THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

ADAPTIVE DATA MANAGEMENT FOR
CLOUD-BASED WIRELESS MESH
NETWORKS

YANG SHENGTAO

M.Phil
The Hong Kong Polytechnic University

2017

The Hong Kong Polytechnic University

Department of Computing

Adaptive Data Management for Cloud-based
Wireless Mesh Networks

YANG Shengtao

A thesis
submitted in partial fulfilment of the requirements
for the degree of

Master of Philosophy

April 2016

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of
my knowledge and belief, it reproduces no material previously published or
written, nor material that has been accepted for the award of any other degree

or diploma, except where due acknowledgement has been made in the text.

(Signed)

YANG Shengtao (Name of student)

Abstract

In recent years, there has been considerable interest in developing and using
wireless mesh networks. Compared to wireless local area networks, wireless
mesh networks are more flexible because wireless mesh routers are intercon-
nected by wireless links. In addition, they can be much easier to install
and maintain, especially in environments where cables are difficult to install.
Inspired by cloud computing, the aim of this project is to investigate a cloud-
based wireless mesh network with adaptive data storage functions for storing
data dynamically and flexibly in a wireless environment. In particular, a
person-based adaptive data management scheme and a group-based adaptive
data management scheme were designed. The person-based adaptive data man-
agement scheme seeks to provide upload/download functions for mesh clients,
and adaptively moves files along with the movements of the owner to enhance
access efficiency. The group-based adaptive data management scheme seeks to
determine how the data resources/files should be stored and replicated in the
wireless mesh routers such that the overall access cost can be minimized. Both
a heuristic algorithm and a genetic algorithm were investigated. To support a
cloud-based wireless mesh network, a distributed file system called MeshF'S was
also developed. A key technical challenge is to develop a lightweight software
system that can be implemented over memory-limited wireless mesh network
environments. MeshFS integrates scattered storage resources from wireless
mesh routers to provide a mountable file system with fault-tolerant capabilities

and cloud computing-like storage functions.

vii

Publications

Shengtao Yang, Henry C. B. Chan, Patrick P. Lam, and Peter H. J. Chong.
"A Cloud-based Wireless Mesh Network with Adaptive Data Storage Func-

tions". In: Proceedings of the International MultiConference of Engineers and
Computer Scientists. Vol. 2. 2015, pp. 540-545. !

Shengtao Yang, Henry C. B. Chan, Patrick P. Lam, and Peter H. J. Chong,
"MeshFS: A Distributed File System for Cloud-based Wireless Mesh Network".
submitted to Journal of Systems and Software.

Shengtao Yang, Henry C. B. Chan, Patrick P. Lam, and Peter H. J. Chong, "A
Group-based Adaptive Data Management Mechanism for Cloud-based Wireless

Mesh Networks". pending submission.

!Best Student Paper Award of The 2015 IAENG International Conference on Communica-
tion Systems and Applications

Acknowledgements

Firstly, I would like to express my sincerest gratitude to my chief supervisor,
Dr. Henry C. B. Chan, for offering me the opportunity to conduct this research
study, as well as for his teaching, inspiring guidance, and generous advice
throughout.

I would also like to express my sincere gratitude to P2 Mobile Technologies
Limited and the Innovation and Technology Fund of the Hong Kong Special
Administrative Region Government, for their sponsorship and generosity in

providing the opportunity for this research study.

I would like to express my appreciations to all of the professors from the
Department of Computing, who have taught and guided me throughout my

undergraduate and postgraduate studies.

I would like to thank Dr. Patrick Lam, Justin Yu, Mond Wan, and other staff
members at P2MT, all of those who have kindly provided me with guidance

and assistance with wireless mesh network equipment and technologies.

I would also like to thank my lab mates: Li Yingxiong, Dou Yi, Lau Shiu
Fung, Ho Yik Him, and others, for their support, sharing, encouragement and

company.

I would like to give special thanks to my family for providing me with the
opportunity for a great education as well as for their ongoing support, which

has allowed me to make the progress that I have to this day.

I would like to dedicate this thesis to all of the people who have guided,
instructed, and helped me with this research study, which could not have been

accomplished without all of your support. Thank you.

Xi

Contents

Abstract
Publications
Acknowledgements
List of Figures

List of Tables

1 Introduction
1.1 Research Objectives.
1.2 Thesis Structure

2 Literature Review
2.1 Wireless Mesh Network
2.2 Cloud Computing
2.3 Distributed File System 00

3 Person-based Adaptive Data Management Mechanism

3.1 System Design & Architecture
3.2 Hardware & Prototype
3.3 FileSystem
3.3.1 Storage Function with Linux File System

3.3.2 Storage Function with A Distributed File System
3.4 Implementation
3.4.1 Web UI for File Uploading/Management
3.4.2 Agent Program for Monitoring the Mobility of Clients
and Making Decisions on the Movement of Files

3.5 Conclusion

4 MeshFS: A Distributed File System for Cloud-based Wireless
Mesh Network
4.1 Objectives & Features

vil

ix

xi

xXvii

xXix

12

15
15
17
19
19
22
23
23

25
29

31

xiii

Xiv

4.2 System Design & Architecture
4.3 TImplementation L.
4.3.1 Messagingo
432 Client
4.3.3 Server
4.3.4 Metaserver.
4.3.5 Syscalls
4.4 Demonstration
4.5 Evaluation & Limitation

4.6 Conclusion

Group-based Adaptive Data Management Mechanism

5.1 E-book Scenario

5.2 Model & Algorithm
5.2.1 Model
5.2.2 Problem Definition
5.2.3 Proposed Solution & Algorithm

5.3 Simulation & Evaluation
5.3.1 Influence of a Single Parameter
5.3.2 Influence of a Combination of Parameters
5.3.3 Comparison to the Brute-Force Solution
5.3.4 Comparison to Genetic Algorithm

54 Conclusion

6 Conclusion & Future Work

References

63
63
67
67
68
68
71
72
75
78
82
91

93

95

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

4.16
4.17

Wireless Mesh Network 5)
Architecture of a Cloud-based Wireless Mesh Network 16
Person-based Adaptive Data Management Mechanism 17
Router model MeshRanger from P2MT 17
Wireless Mesh Network Formed by MeshRangers 18
One of the Possible Topologies of the WMN Backbone 20
UML Diagram for Data Location Index 21
Schema of Table Client in MySQL 21
Schema of Table File in MySQL 22
Schema of Table Router in MySQL 22
Schema of Table FileStorage in MySQL 22
Web UI for Person-based Adaptive Data Management System . 24
Work Flow of the File Transfer Operation 28
Sample Architecture of MeshFS 34
Working Sequence of a MeshFS Server 39
ER Diagram of a MeshF'S Metaserver Database 41
Sequence Diagram of the Backup Function 44
General Working Sequence of Messaging 45
Sequence Diagram of syscall read() 47
Sequence Diagram of syscall write() 48
Sequence Diagram of syscall rename() 49
Sequence Diagram of syscall unlink() 50
Demo Website with Multimedia Resources Hosting on MeshFS . 51
MeshFS Reading Data when Video is Playing 52
Data Lost without Enabling Backup Function 52
Video Stopped at the Corrupting Point without Backup 53
Video Continued at the Corrupting Point with Backup 53
Corrupted Data Recovered by MeshFS with Backup/Recovery

Enabled o o4
Summary of MeshFS Demo 54
Relationship between Data Size and Time in MeshFS 55

XV

Xvi

4.18
4.19

4.20

4.21
4.22

5.1

5.2

2.3

5.4

2.5

2.6

5.7

2.8

2.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

Relationship between Data Size and Transfer Speed in MeshF'S .
Comparison of the Flow of Data when Playing Videos in MeshFS
with the Backup Enabled/Disabled
Comparison of the Flow of Data when Playing Videos of Different
Sizes in MeshFS with the Backup Enabled
Relationship between Recovery Time and Size of Video Files . .

Relationship between Recovery Speed and Size of Video Files . .

E-book Scenario
E-book Scenario: Cost for 1 Student
E-book Scenario: Cost for 100 Students
E-book Scenario: Saving 99¢; Cost after the File is Moved
E-book Scenario: Multiple Copies of the File are Spread in the
WMN .
Relationship between Cost Reduction and Number of Routers
Relationship between Cost Reduction and Link Bandwidth . . .
Relationship between Cost Reduction and Number of Files . . .
Relationship between Cost Reduction and File Size
Relationship between Cost Reduction and Number of Requests .
Relationship between Cost Reduction and Number of Routers
with Different Numbers of Requests
Relationship between Cost Reduction and Number of Requests
with Different Numbers of Routers
Surface Diagram of Cost Reduction, Number of Requests, and
Number of Routers
Relationship between Cost and Number of Routers in Comparison
with the Brute-Force Algorithm
Relationship between the Effectiveness Ratio and the Number of
Routers in Comparison with the Brute-Force Algorithm
Relationship between Computation Time and Number of Routers
in Comparison with the Brute-Force Algorithm
Relationship between the Efficiency Ratio and the Number of
Routers in Comparison with the Brute-Force Algorithm
Relationship between Cost and Number of Routers in Comparison
with the Genetic Algorithm
Relationship between the Effectiveness Ratio and the Number of
Routers in Comparison with the Genetic Algorithm
Relationship between Cost and Number of Requests in Compari-

son with the Genetic Algorithm

56

o7

o7

o8
59

63

64

65

66

66

73

73

74

5

76

76

77

78

79

80

81

81

86

87

5.21

5.22

5.23

5.24

5.25

Relationship between the Effectiveness Ratio and the Number of
Requests in Comparison with the Genetic Algorithm
Relationship between Computation Time and Number of Routers
in Comparison with the Genetic Algorithm
Relationship between the Efficiency Ratio and the Number of
Routers in Comparison with the Genetic Algorithm
Relationship between Computation Time and Number of Requests
in Comparison with the Genetic Algorithm
Relationship between the Efficiency Ratio and the Number of
Requests in Comparison with the Genetic Algorithm

xvii

List of Tables

2.1
2.2

4.1
4.2
4.3
4.4

Major Cloud Styles in Industry and Adopters 11
Summary & Comparison of Popular DFSs 12
List of Request Messages, 37
List of Syscalls 38
List of Operation Calls 40
Comparison between the Normal Mode and the "big writes"

Mode for write() 60

Xix

Introduction

During the past decade, wireless networks went through rapid growth of
development. In comparison with traditional wired networks, wireless networks
have better flexibility, configurability, and stability. In wireless networks, users
can move around freely within the network range, and the network can support
more concurrent users without being limited by the number of cable ports.
Wireless networks have significantly promoted the usage of mobile devices,
services, and applications. Currently, the most popular types of wireless
networks are Wireless Local Area Networks (WLAN) and Cellular Networks.
The most popular type of WLAN that follows IEEE 802.11 standards series is
Wi-Fi. Wireless Mesh Network is another popular type of wireless network,
which refers to a wireless network formed by radio nodes in mesh topology.
Compared to traditional WLANSs, wireless mesh networks have even better
flexibility, since WLAN access points are normally wired, costing extra fees
and time for the cabling work required. Wireless mesh network access points,
which are also known as mesh routers, are wirelessly connected to one another.
Hence they come at very low installation and maintenance cost, and provide
better coverage in environments where it is difficult to place wires. Wireless
mesh networks also come with other advantages, such as being self-configuring,

self-healing, having easy extensibility, etc.

Another technology that has recently attracted a great deal of attention is
Cloud Computing. In cloud computing, cloud resources are shared by users
in order to access resources and services remotely, and the resources can be
utilized on demand to improve effectiveness. Cloud vendors have seen very
high growth rates in recent years, and offer different models of service such as
Infrastructure as a service (IaaS), platform as a service (PaaS), Software as a
Service (SaaS), etc. Cloud computing has become an interesting and valuable

topic in both academic and industrial research.

The purpose of this research project is to integrate wireless mesh network and
cloud computing to build a cloud-based wireless mesh network and to develop
an adaptive data management system. This project is co-supervised by the
Department of Computing, The Hong Kong Polytechnic University (PolyU),
and P2 Mobile Technologies (P2MT) under the Teaching Company Scheme
(TCS).

1.1

2

Research Objectives

To introduce new features to existing wireless mesh networks to enhance
their functionalities, this research aims to investigate and design a cloud-based
wireless mesh network with adaptive data management mechanisms. In general,

the main objectives of this research are:
e To design the system architecture for a cloud-based wireless mesh network

e To design a person-based adaptive data management mechanism for the

cloud-based wireless mesh network

e To design a group-based adaptive data management mechanism for the

cloud-based wireless mesh network

e To evaluate the person-based and group-based adaptive data management

mechanisms

The purpose of this research study is to design and develop a systematic method
of adaptive data management for a cloud-based Wireless Mesh Network (WMN)
to achieve efficient data access. The study mainly focuses on two functionalities:
1. Person-based data management: tracking a user’s location in the WMN
and maintaining the user’s personal data in the nearest mesh router to follow
up on the user’s movement among different mesh routers. 2. Group-based
data management: dynamically allocating data to the mesh router(s) where
the data will be used most frequently to improve utilization rate and reduce

cost.
To support previous functionalities, there are some assumptions:

1. The WMN not only provides network access and communication services,

but also supports file uploading and storing on the network cloud.

2. The mesh routers should contain second memory devices (e.g. hard disks,

etc.) to support file storage and file exchange functions.

Chapter 1 Introduction

1.2 Thesis Structure
Chapter 2

This chapter aims to conduct a comprehensive background and literature
review of related topics for the research. The relative topics include: wireless

mesh network, cloud computing, and distributed file system.

Chapter 3

This chapter presents the first part of this research: the person-based adaptive
data management mechanism. First, this chapter discusses the system design
and architecture of the newly introduced cloud-based wireless mesh network.
Then it introduces the hardware platform used, as well as the prototype
implemented in this research. Later, the chapter discusses file system and

implementation details of the prototype.

Chapter 4

In Chapter 3, it has been discussed that both person and group-based data
management mechanisms can be used on a distributed file system (DFS) to
achieve better flexibility and configurability. However, currently existing DFS
solutions mainly focus on powerful servers, which the mesh routers cannot
compete with in terms of computing capacities. This chapter presents MeshF'S,
a distributed file system specifically designed for wireless mesh networks
as the second part. All aspects including features, design & architecture,
implementation, demonstration, evaluation & limitations will be discussed in

detail in this chapter.

Chapter 5

This chapter discusses the third part of this research: the group-based adaptive
data management mechanism. The chapter first describes a situation called

an e-book scenario, which will be suitable to apply this mechanism to. Then a

1.2 Thesis Structure

mathematical model and algorithm will be presented, followed by simulations

to evaluate its performance.

Chapter 6

This final chapter concludes all of the work of this research project and outlines

future work.

4 Chapter 1 Introduction

2.1

Literature Review

Wireless Mesh Network

A Wireless Mesh Network (WMN) is a wireless communication network formed
by multiple mesh routers and mesh clients [1, 2, 4| (Fig. 2.1). Mesh routers,
also known as Mesh Access Points (MAPs), are interconnected by mesh config-
urations and responsible to perform data exchanging and routing functions.
Mesh clients (e.g. mobile phones, notebooks) are connected to a MAP to
exchange data and access network services. Similar to traditional wireless
local area network (WLAN), WMN provides data communication and network
services to wireless clients, however mesh routers in WMNs are connected wire-
lessly instead of being linked by wired cables. Hence, compared to traditional
WLAN network infrastructure, a WMN has better flexibility and fewer effects

in terms of limitations/constraints from the environment.

Gateway Router

Gateway Router —

A i
= i Y \.\ e

Mesh

2% mm
g

[z
gz

esh 1 ‘ = ! esh
» I \k Client
Clien i
-
Mesh
Clignt

Fig. 2.1: Wireless Mesh Network

Mesh routers can be interconnected as a self-organized and self-configured ad
hoc network in a peer-to-peer way, or establish a WMN backbone by following
current wireless network standards, such as the IEEE 802.11 standards series.
Currently, IEEE 802.11-based WMN is the most popular type of WMN [39],
which operates on 2.4, 3.6, 5, and 60 GHz frequency bands. Following the
launch of the first IEEE 802.11 standard in 1997, there is now a set of standards
for different requirements and conditions, namely 802.11a, 802.11b, 802.11g
and 802.11n. The latest standard, IEEE 802.11n operates over both 2.4 GHz

6

and 5 GHz bands and supports a theoretical data rate of up to 600 Mbit /s
using Multi-Input & Multi-Output (MIMO) antenna technology [37|. The next
generation of IEEE 802.11 standard is IEEE 802.11ac, expected to be released

in 2014. It can support an extremely high data rate of up to 6.93 Gbit /s using
8 MIMO channels [44].

In addition to providing internal network services among mesh routers and
mesh clients, WMNs can also be easily integrated with other types of networks
through gateway/bridge functionalities. For a WMN that has at least one
mesh router connected to an external network (e.g. Internet), this/these mesh
router(s) will perform as a network gateway so that other mesh routers and
clients can access external network resources. Devices can connect to a WMN
either by using a wireless network interface controller, or a traditional Ethernet

interface. This feature gives WMNs significant scalability and extensibility.

For research work about the basics of WMN, [17] and [33] which addressed
routing issues in a WMN and [8| which studied a scheduling problem for WMN.
[30, 36, 42] studied more fundamental and architectural issues related to WMN.
The aforementioned work will provide useful references and valuable insight
into the design of the proposed cloud-based WMN. Furthermore, it will take

user mobility over a WMN into consideration (e.g., see [7]).

While research on cloud-based wireless mesh networks together with adaptive
data management is a relatively new topic, there are related works on data
caching for WMN. The following provides some examples. In the early stages,
Imielinski and Badrinath addressed and predicted the challenges of data
management in wireless computing [27, 28]. Jin and Wang studied and
explored the optimality of content and service replication strategies in multi-
hop WMNs [29]. Nandan, Das, Pau, Gerla, and Sanadidi proposed SPAWN, a
content delivery and sharing cooperative strategy for vehicular ad hoc wireless
networks [35]. Chow, Leong, and Chan discussed and presented a group-based

cooperative caching management in mobile environments [9, 10, 11].

Das, Pucha and Hu designed and evaluated a MeshCache system, which is a
hop-by-hop cooperative caching system for WMN [12]. The hop-by-hop caching
and fetching mechanism takes user locations into consideration in order to
enhance throughput (e.g., to fetch content from the nearest cache). This paper
proposed hop-by-hop cooperative caching to improve network performance
by exploiting locality existing in the traffic of a wireless mesh network. The

hop-by-hop caching mechanism is adopted to replace the traditional end-to-end

Chapter 2 Literature Review

caching mechanism. Assume there is a route path S-A-B-D, the hop-by-hop
caching scheme will break up this single path into S-A, A-B, B-D, and cache

the data at A and B as well as node D to increase content availability.

Denko and Nkwe proposed an efficient caching scheme for WMN called
CacheRescue [14|. In CacheRescue, valid but evicted data items can be
stored in mesh routers using extendable storage space. Based on a cluster
architecture, Mesh Routers (MRs) function as Cluster Heads (CHs) for Mesh
Clients (MCs). A CacheRescue Database (CRDB) is set up in CH so that
data from MC?7?s local cache can be cached in CRDB. The storage size can
be adjusted dynamically based on number of MCs as well as their cache sizes.
The following equation shows how the MR?7s current CacheRescue size can be

estimated based on the expected cache size of other nodes:

Ctotal - Cz

ElC|C) = 2=

where Cyoq is the total number of caches’ size, N is the number of CHs, and

C; is the cache size.

Wu and Huang proposed a cooperative caching system for WMN [46]. Under
this caching system, MAPs serve as user coordinators. Cache placements are
made through cell-based and network-based schemes. This paper divided the
cache system into two layers: the MAP layer and the mesh client layer, which
means that both MAPs and mesh clients have cache size, which does not fit
our scenario. The caching is also divided into two levels: network level and
cell level. At the network level, the MAP makes a cache decision for each data
item, such as whether a data item should be cached or not. At the cell level,
the specific node (i.e., MAP) for caching the data item is determined. These

can be adjusted to fit our scenario.

Zhao, Zhang, Cao, and Das also proposed a cooperative caching system for
wireless P2P networks with the aim of determining the best place for caching
data [49, 50]. This asymmetric cooperative cache method can lower the

overhead for data copying and the end-to-end transfer delay.

Additionaly, there is a paper that also specifically defines caching message
types, equations to compute caches costs, etc. in detail. Xu, Wu, Wu and
Cao investigated a cooperative caching scheme for WMN with a focus on

maintaining data consistency [47]. Based on a hierarchical architecture, it

2.1 Wireless Mesh Network

2.2

8

combines both push-based and pull-based approaches. The aim is to reduce

communication costs and message losses in particular.

Under the Teaching Company Scheme (TCS), this research project will in-
volve academic-industrial collaboration with P2 Mobile Technologies Limited
(P2MT). P2MT is a Hong Kong-based wireless mesh network company, which
is dedicated to designing and producing wireless mesh network devices, and
offering wireless mesh networking solutions with the latest technologies. With
its BackN technology (patent pending), the company provides high-speed
wireless mesh networking solutions based on the IEEE 802.11n standard. This
technology enables an IEEE 802.11n-based multi-hop wireless mesh network
to provide 300 Mbps bandwidth across the whole network (i.e., end-to-end).
Compared to traditional AP-Controllers and Repeater Models, P2MT products
can provide unlimited multiple-hop wireless extensions without losing channel
bandwidth.

The company is also engaged in wireless networking research. For example,
P2MT has recently published a journal paper in the IEEE Transactions on
Mobile Computing, which provides a solution to the multi-hop TCP through-
put degradation problem in IEEE 802.11n WMNs due to the increase in TCP
Round Trip Time (RTT) through the use of multiple parallel TCP connections
[23]. Additionaly, P2MT received the Silver Award of the Hong Kong ICT
Award 2012 - Best Ubiquitous Networking (Mobile Enterprise Solution). Today
P2MT’s wireless mesh networking products are widely adopted in commer-
cial, educational, and other public environments (e.g. CUHK, MTR station,
shopping malls, etc.) in Hong Kong, Taiwan, and Mainland China.

This study will first establish a cloud-based wireless mesh network with data
storage and other network service functionalities by using mesh router equip-
ment provided by P2MT, then develop an adaptive data management system
on this cloud-based WMN.

Cloud Computing

In recent years, cloud computing has become one of the hottest topics in
both the academic and industrial arenas. Cloud computing allows computing
resources to be shared through an on-demand utilization mechanism, which

provides more convenient, powerful, and cost-effective computing services.

Chapter 2 Literature Review

In [3], Armbrust, Fox, Griffith etc. illustrated that cloud computing can
achieve the long-term vision of making computing as a utility service. It is
expected that the demand for cloud computing will grow dramatically and
virtualization of resources will become increasingly important. According to
the NIST definition of cloud computing [32], cloud computing is a utility-based
model that provides a configurable resource pool (e.g., storage, application,
servers) to be shared ubiquitously and conveniently. There are five essential

characteristics for the cloud computing model:

On-demand self-service
Resources (e.g., server, network, storage, computing capacity) should be

able to automatically self-adjust based on utility requirement.

Broad network access
Resources should be available via standard network mechanisms and

heterogeneous client platforms (e.g., PC, workstation, mobile devices).

Resource pooling
Cloud should provide heterogeneous resource pools to satisfy demands
from customers. Internal structure (e.g., location, implementation detail)
of resources, regardless of whether it is a physical resource or a virtual

resource, should be transparent to customers.

Rapid elasticity
Resources should be able to scale rapidly and elastically with demand.
Customers should also have the ability to provision the resources at any

level at any time.

Measured service
Cloud system should be capable of monitoring, reporting, managing, and
optimizing resources through a usage-based mechanism (i.e., based on

resource utilization).

In terms of service models, three types of cloud computing service models are

widely used:
Software as a Service (SaaS)

Provide software applications to customers which can be accessible using

various clients through a cloud infrastructure without exposing underlying

2.2 Cloud Computing

10

infrastructure and computing resources (e.g., network, storage, operating

systems).

Platform as a Service (PaaS)
Provide running environment for hosting a customer’s application on a
cloud infrastructure. Customers cannot control underlying infrastructure
details and resources (e.g., network, storage, operating systems), but

only configuration settings of the application.

Infrastructure as a Service (laaS)
Provide provisionable computing resources such as processing, storage,
operating system etc. to customers for deploying and running applica-
tions with more controls. However, customers still cannot control the

underlying infrastructure of the cloud.

For cloud deployment, four types of deployment models can be adopted:

Public cloud

The cloud infrastructure can be used by general public, including business,

academic, government.

Private cloud
The cloud infrastructure can only be used by people of an organization

(i.e., exclusive use).

Community cloud
The cloud infrastructure can only be used by people or organizations of

a community with a common interest.

Hybrid cloud

The cloud infrastructure is a mixture of public, private and /or community
clouds.

With the rapid growth and development of the Internet, in recent years conven-
tional computing and storage devices (e.g., single PCs, servers, workstations,
and mainframes) were becoming overwhelmed. Hence cloud computing began,
becoming the dream solution for large scale software or services. In addition
to rich academic research inspired by cloud computing, various leading tech-

nologies have also been developed by industry. According to [38], there are

Chapter 2 Literature Review

three major cloud computing styles divided by resource abstraction techniques

from leading technology companies:

Server Virtualization

Also referred as Amazon style. From 2006 to 2007, Amazon released
Amazon Web Service (AWS), consisting of Xen-based Elastic Compute
Cloud (EC2), object storage service (S3) and structure data storage
service (SimpleDB). AWS adopts on-demand and a more cost-effective

charging rate, which soon made Amazon the pioneer of IaaS provision.

Technique-specific sandbox

Also referred to as Google style. From 2003 to 2006, Google published
several research papers on PaaS cloud computing, and in 2008 released
Google App Engine (GAE), which works as a sandbox container for

hosting guest applications.

Hybrid

Also referred to as Microsoft style. This style combines both virtualization
and technique-specific sandbox techniques. Microsoft released Azure in
2008, which adopts Windows Azure Hypervisor (WAH) as the underlying

cloud infrastructure and .NET framework as its application container.

Table 2.1: Major Cloud Styles in Industry and Adopters

Server Virtualization

(Amazon Style)

Technique-specific sandbox
(Google Style)

Hybrid
(Microsoft Style)

Amazon EC2 (Xen)
21vianet CloudEx (Xen)
GoGrid (Xen)
RackSpace Mosso (Xen)
Joyent (Accelerator)
AT&T Synaptic (Vmware)

Verizon CaaS (Vmware)

GAE (Python & JVM)
Heroku (Ruby)
Morph Application
Platform (Ruby)

Microsoft Azure

(WAH & .NET)

Table 2.1 shows representative adopters of these three major cloud implemen-

tation styles in the market.

For the cloud-based wireless mesh network and considering the use cases of

P2MT WMN products, this data management system should involve func-

tionalities for a file hosting service. Three types of file hosting services are

2.2 Cloud Computing 11

2.3

12

considered in this case: Personal file storage to allow mesh clients to store
personal /temporary files on the cloud-based mesh network; software file hosting
to store data for commercial promoting software/applications; and content

caching to decrease repeated network costs due to access locality.

Distributed File System

Distributed file system (DFS) has been a popular research topic for decades, and
also the most widely used mechanism for simultaneously storing/sharing data
among multiple hosts/servers [40]. In recent years, DFS techniques have been
widely employed by industry to support cloud computing services. Borthakur
and Dhruba have proposed the architecture and design [5], then Shvachko,
Kuang, Radia, and Chansler formally proposed The Hadoop Distributed File
System (HDFS) [43], which has now become the most famous DFS solution,
providing a DFS along with a framework for analyzing and transforming
huge data sets by using the MapReduce [13| paradigm. In [45], Weil, Brandt,
Miller, and Long presented Ceph, another popular DFS with high scalability
and performance. Ghemawat, Gobioff, and Leung proposed The Google
File System (GFS) [19], which focuses on large distributed data-intensive
applications with high aggregate performance to a large number of clients. In
[41], Kistler, Kumar, Okasaki, Siegel, and Steere presented Coda, which is a
large file system designed for Unix terminals under a distributed computing
environment. Other popular DFS solutions, including Gluster [20], Lustre [6],
MooseF'S [34], have also been widely used, and have inspired a great deal of

related research.

Table 2.2: Summary & Comparison of Popular DFSs

HDFS Ceph GlusterF'S Lustre
Architecture || Centralized Distributed Decentralized || Centralized
CLI, FUSE, || FUSE, REST,
API REST mount FUSE, mount FUSE
System

Availability No failover High High Failover

Data . . :
Availability Replication Replication RAID-like No
Replication Async. Sync. Sync. RAID-like

Chapter 2 Literature Review

[15] has comprehensively studied and analyzed several existing DFS solutions.
Table 2.2 shows the most popular four, which are widely used in the industrial
space. Dimakis, Godfrey, Wu, Wainwright, and Ramchandran have discussed
applying network coding into distributed storage systems to optimize the trade-
off between storage and repair bandwidth [16]. The common denominator
between all of these DF'S solutions is that they all feature powerful performance
with a high data throughput rate. Some are very strong and stable with
great strength, robustness, and availability. However, their requirement for
high computing capacity makes it impossible to host these systems on low-
capacity computing equipment, such as mesh routers. Hence, we need another
lightweight solution to equip WMNs with DFS function.

2.3 Distributed File System

13

3.1

Person-based Adaptive Data
Management Mechanism

The aim of this chapter is to investigate adaptive data management mechanisms
for a cloud-based WMN (i.e., how to store and manage data effectively and
efficiently over a WMN to provide cloud computing-like services). This chapter
is inspired by and/or based on caching mechanisms for WMNs (e.g., [12, 14,
46, 47]), routing issues (e.g., [17, 33]), scheduling methods (e.g., [8]), and
architectural issues relating to WMNs (e.g., [30, 36, 42]).

System Design & Architecture

Fig. 3.1 shows the basic system architecture. Basically a wireless mesh network
(WMN) consists of the following network components: mesh access points
(MAPs), mesh clients and, possibly, network gateways. MAPs, also known
as mesh routers, are responsible for communicating with mesh clients, and
for routing and forwarding data over the WMN. Mesh clients are mobile
devices for providing connections between users and the network. A mesh
client usually connects to one MAP. When a mesh client moves from one
MAP to another MAP, the connection should still be maintained. Network

gateways are optional for a WMN. They provide connection to the Internet.

To provide cloud- based services, each MAP can provide storage capability.

The storage functionality can be implemented either through a general Linux
virtual file system (VFS) on mesh routers, or through a lightweight distributed
file system (e.g. GlusterF'S, Ceph, etc.) to form a virtual file system on the
cloud. Furthermore, MAPs can communicate with each other by conveying
messages for data management purposes. Note that data can be forwarded and
replicated over the network for adaptive data management purposes. Mesh

clients can upload and download data using an effective mechanism.

In addition to network communications service, the proposed cloud-based
WDMN can also support uploading/downloading functions (e.g., the uploading
and downloading of personal data files to/from a WMN). Data can be stored
in a MAP under each user account with proper access rights. For example, a

user can store frequently used data files in a cloud-based WMN. As users can

15

16

Internet Router

~_ } i

Mesh
Access
Point

Download™ " -
@" ___Upload

Upload ~ _
Download :I D E D
_ BBA.
: ‘i MAP Storage Space
- =

Fig. 3.1: Architecture of a Cloud-based Wireless Mesh Network

move around, the WMN should keep track of the users’ locations so that data
can be moved based on user locations (i.e., certain data can follow a user).
Basically, when a user moves from one MAP to another, some data files can
be moved from the previous MAP to the current MAP, depending on certain
requirements. This mechanism seeks to enhance the access or retrieval time

for the user data (e.g., important files).

However, moving data frequently, especially large data files, can be costly in
terms of the consumption of network resources. Therefore it should be desirable
to move certain data files only, taking into consideration various factors, such

as user mobility, MAP storage, access probabilities, and so forth.

Chapter 3 Person-based Adaptive Data Management Mechanism

m,f- Internet Router
W

Internet Router

=((f.fl‘

e MAP Storage Space ‘ ."I
| — | I" - T . ™~ '
‘ h “. -MAP Storage Space | ' 7 ElSIELE |
,~BERR O, / \ ~-BEB- -
2. Thefiles of aic_e?{ain mesh client
D are transferred to the new MAP. _'l

__1. The 4mesh client moves to anot_hie_r MAP- S

Fig. 3.2: Person-based Adaptive Data Management Mechanism

3.2 Hardware & Prototype

Fig. 3.3: Router model MeshRanger from P2MT

A prototype based has been developed on WMN routers provided by P2MT

(Fig. 3.3). Each WMN router consists of three major components: one mother

3.2 Hardware & Prototype 17

18

board, up to four wireless network interface controllers, and antennae. The
motherboard is a single-board computer equipped with a 600MHz dual core
CPU, 256Mbytes of SDRAM memory, and 16Mbytes of flash system memory
[31]. It has four mini-PCI sockets, which can support up to four wireless
network interface controllers (either 802.11n 2.4GHz or 5GHz, or dual-band)
to implement mesh router functionalities, and two Ethernet Ports for wired
connections (for configuration or integration with other wired networks). There

are also two RS232 serial ports, a micro SD flash expansion socket, and USB

ports for expansion and other purposes.

Fig. 3.4: Wireless Mesh Network Formed by MeshRangers

For the operating system on WMN routers, a customized version of OpenWrt
for the Laguna family (cns3xxx) is used. OpenWrt is a lightweight Linux
distribution for embedded devices [18]. It is free, open-source, and community
driven. Currently, OpenWrt is widely used by industrial vendors to facilitate
product development and is also used by customers to customize device firmware

in order to add more functions or enhance performance.

OpenWrt provides package management functions so that any packages can be
chosen to suit different requirements and development purposes [18]. Programs
are cross-compiled through SDK or Toolchains built from the Laguna OpenWrt

source together with all other necessary libraries needed for development. With

Chapter 3 Person-based Adaptive Data Management Mechanism

3.3

3.3.1

the package management features of OpenWrt, additional functionalities, such
as routing management, a web server with a common gateway interface (CGI),
databases, and so on, can easily be added to expand and customize the mesh

routers.

Every WMN router used to build the wireless mesh network is loaded with at
least one 2.4GHz and two 5GHz wireless network interface controllers. The
2.4GHz interface is used to access wireless networks for mesh clients, and 5GHz

interfaces are used to build the backbone of the mesh network.

There are three ways to establish interconnections among mesh routers: Access
Points (AP) to Station (STA) mode, Ad-Hoc mode, and Wireless Distribution
System (WDS) mode. In this study, the AP-STA mode is adopted, where
the backbone interfaces (the two 5GHz ones) act as either AP or STA, and
are connected as pairs. Because different subnet IP addresses are assigned to
these paired connections, the Optimized Link State Routing (OLSR) protocol
is used to rout packets among these interfaces to make different IP subnets
accessible. Fig. 3.5 shows one of the possible topological configurations for the
wireless mesh network. Five mesh routers are connected by four links in four
different subnets (192.168.1-4.0/24). For mesh routers to be in two subnets
simultaneously, two wireless network interfaces are used as mentioned above,
and the routing tables are built with the tool orsld (OLSR daemon).

File System

Storage Function with Linux File System

In the prototype, the normal Linux file system is used for the purpose of

storing data. All data are stored in a particular directory on the mesh router.

This section focuses on describing how the data of mesh clients are stored on
the entire mesh network (i.e., in a distributed manner), and how the data
management system can locate particular data. Since every mesh router in the
mesh network is capable of storing data for mesh clients, the data management
system needs to know where a particular file is stored. One method of locating
it is to keep the index of the data stored so that the data management system
can make a direct search of the index to obtain the location of the data. A
database is used for maintaining these indices. Fig. 3.6 is a Unified Modeling

Language (UML) diagram of the database to illustrate the schema.

3.3 File System

19

20

192.168.1.0/24

_ STA
B 192.168.1.2
AP

lieaz.les.l.l

Router 2

STA™
192.168.4.2

b AP

‘ . 192.168.2.1

Router 1
STA
02.168.2.2
192,168.2.0/24
192. 1b8 3.1 M

Roduter 3
192.168.3.0/24
192. lb8 3.2y

192.168.4.0/24

192.168.4.1
Router 4

Router 5

Fig. 3.5: One of the Possible Topologies of the WMN Backbone

There are three types of main entities in the schema: Client, File, and Router.
A unique ID is assigned to each entity to maintain its uniqueness and prevent
unnecessary redundancies. The schema of this database follows the principles
of "who, what, and where". We combine these three kinds of unique ID under
a fourth table named FileStorage, which is the index that records which file

(what) of the mesh client (who) is stored on which router (where).

Table Client records the basic information of mesh clients, such as the hostname,
MAC address, and time of creation. Information such as the time of the last
connection and the number of logins is also recorded for other management
purposes. A mesh client may own multiple file storage indices because a client
can own multiple files, and these files may also be duplicated on different
routers. However, a file storage index can only belong to one client because it

is uniquely identified by a foreign key clientID.

Table File records the basic information of a file, such as its name, size,

and time of creation. Information such as the time of the last access and

Chapter 3 Person-based Adaptive Data Management Mechanism

Client

clientiD
hostname
mac
createTime
lastConnect

logins

Router

routeriD

hostname

IP

FileStorage

routerlD

clientiD

filelD

Fig. 3.6: UML Diagram for Data Location Index

my3ql> desc Client:
o o + +

filelD

name

size
createTime
lastAccess

useFrequency

n

| Field | Type | Null | Key | Default | Extra |
e o f e 1 Sk o S e A B 0 +
| hostname | text | NO | | NULL |

| mae | char(18) | NO | | NULL |

| clientID | char(64) | NO | PRI | NULL 1

| createTime | datetime | NO I | NULL |

| lastConnect | timestamp | NO | | CURRENT TIMESTAMP | on update CURRENT TIMESTRMF

| logins | int (11) | NO | | O |

o o o +o——— e e e +

Fig. 3.7: Schema of Table Client in MySQL

frequency of use is also recorded for other management purposes. Similar to

the relationship between mesh clients and the file storage index, a file may

also own multiple file storage indices because a file can be shared by multiple

mesh clients, or be duplicated on different routers. A file storage index only

belongs to one file because it is uniquely identified by a foreign key filelD.

Table Router records the basic information of a mesh router, such as its

hostname and IP address. A mesh router may own multiple file storage indices

because it can accommodate multiple files in storage. However, a file storage

index only belongs to one mesh router because it is uniquely identified by a

foreign key routerlD.

3.3 File System

21

mysql> desc File;

t—————— ——————— +———— +——— F——————————— e +
| Field | Type | Null | Key | Defaultc | Excra |
o e R o e T +
| name | text | NO | | NULL 1 1
| £ileID | char (64) | NO | PRI | NULL | |
| =ize | bigint (20) | NO | | NULL | I
| createTime | datetime | NO 1 | NULL 1 1
| lastAccess | timestamp | NO | | CURRENT TIMESTAMP | on update CURRENT TIMESTAMP |
| useFrequency | int (11) | NO | 1 0 | |
e e e i st e it o e e e e e e +

Fig. 3.8: Schema of Table File in MySQL

myagl> desc Router:

o o o === o ————e o —————— +
| Field | Tvpe | Null | Key | Default | Extra |
e et e e e o e -
hostname	text	NO		NHULL	
ip	char(lg)	NO I	NULL I		
routerID	char(64)	NO	PRI	NULL I	
e o ————— +—————— +————= e e +

Fig. 3.9: Schema of Table Router in MySQL

The file storage index links mesh clients, files, and mesh routers together and
uniquely identifies the ownership and location information. Hence, from any
side of this triangular relationship, the other two sides can easily be accessed

when an enquiry for information is made.

mysgl> desc FileStorage:

e —————— e —————— o - e ——————e o +
| Field | Type | Hull | Eey | Default | Extra |
- - - e +——— - -
| elientID | char(é4) | NO | PRI | NULL | |
| £ileID | char(64) | NO | PRI | NULL | |
| routerID | char(64) | NO | PRI | NULL | |
- - - +———— +——— e -

Fig. 3.10: Schema of Table FileStorage in MySQL

3.3.2 Storage Function with A Distributed File System

Basic requirements can be met by using a Linux file system and by ensuring
that the system can operate properly in an experimental environment; however,
some problems may be encountered in the practical use of the system. A

critical problem is the Single Point of Failure (SPoF). For example, if one of

22 Chapter 3 Person-based Adaptive Data Management Mechanism

3.4

3.4.1

the mesh routers encounters network problems or experiences system failure,
then the data of the mesh clients that were stored on this router can no longer
be accessed; likewise, if the mesh router hosting the file storage index database
encounters network problems or experiences system failure, then the entire

data management system will fail. To avoid such fatal situations, it is necessary

to have a replicate copy of the data and file storage indices of the mesh clients.

This will improve the reliability, accessibility, and fault tolerance of the data

management system.

Adopting a distributed file system is a good solution for such requirements.
Two important features of a distributed file system are access transparency
and replication transparency, which means that what mesh clients see in the
distributed file system is exactly the same as what they see in a local file
system, so they will not regard the replications made by the distributed file

system as fail-safes.

Currently, there are various distributed file systems. They are designed for
different goals, different system scales, and different considerations. In the
next chapter, the use of a distributed file system will be studied for an effective

adaptive data management system.

Implementation

In this section, I present a person-based adaptive data management mechanism,

which provides upload/download functions for mesh clients, and adaptively

moves files along with the movements of the owner to enhance the access speed.

Hence, the development of this section has been divided into two parts: (i) a
web User Interface (UI) to let mesh clients upload and manage personal files;
(i) an agent program running on mesh routers to monitor the mobility of mesh
clients, and to adaptively decide whether to move the files and on which mesh

router the files should be placed.

Web Ul for File Uploading/Management

The web Ul is responsible for handling file uploading/ management operations,
similar to current commercially available online drive/sync services. The
following is a brief description of some of the ways in which the web UI can be

used, as examined in this study:

3.4 Implementation

23

24

1. A mesh client accesses the web Ul, and the web UI prompts the client
by asking the client to log in, or to go directly to the main page if the

client is already logged in;

2. The mesh client logs in through an account/device, and the web UI
displays the main page containing all of the files belonging to the logged

on mesh client;

3. The mesh client uploads new file(s), and the web UI stores the uploaded
files in file system, inserts information on the file, and builds a file storage

index in the database;

4. The mesh client does management operations (e.g., renames, deletes,
downloads, etc.) on existing file(s); the web UI responds accordingly,
and updates/deletes the file information/file storage index to/from the

database.

Note that the web UI does not need to be concerned about which type of
storage file system is used (the normal Linux file system or the distributed file
system) because they are separate. If the normal Linux file system is used,
the placement of the file will be handled by the agent program, which will be
described in the next section; if the altered distributed file system is used, the

storage location will be determined by the altered distributed file system.

Devices

EranikusiPhone5 (38:48:4¢:61:4b:df)

Name 4 size Location Last Access

testfie Eiles 115 bytes PZMT_PolyU1 2014-05-1509:17:49 2 wi-

testfied 115 bytes Management

Fig. 3.11: Web UI for Person-based Adaptive Data Management System

The front end of this web Ul is developed using the JQuery library with multiple
plugins, such as the JQuery-UI, JQuery DataTables, JQuery Download, and
JQuery Fileupload. The back end of the web Ul is written using PHP, and
an UploadHandler plugin is adopted to achieve the drag-and-upload function.
MySQL is used as the database to keep the file information and file storage

indices. The web Ul is deployed on one of the mesh routers, normally the

Chapter 3 Person-based Adaptive Data Management Mechanism

3.4.2

network gateway of the wireless mesh network. The index database is placed
on another mesh router that, for reasons of security, cannot be directly accessed

from an external network environment.

Agent Program for Monitoring the Mobility of Clients
and Making Decisions on the Movement of Files

The agent program runs on all mesh routers with storage functionality inside
the mesh network. This agent program is responsible for three major tasks:
monitoring the movements of mesh clients, making decisions on the movement
of files, and transferring files to a target router if required. Instead of having a
central router conduct all computations, agent programs running on all mesh
routers work in a decentralized way to share the work load. Each mesh router
retrieves and computes information individually, and exchanges information
with fellow routers if needed. Communications between routers are carried out
through UDP messaging. The agent program is written in C language, with
assistance from shell scripts and external libraries (e.g., libmysqlclient, libssh2,

libgerypt, etc.).

In order to make files follow along with a mesh client’s movements, the data
management system needs to be aware of the mobility behaviour of the mesh
client. A mesh router should make a file movement decision when a handoff
operation occurs. Hence, the agent needs to monitor connections from mesh
clients, and triggers a decision on the movement of a file when a new connection
is built. Since OpenWrt is a Linux distribution for embedded devices, especially
for network routers, shell scripts can be used to help retrieve information on
connected devices instead of collecting information from scratch. The following
piece of shell script code provided by OpenWrt [18| can return the IP address,

hostname, and MAC address of the current connected devices:

for interface in ‘iw dev | grep Interface | cut —f2 —s —d’ *
do
for each interface , get mac addresses of connected stations/ clients

maclist=‘iw dev $interface station dump | grep Station | cut —f 2 —s —d’ **

for each mac address in that list ...

for mac in $maclist

do
If a DHCP lease has been given out by dnsmasq, save it.
ip="UNKN’

3.4 Implementation

25

11

12

13

14
15
16
17

18

26

host=""

ip=*‘cat /tmp/dhcp.leases | cut —f 2,34 —s —d’’ | grep $mac | cut —f 2 —s —d’
host="‘cat /tmp/dhcp.leases | cut —f 2,34 —s —d’ ’ | grep $mac | cut —f 3 —s —
d’ b4

Show the mac address:
echo $ip,$host,$mac
done

done

The agent program runs this piece of shell script periodically to retrieve
information on currently connected mesh clients, and compare this information
to the past client list retained from the last timeslot. If the current client
list contains a new member that does not appear in the past client list, then
this client is a newly connected mesh client, and the process of making a file
movement decision should be triggered. If a member from the past client list
does not appear on the new client list, this means that this mesh client has
disconnected from this mesh router. The client may have been disconnected

from the wireless mesh network, or have moved to another mesh router.

The following is the pseudo-code of the algorithm, which monitors mesh client

movement. The algorithm is run periodically:

The decision to move a file is made by calculating a score called the file transfer
priority. During the process of making a decision to transfer a file, the file
transfer priority value of all of the files belonging to a mesh client will be
calculated and sorted in order to determine whether or not to transfer a file.

As an example, we consider that the file transfer priority p is related to:
f = use frequency

s = file size

t = time of last access

For this illustrative example, we assume that the priority value p is directly
proportional to frequency f, and inversely proportional to file size s and time

to last access t:

x
st

Chapter 3 Person-based Adaptive Data Management Mechanism

Algorithm 1 Monitor Movements of Mesh Clients
Input: pastClientList
Output: pastClientList

procedure MONITERMOVEMENT
newClient List < GetClientList shell script

1:
2
3
4: for each client in pastClient List do

5: // do nothing to clients that not moving
6 if client exists in newClient List then

7 remove client from newClientList

8

9

end if
10: // remove clients if moved out
11: if client does not exists in newClientList then
12: call client Disconnected(client)
13: remove client from pastClient List
14: end if
15: end for
16:
17: // the rest clients in newClientList are newly connected clients
18: for each client in newClientList do
19: add client to pastClientList
20: // do file movement decision making
21: call clientConnected(client)
22: end for

23: end procedure

However, the range of file size f and time to last access ¢t may have large values,
so they need to be normalized within a reasonable range. According to the
properties of the logarithm function, the log value will increase much more
slowly when the actual value becomes larger. Therefore, we use the logarithm

function for normalization purposes.

Since the file size is represented by bytes, the value of log, s will be 10, 20,
30, and 40 for 1KB (2'° bytes), 1IMB (22° bytes), 1GB (2*° bytes), and 1TB
(2% bytes), respectively. A UNIX timestamp is used to represent the time to
the last access t, with ¢ being equal to the current timestamp minus the last
access timestamp. We can also use a logarithm to control the range of value ¢
(e.g., log, t will be around 16, 21, or 25, if the file has not been accessed for

one day, one month, or one year, respectively);

Now the equation becomes:
_ I
log, st

p

3.4 Implementation

27

28

In most situations, the value of log, st is less than 100, so the scale is much
more acceptable for a priority value. Note that the above is just an example -

other policies can also be used.

After calculating the priority values of all of the files, the agent program
will decide whether or not to transfer files to the target mesh router. Other
information that may be involved in this decision-making process (e.g., the
possible transfer cost, the traffic of the mesh network, etc.) will be retrieved

through messaging communications between mesh routers.

A client moves from mesh router X to mesh router Y

7

Y directly asks the file storage index database for file information

\Z

If'Y decides to move the files, it sends a "FileTransferRequest"

N\

X sends the files and replies with a "FileTransferResponse"

2

Y receives the files and the response, checks the integrity of the files,

and updates the file storage index database

I

X deletes the files or updates the database accordingly

Fig. 3.12: Work Flow of the File Transfer Operation

If the agent program decides to transfer a particular file from another mesh
router to itself, the file transfer operation will be performed. The method of
transferring a file depends on the type of storage system. If a normal Linux
file system is used for storage functionality, the current mesh router will send a
FileTrans fer Request to the mesh router that holds the desired file. After the
target router receives the request, the file will be sent directly to the requesting
mesh router through Secure Copy (SCP) with a FileTransfer Response. Next,
the requesting mesh router receives the file and the response, checks the integrity
of the received file, updates information in the file storage index database,
and sends an acknowledgement to the sender with a FileTransferSucceed.
The sender will decide whether to remove the file from its local storage or to
keep it, depending on whether there are other ownership relations existing
between other mesh clients and this file. If the file is to be kept, the respective

Chapter 3 Person-based Adaptive Data Management Mechanism

3.5

information in the file storage index database will be updated accordingly. Fig.

3.12 shows the work flow of the file transfer operation.

Conclusion

In this chapter, I have presented a cloud-based wireless mesh network with
cloud storage functionality, with an accessible web Ul for uploading/managing
files, and an agent program to monitor the movements of mesh clients and
adaptively move files among mesh routers to reduce access costs. The person-
based adaptive data management mechanism can improve data access efficiency
for mesh clients. In the following chapters, apart from further developing the
person-based data management mechanism, a distributed file system specifically
designed for cloud-based wireless mesh network will be discussed, and a group-
based data management mechanism, which considers data to be shared by

multiple mesh clients, will be investigated.

3.5 Conclusion

29

4.1

MeshFS: A Distributed File Sy te4
for Cloud-based Wireless Mesh
Network

To better achieve requirement of person-based and group-based adaptive
data management mechanisms for cloud-based wireless mesh networks, and

inspired by cloud computing and DFS techniques, MeshFS, a distributed file

system specifically designed for cloud-based WMN is presented in this chapter.

MeshF'S integrates scattered storage resources from mesh routers to provide a
mountable file system interface to Unix/Linux file systems with a fault-tolerant

feature, allowing limited resources from mesh routers to be better utilized.

Objectives & Features

For most existing DFS solutions, the objectives and features mainly focus on
providing high data throughput and the capacity for handling huge amounts
of data. Normally these kinds of DFSs will be deployed on powerful servers
with a high volume of storage disks. Different from other DFSs, the DFS to
be adopted in this study will be accommodated by mesh routers (introduced
in Section 3.2), which are single-board computers with very limited computing
capacity and storage space. This hardware limitation became the first reason
to develop a new DF'S solution specifically designed for mesh routers with low

computing capability.

Second, the mesh routers used in this study are running OpenWrt as firmware
and operating system. Although OpenWrt is essentially one of the many
distributions of the Linux family, it still has many derivations from other
desktop or server versions of Linux systems. At the start, we tried to transplant
and compile GlusterF'S onto OpenWrt, but after many trials, the results indicate

a dead end due to the lack of libraries required by the implementation.

Therefore, due to the hardware limitations and constraints on the firmware
and operating system, we decided to develop our own light-weight DFS, which

is specifically designed for mesh routers running OpenWrt firmware, named

31

32

MeshF'S. The objectives and features of MeshFS differ from those of traditional
DFSs. The main design goal of MeshFS is to integrate limited computing
resources and scattered storage resources from the WMN to provide one general
file system interface, which can be directly used like a normal local file system
for applications on upper-layers. The following are the objectives that MeshFS

is designed for and the features provided:

Transparency

MeshFS shall provide a compatible interface that allows clients to use it like a
local Linux virtual file system. Clients shall be able to perform tasks/actions by
calling Linux system calls on files and MeshFS itself, just as if the task/action
were on a local file system (e.g., mount/unmount, change mode/permission,
mknod/mkdir, read/write, etc.). The internal logic and procedures of MeshF'S

shall be completely invisible to clients.

Fail-safe

MeshFS shall provide continuous and robust services. In case of system failures
causing data inaccessibility (e.g., file loss/corruption, mesh router crash, etc.),
MeshF'S should provide data backup and recovery mechanisms to prevent
Single Point of Failure (SPOF) problems. These copies/replications should be
consistent and synchronized. Once data failure occurs, MeshF'S should be able

to automatically recover the data from other copies/replications.

Flexibility

MeshFS should be able to adjust and fit due to scale change in the WMN. When
a new mesh router is added into or an existing mesh router fails/is removed
from the network, MeshF'S should be scalable and able to operate according
to the new topology of the network. MeshF'S should also be modularized for
better extensibility. Functional interfaces should be left for future upgrades
and maintenance (e.g., by applying a new strategy for backup & recovery

functionalities).

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

4.2

Simplicity

As a file system running on a lightweight embedded system with limited
computing ability, MeshF'S should not occupy much in terms of computing
resources and network bandwidth. The number of operations and protocol
messages exchanged during communications should be minimized. The design
and structure of MeshFS should be simplified to provide stable, fast file

services.

System Design & Architecture

In this chapter, the development work was conducted on the same hardware
equipment and mesh network topology used in a previous stage of research
on cloud-based wireless mesh networks and person-based adaptive data man-
agement mechanisms [48]. The mesh routers used for constructing the WMN
and running MeshF'S are single-board computers equipped with a 600MHz
dual core CPU, 256Mbytes of SDRAM memory, and 16Mbytes of flash system
memory [31]. The operating system running on mesh routers is a customized
version of OpenWrt, which is a light-weight Linux distribution for embedded
devices [18|.

In MeshF'S, mesh routers can perform as three different kinds of characters:
Client, Server, and Metaserver. Mesh routers should be in the same local
network or at least reachable to on another, so that they can communicate
through messages. To perform as a character, a mesh router needs to run
the respective agent program. As illustrated in Fig. 4.1, a mesh router can
simultaneously behave as more than one character, and each character has

different responsibilities:

Client

The Client program acts as the entry interface to access content in MeshFS
for applications on upper layers. Through the Client program, MeshFS can be
mounted to any directory in OpenWrt Linux, just like mounting a flash disk or
any other kind of storage equipment. After MeshFS is mounted, the operating

system and other applications can use it just as if it were a regular local file

4.2 System Design & Architecture

33

34

Mesh
Router

MeshFS
Client

MeshFS
Server

S
©
®

MeshFS
Metaserver

Fig. 4.1: Sample Architecture of MeshFS

system. Mesh routers that run Client to mount MeshF'S can access/edit data
in this MeshF'S network.

The Client program needs to be assigned to one of the MeshF'S Servers in
the configuration - this could be the router itself if it is also behaving as a
Server, or the nearest router that is acting as a Server. The Client program
will communicate with the assigned Server in order to access/edit data in this
MeshFS network.

Server

Mesh routers running the Server program will dedicate their disk spaces as
storage nodes in this MeshFS network. The MeshFS Server will register itself
to one Metaserver, hence, the MeshFS network and its members can become

aware of the existence of the Server.

The Server program, which is a daemon run on the mesh router, will correspond-
ingly listen for and handle incoming messages from the Client and Metaserver.
For Clients, most requests are related to Linux system calls (syscall). For
example, if a user types [s in a directory to which MeshF'S is mounted, the
Client program will send a getattr syscall request to its assigned Server. In
response, the Server will retrieve all node attributes from the Metaserver

and send them back to the Client. Sometimes, the Metaserver might send

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

4.3

4.3.1

operation-related requests to the Server(s) (e.g., making backups, transferring
data, checking the integrity of the data, etc.); the Server then handles the

requests using the respective implementation procedures.

Metaserver

The first responsibility of a Mesh Metaserver is to store the metadata of the
MeshF'S network. The following data will be stored in a MeshFS Metaserver:
the metadata of files and directories (e.g., name, size, mode, etc.), the registered
information of the Servers (e.g., hostname, IP address, etc.), the hierarchical
structure of the file system, the physical location for storing files or backups,
and so on. Unlike Clients and Servers, only a few Metaservers are needed
for load balancing and preventing SPOF in a MeshFS network. If multiple
Metaservers are adopted, all of this kind of information should be consistent

and synchronized.

Besides storing metadata, Metaservers are also responsible for making and
verifying backups for fail-safe service. A Metaserver daemon will perform the
following procedures periodically: generating backups for files, checking the
validity and integrity of existing backups, re-backup if a backup is invalid or a

file is updated, and recovering data if a file is compromised.

Implementation

As mentioned in the previous section, there are three types of characters that
mesh routers can perform in a MeshF'S network. Hence, three agent programs
are implemented to conduct the tasks of each one of them. All of the three
agent programs are mainly implemented in C programming language, with

assistance from the use of Shell scripts, SQL, etc.

Messaging

In order to work as a distributed system, messages need to be exchanged for
inter-communications between the mesh routers. Communicating through
messaging occurs frequently during the working time of MeshFS. The message
payload may carry various types of information, such as command type,

file metadata, file location, file content, and so on. Hence, a strong and

4.3 Implementation

35

4.3.2

36

stable message exchanging protocol is required. To facilitate this part of the
development, ZeroMQ (also known as ¥MQ) is adopted as the messaging

module.

ZeroMQ provides tools for developing parallel or distributed applications [22].
ZeroMQ allows users to set up message queues and sockets that are similar to
the IP-based and Unix-based sockets but with high scalability, thus allowing
the user to focus on handling messages instead of managing sockets. ZeroMQ
supports four basic types of messaging: Request-reply, Publish-subscribe, Push-
pull, and Fxclusive-pair. In the development of our software, we chose the

pattern of Request-reply to handle most messages.

To comply with the Request-reply pattern, the first message that is generated
to start a procedure for performing a task is called a request, while further
messages in the same scope of procedure are considered replies or responses.
In MeshF'S; all three kinds of agent programs may generate and send requests;
however, only the Server module can receive and handles messages accordingly.

The following is the general format of a request message:
< request >:< attrl >, < attr2 > ...

A message starts with the request command and a colon, followed a sequence of
attributes separated by commas, which are necessary to complete the request.
Messages are sent out through ZeroM(Q sockets. After receiving the message,
the Server program will extract information from the message, then perform
the logics accordingly. Details of the implementation for processing messages

will be discussed in the next sections.

Using detailed formats, table 4.1 explains all of the requests that appear in
MeshFS. The purpose of most requests is to perform the implementation
logic for a specified Linux syscall; thus, they are given the same name as the
syscall. Those requests prefixed by op indicate that these requests function
for operational purposes, such as backup, recovery, and so on. A detailed

explanation of the purpose of the requests will be provided later.

Client

As introduced earlier, one of the main responsibilities of the MeshFS Client

program is to provide a compatible file system interface to the operating system.

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

Table 4.1: List of Request Messages

Request Format
getattr getattr:<path>
readdir readdir:<path>
open open:<path>
read read: <offset >, <size>,<path>
write write: <offset >, <size>,<path>
mknod mknod: <path>,<mode>
unlink unlink: <path>
mkdir mkdir:<path>,<mode>
rmdir rmdir: <path>
chmod chmod:<path>,<mode>
rename rename:<oldname>,<newname>
renameRemote renameRemote: <oldNodelD >, <newNodelD >
utime utime:<path>,<atime>,<mtime>
truncate truncate: <path>, <size>
op__copy op_copy:<sourcelP> <nodelD>,<targetIP>
op_copy_request || op_copy request:<nodelD> <IP> <path> <port>
op_ checksum op_ checksum:<type>,<nodelD>

Filesystem in Userspace (FUSE, also known as libFUSE) is a library that
allows developers to implement a fully functional file system in a userspace
program [21|. In FUSE, an interface named fuse operations is provided. This
interface is based on C and consists of function pointers for syscalls. What the
developer needs to do is to implement a function for a syscall first, then pass
the reference of the function to fuse operations. After running the program
to mount the file system, FUSE will find the necessary function pointers when
a syscall is invoked through the kernel; the function that was implemented for

this syscall will then be executed.

The following is a sample piece of code to illustrate the basic usage of FUSE.
First, a static function named meshFS read() is implemented and passed to at-
tribute read in meshFS oper, which is a static object of struct fuse_ operations.
Then, meshFS _oper will be passed to the function fuse main() in the main
function. If the user executes this program to mount the file system to a folder,
whenever the operating system tries to read from this folder, the function

meshFS _read() will be called instead of syscall read() in the system kernel.

4.3 Implementation

37

10
11

12

38

#include <fuse.h>
static int meshFS read(...) {

}

static struct fuse operations meshFS oper = {

.read = meshFS_read,

b
int main(int arge, char xargv[]) {

return fuse main(arge, argv, &meshFS _oper, NULL);

}

Table 4.2 shows a list of all implemented syscalls in the MeshF'S Client program.
This list contains only those syscalls that are essential to the building of a
functional file system. These syscalls are also sufficient for completing most

operational tasks.

Table 4.2: List of Syscalls

Syscall

Purpose

meshF'S getattr

Retrieve attributes of a given node

meshFS readdir

Read nodes from a given directory

meshFS open

Open a file descriptor given a path or a file

meshFS read

Read content from a file

meshF'S _ write

Write content into a file

meshF'S mknod

Create a new filesystem node

meshF'S unlink

Delete a file or a link from the filesystem

meshFS mkdir

Create a new directory

meshFS rmdir

Delete a directory from the filesystem

meshFS chmod

Change the permissions of a node

meshFS rename

Rename a node

meshF'S utime Change last access and modification time of a node

meshFS truncate || Truncate a file to a specified length

In addition to the file system interface, the MeshF'S Client is also responsible
for exchanging messages with MeshFS Servers, because all data or metadata
need to be retrieved from the Servers. Hence, in the implementation of these
syscalls, the first task that needs to be done is to set up ZeroMQ sockets to

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

4.3.3

connect to one of the MeshF'S Servers. Then, the respective request message,
which corresponds to the syscall, needs to be constructed and sent out through
the socket. After the Server sends back a response message, the Client extracts
the requested information from it, and finally sends the information back to

the operating system.

Server

Similar to the Client, the MeshFS Server also has two responsibilities: to receive
request messages from Clients, and to retrieve/update information from/to
the Metaserver. The Mesh Client provides the interface to the operating
system, while the Mesh Server implements most of the logic for the entire
MeshFS system. Fig. 4.2 illustrates how the daemon of MeshFS Server
works. At the beginning of the execution, the Server will first initialize the
database connection, and register itself to the Metaserver. Then, the Server
will set up and maintain a ZeroM(Q) server socket and listen to incoming
messages from connected Clients. Once a message is received, it will be put
into a message queue for processing. For each type of message mentioned
above in the messaging section, there is a specific function for processing this
request. In these functions, the Server either retrieves/updates data from/to
the Metaserver (depending on the implementation), or forwards the request

message if the data that is requested is physically stored on another Server.

interaction main() J

Server Metaserver Client

1 : initialize database connection

:(____________2_;!??&‘_"_‘_‘_\9"_(______________ o
3 : register to Metaserver

4 : return ACK

T CRELCCE P EPEEAEEPPEPREPEER L

5 setup socket & listen to messages

loop handle incoming messages) .
6 : send message/request

7 . handle message by different sﬁscall/operations

_______________________________ BiretymACK

Fig. 4.2: Working Sequence of a MeshFS Server

4.3 Implementation

39

4.3.4

40

Generally there are two types of incoming requests: syscalls and operation
calls. Syscall messages can be sent from the Client or forwarded from another
Server, while operation calls can be sent from the Metaserver or another Server.
Table 4.3 lists the operation calls that are implemented in MeshF'S. Details on
how to process these requests will be discussed later, after the implementation

of the Metaserver has been introduced.

Table 4.3: List of Operation Calls

Operation Call Purpose

op__copy Ask the server to request a copy of given file from
another router

op_copy_request || Request a copy of a given file

op_ checksum Request the checksum of a given file

Metaserver

Different from the Mesh Client and Server, the Mesh Metaserver contains not
only a C program, but also a Database for storing metadata. A mesh router

that carries either one, or both, can act as a Metaserver.

Database

The Metaserver database is responsible for storing all of the meta-information
for a MeshF'S network, including the file metadata, directory structure, the
physical location of a file and backups, and so on. The Server programs may
access the database frequently; the database should therefore be able to handle
concurrent or simultaneous requests. Hence, MySQL Server is adopted for the
retention of metadata in this implementation. Fig. 4.3 is an entity-relationship
diagram that illustrates the architecture of the Metaserver database. As the

diagram shows, there are five tables in a Metaserver database:

a. The table Server stores information about Servers in this MeshFS network.
This is also where Servers register their presence when they join the network.
There are three columns in this table: a unique serverID (generated by SHA256

from its hostname and IP address), the hostname, and the IP address.

b. The table Node stores information about all file system nodes in MeshF'S,
which are directories and files. Because MeshFS has been designed for OpenWrt

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

Location Node
PK | filelD | | PK | nodelD
PK | serverlD name
checksum createTime
useFrequency
st_mode
st_size
S st <a,c,m>time
erver st_nlink
PK | serverlD T
hostname
ip
Backup
PK | filelD FSTree
ile
PK | serverlD ;O PK | parentiD
time PK | childID

Fig. 4.3: ER Diagram of a MeshFS Metaserver Database

Linux, all of the columns that appear here are attributes from a Unix-style
file system inode. Each node also has a unique nodelD, which is generated by
SHA256 from its path (the path in a file system is also unique). The frequency
of use is also recorded for further usages, such as for access locality analyses

and predictions.

c. The table F'STree stores the file structure tree in MeshFS. There are only
two columns: parentID and childID, both of which are referenced to nodelDs
in the table Node. Each pair that appears in this table indicates that this
child is under this parent directory. Note that the node referenced by parentID

must be a directory node.

d. The table Location stores information about a file’s physical location. The
table consists of three columns: fileID, serverID, and the MD5 checksum of
this file. The column fileID is referenced to an entity in the table Node, and
the node must be a file. The record indicates that this file is physically stored
on the server that the serverID is referenced to. The checksum is also recorded
so that the integrity of the file can be checked later.

4.3 Implementation

41

42

e. The table Backup has a similar schema to the table Location: there is a
pair consisting of fileID and serverID, but a timestamp appears instead of a
checksum. This table stores the physical location of backups generated from
a file. The timestamp is recorded for further purposes, such as for backup

replacement, version control, and so on.

Storing all meta-information in one database is a centralized method, which
may cause the SPOF problem. Therefore, there should normally be more than
one Metaserver existing in a MeshFS network, depending on the scale. Rsync
will be considered to be adopted to periodically synchronize the data in the

Metaserver program.

Daemon

The purpose and responsibility of a Metaserver program may vary, depending
on the requirements. Since a Metaserver program is an individual program
that directly accesses the database and runs in isolation from MeshFS Clients
and Servers, this module can easily be replaced with other programs that
are implemented for different backup/recovery strategies, or even for fulfilling

further different potential requirements.

In this implementation, the very basic requirement for a Metaserver is to
generate file backups in case data is lost or corrupted. The maximum number
of backups needed for this MeshFS network can be configured. Fig. 4.4 is
the sequence diagram illustrating the strategy of a basic backup functionality,

while Algorithm 2 describes the procedure.

The Metaserver program will periodically call the whole backup procedure
for every file in the file system; the checking period is also configurable. The
procedure can be divided into three steps. First, the original file will be checked.
If the original file is lost and there is a valid backup in the network, the file will
be recovered. If the file does not match the checksum in the database, which
means that the file has been updated, then the checksum will be updated.
Next the existing backups will be checked. If the backup does not match
the checksum, they will all be re-generated together, or the oldest one will
be replaced, depending on the strategy. Finally, if the number of existing

backups has not met the number in the configuration, new backups will be

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

generated on new locations, and the respective information will be written

into the Metaserver database.

Algorithm 2 Check and Generate Backup for Files

1: procedure BACKUPCHECK

2 for each file stored in MeshFS do

3 retrieve fileCheckSum from mesh router

4 if fileCheckSum is changed then

5: update fileC'heckSum to database

6 end if

7

8 for each backup existing in the WMN do

9: verify correctness of backup with fileC'heckSum
10: if backup is not valid then
11: re-backup for file
12: end if
13: end for
14:
15: while neeed more backups do
16: generate new backup
17: update new backup information to database
18: end while
19: end for

20: end procedure

4.3 Implementation 43

interaction backup() /,J

Metaserver Server Server

1: call backu
o : .

loop backup for file /,J

[for every file]
2 : request file checksu

loop recaver lost file)

[file cannot be opened && valid backup(s) exist]
|:- 3 : request backup location

4 : return backup location

T R e CE EE R CE e > | 5: request to recover from backup
6 : return backup

7 : compute file checksum

8 : return file checksum
alt update checksum)

[file updates]

9 : update metadata

T |loop verify backups)

[for every existing backup]
‘J 10 : obtain backup location
11 : request ba(f:kup checksum

»

J',2 : compute backup checksum

13: return badkup checksum

1J 14 : verify backup with fileichecksum

alt re-generate invalid backups)

[backup is invalid] i
15 : request to re-hackup _

16 : send re-backup

| l8:retunACK oo AT TRWMACK

,3—[% :

loop generate backup)

[need more backups]
19 : determine a location to:place backup

20 : request to backup 21 - send backup
. B
23 : return ACK 1< ______ 22:retun ACK U

FJ 24 : update backup metadata

Fig. 4.4: Sequence Diagram of the Backup Function

44 Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

4.3.5 Syscalls

As previously mentioned, most of the syscalls are working on a general Request-
reply pattern: The Client sends a request to the server to which it is connected,
and the server retrieves or updates the information from/to the metaserver
to which it is registered. These syscalls are: getattr(), readdir(), open(),
mknod(), mkdir(), rmdir(), chmod(), utime(), truncate(). Sequence diagram
Fig. 4.5 illustrates the working sequence by which these syscalls are handled
in MeshF'S.

interaction syscall())

Client Server Metaserver

1: call syscq] 2 : request '3 : retrieve or update metadata

.....................] —

: return metadata or ACK: 4 : return metadata or ACK

Fig. 4.5: General Working Sequence of Messaging

However, some special syscalls require much more complex processes: read(),
write(), rename(), unlink(). The procedure that is performed on the MeshFS
Server is described in Algorithm 3, while the entire working sequence of syscall

read() is illustrated in the sequence diagram in Fig. 4.6.

When the operating system calls syscall read() to read a certain file in MeshF'S,
the MeshF'S Client will first send a read request to the Server it is connected
to. Then, the Server will locate the physical location of this file (which can
be the location of the original file or the synchronized copy, depending on the
strategy) from the Metaserver. If the file is physically stored on another Server,
the request message will be forwarded to that router. Otherwise, the Server
will check this file and read the content. If the file is lost or corrupted, the
recovery procedure will be triggered. Then, the required content will be sent
back to the Client, and metadata such as last access time and frequency of

use will be updated.

The operation sequence of syscall write() is similar to that of read() (Algorithm

4 and Fig. 4.7): when the operating system calls it, the Client will send the

4.3 Implementation 45

Algorithm 3 Read() Procedure on Mesh Server
Input: filelD, path, of fset, size
Output: fileContent

1: procedure MESHFS READ

2 fileLocation < retrieveFile Location(filel D)
3

4: if fileLocation is this router then

5: if file cannot be opened then

6 try to recover file from backup

7 end if

8

9: if file is valid then
10: read file content into fileContent
11: else
12: write error message into fileContent
13: end if
14: else
15: forward read request to the router where file is located
16: end if
17:

18: update Metadata database
19: end procedure

Algorithm 4 Write() Procedure on Mesh Server
Input: filelD, path, of fset, size
Output: status
procedure MESHFS WRITE
fileLocation < retrieveFile Location(filel D)

1:

2

3

4 if fileLocation is this router then

5: setup socket to receive fileContent
6 write fileC'ontent into file

7 else

8 forward write request to the router where file is located
9 end if

10:

11: update Metadata database

12: end procedure

request message, and the Server will enquire about the location of the file from
the Metaserver. If the file is physically stored on another mesh router, the
message will be forwarded. Otherwise the content will be written into the file,
and the corresponding metadata (e.g., size, last access time, last modification

time, etc.) will be updated. Then an acknowledgement will be returned to the

46 Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

interaction read())

Client Server Metaserver Server

1: call read
®

2 : request file

- 3: request file location,

<
4 : return file location

alt read file content J

[file stored on another fouter]
5 : request file

: 6 : read conter;|E:|T_|
G e

-

[file store on this routef]
loop recover lost file)

[file cannot be openeél && valid backup(s) exist]

9 : return backup location i
10 : request to recpver from backup -

'
% [— TR,

11 : return backup

I 12 : read content

13 : update metadata_ :

T 14 : return file content T

Fig. 4.6: Sequence Diagram of syscall read()

Client. The difference between write() and read() is that there is no need to

perform an integrity check and data recovery in write().

Since syscall rename() can be used to rename both a directory and a file in
a file system, the implemented rename() also needs to handle the use case
accordingly (Algorithm 5 and Fig. 4.8). After the Server receives a rename
request from a Client, it will first update the node name in the Metaserver
database. Then, the Server will check the node type. If the node is a file, the
remaining procedures will be similar to those of syscall write(): locate the file
and rename it on the physical storage, or forward the message if it is stored on
another router, then location and backup information will be updated in the
Metaserver database. If the node is a directory, the Server needs to recursively

update the metadata for all of the descendants of this node, because all of the

4.3 Implementation

47

48

interaction write())

Client Server Metaserver Server

1: call write
o

2 : request to write

4 3: request file locatior,

<<
4 : return file location
alt write content to file /,J

[file stored on another fouter]

5 : request to write L

6 : write content

7 - returh ACK

-

[file store on this routeﬁ

8 : write content

9 : update metadata

<
T 10 : return ACK

Fig. 4.7: Sequence Diagram of syscall write()

Algorithm 5 Rename() Procedure on Mesh Server

Input: path, newPath
Output: status

1: procedure MESHFS RENAME

2 nodel D < getNodel D(path)

3 newNodel D < getNodel D(newPath)

4: update nodel D to newNodel D in database

5:

6 if node is directory then

7 recursively rename all descendants

8 else if node is file then

9: fileLocation < retrieveF'ile Location(nodel D)
10:
11: if fileLocation is this router then
12: rename file on this router
13: else
14: forward rename request to the router where file is located
15: end if
16: end if

17: end procedure

paths of its descendants will have been modified after the renaming, and a

nodelD will have been generated from the absolute path in MeshF'S.

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

interaction rename() J,]

Client

Server

Metaserver

.1 . call rename : 2 : request rename node |
:

12 : return ACK

3 : update metadata _

i

Server

alt

[node is a directory]

4 : recursively update v

metadata of all successors

[node is afile]
5 : request file location :
G
6 : return file location
alt rename file on physical storage })
[file stored on anothet router]
7 : request rename file -

—l 10 : rename file

8 : rename file

11 : update metadata_

Fig. 4.8: Sequence Diagram of syscall rename()

4.3 Implementation

49

50

Algorithm 6 Unlink() Procedure on Mesh Server

Input: path
Output: status

procedure MESHFS UNLINK
nodel D < getNodel D(path)
delete all entries with nodel D from database

if fileLocation is this router then
delete file from this router

else

1:
2
3
4:
5: fileLocation < retrieveFile Location(nodel D)
6
7
8
9

forward unlink request to the router where file is located

10: end if

11: end procedure

interaction unlink())

Client

1: call unlink :
o

Server

Metaserver

2 : request unlink fil

10 : return ACK

“ 3: request file location :

4 : return file location

Server

[file stored on another ﬁouter}
5 : request:unlink file

alt delete file from physical storage)

'
[

[file store on this routeﬁ

8 : delete file

6 : delete file

-

9 : delete metadata

i

Fig. 4.9: Sequence Diagram of syscall unlink()

Because there is another syscall rmdir() for deleting directories, syscall unlink()
only deletes files in a file system. Hence, its implementation is almost the same
as that of syscall write() (Algorithm 6 and Fig. 4.9). The only difference is that

unlink() deletes files and metadata from physical storage and the Metaserver

database instead of writing new content into them.

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

4.4 Demonstration

In order to demonstrate the features and functionalities of MeshF'S, a website
was built with multimedia resources in MeshFS to evaluate its performance.
The website consists of an index file in HTML, a 720p video file, and other
supplementary files such as images, JavaScript sources, and others. The special
feature of accommodating websites on MeshF'S is that although all files and
resources are physically stored on different routers, MeshFS makes them appear
to be under the same directory as that of web server applications running on

upper layers (e.g., uHTTPd, Lighttpd, Apache, Nginx).

< 192.168.1.1

This webpage is running on MeshFS disk

| m [Department of Computing
e THEERAR

£ L)
Anniveria v

il -- 0:01) === @

Fig. 4.10: Demo Website with Multimedia Resources Hosting on MeshFS
In the demonstration, a 720p video file with a size of approximately 12 MBytes

(12623948 Bytes) and a length of 51 seconds is used to determine whether this

file system can satisfy commercial requirements, such as seamlessly playing

4.4 Demonstration 51

52

routery wSrouter? xrouterz *“elfento

Fig. 4.11: MeshFS Reading Data when Video is Playing

Fig. 4.12: Data Lost without Enabling Backup Function

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

n- - @ 0:20 of) oo @

Fig. 4.13: Video Stopped at the Corrupting Point without Backup

h

m [Department of Computing
e T EFR

i 1 e :)
t ‘X?:'F‘fn'ff-"‘.*’-w'f‘#fjjf

| 5 0:20 of) ey @

Fig. 4.14: Video Continued at the Corrupting Point with Backup

video advertisements in shopping malls without disturbances or failures. This
video file is physically stored on one router several hops away from the router
that acts as the web server. The exact number of hops depends on the network

4.4 Demonstration

53

54

topology and routing tables generated by the WMN itself. At first, it starts
playing the video through the website without enabling the backup & recovery
function and trying to corrupt the file in the middle of the video. As shown in
the upper part of Fig. 4.16, the video can be played very smoothly at first.
However, after all buffered data is played out, the film will be forced to stop
playing at the corrupted point as expected because the file has been corrupted,

and no more data will be buffered.

prmss message (29) read:3792896,131072, /726p.mpd

file [W}ﬂkshFSIIEFEZBZFDSKQFCESSEZEQZQFMM?Q?ﬁﬂsl!lsﬂFS”!?mZ?“ lost, recover from 192.168.103.1
ﬂ.le tmp /meshFS /3EFE2B2FDS3COFCEGSE2EO24FBI9A5440EDACDITAT6ETSBI150FBTI3TAIB2T6A recovered from Ope

Fig. 4.15: Corrupted Data Recovered by MeshFS with Backup/Recovery Enabled

T O
£ r——— —>
no
- backup

video stopped data lost

m Oepartment of Computing
TTHRGE

playing normally

backup
&
recavery

e e T ————

video continued data recovered

Fig. 4.16: Summary of MeshF'S Demo

Next, the backup & recovery function is enabled to determine whether it can
conquer the corruption of the file without affecting the playing of the video.
In this case, MeshF'S will automatically replicate the file on another router
as a redundancy, keep the checksum recorded, and periodically check the

consistency of the file. Then, the video file is played again, and we tried to

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

4.5

corrupt the file at the same point as before. This time, the streaming buffer
will first stop at the corrupted point due to the lost data; however, only a
few seconds later the streaming buffer will again start to grow, and this slight
pause will have no influence at all on the playing process (the lower part of
Fig. 4.16). The reason behind this is that MeshFS detected the corrupted
data when it tried to read the file, and then instantly performed data recovery
from backups. It can be observed that MeshFS was able to quickly detect and
recover data without any disturbances or failures to affect the performance of
the video playing in 720p resolution. Fig. 4.16 summarizes the entire flow of
playing the video from MeshFS with /without enabling the backup /recovery

function.

Evaluation & Limitation

As was introduced at the begining, the main objective of MeshF'S is to utilize

scattered computing and storage resources on an existing wireless mesh network.

The most important requirements for MeshF'S are simplicity and stability.

Hence the access speed of MeshF'S might not be as fast as that of other existing
DFSs. MeshFS only focuses running on mesh routers, which provides very
limited computing capacity. Other popular distributed computing models,

such as MapReduce, might provide overwhelming to mesh routers.

50 —— write

read

40

30

time (S)

20

Q 10k 20k 30k 40k 50k 60k

data size (KB)

Fig. 4.17: Relationship between Data Size and Time in MeshFS

As shown in Fig. 4.17 and Fig. 4.18, the I/O (read() & write()) performance

of MeshF'S is illustrated. It can be observed that data transfer times are

4.5 Evaluation & Limitation

55

56

2000 —e— write
read

1500

1000

speed (KB/S)

500

data size (KB)

Fig. 4.18: Relationship between Data Size and Transfer Speed in MeshFS

growing linearly along with an increase in the size of the data for both read()
and write() in MeshFS. From the relationship between data size, transfer time,
and transfer speed (speed = datasize/time), it can be predicted that transfer
speed should be constant due to the linear growth over time. In Fig. 4.18
it is confirmed that the transfer speed becomes stable after the data reaches
2048 KB in size. The average transfer rate of read() is approximately 1.9
MB/S, while the average transfer rate of write() is approximately 1.4 MB/S.
As discussed earlier, although these two numbers indicate that MeshFS cannot
provide high speed /O as a DFS, the main idea of this system is to gather
and utilize scattered resources among mesh routers to provide an integrated

storage interface with fault-tolerance functionality.

The backup/recovery functionality of MeshFS was demonstrated in the previous
section. To evaluate the performance of this functionality, the data throughput
during the playing of the video will be illustrated to analyze the difference
between enabling and disabling this function, and to determine whether the

requirement for continuous playing can be met.

As shown in Fig. 4.19, the data flows recorded during the playing of the video
appear to differ between the enabling and disabling of the backup/recovery
function. The video will be corrupted at the point of the 20th second in this
experiment. During the first 20 seconds, both tests behave similarly: the data
transfer speeds are at the middle level during playing. At the point of the 20th
second, the speeds drop rapidly due to the loss of data. If the backup function

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

—e— no-backup
- backt
— AN —=— backup
N w—y P

0.8

speed (MB/S)

0.6

0.4

35 40

time ()

Fig. 4.19: Comparison of the Flow of Data when Playing Videos in MeshFS with
the Backup Enabled/Disabled

is disabled, the transfer rate will remain very low because only a few messages
are exchanged afterwards. However, if the backup function is enabled, the
transfer rate will suddenly rise, then drop to a normal level after a few seconds.
The reason for this is that after MeshF'S has detected the loss of data at the
point of the 20th second, it will start to invoke the data recovery process by
transferring previous backups from other routers. After a successful recovery,

the transfer rate will drop back to the middle level and the video will keep
playing without interruption.

—e— yidea_6M
—=— video_12M

0.8

speed (MB/S)

0.6 /

0.2

0 5 10 15 20 25 30

time (S)

Fig. 4.20: Comparison of the Flow of Data when Playing Videos of Different Sizes
in MeshFS with the Backup Enabled

4.5 Evaluation & Limitation 57

58

Fig. 4.20 gives a comparison of data transfer speeds when playing videos of
different sizes with the backup/recovery function enabled. One size is the
aforementioned 12 MB 720p video and another is a half-length copy of it, the
size of which is also approximately half that of the original. Both of the videos
will be corrupted at the point of the 20th second. It can be observed that the
data flows of both videos appear to be similar: both behave in a relatively
stable manner during the first 20 seconds, then drop down to nearly zero when
reaching the point of corruption. After that, both rise rapidly as the recovery
process starts, then drop down again into a normal rate. The widths of the
peaks on the graph depend on the size of the videos. Hence, about twice as
much time is needed to recover the flow of data for a 12 MB video than for a
6 MB video. Fig. 4.21 and 4.22 illustrate the relationship between recovery
time and speed to the size of video files. It can be observed from the graph
that recovery time grows linearly with the increase in file size, while the speed

of recovery remains very stable for all sizes of tested video files.

20

time (S)

0 5 10 15 20 25 30

size (MB)

Fig. 4.21: Relationship between Recovery Time and Size of Video Files

MeshF'S provides a file system interface and storage spaces for the operating
system and upper-layer applications; however, how to utilize the file system
is fully dependent on the operating system. This limitation arises at calling
syscall read() and write(). The operating system does not read/write all
content in one syscall. Instead, the operating system calls read()/write() for a
chunk once a time. When the operating system invokes these two syscalls, the
system kernel will pass on the size of the content to the syscall. For example,
if there is a file with the size of 1024KB stored in MeshFS, and the size of the
chunk for the operating system is 16KB, then the kernel will call syscall read()

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

speed (MB/S)
o . o -
S o [- ¥

I
o

=]

] 5 10 15 20 25 30

size (MB)

Fig. 4.22: Relationship between Recovery Speed and Size of Video Files

64 times to read the entire file. The smaller the chunk size, the more messages
there will be. Since one message is generated and sent out every time the
syscall is called, extra calls will cause extra network traffic, more SQL queries,

and more time for the Server to process the message.

In OpenWrt Linux, the maximum size of the chunk for syscall read() is 128KB
(131072 Bytes), which means that one message is required to read every 128KB
of data. Moreover, the size of the chunk for a syscall write() varies depending
on the caller program. Testing results show that the system tool c¢p, which
is a preloaded command for copying files in the shell, only uses a 4KB chunk
size to call a syscall write(), which is very slow compared to a read(). This
limitation can partially be overcome by replacing c¢p with another system tool
dd for 1/O operations, and mounting MeshF'S with the option '
This operation allows FUSE to call a write() at a 128KB chunk size, which is
equivalent to a read(). 128KB is the maximum chunk size that current versions
of OpenWrt and FUSE can support. Modifications of the source code of the

system kernel and FUSE are required in order to overcome this barrier.

Table 4.4 shows the difference between using the normal mode or using the
"big writes" mode for a syscall write(). To transfer the aforementioned 720p
video file with a size of 12 MBytes (12623948 Bytes), the normal mode takes
265.16 seconds while the "big writes" mode takes only 9.97 seconds. The
"big writes" mode is 26.6 times faster than the normal mode, while the size

of the message unit is 1/32 that of the normal writing mode. To transfer

4.5 Evaluation & Limitation

-0 big_writes".

59

4.6

60

Table 4.4: Comparison between the Normal Mode and the "big writes" Mode for
write()

Size Message Unit Size Time Speed
12623948 Bytes 4096 Bytes (4 KB) 265.16 S || 46.49 KB/S
(12 MBytes) 131072 Bytes (128 KB) || 9.97 S || 1236.52 KB/S
35027658 Bytes 4096 Bytes (4 KB) 677.03 S || 50.52 KB/S
(33.4 MBytes) || 131072 Bytes (128 KB) || 23.57 S || 1451.28 KB/S

another video file with a size of 33.4 MBytes (35027658 Bytes), the normal
mode takes 677.03 seconds, while the "big writes" mode takes only 23.57
seconds to transfer this file. The "big writes" mode is 28.7 times faster than
normal mode. The data transfer speed of write() matches the recorded value
in Fig. 4.18.

Another limitation of this implementation is that only a basic strategy for the
backup /recovery function has been implemented to prove that this system
can work on mesh routers. As previously mentioned, this strategy module
is actually a daemon program that is run on Metaservers, and can be easily

replaced with more advanced programs.

Conclusion

This chapter has presented MeshF'S, a distributed file system for cloud-based
wireless mesh networks with automatic backup/recovery as the fault-tolerance,
and a Unix/Linux mountable interface for accessing the file system. With
respect to speed, although MeshF'S is not as competitive with popular DFS
solutions, it focuses on integrating mesh routers together to better utilize
scattered storage resources from mesh routers in a wireless mesh network.
It is simple, lightweight, cooperative, and has essential backup/redundancy

functionalities.

In the next chapter of this research study, it is planned to develop a group-
based adaptive data management mechanism for cloud-based wireless mesh
networks, which is able to replicate data that can then be shared by multiple
mesh clients to achieve an optimal access cost, instead of simply backing
up data. These replications are consistent and entirely synchronized, thus

allowing users to access this data from their closest location to reduce access

Chapter 4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh

overhead. The mechanism should be able to adaptively decide how many
replications are needed and where these replications should be placed in order
to minimize the total cost of accessing and transferring the data. MeshFS will
be adopted as the foundation for providing storage services and supporting

data replication/moving operations.

4.6 Conclusion

61

Group-based Adaptive Data
Management Mechanism

The third part of this project is to investigate a group-based adaptive data
management mechanism. In this scenario, a file may be shared/owned by
multiple mesh clients. Hence the file cannot simply be moved along with a
single mesh client. Much like with the person-based adaptive data management
mechanism, the purpose of group-based adaptive data management mechanism
is to enhance the speed with which mesh clients can access stored files, and
decrease the cost/overhead involved in transmitting data. With the aim of
satisfying these objectives, the mechanism tries to find an optimal solution to
place the files in the mesh routers. A typical scenario with such requirements

is called the e-book scenario.

5.1 E-book Scenario

Fig. 5.1: E-book Scenario

63

64

The e-book scenario normally occurs in educational environments: in colleges or
schools, teachers often need to upload certain digital resources (e.g., electronic
textbooks, notes, assignment papers, etc.) to cloud storage so that students can
access/download these resources to their own devices for viewing or printing
(Fig. 5.1).

1 student : cost c;+C>

Fig. 5.2: E-book Scenario: Cost for 1 Student

Physically, the cloud storage involved in this scenario consists of mesh routers
with storage capacity from the wireless mesh network. After uploading, an
electronic resource (file) is physically stored on a certain router, and its storage
information is registered in the database so the system can become aware of its
location. When a user wants to download this file, the file will be transferred
through the routing path on the mesh network at a downloading cost (e.g.,
c1 + o) (Fig. 5.2).

If multiple users share the same interest in a file (e.g., 100 students from the
same class want to download the lecture notes that were just uploaded), the
downloading process is repeated, resulting in a high downloading cost (e.g.,
totalling 100(c; + ¢2) for all of the students in the example) (Fig. 5.3).

Chapter 5 Group-based Adaptive Data Management Mechanism

100 students : cost 100(c;+c>)

Fig. 5.3: E-book Scenario: Cost for 100 Students

Although the students are not necessarily connected to the same router in the
network, they generally tend to remain close. The phenomenon of frequent
accessing of the same data is called temporal locality. 1t is likely that students
will share a part of the routing path, and repeated transfers over this path
are redundant and wasteful. If the file can be moved/cached at routers near
the students, network resources can be utilized more efficiently. In Fig. 5.4,
the file was moved to the next mesh router, which is one hop closer to the
group of students. This one-time movement only costs ¢;. Students download
this file from the new location, which costs 100c,. Therefore, the total cost is
c1 4+ 100¢s, which saves 99¢; for 100 students to download this file.

As shown in Fig. 5.5, students may spread across campus to access the
materials provided by the lecturer. Hence, access or downloading requests for
the file may come from all over the WMN. The ultimate goal of the group-based
adaptive data management mechanism is to locate one or more of the most
suitable mesh routers, based on predicted access requests, to store the files so

that the global cost of downloading can be minimized.

5.1 E-book Scenario

65

:_‘!'/
100 students after file move
saved 99c;

Fig. 5.4: E-book Scenario: Saving 99¢; Cost after the File is Moved

9 o
“

e o 7 D

. s,
lemts]

I 8 N\
/(q /

d: cost ¢c;+100c>»

Fig. 5.5: E-book Scenario: Multiple Copies of the File are Spread in the WMN

66 Chapter 5 Group-based Adaptive Data Management Mechanism

5.2

5.2.1

The algorithm and mechanism to be introduced in the next sections will be
implemented and integrated into the MeshFS distributed file system proposed
in Chapter 4 as a storage strategy. Hence, all data or file replicas will be
stored on mesh routers, and the decision of choosing physical locations will
be handled internally by the file system, which is totally transparent to
upper layer applications such as the web application for teachers/students to
upload/download files. By storing data on mesh routers, external servers or
data centres can be eliminated, thus the cost of purchasing, installing, and

maintaining of such expensive equipment can be saved.

Model & Algorithm

Model

A Wireless Mesh Network deploying MeshFS consists of n servers and m files:
the n servers, which are routers providing storage space to allow clients to
access files, are denoted as R = [ry, ry, ... 7,], and each server is equipped with

memory space M = [my, ma, ... m,|; the m files stored on servers are denoted

as F = [f1, fa,... fm], and each file has a size of: S = [s1, 59, ... 5]

For each file f;, there are extra metadata stored in MeshFS: 1. predicted access
based on past access records: (nodel D, serverI D, timestamp); 2. the expected
access vector in a period predicted from past records: A = [ay, as, . . . a,], where
a; indicates the number of requests generated by the router i (e.g., if access
requests are coming from router 2, router 3, router 1, then router 3 again, then
A =[1,1,2]); 3. the file has k current copies at different locations (servers):
L = [l1,ls,...1l;], where [; indicates whether the router stores the file (e.g., if
the file has two copies on router 2 and router 3, then L = [0, 1, 1]).

For the entire wireless mesh network, there is a cost matrix:

C11 C2 -+ Cip

Co1 C22 -+ Cop
C =

Cnl Cn2 " Cpp

5.2 Model & Algorithm

67

5.2.2

5.2.3

68

where ¢;; is the cost that indicates the time needed to transfer file f, and
can be determined (e.g., by s/bandwidth). Other parameters may also be

introduced (e.g., loss rate, delay, etc.) to enhance the accuracy of the cost.

Problem Definition
The problem can be formulated as:

Given A = [ay, a9, ...a,], n, L = [l1,ls,...lk], k, and C, find a new (L' =

5, ... 1], k") so the total expected cost can be optimized.
I, 1 ol K the total ted cost b timized
The total expected cost consists of two parts:

1. Expected cost for every server to download the nearest copy from (L', k')

n
Z a/i) Cil%earest
=1

2. Cost to transfer the current copies or make new copies from (L, k) to

(L, %)
k!

: : Cl;l'/nearest

=1
Proposed Solution & Algorithm
Proof of NP-Completeness

First, transform this optimization problem into a decision problem:

Given A = [ay,ag,...a,], n, L = [l1,ls,...1l;], k, and C, is there a new
(L' = 1[I}, 1, ... 1], k') such that makes its total expected cost less than
before?

g/ /

If there is a certificate (L' = [I1,1},...1},], k), it can be verified by computing

its total expected cost:
n

kl
: :az) cil;r,earest + : :cl'lil;warest
=1

=1

Chapter 5 Group-based Adaptive Data Management Mechanism

which is in polynomial time, so the decision problem is NP.

The decision problem can be reduced to the subset sum problem, which is
NP-hard.

So the decision problem, as well as the optimization problem, is NP-Complete.

Brute-force Solution

Intuitively, this problem can be directly solved by simply traversing through
all of the possibilities.

For k' € [1,n], there are (Z/) possible solutions in order to find:

n K
k,Ine[llnn] : : ai) Cil'/n,ea'rest _|_ : : Cl;l',nearest
’ i=1

i=1

This method requires a time complexity of O(2") to compute and evaluate
every possible solution. The Brute-force method can guarantee a global
optimum, however it is too time-consuming and not scalable to evaluate a
large WMN consisting of a large number of routers. On the other hand, as

mentioned in previous chapters, the equipment (mesh routers) that will be

used to accommodate these algorithms has very limited computing resources.

Therefore, it is necessary to investigate a heuristic approach that has higher

efficiency.

Heuristic Solution

The purpose of this proposed heuristic algorithm (Algorithm 7) is to place file
copies iteratively based on predicted access rates and storage spaces with the

aim of minimizing the expected cost.

The algorithm takes a vector of previous copy locations L and a vector of
past access records A as input, and delivers a vector of new copy locations
L’ as output (i.e., to place the copies) so that the total expected cost can be

minimized. Intuitively, & (or |L|) represents the number of previous copies in

5.2 Model & Algorithm

69

70

the network, n (or |A]) is the number of access requests for the file from the
whole network, and k" (or |L'|) refers to the number of copies that will exist in

the network after the transfer.

At the start of the procedure, the algorithm initializes two sets: L’ is initially
an empty set, while G’ contains all of the servers in the network. The algorithm
also computes the original total cost from original copy locations L. Then, the
procedure goes into a loop, which performs as the main part of the algorithm.
The loop will first choose the node (MeshF'S server) with the greatest access
density from the network, which means that this node has the largest number
of access requests from both itself and its neighbours. The algorithm then
calculates the total expected cost of adding this node into L’. If this cost is
less than the previous cost from the last round, this node will be added into
L', and it will be removed from set G’ as well as its neighbours. This loop will
continue until the cost can no longer be reduced. Finally, the set L’ will be

the output result.

Algorithm 7 Find Locations of Copies
Input: previous locations of copies L, access records A
Output: new locations of copies L'

1: procedure FINDLOCATIONS
2 L'+ 0

3 G’ < set of servers

4: originCost < calCost(L)
5: lastCost < originCost
6

7

8

9

loop

[< server € G’ with max(accesses + > (neighbour))
: curCost < calCost(L' + {l})
10:

11: if curCost > lastCost then

12: break

13: end if

14:

15: lastCost < curCost

16: L'+ L'+ {l}

17: G+ G'\ ({l} + neighbours of)
18: end loop

19:

20: return L/

21: end procedure

The calculation of the total expected cost of a set of servers is abstracted as

another procedure (Algorithm 8). As discussed in previous sections, the total

Chapter 5 Group-based Adaptive Data Management Mechanism

5.3

expected cost consists of two parts: the expected cost for every request server
from A to download the nearest copy from (L', k'), and the cost to transfer
current copies or make new copies from (L, k) to (L', k’). The accumulative
result will be the total expected cost of applying new locations of copies L’
into MeshFS in the WMN.

Algorithm 8 Calculate Total Expected Cost

Input: previous locations of copies L, current locations of copies L', access
records A

Output: total expected cost ¢

1: procedure FINDLOCATIONS

2 c+ 0

3

4: for each I’ € L' do

5: [< the closest server to I’ € L

6 ¢ < ¢ + transfer cost from [to
7 end for

8

9: for each a € A do

10: " < the closest server to a € L'
11: ¢ < ¢ + transfer cost from !’ to a
12: end for

13:

14: return c

15: end procedure

This heuristic algorithm will significantly reduce the computing time needed
to find a solution to the problem, however it may converge into a local rather
than a global optimum. Hence, there is a tradeoff between efficiency and
accuracy. The performance of this algorithm will be evaluated in the next

section through simulations.

Simulation & Evaluation

In order to evaluate the performance of this algorithm for a group-based

adaptive data management mechanism, a simulation program was implemented.

The entire simulation procedure consists of four steps:

1. Initialize the network configuration, set simulation parameters, and

generate access requests;

5.3 Simulation & Evaluation

71

5.3.1

72

2. Calculate the original cost based on the network topology and vector of

access requests;
3. Re-allocate file replication(s) according to the algorithm;

4. Calculate the current cost and compare it to the original cost.

In the simulations, various parameters (e.g., number of routers, bandwidth
of links, number of files, file sizes, number of access requests) are varied to
evaluate their effects. In the simulation, the expected access vector A is

generated by uniform distribution.

Influence of a Single Parameter

The following simulations essentially study the cost reduction resulting from
the application of the algorithm, in comparison with the original cost. The
cost reduction reflects the cost that can be saved by applying the algorithm.
The higher the cost reduction, the better the performance. In each case, only
one parameter will change while other parameters stay constant. For example,
if the original cost is 10c, the new cost after applying the heuristic algorithm

is ¢. The cost reduction will then be: cost reduction = 1 — 1_8c = 90%.

Number of Routers

In this simulation, the network bandwidth is fixed at 100 MB/s, and there are
20 files with file sizes of 512 MB. Each file has 20, 50, or 100 requests from

different routers. The number of routers varies from 5 to 200.

Fig. 5.6 illustrates the relationship between cost reduction and number of
routers. It can be observed that the algorithm performs best when the number
of routers is relatively small (approximately 20). The cost reduction decreases
when the number of routers increases. This decrease cost reduction stops after
the number of routers exceeds 50. The reason for this behaviour is that due
to the large scale of the network, the algorithm tends to generate more file
replications to ensure a lower access cost. However, more file copies also lead
to higher costs in making these copies. Hence, the cost reduction becomes
stable.

Chapter 5 Group-based Adaptive Data Management Mechanism

100
—a— 20 requests
—=— 50 requests
—+— 100 requests

80

60

40

cost reduction (%)

20

0 50 100 150 200

number of routers

Fig. 5.6: Relationship between Cost Reduction and Number of Routers

Link Bandwidth

In this simulation, the number of routers in the network is set to be 20, 50,
and 100, with bandwidth varying from 5 to 200 MB/s. The number of files is

20, with fixed file sizes of 512 MB, while each file has 20 requests from different
routers.

100
—e— 20 routers
—=— 50 routers
—+— 100 routers

80

60

40

cost reduction (%)

20

0 50 100 150 200

link bandwidth

Fig. 5.7: Relationship between Cost Reduction and Link Bandwidth
Fig. 5.7 shows the relationship between cost reduction and link bandwidth in

the network. It can be seen that the link bandwidth between mesh routers has

no effect on the performance of this algorithm, although the algorithm will

5.3 Simulation & Evaluation 73

74

take bandwidth into account in calculating the cost. However, the change in
bandwidth will not affect the cost reduction because we are evaluating relative

ratios instead of absolute costs.

Number of Files

In this simulation, the number of routers in the network is set to be 20, 50,
and 100, with a bandwidth of 100 MB/s. The number of files varies from 5
to 200, with fixed file sizes of 512 MB, while each file has 20 requests from

different routers.

100
—a— 20 routers
50 routers
=+ 100 routers

80

60

40

cost reduction (%)

20

0 50 100 150 200

number of files

Fig. 5.8: Relationship between Cost Reduction and Number of Files

Fig. 5.8 shows the relationship between cost reduction and number of files. It
can also be observed that the number of files has no influence on the algorithm’s
performance because the algorithm is file-oriented. For each file, the algorithm
will be applied to adjust the locations of its copies. Hence, it is not concerned

about how many files exist in the network.

File Size

In this simulation, the number of routers in the network is set at 20, 50, and
100, with a bandwidth of 100 MB/s. The number of files is 20, with file sizes
varying from 4 MB to 2048 MB, while each file has 20 requests from different
routers.

Chapter 5 Group-based Adaptive Data Management Mechanism

5.3.2

100
—e— 20 routers

50 routers
—+— 100 routers

80

¥ 60

40

cost reduction (%)

20

0 500 1000 1500 2000

file size

Fig. 5.9: Relationship between Cost Reduction and File Size

Fig. 5.9 illustrates the relationship between cost reduction and file size. Similar
to link bandwidth, file sizes do not affect the algorithm’s performance since
the size is first used to calculate the cost but is later cancelled, during the

calculation of the cost ratio.

Number of Requests

In this simulation, the number of routers in the network is set to be 20, 50, and
100, with a bandwidth of 100 MB/s. The number of files is 20, with fixed file
sizes of 512 MB, while each file has 5 to 200 requests from different routers.

Fig. 5.10 shows the relationship between cost reduction and the number of
access requests for each file. It can be observed that the cost reduction increases
along with the number of requests. The reason for this has been explained in
a previous e-book section: generating a copy is a one-time cost; however, if
requests come from the same place, multiple costs can be saved. Hence, the

algorithm will be more effective when there are more access requests.

Influence of a Combination of Parameters

From previous simulations, it can be concluded that only changes in the
number of routers and the number of requests will affect the performance of

this algorithm, while link bandwidth, number of files, and file size have no

5.3 Simulation & Evaluation

75

100
—e— 20 routers
—=— 50 routers
—+— 100 routers

B0

60

40

cost reduction (%)

20

0 50 100 150 200

number of requests

Fig. 5.10: Relationship between Cost Reduction and Number of Requests

influence on its effectiveness. Hence in this simulation, the number of routers
varies from 5 to 200, with the network bandwidth fixed at 100 MB/s, the
number of files at 20 with a file size of 512 MB, while each file has 5 to 200
requests from different routers.

Number of Routers vs. Number of Requests

100
—a— 5 requests

—=— 10 requests
—4— 20 requests
== 50 requests
80 =w— 100 requests
=t 200 requests

60

40

cost reduction (%)

>(
|

20

100 150 200

number of routers

Fig. 5.11: Relationship between Cost Reduction and Number of Routers with Dif-
ferent Numbers of Requests

76 Chapter 5 Group-based Adaptive Data Management Mechanism

Fig. 5.11 illustrates the relationship between cost reduction and the number of
routers and number of requests. It can be observed that the trends are similar:
the cost reduction will decrease when the number of routers increases, and the

reduction will increase if there are more access requests for each file.

Number of Requests vs. Number of Routers

100

—e— 5 routers
10 routers
—+— 20 routers
== 50 routers
—#— 100 routers
—— 200 routers

cost reduction (%)

20

0 50 100 150 200

number of requests

Fig. 5.12: Relationship between Cost Reduction and Number of Requests with
Different Numbers of Routers

Fig. 5.12 also shows the same relationship but from a different perspective.
Similar results can also be seen in this diagram: fewer routers will keep the
cost reduction high, thus the performance will be better, while more requests

can improve the utilization of replications, hence enhancing effectiveness.

Surface Diagram

Fig. 5.13 is a 3D surface diagram that describes the occurrence of cost
reduction under different numbers of routers and numbers of requests. This
surface diagram is a combination of line plots from the previous two diagrams,
which presents a more comprehensive view. To facilitate the interpretation of
this diagram, higher values of cost reduction are marked in red while smaller
values are marked in blue.

5.3 Simulation & Evaluation

77

5.3.3

78

90
80
70
cost reduction |
60 [

50

40

200

150
50

100

101
nquDer of requests
number of routers

150 o 50

200 @

Fig. 5.13: Surface Diagram of Cost Reduction, Number of Requests, and Number
of Routers

It can be observed that when there are only a few requests, the cost reduction
will be low (around 35%), and the number of routers has only a small effect on
the cost reduction. When the number of requests starts growing, the influence
from the number of routers becomes more significant. When the scale of the
network becomes smaller and the number of requests becomes larger, the cost

reduction increases more rapidly, with a maximum change of nearly 97.5%.

From the diagram we can observe that the cost reduction will increase more
quickly when the number of requests grows. However, when the number of
routers grows at the same pace, the cost reduction will drop more slowly.
Hence, the number of access requests has more influence than the number of

mesh routers on the performance of this algorithm.

Comparison to the Brute-Force Solution

To better demonstrate the efficiency of this heuristic algorithm, we have also
conducted experiments to compare this algorithm with the Brute-force method.

As mentioned in subsection 5.2.3, the Brute-force method will take binomial

Chapter 5 Group-based Adaptive Data Management Mechanism

time (O(2") time complexity) to compute and evaluate every possible solution

to deliver a global optimum. Hence, we have two results in this comparison:

1. Cost and effectiveness ratio to evaluate the effectiveness of the heuristic

algorithm as compared to the global optimum;

2. Computation time and efficiency ratio to compare the time consumed by

these two algorithms.

In this simulation, the number of routers in the network varies from 5 to 15,
with a bandwidth of 100 MB/s. The number of files is 5, with fixed file sizes
of 512 MB, while each file has 5 to 200 requests from different routers.

—e— result

25Kk| /- optimal value

cost
\

10k

5k!

6 ;] 10 12 14

number of routers

Fig. 5.14: Relationship between Cost and Number of Routers in Comparison with
the Brute-Force Algorithm

Fig. 5.14 describes the relationship between the recorded cost and the number
of routers. The blue line shows the result of the heuristic algorithm, while
the orange line shows the optimal value of the Brute-force method. It can be
observed that these two lines almost coincide with each other, which means
that the results from the heuristic algorithm are very close to the optimal

result.

Fig. 5.15 shows the relationship between the effectiveness ratio and the
number of routers. The line represents the average values, while the scattered
dots are recorded values. The effectiveness ratio gives the ratio of the cost
reductions of the heuristic algorithm and the Brute-force algorithm. As

previously discussed, the heuristic algorithm might deliver a local optimum,

5.3 Simulation & Evaluation

79

80

104

102

H
100 W . H -

effectiveness ratio (%)

98

a6

6 8 10 12z 14

number of routers

Fig. 5.15: Relationship between the Effectiveness Ratio and the Number of Routers
in Comparison with the Brute-Force Algorithm

while the Brute-force algorithm can guarantee the global optimum at the
expense of a long computation time. Hence, if the effectiveness ratio is equal to
100%, this means that the heuristic algorithm has reached the global optimum.
If the ratio is greater than 100%, this means that the heuristic algorithm only
gives out a local optimum as a result. From Fig. 5.15 we see that most of
the time, this heuristic algorithm can achieve optimal results. In addition,
the results are generally close to the global optimum, even when the heuristic
algorithm cannot reach the global optimum. The difference is only within 4%,

thus indicating the effectiveness of the heuristic algorithm.

Fig. 5.16 shows the relationship between computation time and the number
of routers. The blue line shows the time taken by the heuristic algorithm,
while the orange line shows the time taken by the Brute-force method. It
can be observed that the time taken by the Brute-force method is growing
exponentially, while the time taken by the heuristic algorithm stays at a very
small value (less than one second).

Fig. 5.17 shows the relationship between the efficiency ratio and the number
of routers. The line was drawn along the average values, while the scattered
dots are recorded values. The efficiency ratio compares the heuristic algorithm
and the Brute-force algorithm in the time needed to deliver the results. As
previously mentioned, the Brute-force method takes a time complexity of
O(2™), where n represents the number of routers in the network. Hence, the

time needed to compute the result through the Brute-force method increases

Chapter 5 Group-based Adaptive Data Management Mechanism

2000 _—
—e— heuristic

#— brute-force

1500

1000

computation time (S)

500

number of routers

Fig. 5.16: Relationship between Computation Time and Number of Routers in
Comparison with the Brute-Force Algorithm

50
40

30

efficiency ratio (%)

20

10

6 8 10 12 14

number of routers

Fig. 5.17: Relationship between the Efficiency Ratio and the Number of Routers in
Comparison with the Brute-Force Algorithm

exponentially, and Fig. 5.17 indicates that the ratio curve drops exponentially.
When the number of routers in the network is 5, the heuristic algorithm will
take about 45% to 50% of the amount of time used by the brute-force method
to output the result. When there are eight routers in the network, the ratio
drops to within 10%. After the size of the network exceeds 10, the heuristic
algorithm needs only less than 1% of the amount of time to deliver the result
as compared to the time required to try out all possibilities. Again, the results

indicate that the heuristic algorithm should be effective.

5.3 Simulation & Evaluation 81

5.3.4 Comparison to Genetic Algorithm

Model

In order to apply the genetic algorithm to the group-based adaptive data
management mechanism, the mathematical models need to be adjusted to
suit the features of the genetic algorithm. In this experiment, we involved
available memory spaces on mesh routers to consider multiple files at one time.
In this GA model, as with the heuristic algorithm, there are also n servers and
m files. The n servers are denoted as R = [ry, 79, ...r,] with memory space
M = [mq,mo,...my,]; the m files are denoted as F = [fi, fo, ... fiu] with size

S = [s1,82,. . Sm]-

This time we use a matrix to represent the locations of copies:

lll 112 lln
I — l21 l22 l2n
lml lm2 lmn

where each [;; indicates the existence of file ¢ at router j. l;; can be either 0 or
1. 1 means that the router has a copy of this file; 0 otherwise. The matrix L
can be used in the genetic algorithm to represent chromosomes. The validity

of a chromosome can be verified by: SL < M, which is

i he -+ i
(31 sm> 52:1 52:2 lg:n < <m1 S mn)
it w2+ L

If SL is less than M, this chromosome L is valid.

Algorithm

1. Initialization
The original copy locations L, which is the first place where the file

has been submitted, will be initialized as the first generation of the

82 Chapter 5 Group-based Adaptive Data Management Mechanism

genetic algorithm. Inspired by [24, 25, 26|, a structure of 2-dimensional
chromosome is adopted to better illustrate the relationship between copy
location, copy size, and the available space of routers. The structure and
usage of this kind of 2-dimensional chromosome will be explained in the

crossover section.

. Evaluation
The same procedure used in the heuristic algorithm to compute the cost
after applying L is used as a fitness function to evaluate the value of this

chromosome (shown in Algorithm 9).

Algorithm 9 Calculate the Total Expected Cost

Input: previous locations of copies L, current locations of copies L', access
records A
Output: total expected cost ¢

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:

procedure FINDLOCATIONS
c+0

for each I’ € L' do

[+ the closest server to ' € L

¢ < ¢ + transfer cost from [to '
end for

for each a € A do
" < the closest server to a € L’
¢ < ¢ + transfer cost from !’ to a
end for

return c

15: end procedure

The total expected cost consists of two parts: the expected cost for every
request server from A to download the nearest copy from (L, k), and
the cost to transfer the current copies or to make new copies from (L, k)
to (L', k’). The accumulative result will be the total expected cost of

applying new locations of copies L’ into MeshF'S in the WMN.

. Selection
As mentioned earlier, a chromosome can be verified by SL < M (i.e.,
to test whether it is a valid chromosome). If the result of multiplying
SL is less than or equal to M, which means that every mesh router in

the WMN has enough space to store those copies whose locations are

5.3 Simulation & Evaluation

83

84

represented by L, then this chromosome is valid and will be shortlisted
for reproducing the next generation. If the result of multiplying SL
exceeds the storage capacity represented by M, this means the WMN
does not have enough space to accommodate these copies, and thus this

chromosome will be discarded.

. Crossover

Since the chromosomes used in this genetic algorithm are in the form of
a two-dimensional matrix, the crossover procedure can be done either
horizontally or vertically. The position of the crossing can also be altered
in different rows/columns. In every generation, each individual will
crossover with every other sibling to reproduce the next generation. The

following illustrates this procedure:

Vertical Crossover:

lll l12 oot oo l13 l14 lll l12 l13 l14
l21 l22 oot + oot l23 l24 — l21 l22 l23 l24
l3l l32 oot oot l33 l34 l3l 132 l33 l34
l41 l42 oot oot l43 l44 l41 l42 l43 l44

il hLis lig L lLie bLis lig
l I l l e e l l l l
21 la2 l2g l24 n N IR
l31 s sz lsa 31 lzg I3z 34
lag lag Uzl lag lao lug lug
. Mutation

In addition to crossovers, mutations are another important element in
genetic algorithms. A mutation makes it possible to stand out from the
local optimum. It is used to introduce more possibilities into the next
generation. After a crossover, each element in the chromosome matrix

will change from 0 to 1 or 1 to 0 with a mutation probability of 10%.

. Termination

The iteration will stop when the fitness value stops increasing for several
generations. One hundred generations is considered to be a suitable
stopping point in this simulation because most cases become stable at

this point from the results.

Chapter 5 Group-based Adaptive Data Management Mechanism

Example

For example, if there is a network with three routers and two files, file 1 has
one copy on router 1 and router 2, and file 2 has one copy on router 1 and

router 3, the matrix of the copy locations will be:
110
L=
[1 0 1]

The first generation of the population will be generated by mutating this

chromosome. In these experiments, each generation will keep a certain number

of the best individuals to reproduce the next generation by means of crossover.

For example, if we keep the best four individuals in every generation, then the

first generation might be:

L1:100,L2:111,L3:110,L4:100
1 01 1 01 011 1 11

Children reproduced by vertical crossover before mutation:

11— 1 01 L2 1 00 L3 — 1 00 L4— 1 10 ’
1 01 1 01 1 01 1 01

L5 — 110 L6 — 110 L7 - 1 10 L8 — 1 11 ’
10 1 01 0 1 011

Lo — 110 L10 — 10 L1l — 1 01 112 — 1 00
011 1 11 1 1 11

L1— 1 00 L2 — 1 00 L3 — 1 00 L4— 1 1 ’
1 01 011 1 11 1 01

L5 — 1 11 L6 — 1 11 L7 1 10 L8 — 1 0 ’
011 1 11 1 01 1 01

Lo — 110 L10 - 100 L1l 1 00 L12 = 1 00
1 11 1 01 1 01 011

5.3 Simulation & Evaluation

85

86

During the crossover procedure, each individual in the current generation will
conduct both a horizontal and a vertical crossover with every other sibling
to generate the next population. If we need to keep the best n individuals
for every generation, then there will be P(n,2) possibilities to go through. In
this case, there are P(4,2) = 12 children generated, and the best four will be
retained for reproducing the next generation of the population. The genetic
algorithm will keep iterating this procedure until no better individual can be

generated in 100 rounds.

Simulation Results

In this simulation, the number of routers in the network varies from 5 to 20,
with a bandwidth of 100 MB/s. The number of files is 5, with fixed file sizes
of 512 MB, while each file has 5 to 200 requests from different routers.

—&— heuristic
40k e w— GA

cost

6 8 10 12 14 16 1B 20

number of routers

Fig. 5.18: Relationship between Cost and Number of Routers in Comparison with
the Genetic Algorithm

Fig. 5.18 shows the relationship between the recorded cost and the number
of routers. The blue line shows the results of the heuristic algorithm, while
the orange line shows the results of the genetic algorithm. It can be observed
that the heuristic algorithm has lower costs than the genetic algorithm. At
the start, the results are close to each other when there are not many routers
in the network. However, the difference becomes greater as the network size

mcreases.

Chapter 5 Group-based Adaptive Data Management Mechanism

105

100

95

90

85

80

effectiveness ratio (%)

75

70

65

6 8 10 12 14 16 18 20

number of routers

Fig. 5.19: Relationship between the Effectiveness Ratio and the Number of Routers
in Comparison with the Genetic Algorithm

Fig. 5.19 shows the relationship between the effectiveness ratio and the number
of routers. The line was drawn along the average values, while the scattered
dots are recorded values. The effectiveness ratio reflects the comparison of the
final results of the heuristic algorithm and the genetic algorithm. Both the
heuristic algorithm and the genetic algorithm may only deliver a local optimum
instead of the global optimum. From the scattered dots, it can be observed
that in some cases, the genetic algorithm may generate less of a cost than the
heuristic algorithm (ratio > 100%). However, in most cases, the values of the
scattered dots are less than 100%, which means that the heuristic algorithm
performs better than the genetic algorithm. The average line also proves that
when the network size grows, the performance of the genetic algorithm will be

weaker than before.

Fig. 5.20 shows the relationship between the recorded cost and number of
requests. The blue line shows the results of the heuristic algorithm, while the
orange line shows the results of the genetic algorithm. It can be observed that
the heuristic algorithm has lower costs than the genetic algorithm. At the
start, the results are close to each other when there are not many requests
for each file in the network. However, the difference becomes greater as the

number of requests increases.

Fig. 5.21 shows the relationship between the effectiveness ratio and the number
of requests. The line was drawn along the average values, while the scattered

dots are recorded values. The effectiveness ratio reflects the comparison of the

5.3 Simulation & Evaluation

87

88

cost

Fig.

effectiveness ratio (%)

Fig.

—e— heuristic
= GA

40k

30k

20K|

10k

0 50 100 150 200

number of requests

5.20: Relationship between Cost and Number of Requests in Comparison with
the Genetic Algorithm

a5

a0

as

80

75

70

65

H
60 .

55

0 50 100 150 200

number of requests

5.21: Relationship between the Effectiveness Ratio and the Number of Requests
in Comparison with the Genetic Algorithm

final results of the heuristic algorithm and the genetic algorithm. It can be

observed that when the number of requests approaches 50, the performance of

the GA is close to that of the heuristic algorithm. However, in most cases, the

heuristic algorithm performs better than the GA because the ratio is always
under 100%.

Fig.

5.22 shows the relationship between the computation time and the number

of routers. The blue line shows the time taken by the heuristic algorithm,

Chapter 5 Group-based Adaptive Data Management Mechanism

160
—&— heuristic

—u— GA
140
120 /

100
80

60

computation time (S)

40

20

6 8 10 12 14 16 18 20

number of routers

Fig. 5.22: Relationship between Computation Time and Number of Routers in
Comparison with the Genetic Algorithm

while the orange line shows time taken by the genetic algorithm. It can be
observed that the time taken by the genetic algorithm grows along with the
increase in network size, while the time taken by the heuristic algorithm stays

very small (less than 1 second).

.
.]
.
1.8 - % 8 &
. 2 L]
1.6 & B 3 P E 4
[]] H s %]
- ® Bt
s : [] > H » st .
1.4 [] . H
[] . 3 —7T 8 '
e . A——F 8 8
£ - .
— 1.2 _ :] .
o . H _./\%"'] . .
|
E | 4—F .
.
2 i
K
2 0.8
E
[T}
0.6
0.4
0.2
0
6 8 10 12 14 16 18 20

number of routers

Fig. 5.23: Relationship between the Efficiency Ratio and the Number of Routers in
Comparison with the Genetic Algorithm

Fig. 5.23 shows the relationship between the efficiency ratio and the number of
routers. The line was drawn along the average values, while the scattered dots
are recorded values. The efficiency ratio compares the heuristic algorithm with

the genetic algorithm in the time needed to generate the results. As shown

5.3 Simulation & Evaluation 89

90

in Fig. 5.22, the computation time needed by the genetic algorithm grows
almost linearly along with the number of routers in the network, while the
time needed by the heuristic algorithm is relatively stable. However, from this
figure, it can be observed that the efficiency ratio is also growing along with
the size of the network. The reason for this is that although the computation
time taken by the heuristic algorithm is very small, it still grows with the size
of the network. The heuristic algorithm only needs about 1% to 1.5% of the
time to deliver the result. Therefore, we can draw the conclusion that the
heuristic algorithm is better than the genetic algorithm in both the aspects of

saving cost and saving time.

—e— heuristic
300! GA

250

computation time (S)
I ~
w =1
=] o

-
=]
=]

50

0 50 100 150 200

number of requests

Fig. 5.24: Relationship between Computation Time and Number of Requests in
Comparison with the Genetic Algorithm

Fig. 5.24 shows the relationship between the computation time and the number
of requests. The blue line shows the time taken by the heuristic algorithm,
while the orange line shows the time taken by the genetic algorithm. It can be
observed that the time taken by the genetic algorithm grows linearly with the
increase in the number of requests for each file, while the time taken by the

heuristic algorithm remains very small (less than 1 second).

Fig. 5.25 shows the relationship between the efficiency ratio and the number
of requests. The line was drawn along the average values, while the scattered
dots are recorded values. The efficiency ratio compares the heuristic algorithm
with the genetic algorithm in the time needed to generate the results. Similar
to the comparison with the number of routers, the heuristic algorithm only

needs about 0.2% to 2% of time required by the genetic algorithm to generate

Chapter 5 Group-based Adaptive Data Management Mechanism

5.4

1.5

efficiency ratio (%)

0.5

0 50 100 150 200

number of requests

Fig. 5.25: Relationship between the Efficiency Ratio and the Number of Requests
in Comparison with the Genetic Algorithm

the results. Therefore, the heuristic algorithm is better than genetic algorithm

in both the aspects of saving cost and saving time.

Conclusion

In this paper, we have investigated and presented a group-based adaptive
data management mechanism for cloud-based wireless mesh networks. The
problem was defined and stated, and a mathematical model was established
to study the problem. An algorithm was designed to compute the number of
copies needed in the network and the locations to accommodate those copies
in order to achieve the optimized cost. The algorithm was also evaluated by
means of simulations to study its performance and effectiveness under different

circumstances with different parameters.

From the simulations, we found that the algorithm will be affected by two
factors: the number of routers in the network and the number of requests
for access to files. The algorithm will be at its most effective when there are
more access requests and fewer mesh routers in the network. To evaluate its
performance in comparison with other algorithms, control experiments were
conducted with the Brute-force algorithm and the genetic algorithm. The
Brute-force method can guarantee the delivery of the global optimum, however

the computation time required will grow exponentially. Thus, this method

5.4 Conclusion

91

92

is extremely slow. The genetic algorithm has the ability to stand out from a
local optimum. However, the computation time cannot be predicted and the

performance is not stable.

Compared to these two methods, the heuristic algorithm can generate results
that are very close to the optimal value in a more efficient way, thus it should
be more suitable for mesh routers. The results of the simulation show that this
algorithm can produce cost savings of at least 35% compared to placing the
file in the network. The derivation from the globally optimal value is generally
within 4%.

Chapter 5 Group-based Adaptive Data Management Mechanism

Conclusion & Future Work

In this research project, we have first reviewed and studied the background and
existing works for wireless mesh networks, cloud computing, and distributed
file systems. Inspired by these techniques, we have designed a cloud-based
wireless mesh network equipped with cloud-like features so that clients can up-
load /manage their personal data onto the network. Next, we have investigated
and implemented a person-based data management mechanism that allows the
network to dynamically move personal data along with clients’ movement to

enhance access efficiency.

In order to better enhance flexibility and configurability of the data manage-
ment mechanisms, we have developed MeshF'S - a light weight, fault-tolerant
distributed file system specifically designed for wireless mesh networks. Based
on MeshF'S, we have investigated a group-based data management mechanism
applicable to scenarios in which multiple clients need to share/access the same
file. This mechanism includes a heuristic algorithm that can intelligently
replicate and re-allocate data copies to mesh routers to optimize access costs.
Compared to statically hosted data uploaded onto a cloud-based network, this
mechanism can save at least 35% of costs after re-allocation. The results are
very close to the global optimum and can be achieved in a significantly efficient

amount of time.

These proposed mechanisms and systems can significantly enhance the functions
of wireless mesh networks, especially in public or educational environments.
Compared to mainframe servers, mesh routers have only limited computing
and storage resources, however routers are much less expensive and can easily
be installed around the world. The value of this research project is to integrate
and enhance scattered resources from the network in order to achieve higher
computing power and provide more advanced services. In the future, this can
be further expanded to introduce more advanced features into cloud-based
wireless mesh networks, such as data version control, video streaming, pattern
analysis & recognition, etc. The ultimate goal is to form a large WMN system

with delimited cloud features.

93

References

1]

2]

3]

4]

[5]

(6]
17l

8]

19]

[10]

Ian F Akyildiz and Xudong Wang. “A survey on wireless mesh networks”. In:
Communications Magazine, IEEE 43.9 (2005), S23-S30 (cit. on p. 5).

lan F Akyildiz, Xudong Wang, and Weilin Wang. “Wireless mesh networks: a
survey”. In: Computer networks 47.4 (2005), pp. 445-487 (cit. on p. 5).

Michael Armbrust, Armando Fox, Rean Griffith, et al. “A view of cloud
computing”. In: Communications of the ACM 53.4 (2010), pp. 50-58 (cit. on

p. 9).

Djohara Benyamina, Abdelhakim Hafid, and Michel Gendreau. “Wireless mesh
networks design—A survey”. In: Communications Surveys € Tutorials, IEEE
14.2 (2012), pp. 299-310 (cit. on p. 5).

Dhruba Borthakur. “The hadoop distributed file system: Architecture and
design”. In: Hadoop Project Website 11.2007 (2007), p. 21 (cit. on p. 12).

Peter J Braam et al. The Lustre storage architecture. 2004 (cit. on p. 12).

Tracy Camp, Jeff Boleng, and Vanessa Davies. “A survey of mobility models for
ad hoc network research”. In: Wireless communications and mobile computing
2.5 (2002), pp. 483-502 (cit. on p. 6).

Shin-Ming Cheng, Phone Lin, Di-Wei Huang, and Shun-Ren Yang. “A study on
distributed/centralized scheduling for wireless mesh network”. In: Proceedings

of the 2006 international conference on Wireless communications and mobile
computing. ACM. 2006, pp. 599-604 (cit. on pp. 6, 15).

Chi-Yin Chow, Hong Va Leong, and Alvin TS Chan. “Distributed group-based
cooperative caching in a mobile broadcast environment”. In: Proceedings of
the 6th international conference on Mobile data management. ACM. 2005,
pp. 97-106 (cit. on p. 6).

Chi-Yin Chow, Hong Va Leong, and Alvin TS Chan. “GroCoca: group-based
peer-to-peer cooperative caching in mobile environment”. In: Selected Areas in
Communications, IEEE Journal on 25.1 (2007), pp. 179-191 (cit. on p. 6).

95

96

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]
[21]

[22]

23]

Chi-Yin Chow, Hong Va Leong, and Alvin TS Chan. “Group-based cooperative
cache management for mobile clients in a mobile environment”. In: Parallel
Processing, 2004. ICPP 2004. International Conference on. IEEE. 2004, pp. 83—
90 (cit. on p. 6).

Saumitra M Das, Himabindu Pucha, and Y Charlie Hu. “Hop-by-Hop Coop-
erative Caching in Wireless Mesh Networks: A Design and Implementation
Study”. In: (2006) (cit. on pp. 6, 15).

Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing
on large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107113
(cit. on p. 12).

Mieso K Denko, Thabo Nkwe, and Mohammad S Obaidat. “Efficient coop-
erative caching with improved performance in wireless mesh networks”. In:
Communications (ICC), 2010 IEEE International Conference on. IEEE. 2010,
pp. 1-5 (cit. on pp. 7, 15).

Benjamin Depardon, Gaél Le Mahec, and Cyril Séguin. “Analysis of six dis-
tributed file systems”. In: (2013) (cit. on p. 13).

Alexandros G Dimakis, P Godfrey, Yunnan Wu, Martin J Wainwright, and
Kannan Ramchandran. “Network coding for distributed storage systems”. In:
Information Theory, IEEE Transactions on 56.9 (2010), pp. 45394551 (cit. on

p. 13).

Richard Draves, Jitendra Padhye, and Brian Zill. “Routing in multi-radio, multi-
hop wireless mesh networks”. In: Proceedings of the 10th annual international
conference on Mobile computing and networking. ACM. 2004, pp. 114-128
(cit. on pp. 6, 15).

Florian Fainelli. “The OpenWrt embedded development framework”. In: Pro-
ceedings of the Free and Open Source Software Developers Furopean Meeting.
2008 (cit. on pp. 18, 33).

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google file
system”. In: ACM SIGOPS operating systems review. Vol. 37. 5. ACM. 2003,
pp. 29-43 (cit. on p. 12).

“Gluster”. In: http: /www.gluster.org (2008) (cit. on p. 12).

Csaba Henk and Miklos Szeredi. “FUSE: Filesystem in Userspace”. In: Online
at hitp://sourceforge.net/projects/fuse 92 (2012) (cit. on p. 37).

Pieter Hintjens. “ZeroMQ: Messaging for Many Applications”. In: (2013) (cit.
on p. 36).

Ivan Wang-Hei Ho, Patrick P Lam, Peter Han Joo Chong, and Soung Chang
Liew. “Harnessing the High Bandwidth of Multiradio Multichannel 802.11n
Mesh Networks”. In: Mobile Computing, IEEE Transactions on 13.2 (2014),
pp. 448-456 (cit. on p. 8).

References

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

Chuyen Khoa Huynh and Won Cheol Lee. “An interference avoidance method
using two dimensional genetic algorithm for multicarrier communication sys-
tems”. In: Communications and Networks, Journal of 15.5 (2013), pp. 486-495
(cit. on p. 83).

Chuyen Khoa Huynh and Won Cheol Lee. “Multicarrier cognitive radio sys-
tem configuration based on interference analysis by two dimensional genetic
algorithm”. In: Advanced Technologies for Communications (ATC), 2011 In-
ternational Conference on. IEEE. 2011, pp. 85-88 (cit. on p. 83).

Chuyen Khoa Huynh and Won Cheol Lee. “Two-dimensional genetic algorithm
for OFDM-based cognitive radio systems”. In: Communication Software and
Networks (ICCSN), 2011 IEEE 3rd International Conference on. IEEE. 2011,
pp. 100-105 (cit. on p. 83).

Tomasz Imielinski and BR Badrinath. “Data management for mobile comput-
ing”. In: ACM Sigmod Record 22.1 (1993), pp. 34-39 (cit. on p. 6).

Tomasz Imielinski and BR Badrinath. “Mobile wireless computing: challenges
in data management”. In: Communications of the ACM 37.10 (1994), pp. 18-28
(cit. on p. 6).

Shudong Jin and Limin Wang. “Content and service replication strategies in
multi-hop wireless mesh networks”. In: Proceedings of the 8th ACM interna-
tional symposium on Modeling, analysis and simulation of wireless and mobile
systems. ACM. 2005, pp. 79-86 (cit. on p. 6).

Jangeun Jun and Mihail L Sichitiu. “The nominal capacity of wireless mesh
networks”. In: Wireless Communications, IEEE 10.5 (2003), pp. 8-14 (cit. on

pp. 6, 15).

“Laguna GW2388-4 Single Board Computer”. In: http://www.gateworks.com,/-
product/item/laguna-gw2388-4-network-processor (2015) (cit. on pp. 18, 33).

Peter Mell and Tim Grance. “The NIST definition of cloud computing”. In:
(2011) (cit. on p. 9).

Stanislav Miskovic and Edward W Knightly. “Routing primitives for wire-
less mesh networks: Design, analysis and experiments”. In: INFOCOM, 2010
Proceedings IEEE (2010), pp. 1-9 (cit. on pp. 6, 15).

“MooseFS”. In: http://www.moosefs.org/ (2015) (cit. on p. 12).

Alok Nandan, Shirshanka Das, Giovanni Pau, Mario Gerla, and MY Sanadidi.
“Co-operative downloading in vehicular ad-hoc wireless networks”. In: Wireless
On-demand Network Systems and Services, 2005. WONS 2005. Second Annual
Conference on. IEEE. 2005, pp. 32-41 (cit. on p. 6).

References

97

98

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

Vishnu Navda, Anand Kashyap, and Samir R Das. “Design and evaluation
of imesh: an infrastructure-mode wireless mesh network”. In: World of Wire-
less Mobile and Multimedia Networks, 2005. WoWMoM 2005. Sixzth IEEE
International Symposium on a. IEEE. 2005, pp. 164-170 (cit. on pp. 6, 15).

Eldad Perahia and Robert Stacey. “Next Generation Wireless LANS: 802.11n
and 802.11ac”. In: (2013) (cit. on p. 6).

Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo. “Cloud computing: an
overview”. In: Cloud Computing. Springer, 2009, pp. 626-631 (cit. on p. 10).

Ashish Raniwala and Tzi-cker Chiueh. “Architecture and algorithms for an
IEEE 802.11-based multi-channel wireless mesh network”. In: INFOCOM 2005.
24th Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE. Vol. 3. IEEE. 2005, pp. 2223-2234 (cit. on p. 5).

Mahadev Satyanarayanan. “A survey of distributed file systems”. In: Annual
Review of Computer Science 4.1 (1990), pp. 73-104 (cit. on p. 12).

Mahadev Satyanarayanan, James J Kistler, Puneet Kumar, et al. “Coda: A
highly available file system for a distributed workstation environment”. In:
Computers, IEEE Transactions on 39.4 (1990), pp. 447-459 (cit. on p. 12).

Sayandeep Sen and Bhaskaran Raman. “Long distance wireless mesh network
planning: problem formulation and solution”. In: Proceedings of the 16th
international conference on World Wide Web. ACM. 2007, pp. 893-902 (cit. on

pp. 6, 15).

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
“The hadoop distributed file system”. In: Mass Storage Systems and Technolo-
gies (MSST), 2010 IEEE 26th Symposium on. IEEE. 2010, pp. 1-10 (cit. on

p. 12).

Lisa Ward. “802.11ac Technology Introduction”. In: Rohde € Schwarz White
Paper (2012) (cit. on p. 6).

Sage A Weil, Scott A Brandt, Ethan L. Miller, Darrell DE Long, and Carlos
Maltzahn. “Ceph: A scalable, high-performance distributed file system”. In:

Proceedings of the 7th symposium on Operating systems design and implemen-
tation. USENIX Association. 2006, pp. 307-320 (cit. on p. 12).

Weigang Wu and Yifei Huang. “Hierarchical Cooperative Data Caching for
Wireless Mesh Networks”. In: Embedded and Ubiquitous Computing (EUC),
2010 IEEE/IFIP 8th International Conference on. IEEE. 2010, pp. 289-296
(cit. on pp. 7, 15).

Wenzheng Xu, Weigang Wu, Hejun Wu, and Jiannong Cao. “A Cooperative
Approach to Cache Consistency Maintenance in Wireless Mesh Networks”. In:
Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International
Conference on. IEEE. 2011, pp. 512-519 (cit. on pp. 7, 15).

References

(48]

[49]

[50]

S. T. Yang, Henry C. B. Chan, Patrick P. Lam, and Peter H. J. Chong.
“A Cloud-based Wireless Mesh Network with Adaptive Data Storage Func-
tions”. In: Proceedings of the International MultiConference of Engineers and
Computer Scientists. Vol. 2. 2015, pp. 540545 (cit. on p. 33).

Jing Zhao, Ping Zhang, Guohong Cao, and Chita R Das. “Cooperative caching
in wireless p2p networks: Design, implementation, and evaluation”. In: Parallel
and Distributed Systems, IEEE Transactions on 21.2 (2010), pp. 229-241 (cit.

on p. 7).

Jing Zhao, Ping Zhang, and Guohong Cao. “On cooperative caching in wireless
P2P networks”. In: Distributed Computing Systems, 2008. ICDCS’08. The 28th
International Conference on. IEEE. 2008, pp. 731-739 (cit. on p. 7).

References

99

	Cover
	Title Page
	Certificate of Originality
	Abstract
	Publications
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Objectives
	1.2 Thesis Structure

	2 Literature Review
	2.1 Wireless Mesh Network
	2.2 Cloud Computing
	2.3 Distributed File System

	3 Person-based Adaptive Data Management Mechanism
	3.1 System Design & Architecture
	3.2 Hardware & Prototype
	3.3 File System
	3.3.1 Storage Function with Linux File System
	3.3.2 Storage Function with A Distributed File System

	3.4 Implementation
	3.4.1 Web UI for File Uploading/Management
	3.4.2 Agent Program for Monitoring the Mobility of Clients and Making Decisions on the Movement of Files

	3.5 Conclusion

	4 MeshFS: A Distributed File System for Cloud-based Wireless Mesh Network
	4.1 Objectives & Features
	4.2 System Design & Architecture
	4.3 Implementation
	4.3.1 Messaging
	4.3.2 Client
	4.3.3 Server
	4.3.4 Metaserver
	4.3.5 Syscalls

	4.4 Demonstration
	4.5 Evaluation & Limitation
	4.6 Conclusion

	5 Group-based Adaptive Data Management Mechanism
	5.1 E-book Scenario
	5.2 Model & Algorithm
	5.2.1 Model
	5.2.2 Problem Definition
	5.2.3 Proposed Solution & Algorithm

	5.3 Simulation & Evaluation
	5.3.1 Influence of a Single Parameter
	5.3.2 Influence of a Combination of Parameters
	5.3.3 Comparison to the Brute-Force Solution
	5.3.4 Comparison to Genetic Algorithm

	5.4 Conclusion

	6 Conclusion & Future Work
	References

