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Abstract: Nearly 90% of global trade is transported by ships. However, the in-

creasing demand for high-quality shipping services and lower prices combined with the

endless competition in the shipping market compel shipping companies to allocate the

ship capacity more effectively. First, a benchmark capacity allocation model on a three-

port (A , B and C) shipping line is established. In the model, the shipping company can

observe the demand from the departure port A, but the demand from the intermediate

port B is unobserved. When the shipping company allocates the capacity at the de-

parture port A, the uncertainty from the intermediate port B must be considered. We

find that the optimal capacity allocation strategy is related to a threshold parameter,

which is decided by the shipping price of each shipping leg and the demand function of

shipping leg B−C. When the threshold parameter is larger than the entire capacity of

the ship, the shipping company should accept cargoes of shipping leg A−B as many as

possible; When the threshold parameter is relatively small, the profit function reaches

the peak point when the confirmed cargo delivery amount of shipping leg A − B is

equal to the threshold parameter and the confirmed cargo delivery amount of shipping

leg A−C is equal to the gap between the entire capacity of the ship and the threshold

parameter. The second model considers when strategically throwing away cargoes is

allowed, how the shipping company should allocate the capacity. The optimal results

show that strategically throwing away cargoes will increase the optimal amount of car-

goes that should be accepted to shipping leg A−C in some special cases. By comparing

the expected revenues of the two models in the long run, the cases when throwing away

cargoes should be allowed are shown. Lastly, a numerical example with exponential

distribution demand is illustrated. The gap between the expected revenues of the two

models shows that allowing the throwing away of cargoes can achieve higher expected

revenues in all five cases.

Keywords: Liner Shipping, Capacity Allocation, Strategically Throwing Away Cargoes
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Chapter 1.

Introduction

1.1. Background and Motivation

It is well-known that nearly 90% of global trade is transported by ocean-going ships.

Liner shipping helps more than million-ton of products travel to Europe and America

[22]. Usually, costs for liner shipping companies to operate their services are stable when

there are no large fluctuations of international oil prices. In recent years, benefiting

from relatively low international oil prices, liner shipping companies could operate their

services with relatively low costs. On the other hand, low international oil prices also

cause the increase in demand for high quality shipping services and lower fees. As a

result, Asian Shippers Association and Global Shippers Alliance were created to protect

the rights of cargo owners [11]. In addition to the pressure from cargo owners, the

competition from the shipping market has also been increasing. Six carriers, including

Mitsui O.S.K. Lines et al., formed a new container carrier alliance in May 2016, named

“THE Alliance”, to compete with three other container carrier alliances: “CKYHE

Alliance”, “2M Alliance” and “Ocean Three” [24]. Figure 1.1 shows the present market

share in different trade lanes. Endless and fierce competition also will prompt alliances

to coordinate more effectively for the higher market share and revenue.

1.2. Research Question

Carrier alliances make it possible for shipping companies to share vessels and rent ship

capacity from each other. Generally, if a shipping company accepts a booking, the

cargoes will be delivered without throwing any away until reaching their destinations.
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Figure 1.1.: Market share by 2M, O3, G6 and CKYHE alliances. [9]

Here, “throwing away” does not mean to abandon those cargoes but instead to find

short-term storage until the next ship’s arrival. The main reason for that is because

a liner shipping company usually conducts shipping activity once every couple of days

or couple of weeks. Throwing away cargoes at any port will lead to an extended

delay, which may bring a higher delay cost or other invisible losses, such as reputation

loss. However, if coordination within a carrier alliance can decrease the delay cost to

an acceptable level, can strategically “throwing away” the cargoes result in a higher

revenue?

This paper attempts to discuss how the behaviour of strategically throwing away car-

goes affects a shipping company’s decision regarding capacity allocation and revenue.

For tractability, this paper simplified a liner shipping line to a simple three-port line.

Usually, about three weeks before departure, a shipping company begins to receive

capacity bookings. At this time, reservations do not indicate the actual acceptance

of bookings. Unlike the booking process in the airline, which confirms an order in a

few seconds, a shipping company usually needs two days to decide whether to accept a

booking and many shipping companies deal with consignors’ reservations a week before

the departure. For a liner ship on a long route, although the shipping company can

observe the demands from the departure port in a line, the demand of the interme-

diate port is unknown. This conveys uncertainty for the shipping company’s capacity

allocation. Therefore, when the shipping company makes decisions regarding capacity

allocation, the shipping company needs to take all demands from the shipping line into
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account, not only those from the departure port. The operating form of the throwing

away is similar to transshipment, but their purposes are different. The shipping compa-

nies throw away cargoes in order to obtain higher revenues. Transshipment is usually

used to describe the transshipping of cargoes between two types of ship in shipping

because of different destinations and different shipping operating costs.

The long-haul shipping price usually reflects a discount effect compared with the sum of

all sub-legs. When demands are large enough, accepting short distance orders can gain

more for the shipping company than long haul. A liner ship’s voyage usually requires a

couple of weeks or more, the time sensitivity for shipping is lower for it than for other

transport modes such as air. In addition, coordination between shipping companies of

the same carrier alliance can shorten the delay. Both of that could make it possible for

the shipping company to strategically throw away long-haul cargoes at the intermediate

port. Of course, a penalty cost including the unloading and loading expenses, storage

costs and delay costs will be applied to those thrown cargoes.

This paper formulates a shipping company capacity allocation decision model with

the uncertainty of the demands of the intermediate port in a liner shipping line. The

optimal capacity allocation strategy for the shipping company is proposed. More im-

portantly, this paper provides the possibility of a fresh new coordination approach for

carrier companies in a carrier alliance. A new capacity allocation model is set up where

“throwing away cargoes” is allowed for the shipping company. The optimal strategy

has a similar structure to the benchmark model. What’s more, while not applying to all

situations, this paper proves that “throwing away” cargoes could change the shipping

company’s capacity allocation and increase the revenue in certain cases. In the long

run, allowing the “throwing away” of cargoes can also increase the expected revenue

under special conditions. Conditions for allowing the throwing away of cargoes are also

obtained.

1.3. Outlines

Related literatures are discussed in the second chapter. In the third chapter, we first

discuss the benchmark model, which considers the uncertainty of the intermediate

port’s demand, how the shipping company should allocate the capacity. The model for
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strategically throwing away cargoes is discussed next. In the fourth chapter, managerial

insights are provided through numerical examples. In the last chapter, we present the

conclusions for this paper and the future works.
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Chapter 2.

Literature Review

Few works of literature discussing the throwing away of shipping cargoes were found.

However, similar literatures about capacity allocation, the newsboy model and over-

booking were uncovered.

2.1. Capacity Allocation

Hetrakul et al. [17] analyzed ticket reservation data from a railway to search for optimal

pricing and seat allocation in order to acquire the maximum revenues. By considering

the taste heterogeneity of passengers, a customer choice model was developed. The

results showed that satisfying short-haul demand achieved a greater revenue than long-

haul demand. Amaruchkul et al. [2] considered how a single air-cargo carrier allocated

the cargo capacity to multiple forwarders. The actual usage of each forwarder was

modelled through a discrete Markov chain. The results were concluded with numerical

examples. Dror et al. [10] modelled a seat allocation problem on flights as a network,

in which passenger categorisation was considered on a multi-leg flight, but it was also

assumed that no passenger would board at the second node. Only allocation principles

were proposed. Wang et al. [28] analyzed how a liner container shipping carrier de-

cided on the shipping route scheduling and cargo allocation scheme at each port when

considering demurrage cost of cargoes that were incurred if cargoes needed to wait at

ports. Zacharias et al. [35] studied the appointment scheduling problem at a medical

facility when considering patients who displayed no-show behaviour. The difference

between the usual studies of revenue management was that the objective included pa-

tients’ waiting time and the doctor’s idle time and overtime, but not the revenue. Xiao

et al. [33] discussed another two-dimensional model, in which there were two demand
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types consuming different capacities in each dimension and demand arrivals follow a

Poisson process. The optimal solution was discussed with an analytical form. Gallego

et al. [14] studied one airline’s capacity allocation problem. In this particular situation,

two flights served the same market and the airline supplied a flexible service product,

which supplied the flight service with a discount price and both flights were possible to

be used to supply the flight service. The airline supplied the flexible service product

only in the first period and supplied special products in two periods and with a higher

price in the second period. The airline needed to decide the maximum number of each

kind of product that would be accepted in each period to reach the maximum revenue

depending on whether overbooking was allowed or not. Various properties of an op-

timal solution were discussed and an algorithm was designed to compute the optimal

solution along with the expected revenue. The numerical results showed that more

customers would like to purchase and the usage of capacity increases when the price

of the flexible product is lower. Wilson et al. [32] discussed an airline that supplied

two classes of ticket fares in two periods. Low fare customers always arrived before the

high fare customers in each period and if the low fare tickets were sold out, a fraction

of customers would purchase the high fare and the others would wait for the low fare

in the second period. The optimal booking limits in the two periods were studied.

Wang et al. [29] studied how a shipping company should decide the optimal itinerary

provision and the price to maximize its profit when customers, based on their utilities,

could choose an itinerary among all itineraries that all shipping companies could supply

among the ports. The utilities of customers included freight costs, inventory costs and

a random item. Guericke et al. [15] studied a liner shipping cargo allocation problem

in a shipping line network, in which the objective function considered the revenue from

all services, the container depreciation, the container handling costs, transshipment

costs of laden containers and empty equipment, the bunker cost, the fixed costs and a

penalty part. Under the constraints of service levels, the optimal capacity allocation

and the optimal sailing speed of each leg were discussed. Wang et al. [30] described the

slot allocation in a shipping line network as resources allocation problem. The shipping

services were described as a set of products. In their model, when the capacity of

each resource that the freight operator supplied was a discrete random integer that was

less than a maximum possible capacity and the demand was discretely distributed, the

freight operator need to find the optimal resource allocation strategy to maximize its

profit that included the expected sales revenue, the expected shortage costs and the
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expected salvage value. Another similar work of Wang [31] considered when there were

three different products including normal delivering, reefer delivering and premium

delivery, how the slots should be allocated. Fu et al. [13] studied when shipping line

network faced the minimum quantity commitment uncertain demand, how the container

slots should be allocated.

2.2. Newsboy Model Related Literature

Li et al. [20] discussed a two-product newsboy model problem in which two demands are

independently and exponentially distributed and an analytical solution procedure was

presented. Bensoussan et al. [3] extended the classical newsboy model further. In their

model, a target service level was committed first and the newsboy would observe the

demand and update signals after an initial order. Lau [19] discussed the newsboy model

problem with two products, while the objective was the probability of achieving a target.

Khouja et al. [18] studied another two-product newsboy model, in which a customer

could substitute a desired good with a certain amount of another kind of good. The

optimal solutions’ structures and a numerical example were presented. Tibben et al. [26]

examined a long-term supply contract in which the order amount for every period was

limited into a specific range and heuristic results were given. Chen et al. [8] developed a

two-period supply chain model, in which the retailer ordered only at the beginning of the

first period and returned a certain number of products to the manufacturer at the end of

first period with a higher buy back price. The retailer would need to decide the proper

inventory for the second period to maximize the expected profit. The optimal decisions

in the centralized system were discussed. By comparing with the optimal decisions in

the decentralized system, coordination strategies were also discussed. Reimann et al.

[23] introduced a two-period newsboy model problem, in which the manufacturer offered

new products to the market in the first period and offered new and remanufactured

products in the second period. Independent distributed demands were assumed for the

two periods. In addition, the situation of the inventory carryover from the first period

was also considered. Ali et al. [7] studied a two-period inventory model, in which

the newsboy could order before the selling period and also order at the beginning of

the selling period. After ordering the second time, the newsboy could sell certain

quantities of inventory to a client market with a lower price in comparison with the

usual market. Moreover, this model also assumed that the unsatisfied orders could be
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backlogged until the next period and the demands at each period were independently

and randomly distributed. Under some capacity constraints, the optimal solutions and

a numerical example were discussed. The study from Tiwari et al. [27] found some

differences compared with the previously mentioned study. In a supplier and retailer

model, the usual assumption of the supplier was fulfilling all of the orders from the

retailer, but suppliers may only fulfil partial orders in reality. Under this assumption,

this paper discussed how the retailer should decide the optimal order amount when the

newsboy could order one more time after the arrival of some demands. Finally, under

the assumption of normal demand distribution, the structure of the optimal solution

was discussed. Harrison et al. [16] noted that when a firm sells multiple products on

the market, each of the products was manufactured using several resources and the

demand for each product was uncertain. They next determined how the firm should

decide its investment strategies and production plans. The results showed that the

optimal investment strategy was a transformation of the multi-dimensional newsboy

model determined by demand distributions, prices and marginal investment costs. A

special case was analysed in a study by Bernstein et al. [4], in which a firm supplied

two products with different priorities, and each of the products needed both a special

resource and a common resource.

2.3. Overbooking and No-show Related Literature

Alstrup et al. [1] studied a capacity control model of a signal-leg flight with only two

types of passengers, which allowed no-shows. Xu et al. [34] studied the optimal booking

limits for a two-leg airline network model, while overbooking and cancellations were

allowed. In their model, the customers’ arrivals were modelled as a non-homogenous

Markov process, and batch requests were allowed. Subramanian et al. [25] analysed

the booking limits of a single-leg flight with multiple fare classes. Overbooking and

customer cancellations were also allowed in their model. An interesting result showed

that accepting a lower-fare class may obtain more revenues when cancellation refunds

of the lower-fare class and higher-fare class were different. Chatwin [6] studied the

booking limits of a single-leg flight allowing airline overbooking and customer cancel-

lations. The difference for this study was that the customers’ reserving process was

modeled as a continuous-time birth-and-death process. Under the assumption that the

fares and refunds were piecewise-constant functions of the time to flight, the optimal
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booking limits were discussed. A similar study was conducted by Chatwin [5], in which

a discrete-time approach was use to describe customers’ reserving process. Sharbel

et al. [12] analysed a two-leg airline seat inventory control model with multiple fare

classes, in which airline overbooking and customer cancellations were also allowed and

each customer was allowed to reserve only one seat. The results were illustrated by

a numerical example. Luo et al. [21] studied a two-dimensional (weight and volume)

cargo overbooking model, in which an airline company needed to decide the overbook-

ing level to minimize the sum of capacity spoilage and cargo offloading costs. The

numerical result showed that an airline company can reduce about 5%−6% of the cost

when considering two-dimensional model.
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Chapter 3.

Model

Table 3.1.: Parameters and definitions

Parameters Definitions
K Capacity of the ship
A The departure port in the shipping line
B The intermediate port in the shipping line
C The final port in the shipping line
XAC The realized cargo delivery requirement for shipping leg A− C
XAB The realized cargo delivery requirement for shipping leg A−B
XBC The realized cargo delivery requirement for shipping leg B − C
xAC Random demand for the cargo delivery on the shipping leg A− C
xAB Random demand for the cargo delivery on the shipping leg A−B
xBC Random demand for the cargo delivery on the shipping leg B − C
FAC(xAC) Cumulative distribution function (cdf) of the demand for shipping leg A− C
FAB(xAB) Cdf of the demand for shipping leg A−B
FBC(xBC) Cdf of the demand for shipping leg B − C
fAC(xAC) Probability distribution function (pdf) of the demand for shipping leg A− C
fAB(xAB) Pdf of the demand for shipping leg A−B
fBC(xBC) Pdf of the demand for shipping leg B − C
SAC The confirmed cargo delivery amount for shipping leg A− C
SAB The confirmed cargo delivery amount for shipping leg A−B
SBC The confirmed cargo delivery amount for shipping leg B − C
TAC The amount of cargoes thrown away at port B
PAC The unit capacity price for shipping leg A− C
PAB The unit capacity price for shipping leg A−B
PBC The unit capacity price for shipping leg B − C
Cp Unit penalty cost for the cargoes unloaded at port B
RB The revenue function of port B
RA(SAC , SAB) The revenue function of the entire shipping line

In this section, a benchmark model, which considers the uncertain demand of the

intermediate port, is set up. The optimal capacity allocation strategy is discussed

and the expected revenues in the long run are shown. Then, a model for strategically

throwing is established. The strategic throwing away model studies if the shipping

company is allowed to throw away cargoes, how the shipping company should allocate

the capacity. From a long-term view, the situations in which the shipping company

should allow the throwing away of cargoes are discussed. The related parameters and

definitions are shown in Table 3.1.
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3.1. Benchmark Model

This section examines the situation where a shipping company operates a cargo ship

with limited capacity K in a shipping line which starts from port A, passes port B

and finally reaches port C. Usually, the unit price of long distance transportation has

a discount effect compared with the sum of each sub-leg in a shipping line. Therefore,

in this paper, 0 < PAC < PAB + PBC is assumed first. After the arrivals of all cargoes

of shipping leg A − C and shipping leg A − B, the shipping company needs to decide

how many cargoes should be accepted for shipping leg A− C and shipping leg A−B,

respectively. At this moment the shipping company has no specific information about

the demand for the shipping leg B − C. We assumed that the cumulative distribution

function of the demand for shipping leg B − C is FBC(xBC). When the ship sails to

port B, the company will set a deadline for receiving bookings of cargoes of shipping

leg B −C. After the deadline, the company needs to decide how many cargoes should

be accepted for shipping leg B−C. When the company decides the amount of cargoes

that should be accepted for shipping leg B − C, the decision problem is expressed as

follows:

RB = PBC · SBC

St.
0 ≤ SBC ≤ XBC ,

0 ≤ SBC ≤ K − SAC .

At port B, the shipping company confirms that SBC units of cargos will be delivered

from port B to port C with price of PBC . Here, the confirmed cargo delivery amount of

shipping leg B−C SBC should be no larger than the realized cargo delivery requirement

for shipping leg B − C and the remaining available capacity K − SAC .

Proposition 3.1.1. The optimal amount of cargoes for shipping leg B − C has the

following structure:

S∗BC =


XBC , 0 ≤ XBC < K − SAC

K − SAC , K − SAC ≤ XBC

Obviously, when the realized cargo delivery requirement for shipping leg B − C is
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less than the remaining available capacity, the optimal amount of cargoes will be the

realized cargo delivery requirement itself. Otherwise, the remaining available capacity

will be the optimal amount.

The optimal revenue function can be easily described:

R∗B =


PBC ·XBC , 0 ≤ XBC < K − SAC

PBC ·K − PBC · SAC , K − SAC ≤ XBC

At port A, the decision problem is shown as follows:

RA(SAC , SAB) = PAC · SAC + PAB · SAB + E[R∗B]

St.
0 ≤ SAC ≤ XAC ,

0 ≤ SAB ≤ XAB,

0 ≤ SAC + SAB ≤ K.

At port A, the shipping company confirms that SAC units of cargos will be delivered

from port A to port C with price of PAC and SAB units of cargos will be delivered from

port A to port B with price of PAB. A expected revenue E[R∗B] will gain form port B.

Here, the confirmed cargo delivery amount of shipping leg A − C (A − B) should be

no larger than the realized cargo delivery requirement for shipping leg A−C (A−B).

Besides, the sum of the confirmed cargo delivery amount of shipping leg A − C and

A−B should not exceed the entire capacity of the ship K.

Proposition 3.1.2. The optimal amount of cargoes for shipping leg A−C and shipping

leg A−B have the structure shown in Table 3.2, where Λ = F−1
BC(PBC−(PAC−PAB)

PBC
).

Similar to the newsboy model, PBC−(PAC−PAB)
PBC

is the critical fractile. In this model,

we assume PAC − PAB < PBC , which seems like the cost for shipping from port B to

port C is PAC−PAB. We can easily find that Λ increases with PBC and decreases with

the gap between PAC and PAB. Thus, it can be observed that when Λ > K, which

can be transformed to FBC(K) < (PBC−(PAC−PAB)
PBC

), the optimal allocation strategy is

satisfying the demand for shipping leg A − B preferentially. That is to say, when the

probability of the demand for shipping leg B − C is less than the critical fractile, the

shipping company should accept cargoes of shipping leg A−B as much as possible.
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Table 3.2.: Benchmark model: optimal allocation

Λ XAC XAB XAC + XAB S∗AC S∗AB

(K,∞)

[0,K] [0,K] [0,K] XAC XAB

(K,∞) [0,K] K −XAB XAB

[0,K] (K,∞) 0 K

[0,K] [0,K] (K,∞) K −XAB XAB

(K,∞) (K,∞) 0 K

(0,K]

[0,K] [0,K] [0,K] XAC XAB

(K,∞) [0,Λ] K −XAB XAB

(K,∞) (Λ,K] K − Λ Λ

[0,K − Λ] (K,∞) XAC K −XAC

(K − Λ,K] (K,∞) K − Λ Λ

[K − Λ,K] [0,Λ] (K,∞) K −XAB XAB

(K − Λ,K] (Λ,K] (K,∞) K − Λ Λ

[0,K − Λ] [Λ,K] (K,∞) XAC K −XAC

(K,∞) (K,∞) K − Λ Λ

If 0 < Λ ≤ K, which means the probability of the demand for shipping leg B − C is

no less than the critical fractile, the situation becomes more complicated. When the

arrival demands of shipping leg A− C and shipping leg A−B are both relatively low

and their sum is lower than the whole ship capacity, the optimal delivery quantities

of cargoes for shipping leg A− C and shipping leg A− B are the quantities of arrival

cargoes only. When the arrival demands of shipping leg A−C and shipping leg A−B

are both relatively lower than the whole ship capacity but the sum of them is higher

than the whole ship capacity, the revenue function reaches the peak point at (SAC =

K − Λ, SAB = Λ). When the arrival demand of shipping leg A − C is larger than

the capacity of ship K, the revenue function reaches the peak point at SAB = Λ. In

the case that the arrival demand of shipping leg A − B is less than Λ, the optimal

delivery quantity for shipping leg A−B should be equal to the arrival demand. If the

arrival demand of shipping leg A − B is higher than Λ, the optimal delivery quantity

for shipping leg A − B is just Λ. When the arrival demand of shipping leg A − C

is larger than the capacity of ship K, the revenue function reaches the peak point at

SAC = K − Λ. In the case that the arrival demand of shipping leg A − C is less than

K − Λ, the optimal delivery quantity for shipping leg A − C should be the arrival
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demand. If the arrival demand of shipping leg A−C is higher than K−Λ, the optimal

delivery quantity for shipping leg A − B is K − Λ. Figure 3.1 shows the shipping

company’s optimal capacity allocation in two cases.

We assume that the cumulative distribution functions of arrival cargoes for shipping

leg A− C and arrival cargoes for shipping leg A−B follow FAC(xAC) and FAB(xAB)

in the long run. Thus, in the case Λ > K, when the shipping company completes one

shipping service, they can get the expected revenue in the long run as follows:

E[RBLA] =

∫ K

0

∫ K−xAC

0

(∫ ∞
K−xAC

PBC(K

− xAC) dFBC(xBC) +

∫ K−xAC

0
PBCxBC dFBC(xBC) + PABxAB +

PACxAC

)
dFAB(xAB)dFAC(xAC) +

∫ ∞
K

∫ K

0

(
PAC(K

− xAB) + PABxAB +

∫ ∞
xAB

PBCxAB dFBC(xBC) +

∫ xAB

0
PBCxBC

dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ K

0

∫ K

K−xAC

(
PAC(K − xAB) +

PABxAB +

∫ ∞
xAB

PBCxAB dFBC(xBC)

+

∫ xAB

0
PBCxBC dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ ∞
K

(
KPAB +

∫ ∞
K

KPBC dFBC(xBC) +

∫ K

0
PBCxBC dFBC(xBC)

)
dFAB(xAB)

(3.1)

When 0 < Λ ≤ K, in the long run, the shipping company completing one shipping
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(a) Λ > K

(b) 0 < Λ ≤ K

Figure 3.1.: Benchmark model: optimal capacity allocation
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service can get the expected revenue:

E[RBLE ] =

∫ K

K−Λ

∫ Λ

K−xAC

(
PAC(K − xAB) + PABxAB +

∫ ∞
xAB

PBCxAB dFBC(xBC) +∫ xAB

0
PBCxBC dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ ∞
K

∫ Λ

0

(
PAC(K −

xAB) + PABxAB +

∫ ∞
xAB

PBCxAB dFBC(xBC) +

∫ xAB

0
PBCxBC

dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ K−Λ

0

∫ ∞
K−xAC

(
PAB(K − xAC) +

PACxAC +

∫ ∞
K−xAC

PBC(K − xAC) dFBC(xBC) +

∫ K−xAC

0
PBCxBC

dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ ∞
K−Λ

∫ ∞
Λ

(
ΛPAB

+ PAC(K − Λ) +

∫ ∞
Λ

(ΛPBC) dFBC(xBC) +

∫ Λ

0
PBCxBC

dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ K

0

∫ K−xAC

0

(
PABxAB + PACxAC +∫ ∞

K−xAC

PBC(K

− xAC) dFBC(xBC) +

∫ K−xAC

0
PBCxBC dFBC(xBC)

)
dFAB(xAB)dFAC(xAC)

(3.2)

3.2. Strategically Throwing Away Model

Similar to the benchmark model, a shipping company operates a cargo ship with limited

capacity K in a shipping line which starts from port A, passes port B and finally reaches

port C. At port A, after the arrivals of all cargoes of shipping leg A−C and shipping

leg A−B, the shipping company needs to decide how many cargoes should be accepted

for shipping leg A − C and shipping leg A − B, respectively. At this time point, the

demand for capacity of shipping leg B−C is still unobserved, so the capacity allocation

of shipping leg A−C and shipping leg A−B needs to consider the uncertainty regarding

shipping leg B − C. At port B, after the arrival of cargoes from shipping leg B − C,

the shipping company needs to decide whether the cargoes of shipping leg A−C need

to be thrown away or not and if needed, how many cargoes should be thrown away.

At port B, the shipping company can obtain revenue from accepting cargoes of shipping

leg B −C and needs to pay a penalty cost for the thrown away cargoes of shipping leg
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A − C if the throwing away behavior exists. The revenue of port B can be expressed

as follows:

RB = PBC · SBC − Cp · TAC

St.
0 ≤ SBC ≤ XBC ,

0 ≤ SBC ≤ K − SAC + TAC ,

0 ≤ TAC ≤ SAC .

At port B, the shipping company decides to throw away TAC units of cargoes with unit

penalty cost Cp and confirms that SBC units of cargos will be delivered from port B

to port C with price of PBC . Here, the amount of thrown away cargoes TAC should

be no larger than the confirmed cargo delivery amount of shipping leg A − C. The

confirmed cargo delivery amount of shipping leg B − C should be no larger than the

realized cargo delivery requirement for shipping leg B−C and the remaining available

capacity K − SAC + TAC .

Obviously, when the shipping price of shipping leg B −C is less than the unit penalty

cost: PBC < Cp, the shipping company will never throw away cargoes from shipping

leg A− C. This problem then degenerates to the benchmark model.

Proposition 3.2.1. When the shipping price of shipping leg B−C is no less than the

unit penalty cost: PBC ≥ Cp, the optimal amount of cargoes thrown away at port B has

the following structure:

T ∗AC =


0, 0 ≤ XBC < K − SAC

SAC + XBC −K, K − SAC ≤ XBC < K

SAC , K ≤ XBC

Obviously, from the structure of the optimal amount of cargoes thrown away at port

B, we can see that: (1) If the arrival cargo demand for shipping leg B −C is less than

the available capacity before throwing away any cargoes of shipping leg A − C, the

shipping company has no need to throw away cargoes. Thus, the optimal amount of

cargoes thrown is 0; (2) If the arrival cargo demand for shipping leg B−C is larger than

the available capacity before throwing away any cargoes from shipping leg A − C but
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less than the capacity of the ship, the shipping company needs to satisfy the demand

for shipping leg B − C first. The optimal amount of cargoes thrown away should be

the gap between the sum of accepted cargoes from shipping leg A− C and the arrival

cargoes from shipping leg B − C and the whole capacity of the ship. (3) If the arrival

cargo demand for shipping leg B −C is larger than the entire capacity of the ship, the

shipping company should throw away all accepted cargoes from shipping leg A − C.

Figure 3.2 shows the optimal amount that should be thrown away at the intermediate

port with the change of arrival demand.

Figure 3.2.: The optimal throwing away cargoes

The optimal revenues also can be easily expressed:

R∗B =


PBC ·XBC , 0 ≤ XBC < K − SAC

PBC ·XBC − Cp · (SAC + XBC −K), K − SAC ≤ XBC < K

PBC ·K − Cp · SAC , K ≤ XBC

Figure 3.3 displays the revenue that the shipping company can gain under the optimal

capacity allocation strategy for throwing away cargoes.

At port A, the demands for the capacity of shipping leg A−C and shipping leg A−B are

known, but the demand for the capacity of shipping leg B−C is unknown. Along with

considering the capacity allocation problem between shipping leg A− C and shipping

leg A−B, the uncertainty of the demands for the capacity of shipping leg B−C should

be considered too. The entire revenue of this shipping line includes the revenue from
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Figure 3.3.: The optimal revenue

accepting the cargoes of shipping leg A − C and shipping leg A − B and the revenue

at port B. The revenue of port A can be expressed as follows:

RA(SAC , SAB) = PAC · SAC + PAB · SAB + E[R∗B]

St.
0 ≤ SAC ≤ XAC ,

0 ≤ SAB ≤ XAB,

0 ≤ SAC + SAB ≤ K.

At port A, the shipping company confirms that SAC units of cargos will be delivered

from port A to port C with price of PAC and SAB units of cargos will be delivered from

port A to port B with price of PAB. An expected revenue E[R∗B] will gain form port

B. Here, the confirmed cargo delivery amount of shipping leg A−C (A−B) should be

no larger than the realized cargo delivery requirement for shipping leg A−C (A−B).

Besides, the sum of the confirmed cargo delivery amount of shipping leg A − C and

A−B should not exceed the entire capacity of the ship K.

Proposition 3.2.2. (1)When PAC−PAB < Cp < PBC , the optimal capacities allocated

to shipping leg A−C and shipping leg A−B have a similar structure to the benchmark

model shown in Table 3.3, where Θ = F−1
BC(

Cp−(PAC−PAB)
Cp

); (2)When 0 < Cp ≤ PAC −

PAB, the optimal capacity allocated to shipping leg A−C and shipping leg A−B have

the structure shown in Table 3.4.
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Table 3.3.: Strategically throwing away model: PAC − PAB < Cp < PBC , optimal
allocation

Θ XAC XAB XAC + XAB S∗AC S∗AB

(K,∞)

[0,K] [0,K] [0,K] XAC XAB

(K,∞) [0,K] K −XAB XAB

[0,K] (K,∞) 0 K

[0,K] [0,K] (K,∞) K −XAB XAB

(K,∞) (K,∞) 0 K

(0,K]

[0,K] [0,K] [0,K] XAC XAB

(K,∞) [0,Θ] K −XAB XAB

(K,∞) (Θ,K] K −Θ Θ

[0,K −Θ] (K,∞) XAC K −XAC

(K −Θ,K] (K,∞) K −Θ Θ

[K −Θ,K] [0,Θ] (K,∞) K −XAB XAB

(K −Θ,K] (Θ,K] (K,∞) K −Θ Θ

[0,K −Θ] [Θ,K] (K,∞) XAC K −XAC

(K,∞) (K,∞) K −Θ Θ

Table 3.4.: Strategically throwing away model: 0 < Cp ≤ PAC−PAB, optimal allocation

XAC XAB XAC + XAB S∗AC S∗AB

[0,K] [0,K] [0,K] XAC XAB

(K,∞) [0,K] K 0

[0,K] (K,∞) XAC K −XAC

[0,K] [0,K] (K,∞) XAC K −XAC

(K,∞) (K,∞) K 0
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We can easily prove Λ > Θ. Based on Table 3.3, if strategically throwing away cargoes

is allowed, the optimal quantities of cargoes that should be accepted for shipping leg

A − C increases and shipping leg A − B decreases in some special cases. Figure 3.4

shows the shipping company’s optimal capacity allocation in two cases.

In the long run, cumulative distribution functions of the amount of arrival cargoes for

shipping leg A − C and the amount of arrival cargoes for shipping leg A − B follow

FAC(xAC) and FAB(xAB). Thus, in the case of PAC − PAB < Cp < PBC and Θ > K,

the shipping company completing one shipping service can obtain the expected revenue

in the long run as follows:

E[RSLA] =

∫ ∞
K

∫ K

0

(
PABxAB + PAC(K − xAB) +

∫ ∞
K

(KPBC − Cp(K − xAB))

dFBC(xBC) +

∫ K

xAB

(PBCxBC − Cp(xBC − xAB)) dFBC(xBC) +

∫ xAB

0

PBCxBC dFBC(xBC)

)
dFAB(xAB)dxAC +

∫ K

0

∫ K

K−xAC

(
PABxAB + PAC(K

− xAB) +

∫ ∞
K

(KPBC − Cp(K − xAB)) dFBC(xBC) +

∫ K

xAB

(PBCxBC −

Cp(xBC − xAB)) dFBC(xBC)

+

∫ xAB

0
PBCxBC dFBC(xBC)

)
dFAB(xAB)dxAC +

∫ K

0

∫ K−xAC

0

(
PABxAB

+ PACxAC +

∫ ∞
K

(KPBC − CpxAC) dFBC(xBC)

+

∫ K

K−xAC

(PBCxBC − Cp(−K + xAC + xBC)) dFBC(xBC) +

∫ K−xAC

0

PBCxBC dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ ∞
0

∫ ∞
K

(
KPAB +

∫ ∞
K

KPBC dFBC(xBC) +

∫ K

0
PBCxBC dFBC(xBC)

)
dFAB(xAB)dFAC(xAC)

(3.3)

In the case of PAC − PAB < Cp < PBC and 0 < Θ ≤ K, in the long run, the shipping
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(a) Θ > K

(b) 0 < Θ ≤ K

Figure 3.4.: Strategically throwing away model: optimal capacity allocation
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company completing one shipping service can obtain the expected revenue as follows:

E[RSLE ] =

∫ ∞
K

∫ Θ

0

(
PABxAB + PAC(K − xAB) +

∫ ∞
K

(KPBC − Cp(K − xAB))

dFBC(xBC) +

∫ K

xAB

(PBCxBC − Cp(xBC − xAB)) dFBC(xBC) +

∫ xAB

0

PBCxBC dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ K

K−Θ

∫ Θ

K−xAC

(
PABxAB +

PAC(K − xAB) +

∫ ∞
K

(KPBC − Cp(K − xAB)) dFBC(xBC)

+

∫ K

xAB

(PBCxBC − Cp(xBC − xAB)) dFBC(xBC) +

∫ xAB

0
PBCxBC

dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ K−Θ

0

∫ ∞
K−xAC

(
PAB(K − xAC) +

PACxAC +

∫ ∞
K

(KPBC − CpxAC) dFBC(xBC)

+

∫ K

K−xAC

(PBCxBC − Cp(−K + xAC + xBC)) dFBC(xBC) +

∫ K−xAC

0

PBCxBC dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ ∞
K−Θ

∫ ∞
Θ

(
ΘPAB

+

∫ K

Θ
(PBCxBC − Cp(xBC −Θ)) dFBC(xBC)

+

∫ ∞
K

(KPBC − Cp(K −Θ)) dFBC(xBC) + PAC(K −Θ) +

∫ Θ

0
PBCxBC

dFBC(xBC)

)
dFAB(xAB)dFAC(xAC) +

∫ K

0

∫ K−xAC

0

(
PABxAB + PACxAC +

∫ ∞
K

(KPBC − CpxAC) dFBC(xBC) +

∫ K

K−xAC

(PBCxBC − Cp(−K + xAC +

xBC)) dFBC(xBC) +

∫ K−xAC

0
PBCxBC dFBC(xBC)

)
dFAB(xAB)dFAC(xAC)

(3.4)

In the case of 0 < Cp ≤ PAC − PAB, the shipping company completing one shipping
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service can get the expected revenue in the long run:

E[RSCL] =

∫ K

0

∫ K−xAC

0

(∫ ∞
K

(KPBC − CpxAC) dFBC(xBC) +

∫ K

K−xAC

(PBCxBC −

Cp(−K + xAC + xBC)) dFBC(xBC) +

∫ K−xAC

0
PBCxBC dFBC(xBC) + PABxAB

+ PACxAC

)
dFAB(xAB)dFAC(xAC) +

∫ K

0

∫ ∞
0

(∫ ∞
K

(KPBC − CpxAC)

dFBC(xBC) +

∫ K

K−xAC

(PBCxBC − Cp(−K + xAC + xBC)) dFBC(xBC) +∫ K−xAC

0
PBCxBC dFBC(xBC) + PAB(K − xAC)

+ PACxAC

)
dFAB(xAB)dFAC(xAC) +

∫ ∞
K

∫ ∞
0

(∫ ∞
K

(KPBC − CpK)

dFBC(xBC)

+

∫ K

0
(PBCxBC − CpxBC) dFBC(xBC) + KPAC

)
dFAB(xAB)dFAC(xAC)

(3.5)

Through comparing the expected revenues in different cases, the cases in which the

shipping company should allow throwing away of cargoes can be determined.

Proposition 3.2.3. Only in the following cases, allowing throwing away cargoes can

achieve higher expected revenues in the long run:

When PAC − PAB < Cp < PBC ,

(1) FBC(K) < 1− (PAC − PAB/Cp) and E[RSLA] > E[RBLA];

(2) 1− (PAC−PAB/Cp) ≤ FBC(K) < 1− (PAC−PAB/PBC) and E[RSLE ] > E[RBLA];

(3) FBC(K) ≥ 1− (PAC − PAB/PBC) and E[RSLE ] > E[RBLE ].

When 0 < Cp ≤ PAC − PAB ,

(4) FBC(K) < 1− (PAC − PAB/PBC) and E[RSCL] > E[RBLA];

(5) FBC(K) ≥ 1− (PAC − PAB/PBC) and E[RSCL] > E[RBLE ];

When the unit penalty cost is larger than the gap between the price of shipping leg

A − C and the price of shipping leg A − B and less than the price of shipping leg

A−B, the shipping company chooses the optimal capacity allocation strategy depending

on the relationship of K, Λ and Θ. In the benchmark model, when Λ > K, which

is FBC(K) < 1 − (PAC − PAB/PBC), the shipping company can gain the expected

revenue E[RBLA] in the long run and when 0 < Λ ≤ K, which is FBC(K) ≤ 1 −

(PAC − PAB/PBC), the shipping company can gain the expected revenue E[RBLE ]
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in the long run. In the strategically throwing away model, when Θ > K, which is

FBC(K) < 1− (PAC − PAB/Cp), the shipping company can gain the expected revenue

E[RSLA] in the long run and when 0 < Θ ≤ K, which is FBC(K) ≥ 1−(PAC−PAB/Cp),

the shipping company can gain the expected revenue E[RSLE ] in the long run. Because

1− (PAC − PAB/Cp) < 1− (PAC − PAB/PBC), the first three cases describe the three

conditions that allowing throwing away cargoes is better in the long run. However,

when the unit penalty cost is no larger than the gap between the price of shipping

leg A − C and the price of shipping leg A − B, in the strategically throwing away

model, the shipping company chooses a different capacity allocation strategy and gain

the expected revenue E[RSCL] in the long run. The last two cases illustrate the two

conditions that allowing throwing away cargoes is better in the long run.
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Chapter 4.

Numerical Studies

According to assumptions, the arrival cargoes follow the distributions FAC(xAC), FAB(xAB)

and FBC(xBC). Collection of the arrival data to estimate the distribution of arrival

cargoes is difficult. In this chapter, a common demand distribution, exponential dis-

tribution, was applied in two models to derive the shipping company’s best decisions.

The assumed cumulative distribution functions of the cargo arrivals for each ship-

ping leg FAC(xAC), FAB(xAB) and FBC(xBC) follow exponential distribution, that is,

FAC(xAC) = 1− e−mxAC , FAB(xAB) = 1− e−lxAB and FBC(xBC) = 1− e−nxBC , where

0 < m, 0 < l and 0 < n. Based on the property of exponential distribution, we know

that E[XAC ] = 1
m , E[XAB] = 1

l and E[XBC ] = 1
n . In addition: PAC = 0.8, PAB = 0.6,

PBC = 0.4 and K = 5.

In this chapter, the change of the expected revenue with the exponential parameters was

illustrated in each case. In each special case, the expected revenue of the strategically

throwing away model was compared with the benchmark model.

4.1. Benchmark Model

For the benchmark model, Λ = −
log

(
PAC−PAB

PBC

)
n = − log( 1

2)
n . Thus, for Λ > K, that is

n < −1
5 log

(
1
2

)
, the expected revenue that the shipping company can obtain in the long

run for each shipping service is shown in Figure 4.1. From the figure, we can see that

the expected revenue decreases with l, m and n or increases with the expected value of

demand for each shipping leg. When 0 < Λ ≤ K, that is n ≥ −1
5 log

(
1
2

)
, the expected

revenue that the shipping company can obtain in the long run for each shipping service

is shown in Figure 4.2. From the figure, we can see that the expected revenue decreases
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(a) m=0.01; n=0.02 (b) l=0.02; n=0.02

(c) m=0.01; l=0.02

Figure 4.1.: Benchmark model: the expected revenue for Λ > K

with l, m and n or increases with the expected value of demand for each shipping leg.

4.2. Strategically throwing away model

In this section, we need to discuss the location of penalty cost Cp. When PAC −PAB <

Cp < PBC , that is, 0.2 < Cp < 0.4 in our settings, the shipping company makes

decisions following Table 3.3. We fix Cp = 0.3 in this case. Then Θ = −
log

(
PAC−PAB

Cp

)
n =

− log( 2
3)

n . Next, when n < − log( 2
3)

5 , the expected revenue that the shipping company

can obtain in the long run completing one shipping service is shown in Figure 4.3.

When n ≥ − log( 2
3)

5 , the situation is similar to the benchmark model, Figure 4.4 shows

the expected revenue that the shipping company can obtain with l, m and n. When

0 < Cp ≤ PAC − PAB, using our settings, the shipping company makes decisions

following Table 3.4. We fix Cp = 0.1. The expected revenue that the shipping company

can gain in the long run for each shipping service is shown in Figure 4.5. From Figure

4.3, Figure 4.4 and Figure 4.5, we can see that the expected revenue decreases with l,

m and n in three cases.
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(a) m=0.01; n=0.15 (b) l=0.02; n=0.15

(c) l=0.02; m=0.01

Figure 4.2.: Benchmark model: the expected revenue for 0 < Λ ≤ K

(a) n=0.02; m=0.01 (b) l=0.02; n=0.02

(c) l=0.02; m=0.01

Figure 4.3.: Strategically throwing away model: Cp = 0.3, the expected revenue chang-
ing with l, m and n for Θ > K
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(a) m=0.01; n=0.15 (b) l=0.02; n=0.15

(c) l=0.02; m=0.01

Figure 4.4.: Strategically throwing away model: Cp = 0.3, the expected revenue chang-
ing with l, m and n for 0 < Θ ≤ K

(a) m=0.01; n=0.02 (b) l=0.02; n=0.02

(c) l=0.02; m=0.01

Figure 4.5.: Strategically throwing away model: Cp = 0.1, the expected revenue chang-
ing with l, m and n.

42



4.3. Comparison

First, the expected revenue of the strategically throwing away model and the benchmark

model when PAC − PAB < Cp < PBC (Cp = 0.3 in our settings) were compared.

Considering that the expected revenue in each model includes different cases when n,

the parameter of the demand function of shipping leg B−C , locates in different ranges,

the expected revenues in each range needs to be compared. Details are displayed in

Table 4.1.

Table 4.1.: The expected revenues

n
E[R]

Benchmark Model Strategically throwing away model
(0,−1

5 log
(

2
3

)
) E[RBLA] E[RSLA]

[−1
5 log

(
2
3

)
,−1

5 log
(

1
2

)
E[RBLA] E[RSLE ]

[−1
5 log

(
1
2

)
,∞) E[RBLE ] E[RSLE ]

When n is located in the range (0,−1
5 log

(
2
3

)
), Figure 4.6 shows the gap (G) between

E[RSLA] and E[RBLA]. From the figures, we can see that the gap is positive. Thus,

when the expected value of the demand for shipping leg B − C is high, the shipping

company would always choose to allow strategically throwing away cargoes. In addition,

the gap decreases with l and n but increases with m. When the expected values of the

demands for shipping leg A − B and B − C increase, the gap between two expected

revenues increase. The increasing of the expected value of the demand for shipping leg

A− C weakens the advantage of allowing strategically throwing away cargoes.

When n is located in the range [−1
5 log

(
2
3

)
,−1

5 log
(

1
2

)
), Figure 4.7 shows the gap

between E[RSLE ] and E[RBLA]. In this case, the gap is positive. The shipping company

should always choose to allow strategically throwing away cargoes. In addition, the gap

increases with l and n but decreases with m. Thus, when the expected value of the

demands for shipping leg A − C increases, the gap between two expected revenues

increases. The increasing of the expected values of the demand for shipping leg A−B

and B − C weakens the advantage of allowing strategically throwing away cargoes.

When n is located in the range [−1
5 log

(
1
2

)
,∞), Figure 4.8 shows the gap between

E[RSLE ] and E[RBLE ]. From the figures, we can see that the gap is positive. Thus,

the shipping company would always allow strategically throwing away cargoes. In

addition, the gap increases with l or decreases with the expected value of demands for
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(a) m=0.01; n=0.02 (b) l=0.02; n=0.02

(c) l=0.02; m=0.01

Figure 4.6.: E[RSLA]− E[RBLA] : 0 < n < −1
5 log

(
2
3

)

(a) n=0.1; m=0.01 (b) l=0.02; n=0.1

(c) l=0.02; m=0.01

Figure 4.7.: E[RSLE ]− E[RBLA] : −1
5 log

(
2
3

)
≤ n < −1

5 log
(

1
2

)
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shipping leg A − B. The gap decreases with the increasing of m or decreasing of the

expected value of demands for shipping leg A − C. The gap increases with n first,

and then decreases. The increasing of the expected value of demands for shipping leg

B−C weakens the advantage of allowing strategically throwing away cargoes first, then

strengthens the advantage.

(a) m=0.01; n=0.15 (b) l=0.02; n=0.15

(c) l=0.02; m=0.01

Figure 4.8.: E[RSLE ]− E[RBLE ] : n ≥ −1
5 log

(
1
2

)

When 0 < Cp ≤ PAC − PAB, the shipping company allocates the capacity as shown in

Table 4.1 when “throwing away cargoes” is allowed. When n is located in the range

(0,−1
5 log

(
1
2

)
), Figure 4.9 shows the gap between E[RSCL] and E[RBLA]. From the

figures, we can see that the gap is positive. Thus, the shipping company would always

allow strategically throwing away cargoes. From the figure, we can see that the gap

increases with l and n but decreases with m. It means that the expected revenue

decreases with the expected values of demand for shipping leg A − B and B − C but

increases with the the expected value of demand for shipping leg A− C.

When n is located in the range [−1
5 log

(
1
2

)
,∞), Figure 4.10 shows the gap between

E[RSCL] and E[RBLE ]. From the figures, we can see that the gap is positive. Thus, the

shipping company would always allow strategically throwing away cargoes. In addition,

the gap increases with l or decreases with the expected value of demands for shipping

leg A − B. The gap decreases with the increasing of m or decreasing of the expected

value of demands for shipping leg A − C. The gap increases with n first, and then
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(a) m=0.01; n=0.02 (b) l=0.02; n=0.02

(c) l=0.02; m=0.01

Figure 4.9.: E[RSCL]− E[RBLA] : 0 < n < −1
5 log

(
1
2

)
decreases.

Table 4.2 illustrates the five cases whether the shipping company should allow throwing

away cargoes or not. In the Cp part, LA represents PAC − PAB < Cp < PBC and LE

represents 0 < Cp ≤ PAC−PAB. From the table, we can see that the shipping company

should allow throwing away cargoes in all five cases. In addition, the gap increases with

n in two cases, decreases with n in one case and increases with n first then decreases

in two cases.

Table 4.2.: The cases that strategically throwing away cargoes should be allowed

Cp n G PositiveorNegative IncreaseorDecrease AlloworNot

LA

(0,− 1
5
log

(
2
3

)
) E[RSLA]− E[RBLA] P D A

[− 1
5
log

(
2
3

)
,− 1

5
log

(
1
2

)
E[RSLE ]− E[RBLA] P I A

[− 1
5
log

(
1
2

)
,∞) E[RSLE ]− E[RBLE ] P A

LE
(0,− 1

5
log

(
1
2

)
) E[RSCL]− E[RBLA] P I A

[− 1
5
log

(
1
2

)
,∞) E[RSCL]− E[RBLE ] P A
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(a) m=0.01; n=0.15 (b) l=0.02; n=0.15

(c) l=0.02; m=0.01

Figure 4.10.: E[RSCL]− E[RBLE ] : n ≥ −1
5 log

(
1
2

)
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Chapter 5.

Conclusion and Suggestions for Future Research

For this paper, a shipping company, which supplies liner shipping services in a three-

port shipping line, is considered. This company needs to decide how many cargoes

should be accepted at the departure port when only the demands of the departure port

are known and the demands of the intermediate port is unknown. We find the optimal

capacity allocation strategy is decided by a threshold parameter, which increases with

the shipping price of shipping leg B−C and decreases with the gap between the shipping

price of shipping leg A − C and the shipping price of shipping leg A − B. When

the threshold parameter is larger than the entire capacity of the ship, the shipping

company should first accept cargoes from shipping leg A − B as many as possible,

and then accept the cargoes from shipping leg A− C. When the threshold parameter

is smaller than the capacity, the situation becomes more complicated. The revenue

function reaches the peak point when the confirmed cargo delivery amount of shipping

leg A − B equals the threshold parameter and the confirmed cargo delivery amount

of shipping leg A − C equals the gap between the entire capacity of the ship and the

threshold parameter. Thus, if the arrival demand of shipping leg A− C is larger than

the threshold parameter and the arrival demand of shipping leg A−B is larger than the

gap between the whole capacity of the ship and the threshold parameter, the optimal

strategy for the shipping company would be accepting the cargo of shipping leg A−B

and A − C with the amount of the threshold value and the gap between the entire

capacity of the ship and the threshold parameter, respectively. If the arrival demands

of shipping leg A− C is less than the threshold parameter and the arrival demands of

shipping leg A−B is less than the gap between the whole capacity of the ship and the

threshold parameter, the optimal strategy for the shipping company would be accepting

all the arrival demands.
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Furthermore, how the shipping company decides the optimal cargoes’ amount when

strategically throwing away cargoes is allowed was also examined. We find the optimal

capacity allocation choices of the shipping company have a similar structure to that of

the benchmark model but with a different threshold parameter, in which the shipping

price of shipping leg B − C in the threshold parameter of benchmark model is now

replaced by the penalty cost of the thrown away cargoes. It has been proven that

through strategically throwing away cargoes, the optimal amount of cargoes of shipping

leg A− C can be increased in some special cases. Finally, allowing the throwing away

of cargoes will always increase the expected revenues. In addition, the increasing of

the expected value of demands for shipping leg B − C will not always strengthens the

advantage of allowing the throwing away of cargoes.

This paper provides the theoretical proof that “throwing away cargoes” can achieve a

higher expected revenue. This paper considers a shipping company supplies shipping

service with only one ship, so no ship deployment problem needs to be considered here.

The choice of the capacity of the ship is related with the distribution of the demand

for the cargo delivery of each shipping leg. However, no any mechanism or details

of cooperation between shipping companies in carrier alliance were suggested. For

example, it is important to know how shipping companies price the rent when capacity

renting is allowed. The penalty has been simplified to a unit fixed cost in this paper.

However, the real structure of the penalty cost is much more complicated, for example,

uploading and unloading costs, delay costs, storage costs and so on. If we incorporate

empty container repositioning in our model, it will increases the penalty cost of the

thrown cargoes. Consequently, the optimal capacity allocation strategy under that

when throwing away cargoes is allowed will less differ from that when throwing away

cargoes is not allowed. The incorporation of empty container repositioning thus weakens

the advantages of allowing throwing away cargoes. Additionally, in reality, shipping

companies supply liner services either on a shipping circle or on a line. This paper

considers the capacity allocation problem for a 3-port shipping line but not for an

N-port line. That is because even only considering a 3-port shipping line, there are

already 4 decision variables. If we consider the capacity allocation problem on an

N-port line, the decision problem will become very complicated because of the huge

number of decision variables. The shipping prices for different kinds of cargoes are also

different due to their different properties, even those at the same port. even those at

the same port. Our model only considers the decision problem in a line and supposes
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cargoes are shipped at the same shipping price. Future studies could be conducted that

also consider the mechanism and details of cooperation, the impact of penalty cost and

distinguishing shipping prices of different kinds of cargoes.
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Appendix A.

Proposition 3.1.2.

Based on the structure of the optimal revenue of port B, the expected revenue of port

B at port A when the cargos’ demand for shipping leg B − C is unknown is shown as

follow:

E[R∗B] =

∫ K−SAC

0
PBC · xBC · fBC(xBC)dxBC+∫ ∞

K−SAC

[PBC ·K − PBC · SAC ] · fBC(xBC)dxBC

The first order derivative of the expected revenue function is:

∂E[R∗B]

∂SAC
= PBCFBC(K − SAC)− PBC ≤ 0

The second order derivative of the expected revenue function is:

∂2E[R∗B]

∂2SAC
= −fBC(K − SAC) ≤ 0

Then we go back to the revenue function at port A. The first order partial derivative of

the expected revenue with respect to the confirmed cargo delivery amount of shipping

leg A− C SAC is:

∂RA(SAC , SAB)

∂SAC

= PAC +
∂E[R∗B]

∂SAC

= PAC + PBCFBC(K − SAC)− PBC > 0
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The second order partial derivative of the expected revenue with respect to SAC is:

∂2RA(SAC , SAB)

∂2SAC
= −fBC(K − SAC) ≤ 0

The first order partial derivative of the expectation revenue with respect to the con-

firmed cargo delivery amount of shipping leg A−B SAB is: ∂RA(SAC ,SAB)
∂SAB

= PAB > 0.

So, if the amount of whole arrival cargos XAC+XAB does not exceed the whole capacity

K, the optimal delivery quantities would be the arrival cargos’ amount: S∗AC = XAC ;

S∗AB = XAB.

If the arrival cargos for both shipping leg A−C and A−B exceed the whole capacity

of the ship, the optimal delivery quantities for shipping leg A−C S∗AC and the optimal

delivery quantities for shipping leg A−B S∗AB must be achieved on the line SAC+SAB =

K. That means the optimal solution must satisfy: S∗AB = K −S∗AC . So, the maximum

revenue can be described as: R∗A(S∗AC , S
∗
AB(S∗AC)) = PAC ∗ S∗AC + PAB ∗ (K − S∗AC) +

E[R∗B]. This problem actually becomes a one decision variable problem. The first order

derivative of this problem becomes:

∂R∗A(S∗AC , S
∗
AB(S∗AC))

∂S∗AC

= PAC − PAB + PBCFBC(K − S∗AC)− PBC

Then, through discussing the location of demands, we can get the optimal strategy of

the shipping company. A similar location discussion is shown in the Proof of Proposition

3.2.2.
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Appendix B.

Proof of Proposition 3.2.2

Based on the structure of the optimal revenue of port B under the condition of PBC ≥

Cp, we can easily get the expected revenue of port B at port A when the cargos’ demand

for shipping leg B − C is unknown as follow:

E[R∗B] =

∫ K−SAC

0
PBC · xBC · fBC(xBC)dxBC+∫ K

K−SAC

[PBC · xBC − Cp · (xBC + SAC −K)] · fBC(xBC)dxBC

+

∫ ∞
K

(PBC ·K − Cp · SAC) · fBC(xBC)dxBC

Firstly, we show this function is concave and decreasing with SAC . The first order

derivative of the expected revenue function is:

∂E[R∗B]

∂SAC
= −PBC(K − SAC) · fBC(K − SAC)

− CpFBC(K) + Cp

∫ K−SAC

0
fBC(xBC)dxBC

+ [PBC(K − SAC)− Cp(K − SAC + SAC −K)]fBC(K − SAC)

− Cp

∫ ∞
K

fBC(xBC)dxBC

= CpFBC(K − SAC)− Cp ≤ 0

The second order derivative of the expected revenue function is:

∂2E[R∗B]

∂2SAC
= −fBC(K − SAC) ≤ 0

Then we go back to the revenue function at port A. The first order partial derivative of

the expected revenue with respect to the confirmed cargo delivery amount of shipping
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leg A− C SAC is:

∂RA(SAC , SAB)

∂SAC

= PAC +
∂E[R∗B]

∂SAC

= PAC + CpFBC(K − SAC)− Cp

Under the condition of PAC > PBC , and PBC ≥ Cp, we can know ∂RA(SAC ,SAB)
∂SAC

> 0.

The second order partial derivative of the expected revenue with respect to SAC is:

∂2RA(SAC , SAB)

∂2SAC
= −fBC(K − SAC) ≤ 0

The first order partial derivative of the expectation revenue with respect to the con-

firmed cargo delivery amount of shipping leg A−B SAB is: ∂RA(SAC ,SAB)
∂SAB

= PAB > 0.

So, if the amount of whole arrival cargos XAC+XAB does not exceed the whole capacity

K, the optimal delivery quantities would be the arrival cargos’ amount: S∗AC = XAC ;

S∗AB = XAB.

If the arrival cargos for both shipping leg A−C and A−B exceed the whole capacity

of the ship, the optimal delivery quantities for shipping leg A−C S∗AC and the optimal

delivery quantities for shipping leg A−B S∗AB must be achieved on the line SAC+SAB =

K. That means the optimal solution must satisfy: S∗AB = K −S∗AC . So, the maximum

revenue can be described as: R∗A(S∗AC , S
∗
AB(S∗AC)) = PAC ∗ S∗AC + PAB ∗ (K − S∗AC) +

E[R∗B]. This problem actually becomes a one decision variable problem. The first order

derivative of this problem becomes:

∂R∗A(S∗AC , S
∗
AB(S∗AC))

∂S∗AC

= PAC − PAB + CpFBC(K − S∗AC)− Cp

Case 1: XAC + XAB ≤ K

In this case, the capacity of the ship is over supplied. Thus:

S∗AC = XAC ; S∗AB = XAB.

Case 2: XAC > K and XAB ≤ K

Under this case, we first consider when PAC − PAB − Cp ≥ 0,
∂R∗A(S∗AC ,S∗AB(S∗AC))

∂S∗AC
≥ 0.
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S∗AC = K; S∗AB = 0.

Then we consider when PAC − PAB − Cp < 0, The first order derivative of the rev-

enue function at port A is no larger than 0 when K − F−1
BC(

PAB+Cp−PAC

Cp
) ≤ SAC ≤ K

and larger than 0 when 0 ≤ SAC < K − F−1
BC(

PAB+Cp−PAC

Cp
). It means the revenue

function at port A increases in [0,K − F−1
BC(

PAB+Cp−PAC

Cp
)) and decreases in [K −

F−1
BC(

PAB+Cp−PAC

Cp
),K]. We need to discuss the location of the point K−F−1

BC(
PAB+Cp−PAC

Cp
)

on [0,K] to find the optimal amount of cargoes for shipping leg A− C S∗AC :

(1) When K −XAB < K − F−1
BC(

PAB+Cp−PAC

Cp
) ≤ K, S∗AC = K − F−1

BC(
PAB+Cp−PAC

Cp
);

S∗AB = F−1
BC(

PAB+Cp−PAC

Cp
).

(2) When 0 ≤ K − F−1
BC(

PAB+Cp−PAC

Cp
) ≤ K −XAB, S∗AC = K −XAB; S∗AB = XAB.

Case 3: XAC ≤ K and XAB > K

Under this case, we first consider when PAC − PAB − Cp ≥ 0,
∂R∗A(S∗AC ,S∗AB(S∗AC))

∂S∗AC
≥ 0.

S∗AC = XAC ; S∗AB = K −XAC .

Then we consider when PAC − PAB − Cp < 0, there exist three situations:

(1) when K − F−1
BC(

PAB+Cp−PAC

Cp
) < 0, S∗AC = 0; S∗AB = K;

(2) when 0 ≤ K − F−1
BC(

PAB+Cp−PAC

Cp
) ≤ XAC , S∗AC = K − F−1

BC(
PAB+Cp−PAC

Cp
); S∗AB =

F−1
BC(

PAB+Cp−PAC

Cp
);

(3) when XAC < K − F−1
BC(

PAB+Cp−PAC

Cp
) ≤ K, S∗AC = XAC ; S∗AB = K −XAC .

Case 4: XAC < K,XAB < K and XAC + XAB > K

Under this case, we first consider when PAC − PAB − Cp ≥ 0,
∂R∗A(S∗AC ,S∗AB(S∗AC))

∂S∗AC
≥ 0.

S∗AC = XAC ; S∗AB = K −XAC .

Then we consider when PAC − PAB − Cp < 0, there exist three situations:

(1) when K − F−1
BC(

PAB+Cp−PAC

Cp
) < K −XAB, S∗AC = K −XAB; S∗AB = XAB;

(2) when K −XAB ≤ K −F−1
BC(

PAB+Cp−PAC

Cp
) < XAC , S∗AC = K −F−1

BC(
PAB+Cp−PAC

Cp
);

S∗AB = F−1
BC(

PAB+Cp−PAC

Cp
);

(3) when XAC ≤ K − F−1
BC(

PAB+Cp−PAC

Cp
) ≤ K, S∗AC = XAC ; S∗AB = K −XAC .

Case 5: XAC ≥ K and XAB ≥ K

Under this case, we first consider when PAC − PAB − Cp ≥ 0,
∂R∗A(S∗AC ,S∗AB(S∗AC))

∂S∗AC
≥ 0.

S∗AC = K; S∗AB = 0.

Then we consider when PAC − PAB − Cp < 0, there exist two situations:

(1) when K − F−1
BC(

PAB+Cp−PAC

Cp
) < 0, S∗AC = 0; S∗AB = K.

(2) when 0 ≤ K − F−1
BC(

PAB+Cp−PAC

Cp
) ≤ K, S∗AC = K − F−1

BC(
PAB+Cp−PAC

Cp
); S∗AB =

F−1
BC(

PAB+Cp−PAC

Cp
).
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Appendix C.

Proposition 3.2.3.

In the benchmark model, the shipping company decides differently based on K and Λ.

K > Λ can be transformed to FBC(K) > 1 − (PAC − PAB/PBC). When FBC(K) >

1−(PAC−PAB/PBC), the shipping company can obtain the expected revenue E[RBLA]

in the long run. When FBC(K) ≤ 1 − (PAC − PAB/PBC) the shipping company can

obtain the expected revenue E[RBLE ].

In the strategically throwing away model, when PAC − PAB < Cp < PBC , the ship-

ping company decides differently based on K and Θ. K > Θ can be transformed

to FBC(K) > 1 − (PAC − PAB/Cp). When FBC(K) > 1 − (PAC − PAB/Cp), the

shipping company can obtain the expected revenue E[RSLA] in the long run. When

FBC(K) ≤ 1− (PAC−PAB/Cp) the shipping company can obtain the expected revenue

E[RSLE ].

When 0 < Cp ≤ PAC − PAB, the shipping company can obtain the expected revenue

E[RSCL].

Because Cp < PBC is assumed, Λ > Θ. Thus, through comparing the expected revenue

in each case, we can get the five cases that throwing away cargoes should be allowed.

S∗BC =


XBC , 0 ≤ XBC < K

K, K ≤ XBC
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