve the pricing problem for each given ship type s,

we apply a path search algorithm (see Algorithm 1) that generates paths on Gs by

adding new nodes to partial paths that have been obtained. Let Path(z, t) indicate

a collection of partial paths that have been obtained with the end node at (z, t),

where z ∈ Z− ∪Z+. In each iteration of the algorithm, we choose an existing partial

path in Path(z′, t′) for some z′ and t′, and extend it by adding one more node to the

tail. When the new partial path forms a feasible path that ends at a node (z, t) with

t = 7k for some k ≥ 1, it can be transformed to a service combination (s, r, k, v).

Among all the service combinations obtained, we choose the one with the maximal

total violation value as a solution to the pricing problem.

However, due to the large number of possible paths on the time-space network

Gs, it is not affordable to search among all feasible paths by enumeration. Therefore,

in order to reduce the search space, we define the a dominance relationship between
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two partial paths, such that only those partial paths that are not dominated will

be kept for further exploration. We define this dominance relationship using the

violation value of Constraint (2.6c) associated with a service combination (s, r, k, v)

in Eq. (2.9), which can be represented as follows.

−(as − bs + ρs)k + (−τs)(7k −
∑
e∈A(r)

1

24

`e
ve

)

+
∑
e∈A(r)

(−α`e(ω′′ + ω′v2
e) +msπse). (2.9)

Since (7k −
∑

e∈A(r)
1
24

`e
ve

) indicates the total port stay time of the service, the

second term in Eq. (2.9) can be represented by a total weight of port stay edges if

we assign a weight of −τs to each port stay edge in Gs. The third term in Eq. (2.9),∑
e∈A(r)(−α`e(ω′′+ω′v2

e)+msπse), can be represented by a total weight of voyage edges

if we assign a weight of (−α`e(ω′′+ω′v2
e) +msπse) to each voyage edge in Gs, while a

voyage edge in Gs would correspond to a link e in the original ASN, on which the speed

ve can be determined by the endpoints of the voyage edge. Thus, for every partial

path X, we can use its total edge weight, denoted by ∆(X), to represent a partial

violation value (wrt. Constraints (2.6c)) associated with any service combination that

can be obtained from X.

For any two partial paths X and Y that follow the same sequence of regions and

end at the same node on Gs, we can define that X is dominated by Y if ∆(X) ≤ ∆(Y ).

Accordingly, if a partial path X is dominated by an existing partial path Y , then we

can exclude X from further explorations. This is valid, because for any feasible path

P on Gs that can be obtained from X, we can construct another feasible path P ′ by

replacing X with Y . Since P and P ′ follow the same sequence of regions, the violation

of Constraints (2.6b) for P and P ′ are the same, which, together with ∆(X) ≤ ∆(Y ),

implies that the total violation value for P is not greater than that of P ′. Therefore,

we can safely exclude X without losing the optimal path.
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To further control the search space, we define ∆′od(X), for each partial path X and

for each (o, d) pair that appears in X, as the violation value (wrt. Constraints (2.6b))

associated with (o, d) as well as the path segment of X from o to d. Noting that

∆(X), defined earlier, denotes the partial violation value (wrt. Constraints (2.6c))

for X, we can assign each partial path X a total partial violation value, defined as the

sum of δmin{0,∆(X)} and (1− δ) min{∆′od(X)} for all the (o, d) pairs appearing in

X, and then use this value as another criteria to exclude X from further exploration.

Specifically, for each node (z, t), among all the partial paths in Path(z, t), we exclude

those with relatively small total partial violation values, with the hope that only some

of the partial paths of good qualities are explored.

Finally, in order to obtain service combinations that are consistent with patterns

observed in practice, we keep a partial path for exploration only if it can generate

services that satisfy the following rules: (i) No more than g regions are visited; (ii)

no links are traveled more than g′ times; (iii) the total duration does not exceed g′′

weeks. In this study, we scale regions by continental areas and set g = 3, g′ = 1,

and g′′ = 15, which identifies practical route patterns for liner shipping such as A-

B-A(direct pattern), A-B-C-A(round-the-world pattern) and A-B-C-B-A (pendulum

pattern). For more applications, as the region scope gets smaller and more regions

are involved in the service network, we may adjust parameter g to be larger and allow

rotating more region nodes in a service.

We can now summarize the above path search algorithm in Algorithm 1. For each

ship type s, it returns a service combination (or column) (s, r∗, k∗, v∗) that corresponds

to a feasible path in Gs with the largest total violation value obtained. Among all

the columns returned for various ship types, we pick the one with the largest total

violation value as a solution to the pricing problem.
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Algorithm 1 Path Search Algorithm

1: Initialize the service combination (s, r∗, k∗, v∗) that corresponds to the incumbent
optimal path in Gs by setting (s, r∗, k∗, v∗) = NULL;

2: for each node (z, t) in the time-space network do
3: Initialize Path(z, t) = NULL;
4: end for
5: for each z in Z− ∪ Z+ do
6: Initialize X = {(z, 0)}, and Path(z, 0)=Path(z, 0) ∪ {X};
7: end for
8: for each node (z, t) that z ∈ Z− ∪ Z+ and t moves from 1 to T sequentially do
9: for each node (z′, t′) that connects to (z, t) with t′ < t do
10: for each partial path X ′ in Path(z′, t′) do
11: Construct a new partial path X by adding node (z, t) to the tail of X and

compute its total partial violation value;
12: if X can generate services that satisfy the practical rules, and X is not

dominated by any other partial paths in Path(z, t) then
13: Update Path(z, t) by adding X to Path(z, t) and removing partial paths

dominated by X;
14: end if
15: if X is a feasible path and its corresponding service combination (s, r, k, v)

is of a total violation value larger than that of (s, r∗, k∗, v∗) then
16: Update (s, r∗, k∗, v∗) by setting (s, r∗, k∗, v∗) to be (s, r, k, v);
17: end if
18: end for
19: Reduce Path(z, t) by removing partial paths of relatively small total partial

violation values;
20: end for
21: end for
22: Return (s, r∗, k∗, v∗).

2.4.5 Speed Optimization

In the column generation based heuristic, the speed strategy vi of a service i is

determined by the pricing problem, where the voyage cost with respect to speed v is

related to the approximation of γ. Once a solution is obtained and the cargo flow

decision variable x̄ is calculated, we can then calculate the actual fuel cost associated

with v after substituting x̄ into Eq. (2.1). Based on the calculated actual fuel cost

on each service i, we apply a speed optimization procedure which in essence solves a

single-source shortest path problem on a time-space network.
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Given (si, ri, ki) with respect to service i, we construct a time-space network (Fig-

ure 2.4) to optimize speed vi. Similar to the time-space network described in Section

2.4.4, we expand, in the space dimension, the involved regions in route ri with each

region, except for the last one, being duplicated to two copies, resulting a total of

2[ri] + 1 regions, where [ri] indicates the number of inter-regional links that route ri

contains. For the time horizon, we discretize the ki weeks voyage length by 7ki + 1

time points 0, 1, ..., 7ki and define the length between adjacent time points as one day.

We then define the network node as a region-time pair (z, t) which denotes a state

in region of z at day t. An edge e connecting (z, t) to (z′, t′) denotes either a port

stay or a voyage. If z = z′, the edge denotes a port stay at region z. On the other

hand, if z 6= z′, the edge denotes a voyage from z to z′ with a total time of t′− t days.

More specifically, depending on whether z and z′ refer to the same region, the voyage

can be further classified as an inter-regional voyage or an intra-regional voyage. The

edge weight is calculated by α`eβ(wsi + x̄ie)
2
3v2
ie, where vie = `e

24(t′−t) . The port stay

duration is also discretized into days, where the daily stay cost is given by τsi .

0 1 2 3 4 5 6 7

FE
+

FE
−

MED
−

MED
+

FE
−

Figure 2.4: Time-space network representation of a one-week liner service
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Figure 2.4 shows an illustrative example of a weekly service operated by one ship:

z1(FE−)−z2(FE+)−z3(MED−)−z4(MED+)−z5(FE−). The one week duration is

discretized into seven days, so each path from the starting node (z1, 0) to the finishing

node (z5, 7) represents a different speed strategy. Two speed strategy examples are

illustrated by the dashed-line path and the solid-line path in Figure 2.4. The dashed-

line path represents a schedule that starts from FE → sails inside FE for 2 days →

sails to MED in 1 day → sails inside MED for 1 day → stops at MED for 1 day →

sails back to FE in 1 day → stops at FE for 1 day before the voyage ends. Similarly,

the solid-line path follows a schedule that starts from FE → sails inside FE in 1 day

→ stops at FE for 1 day → sails to MED in 2 days → stops at MED for 1 day →

sails inside MED for 1 day → sails back to FE in 1 day and ends the voyage. It is

easy to see that the optimal speed strategy on this time-space network corresponds

to a shortest path from (z1, 0) to (z2[ri]+1, 7ki), which can be solved by the classic

Dijkstra’s algorithm [35].

Table 2.1: Approximation results of γ

Cargo (TEUs) Speed (knots) γ from Eq. (2.1) γ′ by from Eq. (2.4) Errors (%)

2000 14 0.065 0.045 30.26
4000 14 0.077 0.067 13.68
6000 14 0.089 0.088 0.69
8000 14 0.100 0.110 10.07
10000 14 0.110 0.132 19.33
2000 18 0.107 0.103 3.38
4000 18 0.128 0.124 2.62
6000 18 0.147 0.146 0.69
8000 18 0.165 0.168 1.52
10000 18 0.182 0.189 3.83
2000 24 0.190 0.216 13.88
4000 24 0.227 0.238 4.79
6000 24 0.261 0.260 0.69
8000 24 0.294 0.281 4.21
10000 24 0.324 0.303 6.55

2.4.6 Iterative Search Algorithm

The approximation of γ inevitably produces errors in calculating the fuel con-

sumption, which can be gauged in the following way. We first select a bundle of
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sample points from Eq. (2.1), where v and x are uniformly distributed over the feasi-

ble domain. ω′′, ω′ and ω are then fixed using least squares estimation. Eq. (2.4) has

an approximation value for Eq. (2.1) over the sample space. Then, given v and x,

we use Eq. (2.1) to compute the actual fuel consumption rate γ, and use Eq. (2.4) to

compute the approximate fuel consumption rate γ′. Table 2.1 presents the approxi-

mation results of γ for a 10000 TEUs containership with loaded cargo from 2000 to

10000 TEUs and speed from 14 to 24 knots.

The first and second columns indicate the cargo and speed. The third and fourth

columns show the actual value and approximated value of the fuel consumption rate

as computed by Eq. (2.1) and Eq. (2.4), respectively. The gaps between the two are

presented in the last column. We observe that the approximation does not perform

consistently because the error is 7.78% on average, and can be as large 30% for a ship

carrying 2000 TEUS cargo at a speed of 14 knots. To improve on the approximation

results, we then resort to the classic tangent plane approximation method which is

able to locally reduce approximation errors to a given point for a two variable function.

In our case, speed and cargo are given by v̄ and x̄. If we regard v2 as a variable, the

tangent plane approximation of γ is obtained by the following equation:

γ(v2, x) ≈ γ(v̄2, x̄) +
∂γ

∂v2
(v̄2, x̄)(v2 − v̄2) +

∂γ

∂x
(v̄2, x̄)(x− x̄)

In LSFD, decisions on speed and cargo flow are differentiated by edges and ser-

vices. We define γie as the fuel consumption rate at edge e of service i. The ap-

proximation parameters are initialized by ω′′0 , ω′0 and ω0 respectively. After a so-

lution of LSFD is obtained, we apply the tangent plane approximation to update

the approximation parameter γie according to the known speed v̄ie and cargo flow∑
(o,d)∈D(ri,e)

x̄odi on link e of service i. For each specific link e on service i, we set ω′′ie,

ω′ie and ωie adaptively as follows.
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ω′′ie = −2

3
βv̄2

ie(wsi +
∑

(o,d)∈D(ri,e)

x̄odi)
− 1

3

∑
(o,d)∈D(ri,e)

x̄odi,

ω′ie = β(wsi +
∑

(o,d)∈D(ri,e)

x̄odi)
2
3 ,

ωie =
2

3
βv̄2

ie(wsi +
∑

(o,d)∈D(ri,e)

x̄odi)
− 1

3 .
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Figure 2.5: Flow chart of the iterative search algorithm

As the approximation coefficients ω′′ie, ω
′
ie and ωie change with the current solution,

the model parameters of LSFDA, which approximates LSFD, change as well, and

therefore a new solution may be obtained by re-optimizing the updated problem. We

here propose an iterative search algorithm (ISA) that embeds the column generation

based heuristic. Figure 2.5 illustrates the flow chart of ISA, where each procedure is

referenced properly. It is also worth noting that we only update the approximation
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of γie for services in operation (service frequency yi > 0), so the pricing problem

still uses the initial approximation to generate new services in the column generation

heuristic. Finally, the termination of ISA occurs when convergence is achieved, i.e.,

the newly obtained solution is exactly the same as the previous solution.

2.5 Computational Experiments

In this section, extensive experiments are conducted to show the accuracy and ef-

ficiency of our model and solution methods. Different test cases are generated based

on data in existing literature as well as from actual practice. We report on the per-

formance of solution approaches discussed in Section 2.4, and show how significant

the considered speed-load dependent fuel cost function is by comparing our solutions

to a benchmark solution where the load factor is not considered. Next, we conduct a

sensitivity analysis of various practical factors, such as demand variation and change

in fuel cost. Finally, we evaluate and discuss a few deployment strategies used in

actual practice when carriers establish a fleet deployment plan. All algorithms are

implemented in C++, using IBM ILOG CPLEX 12.6 Callable Library interface. Ex-

periments are carried out on an Intel Core i5 (3.4 GHz) desktop PC with 4 GB RAM.

2.5.1 Data

The experiment is based mainly on a global aggregate network of up to 9 regions,

including Far East (FE), US West Coast (USWC), US East Coast (USEC), North Eu-

rope (NE), Mediterranean (MED), South Africa (SAF), West Africa (WAF), Central

America (CA) and South America (SA). These nine market regions are represented

by nine network nodes. Distances of inter-regional links and intra-regional links are

estimated by average values in nautical miles among existing services, and are detailed

in Table 2.2. The maximum weekly cargo demand of each region pair is normally dis-

tributed with the a mean of 5000 TEUs and standard deviation of 1000 TEUs. The
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minimum weekly demand for each region pair is set at 0. The length of the planning

horizon, i.e., the maximum duration for planning a service, is set at 15 weeks (105

days). The freight rate for each cargo demand (o, d) is uniformly distributed in a

range whose interval boundaries are proportional to the distance from region o to d.

Profits and costs are measured in one thousand US dollars, and the fuel oil price is

set at 0.7 thousand USD/TON. The distance matrix of the service network with nine

regions is shown in Table 2. This test case is named REG-9. We next generate an

additional eight test cases by trimming and expanding REG-9. Altogether, the nine

test cases are categorized into three groups: Small-sized cases containing only 3-5 re-

gions (REG-3, REG-4, REG-5); medium-sized cases containing 7-9 regions (REG-7,

REG-8, REG-9); and large-sized cases (REG-12, REG-15, REG-18) that are gener-

ated by expanding the number of network nodes (regions) in REG-9 with random

inter-regional and intra-regional distances. Finally, for each test case we generate ten

test instances having random demand and freight rates.

Table 2.2: Distance matrix of a service network with nine regions in nautical miles (REG-
9)

FE USWC USEC NE MED SAF WAF CA SA

FE 3134 5564 10658 8164 5241 8418 12256 15846 13256
USWC 4832 644 5321 8486 7260 12414 8790 3427 8718
USEC 9752 5321 1461 3165 4187 9929 6305 2312 6264
NE 8183 8505 3184 959 2322 8156 4533 6822 6749
MED 5431 7260 3848 2215 1649 6585 4001 6290 6217
SAF 8494 12410 9902 8157 6588 832 3838 8987 4838
WAF 12284 8786 6193 4533 4001 3838 3773 5363 4300
CA 15828 3423 2307 6803 6272 8987 5363 4179 5291
SA 13284 8714 6169 6746 6217 4838 4300 5291 3092

We consulted a few managers in a large shipping company and noticed nowadays

the average-loaded TEU container weighs about 8-13 tons. Without loss of generality,

we then measure the ship net weight by TEUs as shown in Table 2.3. We consider

four ship types with capacities of 10000, 8000, 5000 and 3000 TEUs. Ship specific

parameters refer to MARIT MAERSK (10000 TEUs), TENO MAERSK (8004 TEUs),
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MAERSK DUBROVNIK (5041 TEUs) and MAERSK PENANG (2902 TEUs). The

weekly fixed operating cost for ship types I, III, and IV is extracted from [71], while

the cost for ship type II is set between the cost values of type I and III. We set the

weekly fixed idle cost to 1/3 of the operating cost after some consultation. Likewise,

following [71], we set the daily port stay cost as the hourly cost multiplied by 24 hours.

Parameter β is set to 9.46 · 10−7 after regression on fuel consumption data extracted

from [53]. In general, we assume there are 80 ships in total ready for deployment,

there being 20 of each type.

Table 2.3: Characteristics of different ship types

Type I Type II Type III Type IV

ms (TEUs) 10000 8000 5000 3000
ws (TEUs) 4513 3816 3212 1731
as (USD per week) 173076 150000 115384 76923
bs (USD per week) 57692 50000 38461 25641
τs (USD per day) 80000 64000 40000 24000
ns 20 20 20 20

Moreover, we introduce a benchmark model for LSFDA in which the fuel con-

sumption rate is dependent only on speed, where m denotes the maximum capacity

of the ship.

γ(v) = βv2(w +m)
2
3 (2.10)

Since the number of all possible services is exponential to the length of planning

horizon, it is not affordable to include all possible combinations of (s, r, k, v) in the

benchmark model, even for small-sized cases with three regions only. It is also worth

noting that many possible routes, such as those visiting one region repetitively for

many times, are not feasible for practical deployment. We therefore, in the bench-

mark model for LSFDA, only include the decision variables and constraints that are

associated with routes satisfying those practical patterns proposed in Section 2.4.4.

By doing so, we are able to reduce the number of feasible services significantly. The
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benchmark model for LSFDA can then be constructed by enumerating (s, r, k, v) with

v taking the optimal speeds for each (s, r, k). For small and medium-sized cases, we

can apply the speed optimization procedure introduced in Section 2.4.5 to obtain

optimal speed v, and then use CPLEX’s mixed integer programming solver on the

benchmark model. For large-sized cases we can only use the column generation based

heuristic to get approximated benchmarks, because we find that CPLEX is unable

to build the model when the magnitude of the problem exceeds the computer mem-

ory. These benchmark results enable us to evaluate the significance of the speed-load

dependent fuel cost function presented in Eq. (2.1).

2.5.2 Performance of the Solution Methods

We use the following notations in presenting the experimental results in Table 2.4.

CPX and CG denote the two approaches that directly use CPLEX’s mixed integer

programming solver and the column generation based heuristic on the benchmark

model, respectively. SR denotes re-optimization on given solutions using the speed

optimization procedure, and CPX-SR and CG-SR denote the approaches that apply

SR to CPX and to CG. ISA denotes the iterative search algorithm that solves the

LSFD with the speed-load dependent fuel cost function. We also use UB to represent

a bounding method that solves the LSFDA with γ̄ defined in Section 2.4.1 using

CPLEX’s mixed integer programming solver directly. Results of all test cases are the

averages of ten instances solved by different approaches with a runtime limit of one

hour.

In Table 2.4, the performances of CPX, CG, CPX-SR, CG-SR and ISA are com-

pared in percentage gaps with regard to objective profits. The total number of

columns produced by CPLEX and CG when solving the benchmark model are listed.

Results of ISA are compared with UB in addition to both CPX and CG. From Ta-

ble 2.4, we observe that CPX solves two small-sized test cases (REG-3 and REG-4)
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Table 2.4: Overview of algorithm performances

REG CPX CG CPX-SR CG-SR ISA

vs. vs. vs. vs. vs. vs.
COL OPT(%) COL CPX(%) CPX(%) CG(%) CPX(%) CG(%) UB(%)

REG-3 168 0.00 50.4 -0.11 0.32 0.33 0.37 0.48 -23.50
REG-4 580 0.00 108.8 -0.90 0.18 0.14 0.23 1.14 -19.14
REG-5 1284 0.05 190.5 -0.30 0.24 0.18 -0.07 0.23 -15.64

REG-7 4788 6.15 505.6 -3.85 0.42 0.36 1.18 5.23 -22.83
REG-8 7816 6.38 610.5 -3.56 0.56 0.38 2.34 6.11 -22.64
REG-9 11820 7.03 737.3 -1.00 0.43 0.40 4.06 5.11 -22.98

REG-12 31344 n/a 1369.7 n/a n/a 0.69 n/a 7.58 n/a
REG-15 58708 n/a 2033.6 n/a n/a 0.72 n/a 8.76 n/a
REG-18 98093 n/a 3011.7 n/a n/a 0.46 n/a 8.32 n/a

to optimality. The number of generated columns increases exponentially as the test

case size increases, and therefore for large-sized test cases (REG-12, REG-15 and

REG-18) having a tremendous number of model variables and constraints, CPX re-

sults are not available (“n/a”). In comparison, CG produces good solution quality

while significantly reducing the number of columns. SR is confirmed to be useful,

as improvements are observed over both CPX and CG. Lastly, ISA performs very

competitively with CPX in small-sized test cases while outperforming both CPX and

CG in medium and large-sized instances, thus showing the effectiveness of speed re-

optimization and iterative search algorithms. The performance gap of ISA to UB is

also consistent with the increase in test case size.

The performance of ISA is further studied under various supply-demand condi-

tions. Three new test cases, each consisting of ten instances, are then generated to

simulate market conditions: REG-6 with 60 ships of Type IV, REG-12 with 80 ships

of Type IV and REG-18 with 100 ships of Type III. Figure 2.6 shows the percentage

improvements of ISA over CG, where the horizontal axes denote a decreasing trend

in demand, from 100% down to 40% of the initial amount. We observe that ISA

performs steadily under demand fluctuations in general, the improvement being more

apparent with small demands. Given that the benchmark solutions assume that fuel
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Figure 2.6: ISA performance under different capacity-demand market conditions for
instances of three different combinations of region numbers, ship numbers
and ship types (6 regions with 60 ships of Type IV, 12 regions with 80
ships of Type IV and 18 regions with 100 ships of Type III)

cost function are irrelevant to the actual loads of cargo, this observation suggests

that when ships are more likely to be under-loaded in an over-capacity condition, a

speed-load dependent fuel cost function has a big advantage in decision-making.

2.5.3 Sensitivity Analysis

In LSFD, parameters such as demand, fuel oil price and minimum speed are set

as constants. In practice, however, fuel oil price and demand fluctuate considerably.

Customers may also make particular requests with regard to the transit time of cargo

shipments which in turn may restrict the minimum steaming speed. In this section,

we show how fleet deployment decisions would respond accordingly when faced with

these changes.

Let n′s denote the number of ships of type s to be deployed.
∑

s∈S msn′s∑
s∈S msns

is then the

total capacity utilization rate and n′s
ns

is the fleet utilization rate for each ship of type s.
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We obtain fleet deployment solutions using ISA on test case REG-7 with variations

in fuel oil prices, demands and minimum speed requirements. The resulting total

capacity utilization, fleet utilization rate and total profits are recorded.

We first study the impact of an increase in fuel oil price on deployment decisions

where the fuel oil price ranges from 300 USD/TON to 2400 USD/TON. The results

for deployment of 80 and 120 ships are reported in Figure 2.7.
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Figure 2.7: Impact of fuel oil price on total capacity utilization rate (80 and 120 ships)

The trend in Figure 2.7 shows that in general the capacity utilization rate decreases

with an increase in fuel oil price. This result is as expected, because when revenues

cannot compensate for an increase in operating costs, it is more profitable to operate

fewer ships, which then results in more idle capacity. However, it is worth noting that

there is an exception in the 120-ship case when the fuel oil price changes from 300

USD/TON to 700 USD/TON, which is likely a result of a slow steaming operation.

In this case, idle capacity is added to services, and ships adopt slow steaming to

counteract the increasing fuel cost. On the other hand, when fuel oil price drops

from 700 USD/TON to 300 USD/TON, a larger carrier (the 120-ship case) is more
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Figure 2.8: Impact of fuel oil price on ship utilization (80 and 120 ships)

encouraged to speed up their services due to decreasing benefit from operating extra

ships in slow steaming. It is then easy to see that capacity utilization rate is influenced

by two conflicting factors, the fluctuating operational costs and the bonus in cost

saving from slow steaming.

In Figure 2.8, we show the utilization rates for all ship types. It is easy to

observe a sharp decrease in the utilization of ships of Type III and Type IV, whereas

utilization of ships of Type I and Type II remains relatively stable. This suggests that

larger ships (Type I and Type II) that possess an advantage in economies of scale are

to be preferred when the fuel oil price increases. Ships with a large capacity are then

encouraged to operate longer service routes so as to cover more markets, allowing

more cargos among different origins and destinations to be serviced in a one-way trip.

Figure 2.9 shows the impact of demand variation (from 70% down to 20% of the

initial amount for the 80 ship case, and from 90% down to 40% for the 120 ship case)

on ship utilization. We observe that the utilized capacity ratio is initially maintained

at a level close to 100% (at the 70% point for the 80 ship case, and at the 90% point

for the 120 ship case), and then afterwards exhibits a series of drops. We notice that,

with a reduction in demand, smaller ships are to be preferred, which is the opposite

of what happens when fuel prices rise.
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Figure 2.9: Impact of demand variation on ship utilization (80 and 120 ships)

The effect of a minimum speed requirement in fleet deployment decisions is shown

in Figure 2.10. From a maximum speed of 24 knots, we create progressive minimum

speed levels at which ships are allowed to operate. Carrier profits with regard to

different minimum speed levels are shown in Figure 2.10. The profit curve is seen to

be concave and monotonically increasing, suggesting that a slower steaming strategy

does save on cost efficiently. At the same time, it is observed that the room for such

savings diminishes after the minimum speed requirement reaches a level of 14 knots

or lower.

2.5.4 Fleet Deployment Strategy

In this section, we analyze different strategies for carriers in fleet deployment when

a fleet of new ships is available for use. If an adjustment in ship deployment leads

to changes in service routes in the network, carriers would have to carefully consider

the benefits, as well as the various costs, associated with these changes. Therefore,

in most cases, new ships are simply pooled into the original fleet and are deployed

to operate on existing routes. We briefly define this strategy as NF-OR. In addition,

new ships can be planned to operate jointly with the old fleet on new routes in order

to satisfy additional demands. We define this strategy as NF-NR. Furthermore, we
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Figure 2.10: Effect of different minimum speed requirement

define OF-OR as a benchmark strategy that maintains the original services with all

new ships remaining idle.

We apply our LSFD model to evaluate the above three fleet deployment strategies.

The results are demonstrated by conducting experiments on an instance from test case

REG-5. An original fleet of 60 ships, with 15 ships of each type, is considered. We

then consider that 20 more ships are put into use, each ship type having 5 more.

The result of OF-OR is computed by solving the LSFD with the original fleet and

a full generated route set. The service routes operated in the solution of OF-OR

constitute the original route set. The results of all three fleet deployment strategies

are computed using ISA and presented in Table 2.5.

As shown in Table 2.5, OF-OR generates a weekly profit of 29,853 kUSD, while

for NF-OR and NF-NR, weekly profit is 30,392 kUSD (1.8% higher than OF-OR) and

30,840 kUSD (3.3% higher than OF-OR) respectively. NF-NR is expected to perform

the best among the three fleet deployment strategies, since it has the largest feasible

solution space. We observe that the adoption of NF-OR sees changes in half of the
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Table 2.5: Results under different fleet deployment strategies

OF-OR (29853 kUSD) NF-OR (30392 kUSD) NF-NR (30840 kUSD)

route s k freq route s k freq route s k freq

1-5-3-5-1 I 10 1 1-5-3-5-1 I 11 1 1-2-1 I 6 1
2-3-2 I 5 1 2-3-2 I 5 1 1-4-3-4-1 I 12 1
1-4-3-4-1 II 12 1 1-4-3-4-1 II 12 1 1-5-3-5-1 II 11 1
4-2-5-2-4 III 15 1 1-2-1 II 6 1 2-3-2 II 5 1
1-2-1 IV 6 2 4-2-5-2-4 III 15 1 2-4-2 III 8 1
4-5-4 IV 3 1 4-5-4 III 3 1 2-5-2 III 7 1

4-5-4 III 3 1
1-3-1 IV 11 1

original services. An extra ship of type I is put on route 1-5-3-5-1. The ship type

is alternated on route 1-2-1 from IV to II and on route 4-5-4 from IV to III. Service

frequency on route 1-2-1 is also changed from twice a week to once a week. On the

other hand, if NF-NR is adopted, the original route 4-2-5-2-4 will be dropped, and

replaced by three newly established service routes 2-4-2, 2-5-2, and 1-3-1.

Although the NF-NR strategy produces the best result for LSFD, it may not be

adopted by carriers in practice. The main reason for this is that there is a considerable

setup cost incurred in opening a new service route. NF-NR is only 1.5% better than

NF-OR in terms of weekly profit, which is possibly not enough to offset additional

setup costs involved in opening up a set of new routes.

2.6 Summary

In this work, we propose a comprehensive liner shipping service model for multi-

decision making on ship routes, fleet deployment, speed, cargo allocation and fre-

quency. Based on a general fuel consumption function, we incorporate a new speed-

load dependent fuel consumption function into the comprehensive liner shipping ser-

vice model to address the slow steaming strategy widely adopted at present in the

industry. The resulting mathematical model is non-linear and very difficult to solve.

An approximation method is implemented to transform the non-linear model to a
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mixed integer linear programming (MILP) model that can be solved by a column

generation based heuristic. In addition, we propose an iterative search algorithm

that adaptively changes the approximation to further enhance the heuristic. Exten-

sive computational experiments are carried out, using different test cases adapted

from actual practice, showing both the significance of the speed-load dependent fuel

consumption function and the effectiveness of our approach. We have then investi-

gated the impact of different scenarios on the solutions, such as fluctuations in fuel

oil price, demand market, minimum speed requirements and various fleet deployment

strategies.

In the problem, although the speed variables are assumed to take discrete val-

ues, our solution method is still applicable when the speed variables are continuous.

Moreover, our aggregate planning model is versatile because it can be used at different

planning levels according to the scope of aggregation. In applications that optimize

global liner shipping services, carriers can move from a higher level to a lower level

when making plans. By aggregating the service network, a carrier can first use the

proposed model to obtain a high level solution, which consists of the design of region

rotations, the associated cargo flows and ship assignment. For each region rotation in

the higher level solution, by reducing the aggregation scope, i.e., by properly defining

the port clusters, the model then becomes suitable for lower and operational level

planning.
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CHAPTER 3

Liner Shipping Network Design with

Transshipment Cost

3.1 Introduction

In liner shipping, containerships rotate among seaports to transport cargos with a

regular service frequency [54, 40]. The sequences of port calls constitute a service net-

work on which carriers are providing their transportation services. Due to capricious

nature of the shipping industry, both supply and demand have frequent fluctuations

in the market. In response to the changing market, carriers require adjusting their

service networks to keep the competitiveness.

Liner Shipping Network Design (LSND) is to determine the sequences of port

calls together with a series of related decisions from tactical and operational levels to

maximize the profits. A fleet of similar sized ships is deployed to maintain a designated

service frequency, known as Fleet Deployment, which decides the type and number

of the used ships [47, 45, 46]. The transportation of cargos follows some paths from

their origin ports to destination ports, and the determination of such paths is known

as Cargo Routing [11, 12, 75, 74]. In the LSND, decisions on port call sequences, fleet

deployment and cargo routing are often jointly investigated [3, 13, 72, 66].

In liner shipping, cargos can be delivered not only via a direct service but also
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via a collaboration of multiple services using transshipment which allows the transfer

of cargos from one ship to another. Transshipment provides carriers with additional

options on the cargo routing so as to improve the transportation efficiency. Nowadays,

transshipment is at the core of liner shipping. From 1990 to 2012, the growth of total

port throughput has accompanied with an increased share of transshipment cargos

from 17.6% to 28% [52]. Moreover, more than 80% of the country pairs are connected

with each other through transshipment operations [69]. In the practice, since terminal

operation costs vary from port to port, the transshipment cost cannot be overlooked

in the planning as it will influence the decisions in LSND, such as which port to call

and where to transship the cargos.

SG

KH

CW

SH

LA

YH

PS

OL

SG Singapore LA Los Angeles KH Kaohsiung PS Pusan

CW Chiwan YH Yokohama SH Shanghai OL Oakland

Rotation A:  SG – CW – KH – LA – YH – KH – SG

Rotation B:  SH – PS – YH – LA – OL – PS – SH 

Figure 3.1: Illustration of intra-transshipment and inter-transshipment

This chapter defines the liner shipping service as a rotation that not only involves

the sequence of port calls but also a fleet of ships operating on it to maintain a

designated frequency. The rotation is non-simple if it visits a port more than once,

and such port is regarded as a butterfly port. In the practice, there are two scenarios
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for the cargo transshipment. Transshipments can occur on a rotation, in which cargos

transfer at a butterfly port. We define it by intra-transshipment. Besides, carriers

can also transship the cargos between two different rotations at a port intersected

by both of them, which is defined by inter-transshipment. We have illustrated both

transshipment types in Figure 3.1. In the figure, rotation (A) and rotation (B) are

represented by the solid and dashed links, respectively, and KH and PS are their

butterfly ports. A path for the cargos from CW to SG starts at CW in the rotation

(A). Having arrived at the butterfly port KH, cargos are transshipped to another ship

of rotation (A) via intra-transshipment and carried to SG in the next stop. A cargo

path from PS to SG starts at PS in the rotation (B). At the intersection port YH of the

two rotations, cargos are transshipped from (B) to (A) through inter-transshipment.

The transshipped cargos will finally move from YH to SG along the rotation (A).

Solving the LSND even with zero transshipment cost and single ship type is com-

putational challenging, as it can be obtained by reducing a set-covering problem which

is known NP-hard [13]. Without considering transshipment cost, LSND can be seen

as the service network design with asset management (SNDAM) with multiple types

of assets being deployed on cycles to maintain the designated service frequency. Many

existing models for the SNDAM [see, e.g., 5, 4, 6, 22] have been derived from a Multi-

Commodity Flow (MCF) network, in which the arc capacity is aggregated among the

passing cycles to capacitate their carried flows [2]. Due to the decomposable structure

of the formulation, column generation (CG) [23, 38], can be applied to solve its linear

programming (LP) relaxation effectively, which promotes the development of exact

and heuristic methods to find good integer solutions. It is worth noting that, although

transshipment is addressed in their models, the cost of transshipment is ignored due

to the hardness of capturing the amount of transshipped cargos in their MCF based

formulations. As discussed in [1], to account for transshipment cost correctly on the

MCF network, each arc needs to distinguish the capacity from different cycles to ca-
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pacitate their carried cargos individually. As a result, the arcs should be duplicated

for all feasible cycles, and the MCF network will expand to be tremendously huge.

To formulate the problem as a mixed-integer linear program (MILP) based on the

expanded MCF network, we find that both its variables and constraints are associ-

ated with the rotations that can be exponentially many. In that case, given a subset

of rotations, the dual solution to a restricted master problem is not complete, hence

conventional CG cannot be applied to solving the LP relaxation of this MILP.

Quite a few model formulations have also been developed for the LSND consid-

ering transshipment costs [3, 13, 57]. However, the calculation of transshipment cost

has significantly complicated their mathematical formulations. When there are expo-

nentially many rotations involved in the model, most existing works focus on finding

heuristic solutions while seldom report the optimality gaps to their obtained solu-

tions. Because the capture of transshipped cargos has destroyed the decomposable

structure of the formulation, and it is difficult to solve the LP relaxations of their

models using an efficient solution method such as CG to obtain an upper bounds for

the problem. As a contribution of this work, we propose for the LSND a new compact

MILP formulation whose partial variables (or columns) and constraints (or rows) are

interdependent. Since a large number of rotations can be involved in the formulation,

the model may contain an exponential number of columns and rows, making it very

challenging to solve. Therefore, we develop a new optimization technique, referred to

as simultaneous column-and-row generation, to solve the LP relaxation of the MILP,

so as to obtain a valid upper bound for the optimal solution to the MILP. The idea

behind the SCRG is to work on a restricted master problem that includes subset of

variables and constraints. New rotations are generated to induce a simultaneous gen-

eration of the columns and rows to the restricted formulation. The SCRG continues

to create columns and rows until no new rotations can be found to improve the so-

lution objective of the currently updated restricted master problem. Compared with
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conventional CG which has been extensively applied, the implementation of SCRG

is more sophisticated, and its applications are relatively rare. Based on the newly

established model, the major contribution of this work is the development of SCRG

for solving the LP relaxation of the model, so that a valid upper bound on the optimal

integer solution can be obtained. Novel ideas and techniques have also been investi-

gated to promote the SCRG to work effectively and efficiently. This work embeds the

SCRG within a branch-and-price framework to find optimal or near-optimal solutions

for the LSND. Furthermore, we have also applied the SCRG to a more complicated

LSND with new decisions on frequency and speed. The obtained solutions are com-

pared with the existing benchmark solutions from the literature, which have shown

significant superiorities.

3.1.1 Literature Review

As aforementioned, the models for SNDAM are mostly derived from an MCF

based formulation which adopts Danzig-Wolfe decomposition and CG to tackle their

LP relaxation problems [see, e.g., 5, 6, 22]. However, in these models, arc capacity

is shared on the network, transshipment cost cannot be captured. Besides, many

decisions for liner shipping, such as the deployment of assets, the determination of

frequency and speed for services, and etc, are neglected. It hence requires new models

to characterize the LSND appropriately.

Optimizations relevant to liner shipping have been extensively studied and re-

viewed [16, 19, 48], in which LSND has attracted many attentions. Agarwal and

Ergun [1] propose an MILP formulation for the LSND that allows cargo transship-

ment. But the cost of transshipment is ignored. Fixing the rotations, they present a

computational study to discuss the effects of transshipment cost on the cargo routing

decisions. To account for transshipment cost, Wang and Meng [71] and Meng and

Wang [44] directly apply an integer programming (IP) solver to tackle their MILP
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models. However, both models reply on a given set of predetermined candidate ro-

tations, which is often too large to enumerate. Reinhardt and Pisinger [61] propose

a cost minimization model and develop for it a branch-and-cut method which is ex-

amined on small instances with at most only six vessels. Plum et al. [57] exploit

a new network design model based on service flows and directly solve it via an IP

solver. However, in both models, the number of services allowed to operate is limited.

This restriction will significantly reduce the feasible solution space and inevitably

deteriorate the solution quality.

Among other work on LSND addressing transshipment cost, quite a few models

have been developed, which for the most part is not able to produce optimal solutions

or even their upper bounds. Álvarez [3] proposes an MILP model that captures the

cost of inter-transshipment only when the capacity constraints of the formulation are

dependent of the rotations. The author exploits a heuristic CG to produce feasible

rotations, but cannot obtain the optimality of the LP relaxation. In the implementa-

tion, additional capacity constraints on dummy arcs are employed to collect the dual

information that is missing in the restricted master problem. Borrowing the idea

of CG, the author estimates the reduced cost of a new variable using the collected

values. Brouer et al. [13] develop another formulation that additionally captures the

cost of intra-transshipment. But upper bound on the optimal solution cannot be

produced. An MILP is proposed to generate new rotations while cargo routing is

solved after fixing rotations. The rotation generation and cargo routing are carried

out separately and iteratively for finding better integer solutions. Moreover, Mulder

and Dekker [49] and Brouer et al. [14] also separate the rotation construction and

the cargo routing when solving the LSND. Their work also provides no upper bound

to gauge the solution quality. To conclude, for the LSND that captures transship-

ment cost, there lacks an appropriate formulation that promotes the development

of an exact solution approach for solving its LP relaxation to obtain a valid upper
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bound. Moreover, although a few solution methods have been developed for solving

the LSND, comparisons on their performances under identical problem settings are

absent. In this work, we aim to fill these research vacancies.

The Simultaneous Column-and-Row Generation (SCRG) is known to be effec-

tive in solving a large-scale LP whose variables and constraints are interdependent.

Namely, in the formulation, the appearance of rows is induced by the appearance of

columns, and vice versa. Unlike conventional CG that adds variables only, SCRG

involves a simultaneous generation of variables and constraints. It is worth noting

that column-and-row generation has been used with a confusion on the concept of

branch-price-and-cut in the literature [see, e.g., 27, 33, 79]. The SCRG studied in

this work is fundamentally different from the branch-price-and-cut whose generated

rows, known as valid constraints, have nothing to do with the optimality of original

formulation but strengthen the LP relaxation. Therefore, row generation and col-

umn generation can be separated. However, in the SCRG, the generated rows are

structural constraints that are necessary to define the original formulation. As new

variables are introduced, one must add the structural constraints to validate the fea-

sible region of a solution. Thus, the generations of constraints and variables cannot

be separately handled.

SCRG has been employed to solve a few applied IP problems, such as the multiple

stock cutting problem in [81] and the time-constrained routing problem in [7]. How-

ever, the SCRG may stop prematurely at a suboptimal solution to their LP relaxations

since their stopping conditions fail to seize the optimality. Maher [42] investigates

an integrated airline recovery problem and solve its LP relaxation by extending a

conventional CG approach to the SCRG. The author removes partial constraints at

the beginning and add them gradually and tactically via CG. Dual variables for the

missing constraints are assigned with proper values to perceive the reduced cost of

a missing variable in the restricted master problem. However, in our problem, con-
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straints are associated with a set of rotations which can be too large to enumerate.

It is thus not possible to apply the proposed approach to assigning values to the dual

variables associated to all those absent constraints. Muter et al. [50] present a generic

SCRG framework to solve a large-scale LP with column-dependent rows. They define

a row generating pricing problem that requires assigning look-ahead values to those

missing dual variables to calculate the reduced cost for a candidate variable. The

row generating pricing problem is defined as a bi-level optimization problem, known

as an optimization nested by another, which is not always easy to solve especially

when constraints are too many to enumerate. If their proposed solution framework

is directly applied to our problem, the row generating pricing problem requests the

rotations to be explicitly given. Hence, as the candidate rotations are exponentially

many, solving the pricing problem will be rather computational expensive. Feillet

et al. [27] employ the SCRG to solve an LP relaxation formulation of a bus routing

problem. Having obtained the optimal dual solution for a restricted master problem

with limited columns and rows, they develop an LP model to assign the values of dual

variables for those missing rows, which minimizes the violations to dual constraints.

Optimality is achieved when the LP model returns its objective by zero. However, the

optimality stopping condition is hard to reach in our case, since each operated rota-

tion in our problem associates with a non-zero cost which can be different from each

other. As a result, SCRG will work inefficiently because a large number of rotations

are likely to be generated when it stops at the optimality.

3.1.2 Main Results and Contributions

Primary results and contributions of this chapter are summarized as follows.

First, we have developed for LSND a new compact MILP model where costs of

intra-transshipment and inter-transshipment are both captured. The formulation

can be applied to solve many other practical problems, such as telecommunication
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network design and railway line planning, in which relevant issues tp transshipment

are necessary to consider. Different from existing models for LSND that address

transshipment cost, our model formulation is appropriate for applying SCRG to solve

the LP relaxation problem so that a valid upper bound on the optimal solution value

can be obtained.

Second, in the application of SCRG to resolve the LP relaxation, we introduce a

novel two-phase scheme to construct the dual solution to the master problem, which

simplifies the pricing problem to finding minimum cost cycles on a weighted network.

The proposed solution framework can be generalized and contributed to tackling many

other applications whose models have interdependent variables and constraints. We

further embed the SCRG within a branch-and-price to obtain optimal or near-optimal

solutions for the LSND. Our model and solution methods are extended for tackling

more complicated problems with new decisions on service frequency and ship speed.

Third, numerical experiments are conducted to show the effectiveness and effi-

ciency of our model and solution methods. Compared with the MIP-Solver of CPLEX

12.6, our branch-and-price solves more and larger instances and averagely consumes

less running time. Our heuristic solutions for the extended problem of LSND are

also compared with the existing benchmark solutions, some of which have not been

compared under identical settings. As shown in the experiments, our solutions signif-

icantly outperform the existing ones, and the average improvement reaches at least

5.3%.

3.1.3 Outline

The rest of this work is organized as follows. The problem and its model formu-

lation is introduced in Section 3.2. The SCRG approach is presented in Section 3.3.

We study an extended problem in Section 3.4. Experimental results are reported in

Section 3.5, followed by a summary in Section 3.6.
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3.2 Model Formulation

We initiate this section with a brief problem description on the LSND. We consider

all generated rotations are with weekly frequency, and ship speed on each rotation

is given and fixed. To capture the amount of transshipped cargos, we introduce a

planning network together with appropriate notations to formulate the problem as

an MILP. Since the formulation is of large dimensions both in the number of integer

variables and the number of constraints, solving this model will be computational

challenging as the problem size increases. To tackle this MILP, in this section, we

investigate its LP relaxations and briefly discuss the solution methodologies for solving

the relaxation problems, so as to obtain valid upper bounds for the MILP.

3.2.1 Problem Description

Let P denote the set of ports. A transportation demand k ∈ D, identified by

its origin port o(k) and destination port d(k), generates a volume qk each week. For

demand k, a unit revenue p′k is rewarded for transporting a unit cargo. A penalty

p′′k is charged for rejecting a unit cargo. Ships are of different types, and we use S

to denote the set of ship types. A ship of type s ∈ S has a maximum capacity ms,

a designed speed vs (knots), a fuel consumption rate Fs (tons/hour) at the designed

speed, and a fleet size hs. Given a complete set of rotations R, we assume each

rotation r ∈ R has a round-trip operating cost ar and a total of br ships of the same

type are deployed on it to maintain the weekly frequency. All ships are assumed to

sail at the designed speed which is predetermined. The objective of the problem is

to deploy the fleet of ships on a subset of rotations in R that transport the cargo

demands of D to maximize the profits obtained per week.

We now represent the problem on a planning network defined as follows. A set

of voyage nodes N and transshipment nodes T are involved in the planning network.
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Each voyage node represents a port call, and each transshipment node is seen as the

quayside of a port. Since the butterfly port may be called twice in a non-simple

rotation, we duplicate the voyage nodes for each candidate butterfly port so that the

repeated port calls in a non-simple rotation can be differentiated. Let z(i) indicate

the physical port for node i. A voyage arc connects a voyage node i to another voyage

node j if z(i) 6= z(j). All voyage arcs are collected in set A. Let A−(i) and A+(i)

denote a subset of voyage arcs, respectively, that start and end at node i. Each voyage

arc e ∈ A has a length `e in nautical miles. Each transshipment arc links a voyage

node i and a transshipment node j if z(i) = z(j). Let L denote the transshipment arc

set. We notate L−(i) and L+(i) as the subset of transshipment arcs that start and end

at node i. Note that if a transshipment arc connects a voyage node to a transshipment

node, it represents an unloading operation for the cargo movements from the ship to

the quayside of a port. On the contrary direction, a loading operation is represented.

We divide L into a subset L′ that collects the transshipment arcs indicating loading

operations and the other subset L′′ with the included transshipment arcs showing

unloading operations. For each arc e ∈ A ∪ L, let head(e) represent its head node

and tail(e) represent its tail node. Let cke denote the cost for moving a unit cargo of

demand k through arc e. Suppose each rotation r ∈ R contains a fixed sequence of

voyage nodes in N(r) which are linked by a set of voyage arcs in A(r). Many ships of

type s(r) are operating on it. Let L(r) denote the subset of transshipment arcs that

cross with r. Figure 3.2 presents an example planning network for the two rotations

in Figure 3.1. In the planning network, a non-simple rotation can be represented as

a simple cycle by splitting the butterfly port calls into separated voyage nodes. In

that way, the transshipment arcs connected to a butterfly port can be differentiated

to facilitate the representation of an intra-transshipment operation.

We assume that each port call takes τ days for handling containers at the terminal.

Since the ship of type s sails at the designed speed vs, to maintain a weekly frequency,
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Figure 3.2: An example of the planning network with two rotations

the number of deployed ships on rotation r is calculated by

br =

1

7

∑
e∈A(r)

(
`e

24vs
+ τ

) . (3.1)

For a ship of type s, fuel cost wFs,e(v) is taken to sail through a voyage arc e using

speed v. We calculate the fuel cost by wFs,e(v) = (`e/v) · Fs(v) · O, where O denotes

the unit ton fuel oil price and Fs(v) = (v/vs)
3 ·Fs indicates the fuel consumption rate

of a ship of type s operating at speed v. A fixed port call cost wPs,z is required to

berth a ship of type s at port z and the port stay cost wSs,z is charged per day. The

weekly cost for running a ship of type s is denoted by wOs . The round-trip cost to

operate r is thus computed by
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ar = wOs(r)br +
∑
e∈A(r)

wFs(r),e(vs) +
∑
i∈N(r)

(
wPs(r),z(i) + wSs(r),z(i)

)
(3.2)

For each rotation, its weekly operating cost is calculated by the round-trip cost

multiplied by the number of ships operating on it, and averaged by the number of

weeks. For each rotation, to guarantee a weekly frequency, the number of ships

deployed must be equal to the number of weeks used for a round-trip travel. Hence

ar is also seen as the weekly operating cost on r. For ease of representation, we set

ws,e = wFs,e(vs) + 1
2
(wPs,z(head(e)) + wSs,z(head(e)) + wPs,z(tail(e)) + wSs,z(tail(e))) to reformulate

the cost calculation of Eq. (3.2) based on arcs. The weekly operating cost on r is

then presented by

ar = wOs(r)br +
∑
e∈A(r)

ws(r),e. (3.3)

Three groups of decision variables are included in the model. The continuous

variable fkr,e decides the quantity of demand k to be moved on arc e of rotation

r. The continuous variable xk decides the amount of cargos that are satisfied for

demand k. The binary variable yr decides whether rotation r is operated or not. In

abbreviation, let vectors f = [fkr,e : k ∈ D, r ∈ R, e ∈ A(r) ∪ L(r)], x = [xk : k ∈ D],

and y = [yr, r ∈ R] denote their decision sets subjecting to a feasible solution space

Φ. The decision problem of LSND could be described as follows:

max
(f,x,y)∈Φ

∑
k∈D

p′kxk −
∑
k∈D

p′′k (qk − xk)−
∑
k∈D

∑
r∈R

∑
e∈A(r)∪L(r)

ckef
k
r,e −

∑
r∈R

aryr

 .

(3.4)

The first two terms in (3.4) calculate the profits by subtracting the penalties of the
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unsatisfied demands from the revenues of the satisfied demand. The third term com-

putes the cost of cargo movements on the network arcs including the transshipment

cost. The last term calculates the weekly cost for the operated rotations.

3.2.2 An MILP Model

Combine the first two terms of (3.4), the coefficient of variable xk is replaced

by pk = p′k + p′′k and there is a constant term {−
∑

k∈D p
′′
kqk} in the objective value.

Without affecting the optimality, we can remove the constant term from the objective

formulation, but this term will still be included when we calculate the objective value

in the computational experiments. The LSND is formulated as an MILP as follows:

(LSND) max
∑
k∈D

pkxk −
∑
k∈D

∑
r∈R

∑
e∈A(r)∪L(r)

ckef
k
r,e −

∑
r∈R

aryr, (3.5a)

s.t.
∑

e∈A+(i):e∈A(r)

fkr,e +
∑

e∈L+(i)

fkr,e −
∑

e∈A−(i):e∈A(r)

fkr,e −
∑

e∈L−(i)

fkr,e = 0,

∀k ∈ D, ∀r ∈ R, ∀i ∈ N(r), (3.5b)∑
e∈L+(i)

∑
r∈R:tail(e)∈N(r)

fkr,e

−
∑

e∈L−(i)

∑
r∈R:head(e)∈N(r)

fkr,e =


−xk, o(k) = z(i)

0, otherwise

xk, d(k) = z(i)

∀k ∈ D, ∀i ∈ T, (3.5c)∑
r∈R:s(r)=s

bryr ≤ hs, ∀s ∈ S, (3.5d)

∑
k∈D

fkr,e −ms(r)yr ≤ 0, ∀r ∈ R, ∀e ∈ A(r), (3.5e)

fkr,e − qkyr ≤ 0, ∀k ∈ D, ∀r ∈ R, ∀e ∈ A(r), (3.5f)

xk ≤ qk, ∀k ∈ D, (3.5g)

xk ≥ 0, fkr,e ≥ 0, ∀k ∈ D, ∀r ∈ R, ∀e ∈ A(r) ∪ L(r), (3.5h)

yr ∈ {0, 1}, ∀r ∈ R. (3.5i)
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The objective function (3.5a) is derived from (3.4). Constraints (3.5b) balance the

cargo flows at the voyage nodes on all rotations. Constraints (3.5c) balance the cargo

flows at all transshipment nodes. These two groups of flow balance constraints can

guarantee that the flows on transshipment arcs represent the volume of transshipped

cargos. Constraints (3.5d) restrict that the number of utilized ships cannot exceed

the fleet size associated to each ship type. Constraints (3.5e) enforce the cargo flows

on each rotation to be no greater than the maximum capacity of the deployed ship.

Constraints (3.5f) enforce the cargo flows on each arc to be no greater than their

maximum demand volumes. Constraints (3.5g) request the satisfied cargo demands to

be no greater than their maximum volumes. Finally, the nonnegativity and integrality

of the decision variables are imposed by (3.5h) and (3.5i).

As is observed from the MILP, both its variables and constraints grow with the

number of rotations. It is hence infeasible to directly solve the model using an IP

solver when a potentially large number of rotations are involved in the formulation.

We next investigate its LP relaxations and briefly discuss some solution techniques

for solving the relaxation problems.

3.2.3 LP Relaxations

Relaxing the integer condition, we obtain an LP relaxation of the MILP, which

is denoted by LPR. Since R grows quickly with the problem size, solving LPR is

computational difficult even for moderate sized instances. Recall that both variables

and constraints in the formulation are dependent of the rotations, CG hence cannot

work effectively. In this work, to overcome the computational difficulty, we intend to

employ an SCRG approach, which is extended from CG, to solve the LPR.

Before presenting the SCRG approach, we adopt the aggregation technique men-

tioned in Chapter 2 to make further relaxations on LPR. Constraints (3.5b) are

aggregated among the rotations corresponding to the same demand k, ship type s,
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and voyage node i:

∑
r∈R:s(r)=s

( ∑
e∈A+(i):e∈A(r)

fkr,e +
∑

e∈L+(i)

fkr,e −
∑

e∈A−(i):e∈A(r)

fkr,e −
∑

e∈L−(i)

fkr,e

)
= 0,

∀k ∈ D, ∀s ∈ S,∀i ∈ N. (3.6)

Constraints (3.5e) are aggregated among the rotations corresponding to the same

ship type s and arc e:

∑
r∈R:s(r)=s

(∑
k∈D

fkr,e −msyr

)
≤ 0, ∀s ∈ S,∀e ∈ A. (3.7)

Constraints (3.5f) are aggregated among the rotations corresponding to the same

demand k, ship type s, and arc e:

∑
r∈R:s(r)=s

(
fkr,e − qkyr

)
≤ 0, ∀k ∈ D, ∀s ∈ S,∀e ∈ A. (3.8)

By aggregating the route dependent constraints, we have another version of LP

relaxation, ALPR, which are constrained by (3.5a), (3.5c), (3.5d), (3.5g), (3.5h),

(3.5i), (3.6), (3.7), (3.8). Different from LPR, a limited number of constraints are

involved in the ALPR, and they are all independent of the rotations. As a result, CG

is available to work on the restricted master problem of ALPR with an initial subset

of columns.

Since ALPR is a relaxation of LPR, its optimal objective provides an upper bound

that can be looser than LPR. Moreover, from numerical experiments, we find that

CG converges more slowly to reach the optimality of ALPR, because many rotations

are generated without improving the solution objective of the restricted master prob-

lem (known as the degeneracy). Therefore, the investigation of an efficient solution

approach for solving the LPR will be necessary.
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3.3 The Solution Method via Simultaneous Column-and-Row

Generation

In this section, the SCRG approach is formally presented to solve the LPR. We

start off the section by providing a solution framework in Section 3.3.1. The solu-

tion framework describes the theoretical foundation behind the SCRG method, in

which strong duality is applied to identify the optimality condition. Following the

framework, it is necessary to find a dual solution of LPR to check the optimality at

each iteration of the SCRG. Since the dual solution to LPR is partially derived from

solving the restricted master problem, we propose a two-phase scheme, detailed in

Section 3.3.2, that constructs the values for the unknown dual variables in the first

phase, and then solve a pricing problem in the second phase to find violated dual

constraints based on the obtained values of dual variables. For the first phase, two

approaches have been proposed to construct the values of dual variables including

a sequential approach and an LP-based approach. To solve the pricing problem for

the second phase, we develop solution methods for solving the pricing problem in

Section 3.3.3. Since the objective of a dual feasible solution provides an upper bound

to LPR, we investigate a method in Section 3.3.4 that can compute an upper bound

at any iteration of the SCRG. Moreover, in Section 3.3.5, we discuss the integration

of the SCRG into a branch-and-price that seeks for optimal or near-optimal integer

solutions for the LSND.

3.3.1 Framework

Given a subset of rotations in R̃, we define RMP as the restricted master problem

of LPR on R̃. The dual problems for LPR and RMP are denoted by DLPR and

DRMP, respectively. We define the solution of LPR by Θ and the solution of DLPR

by Π. Let Θ̃ and Π̃ represent the optimal solutions for RMP and DRMP, respectively.
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Each solution corresponds to a objective value Z(·).

Since Θ̃ and Π̃ are optimal to RMP and DRMP, we have Z(Θ̃) = Z(Π̃) by strong

duality. Based on Θ̃, a primal feasible solution Θ could be constructed by letting the

rest variables related to R \ R̃ take zeros, and there is Z(Θ) = Z(Θ̃). Given Π̃, if

we could find a dual feasible solution Π which has an equal objective to Π̃, then the

strong duality condition, Z(Π) = Z(Θ), will be obtained to guarantee Π is an optimal

solution to LPR.

Associate the dual variables λkr,i, µ
k
i , δs, πr,e, γ

k
r,e, θk to Constraints (3.5b), (3.5c),

(3.5d), (3.5e), (3.5f), (3.5g), respectively. The DLPR is obtained by (3.9a - 3.9i) as

follows.

(DLPR) min
∑
s∈S

hsδs +
∑
k∈D

qkθk, (3.9a)

s.t. µko(k) − µkd(k) + θk ≥ pk, ∀k ∈ D, (3.9b)

λkr,head(e) − λkr,tail(e) + πr,e + γkr,e ≥ −cke , ∀k ∈ D, ∀r ∈ R, ∀e ∈ A(r),

(3.9c)

λkr,head(e) − µktail(e) ≥ −cke , ∀k ∈ D, ∀r ∈ R, ∀e ∈ L′ ∩ L(r), (3.9d)

−λkr,tail(e) + µkhead(e) ≥ −cke , ∀k ∈ D, ∀r ∈ R, ∀e ∈ L′′ ∩ L(r), (3.9e)

brδs(r) −
∑
e∈A(r)

ms(r)πr,e −
∑
k∈D

∑
e∈A(r)

qkγ
k
r,e ≥ −ar, ∀r ∈ R, (3.9f)

λkr,i unrestricted, ∀k ∈ D, ∀r ∈ R, ∀i ∈ N(r), (3.9g)

µki unrestricted, ∀k ∈ D, ∀i ∈ T, (3.9h)

δs ≥ 0, πr,e ≥ 0, θk ≥ 0, γkr,e ≥ 0, s ∈ S,∀k ∈ D, ∀r ∈ R, ∀e ∈ A(r).

(3.9i)

Let Π0 represent a subset of dual variables [λkr,i : k ∈ D, r ∈ R \ R̃, i ∈ N(r)],

[πr,e : r ∈ R \ R̃, e ∈ A(r)] and [γkr,e : k ∈ D, r ∈ R \ R̃, e ∈ A(r)]. Given Π̃ as

the optimal solution to DRMP, we can develop for DLPR a complete solution Π by
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combining Π̃ with Π0. After the combination we have Z(Π) = Z(Π̃) due to dual

objective (3.9a) does not depend on Π0. Remember that if Π is a feasible solution to

DLPR, the strong duality condition implies Π is also optimal to DLPR and optimality

of LPR is guaranteed. Knowing that Π̃ is feasible to DRMP, partial constraints of

DLPR, (3.9b) and (3.9c - 3.9f) for r ∈ R̃, must be satisfied by Π. Therefore, Π is a

feasible solution to DLPR if a Π0 can be found to satisfy the dual constraints (3.9c -

3.9f) for r ∈ R \ R̃.

Given R̃, the SCRG work on a RMP with a limited number of variables and

constraints. Due to dual constraints (3.9c - 3.9f) for r ∈ R \ R̃ are excluded in the

DRMP, we construct Π0 and check whether it satisfies the dual constraints (3.9c - 3.9f)

for r ∈ R\R̃. If violations are found, the violated dual constraints will be added to the

DRMP, namely, some new primal variables of [fkr,e : k ∈ D, r ∈ R\ R̃, e ∈ A(r)∪L(r)]

and [yr : r ∈ R \ R̃] having positive reduced costs are added to the RMP. Recall

that variables and constraints are interdependent, the generation of these new primal

variables requires the generation of their structural constraints. Therefore, we update

the RMP by simultaneously generating the columns and rows at each iteration of the

SCRG. The SCRG terminates at the optimality of LPR when the constructed Π0

satisfies the dual constraints (3.9c - 3.9f) for r ∈ R \ R̃.

3.3.2 Construction of Π0

As aforementioned, to check the optimality of LPR, we need to construct Π0 to

form Π as a (not necessarily feasible) solution to DLPR. However, if R \ R̃ still has

lots of rotations, there will also have many dual variables in Π0 that are constrained

by many constraints of DLPR. It is hence not possible to generate all these variables

and constraints to check if Π0 is feasible.

To construct and check Π0 in a more efficient way, we define Π̂0 to have a set

of auxiliary values [λ̂ks,i : k ∈ D, s ∈ S, i ∈ N ], [π̂s,e : s ∈ S, e ∈ A] and [γ̂ks,e :
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k ∈ D, s ∈ S, e ∈ A]. Based on the auxiliary values, we construct Π0 by setting

λkr,i = λ̂ks(r),i, πr,e = π̂s(r),e, γ
k
s(r),e = γ̂ks,e, for each rotation r ∈ R \ R̃. Thus, we only

need to determine a limited number of auxiliary values in Π̂0, which facilitates the

construction of Π0. We next develop a two-phase scheme to determine the auxiliary

values in Π̂0 and check if the constructed Π0 is feasible.

Phase 1: Construct Π̂0 subjecting to the following constraints:

λ̂ks,head(e) − λ̂ks,tail(e) + π̂s,e + γ̂ks,e ≥ −cke , ∀k ∈ D, ∀s ∈ S,∀e ∈ A, (3.10a)

λ̂ks,head(e) − µktail(e) ≥ −cke , ∀k ∈ D, ∀s ∈ S,∀e ∈ L′, (3.10b)

−λ̂ks,tail(e) + µkhead(e) ≥ −cke , ∀k ∈ D, ∀s ∈ S,∀e ∈ L′′, (3.10c)

λ̂ks,i unrestricted, ∀k ∈ D, ∀s ∈ S,∀i ∈ N, (3.10d)

π̂s,e ≥ 0, γ̂ks,e ≥ 0, ∀k ∈ D, ∀s ∈ S,∀e ∈ A. (3.10e)

Phase 2: Given Π̂0, next find a rotation in R \ R̃ that corresponds to the largest

violation among Constraints (3.9f). The largest violation value, denoted by ∆, is

obtained by solving the following pricing problem:

∆ = max
r∈R\R̃

−ar − brδs(r) +
∑
e∈A(r)

ms(r)π̂s(r),e +
∑
k∈D

∑
e∈A(r)

qkγ̂
k
s(r),e

 . (3.11)

In Phase 1, the assigned auxiliary values in Π̂0 can produce such a Π0 that is

feasible to Constraints (3.9c - 3.9e) for r ∈ R \ R̃. The violation check is left as a

pricing problem in Phase 2 which aims to find a rotation in R \ R̃ being dedicated to

the largest violation among (3.9f). If ∆ ≤ 0 in Phase 2, it implies the constructed Π0

is feasible to dual constraints (3.9c - 3.9f) for r ∈ R \ R̃, and the optimality of LPR is

achieved. Otherwise, the most violated rotation will be identified and added to the

RMP. In this subsection, we focus on Phase 1, in which a sequential approach and

an LP-based approach are developed to determine the auxiliary values in Π̂0. As Π̂0
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is determined, in Section 3.3.3, we solve the pricing problem in Phase 2 to introduce

new rotations.

To determine Π̂0, we present a sequential approach that first decides the values

for λ̂ks,i, and next decides the values for π̂s,e and γ̂ks,e. Given [i] to indicate the cor-

responding transshipment node for voyage node i, we assign the values to λ̂ks,i as

follows:

λ̂ks,i = µk[i], ∀k ∈ D, ∀s ∈ S,∀i ∈ N. (3.12)

The values assigned to λ̂ks,i ensure Constraints (3.10b) and (3.10c) are always

satisfied since cke ≥ 0. Based on (3.12), we next assign nonnegative values to π̂s,e and

γ̂ks,e so that Constraints (3.10a) are satisfied as well.

π̂s,e = 0, ∀s ∈ S,∀e ∈ A, (3.13)

γ̂ks,e = max{0,−µk[head(e)] + µk[tail(e)] − cke}, ∀k ∈ D, ∀s ∈ S,∀e ∈ A. (3.14)

The auxiliary values in Π̂0 are thus determined by (3.12 - 3.14) in a sequential

manner. Note that, in addition to (3.13) and (3.14), π̂s,e and γ̂ks,e can also take other

values which are sufficiently large to satisfy (3.10a). Thus, we obtain Proposition 3.1,

which show that many feasible Π̂0 may exist.

Proposition 3.1. There exist many Π̂0 that are feasible to (3.10a - 3.10e).

It is worth noting that the auxiliary values assigned in Phase 1 have an influence

on the violation check in Phase 2, and it is important to find a ”good” Π̂0. Intuitively,

smaller π̂s,e and γ̂ks,e are preferred as they lead to smaller violation values in Phase 2

and the optimality condition ∆ ≤ 0 is closer to reach. Suppose Phase 1 returns

two different groups of auxiliary values Π̂
(1)
0 and Π̂

(2)
0 that are both feasible to (3.10a

- 3.10e). Based on each group, the pricing problem (3.11) returns ∆(1) and ∆(2)
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respectively. If condition msπ̂
(1)
s,e +

∑
k∈D qkγ̂

k,(1)
s,e ≤ msπ̂

(2)
s,e +

∑
k∈D qkγ̂

k,(2)
s,e holds for

all s ∈ S and e ∈ A, we have the following relationship:

∆(1) = max
r∈R\R̃

−ar − brδs(r) +
∑
e∈A(r)

(
ms(r)π̂

(1)
s(r),e +

∑
k∈D

qkγ̂
k,(1)
s(r),e

)
≤ max

r∈R\R̃

−ar − brδs(r) +
∑
e∈A(r)

(
ms(r)π̂

(2)
s(r),e +

∑
k∈D

qkγ̂
k,(2)
s(r),e

)
≤ ∆(2).

We say Π̂
(1)
0 is ”better” than Π̂

(2)
0 since a smaller violation value is returned from

Phase 2. Based on this, we have Proposition 3.2 to show the dominance relationship

of two groups of auxiliary values, which further promotes the development of an

LP-based approach to determine Π̂0.

Proposition 3.2. Given two groups of auxiliary values Π̂
(1)
0 and Π̂

(2)
0 from Phase 1,

Π̂
(1)
0 dominates Π̂

(2)
0 if msπ̂

(1)
s,e +

∑
k∈D qkγ̂

k,(1)
s,e ≤ msπ̂

(2)
s,e +

∑
k∈D qkγ̂

k,(2)
s,e holds for each

s ∈ S and e ∈ A.

Based on Proposition 3.2, π̂s,e and γ̂ks,e are suggested to take appropriate values to

minimize the value of msπ̂s,e+
∑

k∈D qkγ̂
k
s,e. To incorporate this property to construct

Π̂0 purposely, we develop an LP that minimizes the total values of msπ̂s,e+
∑

k∈D qkγ̂
k
s,e

for all s ∈ S and e ∈ A. The LP is given as follows:

min
∑
s∈S

∑
e∈A

{
msπ̂s,e +

∑
k∈D

qkγ̂
k
s,e

}
,

s.t. (3.10a− 3.10e).

The LP-based approach is expected to provide better values for Π̂0 since it inte-

grates the perception to set smaller values for π̂s,e and γ̂ks,e so as to relief the violation

value overestimation. In the SCRG, a terrible overestimation may lead to the gen-
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eration of many rotations with invalid violations. As a consequence, many rotations

added to the RMP will not improve the solution objective, and it is likely to generate

too many rotations when the SCRG stops.

3.3.3 Solving the Pricing Problem

After Π̂0 is determined to construct Π0 in Phase 1 that satisfies the constraints

(3.9c - 3.9e) for r ∈ R \ R̃, we now move to Phase 2 to check whether the constructed

Π0 is feasible to (3.9f) for r ∈ R \ R̃. As mentioned in Section 3.3.2, the pricing

problem in Phase 2 is to find a rotation in R \ R̃ that has the largest violation value.

Given ship type s, the pricing problem is equivalent to finding a minimum cost cycle

on a weighted physical network Gs = (Vs, Es), where Vs consists of a set of available

ports and Es includes a set of directed edges that connect the ports. We next define

some practical rules to enforce the generated cycles are consistent with the patterns

observed from the practice. (i) Each port is visited no more than twice and each edge

is travelled no more than once in a cycle. (ii) At most one butterfly port is involved

in a cycle. (iii) At most α port calls are included in a cycle. (iv) The round-trip time

does not exceed β weeks. In our study, we choose α from [5, 11] and β from [10, 15].

Substituting (3.1) and (3.3) into (3.11), for each s, the pricing problem defined on Gs

is given as follows:

∆s = max
r∈R\R̃:s(r)=s

−(wOs + δs)

1

7

∑
e∈A(r)

(te + τ)


−
∑
e∈A(r)

(
ws,e −msπ̂s,e −

∑
k∈D

qkγ̂
k
s,e

)
.

(3.15)

Among the constraints (3.9f) for r ∈ R \ R̃, the maximum violation value is

obtained as ∆ = maxs∈S{∆s}, and the constructed Π0 is feasible if ∆ ≤ 0 is obtained.
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Notice that, based on Π̂0, the pricing problem may output an existing rotation in R̃

which has a violation on (3.9f). To prevent the pricing problem from generating the

existing rotations, we define a forbidden rotation set R∗ = R̃ and any rotation in R∗

is not allowed to output.

To solve this pricing problem, we develop a cycle search algorithm which is conve-

nient to output multiple promising cycles at a time and utilize accelerating strategies

to find heuristic solutions quickly. Also, we investigate an MILP-based method which

is more advantageous to get the optimality of the pricing problem or its upper bound

while returning only single rotation at a time. At each iteration of the SCRG, the

cycle search algorithm and the MILP-based method will be sequentially applied to

generate new rotations.

3.3.3.1 A cycle search algorithm

For each ship type s, we apply a cycle search algorithm that generates cycles

on Gs by adding new vertices to paths that have been obtained. Let l(e) denote

the corresponding physical edge for voyage arc e. According to (3.15), we assign

edge l with cost w(l(e)) = ws,e −msπ̂s,e −
∑

k∈D qkγ̂
k
s,e. Since butterfly port calls

are represented by separated voyage nodes, there exist multiple voyage arcs that

correspond to the same physical edge on Gs. In that case, we assign the edge cost

by w(l) = mine∈A:l(e)=l

{
ws,e −msπ̂s,e −

∑
k∈D qkγ̂

k
s,e

}
, which guarantees all potential

rotations are with nonnegative costs when the pricing problem outputs a nonnegative

cost cycle as an optimal solution. As long as a cycle is obtained that corresponds

to rotation r, we additionally assign a cost w′(r) = (wOs + δs)
⌈

1
7

∑
e∈A(r) (te + τ)

⌉
to

this cycle. Given the weighted physical network, solving the pricing problem (3.15) is

equivalent to finding a minimum cost cycle on Gs. Let Ws denote the minimum cycle

cost on Gs. The optimal solution of the pricing problem is known as ∆s = −Ws and

the SCRG stops if maxs∈S{∆s} ≤ 0.
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Algorithm 2 (Cycle Search Algorithm)

1: Initialize p∗(s) that corresponds to the incumbent optimal cycle on Gs, and set
p∗(s) = ∅;

2: for each vertex z in Vs do
3: Initialize p = {z} and Path(z) = {p};
4: end for
5: while ∪z∈VsPath(z) 6= ∅ do
6: for a path p′ in ∪z∈VsPath(z) do
7: for a vertex z that is connected by Head(p′) do
8: Construct a path p by adding z to the tail of p′;
9: if p can generate feasible cycles then
10: Set Path(z) = Path(z) ∪ {p}.
11: end if
12: if p forms a cycle that corresponds to a rotation r not in R∗, and the cycle

cost is less than that of p∗(s) then
13: Set p∗(s) = p;
14: end if
15: end for
16: Removing p′ from Path(Head(p′)).
17: end for
18: Update ∪z∈VsPath(z) if applicable.
19: end while

Let Head(p) and Tail(p) represent the last vertex and first vertex on path p. Let

Path(z) indicate a collection of obtained paths with the end vertex at z. In each

iteration of the algorithm, we choose an existing path in Path(z′) for some z′, and

extend it by adding one more vertex to the tail. Let E(p) denote a subset of edges

passed by path p. When the new path forms a cycle with regards to a rotation r,

and w′(r) +
∑

l∈E(p) w(l) < 0, we regard it as a candidate cycle to output. If the path

forms a cycle in the forbidden set R∗, we abandon to generate this cycle and continue

to search another. The cycle search algorithm is summarized in Algorithm 1.

In the cycle search algorithm, there are too many possible paths to enumerate

even for a moderate sized Gs. It is thus unaffordable to search among all feasible

paths on Gs by enumeration. Therefore, it is important to reduce the search space

by defining some path elimination rules to restrict that only qualified paths will be

kept for exploration.
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In the algorithm, we first define a pruning rule to speed up the solution algorithm.

As is shown in [36], a negative cost cycle always has a segment of its partial path

with negative cost. It is therefore only necessary to explore the paths having negative

costs so as to detect the potential negative cost cycles. During the search, since

the part of cycle cost w′(·) is nonnegative, we can directly prune a path p if it has∑
l∈E(p) w(l) ≥ 0. To enhance the pruning, we rewrite (3.15) as follows:

∆s = max
r∈Ra\R̃:s(r)=s


−(wOs + δs)

(⌈
1
7

∑
e∈A(r)

(te + τ)

⌉
− 1

7

∑
e∈A(r)

(te + τ)

)
−
∑

e∈A(r)

(
1
7
(wOs + δs)(te + τ) + ws,e −msπ̂s,e −

∑
k∈D

qkγ̂
k
s,e

)
 .

(3.16)

Based on (3.16), w(l(e)) = 1
7
(wOs + δs)(te + τ) + ws,e −msπ̂s,e −

∑
k∈D qkγ̂

k
s,e is

assigned as a larger cost on each arc of the network, and the pruning condition will

be easier to reach during the search.

In addition to the pruning rule, we also implement accelerating strategies to speed

up the solution, which can quickly output heuristic solutions for the pricing problem.

For path p, let V (p) denote the subset of ports visited by p and let Time(p) denote the

time length on p. Given two paths p1 and p2, we say p1 dominates p2 if the following

conditions are simultaneously fulfilled: Head(p1) = Head(p2), Tail(p1) = Tail(p2),

V (p1) ⊆ V (p2), Time(p1) ≤ Time(p2), and
∑

l∈E(p1)w(l) ≤
∑

l∈E(p2) w(l). This is a

heuristic dominance rule for the path elimination, because it is likely to give up some

promising paths that are dominated by the partial paths of those forbidden cycles.

To accelerate the algorithm, we also define a threshold φ to capacitate the number of

available paths to be explored at each path set Path(z). We sort the paths in Path(z)

according to their cost in ascending order, and select the top φ paths for exploration.
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3.3.3.2 An MILP-based method

Based on Gs, we next investigate an MILP-based method to solve the pricing

problem (3.15). In the model, binary variable Kz equals one if port z is visited and

equals zero otherwise. Binary variable Bz equals one if port z is a butterfly node in

a rotation and equals zero otherwise. Binary variable Mz equals one if port z is the

starting port of the rotation. Continuous variable Iz reflects the sequence of port z

in the rotation by its value. Binary variable Xl decides whether edge l is involved in

the cycle. Integer variable Y decides the number of operated ships. Denote by o′(l)

and d′(l) the rear port and head port for edge l. Let E+
s (z) and E−s (z), respectively,

represent the subset of incoming and outgoing edges for port z. The voyage time on

edge l is denoted by t′l. An MILP formulation (3.17a - 3.17q) is provided to solve the

pricing problem (3.15).

The objective function (3.17a) is derived from (3.15). Constraints (3.17b) balance

the number of edges entering and leaving any port in the cycle. Constraints (3.17c)

allow an edge is included by a cycle if its rear port and head port are both visited.

Constraint (3.17d) follows the practical rule (ii) that allows at most one butterfly port

in a cycle. The number of edges that enter or leave a port is restricted by Constraints

(3.17e) and (3.17f), respectively. Constraint (3.17g) allow exactly one port identified

as the starting port of the cycle. Constraints (3.17h) enforce the butterfly port to be

the starting port in the cycle. Constraints (3.17i) restrict Iz to be greater than zero

if and only if port z is visited in the cycle. Constraints (3.17j) assign Iz by increasing

values along the cycle before reaching the starting port. Note that Constraints (3.17g-

3.17j) are employed to eliminate subtours. Constraints (3.17k) require an enough

number of ships to be operated on the rotation to maintain the service frequency.

Constraint (3.17l) follows practical rule (iii) that allows at most α port calls in a

cycle. Constraint (3.17m) follows practical rule (iv) that restricts the round-trip

duration no more than β weeks. The forbidden rotations in R∗ are avoided to output
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by Constraints (3.17n). Integrality and nonnegativity of the variables are presented

in (3.17o-3.17q).

∆s = max (−wOs − δs)Y −
∑
l∈Es

wlXl, (3.17a)

s.t.
∑

l∈E+
s (z)

Xl −
∑

l∈E−s (z)

Xl = 0, ∀z ∈ Vs, (3.17b)

Xl ≤
1

2
(Ko′(l) +Kd′(l)), ∀l ∈ Es, (3.17c)∑

z∈Vs

Bz ≤ 1, (3.17d)

Kz ≤
∑

l∈E+
s (z)

Xl ≤ Kz +Bz, ∀z ∈ Vs, (3.17e)

Kz ≤
∑

l∈E−s (z)

Xl ≤ Kz +Bz, ∀z ∈ Vs, (3.17f)

∑
z∈Vs

Mz = 1, (3.17g)

Bz ≤Mz ≤ Kz, ∀z ∈ Vs, (3.17h)

Kz ≤ Iz ≤ |P |Kz, ∀z ∈ Vs, (3.17i)

1 + Io′(l) − |P |Md′(l) − |P | (1−Xl) ≤ Id′(l), ∀l ∈ Es, (3.17j)∑
l∈Es

(t′l + τ)Xl ≤ 7Y, (3.17k)∑
l∈Es

Xl ≤ α, (3.17l)∑
l∈Es

(t′l + τ)Xl ≤ 7β, (3.17m)∑
l∈E(r)

(1−Xl) +
∑
l /∈E(r)

Xl ≥ 1, ∀r ∈ R∗ : s(r) = s, (3.17n)

Kz, Bz,Mz ∈ {0, 1}, Iz ≥ 0, z ∈ Vs, (3.17o)

Xl ∈ {0, 1}, l ∈ Es, (3.17p)

Y ∈ N+. (3.17q)

As ∆s is obtained by solving the MILP for each s, ∆ = maxs∈S{∆s} is returned

and SCRG stops if ∆ ≤ 0. Note that the MILP-based method can automatically
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avoid generating the forbidden rotations due to the restriction of Constraints (3.17n).

Our computational experience of employing an IP solver to tackle this MILP is that

the instances with no more than 20 ports could be solved quickly in most cases.

3.3.3.3 Violation verification

In this subsection, we propose a violation verification process to prevent the pricing

problem from outputting the cycles with invalid violations. It is worth noting that

not all rotations output from the pricing problem lead to true violations. Assume

rotation r is returned from solving the pricing problem, we implement an auxiliary

LP described in (3.18) to decide the values for λkr,i, πr,e and γkr,e in Π0.

∆(r) = min −ar − brδs(r) +
∑
e∈A(r)

ms(r)πr,e +
∑
k∈D

∑
e∈A(r)

qkγ
k
r,e,

s.t. λkr,head(e) − λkr,tail(e) + πr,e + γkr,e ≥ −cke , ∀k ∈ D, ∀e ∈ A(r),

λkr,head(e) − µktail(e) ≥ −cke , ∀k ∈ D, ∀e ∈ L′ ∩ L(r),

− λkr,tail(e) + µkhead(e) ≥ −cke , ∀k ∈ D, ∀e ∈ L′′ ∩ L(r),

λkr,i unrestricted, ∀k ∈ D, ∀i ∈ N(r),

πr,e ≥ 0, γkr,e ≥ 0,∀k ∈ D, ∀e ∈ A(r).

(3.18)

Suppose (λ̂ks,i, π̂s,e, γ̂
k
s,e) is obtained in Phase 1. Given r, we define ∆̂(r) as the

objective value of (3.18) by letting πr,e = π̂s(r),e and γkr,e = γ̂ks(r),e. Obviously,

(λ̂ks,i, π̂s,e, γ̂
k
s,e) can form a feasible solution to (3.18) because the the auxiliary val-

ues constrained by (3.10a - 3.10e) also satisfy the constraints of (3.18). Suppose r′ is

returned from Phase 2 that has a violation. Given r′, by solving (3.18) optimally, if

we have ∆(r′) ≤ 0 < ∆̂(r′), it implies that the detected violation on r′ can be avoided

when the dual variables λkr′,i, πr′,e, γ
k
r′,e in Π0 are assigned with the optimal solution

of (3.18), so the detected violation is invalid. It is hence not necessary to generate r′
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as it will surely not improve the objective of RMP.

To avoid generating the rotations with invalid violations, we implement (3.18) as

a verification process in the pricing problem to see whether the output cycle leads

to a valid violation. In the cycle search algorithm, anytime as a cycle is verified

with ∆(r) ≤ 0, it can be abandoned immediately. For the rest candidate cycles with

∆(r) > 0, we sort them on ∆(r) in descending order and select the top cycles as the

output solutions for the pricing problem. In the MILP-based method, if ∆(r) ≤ 0, we

not only reject to output this cycle but also add the rejected cycle to the forbidden

set R∗. We then repeat solving the MILP (3.17a - 3.17q) with an updated R∗ to get

another one. The repeated solution procedure stops till a cycle r is obtained with

∆̂(r) ≤ 0 or ∆(r) > 0.

3.3.4 Computing an Upper Bound

At any iteration of the SCRG, according to the weak duality, the objective of a

feasible solution to DLPR can be an upper bound to the LPR. We construct Π0 and

combine it with Π̃ to form a complete dual solution Π. Note that Π may be infeasible

to DLPR since the constructed Π0 can have violations on (3.9f). In order to avoid

such violations, for each s we update δs to δ′s which is large enough to guarantee (3.9f)

are all satisfied. After the updating, Π will be feasible to DLPR and Z(Π) provides

an upper bound to LPR which is also known as an upper bound to LSND.

Since Z(Π) is increasing in δs, to obtain a tighter upper bound, the value of δ′s

should be set as small as possible while keeping that (3.9f) are satisfied by Π0. To

find such a small δ′s, we use ∆s(ω) to denote the optimal solution value of the pricing

problem defined in (3.17a - 3.17q) with Y = ω. Assume Ω to include all possible

numbers of the deployed ships on a rotation. Given s ∈ S and ω ∈ Ω, we have the

following MILP to obtain ∆s(ω):
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∆s(ω) = max (−wOs − δs)Y −
∑
l∈Es

wlXl,

s.t. (3.17b− 3.17p), (3.19)

Y = ω.

As the value of ∆s(ω) is obtained for all possible s and ω, the following proposition

is given to compute a compact upper bound to LPR.

Proposition 3.3. Suppose {δs : s ∈ S} and {θk : k ∈ D} are obtained from solving

the RMP. Replace δs by δ′s for each s following δ′s = δs + maxω∈Ω

{
∆s(ω)
ω

}+

. Then∑
s∈S hsδ

′
s +
∑

k∈D qkθk yields an upper bound to LPR.

Proof. Suppose we have obtained the auxiliary values in Π̂0 to construct Π0. To

guarantee Π0 is feasible, we adjust value of δs to a larger value δ′s that ensures the

partial Constraints (3.9f) for r ∈ R \ R̃ are all satisfied. Hence, for each r not in R̃,

we have

brδ
′
s(r) ≥ −ar +

∑
e∈A(r)

ms(r)π̂s(r),e +
∑
k∈D

∑
e∈A(r)

qkγ̂
k
s(r),e

≥ −
(
δs(r) + wOs(r)

)
br −

∑
e∈A(r)

(
ws(r),e −ms(r)π̂s(r),e −

∑
k∈D

qkγ̂
k
s(r),e

)
+ brδs(r).

(3.20)

Given ∆s(ω) as the optimal solution value of (3.17a - 3.17q) with Y = ω, for any

r ∈ R \ R̃ with br = ω, there is

∆s(ω) ≥ −
(
δs(r) + wOs(r)

)
ω −

∑
e∈A(r)

(
ws(r),e −ms(r)π̂s(r),e −

∑
k∈D

qkγ̂
k
s(r),e

)
. (3.21)

In order to ensure (3.20) is fulfilled for all r ∈ R \ R̃, based on (3.21) we have the
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following sufficient condition to set the values for δ′s:

ωδ′s ≥ ∆s(ω) + ωδs, ∀s ∈ S,∀ω ∈ Ω. (3.22)

Based on (3.22), the smallest δ′s will be determined by δs + maxω∈Ω

{
∆s(ω)
ω

}
for

each s. Note that if maxω∈Ω

{
∆s(ω)
ω

}
≤ 0, it implies ∆s ≤ 0 and Constraints (3.9f)

with respect to the rotations using ship type s are already satisfied, and we set

δ′s = δs in that case. After the updating, the dual solution Π is feasible to DLPR and

Z(Π) =
∑

s∈S hsδ
′
s +
∑

k∈D qkθk is an upper bound to LPR by weak duality.

Note that the efficiency of the upper bound computation largely replies on the time

spent on solving (3.19). Fortunately, even if the MILP does not reach the optimality,

its upper bound ∆′s(ω) can also be used to determine the value of δ′s, and the obtained

Π still provides a valid upper bound to LPR. In the SCRG, we restrict the time for

computing the upper bounds by imposing a solution time limit. Moreover, to avoid

occupying too much computation time, we only compute the upper bound at some

selected iterations.

3.3.5 A Branch-and-Price Algorithm

We now embed the SCRG into a branch-and-price framework [65, 9], to find an

optimal integer solution for this problem. On the explored nodes of the search tree,

we apply SCRG to solve their relaxation problems which provide upper bounds for

the problem. At a tree node, branching occurs when no new rotations are found to

improve the restricted master problem. As a solution to the relaxation problem is

returned, we branch on yr with fractional value closest to 0.5, and fix yr = 0 in one

branch and yr = 1 in the other branch. A feasible solution to LSND is obtained

when all yr take integers, whose objective provides a lower bound. The incumbent

best lower bound of the problem is updated if any better feasible solution appears.
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We prune a tree node if its upper bound is no greater than the incumbent best lower

bound. The branch-and-price stops at an optimal solution when the problem’s upper

bound is no larger than the incumbent best lower bound.

We consider two node selection strategies. One is the depth-first strategy where

branching is done on the current node. The other is the best-bound strategy where

the node with the largest upper bound is branched. The depth-first strategy is ap-

plied at the beginning of the branch-and-price. We hope that some quickly feasible

integer solutions can activate the pruning as early as possible to improve the solu-

tion efficiency. The best-bound strategy is applied in latter stages and expected to

improve the upper bound to tighten the optimality gap.

However, not all relaxation problems at the tree nodes can be solved to optimality

quickly because the convergence of SCRG will get slower when quite a number of

rotations have been generated. Moreover, for larger instances, solving the pricing

problem to optimality also takes much time. To avoid spending too much time on

solving the relaxation problem at each node, we allow stopping the SCRG prematurely

at a suboptimal solution. A consequence of the premature termination is that a looser

upper bound might be obtained on that node. As compensation, more time will

be spent on exploring new nodes that motivate the improvement of the incumbent

lower bound solution. Therefore, in the branch-and-price, the premature termination

can appropriately balance the improvements of upper bounds and lower bounds to

enhance the solution efficiency.

3.4 Extensions

In this section, we study an extended problem of LSND in which each rotation is

additionally allowed with a biweekly frequency, and moreover, the ship speed on each

operated rotation is to be decided. To address these new decisions, in Section 3.4.1

we develop for the extended problem a new MILP model. Due to the huge number
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of potential candidate rotations, the new MILP is even more difficult to solve. To

efficiently tackle an extended problem that is scaled to a practical size, in Section 3.4.2

we adopt a speed updating strategy in a heuristic solution procedure to find near-

optimal solutions.

3.4.1 Model Extension

To decide the service frequency and ship speed, we define each rotation r is associ-

ated with a frequency g(r), which implies the time interval between two regular port

calls is g(r) weeks. We set the values g(r) = 1 and g(r) = 2 to illustrate the weekly

frequency and biweekly frequency. Besides, we associate a speed v(r) to rotation r

which means all ships on that rotation are operating at the given speed. It is reason-

able to assume a constant speed for each rotation because the optimal speed is proven

uniform over all legs so as to minimize the fuel cost since the fuel consumption func-

tion Fs(v) is convex on v [73]. Discrete speed levels are often assumed to characterize

the decision of speed in the network design [3, 13]. Let {vmin, vmin +ε, ..., vmax} denote

a set of discrete speed levels with ε indicating the interval size. When all possible ship

types, service frequencies and speed levels are included, we obtain a new rotation set

Ξ and its size is about 2(vmax−vmin)
ε

times larger than that of R.

For a rotation r ∈ Ξ, the transit time on each voyage arc e ∈ A(r) is measured

by te = `e
24v(r)

. To satisfy the frequency requirement, the number of ships required on

each rotation r is calculated by

b′r =

 1

7g(r)

∑
e∈A(r)

(
`e

24v(r)
+ τ

) . (3.23)

Recall that the weekly operating cost of rotation can be calculated by the round-

trip cost multiplied by the number of ships operating on it, and averaged by the

number of weeks. Hence, given a′r as the round-trip cost of a rotation r ∈ Ξ, we can
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calculate its weekly cost by 1
g(r)

a′r. Similar with (3.2), the round-trip cost is calculated

as follows:

a′r = wOs(r)b
′
r +

1

g(r)

∑
e∈A(r)

wFs(r),e(v(r)) +
1

g(r)

∑
i∈N(r)

(
wPs(r),z(i) + wSs(r),z(i)

)
.

(3.24)

Under the required frequency, every week the available capacity expected to serve

the cargo demands is measured by 1
g(r)

ms(r). With similar objective function, con-

straints and variables as the LSND, the extended problem is formulated as follows:

max
∑
k∈D

pkxk −
∑
k∈D

∑
r∈Ξ

∑
e∈A(r)∪L(r)

ckef
k
r,e −

∑
r∈Ξ

1

g(r)
a′ryr,

s.t.
∑

e∈A+(i):e∈A(r)

fkr,e +
∑

e∈L+(i)

fkr,e −
∑

e∈A−(i):e∈A(r)

fkr,e −
∑

e∈L−(i)

fkr,e = 0,

∀k ∈ D, ∀r ∈ Ξ,∀i ∈ N(r),

∑
e∈L+(i)

∑
r∈Ξ:tail(e)∈N(r)

fkr,e −
∑

e∈L−(i)

∑
r∈Ξ:head(e)∈N(r)

fkr,e =


−xk, o(k) = z(i)

0, otherwise

xk, d(k) = z(i)

∀k ∈ D, ∀i ∈ T∑
r∈Ξ:s(r)=s

b′ryr ≤ hs, ∀s ∈ S,

∑
k∈D

fkr,e −
1

g(r)
ms(r)yr ≤ 0, ∀r ∈ Ξ,∀e ∈ A(r),

fkr,e − qkyr ≤ 0, ∀k ∈ D, ∀r ∈ Ξ,∀e ∈ A(r),

xk ≤ qk, ∀k ∈ D,

xk ≥ 0, fkr,e ≥ 0, ∀k ∈ D, ∀r ∈ Ξ,∀e ∈ A(r) ∪ L(r),

yr ∈ {0, 1}, ∀r ∈ Ξ.

Notice that the new MILP formulation also has both its variables and constraints
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associated with Ξ that involves more rotations than R. When we apply the SCRG to

solve the LP relaxation, for any possible combination of (ship type, service frequency,

speed level) there is a pricing problem to solve in Phase 2. Therefore, many more

pricing problems are required to be handled at each iteration of SCRG. If each pric-

ing problem cannot be solved very quickly, the implementation of SCRG would be

computationally expensive. In this work, to efficiently tackle the extended problem

scaled to a practical size, we introduce a heuristic to find its near-optimal solutions.

3.4.2 Heuristic

Instead of enumerating all possible speed levels, we adopt an updating strategy to

determine the ship speed on each operated rotation. In the application of SCRG, given

s ∈ S and g ∈ {1, 2}, we define the pricing problem on a physical network Gs,g(v̄),

where v̄ is randomly assigned within the interval [vmin, vmax] and the edge cost is

assigned regarding speed v̄. The pricing problem is solved to return the rotation with

a premier speed v̄. Suppose r is returned, by substituting v̄ into (3.23), a number

of b′r ships are obtained to maintain the required frequency g(r). Since the fuel cost

function wFs,e(v) is increasing in v, smaller speed is thus preferred to save the fuel cost

while keeping an equal service frequency. Given `(r) and τ(r) respectively denoting

the distance and port stay time on rotation r, to fulfill the frequency requirement,

there is

7g(r)b′r ≥
`(r)

24v(r)
+ τ(r) (3.26)

A smallest operating speed of r is then updated by

v(r) = max

{
`(r)

24(7g(r)b′r − τ(r))
, vmin

}
. (3.27)

Using the speed updating strategy, we only need the information of ship type
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and frequency to define a pricing problem, while the arc cost of the physical network

is based on a randomly produced speed. As a result, a smaller number of pricing

problems are to be handled at each iteration of SCRG. Based on this, computation

will be much faster but optimality of the relaxation problem cannot be guaranteed.

We next develop a heuristic solution method to obtain near-optimal solutions to the

extended problem. In the heuristic, SCRG is applied to solve the LP relaxation of the

extended problem using the speed updating strategy. Many rotations with diversified

speeds will be generated when the SCRG stops, and a subset of them will be selected

to construct a solution to the MILP using branch-and-bound. Similar approaches

have been applied and shown to be competitive for solving various large-scale MILP

problems using column generation [1, 22].

3.5 Numerical Experiments

We conduct a computational study based on the test cases (Baltic and WAF)

from the benchmark suite LINER-LIB 12 proposed in [13]. Both randomly generated

instances and benchmark instances are utilized to examine the proposed methods

in this work. All algorithms are implemented in C++ using the CPLEX of version

12.6. Experiments are conducted on an Intel Core i7 (3.4 GHz) Desktop PC with

8 GB RAM. We first introduce the test instances in Section 3.5.1. The solution

performances on the LP relaxations are discussed in Section 3.5.2. The performance

of exact and heuristic solutions are compared in Section 3.5.3 and Section 3.5.4,

respectively.

3.5.1 Test Instances

Our test instances are with the number of ports ranging from 6 to 20, which are

consistent with small and moderate sized network design cases from the practice.

We classify the test instances into two groups. In the first group, based on the data
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information of Baltic (12 ports and 22 demands) and WAF (20 ports and 37 demands),

we randomly generate the instances by differentiating their involved number of ports

and number of demands. Each random instance is expressed by ”pX-dY-Z” that

implies ”X” ports and ”Y” demands from test case ”Z” are involved, in which Baltic

and WAF are notated by ”Z=b” and ”Z=w”, respectively. In the second group, the

original benchmark instances of Baltic and WAF in LINER-LIB 12 are included. As

introduced in [13], each benchmark instance is associated with a scenario from {low,

base, high} to reflect the supply and demand conditions of the market. Given the base

scenario as a standard, freight rate is multiplied by 1.4 and fleet size is multiplied

by 0.8 in a low scenario. In a high scenario, freight rate is multiplied by 0.8 and

fleet size is multiplied by 1.2. The number of ships for each scenario is rounded to

the nearest integer. We represent each benchmark instance by ”pX-dY-Z-S” and

”S” is additionally selected from {l, b, h} to indicate the scenario {low, base, high}

respectively.

The fuel oil price is set by O = 600 and the port stay time for each port call

is set by τ = 1, which are consistent with the benchmark instance settings in [57],

[13] and [14]. Furthermore, we select weekly or (bi)weekly as the service frequency

requirement. The decision of ship speed is allowed (yes) or not allowed (no). The

penalty cost for rejecting a cargo is set by 0 or 1000. In the experiment, we attach

the test instances with different requirements on the service frequency, ship speed

and penalty cost. Solution methods to solving the LSND and solving the extended

problem of LSND are examined in the experiments. For LSND, we enumerate all

possible rotations for some smaller instances and then apply CPLEX’s MIP-Solver

and LP-Solver to tackle the MILP formulation and the LPR to obtain benchmark

results. Moreover, CG is implemented to solve the ALPR while SCRG is applied

to solve the LPR. Branch-and-price is implemented to find optimal or near-optimal

solutions to LSND. For the extended problem of LSND, the SCRG based heuristic
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with speed updating strategy is implemented to find near-optimal solutions. The

obtained solutions are compared with the benchmark solutions from [57] (denoted by

Plum14), [13] (denoted by Brouer14a) and [14] (denoted by Brouer14b), respectively,

under identical problem settings. Note that due to the solution objectives reported

in Brouer14a and Brouer14b are measured by the profits within 180 days, we report

their objective values by timing (7/180) so that they are comparable with our weekly

profits.

Table 3.1: Overview of the test instances
INST FREQ SPEED PENALTY LENGTH DURATION SOL vs.SOL

Group I
p6-d6-b weekly no 0 5 10 SCRG, B&P CG, CPLEX
p6-d6-w weekly no 0 5 10 SCRG, B&P CG, CPLEX
p6-d10-b weekly no 0 5 10 SCRG, B&P CG, CPLEX
p6-d10-w weekly no 0 5 10 SCRG, B&P CG, CPLEX
p9-d12-b weekly no 0 5 10 SCRG, B&P CG, CPLEX
p9-d12-w weekly no 0 5 10 SCRG, B&P CG, CPLEX
p9-d15-b weekly no 0 5 10 SCRG, B&P CG, CPLEX
p9-d15-w weekly no 0 5 10 SCRG, B&P CG, CPLEX
p12-d20-w weekly no 0 7 10 B&P -
p12-d22-w weekly no 0 7 10 B&P -
p15-d26-w weekly no 0 7 15 B&P -
p15-d28-w weekly no 0 7 15 B&P -
p18-d32-w weekly no 0 11 15 B&P -
p18-d34-w weekly no 0 11 15 B&P -

Group II
p12-d22-b-l weekly no 0 7 10 B&P Plum14
p12-d22-b-b weekly no 0 7 10 B&P Plum14
p12-d22-b-h weekly no 0 7 10 B&P Plum14
p20-d37-w-l weekly no 0 11 15 B&P Plum14
p20-d37-w-b weekly no 0 11 15 B&P Plum14
p20-d37-w-h weekly no 0 11 15 B&P Plum14
p12-d22-b-l (bi)weekly no 1000 7 10 Heuristic Plum14
p12-d22-b-b (bi)weekly no 1000 7 10 Heuristic Plum14
p12-d22-b-h (bi)weekly no 1000 7 10 Heuristic Plum14
p20-d37-w-l (bi)weekly no 1000 11 15 Heuristic Plum14
p20-d37-w-b (bi)weekly no 1000 11 15 Heuristic Plum14
p20-d37-w-h (bi)weekly no 1000 11 15 Heuristic Plum14
p12-d22-b-l weekly yes 1000 7 10 Heuristic Brouer14b
p12-d22-b-b weekly yes 1000 7 10 Heuristic Brouer14b
p12-d22-b-h weekly yes 1000 7 10 Heuristic Brouer14b
p20-d37-w-l weekly yes 1000 11 15 Heuristic Brouer14b
p20-d37-w-b weekly Yes 1000 11 15 Heuristic Brouer14b
p20-d37-w-h weekly yes 1000 11 15 Heuristic Brouer14b
p12-d22-b-l (bi)weekly yes 1000 7 10 Heuristic Brouer14a
p12-d22-b-b (bi)weekly yes 1000 7 10 Heuristic Brouer14a
p12-d22-b-h (bi)weekly yes 1000 7 10 Heuristic Brouer14a
p20-d37-w-l (bi)weekly yes 1000 11 15 Heuristic Brouer14a
p20-d37-w-b (bi)weekly yes 1000 11 15 Heuristic Brouer14a
p20-d37-w-h (bi)weekly yes 1000 11 15 Heuristic Brouer14a

We present in Table 3.1 the details of all test instances. Column ”INST” denotes

81



the name of the instance. Columns ”FREQ”, ”SPEED” and ”PENALTY” show the

problem setting imposed on each instance, including the frequency requirement, ship

speed and penalty cost. Column ”LENGTH” and ”DURATION” are the maximum

number of port calls and maximum round-trip duration for defining a possible ro-

tation. Column ”SOL” and ”vs.SOL” respectively involves our solutions and the

benchmark solutions.

3.5.2 Comparing the Relaxations

We now compare the performances of the proposed solution approaches on solving

the LP relaxations for the LSND. The solution of ALPR is obtained via adopting

CG. By enumerating all possible rotations, we tackle the LPR via the CPLEX’s

LP-Solver and report the obtained solution under (LPR + CPLEX). Applying the

SCRG approach, we report the solution of LPR under (LPR + SEQ) if construction of

Π0 follows the sequential approach, and report the solution under (LPR + LPB) if it

follows the LP-based approach. As the violation verification process in Section 3.3.3.3

is additionally applied to solving the pricing problem, we report the obtained solution

under (LPR + LPB + VV). All solution approaches are implemented with a runtime

limit of 300 seconds. All obtained solutions are reported on their number of generated

rotations under column ”COL” and the computation time under the column ”TIME”.

Column ”OBJ(%)” below (ALPR) shows the percentage gap between the optimal

objectives of ALPR and LPR.

As is shown in Table 3.2, LPR provides tighter upper bounds, which is as expected

since ALPR is known a relaxation to LPR. To solve the LPR, CPLEX’s LP-Solver

can reach optimal solutions for those instances with 6 ports, and the optimality is not

achieved within 300 seconds for the instances with 9 ports. Clearly, the SCRG using

sequential approach performs better than the CPLEX’s LP-Solver on the solution

efficiency, but the optimality is still not guaranteed for those instances with 9 ports.
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In comparison, the SCRG using the LP-based approach for the dual solution con-

struction can achieve optimal solutions within 300 seconds for all reported instances.

Moreover, under (LPR + LPB), obviously fewer rotations are generated and less com-

putation time is consumed when SCRG reaches optimality. That is consistent with

our initial intuition that the LP-based dual solution construction of the two-phase

scheme is advantageous to provide suitable values for the absent dual variables in

Phase 1 that helps avoid the detections of invalid violations in Phase 2. Experimen-

tal evidence also shows that SCRG will have a fast convergence if the values of Π0

are assigned appropriately. Moreover, by comparing the results under (LPR + LPB)

and those under (LPR + LPB + VV), it is evident to see that the adoption of vio-

lation verification in solving the pricing problems can effectively reduce the number

of generated rotations without increasing the computational time. Because the pro-

posed verification process effectively avoids the generation of rotations with invalid

violations. For the rest of experiments implementing SCRG, we uniformly adopt the

approach under (LPR + LPB + VV) to solve the LP relaxation.

Table 3.2: Solution performance on the relaxations

ALPR LPR + CPLEX LPR + SEQ LPR + LPB LPR + LPB + VV

INST OBJ(%) COL TIME COL TIME COL TIME COL TIME COL TIME

p6-d6-b 0.0 35 1 732 5 161 5 59 1 35 1
p6-d6-w 0.2 34 1 395 5 177 6 42 1 21 1
p6-d10-b 0.6 81 1 511 10 209 7 56 1 32 1
p6-d10-w 4.1 133 2 467 34 168 6 45 1 26 1
p9-d12-b 1.6 443 102 4190 300† 787 300† 84 1 80 2
p9-d12-w 5.5 234 29 4702 300† 492 300† 175 21 80 21
p9-d15-b 2.2 388 72 4393 300† 589 300† 83 1 71 1
p9-d15-w 0.8 337 56 4702 300† 335 300† 162 18 66 12

Notes: INST denotes the name of the instance. OBJ(%) reports the percentage gap between the
optimal objectives of ALPR and LPR, which is measured by ALPR-LPR

LPR
. COL reports the number of

generated rotations. TIME reports the computation time in seconds. †: Optimality not proved.
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3.5.3 Comparing the Exact Solutions

We next compare the solution performance of branch-and-price with that of the

CPLEX’s MIP-Solver and that of Plum14 for solving the LSND. All reported test

instances are with weekly service frequency, fixed speed, and zero penalty cost. The

tested solution method is with a runtime limit of 2 hours. The column ”COL” records

the number of all possible rotations by enumeration. If the number exceeds one billion,

we state ”> 109” on the table. The solution performance is reported regarding the

objective value (”OBJ”), the upper bound value (”UB”), the optimality gap (”GAP”)

and the computation time (”TIME”).

Table 3.3: Exact solutions for the LSND
CPLEX Branch-and-price

INST COL OBJ UB GAP(%) TIME OBJ UB GAP(%) TIME

p6-d6-b 732 102797 102797 0.0 13 102797 102797 0.0 1
p6-d6-w 395 684748 684748 0.0 55 684748 684748 0.0 3
p6-d10-b 511 277019 277019 0.0 27 277019 277019 0.0 3
p6-d10-w 467 1074382 1074382 0.0 2277 1074382 1074382 0.0 2889
p9-d12-b 4190 368314 476473 22.7 7200 374040 374040 0.0 3
p9-d12-w 4702 1172185 1619487 27.6 7200 1281405 1281405 0.0 2631
p9-d15-b 4393 612629 943813 35.1 7200 712921 712921 0.0 61
p9-d15-w 4702 2996155 3590359 16.6 7200 3202709 3247785 1.4 7200
p12-d20-w 901184 n/a n/a n/a n/a 3632189 3878197 6.3 7200
p12-d22-w 893776 n/a n/a n/a n/a 2710615 2906484 6.7 7200
p15-d26-w 957809 n/a n/a n/a n/a 3734023 4127781 9.5 7200
p15-d28-w 909432 n/a n/a n/a n/a 5121447 5553856 7.8 7200
p18-d32-w > 109 n/a n/a n/a n/a 5579441 6240528 10.6 7200
p18-d34-w > 109 n/a n/a n/a n/a 5405048 6175337 12.5 7200

Plum14 Branch-and-price

INST COL OBJ UB GAP(%) TIME OBJ UB GAP(%) TIME
p12-d22-b-l 385323 427485 611015 30.0 3600 662766 687349 3.6 7200
p12-d22-b-b 932654 408771 669774 39.0 3600 748618 763933 2.0 7200
p12-d22-b-h 955985 636152 657021 3.2 3600 785773 802831 2.1 7200
p20-d37-w-l > 109 1940817 6051697 67.9 10800 5106296 6262000 18.5 7200
p20-d37-w-b > 109 3372618 6399041 47.3 10800 5523499 6764104 18.3 7200
p20-d37-w-h > 109 3899767 6614613 41.0 10800 6009782 6973469 13.8 7200

Notes: INST denotes the name of the instance. COL records the number of all possible rotations.
OBJ reports the solution objective. UB reports the upper bound on the optimal solution objective.
GAP(%) reports the optimality gap computed by UB-OBJ

|UB| . TIME reports the computation time in

seconds.

From Table 3.3, we see that when all possible rotations are generated a prior,

CPLEX’s MIP-Solver can solve the instances with 6 ports to optimality, and achieve
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an optimality gap from 16.6% to 35.1% for the instances with 9 ports. Since the

total number of rotations increases exponentially by the network size, CPLEX fails

to output a feasible solution for larger instances in which ”n/a” is remarked. In

comparison, the branch-and-price solves all the instances with 6 ports and most of the

instances with 9 ports to optimality within 1 hour, which outperforms CPLEX’s MIP-

Solver regarding both solution quality and time efficiency. For the other instances,

with an increase of the network size, the branch-and-price can achieve solutions with

optimality gaps varying from 1.4% to 18.5%.

We also compare our solutions with the benchmark solutions of Plum14, which are

to our knowledge the only results reporting the upper bounds on the benchmark suite

instances. It can be seen that our solutions completely outperform theirs, and the

obtained improvements are substantial. In addition, significantly smaller optimality

gaps are also achieved by our branch-and-price. Note that some of our solution

objectives even exceed the reported upper bounds of Plum14, mainly because the

allowed service number for Plum14 is set too small to output a better solution under

the limited solution space. Hence, the upper bounds reported in Plum14 are not

available to evaluate our solutions.

3.5.4 Comparing the Heuristic Solutions

Our heuristic is examined to benchmark against that of Plum14, Brouer14a and

Brouer14b for the extended problem of LSND. Solutions are compared under the same

setting of the frequency requirement, the speed decision and the penalty cost. The

heuristic is carried out with a runtime limit of 2 hours. We report the solution per-

formances in Table 3.4 concerning the solution objectives (”OBJ”) and computation

times (”TIME”). The improvements of our solutions over the benchmark solutions

are reported under the column ”IPM”.

We first benchmark our solution against Plum14 where both weekly and biweekly
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frequency are allowed, but speed is not to be decided. The results show that our

heuristic solutions averagely outperform Plum14 by almost 500% while significantly

consumes less computation time. Compared with the results of Brouer14b where a

weekly frequency is required and speed is to be decided, our solutions achieve 5.3% on

average better than theirs. When both weekly and bi-weekly frequency are allowed

and speed is to be decided, our solutions averagely improve the solutions of Brouer14a

by 17.4%. The overall results in Table 3.4 demonstrate that our SCRG approach can

effectively generate high-quality rotations for acquiring superior solutions.

Table 3.4: Heuristic solutions for the extended problem of LSND

Plum14 Heuristic

INST FREQ SPEED PENALTY BEST TIME OBJ IPM(%) TIME

p12-d22-b-l (bi)weekly no 1000 -265117 3600 121240 145.7 515
p12-d22-b-b (bi)weekly no 1000 -134687 3600 455360 438.1 647
p12-d22-b-h (bi)weekly no 1000 -183348 3600 642827 450.6 1797
p20-d37-w-l (bi)weekly no 1000 411317 10800 5090495 1137.6 7200
p20-d37-w-b (bi)weekly no 1000 1059352 10800 5638555 432.3 7200
p20-d37-w-h (bi)weekly no 1000 1281583 10800 6081794 374.6 7200
Average 496.5

Brouer14b Heuristic

INST FREQ SPEED PENALTY BEST TIME OBJ IPM(%) TIME

p12-d22-b-l weekly yes 1000 -133389 27 -131455 1.4 389
p12-d22-b-b weekly yes 1000 239556 105 263224 9.9 166
p12-d22-b-h weekly yes 1000 420000 33 430593 2.5 198
p20-d37-w-l weekly yes 1000 4433333 95 4659476 5.1 7200
p20-d37-w-b weekly yes 1000 5444444 93 5965974 9.6 7200
p20-d37-w-h weekly yes 1000 6261111 98 6457341 3.1 7200
Average 5.3

Brouer14a Heuristic

INST FREQ SPEED PENALTY BEST TIME OBJ IPM(%) TIME

p12-d22-b-l (bi)weekly yes 1000 235044 300 234172 -0.4 812
p12-d22-b-b (bi)weekly yes 1000 325306 300 495600 52.3 2422
p12-d22-b-h (bi)weekly yes 1000 609700 300 673681 10.5 1337
p20-d37-w-l (bi)weekly yes 1000 4486261 900 5339942 19.0 7200
p20-d37-w-b (bi)weekly yes 1000 5565389 900 6305260 13.3 7200
p20-d37-w-h (bi)weekly yes 1000 6220044 900 6831991 9.8 7200
Average 17.4

Notes: INST denotes the name of the instance. FREQ is the frequency requirement allowed for each
service. SPEED shows whether speed is to be decided. PENALTY is the penalty cost. BEST shows
the objectives from the best existing solution. OBJ reports the objective of our solution. IPM(%)
reports the percentage of improvement computed by OBJ-BEST

|BEST| . TIME reports the computation time

in seconds.
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3.6 Summary

In this work, we have developed a compact model to capture the transshipment

cost in a liner shipping network design problem. The proposed formulation is appro-

priate for applying the simultaneous column-and-row generation approach to solving

its linear programming relaxation so as to obtain a valid upper bound. In the ap-

proach, we have proposed a novel two-phase scheme to construct values for the dual

variables that are missing in the restricted problem. Following the construction, a

pricing problem is solved to seek violated dual constraints by searching cycles of

negative costs on a weighted network. Based on the simultaneous column-and-row

generation, we have developed a branch-and-price to find the optimal or near-optimal

network design. Moreover, we have extended our new models and solution approaches

to a more general problem where biweekly frequency is allowed and ship speed on

each operated rotation is also to be decided. By adopting a speed updating strategy, a

heuristic based on the simultaneous column-and-row generation has been proposed to

obtain the near-optimal solution for the extended version of the decision problem. Nu-

merical experiments have been conducted to examine the performance of the proposed

solution methods on some small and moderate sized instances from the benchmark

suite LINER-LIB 12. The results have shown that our simultaneous column-and-row

generation approach can solve the LP relaxation of the problem with an appropriate

construction of the values of dual variables. Also, the obtained solutions significantly

outperform the existing benchmark solutions, and the improvements are significant.
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CHAPTER 4

Conclusions

This thesis comprises of two essays on liner shipping network design. In the first

essay, we have developed a joint optimization model for multi-decision making on ship

routes, fleet deployment, speed, cargo allocation and frequency. A new speed-load

dependent fuel consumption function is assumed in the model to address the speed

optimization together with the network design. Since the proposed model is non-

linear and very difficult to solve. We approximate the non-linear model to a mixed

integer linear programming (MILP) model that can be solved by a column generation

based heuristic. In addition, we propose an iterative search algorithm that adaptively

changes the approximation to further enhance the heuristic. Extensive experiments

have been conducted to show both the significance of the speed-load dependent fuel

consumption function and the effectiveness of our approach. We have then provided a

sensitivity analysis that investigates the impact of different scenarios on the solutions,

such as fluctuations in fuel oil price, demand market, minimum speed requirements

and various fleet deployment strategies.

For future research of the first essay, disaggregation techniques in [49] can be

developed to restore the Aggregate Service Network (ASN) to the General Service

Network (GSN) when decision makers plan on route design and cargo allocation. The

other direction for future work is to take ballast water into consideration. In many
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cases, containerships sail with ballast water so as to maintain stable sailing if not

enough cargos are loaded. This implies that the impact of loads on fuel consumption

could actually be a piecewise function, rather than the continuous one under current

consideration. Therefore, this work can also be extended by investigating an adjusted

or more generalized fuel consumption function.

In the second essay, we have presented a compact MILP model for the liner ship-

ping network design problem with transshipment cost. The proposed formulation is

appropriate for applying the simultaneous column-and-row generation approach to

solving its linear programming relaxation so as to obtain a valid upper bound. In the

simultaneously column-and-row generation, we propose a novel two-phase scheme to

link the generation of new rotations to solving a familiar pricing problem. Based on

that, simultaneously column-and-row generation can work similarly as a column gen-

eration. Results from extensive numerical experiments have shown that the proposed

approach can efficiently stop at the optimality of the relaxation problem.

Based on the simultaneous column-and-row generation, we have developed a

branch-and-price to find its optimal or near-optimal solution. The basic model is

further extended to involve new decisions on service frequency and ship speed. A

heuristic is proposed to find near-optimal solutions for the extended problem. Nu-

merical experiments have been conducted to examine the performance of the proposed

methods to benchmark against the existing solutions from the literature. Our solu-

tions averagely have significant improvements over the benchmark solutions.

Future work of the second essay may focus on solving other larger instances in the

benchmark suite. To solve larger instances, one could follow the solution procedure of

[13] and [14] while the generation of new rotations relies on the simultaneous column-

and-row generation approach. Furthermore, the proposed simultaneous column-and-

row generation is relatively new, one can also apply it to many other problems that

are modeled with interdependent columns and rows in the formulation.
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Moreover, both essays assume static cargo demands which are independent of

the service quality in liner shipping. However, customers are sometimes sensitive to

the transit times that are used to fulfill their cargo demands [76]. In response to

the service level dependent demand, the operated liner shipping services should also

be configured accordingly, especially for the decisions on cargo routing and speed

optimization. Therefore, considering the impact of service level on demands can be

another important future direction for the liner shipping network design.
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