

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

APPRAISING AND IMPROVING

THE ACCURACY OF

SMARTPHONE AND

BROWSER-BASED DELAY

MEASUREMENT

WEICHAO LI

Ph.D

The Hong Kong Polytechnic University

2017

The Hong Kong Polytechnic University

Department of Computing

Appraising and Improving the

Accuracy of Smartphone and

Browser-based Delay

Measurement

Weichao Li

A thesis submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

October 2016

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowl-

edge and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where due

acknowledgement has been made in the text.

(Signed)

Weichao Li

(Name of student)

To my wife and my family.

v

Abstract

In recent years, using network performance benchmarking tools, such as Ookla Speedtest,

to understand network performance has become popular. These measurements are

available in desktop environment via Web browsers (browser-based measurements)

and mobile environment via mobile apps (smartphone-based measurements), which

provides a very effective approach to crowdsourcing network performance data. How-

ever, despite their popularity, very little is known about the (in)accuracy of the various

methods used by these tools.

In this research, we contribute to examining and improving the accuracy of these

tools. We focus on the network delay measurement, because it is the most fundamen-

tal and atomic metric. To quantify the inaccuracy, we define “delay overhead” as the

difference between the value measured by the measurement tools and the actual net-

work delay. The delay overhead, which is considered as measurement noise, should be

avoided and mitigated during delay measurements to achieve more accurate results.

In browser-based measurement, we evaluate the accuracy of twelve methods, in-

cluding the traditional HTTP-based and TCP socket-based methods, Navigation Tim-

ing and WebRTC techniques, with the eight most popular browsers on Linux and Win-

dows. Our evaluation results show that the delay overheads incurred in most of the

HTTP-based methods are too large to ignore. Specifically, the overheads incurred

by some methods (such as Flash GET and POST) vary significantly across different

browsers and systems, making it very difficult to calibrate. The socket-based methods,

vi

on the other hand, incur much smaller overhead. Another interesting and important

finding is that Date.getTime(), a typical timing API in Java, does not provide the

millisecond resolution assumed by many measurement tools on some OSes. This re-

sults in a serious under-estimation of RTT. Moreover, some tools over-estimate the

RTT by including the TCP handshaking or data channel establishing phase.

For the mobile network measurement, we show that the two most popular measure-

ment apps—Ookla Speedtest and MobiPerf—have their RTT measurements inflated.

We then build three corresponding test apps that cover three common measurement

methods and evaluate them in a testbed. We overcome the main challenge of obtaining

a complete trace of packets and their timestamps by using multiple sniffers and frame-

based synchronization. Our multi-layer analysis reveals that the delay inflation can

be introduced both in the user space and kernel space. The long path of subfunction

invocations accounts for the majority of the delay overhead in Android runtime (both

Dalvik VM and ART), and the sleeping functions in the drivers are the major source

of the delay overhead between the kernel and physical layer.

Based on our evaluation in smartphones, we try to reduce and stabilize the delay

inside the phone as much as possible. We report for the first time a major source of

noise comes from the periodical SDIO (Secure Digital Input Output) bus sleep inside

the phone. Besides, the PSM (Power Saving Mode) for WiFi networks and the RRC

(Radio Resource Control) states in cellular networks will also unstably inflate the delay

measurement. To mitigate these measurement noises, we propose to keep the phone in

the wake-up mode or high-power state during the delay measurement by sending just

a sufficient amount of warm-up and background traffic. We implement this approach

in AcuteMon, an Android app, and validate it in testbed and in real users’ phones. The

evaluation shows that AcuteMon can effectively mitigate the delay overheads caused

by various energy-saving mechanisms, and obtain more accurate network delay.

vii

Publications Arising from the Thesis

Weichao Li, Daoyuan Wu, Rocky K. C. Chang, Ricky K. P. Mok, “Toward Accurate

Smartphone-based Mobile Network Measurement”, submitted to IEEE Transaction on

Mobile Computing (Under review).

Weichao Li, Daoyuan Wu, Rocky K. C. Chang, Ricky K. P. Mok, “Demystifying and

Puncturing the Inflated Delay in Smartphone-based WiFi Network Measurement”, In

Proc. ACM CoNEXT (short paper), December 2016.

Weichao Li, Ricky K. P. Mok, Daoyuan Wu, and Rocky K. C. Chang, “On the Accu-

racy of Smartphone-based Mobile Network Measurement”, In Proc. IEEE INFOCOM,

April 2015.

Weichao Li, Ricky K. P. Mok, Rocky K. C. Chang, and Waiting W. T. Fok, “Apprais-

ing the Delay Accuracy in Browser-based Network Measurement”, In Proc. ACM IMC

(short paper), October 2013.

viii

Acknowledgements

This thesis is the end of my Ph.D journey and it would not have been possible for me

to finish it without the inspiration and support of many people, to whom I would like

to express the deepest appreciation.

Foremost, I would like to express my sincere gratitude to my advisor Prof. Rocky

K. C. Chang for his patience, enthusiasm, and motivation. I could not have imagined

having a better advisor and mentor for my Ph.D study. His professional guidance and

useful recommendations helped me in all the time of research and writing of this thesis.

Without his continuous support this Ph.D would not have been achievable.

Besides my advisor, I would like to thank my thesis committee members: Prof.

Gary S.H. Chan of the Hong Kong University of Science and Technology, Prof. Wing

Cheong Lau of the Chinese University of Hong Kong, and Prof. Lou Wei of the Hong

Kong Polytechnic University, for their insightful comments and hard questions.

I would also like to thank Daniel Xiapu Luo for his mentorship, especially at the

early stage of my study. I have greatly benefited from his expertise and experiences. I

also gratefully acknowledge the past and current members in the Internet Infrastructure

and Security Research Laboratory: Ricky Mok, Waiting Fok, Daoyuan Wu, Edmond

Chan, Brent Peng Zhou, Toby Lam, Star Poon, Anson Kwan, Steven Chien, Curtis

Yung, Jack Chan, Yanto Lam, Peter Membrey, Ang Chen, Lei Xue, Wei Yu, Peixin

Chen, Qingjie Xu, and many more. Thank all of you for your warm friendship and

your unfailing encouragements.

ix

Last but not the least, my deep and sincere gratitude goes to my family. I am

forever indebted to my parents for encouraging me to explore new directions in life

and supporting me in all my pursuits. I am grateful to my brother, Dechao Li, for his

unconditional support and help. I particularly thank my dearest wife, Huang Hui, for

her love and care throughout these years. Thank you.

x

Contents

Abstract v

Publications Arising from the Thesis vii

Acknowledgements viii

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1

1.1 Network performance benchmarking tools 5

1.2 Appraising the accuracy of delay measurement 7

1.3 Improving the accuracy of smartphone-based delay measurement . . . 11

1.4 Contributions . 12

1.5 Organization . 16

2 Background and Related Works 18

2.1 Measuring network path performance 18

2.1.1 Network performance metrics 19

2.1.2 Measurement methods and tools 20

2.1.3 Measuring network path delay 23

2.2 Performance benchmarking tools . 25

2.2.1 Employing Web servers as measurement targets 26

2.2.2 Employing Web browsers as measurement sources in desktop

environment . 26

2.2.2.1 Traditional HTTP-based and socket-based methods 27

2.2.2.2 Navigation Timing technique 30

2.2.2.3 WebRTC technique 33

2.2.3 Employing measurement apps as measurement sources in mo-

bile environment . 35

2.3 Measurement accuracy . 36

xi

2.3.1 Quantifying the inaccuracy of network delay measurement with

delay overhead . 39

2.3.2 Measuring the delay overheads for browser-based tools 40

2.3.3 Measuring the delay overheads for app-based tools 42

3 Towards accurate browser-based network measurement 46

3.1 Traditional HTTP-based and socket-based browser techniques 49

3.1.1 Experiment setup . 49

3.1.2 Measurement Results . 51

3.1.2.1 The effect of network behavior on HTTP-based meth-

ods . 54

3.1.2.2 The effect of timestamp granularity 55

3.1.3 Practical considerations . 58

3.2 High Performance Time . 59

3.2.1 Granularity . 60

3.2.2 Execution cost . 61

3.3 Navigation Timing technique . 62

3.3.1 Experiment setup . 63

3.3.2 Measurement Results . 65

3.4 WebRTC technique . 68

3.4.1 Experiment setup . 69

3.4.2 Measurement Results . 70

3.5 Summary . 71

4 Towards accurate smartphone-based network measurement 74

4.1 Methodology and testbed setup . 77

4.1.1 Multi-layer analysis . 77

4.1.2 Runtime environment in Android 78

4.1.3 A multiple-sniffer testbed 79

4.1.3.1 Wireless packet capturing 80

4.1.3.2 Trace merging and time recovering 81

4.1.3.3 Clock skew handling 84

4.2 Ookla Speedtest and MobiPerf . 85

4.2.1 Experiment setup . 86

4.2.2 Evaluation . 86

4.2.2.1 Ookla Speedtest 86

4.2.2.2 MobiPerf . 87

4.3 Testbed evaluation . 88

4.3.1 Building test measurement apps 89

4.3.2 Overview . 91

4.3.3 Effect of timing functions 93

4.3.4 Effect of runtime . 94

4.3.5 User-space and kernel-space overheads 95

4.3.6 Delay overhead asymmetry 98

xii

4.4 Discussion . 100

4.4.1 Delay overhead in user space 100

4.4.1.1 InetAddress.getByName().isReachable() . . 102

4.4.1.2 HttpURLConnection.connect() 103

4.4.1.3 HttpURLConnection.getInputStream() 104

4.4.2 Delay overhead in kernel space 105

4.4.3 A better practice . 107

4.4.4 Beyond WiFi and delay measurement 109

4.5 Summary . 110

5 Mitigating Delay Overheads in Smartphone-based Measurement 113

5.1 Delay overhead caused by energy-saving mechanisms 115

5.1.1 Effect of packet sending interval 116

5.1.2 Root cause analysis . 118

5.1.2.1 Driver analysis . 118

5.1.2.2 Effect of Power Save Mode 122

5.1.2.3 Effect of low-power RRC states 124

5.2 AcuteMon . 126

5.2.1 Implementation details . 128

5.2.1.1 Warm-up phase 129

5.2.1.2 Measurement phase 131

5.2.2 Speeding up warm-up phase for cellular networks 132

5.2.3 Additional cost . 133

5.3 Evaluation . 134

5.3.1 Testbed evaluation . 135

5.3.1.1 Actual network RTT 135

5.3.1.2 Delay overheads 136

5.3.2 Internet evaluation . 137

5.3.2.1 The overall results 138

5.3.2.2 Effect of the warm-up phase 140

5.3.2.3 Effect of the background traffic 142

5.4 Summary . 143

6 Conclusions and Future Work 144

6.1 Future work . 146

Bibliography 149

xiii

List of Figures

2.1 Components of network delay between two adjacent hops. 24

2.2 Two phases in browser-based network measurement. 28

2.3 Detailed timing attributes defined by Navigation Timing technique. . . 31

2.4 The measurement phases in measurements based on Navigation Tim-

ing technique. The RTT can be calculated based on TCP connec-

tion establishment events (Measurement I) and HTTP request/response

messages (Measurement II). 33

2.5 The underlying protocol stacks of WebRTC. 34

2.6 Measurement flow for Android apps. 42

3.1 Testbed Setup. 50

3.2 Box plots of the delay overheads (by methods). 53

3.3 Box plots of the delay overheads (by methods). 54

3.4 CDF plots of ∆d1 and ∆d2 using the Java applet socket in Windows. . 57

3.5 Codes for testing the timestamp granularity. 58

3.6 Box plots of ∆d1 obtained when the emulated network delays are dif-

ferent. 66

3.7 Box plots of ∆d2 obtained when the emulated network delays are dif-

ferent. 67

3.8 Box plots of ∆d3 obtained when the emulated network delays are dif-

ferent. 68

3.9 Testbed Setup for WebRTC measurement. 69

3.10 Box plots of the delay overheads (by emulated RTTs). 72

4.1 The user-kernel delay overhead and kernel-phy delay overhead. 78

4.2 The testbed setup where the packet sniffers, mobile phone, and wire-

less AP are placed within a distance of 0.5m. 80

4.3 Procedure of trace merging and time recovery. 84

4.4 CDF plots of ∆d and ∆du for Ookla Speedtest. 88

4.5 Delay overhead comparison in box plot for phone G (red/m for Sys-

tem.currentTimeMillis(), and cyan/n for System.nanoTime()). 93

4.6 Delay overhead comparison in box plot for phone G when different

runtimes are adopted (red for DVM, and cyan for ART). 94

xiv

4.7 Box plots for the user-kernel delay overheads (∆du, red) and kernel-

phy delay overheads (∆dk, cyan) measured by Native ping. 95

4.8 Box plots for the user-kernel delay overheads (∆du, red) and kernel-

phy delay overheads (∆dk, cyan) measured by Inet ping. 96

4.9 Box plots for the user-kernel delay overheads (∆du, red) and kernel-

phy delay overheads (∆dk, cyan) measured by HTTP ping. 97

4.10 Box plots of the delay overhead asymmetry for Inet ping. 99

4.11 Box plots of the delay overhead asymmetry for HTTP ping. 100

4.12 Major function calls involved in InetAddress.getByName().isReachable().

The mean function execution time is also included in the angular brack-

ets (in µs). 103

4.13 Major function calls involved in HttpURLConnection.connect().

The mean function execution time is also included in the angular brack-

ets (in µs). 104

4.14 Major function calls involved in HttpURLConnection.getInputStream().

The mean function execution time is also included in the angular brack-

ets (in µs). Here the execution time of function recvfrom() includes

the network delay. 106

5.1 Kernel-phy delay overhead (∆dk−n) and User-kernel delay overhead

(∆du−k) for Google Nexus 4 and 5. 118

5.2 Key WNIC driver functions for packet sending. 119

5.3 Key WNIC driver functions for packet receiving. 120

5.4 Two scenarios for adaptive PSM to inflate nRTT. 123

5.5 RRC state machine for 3G, 4G, and 2G network. 124

5.6 Measurement process of AcuteMon. The power-state diagram below

the time-line diagram shows that the smartphone is always in a high-

power state during the network measurement. 129

5.7 Box plots of ∆du−k and ∆dk−n obtained by AcuteMon. 136

5.8 CDF plots of the delay difference ∆nRTT 141

xv

List of Tables

2.1 A summary of the browser-based network measurement methods and

tools. 29

2.2 Implementation details of existing network measurement apps in An-

droid. 37

3.1 Configurations of the browsers and systems used in the experiments. . 50

3.2 Median ∆d1 and ∆d2 for the Flash HTTP methods in Opera. 55

3.3 Delay overheads measured by Java applet methods in Windows when

function System.nanoTime() is adopted (mean with 95% confidence

interval, in ms). 57

3.4 Configurations and measured granularity of the browsers used in the

experiments. 61

3.5 Time cost of executing 1,000,000 timing functions for each browser

(mean with 95% confidence interval, in ms). 62

3.6 Summary of whether the Navigation Timing events are supported by

the browsers. 63

4.1 RTTs measured by Ookla Speedtest (du), in the kernel (dk) and in the

air (dn) (mean with 95% confidence interval, in ms). 87

4.2 RTTs measured by the app (du), in the kernel (dk) and in the air (dn)

for MobiPerf (mean with 95% confidence interval, in ms). 89

4.3 The mobile phones used in the experiment. 90

4.4 Delay overheads measured when System.currentTimeMillis() is

used (mean with 95% confidence interval, in ms). 111

4.5 The execution times (in µs) of major kernel functions for the socket

functions in the system layer. 112

4.6 A comparison of ∆du for external C socket program (Ext) and in-DVM

measurement (App) (mean with 95% confidence interval, in ms). . . . 112

5.1 The smartphones used in the testbed evaluation. 116

5.2 Experiment results (mean with 95% confidence interval in ms). 117

5.3 dvsend measured by Nexus 5 with the SDIO bus sleep mode enabled

or disabled (in ms). It can cost up to ∼14ms for the bus to wake up

(promotion delay, Tprom. 121

xvi

5.4 dvrecv measured by Nexus 5 with the SDIO bus sleep mode disabled

(in ms). 121

5.5 Timeout values and initial listen intervals of the smartphones under test. 124

5.6 Possible promotion delay for entering into the active or high-power state.130

5.7 Possible state demotion timer (Ti) for leaving the active or high-power

state. 130

5.8 The empirical values of the inputs to the algorithms adopted by Acute-

Mon. 131

5.9 The actual nRTTs (dn) measured by external sniffers (mean with 95%

confidence interval, in ms). 135

5.10 PM for AMH and AMS in cellular networks. 139

5.11 RM for AMH and AMS in cellular networks. 140

5.12 R′
M for AMH and AMS in cellular networks. 142

xvii

List of Abbreviations

AP Access Point.

API Application Programming Interface.

ART Android Runtime.

AS Autonomous System.

CDF Cumulative Distribution Function.

CDN Content Delivery Network.

CPU Central Processing Unit.

DNS Domain Name System.

DOM Document Object Model.

DRX Discontinuous Reception.

DTLS Datagram Transport Layer Security.

DVM Dalvik Virtual Machine.

e2e end-to-end.

EDGE Enhanced Data rates for GSM Evolution.

GPRS General Packet Radio Service.

HTTP Hypertext Transfer Protocol.

HTTPS HTTP Secure.

ICMP Internet Control Message Protocol.

IP Internet Protocol.

ISP Internet Service Provider.

xviii

JNI Java Native Interface.

LTE Long-Term Evolution.

MEM Memory.

MLME MAC Sublayer Management Entity.

MSS Maximum Segment Size.

MTU Maximum Transmission Unit.

NAT Network Address Translation.

NIC Network Interface Card.

OS Operating System.

OWD One-Way Delay.

PDCCH Physical Downlink Control Channel.

PSM Power Saving Mode.

QoE Quality of Experience.

QoS Quality of Service.

RRC Radio Resource Control.

RTT Round-Trip Time.

SCTP Stream Control Transmission Protocol.

SDIO Secure Digital Input Output.

SDN Software Defined Network.

TCP Transport Control Protocol.

TLS Transport Layer Security.

UDP User Datagram Protocol.

UMTS Universal Mobile Telecommunications System.

UTRAN UMTS Terrestrial Radio Access Network.

xix

VM Virtual Machine.

VP Vantage Point.

WNIC Wireless Network Interface Card.

WWW World Wide Web.

1

Chapter 1

Introduction

With the fast growth of the Internet, residential broadband networks and mobile net-

works have already become an essential part of our daily lives. According to Internet

World Stats [41], the number of Internet users across the world is more than 3.6 bil-

lion in July 2016, accounting for a half of the global population. ITU (International

Telecommunication Union) also shows that almost 1 billion households in the world

have Internet access, and the penetration rate of mobile-broadband networks reaches

84% of the global population [116]. Therefore, measuring and understanding the net-

work performance is becoming very important for both end users and practitioners. For

example, network administrators can take the advantage of network measurement to

diagnose network failures and make better management decisions [88, 154]. Network

application developers can benefit from network measurement on providing better per-

formance to their customers [50, 123, 161, 195]. End users can employ network mea-

surement to verify the compliance of service level agreement (SLA) or real network

performance [127,152,208,218]. For network scientists and researchers, network mea-

surement can help study and model the evolution of Internet [158,169,200], as well as

developing and validating new network protocols and techniques [72].

Network measurements can be classified into passive and active measurements.

2

Passive methods monitor the network performance by analyzing the existing traffic on

some vantage points inside the network. Active methods, on the other hand, generate

and inject measurement traffic into the monitored network. As active measurement

provides more opportunities to sample the network paths that are invisible to the pas-

sive vantage points, and is more flexible in deployment, we only consider active mea-

surement in this thesis. Although many active network measurement methodologies

and tools have been proposed in the past decades, such as sting [196], tulip [152], TCP

Sidecar [202, 203], HTTP/OneProbe [146], and TRIO [64], applying them to the real-

world scenario is still challenging. There are a few challenges to their deployment.

First of all, some tools employ protocols that are not representative of the current net-

work applications. For example, the tools based on ICMP echo requests and responses

can produce different measurement results from those obtained by TCP [227]. Second,

some tools may have strict running constraints and are difficult to deploy to real-world

environments. A typical case is the capacity measurement tools based on packet pair or

packet train techniques. They cannot be applied to mobile networks and smartphones

directly because of the proportional fair scheduling used by base stations [159]. Fi-

nally, normal users usually lack the expertise to conduct meaningful measurements

and interpret the measurement results, which also prevents the tools from large-scale

deployments.

Recently, using network performance benchmarking tools to understand network

performance becomes popular. These tools are available in desktop environment via

Web browsers and in mobile environment via mobile apps, providing the function-

alities of measuring round-trip delay (RTT) and uplink/downlink throughput of an

end-to-end (e2e) network path. Examples of browser-based measurement tools in-

clude Ookla’s speedtest [171], Netalyzr [134], How’s My Network (HMN) [189],

Speedof.me [30], and Fathom [76]. The smartphone-based tools support the ma-

3

jor mobile OSes, such as Android, including MobiPerf [17], Netalyzr [18], Internet

Speed Test [12], and Speedtest.net for Android [34], iOS, including Speedtest X HD

for IOS [32] and Speedtest.net for iOS [33], and Windows Phone, including Network

Speed Test [22] and Speedtest.net for Windows Phone [35]. Running these tools

is very simple. What a user needs to do is just opening the test page in browser or

launching the app on smartphone and starting the measurement by one click. The re-

sults will be presented in table or graph with readable explanation. Due to its high

usability design and the ubiquity of Web browsers and smartphones, these tools attract

a large number of users. For example, Ookla’s Speedtest has recorded more than 8

billion tests, and its Speedtest app also has reached over 50 million downloads in the

Android app market. Internet Speed Test from V-SPEED [13] has also more than 5

million installs. As the tools enable a very effective approach to crowdsourcing net-

work performance data, they are also employed by researchers to conduct measurement

studies, such as characterizing LTE networks [108] and optimizing mobile application

performance [229]. The data collected by Speedtest.net is used for comparing the

performance between cellular and WiFi networks [206].

Although the network performance benchmarking tools are widely in use today,

very little is known about their (in)accuracy. Ordinary users usually do not doubt the

trustworthiness of the measurement results. However, since the tools work in the ap-

plication layer and that more fine-grained packet-level behavior is invisible to them,

the performance metrics are inferred from the events captured in the application layer.

Therefore, the tools could be affected by other tasks running in the same machine.

Moreover, for the tools employing Java applet techniques or running in Android, the

measurements took place in the virtual machine (VM). Therefore, the programs need

to be first translated into bytecode before execution, which could introduce more over-

heads. Another possible source of inaccuracy that we have found is the power saving

4

mechanisms adopted by most of the mobile devices to increase the battery life cy-

cle. The periodical switching between active and inactive states could also lead to

inaccurate measurement results. After all, they are measuring the application-level

performance instead of the actual network performance.

Although the application-level performance does reflect what a user may experi-

ence, we argue that it is not equivalent to the network-level performance. Network-

level performance is important for many reasons, such as for operators to know their

network performance and for users to diagnose whether the network or their device

is responsible for performance degradation. Moreover, the performance data, when

collected from different ISPs and plans, can be used to compare their levels of ser-

vices. In this thesis, we examine and improve the accuracy of the performance bench-

marking tools when measuring actual network delay. We focus on the network delay

measurement, because it is the most fundamental and atomic metric, from which rich

information can be inferred. If network delay cannot be estimated accurately, other

performance metrics, such as delay variation or jitter, capacity, and available band-

width, will also be affected. Moreover, the network delay today is getting smaller. For

example, FCC reports in 2016 that the average latency for each monitored ISP in US

only ranges from 12 ms to 58 ms [87]. Therefore the results with an inaccuracy of

several milliseconds could severely under- or over-estimate the actual network status,

and could result in wrong management decision.

In the rest of this chapter, we introduce the benchmarking tools and their core meth-

ods in Section 1.1. Next, we introduce the methodologies to appraise the accuracy of

network delay measurement in Section 1.2. After proposing our solution to improve

the accuracy of smartphone-based delay measurement in Section 1.3, we summarize

the contributions and organization of this thesis in Section 1.4 and Section 1.5, respec-

tively.

5

1.1 Network performance benchmarking tools

The explosive growth of the Internet results in complexity in both network topology

and performance management. Users are served by different Internet service providers

(ISPs) and interconnected by a sea of network devices. Network traffic from one au-

tonomous system (AS) has to traverse multiple domains, and intercepted and processed

by various middleboxes and QoS policies before reaching the destination. Measuring

the network performance, especially the quality of an e2e network path, is therefore

a challenging and important topic in recent years. Many performance metrics, such

as connectivity [155], delay [48, 49, 75], loss [48, 132], reordering [164], and capac-

ity [70,157], have been defined by the IP Performance Metrics Working Group (IPPM

WG) [14] of the Internet Engineering Task Force (IETF) [38]. In addition, a number of

measurement methodologies and tools have been proposed [55,64,104,146,199,221],

and some of them are employed by many measurement platforms, such as NIMI [178],

CAIDA’s Archipelago (Ark) [63], DIMES [200], ETOMIC [162], Planetopus [142],

and PerfSONAR [102].

Compared to the existing measurement tools, the network performance benchmark-

ing tools have several advantages, which can be summarized as follows.

Usability. The performance benchmarking tools are very easy to use. Users can uti-

lize them to assess their network quality by just clicking a “start” button. The

measurement results are then presented in graph or other ways that are easy to

understand without requiring networking knowledge. Different from many mea-

surement tools, the browser-based tools are OS-independent and can work in

most of the Web browsers for most of the desktop OSes, such Windows, Ubuntu

and MacOS without additional program installation, whereas smartphone-based

tools (measurement apps) are available in the application stores of the major

mobile OSes, and can be easily downloaded.

6

Low cost of deployment. Deploying active network measurement usually involves a

number of tasks, such as deploying the source and destination nodes, scheduling

the measurement execution times, and collecting measurement results. The total

cost of deployment depends on the number of dedicated devices and the effort of

configuring the devices and measurement tools. The performance benchmark-

ing tools initiate network path measurements from commodity desktop PCs or

smartphones of normal end users instead of professional equipments. On the

other hand, the remote end points are usually Web servers. The only require-

ment for being a measurement target is hosting some special files. Some tools

(e.g., MobiPerf) can even use the existing files on the server. The low-cost de-

ployment makes it possible to conduct large-scale network measurement.

Representativeness. Most performance benchmarking tools rely on the Web tech-

niques (e.g., HTTP request/response messages). Considering World Wide Web

(WWW) is the most popular application on top of TCP, sampling network path

performance with TCP packets can reflect more accurately what other real-world

applications may experience than with other protocols, such as ICMP.

The browser-based and smartphone-based tools usually measure the RTT and up-

link/downlink throughput to some fixed remote endpoints. During the RTT measure-

ment, the tools send out a request packet to the destination to trigger a response packet

back. By recording the packet sending and receiving time, the RTT of the network

path can be estimated. The request and response packet can be HTTP GET/POST re-

quest and response messages, used by Speedofme [30], TCP control messages, such

as TCP SYN/SYN ACK or SYN/RST by Speedchecker [12], and customized TCP

data by Ookla Speedtest [34]. Some tools also support UDP and ICMP (such as Mo-

biPerf [17]). Similarly, the uplink (downlink) throughput can be inferred by sending

out (inducing) a large file to (from) the server. The file can be also transferred through

7

HTTP, TCP, or UDP. Based on the file size and the elapsed time, the throughput can be

calculated.

For browser-based tools, the packet sending and receiving actions can be imple-

mented through the browser built-in techniques and third-party plug-ins. The tools

employing browser techniques, including XMLHttpRequest (XHR), Document Ob-

ject Model (DOM) element, WebSocket, Navigation Timing, and WebRTC, can be

supported by most browsers natively. But for those utilizing third-party plug-ins, such

as Adobe Flash and Java applet, they require the installation of the plug-ins first. Ac-

cording to [45], the penetration rates for Flash and Java applet are as high as 99% and

73%, respectively. This suggests that the tools based on the third-party plug-ins are

also very well supported in practice.

For smartphone-based tools, we consider only Android smartphones because of

their popularity. According to [112], Android dominates the market with an 87.6%

share in 2016 Q2. Furthermore, the open-source manner of Android allows us to an-

alyze the source code of the system. Our research covers three measurement meth-

ods, i.e., using HTTP-based Java classes to send HTTP GET requests, network-related

classes to send TCP SYNs, and ping commands external to Java to send ICMP Echo

requests. With the concern of the fragmentation problem of Android system [163], we

also examine the performance diversity in multiple smartphones with different Android

version, including Android 4, 5, and 6.

1.2 Appraising the accuracy of delay measurement

The main objective of this thesis is to study whether the network performance bench-

marking tools can produce accurate results. In particular, we focus on network delay

measurement, because it is the most fundamental and atomic metric, from which rich

information and many other metrics (e.g., delay variation and capacity) can be derived.

8

Take capacity as an example, accurately obtaining the network delay is the prerequisite

to calculate the minimum delay sum or minimum delay difference, and further infer

the link capacity [64, 65]. A delay difference of a few milliseconds can bias the result

in megabyte per second level.

Minimizing mobile network latency is very important to many time-sensitive net-

work services, notably instant communication, video steaming, and mobile gaming.

Active network measurement is often used for detecting performance degradation,

performance troubleshooting, and server deployment. All of them assume reliable

and accurate network measurement, such as network RTT. The user-perceived latency

comprises the latency in the phone (e.g., individual app performance), network RTT,

and server latency. While the server latency can be monitored by the app/content dis-

tribution network (CDN) service provider, the other two cannot be easily segregated.

It is because the latency reported by a user-level measurement app includes both la-

tency components. The main contribution of this work is to obtain the network delay

as accurately as possible from a user-level network measurement app.

For CDNs, their main concern is the network performance experienced by their

users. The additional delay inside the phones, which highly depends on the models and

their operating states, is considered as measurement noise which should be mitigated

as much as possible. Inaccurate network delay measurement could therefore lead to

suboptimal cache assignment and incorrect performance diagnosis [107, 136, 225].

Inaccurate network measurement could also directly affect the user experience of

the apps. Giant app providers, such as Facebook and WeChat, deploy measurement

methods in their own apps, with the aim of studying, analyzing, and debugging their

users’ network experience in different locations worldwide. Facebook provides in-

app library for categorizing the quality of the network [20]. Developers can use the

results from the Connection Class to adjust the app’s behavior, such as requesting

9

lower quality video/image and throttle type-ahead. [10]. Inflated network RTT could

therefore lower the quality of the requested video/image. The same problem could

occur to QDASH (QoE-aware Dynamic Adaptive Streaming over HTTP) which uses

the network RTT to adjust the video bitrate [161]. Similar to Facebook, WeChat’s in-

app library, Mars [37], measures network RTTs using ping and TCP [1] in its network

monitoring component called SDT [2,3]. Mars library is also very popular among other

app developers (the Mars GitHub page [37] has been marked and forked by around 8K

and 1.5K developers, respectively).

In this thesis, we find that it is not uncommon to have the network delay being

inflated by 10ms or more using the three typical measurement methods. In some cases,

they could even be close to 20ms. In order to understand whether this scale of delay

inflation will have an impact on the measurement of typical mobile network latency,

we have analyzed the latency dataset obtained by MopEye [228], a measurement app

to obtain network delay for each active app in a smartphone. The MopEye app was so

far downloaded to more than 4,000 smartphones across 126 countries. From May 2016

to January 2017, we have collected over 5 million delay measurements for more than

6,000 apps in both WiFi and cellular networks. The measurement results show that the

median delay experienced by all apps is 65ms. The median RTTs for popular apps are

even smaller. For example, the median RTTs for Facebook, YouTube, and WeChat are

only 42ms, 32ms, and 36ms, respectively. With a delay inflation of 10ms, the error

of estimating the network latency using a user-level measurement could be off by over

30% (i.e., 10ms inflation for an actual RTT of 32ms).

To quantify the accuracy of delay measurement, we follow the ISO standard 5725 [42],

in which two terms “trueness” and “precision” are used to describe the accuracy of a

measurement method. “Trueness” refers to the closeness of the test results and the true

or accepted reference value. “Precision” refers to the closeness of agreement between

10

test results. We therefore define delay overhead as the difference between the value

measured by the measurement tools and the actual network delay. A smaller and stable

delay overhead suggests that the measurement is more accurate and the measurement

tool is more reliable.

The most challenging part in the delay overhead evaluation is how to accurately

capture the actual network delay. For desktop PCs, the actual network delay can be ap-

proximated by the timestamps fetched in the kernel, because the delay between the ker-

nel and the NIC is negligible. However, this approach is not applicable in smartphone-

based measurement. The reason is that the Ethernet frames have to be translated into

other types of frames (e.g., IEEE 802.11 wireless frames), which could introduce ad-

ditional delays. Moreover, mobile devices usually adopt energy saving mechanisms

to extend the battery life cycle. It is also possible that the packets are buffered in the

wireless network interface card (WNIC) or the access point (AP) during the sleeping

period.

A simple way to obtain the actual network delay in WiFi networks is listening

to the WNIC of the AP [179, 204]. However, it is difficult to extract the exact time

that a packet is transmitted over the air medium, because a variable delay could be

introduced after the driver passes the packet to the firmware due to the queuing, carrier

sensing/back-off, or retry. It is challenging to solve the problem, e.g., employing APs

that support WNIC hardware timestamp, modifying the driver, and rebuilding kernel.

Our solution is to build a testbed containing multiple sniffers. When the packets are

arrived at the air medium, the timestamps will be captured by the sniffers and thus

the actual network delay can be calculated. By performing trace merging and frame-

based synchronization, we can obtain a complete packet trace for calculating the actual

network RTTs.

Another objective in this thesis is to improve the accuracy for those performance

11

benchmarking tools. A prerequisite to achieve the goal is locating the exact places that

result in the inaccuracy and find out the root cause. We therefore introduce the multi-

layer analysis, dividing the delay overhead into several more fine-grained components.

Based on the analysis, we can examine whether the user space or kernel space accounts

for the majority of the delay inflation. Our analysis shows that for browser-based

measurements, the extreme delay overheads for some methods, such as Flash HTTP

and WebRTC methods, are caused by that the connection or channel establishing time

is included in the measurement results. Moreover, the coarse granularity of timing

functions in Java applet results in significant over- or under-estimation of the RTTs.

For smartphone-based measurements, the delay inflations can be introduced both in

the user space and kernel space. The inefficient function calls in Android runtime

is the major source of the user-level overheads, and the energy-saving mechanisms

adopted by the smartphones contribute the majority of the kernel-level overheads. We

will further discuss it in the next section.

1.3 Improving the accuracy of smartphone-based de-

lay measurement

One of our objectives in this thesis is to improve the accuracy of network performance

benchmarking tools. In particular, we focus on smartphone-based measurements. Dif-

ferent from browser-based measurement, which source of delay inflation is in the user

space mainly, the delay overheads in smartphone can be introduced in user space, ker-

nel space, and even externally. Since the inefficient function calls in Android runtime

(both Dalvik VM and ART) contribute the majority of delay overhead in user space, it

can be mitigated by implementing the measurement method in a native Linux binary.

But for the overheads caused by various energy-saving mechanisms, they are difficult

12

to remove.

For WiFi networks, the Secure Digital Input Output (SDIO) bus sleeping introduces

additional network delay inside the smartphone, and the IEEE 802.11 Power Saving

Mode (PSM) externally inflates the delay between the phone and the access point (AP).

Furthermore, for cellular networks, it is well known that the low-power RRC (Radio

Resource Control) states will cause additional delay. Although there are many works

on addressing the impact of PSM [58, 103, 183, 194], they concentrate more on packet

scheduling on the AP side to achieve a better balance between energy consumption

and network delay. Similarly, previous studies on RRC state transition [108, 184, 190]

have not proposed any concrete algorithms to effectively mitigate the impact of RRC

states on nRTT measurement.

We accordingly try to improve the accuracy of smartphone-based delay measure-

ment by mitigating the impact of the energy-saving mechanisms. The solution should

meet a number of requirements. First of all, it should be cost-effective. Here, “cost-

effective” means that the solution can effectively mitigate the delay overheads without

cost too much system and network resources. Moreover, it should work across different

smartphone models and Android versions. Secondly, the solution should be indepen-

dent to other program. For example, the background traffic introduced by other apps

may activate the smartphone, but we cannot rely on these random events. Finally, as

normal users do not have the expertise to change the system and network configura-

tion, the solution should require minor or no system modification, as well as “root”

privilege.

1.4 Contributions

The contributions of this thesis are summarized below.

13

1. Measurement studies to appraise the accuracy of browser-based and smartphone-

based delay measurement.

We have conducted testbed experiments to evaluate the delay overheads in-

troduced in the browser-based measurements. We have tested twelve Web or

browser techniques that have already been employed or can be adopted for im-

plementing browser-based network measurement tools, including the traditional

HTTP-based and socket-based methods, Navigation Timing technique, and We-

bRTC technique. Our evaluation covers the major Web browsers on Windows

and Ubuntu. The measurement results show that almost all the methods will

inflate the network delay from a few milliseconds to tens of milliseconds. In

particular, the delay overheads incurred in most of the HTTP-based methods are

too large to ignore. For example, the median overheads of Flash GET and POST

methods can be larger higher 100ms in some browsers. Moreover, the fluctuation

of delay overheads for HTTP-based methods are also large. An extreme case is

XHR GET. Its variation of overhead can be as large as 60ms. The socket-based

methods, on the other hand, incur much smaller overhead, which values are usu-

ally smaller than 1ms. Navigation Timing method introduces relatively small

and stable additional delays during the measurement, which median values and

variations are all smaller than 2ms mostly. As for WebRTC tecchnique, its delay

overheads are ∼4ms, but the variations can be ∼8-10ms.

For smartphone-based tools, we have appraised their accuracy of delay measure-

ment in WiFi networks. Different from fixed networks, obtaining actual network

RTTs in wireless environment is much more challenging. We have designed

and built a testbed that contains multiple sniffers. By performing trace merg-

ing and frame-based synchronization, we can obtain a complete packet trace for

calculating the actual network RTTs. With the help of the reliable testbed, we

14

have tested two of the most popular measurement apps, Ookla Speedtest and

MobiPerf, and shown that they have their RTT measurements inflated, ranging

from a few milliseconds to tens of milliseconds. We further build three test apps,

including Native ping, Inet ping, and HTTP ping that cover three common mea-

surement methods and evaluate them in the testbed. The measurement results

show that the RTT measurement obtained from the three measurement methods

are all inflated, and the amount of inflation is comparable to Ookla Speedtest

and MobiPerf. Moreover, we also discover that the delay inflation introduced in

the user space is asymmetric for packet sending and receiving. This observation

facilitates the follow-up root-cause analysis.

2. Root-cause analysis on the delay inflation.

We have analyzed the root causes that result in significant and unstable delay

overheads for browser-based measurement. Our analysis shows that Date.getTime(),

a typical timing API in Java, does not provide the millisecond resolution assumed

by many measurement tools on some OSes (e.g., Windows 7). This results in a

serious under-estimation of RTT. On the other hand, some methods, such as

Flash HTTP methods and WebRTC technique, over-estimate the RTT by includ-

ing the TCP handshaking or data channel establishing phase.

For smartphone-based measurements, we have performed multi-layer analysis,

which decomposes the delay overhead into several finer-grained elements. Our

analysis show that the overhead in Android runtime contributes to the majority

of the delay overhead in the user space, and it is due to a long path of sub-

function invocations. Moreover, the migration of runtime from DVM (Dalvik

VM) to ART (Android Runtime) cannot help too much on alleviating the over-

head. On the other hand, the sleeping function of the wireless network interface

card (WNIC) driver is the major source of the delay overhead in the kernel.

15

Specifically, smartphones equipped with Broadcom WNIC chipsets implement

an energy-saving mechanism in the Secure Digital Input Output (SDIO) bus.

When there is no network activity, the SDIO bus will be turned into inactive

mode (sleeping). It takes more than 10ms for the bus resuming active mode

again if there are packets to send or receive. To our knowledge, we are the first

to report the impact of SDIO bus sleeping on the network delay measurement.

3. A novel tool for improving the accuracy of delay measurement.

Based on our delay overhead evaluation and root-cause analysis, we proposed to

improve the accuracy of delay measurement. For browser-based measurements,

although we have not implemented a applicable tool, we have given suggestions

on measurement design as well as made recommendations for the best browser

in practice. Specifically, the socket-based methods are recommended for their

small and stable delay overheads. In the browser built-in HTTP-based meth-

ods, Navigation Timing is a good candidate of replacing XHR GET and POST

methods, but the measurement immediately following TCP connection estab-

lishment should be excluded. As for the client-to-client measurement enabled

by WebRTC technique, Firefox is the preferred browser.

For smartphone-based measurement, we have proposed a novel tool, AcuteMon,

to mitigate the delay inflation in smartphone-based measurements. AcuteMon

mitigates the delay inflation in the user space by implementing the core measure-

ment logic into a native C program and invoking it through an external system

call in the app. For the delay inflation caused by the energy-saving mechanisms

in the kernel and network layers, AcuteMon enforces the smartphones to operate

in the active state by sending out a set of “warm-up” packets background pack-

ets. Our approach is not only for resolving the problems in WiFi networks, but

also aims at removing the inflations caused by the RRC state transition in cel-

16

lular networks. AcuteMon can run on unrooted phones and requires no system

customization, such as kernel recompilation and customized ROM. Our testbed

evaluation and Internet experiment show that AcuteMon can produce more ac-

curate measurement results effectively.

1.5 Organization

The rest of this thesis consists of five chapters: Chapters 2 on the background knowl-

edge and related works, Chapter 3 on appraising the accuracy of browser-based delay

measurements, Chapter 4 on evaluating the accuracy of smartphone-based delay mea-

surements, Chapter 5 on improving the accuracy in smartphone-based delay measure-

ments, and finally Chapter 6 on conclusions and future work.

In Chapter 2, we will first present relevant background on network measurement

and performance metrics. Next, we will revisit previous works on network delay mea-

surement. After that, we will introduce how network performance benchmarking tools

measure the network delays, and survey the existing browser and smartphone-based

tools as well as the core methods they employ. Lastly, we will discuss the accuracy

problem for network measurement, especially using delay overhead to quantify the

inaccuracy.

Chapter 3 is devoted to appraising the accuracy of browser-based delay measure-

ments. We will first present the experiment on the traditional HTTP-based and socket-

based methods. After highlighting the results of granularity and execution cost mea-

surements on the HR-Time, we will turn to the Navigation Timing technique. Finally,

we will evaluate the performance of and WebRTC technique.

Chapter 4 is devoted to appraising the accuracy of smartphone-based delay mea-

surements. We will first the introduce a multi-layer approach to analyze the perfor-

mance problem in Android. Next, we will detail the testbed setup and our methodology

17

if employing multiple sniffers to obtain a complete packet trace. After reporting the

results obtained from the Internet experiments for Ookla Speedtest and MobiPerf, and

the results from the controlled testbed experiments, we will then perform root-cause

analysis on the delay overheads. Lastly, we will propose a measurement method to

mitigate the delay inflation introduced in the user-space.

In Chapter 5, we will propose AcuteMon to mitigate the delay overheads caused by

the energy-saving mechanisms. We will first conduct experiments and perform root-

cause analysis on the delay overheads in mobile networks. And then we will describe

the design and implementation of AcuteMon. Lastly, we will evaluate the performance

of AcuteMon in both testbed and real Internet environment.

In Chapter 6, we will conclude our current research and look ahead several fu-

ture directions. One issue that can be explored is extending the delay measurement to

throughput measurement. Providing a unified solution for accurate browser-based de-

lay measurement and performing large-scale Internet evaluation for AcuteMon could

be the other two possible directions.

18

Chapter 2

Background and Related Works

In this chapter, we discuss existing works related to this thesis. We begin with some

background knowledge on network performance measurement in terms of performance

metrics. We summarize the existing measurement methods and tools, especially on

inferring network delay. Next, we introduce the popular network performance bench-

marking tools. Due to the ubiquity of Web browsers and smartphones, these measure-

ments have gain popularity on both desktop PCs (browser-based measurement) and

smartphones (smartphone-based measurement). We survey the existing benchmarking

tools based on their measurement methods and implementations. Finally, we discuss

the accuracy problem for network measurement. In particular, we show that the inac-

curacy of network delay measurement can be quantified with delay overhead. Models

of investigating the delay overhead for both browser-based and app-based tools are

also provided.

2.1 Measuring network path performance

Network path performance measurement plays an important role for a number of pur-

poses, such as modeling the evolution of the Internet [158, 169, 200], developing and

19

validating new network analytic techniques [72], diagnosing network problems and

making better management decisions [59,74,88,94,111,149,153,154,226], improving

performance of the network-quality-sensitive applications [50, 123, 161, 195], verify-

ing the compliance of service level agreement (SLA), and monitoring the the ISP’s real

performance [47,66,71,127,152,208,218,237]. To precisely quantify the network path

performance and reliability, we need well-defined and concrete performance metrics

as well as reliable and sound network measurement methods.

2.1.1 Network performance metrics

Both the Telecommunication Standardization Sector of ITU (ITU-T) [117] and IP Per-

formance Metrics Working Group (IPPM WG) [14] of the Internet Engineering Task

Force (IETF) [38] have spent great effort on standardizing performance metrics for

quantifying various network path characteristics. In particular, the IETF IPPM WG has

carefully defined a set of performance metrics, including connectivity [155], one-way

and round-trip delay (a.k.a. round-trip time) [48,49], delay variation [75], one-way loss

and loss patterns [48, 132], packet reordering [164], network capacity [70], and bulk

transport capacity [157]. The equivalent recommendations introduced by ITU-T are

Y.1540 [118] and Y.1541 [119]. The former defines a set of performance parameters

that can be applied to end-to-end IP service monitoring, such as transfer delay, delay

variation, error ratio, loss ratio, and reordered ratio, whereas the latter describes six

different classes of service and specifies the performance bounds for network delays,

losses and errors that define these classes.

Besides the performance metrics, the IPPM WG has also developed several impor-

tant concepts of measurement period, samples, and packet types [177]. More specifi-

cally, the measurement period is denoted by wire time, which is the time that a packet

is sent from the source of its first bit on the physical wire (out of the Network Interface

20

Card (NIC)) till the reception of the last bit on the destination. The terms singleton,

sample, and statistical metrics are used to describe how the metrics are derived from

the measurement instances. Moreover, a Type-P packet is a packet that complies with

certain specified condition. The set of Type-P packets are chosen for computing the

desired performance metrics.

2.1.2 Measurement methods and tools

Network measurements can be generally classified into three categories based on their

methodologies: passive measurement [39, 46, 93, 188, 236], active measurement [64,

104, 146, 199], and hybrid measurement that combines both active and passive meth-

ods [55,217,218,221]. The major difference among them is that active methods are re-

quired to generate and inject measurement traffic into the monitored network, whereas

passive methods are not required to do so. Passive methods monitor the network per-

formance from one or more vantage points inside the network by inspecting the exist-

ing user traffic, and therefore will not disturb the normal network services. However,

active methods usually provide more opportunities to monitor the e2e paths that can-

not be seen by the passive methods, because the autonomous operation of the Internet

makes it very difficult to perform passive measurement in domains outside the control

of the measurement operator. Moreover, passive measurements need to identify some

special packets, such as TCP SYN and SYN ACK packets for some particular source

and destination pairs, from massive volume of user traffic and sort them without any

background knowledge. This is a very challenging task to both algorithm (software)

and processing capability (hardware). A more detailed discussion on the pros and cons

of passive and active network measurements can be found from [181], and a detailed

survey on network measurement methods and tools in [21]. In this study, we focus

only on active network measurement.

21

Active measurement methods can be further classified into duet-active (a.k.a. coop-

erative) network measurements, which require the control of both end-points and can

readily support different one-way metrics to quantify the forward-path or reverse-path

performance [80, 129, 138, 187, 209], and solo-active (a.k.a. non-cooperative) , which

measure the end-to-end paths without controlling the destination end-points [51, 64,

146,196,203]. Compared to the duet-active methods, solo-active methods have the ad-

vantage of facilitating large-scale network measurements given a sufficient number of

remote end-points. By employing the existing network protocols or services, measure-

ment tools based on solo-active methods can be easily deployed with a relatively low

cost. For example, ping and traceroute, the most popular network measurement tools

based on ICMP [182], are almost available on every desktop PC. Some measurement

platforms, such as CAIDA’s Archipelago (Ark) [63] and DIMES [200], utilize the tools

built on ICMP to measure the RTT distance and discover network topology [60, 67].

Although many research works have derived from the ICMP-based tools, Li et

al. have shown that the measurement results produced by these tools can differ from

those obtained by TCP [227], because the ICMP packets and TCP packets could be

treated with different QoS policies or processed on different routing paths. Moreover,

the ICMP packets are often rate-limited or even filtered by firewalls [212], resulting

in measurement failures. Considering that most of the Internet applications today are

based on TCP [139], the network performance experienced by TCP-based applica-

tions may not be reflected accurately by ICMP-based measurement methods. To take

a closer look to the user-perceived performance, a number of tools have been proposed

based on sampling of network performance of with TCP packets. Sting [196] mea-

sures the one-way packet loss rate without the cooperation of the remote host. TCP

Sidecar [202, 203] inserts measurement probes into the existing TCP streams to dis-

cover the router-level network topology. POINTER [147] concentrates on e2e packet

22

reordering metrics. HTTP/OneProbe [146] reports the bi-directional packet loss and

reordering rate besides the round-trip delay. TRIO [64] summarizes the asymmetric

capacity of a network path.

However, these TCP-based solo-active methods still have limitations. First of all,

these tools usually have a strict requirement on the running environment. For example,

HTTP/OneProbe and TRIO can only work on Linux, because they rely on raw socket

and need to manipulate the MSS (Maximum Segment Size) when establishing a new

TCP connection, both of which cannot be achieved in Windows. Another case is that

capacity measurement tools based on packet pair or packet train techniques. Due to the

the proportional fair scheduling used by base stations, they cannot be applied to mobile

networks and smartphones directly [159]. Second, the measurement results produced

by the tools require networking expertise to interpret. These limitations prevent them

from being deployed to the same scale as Ping and Traceroute. preventing their preva-

lence. Despite the fact that mobile networks, including WiFi and cellular networks,

are getting more and more important as well as mobile devices become more and more

popular, these tools cannot be applied to the mobile scenario easily.

Recently, more measurement tools are available to end users to benchmark their

network performance and diagnose problems. Such efforts include various speedtest

services on desktop machines and measurement apps on smartphones. In particular,

many of these tools, such as Netalyzr [134, 222] and Ooklas speedtest [171], imple-

ment measurement methods in browsers which are ubiquitously available on all sys-

tems. These browser-based measurement tools usually measure the network RTT and

throughput. Some can even measure the packet loss and reordering rates. Similarly,

the smartphone-based measurement tools are available on the major mobile OSes, in-

cluding Android [12, 17, 18, 34], iOS [32, 33], and Windows Phone [22, 35]. A more

detailed study of these network performance benchmarking tools will be provided in

23

§2.2.

2.1.3 Measuring network path delay

This thesis focuses on network delay measurement, because it is the most fundamental

atomic metric, from which rich information and many other metrics can be derived.

For example, the minimum value of the delay is determined by the physical medium

used for communication, and the maximum transmission rate of a network path is also

limited by the network delay [68, 120]. Moreover, understanding and characterizing

the network delay is also a prerequisite to diagnose network problems and improve the

performance of network applications.

Several metrics related to one-way delay, round-trip delay, and delay variation have

been introduced by IPPM WG. In particular, the one-way delay (OWD) is defined as

the time passed from the first bit of the packet that has been sent to the network to

the last bit that reaching its destination [48]. The round-trip delay (RTD or RTT)

is considered to be the time interval between the time instant a source node emits

a request packet to a destination and the time instant a response packet is received

from the destination node [49]. Lastly, the IP Packet Delay Variation (IPDV) is the

difference in the OWD of a selected pair of packets in a test stream going from the

source to the destination [75].

Typically, a network path consists of multiple network devices (also known as

hops), such as switches and routers. For a packet to be transmitted from hop i to hop

i+ 1, the transmission delay can be divided into several components [61], as depicted

in Figure 2.1.

• Transmission delay dT (= t1−t0): The time needed to put all the bits of a packet

onto a data link. Let L be the packet size and Ci the link capacity between hop

i+ 1 and i. We will have dT = L/Ci.

24

• Propagation delay dP (= t2− t0): The time needed to propagate a bit though the

data link. When the physical distance between hop i + 1 and i is S, dP can be

calculated as dP = Si/vi, where vi is the signal propagation speed.

• Processing delay dQ (= t4 − t3): It is also known as queuing delay, which is the

time needed to wait in a router queue before transmission.

i

i+1

i+2
dP dT dQ

t0 t1

t2 t3 t4

Figure 2.1: Components of network delay between two adjacent hops.

For a n-hop one-way network path, the OWD of the path can be calculated through

DOWD =
n−1
∑

i=1

(
L

Ci

+
Si

vi
+ dQi). (2.1)

Let Dfw and Drv be the OWDs of the forward and reverse network path, respec-

tively, the RTT of the round-trip path can be presented as

DRTT = Dfw +Drv. (2.2)

Network delay can be monitored with both passive and active measurement meth-

ods. For passive method, the delay can be observed by capturing the in-flight data

packets that flow through the vantage points (VPs). Typically, TCP packets are ana-

lyzed because they consists of sequence number and acknowledge number and there-

forth can be easily identified and correlated [62,77,124,180]. The passive method can

be deployed to monitor the backbone network [77, 89], residential network [156], and

25

mobile network [69, 108, 179]. In this thesis, we focus on active delay measurements,

which can employ ICMP, UDP, or TCP method to estimate the network path delay.

Although the previous research has shown that the delay measured with ICMP can

be different from those obtained with other protocols [227], active methods or tools

based on ICMP are still in use in many research projects, such as CAIDA’s Ark [63],

DIMES [200], and DipZoom [226]. Other tools, such as pathchar [81] and pchar [150],

utilize both UDP and ICMP to measure the per-hop network delay. There are a num-

ber of active measurement tools that monitor the network delay with TCP, including

netperf [19], Iperf [15], HTTPing [105], and HTTP/OneProbe [146]. The speedtest-

like measurement services prefer TCP (such as Ookla Speedtest [171]), or a combi-

nation of TCP, UDP, and ICMP (such as SamKnows [29]). These measurement tools

are deployed in a number of scenarios, such as monitoring the performance of resi-

dential network [79, 217] and mobile network [216], as well as diagnosing network

failures [88].

2.2 Performance benchmarking tools

Although a set of standard metrics has been defined and many measurement tools have

been introduced in the past decades, applying them to the real-world scenario is still

challenging. As summarized in Chapter 1, the reasons preventing the them from large-

scale deployment can be various, such as non-representativeness, strict running con-

straints, and poor usability. In contrast, the network performance benchmarking tools,

including browser and smartphone-based tools, have the advantages of ease of use,

low cost of deployment, and representativeness, and therefore have gained popularity

among end users. In the following, we will summarize and explain how the browser

and smartphone-based tools work, including employing Web servers as measurement

targets and the principle of measurement.

26

2.2.1 Employing Web servers as measurement targets

Employing Web servers as measurement targets is a cost-effective way to conduct

large-scale network measurement. This method is adopted by not only browser and

smartphone-based but many other measurement tools. According to Netcraft’s survey

published in Feb 2016, more than 900 million Web servers and Web-facing computers

can be found in the world [165]. The Web servers hosted in both dedicated Inter-

net service providers and individual homes provide a huge number of candidates for

conducting large-scale network measurement. A Measurement tool can have its own

dedicated Web servers [148, 171], or makes use of the existing ones [64, 88, 146].

The main concern of employing Web servers as measurement targets is the possible

processing delay introduced by the servers. However, since browser and smartphone-

based tools usually employ static Web objects with very small size for delay measure-

ments, the processing delay is negligible. For example, Luo et al. show that more

than 80% of the server-induced delays are observed smaller than 0.5ms [146]. If only

TCP data packet is considered, the server-induced delays can be as small as tens of

microseconds. In fact, in many previous research works, such as [179], the processing

delay of the Web servers is always ignored.

2.2.2 Employing Web browsers as measurement sources in desk-

top environment

The prevalence of modern Web browsers for desktop PCs enables the large-scale de-

ployment of browser-based network measurements. These measurements actively mon-

itors e2e network paths from the Internet edge without requiring technical knowledge

from users. Moreover, the system and configuration diversity of the involved end-hosts

will not be a challenge, because most of existing browsers follow the standards devel-

oped by the World Wide Web Consortium (W3C) . A browser-based network measure-

27

ment tool can generally provide many different services. Netalyzr [134], for example,

provides network-layer information (e.g., RTT and path MTU), service reachability,

and DNS measurement.

We have studied the RTT measurement methods employed by a number of browser-

based tools, such as Netalyzr [134], Janc’s methods [122], and How’s My Network

(HMN) [189], and the speedtest-like services, including Speedof.me [30] and Ookla

[170,171], by inspecting their codes and the packets exchanged between browsers and

servers. Their methods comprise a preparation phase and a measurement phase, as

shown in Figure 2.2. In the preparation phase, the browser first loads from a web

server a container page containing a piece of measurement code. In the measurement

phase,

1. (Send) The measurement code is executed at the browser to instantiate an object

which sends a “request” message (e.g., HTTP GET or binary data) to the origin

server or another web server to elicit a “response” message. The timestamp

(tBs) is recorded just before sending the request message which may be sent in

one IP packet (for RTT measurement) or multiple IP packets (for throughput

measurement).

2. (Receive) The web server that receives the response message returns a “re-

sponse” message (e.g., HTTP response message or binary data) to the browser.

The timestamp (tBr) is recorded immediately after receiving the response mes-

sage. The RTT is then estimated by tBr − tBs . Similar to the send case, the

response message may be sent in one or more IP packets.

2.2.2.1 Traditional HTTP-based and socket-based methods

The methods for a browser to send a request message to a web server for RTT mea-

surement can be classified into HTTP-based and socket-based. Table 2.1 summa-

28

Client

Web Server

Application

Network Stack

ts
B tr

B

ts
N tr

N

Container page Request Response

Preparation Measurement

Figure 2.2: Two phases in browser-based network measurement.

rizes eleven such methods and the tools that use them. The HTTP-based method

could be implemented through JavaScript, Flash, or Java applet. A JavaScript code

imbedded in the container page creates an XHR object and calls the send() func-

tion to send out an HTTP request. The object records tBs using the JavaScript func-

tion Date.getTime() and uses the onreadystatechange event listener to determine

whether the response has been received for recording tBr . Another JavaScript method

is based on DOM element that first records tBs before inserting a new DOM element to

the page using a <script> tag or tag. This tag points to a specified URL to

download the requested object. A successful loading triggers an onload event which

prompts the logging of tBr . Flash, on the other hand, provides class URLLoader to

handle HTTP data, and Java applet offers class URL. Both of them provide function

Date.getTime() to log the current timestamps, and they record tBs just before send-

ing out the request. Flash detects the completion of receiving the response via function

addEventListener for recording tBr . Although there is no such event listener in Java

applet, the completion can be detected by reading the response content.

The socket-based method, on the other hand, establishes network connections/associations

through TCP or UDP sockets for exchanging binary data. TCP socket is supported

by Flash, Java applet, and WebSocket, whereas UDP socket is only supported by

Java applet and WebRTC (Web Real-Time Communiction) technique (more details

of WebRTC will be discussed in Section 2.2.2.3). Flash manipulates network socket

29

T
ab

le
2

.1
:

A
su

m
m

ar
y

o
f

th
e

b
ro

w
se

r-
b

as
ed

n
et

w
o

rk
m

ea
su

re
m

en
t

m
et

h
o

d
s

an
d

to
o

ls
.

A
p
p
ro

ac
h
es

T
ec

h
n
o
lo

g
y

A
v
ai

la
b
il

it
y

M
et

h
o
d
s

S
u
b
je

ct
to

th
e

sa
m

e-
o
ri

g
in

p
o
li

cy
b
y

d
ef

au
lt

?

M
ea

su
re

d
p
at

h

q
u
al

it
y

T
o
o
ls

/
S

er
v
ic

es

H
T

T
P

-

b
as

ed

X
H

R
N

at
iv

e
G
E
T

Y
es

R
T

T
,
T

p
u
t

S
p
ee

d
o
f.

m
e

[3
0
],

B
an

d
w

id
th

P
la

ce
[2

1
3
]

Ja
n
c’

s
m

et
h
o
d
s

[1
2
2
]

P
O
S
T

Y
es

R
T

T
,
T

p
u
t

D
O

M
N

at
iv

e
G
E
T

N
o

R
T

T
,
T

p
u
t

[1
2
2
],

[2
1
3
],

W
an

g
’s

m
et

h
o
d

[2
2
5
]

F
la

sh
P

lu
g
-i

n

G
E
T

Y
es
∗

R
T

T
,
T

p
u
t

S
p
ee

d
te

st
[1

7
1
],

A
u
d
it

M
y
P

C
[5

2
],

S
p
ee

d
ch

ec
k
er

[2
1
4
],

B
an

d
w

id
th

M
et

er
[7

3
],

In
te

rn
et

F
ro

g
[1

1
5
]

P
O
S
T

Y
es
∗

R
T

T
,
T

p
u
t

Ja
v
a

ap
p
le

t
P

lu
g
-i

n
G
E
T

Y
es
∗

R
T

T
,
T

p
u
t

P
O
S
T

Y
es
∗

R
T

T
,
T

p
u
t

S
o
ck

et
-

b
as

ed

W
eb

S
o
ck

et
N

at
iv

e
T

C
P

N
o

R
T

T
,
T

p
u
t

Ja
v
a

ap
p
le

t
P

lu
g
-i

n
T

C
P

N
o

R
T

T
,
T

p
u
t

N
et

al
y
zr

[1
3
4
],

H
M

N
[1

8
9
],

Ja
v
aN

w
s

[1
3
5
],

P
in

g
te

st
[1

7
0
],

N
D

T
[1

4
8
],

A
u
d
it

M
y
P

C
[5

3
]

U
D

P
N

o
R

T
T

,
T

p
u
t,

L
o
ss

F
la

sh
P

lu
g
-i

n
T

C
P

Y
es
∗

R
T

T
,
T

p
u
t

[1
7
1
]

W
eb

R
T

C
N

at
iv

e
U

D
P

N
o

R
T

T
,
T

p
u
t,

L
o
ss

N
o
te

:
∗

T
h
e

sa
m

e-
o
ri

g
in

p
o
li

cy
ca

n
b
e

b
y
p
as

se
d
.

30

with class Socket. This class also provides function addEventListener to detect

data arrival. In Java applet, the sockets are created via class Socket for TCP and

DatagramSocket for UDP. The timestamps are recorded after the receive function call

returns successfully. WebSocket provides its functionality through JavaScript. Web-

Socket is like TCP socket on the abstraction level, except that the data transmissions

are based on messages. Therefore, WebSocket obtains the timestamps in a similar way

as Flash and Java applet.

All the HTTP-based methods, except for DOM, suffer from the restriction imposed

by the same-origin policy which prevents a browser from accessing other servers ex-

cept the original one hosting the container page. However, Flash can bypass this re-

striction through the Flash cross-domain policy, and Java applet’s approach is through

a signed Java applet. On the other hand, except for Flash, the socket-based methods are

not affected by the same-origin policy, but they are required to open service ports for

socket connections. Another important consideration is that Flash and Java applet, as

the third-party plug-ins, are not supported in mobile computing platforms. As a result,

WebSocket is the remaining choice for performing socket-based measurement in both

fixed and mobile network platforms.

2.2.2.2 Navigation Timing technique

Navigation Timing is an API recommended by the W3C’s Web Performance Working

Group [40]. It is not a Web technique of handling request sending and response re-

ceiving. Rather, it provides a simple way to get the detailed and fine-grained timing

statistics for page navigation and load events. The events include DNS resolution, con-

nection latency, and time to first byte from inside the browsers of real users. Figure 2.3

illustrates the processing model and the detailed events that can be identified through

Navigation Timing.

31

Navigation Timing was accepted as a specification in Dec 2012. Currently 90.73%

of browsers support this new feature [6]. Most of the modern browsers are compatible

with it, except Safari in Windows because Apple stops updating it and its latest version

is 5.1.7. Besides applying it for profiling the user experience on the Web [82, 113],

some organizations also consider how to employ it for the purpose of network perfor-

mance measurement. For example, cedexis launches its Radar project to benchmark

the performance of cloud, content delivery, and private platforms [8]. And E. Gavaletz

et al. discuss the feasibility of utilizing Navigation Timing to measure the HTTP re-

sponse time [92].

Figure 2.3: Detailed timing attributes defined by Navigation Timing technique.

Several events (events 1 - 7 in the Figure 2.3) can be utilized for network mea-

surement:

domainLookupStart (event 1) returns the time immediately before the user agent

starts the DNS lookup.

domainLookupEnd (event 2) returns the time immediately before the user agent fin-

ishes the DNS lookup.

connectStart (event 3) returns the time immediately before the user agent start es-

tablishing the connection to the server for retrieving the document.

connectEnd (event 4) returns the time immediately after the user agent finishes es-

tablishing the connection to the server for retrieving the current document.

requestStart (event 5) returns the time immediately before the user agent starts

requesting the current document from the server, relevant application caches, or

32

local resources.

responseStart (event 6) returns the time immediately after the user agent receives

the first byte of the response from the server, relevant application caches, or local

resources.

responseEnd (event 7) returns the time immediately after the user agent receives the

last byte of the current document or immediately before the transport connection

is closed, whichever comes first.

Figure 2.4 depicts the time that each event takes place. After the preparation phase,

if the browser must open a new TCP connection to the remote Web server, it sends out

a TCP SYN packet and waits for a TCP SYN ACK packet. Thus at times tBc and tBe ,

the events connectStart and connectEnd are recorded, respectively. Then an HTTP

request message is sent and an HTTP response message is triggered. Here tBs corre-

sponds to the event requestStart, while tBr1 and tBr2 refer to event responseStart

and responseEnd, respectively. The RTT of the network path can be calculated based

on the TCP connection establishment (Measurement I in the figure):

DRTT I = tBe − tBc , (2.3)

or the data exchange period (Measurement II):

DRTT II = tBr1 − tBs . (2.4)

The Navigation Timing technique can also facilitate throughput estimation. The

downstream throughput can be calculated based on the size of the response (Lresp)

message:

Bdown =
Lresp

tBr2 − tBr1
. (2.5)

As for the upstream direction, since the Navigation Timing has not provided the event

33

Client

Web Server

Application

Network Stack

ts
B tr2

B

ts
N tr2

N

Container page Request Response

Preparation Measurement II

S
Y

N

A
C

K

S
Y

N
A

C
K

Measurement I

Connection establishing

tc
B te

B

tc
N te

N

tr1
B

tr1
N

Figure 2.4: The measurement phases in measurements based on Navigation Timing

technique. The RTT can be calculated based on TCP connection establishment events

(Measurement I) and HTTP request/response messages (Measurement II).

that the last bit of the request message has been emitted, we need to subtract one RTT

during the calculation:

Bup =
Lreq

tBr1 − tBs − RTT
. (2.6)

where Lreq is the size of request message.

Besides measuring the network path between the client and Web server through

TCP and HTTP, events 1 and 2 can also be used to infer the DNS performance.

2.2.2.3 WebRTC technique

Similar to WebSocket, the Web Real-Time Communication (WebRTC) technique is

also an in-browser JavaScript API definition drafted by the W3C. However, it differs

from WebSocket in that it enables direct browser-to-browser communication whereas

WebSocket is still based on the client-server model. Therefore, WebRTC is usually ap-

plied to the scenarios where point-to-point voice calling, video calling, and file sharing

are required. This important characteristic also makes it possible to monitor the net-

work performance between two clients. In the context of network measurement, the

WebRTC RTCDataChannel API allows browsers to exchange arbitrary data with each

other. By recording the packet sending time and receiving time, the RTT can be then

calculated. Moreover, since WebRTC provides packet-level granularity, the packet loss

rate can be estimated likewise.

34

The underlying protocols of WebRTC are defined by the IETF Rtcweb Work-

ing Group [28]. The exchanged data is under the control of SCTP (Stream Control

Transmission Protocol) [185], which allows out-of-order delivery and retransmission

of messages. To ensure the security, the WebRTC data is tunneled over an encrypted

DTLS [186] tunnel. Figure 2.5 shows the underlying protocol stacks of WebRTC Dat-

aChannel, as well as the comparison to XHR and WebSocket. Note that the protocols

on top of UDP are implemented by browsers. Applications on top of WebRTC do not

need to maintain the retransmission timers or counters by themselves.

Figure 2.5: The underlying protocol stacks of WebRTC.

WebRTC is supported by major browsers. According to [7], 61.83% of the existing

browsers are compatible with it. Although it has not been employed in the existing

browser-based network measurement tools, several works have been published to study

its performance. For example, the congestion avoidance for WebRTC video sessions in

LTE networks has been studied in [131]. In [205], the performance of the congestion

control algorithms currently implemented by the browsers has been evaluated. Yan et

al. focus on the problem of accurate prediction of QoE of WebRTC in WiFi network

and collect RTT and packet loss rate through WebRTC script. Fund et al. identify

the characteristics of the cellular network that impact video QoS directly based on the

measurement data collected from DASH and WebRTC implementations [91].

35

2.2.3 Employing measurement apps as measurement sources in

mobile environment

Monitoring mobile network performance through smartphone apps has gained popu-

larity among end users in recent years. These speedtest-like services are available on

Android [12,13,34], iOS [32,33], and Windows Phone [22,35]. Besides, research com-

munities have deployed measurement apps to crowdsource data from a large group of

users. To name a few examples, Netalyzr [18] diagnoses connectivity characteristics,

performance anomalies, and security issues [222, 223]. MobiPerf [17] is used to in-

fer the radio resource control (RRC) state information of cellular networks [190, 191].

Mobilyzer provides a flexible open-source library for app developers to conduct mobile

network measurement experiments in a principled manner [167].

In this thesis, we consider Android platform for its prevalence and open-source

system. Although most of the apps are built on Web techniques, such as employing

Web servers as measurement targets or HTTP request/response as the probe payload,

they can rely on other protocols (e.g., ICMP and UDP). We will cover all possible

methods in our research.

Android provides several interfaces or APIs for sending packets and recording

timestamps, which can be utilized for implementing a network measurement app with-

out rooting the devices. We have studied RTT measurement methods employed by

a number of Android apps by inspecting their codes and the packets exchanged be-

tween the Android phone and servers. Table 2.2 documents the implementation details

for some popular measurement apps in Android. We have summarized the supported

probe packet types, core methods to send and receive packets, functions to record

timestamps, number of sampling probes, and the reported results (min/mean/max).

Although most apps prefer to use the class provided by Java or Android, such as

java.net.URLConnection for handling HTTP request and response messages, the

36

direct execution of external binary (e.g., the built-in ping program located at /system/bin

by default) is also allowed to perform network measurements. Moreover, each mea-

surement app supports one or more probe packet types, including ICMP, UDP, and TCP

(both control messages and data packets). When timestamping the packet sending and

receiving events, the apps also employ different timing functions, whose resolutions

vary from millisecond to nanosecond. Even for the result reporting, different apps

may have their own choice. For example, Ookla Speedtest sends 6 HTTP GET request

packets to a Web server and reports the minimal RTT estimation in integer as the final

result.

2.3 Measurement accuracy

The accuracy of a network measurement system can be defined as how the measure-

ment results deviate from the real network performance. Following ISO 5725 [42],

a network measurement can be considered more accurate if its produced results are

closer to the actual values (trueness) and are more consistent than the others (precision

or repeatability). In reality, accuracy is expressed through “inaccuracy,” which reflects

the unavoidable imperfection of a measurement. Here, the inaccuracy is the deviation

of the measurement results from the “true value” of the measurand. Such deviation is

called the measurement error. Since the true value is not known, the true value is often

treated as an accepted reference value for the property being measured in the calibra-

tion. In this context, the inaccuracy of the “true value” must be negligible compared

with the inaccuracy of the measurement instrument being calibrated.

The measurement error can be evaluated in two ways: absolute measurement error

ζ and the relative measurement error ε:

ζ = Â− A (2.7)

37

T
ab

le
2

.2
:

Im
p

le
m

en
ta

ti
o

n
d

et
ai

ls
o

f
ex

is
ti

n
g

n
et

w
o

rk
m

ea
su

re
m

en
t

ap
p

s
in

A
n

d
ro

id
.

A
p

p
S

u
p

p
o

rt
ed

p
ro

b
e

ty
p

e
C

o
re

m
et

h
o

d
T

im
in

g
fu

n
ct

io
n

#
o

f

S
am

p
le

s
R

es
u

lt
s

O
o

k
la

S
p

ee
d

te
st

[3
4

]
H

T
T

P
G

E
T

j
a
v
a
.
n
e
t
.

U
R
L
C
o
n
n
e
c
t
i
o
n

S
y
s
t
e
m
C
l
o
c
k
.

u
p
t
i
m
e
M
i
l
l
i
s
(
)

6
M

in

M
o

b
iP

er
f

[1
7

]

IC
M

P
E

x
ec

u
ti

n
g
p
i
n
g

p
ro

g
ra

m
N

/A
1

0
M

in
/M

ea
n

/M
ax

T
C

P

S
Y

N
/R

S
T

j
a
v
a
.
n
e
t
.

I
n
e
t
A
d
d
r
e
s
s
.

i
s
R
e
a
c
h
a
b
l
e
(
)

S
y
s
t
e
m
.

c
u
r
r
e
n
t
T
i
m
e
M
i
l
l
i
s
(
)

1
0

M
in

/M
ea

n
/M

ax

T
C

P

S
Y

N
/A

C
K
†

j
a
v
a
.
n
e
t
.

H
t
t
p
U
R
L
C
o
n
n
e
c
t
i
o
n

S
y
s
t
e
m
.

c
u
r
r
e
n
t
T
i
m
e
M
i
l
l
i
s
(
)

1
0

M
in

/M
ea

n
/M

ax

N
et

al
y

zr
[1

8
]

U
D

P
j
a
v
a
.
n
e
t
.

D
a
t
a
g
r
a
m
P
a
c
k
e
t

D
a
t
e
(
)
.
g
e
t
T
i
m
e
(
)

2
0

0
M

ea
n

S
p

ee
d

ch
ec

k
er

[1
2

]
T

C
P

S
Y

N
/A

C
K
†

j
a
v
a
.
n
e
t
.

H
t
t
p
U
R
L
C
o
n
n
e
c
t
i
o
n

D
a
t
e
(
)
.
g
e
t
T
i
m
e
(
)

1
N

/A

V
-S

P
E

E
D

In
te

rn
et

S
p

ee
d

T
es

t
[1

3
]

T
C

P

S
Y

N
/A

C
K
†

j
a
v
a
.
n
e
t
.

H
t
t
p
U
R
L
C
o
n
n
e
c
t
i
o
n

S
y
s
t
e
m
.

c
u
r
r
e
n
t
T
i
m
e
M
i
l
l
i
s
(
)

5
0

/3
0

/2
0

*
M

ea
n

F
C

C
S

p
ee

d
T

es
t

[1
1

]
U

D
P

j
a
v
a
.
n
e
t
.

D
a
t
a
g
r
a
m
P
a
c
k
e
t

S
y
s
t
e
m
.
n
a
n
o
T
i
m
e
(
)

6
0

M
in

/M
ea

n
/M

ax

N
o

te
*

:
It

d
ep

en
d

s
o

n
th

e
n

et
w

o
rk

st
at

u
s.

†:
A

lt
h

o
u

g
h

th
e

H
T

T
P

-r
el

at
ed

cl
as

s
is

u
se

d
,
th

e
ap

p
o

n
ly

es
ta

b
li

sh
es

a
T

C
P

co
n

n
ec

ti
o

n
w

it
h

o
u

t
se

n
d

in
g

o
u

t
an

y
H

T
T

P

re
q

u
es

t
m

es
sa

g
es

an
d

th
en

cl
o

se
s

th
e

co
n

n
ec

ti
o

n
.

38

ε = (Â− A)/A. (2.8)

Where Â is the measured value and A is the true value of the measurand.

A number of factors contribute to measurement inaccuracy, including the effects

of sampling, the performance bias of different methodologies, the performance bias of

different environments, and the impact of self-induced interference, and so on. Gener-

ally, absolute measurement error is not a suitable quantitative characteristics of mea-

surement accuracy, because absolute error does not always give an indication of how

important the error may be. Measurement accuracy can be further characterized quan-

titatively by the inverse of the relative error. However, in our follow-up analysis on

the accuracy of network delay measurement for both browser and smartphone-based

methodologies, we find that absolute measurement error can better quantify how the

measurement results deviate from the true values, because the error is independent of

the actual network delay. Namely, the measurement errors for different RTTs are in

the same degrees. Therefore, the relative error will be very small when the network

path is long.

In the past decades, a number of research works have studied the accuracy or re-

liability of the measurement methodologies. In [176], how to deal with measurement

errors and imperfections have been discussed. In particular, the author use the term

“precision” to denote the maximum exactness that a tool can permit, and the term “ac-

curacy” to denote how well a measurement matches the actual phenomenon. Based

on the discussion and experiences, Paxon presents a number of strategies to avoid or

overcome the measurement pitfalls. In [192], Roughan uses Heisenberg inequality

to describe the bounds on the accuracy of network measurement. If one increases

the sending rate of probe packets in order to improve the measurement accuracy, the

extra packets will hurt performance for all packets. Namely, all measurements of

39

a system’s performance are correlated, and these correlations reduce the efficacy of

measurements. Roughan compares two different sampling methods quantitatively and

shows that irregular probing patterns are useful to prevent the periodicity in the system

under observation [193]. In [54], , Baccelli et al. study the effect of sampling methods

and show that PASTA (Poisson Arrivals See Time Averages) is of very limited use in

active probing. Other works improve the accuracy of measuring some specific network

performance metrics. For example, Sommers et al. propose BADABING to improve

the accuracy for packet loss measurement [207]. In [211], Sommers et al. advocate a

vitro-like methodology to calibrate the available bandwidth estimation tools.

2.3.1 Quantifying the inaccuracy of network delay measurement

with delay overhead

Although there are a number of existing works that focus on the problem of network

measurement accuracy, few studies consider whether browser-based and app-based

measurements can produce accurate results. In this thesis, we consider the accuracy

of the network RTT measurement, because both browser and smartphone-based tools,

being operated on the application layer, may significantly inflate the actual network

RTT. The inflation also affects jitter and throughput (Tput) measurement.

To quantify the inaccuracy of network delay measurement, we use the term delay

overhead to refer to the difference between the value measured by the measurement

tools and the actual network delay. A smaller and stable delay overhead suggests that

the measurement is more accurate and the measurement tool is more reliable. Let du

be the RTT result reported by the tool, and dn the actual network delay. The delay

overhead ∆d can be defined as

∆d = du − dn. (2.9)

40

2.3.2 Measuring the delay overheads for browser-based tools

Back to Figure 2.2, supposing that the request and response messages are sent in one

packet each, the network RTT is given by the difference of the packet’s receive and

send timestamps which are measured by WinDump in Windows and tcpdump in Linux:

tNr − tNs . Here we use the timestamps fetched in the kernel to approximate the exact

time that the packets are on the wire, because the delay between the kernel and the

NIC is considered negligible. Since browsers cannot access to network stack directly,

the measured RTT is based on tBr − tBs . The time resolution for this browser-level

measurement is usually assumed to be 1 ms, determined by the timing function (such

as Date.getTime() in Java applet). The accuracy of the browser-level RTT measure-

ment thus depends on several factors:

1. Accuracy of the timing function invoked by the adopted measurement method,

2. The delay for the browser to propagate the request message to the network stack

and the delay for delivering the response message to the browser, and

3. The behavior of how the browser sends the message, for example, whether the

delay includes the time for establishing a TCP connection.

To appraise the delay accuracy in browser-based network measurement, we there-

fore measure the delay overhead as

∆d = (tBr − tBs)− (tNr − tNs). (2.10)

Besides affecting the RTT measurement, the delay overhead, if not stable enough, will

also affect the jitter measurement. Moreover, the actual round-trip throughput could

be seriously under-estimated by an inflated RTT.

Although browser-based network measurement tools and services have been widely

deployed, only a handful of studies are devoted to appraising them. These previous

41

works consider only a small number of methods. Janc et al. [122] proposed HTTP-

based methods using JavaScript and Flash for measuring network performance, and

performed control and web experiments to compare the methods. Later, Kaplan et

al. [128] performed testbed experiments to investigate the delay overhead incurred by

browser with four HTTP-based methods using JavaScript and Flash. Both papers con-

cluded that JavaScript performs better than Flash for delay measurement, which is co-

herent with our results. However, they did not compare the HTTP-based methods with

socket-based methods. In [92], Gavaletz et al. simply compared the HTTP response

times for DOM, XHR and Navigation Timing API in different browsers. However,

their work only focuses on the performance difference for those methods, and has not

touched the accuracy problem compared to the actual network delay.

Krintz and Wolski [135] compared the performance between Java applet and C pro-

gram with JavaNws, and found that Java applet is comparable with C socket. Yeboah et

al. [232] performed an Internet measurement study to compare the delay measurement

results from ICMP ping, King [100], Flash (socket-based), and JavaScript (HTTP-

based). They found that the results from Flash socket measurement were close to ping,

whereas JavaScript had an inflated delay. However, both papers did not utilize any

network stack information, such as tcpdump capture, to investigate the actual overhead

caused by the applications.

Our research differs from these existing works in that we systematically investigate

whether the browser-based measurements can yield accurate result compared to the

actual network delay. Moreover, the evaluation covers almost all the techniques that

have already been or could be employed by browser-based measurements in major

browsers on both Windows and Linux. We believe our study can be a comprehensive

guideline for designing and conducting more reliable network measurements.

42

2.3.3 Measuring the delay overheads for app-based tools

Carrying out network measurement in mobile devices is much more challenging than

the desktop environment, even though the core methodology is similar in both cases.

A major difference is the operating system architecture. Android measurement apps

usually run in a virtual machine. The apps could therefore encounter a larger system

overhead in sending probe packets and receiving response packets, thus inflating the

actual network delay.

Considering a simple probe-response scenario in Fig. 2.6, a measurement app sends

out a probe packet at time tou to a web server (or other types of target). The probe packet

elicits a response packet from the server, which arrives at the measurement app at time

tiu. The measurement app thus records du (= tiu − tou) as the network RTT. Obviously,

this measured RTT is generally larger than the actual RTT dn (= tin − ton), where ton

(tin) is the time for the probe (response) packet to leave (arrive at) the smartphone. The

delay overhead is therefore defined as

∆d = du − dn = (tiu − tou)− (tin − ton). (2.11)

tuo
tk
o

tno tni

tk
i

tui

dn
dk
du

tsitso

Figure 2.6: Measurement flow for Android apps.

There are three possible factors contributing to the delay overhead: (i) the times-

tamping accuracy of the outgoing and receiving packets, (ii) the delay for Android to

43

propagate the probes to the kernel and network stack, and the delay for delivering the

responses to the app, and (iii) the delay for the hardware (wireless network adaptor) to

send and receive packets.

For factor (i), Android provides several timing functions, such as System.nanoTime()

and System.currentTimeMillis(). Although these two functions have different

resolutions (ns vs. ms) and map to different POSIX functions clock gettime() and

gettimeofday(), they share the same back-end function clock gettime() through

vsyscall according to POSIX.1-2008 [219]. Giucastro tested the granularity and per-

formance of the two functions on some Android phones, and found that the average

cost for executing the timing function is about 1µs [95]. Considering that the network

delay is usually at ms level, the overhead of calling the timing functions is negligible.

We will therefore focus on the other two factors. To further quantify them, we also

include two other timestamps tik and tok which are obtained when the packets are at the

kernel. While we could obtain the kernel timestamps by using tcpdump, it is much

more challenging to obtain the two network timestamps ton and tin. In wired network,

these two timestamps can be easily obtained by placing an external packet sniffer to

capture the packets copied from a network tap. This is because the fixed network is

more reliable (i.e., the packets are seldom dropped by the sniffer), and the measurand

and the sniffer can be easily time-synchronized.

Moreover, in wireless network a single wireless sniffer is not reliable enough to

capture all the packets in the air (see Section 4.1.3). Using multiple sniffers, how-

ever, requires a careful trace merging and timestamp recovery. Moreover, as Android

phones do not support PTP, synchronizing the clocks between the external sniffer and

the phone is difficult. Another concern is due to the mechanism of FullMAC MLME

(MAC Sublayer Management Entity) in which all 802.11 wireless frames are first

translated into IEEE 802.3 Ethernet frames before being delivered to the kernel. Such

44

packet translation could further increase the delay overhead. We will explain how we

tackle these issues in Chapter 4.

The measurement studies based on smartphones users include [86, 108, 110, 201].

In particular, a simple logger was employed in [86] to collect the network usage infor-

mation from Android and Windows Mobile users, whereas LiveLab [201] measured

wireless networks in iOS. In [108] and [110], the performance of 4G LTE and 3G

networks was evaluated using 4GTest and 3GTest, respectively. MobiPerf, the suc-

cessor of 4GTest and 3GTest, has been employed to uncover the RRC state dynamics

in cellular networks [190, 191] and study the network performance from end users’

perspectives [109, 166]. Netalyzr, another measurement app in Android, characterizes

middlebox behavior and business relationships in cellular networks [223]. These ex-

isting apps are designed with more concern on privacy issues and energy consumption,

but their accuracy has not received any attention.

In the system performance area, several studies evaluated the performance of JNI

or DVM. For example, Oh et al. investigated the performance impact of DVM on An-

droid apps [168]. Batyuk et al. compared the performance between native C and Java

applications for identical tasks [56], and showed that native C applications can be up

to 30 times faster than running Java in DVM. But their work drew conclusions from

Android emulator and Linux x86 platform. Lee and Jeon also carried out similar study

for five algorithms [141] and found that JNI communication delay was about 0.15ms.

These works focus mainly on the performance comparison of specific algorithms but

do not study the relationship between system delay and network delay measurement.

In [231], Xue et al. proposed a profiling system called AndroidPerf, which supports

cross-layer function call trace and performance analysis from the DVM layer to the

kernel layer. In [137], a tool based on kprobes was utilized to intercept system events

in Android. However, these two works do not analyze the network behavior systemat-

45

ically, nor the device driver as we do.

46

Chapter 3

Towards accurate browser-based

network measurement

In recent years, browser-based network measurement tools, such as Ookla’s speedtest

[23] and Netalyzr [134], have gained popularity among end users by enabling them

to monitor their providers’ performance and diagnose network problems, especially in

desktop environment. However, very little is known about the (in)accuracy of various

methods used in these tools. In this chapter, we focus on the accuracy that these meth-

ods can achieve in network delay measurements. We quantify the delay inflation by

investigating the delay overhead on the browser side, which is the difference between

the value measured by browser-based tools and the actual value calculated through

packet capturing. The amount of this overhead depends on how the rendering engine

(e.g., JavaScript engine) interprets the measurement code and invokes system function

calls. Our study covers the traditional HTTP-based and socket-based techniques that

have already been employed by the existing measurement tools, such as JavaScript,

Flash, and Java applet, as well as the Navigation Timing and WebRTC techniques. For

each method, we implement a test page and experiment with the major browsers on

Windows and Ubuntu.

47

For the traditional browser techniques, our measurement results show that the

socket-based methods incur much lower delay overhead than the HTTP-based meth-

ods in general. The Flash GET and POST methods are most unreliable, because

their overheads are the highest among all methods, and their overhead variabilities

are also the highest across different browsers and systems. WebSocket, on the other

hand, provides the most accurate and consistent RTT measurement in the context of

JavaScript and DOM (Document Object Model). Our further analysis show that some

HTTP-based methods over-estimate the RTT, because they include the TCP handshak-

ing in the delay. Another interesting finding is that the typical timing API in Java,

Date.getTime(), cannot return precise system time in some OSes (e.g., Windows

7). Although this function is supposed to provide timestamps with millisecond res-

olution, we find that the actual granularity is not constant. It can be one of the two

values observed in our experiments: 1 ms or ∼15 ms, and each possible value will last

for a period of time (several minutes) before changing to other values. Consequently,

the timestamps produced by this API can significantly under-estimate or fluctuate the

measured RTTs. After replacing the timing function with System.nanoTime(), the

experiment results show that the under-estimation of RTT disappears.

For the Navigation Timing technique, our investigation shows that the event connect

Start and connectEnd can be fully supported by Chrome and Opera only, indicating

that estimating the delay of TCP connection establishment is not applicable. Moreover,

openning a new TCP connection could also affect the subsequent event (requestStart)

and (responseStart) for some browsers. Only when the HTTP request/response mes-

sages are exchanged in an existing connection, these two data events can be utilized for

more reliable delay measurement. In this case, the delay overheads can be restricted

within 2ms for all browsers and systems under test. Compared to WebSocket, although

Navigation Timing technique introduces slightly larger delay overheads, it is still a

48

good choice to replace the XHR GET and POST methods, because it does not require

any third-party plug-ins and additional socket servers. The WebRTC technique, on the

other hand, makes it possible to perform client-to-client type of measurements within

browsers. Our testbed evaluation demonstrates that timestamping the request and re-

sponse messages following the data channel establishment could include the channel

setup delay, and therefore should be ignored in practice. Without such additional delay,

the median delay overhead can be∼4ms for Chrome and Opera and∼2ms for Firefox.

Besides appraising the accuracy of browser techniques, we also study the perfor-

mance of the new in-browser timing function, High Performance Time (HR-Time),

because accurately capturing the packet sending or receiving time is a prerequisite to

perform reliable delay measurements. Our evaluation shows that HR-Time achieves

microsecond-level granularity in most browsers. Even for Chrome and Opera in win-

dows, their granularity (1ms) can be the same to the traditional timing API Data.getTime().

Since the execution cost of HR-Time is negligible, we recommend using HR-Time for

browser-based network measurements.

The outline of this chapter is as follows. We first conduct experiments to evalu-

ate the accuracy of traditional HTTP-based and socket-based methods in Section 3.1.

After highlighting the results of granularity and execution cost measurements on the

HR-Time in Section 3.2.2, we turn to the Navigation Timing technique and WebRTC

technique in Section 3.3 and 3.4, respectively. Finally, we summarize the chapter in

Section 3.5.

49

3.1 Traditional HTTP-based and socket-based browser

techniques

In this section, we consider the traditional HTTP-based and socket-based browser tech-

niques. The former includes XHR GET/POST, DOM, Flash GET/POST, and Java

applet GET/POST, while the latter covers WebSocket, Flash socket, and Java applet

socket. Most of these techniques have already been implemented as the measurement

cores for some existing tools, as listed in Table 2.1. Although WebRTC is also based on

UDP socket, we evaluate its performance separately in Section 3.4, because it enables

a new type of network measurement.

3.1.1 Experiment setup

In measuring the delay overhead incurred on the RTT measurement, we consider

the ten aforementioned HTTP/TCP measurement methods. Besides the measurement

methods, we investigate the consistency of delay overhead of a given method across

browsers and systems. Ideally, a browser-based tool is expected to incur similar delay

overhead, regardless of which browser and system it is operated on. To this end, we

consider the five major browsers on Windows 7 and Ubuntu in Table 3.1 with the Flash

and Java applet plug-in configurations. Note that the IE and Safari versions used in

the experiments do not support WebSocket. Although the latest IE 10 and Safari 6

both support WebSocket, we use IE 9 and Safari 5 instead, because IE 9 is the default

browser for Windows 7 and Safari 6 is not available in Windows 7. For fair com-

parison, all we have tested are 32-bit browsers, because some of the browsers do not

provide 64-bit version.

We set up a testbed consisting of two machines connected to a switch by 100-Mbps

Ethernet, as shown in Figure 3.1. Both machines have the same hardware configura-

50

Table 3.1: Configurations of the browsers and systems used in the experiments.

OS Browsers Version Flash Java applet WebSocket

Windows

Chrome 23.0 11.7.700 1.7.0
√

Firefox 17.0 11.5.502 1.7.0
√

IE 9.0.8 11.5.502 1.7.0 ×
Opera 12.11 11.5.502 1.7.0

√

Safari 5.1.7 11.5.502 1.7.0 ×

Ubuntu

Chrome 23.0 11.5.31 1.6.0
√

Firefox 17.0 11.2.202 1.6.0
√

Opera 12.11 11.2.202 1.6.0
√

tion: equipped with a 1.86GHz Intel Core 2 Duo processor (E6320) and 2GB memory.

One is a dual-boot system with Windows 7 and Ubuntu 12.04 LTS, and is installed

with the five browsers. The other machine hosts an Apache web server version 2.2 on

Ubuntu 10.04. We also introduce an additional delay of 50 ms on the server side to

simulate the Internet environment. Without such delay, the link RTT (¡ 1 ms) is too

small to sample. Beyond that, as we shall see in the next section, this delay is a major

factor determining the amount of RTT inflation when a measurement method includes

TCP handshaking in the delay measurement.

Request

Response

Web serverClient Switch

Figure 3.1: Testbed Setup.

We have prepared a container page using PHP or HTML for each measurement

method imbedded with JavaScript code, Flash object, or Java applet. The entire suite

of experiments is executed automatically. Each browser program is executed on com-

mand line, and it retrieves from the server a container page for a given measurement

method. When the browser renders the page, it executes the measurement code to in-

stantiate the required object which sends a request message to the same web server

51

which returns a reply message with the 50 ms delay. As discussed in Section 2.2.2

and Figure 2.2, the measurement code records tBs and tBr . At the same time, the client

machine runs WinDump/tcpdump to capture tNs and tNr .

Considering the possible impact on the browser to instantiate the object for the

first RTT measurement, we conduct a second RTT measurement immediately after the

first one and reuse the same object. Therefore, for each setting, we obtain two sets of

delay overheads, denoted by ∆d1 and ∆d2. Moreover, we choose small request and

reply messages, each of which can be sent in one packet. This setting allows us to

remove other possible delay due to data segmentation, send and receive buffering, and

throttling by the send window. During the measurement period, we also ensure that the

network was free of cross traffic, packet loss, and retransmissions. Although the web

server could bias the RTT, the bias, if any, is mitigated by the subtraction of tBr − tBs

and tNr − tNs in the same round of measurement.

For each experiment, we run it for 50 times and compute from them useful statis-

tics, such as minimum, median, and 25% and 75% percentiles. We do not record the

system load, but we ensure that all the necessary processes (e.g., explorer.exe in

Windows, init in Linux, and so on) run in the background. Besides, some other

programs, such as packet capturing program and automation scripts, need to be dy-

namically invoked during the measurement procedure. The browsers themselves also

consume resources to render the measurement objects. As a result, the delay overheads

may still vary, depending on how sensitive the measurement methods are to these sys-

tem loads.

3.1.2 Measurement Results

We plot the ten sets of measurement results (one per measurement method) in Fig-

ure 3.2 and 3.3 by using box-and-whisker plots. The first row includes the four meth-

52

ods using native features in browsers. The second comprises the Flash methods, and

the third the Java applet methods. Each plot (except for WebSocket) includes the mea-

surement by the eight browser-OS cases which are identified by the browser’s initial

(system’s initial). They are then followed by ∆d1 (in red) or ∆d2 (in cyan). For exam-

ple, “C (U) ∆d1” refers to ∆d1 obtained by Chrome in Ubuntu.

In each box-and-whisker plot, the top and bottom of the box are given by the 75th

percentile and 25th percentile, and the mark inside is the median. The upper and lower

whiskers are the maximum and minimum, respectively, after excluding the outliers.

The outliers above the upper whiskers are those exceeding 1.5 of the upper quartile,

and those below the minimum are less than 1.5 of the lower quartile.

Figures 4.5(a), 4.5(b), 3.2(c), 3.3(a), 3.3(b), 3.3(d), and 3.3(e) for the HTTP-based

methods show that the delay overhead generally cannot be ignored. The XHR meth-

ods’ delay overheads range from a few milliseconds to tens of milliseconds. The over-

heads in Flash are extremely high. The median overheads are between 20 ms and 100

ms. Even for the minimum overheads, they can reach as high as 100 ms (∆d1 of Opera

in both Windows and Ubuntu). The DOM methods achieves a better result than XHR

and Flash. Most of the median overheads are smaller than 5 ms. The Java applet

methods differ from the previous group in that they could (e.g., Firefox and Opera)

under-estimate the RTT (i.e., negative overhead) by as much as 5 ms.

Another important result concerns the consistency of a measurement method across

different browsers and systems. If the overheads are dependent on specific browsers

and systems, it will make the calibration very difficult. The delay overheads for the

HTTP-based methods generally see a very high variability across browsers for the

Flash methods. The DOM method provides the most consistent overhead across all

browsers, especially those on Ubuntu. The two Java applet methods are also quite

consistent on the Ubuntu but less consistent on Windows.

53

On the other hand, Figures 3.2(d), 3.3(c), and 3.3(f) show that the delay overheads

incurred by the socket-based methods are considerably small. The median overheads

are mostly smaller than 1 ms. Nevertheless, the overheads for some browsers fluctuate

within a range of around 10 ms (e.g., Java applet for Firefox in Windows). Overall, the

WebSocket method achieves the most stable result, except for Opera (W) ∆d1. Similar

to the other two Java applet methods, the Java applet socket method will under-estimate

the delay, especially those in Windows.

0

20

40

60

C
 (

U
) ∆

d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

IE
 (

W
) ∆

d
1

IE
 (

W
) ∆

d
1

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

S
 (

W
) ∆

d
1

S
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) XHR GET.

0

20

40

60

80
C

 (
U

) ∆
d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

IE
 (

W
) ∆

d
1

IE
 (

W
) ∆

d
1

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

S
 (

W
) ∆

d
1

S
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) XHR POST.

0

10

20

30

40

50

60

C
 (

U
) ∆

d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

IE
 (

W
) ∆

d
1

IE
 (

W
) ∆

d
1

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

S
 (

W
) ∆

d
1

S
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) DOM.

0

10

20

30

40

50

C
 (

U
) ∆

d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) WebSocket.

Figure 3.2: Box plots of the delay overheads (by methods).

54

0

20

40

60

80

100

120

140
C

 (
U

) ∆
d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

IE
 (

W
) ∆

d
1

IE
 (

W
) ∆

d
1

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

S
 (

W
) ∆

d
1

S
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Flash GET.

0

20

40

60

80

100

120

140

C
 (

U
) ∆

d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

IE
 (

W
) ∆

d
1

IE
 (

W
) ∆

d
1

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

S
 (

W
) ∆

d
1

S
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) Flash POST.

0

5

10

C
 (

U
) ∆

d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

IE
 (

W
) ∆

d
1

IE
 (

W
) ∆

d
1

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

S
 (

W
) ∆

d
1

S
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) Flash TCP socket.

0

10

20

30
C

 (
U

) ∆
d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

IE
 (

W
) ∆

d
1

IE
 (

W
) ∆

d
1

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

S
 (

W
) ∆

d
1

S
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) Java applet GET.

−10

0

10

20

C
 (

U
) ∆

d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

IE
 (

W
) ∆

d
1

IE
 (

W
) ∆

d
1

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

S
 (

W
) ∆

d
1

S
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(e) Java applet POST.

−10

−5

0

5

10

15

C
 (

U
) ∆

d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
)

∆
d
1

F
 (

W
)

∆
d
2

IE
 (

W
) ∆

d
1

IE
 (

W
) ∆

d
1

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

S
 (

W
) ∆

d
1

S
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(f) Java applet TCP socket.

Figure 3.3: Box plots of the delay overheads (by methods).

3.1.2.1 The effect of network behavior on HTTP-based methods

The major difference between the HTTP-based and socket-based methods is that the

former needs to parse the additional HTTP header. However, parsing HTTP alone

55

cannot explain those high delay overheads. We consider some of these cases next and

analyze other possible reasons responsible for the RTT inflation.

Table 3.2 shows the median overheads for the Flash GET and POST methods,

obtained by Opera in Windows and Ubuntu. Although the data are collected from

different OSes, the delay overheads behave similarly. For the GET method, O(W) and

O(U) both suffer from a very large ∆d1 (> 100 ms) but a relatively small ∆d2 (< 20

ms). For the POST method, the median ∆d1 is still high, but the median ∆d2 is much

larger than that for the GET method.

Table 3.2: Median ∆d1 and ∆d2 for the Flash HTTP methods in Opera.

O(W) O(U)

GET
∆d1 101.1 105.3

∆d2 19.8 19.8

POST
∆d1 100.1 105.6

∆d2 69.6 68.1

The packet capture files show that Opera opens a new TCP connection to handle

the HTTP request issued by the Flash object for the first RTT measurement, there-

fore inflating the ∆d1 measurement. In the GET method, this existing connection can

be reused for the second measurement. Therefore, the ∆d1 measurement excludes

the TCP handshaking. However, a new connection will still be opened for the POST

method. We confirm this by subtracting 50 ms, the simulated network delay, from

∆d2 in the POST method, the result (∼20 ms) is almost the same as the GET method.

Moreover, we compare the behavior of other browsers and find that even for the first

RTT measurement, they will reuse the TCP connection for downloading the container

page in the preparation phase, thus resulting in a much lower overhead.

3.1.2.2 The effect of timestamp granularity

From Figure 3.3(d), 3.3(e), and 3.3(f), all three Java applet methods suffer from the

negative delay overheads on Windows, which indicates that performing path measure-

56

ment with Java applet can severely under-estimate the RTT. At the same time, signif-

icant variance can be observed. For example, Safari’s overhead in Java applet socket

method spans in the range of -13 ms and 13 ms, as illustrated in Figure 3.3(f). Due to

the page limit, we only discuss the socket case for evaluation.

We show the CDFs of ∆d1 and ∆d2 of those experiments in Figure 3.4(a). The fig-

ure depicts that both ∆d1 and ∆d2 for Firefox and Opera, and ∆d1 for Safari have two

discrete levels, whereas ∆d2 for Safari spans continuously over the range. According

to [173], web browsers instantiate Java applet through Java Plug-in. In fact, an applet

runs in an instance of the Java Runtime Environment (JRE) software, not within the

browsers. To mitigate the influence of browsers, we directly launch the applet with

appletviewer provided by Oracle Java Development Kit (JDK). We plot the CDFs

of ∆d1 and ∆d2 in Figure 3.4(b). Similar discrete levels are observed without web

browser and Java Plug-in. We thereupon can rule out browsers and their correspond-

ing Java Plug-ins as the causes of this problem.

We then focus on the JRE itself. The timing function in Java, Date.getTime(),

is implemented with another Java function System.currentTimeMillis(). An Or-

acle’s documentation warns that while the resolution of the return value is 1 ms, the

granularity depends on the underlying system [174]. We test the timestamp granular-

ity with the code shown in Figure 3.5. The piece of code keeps querying the times-

tamp with Date.getTime() until the current value is different from the previous one.

The difference in the two timestamps is the granularity that this function can achieve.

Surprisingly, we find that the granularity is not a constant value. It can be 1 ms, or

∼15 ms. Each possible value will last for a period of time (several minutes) and then

change to other values. While such a coarse granularity of timestamp in Windows

was reported [172], it has not mentioned the non-constant granularity. Initially, we

conjecture that the varying time granularity is related to the 32-bit JRE. However, we

57

later find that 64-bit JRE also suffers from the same problem. To further validate our

findings, we analyze the data obtained from the delay overhead experiments. The gap

between the two significant discrete levels is about 16 ms, which concurs with one of

the timestamp granularity obtained from the test codes. Hence, we believe that the

coarse and instable timestamp granularity is the main reason for the bizarre behavior

observed in the previous delay overhead experiments.

−15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

C
D

F

∆ d /ms

∆ d
1
,C

∆ d
2
,C

∆ d
1
,F

∆ d
2
,F

∆ d
1
,IE

∆ d
2
,IE

∆ d
1
,O

∆ d
2
,O

∆ d
1
,S

∆ d
2
,S

(a) Launched in browsers.

−15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

∆ d /ms

C
D

F

∆ d
1

∆ d
2

(b) Launched with appletviewer.

Figure 3.4: CDF plots of ∆d1 and ∆d2 using the Java applet socket in Windows.

Table 3.3: Delay overheads measured by Java applet methods in Windows when func-

tion System.nanoTime() is adopted (mean with 95% confidence interval, in ms).

Method
GET POST Socket

∆d1 ∆d2 ∆d1 ∆d2 ∆d1 ∆d2

Chrome 2.96 ±0.02 4.80 ±0.09 2.71 ±0.03 1.84 ±0.00 0.01 ±0.00 0.07 ±0.01
Firefox 2.73 ±0.02 4.38 ±0.08 2.41 ±0.03 1.49 ±0.01 0.00 ±0.00 0.07 ±0.01

IE 2.73 ±0.03 4.56 ±0.09 2.57 ±0.09 1.49 ±0.04 0.02 ±0.01 0.06 ±0.01
Opera 2.83 ±0.03 4.46 ±0.07 2.51 ±0.03 1.57 ±0.01 0.01 ±0.00 0.06 ±0.01
Safari 1.88 ±0.05 1.52 ±0.02 1.62 ±0.07 1.42 ±0.01 0.07 ±0.00 0.13 ±0.01

We replace the timing function Date.getTime() with a more precise System.nanoTime()

58

and then rerun the experiments with the same configurations. The measurement results

are summarized in Table 4. We present the mean delay overhead as well as the 95%

confidence intervals. The under-estimation and the large variation of RTTs disappear

after the replacement, including the other two Java applet methods. For the GET and

POST methods, the mean delay overheads range from 2 ms to 5 ms, only a little larger

than the WebSocket cases. As for the socket methods, the delay overheads are trivial.

Considering the accuracy of software packet capturer being larger than 0.3 ms [7], we

can regard the accuracy of the Java socket method comparable to tcpdump/WinDump

if System.nanoTime() is adopted.

long start = 0;

long end = 0;

while (true) {

if (start == 0) {

start = new Date().getTime();

} else {

long current = new Date().getTime();

if (current != start) {

end = current;

break;

}

}

}

System.out.println((end - start) + "ms");

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 3.5: Codes for testing the timestamp granularity.

3.1.3 Practical considerations

Based on the overall evaluation, the Java applet socket method is recommended if

the proper timing function is applied. However, our inspection of some Java applet-

based tools shows that many of them are still using System.currentTimeMillis()

or Date.getTime(), such as [53, 134, 148]. Switching to the more precise function

System.nanoTime() can greatly improve their accuracy in Windows. Based on our

59

evaluation, the Flash GET and POST methods are not so suitable for the purpose of

measurement.

For the measurements performed in Windows, Firefox is the preferred browser,

whereas in Ubuntu Chrome is a better choice. We do not recommend Safari even for the

Java applet socket method due to the fact that its default Java interface (JavaPlugin.jar

and npJavaPlugin.dll) runs into problems easily. The measurement results obtained

from Safari are much higher than the other browsers. After deleting the two files, we

can force it to use the JRE provided by Oracle, and the inaccuracies are subsequently

removed.

There are also issues of reusing existing connections and web objects for network

measurement. The real-world applications are more complicated than our experiment

settings. The browsers have to establish new connections due to the competition of

downloading the other files. If a measurement object can be reused, the delay over-

head can be better estimated by ∆d2 without including the TCP handshaking delay.

However, some methods, as described in Section 3.1.2.1, always open new connec-

tions for measurement whether the measurement object can be reused or not. In this

case, the additional delay cannot be avoided.

3.2 High Performance Time

In order to measure the network delay, a critical step is to accurately capture the times

that a packet is sent or received. The existing browser-based network measurements

typically employ the in-browser timing function Date.getTime() defined by the EC-

MAScript language specification [114], which provides timestamps with millisecond-

level resolution. Since Date.getTime() is neither monotonical no precise enough, a

new timing API, High Performance Time (HR-Time) is proposed by the W3C Web Per-

formance Working Group [224]. As a monotonic clock, HR-Time reports the current

60

time in sub-millisecond resolution through function performance.now(). Currently,

HR-Time is supported by major browsers. According to [5], 89.91% of the browsers

have the feature enabled by default.

However, although HR-Time is claimed to be able to provide timestamps in nanosec-

ond, few studies have evaluated its actual performance systematically. In this section,

we measure the actual performance of HR-Time in terms of granularity and execu-

tion cost. We run experiments on five browsers in Windows 10 and three browsers in

Ubuntu 14. The detailed configurations of the browsers are listed in Table 3.4. Here we

do not consider Safari because Apple has stopped releasing new version of the browser

in Windows. The up-to-date version of Safari (5.1.7) does not support HR-Time.

3.2.1 Granularity

The granularity test is similar to the test described in § 3.1.2.2. As the time granularity

is the minimal distinguishable grains that a clock system can report, our experiment

code keeps querying the timestamp with performance.now() until the current value

is different from the previous one. The difference in the two timestamps is the granular-

ity that this function can achieve. However, due to the multi-task paradigm of the OS,

the timestamp query can be postponed by other tasks. We therefore repeat the exper-

iment for 20 times and record the smallest value for each browser. Moreover, even in

our simple execution loops, the comparison between the two consecutive timestamps

still needs time. As a result, the actual granularity could be smaller than the values we

report for the case that the two consecutive queries return different values.

As shown in Table 3.4, the granularity of HR-Time for most of the browsers are in

microsecond-level, which is small enough for measuring network delay. For example,

the identifiable increments for Edage and Firefox are smaller than 5µs. However, we

still find that the granularity for Chrome and Opera in Windows can be the same as

61

Table 3.4: Configurations and measured granularity of the browsers used in the exper-

iments.

OS Browsers Version Granularity (in ms)

Windows

Chrome 50.0 1

Firefox 48.0 <0.005

Opera 39.0 1

Edge 25.10586 <0.0047

IE 11.0 <0.0062

Ubuntu

Chrome 51.0 <0.025

Firefox 46.0.1 <0.005

Opera 37.0 <0.025

the traditional timing function Date.getTime() (1ms). Although HR-Time cannot

achieve nanosecond-level granularity, it outputs timestamps with better precision in

most cases.

3.2.2 Execution cost

We then compare the execution costs for running the two different timing functions. In

the experiment, the timing function is executed for 1,000,000 times continuously. By

recording the start time and end time, the total time cost can be estimated. We repeat

the test for each browser for 50 times and calculate the mean and 95% confidence in-

terval, as shown in Table 3.5. Overall, the total execution times are all several hundred

milliseconds, except that HR-Time in Firefox performs best with extremely small val-

ues (2-3ms only) for both Windows and Ubuntu. Although Date.getTime() usually

has a smaller execution time, but the difference between the two timing functions is not

so significant. Especially when one single function call is considered, the execution

times of both are trivial.

In summary, our experiment reveals that HR-Time usually provides timestamps

with better precision. Even for the worst case (Chrome and Opera in Windows), HR-

Time can achieve a comparable granularity to the traditional Date.getTime(). Al-

62

Table 3.5: Time cost of executing 1,000,000 timing functions for each browser (mean

with 95% confidence interval, in ms).

OS Browsers performance.now() Date.getTime()

Windows

Chrome 238.54 ±3.61 296.54 ±0.63
Firefox 2.33 ±0.12 365.98 ±3.49
Opera 376.74 ±4.10 365.66 ±1.04
Edge 391.21 ±0.87 249.90 ±2.46

IE 1259.41 ±6.70 416.792 ±0.88

Ubuntu

Chrome 332.30 ±2.64 173.47 ±0.26
Firefox 3.24 ±0.11 347.11 ±0.16
Opera 325.63 ±3.07 176.30 ±0.08

though its execution cost can be a bit higher than Date.getTime(), it can be ignored

because only two function calls are needed in each RTT measurement. Therefore, HR-

Time is recommended for browser-based measurement, especially for estimating the

throughput.

3.3 Navigation Timing technique

As discussed in Section 2.2.2.2, the Navigation Timing technique enables us to monitor

the events how the Web browsers load a page. By acquiring the timestamps of events

connectStart, connectEnd, requestStart, and responseStart, we can obtain

two types of network RTTs, the RTT (dRTT C) estimated by the TCP SYN/SYN ACK

control messages and the RTT (dRTT D) by the TCP data, respectively.

We first validate whether the aforementioned events can be fully supported by the

major browsers. Here we define “fully supported” as those events can return reasonable

timestamps. Namely, if a browser reports same values for event requestStart and

responseStart, for example, we do not consider it as being able to support the two

events, because it cannot capture the events correctly. We build a page displaying the

timestamp of each event through class performance.timing when the page is fully

loaded. The page is hosted on a local Web server. The RTT between the client and the

63

server is set to 50ms. We then examine the timestamp value of each event reported by

the browser. If the RTTs (both dRTT C and dRTT D) are not within a reasonable range

(e.g., the estimated RTT is only several milliseconds), we mark it as unsupported.

Table 3.6: Summary of whether the Navigation Timing events are supported by the

browsers.

OS Browsers Version
connectStart and

connectEnd

requestStart and

responseStart

Windows

Chrome 50.0
√ √

Firefox 48.0 × √

Opera 39.0
√ √

Edge 25.10586 × √

IE 11.0 × ×

Ubuntu

Chrome 51.0
√ √

Firefox 46.0.1 × √

Opera 37.0
√ √

Table 3.6 summarizes the browser configurations and whether the connection events

(connectStart and connectEnd) and data events (requestStart and responseStart)

are supported. Although Navigation Timing technique has been proposed as a recom-

mendation since 2012, it is still not well supported by the major browsers. For example,

only Chrome and Opera can support the connection events. IE does return timestamps

for the events, but the values of the connection events are the same and so do the data

events.

3.3.1 Experiment setup

We then conduct experiments to evaluate the accuracy of the Navigation Timing method.

For the browsers that support Navigation Timing feature, a class named window.performance

can be accessed. In our implementation, the container page and the measurement

target are hosted in the same Web server. When the container page has been down-

loaded and rendered, the window.onload event is triggered. By reading the attribute

connectStart and connectEnd of the class window.performance.timing, we can

64

calculate the connection RTT dRTT C and its corresponding delay overhead ∆d1. Sim-

ilarly, the delay overhead ∆d2, which corresponds to the data RTT dRTT D, can be

obtained through event requestStart and responseStart. In order to prevent the

browsers from using the cached content, we add the current timestamp as a parameter

of the URL every time.

After container page being loaded, an <iframe> element will be inserted, with

source URL being pointed to a new page on the same server. Hence we have the an-

other data RTT dRTT D and its corresponding delay overhead, denoted by ∆d3. Since

the browser has already established TCP connections to the server (usually two con-

nections are opened), the iframe will reuse the existing connection and cannot obtain

a new connection RTT. The aim of this process is to investigate whether the TCP con-

nection establishment will make impact on the data events. The difference between

∆d2 and ∆d3 is that ∆d3 is based on the HTTP request/response on an existing TCP

connection. Moreover, the response size of the second request is smaller than the first

one. When the measurement phase ends, all the recorded timestamps are stored to a

database.

We use the same testbed described in Figure 3.1 except that the OSes for the client

machine have been upgraded to Windows 10 and Ubuntu 12.04. We introduce an

additional delay on the server side to simulate the RTT because without such delay

the link RTT is too small to sample. To cover the RTTs range from small to large, we

introduce four different delay respectively: 20, 50, 85, 135 ms. Our experiments are

carried out through automation scripts. During the experiment, tcpdump is running in

the background to capture the actual network delays. For each experiment, we run it

for 50 times and compute from them with useful statistics, such as minimum, median,

and 25% and 75% percentiles.

65

3.3.2 Measurement Results

In this subsection, we present our experiment results. Similar to Section 3.1, we utilize

box plots to demonstrate the distribution of delay overhead. We first examine ∆d1, the

delay overhead introduced in the RTT measurement using connection events. Since

only two browsers (Chrome and Opera) support this type of measurement, we group

their delay overheads together in Figure 3.6, in which each subplot represents how the

measured RTTs are inflated in a specific emulated network delay case. We use “C (U)

∆d1” to denote the delay overhead obtained by Chrome in Ubuntu, and so forth. The

plots show that the ∆d1 for both Chrome and Opera are almost all within the range

from -1.5 to 2.5ms. Although the delay overhead distributions for the two browsers in

different OSes can be distinct, the median values are very close to∼0.4ms. Moreover,

the delay overheads are observed independent to the network delay. Namely, for the

same browser in the same OS, its delay overhead patterns are very similar no matter

what the actual network delays are. As a consequence, the delay overheads can be

more easily calibrated by repeating the measurement for many times and output the

median as the final result.

We next focus on ∆d2 and ∆d3, which are introduced in the RTT measurements

using data events. As depicted in Figure 3.7, most browsers can achieve very small

∆d2 (close to 0), except Opera, especially in Ubuntu. The delay overheads for Opera

in Ubuntu can be as large as 58ms if the emulated RTT is 20ms. When the emulated

RTTs increase to 50ms and 135ms, the upper bounds decrease to 28ms and 23ms,

respectively. Curiously, when the emulated RTT is set to 85ms, Opera is observed

with much smaller delay overhead, which ranges from 0 to 2ms and the median value

is very close to 0. In windows, Opera performs much better than in Ubuntu. Its delay

overheads are always within the range from -1ms to 2ms. The other browsers have

considerable small and consistent delay overheads. When the network delays are small

66

−2

0

2

4
C

 (
U

)
∆

d
1

O
 (

U
)

∆
d
1

C
 (

W
)∆

d
1

O
 (

W
)∆

d
1

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) 20ms.

−2

0

2

4

C
 (

U
)

∆
d
1

O
 (

U
)

∆
d
1

C
 (

W
)∆

d
1

O
 (

W
)∆

d
1

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) 50ms.

−2

0

2

4

C
 (

U
)

∆
d
1

O
 (

U
)

∆
d
1

C
 (

W
)∆

d
1

O
 (

W
)∆

d
1

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) 85ms.

−2

0

2

4

C
 (

U
)

∆
d
1

O
 (

U
)

∆
d
1

C
 (

W
)∆

d
1

O
 (

W
)∆

d
1

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) 135ms.

Figure 3.6: Box plots of ∆d1 obtained when the emulated network delays are different.

(20ms and 50ms), these browsers can report very accurate network delays. Even when

the length of network path increases (85ms and 135ms), their delay overheads are all

within -1ms to 2ms.

As for ∆d2, Figure 3.8 shows that all the browsers have similar performance no

matter what the emulated network RTTs are. The delay overheads are all limited

within the range from -1ms to 2ms. Here, the negative delay overheads are caused

by the granularity of timing function. The timestamps reported by Navigation Tim-

ing technique and tcpdump/WinDump are in millisecond level and nanosecond level,

respectively. If the time reported by Navigation Timing has been round up, the delay

overhead could be negative values. When we consider the 25th and 75 percentiles

only, the distribution of delay overheads are further narrowed down to the range from

67

-0.3ms to 1ms. Compared to ∆d2, although the browsers may have slightly larger ∆d3

for some cases, they show less diversity in the network delay measurement. Moreover,

a more consistent result implies that the calibration can be easier.

The major difference between ∆d2 and ∆d3 is that the ∆d3 is obtained on an

existing TCP connection whereas the browser under test needs to make a new con-

nection before it can measure the ∆d2. Figure 3.7 and 3.8 clearly show that event

requestStart and responseStart will be significantly affected by the TCP con-

nection establishment. Therefore, we need to avoid using the first HTTP request in

practice.

−2

0

2

4

C
 (

U
)

∆
d
2

F
 (

U
)

∆
d
2

O
 (

U
)

∆
d
2

C
 (

W
)∆

d
2

E
 (

W
)∆

d
2

F
 (

W
)

∆
d
2

O
 (

W
)∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) 20ms.

−2

0

2

4

C
 (

U
)

∆
d
2

F
 (

U
)

∆
d
2

O
 (

U
)

∆
d
2

C
 (

W
)∆

d
2

E
 (

W
)∆

d
2

F
 (

W
)

∆
d
2

O
 (

W
)∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) 50ms.

−2

0

2

4

C
 (

U
)

∆
d
2

F
 (

U
)

∆
d
2

O
 (

U
)

∆
d
2

C
 (

W
)∆

d
2

E
 (

W
)∆

d
2

F
 (

W
)

∆
d
2

O
 (

W
)∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) 85ms.

−2

0

2

4

C
 (

U
)

∆
d
2

F
 (

U
)

∆
d
2

O
 (

U
)

∆
d
2

C
 (

W
)∆

d
2

E
 (

W
)∆

d
2

F
 (

W
)

∆
d
2

O
 (

W
)∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) 135ms.

Figure 3.7: Box plots of ∆d2 obtained when the emulated network delays are different.

68

−2

0

2

4

C
 (

U
)

∆
d
3

F
 (

U
)

∆
d
3

O
 (

U
)

∆
d
3

C
 (

W
)∆

d
3

E
 (

W
)∆

d
3

F
 (

W
)

∆
d
3

O
 (

W
)∆

d
3

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) 20ms.

−2

0

2

4

C
 (

U
)

∆
d
3

F
 (

U
)

∆
d
3

O
 (

U
)

∆
d
3

C
 (

W
)∆

d
3

E
 (

W
)∆

d
3

F
 (

W
)

∆
d
3

O
 (

W
)∆

d
3

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) 50ms.

−2

0

2

4

C
 (

U
)

∆
d
3

F
 (

U
)

∆
d
3

O
 (

U
)

∆
d
3

C
 (

W
)∆

d
3

E
 (

W
)∆

d
3

F
 (

W
)

∆
d
3

O
 (

W
)∆

d
3

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) 85ms.

−2

0

2

4

C
 (

U
)

∆
d
3

F
 (

U
)

∆
d
3

O
 (

U
)

∆
d
3

C
 (

W
)∆

d
3

E
 (

W
)∆

d
3

F
 (

W
)

∆
d
3

O
 (

W
)∆

d
3

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) 135ms.

Figure 3.8: Box plots of ∆d3 obtained when the emulated network delays are different.

3.4 WebRTC technique

The WebRTC technique provides RTCDataChannel API for point-to-point data ex-

change between two arbitrary browsers. Although the technique has not been em-

ployed by existing tools for network delay measurement, it enables client-to-client

type of measurements instead of the traditional client-to-server manner. However, We-

bRTC is built on top of SCTP, DTLS, and UDP, which requires additional message

encoding/decoding and encryption/description compared to HTTP. Therefore, it is im-

portant to investigate whether WebRTC will introduce significant delay overhead and

whether it is suitable for network measurement.

69

3.4.1 Experiment setup

Besides a Web server hosting the container page, the browsers that intend to connect to

each other need the help of a signaling server. In our experiment, we build the signaling

server based PeerJS library [24]. As shown in Figure 3.9, the signaling server and Web

server are hosted in the same machine with different ports. The server, local client

(LC), and remote client (RC) are connected together via a switch. Here both clients

have the same hardware configuration: equipped with a 1.86GHz Intel Core 2 Duo

processor (E6320) and 2GB memory. Similarly, we introduce an additional delay on

the RC side to simulate the RTT, because without such delay, the link RTT will be

too small to sample. To cover the RTTs range from small to large, we introduce four

different delay respectively: 20, 50, 85, 135 ms.

Figure 3.9: Testbed Setup for WebRTC measurement.

Before the experiment, a Chrome browser is opened and the container page is

downloaded on the RC. The container page, which is also built on PeerJS library, will

instantiate a RTCPeerConnection object and try to communicate with the signaling

server, informing the server that it is ready for establishing a data channel with the

LC. On the LC, our automation scripts launch the browser under test and download

the container page. Likewise, the container page talks to the signaling server, and tries

70

to connect to the RC. After negotiating the session description parameters, the data

channel between the two browsers is finally established. The LC then sends out a short

request message “init” to the RC, triggering a response message “ready”. By record-

ing the message sending and receiving time, we can measure the network delay d1. To

avoid the possible effect of channel establishment, the LC subsequently sends out an-

other request message “ping” and elicits the corresponding response message “pong”.

Hence we have another network RTT d2. Here we use short messages of smaller than

140 bytes for each so that every message can be sent in one packet 1 and can be sent in

one packet2.

We capture the actual network delay with tcpdump during the measurement phase.

However, since we cannot decrypt the DTLS payload, it is impossible for us to map the

data channel messages to the exact network packets. We therefore employ the network

delay obtained with the DTLS handshake packets as the actual network delay instead.

For the two measured RTTs d1 and d2, we then calculate their corresponding delay

overheads ∆d1 and ∆d2. We have tested Chrome, Firefox, and Opera in both Ubuntu

12.04 and Windows 10. The detailed version number of each browser can be found in

Table 3.6. For each browser, we run the test for 50 times and compute useful statistics

from them. The experiment results are stored to a database for further analysis.

3.4.2 Measurement Results

We still utilize box plots to demonstrate the distribution of delay overhead ∆d1 and

∆d2. In Figure 3.10, each subplot corresponds to the different emulated network delay

case. We use “C (U) ∆d1” to denote ∆d1 obtained by Chrome in Ubuntu, and so on.

The plots clearly show that ∆d1 is severely inflated for both Chrome and Opera.

1The overall header length is smaller than 130 bytes, including IP header (20-40 bytes), UDP header

(8 bytes), DTLS header (20-40 bytes), and SCTP header (28 bytes).
2The maximum transmission unit for SCTP is 1,280 bytes.

71

The increment can be larger than one RTT, which means that the delay of channel

establishment is also included when measuring the delay d1. Although Firefox will not

include the channel establishment delay and hence has similar ∆d1 and ∆d2, its ∆d2

is still slightly smaller than ∆d1. Therefore, when WebRTC technique is employed for

delay measurement, the first round of request and response should be ignored to avoid

the impact of channel establishment.

When only the the second round delay measurement (d2) is considered, the delay

overhead ∆d2 is independent to the actual network delay. Namely, no matter what the

emulated network RTT is, the delay overheads are very close for the same browser.

However, Firefox still has the best performance in both OSes. The median values of

∆d2 for it are smaller than 2ms in all RTT cases, whereas the other two browsers are

∼4ms.

In summary, WebRTC technique enables a new type of browser-to-browser net-

work measurement, which is different to the traditional browser-to-server measure-

ment. Such measurement extends the scope and scale of what browser-based measure-

ments can observe, especially provides the views from Internet edge to edge. Based

on our evaluation, the measurement following the channel establishment should be

ignored because there is a high possibility that the measurement results include the

channel setup delay. Firefox is the preferred browser in both Ubuntu and Windows.

By repeating the measurement and outputting the median values, we can keep the de-

lay overheads caused by WebRTC smaller than 2ms. As for other browsers (Chrome

and Opera), calibration could be considered to improve the measurement accuracy.

3.5 Summary

In this chapter, we studied the impact of application-level delay overheads on browser-

based network measurement methodologies, including the traditional HTTP-based and

72

−10

0

10

20

30

40

C
 (

U
) ∆

d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
) ∆

d
1

F
 (

W
) ∆

d
2

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) 20ms.

0

20

40

60

C
 (

U
)∆

d
1

C
 (

U
)∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
)∆

d
1

O
 (

U
)∆

d
2

C
 (

W
)∆

d
1

C
 (

W
)∆

d
2

F
 (

W
)∆

d
1

F
 (

W
)∆

d
2

O
 (

W
)∆

d
1

O
 (

W
)∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) 50ms.

0

20

40

60

80

100

C
 (

U
)∆

d
1

C
 (

U
)∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
)∆

d
1

O
 (

U
)∆

d
2

C
 (

W
)∆

d
1

C
 (

W
)∆

d
2

F
 (

W
)∆

d
1

F
 (

W
)∆

d
2

O
 (

W
)∆

d
1

O
 (

W
)∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) 85ms.

0

50

100

150

200

C
 (

U
) ∆

d
1

C
 (

U
) ∆

d
2

F
 (

U
)

∆
d
1

F
 (

U
)

∆
d
2

O
 (

U
) ∆

d
1

O
 (

U
) ∆

d
2

C
 (

W
) ∆

d
1

C
 (

W
) ∆

d
2

F
 (

W
) ∆

d
1

F
 (

W
) ∆

d
2

O
 (

W
) ∆

d
1

O
 (

W
) ∆

d
2

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) 135ms.

Figure 3.10: Box plots of the delay overheads (by emulated RTTs).

socket-based techniques that have already been applied to the existing measurement

tools, such as XHR, Flash, WebSocket, and Java applet, and the techniques that could

be employed for network measurement, such as Navigation Timing and WebRTC. By

evaluating all the traditional HTTP/TCP methods employed by the current browser-

based measurement tools and services with our carefully designed testbed experiments,

we showed that both socket-based and HTTP-based methods may introduce different

degrees of inaccuracy in measuring the RTT due to a number of intrinsic and system

issues. As the results show, the socket-based methods are generally more reliable than

the HTTP-based methods.

On the other hand, the Navigation Timing and WebRTC methods can achieve rela-

tively consistent delay overheads after excluding the measurement following the con-

73

nection or data channel setup. Given that Navigation Timing is supported by browsers

natively and does not need additional socket server, it can be a good replacement for

the traditional HTTP-based and socket-based methods.

74

Chapter 4

Towards accurate smartphone-based

network measurement

Mobile devices, notably smartphones and tablets, have already become essential parts

of our daily lives because of their mobility and rich functionalities. Due to their limited

computational power and storage, they rely on network access to offload intensive com-

putation tasks to remote servers or cloud. Moreover, the offloading approach can save

energy, thus extending the battery lifespan [140, 145]. Tongaonkar et al. find that 84%

of apps require permission of Internet access [220] from a pool of 55K Android apps

randomly chosen from the official Android app market. Therefore, understanding mo-

bile network performance is critical for providing good quality of experience to users.

For example, recent performance studies characterize LTE networks [108] and opti-

mize mobile application performance [229]. The data collected by Speedtest.net is

used for comparing the performance between cellular and WiFi networks [206].

The importance of monitoring mobile network quality motivates a number of stud-

ies on network performance measurement. These measurement works are conducted

on mobile devices using browsers or measurement apps. The browser-based mea-

surement is similar to Speedtest for desktop environment in that the measurement

75

is conducted through mobile browsers [16, 31]. A more popular approach is using

measurement apps on smartphones, such as [12, 17, 18, 34] for Android, [32, 33] for

iOS, and [22, 35] for Windows Phone. In particular, the Ookla Speedtest app [34] has

recorded over 50 million downloads in the Android app market. These measurement

apps can measure network round-trip time (RTT) and upload/download throughput.

Some of them can even perform traceroute, measure DNS performance, and character-

ize HTTP caching behavior [18].

Despite the availability of many measurement apps, their measurement accuracy

has not received sufficient scrutiny. In this chapter, we appraise the accuracy of smartphone-

based network performance measurement. We focus on the RTT measurement, be-

cause it is the most available atomic metric. Moreover, we consider only Android

smartphones, because the source codes of the measurement apps can be available to

us. In particular, we have evaluated the accuracy of Ookla Speedtest app and Mo-

biperf, and their RTT measurements are all inflated from a few milliseconds to tens of

milliseconds. For the purpose of evaluation, we develop three test apps, each of which

implements a specific measurement method: Native ping (using ping commands ex-

ternal to Java to send ICMP Echo requests), Inet ping (using network-related classes

in Java/Android to send TCP SYNs), and HTTP ping (using HTTP-based Java classes

to send HTTP GET requests). These three methods are adopted by the existing mea-

surement apps.

Our multi-layer analysis method collects the timing information at the user space,

kernel space, and the wireless network link when a packet is sent out and received by a

test app. This multi-layer delay information therefore enables us to compute the delay

overheads introduced by different parts of the Android phone. A major challenge in

the multi-layer analysis is setting up a reliable testbed environment to obtain accurate

timestamps at those localities. Unlike fixed network measurement, a single sniffer is

76

not able to capture all the packets because of frequent missing frames. By employing

multiple sniffers, we are able to merge partial traces into an almost complete trace.

The entire process requires us to resolve synchronization issues for the smartphone

and sniffers, recover the timestamps, and investigate the impact of clock skew between

the smartphones and sniffers on the results.

We have conducted extensive testbed experiments using three Android phones with

different configurations installed with the three test apps. Although the experiments

are conducted in a WiFi network, part of the results can also be applied to cellular

networks. Below is a summary of our findings.

1. (Highly inflated RTT measurement) The RTT measurement obtained from the

three measurement methods are all inflated. Our analysis reveals that the delay

inflation can occur in both user space and kernel space. We also discover that

the delay inflation introduced in the user space is asymmetric for packet sending

and receiving.

2. (Root-cause analysis) The overhead in Android runtime contributes to the ma-

jority of the delay overhead in the user space, and it is due to a long path of sub-

function invocations. Moreover, the migration of runtime from DVM (Dalvik

VM) to ART (Android Runtime) cannot help too much to alleviate the overhead.

On the other hand, the sleeping function of the wireless network interface card

(WNIC) driver is the major source of the delay overhead in the kernel.

3. (Mitigating the user-space delay inflation) Our approach of mitigating the delay

inflation is to bypass DVM. We implement the core measurement logic into a

native C program and invoke it through an external system call in the app. Ex-

periment results show that the user-space delay inflation can be kept under 1.5ms

for most of the cases.

77

The remainder of the chapter is organized as follows. In Section 4.1, we introduce

a multi-layer approach to analyze the performance problem in Android, as well as

detail the different aspects of our testbed setup, including the use of multiple sniffers

to obtain a complete trace for acquiring timestamp information. Section 4.2 and §4.3

report evaluation results obtained from the Internet experiments for Ookla Speedtest

and MobiPerf, and the controlled testbed, respectively. We then perform root-cause

analysis in §4.4 and propose a measurement method for mitigating the delay inflation.

Finally, we summarize the chapter in §4.5.

4.1 Methodology and testbed setup

4.1.1 Multi-layer analysis

To locate where the overheads are introduced, we perform multi-layer analysis by dis-

secting the delay overheads into several components. As mentioned in packet sending

and receiving processes shown in Figure 2.6, a packet needs to be delivered to the

Linux kernel before it reaches the network (for the outgoing direction) or the app (for

the incoming direction). Supposing that the outgoing and incoming packets arrive at

the kernel at times tok and tik, respectively, we calculate the kernel-phy delay overhead

∆dk occurred between the kernel and PHY (WNIC) as

∆dk = dk − dn = (tik − tok)− (tin − ton). (4.1)

Similarly, the user-kernel delay overhead ∆du that takes place between the app and

kernel can be computed as

∆du = du − dk = (tiu − tou)− (tik − tok). (4.2)

78

dk

du

Figure 4.1: The user-kernel delay overhead and kernel-phy delay overhead.

By analyzing these two types of delay overheads, we can identify the place where

the delay overheads are introduced. Note that the two overhead components are inde-

pendent. As shown in Figure 4.1, since tcpdump timestamps a packet in the Berkeley

Packet Filter (BPF), which is on top of the WNIC driver, ∆dk depends on the perfor-

mance of hardware and driver of WNIC, whereas ∆du on the performance of the user

space and part of the kernel space. Although our evaluation in this chapter is based on

IEEE 802.11g network, the analysis of ∆du is still valid when the mobile network is

changed to others, such as HSPA and LTE.

4.1.2 Runtime environment in Android

Although built on Linux, Android differs from other Linux distributions by employ-

ing Java as the official programming language for its platform-independency. Java

achieves this characteristic by compiling the application code into bytecode and exe-

cuting the bytecode through the runtime environment, Java Virtual Machine (JVM).

In Android, Dalvik VM (DVM) used to be the original runtime. But in Android

4.4, a new runtime called Android Runtime (ART) was introduced, and it finally re-

79

places DVM since Android 5.0. The major difference between DVM and ART is

the bytecode compilation methodology. DVM employs just-in-time (JIT) compilation

technique, which dynamically translates the frequently executed part of bytecode into

native machine code each time the app runs. On the other hand, ART utilizes ahead-

of-time (AOT) compilation, compiling the entire application into native machine code

during installation. With the help of AOT, ART improves the overall execution ef-

ficiency for the apps, in terms of better memory allocation and garbage collection

mechanisms [4, 90].

In this chapter, we also consider the performance divergence between DVM and

ART, because a faster Android runtime could lead to shorter ∆du according to Fig-

ure 4.1. Moreover, a recent report shows that Android 4, 5, and 6 still coexist at the

time of this writing (i.e., March 2016), whose market shares account for 58.9%, 36.1%,

and 2.3%, respectively [25]. Therefore, our experiment design (see Section 4.3) covers

the smartphones with different Android version ranging from 4 to 6, and provides com-

prehensive understanding of the effect of Android runtime on network measurement.

4.1.3 A multiple-sniffer testbed

To evaluate the accuracy of measurement apps, we build a multiple-sniffer testbed

in Figure 4.2. The testbed consists of a measurement server (for local measurement

only), which is equipped with a 1.86GHz Intel Core 2 Duo processor (E6320) and 2GB

memory, and Netgear WNDR3800, an IEEE 802.11g wireless AP. The smartphone

under test has been rooted, so that they can run the cross-compiled version of tcpdump

through adb (Android Debug Bridge) and scripts. During the experiment, tcpdump

is running in the background on the phone to obtain the kernel timestamps tik and

tok. The impact of running tcpdump is negligible, because the traffic volume in each

experiment is very small. The three external packet sniffers are run on IBM T43 laptops

80

running Ubuntu 12.04. We also wire-connect the sniffers to the AP, so that they can be

controlled through SSH.

Request

Response

Measurement

server

Mobile

phone

Switch

AP

Sniffer A

Sniffer B

Sniffer C

Figure 4.2: The testbed setup where the packet sniffers, mobile phone, and wireless

AP are placed within a distance of 0.5m.

4.1.3.1 Wireless packet capturing

A simple way to passively monitor the wireless network traffic is to listen to the WNIC

of the AP [179, 204]. However, it is difficult to extract the exact time that a packet is

transmitted over the air medium, because a variable delay could be introduced after

the driver passes the packet to the firmware due to the queuing, carrier sensing/back-

off, or retry. It is challenging to solve the problem, e.g., employing APs that support

WNIC hardware timestamp, modifying the driver, and rebuilding kernel. We therefore

use the packet capturing method described in [233]. We enable the monitor mode and

promiscuous mode in the wireless network adaptors of the sniffers to capture the wire-

less frames (including the IEEE 802.11 header, physical layer header, and higher-layer

protocols’ information) using tcpdump. To simplify the decoding of wireless frames,

we also disable the security options, such as WPA. We have not performed clock syn-

chronization among the sniffers, because hardware timestamping is not supported and

software timestamping cannot meet our requirement. Instead, we use the method to be

81

described in Section 4.1.3.2 to evade the clock drift offline.

We employ three sniffers, because a single sniffer will miss many packets [197,

233]. Although we put the AP, mobile phone, and the sniffers very close to one another

(within a distance of 0.5m), we still find random frame losses and duplications in the

captured traces. Such frame losses are unpredictable and independent across sniffers.

To ensure the completeness of a packet trace, Serrano et al. propose to use multiple

sniffers to merge the individual traces [197], because the unseen packets by one sniffer

could be captured by the other sniffers. In our case, the average frame loss rate for a

single sniffer is 7.3%. After merging the packet traces from the three sniffers, the trace

completeness can reach to more than 99%.

4.1.3.2 Trace merging and time recovering

The basic idea of trace merging is to identify the missing frames and copy them to

the incomplete trace. The detailed algorithm is shown by pseudocode in Algorithm 1.

Given L (L = 3 in our case) packet traces for which the ith trace is denoted by Si, we

first extract beacon frames and data frames into their subtraces Bi and Di, respectively

(line 2). Then we randomly assign a data trace as the main trace (denoted by Dmain)

and others as reference traces (line 3). The missing data frames in Dmain can be iden-

tified after comparing with all other data traces (line 4). Finally, we insert the missing

frames to the correct locations in the main trace (line 16) and adjust their timestamps

(line 14), so that they are coherent to the local frames.

The most challenging part in this algorithm is to accurately recover the timestamps

of the missing frames. A most straightforward approach is to synchronize the snif-

fers [234], which usually requires timestamping in the PHY for higher time synchro-

nization accuracy. However, our sniffers do not support the feature. We therefore use

reference frames (e.g., beacon frames) for “frame-level synchronization.” Consider-

82

Algorithm 1 Trace Merging and Time Recovering Algorithm

Input: {Si} (i = 1, · · ·, L).
Output: Do.

1: Count the total frame number N in {Si}.
2: Extract data traces Bi and beacon traces Di from each Si.

3: Dmain = Do ← Dr, where r = random(1, · · ·, L).
4: Dmiss ←

⋃L
m=1
m6=r

Dm −Dmain.

5: Compute δ{main,j} for each pair 〈Bmain, Bj〉 (1 ≤ j ≤ L, and j 6= r) with lin-

ear regression.

6: fref ← fg = FirstFrame(B), where B ←
⋂N

i=1
Bi, 1 ≤ g ≤ N .

7: c0 ← Cmain(fref).
8: for n = g to N do

9: if fn ∈ B then ⊲ Update the reference frame.

10: fref ← fn.

11: c0 ← Cmain(fref).
12: else

13: if fn ∈ Dmiss then ⊲ Perform time recovering.

14: RecoverTime(fn, fref).

15: end if

16: Do ← Do ∪ fn.

17: end if

18: end for

19: Sort Do by the timestamps of each frame.

20: procedure RECOVERTIME(fn , fref)

21: for j = 1 to L and j 6= r do

22: if fn ∈ Dj then

23: cj0 ← Cj(fref).
24: cjn ← Cj(fn).
25: Co(fn)← c0 + (cjn − cj0)× δ{main,j}.

26: break

27: end if

28: end for

29: end procedure

ing the timestamp variation when a system reports its current time, simply performing

linear translation between two reference frames [151] could lead to fitting errors. Ac-

cordingly, we employ a linear regression algorithm to take care of the time fluctuations

and clock skews present in the sniffers (line 5).

Our time recovering algorithm first obtains the clock skews between each pair of

83

the sniffers by applying linear regression to the beacon frames, because beacon frames

are observed with the smallest time fluctuations by all sniffers. The clock skew is re-

calculated for every set of data which is collected in around 180s. Our measurement

results show that the clock skew progresses linearly during such a short period. When

computing the timestamps of missing frames, we treat beacon frames as reference

frames for the same reason.

Figure 4.3 illustrates the procedure of recovering the timestamp of a missing frame.

Suppose that we want to recover a lost frame pkt2 in the main trace A from the refer-

ence trace B. Let CA(t) and CB(t) be the times reported by sniffers A and B at time t.

We denote the clock skew of A relative to B at time t by δ{A,B}(t) = C ′
A(t) − C ′

B(t),

where C ′
A(t) ≡ dCA(t)/dt and C ′

B(t) ≡ dCB(t)/dt, ∀t ≥ 0. In fact, as the clock

skew between two sniffers is observed stable in our experiments for a short period

(e.g., 180s), we can treat it as a constant value denoted by δ{A,B}. To recover the times-

tamp CA(t2), we make use of the previous closest beacon frame as the reference frame,

which is pkt1 in Figure 4.3, in both traces:

CA(t2) = CA(t1) + (CB(t2)− CB(t1)) +

∫ t2

t1

δ{A,B}dt. (4.3)

Since
∫ t2

t1
δ{A,B}dt = δ{A,B} × (t2 − t1), we have

CA(t2) = CA(t1) + (CB(t2)− CB(t1)) + δ{A,B} × (t2 − t1). (4.4)

As the interval between two consecutive beacon frames is around 100ms, the miss-

ing frame is separated from the previous closest beacon frame by no more than this

value if that beacon frame is not missing. In fact, our experiments show that beacon

frame is seldom lost. Given such short period of time and the typical clock skew for

computer grade crystals, t2 − t1 can be replaced by CB(t2) − CB(t1). Therefore, we

84

pkt 1

pkt 1 pkt 2

pkt 2 pkt n

CB
()t1 CB

()t2

pkt n

CA
()t1 CA

()t2

Time

A

B

Figure 4.3: Procedure of trace merging and time recovery.

can recover CA(t2) by

CA(t2) ≈ CA(t1) + (CB(t2)− CB(t1))× (1 + δ{A,B}). (4.5)

4.1.3.3 Clock skew handling

External sniffers and phones are also running different clocks. As tos and tis are mea-

sured from outside, we would like to know whether the RTTs estimated by the sniffers

are comparable to the phones’. Similar to Section 4.1.3.2, let Cp(t) and Cs(t) be the

times reported by the phone and sniffer at time t, and δ{p,s} the clock skew between

the phone and the sniffer. For a time interval (t1,t2), the difference of the measured

duration ∆D{p,s} is

∆D{p,s} = (Cp(t2)− Cp(t1))− (Cs(t2)− Cs(t1)). (4.6)

=

∫ t2

t1

δ{p,s}dt. (4.7)

We have tested several Android phones and wireless sniffers. The clock skews

among them are all within the range of ±100 ppm (parts per million). For an end-

to-end network path, the RTT is usually tens to hundreds milliseconds [85]. Taking

100ms as an example, the measured RTT difference could be smaller than 10µs, which

85

is small enough to ignore. Therefore, the delay overhead can be computed by

∆d ≈ (tiu − tou)− (tis − tos). (4.8)

4.2 Ookla Speedtest and MobiPerf

In this section, we conduct Internet experiments for two popular apps, Ookla Speedtest

and MobiPerf, as well as perform multi-layer analysis to study whether they can

measure the network delay accurately. We choose Speedtest and MobiPerf because

Speedtest is the most popular network measurement app in Google Play (>50M in-

stalls) and MobiPerf is used for a number of research works [109, 166, 190, 191].

Moreover, these two apps cover nearly all the probe types supported by the existing

apps: ICMP, TCP control packet, and TCP data packet (HTTP message). Here we do

not consider UDP, because UDP-based measurements often require setting up UDP

servers for the measurement.

When measuring network paths, Speedtest sends out 6 HTTP GET requests one af-

ter the other to fetch a small text file (latency.txt) from a web server through class

java.net.URLConnection. By recording the packet sending and receiving times

with function SystemClock.uptimeMillis(), Speedtest outputs the smallest RTT

in integer as the final result. On the other hand, MobiPerf supports three probe types:

ICMP via executing the ping program, TCP SYN/RST packets (on port 7) through

function java.net.InetAddress.isReachable(), and TCP SYN/SYN ACK pack-

ets by class java.net.HttpURLConnection. Different from Speedtest, MobiPerf

summarizes the minimal/mean/maximal RTTs from ten trials, so that users can have a

more comprehensive understanding of the network quality.

86

4.2.1 Experiment setup

We conduct our experiments in testbed described in Section 4.1, except that the mea-

surement target is not a local machine but a remote Web server. We randomly pick

three servers, which are hosted in Hong Kong (IP: 202.45.189.9, HK in short), Tai-

wan (IP: 60.199.206.251, TW in short), and the Philippines (IP: 112.198.111.43, PH

in short), from the Ookla server list. The actual network RTTs from our phone to these

servers range from a few milliseconds to tens of milliseconds. We run the two apps one

by one on Google Nexus 5, whose hardware configuration and OS version are shown in

Table 5.1. Each type of measurement is repeated for 50 times. Although MobiPerf sup-

ports three probe types, we can only utilize one each time. MobiPerf performs ICMP

ping measurement by default, and turns to TCP SYN/RST when ICMP ping is not suc-

cessful. If failing again, it further changes to TCP SYN/ACK. In the experiments, we

remove the ping binary after the ICMP experiments are finished, forcing MobiPerf to

adopt the rest two methods. Among the three servers, the TW and PH server always

refuse the TCP connection attempt on port 7 by responding RST packets, therefore

MobiPerf performs only TCP SYN/RST measurements for these two servers. As for

the HK server, MobiPerf employs TCP SYN/ACK packets for measurement.

4.2.2 Evaluation

4.2.2.1 Ookla Speedtest

Capturing packets both internally (through tcpdump) and externally (through sniffers)

allows us to compare the RTTs measured by the apps (du), in the kernel (dk) and in the

air (dn). As shown in Table 4.1, although Ookla Speedtest reports the smallest value as

the final RTT for each measurement, this value can be around 3−7ms larger than the

actual network RTT. Even compared to dk measured by tcpdump, it still overestimates

the delays by 1−3ms.

87

Table 4.1: RTTs measured by Ookla Speedtest (du), in the kernel (dk) and in the air

(dn) (mean with 95% confidence interval, in ms).

Target Server du dk dn
HK 8.3 ±0.147 5.426 ±0.524 3.710 ±0.459
TW 30.654 ±0.169 29.471±1.926 27.426 ±1.381
PH 66.564 ±0.354 64.495±0.605 59.526 ±0.432

To better understand how Speedtest inflates the network RTTs, we plot cumulative

distribution functions (CDF) of delay overheads in Figure 4.4. We consider two cases:

using all 6 samples for each measurement and using only the samples with the smallest

dk and dn. For the former cases (as shown in Figure 4.4(a)), although Speedtest returns

the smallest sample as the final result, it still inflates the actual network RTTs for most

of the cases. For example, ∆d for server PH can be as large as∼14ms. Although some

RTT underestimation events can be found because of performance fluctuation during

the measurement, they account for only a small portion.

For the latter cases, since smaller dn usually corresponds to smaller dk and du, they

are not affected by the performance fluctuation during the measurement. Figure 4.4(b)

shows two delay overhead patterns: the inflations mainly occur between the app and

kernel for servers HK and TW, because the gap between ∆du and ∆d is small and

relatively constant. But for server PH, the large gap indicates that the driver and WNIC

play an important role in the overall delay overheads. However, although server PH

with larger network RTTs also has larger delay overheads, we cannot conclude that

larger network RTT will result in larger delay overhead, because servers HK and TW

have similar overhead characteristic but have distinct RTTs.

4.2.2.2 MobiPerf

Table 4.2 presents the statistics of du, dk and dn for MobiPerf. Since MobiPerf reports

the min/mean/max values of its ten trials in each measurement, we also include the

88

Delay Overhead (ms)

-20 -10 0 10

C
D

F

0

0.2

0.4

0.6

0.8

1

∆d
u
 (HK)

∆d (HK)

∆d
u
 (TW)

∆d (TW)

∆d
u
 (PH)

∆d (PH)

(a) With all samples.

Delay Overhead (ms)

5 10 15
C

D
F

0

0.2

0.4

0.6

0.8

1

∆d
u
 (HK)

∆d (HK)

∆d
u
 (TW)

∆d (TW)

∆d
u
 (PH)

∆d (PH)

(b) With the smallest dk and dn.

Figure 4.4: CDF plots of ∆d and ∆du for Ookla Speedtest.

means of the reported minimum and maximum du in the table. In general, the mean

RTTs measured by MobiPerf are inflated for all three measurement methods. Specifi-

cally, the ICMP ping method adds around 7−11ms additional delay, whereas the TCP

SYN/ACK method up to 17ms. Even for the TCP SYN/RST method with the best

performance, the overhead can be larger than 4ms. But if we use the minimum du as

the final result, just like Ookla Speedtest, there are chances for ICMP ping method to

underestimate the network RTT. A further analysis on the user-kernel delay overhead

(∆du) indicates that the overheads for the ICMP ping method and TCP SYN/RST

method mainly take place between the kernel and hardware, as the disparity between

their du and dk is very small (<1ms). Moreover, the TCP SYN/ACK method has a

very large ∆du (up to ∼16ms).

4.3 Testbed evaluation

Running experiments in a fully controlled environment allows us to study the behav-

ior of different measurement methods systematically. We use six Android phones to

89

Table 4.2: RTTs measured by the app (du), in the kernel (dk) and in the air (dn) for

MobiPerf (mean with 95% confidence interval, in ms).

Probe Target du dk dnType Server min mean max

HK
2.833 10.585 20.621 10.468 3.388

±0.117 ±0.130 ±0.703 ±0.639 ±0.268
ICMP

TW
60.634 73.184 103.993 73.136 62.960

ping ±0.238 ±1.814 ±16.276 ±5.560 ±5.557
PH

59.719 69.388 79.665 69.310 59.009

±0.285 ±0.249 ±0.755 ±0.802 ±0.399
TCP

HK
9.646 21.658 58.167 5.636 3.934

S/A ±0.207 ±0.368 ±1.670 ±0.441 ±0.361
TW

59.480 65.338 76.083 64.661 60.738

TCP ±0.144 ±0.144 ±0.653 ±0.660 ±0.559
S/R

PH
58.625 63.563 72.0 62.766 58.898

±0.154 ±0.193 ±0.627 ±0.672 ±0.424

conduct the experiments. Their detailed hardware configurations and OS versions are

listed in Table 5.1. We choose these phones for their diverse hardware capability which

may produce different results. The OS versions cover 4, 5, and 6. Note that all three

Android 4 phones run on DVM, whereas the other three Android 5 and 6 phones are

based on ART. We run three test apps (see Section 4.3.1) one by one on each phone.

These apps send probes to the measurement server to elicit response packets and record

the timestamps. We introduce an additional delay on the server side to simulate four

different RTTs: 20ms, 50ms, 85ms, and 135ms. To avoid the RTT being affected by

packet retransmission, we ensure no probe losses during the measurement. The exper-

iment for each configuration set (phone, app, and network delay) is repeated for 100

times.

4.3.1 Building test measurement apps

Employing existing apps for systematic evaluation is difficult, because we cannot

switch the measurement target to our measurement server simply and control the ac-

90

Table 4.3: The mobile phones used in the experiment.

Models OS Ver. Hardware spec. WNIC

Sony Xperia J 4.0.4

Qualcomm MSM7227A

CPU (1GHz), 512M

RAM

Broadcom

BCM4330

HTC One

802W
4.2.2

Qualcomm APQ8064T

CPU (quad-core

1.7GHz), 2GB RAM

Qualcomm

WCN3680

Google Nexus 5 4.4.2

Qualcomm MSM8974

CPU (quad-core

2.26GHz), 2GB RAM

Broadcom

BCM4339

Huawei G7 Plus 5.1

Qualcomm MSM8939

CPU (quad-core

1.5GHz + quad-core

1.2GHz), 2GB RAM

Qualcomm

WCN3660

Huawei Honor 7 5.0.1

HiSilicon Kirin935

CPU (quad-core

2.2GHz + quad-core

1.5GHz), 3GB RAM

Broadcom

BCM4339

Huawei Mate 8 6.0

HiSilicon Kirin950

CPU (quad-core

2.3GHz + quad-core

1.8GHz), 3GB RAM

Broadcom

BCM43455

tual network path delay. Moreover, their complicated GUI designs also prevent us

from executing the measurements and recording results automatically. We therefore

implement three test apps, each of which implements one of the three methodologies

(i.e., ICMP, TCP, and HTTP GET) presented in Table 2.2. The apps follow the original

design of MobiPerf and Speedtest, and the implementation details are described below:

Native ping. This app executes external shell commands through a Java Runtime

class. It directly invokes the ping program, which is located at a default lo-

cation /system/bin, to perform ICMP-based RTT measurements1. The ping

program sends and receives the ICMP Echo messages on behalf of the measure-

ment app and returns the measurement results. Although the ping program can

1Other than ping program, we find that executing any pre-compiled C program packaged with the

app is also feasible.

91

only provide the resolution of 1ms or 0.1ms, it is the only way to handle ICMP

packets without modifying the Android framework.

Inet ping. This app employs the method isReachable of class java.net.InetAddress

to send TCP SYN packets on port 7 (Echo) to a remote host2, eliciting TCP SYN

ACKs (when the port is open) or TCP RST packets (when the port is closed).

HTTP ping. We make use of class java.net.HttpURLConnection to implement

this app. Here the outgoing and incoming packets are complete HTTP GET

request and response messages. We limit the size of HTTP request and response

messages to no larger than 300 bytes, so that each message can be sent in a single

TCP packet. Moreover, we record the sending time after the completion of TCP

three-way handshake to avoid including the delay of connection establishment

into the measurement.

To minimize the workload of the test apps on the phone, we compute all RTT esti-

mates offline. For Native ping, the test app only parses and saves the output from the

ping program without any further computation. Inet ping and HTTP ping simply log

the timestamps of packet sending and receiving events with the system time function

System.currentTimeMillis() or System.nanoTime().

4.3.2 Overview

Table 4.4 presents the means and 95% confidence intervals of the delay overheads

(∆d) measured for the three test apps (methods) and four emulated RTTs on the six

test phones. Compared with the RTTs observed by the external sniffers, the RTTs mea-

sured by the apps are inflated significantly for all six phones. The delay overheads can

range from a few milliseconds to tens of milliseconds, and the 95% confidence interval

2Although the official documentation (http://developer.android.com/reference/java/net/InetAddress.html)

states that the method first tries ICMP and falls back to TCP when it fails, we find that the ICMP option

has not been implemented.

92

can be as high as 2.9ms. The inflated RTT measurement is too significant to ignore,

considering the network delay today is getting smaller due to the prevalence of CDNs

and cloud services. For example, the median RTT from University of Connecticut to

Akamai-Hartford servers is only 8.5ms [69].

Generally speaking, HTTP ping exhibits comparatively smaller delay overheads for

most of the cases (except phone S). For example, the mean delay overheads for phone

W1 (<2.6ms) are much smaller than its Native ping (>7.8ms) and Inet ping (>13ms)

cases. Inet ping has relatively larger ∆ds, which mean values are usually larger than

10ms. For some extreme cases, the overheads can be close to 20ms. Another obser-

vation is that ART cannot help much on reducing the delay overhead, though the three

smartphones run on Android 5 and 6 (W1, W2, and W3) have more powerful computa-

tion capabilities. Compared to the three Android 4 phones, their mean delay overheads

are close to or even larger for all three measurement methods.

Two different delay inflation behaviors can be also observed. For the phones

equipped with Qualcomm WNIC chipsets (H and W1), their delay overheads can be

considered RTT-independent due to the small variations when the emulated RTTs in-

crease. However, the other four phones powered by Broadcom (G, S, W2, and W3),

there are significant delay overhead increments when the emulated RTTs are long.

A typical example is phone G. When the emulated RTTs are 20ms and 50ms (short

RTTs), its mean ∆ds are ∼7ms, ∼12ms, and ∼7ms for Native ping, Inet ping, and

HTTP ping, respectively. But when the RTT increases to 85ms and 135ms (long

RTTs), the mean ∆ds increases to ∼14ms, ∼16ms, and ∼10ms, which increments

can be 3-7ms.

93

4.3.3 Effect of timing functions

The results presented in Table 4.4 are measured when System.currentTimeMillis()

is used. Since it is reported that this function could have coarse granularity (such as

∼15ms) in some OS [143], we also implement the test apps with the more precise

System.nanoTime() for the purpose of comparison. We perform experiments with

the same setting described in Section 4.1.3, and link the results together with the ones

obtained by System.currentTimeMillis(). To better visualize the effect of the two

timing functions, we use box plots to present the data in Figure 4.5. In each box-and-

whisker plot, the top and bottom of the box are given by the 75th and 25th percentile,

and the mark inside is the median. The upper and lower whiskers are the maximum

and minimum, respectively, after excluding the outliers. The outliers above the upper

whiskers are those exceeding 1.5 of the upper quartile, and those below the minimum

are less than 1.5 of the lower quartile.

0

10

20

30

2
0
m

s
 (

m
)

2
0
m

s
 (

n
)

5
0
m

s
 (

m
)

5
0
m

s
 (

n
)

8
5
m

s
 (

m
)

8
5
m

s
 (

n
)

1
3
5
m

s
 (

m
)

1
3
5
m

s
 (

n
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Inet ping.

0

10

20

30

2
0
m

s
 (

m
)

2
0
m

s
 (

n
)

5
0
m

s
 (

m
)

5
0
m

s
 (

n
)

8
5
m

s
 (

m
)

8
5
m

s
 (

n
)

1
3
5
m

s
 (

m
)

1
3
5
m

s
 (

n
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) HTTP ping.

Figure 4.5: Delay overhead comparison in box plot for phone G (red/m for Sys-

tem.currentTimeMillis(), and cyan/n for System.nanoTime()).

We only present the data of phone G in detail, since the other two phones have simi-

lar results. The figures show that the delay overheads measured by System.nanoTime()

is similar to those by System.currentTimeMillis(). Considering the relatively

94

large delay inflation, the overhead of executing a timing function is therefore not a

key factor to consider for measurement accuracy.

4.3.4 Effect of runtime

Android 4.4.2 allows us to switch runtime between DVM and ART in the developer

options. Therefore, we run Inet ping and HTTP ping on phone G with the same ex-

periment settings to examine their delay overheads in ART. We link the results with

those obtained in DVM on the same phone (described in Section 4.3.2) in box plots, as

shown in Figure 4.6. Here we do not consider Native ping, because the ping program

is not executed in the runtime but runs as a native Linux program.

0

5

10

15

D
V

M
 (

2
0
m

s
)

A
R

T
 (

2
0
m

s
)

D
V

M
 (

5
0
m

s
)

A
R

T
 (

5
0
m

s
)

D
V

M
 (

8
5
m

s
)

A
R

T
 (

8
5
m

s
)

D
V

M
 (

1
3
5
m

s
)

A
R

T
 (

1
3
5
m

s
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Inet ping.

0

5

10

15

D
V

M
 (

2
0
m

s
)

A
R

T
 (

2
0
m

s
)

D
V

M
 (

5
0
m

s
)

A
R

T
 (

5
0
m

s
)

D
V

M
 (

8
5
m

s
)

A
R

T
 (

8
5
m

s
)

D
V

M
 (

1
3
5
m

s
)

A
R

T
 (

1
3
5
m

s
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) HTTP ping.

Figure 4.6: Delay overhead comparison in box plot for phone G when different run-

times are adopted (red for DVM, and cyan for ART).

Figure 4.6(b) clearly shows that for HTTP ping, both the interquartile range and

the total range of delay overheads have been narrowed down significantly when ART

is applied. Although the median ∆ds in ART may be higher than those in DVM, we

can conclude that ART can make the delay overheads more stable for HTTP ping.

However, as depicted in Figure 4.6(a), Inet ping has higher ∆ds with ART. This ob-

servation can also be confirmed by Table 4.4, where the delay overheads measured by

95

W1-W3 are usually higher than the other three phones. We will discuss the reasons in

Section 4.4.1.

4.3.5 User-space and kernel-space overheads

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Native ping (phone G).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) Native ping (phone H).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) Native ping (phone S).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) Native ping (phone W1).

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(e) Native ping (phone W2).

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(f) Native ping (phone W3).

Figure 4.7: Box plots for the user-kernel delay overheads (∆du, red) and kernel-phy

delay overheads (∆dk, cyan) measured by Native ping.

As described in Section 4.1.3, during our previous experiments, we also run tcpdump

in the background on those three test phones to obtain tok and tik in the kernel space,

which allows us to perform multi-layer analysis. We calculate and plot ∆du and ∆dk

in box plot in Figure 4.7, 4.8, and 4.9.

We first focus on ∆du experienced by the three test apps. In general, ∆du can be

96

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Inet ping (phone G).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) Inet ping (phone H).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) Inet ping (phone S).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) Inet ping (phone W1).

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(e) Inet ping (phone W2).

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(f) Inet ping (phone W3).

Figure 4.8: Box plots for the user-kernel delay overheads (∆du, red) and kernel-phy

delay overheads (∆dk, cyan) measured by Inet ping.

considered as RTT-independent, because each test app experiences very close ∆du in a

same phone no matter what the emulated network RTT is. Figs. 4.7(a), 4.7(b), 4.7(c),

4.7(d), 4.7(e), and 4.7(f) for Native ping clearly show that ∆du for all six phones

is very close to 0, suggesting that the packets are mainly delayed between the kernel

and physical link. Native ping shows two different types of patterns. For the phones

run DVM (G, H, and S), ∆dk contributes the majority of the total delay overheads,

as shown in Figure 4.8(a), 4.8(b), and 4.8(c), which is similar to Native ping except

that the layer above the kernel space adds 2-4ms more delay. But for the rest of the

phones, Inet ping encounters much larger ∆du (see Figure 4.8(d), 4.8(e), and 4.8(f)).

Especially for W2 and W3, ∆du can be around 6-7ms. As for HTTP ping, the phones

97

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) HTTP ping (phone G).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) HTTP ping (phone H).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) HTTP ping (phone S).

0

10

20

30

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) HTTP ping (phone W1).

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(e) HTTP ping (phone W2).

0

10

20

30

2
0
m

s
 (

u
)

2
0
m

s
 (

k
)

5
0
m

s
 (

u
)

5
0
m

s
 (

k
)

8
5
m

s
 (

u
)

8
5
m

s
 (

k
)

1
3
5
m

s
 (

u
)

1
3
5
m

s
 (

k
)

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(f) HTTP ping (phone W3).

Figure 4.9: Box plots for the user-kernel delay overheads (∆du, red) and kernel-phy

delay overheads (∆dk, cyan) measured by HTTP ping.

with DVM (phone G3, H, and S) experience much larger ∆du (usually larger than 5ms)

compared to the other three ART phones (∼2-4ms).

To sum up, our analysis shows that Native ping introduces nearly no overhead

between the app and kernel, but Inet ping and HTTP ping will. Note that the major

difference between Native ping and the others is the measurement execution manner:

external system call vs. in app. In the external system call, the external ping runs

as a native Linux program, whereas the app in the in-app approach is implemented in

Java APIs and runs as an instance of the runtime virtual machine. In fact, invoking

3Although phone G has a relatively small median ∆du when the emulated RTT is 20ms, its 75th

percentile and maximum values are close to or even larger than 10ms. Therefore we still classify phone

G in the same group for phones H and S.

98

a Java API usually involves several more function calls (see Section 4.4.1). For each

additional call, the runtime needs to consume more bytecode instructions (e.g., pushing

parameters into virtual registers). Moreover, network-related Java APIs are finally

mapped to the bionic C library, which is equivalent to the BSD’s standard C library,

through Java Native Interface (JNI). Due to the extra translation, JNI could also lower

the performance. Therefore, performing network measurement within an app could

result in more delay than a native Linux program.

Different from ∆du, ∆dk shows two different behaviors. For phones H and W1,

which employ the Qualcomm WNIC chipsets, their ∆dk can be also considered as

RTT-independent. But for the rest equipped with Broadcom WNIC chipsets, ∆dk

increases significantly when the RTT is long (85ms and 135ms). The inconsistency

of ∆dk is the main reason why we observe the obvious increment of overall delay

overheads in Section 4.3.2.

4.3.6 Delay overhead asymmetry

Running tcpdump also allows us to analyze the (a)symmetry of the delay overheads oc-

curring in the app. Since Android uses the same clock source of the underlying Linux

system, the timestamps recorded by the measurement apps and tcpdump are compara-

ble. Therefore, we can measure the outgoing user-kernel delay overhead∆dou = tok−tou,

and the incoming delay overhead ∆diu = tiu− tik. We plot the distributions of the over-

heads per direction in Figure 4.10 for Inet ping and in Figure 4.11 for HTTP ping.

Note that we cannot analyze Native ping, because the external ping program does not

provide the packet send and receive times.

Both Figure 4.10 and 4.11 show significant delay asymmetry. For example, for

Inet ping, establishing a TCP connection costs more time in the outgoing direction.

Especially for phones W1, W2, and W3, the disparity can be larger than 3ms. On the

99

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Phone G (Google Nexus 5).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) Phone H (HTC One).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) Phone S (Sony Xperia J).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) Phone W1 (Huawei G7 Plus).

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(e) Phone W2 (Huawei Honor 7).

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(f) Phone W3 (Huawei Mate 8).

Figure 4.10: Box plots of the delay overhead asymmetry for Inet ping.

other hand, the majority part of the user-kernel delay overhead occurs when receiving

and processing HTTP messages for HTTP ping. The only exception is phone W1,

which spends more time on sending HTTP messages. Moreover, phones W1, W2,

and W3 experience much smaller incoming delay overheads than phone G, H, and S.

Our further analysis in Section 4.4.1.3 shows that the performance difference between

Android 4 and 5/6 is mainly due to the Java I/O library change.

100

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(a) Phone G (Google Nexus 5).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(b) Phone H (HTC One).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(c) Phone S (Sony Xperia J).

0

5

10

O
u
t
(2

0
m

s
)

O
u
t
(5

0
m

s
)

O
u
t
(8

5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(d) Phone W1 (Huawei G7 Plus).

0

5

10

In
 (

2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(e) Phone W2 (Huawei Honor 7).

0

5

10
In

 (
2
0
m

s
)

O
u
t
(2

0
m

s
)

In
 (

5
0
m

s
)

O
u
t
(5

0
m

s
)

In
 (

8
5
m

s
)

O
u
t
(8

5
m

s
)

In
 (

1
3
5
m

s
)

O
u
t
(1

3
5
m

s
)D

e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

(f) Phone W3 (Huawei Mate 8).

Figure 4.11: Box plots of the delay overhead asymmetry for HTTP ping.

4.4 Discussion

4.4.1 Delay overhead in user space

Android provides Debug class and Traceview tool to trace and profile function exe-

cutions in runtime [26]. When the trace/method based profiling feature is enabled, the

names of the function/class/method, thread IDs, and execution times of each action in-

volved in a function invocation in runtime will be recorded. We start and stop function

tracing by calling Debug.startMethodTrace() and Debug.stopMethodTrace(),

respectively, before and after the core measurement methods to obtain the execution

times. As Traceview can analyze the function behavior only in the runtime layer, we

101

further examine the source code of the Android framework (e.g., libcore io Posix.cpp)

and map the functions to the native ones in the system layer.

Besides tracing the function calls, we also study the performance of each function

in terms of its execution time. Since Debug class provides the timestamps of a func-

tion with microsecond resolution at its entry point and exit point, we can use them

to calculate its execution time. As for the functions executed in the system layer, we

use strace [36] to profile their performance. Note that we cannot enable Debug fea-

ture and strace simultaneously, because strace could introduce significant system

overhead for Debug class to record timestamps.

We trace the function calls in Google Nexus 5 when DVM is enabled. Figs. 4.12,

4.13, and 4.14 show the cross-layer function call sequences for the three Java func-

tions that can be employed for different types of network measurements in DVM. We

include only the key functions that consume most of the time and leave other minor

functions to the grey boxes. The value within the angle brackets behind a function

name shows the execution time of this function in µs. We obtain this value by re-

peating the function profiling process for ten times and calculating the mean execution

time. For the purpose of comparison, we also perform function tracing in Huawei G7

Plus and Huawei Mate 8, as well as Nexus 5 with ART enabled. However, as ART

supports only sampling-based profiling, the function calls cannot be traced step by

step. As a result, some of the functions may be skipped and do not show in the log

file. We consequently highlight the major difference between ART and DVM in red

dotted rectangle in the figures. Although we cannot directly compare the execution

time of each function call between Nexus 5 and other phones, such analysis can still

help better understand the delay overhead diversity described in Section 4.3.

102

4.4.1.1 InetAddress.getByName().isReachable()

This function consists of two methods. It takes∼500µs for the class java.net.InetAddress

to parse the address information (via method getByName). For method isReachable,

it involves several sub-functions defined in libcore/io/IoBridge.java, such as

IoBridge.socket() and IoBridge.connect(), which can be further traced to POSIX

functions Posix.socket() and Posix.connect(), and finally bridged to system-

level functions socket() and connect() defined in the bionic libc library (sys/socket.h).

Since the connect timeout value has been set, this socket is therefore set to non-

blocking mode (via IoUtils.setBlocking()), and connect() returns an error code

for “Operation In Progress” immediately. DVM then checks the socket status (via

BlockGuardOs.poll()). If it finds that the connection trial is refused by the remote

endpoint, it obtains the error message (via Posix.getsockoptInt()) and closes the

socket (via IoBridge.closeSocket()).

We believe the asymmetry of ∆du described in Section 4.3.6 for Inet ping is caused

by the interpretation in the runtime virtual machine, because the execution time analy-

sis clearly shows that it also takes more than 300µs for the runtime to prepare a socket

and another 300µs to send out a TCP SYN packet. Along with the overhead caused

by method getByName (∼500µs), it totally costs more than 1.1ms from the start point

(which is also the point that we record the sending time tou in the app) to the point the

TCP SYN packet is sent (which is captured by tcpdump).

The experiments in Section 4.3.4 and 4.3.6 indicate that ∆du can increase slightly

(see Fig. 4.6(a)) or significantly (see Fig. 4.10(d)-4.10(f)) when ART is adopted. Our

function call trace on Nexus 5 with ART enabled show that there is no obvious differ-

ence between ART and DVM in function calls. Although Huawei G7 Plus introduces

many additional string operations between function c and d (as shown in Fig. 4.12, it

may not be the source of the increase of ∆du in outgoing direction, because Huawei

103

Mate 8 has a similar function call behavior compared to Nexus 5’s DVM case. That is,

if the string operations are the root cause, Mate 8 would not inflate its ∆du. Therefore,

we tend to attribute the increment of ∆du to the worse runtime efficiency of ART when

handling the InetAddress class.

InetAddress.getByName

InetAddress.getByName .isReachable

InetAddress.isReachable

IoBridge.connecta b
IoBridge.socket

IoBridge.connectErrno

d
IoBridge.isConnected

e f g h

BlockGuardOs.connect

Posix.connect

Posix.socket

socket

connect

Posix.getsockoptInt

getsockopt

IoBridge.closeSocket

BlockGuardOs.poll

IoBridge.connectDetail ConnectException.<init>

ForwardingOs.getsockoptInt

IoUtils.setBlocking

c

tcp_v4_connect

tcp_transmit_skb

Figure 4.12: Major function calls involved in

InetAddress.getByName().isReachable(). The mean function execution

time is also included in the angular brackets (in µs).

4.4.1.2 HttpURLConnection.connect()

This function first creates an HTTP engine (via HttpURLConnectionImpl.initHttp

Engine()) in runtime and then establishes a TCP connection (via HttpURLConnection

Impl.execute()). Similar to InetAddress.isReachable(), the socket is also set

to non-blocking mode due to the existence of connection timeout. Our performance

analysis shows that this function is not appropriate for network measurement, because

104

it requires more than 3ms to prepare the HTTP engine, and∼1.5ms before sending out

the TCP SYN packet. Even for the reverse path, the function Platform.getMtu()

adds a large delay. The analysis also agrees with our Internet experiment results for

MobiPerf’s TCP SYN/ACK method.

HttpURLConnectionImpl.connect

HttpURLConnection.connect

HttpURLConnectionImpl.execute

HttpEngine.sendRequest

HttpEngine.sendSocketRequest

HttpEngine.connect

a

HttpURLConnectionImpl.initHttpEngine

b

Connection.connect

Platform.getMtu
c

Platform.connectSocket

dSocket.connect

e f g

IoBridge.socket

IoBridge.bind

IoBridge.connect

Posix.socket Posix.connect

Posix.bind

socket

bind

connect

HttpURLConnectionImpl.newHttpEngine

Figure 4.13: Major function calls involved in HttpURLConnection.connect(). The

mean function execution time is also included in the angular brackets (in µs).

4.4.1.3 HttpURLConnection.getInputStream()

As the HTTP engine has already been prepared, this function can send and receive mes-

sages in an established connection. However, we still observe more than 600µs over-

head for the HTTP engine to construct the request packet (HttpTransport.writeRequest

105

Headers()). The actual packet sending operation is realized by HttpTransport.flush

Request(), which further invokes a POSIX function Posix.sendtoBytes() and is

finally bridged to the system function sendto(). In the incoming direction, the re-

sponse packets are received by the runtime virtual machine (via Posix.recvfromBytes()),

whose native function in the system layer is recvfrom(). The HTTP engine receives

the whole HTTP message (via HttpTransport.readResponseHeaders()), which

totally consumes more than 12ms. Our analysis shows that it takes ∼20µs to exit

from the packet receiving function and spends most of the time (>10ms) on parsing

the received data. This explains why the HTTP ping method introduces more delay

overheads in the incoming direction in Fig. 4.11.

Our profiling shows that no significant function call difference can be observed

between ART and DVM on Nexus 5. Therefore, the delay overhead diversity of HTTP

ping (as described in Section 4.3.4) may be considered as a result of the improvement

of runtime efficiency. But for Android 5/6, our function call tracing shows that they

differ from DVM in that the fundamental IO functions when receiving data have been

replaced from the default java.io to a third-party library okio. We believe both

the runtime efficiency and the new IO library lead to the significant delay overhead

degradation of HTTP ping in the incoming direction.

4.4.2 Delay overhead in kernel space

By studying the source codes of Android and Linux, we can map the functions in the

system layer to the kernel space. We focus on the kernel functions involved when the

system calls the socket functions (i.e., connect(), sendto(), and recvfrom()). To

profile the performance of those related kernel functions, we compile a custom kernel

with kprobes [130] enabled and replace the default kernel on Nexus 5. We then build

a loadable kernel module and hook the function to be monitored. When the kernel

106

HttpURLConnectionImpl.getInputStream

HttpURLConnection.getInputStream

HttpURLConnectionImpl.getResponse

HttpURLConnectionImpl.execute

HttpEngine.readResponse

HttpTransport.writeRequestHeaders

HttpTransport.flushRequest

HttpTransport.readResponseHeaders

ResponseHeaders.setLocalTimestamps

ResponseHeaders.setResponseSource

a b c d e

Posix.sendtoBytes Posix.recvfromBytes

sendto recvfrom

Figure 4.14: Major function calls involved in

HttpURLConnection.getInputStream(). The mean function execution time

is also included in the angular brackets (in µs). Here the execution time of function

recvfrom() includes the network delay.

enters and leaves the function, the corresponding trap functions will be triggered, thus

allowing us to measure its performance. We collect ten samples for each major ker-

nel function and report their mean execution times in Table 4.5. The execution time

analysis in both user space and kernel space show that the system socket functions and

their underlying kernel functions are not the major sources of the user-kernel delay

overhead.

As it is not easy to hack the hardware parts of WNIC, we analyze the source code

of the driver to seek the root cause on how the kernel-phy delay overhead is introduced.

Taking Nexus 5 as an example, its WNIC chipset (Broadcom BCM4339) connects to

the system through SDIO bus and “bcmdhd” driver (in “drivers/net/wireless/bcmdhd”).

107

The “bcmdhd” driver maintains a dpc kernel thread for handling packet sending

and receiving. Before the dpc thread can send or receive packets, it always checks the

status of SDIO bus (via dhdsdio bussleep()), as well as the readiness of backplane

clock (via dhdsdio clkctl()). We find that the driver puts the SDIO bus into sleep-

ing state frequently if the data transmission rate is not high. When there are packets

to send or receive, it takes around 10ms for the driver to bring up the bus. We also

investigate the criteria that trigger the bus to enter the sleep mode. Our driver analy-

sis shows that the driver maintains a counter (idlecount) for that purpose. For every

dhd watchdog ms of time (default value is 10ms), the driver increases this counter by

1 if the hardware is idle. When the counter reaches a threshold (idletime whose default

value is 5), the driver will instruct the bus to sleep. Therefore, the default idle period

is 50ms. Moreover, idletime and dhd watchdog ms are both configurable when the

driver is loaded.

In fact, the “bcmdhd” driver also supports other Broadcom chipests, such as BCM4329,

BCM4330 (used by Sony Xperia J), and BCM4335 (used by HTC One). Therefore,

other phones that use Broadcom chipsets could encounter the same problems that will

introduce significant kernel-phy delay overhead to the RTT measurement. This ex-

plains why phones G, S, W2, and W3 will have a large ∆dk (>10ms) when the em-

ulated RTTs are increased to 85ms and 135ms (described in Section 4.3.5: the SDIO

bus has entered the sleeping mode before the phone can receive the response packet

(>50ms), and it takes more than 10ms for it to wake up to process the packet. The

detailed analysis of the driver is discussed in Chapter 5.

4.4.3 A better practice

Our analysis in both user space and kernel space shows that the long path of subfunc-

tion invocations in the DVM layer is responsible for the user-kernel delay overhead.

108

Therefore, to improve the measurement accuracy, we must avoid using those func-

tions that will incur too many irrelevant subfunctions. Another strategy is to bypass

the DVM layer altogether and migrate the timestamping and networking functions

to native Linux environment. We therefore implement a simple C socket program

which supports RTT measurements with TCP SYN/RST packets and HTTP GET re-

quest/response messages. Similar to HTTP ping, we limit the size of the HTTP mes-

sages to no more than 300 bytes, so that each message can be transmitted in one TCP

packet. We employ clock gettime() to record the send and receive timestamps.

After cross-compilation, the executable binary is packed into a test app, called Exter-

nal ping. This app can invoke the binary through the Java class Runtime. We test

the app with the same settings described in Section 4.1.3 and compute ∆du based on

Eqn. (4.2).

We compare ∆du measured by External ping to the other two in-DVM apps in

Table 4.6. We present only the results obtained by Nexus 5, because the other two

phones have similar characteristics. As expected, ∆du drops after employing the ex-

ternal system call, with a decrease of 1.6ms−2.2ms for the TCP SYN/RST method

and 1.9ms−3.2ms for the HTTP GET method. Besides, the overheads are more stable

with the confidence intervals smaller than 0.2ms. We also find that the HTTP ping

introduces 0.4ms−0.5ms more delay than Inet ping. The additional delay is due to the

fact that HTTP messages need to be further processed in the user space, but handling

TCP SYN/RST packets can be completed within the kernel.

Our modification of External ping does not require root privilege, thus facilitating

a wide deployment of the app. By repeating the measurements and computing the

mean or median, we can keep the user-kernel delay inflation under 1.5ms for most

of the cases. Although External ping cannot completely remove the delay overhead,

the measurement results it produces are much closer to the real network RTTs. On

109

the other hand, the overhead in the driver is difficult to remove without modifying

the driver source code. A possible solution is to increase the packet sending rate,

preventing the driver from entering the sleeping mode. In Chapter 5, we will provide a

solution to address this problem.

4.4.4 Beyond WiFi and delay measurement

Our modification of External ping and part of the analysis on delay overheads can be

applied to cellular network, because measurement apps in cellular network still have

to face the problem of inefficient runtime. Similar to WNIC, the cellular network in-

terface is responsible for translating between the PHY PDUs and IEEE 802.3 Ethernet

frames. Therefore, the data that the kernel can handle are the same as the WiFi net-

work. That is, there is no difference in the data path of the kernel and user space.

Bypassing the overhead in the runtime can definitely mitigate the user-kernel delay

overheads and improve the measurement accuracy in cellular network.

Although our study focuses on network delay measurement, other performance

metrics, such as delay variation or jitter, will also be affected by the runtime and the

driver’s energy-saving mechanisms. On the other hand, throughput measurements,

which are usually based on flooding methodology, can be slightly underestimated due

to the longer data path in the runtime. The energy-saving mechanism will not impact

the throughput measurement too much, because the continuous packet sending and

receiving activities will keep the driver always in the awake state. Therefore, when

calculating the throughput, excluding the first few papers will give more accurate re-

sults.

For other apps that are sensitive to the network delay, our analysis and strategy

can also shed light on improving their performance, because they are also affected by

the inefficient Java function calls and various energy-saving mechanisms when send-

110

ing and receiving data packets. Implementing the network functions in native Linux

programs and executing them through JNI can avoid many irrelevant subfunction calls.

Moreover, periodically sending out small packets in the background can keep the un-

derlying network interface awake, so that packets can be sent and received immedi-

ately.

4.5 Summary

In this chapter, we appraised the accuracy of measurement apps in Android phones.

We overcame the main challenge of obtaining accurate packet timestamps from the

wireless medium and set up a reliable wireless testbed. Both Internet experiments and

testbed evaluation showed that the RTTs measured by the apps with different methods

are significantly inflated. After conducting careful investigations through multi-layer

analysis, we identified the delay overhead introduced by the runtime virtual machine

is significant and asymmetric in the send and receive directions. Our analysis further

showed that the long path of subfunction invocations in runtime accounts for the over-

head in the user space, while the sleeping features in the driver cause the kernel-phy

delay inflation. Finally, we proposed to mitigate the delay overhead by implementing

a native measurement app, so that its user-kernel delay overhead can be reduced to less

than 1.5ms.

111

Table 4.4: Delay overheads measured when System.currentTimeMillis() is used

(mean with 95% confidence interval, in ms).

Phone*
Emulated RTT (ms)

20 50 85 135

N
at

iv
e

p
in

g

G
7.700 6.028 14.078 13.963

±2.331 ±0.811 ±0.684 ±0.691
H

6.02 5.355 4.880 4.216

±0.352 ±0.517 ±0.549 ±0.553
S

6.779 7.840 9.999 8.387

±1.129 ±0.932 ±1.039 ±1.191
W1

9.623 9.328 8.842 7.868

±0.514 ±0.615 ±0.722 ±0.861
W2

8.447 11.031 12.165 11.825

±0.478 ±2.335 ±0.607 ±0.648
W3

10.169 9.857 10.785 13.221

±2.812 ±2.789 ±0.713 ±2.923

In
et

p
in

g

G
11.931 12.514 16.211 15.874

±1.063 ±0.779 ±0.833 ±0.787
H

7.243 7.470 8.551 7.060

±1.907 ±0.815 ±2.413 ±0.821
S

13.822 12.223 12.814 12.511

±1.327 ±1.142 ±1.146 ±1.055
W1

13.460 13.044 13.576 14.561

±0.613 ±0.968 ±0.591 ±0.608
W2

14.576 15.157 18.448 19.433

±0.676 ±0.606 ±0.720 ±0.656
W3

12.209 12.917 16.792 17.447

±0.569 ±0.634 ±0.759 ±0.821

H
T

T
P

p
in

g

G
6.481 7.651 9.156 10.790

±0.855 ±0.963 ±0.703 ±0.911
H

5.861 5.541 6.002 5.945

±0.307 ±0.218 ±0.813 ±0.709
S

11.206 11.153 11.805 12.987

±0.947 ±0.855 ±0.987 ±1.312
W1

2.269 2.517 2.450 2.478

±0.257 ±0.308 ±0.266 ±0.262
W2

6.557 7.211 10.575 10.780

±0.360 ±0.510 ±0.557 ±0.769
W3

4.826 5.526 10.187 9.942

±0.510 ±0.488 ±0.529 ±0.662
Note *: G for Google Nexus 5, H for HTC One, S for Sony Xperia J, W1 for Huawei

G7 Plus, W2 for Huawei Honor 7, and W3 for Huawei Mate 8.

112

Table 4.5: The execution times (in µs) of major kernel functions for the socket func-

tions in the system layer.

System Kernel Execution time

connect

tcp v4 connect() 106

tcp v4 rcv() 68

tcp ack() 72

tcp send ack() 86

sendto

tcp sendmsg() 83

tcp transmit skb() 85

ip queue xmit() 81

dev queue xmit() 96

recvfrom

tcp v4 rcv() ditto

ip rcv() 86

netif rx() 73

Table 4.6: A comparison of ∆du for external C socket program (Ext) and in-DVM

measurement (App) (mean with 95% confidence interval, in ms).

Type
Emulated RTT (ms)

20 50 85 135

T
C

P
S

/R App
2.946 2.443 2.637 2.828

±0.695 ±0.200 ±0.251 ±0.236
Ext

0.736 0.794 0.798 0.830

±0.121 ±0.139 ±0.154 ±0.134

H
T

T
P

G
E

T

App
3.312 3.824 3.157 4.542

±0.663 ±0.721 ±0.540 ±0.834
Ext

1.095 1.246 1.289 1.365

±0.075 ±0.098 ±0.112 ±0.186

113

Chapter 5

Mitigating Delay Overheads in

Smartphone-based Measurement

In Chapter 4, our evaluations have shown the the network-level round-trip time (de-

noted by nRTT) are all inflated by the smartphone-based measurements, ranging from

a few milliseconds (ms) to tens of milliseconds, and the amount of inflation varies

across smartphone models, measurement methods, the actual nRTT, and the sending

direction. As CDN and cloud services continue to reduce the end-to-end delay, this

delay inflation will significantly over-estimate the actual nRTT. Although the overhead

introduced in the Dalvik VM (DVM) can be mitigated by a native C implementation

of measurement methods which bypasses the expensive function calls in the DVM, the

overhead introduced in the driver is difficult to remove without modifying the driver

source code. Moreover, we have studied only WiFi network so far.

In this chapter, we systematically investigate and identify the sources of the delay

inflation on Android phones, including both WiFi and 2/3/4G cellular networks. As

the first main contribution, we discover and demonstrate that various energy-saving

mechanisms employed in these mobile networks and smartphones are the main sources

of the delay inflation. Our analysis also shows that these delay inflation is dependent

114

to the smartphone, network path, or the ISP’s own configuration. Therefore, given the

same network path, two different smartphones may obtain quite different nRTTs. Our

objective is to mitigate and stabilize these noises as much as possible. Besides, other

performance measurement, such as one-way delay [83,84], jitter, available bandwidth,

and capacity [159], will also benefit from more accurate nRTTs.

For WiFi networks, a main energy-saving mechanism is the Secure Digital Input

Output (SDIO) bus sleeping in the phones. To our knowledge, we are the first to report

the effect of SDIO bus sleeping on the nRTT measurement. Moreover, the IEEE 802.11

Power Saving Mode (PSM) operated between the phone and the access point (AP)

also inflates the nRTT. Although this additional delay is caused by the additional time

for buffering packets at the AP, we still consider it as a measurement noise, because

it also depends on the state of the smartphones (i.e., sleep or not). There are many

works on addressing the impact of PSM [58, 103, 183, 194], but their focus is more

on scheduling the packets on the AP side to achieve a better balance between energy

consumption and network delay. For cellular networks, it is well known that the low-

power RRC states will cause additional delay. However, the previous studies on RRC

state transition [108, 184, 190] do not propose any concrete algorithm to effectively

mitigate the impact of RRC states on nRTT measurement.

In our second contribution, we propose to mitigate the impact of the energy-saving

mechanisms by enforcing the smartphones to operate in the wake-up mode for WiFi

networks and high-power state for cellular networks during the delay measurement.

Therefore, in addition to sending probes to measure nRTT, we employ a set of “warm-

up” packets to move the phone to the wake-up mode/high-power state and a set of

background packets to keep it stay in those states. The main challenge of realizing this

approach is to use a smallest number of background and warm-up packets to achieve

the objective, because sending too many packets may bias the measurement. Our ap-

115

proach is to send these packets to the first-hop routers and providers’ DNS servers

which are usually close to the smartphones. To minimize the number of warm-up

packets, we exploit the values of the state promotion delays and demotion timers to

maintain the smartphones in the wake-up mode and high-power state. We have imple-

mented this approach in AcuteMon, an Android app run on unrooted phones and re-

quiring no system customization, such as kernel recompilation and customized ROM.

We have conducted testbed experiments to validate the approach in WiFi networks

by using five smartphones equipped with different versions of Android systems. The

additional delay is kept within 4-5ms for all the tests, regardless of the actual nRTTs.

Moreover, the delay variations are very small. Since it is not possible to perform

testbed experiments for cellular networks, we have implemented a set of pre-defined

experiments for volunteers to run them on their phones. We have collected 252 sets

of valid results from 28 participants who use 26 different smartphone models. Among

them, 146 sets of tests were done in cellular networks, involving 9 ISPs. The experi-

ment results show that AcuteMon can achieve much smaller nRTTs compared to four

other popular methods. A further analysis indicates that AcuteMon can effectively

mitigate the effect of RRC state transition and therefore achieve accurate results.

The rest of the chapter is organized as follows. We first conduct experiments and

perform root-cause analysis on the delay overheads in mobile networks in Section

5.1, and then propose AcuteMon in Section 5.2 to mitigate the delay inflation. After

evaluating its performance in Section 5.3, we summarize this chapter in Section 5.4.

5.1 Delay overhead caused by energy-saving mechanisms

In this section, we perform root-cause analysis to explain how the network delay are

inflated in both WiFi and cellular networks. To locate the exact place that incurs the

inflation, we apply the multi-layer analysis described in Section 4.1.1.

116

5.1.1 Effect of packet sending interval

Our root-cause analysis begins with an ICMP ping experiment conducted in the testbed

described in Section 4.1.3. We run a ping program through adb shell for 100 times

with two packet sending intervals (10ms and 1s), measuring the nRTTs between the

smartphones under test and the measurement server. In this chapter, we test five differ-

ent smartphones in Table 5.1. For the root-cause analysis, we use only Google Nexus

4 and Nexus 5, because they employ the WNIC chipsets manufactured by Qualcomm

(WCN 3660) and Broadcom (BCM 4339), respectively. As most smartphones employ

the WNIC chipsets provided by these two manufacturers [198], any delay overhead

caused by these chipsets and drivers can be captured by these two phones. To emulate

the real Internet environment, we set the nRTT to 60ms with tc command on the server

side.

Table 5.1: The smartphones used in the testbed evaluation.

Models Ver. Hardware spec. WNIC

Google Nexus 5 4.4.2
Quad-core 2.26GHz

CPU, 2GB RAM

Broadcom

BCM4339

Google Nexus 4 4.4.4
Quad-core 1.5GHz

CPU, 2GB RAM

Qualcomm

WCN3660

HTC One 802W 4.2.2
Quad-core 1.7GHz

CPU, 2GB RAM

Qualcomm

WCN3680

Sony Xperia J 4.0.4
1GHz CPU,

512M RAM

Broadcom

BCM4330

Samsung Grand 4.1.2
Dual-core 1.2GHz

CPU, 1GB RAM

Broadcom

BCM4329

Table 5.2 summarizes the result of the multi-layer nRTT measurement. The mea-

surement for both phones consistently reports smaller du when the packet sending in-

terval is small. As the sending interval increases to 1s, du for Nexus 4 is increased by

more than 100% and that for Nexus 5 is around 30%. Moreover, the nRTT variations

measured by both phones are much more significant for a longer sending interval. For

117

example, the 95% confidence interval for Nexus 4 can be as large as 6ms.

When the sending interval is small, the RTTs captured by tcpdump (i.e., dk) and

the external wireless sniffers show that both are very close to dn. However, with the

interval of 1s, the nRTT for Nexus 4 is inflated mainly in the network, because dn is

increased by more than double. In contrast, Nexus 5’s nRTT inflation occurs inside the

phone, because most of the delay inflation is observed by dk (28%) but not by dn (1%).

Table 5.2: Experiment results (mean with 95% confidence interval in ms).

Phone Interval du dk dn

Google

Nexus 4

10ms
63.877 63.765 62.253

±0.652 ±0.686 ±0.432
1s

136.330 136.656 130.032

±6.023 ±5.968 ±6.107

Google

Nexus 5

10ms
64.184 64.080 61.613

±0.675 ±0.672 ±0.346
1s

81.983 81.829 62.353

±2.035 ±2.045 ±0.428

To better visualize the distribution of the delay overheads, we employ box-and-

whisker plots to present ∆dk−n in Figure 5.1(a) and ∆du−k in Figure 5.1(b). In each

plot, the mark inside the box is the median and the top and bottom are the 75th and

25th percentile. The upper and lower whiskers are the maximum and minimum, re-

spectively, after excluding the outliers. Figure 5.1(a) clearly shows that Nexus 4 and 5

experience comparably small ∆dk−n, which are smaller than ∼4ms, when the packet

sending interval is small. With the interval of 1s, Nexus 5 has a much larger ∆dk than

Nexus 4 (∼18ms vs. ∼6ms in median). On the other hand, since ∆du−k is very close

to 0 for both Nexus 4 and 5, ∆du−k is not a major source of delay inflation. More-

over, some values of ∆du−k are negative due to the low resolution of the reported ping

results.

118

D
e

la
y
 O

v
e

rh
e

a
d

 (
m

s
)

0

5

10

15

20

25

N
4
(1

0
m

s
)

N
4
(1

s
)

N
5
(1

0
m

s
)

N
5
(1

s
)

(a) ∆dk−n.
D

e
la

y
 O

v
e

rh
e

a
d

 (
m

s
)

-1

-0.5

0

0.5

1

N
4
(1

0
m

s
)

N
4
(1

s
)

N
5
(1

0
m

s
)

N
5
(1

s
)

(b) ∆du−k .

Figure 5.1: Kernel-phy delay overhead (∆dk−n) and User-kernel delay overhead

(∆du−k) for Google Nexus 4 and 5.

5.1.2 Root cause analysis

In this section, we investigate the root causes for the two sources of delay overhead

discovered in Section 5.1.1. For the kernel-phy delay experienced by both phones (and

more so for Nexus 5), we will dissect the WNIC driver’s source codes in Nexus 5. For

the overhead in the wireless link experienced by Nexus 4, we will measure the PSM

timeout values and correlate them with the increase in dn. We then examine the impact

of the low-power RRC states in the cellular networks on the delay measurement.

5.1.2.1 Driver analysis

We first analyze the source code of the WNIC driver in Nexus 5. The WiFi chipset

used by Nexus 5 (Broadcom BCM 4339) connects to the system through SDIO bus

and adopts the “bcmdhd” driver 1. This driver also supports other Broadcom WNIC

chipsets, such as BCM 4329, 4330, 4335, and others. Therefore, the finding here is

also applicable to the Sony Xperia and Samung Grand in Table 5.1 and other phones

equipped with Broadcom WiFi chipset, especially those with FullMAC MLME (MAC

Sublayer Management Entity).

1In “drivers/net/wireless/bcmdhd”

119

We trace the function calls in the packet sending and receiving directions. For

packet sending, the kernel function dev queue xmit(), which transmits sk buff to

the network device, further maps to driver function dhd start- xmit(). As shown

in Figure 5.2(a), this function further calls dhd sched dpc(), registering a packet

sending task in a kernel thread, dpc. The dpc maintains a while(1) loop in its

sub-function dhdsdio dpc(). Before the dpc thread can send packets (3 in Fig-

ure 5.2(b)), dhdsdio dpc() needs to check the status of SDIO bus and the readiness

of backplane clock (1 and 2 , respectively). Eventually, function dhdsdio txpkt()

is executed, and the data are written to the bus.

(a) In function dhd start xmit().

(b) In dpc thread.

Figure 5.2: Key WNIC driver functions for packet sending.

For packet receiving, the dpc thread is also responsible for data processing. As

shown in Figure 5.3(a), the interrupt handling function dhdsdio isr() first register a

task in the dpc thread. Similar to packet sending, the dpc thread also needs to check

the status of SDIO bus and backplane clock (i.e., 1 and 2 in Figure 5.3(b), and

then tries to receive frames from the bus with function dhdsdio readframes(). Af-

120

ter the frames are queued using dhd rxf enqueue(), another kernel thread rxframe

dequeues the frames and invokes netif rx ni() to deliver the packets to the system.

(a) In function dhdsdio isr().

rxframe

dpc

(b) In dpc and rxframe thread.
Figure 5.3: Key WNIC driver functions for packet receiving.

We enable the driver debug message by re-compiling the Android kernel. The

kernel log information shows that the driver puts the SDIO bus into sleeping state

frequently if the data transmission rate is not high. When there is a packet sending

request or a packet arrival interrupt, it takes time for the driver to bring the bus up.

We modify the source code by adding two timestamping points at the entrances of

function dhd start xmit() and dhdsdio txpkt() (i.e., 1 and 2 in Figure 5.2), so

that we can measure the delay for the driver to send out a packet which is denoted

by dvsend. We use printk() to measure dvsend, because Dtrace [9] is not available

for ARM-based architecture. We re-compile the code and run the customized kernel

in Nexus 5. To evaluate the effect of bus sleep, we also disable the sleep feature in

dhdsdio bussleep(). Table 5.3 presents the minimum, mean, and maximum values

of dvsend when sending out 100 ICMP packets with the two packet sending intervals

(10ms and 1s). After disabling the bus sleep feature, dvsend drops below 1ms regardless

121

of the packet send rate. Otherwise, the mean value can be as high as 13ms when the

packet sending interval is 1s.

Table 5.3: dvsend measured by Nexus 5 with the SDIO bus sleep mode enabled or

disabled (in ms). It can cost up to ∼14ms for the bus to wake up (promotion delay,

Tprom.

Bus sleep Packet interval Min Mean Max

Enabled
10 0.096 0.321 10.184

1000 0.139 10.151 13.547

Disabled
10 0.092 0.229 0.836

1000 0.139 0.720 0.858

Similarly, we timestamp at the entrances of dhdsdio isr() and dhd rxf enqueue()

(i.e., 1 and 2 in Figure 5.3) to measure the delay for the driver to receive a packet,

denoted by dvrecv. Considering that packet receiving shares similar data path as for

packet sending, we test only the case of disabling the SDIO bus sleep mode for Nexus

5. Table 5.4 shows that a large packet arrival interval will not result in large dvrecv

when the bus sleep mode is off. As result, we have verified that the SDIO bus sleep is

the main component in dk−n.

Table 5.4: dvrecv measured by Nexus 5 with the SDIO bus sleep mode disabled (in ms).

Packet interval Min Mean Max

10 0.311 1.589 2.651

1000 0.362 1.756 2.088

We also investigate the criteria that trigger the bus sleep mode. Our driver analysis

shows that the driver maintains a counter idlecount. For every dhd watchdog ms,

whose default value is 10ms, the driver increases this counter by 1 if the hardware

is idle. When the counter reaches to a threshold idletime, whose default value is 5,

the driver will instruct the bus to sleep. Therefore, the default idle period is 50ms.

Both idletime and dhd watchdog ms are configurable when the driver is loaded. Our

experiments also confirm that the idle period (Ti) for Nexus 5 is 50ms.

122

The “wcnss” driver used by Qualcomm WNIC chipsets shares similar mechanism,

although the chipsets connect to the system via SMD interface instead of SDIO. To

simplify our presentation, we refer also this energy-saving mechanism to SDIO bus

sleep mode.

5.1.2.2 Effect of Power Save Mode

The PSM allows WNIC to switch from active state (a.k.a. Constantly Awake Mode,

CAM) to sleep state (a.k.a. Power Save Mode, PSM) in order to reduce energy con-

sumption and prolong battery lifetime. During PSM, the packets sent to the WiFi

station (STA) are buffered by the access point (AP) and will not be delivered to the

STA until the STA awakes. Based on the implementation strategy, PSM can be further

classified into static PSM and adaptive PSM. In static PSM, the STA and AP agree

upon a listen interval, which is the number of beacon intervals that the STA will ig-

nore before turning on the receiver. Right before the end of the listen interval, the

STA wakes up and listens for the beacon frame, checking the Traffic Indication Map

(TIM). If there are packets buffered on the AP, it sends a PS-POLL message to the AP

to request those packets. After receiving the packets, the STA switches back to PSM

immediately. The adaptive PSM differs from static PSM in that the STA will stay in

CAM for a pre-defined idle period (PSM timeout), preventing the STA from directly

going to sleep during data transfer. To switch between the two states, the STA sends a

NULL frame with the POWER field set to “enabled” or “disabled” to the AP.

As static PSM could lead to RTT round-up effect and degrade network perfor-

mance [133], adaptive PSM are usually adopted in smartphones today [78, 183, 194].

We have also confirmed this for the five smartphones used in our experiments. How-

ever, adaptive PSM could still inflate the nRTT. Figure 5.4 illustrates two possible

scenarios. Let dp and d be the measured and actual network delay, respectively. In

123

scenario (I) where d′ is smaller than the PSM timeout threshold Ti, the STA is able to

receive the response packet before entering PSM, resulting in no delay inflation (i.e.,

dp = d). However, for d > Ti in scenario (II), the STA has already turned off its

receiver when the response packet arrives at the AP. Only after the STA listens to the

beacon frame, can it change the state to CAM and receive the packet. As a result, d

could be inflated by up to IB ∗ (L + 1), where IB is the beacon interval with a value

of 100 TUs (Time Units, 1.024ms per TU), and L is the listen interval.

ts

d
Ti

tr tp
Ti

d'

ts tp tr' tr

d

tb

Figure 5.4: Two scenarios for adaptive PSM to inflate nRTT.

We measure the PSM timeout value by carefully sending out packets with increased

packet sending interval. Table 5.5 summarizes the PSM timeout values for the five

smartphones and shows that this value is smartphone-dependent. As an extreme case,

Nexus 4 enters PSM in 40ms when the WNIC is idle. Therefore, there is a higher

possibility for Nexus 4 to report an inaccurate result when measuring a network path

longer than 40ms. Since the nRTT is set to 60ms in the last section, the PSM introduces

a significant network delay to the Nexus 4 measurement. On the other hand, the values

of the listen interval determines how much nRTT can be inflated by PSM. Although

STA announces a default listen interval during the association period (1 for “wcnss”

driver and 10 for “bcmhd” driver by default), we find that the smartphones do not adopt

this default value in adaptive PSM. The actual listen intervals for the phones are all 0,

which means that the length is 1 beacon cycle of 102.4ms. Thus, the adaptive PSM

124

can inflate the nRTT by over 100ms.

Table 5.5: Timeout values and initial listen intervals of the smartphones under test.

Phone

PSM

timeout

(Ti)

Listen

interval

(Associated)

Listen

interval

(Actual)

Google Nexus 4 ∼40ms 1 0

Google Nexus 5 ∼205ms 10 0

Samsung Grand ∼45ms 10 0

HTC One ∼400ms 1 0

Sony Xperia J ∼210ms 10 0

5.1.2.3 Effect of low-power RRC states

Performing network measurement accurately in cellular networks is much more dif-

ficult than WiFi network due to the frequent RRC state transitions. The RRC proto-

col handles the control plane signalling between the smartphones (a.k.a. “user equip-

ments”) and the UMTS Terrestrial Radio Access Network (UTRAN), allowing the

network to allocate radio resources and enable energy-efficient operation. Figure 5.5

shows the possible state machines for 3G (UMTS), 4G (LTE), and 2G (GPRS/EDGE)

networks. The promotion delays and inactivity timers are also labeled in the figure.

Tprom
Tpd

Tpf

Ti Tip Ttail

Tprom
Tpl

Tps

Ti Tis Ttail

Tprom

Tps

Ti Ttail

Tpp

Figure 5.5: RRC state machine for 3G, 4G, and 2G network.

125

3G. When a smartphone is powered on, it enters IDLE state, in which there is no

radio resource allocated and no data transfer is engaged. When an RRC connection is

established, the phone can stay in one of the following states: CELL DCH for the highest

power consumption with highest throughput and lowest latency, CELL FACH for a low

capacity channel shared across all mobile users, and CELL PCH or URA PCH for only

listening to the paging messages and no data transmission allowed. Rosen et al. have

shown that when the phone is under low power state or during state transitions, it can

lead to substantial, unexpected latencies [190].

4G. The RRC states in LTE network have been simplified to only RRC IDLE and

RRC CONNECTED [44]. However, after being promoted from RRC IDLE to RRC CONNECTED,

the smartphone is allowed to work in Continuous Reception mode or Discontinuous

Reception (DRX) mode [43]. In the DRX mode, the smartphone turns off its transceiver

to minimize the power consumption and only wakes up on the “On Duration” period-

ically, monitoring the Physical Downlink Control Channel (PDCCH). If there is any

data scheduled for it, the smartphone transitions to the Continuous Reception mode

to receive the data; otherwise, it goes back to sleep. LTE usually supports Short DRX

and Long DRX. The smartphone first enters the Short DRX when there is no data ac-

tivity and the DRX inactivity timer expires after Ti, and it further transits to Long DRX

if the DRX short cycle timer expires after Tis. The difference between Short DRX and

Long DRX is that the inactivity period for the Long DRX is much longer. Therefore,

the smartphone can wake up more quickly but consume more energy in Short DRX.

2G. There also exists a similar RRC state machine model for 2G networks. To

transmit data, the smartphone has to be promoted to the CELL DEDICATED state. When

there is no data activity, it first switches to CELL SHARED before falling back to the

IDLE state.

There are two scenarios that the RRC states can inflate the nRTT measurement. The

126

first is when the smartphone performs network measurement when it is in a low-power

state. It therefore has to wait for a long time (e.g., several hundreds of milliseconds

to several seconds for 3G) for state promotion before sending and receiving measure-

ment packets. The second scenario is that after the smartphone has sent out a probe

packet, it could be demoted to a lower power state (e.g., Short DRX mode for LTE)

if it cannot receive the response packet before the demotion timer expires. Therefore,

when the response packet arrives, the smartphone has to wait for some time (up to a

“On Duration” cycle) to receive it.

5.2 AcuteMon

Our delay overhead analysis in Section 5.1 shows that the energy-saving mechanisms

could lead to significant delay inflations in both WiFi and cellular networks during

the network measurement. Different from the additional delays introduced by base

stations (e.g., the effect of bufferbloat [125,126] and queuing policy [230]), these delay

overheads cannot be considered as part of the network characteristics, because they can

be excluded if the smartphones are in the active states. Their unpredictability prevents

users from understanding the actual network performance, as well as makes it difficult

to build a uniform model to calibrate the network delays measured by the traditional

network measurement apps. This is because the overheads are shown to be affected by

several factors: i) the length of the network path; ii) the chipset adopted by the device

and the factory default; and iii) the ISP’s own configuration. Although factor ii) and

iii) could be bypassed via building large database which stores the pre-collected default

parameters for each phone and ISP, some of the parameters can be changed by the end

user or the third-party customized ROM. Moreover, the network traffic introduced by

other apps could change the state of the network interface card. Since the fine-grained

packet-level behavior is infeasible to measurement apps without “rooting” the device,

127

we cannot predict the behavior of other apps, even if we can model the delay overhead

for a specific smartphone correctly. Therefore, calibrating the measurement results

based on a pre-built model is not feasible in practice.

Another possible way to estimate the network delay is making use of network

throughput measured by the apps with flooding-based techniques. In detail, the tools

upload or download large files, and calculate the throughput based on the sending/receiving

volume of traffic and the corresponding transmission time. In this case, the continuous

packet sending or receiving can keep the NIC in active modes. Only the first several

packets could be affected by the energy saving mechanisms. Therefore, the throughput

is more accurate compared with network delay measurement, especially after exclud-

ing the first several packets. However, it is still infeasible to using the throughput

models (such as [175]) to infer the network delay. The reasons could be as follows:

• The throughput reported by the tools is an average for a long period (could be

tens of seconds). Using this value to infer the network delay can miss the net-

work fluctuation events.

• The packet loss rate cannot be obtained through those measurement tools.

• The throughput models themselves are not so accurate, or they can be only ap-

plied to some special flows (e.g., TCP Reno flows).

As a result, it is not applicable to use the throughput to calculate the network delay.

Simply increasing the packet sending rate could be the easiest way to mitigate the

delay overheads. However, it is not applicable for two reasons. First, some tools re-

quire root privilege when the sampling rate increases (e.g., ping cannot be executed

without root if the probe sending interval is shorter than 200ms). Second, a more fre-

quent packet sending incurs extra cost to users and may even self-congest the network

path. Although the background traffic introduced by other apps may activate the smart-

128

phone, it is obvious that we cannot rely on these random events. Instead, we need to

develop a reliable and cost-effective methodology to measure the actual network delay

without being affected by the aforementioned power saving mechanisms.

In this section, we present the design and implementation of AcuteMon to mitigate

the delay overhead in the WiFi and cellular network measurement without modify-

ing the underlying system, kernel, and driver. AcuteMon is designed based on three

assumptions during the measurement phase: i) the initial state of the smartphone is

inactive as it is difficult to detect the status from the user level; ii) there is no back-

ground traffic, so that AcuteMon does not rely on the activities of any other apps; and

iii) power consumption is not an issue. As a result, AcuteMon can fully remove the im-

pact of the smartphone’s energy-saving mechanisms and obtain accurate nRTT under

any environment.

5.2.1 Implementation details

As illustrated in Figure 5.6, AcuteMon consists of two concurrent threads—background

traffic thread (BT) and measurement thread (MT). The goal of the BT is to keep the

smartphone in the wake-up or high-power state during nRTT measurement. The pro-

cess starts with a warm-up phase where the BT sends warm-up packets to activate

the phone and in the subsequent measurement phase it continuously sends lightweight

background traffic to prevent any state transition.

The MT, on the other hand, sends K measurement probes to measure the nRTT

between the phone and a target server. In the current version, AcuteMon uses TCP

control messages (TCP SYN/ACK packets) and TCP data packets (HTTP request and

response) to measure nRTT to any TCP servers. The implementation can be easily

extended to UDP and ICMP packets. We implement the MT as a pre-compiled C bi-

nary (instead of running within the Android runtime) to mitigate the user-kernel delay

129

t0

t2

dprom

t3

dw

du

dinac

t1
db

Figure 5.6: Measurement process of AcuteMon. The power-state diagram below the

time-line diagram shows that the smartphone is always in a high-power state during

the network measurement.

overheads [144]. The whole process is described in Algorithm 2.

5.2.1.1 Warm-up phase

In the warm-up phase, the BT is to ensure the smartphone to enter the active or high-

power state (i.e., SDIO bus awake mode and CAM in WiFi, CELL DEDICATED in 2G,

CELL DCH in 3G, and Continuous Reception in LTE) before the real measurement

starts. Our approach is to send one or more appropriate packet(s) to a warm-up server

(denoted by dnsIP), which triggers the smartphone to promote its state if it is not

active. The warm-up process is implemented as a procedure DoWarmUp() (line 13-21).

We use dw to denote the RTT of the warm-up packet (i.e., t1 − t0) and dprom to denote

the warm-up time required by the smartphone to enter the high-power state. Because

the initial state of a smartphone is unknown to AcuteMon, dprom varies each time. We

summarize the possible promotion delay in Table 5.6 for the different network types

based on our previous analysis and the existing works. To allow some safe margin,

dprom should be set to a value larger than them. We then denote the maximum allowable

130

time that the smartphone remains in the high-power RRC state without sending or

receiving packets by dinac which should be smaller than Ti, the timeout value for the

inactivity timer (as summarized in Table 5.7).

Table 5.6: Possible promotion delay for entering into the active or high-power state.

Type Initial State
Promotion

Delays

Typical

Values

WiFi
SDIO bus

sleep mode
Tprom 14ms

4G RRC IDLE Tprom 260ms [108]

3G
IDLE

Tprom or

Tpd + Tpf
2s [184]

CELL FACH Tpf 1.5s [184]

2G
IDLE Tprom 500ms [184]

CELL SHARED Tps 500ms [184]

Table 5.7: Possible state demotion timer (Ti) for leaving the active or high-power state.

Type State Transition Ti

WiFi
SDIO bus awake→ sleep mode 50ms

CAM→ PSM 40ms

4G Continuous Reception→ Short DRX 100ms [108]

3G CELL DCH→ CELL FACH 5s [184]

2G CELL DEDICATED→ CELL SHARED 1s [184]

The most simple way to determine whether the smartphone is ready for measure-

ment is to check dw. However, triggering a proper response packet is difficult (see

the discussion in Section 5.2.2). AcuteMon therefore ignores the response packets by

setting the TTL (time-to-live) value of the warm-up packets to 1, so that the packets

will be dropped at the first-hop router. After the first warm-up packet is sent, Acute-

Mon assumes that the smartphone is promoted to the high-power state after dprom,

during which more warm-up packets are sent with an interval of dinac. This can pre-

vent possible state demotion, because some providers use a relatively small value for

Ti. Therefore, totally m (m = ⌈dprom
dinac
⌉) packets are sent. After that, the measurement

phase starts.

131

The empirical values of the four input parameters dprom, dinac, db, and L (bytes)

adopted by AcuteMon are given in Table 5.8. dprom is obtained from Table 5.6 and

5.7. The packet size L is set to 400 bytes, 100 bytes, and 1024 bytes for WiFi, 4G, and

2/3G networks, respectively. We employ a larger L for 2/3G network, because a large

packet is required for 3G to exceed the RLC buffer threshold [190], whereas 4G does

not have this requirement [108].

Table 5.8: The empirical values of the inputs to the algorithms adopted by AcuteMon.

Network Type dprom dinac db L (bytes) m

WiFi 20ms 38ms 20ms 400 1

4G 280ms 90ms 45ms 100 4

3G 2.5s 3s 1.5s 1024 1

2G 1.5s 400ms 200ms 1024 4

5.2.1.2 Measurement phase

In the measurement phase, according to AcuteProbe() (line 22-29), the MT sends

out K probe packets to the target destIP , and each nRTT is denoted by du. At the

same time, the BT sends L-byte background packets to dnsIP periodically with an

inter-packet interval of db. Similar to warm-up packets, the TTL value of background

packets is also set to 1 to restrict the impact of extra packets to the closest hop. With a

proper choice of db, the background traffic can reset the state demotion timers to avoid

any state change. Here we assign a much safer db, which is set to be half or close

half of dinac. Our evaluation in Section 5.3 shows that the empirical values adopted

by AcuteMon work effectively. For example, db of 20ms in WiFi network is also

appropriate for the smartphones employing “wcnss” driver. AcuteProbe() finally

returns the average of K dus.

132

5.2.2 Speeding up warm-up phase for cellular networks

According to Table 5.8, AcuteMon has to wait a long period before a measurement

can start in cellular networks (e.g., 2.5s for 3G networks), which is inefficient, because

the smartphone may stay in the middle, or even active, states during the warm-up.

To speed up the warm-up phase, we utilize the first response packet, because a large

enough response can verify that the smartphone is in the high-power state. Therefore,

we try to elicit a large response from the warm-up server, instead of dropping the warm-

up packets at the first hop. The most challenging part in this attempt is to choose an

appropriate echo server for the warm-up packets. There are several requirements for

this server. First, the warm-up packet is able to always elicit a response with enough

size (i.e., larger than the RLC buffer threshold). Second, AcuteMon must be able to

verify the reception of the response packet by measuring dw. A suitable candidate

to meet the requirements is the default DNS server for the phone, which is usually

assigned by the network provider. Compared to other types of servers, the default

DNS server is more reliable (e.g., a Web server could be unaccessible in some ISPs,

and an ICMP request could not always trigger a response). Moreover, our experiments

show that the DNS server is often close to the smartphone (within 5 hops and RTT

below 30ms), so that the warm-up phase will not last too long.

However, constructing a large DNS query packet (1024 bytes) to induce a response

for 2/3G networks is not straightforward. The main reason is that the maximum length

of a DNS payload is only 512 bytes [160], and an over-length query may be ignored

by some DNS servers or routers. Although some DNS servers answer invalid DNS

query, the response size could be limited to around 560 bytes, which could not meet

the RLC buffer threshold for some ISPs. To address this problem, AcuteMon sends

an over-length DNS query packet followed immediately by a normal one. Therefore,

even the DNS server drops the first query, the second query can still trigger a response.

133

Considering the response size, we need to further check dw: a smaller dw compared to

dinac (dw < dinac) means that the smartphone has not been demoted to a lower power

state. The warm-up process for 4G network is much simpler because of no limitation

on the RLC buffer threshold. AcuteMon can therefore measure dw with normal DNS

query/response.

In the new efficient warm-up process (QuickWarmUp(), line 9-12), up to three

warm-up requests are sent to dnsIP . If QuickWarmUp() succeeds, AcuteMon starts

the measurement by executing AcuteProbe(). Otherwise, it falls back to the normal

warm-up process (DoWarmUp()).

5.2.3 Additional cost

The additional packets consumed by AcuteMon in the warm-up phase is very light,

because only up to two warm-up packets are sent to promote the smartphone’s state.

Even if QuickWarmUp() fails, AcuteMon still sends four more packets for 4G and 2G

networks. AcuteMon also works effectively in the measurement phase. The back-

ground packets are dropped in the first hop and will not burden the remaining part of

a network path. For 2/3G networks, the large dbs results in very few extra packets.

Although db is relatively small in WiFi network, the first-hop router usually has a high

data rate and is not the bottleneck of a network path, because it is often the gateway of

a home or a campus. For example, supposing that AcuteMon sends five probe packets

to measure a path with nRTT of 100ms, the BT will send around 25 additional packets

to the gateway for the nRTT measurement. Therefore, we believe that the impact of

the background traffic on the measurement results is negligible.

134

Algorithm 2 Accurate RTT probing

Input: destIP , dnsIP , dprom, dinac, db, L
Output: tu

1: Determine the network type netType
2: if netType = cellular then

3: if not QUICKWARMUP() then

4: DOWARMUP()

5: end if

6: else

7: DOWARMUP()

8: end if

9: ACUTEPROBE()

10: procedure QUICKWARMUP()

11: m←
⌈

dprom
dinac

⌉

12: Send m L-byte packets to dnsIP with interval dinac and TTL 1

13: end procedure

14: procedure DOWARMUP()

15: for n = 0 to 2 do

16: Send a L-byte packet to dnsIP and receive the response packet

17: Compute dw
18: if dw < dinac then

19: return TRUE

20: end if

21: end for

22: end procedure

23: procedure ACUTEPROBE()

24: Send L-byte packets to dnsIP with interval db and TTL 1

25: for i = 1 to K do

26: Send a probe packet to destIP and receive the response packet

27: Compute du
28: end for

29: return the average of du
30: end procedure

5.3 Evaluation

In this section, we evaluate the performance of AcuteMon in testbed for WiFi network

and in the wild for cellular networks. The evaluation results show that AcuteMon can

effectively mitigate the energy-saving effects.

135

5.3.1 Testbed evaluation

We evaluate the performance of AcuteMon’s WiFi implementation in the testbed de-

scribed in Section 4.1.3. For each test, we run AcuteMon on the smartphone to measure

the nRTT between the phone and the measurement server by sending out 100 probes

(K = 100). We introduce additional delay on the server side to emulate four different

nRTTs: 20ms, 50ms, 85ms, and 135ms.

5.3.1.1 Actual network RTT

Table 5.9 presents the means and 95% confidence intervals of the actual nRTTs (dn)

measured by the external sniffers. For all five smartphones, dns are very close to their

emulated values. In fact, no significant nRTT inflation can be observed, and most of the

deviations are kept within 3ms, implying that the measurement packets have not been

delayed at the AP. Our further analysis of the raw pcap files also confirms that no PSM

activity can be detected when the smartphone receives response packets. Compared

with the results shown in Table 5.2, AcuteMon successfully prevents the smartphones

from entering PSM.

Table 5.9: The actual nRTTs (dn) measured by external sniffers (mean with 95% con-

fidence interval, in ms).

Phone
Emulated RTT (ms)

20 50 85 135

Google Nexus 5
22.461 51.683 87.198 137.090

±0.545 ±0.168 ±0.387 ±0.320
Sony Xperia J

21.584 51.597 86.868 136.79

±0.184 ±0.149 ±0.275 ±0.178
Samsung Grand

22.020 52.614 86.675 137.0

±0.382 ±0.485 ±0.177 ±0.217
Google Nexus 4

21.680 51.673 86.888 137.98

±0.181 ±0.202 ±0.358 ±1.101
HTC One

21.874 51.786 86.810 136.850

±0.200 ±0.198 ±0.192 ±0.154

136

5.3.1.2 Delay overheads

Next we analyze the measurement accuracy of AcuteMon in terms of delay overhead.

We use box plots to present ∆du−k and ∆dk−n introduced by AcuteMon in Figure 5.7.

On the x-axis, we use (u) and (k) after the RTT to denote ∆du−k and ∆dk−n, respec-

tively.

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

0

1

2

3

4

5

2
0

m
s
(u

)

2
0

m
s
(k

)

5
0

m
s
(u

)

5
0

m
s
(k

)

8
5

m
s
(u

)

8
5

m
s
(k

)

1
3

5
m

s
(u

)

1
3

5
m

s
(k

)

(a) Google Nexus 5.

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

0

1

2

3

4

5

2
0

m
s
(u

)

2
0

m
s
(k

)

5
0

m
s
(u

)

5
0

m
s
(k

)

8
5

m
s
(u

)

8
5

m
s
(k

)

1
3

5
m

s
(u

)

1
3

5
m

s
(k

)

(b) Sony Xperia J.

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

0

1

2

3

4

5

2
0

m
s
(u

)

2
0

m
s
(k

)

5
0

m
s
(u

)

5
0

m
s
(k

)

8
5

m
s
(u

)

8
5

m
s
(k

)

1
3

5
m

s
(u

)

1
3

5
m

s
(k

)

(c) Samsung Grand.

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

0

1

2

3

4

5

2
0

m
s
(u

)

2
0

m
s
(k

)

5
0

m
s
(u

)

5
0

m
s
(k

)

8
5

m
s
(u

)

8
5

m
s
(k

)

1
3

5
m

s
(u

)

1
3

5
m

s
(k

)

(d) Google Nexus 4.

D
e
la

y
 O

v
e
rh

e
a
d
 (

m
s
)

0

1

2

3

4

5

2
0

m
s
(u

)

2
0

m
s
(k

)

5
0

m
s
(u

)

5
0

m
s
(k

)

8
5

m
s
(u

)

8
5

m
s
(k

)

1
3

5
m

s
(u

)

1
3

5
m

s
(k

)

(e) HTC One (W802).

Figure 5.7: Box plots of ∆du−k and ∆dk−n obtained by AcuteMon.

The previous study [144] has shown that executing the measurement logic as a

137

native Linux program can mitigate the delay overheads caused in the DVM. The mea-

surement results support this claim. We observe very small ∆du−k for all the phones,

most of which are smaller than 0.5ms. Even for the two smartphones with relatively

low hardware configurations (i.e., Sony Xperia J and Samsung Grand), their ∆du−ks

are smaller than 1ms.

On the other hand, ∆dk−n accounts for the majority of the delay overhead. Al-

though ∆dk−n is much larger than ∆du−k, their medians are all less than 2ms, and the

upper bounds are still less than 3ms (except for Sony Xperia J, whose upper bounds

can be 4ms). For the smartphones equipped with Qualcomm’s WNIC chipsets (Google

Nexus 4 and HTC One), Figures 5.7(d) and 5.7(e) show that their medians of ∆dk−n

can be as small as ∼0.8ms. As a result, the overall delay overheads are kept within

4-5ms.

Another important observation is that the delay overheads for AcuteMon are inde-

pendent of nRTTs, and the values of the overheads are much more stable. Therefore,

the true value can be obtained by performing calibration.

5.3.2 Internet evaluation

Since it is not possible to obtain dn for cellular network in a testbed, we compare the

performance of AcuteMon with Ookla Speedtest and MobiPerf in real users’ phones

for their popularity. As discussed in Section 2.2.3, Speedtest samples network paths

with TCP data packets (HTTP GET messages) for 6 times, whereas MobiPerf supports

ICMP (with ping program), TCP SYN/RST (on port 7), and TCP SYN/ACK (on port

80). MobiPerf sends 10 sampling probes and reports the mean values. We denote these

four reference methods by SP (Speedtest), MPI (MobiPerf ICMP), MPS (MobiPerf

TCP SYN/RST), and MPH (MobiPerf TCP SYN/ACK). For AcuteMon, it supports

HTTP GET messages, denoted by AMH, and TCP SYN/ACK packets, denoted by

138

AMS.

We conduct the Internet experiments through a test app, which is pre-configured

with 6 sub-tests. Each sub-test conducts measurement using one of the six aforemen-

tioned methods. We randomly choose 10 Web servers obtained from the Speedtest

server list. During the experiments, the app randomly selects one of the servers as the

measurement target and performs the six sub-tests one after the other. In order to miti-

gate the potential impact of network churn, the execution sequence of the six sub-tests

is randomized. A 4-second sleep period is also inserted between adjacent sub-tests to

allow the smartphone to return to a low-power RRC state. The entire set of experi-

ments can be completed within one minute. We believe that the Internet path quality

is mostly stationary for such a short time period [235]. Volunteers were recruited to

perform the experiments with their smartphones. Besides the measurement results, the

test app also collects the phone model, OS version, ISP, network types, IP address,

geo-location information, and signal strength.

5.3.2.1 The overall results

From November 13, 2015 to December 3, 2015, our Internet experiments have been

conducted on 28 smartphones, and we have collected 289 sets of measurement results.

These smartphones, which are of 26 different models, run on 11 Android versions

(ranged from version 4.0 to 5.1), and connect with 9 ISPs (one in Singapore, two in

China, and six in Hong Kong). We observe that sometimes there is change in network

types during the experiments. For example, the network type switches from WiFi to

cellular network, or 3G to 4G. In our analysis, we consider only the results with con-

sistent network type throughout all the six sub-tests as valid results. We have totally

obtained 252 sets of valid results, of which 146 sets were performed in cellular net-

works.

139

We first analyze the number of cases that the nRTTs obtained by AMH and AMS

are less than the other four reference methods. Let n be the total number of valid result

sets, and nM the number of them that the RTT reported by AMH or AMS is less than

reference method M , where M ∈ {SP, MPH, MPS, MPI}. Hence, we can compute

the percentage of results that AcuteMon gives lower nRTTs by

PM = nM/n× 100%. (5.1)

Table 5.10 presents PM for AMH and AMS in 2/3/4G networks. For MPS and MPI,

we include the number of valid results used for computing PM inside parentheses after

PM , because some Web servers do not support these measurement methods. More

than 88%, 63%, 82%, and 80% of the AMH (TCP data packets) measurement results

are less than SP, MPH, MPS, and MPI, respectively. The use of AMS (TCP control

messages), PM is further increased to more than 97%, 85%, 95%, and 89%. In more

details, PM for AMH can reach 70%-80% for both 3G and 4G networks, except the

case of MPH in 3G (53.8%). For AMS, PM is higher than 90% for most of the cases.

Even for the worse case of MPH in 3G network, pM is still over 75%.

Table 5.10: PM for AMH and AMS in cellular networks.

Net. # of PM for AMH PM for AMS

type results SP MPH MPS MPI SP MPH MPS MPI

4G 47 85.1 72.3
83.9

(31)

87.8

(41)
95.7 95.7

90.3

(31)

92.7

(41)

3G 65 84.6 53.8
87.0

(46)

78.7

(61)
96.9 75.4

95.7

(46)

86.9

(61)

2G 34 100 70.6
70.8

(24)
73.5 100 91.2

100

(24)
91.2

Total 146 88.4 63.7
82.2

(101)

80.1

(136)
97.3 85.6

95.0

(101)

89.7

(136)

We employ another ratio RM to measure how much the nRTTs obtained by method

140

M deviate from AcuteMon:

RM =
1

n
×

n
∑

i=1

nRTTMi

nRTTAi

, (5.2)

where nRTTMi and nRTTAi are the ith measurement result obtained by method M

and AcuteMon, respectively. As shown in Table 5.11, the nRTTs measured by SP are

extremely high in the 3/4G network. They can be 5 and 11 times more than AMH, and

12 and 27 times than AMS, respectively. The three MobiPerf methods perform better

than SP, but their RMs are still 2 to 7 times more than AMH and AMS. Moreover, all

the four reference methods perform better in the 2G networks than the 3/4G networks.

Their RM s range from 1.2 to 2.4, and SP is still the worst performer. This is because

the nRTTs in 2G network are usually larger than 3/4G networks. As a result, the con-

tribution of the delay overhead to the overall delay becomes less significant. Moreover,

the short promotion delay in 2G (compared to 3G) could be another reason for a lower

RM in 2G networks.

Table 5.11: RM for AMH and AMS in cellular networks.

Network RM for AMH RM for AMS

type SP MPH MPS MPI SP MPH MPS MPI

4G 11.60 7.00 2.54 3.20 27.5 1.74 3.35 3.50

3G 5.01 2.27 5.77 6.96 12.19 2.73 4.93 5.56

2G 1.95 1.19 1.62 1.47 2.40 1.49 1.99 1.91

5.3.2.2 Effect of the warm-up phase

We investigate whether the measurement results are affected by the RRC state promo-

tion. To this end, we compute the delay difference, denoted by ∆nRTT , between the

nRTT measured by the first probe packet in the MT and the minimal nRTT of all probes

packets: ∆nRTT = nRTT1−min{nRTTj}, where j ∈ {1, ..., m} and m is the num-

ber of probes. Moreover, SP always includes the TCP connection establishment time

141

for the first probe2. We therefore remove it by nRTT1 − min{nRTTj} × 2. A large

∆nRTT means that the first probe packet is delayed by the process of promoting the

RRC state to a high-power state.

Delay difference (ms)

0 200 400 600 800

C
D

F

0

0.5

1

SP

AMH

AMS

MPH

MPS

MPI

(a) 4G.

Delay difference (ms)

0 1000 2000

C
D

F

0

0.5

1

SP

AMH

AMS

MPH

MPS

MPI

(b) 3G.

Delay difference (ms)

0 1000 2000 3000

C
D

F

0

0.5

1

SP

AMH

AMS

MPH

MPS

MPI

(c) 2G.

Figure 5.8: CDF plots of the delay difference ∆nRTT .

Figure 5.8 plots the CDF of ∆nRTT s. It shows that AMH and AMS hardly ex-

perience any state promotion delay, because their ∆nRTT s are very close to zero.

With the help of the warm-up phase, ∼90% and ∼95% of ∆nRTT s in AMS are less

than 30ms in the 4G and 3G network, respectively. For the 2G cases, although there

is one large ∆nRTT (>1000ms), 95% of the remaining samples are less than 25ms.

Moreover, AMH has relatively large ∆nRTT s, but the values are still much less than

dprom for most of the cases. In contrast, the four reference methods have very large

∆nRTT s with 5% to 15% of them higher than dprom. Therefore, the warm-up phase

in AcuteMon can help mitigate the effect of the state promotion delay.

2This is based on the design of Ookla Speedtest.

142

5.3.2.3 Effect of the background traffic

We next evaluate whether the measurement results are affected by state demotion. We

still employ the metric RM and Eqn. (5.2) to measure how method M differs from

AcuteMon. We re-calculate nRTTMi and nRTTAi by removing the results obtained

by the first probe. We use nRTT ′
Mi and nRTT ′

Ai to denote the re-calculated nRTTs,

and denote the mean ratio as R′
M . In this way, the possible promotion delay caused

by the first probe can be eliminated for the four reference methods. As summarized

in Table 5.12, AMH and AMS report lower nRTTs than the other four methods for all

network types. Compared to RMs presented in Table 5.11, R′
M s for the four methods

are decreased to between 1.15 and 4.72. Note that both Speedtest and MobiPerf do not

consider the packet sending interval. Therefore, they can send a new probe packet only

after receiving the response packet triggered by the previous probe. If the measured

network path has a large nRTT, the smartphone will have a high probability to demote

its RRC state, thus delaying the recipient of the response packet. AcuteMon, on the

other hand, sends periodic background traffic to prevent state demotion during the

delay measurement.

Table 5.12: R′
M for AMH and AMS in cellular networks.

Network R′
M for AMH R′

M for AMS

type SP MPH MPS MPI SP MPH MPS MPI

4G 1.24 1.37 2.85 3.29 1.58 1.53 3.13 3.61

3G 1.42 1.65 3.25 3.44 2.04 2.24 4.06 4.72

2G 1.29 1.15 1.55 1.41 1.58 1.39 1.85 1.78

To sum up, our Internet experiment results support the finding that AcuteMon can

achieve much lower nRTTs than Ookla Speedtest and MobiPerf, especially when TCP

control messages are employed as measurement probes. Our warm-up and background

traffic can effectively mitigate the effect of RRC state promotion and demotion during

the delay measurement.

143

5.4 Summary

In this chapter we considered the problem of measuring network RTT from smart-

phones. We presented AcuteMon, a network measurement app in Android, to mit-

igate all major sources of delay inflation for WiFi and cellular networks. We first

reported and demonstrated that various energy-saving mechanisms employed in these

mobile networks and smartphones are the main sources of the delay inflation, includ-

ing SDIO bus sleeping, IEEE 802.11 PSM, and RRC state transitions. Based on our

driver code analysis and empirical evaluations, we proposed to keep the phone in the

wake-up/high-power state during the delay measurement through a carefully timed

sending of warm-up and periodic background traffic. We validated AcuteMon in a test

bed for WiFi networks and performed experiments in real users’ phones to evaluate

the approach for cellular networks. Our experiment results show that AcuteMon can

effectively mitigate the delay overheads and achieve very accurate network RTT.

144

Chapter 6

Conclusions and Future Work

The goal of this thesis is to appraise and improve the accuracy of smartphone-based and

browser-based delay measurement. To quantify the accuracy of delay measurement,

we defined “delay overhead” as the difference between the value measured by the tools

and the actual network delay. We conducted an in-depth research to investigate the core

methods employed by those measurement tools. For each method, we implemented

a test page or an app so that we can evaluate its performance. Through controlled

testbed experiments and Internet experiments, we found that each method exhibits

different degrees of delay inflation. We then performed root-cause analysis to explain

where and how the network delays were inflated. Based on our analysis, we further

proposed a novel and effective method to mitigate the delay overheads in smartphone-

based measurements. The testbed evaluation and Internet experiment indicated that

our method can produce more accurate measurement results than the existing tools.

For browser-based measurements, we studied the impact of application-level delay

overheads on a set of browser techniques which have already been, or can potentially

be, applied to network delay measurements. Our study covered the traditional HTTP-

based and socket-based techniques, such as XHR, WebSocket, Flash, and Java applet,

as well as the more recent ones, such as Navigation Timing and WebRTC. We ex-

145

amined the delay overheads introduced by these methods with the major browsers on

Windows and Ubuntu. With carefully designed testbed experiments, we showed that

both socket-based and HTTP-based methods may introduce different degrees of inac-

curacy in measuring the RTT due to a number of intrinsic and system issues. In partic-

ular, we revealed that the socket-based methods incur much lower delay overhead than

the HTTP-based methods in general. On the other hand, the Navigation Timing and

WebRTC methods will also inflate the RTT measurement, especially for the measure-

ment performed immediately after the the connection or data channel establishment.

However, if this round of measurement is excluded, these two methods can achieve

relatively consistent delay overheads, meaning that the results can be more easily cal-

ibrated. Considering the facts that i) Navigation Timing is supported by browsers

natively without the need of installing third-party plug-ins, and ii) no additional socket

server needs to be deployed compared to WebSocket, it is a good replacement for the

traditional HTTP-based and socket-based methods. As for WebRTC, it is the only

choice to conduct client-to-client measurements in browsers.

For smartphone-based measurements, we appraised the accuracy of measurement

apps in Android phones. We first overcame the main challenge of obtaining actual

network delays from the wireless medium by setting up a reliable wireless testbed.

We then performed Internet experiment and testbed evaluation. In the Internet exper-

iments, two popular apps, Ookla Speedtest and MobiPerf, have been tested. While in

the testbed experiments, we built three test apps, each of which implemented one of

the popular measurement methods. Both Internet experiments and testbed evaluation

showed that the RTTs measured by the apps are significantly inflated. Moreover, the

delay overhead introduced by the runtime virtual machine is significant and asymmet-

ric in the send and receive directions. Our further multi-layer analysis showed that the

long path of subfunction invocations in runtime accounts for the overhead in the user

146

space. Through driver code analysis and empirical evaluations, we also demonstrated

that the various energy-saving mechanisms employed by mobile networks and smart-

phones, including SDIO bus sleeping, IEEE 802.11 PSM, and RRC state transitions,

caused the kernel-phy and external delay inflation.

We next considered the problem of improving the delay measurement accuracy for

smartphone-based measurements. For the delay overhead in the user space, we pro-

posed a method to mitigate it by implementing the measurement function into a native

binary. Our evaluation showed that the new method can reduce its user-kernel delay

overhead to less than 1.5ms. For the delay overhead caused by the energy-saving mach-

anisms, we proposed to keep the smartphone in the wake-up/high-power state during

the delay measurement. We finally presented AcuteMon, a network measurement app

in Android, to mitigate all major sources of delay inflation for both WiFi and cellular

networks. Through a carefully timed sending of warm-up and periodic background

traffic, we could prevent the additional delay introduced by the state transition without

rooting the smartphone or modifying the kernel and driver. We validated AcuteMon in

a test bed for WiFi networks and performed experiments in real users’ phones to evalu-

ate the approach for cellular networks. Our experiment results showed that AcuteMon

can effectively mitigate the delay overheads and achieved very accurate network RTT.

6.1 Future work

There are a few directions to extend tor improve he works performed in this thesis.

1. This thesis focuses only on the accuracy problem in smartphone-based and browser-

based delay measurements. However, accurately measuring the network through-

put (available bandwidth) is also very important. In fact, most network per-

formance benchmarking tools support the symmetric network throughput mea-

147

surements. Although there are a lot of works to evaluate or compare the accu-

racy of the existing throughput measurement tools [96–98,187,210,215], few of

them pay attention to the benchmarking tools. When measuring the through-

put, the benchmarking tools usually employ flooding-based probing method,

which floods the access link in one or more parallel connections. Since the net-

work layer information is invisible to them, they cannot implement optimized-

probing methods, such as the Probe Gap Model [106, 215] and the Probe Rate

Model [99, 121, 187, 211]. The estimation methods used by these tools are very

simple. They just divide the total transferred bytes by the time duration. In par-

ticular, Ookla Speedtest aggregates the download into 20 slices, and ignore the

fastest 10% and slowest 30% of the slices in calculation [57]. However, whether

these methods are accurate and effective is still unknown to us. In the context of

throughput measurement, we will evaluate the accuracy and efficiency (e.g., the

measurement cost) of these tools. Another possible direction is trying to employ

other more advanced methods, e.g., QUIC [27, 101].

2. We will implement a unified solution for accurate browser-based delay measure-

ment. Although we have tested and compared twelve methods in the thesis, we

only provide suggestions or recommendations on how to avoid the most sig-

nificant parts of delay inflations, such as the best timestamping function, and

excluding the delay of TCP connection or data channel establishment. More-

over, we have not provided applicable calibration methods. For this reason, we

will try to reduce the performance gap among different browser and OSes, as

well as apply statistical analysis to effectively calibrate the measurement results.

We will also build a unified platform which enables both client-to-server and

client-to-client measurements within the browsers.

3. The scale of our Internet evaluation for AcuteMon was small, which covers a

148

small portion of smartphone models and ISPs. Since our design is based on

empirical parameters, we need to collect more samples and build a database to

determine the best configuration. Another possible workaround is to introduce

a more intelligent method to determine the optimal values by training the pro-

gram after installation. Besides the parameter selection, our next step is to per-

form large-scale mobile broadband measurement through crowdsourcing. We

are planning to combine MopEye [228], another tool that enables per-app net-

work performance monitoring, to attract more users and provide more useful

information.

149

Bibliography

[1] http://tinyurl.com/MarsRTTCode/.

[2] http://tinyurl.com/MarsFig/.

[3] http://tinyurl.com/MarsSDTCode/.

[4] ART and Dalvik. https://source.android.com/devices/tech/dalvik/index.html.

[5] Can I use High Resolution Time API? http://caniuse.com/#feat=

high-resolution-time.

[6] Can I use Navigation Timing API? - Compatibility table for support of Navigation Timing API

in desktop and mobile browsers. http://caniuse.com/nav-timing.

[7] Can I use WebRTC peer-to-peer connections? http://caniuse.com/#feat=

rtcpeerconnection.

[8] Cedexis Radar. http://www.cedexis.com/radar/index.html.

[9] Dtrace for Linux on Github. https://github.com/dtrace4linux/linux.

[10] Facebook/network-connection-class at Github. https://github.com/facebook/

network-connection-class.

[11] FCC Speed Test. https://play.google.com/store/apps/details?id=com.samknows.

fcc.

[12] Internet Speed Test 3G, 4G, Wifi on Google Play. https://play.google.com/store/apps/

details?id=uk.co.broadbandspeedchecker.

[13] Internet Speed Test on Google Play. https://play.google.com/store/apps/details?id=

pl.speedtest.android.

150

[14] IP Performance Metrics (ippm). http://datatracker.ietf.org/wg/ippm/.

[15] Iperf. http://sourceforge.net/projects/iperf.

[16] Mobile Speed Test.com. http://www.mobilespeedtest.com/.

[17] MobiPerf on Google Play. https://play.google.com/store/apps/details?id=com.

mobiperf.

[18] Netalyzr on Google Play. https://play.google.com/store/apps/details?id=edu.

berkeley.icsi.netalyzr.android.

[19] Netperf. http://www.netperf.org/.

[20] Network Connection Class. https://code.facebook.com/projects/1547113495553528/

network-connection-class/.

[21] Network monitoring tools. http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.

html.

[22] Network Speed Test on Windows Store. http://www.windowsphone.com/en-us/store/

app/network-speed-test/9b9ae06b-2961-41ef-987d-b09567cffe70.

[23] Ookla.com. http://www.ookla.com.

[24] PeerJS - Simple peer-to-peer with WebRTC. http://peerjs.com/.

[25] Platform versions, Dashboards — Android Developers. https://source.android.com/

devices/tech/dalvik/index.html.

[26] Profiling with Traceview and dmtracedump. http://developer.android.com/tools/

debugging/debugging-tracing.html.

[27] QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/quic.

[28] Rtcweb status pages. https://tools.ietf.org/wg/rtcweb/.

[29] SamKnows. https://www.samknows.com/.

[30] Speedof.me. http://speedof.me/.

[31] SpeedOf.Me Lite. http://speedof.me/m/.

[32] Speedtest X HD WiFi & Mobile Speed Test on App Store. https://itunes.apple.com/us/

app/speedtest-x-hd-wifi-mobile/id366593092.

151

[33] Speedtest.net on App Store. https://itunes.apple.com/us/app/speedtest.

net-mobile-speed/id300704847.

[34] Speedtest.net on Google Play. https://play.google.com/store/apps/details?id=org.

zwanoo.android.speedtest.

[35] Speedtest.net on Windows Store. http://www.windowsphone.com/en-us/store/app/

speedtest-net/4fcd4de1-050b-44dc-b123-a786808eb49b.

[36] strace. http://strace.sourceforge.net/.

[37] Tencent Mars at Github. https://github.com/Tencent/mars/.

[38] The Internet Engineering Task Force (IETF). http://www.ietf.org/.

[39] University of Oregon Route Views project. http://www.routeviews.org/.

[40] W3C Web Performance Working Group. http://www.w3.org/2010/webperf/.

[41] World Internet users statistics and 2016 world population stats. http://www.

internetworldstats.com/stats.htm.

[42] Accuracy (trueness and precision) of measurement methods and results – part 1: General princi-

ples and definitions. ISO 5725-1, 1994.

[43] 3GPP TS 36.321: Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Con-

trol (MAC) protocol specification (V12.7.0), 2015.

[44] 3GPP TS 36.331: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Con-

trol (RRC); Protocol specification (V12.7.0), 2015.

[45] Adobe. Statistics: PC penetration. http://www.adobe.com/hk_en/products/

flashplatformruntimes/statistics.html, 2011.

[46] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan. Prometheus: Toward quality-

of-experience estimation for mobile apps from passive network measurements. In Proc. HotMo-

bile, HotMobile ’14, pages 18:1–18:6, New York, NY, USA, 2014. ACM.

[47] M. Aida, N. Miyoshi, and K. Ishibashi. A scalable and lightweight QoS monitoring technique

combining passive and active approaches. In Proc. IEEE INFOCOM, volume 1, pages 125–133

vol.1, March 2003.

152

[48] G. Almes, S. Kalidindi, and M. Zekauskas. A one-way delay metric for IPPM. RFC 2679, IETF,

Sept. 1999.

[49] G. Almes, S. Kalidindi, and M. Zekauskas. A round-trip delay metric for IPPM. RFC 2681,

IETF, Sept. 1999.

[50] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks. In Proc.

ACM SOSP, 2001.

[51] D. Antoniades, M. Athanatos, A. Papadogiannakis, E. Markatos, and C. Dovrolis. Available

bandwidth measurement as simple as running wget. In Proc. PAM, 2006.

[52] Audit My PC.com. AuditMyPC.com Broadband Speed Test (Flash). http://www.auditmypc.

com/internet-speed-test.asp.

[53] Audit My PC.com. Internet Speed Test (Java). http://www.auditmypc.com/

internet-speed-test.asp.

[54] F. Baccelli, S. Machiraju, D. Veitch, and J. C. Bolot. The role of PASTA in network measurement.

In Proc. ACM SIGCOMM, 2006.

[55] M. D. Bailey. A Scalable Hybrid Network Monitoring Architecture for Measuring, Characteriz-

ing, and Tracking Internet Threat Dynamics. PhD thesis, Ann Arbor, MI, USA, 2006.

[56] L. Batyuk, A.-D. Schmidt, H.-G. Schmidt, A. Camtepe, and S. Albayrak. Developing and bench-

marking native Linux applications on Android. In Proc. Mobilware, 2009.

[57] S. Bauer, D. D. Clark, and W. Lehr. Understanding broadband speed measurements. Technical

Report TPRC 2010, Massachusetts Institute of Technology, August 2010.

[58] Y. Bejerano, J. Ferragut, K. Guo, V. Gupta, C. Gutterman, T. Nandagopal, and G. Zussman.

Scalable WiFi multicast services for very large groups. In Proc. ICNP, 2013.

[59] J. Bellardo and S. Savage. Measuring packet reordering. In Proc. ACM SIGCOMM IMW, 2002.

[60] R. Beverly, W. Brinkmeyer, M. Luckie, and J. P. Rohrer. IPv6 alias resolution via induced frag-

mentation. In Proc. PAM, 2013.

[61] C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H. Uijtervaal, and P. V. Mieghem. Analysis

of end-to-end delay measurements in Internet. In Proc. PAM, 2002.

153

[62] J. But, U. Keller, D. Kennedy, and G. Armitage. Passive TCP stream estimation of RTT and jitter

parameters. In Proc. IEEE LCN, 2005.

[63] CAIDA. Archipelago Measurement Infrastructure. http://www.caida.org/projects/ark/.

[64] E. Chan, A. Chen, X. Luo, R. Mok, W. Li, and R. Chang. TRIO: Measuring asymmetric capacity

with three minimum round-trip times. In Proc. ACM CoNEXT, 2011.

[65] E. W. W. Chan, X. Luo, and R. K. C. Chang. A minimum-delay-difference method for mitigating

cross-traffic impact on capacity measurement. In Proc. ACM CoNEXT, 2009.

[66] M. C. Chan, Y.-J. Lin, and X. Wang. A scalable monitoring approach for service level agreements

validation. In Proc. IEEE ICNP, pages 37–48, 2000.

[67] B. Chandrasekaran, G. Smaragdakis, A. Berger, M. Luckie, and K. Ng. A server-to-server view

of the Internet. In Proc. ACM CoNEXT, 2015.

[68] K. Chen, Y. Xue, S. H. Shah, and K. Nahrstedt. Understanding bandwidth-delay product in mo-

bile ad hoc networks. Computer Communications, 27(10):923 – 934, 2004. Protocol Engineering

for Wired and Wireless Networks.

[69] X. Chen, R. Jin, K. Suh, B. Wang, and W. Wei. Network performance of smart mobile handhelds

in a university campus WiFi network. In Proc. ACM/USENIX IMC, 2012.

[70] P. Chimento and J. Ishac. Defining network capacity. RFC 5136, IETF, Dec. 2002.

[71] L. Ciavattone, A. Morton, and G. Ramachandran. Standardized active measurements on a tier 1

IP backbone. IEEE Communications Magazine, 41(6):90–97, June 2003.

[72] K. Claffy. Internet measurement and data analysis: topology, workload, performance and routing

statistics. In Proc. National Academy of Engineering (NAE) Workshop, 1999.

[73] cnet.com. Bandwidth Meter Online Speed Test. http://reviews.cnet.com/

internet-speed-test/.

[74] L. Colittia, G. D. Battista, M. Patrignania, M. Pizzonia, and M. Rimondini. Investigating prefix

propagation through active BGP probing. Microprocessors and Microsystems, 31(7):460–474,

2007.

[75] C. Demichelis and P. Chimento. IP packet delay variation metric for IP performance metrics

(IPPM). RFC 3393, IETF, Nov. 2002.

154

[76] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N. Weaver, and V. Paxson. Fathom:

A browser-based network measurement platform. In Proc. ACM/USENIX IMC, 2012.

[77] H. Ding and M. Rabinovich. TCP stretch acknowledgements and timestamps: Findings and

implications for passive RTT measurement. SIGCOMM Comput. Commun. Rev., 45(3):20–27,

July 2015.

[78] N. Ding, A. Pathak, D. Koutsonikolas, C. Shepard, Y. Hu, and L. Zhong. Realizing the full

potential of PSM using proxying. In Proc. IEEE INFOCOM, 2012.

[79] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu. Characterizing residential broad-

band networks. In Proc. ACM/USENIX IMC, 2007.

[80] C. Dovrolis, P. Ramanathan, and D. Moore. Packet dispersion techniques and a capacity-

estimation methodology. IEEE/ACM Trans. Networking, 12(6):963–977, 2004.

[81] A. Downey. Using pathchar to estimate internet link characteristics. In Proc. ACM SIGCOMM,

1999.

[82] S. Dutton. Measuring page load speed with Navigation Timing. http://www.html5rocks.

com/en/tutorials/webperformance/basics/.

[83] J. Fabini and T. Zseby. The right time: Reducing effective end-to-end delay in time-slotted

packet-switched networks. IEEE/ACM Trans. Netw., In press.

[84] J. Fabini, T. Zseby, and M. Hirschbichler. Representative delay measurements (RDM): Facing

the challenge of modern networks. In Proc. ACM VALUETOOLS, 2014.

[85] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin. A first look at traffic on

smartphones. In Proc. ACM/USENIX IMC, 2010.

[86] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin. Diversity in

smartphone usage. In Proc. ACM MobiSys, 2010.

[87] FCC. Measuring fixed broadband report - 2016. https://www.

fcc.gov/reports-research/reports/measuring-broadband-america/

measuring-fixed-broadband-report-2016, 2016.

[88] W. Fok, X. Luo, R. Mok, W. Li, Y. Liu, E. Chan, and R. Chang. Monoscope: Automated network

faults diagnosis based on active measurements. In Proc. IFIP/IEEE IM, 2013.

155

[89] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, and S. C.

Diot. Packet-level traffic measurements from the Sprint IP backbone. IEEE Network, 17(6):6–16,

Nov 2003.

[90] A. Frumusanu. A closer look at Android RunTime (ART) in Android L. http://anandtech.

com/show/8231/a-closer-look-at-android-runtime-art-in-android-l/, 2014.

[91] F. Fund, C. Wang, Y. Liu, T. Korakis, M. Zink, and S. S. Panwar. Performance of DASH and

WebRTC video services for mobile users. In Proc. 20th International Packet Video Workshop,

pages 1–8, Dec 2013.

[92] E. Gavaletz, D. Hamon, and J. Kaur. Comparing in-browser methods of measuring resource load

times. In Proc. W3C Workshop on Web Performance 8, 2012.

[93] A. Gerber, J. Pang, O. Spatscheck, and S. Venkataraman. Speed testing without speed tests:

Estimating achievable download speed from passive measurements. In Proc. ACM IMC, IMC

’10, pages 424–430, New York, NY, USA, 2010. ACM.

[94] L. Gharai, C. Perkins, and T. Lehman. Packet reordering, high speed networks and transport

protocol performance. In Proc. IEEE ICCCN, pages 73–78, Oct 2004.

[95] S. Giucastro. Getting high precision timing on Android. http://www.gamasutra.com/view/

feature/171774/getting_high_precision_timing_on_.php.

[96] O. Goga and R. Teixeira. Speed measurements of residential Internet access. In Proc. PAM,

2012.

[97] E. Goldoni, G. Rossi, and A. Torelli. Assolo, a new method for available bandwidth estimation.

In Proc. ICIMP, 2009.

[98] E. Goldoni and M. Schivi. End-to-end available bandwidth estimation tools, an experimental

comparison. In Proc. TMA, 2010.

[99] C. D. Guerrero and M. A. Labrador. On the applicability of available bandwidth estimation

techniques and tools. Computer Communications, 33(1):11 – 22, 2010.

[100] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: estimating latency between arbitrary Internet

end hosts. In Proc. SIGCOMM IMW, 2002.

156

[101] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk. QUIC: A UDP-based secure and reliable transport

for HTTP/2. https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02, January

2016.

[102] A. Hanemann, J. W. Boote, E. L. Boyd, J. Durand, L. Kudarimoti, R. Lapacz, D. M. Swany,

S. Trocha, and J. Zurawski. PerfSONAR: A service oriented architecture for multi-domain net-

work monitoring. In Proc. Service-Oriented Computing - ICSOC, 2005.

[103] Y. He and R. Yuan. A novel scheduled power saving mechanism for 802.11 wireless LANs. IEEE

Transactions on Mobile Computing, 8(10):1368–1383, Oct 2009.

[104] K. Hedayat, B. Networks, R. Krzanowski, A. Morton, and K. Yum. A two-way active measure-

ment protocol (TWAMP). RFC 5357, IETF, Oct. 2008.

[105] F. Heusden. httping. http://www.vanheusden.com/httping/.

[106] N. Hu and P. Steenkiste. Evaluation and characterization of available bandwidth probing tech-

niques. IEEE Journal on Selected Areas in Communications, 21(6):879–894, Aug 2003.

[107] C. Huang, A. Wang, J. Li, and K. W. Ross. Measuring and evaluating large-scale CDNs. In Proc.

ACM IMC, 2008.

[108] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A close examination of

performance and power characteristics of 4G LTE networks. In Proc. ACM MobiSys, 2012.

[109] J. Huang, F. Qian, Q. Xu, Z. Qian, Z. M. Mao, and A. Rayes. Uncovering cellular network

characteristics: Performance, infrastructure, and policies. Tech. Rep. MSU-CSE-00-2, University

of Michigan and Cisco, 2013.

[110] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing application

performance differences on smartphones. In Proc. ACM MobiSys, 2010.

[111] B. Huffaker, D. Plummer, D. Moore, and K. Claffy. Topology discovery by active probing. In

Proc. Symposium on Applications and the Internet (SAINT) Workshops, 2002.

[112] IDC. Smartphone OS market share, Q2 2016. http://www.idc.com/prodserv/

smartphone-os-market-share.jsp.

[113] C. Ihrig. Profiling page loads with the Navigation Timing API. http://www.sitepoint.com/

profiling-page-loads-with-the-navigation-timing-api/.

157

[114] E. International. ECMAScript language specification. https://tc39.github.io/ecma262/.

[115] InternetFrog.com. InternetFrog.com Speed Test. http://www.internetfrog.com/mypc/

speedtest/.

[116] ITU. ICT facts and figures 2016. http://www.itu.int/en/ITU-D/Statistics/

Documents/facts/ICTFactsFigures2016.pdf.

[117] ITU. International Telecommunication Union. http://www.itu.int/.

[118] ITU-T Recommendation Y.1540. Internet protocol data communication service - IP packet trans-

fer and availability performance parameters, 2011.

[119] ITU-T Recommendation Y.1541. Network performance objectives for IP-based services, 2011.

[120] V. Jacobson and R. Braden. TCP extensions for long-delay paths. RFC 1072, IETF, October

1988.

[121] M. Jain and C. Dovrolis. Pathload: A measurement tool for end-to-end available bandwidth. In

Proc. PAM, 2002.

[122] A. Janc, C. Wills, and M. Claypool. Network performance evaluation in a web browser. In Proc.

IASTED PDCS, 2009.

[123] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole, Jr. Overcast:

reliable multicasting with on overlay network. In Proc. USENIX OSDI, 2000.

[124] H. Jiang and C. Dovrolis. Passive estimation of TCP round-trip times. SIGCOMM Comput.

Commun. Rev., 32(3):75–88, 2002.

[125] H. Jiang, Z. Liu, Y. Wang, K. Lee, and I. Rhee. Understanding bufferbloat in cellular networks.

In Proc. ACM CellNet, 2012.

[126] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G networks. In Proc.

ACM/USENIX IMC, 2012.

[127] D. Joumblatt, R. Teixeira, J. Chandrashekar, and N. Taft. HostView: Annotating end-host per-

formance measurements with user feedback. In Proc. ACM HotMetrics, 2010.

[128] M. Kaplan, M. Zeljkovic, M. Claypool, and C. Wills. Javascript and Flash overhead in the

web browser sandbox. Technical Report WPI-CS-TR-10-14, Computer Science Department,

Worcester Polytechnic Institute, 2012.

158

[129] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi. CapProbe: A simple and accurate

capacity estimation technique. In Proc. ACM SIGCOMM, 2004.

[130] J. Keniston, P. S. Panchamukhi, and M. Hiramatsu. Kernel probes (Kprobes). https://www.

kernel.org/doc/Documentation/kprobes.txt.

[131] C. Kilinc and K. Andersson. A congestion avoidance mechanism for WebRTC interactive video

sessions in LTE networks. Wireless Personal Communications, 77(4):2417–2443, 2014.

[132] R. Koodli and R. Ravikanth. One-way loss pattern sample metrics. RFC 3357, IETF, Aug. 2002.

[133] R. Krashinsky and H. Balakrishnan. Minimizing energy for wireless web access with bounded

slowdown. Wireless Network, 11:135–148, Jan. 2005.

[134] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illuminating the edge network. In

Proc. ACM/USENIX IMC, 2010.

[135] C. Krintz and R. Wolski. Using JavaNws to compare C and Java TCP-Socket performance.

Concurrency Computat.: Pract. Exper., 13(8-9):815–839, 2001.

[136] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy, T. Anderson, and

J. Gao. Moving beyond end-to-end path information to optimize CDN performance. In Proc.

ACM IMC, 2009.

[137] J.-C. Kuester and A. Bauer. Monitoring real Android malware. In Proc. Runtime Verification,

2015.

[138] K. Lai and M. Baker. Nettimer: A tool for measuring bottleneck link bandwidth. In Proc.

USENIX Symposium on Internet Technologies and Systems, 2001.

[139] D. Lee, B. Carpenter, and N. Brownlee. Media streaming observations: Trends in UDP to TCP

Ratio. International Journal On Advances in Systems and Measurements, 3(3 and 4):147–162,

2011.

[140] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile data offloading: How much can WiFi

deliver? In Proc. ACM CoNEXT, 2010.

[141] S. Lee and J. W. Jeon. Evaluating performance of Android platform using native C for embedded

systems. In Proc. IEEE ICCAS, 2010.

[142] W. Li, W. Fok, E. Chan, X. Luo, and R. Chang. Planetopus: A system for facilitating collaborative

network monitoring. In Proc. IEEE/IFIP IM (Application Session), 2011.

159

[143] W. Li, R. Mok, R. Chang, and W. Fok. Appraising the delay accuracy in browser-based network

measurement. In Proc. ACM/USENIX IMC, 2013.

[144] W. Li, R. Mok, D. Wu, and R. Chang. On the accuracy of smartphone-based mobile network

measurement. In Proc. IEEE INFOCOM, 2015.

[145] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld devices: A

partition scheme. In Proc. ACM CASES, 2001.

[146] X. Luo, E. Chan, and R. Chang. Design and implementation of TCP data probes for reliable

network path monitoring. In Proc. USENIX ATC, 2009.

[147] X. Luo and R. Chang. Novel approaches to end-to-end packet reordering measurement. In Proc.

ACM/USENIX IMC, 2005.

[148] M-Lab. NDT (Network Diagnostic Tool). http://measurementlab.net/run-ndt.

[149] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy, and

A. Venkataramani. iPlane: An information plane for distributed services. In Proc. USENIX

OSDI, 2006.

[150] B. Mah. pchar: A tool for measuring Internet path characteristics.

http://www.kitchenlab.org/www/bmah/Software/pchar/.

[151] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the MAC-level behavior of

wireless networks in the wild. In Proc. ACM SIGCOMM, 2006.

[152] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level Internet path diagnosis. In

Proc. ACM SOSP, 2003.

[153] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP misconfiguration. In Proc.

ACM SIGCOMM, 2002.

[154] R. Mahajan, M. Zhang, L. Poole, and V. Pai. Uncovering performance differences among back-

bone ISPs with Netdiff. In Proc. NSDI, 2008.

[155] J. Mahdavi and V. Paxson. IPPM metrics for measuring connectivity. RFC 2678, IETF, Sept.

1999.

[156] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On dominant characteristics of residential

broadband Internet traffic. In Proc. ACM/USENIX IMC, 2009.

160

[157] M. Mathis and M. Allman. A framework for defining empirical bulk transfer capacity metrics.

RFC 3148, IETF, Jul. 2001.

[158] A. Medina, M. Allman, and S. Floyd. Measuring the evolution of transport protocols in the

Internet. SIGCOMM Comput. Commun. Rev., 35(2):37–52, Apr. 2005.

[159] F. Michelinakis, N. Bui, G. Fioravantti, J. Widmer, F. Kaup, and D. Hausheer. Lightweight

capacity measurements for mobile networks. Computer Communications, 84:73–83, 2016.

[160] P. Mockapetris. Domain names - implementation and specification. RFC1035, IETF, November

1987.

[161] R. Mok, X. Luo, E. Chan, and R. Chang. QDASH: A QoE-Aware DASH System. In Proc. ACM

MMSys, 2012.

[162] D. Morato, E. Magana, M. Izal, J. Aracil, F. Naranjo, F. Astiz, U. Alonso, I. Csabai, P. Haga,

G. Simon, J. Steger, and G. Vattay. The European Traffic Observatory Measurement Infraestruc-

ture (ETOMIC): A testbed for universal active and passive measurements. In Proc. Tridentcom,

2005.

[163] D. Morrill. On Android compatibility. http://android-developers.blogspot.hk/2010/

05/on-android-compatibility.html, May 2010.

[164] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, and J. Perser. Packet reordering

metrics. RFC 4737, IETF, Nov. 2006.

[165] Netcraft. February 2016 web server survey. https://news.netcraft.com/archives/2016/

02/22/february-2016-web-server-survey.html.

[166] A. Nikravesh, D. Choffnes, E. Katz-Bassett, Z. Mao, and M. Welsh. Mobile network performance

from user devices: A longitudinal, multidimensional analysis. In Proc. PAM, 2014.

[167] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao. Mobilyzer: An open platform for

controllable mobile network. In Proc. ACM MobiSys, 2015.

[168] H.-S. Oh, B.-J. Kim, H.-K. Choi, and S.-M. Moon. Evaluation of Android Dalvik virtual ma-

chine. In Proc. JTRES, 2012.

[169] R. V. Oliveira, B. Zhang, and L. Zhang. Observing the evolution of Internet AS topology. SIG-

COMM Comput. Commun. Rev., 37(4):313–324, Aug. 2007.

161

[170] Ookla. Pingtest.net. http://www.pingtest.net/.

[171] Ookla. Speedtest.net. http://www.speedtest.net/.

[172] Oracle. Bad timing using System.currentTimeMillis() instead of System.nanoTime(). http://

whileonefork.blogspot.hk/2010/12/bad-timing-using-systemcurrenttimemilli.

html.

[173] Oracle. Java Plug-in and Applet Architecture. http://docs.oracle.com/javase/7/docs/

technotes/guides/jweb/applet/applet_execution.html.

[174] Oracle. System. http://docs.oracle.com/javase/6/docs/api/java/lang/System.

html#currentTimeMillis().

[175] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose. Modeling tcp reno performance: A simple

model and its empirical validation. IEEE/ACM Trans. Netw., 8(2):133–145, Apr. 2000.

[176] V. Paxson. Strategies for sound Internet measurement. In Proc. ACM/USENIX IMC, 2004.

[177] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for IP performance metrics. RFC

2330, IETF, May 1998.

[178] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An architecture for large-scale Internet mea-

surement. IEEE Communications, 36(8):48–54, 1998.

[179] C. Pei, Y. Zhao, G. Chen, R. Tang, Y. Meng, M. Ma, K. Ling, and D. Pei. WiFi can be the weakest

link of round trip network latency in the wild. In Proc. IEEE INFOCOM, pages 1–9, 2016.

[180] Y. Pei, H. Wang, and S. Cheng. A passive method to estimate TCP round trip time from

nonsender-side. In Proc. IEEE ICCSIT, pages 43–47, Aug 2009.

[181] D. Pezaros, D. Hutchison, R. Gardner, F. Garcia, and J. Sventek. Inline measurements: a native

measurement technique for IPv6 networks. In Proc. INCC, 2004.

[182] J. Postel. Internet control message protocol. RFC 792, IETF, Sept. 1981.

[183] A. J. Pyles, X. Qi, G. Zhou, M. Keally, and X. Liu. SAPSM: Smart adaptive 802.11 PSM for

smartphones. In Proc. ACM UbiComp, 2012.

[184] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. Characterizing radio

resource allocation for 3G networks. In Proc. ACM/USENIX IMC, 2010.

162

[185] E. R. Stewart. Stream control transmission protocol. https://tools.ietf.org/html/

rfc4960, September 2007.

[186] E. Rescorla and N. Modadugu. Datagram transport layer security. https://tools.ietf.org/

html/rfc4347, April 2006.

[187] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuky, J. Navratil, and L. Cottrell. pathChirp: Efficient

available bandwidth estimation for network paths. In Proc. PAM, 2003.

[188] RIPE NCC. Routing Information Service (RIS). https://www.ripe.net/

analyse/internet-measurements/routing-information-service-ris/

routing-information-service-ris.

[189] A. Ritacco, C. Wills, and M. Claypool. How’s My Network? - A Java approach to home network

measurement. In Proc. IEEE ICCCN, 2009.

[190] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau. Discovering fine-grained

RRC state dynamics and performance impacts in cellular networks. In Proc. ACM MobiCom,

2014.

[191] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau. Understanding RRC

state dynamics through client measurements with Mobilyzer. In Proc. the 6th Annual Workshop

on Wireless of the Students, by the Students, for the Students (S3), 2014.

[192] M. Roughan. Fundamental bounds on the accuracy of network performance measurements. In

Proc. ACM SIGMETRICS, 2005.

[193] M. Roughan. A comparison of Poisson and uniform sampling for active measurements. IEEE

Journal on Selected Areas in Communications, 24(12):2299–2312, Dec 2006.

[194] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu. NAPman: Network-assisted power manage-

ment for WiFi devices. In Proc. ACM MobiSys, 2010.

[195] M. Sánchez, J. Otto, Z. Bischof, D. Choffnes, F. Bustamante, B. Krishnamurthy, and W. Will-

inger. Dasu: Pushing experiments to the Internet’s edge. In Proc. USENIX NSDI, 2013.

[196] S. Savage. Sting: A tool for measuring one way packet loss. In Proc. IEEE INFOCOM, 2000.

[197] P. Serrano, M. Zink, and J. Kurose. Assessing the fidelity of COTS 802.11 sniffers. In Proc.

IEEE INFOCOM, 2009.

163

[198] B. Shaffer. Broadcom and Qualcomm battle for WLAN IC leadership. https://technology.

ihs.com/517658/broadcom-and-qualcomm-battle-for-wlan-ic-leadership,

November 2014.

[199] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas. A one-way active measure-

ment protocol (OWAMP). RFC 4656, IETF, Sept. 2006.

[200] Y. Shavitt and E. Shir. DIMES: Let the Internet measure itself. SIGCOMM Comput. Commun.

Rev., 35(5):71–74, Oct. 2005.

[201] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum. Livelab: Measuring wireless

networks and smartphone users in the field. SIGMETRICS Perform. Eval. Rev., 38(3):15–20,

Jan. 2011.

[202] R. Sherwood and N. Spring. A platform for unobtrusive measurements on PlanetLab. In Proc.

USENIX WORLDS, 2006.

[203] R. Sherwood and N. Spring. Touring the Internet in a TCP sidecar. In Proc. ACM/USENIX IMC,

2006.

[204] V. Shrivastava, S. Rayanchu, S. Banerjee, and K. Papagiannaki. PIE in the sky: Online passive

interference estimation for enterprise WLANs. In Proc. USENIX NSDI, 2011.

[205] V. Singh, A. A. Lozano, and J. Ott. Performance analysis of receive-side real-time congestion

control for WebRTC. In Proc. 20th International Packet Video Workshop, pages 1–8, Dec 2013.

[206] J. Sommers and P. Barford. Cell vs. WiFi: On the performance of metro area mobile connections.

In Proc. ACM/USENIX IMC, 2012.

[207] J. Sommers, P. Barford, N. Duffield, and A. Ron. Improving accuracy in end-to-end packet loss

measurement. In Proc. ACM SIGCOMM, 2005.

[208] J. Sommers, P. Barford, N. Duffield, and A. Ron. Accurate and efficient SLA compliance moni-

toring. In Proc. ACM SIGCOMM, 2007.

[209] J. Sommers, P. Barford, N. Duffield, and A. Ron. A geometric approach to improving active

packet loss measurement. IEEE/ACM Trans. Networking, 18(2):652–665, April 2008.

[210] J. Sommers, P. Barford, and W. Willinger. A proposed framework for calibration of available

bandwidth estimation tools. In Proc. IEEE ISCC, pages 709–718, June 2006.

164

[211] J. Sommers, P. Barford, and W. Willinger. Laboratory-based calibration of available bandwidth

estimation tools. Microprocessors and Microsystems, 31(4):222 – 235, 2007. Special Issue with

selected papers from the 11th IEEE Symposium on Computers and Communications (ISCC06).

[212] R. Spangler. Analysis of remote active operating system fingerprinting tools. http://

packetwatch.net/documents/papers/osdetection.pdf, 2003.

[213] Speedchecker Limited. BandwidthPlace Speed Test. http://www.bandwidthplace.com/.

[214] Speedchecker Limited. Broadband Speedchecker. http://www.broadbandspeedchecker.

co.uk/.

[215] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of available bandwidth estimation

tools. In Proc. ACM IMC, 2003.

[216] K. Sui, M. Zhou, D. Liu, M. Ma, D. Pei, Y. Zhao, Z. Li, and T. Moscibroda. Characterizing and

improving WiFi latency in large-scale operational networks. In Proc. ACM MobiSys, 2016.

[217] S. Sundaresan, S. Burnett, N. Feamster, and W. de Donato. BISmark: A testbed for deploying

measurements and applications in broadband access networks. In Proc. USENIX ATC, 2014.

[218] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescape. Broadband

Internet performance: A view from the gateway. In Proc. ACM SIGCOMM, 2011.

[219] The IEEE and The Open Group. IEEE Std 1003.1-2008. http://pubs.opengroup.org/

onlinepubs/9699919799/.

[220] A. Tongaonkar, S. Dai, A. Nucci, and D. Song. Understanding mobile app usage patterns using

in-app advertisements. In Proc. PAM, 2013.

[221] S. Traverso, E. Tego, E. Kowallik, S. Raffaglio, A. Fregosi, M. Mellia, and F. Matera. Exploiting

hybrid measurements for network troubleshooting. In Telecommunications Network Strategy and

Planning Symposium (Networks), 2014 16th International, pages 1–6, Sept 2014.

[222] N. Vallina-Rodriguez, N.Weaver, C. Kreibich, and V. Paxson. Netalyzr for Android: Challenges

and opportunities. In Proc. Workshop on Active Internet Measurements (AIMS), 2014.

[223] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver, and V. Paxson. Beyond the radio:

Illuminating the higher layers of mobile networks. In Proc. ACM MobiSys, 2015.

[224] W3C. High resolution time level 2. https://www.w3.org/TR/hr-time-2/.

165

[225] Y. Wang, C. Huang, J. Li, and K. Ross. Estimating the performance of hypothetical cloud service

deployments: A measurement-based approach. In Proc. IEEE INFOCOM, 2011.

[226] Z. Wen, S. Triukose, and M. Rabinovich. Facilitating focused Internet measurements. In Proc.

ACM SIGMETRICS, 2007.

[227] L. Wenwei, Z. Dafang, Y. Jinmin, and X. Gaogang. On evaluating the differences of TCP and

ICMP in network measurement. Computer Communications, 30(2):428–439, 2007.

[228] D. Wu, W. Li, R. Chang, and D. Gao. MopEye: Monitoring per-app network performance with

zero measurement traffic. In Proc. CoNEXT Student Workshop, 2015.

[229] Q. Xu. Optimizing Mobile Application Performance through Network Infrastructure Aware Adap-

tation. PhD thesis, University of Michigan, 2013.

[230] Y. Xu, Z. Wang, W. K. Leong, and B. Leong. An end-to-end measurement study of modern

cellular data networks. In Proc. PAM, 2014.

[231] L. Xue, C. Qian, and X. Luo. Androidperf: A cross-layer profiling system for Android applica-

tions. In Proc. IEEE IWQoS, 2015.

[232] Y. Yeboah Jr., R. Nketia, and X. Hei. A measurement study of application layer latency. Technical

report, Huazhong University of Science and Technology, 2011.

[233] J. Yeo, M. Youssef, and A. Agrawala. A framework for wireless LAN monitoring and its appli-

cations. In Proc. ACM WiSe, 2004.

[234] J. Yoo, T. Huehn, and J. Kim. Active capture of wireless traces: Overcome the lack in protocol

analysis. In Proc. ACM WinTech, 2008.

[235] Y. Zhang and N. Duffield. On the constancy of Internet path properties. In Proc. ACM IMW,

2001.

[236] X. Zhou and K. L. Calvert. Lightweight privacy-preserving passive measurement for home net-

works. In Proc. IEEE ICC, pages 1019–1024, June 2015.

[237] T. Zseby. Deployment of sampling methods for SLA validation with non-intrusive measurements.

In Proc. PAM, 2001.

