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Abstract

With increasing availability of digitized knowledge, it has been increasingly important

to develop statistical models to manage large-scale and high-dimensional heteroge-

neous data, making hierarchical learning on these various kinds of data a challenging

problem. Despite the extensive research on hierarchical topic mining and deep repre-

sentations, there are still numerous issues that have not been su�ciently addressed,

such as dealing with sparsity issues, interpretability of inner structure, serendipitous

recommendation and transfer of learned deep features to new domains. To overcome

these challenges, there is pressing need to develop hierarchical learning methods for

various kinds of dataset problems with diverse feature sets. The aims of this work

are to develop novel probabilistic graphical models that can automatically learn good

feature representation from sparse data using multiple sources and types of auxil-

iary data, and apply the models to machine learning tasks including semantic topic

understanding, video recommender system and unsupervised/semi-supervised image

classification.

Targeting at the sparsity issue of text data applications, the first two approaches

are introduced from topic modeling perspectives. Firstly, we investigate how aux-

iliary information can benefit content analysis for hierarchical topic mining when

the text length are biased short. Through incorporating relational meta informa-

tion, this algorithm takes advantage of the natural hierarchical structure and infers

topics by jointly modeling word and taxonomic node assignments for documents.
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Secondly, addressing the sparseness phenomenon in a recommender system applica-

tion scenario, instead of regard one of the two observations as auxiliary information,

we consider the problem in a collaborative way. Motivated by a real world online

video recommendation problem, we target at the long tail phenomena of user be-

havior and scarceness issues of item features, and propose a personalized compound

recommendation framework for online video recommendation called Dirichlet mix-

ture probit model for information scarcity (DPIS), a probit classifier utilizing record

topical clustering on the user part for recommendation.

The third and fourth models also start from an unsupervised perspective while

incorporating multi-layer features for recommendation and domain adaptation. The

third model is based on a useful approach for complex multi-relational data learning

and missing element completion from a tensor perspective, where a deep proba-

bilistic tensor decomposition model for item recommendation and tag completion

is proposed. We also apply the proposed algorithm to computational creativity, an

emerging domain of application, emphasizing the use of big data to automatically

design new knowledge, resulting to attain serendipitous recommendation.

The fourth model is based on multi-layer sparse factorization. Deep architec-

tures can now be well trained on massive labeled data. However, there exist many

application scenarios, where labeled data are sparse or absent. Domain adaptation

and multi-task transfer learning provide attractive options when related labeled data

or tasks are abundant from di↵erent domains. In this part, a new graphic modeling

approach to multi-layer factorization based domain adaptation is explored to address

the scenarios that su�cient labeled data are available from the source domain while

only a small subset or no labeled data can be used for supervised learning. A deep

convolutional factorization based transfer learning (DCFTL) is proposed to facili-

tate layer-wise transfer learning between domains. Completely based on graphical

model representation, the proposed framework can seamlessly merge inference and
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learning, and has clear interpretability of conditional independence. The empirical

performances on image classification tasks in both supervised and semi-supervised

adaptation settings illustrate the e↵ectiveness and generalization of knowledge trans-

fer framework.
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Chapter 1

Introduction

1.1 Background

With advanced data acquisition and storage techniques, the rapid proliferation of

various data types are being generated on a daily basis in many applications. These

technologies provide a great boost to the data repository architecture [33], which is

organized by multiple heterogeneous data sources under a unified schema. Mean-

while, internet-based global information bases, such as social media, computational

biology and e-commerce, have emerged and raised great challenges to the traditional

information retrieval, data mining and network analysis technologies. This stimu-

lates learning from data a prevalent and essential problem in the current era of Big

Data. Particularly, in the field of machine learning, there has been a rapid growth

in the development of computational tools for tackling the unprecedented challenges

introduced by the increasing availability of data.

The wide diversity of data sources nowadays brings various aspects of challenges

to machine learning. From the methodology perspective, we primarily focus on two

aspects.

1. Complex and new kinds of knowledge: Diverse sources generate di↵erent

formats of data, from continuous to discrete, structured to unstructured, and

from simple data objects to sequential ones. It is unrealistic to expect one
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algorithm or model to analyze all kinds of data, given the diversity of data

types and mining purposes. The design of e↵ective framework and construction

of e�cient mining tools remains a challenging and active research task.

2. Dynamic and sparse data features: Numerous data repositories available

nowadays are connected via di↵erent kinds of networks, forming distinctively

distributed, and heterogeneous global information systems. As data often con-

tain noise, errors, uncertainty, or incompleteness, how to e↵ectively discover

the latent patterns and knowledge in those heterogeneous data sets is a fast

evolving research focus. Particularly, we focus on the sparseness issue of di↵er-

ent data set, and try to explore how to incorporate various interacted datasets

to solve the sparsity issue and find useful representations from their dynamic

features.

1.2 Probabilistic Graphical Models

Graphical models, as a combination of probability and graph theory, provide a nat-

ural tool for dealing with uncertainty and complexity in both applied mathematical

and engineering problems, and play an important role in the design of machine learn-

ing algorithms [40]. They treat inference and learning together with a merging of

supervised and unsupervised learning. Graphical models can handle missing data,

and provide interpretable results.

There are two perspectives to interpret the structure of the graph [45]. First, the

graph can compactly represent the distribution independencies; Second, the graph

also defines a structure for high-dimensional distribution representation, where the

overall distribution can be represented as a production of smaller factor spaces. These

two perspectives are, in a deep sense, equivalent. As the product separation guaran-

tees the independency of the distributions.
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1.3 Feature Representation and Deep Learning

Latent feature learning allow us to learn a compact representation that can simulta-

neously explain our observations as well as unobserved ones. To avoid overfitting, we

transform each n-dimensional input into a new representation, i.e. � composed of K

features. Depending on the availability of training sample label, this learning pro-

cess can be further divided into “supervised”,“semi-supervised” and “unsupervised”

settings. We can think of the feature functions, that transfer original input into the

feature matrix, as providing a way to encode prior knowledge into the learning sys-

tem. Each feature value could represent a “higher-level” concept that usually could

not be directly expressed by sample attribute.

Recently, deep networks prove great empirical success in various domains [6], [50].

Researches have been done on convolutional/deconvolutional networks [48], [102],

sparse auto-encoders [91], deep convolutional neural networks [51], and restricted

Boltzmann machines (RBM) [81]. They are capable of providing more compact

nonlinear representations for feature learning.

Besides the main focus of applications on supervised deep learning, which has

dominated pattern recognition area, there are growing attention on unsupervised

deep learning, i.e. deep generative models [80]. Hinton et al. [35] introduced a

moderately fast, unsupervised learning algorithm for deep generative models called

deep belief networks (DBNs). DBNs are probabilistic graphical models that contain

multiple layers of hidden variables. Each nonlinear layer captures progressively more

complex patterns of data.

Several frameworks including deep Gaussian Process [19], deep Poisson factoriza-

tion analysis [26] have been put forward for semi-supervised or unsupervised multi-

layer structure mining, dealing with scenarios where only a small subset or even no

observations have corresponding labels.
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Comparing to traditional probabilistic mixture-based latent variable topic mod-

els, which can be viewed as graphical models, models that use nonlinear distributed

representations are able to generalize better than latent Dirichlet allocation in terms

of both the log-probability on previously unseen data vectors and the retrieval ac-

curacy [19]. Besides, the unsupervised setting provides an e↵ective approach for

transfer learning, where the labeled samples are scarce. Hence, the power of deep

generative models still remains as a challenge for exploitation.

1.4 Overview

Targeting at learning e↵ective hierarchical representation, the thesis proposed several

graphical models. The first three models are all expected to solve the data sparse-

ness issue, with the first two from a co-direction matrix factorization perspective,

and the third one from a multidimensional tensor decomposition perspective. Con-

sidering from the feature learning methodology aspect, the first two models target at

hierarchical feature learning of the diverse heterogeneous data types from traditional

topic model perspective using shallow topical features. The third and fourth models

present unified generative frameworks for analyzing data from diverse repositories

using deep canonical features. We elaborate further on these models below, which

also serves as a brief summary and provides the context for the remainder of this

thesis.

The first model investigates how auxiliary information can benefit content anal-

ysis for hierarchical topic mining. Focused on several modern types of digitized

collective knowledge, which are characterized by dynamically large vocabulary but

much less tokens than traditional corpus, an auxiliary information based hierarchi-

cal Latent Dirichlet Allocation (ai-hLDA) model is proposed. Through incorporat-

ing relational information, this algorithm takes advantage of the natural hierarchical

4



structure and infers topics by jointly modeling word and taxonomic node assignments

for documents. Experiments on short-length discrete data sets including Enron E-

mail corpus, course selection database and video text data set in Chinese characters

show that ai-hLDA achieves satisfactory performance in obtaining concise structural

representation and accurate clustering.

The second model focuses on recommendation for user generated content sites.

To satisfy the niche tastes of users, long tail product recommendation poses more

challenges due to the data sparsity issue. The proposed model is motivated by a real

world online video recommendation problem, where the database of click records

su↵ers from two aspects of sparseness. First, the video inventory is volatile and long

tailed. So most of the records are concentrated on popular ones. Second, there is a

lack of holistic content information. The tags for videos have the features of being

short, missing or mistaken. Targeting the long tail phenomena of user behavior and

scarceness issues of item features, we propose a personalized compound recommen-

dation framework for online video recommendation called Dirichlet mixture probit

model for information scarcity (DPIS). Assuming that each record is generated from

a representation of user preferences, DPIS is a probit classifier utilizing record topical

clustering on the user part for recommendation. As demonstrated by the real-world

application, the proposed DPIS achieves better performance than traditional meth-

ods in both warm-start and cold-start scenarios.

The third model discusses a useful approach for complex multi-relational da-

ta learning and missing element completion from a tensor perspective. A deep

probabilistic tensor decomposition model for item recommendation and tag com-

pletion is proposed. Extended from the Canonical PARAFAC (CP) decomposition,

this method provides a fully conjugate Bayesian treatment for parameter learning.

Through incorporating multi-layer factorization, a richer feature representation fa-

cilitates a better and comprehensive understanding of user behaviors and hence
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gives more helpful recommendations. The new algorithm, called Deep Canonical

PARAFAC Factorization (DCPF), is evaluated on both synthetic and large-scale re-

al world problems. Empirical results demonstrate the superiority of the proposed

method and indicate that it can better capture the latent patterns of interaction

relationships.

We also enhance the proposed DCPF with computational computational creativ-

ity, an emerging domain of application, emphasizing the use of big data to automat-

ically design new knowledge. Based on the availability of complex multi-relational

data, one aspect of computational creativity is to infer unexplored regions of feature

space and novel learning paradigm, which is particularly useful for online recom-

mendation. Tensor models o↵er e↵ective approaches for complex multi-relational

data learning and missing element completion. Targeting at constructing a recom-

mender system that can compromise between accuracy and creativity for users, a

deep Bayesian probabilistic tensor framework for tag and item recommendation is

adopted. Empirical results demonstrate the superiority of the proposed method and

indicate that it can better capture latent patterns of interaction relationships and

generate interesting recommendations based on creative tag combinations.

The fourth model corresponds to a multi-layer approach for inner structure un-

derstanding. Deep architectures are well trained on massive labeled data. However,

there are many application scenarios, where labeled data are sparse or absent. Do-

main adaptation and multi-task transfer learning provide attractive options when

related labeled data or tasks are only abundant from di↵erent domains. Hence, we

propose a new approach to domain adaptation based multi-layer factorization that

can be trained on labeled data from the source domain, while only a subset or no

labeled data from the target domain are available. Assuming that domains shar-

ing greater similarities can benefit more from class-specific information encoded at

higher layers of the source data, the approach promotes the emergence of layer-wise

6



feature extraction. Hence, for less invariant domains, local features computed in low-

er layers will yield better discriminative power. Thus, a deep sparse factorization for

transfer learning method is proposed and o↵ers empirical performances in a series of

image classification experiments in both supervised and semi-supervised adaptation

settings, which exceeds baseline and some previous classification methods.
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Chapter 2

Auxiliary Information Based
Hierarchical Topic Mining for
Biased Short Text

2.1 Introduction

With increasing availability of large-scale digitized data, there is a growing need of

computational techniques for e↵ective text mining. New mediums and systems of

information di↵usion, including emails, online video description, e-shopping reviews,

and social network posts, allow their users to acquire and spread information much

more e↵ectively than ever before. These prevalent and distinctive sources of data of-

ten contain sampling biases. With considerably large vocabularies, but short entity

length, they are di↵erently distributed comparing to traditional document collec-

tions, such as journal or news corpus. As a result, new approaches are required for

discovering meaningful knowledge from the large-scale user-generated biased texts.

Probabilistic topic models have been proved to be e↵ective analytic tools of text

content [8]. For classical topic models, assuming that a document is generated from

a mixture of topics, the words belonging to each document are sampled from a

distribution over the vocabulary. The generated topic proportions can hence be

used as a high-level semantic representation depicted by those top weighted words.
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While topic models have many successful applications in text mining domains, the

experiences on new medium are mixed. For example, a model is expected to build on

a corpus consisting of sentences with less than 40 words, the biased samples contain

more noisy and dynamic features comparing to traditional media data [98]. When

represented in an unordered “bag of words” way, such characteristics raise challenges

for conventional text topic mining models, such as Latent Dirichlet Allocation (LDA)

[10], which depends on co-occurring frequencies for topic discovery. When a rich

collection of words is a basic guarantee for satisfactory results, the limited amount

of texts would cause di�culty for topic detection.

It is crucial to organize short text segments, such as keywords of queries, into a

well-formed hierarchy. In this kind of information retrieval system, deriving topic

hierarchies from document corpus, could provide a comprehensive format for pre-

senting those documents [16]. As the document-level word co-occurrence possesses

the characteristics of being sparse and noisy, single layer representation may fail to

grasp the essential semantics and hence generates ambiguity. Since complex topics

are naturally organized in a hierarchical way, granular control such as tree structure

arrangement can provide more meaningful and reasonable interpretations. This in-

spires us to address the sparsity of both the topic mixtures and the word distributions

along a hierarchical path.

There are many existing approaches purely leverage one modality of information,

e.g. the text itself [36]. Similar needs for auto-generation of topic hierarchies could

occur in question answering systems, where short texts are defined as a meaningful

word string. They are often short in length but represent specific concepts in a certain

subject domain, such as a keyword in a document set and a natural language query

from a user. Since these short-length forms of digital datasets usually have a richer

set of auxiliary information (e.g. author, recipient, degree type, time, friend links,

followers, hash tagged themes, etc.), which is connected through inner taxonomy,
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a layered mechanisms using supportive information modalities will in turn provide

better browsing and interpreting usage of large data sets.

In this chapter, a weakly supervised hierarchical model is proposed to discover

topical hierarchies of biased short data samples. Incorporating the available auxiliary

information, the model, called ai-hLDA (abbreviated for auxiliary information based

hierarchical Latent Dirichlet Allocation), arranges shorter length documents along

paths of a tree for taxonomies. A Beta-Bernoulli framework is adopted to model the

link of supplemental attribute information between the documents. The proposed

model takes advantage of the hierarchical nature, and jointly models word and aux-

iliary information as a generative process. As there is no aggregation involved to

expand short document into longer one, which is a common practice of handling

short text [37], the mechanism would not interfere with the original structure of da-

ta. Quantitative evaluations of perplexity and clustering prediction accuracy were

conducted for comparing with several other related algorithms.

2.2 Related Work

The state-of-the-art work on Latent Dirichlet Allocation (LDA) provides an exten-

sible framework for many of the following topic models. In LDA, each document

is viewed as a mixture of latent probabilistic topics, and the words in that docu-

ment could be a representation of certain subsets of those topics. However, as an

unsupervised generative model, even when certain resources exist, e.g. document

labels, it fails to provide any suitable tools to tune the generated topics. The labeled

LDA model [75] extends LDA by defining a correspondence between latent topics

and user tags for learning word-tag correspondences, and can be used as a multi-

label text classifier. Balasubramanyan et al. [3] propose a biased model to address

entity-topic analysis and apply it to hidden information detection. McCallum et al.
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[1] put forward a topic model for mining the social networks and people’s roles in

email communication using the author-recipient information. Although the concept

of auxiliary information is not specifically used in their work, it steers the discovery

of topics according to the personal relationships.

Another extension of LDA is to explore the hierarchical structures. Based on the

idea of using nested Chinese restaurant process (nCRP) as a prior, and constructing

tree paths for topics. It is inspired by the situation of a restaurant with infinite

tables, a total number of n customers walked in and the ith customer chooses certain

table to sit down with the following probability:

Ppchoose a preoccupied tableq “ N

i ´ 1 ` ↵

Ppchoose a new tableq “ ↵

i ´ 1 ` ↵

(2.1)

where the first customer is assumed always choosing the first table (actually the order

of the table does not matter). ↵ is a scalar parameter and N indicates how many

customers are sitting at the chosen table when the i

th customer walks in. Thus, the

CRP represents a process where ”the rich gets richer”.

A lot of related work on the nested tree analysis have been put forward in the

past years. It is generalized to the Chinese restaurant franchise mode, where the

child Dirichlet process groups share mixture components for information retrieval

[86]. To relieve the restriction on single root, the nested Dirichlet process (DP) uses

a stick-breaking representation of the DP to distribute information across centers and

thus realizes automatical clustering. Another generalization of nCRP is the nested

hierarchical Dirichlet process [66], where each word is allowed to follow its own path

at any level of the tree. This greedy subtree selection alleviates the single-style

formulation of nCRP.

Targeting at better exploration of the meaning at semantic level, a natural exten-

sion is to combine supervised topic model with its hierarchical representation. Li et
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al. [52] use image tags as auxiliary information to realize image organization and an-

notation. Perotte et al. [68] also propose a hierarchically supervised Latent Dirichlet

Allocation model for labeled bag-of-word data with a primary goal of out-of-sample

label prediction. But they focus on “is-a” hierarchies to simplify the implementation,

which is complementary to our model under di↵erent scenarios.

Although LDA and other related topic models have been successfully applied

to short-length data, most previous work focuses on pre-training of the model to

expand the length of the documents, thus are very data-dependent. For example,

Hong et al. [37] proposed several schemes of aggregating individual texts into one

document before training on a topic model, which is less e↵ective if the word counts

of user’s posts are small and the aggregated contexts are still sparse. Zhao et al.

[107] used the Twitter-LDA for topic categorization based on the assumption that

each individual document can have only one topic, which alleviates the flexibility of

multiple meaning capturing. Yan et al. [98] illustrate a bi-term topic model which

traverses all combinations of word pairs to aggregate the whole document. This

model may manually add connection between two words that are not closely related,

and unnecessarily increases the computations. Besides all these applications, as far

as we know, there is not much work done on the multi-level taxonomy of short text

combining rich sources of supportive information. This hence inspires the proposed

ai-hLDA model, which is intuitively expected to build hierarchical schemes for topic

knowledge discovery based on the taxonomy support of auxiliary information.

2.3 Model

In this section, we introduce the auxiliary information based hierarchical Latent

Dirichlet Allocation (ai-hLDA) model for applications where limited amounts of la-

beled data, the auxiliary information are available to help documents arranged along
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the paths of a tree. In our framework, there are two types of data: the primary

information and the auxiliary information. The primary part is constituted of the

document-word relations. For a collection of documents D “ pD1...Dd

q, each docu-

ment is represented in a bag-of-word format, with a short total length (range from

50´100). The auxiliary part includes the relations between documents and addi-

tional attributes T “ tT1, T2, ..Tm

u, such as the authors or viewers of the documents.

The possession of auxiliary T

m

by document d is indicated by the binary variable

y

dt

of binary D ˆ T matrix Y . If the value equals to 1, then the document has the

corresponding auxiliary data, and vise versa.

The intuition behind ai-hLDA is based on the consideration that digitized texts

are related through their rich auxiliary information. Due to the vibrant expression

and short text length, correlations between the documents would not seem apparent.

One tempting approach is to propagate both into a new set. However, since the text

and its auxiliary information are often in di↵erent format, e.g. word occurrence and

binary indicator, it is di�cult to find a compromised way of representation. Since

text and auxiliary information itself are bounded in a hierarchical way inherently, at

levels closer to the root node, the knowledge is more general and thus more commonly

shared by all documents, while at nodes closer to the leafs, the specificity increases

and acts as distinctions toward topic di↵erentiation. Incorporating a generative

process for the auxiliary data themselves not only preserves the dependency, but also

provides a prior bias for the path weighting to prevent meaningless topic partition

as well, which will hence be expected to enhance the interpretation of their hidden

semantic structures. The notation of the variables for ai-hLDA model are given in

Table 2.1.

As a generative model, each node along a path of the tree represents a combi-

national distribution of observed samples and auxiliary data. The path is indicated

by N

l

ˆ 1 vectors, where N

l

is the number of tree level. For example, if there are
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Table 2.1: Notations

w Observed documents with words
Y Observed auxiliary information for documents

rC
d

s Paths in the tree generated from nCRP

✓ Proportion vector of level topics
z

d

Level index generated from Multinomialp✓q
� Vocabulary of words
⇡ Tag probabilities

�, ⌫ Hyper-parameters for the stick-breaking ✓

� Hyper-parameter for the nCRP tree
� Hyper-parameter for the Dirichlet distribution �
⌘ Hyper-parameter for the Beta distribution ⇡

three levels along a path, then the path vector p1, 2, 1q indicates that a document

starts from the root to the second node of the second layer, and then chooses the

first branch of the second node. The nCRP provides a good approach to construct

the tree topology with no limit on the spreading size. As it is incorporated in the

model, the root node for all documents will always be one. With the records of all

the paths that the documents follow, we can have a general picture of how the tree

looks like, and draw the structure correspondingly.

For ai-hLDA, each document is treated as bag-of-words data with available auxil-

iary information. Suppose there are D documents, each consists of N
d

observations.

w

d,n

is the nth observation of document d, and the size of the vocabulary is W . Each

document has a variable, indicating whether it has the label or not. The probabilities

for label indicator variable are drawn from a Beta distribution. The Beta-Bernoulli

process [62] is a natural choice for a label-generating distribution since the observed

labels in a document are mostly represented using binary variables. Distributed over

binary matrices of fixed size, it can be used to model whether there is a particular

auxiliary information feature for the sample in the form of a binary matrix format.

Under Beta-Bernoulli prior, for each column, a tag with weight pi is chosen.

The overall generative process for the proposed model is summarized as follows:
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1. For each sample d,

(a) Draw the paths of hierarchy C

d

„ nCRP p�q

(b) Draw a distribution over words � „ Dirichletp�q

(c) Draw level proportions ✓
d

from stick-breaking t�, ⌫u

(d) For each entity n (e.g. word)

i. Draw level assignment z
d,n

„ Multinomialp✓
d

q

ii. Draw word w

d,n

„ Multinomialp�
zd,nq

2. For each tag y,

(a) draw label probabilities ⇡
y

„ Betap ⌘

T

, 1q

(b) draw Y

d,l

„ Bernoullip⇡
y

q

2.4 Inference

This section gives an overview of the approximate inference method, i.e. Gibbs

sampling, used by the ai-hLDA model due to the intractability of exact inference.

We adopt a technique similar to the sampling scheme in hierarchical LDA [9], where

the latent variables that need to be sampled are path vector rc
d

s, and level topic z
dl

.

2.4.1 Sampling the Path

The path assigned to a document is influenced by the previous arrangement of the

paths and the likelihood of the auxiliary information; the following equation shows

the sampling probability,

PpC
d

“ cq9PpC
d

|C´d

, �qPpW
d

, Y

d

|W´d

, Y´d

, Z, Cq (2.2)

where PpC
d

|C´d

, �q is the prior probability induced by nCRP (equation (2.1)), and

PpW
d

, Y

d

|W´d

, Y´d

, Z, C,Bq is the likelihood of observed documents and tags, i.e.
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PpW
d

, Y

d

|W´d

, Y´d

, Z, C,Bq

9PpW
d

|Y,W´d

, Z, C,BqPpY
d

|Y´d

,W´d

, Z, C,Bq
(2.3)

For a given path c

d

, the words’ sampling depends on two entities: the path and

the level. If we define the entity c as the path and l as the node level, after sampling

probabilities generated from a Dirichlet distribution, words will be selected from the

vocabulary library �, using the corresponding c and l. Thus, the distribution of w

is derived as follows:

PpW
d

|Y,W´d

, Z, C, ⇡q “ P pW |Y, Z, C,⇡q
P pW´d

|Y, C, Z,⇡q

9 P pW |Z,C, �q
P pW´d

|C,Z, �q

“
K

π

k“1

±

w

�pn
cd,l,w

` �q
�pn

cd,l,¨ ` W�q
�pn´d

cd,l,¨ ` W�q
±

w

�pn´d

cd,l,w
` �q

(2.4)

where n

cd,l,w
indicates the times that word w has been assigned to the node at the

l

th level of the path with document d included. n

cd,l,¨ indicates the total number of

times that all the words have been assigned to the node on the lth level of document

d’s path. For n´d

cd,l,w
, the superscript ´d indicates a deduction of the number of times

that w appears in current document d.

As to the tag likelihood, since the distributions are Bernoulli with a Beta pri-

or, they are conjugate distribution pairs. Through collapse Gibbs sampling, by

marginalizing out �, we can have the distribution of tag variables Y in the following

form:

PpY
d

|Y´d

,W´d

, Z, C,Bq9 P pY |C,Bq
P pY´d

|C,Bq

9 �pn
c,t“1,¨ ` ⌘

T

q�pn
c,t“0,¨ ` 1q�pn

c,¨,´d

` ⌘

T

` 1q
�pn

c,t“1,´d

` ⌘

T

q�pn
c,t“0,´d

` 1q�pn
c,¨,¨ ` ⌘

T

` 1q

(2.5)

where n
c,t“1,´d

and n

c,t“0,´d

indicate the exclusion of current document d in counting
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the number of auxiliary tags being used and not being used respectivly by documents

on the same path c.

2.4.2 Sampling the Topics Along the Path

For word w in document d, the probability is:

P pz
d,w

“ k|z´pd,wq, c,w,´q

9P pz
d,w

|z
d,´w

,m, ⇡qP pw
d,w

|z,w´pd,wq, c,�q
(2.6)

The first part of equation (2.6) is a stick-breaking conjugate construction over

levels, where z

d,´w

indicates the level allocation in document d, with the word w

excluded. From the conjugacy properties, we have:

ppz
d,w

|z
d,´w

,m, ⇡q

“ m⇡ ` n

d,´w,k

⇡ ` ∞

L

i“k

n

d,´w,i

k´1
π

i“1

p1 ´ mq⇡ ` ∞

K

j“i`1 nd,´w,j

⇡ ` ∞

K

j“i

n

d,´w,j

(2.7)

where n

d,´w,k

denotes the count of occurrence for word w in document d at the k

th

level, excluding the current assignment. The second term is the word probabilities

given the level and path assignments and it can be expressed as follows:

P pw
d,w

|z,w´pd,wq, c,�q “ n

k,c,´pd,wq ` �

∞

w

n

k,c,´pd,wq ` W�

(2.8)

2.5 Experiments

In this section, we test the proposed model on two datasets: email corpus and course

selection dataset. We analyze the results in four primary aspects: (1) auxiliary infor-

mation choice elaboration; (2) perplexity comparison; (3) topic taxonomy evaluation

and (4) application illustration.
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2.5.1 Datasets and Comparative Models

Both datasets adopted for our experiments contain very sparse text, that is com-

paratively short length of each sample but large size in the vocabularies, as detailed

below:

1. The Enron email corpus 1 is a publicly available dataset, which was prepared

from a real organization’s communication records for a period of more than

three years time [22]. The contents vary from business related topics, including

regulations, project progress and strategy, energy issue, internal policies and so

on, to employment and logistic arrangements (such as meeting scheduling and

technical support, etc). After removing numbers and meaningless stop words,

the number of words for each email document ranges from 2 to 2034. We have

selected two collection of documents, each with an average length of 100 and

40 words to manifest the sparseness feature, and illustrate the text length’s

influence on model performance. The author-recipient information is used as

the auxiliary dataset.

2. The course selection dataset [106] constitutes of undergraduate records of study.

Students took an average of 32 courses freely chosen from a total 2434 courses

o↵ered by di↵erent programs and departments without restriction from their

majors. In our analysis, we use their overall major degree information as

auxiliary labels for our analysis, which will be further addressed in section

2.5.3.

The statistics of the three datasets we used for the experiments are summarized

in Table 2.2.

1 https://www.cs.cmu.edu/ enron/
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Table 2.2: Statistics of the tested datasets

Dataset Sample
Size

Average
Sample
Length

Vocabulary
Size

Auxiliary
Label Size

Email subset 1 700 40 5583 2359
Email subset 2 700 100 8190 2359
Course set 1696 32 2434 3

The other three models in this comparative study are author-recipient topic

(ART) model [1], labeled LDA (LaLDA) [75] (the implementation is provided from

toolbox “TMBP” [103]) and hierarchical LDA. The first two models provide flat

structures through di↵erent utilization of auxiliary information while hLDA pro-

vides a tree construction for comparison. Besides LaLDA where a belief propagation

(BP) method is adopted for inference as the way in the toolbox, all the other exper-

iments use Gibbs sampling with 1000 iterations (500 for burn-in), which is enough

for convergence.

To quantize how the model fits the contents, a common measure criteria called

perplexity is introduced. According to the work of Blei et al. [10] and Shan et al.

[83], for each word ŵ

i

in a held-out subset ŵ1, ..ŵn

of observed data, based on its

log-likelihood , the complexity for the training data can be computed by:

Perplexity “ expp´
∞

i

log ppŵ
i

q
∞

i

N

i

q

where N

i

is the number of observed features, i should sum from 1 to the number of

entities and log ppŵ
i

q is the log-likelihood of the term w as per the learned model.

Since larger likelihood would imply a better chance of observing the true value, with

an applying of monotonically decreasing function on it, a lower perplexity would

indicate a better model explanation of the data.

20



2.5.2 Enron Email Performance Comparison

The auxiliary data involved in the learning process are the author and recipients

information. This choice is based on a special feature of email messages – possessing

one sender and one or more recipients. For a company email corpus, the contents of

the messages are largely influenced by the social structure in which messages are sent

and received. For example, a department manager would send emails to his secretary

on meeting arrangement or canceling, while the communicational contents between

him and the vise president would more focus on strategic decisions, e.g. purchase

plan. If two documents adopt the same personnel label, there are large chances they

have topics in common. The clustering performance would hence be enhanced condi-

tioned on the mixture of document word and auxiliary author-recipient information.

We compare topical taxonomy produced by our approach to those learned by

ART and hLDA. Overall, ai-hLDA model outperforms the other two algorithms

in terms of perplexity. Figure 2.1 summarizes the experimental results for sample

size ranging from 200 to 600. We set the common parameter � “ � “ ⌘ “ 1

for all experiments. To better illustrate how the proposed model deals with corpus

sparsity, another subset with documents of an average length of 100 was prepared.

The perplexities all increased when the word length drops from 100 to 40, however

the worsen percentage of ai-hLDA is the smallest, which indicates that our approach

is less sensitive to the length of word.

To further elaborate how ai-hLDA could provide a meaningful hierarchical grasp

of the documents content through utilizing the underlying related auxiliary infor-

mation, the top words assigned to nodes on part of the paths of the generated tree

and words assigned to topics of ART model are examined. The whole generated tree

expands to three layers with a total of 18 leaves and 10 nodes in the second layer.

Ten topics generated by the ART model and sample paths generated by ai-hLDA are

21



Table 2.3: 10 topics inferred from Enron corpus using ART.

Topic No. Top 10 words

1 companies way regarding better especially replace
match recommendations internet presentation

2 meter needs king understanding resolve accomo-
date executed sitara nominated latest

3 contracts company capacity wants vince joe be-
tween global epmi sent

4 Trade counterparty trading counterparties products re-
view european trade group company

5 letter take right value understanding team process
updated management told

6 Routine Schedule group product people discuss upon confirm update
houston better person

7 wto president world seattle use negotiations work-
ing report tuesday wednesday

8 copier copies copy including click month volume
notes ready

9 mark aquila risk legal again change jennifer asked
kathryn deboisblanc

10 issue taking settlement businesses determined
hope options financial access already

shown in Table 2.3 and Figure 2.2 respectively. For the ART model, we manually

named two typical topics. For most topics based on ART, only general words are

picked out to infer, while with ai-hLDA, the root of the tree consists of the most

common words in their daily communication such as “gas” and “energy” and more

specific corporation or trading words are uncovered along the expanding of the tree,

such as “cob” on the second layer, which is an abbreviation of California-Oregon

Border. The third layer can be generally divided into two categories: one is related

to external business, where corporate partner’s name Conoco Inc. etc. is occurred,

and the other is more related to company’s own strategies and financial services.

Email messages are not the only short text type that can benefit from ai-hLDA

model. It can be applied to other sorts of online data, if there are user link informa-

tion. For example, follower information would be helpful for decreasing ambiguity of
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Figure 2.1: Perplexity comparison on Enron Email corpus subsets and course dataset.

Figure 2.2: Topical tree inferred from Enron corpus shorter-length subset using ai-
hLDA model.
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semantics due to more exposure of shared tweets. Mutual-friend relations would also

be an essential supplementary for online social gamer behavior analysis, considering

the frequencies of their interacts.

2.5.3 Course Selection Analysis

Among 1696 students in the course selection dataset, over 90% of them have cho-

sen a major. The rest, with less than length 10 academic records, left the major

choice undecided or were not available. However, even for those who have fixed their

program, might also choose courses outside their own departments due to interest

or knowledge requirement. This uncertainty raises challenges for automatically ac-

curate academic track detection. Considering the nature of curriculum design for

di↵erent programs, we define three labels for auxiliary information – ‘BS’, ‘BSE’ and

‘AB’, which stand for general categories of their major program. For each record,

if a student has specified the major, e.g. ‘Biomedical Engineering (BME)–BSE’, a

binary indicator 1 will be put into the auxiliary matrix at the corresponding entity.

If a student has not yet decided the major, we will not add any labels, leaving the

whole row in the auxiliary matrix consisting of only zero. In this turn, we construct

an auxiliary information matrix with size 1696 ˆ 3, where 1696 is the sample size

and 3 corresponds to the three major categories. There are also cases when students

choose same major title under di↵erent degree type, e.g. ‘Biology-BS’ and ‘Biology–

AB’. The model is expected to use these person-conditioned topic distributions to

measure similarity between the students, and make appropriate suggestions to their

major or course choices.

The generated hierarchical tree structure using our method is shown in Figure

2.3(a), where the number in the circle indicates the number of students at that node.

The detail course clustering of the first and second layer in dotted square is shown

in Figure 2.3(b). In each block, the probabilities indicate the chances that those
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(a) Hierarchical tree structure

(b) Course clustering on the first and second layer

Figure 2.3: Student course selection distribution over a three layer tree

top 10 courses are chosen for each node. The tree has three layers and seven leafs.

Along each possible path, each node includes the most-probable classes. We would

expect the tree paths correspond to di↵erent majors while showing us some non-

obvious regulations of student’s course selection tendency. From the tree, we can see

that the root corresponds to courses that are popular in their early year of study.

The second-layer nodes briefly separate students into four categories. Comparing to

hLDA, which generates a tree of 10 paths, the auxiliary information helps to get

more concentrative clusters.

An important aspect of application is using ai-hLDA for accurate classification

of student’s major interest and hence providing sound course recommendation to

them. The averaged accuracy of the first three decisive major reaches 92.3%. The
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Table 2.4: Perplexity comparison. Training sample sizes range from 500 to 1500 with
the left using for testing

500 1000 1500

LaLDA 590.56 556.70 624.59
hLDA 994.87 1001.02 879.45

ai-hLDA 696.30 632.21 614.30

low accuracy for category 4 is actually quite intuitive. Since the purpose is to provide

suggestions to students who have not yet decided their majors. For a total of 68

students whose auxiliary lab is ’UNDEC’, 40% are classified into ‘BS’ programs and

51% are ‘AM’ programs. A comparison of perplexity among labeled LDA, hLDA and

ai-hLDA is presented in Table 2.4. The ai-hLDA model has competitive performance

comparing with labeled LDA, which is supervised, on perplexity, but outperforms

on the classification task of labeled LDA, whose averaged accuracy is 53.7%.

2.5.4 Computational Cost

We used the synthetic dataset generated in [32] for 600 iterations. The toy dataset

consists of a set of 90 images, each containing 25 pixels in a 5 ˆ 5 grid. The com-

putation time for di↵erent methods are compared in Table 2.5. We can see that the

computational cost of ai-hLDA is similar to hLDA.

Table 2.5: Computational costs for 600 iterations (in seconds)

ai-hLDA LDA LaLDA hLDA
4598.9431 2032.3218 3092.3456 4501.2322

2.6 Summary

Due to the emerging sources of digitized data, there is a growing need for analysis of

texts with diverse vocabularies, rich auxiliary information but biased short sentences
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of contexts. Targeting this kind of sparse data, a hierarchical topic model, ai-hLDA

is proposed. Through a fully conjugate Bayesian construction, this chapter puts

forward a flexible way of using the supplemental/auxiliary tagging observations to

guide the topical tree generation. Through a nested Chinese Restaurant Process

prior, hierarchical topic patterns as latent features can be discovered for documents

with short length. Experiments were conducted on two real-word text collections,

with results demonstrating the clustering and predictive capability of our model.

This work is currently under review by a journal [55]. There is still room to

improve this work in the future. Currently, some evaluations are hindered by the

relatively high computational cost. We hope to use other inference methods to

enhance the convergent speed and reduce the complexity of the model. Since the

weakly supervised mechanism introduces more hyper-parameters, how to optimize

them is also an important topic.

Besides the topic feature learned under the guidance of auxiliary information,

it is natural to think whether the latent feature of the meta-knowledge can also be

learned to enhance the understanding of the other observed data matrix. Hence, we

try to design a model in a two-way collaborative filtering as further elaborated in

the next chapter.
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Chapter 3

Dirichlet Mixture Probit Model
for Information Scarcity

3.1 Introduction

Recommender systems have changed the way people discover items on the web. How

to suggest new items based on their needs and interests is an important task. To

model the interaction between users and items, we must understand the hidden facets

and the high level topics of their favors. This kind of topics can be obtained col-

laboratively from diverse sources, such as clicking history, rating scores or objective

reviews, and often have comprehensive characteristics. For example, two users may

have similar preferences towards detective films, but di↵erent viewing samples of ac-

tion movies due to their di↵erent preferences of actors. Hence, how to model these

hidden factors is a key to obtaining satisfactory recommendation performance [61].

Recommender systems can be roughly divided into two categories: collaborative

filtering (CF) and content-based collaborative filtering (BCF). CF predict additional

topics or products to new users based on their past preferences [85]. CF algorithms

are required to be capable of dealing with challenges, including highly sparse data,

increasing numbers of users and items, data noise and missing issues.

Besides CF techniques, another important class of recommender systems is content-
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based filtering. This type of recommender systems make recommendations by ana-

lyzing the content of item information and finding regularities in the content. The

main di↵erence between CF and CBF is that CF only uses the user-item interactions

to make predictions, while content-based recommender systems rely on the features

of users and items.

Both CF and CBF systems have limitations. For CF, the similarity values are

based on common items and therefore are unreliable when data are sparse and the

common items are few. On the other hand, while CF systems do not explicitly

incorporate feature information, CBF systems do not necessarily incorporate the

information in preference similarity across individuals [2]. Hence, how to construct

a hybrid system that combines both user-item, as well as item-feature information

is the start point of our consideration.

As to online video recommendation, a typical database stores the historical view-

ing samples of active users, with each sample referring to one video clicked. Many

past researches relying on human feedbacks are typically in a text review form, with

the goal of predicting rating scores for unseen items [46]. However, this kind of

holistic information for contents is not always available. Fortunately, with increasing

availability of e-commerce sources, new recommender tasks are not only based on

traditional aspects regarding contents and users, but also di↵erent kinds of meta

knowledge such as tags. Taking the records from Tencent QQ Browser as an exam-

ple, there are four categories of information provided as video word tag (in Chinese),

namely, type, region, director and actor (Figure 3.1). As understanding the topic

factors is helpful for justifying user preference, the challenge hence lies in discovering

both user-item correlation and user preference topics represented by this tag-form

text in a single learning stage.

The topical modeling based recommender system encounters two aspects of s-

parseness. First, users concentrate on a relatively small number of items comparing
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Users

Movies

Tags Romance Action Ang Lee U.S Yun-Fat Chow

(a) User-Video-Tag interaction network

(b) A clip of click log. For videos clicked by di↵erent users, the tag
words repeat. There are some missing issues with certain videos.

Figure 3.1: Sample samples and their corresponding interactions obtained from Ten-
cent QQ browser.

to the large inventory [30]. Due to the huge volume of users, videos clicked everyday

have features of being extremely dynamic and long tailed. In this case, traditional

Collaborative Filtering (CF) method tends to recommend popular items rather than

those cold ones which might actually correspond to the taste of the target users [85].

So a content-based recommender model would be a better solution to handle this

type of sparseness. As shown in Figure 3.2, when videos are sorted from the most

popular to the least ones, with normalized rank between 0 and 100, 18% of the top

popular videos account for about 80% of the user clicking records. Yin et al. describe

this “long tail” phenomenon of niche products as a significant generator of revenue if
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Figure 3.2: Relation between videos and clicking samples. Around 80% clicking
samples are from 18% top popular videos

we could dig out the niche tastes of users [100]. This coincides with the importance

of accurate description of user preference through explicit collection or prediction by

the system.

The topic model based recommender system encounters two aspects of sparseness.

First, users concentrate on a relatively small number of items comparing to the

large inventory [30]. Due to the huge volume of users, videos clicked everyday have

the features of being extremely dynamic and long tailed. In this case, traditional

Collaborative Filtering (CF) method tends to recommend popular items rather than

those cold ones which might actually correspond to the taste of the target users [85].

As shown in Figure 3.2, videos are sorted from the most popular to the least ones,

with normalized rank between 0 and 100. 18% of the top popular videos account

for about 80% of the user clicking samples. Yin et al. describe this “long tail”

phenomenon of niche products as a significant generator of revenue if we could dig

out the niche tastes of users [100]. This coincides with the importance of accurate

description of user preference through explicit collection or prediction by the system.

Second, the associated words are scarce. Since the textual features are extracted

from product descriptions, no attributes with well-defined values could be found due

to the unstructured nature of the data [77]. Thus, it is a di�cult task to categorize
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each item with just one- or two-keyword based string matching. For topic model

based filtering, one common practice is to treat item feature as bag-of-word. Models

such as DIGTOBI [43] and TopRec [104] have been proved give satisfying results on

recommender framework. However, one limitation of direct topic modeling is that

holistic information for contents, such as full articles [23] or tags from all aspects

[21] are often required but cannot always be acquired. In our application, since the

associated word length for each video is not long, treating each record as a single

document indicates a considerably large vocabulary size but a relatively small amount

of context per document. Such an information scarcity (IS) problem poses challenges

for conventional text mining topic model such as Latent Dirichlet Allocation (LDA),

which depends on co-occurring words for topic discovery.

In this chapter, we address the aforementioned challenges by proposing a unified

Dirichlet mixture probit model for information scarcity (DPIS). It learns topics over

scarce information by directly modeling the generation of records. Specifically, the

clicking history of a user is assumed to consist of a mixture of topics, and each record

sample as a whole is assigned a specific topic with certain probability, from which its

corresponding tags are generated. In the generative model, the words describing each

item are drawn from the vocabulary of the record. The topic proportions, formulated

as a multinomial vector, are also used as an item vector to describe whether a user

viewing the item or not. Although DPIS does not model the user-level generative

process, the link between active users and video pools can be learned through a

probit model, with a Laplacian prior enforced on the sparse parameters. Hence,

our work di↵ers from standard approaches, as the item vectors now serve two roles:

explaining both the words that tag the video record; and capturing the collaborative

component. In this way, the overall model can not only cluster the semantic topics

of the video records based on aggregated item features for active users, but can also

combine the observed features and generates topics for newly synthesized data. Here,
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we employ a collapsed Gibbs sampling inference to find the posterior solution to the

topic discovery and the probit parameters, which is convenient to implement, and

conduct experiments on real-world data collections.

3.2 Related Work

In this section, we briefly review the related work of this study. For topic exploration,

one typical approach is through topic modelling. Topic models are originally designed

for text mining tasks, including latent topics exploration and document clustering

[10]. The key idea is to generate a topic vector that can describe the desired relational

proportions, e.g. in Latent Dirichlet Allocation (LDA), the vector represents the

probabilities of words belonging to the topics. Due to their flexible extendibility,

topic models have been successfully leveraged in recommendation [93] [65]. The

state-of-the-art work on LDA provides a fundamental framework for many of the

following topic models. In LDA, each document is viewed as a mixture of latent

probabilistic topics, and the words in that document could be a representation of

certain subsets of those topics. However, even when certain resources exist, e.g.

document labels or side information (author, venue etc.), it fails to provide any

suitable tools to tune the generated topics [75].

The labeled LDA model extends LDA by defining a correspondence between

latent topics and user tags for learning word-tag correspondences [75], and has been

applied to Twitter posts modeling [74]. Graphically represented in Figure 3.3 (a),

a Multinomial distribution is selected over the label sets, with every word in the

document picked from the corresponding document labels according to the likelihoods

of document-label and label-word selection. To incorporate the user information,

Author Topic (AT) model [78] [63] aims to learn the hidden topics of the documents,

as well as the clustering of authors. Author interests on these topics can be regarded
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Figure 3.3: Graphic representations of related topic models.

as a two-way filtering, where the side information of authors is linked to each word

through a uniform distribution, and each author is associated with a symmetric

Dirichlet distribution over topics (Figure 3.3 (b)). Both models, based on the LDA

mechanism, rely heavily on the word co-occurrence.

Targeting the feature sparsity issue, several related topic models have been suc-

cessfully applied to short-length texts, where the co-occurrence patterns of words are

not obvious. Zhao et al. use the Twitter-LDA for topic categorization based on the

assumption that each individual document can have only one topic, which alleviates

the flexibility of multiple meaning capturing [107]. Work done by Yin et al. [101] is

most related to our model, as the proposed collapsed Gibbs Sampling algorithm for

the Dirichlet Multinomial Mixture model (abbr. to GSDMM), estimates the mixture

component for each document targeting the short text clustering problem. However,

GSDMM also limits each document to express only one topic.
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3.3 Problem Formulation

Our aim is to incorporate user preference into the sparse feature based semantic

learning. The first straight forward approach is to extend two-level, document-word

hierarchy into a three-level, author-document-word hierarchy. The following analo-

gies can be made for video recommender system: user to author, sample to docu-

ment, and tag to word. In this way, the application scenario can also be regarded

as a special case of AT model, with only one author belonging to each document.

Specifically, a video tag count matrix W P ZSˆV

` can be obtained, where Z`indicates

positive integer, S is the sample sample size, V is the size of word tag vocabulary.

There is also a binary user-sample matrix Y P t0, 1uDˆS, indicating which user each

sample belongs to, where D is the number of active users. With an averaged four

million samples coming in daily and a total of over 500, 000 evolving tag words, the

following statistics are reported: the tag word length is usually less than 30, leaving

the matrix W with a sparsity of 99.2%. Moreover, 94% of the users have fewer than

20 clicking samples, so the word expressions and video sets are extremely vibrant

comparing to its library. In such case, when attempting to incorporate the item

attribute (tag word) into finding the shared latent low-dimensional space between

users and items, how to appropriately explore the hidden interactions behind the

scarce item features becomes a key challenge.

We tackle this information scarcity from a semantic learning prospective, regard-

ing user preferences as combinations of topics. For example, some users may have

interest in a video due to its plots, while others may favor it according to the di-

rector or actors. The personal preference is hence collaboratively expressed by the

combination of tags. Moreover, di↵erent from the normal text topic mining, most

tags occur only once, which makes the Term Frequency-Inverse Document Frequen-

cy (TF-IDF) measure lose e↵ectiveness. Semantic information, therefore, explored
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Table 3.1: An example of user sample

user video tag words clicks
u1 v1 horror suspense 10

v2 comedy romance drama 1
v3 action comedy drama 1

u2 v2 comedy romance drama 2
v3 action comedy drama 1

from single sample is limited. Thus, e↵ective capturing of tag correlation becomes

the primary concern during the interaction mining processes.

As each sample belongs to only one user, in the DPIS metaphor, behaviors of

each user can be regarded as a document, while each sample is the sentence con-

structed by tag words. Thus, the author (document)-sentence-word hierarchy not

only builds linkage between user and video, but also preserves the correlations a-

mong tags belonging to the same video. To further elaborate our intuition for the

proposed hierarchical model, we start with some exploratory analysis of the data to

illustrate why traditional topic models, i.e. LDA would tend to fail in this scarceness

characterized application. Consider a set of two users U “ tu1, u2u and a set of three

videos V “ tv1, v2, v3u in Table 3.1. Each video has its corresponding tags W
vi (to

make the table clear, only 2-3 words are included). Traditional topic models utilize

word co-occurrences for topic assignment probability calculation. Inferred from the

last column of Table 3.1, the highest frequency of word-pair is dominated by the ones

from v1. Even though tv2, v3u would be a common topic intersection, the recommen-

dation would still bias towards the suspense type, and overlooks users’ interest in

the other type, i.e. comedic drama.

In comparison, if a clicking sample is treated as a whole, it is obvious that tv1, v2u
and tv1, v3u will each co-occur once, while tv2, v3u will appear twice. Through this

kind of aggregation, the biased co-occurrence frequencies are equilibrated and the

correlation among tags in the same sample are maintained. Using the sample-level
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co-occurrence frequency as the corresponding tag co-occurrence frequency will hence

enhance the latent topic discovery for items and user preferences representation. To

preliminarily justify the advantage of concatenating samples of each active user, we

conduct Pareto test with 10 pre-specified factors. Percentage of the data expressed

by the first factor increases from 10 to 78 when samples from the same user are

concatenated, which means that this approach indeed improves the interpretation of

the data.

3.4 Approach

3.4.1 A Compound Dirichlet Mixture Model

Our compound model, which is a probabilistic generative model, as graphically shown

in Figure 3.4, combines both user-item information and item-feature level clustering

in the representation process. There are three assumptions for the generative process

of the model: (1) user collection is generated by a topic mixture model; (2) there

exists one-to-one correspondence between mixture components and clusters; (3) tag

words for each sample are generated simultaneously according to the probability of

sample-level topic assignment. Its hierarchical Bayesian structure is characterized by

hyper-parameterst�, ↵, �u and column vector sets t✓
s

, t
d

, !
d

u. The shaded nodes

denote two observations. The key di↵erence comparing to other topic models is that,

each sample of individual user, instead of each word, is generated from a mixture

component, topic k, according to the weights of topics.

The observed data are the viewing samples collection of active users. Each sample

has the information of its video id and user id, and is stored in a bag-of-words

format. The same set of tag words can repeat multiple times since each video could

be viewed by the same person or other users multiple times. We assume that there

exist K hidden topics in a collection of video watching samples. To deal with the
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Figure 3.4: Generative process of the DPIS model.

sparseness issue of word tags, each sample is assumed to express one topic, without

separately considering each individual word tag. Specifically, we consider that the

clicking samples belonging to one user as a mixture of topics, where each sample

as a collection of tags is drawn from a topic capturing one type of user preference

independently. So the tag word in each sample is drawn with the same probability

from the topic independently. In this approach, DPIS is capable of capturing the

strong correlations of tag words in the same sample, and hence represents the latent

semantics of a sample as a whole.

The generative process for the model is summarized as follows:

1. For each sample s,

‚ Draw topic proportions ✓
s

„ Dirp↵q
‚ Draw topic assignment z

s

„ Multinomialp✓
s

q
‚ For each word in the sample s,

˝ Draw word w
s

„ Multinomialp�zsq

2. For each user d,

‚ Draw the parameters r!
d

s
Kˆ1 by

!d „ N p0, �´1I
K

q (3.1)

where I
K

represents the K ˆ K identity matrix.
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3. For each user-sample tuple y

d,s

, draw the indicator by

y

d,s

“

$

&

%

`1, if t

d,s

• 0,

´1, otherwise,

t

d,s

„ N p!
d

✓

T
s

, 1q (3.2)

Based on the assumption that tag words in a sample are generated independently

when the topic assignment for the sample is known, we can write the probability for

sentence generation as:

pps|z “ kq “
π

wPs
ppw|z “ kq (3.3)

For W P Z
SˆV

being a video tag count matrix, with S equal to sample size and V

sample vocabulary size, each row of W represents a user sample, with its correspond-

ing tag words. The response matrix Y is represented by a latent matrix T P R
DˆS

,

where D is the number of users. ✓ acts as a shared matrix between topical clustering

and response classification. Thus the latent matrix T and the probit link can be gen-

erated according to equation (3.2). This kind of prior together with the probit link

are similar to [105], but in our application, it combines with semantic topic modeling

and is utilised for recommendation.

For better understanding DPIS method, we compare it with two other typical

models for topic learning, i.e. LDA and Dirichlet Multinomial Mixture (DMM)

model. When applying LDA and related topic models, a form of K-factor latent

matrix factorization is carried out, generally defined as

W “ ⇥�T (3.4)

where⇥ P RSˆK , � P RV ˆK . D is the number of documents and V is the vocabulary

of words. Its factorization relies on the Dirichlet prior placed on the columns of ⇥

[38]. For DMM model, the restriction on corpus-level topic assignment is strong.
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Specifically, each document can only have one topic and all the words in the document

can only be sampled from the same topic. If the sample collection of a user is

analogized to a document, samples can be analogized to multi-length phrases. Thus,

by breaking documents into phrases, DPIS overcomes the data sparsity problem

of LDA by drawing topic assignment from the phrase-level and also alleviates the

topical restrictions of DMM for overfitting avoidance.

3.4.2 Prediction and Recommendation

Recall that the goal of our analysis is to quantify the advantage of concatenating

samples user-wisely. Through the discovery of hidden semantics, a classifier can be

trained based on the sharing information among the samples. For a new sample s

with its corresponding words W
new

, classification to a binary indicator is made using

the maximum a posteriori (MAP) rule as follows

y

˚
d

“ argmax
yd

P py
d

|W
new

q

“ argmax
yd

P py
d

,W
new

q

« argmax
yd

P py
d

|t˚
d

q
ª

td

P pt
d

|W
new

qdt
d

“ argmax
yd

P pY
d

|t˚
d

q, (3.5)

where

t

˚
d

“ argmax
td

P pt
d

|W
new

q « argmax
td

P pt
d

,W
new

q. (3.6)

To estimate t

˚
d

, the marginal likelihood is given by

P pt
d

,W
new

q “
ª

�

ª

!

ª

✓

ÿ

Z

P pW
new

, t

d

, Z, ✓,!,�qd✓d!d�. (3.7)

Since the above integral is intractable, after marginalizing out Z, the MAP estimation

procedure approximates the integral by using point estimates of t✓,!,�u.

41



Table 3.2: Notations

K pre-specified number of topics
z topic labels for each sample k “ 1...K
s samples collection
V

s

number of words in the sample vocabulary
N

s

total number of samples
I number of iterations
n

k

number of samples in cluster k
n

ws
k

number of occurrences of word w in cluster k in sample s

3.5 Inference

In this section, the inference part of DPIS using collapsed Gibbs Sampling algorithm

is formally derived.

3.5.1 Gibbs Sampling for DPIS

Given samples with observed tag words and corresponding response variables, the

inference task is to find the posterior distribution over: the topic structure including

topic �
k

and the latent probit parameter t
d

for each active user. Since exact tracking

is not available, we do the estimation using Gibbs sampling. The detail updating

steps of the algorithm is shown in Algorithm 3.1. The notations of the parameters

used throughout this chapter are shown in Table 3.2. The primary conditional distri-

bution is the sample level topic distribution. For initialization, we randomly assign

samples to K clusters, sample the initialized values for the number of n
k

and n

wds
k

.

Then, we traverse all the samples in the user watch list for I iterations. In each iter-

ation, we reassign a topic for each sample according to the conditional distribution.

After every updating of topic, we re-sample the information accordingly.

3.5.2 Derivation

Update of Latent Topic Distribution: First we define the conditional density

of a sample in a collection of the d

t

h user being assigned to topic k given all other
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Algorithm 3.1 DPIS
Input: User sample collection D, topic number K, ↵ and �

Result: Topics for each sample z

Begin
Initialize n

k

, nws
k

for each sample s of all user do
Sample a topic z for s
n

k

“ n

k

` 1 and n

ws
k

“ n

ws
k

` 1
end for
for iteration i do
for each sample s do
Locate its current topic z

n

k

“ n

k

´ 1 and n

ws
k

“ n

ws
k

´ 1
Sample a topic for s
n

k

“ n

k

` 1 and n

ws
k

“ n

ws
k

` 1
end for
Update t, !

end for

assignments as

ppz
s

“ k|z s, sq9 ppz, s|´q
ppz s, s s|´q (3.8)

where the symbol  indicates the item it pointed is deducted from calculation.

Hence,  s indicates that current sample s is excluded from counting. From the

generative process, we can get:

ppz, s|´q “ ppz|↵q ˆ pps|z, �q (3.9)

The first part indicates the likelihood of sentences being assigned to the kth topic.

In a collapsed way, we can obtain:

ppz|↵q “
ª

ppz|⇥qpp⇥|↵q d⇥ (3.10)

Thus,

ppz|↵q “
±

K

k“1 �pn
k

` ↵q
�p∞

K

k“1pn
k

` ↵qq
“

±

K

k“1 �pn
k

` ↵q
�pNs ` K↵q (3.11)

For pps|z, �q, assume that each tag word in the s

th sample is generated indepen-
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dently with the topic assignment probability, then:

pps|z, �q “
Ns
π

s“1

π

wPs
ppw|z “ kq

“
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Similarly, we can get these two probabilities excluding the current sample. Sub-

stituting them into equation (3.8), we can have:
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Use the property of � function, we can further simplify the equations as:
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Update of Probit Classifier: Using the defined priors (equations (3.1) and (3.2))

for the hierarchical Bayesian construction, the conjugate posterior distribution can

be inferred straight forwardly as

t

d

„ N p!
d

✓

T
, 1q (3.15)
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where N stands for truncated normal distribution.

! „ MVN rp✓T✓ ` I´1
K

q✓TtT, p✓T✓ ` I´1
K

q´1s (3.16)

3.6 Experiments

Let us introduce our data in detail and report our experimental results in this section.

To provide recommendation evaluation in a formal and rigorous way, we examine the

quality of the generated category and prediction using DPIS model in both warm-

start and cold-start situations. The performances with di↵erent topic number K

are reported. We consider assessing our model in how it works comparing to direct

tag match, traditional topic model and topic model for short texts. So, baseline

methods including tagommender [82], and five other probabilistic models: Latent

Dirichlet Allocation (LDA), Author Topic (AT) Model, labeled LDA (LaLDA) [75],

fast discriminant LDA (DLDA) [83] and collapsed Gibbs Sampling algorithm for the

Dirichlet Multinomial Mixture model (GSDMM) [101] are considered.

The Gibbs sampling algorithm in section 3.5 is implemented for the proposed

DPIS model. In our experiments, 1000 iterations for burn-in were performed for

the training part, and every 50 collected samples were taken for 1500 iterations.

As proved in [69] that LDA is not directly suited for short text, we expanded the

tag words of each sample using the number of times it has been clicked in the past

five days and noted it as ‘LDAexpanded’. We consider using the topic distributions

learned by LDA as features for following recommendation. The similarity between

videos are first measured using KL distance [49] based on the posterior probabilities

for topic assignment ✓, and the predicted rating P

u,v

with respect to an active user u

is based upon the weighted average score from all the samples that have been viewed.

For AT model, besides the probabilities of tag to topics, we also get user-topic ma-

trix for all users. Similar to LDA based recommendation, user similarity is measured
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through KL distance based on user-topic matrix. According to the similarity score,

we then rank the top videos clicked by similar users incorporating the similarity of

the video topics. We use the implementation of labeled LDA provided from tool-

box“TMBP” [103] with a belief propagation (BP) method adopted for inference. The

user information is utilized as the labels for training. To compare with direct tag

match approach, we adopt the idea from Tagommender model [82] for comparison,

through first applying tf-idf to all the tag words of the samples, and then matching

the candidate video tags that have the highest scores. We also implemented the

GSDMM [101] as well. It applies the Dirichlet Multinomial Mixture (DMM) model

for short text clustering. The recommendation ranking is similar to our model and

LDA, however due to the assumption of GSDMM, each user can only belong to one

latent topic.

3.6.1 Data and Experimental Setting

We use samples in three consecutive weeks at the same time slot from Tencent QQ

browser. Each sample consists of the video id, the user id, and four categories of

word tags: (1) type (e.g. action, mystery); (2) region (e.g. US, main land China);

(3) director and (4) actor. There are 4, 071, 811 samples in total with 137, 465 u-

nique users, and 9, 393 unique videos they clicked. For each of the recommendation

scenarios, we generated the test data sets as follows.

‚ Warm-start Test: For warm-start recommendation, both active users and the

candidate videos have occurred before. We select a subset of users who have over

10 historical samples, which generates a sample collection of 335, 783 samples with

42, 652 distinct word tags. This is also inferred to as In-matrix prediction [93], and

is similar to traditional collaborative filtering.

A 5-fold cross-validation is used for evaluation. To guarantee that all the users

and items have already appeared in the training set, for samples that have been
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Table 3.3: A comparison of accuracy performance

Distinct Video Size 100 500 1000 5000
DPIS 0.9523˘

0.0032
0.9505˘
0.0103

0.9546˘
0.0084

0.9550˘
0.0118

MLR-LDA 0.9510˘
0.0100

0.9417˘
0.0087

0.9401˘
0.0114

0.9374˘
0.0169

LaLDA 0.9110˘
0.0025

0.9023˘
0.0112

0.9198˘
0.0021

0.9503˘
0.0010

Fast DLDA 0.9710˘
0.0005

0.9743˘
0.0032

0.9698˘
0.0011

0.9563˘
0.0003

viewed by each user for over five times, we distributed at least one of them into each

fold. For samples that have appeared less than five times (246, 642 in total), we

always put them into the training fold. For each fold, we train the topic clustering

parameters of the model and fit the probit prediction part for testing fold. The list

of top n recommended videos is based on the prediction probit matrix.

‚ Cold-start Test: For the three types of cold-start problems mentioned in [43], we

focus on the second type for quantitative comparison, that is in the testing set there

are newly added videos not exposed before since this is a very common situation for

online video recommendation where every day has new videos fed into the collection.

Still, 5-fold cross-validation is adopted. We first group videos into five folds. Each

time for the test fold, only users that have appeared in the four training folds are

considered. We also provide evaluation under the situation where there are new

users with no previous historical samples coming in. Since DPIS does not consider

user attributes, it is di�cult to directly handle this kind of cold-start. Experiments

are done in a vertical time direction, where at first, some top recommended videos

are generated based on the probability from the training set. Gradually we add in

samples of the new users and examine how the model performs with gradual increase

knowledge of the user preference.
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3.6.2 Warm-start Scenario Evaluation

We start with the warm-start cases, where both video and users in the testing set have

appeared in the training sets. We compare DPIS with two other supervised topic

models on classification accuracy as a function of the number of positive responses.

As proved in [83], fast discriminant LDA (DLDA) performs better than DLDA and

fast LDA, we choose it as a state-of-art model. The results presented in Table 3.3 are

averaged over 5 random initializations. For each test, the number of unique videos

being watched ranges from 100 to 5000, leaving the item sparsity from 65% ´ 92%.

It shows that the proposed DPIS model performs better than labeled LDA (LaLDA)

[75], and has competitive accuracy results comparing to fast DLDA. Since fast DLDA

adopts supervised multi-label logistic regression for label classification, the number of

classes is allowed to be di↵erent from the topic number in the generative model. This

would contribute to the better performance comparing to DPIS with extra tuning

of the class number parameter. Moreover, the performance of DPIS is consistent

throughout all testing cases, which suggests that this model tackles sparsity well.

Influence of topic number

To evaluate the model quantitatively, we also investigate the influence of topic num-

berK on the performance of recommendation. Using common metrics for recommen-

dation evaluation, here we define precision, recall with n candidates and averaged

hit rate as:

Precision “ N

r

n

Recall “ N

r

N

t

Averaged hit rate “
∞

Nr

i

1
pi

N

t

48



20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic number

Pr
ec

is
io

n@
n

DPISw
Tagomenderw
LDAw
LDAexpandedw
GSDMMw
ATw

(a) Precision@n

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic number

5
ec

aO
O@

n

DPISw
Tagomenderw
LDAw
LDAexpandedw
GSDMMw
ATw

(b) Recall@n

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Topic number

AY
er

ag
ed

 K
iW 

ra
nN

DPISw
Tagomenderw
LDAw
LDAexpandedw
GSDMMw
ATw

(c) Averaged hit rate

Figure 3.5: Vary topic number K from 15 to 150 with n equal to 3 for 5-fold cross
validate warm-start test. The error bar is too small to show.

where N
r

is the number of relevant videos in top n item candidates, N
t

is the ground

truth of relevant videos in the testing set, p
i

is the rank of each relevant video in the

recommender pool.

In our warm-start scenario, Figure 3.5 (a)–(c) show these three metrics of the four

algorithms respectively when n equals to 3 with varying cluster number K from 15

to 150. The graphs illustrate that DPIS for topic number larger than 15 outperforms

the other recommendation algorithms in terms of every quality measure. As we

increase the topic number, the three measures have an overall trend of improving,

stabilized around topic number equalling to 80. This can also be utilised as a way of

determining the appropriate topic number for this dataset. From a user perspective,

the averaged hit rate count is a more important factor for judging recommender
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Figure 3.6: Vary candidates number n from 1 to 10 with topic number equal to 150
for warm-start test.

system, since it indicates whether the recommended items would fit users’ interest at

earlier order. Although DPIS resembles to AT model most, due to the di↵erent way

of placing the topic probabilistic distribution, the single topic assumption for each

sample estimates the sparse data better and hence generates better results comparing

to AT which relies on the co-occurrence of tag words. What’s more, since AT does

not model the direct relation between user and sample, but only clusters user and

tag topics separately, the hit rate does not change much with increasing number

of topics. This is due to a lack of e�cient ranking mechanism to di↵erentiate the

priority of preferences within similar user groups.
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Figure 3.7: Vary candidates number n from 1 to 5 with topic number equal to 150
in cold-start scenario where new videos are added to the database.

Influence of recommendation candidate number

The influence of how many videos should be recommended is also worth discussing.

Usually for the browser interface, 5 ´ 10 videos are listed as a guessing of user

interest. The values for all three metrics mentioned in the previous subsection are

illustrated in Figure 3.6 (a)–(c). The increase of pool number will enhance the

probability to recommend the favored video. Thus, recall rate and average hit-

rank grow gradually and stabilize. DPIS has outstanding performance comparing to

other methods on precision when the recommendation candidate number is small.

The prediction precision decreases below the average performances of other methods

when the candidate video number is larger than seven. Both the recall values and

average hit rates for DPIS are more consistent comparing to other methods. All
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these phenomena indicate that DPIS can hit the correct preferences of users at an

earlier stage of recommendation which makes it more suitable for short list of video

recommendation.

3.6.3 Cold-start Scenario Evaluation

For the cold-start case, we first examine the case where new videos are added for rec-

ommendation. The precision, recall with recommended item size ranging from 1–5,

and averaged hit rate are illustrated in Figure 3.7 (a)–(c). The overall trend is similar

to the warm-start case, GSDMM does better comparing to LDA and Tagomender,

which supports our choice of targeting the scarceness of information. However, its

performance is limited due to the restriction of single topic assignment for each user,

which is usually not the case. As a contrary, although DPIS assigns only one topic

to each sample for the purpose of solving tag sparsity issue, each video can appear

multiple times, which indicates that there is still probability that the video could

be assigned to multiple topics based on the high-level semantic clustering of user

preference. Hence, overall, the performance of DPIS is better than GSDMM, when

both methods are targeting at the short-length of text features.

Considering the third type of cold-start recommendation mentioned in [43], since

DPIS is independent of the user attribute feature, it is di�cult to directly predict

the preference of new user with no previous historical samples. So for the initial

recommendation, we just use a way similar to random guess, that is to recommend

the most popular videos in the past three days. As a horizontal test, with a gradual

increase knowledge of the viewing history of user, we can use the posterior topic

probability to gradually ensure our recommendation. The improvement of prediction

precision when user samples increasing to 20 is presented in Figure 3.8 comparing

with the maximum precision values of recommending the most popular one as well

as AT and GSDMM model. It is clear that with accumulative gathering of viewing
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information, the recommender system can get more robust to new users. Since the

recommendation of AT is based on the clustering of users, the precision is higher at

an earlier stage. However, with growing samples, the user preference becomes more

specific, DPIS, which bases its recommendation on user topics, outperforms.
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Figure 3.8: Prediction accuracy improvement with increasing clicking samples of new
users

3.6.4 Topic Examination

In this section, we present some sample topics discovered using DPIS, and also pro-

vide a concrete example of topic discovery based recommendation for an active user

to illustrate how the recommender system works. Consider the topic-modeling com-

ponent part of the DPIS model alone, we compare the perplexity of LDA with and

without data expansion, fast DLDA and GSDMM. Each of the models was initial-

ized with the same hyper-parameters and topic number, if required, to impose a fair

comparison. Since larger likelihood would imply a better chance of observing the

true value, with a monotonically decreasing function applied on it, a lower perplexi-

ty would indicate a better model explanation of the data. Table 3.4 summarizes the

perplexities using each of the methods. The degradation of using expanded words

for LDA suggests that simple augmentation will not improve the co-occurrence pat-

tern, but worsens the topic interpretation due to a destruction of the original data
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Table 3.4: Perplexity of di↵erent methods on Tencent browser dataset

Method LDA LDA expand fast DLDA GSDMM DPIS
Perplexity 1432 1627 1982 1074 1035

structure and an overlook of the latent relations between the word combinations. We

can see that although supervised fast DLDA method outperforms DPIS in prediction

accuracy, its performance on perplexity is not as competitive as DPIS. This might be

benefited from the sample level modeling of topics, which makes DPIS more suitable

for scarce information exploration.

Another advantage of DPIS is to provide an exploration of user latent prefer-

ence space using the comprehensive topic representation learned from the historical

data. Table 3.5 shows one example of three top matched topics for user and eight

recommended videos provided by DPIS. The topics are represented by the four cat-

egories of tag words (translated into English). The last column indicates whether

the user has already clicked the video or not. We can see from the topic tag word,

that learned topics serve as a summary of what this user might be interested in. For

example, this user has clicking samples of Korean soup dramas. The model detects

his primary interest in love story, thus suggests several Korean dramas accordingly,

some of which are indeed watched already. Also considering his interest in comedy,

suspense and horror videos, the system recommends “The Conman” (comedy) and

“The Missing” (horror), which keep the diversity of recommendation.

3.6.5 Computational Cost

Theoretically, the complexity for the generation part is OpKN

s

V̄

s

q, where V̄

s

is the

average vocabulary size of V
s

. To justify the scalability of DPIS, we run an exper-

iment on synthetic dataset with training size ranging from 10, 000 - 100, 000 for 50

iterations. The topic number K stay fixed at 150 and the tag word length is trun-

cated or padded to 10. The run-time of DPIS generative part is about 1.08 times
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Table 3.5: Example user with top-2 highest weighted topics, and 8 suggested videos
as predicted by DPIS. The last column indicates whether the recommendation has
been viewed or not.

user clicked?
Topic 27 Drama Comedy Romance Korea

micro-film ZhouXingXing YangXi-
aoyang ZhaoruZhen

Topic 5 Romances horror suspense France
Jean-Marc Barr

Topic 15 Love Story Ethical Hong Kong TangN-
ing Chen Zhiqing

Recommend 1 How to Meet a Perfect Neighbor (Ko-
rean drama)

Yes

Recommend 2 Woman on the Beach (Korean drama) No
Recommend 3 Warriors of the Rainbow: Seediq Bale

(Taiwan film)
No

Recommend 4 Stained Glass (Korean drama) No
Recommend 6 The Conman 2002 (HK film) Yes
Recommend 7 John Rabe (film) Yes
Recommend 8 The Missing (HK film) Yes

of LDA. As shown in Figure 3.9, DPIS scales linearly with the number of training

samples. A Spark version of the algorithm is also implemented and tested. With 180

machines running at the same time, the computational cost for 2000 iterations over

four million samples daily can be controlled under three hours.
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Figure 3.9: Linear scalability of DPIS for 50 iterations
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3.7 Summary

With the exponential growth in online video usage, predicting the potential inter-

est of user is a typical recommendation application. Large-scale video databases and

user click logs have long-tailed and sparse features, which presents challenges to tradi-

tional collaborative filtering and content-based recommender systems. Targeting this

two-aspect information scarcity, we present DPIS, a personalized recommendation

algorithm for online video using a novel probabilistic probit topic model. Through

concatenating viewing samples for maintaining tag word correlation, the probabilis-

tic generating processes for sample-level topic representation of user preferences is

described and the Gibbs sampling algorithm for inference and parameter learning is

realised. Experiments on large-scale real-world datasets collected from Tencent QQ

browser prove that the proposed model can improve the quality of recommendations

based on the semantic topics of user preference in both warm-start and cold-start

scenarios.

We expect this work could provide some inspirations to readers on how to link

discrete count information with binary indicator information through closed form

Bayesian networks. Preliminary results of this work appeared in the Proceedings of

the 25th ACM International on Conference on Information and Knowledge Manage-

ment [59].

As in this approach, we still treat user-video and video-text information as two

separate matrices, it is reasonable to question how analyzing these three parts as a

whole will influence the performance and whether we can utilize deep presentation

for feature understanding. Hence, we turn to tensor, a natural extension of matrix,

in the next chapter.
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Chapter 4

Deep Bayesian Tensor
Factorization for Computational
Creativity based Video
Recommendation

4.1 Introduction

Relational data based personalized recommendation plays an essential role in today’s

e-commerce operations. While those emerging web and video sites provide services

of millions of TV shows, movies, music and news clips, they are also a main source

of capturing browsing or operational data for a huge amount of users. As have been

discussed in the previous chapter, there are two traditional and widely applied ap-

proaches to this kind of tasks, i.e., Content-Based Filtering (CBF) and Collaborative

Filtering (CF). CBF compares new information with the historical profile to predict

its relevance to certain users [5]. CF recommends items based on the common pref-

erences of a user group, without using the item attributes. Although both of them

have performed superiorly well on many systems, they have drawbacks facing the

challenges aroused by the increasing availability of large-scale digitized data.

Taking the online video clicking log mentioned in Chapter 3 as an example, the

database stores both user-item interaction and item-tag interactions. With respect
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to the Tencent QQ browser platform or other user generated content sites such as

Youtube or Twitter, the challenge of data sparsity is often faced [30]. Due to the

huge volume of users, videos clicked every day have the features of being extremely

dynamic and long tailed. It is di�cult to directly observe which category of tags

are deterministic to a user’s choices. In this case, CF tends to recommend popular

items rather than those cold ones which might actually correspond to the taste of

the target user [85]. On the other hand, purely item-based CBF may overlook the

hidden and mixed patterns of user preferences.

To address these limitations, we propose a recommender system leveraging both

user and item features. As it is reasonable to assume that the historical behavior

of users is a sound source for preference estimation, the high-level semantic topics

of video tags can be regarded as a comprehensive representation of user features.

There are some work on incorporating user features (e.g. age, gender, geographic

information) and their social relationships (e.g. community groups) into a multi-way

data analysis [71] [108]. However, for video recommendation, users are more accu-

rately clustered based on their overlapping of preferences, which can be represented

by semantic relations among video tags. Integrating such multi-facet information to-

gether poses certain challenges. Moreover, since the tags are manually labeled, error,

incompleteness and abundance exist. How to overcome these deficiencies and explore

a better representation of user preference features is also an important concern of

model construction. Regarding interaction information in a tensor format is hence

a natural and sound approach. This type of multi-way tensor data [64] is prevalent

and has diverse applications. For example in recommender systems, we could obtain

the click records of each individual active user, and add multiple categories of tags

to each video in the database. So the tensor can be constructed flexibly either in

a real-valued way using the number of clicks, or a binary way using the action user

takes on the video. Thus, tensor decomposition methods are becoming appealing for
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these diverse data types.

Traditional multi-way factor models [89] [34] su↵er from the drawback of failing to

capture coupled and nonlinear interactions between entities [96]. Also, they are not

robust to datasets containing noisy and missing values. Through proper generative

model, nonparametric Bayesian multi-way analysis algorithms (like [15] [96] [72]) are

especially appealing, since they provide e�cient ways to deal with distinct data types

as well as data with missing values and noises. Meanwhile, deep networks prove great

empirical success in various domains. They are capable of providing more compact

nonlinear representations for feature learning. It would be interesting to adopt deep

learning in one or more of the tensor modes and assess its e↵ectiveness on tensor

completion.

Motivated by the aforementioned consideration, this chapter presents a fully con-

jugate deep probabilistic approach for tensor decomposition, named Deep Canonical

PARAFAC Factorization (DCPF). Based on the Canonical PARAFAC (CP) decom-

position, the model is capable of clustering the three-way data along each direction

simultaneously. To find a more compact representation in the latent space of each

mode, a multi-layer factorization is imposed on the mode factor matrix to incorpo-

rate nonlinear mapping. Instead of relying on ad-hoc or cross-validating parameter

selection, the rank of the core tensor and the factor number for each layer of the deep

network can all be automatically determined. As a fully conjugate Bayesian model,

e�cient Gibbs sampling inference is facilitated, with an improving performance for

tensor reconstruction and prediction accuracy.

Related to the diversity, novelty and serendipity perspectives of recommender sys-

tem, we also consider incorporating computational creativity into recommendation.

Computational creativity, a study on algorithms for computer to generate artifacts

that humans perceive to be creative, is a newly emerging field in today’s e-commerce

operations. Colton et al. [18] provide a definition for computational creativity re-
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search as: “The philosophy, science and engineering of computational systems exhibit

impersonally creative behaviors by taking on particular responsibilities.” Based on

this definition, attempts including automatic culinary recipe generating system [70]

have been made through cognitive flavor assessment. For recommendation, diversity

also has become an important aspect for evaluation [76], where content-based sys-

tems usually su↵er from over-specialization, since only items similar to those rated

by users will be more likely recommended. Computational creativity is also related

to serendipity, as defined in [42], a user-oriented measurement balancing between

surprise and accuracy. Serendipitous recommendations by definition are also novel.

Consider a recommender system that simply recommends movies directed by the

user’s favorite director, comparing to recommend a movie of the same director that

the user was not aware of, a movie by a new director catering to the user’s taste, is

more likely to be not only novel but also serendipitous.

This whole idea of calculating computational creativity for recommender sys-

tem from the automated processing of mass collection of item tags requires us

to address several problems. First, we face the issue of e↵ective user profiling.

A two-dimensional collaborative filtering approach cannot be directly employed to

build a tag-based recommender system, since it cannot e�ciently capture the multi-

dimensional characteristic and hence, will result in poorer recommendation perfor-

mance. Second, creativity of new ideas built upon domain knowledge is di�cult

to be measured quantitatively. Besides traditional performance measurements, e.g.

precision, recall, F-1, new evaluation metrics are required. Past approaches use

historical viewing frequency based distance measurement, but as user preference is

a complicated topic combination, pure frequencies would hardly express their real

interest.

Fortunately, comparing to traditional user-item based recommender system, meta-

data such as tags, which are reusable and shareable, play significant roles in helping
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manage online resources. As an additional source for item recognition, tags help in

revealing user and improving user profiles that can be used in recommendation [39].

Hence, in this chapter, we address the following challenges. Given the inordinate

amount of candidate items and their corresponding textual tag information now ac-

cessible online, is it possible to automatically generate serendipitous tag combinations

for users via machine learning? For example, given an online video recommender sys-

tem, if a user has watched two videos with tag “Romance, Comedy” and “Thrilling,

Horror”, how would he react to a video tagged by “Comedy, Horror”? Will he find

it creative or just as expected?

We assume that the historical behavior of users is a sound source for preference

estimation and the high-level semantic topics of video tags can be regarded as a

comprehensive representation of user features. There are some work on incorporating

user features (e.g. age, gender, geographic information) and their social relationships

(e.g. community groups) into a multi-way data analysis [71]. However, for video

recommendation, users are more accurately clustered based on their overlapping

of preferences, which can be represented by semantic relations among video tags.

Integrating such multi-facet information, user profiles can be naturally modeled with

higher-order data mining models. Tensor modeling is a well-known approach for

representing latent relationships inherent in the multi-dimensional data.

There are typically three steps for tensor-based recommendation: (1) tensorial

construction for multi-relational data; (2) tensor decomposition for latent feature

(topic) representation; and (3) tensor reconstruction for interaction regeneration.

Traditional multi-way factor models su↵er from the drawback of failing to capture

coupled and nonlinear interactions between entities [96]. Also, they are not robust

to datasets containing noisy and missing values. Through proper generative model,

nonparametric Bayesian multi-way analysis algorithms are especially appealing, s-

ince they provide e�cient ways to deal with distinct data types as well as data with
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missing values and noises. Moreover, since we are expected to recommend items not

only considering the accuracy but also the creativity and serendipity, the posterior

likelihood of Bayesian model can also be leveraged as a probabilistic ranking gener-

ating mechanism. Meanwhile, deep networks prove great empirical success in various

domains [6]. They are capable of providing more compact nonlinear representations

for feature learning. It would be interesting to adopt deep learning in one or more

of the tensor modes and assess its e↵ectiveness on tensor completion.

The aforementioned challenges are addressed through a framework using the pro-

posed deep tensor for probabilistic recommendation. It breaks the task at hand into

the following components: 1. a tensor construction stage of building user-item-tag

correlation; 2. a tensor decomposition stage learning factors for each component

mode; 3. a stage of tensor completion, which computes the creativity value of tag

pairs; and 4. a recommender stage that ranks the candidate items according to both

precision and creativity consideration. This approach is evaluated using a real world

video recommender system, with large amount of users, videos and corresponding

video description tags.

4.2 Related Work

4.2.1 Canonical PARAFAC (CP) Decomposition

The core of our proposed model is the Canonical PARAFAC (CP) decomposition

[17]. CP, as a special case of Tucker decomposition, decomposes a tensor into a

sum of rank-1 component [44], as illustrated in Figure 4.1. A K-mode tensor X P
Rn1ˆn2ˆ¨¨¨ˆnK , where n

k

denotes the dimension of each mode, can be expressed by:

X “
R

ÿ

r“1

�

r

¨ up1q
r

˝ u

p2q
r

¨ ¨ ¨ ˝ u

pKq
r

(4.1)

Here, we adopt the notations from [44]. The column vectors tuk

r

uK
k“1 P Rnkˆ1
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Figure 4.1: CP decomposition: A three mode user-video-tag relational dataset ex-
ample.

denote the latent factors for each mode, combining which forms the factor matrices

U

pkq. R is a positive integer indicating the rank of the core tensor. �
r

is the weight

associated with the r

th rank component and ˝ denotes vector outer product. In an

element-wise way, the tensor element xi with subscript i “ i1, ..., iK denoting the K-

dimensional index of the i

th entry in the observed tensor can be concisely expressed

as:

X “
R

ÿ

r“1

�

r

K

π

k“1

u

pkq
ikr

(4.2)

The tensor can also be expressed in terms of the factor matrices tU pkquK
k“1: X “

t�, U p1q
, U

p2q
, . . . , U

pkqu, where U

pkq P RnkˆR. In [72] and [95], each factor matrix is

assumed drawn from a Gaussian prior. For inferring the rank of the core tensor, we

will follow the multiplicative Gamma approach.

4.2.2 Multi-task Learning, Transfer Learning and Deep Learn-
ing

Learning computationally creative features can be linked with two other state-of-art

machine learning methods, i.e. multi-task learning and transfer learning. Multi-

task learning tries to learn multiple tasks simultaneously through uncovering the

common latent features [67], while transfer learning is distinguished by removing

the assumption that the training and test data are drawn from the same feature
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space and the same distribution. Since the essence of creative learning is to infer

the unexplored feature space, both learning paradigms might be helpful for solving

approach design.

Significant recent research on deep models has proved its e↵ect on data repre-

sentation. The form of the proposed multi-layer implementation is most related to

[12] and [51]. The main idea is that an unsupervised deep model can be viewed as

a hierarchy of factor-analysis [102], with the factor decomposition from lower layer

serving as the input of deeper layer.

4.3 Deep CP Decomposition

4.3.1 Model Description

Let Y denote an incomplete K-order tensor. For di↵erent types of observation Y ,

a noise function f can be applied [97], depending on the data type being modeled,

e.g. Gaussian for real valued data, or Bernoulli-logistic for binary valued. The goal

is to infer the parameters of CP decomposition, � and tU pkquK
k“1, based on sparse

observation Y . Assuming that the elements y

i

1
s of the observations are i.i.d, for

continuous observations with Gaussian noise, the joint likelihood distribution of Y

can be written as:

ppY |Xq “
K

π

k“1

π

ik

N pyi|xi, ⌧
´1
o

q (4.3)

where ⌧

o

is the precision of the noise, and i “ i1, ...iK .

How to reduce the size of tensor rank so as to make the rich-feature based us-

er representation scalable is one primary concern during model construction. Our

low-rank construction is adopted from [7] and [72] using the multiplicative gamma

process (MGP). Putting the prior on the super-diagonal elements of the core tensor

�, the number of diagonal elements will increasingly shrink to zero. When it stabi-
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lizes, the number of elements remained can be inferred as the appropriate rank for

dimensionality reduction.

4.3.2 Multi-layer Sparse Factorization

To enhance the feature representation, factor matrix U

pkq for mode k can be further

constructed through an unsupervised deep model in terms of a hierarchy of factor

analysis. Assuming that the hierarchical tensor factorization model is performed for

L layers, the original data Y is represented in terms of N
k

ˆ R tensor factor matrix

U

pkq as equation (4.1). In addition to assess the classification performance based on

the factor loading and scores of the decomposition, it is of interest to examine the

physical meaning of the associated factor elements. The input for each layer is the

previous layer’s factor loading matrix. The discarding of residue between the layers

acts as noise filtering.

In the multi-layer stage, each factor matrix is further represented by a lower rank

componentW pkq P R
NkˆM

andD

pkq P R
MˆR

, where M indicates the number of factors

for this layer. The matrix E captures the idiosyncratic noise. l “ 1, 2, . . . , L specifies

how deep the network wishes to go to. The output of the l ´ 1 layer decomposition

can be used as the input to the l

t

h layer (as shown in Figure 4.2).

The inference of the factor number for each layer is realized through a Beta-

Bernoulli process [87] as W pkq “ B

pkq dV

pkq. In practice, the number M is initialized

large, thus the element bpkq
nm

P t0, 1u of Bpkq can indicate whether the m

th factor has

been used or not.

To go to the next layer, we denote M̂ as the number of factors that has nonzero

indicator Bpkq for at least one sample, and use these factor loadings as the entry of

the next layer. Model fitting at the deeper layers are similar to the first layer. With

the gradual deduction of factor numbers, the computational complexity decreases

with layer increasing.
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4.3.3 Probabilistic Hierarchical Tensor Model

Combining the two steps discussed in previous section, we now propose a hierarchical

generative framework for a three-way tensor data whereby the aforementioned tensor

construction and deep model fitting can be performed. The DCPF model is formed

as follows (the graphic model in Figure 4.2):

yi „ N pxi, ⌧
´1
o

q

xi “
R

ÿ

r“1

�

r

K

π

k“1

u

k

ikr

�

r

„ N p0, ⌧´1
r

q

⌧

r

“
r

π

t“1

�

t

, �

t

„ Gammapa
r

, 1q a

r

° 1 (4.4)

u

k

r

„ N pµpkq
, �

pkqq

U

pkq
l

“ B

pkq
l

d V

pkq
l

D

pkq
l

` Epkq
l

b

nkm
„ Bernoullip⇡

m

q, ⇡

k

„ Betap1{M, bq

v

nkm
„ N p0, ⌧

v

´1
nkm

q, ⌧

v

nkm
„ Gammapc0, d0q

d

mr

„ N p0, ⌧
d

´1
mr

q, ⌧

d

mr

„ Gammape0, f0q

Epkq „ N p0, ⌧´1
✏

q, ⌧

✏

„ Gammapg, hq

The multiplicative gamma process prior is described in equation (4.4), and is

placed on the precision of the Gaussian distribution for �
r

. To infer the appropriate

rank R, we start at a reasonably large truncation level. When the value of component

�

r

drops below a threshold, e.g. 0.001, it is discarded. With a probability pptq “
expp�0 ` �1tq at the t

th iteration (in practice �0 and �1 are chosen as 1 and 0.2
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Figure 4.2: Graphic model: The observed W is decomposed into a diagonal core
tensor � and K-mode of matrices. Each factor matrix U

p
kq is further constructed

through a L layer deep network .

respectively, so that adaptation occurs around every 10 iterations at the beginning

of the Markov chain but decreases in frequency exponentially fast [7]), a sequence

of uniform random numbers are generated. If the t

th value is smaller than pptq,
we discard the redundant entities. In this way, no parameter tuning is required for

low-rank inference.

Considering the model, a straightforward Gibbs sampler for posterior computa-

tion can be formulated. Since it is fully conjugate, the sampler cycling steps are

presented in Algorithm 4.1. Note that since for each layer of the deep network, the

basic model is the same, the layer superscripts are omitted for clarity. The Beta-

Bernoulli construction is used to infer the number of factors for layer-wise decompo-

sition. In practice, the factor number M is truncated for inference of the subset that

are actually needed. One could alternatively employ the Indian bu↵et process (IBP)

in [31]. But a truncated version is proved e�cient for satisfactory performance [12].

All the parameters with “ˆ” in the updating steps are the posterior expectation and

precision for � and U

pkq, which will be further elaborated in the following inference

sub-section.
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4.3.4 Inference

In this sub-section, we present in detail the Gibbs sampling derivations for infer-

ring the latent variables in the multilayered tensor model. Since exact inference

is intractable, we implement the posterior computation using Markov Chain Monte

Carlo (MCMC). As shown by the model construction, the model is locally conjugate.

For the automatic shrinkage of the tensor rank �

r

part, we adopt the method from

[72]. The joint likelihood is presented as:

P pY,X,�, U, B, V,Dq

“
π

i

N py
i

|x
i

, ⌧

´1
o

q

ˆ
R

π

r“1

N p�
r

|0, ⌧´1
r

qGap�
r

|a
r

, 1q
π

k

N pupkq
r

|µpkq
r

, ⌧

´1
✏

q

ˆ
π

ik

π

m

Bernoullipbpkq
ikm

|⇡pkq
m

qBetap⇡pkq
m

|a0, b0q

ˆ
π

ik

N pvpkq
ik

|pBpkq d V

pkqqDpkq
, ⌧

´1
v

qGap⌧
v

|c0, d0q

ˆ
π

m

π

r

N pd
mr

|0, ⌧´1
d

qGap⌧
d

|e0, f0q

(4.5)

In the proposed model, all conditional distributions are analytic. The choices for

prior hyper-parameters are relatively standard in Bayesian analysis, hence no partic-

ular tuning is required. Updating equations for the latent parameters are provided

in detail as follows.

‚ Update �

As illustrated in the sampling steps of Algorithm 4.1, the posterior mean and preci-

sion for � are:
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Algorithm 4.1 Gibbs sampler steps
Begin
Initialize U

pkq, Bpkq, V pkq, Dpkq
for iteration i do
for each diagonal element r of the core tensor ⇤, which is independently drawn
from a normal distribution do
1. Sample its independent conditionally conjugate posteriors from �

r

„
N pµ̂

r

, ⌧̂

r

´1q
2. Update �

r

„ Gapa2 ` 1
2pR ´ r ` 1q, b2 ` 1

2

∞

r

⌧

2
r

�

r

q
end for
for each mode factor matrix U

pkq do
1. Update binary indicator matrix B

pkq, factor loading matrix V

pkq and factor
score matrix D

pkq

2. Sample column vector conditionally conjugate posteriors from U

pkq
ik

„
N pµ̂pkq

ik
, ⌃̂pkq´1

ik
q

3. Update hyper-parameters
end for

end for

⌧̂

r

“ ⌧

r

` ⌧

✏

ÿ

i

p
K

π

k“1

U

pkq
ikr

q

µ̂

r

“ ⌧̂

r

´1
⌧

✏

ÿ

i

K

π

k“1

U

pkq
ikr

py
i

´
ÿ

r‰r

1
�

r

1

K

π

k“1

U

ikr
1q

(4.6)

‚ Update U

pkq

For 1 § r § R, 1 § k § K, at the pr, kq tuple, all the other entities are regarded as

non-variables, so x

i

can be rewritten as:

x

i

“ p�
r

K

π

k

1‰k,k

1“1

u

pk1q
ik1rq

looooooooomooooooooon

u

pkq
ikr

`
ÿ

r

1‰r

�

r

1

K

π

k“1

u

pkq
ikr

1

looooooomooooooon

(4.7)

Let the first parentheses part equals to p

pkq
ikr

and the second part be q

pkq
ikr

. With

Gaussian noise precision ⌧

✏

, the prior of upkq is N `

µ

pkq
, ⌧

´1
✏

˘

, where µ

pkq equals to

pBpkq d V

pkqqDpkq. Thus the conjugate posterior can be inferred as:

upkq
ik

„ N
´

µ̂

pkq
ik
, ⌃̂

ik

¯

(4.8)
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with the posterior expectation and covariance as

⌃̂
ik

“ p⌧
o

ÿ

ik

ppkq2
ik

` ⌧

´1
✏

q

µ̂

pkq
ik

“ ⌃̂´1
ik

˜

⌧

✏

µ

pkq
ik

` ⌧

o

ÿ

i

py
i

´ qpkq
ik

qppkq
ik

¸ (4.9)

‚ Update B

pkq
l

and V

pkq
l

For each entity b

pkq
ikm

of Bpkq
l

, we have

ppbpkq
ikm

“ 1|´q “ Å

⇡

pkq
ikm

(4.10)

where
É

⇡

pkq
ikm

1´É

⇡

pkq
ikm

“

⇡

pkq
ikm

1 ´ ⇡

pkq
ikm

expr´⌧

✏

2
pvpkq

ikm

2
dpkq
m

dpkq
m

T ´ 2vpkq
ikm

U

pkq
´m

dpkq
m

T qs (4.11)

U

pkq
´m

here equals to upkq ´ ∞

m

pbpkq
ikm

d V

pkqqDpkq and b

pkq
ikm

is the most recent sample

[12].

Taking the advantage of conjugate property, the posterior mean and covariance

for the factor loading element vpkq
ikm

can be derived as:

⌃
v

“ 1 m p⌧
v

` ⌧

✏

dpkq
m

dpkq
m

T

b

pkq
ikm

q (4.12)

µ

v

“ ⌧

✏

b

pkq
ikm

⌃
v

d pU pkq
´m

dpkq ` dpkq
m

dpkq
m

T

v

pkqq (4.13)

d and m are the element-wise product and division operator. For multi-layer imple-

mentation, after sampling v, it is used as the input to the next layer. Thus, there is

a residue filtering between each layer. The rest of the Gibbs draws are continued as
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follows.

‚ Update D

pkq

Similar to V pkq, the Gaussian conjugate posterior parameters ofDpkq can be expressed

as:

⌃
d

“ 1 m p⌧
d

` ⌧

✏

nk
ÿ

ik“1

b

pkq
ikm

v

pkq
ikm

2q (4.14)

µ

v

“ ⌃
v

d p
nk
ÿ

ik“1

b

pkq
ikm

⌧

✏

pU pkq
´m

v

pkq
ikm

` d

pkq
ikm

v

pkq
ikm

2qq (4.15)

‚ Update ⇡

pkq
m

⇡

pkq
m

„ Betapâ, b̂q (4.16)

where â “ a0 ` ∞

nk
ik“1 b

pkq
ikm

and b̂ “ b0 ` n

k

´ ∞

nk
ik“1 b

pkq
ikm

.

4.4 Measure of Computational Creativity

In dynamic situations, surprise is an important indicator of the belief changing signif-

icance [4]. It can be also referred as a quantization for creativity measure. According

to Bayesian theorem, for an observer with prior distribution P pXq, the collection of

dataD leads to a re-evaluation of beliefs P pX|Dq, the posterior distribution. Surprise
is to define the distance between the prior and posterior distributions, specifically

as:

SpD,Xq “ drP pXq, P pX|Dqs (4.17)

where d is a distance measure function. For example, if we use the relative entropy

or Kullback-Liebler [49] divergence, which is a common practice for many well-know

dissimilarity measures, the surprise S can be calculated as:

SpD,Xq “ logP pDq ´
ª

X

P pXqlogP pD|Xq dX (4.18)
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Since we can regard the novel tag generation process as a tensor completion

problem, based on the posterior distribution of factor matrix U

p1q, the posterior

distribution for co-occurring tags t1, t2 for user u can be written as:

ppy
i1“tt1,t2u,i2“u,i3q “

n3
π

i3“1

π

i1

N pyi|x̂i, ⌧̂
´1
e

q (4.19)

where x̂i “ p̂

pkq
ikr

U

pkq
ikr

` q̂

pkq
ikr

, p̂
ikr

and q̂

pkq
ikr

are the posterior values calculated from the

conditional posterior of U pkq
ikr

.

4.5 Probabilistic Ranking with Bayesian Surprise

Most existing tensor-based recommendation approaches rank the recommendations

based on the values of reconstructed tensor. For example, Zheng et al. [108] utilize

the linear add-up of the ith row of each mode factor matrix. The higher weight it is,

the more relevant user i is related to the topic. Since the goal of our task is not only

providing accurate but also creative recommendations, instead of solely using the

final reconstructed tensor from the model, we propose to rank the result of tensor

modeling incorporating the Bayesian surprise value for generating the top-N list of

candidate items to the users.

Since the generated factor matrices discover the latent groups of associations

among tags, users and videos, we can utilize them for recommendation [108]. For

example, the i

th row of user factor matrix U

p2q provides an additive combination of

cluster components for user i. The higher weight it is, the more relevant user i is

related to the topic, and similarly for the j

th row of video factor matrix U

p3q. Thus,

groups can be recommended according to the linear add-up of their corresponding

factor weights. The score matrix S for user-video pairs can be defined as:

S “
R

ÿ

r“1

�

r

u

p2q
r

u

p3qT
r

(4.20)
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where S P R
NuˆNv , Nu

, N
v

are the distinct number of active users and videos. For

top-N recommendation, we pick N videos with highest scores for each user. Similarly,

score matrices can also be constructed for video-tag and user-tag pairs, and can be

leveraged for tag recommendation and completion.

Using the reconstructed tensor Ŷ , for each user u, two candidate lists can be

created: (1) a list of items that the user might be interested in based on the posterior

add-up values of user and item factor matrices; and (2) a list of tag preference pairs

based on the normalized maximum values of Bayesian surprise metric. Assume the

number of candidate item is n, and the number of tag pairs is J . J can be adjusted

depending on how much compromise on creativity the system wishes to make. The

score for ranking user-item pair is calculated as follows:

Score
u,v

“ w

u,v

NjPv
ÿ

i“1

S

u,i

∞

J

j

S

u,j

(4.21)

where w “ ∞

R

r“1 �r

up1q
r

up2qT
r

is the weight matrix obtained from reconstructed tensor,

N

j

is the number of tag pairs belonging to video v, in the top-J surprising list to

user u. S is the surprise degree matrix of users to tag pairs. Each row vector of the

final score matrix is then ranked in descending order, indicating the top-N weighted

items as recommendation candidates.

4.6 Experiments

We perform experiments on both synthetic toy data and large-scale real-word dataset

to verify the performance of the DCPF model on expressing high-level semantic

features of user behavior, and the e↵ect of deep structure exploration through multi-

layer tensor construction.
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Table 4.1: Synthetic data MSE comparison

3-D data (R=8) 4-D data (R=10)
Bayesian CP 0.2431 ˘ 0.0247 0.0922 ˘ 0.0207

DCPF 0.2502 ˘ 0.0055 0.0459 ˘ 0.0014
2-layer DCPF 0.2490 ˘ 0.0006 0.0412 ˘ 0.0011

4.6.1 Toy Example

The first example we considered is a toy problem, in which 3-D and 4-D cases are

tested to verify the tensor completion performance of DCPF. The 3-D synthetic data

is of size 15 ˆ 14 ˆ 13 with 50% non-zero values. The 4-D synthetic data is of size

20 ˆ 20 ˆ 20 ˆ 20 with 1000 non-zero values. Table 4.1 compares the results using

a baseline method Bayesian CP (BCP), i.e. a fully Bayesian version of the standard

probabilistic CP decomposition [95]. The inferred rank using our method is 8 and 10

for the two synthetic datasets. Since BCP has to specify the rank, it was run with

ranks ranging from 3 ´ 10, and the rank that generates smallest mean squared error

(MSE) is chosen for comparison.

We also construct a three-way 100 ˆ 100 ˆ 100 tensor, with sparseness control

(missing percentage) of 50%´ 90%. We compare the reconstruction errors (MSE) in

Table 4.2. Similarly, Bayesian CP was run with rank ranging from 10´ 90 using the

best results. In all the cases, both one layer and 2-layer DCPF provide competitive

performances comparing to the state-of-art BCP. From varying the percentage of

missing values, we can infer that a multi-layer filtering of the factor matrix will

prevent the degrading of the reconstruction performance especially when the data

has higher sparseness percentage.

4.6.2 On Real Valued Large-scale Tensor

We use records in three consecutive weeks at the same time slot from Tencent QQ

browser. Each record consists of video id, user id, and four categories of word tags:
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Table 4.2: Reconstruction error comparison of di↵erent data sparse percentages (low-
er the better)

90% 80% 70% 60% 50%
Bayesian CP 0.4137 0.4123 0.4120 0.4093 0.3993

DCPF 0.4104 0.4100 0.3989 0.3959 0.3957
2-layer DCPF 0.3951 0.3865 0.3811 0.3697 0.3542

(1) type (e.g. action, mystery); (2) region (e.g. US, main land China); (3) director

and (4) actor, based on which we construct a three-way tagˆ user ˆ video tensor.

There are 4, 071, 811 samples in total with 137, 465 unique users, and 9, 393 unique

videos they clicked. We focus on warm-start test for current application, which

requires both active users and candidate videos occurred before. So the training and

testing subsets are generated as follows.

We select a subset of users who have over 10 historical records, which generates

a sample collection of 335, 783 records with 42, 652 distinct word tags. For each

category of tags, the vocabulary size is 2,941, 103, 7762 and 31,906 respectively.

This is also inferred to as in-matrix prediction [93]. A 5-fold cross-validation is used

for evaluation. To guarantee that all the users and items have already appeared in

the training sets, for records that have been viewed by each user for over five times,

we distributed at least one of them into each fold. For records that have appeared

less than five times (246, 642 in total), we always put them into the training fold.

The dimensionality of the testing tensor is 1421 ˆ 4013 ˆ 231.

The Gibbs sampling algorithm in sub-section 4.3.4 is implemented for the pro-

posed DCPF model. In our experiments, 1000 iterations for burn-in were performed,

and every 50 samples were collected for another 1500 iterations.

4.6.3 Factor Examination

To visualize how the multi-layer implementation of DCPF actually influences the

feature representation, we present four sample factors of tags and top factor of videos
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discovered using both single layer and 2-layer DCPF in this sub-section. We examine

U

p1q and U

p3q, which represents the latent factors of tags and videos respectively. The

top weighted factors from each factor matrix are selected with eight highest score

items each (tag or video), for topic inference (Figure 4.3 and Figure 4.4).
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Figure 4.3: Four top weighted factors learned from single layer and 2-layer DCPF.
Each block shows two aggregated statistics of the factor: the eight most representa-
tive tags and a histogram of the distribution of 20 top weighted tags from 4 categories.
The Columns in each of the histogram correspond to type, region, director and actor
from left to right.

As shown in Figure 4.3, semantic topics using single layer DCPF are primarily

consisted of tags from the actor category. This phenomena illustrates that on one

hand, certain types of users indeed choose their watching list according to favor of

particular actors, on the other hand, this could be also due to the high occurrences

of actors and reduplicative annotation. When going deeper, a 2-layer factorization
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filters out noises and abundances. Thus, factor weights for the other three categories

of tags are better explored. Although the group of tags for each factor seems more

irregular on the surface, the user preferences are actually better represented, since

they are naturally and comprehensively mixed. Figure 4.4 depicts the top factor

inferred from 1-layer and 2-layer using factor matrix alone video direction. Single

layer DCPF tends to cluster videos in the same form, even same series together (e.g.

the Voice of China), but the topics covered are more general. On the other hand,

with the deep filtering of layers, DCPF are more diverse on the video form (mini

film, regular film, tv shows etc.), but more focused in topics. As shown in Figure 4.4

(b), five out of eight videos are in the romance genre, which illustrates the benefit of

deep structure. The improved prediction accuracy presented in previous sub-section

also justifies this conclusion.

1-Layer DCPF

刀剑神域第二季  (Sword Art Online second 
season)
中国好声音第2季 (the Voice of China season 
2)
变形金刚3 (Transformers 3)
中国好声音之为你转身 (the Voice of China-- I 
Want You)
偷窥 (Silver)
非诚勿扰 (If You Are the One)
紧扣的星星OVA (Kuttsukiboshi OVA)
桃华月惮 (Tōka Gettan)

Factor 
Topic:

Animation,  
Action,
 Reality 
show

(a) Top factor inferred from 1-layer D-
CPF

变形金刚3 (Transformers 3)
我是歌手第二季 (I Am a Singer season 2)
色字当头 （Mini movie: Lured) 
结婚前规则 (Rules before marriage)
爱情回来了 (Love is Back)
爸爸去哪儿2 (Where Are We Going, Dad? 2)
天降之物 (Heaven's Lost Property)
婚前试爱 (Marriage With A Liar)

Topics:
Block-
buster,
 Reality 
show, 

Romance

2-Layer DCPF

(b) Top factor inferred from 2-layer D-
CPF

Figure 4.4: Factor learned from single layer and 2-layer DCPF. Each block consists
a combination of eight videos with highest weights that jointly expressed the factor
topic.

4.6.4 Tag Completion Evaluation

Recall that our goal is to automatically generate serendipitous tag combinations for

users, it is important to analyze the tag completion performance part of the proposed

method first. If we regard each type of tags as semantic words from di↵erent domains,
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this problem can also be regarded as multi-task clustering. We would like to evaluate

how well the system ranks the correct items for each user based on single category

and multiple categories of tags. Two metrics are employed for this: (1) the Mean

Reciprocal Rank (MRR) and (2) Precision at 1 (P@1). MRR computes the inverse

rank of the correct item and averages the score across the whole data. P@1 computes

the percentage of times the ground truth item is ranked as the top one.

From Table 4.3, although having high frequency of occurrence, tags from category

“Region” have the lowest MRR and P@1 due to its low di↵erentiable vocabulary. For

single layer DTPR, comparing to use purely actor tags, combining information from

all these four categories increases the MRR by 1.7% (from 0.3662 to 0.3726). The

2-layer DTPR, in comparison, increases the MRR from 0.3744 to 0.4110, which is a

9% relative increase. Comparing to single layer DTPR, the increase in P@1 is also

more obvious (36%) comparing to 1-layer implementation. This encouraging results

indicate that a deep decomposition utilizing information from multiple aspects for

factor matrix can better capture the semantic representation of user behavior.

Table 4.3: Results for 1-layer and 2-layer DTPR on di↵erent categories of tags.

1-layer DTPR 2-layer DTPR
MRR P@1 MRR P@1

I 0.1867 0.0093 0.1974 0.0099
II 0.0009 0.0013 0.0009 0.0012
III 0.2900 0.2500 0.2990 0.2541
IV 0.3662 0.2233 0.3744 0.2350
ALL 0.3726 0.2249 0.4110 0.3197

4.6.5 Bayesian Surprise Assessment

For a subset of 3-way tensor, since Bayesian surprise is user dependent, the surprise

value for each pair-wise combination of tags is presented in Figure 4.6. To make the

figure clear, only the first 4, 000 pairs from a total 22, 155 are shown. A higher value
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Figure 4.5: Video recommendation performance comparison for single layer DTPR
incorporated with Bayesian surprise (DTPR

surp

), 1-layer (DTPR
nos1) and 2-layer

(DTPR
nos2) DTPR without Bayesian surprise, Latent Dirichlet Allocation [10], and

Tag matching method [82], with varying candidates number n ranging from 1-10.

indicates a more diverse posterior belief. In other words, if the semantic themes from

the pair of tags co-occur in the same video, a higher Bayesian surprise would indicate

that the user regards it as more creative. As indicated from the figure, the response

of users to these 4, 000 tag pairs can generally be grouped into five folds. Within each

fold, the surprise degree of each user varies according to the past video preference.

The clustering of tag pairs also illustrates that the user preference has its probabilistic

topic features. Hence, comparing to traditional serendipity measurements, which

are based on fixed distance of observed records, the posterior likelihoods are more

suitable for creativity evaluation, as they incorporate the uncertainty and the cluster
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characteristics of user preference.

 

 

Tag Pair

U
se

r

500 1000 1500 2000 2500 3000 3500 4000

5

10

15

20

25

30

35

40
20

30

40

50

60

70

80

Figure 4.6: The surprise value for each user in the subset if the two tags occur
together. X-axis indicates 4000 distinct tag combinations. Y-axis marks the 43 users

We also compare the recommendation performances with and without incorporat-

ing Bayesian surprise, using precision, recall and averaged hit rate. The pair number

J is fixed at 5. As shown in Figure 4.5, we compare the proposed model in single

layer and 2-layer version with and without incorporating Bayesian surprise for item

ranking. The increase of pool number will enhance the probability to recommend

the favored video. Thus, the three metrics have the trend of gradually growing.

Although single layer and 2-layer DTPR have similar precision for predicting, a

multi-layer implementation allows an obvious higher hit rate, which indicates that it

can pick the correct choice of users at an earlier stage of recommendation. Through

incorporating Bayesian surprise, the performance does degrade due to the additional

uncertainty it introduces to the item ranking. However, it still outperforms both

LDA and Tagommender [82] method. Considering the surprise it brings to the users,

which will in return enhance user experience, this kind of recommendation has its

merits in practice.
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4.6.6 Computational Cost

To assess the scalability of DCPF, we again use the synthetic dataset generated in

sub-section 4.6.1 with tensor size 100 ˆ 100 ˆ 100 for 50 iterations. The sparseness

percentages ranges from 50% ´ 90%, specifically, 100, 000 ´ 500, 000 entries are ob-

served. The core tensor rank stays fixed at 50. As shown in Figure 4.7, DCPF scales

almost linearly with the number of training samples.
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Figure 4.7: Linear scalability of DCPF for 50 iterations

4.7 Discussion

Although comparing to the DPIS methods proposed in the previous chapter, DCPF

can provide higher performance in precision and recall, its prediction coverage rate is

lower than DPIS. This is attributed to the imputation nature of tensor reconstruction,

as the original existent links between user and item would still have high weights.

However this also limits the diversity of the recommendation list. That is why we

want to introduce the measure of computational creativity into the ranking process.

4.8 Summary

Given the increasing growth in large-scale multi-relational data, we study the com-

putational creativity problem in video recommendation domain. To e↵ectively learn
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user-item-tag correlations, we utilize deep Bayesian tensor model, which provides an

e↵ective way for joint analysis of user and video features. Through a scalable frame-

work for tensor decomposition and completion, and through introducing Bayesian

surprise into probabilistic ranking, we are able to recommend personalized items tak-

ing creativity as a consideration. Our model can perform fully conjugate Bayesian

inference via Gibbs sampling inference. The quantization index, Bayesian surprise,

for computational creativity is assessed.

This chapter is expected to provide a guidance for constructing tensor-based

recommender systems, which encourages more diverse recommendation while keep-

s satisfactory prediction accuracy. Currently the creativity is valuated based on

generating new combination of existing items. Creative construction for data from

previously unexplored domain based on current knowledge are also appealing for

future targets.

This model was first put forward in [54]. Preliminary results on the Bayesian

surprise based recommendation were published in [56].
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Chapter 5

Deep Convolutional Factorization
based Transfer Learning

5.1 Introduction

There have been significant advances in deep models for a wide variety of machine

learning tasks and applications. However, many of these improvements in perfor-

mance are attributed to large amount of labeled training data. For example, recog-

nition and classification algorithms relying on high capacity convolutional neural net-

work (CNN) models require millions of supervised images for initial training [109].

For new tasks lacking of labeled data, how to utilize the appropriate representation

from labeled data at hand becomes an important task. For example, if we only had

ten labeled images of furniture against hundreds of other unlabeled ones, classifi-

er directly training on these images alone would easily su↵er from overfitting, and

hence with poor classification performance. However, if the source domain has much

more labeled furniture images, or labeled images that have similar distinguishable

features, we may transfer the canonical information inherited in the source tasks to

the sparse label domain during the learning stage. This is related to supervised or

semi-supervised transfer learning problem [73]. Since our aim is to develop method-

s for transferring knowledge from related tasks in the source domain towards new
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tasks in a separate target domain, it is imperative to discover good ways of e↵ective

transfer across related learning problems.

Learning a classifier considering the di↵erences between source and target dis-

tributions is also known as domain adaptation. It is also a hard problem to find

the relatedness between the tasks and the domains. Previous approaches to domain

adaptation suggest to build the mappings between the source and the target domain-

s, so that the features and classifier learned during the training stage of source data

can be applied to the target domain [28]. Unlike most previous papers on domain

adaptation, which work with fixed feature representations, we focus on combining

domain adaptation and deep multi-task feature learning, so as to understand the

output of each layer, as well as to develop problem-independent feature extraction

methods to solve di↵erent but related tasks. This is made possible by the initial

success of applying deep representation learning on multi-task learning aspect [12],

where the model is trained simultaneously on images from di↵erent classes. There

are also recent researches on network-to-network (holistic) transfer [27, 90], where a

subset of features obtained from the source deep networks are properly shared for

target tasks.

In order to find which and how tasks are related, we should first know what class-

es are in each domain, i.e. having an e↵ective model for each domain. However, as

pointed out by Tzeng et al. [90], to adopt an e↵ective transferring, the domains are

expected to be related and sharing similar features, which creates a cyclic dependen-

cy. Our focus is hence to embed domain adaptation into the layer-wise task learning

of representations, so that the final classification criteria, both discriminative and

invariant to the domain shifts, are met based on features along each layer of the deep

hierarchies. Hence, we focus on learning features that combine discriminative task

characteristics and domain invariance. After constructing a hierarchical network in a

convolutional factorization way, the characteristics of each layer are made related to
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Figure 5.1: The proposed method DCFTL for asymmetric knowledge transferring
from a source hierarchical deep factorization to a target domain.

[51, 12]. Specifically, the deeper-layer dictionary elements are in an intuitively visual

form while the shallower-layer dictionaries are more general. If the two domains are

quite similar in nature, i.e. large amounts of data in the same category, we would

expect that they share quite specific features from the deeper layers. Otherwise,

if the two domains are related but mostly distinct, only the shallow layer features,

such as edges and lines in image analysis will be shared. This deep convolutional

factorization based knowledge transfer, named as DCFTL, takes an asymmetrical

form by projecting the instances onto the latent source manifold from source task to

target task only. And the factorization results from each layer provide physically in-

terpretable dictionary elements. As presented in Figure 5.1, the whole framework of

domain feature representation and transfer learning is graphical model based, mak-

ing it benefit from the advantages of traditional graphical models, including seamless

merge of inference and learning, the ability to handle missing data, and clear inter-

pretability of conditional independence [40]. The deep structure (in blue color) is our

source domain, while the transfer parts (in orange color) can only be the first layer

canonical information or holistic knowledge from all the layers. The predictions are

made based on a combination of the canonical information from the target domain

(in yellow color), as well as the transfer one.
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5.2 Related Work

There have been various approaches proposed in recent years to solve the domain

adaptation problem. In most cases, the similarity between domains is measured

by the distance between the source and target subspace representation [20]. In the

symmetric approach, identical processing mechanism is adopted in both domains.

Representative mechanism includes projection of both source and target tasks onto

shared space [53]. For the supervised and semi-supervised adaptation scenarios,

when only a limited amount of labeled data is available in the target domain, some

approaches focus on constructing a target classifier regularized against the source

classifier [24]. Raina et al. [73] proposed a self-taught learning setting, in which

the label spaces between the source and target domains are likely to be di↵erent.

This implies that the side information of the source domain cannot be used directly

leading to the unavailability of source labels.

There has also been a great amount of recent work on deep representation of

data, which hierarchically organize multiple nonlinear transformations with the goal

of yielding more abstract and ultimately more useful representations. Deep learning

methods such as deep belief networks, sparse coding-based methods, convolutional

networks, and deep Boltzmann machines have already been successfully applied to

a variety of tasks in pattern recognition, computer vision, audio processing, natural

language processing, and information retrieval. Using deep representation e↵ectively

reduces the e↵ect of domain shifts [94] and also enhances the learning of invari-

ant representation [14]. However, training these networks requires labels for each

instance, so it is not applicable for unsupervised or semi-supervised settings.

Glorot et al. [29] proposed to learn robust feature representations with stacked

denoising auto-encoders (SDAE) [92] for domain adaptation with deep learning struc-

ture. SDAE is a feed-forward neural network for learning representations and recon-
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structing the input data. Since usually the input data are randomly corrupted by

noise, it aims to undo the e↵ect through finding representative structures. SDAEs can

be stacked into deep learning architectures with the outputs of their intermediate

layers being used as input features for Support Vector Machine (SVM) classifica-

tion. Several extended models based on SDAE are proposed for domain adaptation.

Marginalized stacked denoising auto-encoder (mSDA) [13] is a variant of SDAE pro-

posed, which has been shown to be more e↵ective and e�cient. Its linear denoising

step is followed by a non-linear step, which is just a hyperbolic tangent function.

Recently, some new CNN based architectures are proposed for multi-task learn-

ing and domain adaptation. Tzeng et al. combine a domain confusion and softmax

cross-entropy losses to train the network with the target data [90]. But this late

fusion strategy optimizes the loss function based heavily upon the ultimate tun-

ing results of CNN. Kandemir introduces a two-layer feed-forward Gaussian process

based Bayesian model for asymmetric transfer learning [41], that jointly learns sepa-

rate discriminative functions from the source and target features to the labels, with

variational approximation employed. It adopts an early confusion of the source and

target layer, which facilitates the adaptation step. However, how the deeper layer of

the source domain would influence the knowledge is not discussed.

5.3 Model Description

5.3.1 Problem Formulation

Considering the transfer learning scenario, observations are from two domains, i.e.

source domain s and target domain t. Let X

d

P RNdˆP , where P is the feature

dimension, d “ ts, tu with N

d

instances. Y P RNdˆCd is the output label space,

with C

d

a finite number of categories possessed by each domain. From the source

domain, data X

s

“ tx1, ¨ ¨ ¨ ,x
Nsu are sampled, while from the target domain data
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X

t

“ tx1, ¨ ¨ ¨ ,x
Ntu with only partial or no labels sampled. The feature distributions

from the two domains can be di↵erent. Our goal is to learn a feature representation,

given samples from source domain and target domain, and a classifier based on the

representations learned to predict the labels of data from the target domain.

To learn a joint model, each instance in both domains is expanded in terms

of dictionaries, which are defined by compact canonical elements. Moreover, the

target domain is assisted with the dictionary loading information transferred from

the source domain. We consider the transfer learning setup, where each sample

in X

d

is expanded in terms of dictionaries defined by compact canonical elements

D

d

P RndˆK , with n

d

! N

d

. The dictionary elements are designed to capture the

local structure of input data. The spatial shifts of the dictionaries convolve with the

weight matrix W , as in a typical convolutional mode [51]. The nth

d

sample of X
d

can

be represented as:

X

nd
“

K

ÿ

k“1

w
ndk

˚ d
k

` ✏ (5.1)

where ˚ is the convolutional operator, d
k

is the row vector of dictionary and ✏ is the

residual. Viewed as a special case of factorization, the elements of matrix W can

also be written in a tw
ndki

u
iPS format, where S corresponds to all possible shifts. A

“max-pooling” step is applied to W , after which the sample weights are stacked as

input to the next layer. Because of the max-pooling step, the basic computational

complexity decreases with increasing hierarchies, as the number of spatial locations

decreases.

5.3.2 Approach

Inspired by the motivations and promising results of self-taught learning and deep

learning in domain adaptation, a Bayesian deep factorization based model to address

the shift of distribution in two domains is proposed with dependencies of parameters
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shown in Figure 5.2. As a complete graphical model based deep transfer learning

framework, this method takes the advantages of merging learning and inference as

well as interpretability for conditional dependencies. For the source domain, the

observation is reconstructed as

Ns
π

ns“1

N pX
ns ;

K1
ÿ

k“1

ÿ

iPS
w

psq
nski

dpsq
ki

, �

´1I
P

qGp�; a1, b1q. (5.2)

The priors for source canonical weights wpsq and dictionaries dpsq are formed as

Normal-Gamma distributions (equation 5.3), where the hyper-parameters of Gamma

distribution tc1, d1, e1, f1uare set to enable large ↵ and � for sparsity imposing on

weight matrix.

N pwpsq; 0,↵´1qGp↵; c1, d1q,

N pdpsq; 0, �´1qGp�; e1, f1q.
(5.3)

The transfer between the two domains is realized through a latent layer-wise

transfer space V, which also incorporates the projection of the target instances prob-

abilistically. The two representations from the layers of source and target domains

are blended into one representation through Bernoulli weight averaging with the

mixture hyper-parameterized by a conjugate Beta distribution. For both domains,

the output layer takes the representation as features for label prediction. The latent

space V for transfer is set as

N pV;Wpsq
, ⌘

´1Iq. (5.4)

The likelihood for target domain observations is

N pX
nt ;

K1
ÿ

k“1

ÿ

iPS
rp1 ´ b

ntkiqwptq
ntki

` b

ntkivki

sdptq
ki

,�

´1I
P

q, (5.5)
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Figure 5.2: The graphic representation of the proposed model. The colors correspond
to di↵erent parts in Figure 5.1. The shaded nodes are observations. For clarity, all
the hyper-parameters are omitted.

and the likelihood for Beta-Bernoulli combination of transfer and target domain

dictionary weight is

Nt
π

nt“1

K1
π

k“1

Berpb
ntki; ⇡k

qBetap⇡
k

;
t1

K1
,

t2pK1 ´ 1q
K1

q. (5.6)

As illustrated in the dashed square of Figure 5.2, each factor loading matrix

can be further divided into L layers, and one can choose which layers to transfer.

Using W

l´1 as the input to the l

th layer, model fitting is performed analogous to

layer-1. This enables flexible layer-wise transfer, as on one hand, we can conduct

holistic transfer, that is only transferring the information from the deepest layer

without projection back to the first layer; on the other hand, we can project each

layer separately onto the latent transfer space. This will be further discussed in the

following algorithmic section.

5.4 Learning Algorithms and Inference

5.4.1 Layer-wise Transfer Algorithms

By defining the number of layers L of deep structure and the factor number K

l

of

each layer, one can recursively apply convolutional factorization on both the source

and target domain data, and map each layer to generate di↵erent granularity of
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Algorithm 5.1 Source Layer-1 to Target Layer-1 DCFTL
Input: source sample and label collection tX

s

,Yu, target sample X

t

(label op-
tional), number of layers L, number of factors for each layer K

l

, and max pooling
ratio
Begin
Initialize D

psq, W psq, V , B, Dptq, W ptq
for iteration i do
for source domain do
1. Sample factor loading matrix W

psq conditionally conjugate posteriors ac-
cording to (5.7).
2. Update layer-1 dictionaries Dpsq.

end for
for transfer latent space do
Update transfer weight matrix V according to (5.10).

end for
for transfer to target domain do
1. Update the proportions Bernoulli B and domain specific weight matrix
W

ptq according to (5.13) simultaneously.
2. Sample conditionally conjugate posteriors of Dptq according to (5.16).

end for
end for
Do feature augmentation and train a classifier on target domain.

feature transformations.

To illustrate that the framework can be flexibly generalized to multi-layer wise

transfer, we adjust DCFTL in the following three settings. The first is direct transfer

from layer-1 dictionaries to the target data. Instead of considering the probability of

weights combination, only latent transfer space V is used as prediction feature. In

other words, b
ntki is set to 1 with probability equal to one. The second is layer-1 to

layer-1 transfer, which is used as an illustrative derivation in the inference section.

The third is layer-2 to layer-1 transfer, that is for the source domain, the second layer

dictionaries are first projected back on to the first layer, and then transfer to the

latent space. We name them ‘DCFTLl1-t’, ‘DCFTLl1-l1’, ‘DCFTLl2-l1’ respectively.

Noted that di↵erent from previous low-rank transfer learning methods [84], we

treat the transferred latent space from source domain as part of the dictionaries that

employed to reconstruct the whole data in the target domain. For ‘DCFTLl1-l1’, the

overall algorithm is summarized in Algorithm 5.1.

This algorithm can be easily generalized to deeper layer or shallower layer trans-
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fer. For example, when conducting layer-2 to layer-1 transfer (‘DCFTLl2-l1’), after

applying max-pooling, each shift of W
ndk

is mapped to a Ŵ

ndk
with the m

th value

corresponding to the largest-magnitude component within the mth region [11]. Ŵ
ndk

is then used as input to the next layer factorization. Since the priors for this step

can be identical to those of the first layer, the inference can be easily derived. In the

following subsection, we use ‘DCFTLl1-l1’ as an illustration of the inference.

5.4.2 Bayesian Inference

As the posterior density of DCFTL is intractable, approximate inference is needed.

We conduct Gibbs sampling for the posterior update. Based on the full likelihood of

the proposed model, all conditional distributions used to draw samples are analytic,

and at each iteration, we can draw the samples from conditional distributions. Here

for clarity, we take a layer-1 transfer inference as an example to illustrate the sampling

steps.

Sampling w

psq
nski

: We start with the source domain canonical information infer-

ence. Since the generative distributions are conjugate, the posterior distribution of

the factor loading matrix is multivariate normal distribution, represented as:

P pwpsq
nski

|´q “ N pµ
nski,⌃nskiq (5.7)

where

⌃
nski “ p�dpsqT

ki

dpsq
ki

` ↵

nski ` ⌘q´1
, (5.8)

µ

nski “ ⌃
nskip�XpsqT

nski
dpsq
ki

` ⌘v
k

q. (5.9)

Here, X
nski is the most recent sample. The dictionary sampling for source domain

is similar to the inference in [12]. As it does not involve with the transfer part, the

inference for each layer is identical.

Sampling v
ki

: Since the transfer space is based on a transformation of the source

factor loading, the increase or decrease of convolutional factorization layers would
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not a↵ect its format. Its posterior distribution can be represented as:

P pv
ki

|´q “ N p⇣
ki

, 
ki

q, (5.10)

where

 
ki

“ p�bT

ki

b
ki

dT

ki

d
ki

` ⌘q´1
, (5.11)

⇣

ki

“  
ki

p�b
ki

X

T

ntki
d
ki

q. (5.12)

Sampling w

ptq
ntki

: For the direct source layer-1 to target transfer, b
ki

““ 1,

the distribution expression of wptq
nski

is identical to the case that deep convolutional

factorization directly applies on the target domain, with the factor loading matrix

replaced by the latent transfer matrix.

P pwptq
ntki

|´q “ N p#
ntki,⌦ntkiq (5.13)

where

⌦
ntki “ pp1 ´ b

ki

qT p1 ´ b
ki

qdT

ki

d
ki

` ⌧q´1
, (5.14)

#

ntki “ ⌦
ntkip2�p1 ´ b

ki

qpXptqT
ntki

d
ki

´ bT

ki

v
ki

dptqT
ki

dptq
ki

q (5.15)

Sampling dptq
ki

: If b
k

““ 0, which indicates that no transfer learning is consid-

ered, then the expression is identical to deep learning on the target data.

P pdptq
k

|´q “ N p⇠
k

,�
k

q (5.16)

where

�
k

“ p
Nt
ÿ

nt“1

� k 1 ´ b
k

k22k wptq
ntk

k22 `�bT

k

b
k

k v
k

k22 `� (5.17)

`
Nt
ÿ

nt“1

2�p1 ´ b
k

qTb
k

k wptq
ntk

kq´1
,

⇠

k

“ �
k

p
Nt
ÿ

nt“1

ÿ

iPS
�p1 ´ b

k

qwptq
ntki

X

ntki ´
Nt
ÿ

nt“1

ÿ

iPS
�b

k

vT

ki

X

ntkiq (5.18)

93



5.5 Experiments

We perform evaluation of the proposed approach on several popular image datasets,

including large-scale datasets of small images popular with deep learning testing,

i.e. ‘MNIST’ [99], CIFAR-100 [47] and the ‘O�ce’ datasets [79], which is used as

standard benchmark for visual domain adaptation challenge.

The baseline model for our comparison is the source-only model, which is trained

without target-domain data. The learned two layers of features are directly used as

training data for classifiers on the target domain. The basic convolutional factoriza-

tion model is trained on the target domain with class labels revealed. This approach

serves as an lower bound, assuming that target data are abundant and the shift be-

tween the domains is not significant. The classifier is designed similar to Lee et al.’s

work [51], in which we perform classification based on layer-one coe�cients, or on

both layer-1 and layer-2 using a standard SVM [25]. Another comparison model is

based on target-only learning, where the dictionaries learned solely from the target

observations are used as features for classifier training.

5.5.1 Parameter Settings

The hyper-parameters parameters needed to set is limited and can be set in a stan-

dard way [88]. Specifically, for the Gamma-Normal distributions for factorization

and transfer a1 “ b1 “ f1 “ 10´6, c1 “ e1 “ 1 and d1 “ 10´3. For the Beta-Bernoulli

part, t1 “ t2 “ 1. The dictionary sizes for the first and second layer are 4 and 8,

with a max pooling ratio 3. For the Gibbs sampler, 500 burn-in iterations are used,

with 300 collection samples (the results vary little after 100 iterations).
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5.5.2 MNIST Digits - Alphabet

Our first experiment deals with the MNIST dataset, where we use either the digits

or alphabet dataset as the source domain, while the other one as the target domain.

This experiment can be regarded as a case where two domains share great similarities,

while the tasks themselves are distinct. Standard five-fold training-test splits are

considered, with 60, 000 MNIST handwritten number samples for training and 10, 000

for testing. For the testing images we consider unsupervised adaptation with no

labels provided.

Classification results are presented in Table 5.1. For source CNN, all the dictio-

nary weights learned from source domain are used as training samples, while all the

samples in the target domain are used for testing. For target CNN, the samples in

the target domain are split into five folders, with four for training and one for test-

ing. “DCFTLl1-t” indicates direct transfer source layer-1 features to target data;

“DCFTLl1-l1” indicates transfer source layer-1 features to target layer-1 dictionar-

ies; while “DCFTLl2-l1” indicates first projecting the layer-2 features back to layer-1

in the source domain, and then transfer the layer-1 features to the first layer in the

target domain.

We can see that the performance of directly transfer source layer-1 dictionaries

to target data is not satisfactory, while a layer-1 to layer-1 transfer can reach similar

accuracy comparing to layer-2 to layer-1 transfer. Also we can notice that when

treating as source or target, the transfer is not equally di�cult. When Digit data is

used as source information, layer-1 to layer-1 transfer provides better representation

comparing to layer-2 to layer-1 transfer. On the other hand, when Alphabet collection

is used as source dataset, the situation is reversed. This could be contributed to the

more dynamic dictionary elements that alphabet images provide.
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Table 5.1: Classification accuracies for MNIST classifications for di↵erent source and
target domains

source Digit Alphabet
target Alphabet Digit

Source CNN layer 1+2 .4465 .3883
Target CNN layer 1+2 .4819 .4012

DCFTLl1-t .4567 .3889
DCFTLl1-l1 .4827 .4032
DCFTLl2-l1 .4810 .4043
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Figure 5.3: Test set classification accuracy for di↵erent number of samples in the
target domain

5.5.3 CIFAR-100 with Few Examples per Class

The CIFAR-100 dataset consists of 32 ˆ 32 color images categorized by 100 classes,

with each class further divided into 20 groups of 5 each. We use the fine labels of

this dataset to demonstrate the utility of transfer learning when the labeled samples

are few. For the 600 samples of each class, we randomly select 500 for training, and

create 5 subsets of the remaining 100 samples by randomly choosing 10, 25, 50, 100

samples per class, and test the models on each subset.

The test performance of these models is compared in Figure 5.3. We observe that

when the number of samples for testing is small, the proposed model already provides

improvement over the baseline. The improvement diminishes as the available sample

size increases.
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Figure 5.4: Example of the three domains labeled by “back pack” and “bike”.

5.5.4 O�ce Dataset

The benchmark o�ce dataset contains 10 categories taken in four di↵erent condi-

tions, corresponding to three domains: Amazon, dslr, and webcam. For each of

the six domain shifts, we conduct cross-validation for five train/test splits, which

are generated by sampling examples from the full set of images per domain. In the

source domain, we follow the standard protocol for this dataset and generate splits

by sampling 10 examples per category for each of the three domains. In each case,

we train on the source dataset and test on a di↵erent target domain dataset, con-

sidering the shifts between domains (as shown in Figure 5.4). In Table 5.2, we

Table 5.2: Classification accuracies for O�ce dataset classifications. A: Amazon; W:
Webcam; D:DSLR

source A A W W D D
target W D A D A W

Source DBN Layer-1 .5342 .5726 .3794 .8696 .5115 .9130
Source DBN Layer-1+2 .5625 .6112 .3987 .9024 .5401 .9304
Target DBN Layer-1 .8137 .8106 .4998 .8248 .5970 .8141

Target DBN Layer-1+2 .8266 .8176 .6001 .8292 .6170 .8232

DCFTLl1-t .6522 .5566 .3268 .8600 .4755 .7301
DCFTLl1-l1 .8140 .8095 .5018 .9097 .5970 .8141
DCFTLl2-l1 .8143 .8196 .5005 .9060 .6175 .8159
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(a) DSLR Ñ Amazon (b) DSLRÑ Webcam

(c) Webcam Ñ DSLR

Figure 5.5: Samples of reconstructed images from each domain

present the accuracies and compare our method in three settings to the state-of-

the-art deep belief networks (DBN). We find that for most transfer situations, our

method outperforms the baseline. We can notice that the gap between domains sig-

nificantly a↵ects the performance. As the images in the webcam dataset are more

diverse and have enriched background, direct source DBN based method performs

best since through max-pooling, it directly filters out the noise information. While

in the opposite direction, our method performs best in a Webcam to dslr adaptation.

Another point worth noticing is the influence of which layer to transfer. As

shown in the fourth and fifth columns of Table 5.2, transfer from layer-1 to layer-1

outperforms layer-2 to layer-1 transfer in both cases where webcam is the source

domain. This could be contributed to the disturbing background of the images in
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this condition, as when going deeper, the background features would confuse the

classifier.

5.6 Summary

Targeting the scenario of lacking labeled data, we propose a deep convolutional fac-

torization based transfer learning method, which aims to seek most shared discrimi-

native features within source data to facilitate the unseen target learning. It captures

the layer-wise feature similarity, and transfers the knowledge from the source domain

to the target one utilizing the layer-wise factor weights. The graphic representation

mechanism for both deep and transfer learning encourages interpretability of condi-

tional dependencies and a flexible generalization of layer-wise implementation. Series

of benchmark experiments on image classification prove that the method can provide

competitive performance comparing to the state-of-art baselines.

Starting from a graphical representation perspective, this work is expected to

discover how the layer-wise similarity can be utilized into a layer-wise transferring

between the domains. This would hopefully put some insights on the question such

as how many layers is enough for deep domain adaptation. The work is under

preparation for submitting [57].
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, four novel hierarchical Bayesian models for multi-relational sparse

data applications on latent feature learning have been introduced, with the following

contributions:

1. Ai-hLDA incorporates rich auxiliary information to arrange shorter length

documents along paths of a tree for taxonomy building. It takes advantage of the

hierarchical nature, and jointly models word and auxiliary information as a genera-

tive process. With flexible usage of the supplemental/auxiliary tagging observations

and a nested Chinese Restaurant Process prior, hierarchical topic patterns can be

discovered for documents with short length.

2. Targeting the scarceness issue of item and its features, a unified Dirichlet

mixture probit model for information scarcity (DPIS) has been developed. It learns

topics over scarce information by directly modeling the generation of records. Specif-

ically, the clicking history of a user is assumed to consist of a mixture of topics, and

each record sample as a whole is assigned a specific topic with certain probability,

from which its corresponding tags are generated. In the generative model, the words

describing each item are drawn from the vocabulary of the record. The topic propor-

tions, a multinomial vector, are also used as an item vector to describe whether a user
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viewing or not viewing the item. Although DPIS does not model the user-level gen-

erative process, the link between active users and video pools can be learned through

a probit model, with a Laplacian prior enforced on the sparse parameters. Hence,

our work di↵ers from standard approaches, as the item vectors now serve two roles:

explaining both the words that tag the video record; and capturing the collaborative

component. In this way, the overall model can not only cluster the semantic topics

of the video records based on aggregated item features for active users, but can also

combine the observed features and generate topics for newly synthesized data. Here,

we employ a collapsed Gibbs sampling inference to find the posterior solution to the

topic discovery and the probit parameters, which is convenient to implement.

3. Exploring multi-relational data from a tensor perspective, a fully conjugate

deep probabilistic approach for tensor decomposition is proposed. Based on the

Canonical PARAFAC (CP) decomposition, the model is capable of clustering the

three-way data along each direction simultaneously. To find a more compact repre-

sentation in the latent space of each mode, a multi-layer factorization is imposed on

the mode factor matrix to incorporate nonlinear mapping. Instead of relying on ad-

hoc or cross-validating parameter selection, the rank of the core tensor and the factor

number for each layer of the deep network can all be automatically determined. As

a fully conjugate Bayesian model, e�cient Gibbs sampling inference is facilitated,

with an improving performance for tensor reconstruction and prediction accuracy.

4. To solve the low diversity issue of tensor-based recommender system, a metric

for computational creativity quantization is put forward. Through incorporating

Bayesian surprise in the probabilistic ranking, a compromise between accuracy and

serendipity is made during the recommendation stage, making the candidate item

more diverse.

5. We also consider the scenarios where labeled data is lacked when there are

multiple sources of data. Deep convolutional factorization based domain adaptation
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method provides a semi-supervised way for transfer learning. It captures the layer-

wise feature similarity, and transfers the knowledge from the source domain to the

target one by utilizing the layer-wise factor weights.

The papers, published, in press or submitted, are the partial outputs of my PhD

study. The work on ai-hLDA is currently under review by a journal[55]. Preliminary

results of DPIS model were published in [59]. More intensive discussions of this

model are currently under review [60]. The DCPF model was first put forward in

[54]. Results on the Bayesian surprise based video recommendation were published in

[56]. A more detailed elaboration on the framework and experiment results is under

preparation for submission [58]. The work on DCFTL is also under preparation for

submission [57].

6.2 Future Work

Probabilistic graphic model for latent feature learning is a research area with out-

standing existing work as well as promising academic values, thus there exists a

number of problems waiting for being solved. Several future work are described

here:

• First, combining deep learning and transfer learning, we can better handle the

cold-start problem. This is especially useful for a new domain, where historical

data is scarce. This concerns about how the two domains are related, and which

part of the inner structures can be transferred from the previous domain.

• Second, we consider the study of personalization and creativity is of high po-

tential. We proposed the Bayesian surprise index as a quantitative measure,

but currently the way of incorporating it into the probability ranking is naive.

How to leverage this measure more e↵ectively, while maintaining satisfactory

accuracy is a direction worth considering.
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• Third, deep generative models, such as Deep Belief Networks (DBN), variation-

al autoencoders (VAE) and generative adversarial networks (GAN), are gaining

more and more attention. Our study on modifying these models for transfer

learning as well as inner structure understanding is still at a preliminary stage.

In the future, we plan to continue the understanding of the mechanism of

the layer-wise model, and applying them to the prevalent semi-supervised and

unsupervised situations.

As will be required by applications, more priors and models should be developed

and we believe that the ideas and various derivations presented here can be used as

blueprints for future research on exploration of richer priors, more e�cient inference

and more scalable for big data.
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