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Abstract

Construction productivity has long been a concern in both industry and academia, for
it can be improved to foster sustaining economic growth and generate substantial social
wealth and welfare. Being the most dominating factor contributing to the remarkable
economic profitability of most construction projects, productivity is receiving
incessantly increasing concern with respect to the production efficiency of the whole
construction industry. However, construction industry worldwide has been undergoing
a substantial and continuous decrease in construction productivity over the past several
decades. During the past ten years, the construction productivity growth rate of China
has decreased dramatically combined with the decline of the average growth rate of
labor productivity of China.

Driving by the increasing pressure of improving productivity, over the recent
several decades, the architecture, engineering, and construction (AEC) industry has
long been making every effort to seek effective approaches to reduce cost, shorten
project duration, enhance the quality of construction projects thus to improve
productivity. BIM was most commonly perceived as a visualization tool for
coordinating and promoting communication of AEC sector in order to reduce rework,
predict collisions, enhance project productivity, shorten project time, decrease project
costs, and improve quality and safety of construction projects. Generally, BIM is
regarded as an emerging, promising, and innovative technology and process,
dramatically transformed the way of a building from the original conception onwards
to demolition. It allows multiple disciplinary information to be encapsulated within one
model, and dramatically transform the conventional design formats and communication
approaches of AEC sector whereby players depend heavily on 2D CAD-based model

towards a 3D digital interacted model. However, research on showing a clear



understanding of the impacts of BIM on construction productivity through BIM
implementation is scarce.

A comprehensive review of existing research in BIM implementation and
construction productivity reveals the research gaps. First, as BIM has been evidenced
by many researchers as an effective means for facilitating design processes, reducing
design error, thus to achieve productivity gains, numerous previous researchers have
investigated the attributable factors affecting design error, attempting to seek out
effective strategies to prevent or mitigate design errors. However, rare empirical
research has been placed on quantifying the impacts of BIM on design error reduction,
and quantitatively measuring the extent to which attributable factors could have the
better ability to contain design error. In addition, due to the great potential of BIM for
addressing construction inefficiencies and lower productivity in the construction
projects, the past decade has witnessed an increasing research interest in BIM both in
design and construction stage. Nevertheless, the large majority of prior studies have
primarily concentrated on identifying incentive factors and barriers of BIM adoption in
the construction industry, or on reporting the business value or potential profitability of
applying BIM. Sparse scholarly attention has been focused on quantitatively
demonstrating the principal impacts of BIM implementation on construction
productivity at project level during the construction stage.

To fill this research gap, this research aims to identify the impacts of BIM
implementation on construction productivity. The following objectives are achieved in
this research: (1) to conduct a comprehensive review of the extant research theories
related to the status of BIM implementation and basic characteristics of construction
productivity; (2) to theoretically develop a BIM-enabled design error reduction (DER)

model during design stage, as well as build up a conceptual framework regarding BIM-



based construction productivity gains model; (3) to examine the impacts of BIM
implementation in reducing design error by using the conceptual model based on the
different design error reduction (DER) indicators; (4) to test the conceptual model for
probing deeper into how and to what extent the implementation of BIM can influence
the project-level construction productivity based on the empirical data from BIM-based
construction projects.

Through document analysis, research gaps, as well as the related definition of
construction productivity and BIM, were identified in achieving objective 1. By a
subsequently further literature review, a design error reduction model and BIM-enabled
construction productivity gains model have been developed. Questionnaire survey and
semi-structured interview were used to collect project-based data in order to test the
proposed model. Descriptive statistics and multiple regression analysis were utilized to
investigate and analyze the data for achieving objectives 3 and 4.

The primary findings obtained in this study include the following aspects. First,
research gaps on quantifying the impacts of BIM implementation on construction
productivity has been identified through a comprehensive literature review. Then, a
conceptual framework of design error reduction model is developed to evaluate the
impacts of BIM implementation in reducing design error during the design stage.
Furthermore, BIM-enabled construction productivity gains model has also been built
up to assess the impacts of BIM implementation on construction productivity during
the construction stage. After the development of these models, empirical data is utilized
to test the proposed models. For the DER model, six attributable factor (including clash
detection, design system coordination, drawing error, teamwork and cooperation,
constructability, and practicality, and knowledge and information management) are

found to be positively statistically associated with the aggregate impacts of BIM



implementation on design error reduction, among which clash detection has the best
ability to positively affect design error reduction. For the BIM-enabled construction
productivity gains model, reflective constructs (incorporating labor productivity,
communication and coordination, site resource planning and management, simulate
master schedule and construction sequences, shorten project duration, quantity takeoff
and cost estimation, and minimize project cost) are all positively statistically significant
with productivity performance ratio, suggesting that productivity performance ratio
increases with these seven reflective factors.

This research can enrich theoretical development in the fields of BIM and
construction productivity by reviewing the existing research. The research findings and
gaps identified in previous studies could serve as the basis for recommending future
research in relevant fields. As an exploratory effort to build up the relationship between BIM
and construction productivity, a design error reduction model and BIM-enabled
construction productivity gains model have been developed to identify the potential
relationship between BIM implementation and construction productivity both in design
and construction stage. This model could also be used by researchers for future
investigation. Furthermore, the findings derived from this research could help to
develop a more comprehensive understanding of the reasons why construction
organizations implement BIM in construction projects and provide a more dynamic

picture of how construction productivity may vary as the attributable factors change.
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CHAPTER 1 INTRODUCTION

1.1 Introduction

This chapter introduces the research background, identifies the research gaps, and
proposes the research aims and objectives. Then, the significance and value of the

current study are highlighted. Finally, the structure of the thesis is presented.

1.2 Research Background

China’s construction industry has been playing a progressively leading role in the
process of national economic growth (Lu and Fox, 2001). According to China
Statistical Yearbook (2014), construction industry achieved 3.9 trillion Yuan in terms
of total output value in 2013, accounting for 6.90% of the national gross domestic
product (GDP) of China. During the last several decades, Chinese construction industry
experienced a fluctuant variation in the share of GDP, but it has maintained a sustained
increase over the last ten years (Figure 1.1). Due to the unceasingly growing proportions
in the share of GDP together with the commencement of Open Door Policy (Chen,
1998), China’s construction industry has faced the severe challenge and incremental
competitiveness from worldwide. This situation was further reinforced by the accession
of China into the World Trade Organization (WTQO) due to the market globalization.
Therefore, it is indispensable to develop an effective and efficient approach to improve
competitiveness and performance of Chinese construction industry so as to sustain
China’s economic development (Xue et al., 2008).

Construction productivity has long been a concern in both industry and academia,
for it can be improved to foster sustaining economic growth and generate substantial

social wealth and welfare (Park et al., 2005; Kenley, 2014; Tookey, 2011). Driving by



the increasing pressure of improving productivity, over the recent several decades, the

architecture, engineering, and construction (AEC) industry has long been making every

effort to seek effective approaches to reduce cost, shorten project time, enhance the

quality of construction projects thus to improve productivity (Azhar, 2011). Being the

most dominating factor contributing to the remarkable economic profitability of most

construction projects (Yi and Chan, 2014; Kenley, 2014), productivity is receiving

incessantly increasing concern with regard to the production efficiency of the whole

construction industry. Although economic growth is not only decided by the

productivity, it is a significantly crucial determinant measuring the performance of the

whole construction industry of China.
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Figure 1.1 Construction Industry’s Share in GDP of China, 1978-2013

(Source: China Statistical Yearbook 2014)

However, serving as the most predominant and challenging industry of the world,

construction industry has been undergoing substantial and continuous decrease in

construction productivity over the past several decades (Arditi, 1985; Tucker, 1986;

Rojas and Aramvareekul, 2003b; Rojas and Aramvareekul, 2003a; Crawford and Vogl,

2006; Siriwardana and Ruwanpura, 2012; Br&hner and Olofsson, 2012). According to
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China Statistical Yearbook (2012), the productivity growth rate of China has decreased
dramatically since 2007 (Figure 1.2). Besides, the average growth rate of labor
productivity of China has fallen since 2004 (Figure 1.3). It declined from 0.2 in 2004,
through a turbulent period, eventually down to 0.09 in 2011. Consequently, China’s
construction industry has the urgency to improve productivity. In order to investigate
related factors leading to the decline in productivity, factors affecting construction
productivity have been explored by a number of scholars, for it is a prerequisite for
improving productivity (Mojahed and Aghazadeh, 2008). These contributory factors
include labor productivity, planning and scheduling, rework (quality control), change
orders, cost, technology, communication, and so forth. Thus, the construction industry
has been facing a large paradigm shift to improve productivity and reduce overall costs
of construction projects through effective coordination, cooperation, and

communication of all stakeholders and practitioners (Arayici et al., 2012).
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Figure 1.2 Construction Productivity Growth Rate of China, 2002-2011

(Source: China Statistical Yearbook 2012)
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(Source: China Statistical Yearbook 2012)

Many of efforts have been made to improve construction productivity, such as
design-building project delivery system (Dahl et al., 2005), lean construction (Sacks et
al., 2010a), construction virtual prototyping (CVP) technology (Huang et al., 2007),
augmented reality (AR) (Wang et al., 2014b). In recent years, the architecture,
engineering, and construction industry have witnessed an expanding adoption of
building information modeling (BIM) in construction. As stated by Brynjolfsson and
Yang (1996), the contribution of a new technology can be properly measured by
productivity efficiently and effectively. Besides, productivity improvements are
noticeable through the utilization of transformative new information technology by
improving communication among all stakeholders (Triplett and Bosworth, 2004). Wei
and Lin (2004) also ascertained that much attention should be placed on the
development of information technology due to its innovative and integrated features.
As construction industry are being confronted with great challenges to improve
productivity, efficiency, and profitability of construction projects (Arayici et al., 2011b),
BIM is currently considered as a transformative information technology to achieve

these goals.



BIM is regarded as an emerging, promising, and innovative technology and
process, dramatically transformed the way of a building from the original conception
onwards to demolition (Hardin, 2011; Azhar et al., 2012). Succar (2009) defines BIM
as a visualization tool or an integrated process that generates a systematic approach to
simulate and manage the design, construction, and operation information of a building
in digital model throughout its lifecycle. As BIM allows multiple disciplinary
information to be encapsulated within one model, it serves as a dynamic repository
providing synchronous physical and functional information of a building varying from
design, construction, operation, maintenance, till to demolition (Lu and Li, 2011). BIM
also gives rise to all the practitioners incorporated in the construction projects, like
government, owners, designers, contractors, construction professionals, supervisors,
and so on, to utilize and manipulate information in the models (Li et al., 2014a). BIM
thus dramatically transform the conventional design formats and communication
approaches of AEC sector whereby players depend heavily on 2D CAD-based model
towards a 3D digital interacted model.

As the increasing challenges faced by China’s construction industry due to the
market globalization after the commencement of reform and opening policy and the
accession to the World Trade Organization (WTO), it is indispensable to develop an
effective and insightful approach to improve the whole productivity and
competitiveness of China’s construction industry (Xue et al., 2008). With the ever-
escalating pressure of improving construction productivity, BIM was most commonly
perceived as a visualization tool for coordinating and promoting communication of
AEC sector in order to reduce rework, predict collisions, and enhance productivity, time,
cost, quality and safety of a construction project (Zuppa et al., 2009). However, the

relationship between BIM and construction productivity has not been empirically and



distinctly identified and measured due to lack of quantitative measurements for
evaluating the impacts and value produced by the application of BIM. In addition,
grounded on the inconclusive and uncertain outcomes both in monetary and managerial
aspects, construction professionals are confronted with the dilemma of making a
decision whether to recognize and enforce BIM technology in construction projects
(Succar, 2010; Barlish and Sullivan, 2012; Li et al., 2014a).

Recently, a number of studies have been focused on facilitating the
implementation of BIM in Mainland China. Zhang et al. (2011) proposed a 4D-BIM
dynamic approach to monitoring construction resource and cost in real-time in order to
enhance the level of management and cost control. Li et al. (2010) suggested that the
developer-driven approach was frequently recognized as the most efficient way to
promote the application of BIM technology in China. He et al. (2012) pointed out that,
while the development of BIM technology in China was still in preliminary stage, it
would be broadly applied to the whole construction industry of China. Also, the main
barriers of broadly implementing BIM in China have been investigated and analyzed
by Zhang (2010). Results indicated that values and benefits of BIM usage can be really
realized at some stage, but the lack of professional knowledge regarding BIM and
inefficiency of current construction system are the major factors inhibiting the
development of BIM implementation in China. However, research on showing a clear
understanding of the impacts of BIM on construction productivity and quantify the
productivity gains through BIM implementation is scarce. Thus, based on the current
status of BIM implementation in China, there is a great need to find out a way to obtain
significant productivity improvements by implementing BIM technology. This study
attempts to fill this knowledge gap by examining the current BIM practices, identifying

contributory factors of productivity, develop a preliminary conceptual framework



regarding BIM and productivity relationship. In addition, this study will leverage the
relationship of BIM implementation on each of productivity gains indicators so as to
measure the extent to which these indicators have the better ability to improve

construction productivity with the implementation of BIM.
1.3 Research Gaps

Due to the great potential of BIM for addressing construction inefficiencies and lower
productivity in the construction industry, the past decade has witnessed an increasing
research interest in BIM both in design and construction stage. As illustrated in Chapter
2, the large majority of prior studies have primarily concentrated on identifying
incentive factors and barriers of BIM adoption in the construction industry (Bernstein
and Pittman, 2004; Cerovsek, 2011a; Ku and Taiebat, 2011; Gu and London, 2010), or
on unfolding project benefits gained from BIM utilization in construction projects
(Bryde et al., 2013; Poirier et al., 2015; Hergunsel, 2011; Barlish and Sullivan, 2012),
or on reporting the business value or potential profitability of applying BIM (Bernstein,
2015; Bernstein et al., 2012; Young et al., 2009; Lee et al., 2012). Nevertheless, despite
of some research having measuring the impacts of BIM on labor productivity at activity
level (Poirier et al., 2015; Kim et al., 2015), sparse scholarly attention has been focused
on quantitatively demonstrating the principal impacts of BIM implementation on

construction productivity at project level during the construction stage.

As illustrated in Chapter 3, BIM has been evidenced by many researchers as an
effective means for facilitating design processes (Eastman et al., 2008; Son et al., 2015;
Sacks et al., 2010b; Sacks et al., 2010a; Taylor and Bernstein, 2009), reducing design
error (Linderoth et al., 2014; Love et al., 2011c; Rajendran et al., 2013), thus to achieve

productivity gains (Sacks and Barak, 2008). Additionally, numerous previous



researchers have investigated the attributable factors affecting design error (Josephson
and Hammarlund, 1999; Love et al., 2012; Love et al., 2011c; Lopez et al., 2010),
attempting to seek out effective strategies to prevent or mitigate design errors (Love et
al., 2008; Busby, 2001; Love et al., 2012). However, rare empirical research has been
placed on quantifying the impacts of BIM on design error reduction, and quantitatively
measuring the extent to which attributable factors could have the better ability to

contain design error.
1.4 Research Objectives

This research aims to identify the impacts of BIM implementation on construction
project productivity based on the questionnaire survey from informed senior and
specialized personnel directly participating in BIM-based projects. The specific
objectives of this research are shown below:

(1) To conduct a comprehensive review of the extant research theories related to
the status of BIM implementation and basic characteristics of construction
productivity;

(2) To theoretically develop a BIM-enabled design error reduction (DER) model
during design stage, as well as build up a conceptual framework regarding
BIM-based construction productivity gains model;

(3) To examine the impacts of BIM implementation in reducing design error by
using the conceptual model based on the different design error reduction (DER)
indicators

(4) To test the conceptual model for probing deeper into how and to what extent
the implementation of BIM can influence the project-level construction
productivity based on the empirical data from BIM-based construction

projects



1.5 Significance and Value of Research

Productivity is of utmost importance to the construction industry as the construction
projects become increasingly fragmental to manage and control in China. In the
meantime, the rapid development of China’s urban construction projects brought about
increased urgencies to reduce design and construction duration, and to tighten project
budgets and amidst more complex projects. BIM as a fundamentally innovative way of
producing, sharing and exerting project lifecycle information, can be applied in all
stages of a construction project to support increased productivity gains. Furthermore,
BIM is also perceived as a solution to a number of inefficiencies in the construction
industry. From an academic perspective, this research can get an overall understanding
of factors affecting construction productivity and the impacts of BIM implementation
on construction productivity both in design and construction stage. Also, it may lay the
foundation of methods for improving construction productivity by the usage of BIM,
and quantitatively measure the impacts of BIM implementation on construction project-
based productivity in Mainland China. From a practical perspective, this study can
show the impacts of BIM on construction productivity and quantify the productivity
gains through BIM implementation. Beneficial results of BIM implementation can be

a stimulating factor facilitating the application of BIM in Chinese construction projects.

1.6 Structure of the Thesis

The dissertation is organized into seven chapters.
Chapter 1 introduces the whole research picture, including the research
background, research gaps to be addressed, overall research aim and specific objectives,

and the significance and values of the research. Chapter 2 comprehensively reviews the



existing literature from a broad perspective focusing on BIM implementation and
construction productivity to lay the foundation of present study. Chapter 3 introduces
the research design of the present study, and introduce the research methods and
analysis techniques employed in this research. Chapter 4 theoretically develops a BIM-
enabled design error reduction model and BIM-based construction productivity gains
model. Chapter 5 empirically identifies the impacts of BIM implementation in reducing
design error by using the conceptual model based on the different design error reduction
(DER) indicators during the design stage. Chapter 6 tests the BIM-based productivity
gains model for probing deeper into how and to what extent the implementation of BIM
can influence the project-level construction productivity based on the empirical data

from BIM-based construction projects.
1.7 Chapter Summary

This chapter outlines the overall picture of this research. Background information is
introduced first. The research gaps, and research aim and objectives are proposed and
explained. Then, the significance of the research is presented. The structure of the thesis

is finally outlined.

10



CHAPTER 2 AN OVERVIEW OF BIM AND

CONSTRUCTION PRODUCTIVITY

2.1 Introduction

With the aim of reviewing the literature so as to laying the foundation of the present
study, this chapter begins with comprehensively defining BIM from various
perspectives. Section 2.2.2 gives an overview of BIM-related research. Research on
current adoption of BIM in the construction industry, general benefits of BIM
implementation, limitations of BIM implementation, and interoperability issues are
identified from literature review, and some of the leading research paper and surveys
are discussed here. Section 2.3 reviews construction productivity. In this section, the
definition of construction productivity is verified from different perspectives. Then,
productivity measurements are reviewed and categorized based on activity, project, and
industry level. Finally, factors affecting construction productivity are further examined

and identified. Section 2.4 summarizes this chapter.
2.2 Building Information Modeling (BIM)

2.2.1 Definition of BIM

BIM as a rapid diffusion term, while emerging, aroused a great deal of attention in both
construction industry and academia. The ambiguous feature of this term determines the
widespread definition from various professions or institutions. In this section, numerous
previous studies have been focused on the definition of BIM in different perspectives,
and a generally accepted definition will be discussed.

Synonymous terms, such as object-oriented modeling, building product model,

construction virtual design, virtual prototyping and nD modeling had been employed to
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define BIM (Aranda-Mena et al., 2009). The concept of BIM can be originally traced
back to the term “integrated project database” (IPDB) proposed by Amor and Faraj
(2001). Bj&k and Penttil&(1989) defines IPDB as “a building product model that
contains conceptual structures specifying what kind of information is used to describe
the building and how such information is structured.” Gann et al. (1996) define it as “a
single project database as an electronic data model to which all participants refer
throughout the process of design, construction, operation, and maintenance.” As an
evolution of these terms, the term BIM was initially popularized by Jerry Laiserin in
around 2002, referring as a tool of using, transferring and exchanging information
(Eastman et al., 2008; Aranda-Mena et al., 2009). With the widespread distribution of
the concept both in the construction industry and academia, an abundance of researchers
and institutions attempted to define BIM in diverse approaches.

Define BIM as a technology

As indicated by Singh et al. (2011), BIM is “an advanced approach to object-oriented
CAD, which extends the capability of traditional CAD approach by defining and
applying intelligent relationships between the elements in the building model, including
both geometric and non-geometric data such as object attributes and specifications”.
Eastman et al. (2008) define BIM as “a modeling technology and associated set of
processes to produce, communicate, and analyze building models.” More specifically,
information such as geometric and geographic information, spatial distribution,
quantities and attributes of building components, scheduled duration and cost
estimation are all embraced and integrated into a BIM model.

Define BIM as a process

As perceived by Kymmell (2008), BIM is a 3D simulation model of the building and

its associated components, developed in the process of planning, design, construction
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and operation of a building. The Associated General Contractors of America (AGC)
maintains that BIM is a data-rich, object-oriented, 3D intelligent and parametric digital
representation of a facility, which is created and developed by the usage of the
computer-generated model to simulate the process of a facility being conceived,
constructed, and operated (AGC, 2005; AGC, 2006). The National Building
Information Modeling Standards (NBIMS) committee of USA defines BIM as a shared
3D digital model that carries entire information relating to a facility, including its
physical and functional characteristics, and establishing a credible base for decisions
during its lifecycle. It is a shared repository of building information data allowing
different stakeholders to add, extract or alter information at different stages throughout
its lifecycle (NBIMS, 2010). Azhar et al. (2012) define BIM as a virtual process
allowing all practitioners to perform and collaborate in one integrated virtual model.
The McGraw-Hill (2009) report also defines BIM as the process of creating and using
digital models for design, construction and/or operations of projects.

Despite a concerted effort to BIM definitions, no unified consensus is reached to
define BIM precisely and accurately. This research followed a generally accepted
definition by Eastman et al. (2011), regarding BIM as a modeling approach with its
associated building components and a set of processes to generate, coordinate, and
analyze building models. This definition was further reinforced by Lu and Li (2011),
stating that as BIM allows multiple disciplinary information to be encapsulated within
one model, it serves as a dynamic repository providing synchronous physical and
functional information of a building varying from design, construction, operation,

maintenance, till to demolition.
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2.2.2 Overview of BIM-Related Research

Over the past decade, a substantial amount of BIM-related publications has been
generated. Retrieval from previous academic journals can provide great benefits from
identifying the major research topics, and gaining insightful thoughts into extant
research regarding BIM in the AEC industry (Becerik-Gerber and Kensek, 2009), thus
to lay the foundation of present study where most efforts are needed and subsequent
future research agenda (Wong and Zhou, 2015). The two-stage review methods
employed by Tsai and Wen (2005) and Ke et al. (2009) were first adopted to illustrate
the major research outputs published in the first-tier journals in terms of a chosen topic.
Based on the assumption that a research team may deliver its research outcomes to a
high-tier journal with similar topics in its area (Ke et al., 2009), this study first selected
a powerful search engine to determine journals that published the most BIM-related
articles. The search was further refined by referring to the journal ranking list of Chau
(1997) in the fields of construction engineering and management. A three-stage review
method was further developed by Hong et al. (2011) to acquire a more elaborated
understanding of related research fields. This method aims to improve the coverage of
publications which the search engine may miss out, due to the limitation of publication
year. Since this study was designed to conduct a documentary analysis of BIM-related
papers published between 2006 and 2016, acquiring a distinct and exhaustive
investigation of BIM-related research, the two-stage literature review method was

deployed, which is depicted in Fig. 2.1.

Search

T/IAIK

Papers

14



A 4

Journals Number/year
Stage 1 l
\4
Stage 2 Chau’s Target
Visual
TIA/K Validate
v
Papers
l v A
Citations Affiliation Interests
A A 4
Institutions Countries

Note: T/A/K — Title/Abstract/Keywords
Figure 2.1 Review framework (adapted from Ke et al. 2009)

In the first stage, a comprehensive desktop search was conducted based on the
“title/abstract/keyword” search method through the powerful search engine Scopus.
The advanced search Scopus was chosen as it covers a more expanded spectrum of
journals, faster citation analysis, and more articles than any other search engine
(Falagas et al., 2008). Search keywords contained building information model(l)ing,
building information model, construction virtual design, and construction virtual
prototyping. Papers that included these particular terms in view of the title, abstract, or
keywords were possibly considered to meet the requirements of this research. This

search was further confined to the subject area such as “engineering,” “business,
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management, and accounting,” “social science,” “environmental science,” “decision

29 ¢¢ 2 ¢¢

sciences,” “multidisciplinary,” “economics, econometrics, and finance,” and “energy”
with the document type of “article or review.”

The search results derived from stage 1 indicated that a total of 1184 BIM-related
papers had been published from 2006 to 2016. To restrict the deviations of unwanted
or irrelevant publications, these search results were only analyzed based on the top-
ranked construction-related journals and the number of BIM-related articles published
annually. Therefore, Automation in Construction (AIC) that have published the most
BIM-related papers was selected as target journals in stage 2. As the major research of
this study is to examine extant research on BIM, academic journals that have high
quality and significant impact on the research community of construction were also
incorporated in the second stage. Six leading construction journals identified by Chau
(1997) were included in the second stage for further analysis: Construction
Management and Economics (CME), Engineering, Construction and Architectural
Management (ECAM), Journal of Management in Engineering (JME), International
Journal of Project Management (IJPM), and Building Research and Information (BRI).
Apart from these, Journal of Computing in Civil Engineering (JCCE), another peer-
reviewed journal that had published frequently cited BIM-related papers was also added
to the final target journal list. Therefore, eight journals were selected for further analysis
in total during the second stage. Furthermore, Scopus can cover all of the publications
within selected journals from 2006 to 2016.

In the second stage, a more detailed and comprehensive search within the eight
target journals was carried out with the help of the same search engine, Scopus. Similar

to the first stage, the search at this stage was also confined to the above subject area

under the document type of “article or review.” Articles under the broad categories of
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editorial, book review, discussions/closures, and letter to the editor were excluded from
the analysis. This resulted in a total of 311 probable BIM-related articles. After the
removal of those articles including BIM-related items in the title, abstract or keyword
but focused on irrelevant topics, as a result, a total of 305 BIM-related papers were
identified. The analyses and review process are primarily based on these 305 identified
research papers.

The distribution of the 305 identified papers issued in the eight target journals was
shown in Table 2.1 within the period from 2006 to 2016. It is obvious that research on
BIM-related studies has been increasing constantly within the studied period. Academic
papers issued during the period from 2009 to 2012 had been experiencing a relative
stabilized growing trend. Subsequently, the number of published papers dramatically
emerged from 2013 to 2016, with a total number of 230 publications indicating a new
peak in 2016. Within the studied period, AIC, the most frequently cited journal, was
considerably greater than any other target journals, with a total of 183 papers,
accounting for 59.67% of all identified papers, followed by 42 papers issued in JCCE,
and 36 papers issued in JCEM. The percentage of the three selected journals possess
about 85.25% of all 305 papers, indicating the mainstream sources of BIM-related
publications within the studied period.

Table 2.1 BIM-related papers issued between 2006 and 2016

fi‘;‘t”“a' 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total Percentage
AIC 3 3 2 4 12 14 8 29 37 43 27 18  5967%
JecE 4 2 1 4 4 3 7T 17 42 1371%
JCEM 1 1 2 1 4 7 7 2 11 36  1180%
IME 1 1 8 2 5 17  557%
CME 1 2 2 3 3 11 361%
ECAM ! 111 4 3 11 361%
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LPM 1 1 1 1 4 1.31%
aR| 1 1 2 0.66%
!Eight 3 4 3 12 16 18 19 44 57 62 67 305  100.00%
journals

Research papers and reports can be a representative symbol implying the extent to
which industrial research and development (R&D) of a specific area was developed.
The number of academic research publications in a country may indicate the
development level of the industrial innovation and practices in this research area of the
particular location. As shown in Fig. 2.2, the country of origin published the most BIM-
related papers was U.S., with a total of 110 identified papers, follow by 50 papers in
South Korea, 39 papers in U.K. and 38 papers in Australia. The total amount of BIM-
related papers published with the first authorship in the four countries comprised 77.7%
(237 out of 305) of the total identified papers in the target journal. The contribution of
these four countries to BIM-related research was considerably higher than that of other
countries or regions. These facts may be perceived as logical and understandable when
examining the degree of implementing BIM in construction projects within the four
developed countries. Construction industrial practices with great emphasis on
information technology such as BIM greatly boosted the development of BIM-related
studies in those fields.

Figure 2.2 Research origin of BIM-related papers published
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2.2.2.1 Research on Implementation of BIM in the Construction Industry

Over the past years, the architecture, engineering, and construction (AEC) industry has
witnessed an accelerated diffusion of BIM, supposed to act as an emerging, promising,
and innovative technology and process, dramatically transforming the way of a building
from the original conception onwards to demolition (Hardin, 2011; Azhar et al., 2012).
With the ever-accelerating adoption of BIM, the profitability, efficiency, relationship
within related practitioners, are supposed to be improved through enhanced
collaboration (Azhar, 2011).

In recent years, BIM is gradually being extensively adopted by construction
professionals and practitioners in the process of effectively enhancing the design,
construction and operation level throughout a building’s lifecycle (Arayici et al., 2011a).
As construction industry are being confronted with great challenges to improve
productivity, efficiency, and profitability of construction projects (Arayici et al., 2011b),
BIM is currently considered as a transformative information technology to achieve

these goals. According to McGraw-Hill (2008) Construction Report, 35% of BIM users
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were reported to be very heavy users while 38% were light users. And the highest level
of usage of BIM was supposed to grow rapidly to 45% in 2009, in which architects and
owners were the heaviest users of BIM compared to the engineers and contractors. Also,
McGraw-Hill (2009) indicated that nearly 39% of the construction industry of major
projects in the USA were now utilizing BIM during the process of design and
construction procurement. Additionally, in china over the past several years, the
implementation of BIM has been growing rapid, especially amidst large companies that
can capitalize best on its value, indicating that Chinese constructor has gradually
perceived the great potential benefits of BIM adoption in construction projects
(Bernstein, 2015).

Likewise, enhancing adoption of BIM is receiving continuous proliferation in
academic articles. Gu and London (2010) pointed out that on account of various
business incentives, such as the need for sustainable design and construction, integrated
as-built database for facilities management, the adoption of BIM in AEC industry is
particularly promising. They also established and developed a Collaborative BIM
Decision Framework to facilitate BIM adoption through a Focus Group Interviews
(FGlIs) analysis. Singh et al. (2011) proposed a conceptual framework that specified the
developed features and technical requirements of using BIM-server as a multiple
disciplinary collaboration platform. The framework was significantly developed by
utilizing focus group interviews (FGIs) on behalf of the various disparate AEC
disciplines, case study of a specific project that exerted a state-of-art BIM server, and
combined with a critical review and detailed analysis of existing collaboration
platforms. They also found that the support technology requirements were of great
importance in expediting technology management and adoption across disciplines. In

addition, greater intelligent and automated collaboration support in design and
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construction can be achieved by promoting BIM-server investigation and development.
Lu et al. (2012) proposed a generic model to practically identify and measure the
benefits of BIM by comparing two learning curves, which can be used as a learning
tool to promote the adoption of BIM. Porwal and Hewage (2013) also proposed a
structured and collaborative BIM-based partnering framework for public procurement
construction projects, in order to facilitate widespread adoption of BIM and maximizing
the benefits out of BIM implementation. A BIM model can be widely used for
multifarious purposes, e.g., virtually planning and design, construction scheduling, cost
estimation, data integration, collision detection, and facilities management (Azhar et al.,
2008; Schlueter and Thesseling, 2009; Azhar, 2011; Lu et al., 2012). Consequently,
BIM is arguably perceived as an instrumental tool for mitigating the construction
industry’s scattered nature, enhancing efficiency, and lowering the high costs of
inadequate collaboration (Succar, 2009; Lu et al., 2012).

As indicated by Bernstein (2015), in China, contractors are currently at higher
adoption levels than architects. However, generally, the current utilization rate of BIM
is still in a relatively infant stage. This was evidenced by the survey (CCIA, 2013),
85.05% of construction enterprises reported that they have not been involved in any

BIM-based projects.
2.2.2.2 Research on General Benefits of BIM Implementation

As a term and method that is rapidly gaining popularity, BIM is under the scrutiny of
many building professionals questioning its potential benefits on their projects (Barlish
and Sullivan, 2012). The beneficial impacts of utilizing BIM have been broadly
explored, like more efficient and effective process of sharing or modifying information,
reduced costs, enhanced design quality, greater integrated data, decreased change

orders, improved interoperability, and better life-cycle management (Howard and Bj&k,
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2008; Barlish and Sullivan, 2012; Love et al., 2011c; Azhar, 2011). More specifically,
BIM can store the entire design information into a share and open repository effectively
to achieve integration and uniqueness of information. Also, synchronized information
with regard to the construction schedule, cost, safety, and quality can be obtained by
applying BIM in order to fully accomplish specified progress (Baoping et al., 2010).
During the operation and maintenance stages, BIM can well control of all related
information, such as physical and functional information, facilities performance, to
regularly assess the status, thus to adjust the schedule in time to enhance management
level in the process. Generally, BIM enables the production process more efficient, with
tighter schedules, lower project costs, less rework, better collaboration among
practitioners, as well as enhanced productivity (Farnsworth et al., 2015).

Despite widespread recognized benefits of BIM usage, users are supposed to take
additional cost and time/schedule benefits into consideration (Lu and Li, 2011; Becerik-
Gerber and Rice, 2010). For example, based on the 32 major projects that utilized BIM,
the case studies conducted by Stanford University Center for Integrated Facilities
Engineering (CIFE, 2007) indicated great beneficial consequences, like up to 40%
reduction of unexpected change, more accurately cost estimation compared with
traditional ones, up to 80% reduction in time taken to generate a cost estimate, up to
10% of contract value cut down through clash detections, and up to 7% reduction in
project duration. Issa and Suermann (2009) performed a questionnaire survey revealed
that quality, on-time completion, and units per labor-hour were explored as the top 3
benefits resulting from implementing BIM. Jung and Joo (2011) developed a
comprehensive framework and evaluation methodology to quantify the overall benefits
and effectiveness of BIM usage, with the purpose of identifying promising areas and

driving factors for practical construction projects. The proposed framework served as a
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foundation to improve the communications with shared understanding. Barlish and
Sullivan (2012) carried out a case study approach to provide a more comprehensive
methodology to identify the benefits of BIM, as a result of more holistic and exhaustive
framework for measuring benefits of BIM usage. Also, Love et al. (2013) established a
benefits evaluation framework to obtain a wide range of benefits by incorporating

intangible benefits and costs apart from return on investment.
2.2.2.3 Research on Limitations of BIM Implementation

Nevertheless, adoption of any emerging technology in any industry would pose
challenges (Porwal and Hewage, 2013). Current work practices may need a great shift
to better accommodate the changes brought by the application of new technology to
facilitate collaboration and achieve better consequences (Cerovsek, 2011b; Gu and
London, 2010). Specifically, it is not only a shift in technology implemented but also a
tremendous adjustment or transformation to the existing practices that practitioners
work (Porwal and Hewage, 2013). A mass of factors have been identified as the major
factors hindering adoption of BIM, like lack of initiative and training chance, dispersed
and complex features of the AEC industry, obscured roles, responsibilities, and
distribution of benefits (Gu and London, 2010). In addition, technological obstacles for
BIM implementation, with respect to the changes of organizational form and
procurement processes, are also deemed as one of the major factors impeding
widespread adoption of BIM. Also, sometimes, industry people are reluctant to make
changes with existing work practice and hesitate to learn new concepts and technologies.

An effective approach of adopting a new technology is to encompass it in the
contract as a mandatory condition by the client or owner, who has the ultimate decision-
making power to determine the usage of BIM. However, public sectors often have

concerns concerning the immature market and mechanism of utilizing BIM and are also
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afraid of diminishing competitive capability by increasing construction project costs
with the implementation of BIM (Porwal and Hewage, 2013). Eadie et al. (2013)
comprehensively investigated the reasons for not adopting BIM in construction projects
via 92 surveyed practitioners that utilized BIM. Results implied that lack of expertise,
lack of client demand, cultural resistance, and high investment cost were considered as
the leading factors inhibiting BIM implementation. Table 2.2 summarized the barriers
and limitations of BIM technology implementation, indicating that BIM
implementation could be influenced and contained by multifarious factors, including
but not limited to technological, organizational, or cultural issues.

Table 2.2 Summary of barriers and limitations on BIM implementation

Code Barriers and limitations Sources

BLO1 High investment costs with lower rate of  Ku and Taiebat (2011), Porwal
return on investment and Hewage (2013), Azhar (2011),
Eadie et al. (2013)
BL02 Technological obstacles: lack of data Taylor (2007), Gu and London
and software interoperability (2010), Bernstein and Pittman
(2004), Grilo and Jardim-
Goncalves (2010), Ku and Taiebat
(2011), Cerovsek (2011a), Porwal
and Hewage (2013), Love et al.

(2011c), Howard and Bj&k (2008)

BLO3 Lack of industrial standards and Ku and Taiebat (2011), Eastman et
guidelines in BIM implementation al. (2011), Eastman et al. (2009)

BL04 Lack of statutory and normalized Taylor (2007), Gu and London
contractual agreements in distributing (2010), Bernstein and Pittman

(2004), Grilo and Jardim-
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responsibilities, risk, and reward among  Goncalves (2010), Ku and Taiebat
contracting parties (2011), Arayici et al. (2011b),

Porwal and Hewage (2013)

BLO5 Lack of trained and proficient Gu and London (2010), Ku and
professionals familiar with BIM Taiebat (2011), Arayici et al.
implementation process and software (2011b), Eadie et al. (2013)

BLO6 The resistance to change traditional Taylor (2007), Gu and London
practice and procurement method (2010), Grilo and Jardim-

Goncalves (2010), Arayici et al.
(2011b), Porwal and Hewage
(2013), Eadie et al. (2013)

BLO7 Lack of scientific and authentic studies Gu and London (2010), Arayici et

quantifying the perceived value of BIM  al. (2011b)

2.2.2.4 Interoperability Issues

Due to the substantial different applications used by various practitioners, together with
the diverse fragmental variables involved in the building construction projects,
interoperability has become a great challenge that the AEC industry currently
confronted with (Grilo and Jardim-Goncalves, 2010). To keep such information open
and non-proprietary, it is necessary to develop and establish a standard platform, where
different software package can communicate with each other. The value of
interoperability on BIM was explored and evaluated by many research scholars.

As indicated by Grilo and Jardim-Goncalves (2010), in order to achieve integrated
use of BIM technology, it is crucial for construction projects to enhance communication
and coordination interactions between different players, thus to improve
interoperability. They believed that BIM approach can facilitate to achieve efficiency

and differentiation value levels, which means greater cost beneficial results and less
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risky outcomes by disposing of the need for interoperability in BIM. They also
concluded that great emphasis should be placed on collaboration and channel
interaction types of interoperability, which can facilitate BIM to achieve higher value
level, i.e. value innovation. Arayici et al. (2011a) asserted that it is not a simple
approach to learning a type of new software, but a paradigm shift to training staff,
rearrange workflows and responsibilities and transform the way of modeling
construction (Arayici and Aouad, 2010; Arayici et al., 2011a).

To facilitate data exchange between heterogeneous AEC software applications,
the Industry Foundation Class (IFC) has been designed to sustain a wide range of BIM
exchanges in the construction industry (Eastman et al., 2011; Venugopal et al., 2012).
Despite its necessary to exchange modeling data, IFC alone is not a sufficient condition
for achieving full interoperability between different building information modeling
(BIM) software applications (Eastman et al., 2009). In order to achieve specific model
view, a set of standardization efforts has been developed, such as Model View
Definitions (MVD), which is required to specify exactly what types of information
should be exchanged and in what form and structure the IFC schema are to be used

(Venugopal et al., 2012).

2.3 Construction Productivity

2.3.1 Definition of Construction Productivity

Construction productivity has long been a concern in both industry and academia, for
it can be improved to foster sustaining economic growth and generate substantial social
wealth and welfare (Park et al., 2005; Kenley, 2014; Tookey, 2011). Being the most
dominating factor contributing to the remarkable economic profitability of most
construction projects (Yi and Chan, 2014; Kenley, 2014), productivity is receiving
incessantly increasing concern with regard to the production efficiency of the whole
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construction industry. Nevertheless, there is no unified agreement on the definition of
“productivity” (Yi and Chan, 2014; Thomas and Mathews, 1986) in both construction
industry and academia. Additionally, it can be measured in diverse approaches
determined by the application of specific domain, like an industry, an individual
enterprise or just a concrete project. The Merriam-Webster definition of “productivity”
is the rate at which goods are produced or work is completed. As stated by the Oxford
English Dictionary, productivity is the state or quality of being productive. Wikipedia
defines productivity as an average measure of the efficiency of production. To sum up,
productivity can be defined as the power of being productive, efficiency and the rate at
which goods are produced.

Generally, construction productivity is commonly and concisely expressed as the
rate of output to its associated input in the production process. Thus, construction
productivity can be regarded as an indicator measuring the effectiveness of construction
production process denoted by the ratio of output obtained to input devoted. According
to Chau and Walker (1988), productivity estimation that adopts one or more inputs or
factors, but not all factors, is called partial productivity. A common example of partial
productivity is labor productivity, usually expressed as output per hour. Despite its
relatively simple concept to comprehend and express, labor productivity may be
completely incorrectly in measuring resources utilization rate. An alternative term, for
example, total factor productivity, where outputs and all identifiable inputs are
considered, was applied by Chau and Walker (1988) to establish an operational
framework for measuring construction productivity by utilizing diverse construction
cost and price indexes at the industry level. Since this research aims to identify the

relationship between BIM and construction productivity on project level, partial
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productivity with selected inputs is more appropriate for this research at project-level

due to the fragmental and multiple variables involved.
2.3.2 Measuring Construction Productivity

The measurement of construction productivity is highly diversified based on the
utilization of various purposes or sectors in the construction industry, ranging from
evaluating economics state of a country to a specific type of craft or individual crew
(Thomas et al., 1990). Hence, it is improper and inadequate to define or measure
construction productivity simply exerting a single measure or meaning, even if accurate
(Thomas et al., 1990; Br&chner and Olofsson, 2012; Ellis Jr and Lee, 2006). Numerous
previous studies have been conducted concentrating on standardizing the measurement
of construction productivity(Park et al., 2005; Oglesby et al., 1989). However, no
identical and universal methods and norms have been achieved to measure construction
productivity on accounts of intricate, fragmental and dynamic nature of uncertainties
contained of construction projects (Chau and Walker, 1988; Oglesby et al., 1989; Park
et al., 2005; Siriwardana and Ruwanpura, 2012; Hughes and Thorpe, 2014). Given a
specific task or a change, construction productivity can be measured in various
alternative approaches. Generally, three measurements are frequently applied in the

construction industry in the literature (Oglesby et al., 1989; Arditi and Mochtar, 2000).
2.3.2.1 Activity Level

Firstly, an activity-oriented model which define productivity as labor productivity has
been widely used by project executives and contractors to control and monitor field
activities (Arditi and Mochtar, 2000). One may prefer a relatively easier way to
measure construction productivity for detailed estimating or scheduling at the activity

or site level. And it is unsurprisingly that labor productivity was perceived as one of the
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best indicators for measuring construction productivity. Being the focal point of
construction industry, a plenty of past research efforts had been made on measuring
labor productivity (Hanna, 2001; Hanna et al., 2005; Hanna et al., 2008; Allmon et al.,
2000; Ellis Jr and Lee, 2006; Rojas and Aramvareekul, 2003a; Song and AbouRizk,
2008; Crawford and Vogl, 2006; Chau and Walker, 1988). For example, Thomas et al.
(1990) performed a factor model together with expectancy theory model of motivation
to model construction labor productivity. Song and AbouRizk (2008) developed a
systematic method to measure and estimate labor productivity by exerting a consistent
measurement system to quantify outputs and inputs, thus to establish a systematical
system of acquiring data that synthesized and synchronized all historical and current
projects’ data. Then, a labor productivity model regarding steel drafting and fabrication
activities was set up by using artificial neural work and discrete-event simulation
modeling techniques. Siriwardana and Ruwanpura (2012) developed a Worker
Performance Index (WPI) tool that integrated various different factors, such as
management, supervisor assessment, motivation, and technical skills, to evaluate and
examine the construction worker performance quantitatively, thus to improve
construction productivity. Because of its labor-intensive characteristics, construction
activity-level productivity can be generally perceived as labor productivity and is
calculated as Eq. (2.1), defining output as work quantities installed and input as actual
labor hours expended (Rojas and Aramvareekul, 2003a; Song and AbouRizk, 2008;
Hanna et al., 2008).

Labor productivity = work quantity installed / actual labor hours

(2.1)
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It indicates the number of quantities installed per labor hour. Thus, higher values
of productivity signify better productivity performance. Labor productivity can be

useful for contractors in bidding and monitoring field activities.
2.3.2.2 Project Level

However, this aforementioned approach is insufficient and intricate as a typical
representation of measuring global productivity values of construction projects, where
diverse and fragmental variables are embraced (Mohammadian and Waugh, 1997).
Consequently, Ellis Jr and Lee (2006) developed a project level productivity (PLP)
method to measure construction productivity that included all project activities based
on field data, uniformly quantified by the notion of an equivalent work unit (EWU) and
total worker hours expended, and mathematically denoted as:

PLP =total worker hours / total EWU (2.2)

This approach provides an opportunity for construction professionals to determine
project performance by combining multitudinous continuous concurrent and correlated
work items into PLP as a whole, regardless of units of measurement and types of work.
For example, Park et al. (2005) proposed a feasible productivity data collection tool,
named Construction Productivity Metrics System (CPMS), which classifies 56
measurement elements into seven categories envisaged to measure output directly
based on the installed items, such as area, length, volume, or weight, for benchmarking
aims.

But when it refers to the construction project as a whole, a more accurate
measurement of construction productivity can be expressed as the project productivity
index (PPI) (Hanna et al., 2005), as shown in Eqg. (2.3), the ratio between actual total
work hours performed and estimated or planned total work hours performed. While

project-level productivity is on grounds of construction activities, this measurement
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rules out the differences between units of measurement and types of work by dividing
the budgeted (baseline) work hours by actual work hours. The established benchmark
or baseline can be utilized by projects managers and construction executives to trace
the productivity changes or compare with other projects.

PPI = earned total work hours performed / actual total work hours performed
(2.3)

A PPl less than 1 indicated that more work hours were needed to reach completion,
whilst a more productive project would get a PPI greater than 1. Generally, higher PPI
stands for the greater level of production efficiency (Hanna et al., 2005). This approach
can be further developed and mathematically expressed as Eq. (2.4).

Productivity performance ratio (PPR) = Actual productivity / Expected
productivity (2.4)

PPR is also a unitless measurement expressed as the actual productivity over

baseline productivity (Thomas and Yiakoumis, 1987). It eliminates the difference

between different job types.
2.3.2.3 Industry Level

It is undoubtedly that construction industry has commonly and frequently been
perceived as the paramount and enabling indicator contributing to the sustainable
growth of a nation’s economy. An economics method has been utilized to define
construction productivity at the industry level, which can be expressed by economists
and accountants as the total factor (multifactor) productivity (TFP), a more accurately
expression: the ratio of total output production to its corresponding identifiable input
resources (Chau and Walker, 1988; Thomas et al., 1990; Hanna et al., 2005; Hanna et
al., 2008). As demonstrated in Eq. (2.4), total outputs and inputs can be both measured

in dollars (Thomas et al., 1990; Arditi and Mochtar, 2000):
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TFP = Total output / Total input = dollars of output / dollars of input
(2.5)

where resource inputs include all determinants, namely tangible physical inputs,
like labor, materials (raw materials and equipment), capital, investment, likewise
intangible sectors, such as skills, management and technologies (Chau and Walker,
1988; Thomas et al., 1990; Arditi and Mochtar, 2000; Hanna et al., 2005; Hanna et al.,
2008; Hughes and Thorpe, 2014; Crawford and Vogl, 2006). As pointed out by Chau
and Walker, output is usually expressed as gross or value-added. For the construction
industry, the concept of gross has been in common use due to the importance of
intermediate inputs, such as new materials. Thus, gross product originating can be
likewise adopted to express the output of a private industry (Rojas and Aramvareekul,
2003a). TFP can be used as an economic indicator to predict the economic status of a
nation or a society or for governmental agencies carrying out decision-making policy
(Thomas et al., 1990; Br&chner and Olofsson, 2012). Furthermore, it can also be applied
to evaluate the industry trends or in contrast with other industry sectors (Council, 2006;
Song and AbouRizk, 2008), such as manufacture sector.

Industry standard productivity measurements must first be set up to serve as a
standard enforced in present practical work before substantial improvements and
foreseeable benefits can be realized (Cll1, 2001; Song and AbouRizk, 2008). To improve
productivity, a good system is needed to measure and track productivity so that the
impact of productivity improvement efforts can be judged. In conclusion, previous
experience reveals that no generally accepted productivity measurement standards are
existing for estimation purposes. Productivity can be expressed and measured in various
approaches from disparate perspectives by different people, in terms of the level of

aggregation, the source of data, and the boundary of the production process, resulting
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in incomparable or ambiguous values (Chau and Walker, 1988). In this research,
productivity performance ratio (PPR) was employed as the primary measurement

method to evaluate the impacts of BIM on construction projects productivity.
2.3.3 Factors Affecting Construction Productivity
2.3.3.1 General Factors

Factors affecting construction productivity has been explored and certified by a
multitude of scholars, for it is a prerequisite for improving productivity. It is unlikely
to improve construction productivity without recognizing the influential factors that
impact productivity (Mojahed and Aghazadeh, 2008). Additionally, factors affecting
construction productivity can be dynamic, varying with diverse background and
projects (Koehn and Brown, 1986). A survey carried out by Arditi (1985) indicated that
productivity improvement should endeavor in enhancing marketing practices, planning
and scheduling, labor management issues, site supervision, industrialized building
systems, equipment policy and engineering design. Lim and Alum (1995) identified 17
factors impacting construction productivity, including management and manpower
issues. Lacking skilled supervisors and workers and high rate of labor turnover were
perceived as top three items affecting construction productivity in Singapore.
Olomolaiye et al. (1998) classified factors into two categories, internal (management
practice, technology, labor skills, and training) and external (design, environment,
changes made by the client, economic development level, and political social stability)
respectively. Arditi and Mochtar (2000) analyzed the findings of surveys of the top 400
US contractors and concluded that five major points: cost control, scheduling, design
practices, labor training, and quality control respectively, were deemed as of great
importance to impede construction productivity. Makulsawatudom et al. (2004)
identified ten most influential factor affecting construction productivity of Thailand,
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namely in order, material shortage, incomplete drawing, lack of professional
supervisors, ineffective tools and equipment, absenteeism, insufficient communication,
instruction time, poor site layout, inspection delay and rework. Hughes and Thorpe
(2014) investigated top 15 factors ranked by relative importance index that influenced
construction productivity. Three major factors, that is, rework, poor supervisor
competency and incomplete drawing, were perceived most likely to affect construction
productivity. Issa and Suermann (2009) conducted a survey based on six primary
construction key performance indicators commonly used in the construction industry:
quality control (rework), on-time completion, cost, safety, dollar/unit performed, and
units per man hour. Results showed that quality, on-time completion, and units per man
hour were the highest ranking KPIs responses preferred. Chelson (2010) also
ascertained that key indicators of productivity improvement could be placed on the
amount of request for information (RFI), rework reduction, schedule compliance, and
change orders due to design and construction interferes. Specific factors will be
presented in the next section and Table 2.3 summarizes related publications of factors

affecting construction productivity.
2.3.3.2 Specific Factors

Manpower Factors
Because of its labor-intensive feature, project-level construction productivity could be
greatly influenced and determined by construction labor productivity. As indicated by
Rojas and Aramvareekul (2003b) and Lim (1996), the improvement of labor
productivity has become one of the major approaches contributing to the profitability
of construction industry.

Much of previous research has been investigated to identify the improvement

drivers of labor productivity. For example, Yi and Chan (2014) presented a state of the
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art review on construction labor productivity from different levels, namely, industry,
project, and activity. Major research areas like factors affecting labor productivity are
identified and future research trends are proposed. A recent survey conducted by Rojas
and Aramvareekul (2003b) demonstrated that management skills, such as strategic
management, procurement management, and manpower issues, like improving training
programs, enhancing worked motivation, had substantial room for labor productivity
improvement. Hanna et al. (2008) also pointed out that the appropriate use of shift work
was critical, seeing that it may, if used improper, have detrimental to construction labor
productivity. Hinze (2011) noted that both additional working days and increased
workforce could decrease labor productivity. Mojahed and Aghazadeh (2008)
maintained that skills and experience of the workforce, management, job planning,
workers’ motivation, and material availability, were the major concern of improving
productivity by implementing related index technique. Further analysis indicated that
skills and experience of the workforce would be confronted with greater challenges
because of lacking skillful labor.
Rework
Rework is frequently regarded as an unexpected process of redoing works or activities
that are inaccurately or inappropriately enforced in the previous stage (Hughes and
Thorpe, 2014). A diverse sort of factors, such as omissions and errors, design changes,
inefficient management, failures may result in rework, which could affect the
productivity of construction projects in adverse.

Former research demonstrated that cost of rework (quality) could be quite high in
terms of overall project costs. For example, Barber et al. (2000) developed a
methodology to measure the cost of quality failures of typical projects, which were

identified to occupy a considerable percentage of total cost. The case study of two
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projects conducted by Love and Li (2000) maintained that cost of rework could account
for 3.15% of project contract value increase. Findings also suggested that omissions
and errors, design changes resulting from inadequate design, insufficient coordination,
poor communication (Hwang et al., 2009), were the major causes contributing to
rework. Love (2002) revealed that 52% of cost overruns could be attributed to rework,
which could in turn account for 10% to 15% of contract value (Sun and Meng, 2009).
Technology Factors

Although previous views indicated a technologically stagnant industry (Zhai et al., 2009;
Goodrum et al., 2010), the implementation of advanced technology has been of great
concern concerning improving construction productivity. Allmon et al. (2000) insisted
that, generally, a positive relationship can be explored between technology innovation
and productivity enhancement. For example, as pointed out by Zhai et al. (2009),
information technology had a positive impact on enhancing automation and integration
of information systems, of which higher level means greater improvement in
construction productivity. A study was conducted by Goodrum and Haas (2002),
through examining 200 construction activities over a 22 years duration at the activity
level. As a result, advanced equipment technology gave rise to a greater improvement
in productivity over that of partial factor productivity. A similar survey was conducted
by Goodrum and Haas (2004), which realized significant long-term improvement in
construction productivity through promoting equipment technology. By analyzing 100
construction activities from 1977 to 2004, Goodrum et al. (2009) found that significant
improvement in material technology can be an effective approach to enhancing both
labor and partial construction productivity. Another research conducted by Grau et al.
(2009) indicated that materials tracking technology can dramatically improve the craft

labor productivity. Hewage et al. (2008) ascertained that enhanced usage of information
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technology could greatly improve on-site communication between managers and
workers, as well as worker satisfaction.

Time/Schedule

Completing projects within prescribed time can be a commonly recognized indicator of
project efficiency. However, the incremental proportion of construction projects is
suffering from serious time overruns by now. For example, Siriwardana and Ruwanpura
(2012) pointed out that frequent and extensive delays of a project can be the dominating
contributor to the construction productivity losses. Any delays or extension of time
would probably result in prolonged project duration, usually companied by lower
productivity and higher construction cost. As indicated by Assaf and Al-Hejji (2006),
change order was identified to be the major factor causing delays of large construction
projects.

Shift work or extended overtime can also be one of the efficient approaches to
accelerate the schedule, thus to improve productivity. Adrian (1987) revealed that
arranging more difficult and complex construction works in the mornings over
afternoons had greater beneficial impacts of productivity improvement regarding shift
work to accelerate scheduling. Research into extended overtime of labor intensive
trades was also explored by Hanna et al. (2005), which indicated a negative rate of labor
productivity increase.

Cost

In general, lower cost usually results from higher construction efficiency that fully
utilizes all the resources involved. Greater prospective profitability could be realized
by the increasing revenue as a consequence of lower project cost. Accompanied by the
unceasing incremental scale and complexity of construction projects (Tucker, 1986;

Chan et al., 2004), as pointed out by Siriwardana and Ruwanpura (2012), cost overruns
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have been perceived as one of the primary factors affecting construction productivity.
For example, in recent years, construction costs have increased at a disproportionate
ratio compared with the rate of inflation (Tucker, 1986; Oglesby et al., 1989; Arditi and
Mochtar, 2000). Tucker (1986) indicated that construction labor costs, assumed to be
33-50% of overall project costs (Hanna, 2001; Hanna et al., 2005; Hanna et al., 2008;
Siriwardana and Ruwanpura, 2012), was deemed as the main and major cause that
resulting in the project overspending. As indicated by Kaming et al. (2010), the
paramount causes of time and cost overruns were design changes, poor labor
productivity, inadequate planning and lack of resources.

Management factors

As stated by Tucker (1986), due to its increasing scale and complexity, the collaboration
and coordination of all practitioners, including owners, contractors, consultants etc.,
has become the greatest challenge for construction projects. According to Tucker
(1986), for purpose of improving construction productivity, focused attention should
be paid to management issues that enhance communication with construction
practitioners. Large amounts of opportunities can be found in project orientation,
planning, communication, design, technology, etc. Abdel-Wahab et al. (2008) also
pointed out that efforts should be focused on organizational management practice to
facilitate further improvement of productivity of the UK construction industry. Rivas
et al. (2010) revealed that rational plan and arrangement of materials, tools, and
equipment were the major factors affecting construction productivity. Also, as
identified by Dai et al. (2009), the availability and management of jobsite materials,
tools, and equipment could have tremendous impacts on labor productivity.

Table 2.3 Summary of Related Publications of Factors Affecting Construction Productivity

Labor
Productivity

Authors Rework Time Cost Technology | Management
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Naoum (2016)

Yi and Chan (2014)

Hughes and Thorpe
(2014)

Siriwardana and
Ruwanpura (2012)

Hinze (2011)

Liu et al. (2011)

Rivas et al. (2011)

Diekmann and Heinz
(2001)

Dai et al. (2011)

Jarkas and Horner
(2011)

Goodrum et al. (2010)

Kaming et al. (2010)

Mawdesley and Al-
Jibouri (2010)

Dai et al. (2009a)

Dai et al. (2009b)

Zhai et al. (2009)

Hwang et al. (2009)

Eastman and Sacks
(2008)

Song and AbouRizk
(2008)
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Hanna et al. (2008)

Gonzalez et al., 2008

Hewage et al. (2008)

Abdel-Wahab et al.
(2008)

Mojahed and
Aghazadeh (2008)

Kazaz and Ulubeyli
(2007)

Crawford and Vogl
(2006)

Assaf and Al-Hejji
(2006)

Ezeldin and Sharara
(2006)

Hanna et al. (2005)

Horman and Thomas
(2005)

Fayek and Oduba
(2005)

Ng et al. (2004)

Makulsawatudom et al.
(2004)

Goodrum and Haas
(2004)

Rojas and Aramvareekul
(2003b)

Rojas and Aramvareekul
(2003a)

Ballard et al. (2003)

Cox et al. (2003)
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AbouRizk et al. (2001)

Barber et al. (2000)

Love and Li (2000)

Goodrum et al. (2002)

Goodrum and Haas
(2002)

Allmon et al. (2000)

Arditi and Mochtar
(2000)

Hanna et al. (1999a)

Hanna et al. (1999b)

Hanna et al. (1999c)

Lim (1996)

Lim and Alum (1995)

Thomas et al. (1990)

Oglesby et al. (1989)

Adrian (1987)

Koehn and Brown
(1986)

Tucker (1986)

Arditi (1985)

Maloney (1983)
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2.4 Chapter Summary

This chapter first explores the various definition of building information modeling and
gives an overview of BIM-related publication in target journals. The current adoption
of BIM and general benefits of BIM implementation in the construction industry have
been comprehensively reviewed and identified. Interoperability issues and limitation of
BIM in the construction industry have also been discussed. Then, construction
productivity has been reviewed based on selected paper from well-known academic
journals in construction management. A comprehensive definition of construction
productivity from different perspectives has been developed. Primarily used
measurements have been reviewed in measuring construction productivity. Finally,
factors influencing productivity has been explored and identified by inclusive literature

review.

42



CHAPTER 3 RESEARCH DESIGN AND

METHODOLOGY

3.1 Introduction

This chapter firstly provides an overview of how the research is conducted, as well as
the research process in detail. Then a comprehensive review of research methods and

analysis techniques employed in this research are introduced.
3.2 Research design

3.2.1 Research Approach

To identify the research problems and achieve the four specific research objectives
presented in Chapter 1, the research framework is well-designed by combining
qualitative and quantitative methodologies, applying appropriate research methods and
data analysis tools, formalizing a logical research process.

This research aims to identify the relationship between BIM implementation and
construction productivity both in design and construction stage. Through literature
review, research gaps, as well as the related definition and basic features of construction
productivity and BIM, were identified in Chapter 2. Then, by a subsequently further
document analysis, a design error reduction model and BIM-enabled construction
productivity gains model have been developed in Chapter 4. Chapter 5 assessed the
impacts of BIM implementation in reducing design error, validate the conceptual model
based on the different design error reduction (DER) indicators, as established in Chapter
4. Finally, the identified influential factors regarding construction productivity were

utilized to test the proposed model with the aim of exploring how the BIM-enabled
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factors affecting project-level construction productivity, as analyzed in Chapter 6. The

research framework for achieving these four objectives is shown in Figure 4.1.

Chapter 2

Chapter 4

Chapter 5

Chapter 6

Research Objectives

Objective 1: To comprehensively review the
extant research theories regarding BIM

implementation and construction productivity

Objective 2: To theoretically develop a BIM-
enabled design error reduction (DER) model
and BIM-based construction productivity

gains model

Objective 3: To identify the impacts of BIM
implementation in reducing design error by
using the conceptual model based on different

design error reduction (DER) indicators

Objective 4: To test the conceptual model for
probing deeper into how and to what extant
the implementation of BIM can influence the
construction productivity based on the data

from BIM-based construction projects

Data Collection Methods

Literature

review

Document

analysis

Questionnaire

survey;

Semi-structured

interviews

Figure 3.1 Research Framework

3.2.2 Qualitative research and quantitative research

Data Analysis Tools

Systematic review
method;

Statistical analysis

Content analysis

Descriptive statistics;
Analysis of variance;
Multiple regression
analysis (OLS)

It is believed that the study of positivist epistemology (theoretically grounded)

principally holds the assertion that the existence of a priori fixed relationships within

phenomena could be typically and structurally investigated, in an attempt to advance

foreseeable perception of a phenomena or theory (Orlikowski and Baroudi, 1991).

Hence, the research problems addressed by positivists reveal the need to determine and

evaluate the causal relationships among variables, whereby causes determine or

influence outcomes (Creswell, 2013). Since this study aims to increase the body of
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knowledge concerning the relationship between BIM implementation and construction
productivity, positivist research methods are appropriately applied.

Research approaches are schemes and procedures for research that follow the steps
from expansive assumption to specific methodology of gathering, analyzing, and
interpreting data (Creswell, 2013). Chambers English Dictionary defines research as a
process of conducting a careful search and systematic investigation in order to increase
the stock of knowledge (Fellows and Liu, 2015). The Concise Oxford Dictionary
extensively proposes a broader definition of research as an endeavor to perform the
systematic, scientific, and critical investigation into the extant or previous study of
materials, sources of a subject towards the foundation of facts and conclusions, devising
new applications (Fellows and Liu, 2015; Creswell, 2002). The purpose of the research
process is to generate a new perception of knowledge or deepen understanding of a
specific topic or issue (Neuman, 2002; Kothari, 2004). Qualitative research and
quantitative research are generally perceived as two primary approaches of empirical
research methods, that are fundamentally differentiated in data collection and analysis
methods (Fellows and Liu, 2009).

With the intention of achieving the research objectives, qualitative research
approaches that are drawn on observations, documentary analysis and interviews taken
from real world modeling projects aim to investigate a question without attempting to
quantifiably measure variables or identify potential relationships between variables
(Creswell, 2002; Tashakkori and Teddlie, 1998). It is viewed that qualitative research
methods could be beneficial for developing new theoretical thoughts and giving
explanations of a phenomenon (Fellows and Liu, 2015). Generally, qualitative research
is employed as a method of exploratory research as a basis for later quantitative research

hypotheses. A quantitative research approach involves a systematic empirical
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investigation of the phenomena and quantifying their relationships among variables
through a rigorous data analysis techniques. The primary data collection methods of
quantitative research are drawn on experimental, correlational, and survey approaches
(Creswell, 2002). These methods produce results that are easy to summarize, compare,
and generalize. Statistics derived from quantitative research can be used to establish the
existence of associative or causal relationships between variables, which are consistent
with the philosophical and theoretical stance of positivism.

In either qualitative or quantitative research, the researcher(s) may collect primary
or secondary data. Primary data is data collected specifically for the research, such as
through interviews or questionnaires. Secondary data is data that already exists, such as
census data, which can be re-used for the research. It is good ethical research practice
to use secondary data wherever possible. In accordance with positivist methodology,
this research employs quantitative data collection and analysis methods to empirically

test the established research model.
3.3 Research Methods Adopted

As evidenced by Kothari (2004), research methods indicated that the behaviors or tools
applied to choose and develop research techniques while research techniques refer to
those detailed operations we apply to record data, process data, analyze data and so
forth (Kothari, 2004). In order to achieve related research objectives, several research

methods will be adopted during the research process.
3.3.1 Document Analysis

Document analysis is envisaged to address research problems and questions by
investigating a variety of recorded information and published documents, incorporating

academic publications, industry reports, and reports by international organizations,
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either digital or printed (Patton, 1990). As summarized by Bowen (2009), the primary
sources of document analysis are diverse sorts of documentation, including background
papers, books and brochures, journals, newspapers, and so forth. Document analysis
can supplement the information obtained through other methods, such as interview and
questionnaire survey under certain circumstances (Bell, 2014). Generally, document
analysis is the principal qualitative method for in-depth content analysis and systematic
review of existing data, which can be grouping into two approaches in detail based on
the origins of data sources, namely, content analysis and existing data analysis. Content
analysis is defined as any technique for acting inferential processes that objectively and
systematically review and identify references from a theoretical perspective (Holsti,
1969). In this study, literature review is the major form of such analysis to collect
background information of a research study. Literature review is a frequently used
methodology applied to systematically review and consolidate the extant knowledge,
research findings, theoretical and practical contributions in a certain research domain
based on secondary sources (Merriam, 1998). It could help researchers to explore
research problems of extant works with the aim of setting up a theoretical foundation
for the current research and identifying knowledge gaps. In this research, a
comprehensive review of construction productivity and the implementation of BIM has
been conducted. Research gaps were identified and summarized to initiate the research
objectives, serving as a solid foundation for future analyses. Official publications and
reports were reviewed to explore existing achievements in the current construction
practice. Existing data analysis in this study encompassed the collection and descriptive
analysis of time-series data in public available statistical yearbooks.

The advantages of document analysis were identified by Caulley (1983). First,

document analysis is the most efficient way of collecting certain types of data, such as
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background information and it also can collect some types of retrospective data. Besides,
information obtained from documents is more reliable than that of observations and
interviews, because people may be unwilling to provide certain information. In addition,
document analysis is more convenient to perform than questionnaires, interviews, and
observations. Finally, document analysis is an inexpensive and time-saving method to

collect data implying research trends.
3.3.2 Questionnaire Survey

It is generally believed that survey could be the most commonly-used method in the
fields of construction management, as samples of data could be gleaned from a large
population in a standardized form (Saris and Gallhofer, 2007). As stated by Mangione
(1995), surveys are a comparatively inexpensive way of collecting data by allowing
respondents to have enough time to fill out the questionnaire and make inquiries if
needed. Besides, it can keep confidential information from respondents, and responses
could be evaluated in a relatively short time. In addition, respondents could fill out the
questionnaire at their early convenience and provide adequate time allowing
respondents sufficiently perceive the context of a set of questions.

The questionnaire survey is an effective instrument for conducting empirical
research for collecting quantitative data without the physical reach of the respondents
with the purpose of selecting the answers from target respondents in a standardized
form. Standardized data could be derived from respondents by providing them a series
of choices for any single question. The design of questionnaire should avoid any
ambiguous and complicated expressions and be effortless to understand and answer
(Oppenheim, 2000). The merit of conducting questionnaire surveys is to obtain a large
amount of quantitative data, providing sources of investigating and synthesizing the

major findings. However, the quality control of the data becomes difficult.
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In this research, a questionnaire survey was utilized to solicit the professional
views of the proposed models. Respondents were asked to rate the level of agreement
on the importance of each separate items based on a five-point Likert scale (1 indicates

“strongly disagree” and 5 indicates “strongly agree”),
3.3.3 Semi-structured Interview

An interview can be described as a conversation with a purpose (Bingham and Moore,
1924). Dane (1990) defined an interview as a structured conversation used to complete
a survey, in which the survey devises the structure of the conversation with the purpose
of data collection. It can be conducted in different ways, such as face-to-face interviews,
telephone interviews, and mail surveys. When the inquiries/questions regarding the
research topic are addressed, a well-structured interview is one of the most effective
ways to collect firsthand data if only interviewees can respond based on an accurate
understanding of the questions. Among the various interview types, expert interviews,
in which the interviewees are experts or experienced practitioners within the research
areas, is an effective and widely used means to directly collect the in-depth, practical
and up-to-date information.

Semi-structured interview is a method of research adopted most often in
qualitative research (Longhurst, 2003). It is an information interchange process where
interviewers aim to elicit useful and meaningful information from interviewees by
asking informal and open-ended questions in order to develop a keen understanding of
the relevant determined topic and bring about the opportunity for unfolding innovative
new ways of perceiving and comprehending particular topic predetermined (Cohen and
Crabtree, 2006). In the present study, this method was used to optimize and finalize the
key factors/criteria which were tentatively identified by literature review and document

analysis, and dig out practical problems existing in the current research process.
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3.4 Facilitated Data Analysis Techniques

3.4.1 Descriptive Statistics and Analysis of Variance

Useful information cannot be extracted unless raw data collected from various samples
is well organized (Russo, 2004). Therefore, descriptive statistics that can organize,
summarize, simplify, and interpret data sets effectively should be used to analyze the
sample data (Lee, 2008). In this research, descriptive statistical techniques were applied
to quantitatively describe or summarize features of a dataset in order to identify the
characteristics of particular groups and describe the similarities and differences among
variables. Central tendency such as mean value, and measures of variability such as
standard deviation were generated. Analysis of variance (ANOVA) was performed to
provide a statistical test of whether the mean differences of the multiple groups were
significantly associated with each other. In addition, ANOVA test could disclosure how

demographic variables influence participants’ responses.
3.4.2 Mean Score Ranking Technique

Ranking the relative importance of each variable was established by the “mean score”
method. Rankings of various influential factors were obtained by calculating the means
for the overall sample as well as for separate groups of respondents. If two or more
factors happened to have the same mean value, the one with lower standard deviation

was assigned a higher rank.
3.4.3 Multiple Regression Analysis

Regression analysis, perceived as the most broadly and frequently adopted statistical
technique, is a robust instrument for investigating and modeling the causal relationship
among variables (Efroymson, 1960). This instrument can be applied in various research

fields, such as social sciences, economics, engineering, management sciences, physical
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sciences, and so forth. Multiple regression analysis is the most common form utilized
to evaluate and analyze the relationship between a single dependent variable and several
independent variables (Edwards, 1985). It describes the process of how the typical
value of the dependent variable varies while the independent variable alters. Also, it
helps to establish a mathematical equation used to measure the proposed model being
investigated. The adjusted coefficient of determination (adjusted R?) has been widely
recognized as a measure to evaluate the goodness-of-fit of the regression model. It
judges the fit of proposed model by the comparison of different regression equations
with different number of independent variables or sample sizes (Srivastava et al., 1995).

It is of great significance to select and combine appropriate predictive variables to
evaluate the dependent variable while addressing a large number of potential
explanatory independent variables. Stepwise regression is regarded as a powerful
instrument for automatically determine the best combination of potential predictive
variables that best fits the dependent variable (Efroymson, 1960; Kutner et al., 2004).
The variable selection process terminates when all variables fit the criterion to stay in

the model and no variables outside the model fit the criterion to enter.
3.5 Chapter Summary

This chapter first describes the research design. Then, the major research methods,
including document analysis, questionnaire survey, and expert interview, are discussed
in details. The subsequent data analysis tools are introduced. In this research, a mixed
research methodology, incorporating qualitative and quantitative research methods,

was deployed to achieve research objectives.
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CHAPTER 4 THE IMPACTS OF BIM
IMPLEMENTATION ON CONSTRUCTION PROCESS: A

CONCEPTUAL FRAMEWORK

4.1 Introduction

This chapter aims to review the impacts of BIM implementation in reducing design
error during the design stage from literature with the aim of establishing a conceptual
design error reduction framework with respect to the causal relationship between the

impacts of BIM implementation and construction productivity in the construction stage.
4.2 Reduction of Design Error during Design Stage

4.2.1 The Desirability of Reducing Design Error in Construction Projects

The term ‘error’ could be defined as the occurrence of unexpected, erroneous or
deviated outcomes when carrying out a particular assignment or towards the desired
goal (Reason and Hobbs, 2003). As stated by Reason (2000), “it is not a cause of an
event, but a symptom of a much deeper problem within a system”. The concept of
design errors, also known as design deviations, are inherently defined as the errors,
omissions, or changes arising from the design process (Burati Jr et al., 1992). With the
increasing complexity of building construction projects, design errors are generally
criticized as the major contributor to the failure of buildings and other civil engineering
projects (Lopez et al., 2010; Lopez and Love, 2011), quality defects (Josephson and
Hammarlund, 1999; Sun and Meng, 2009), accidents (Lopez and Love, 2011; Lopez et
al., 2010; Rasmussen et al., 1990), lower productivity (Abdul Kadir et al., 2005), as
well as the cost overruns and schedule delays of construction projects (Love, 2002;
Love et al., 2010; Sun and Meng, 2009; Al Hattab and Hamzeh, 2015). Omissions or
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errors generated in the design phase may have severe impacts on later stages, such as
construction and operation, along with the overall project performance (Al Hattab and
Hamzeh, 2015). For example, Linderoth et al. (2014) stated that the cost of design errors
can be as high as 26% of the total cost as a result of deficiency, which in turn
incorporated 2-9% of production cost in building and construction projects. A similar
study conducted by Burati Jr et al. (1992) suggested that design errors accounted for
79% of total deviation costs, with a subsequent 9.5% of total project budgets. Lopez
and Love (2011) carried out a study by adopting questionnaire survey received from
139 projects. Results showed that the mean direct and indirect costs of design errors
were explored to be 6.9% and 7.4%, respectively. Barber et al. (2000) also revealed that
design errors contributed to 50% of costs with respect to quality failures in civil
engineer projects. These results indicated that design error costs were substantially
proportioned within overall project costs. Subsequently, once design errors are
determined reworks or change orders are inextricably entailed to rectify or repair them
that has occurred in order to match the desired requirements (Lopez and Love, 2011),
which result in schedule growth, poor productivity with low profitability (Thomas and
Napolitan, 1995; Ibbs, 1997; Hanna et al., 2002; Moselhi et al., 2005; Bower, 2000;
Love et al., 2014). Sun and Meng (2009) reported that the cost of rework can result in
10-15% of contract value in construction projects. Hanna et al. (1999) quantified the
impacts on labor efficiency by collecting data from 43 projects. The results of statistical
analysis showed an evident increase in time elongation and subsequent decrease in
labor efficiency. The adverse relationship between the number of rework and
productivity was also identified by Ibbs (1997) and Manzoor Arain and Sui Pheng
(2005). Bryde et al. (2013) also stated that construction quality can be immensely

improved by a more accurate integrated process of design and documentation.
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Driven by the presence and severity of design error, consequently, design errors
are automatically perceived as a problematic issue and plague required to be addressed
in construction projects (Al Hattab and Hamzeh, 2015). Numerous previous studies had
been preoccupied with the causes and prevention strategies of design errors, with the
purpose of attempting to build defenses to avert errors or mitigate their effects (Lopez
et al., 2010; Love et al., 2014; Al Hattab and Hamzeh, 2015). Love et al. (2011c)
established a systemic framework for error containment and reduction, and proposed a
set of organizational and project defense strategies to minimize their occurrence. The
impacts of organizational practices and project management strategies on reducing
design errors were also emphasized by Love (2002). As stated by Love et al. (2010), if
error reduction is evidenced as a primary performance indicator by owners, due to these
great beneficial incentives, the occurrence of errors could be substantially decreased in
construction projects by demanding relatively enforceable terms bound into contracts

with the aim of improving the quality of contract documentation.
4.2.2 BIM-based Design Error Reduction Model

Numerous previous researchers have investigated the attributable factors affecting
design error (Josephson and Hammarlund, 1999; Love et al., 2012; Love et al., 2011c;
Lopez et al., 2010), attempting to seek out effective strategies to prevent or mitigate
design errors (Love et al., 2008; Busby, 2001; Love et al., 2012). Managerial factors
(e.g. adverse behavior, ineffective coordination and integration, inferior
constructability) and organizational factors (e.g. inexperienced personnel, insufficient
information and knowledge sharing pattern, inadequate quality assurance) were
identified to be the principal factors influencing design errors (Lopez et al., 2010; Love
etal., 2012; Love etal., 2011b). Prevention strategies, such as a system dynamics model,

had also been developed by Love et al. (2000), which can enable designers and
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managers effectively manage the process of design documentation, thus to ameliorate
design errors. It is believed that BIM is the most frequently conceived of as a powerful
tool for visualizing and coordinating AEC work, thus to predict collisions, avoid errors
and omissions (Zuppa et al., 2009). However, rare research had been placed on
measuring and quantifying the impacts of BIM implementation in reducing design error.
Thus, this chapter aims to thoroughly assess the effects of BIM in reducing design error,
as well as develop a design error reduction model.

BIM has been evidenced by many researchers as an effective means for facilitating
design processes (Eastman et al., 2008; Son et al., 2015; Sacks et al., 2010b; Sacks et
al., 2010a; Taylor and Bernstein, 2009), reducing design error (Linderoth et al., 2014;
Love et al., 2011c; Rajendran et al., 2013), thus to achieve productivity gains (Sacks
and Barak, 2008). For example, Baoping et al. (2010) pointed out that the
implementation of BIM could effectively integrate various professional design
information, and sufficiently boost the ability to share and reuse this information.
Research efforts to date also demonstrated that BIM had the ability to facilitate
information sharing and enhance communication among project practitioners, and
furnish innovative solutions for better design (Fan et al., 2014). As evidenced by
Eastman et al. (2008), BIM made it possible for all the parties participating early in the
projects and simultaneously addressing the design information with the purpose of
shortening the time and reducing errors/omissions. Al Hattab and Hamzeh (2015)
proposed a novel design error management strategy by applying social network theory
and agent-based simulation, which was concentrated on team structures, interaction
mechanics, and error diffusion dynamics with the aim of proffering underlying
beneficial outcomes of integrating BIM and lean in design error reduction and diffusion

containment. The combination of BIM and lean management theory in construction
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was also employed by Tauriainen et al. (2016) to improve the design management
process. As indicated by Sacks and Barak (2008), BIM is particularly highly valuable
at the early stages of design, which will directly contribute to a productivity gain in
design documentation. Sacks and Barak (2008) found that the potential productivity
gain can be achieved ranging from 15% and 41% of the hours required for a project in
the drawing phase. Li et al. (2014b) presented and analyzed five comparable large-scale
projects in different phases of lifecycle under various circumstances, to demonstrate
productivity improvement due to the adoption of BIM enabling easier sharing and
integration of information and convenient collaboration.

However, rare empirical research has been placed on quantifying the impacts of
BIM on design error reduction, and quantitatively measuring the extent to which
attributable factors could have the better ability to contain design error. This chapter
first developed a conceptual framework of BIM-based design error reduction (DER)
model based on the data from literature review, as shown in Fig 3.1. Specific factors

were reviewed and described in the following section.

Clash Detection

Design Coordination

Drawing Error

Design Error Reduction

Teamwork & Cooperation

Constructability &

Practicality
e Significant
Knowledge & Information
Management |  TTTTmmmmmees > Non-significant




Figure 4.1 Conceptual framework of design error reduction model via BIM

4.2.2.1 Clash Detection

Clash detection can be the most effective means for time and cost saving by using BIM.
Conflicts, which may give rise to inconsistencies and disputes of design, could be
identified before the building was actually constructed, hence to facilitate coordination
between designers and contractors (Eastman et al., 2011). As stated by Azhar (2011),
BIM technology could be primarily used as a virtual instrument to identify latent
collisions or clashes among a variety of structural, mechanical, electrical, and plumbing
systems. Early detection via the BIM model in the design phase could be beneficial for
error reductions, with consequent cost and schedule savings. In addition, clash detection
could be an efficient way to accelerate the construction process, reduce project budgets,

minimize errors and yield a better construction process (Eastman et al., 2008).
4.2.2.2 Design System Coordination

Design coordination could be perceived as the major strengths of implementing BIM
in the early design stage by integrating and coordinating all the design systems with the
goal of avoiding conflicts. A conceptual framework proposed by Wang et al. (2013b)
denoted that BIM could be utilized as a practical tool for integrating facility
management (FM) works into early design stage with the intention of consolidating
collaboration between design team and FM team, thus to reduce modifications. As
indicated by Eastman et al. (2011), the application of BIM can coordinate all the design
systems of a building, and synthesize them into one model. To facilitate data exchange
among different design systems, BIM can be utilized as an effective tool where different
software package can communicate with each other (Grilo and Jardim-Goncalves,

2010), thus to enhance interoperability and design system coordination.
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4.2.2.3 Human Error

Design consultants always ascertained that the implementation of BIM could enhance
the quality of the documents by reducing human error as well as motivating architects
to facilitate the building process from a virtual finalized project model in the design
stage (Software, 2008). Reduced human error could yield the better ability to decrease
mistakes or omissions which would arise design error and subsequent schedule growth
(Love etal., 2011). A bad apple theory of human error proposed by Love et al. (2011a)
was regarded as latent conditions contributing to errors. A systemic model was further

developed with the aim of aiding BIM in reducing these errors.

4.2.2.4 Drawing or Document Errors/Omissions

BIM can be utilized as a tool for efficiently simulating and analyzing design drawing
and documents with the purpose of reducing incomplete, incorrect, and remiss drawings
or documents (Azhar, 2011). Four detailed case studies that utilized BIM were analyzed
by Kaner et al. (2008), revealing certain amelioration in design quality due to error-free
drawings. Sacks (2004) explored that the cost of drafting could be reduced by
approximately 80-84% through the 3D parametric modeling. Another research carried
out by Sacks and Barak (2008) suggested that the underlying productivity gains from
3D modeling could be ranged from 15% to 41% of the time requisite for drawing
outputs. Bernstein et al. (2012) also indicated that the production cycle of design
process could be substantially diminished by applying BIM in reducing document
errors and omissions. Any design changes incorporated in the BIM model could be
automatically updated, resulting in less rework by reducing drawing errors and

omissions (Eastman et al., 2011; Rajendran et al., 2013).
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4.2.2.5 Teamwork and Cooperation

The successful implementation of BIM allows all project stakeholders engaged in the
early design phase with the purpose of enhancing communication and collaboration
compared with the traditional processes (Azhar et al., 2012). As the diffusion of BIM
implementation accelerates, collaboration among project practitioners should be
promoted. A case study reviewed by Aranda-Mena et al. (2009) implied that the
implementation of BIM can increase the confidence of design processes, improve co-
ordination between various practitioners, thus to reduce rework and enhance the
functionality of design. Rajendran et al. (2013) also stated that BIM have the ability to
provide visible connections among project practitioners so as to foster design process
and faster collaboration. Meanwhile, synchronized information with respect to
construction time, cost and quality could be afforded in the BIM model with the aim of
achieving common objectives (such as error reduction) within all participants (Baoping

etal., 2010; Wu and Issa, 2013).

4.2.2.6 Constructability and Practicality

It is believed that BIM technology will substantially elevate the efficiency and
effectiveness of delivery processes and the constructability of a facility (Sacks et al.,
2010b; Rajendran et al., 2013). Bynum et al. (2013) ascertained that the capability of
applying BIM to virtually constitute a building prior to constructing the real-world
building yields an operative approach to examine its constructability in the real projects
and to address any indeterminacies or discrepancies during the design process. This
resulted in more efficient work of advancing design process and decreasing design
errors. Also, the digital and computable data could be easily utilized by project teams

to enhance the constructability and practicality of construction projects (Azhar, 2011),
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as well as promote cooperation and coordination of all project participants (Rajendran

etal., 2012).

4.2.2.7 Facilitate Knowledge and Information Sharing

Knowledge and information could be interchanged and applied among construction
practitioners and site engineers to discover and alleviate problems on site and decrease
the time and cost of addressing matters related to constructability (Benjaoran and
Bhokha, 2009; Ho et al., 2013). As ascertained by Linderoth et al. (2014), BIM can
perform a vital role in facilitating knowledge, information, and expertise sharing in
order to prevent design errors. Motawa and Almarshad (2013) proposed an integrated
knowledge-based BIM system to capture information and knowledge with the purpose
of perceiving the extent to which a building is deteriorating, thus to carry out preventive
or corrective measures. A corresponding system developed by Ho et al. (2013)
indicated that the BIM-based knowledge sharing management (BIMKSM) system
could be an effective process of promoting knowledge sharing among construction
practitioners. A study performed by Josephson and Hammarlund (1999) suggested that
the lack of knowledge, information, and motivation were generally considered to be the
primary factors inducing the occurrence of defects due to design errors in building
construction projects. Results showed that a total of 62% of design defects could be

ascribed to the inadequacy of knowledge and information.

4.3 Impacts of BIM Implementation on Construction Productivity

during Construction Stage

4.3.1 Introduction

Although the usage of BIM for improving construction productivity has attracted much

attention of researchers, little research has been reported on quantifying the
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comprehensive impacts of BIM implementation on construction productivity in
construction stage. For example, Issa and Suermann (2009) conducted a survey
assessing the impact of BIM implementation on construction process based on six
primary construction key performance indicators commonly used in the construction
industry: quality control (rework), on-time completion, cost, safety, dollar/unit
performed, and units per man hour. Results showed that quality, on-time completion,
and units per man hour were the highest ranking KPIs responses preferred when
utilizing BIM. Case studies conducted by Chelson (2010) demonstrated that field
productivity gains could be improved as high as 5 to 40% according to BIM practices.
Bryde et al. (2013) investigated 35 construction projects that adopted BIM and
identified the most reported benefits of BIM implementation were cost savings and
containments, together with reduced project schedules. Generally, when a building is
constructed in a BIM-based virtual environment, productivity gains can be achieved
through better collaboration and coordination among AEC professionals, diminished
production cycle times, reduced project costs with faster cost estimation, and improved

quality performance (Eastman et al., 2011; Bryde et al., 2013).
4.3.2 BIM-based Construction Productivity Gains
4.3.2.1 Labor Productivity (LP)

The positive impacts of BIM on labor productivity had been investigated and
demonstrated by many scholars. Four detailed case studies that utilized BIM were
analyzed by Kaner et al. (2008), revealing certain amelioration in design quality due to
error-free drawings, and a stable growing enhancement in labor productivity. Khanzode
et al. (2008) investigated a case study quantitatively measuring the benefits of BIM on
labor productivity. Findings showed that labor productivity of all the MEP contractors
could be improved ranging from 20%-30% through BIM-enabled coordination of MEP
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systems. Poirier et al. (2015) conducted an action research which aimed at assessing
and quantifying the impacts of BIM on project performance in terms of labor
productivity based on a large commercial project. Results indicated an apparent
increase in labor productivity, and a substantial improvement ranging from 75% to 240%
when combined with BIM and prefabrication. Furthermore, this research initiated an
idea allowing organizations to incessantly evaluate the project performance in the light

of labor productivity.
4.3.2.2 Communication and Coordination (CC)

Ho et al. (2013) developed a visual BIM-based knowledge sharing platform allowing
project professionals to communicate and reused information easily and effectively,
thus to reduce the time and cost for addressing construction problems. As indicated by
Nath et al. (2015), significant productivity improvement opportunities could be
obtained by BIM-enabled tool for enhancing communication and collaboration among
all project participants. Improved collaboration would greatly enhance the flexibility
and clarity among all project stakeholders with the aim of facilitating construction
process. In addition, the proactive involvement of all practitioners could streamline the
integrated information sharing process to discover and address problems in a timely

manner (Kim et al., 2015).
4.3.2.3 Site Resource Planning and Management (SRPM)

BIM has been utilized for Augmented Reality (AR) to enhance the productivity of on-
site work. Likewise, a workspace conflict verification system was developed by Moon
et al. (2014) to analyze the workspace information by integrating algorithms that
include the automated generation of workspace models and an automatic check of

workspace conflict based on BIM simulation. This practical system can reduce
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workspace conflicts to improve productivity, and overlapped activities can be
rescheduled to minimize the collisions. Additionally, by using BIM models,
construction professionals can figure out and optimize the labor force along with
required materials and equipment during construction. Combined with construction
schedules, accurate quantities of materials and equipment can be evaluated by BIM
model with the purpose of offering sufficient resource at different points in time, as
well as decrease wastage (Chau et al., 2004; Becerik-Gerber et al., 2011; Kim et al.,

2015).
4.3.2.4 Simulate master schedules and construction sequences (SSS)

With a 3D BIM model, it is available to virtualize constructability and construction
sequences of projects before commencement (Grilo and Jardim-Goncalves, 2010), thus
to predict potential collisions and construct a reasonable construction schedule with
rational construction sequences. For example, a building information model can be
effectively applied to coordinate material distribution and optimize delivery schedules
for all building components and construction processes. BIM software makes the
quantities of building components automatically inserted, extracted or updated when
any modifications made within the model, resulting in approximately 80% reduction of
time for cost estimation (Azhar, 2011). Wang et al. (2014a) proposed an interface
system that deployed the BIM’s ability with respect to quantity takeoffs of required
materials to support site schedules and sequences simulation, coordinate multiple
operational sequences, and estimate resource allocation schemes, ultimately leading to
the generation of better project schedule. This can serve as a base to precisely arrange
time duration and allocation strategies of work tasks in order to create a reasonable and
optimal construction schedule. It should be noted that BIM-based decision support

method for master planning could be primarily applied in design and construction stage.
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Therefore, Kim et al. (2015) developed an integrated decision support systems
allowing automatically assessment and visualization of multiple development scenarios

to assist stakeholders in making informed decisions for the master plans over time.
4.3.2.5 Shorten Project Duration (SPD)

Time savings has been regarded as the most beneficial factors that utilizes BIM for
productivity improvement during construction. A study performed by Bryde et al. (2013)
showed that significant time savings were obtained by the implementation of BIM
during design and construction process, leading to improved coordination and
communication of all practitioners. Enhanced collaboration among different
practitioners could facilitate the decision-making process, and reduce rework due to
better production quality with the aim of reaching duration improvement (Azhar, 2011;
Issa and Suermann, 2009). In addition, drawings from different professions can be
imported to BIM software to conduct clash detection, thus to save time and reduce
repeated work. This can lead up to 7% reduction in project duration (CRC, 2007). Nath
et al. (2015) proposed a BIM-based workflow in an attempt to streamline the shop
drawings generation process, suggesting that total productivity could be improved by
nearly 38% for the whole time. This could substantially reduce the error-prone manual
manipulation of extracting building components information into actual construction

process (Kim and Cho, 2015).
4.3.2.6 Quantity Takeoff and Cost Estimation (QTCE)

Conventional ways of cost estimates have difficulties to accommodate cost overruns
incurred by unexpected omissions or errors, unforeseen situation, like delay and rework
(Mills et al., 1999). Due to the complex consumption and disbursement of funds and

limited technologies to instantly update the enormous amount of information, it is hard
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for stakeholders to manage and control detailed cost, coping with data in real time (Li
et al., 2014a). Numerous previous studies have demonstrated that BIM is a prominent
approach of addressing costs problems by optimizing construction design, construction
schedule, and resource management, reducing rework and minimizing unnecessary
errors and waste (Singh et al., 2011; Li et al., 2014a).

Based on the quantitative information in the BIM, construction cost estimation can
be produced by linking it to a cost database. Any detailed information or changes made
to the project will be reflected in the model (Grilo and Jardim-Goncalves, 2010). Shen
and Issa (2010) demonstrated that BIM-assisted Detailed Estimating (BADE) tools
have advantages of traditional estimating methods for entry-level users. The
performance of detailed estimate was considerably affected by both the visualization
and aggregation functions of BADE tool. Wang et al. (2013a) proposed a framework
and explored that BIM can be beneficial to facility management in the design phase,
where early adoption of BIM can dramatically reduce life-cycle costs. As figured out
by Li et al. (2014a), BIM-base cost estimates can largely alleviate the workloads of
estimators and reduce the likelihood of loss and errors. They also proposed a cost-
oriented framework in order to prove the merits of BIM. Azhar (2011) also pointed out
that BIM-based approach can achieve nearly 40% reduction of unbudgeted change and

3% improved precision of cost estimation.
4.3.2.7 Minimize Project Costs (MPC)

Potential productivity improvements can also be found in minimizing project costs.
Giel and Issa (2011) carried out case studies concentrated on return on the investment
(ROI) of implementing BIM based on three similar projects. Findings implied that BIM
was a desirable and valuable investment, as it could be beneficial for cost savings

associated with less rework, reduced requests for information (RFIs), fewer change
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orders, and shortened project duration. BIM allows clash detection and in the early
design stage, thus to avoid rework and change orders in the construction stage. While
applying BIM technology, conflicts or design deficiencies can be identified before
actual construction, hence, the cost of rework can be substantially decreased (Barlish
and Sullivan, 2012). As identified by Bryde et al. (2013), significant cost savings could
be achieved by effectively implementing BIM on construction projects due to the

enhanced collaborative environment within less rework and fewer change orders.
4.3.3 A Conceptual Framework

Based on the aforementioned factors, a conceptual model was developed to evaluate

the impacts of BIM on construction productivity, as shown in Figure 3.2.
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Figure 4.2 Conceptual framework of BIM-enabled construction productivity gains model
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4.4 Chapter Summary

This chapter first expresses the desirability of reducing design error in the construction
projects, then research on the impacts of BIM implementation in reducing design error
during design stage are examined to establish a conceptual framework of design error
reduction model. By reviewing relevant research with respect to the impacts of BIM on
construction productivity, a conceptual framework of BIM-enabled construction

productivity gains model is also built up.
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CHAPTER 5 THE IMPACTS OF BIM

IMPLEMENTATION IN REDUCING DESIGN ERROR

5.1 Introduction

This Chapter aims to assess the impacts of BIM implementation in reducing design
error, validate the conceptual model based on the different design error reduction (DER)
indicators, as established in Chapter 4, incorporating clash detection (CD), design
coordination (DC), human error (HE), drawing error (DE), teamwork and cooperation
(TC), constructability and practicality (CP), and knowledge and information sharing
(K1), and identify which indicator can yield the better ability to predict the effects of
BIM implementation in reducing design error. Seven underlying attributable indicators
identified from the literature are discussed in section 5.2. Section 5.3 describes
measurement development and the methods of data collection. Data analysis and results
are presented and discussed in section 5.4. These outcomes are further analyzed in

section 5.5. Section 5.6 summarizes the chapter.

5.2 Methods of Data Collection

5.2.1 Measurement Development

With the purpose of identifying the impacts of BIM in reducing design error, a
questionnaire survey was conducted as the primary means of collecting project-based
data. Generally, a questionnaire survey is applied to collect quantitative data scaled by
respondents, and thus for statistical analysis. The strength of utilizing questionnaire
survey is to acquire a large amount of quantitative data, providing sources of
investigating and synthesizing the major findings (Creswell, 2013). As suggested by

Bradburn et al. (1992), the mixed data collection methods, consisting of literature
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review and semi-structured interviews, were employed in order to better design the
survey and to acquire more accurate, valid, and detailed information with respect to the
respondents. In achieving this, an exploratory and thorough literature review was
initially performed to gain a rudimentary understanding of the attributable factors
affecting design errors through the implementation of BIM. Drawn on the information
gleaned from the literature, a draft of the questionnaire survey was created in plain and
clear language to strengthen the respondents’ ability to make a sound judgment (Aibinu
and Jagboro, 2002), in order to collect data regarding BIM-related factors influencing
design error. Then, with the purpose of yielding a balanced review of the research topic
from different backgrounds, the questionnaire was sent to 14 experts in the field of BIM
implementation, incorporating two academic researchers, three clients, three designers,
three contractors, and three consultants. The aim of this pre-test process was to evaluate
the appropriateness and rationality of the questionnaire, examine the scope and content,
as well as identify the obscure expressions (Oppenheim, 2000). Based on the feedback
from experts, the questionnaire was further modified and subsequently disseminate to
targeted project-based respondents.

The questionnaire items applied to measure the impacts of BIM in reducing design
errors were developed built on the information captured from the literature and experts’
views. These factors were principally based on a comprehensive review of the
frameworks presented by Eastman et al. (2011), Rajendran et al. (2013), Azhar (2011),
Azhar et al. (2012), Lee et al. (2015) and Love et al. (2011c) as well as the outcomes of
preliminary expert interviews. With the additional modification based on the feedback,
a total of 7 factors were ultimately encompassed into the questionnaire (see Table 5.1).
The overall impact of BIM implementation in reducing design error was evaluated on

a five-point scale. Then, respondents were asked to rate the level of agreement on the
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importance of each separate items based on a five-point Likert scale (1 indicates
“strongly disagree” and 5 indicates “strongly agree”), and their detailed measurement

items are presented in Table 5.1.

Table 5.1 Measurement items for analyzing the impacts of BIM in reducing design error

Code Items Reference

CD Clash detection Eastman et al. (2011); Azhar (2011); Eastman et
al. (2008); Eastman et al. (2011)

DC Design coordination Wang et al. (2013b); Eastman et al. (2011)

HE Human error Lee et al. (2015); Love et al. (2011b); Love et al.
(2011a); (Love et al., 2011c)

DE Drawing error Azhar (2011); Kaner et al. (2008); Sacks (2004);

Sacks and Barak (2008); Bernstein et al. (2012);
Eastman et al. (2011); Rajendran et al. (2013)

TC Teamwork and cooperation Azhar et al. (2012); Aranda-Mena et al. (2009);
Rajendran et al. (2013); Baoping et al. (2010); Wu
and Issa (2013)

CP Constructability and Sacks et al. (2010b); Rajendran et al. (2013);
practicality Bynum et al. (2013); Azhar (2011)

Kl Knowledge and information Linderoth et al. (2014); Benjaoran and Bhokha
sharing (2009); Ho et al. (2013); Motawa and Almarshad

(2013); Josephson and Hammarlund (1999)

Note: Where CD = clash detection, DC = design coordination, HE = human error, DE = drawing
error, TC = teamwork and cooperation, CP = constructability and practicability, KI = knowledge

and information sharing.

5.2.2 Sampling and Data Collection

This study only incorporated experts and construction projects from the Chinese
mainland to construct the sampling frame. Since the implementation of BIM was
relatively rare in China, a completely random sampling or stratified sample would not
be appropriate. Alternatively, diversified sorts of BIM-based construction projects and
proper respondents were selected and identified by contacting professionals in BIM
implementation, visiting pioneering corporations skilled in adopting BIM, searching

technical groups of developing BIM technology. The target respondents were identified
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by selecting the informed senior and specialized personnel directly participating in
BIM-based projects. Consequently, a wide variety of BIM-based projects with five
developed geographic locations, together with different project characteristics was
selected to intensify the representativeness of the sample and thus yield a better view
of industry practice.

The finalized questionnaire involves two parts. The first part was designed to
collect background information regarding the respondents and projects, such as work
experience, educational background, type of project participants, the number of BIM-
based projects involved in, and so forth. The second part contains rating the overall
impact of BIM implementation in reducing design error and the seven contributory
factors. The data of questionnaire survey was collected by using three means including

e-mail invitation, online survey system (www.sojump.com) and personal visits. Over a

period of 3 months from November 2015 to January 2016, ultimately, a total of 155
questionnaires were returned from four regions with five cities of China, including
North (Beijing), South (Guangzhou and Shenzhen), East (Shanghai), West (Chongging).
After excluding invalid or incomplete questionnaires, the remaining 120 valid
questionnaires, representing a great response rate of 77.4%, were identified and used
for subsequent analysis. After completing the questionnaires, most respondents were
glad to provide further explanations of their answers and expected to obtain the results
of the questionnaires. Among the 120 valid responses, 46.67% were collected through
the online survey system, with the remaining 35% and 18.33% gleaned by personal
visits and e-mail invitation, respectively. ANOVA and Chi-square test were employed
to compare the answers from the three types of responses, and no significant differences
were found. The demographic information of these 120 respondents is presented in

Table 5.2.
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Table 5.2 Demographic information of targeted respondents

Parameter  Category N % Parameter ~ Category N %
type of Client 25 2083 Number  1-2 83 69.17
project
participants  pesigner 32 2667 34 25 20.83
Contractor 35 2917 56 8 6.67
Consultant 28 23.33 Above 6 4 333
Work Below 2 29 1833 Number® Below 1 8 6.67
experience ' '
2-5 39 32,50 1-3 67 55.83
5-10 42 35.00 3-5 30 25.00
10-15 12 10.00 57 10 8.33
Above 15 5 417 Above7 5 417
Educational Below
background junior 5 4.17
college
Junior
college 9 7.50
Bachelor 65 54.17
Master 33 27.50
Doctor 8 6.67

aNumber of BIM-based projects involved; "Number of years for implementing BIM.

The respondents come from a mixed type of project participants, with 20.83% from
clients, 26.67% from designers, 29.17% from general contractors, and 23.33% from consultants.
Most of the respondents are senior and professional personnel knowledgeable of BIM
implementation or directly involved in the BIM-based projects. 49.17% of the respondents
showed more than 5 years’ work experience. In addition, 88.34% hold Bachelor’s degree or
higher degree. These are perceived sufficient to acquire sound judgement from qualified
respondents in this research. However, 69.17% of the respondents only participated in one or
two BIM-based projects. In consistent with this results, 62.50% of the respondents showed that

years of implementing BIM were still stayed on the preliminary stage (below 3 years). The
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results indicated that the implementation of BIM in Chinese construction projects was
still in an infant and immature stage.

Table 5.3 Demographic information of targeted projects

Parameter Category N %

Project size Below 100 million 22 18.33
100-500 million 30 25.00
500-1000 million 26 21.67
1000-1500 million 18 15.00
1500-2000 million 13 10.83
Above 2000 million 11 9.17

Location North China 28 23.33
East China 56 46.67
South China 24 20.00
West China 12 10.00

As shown in Table 5.3, the projects are diverse in terms of project size and location.
The majority (86.67%) of BIM-based projects are mainly located in the regions of East
China, North China, and South China, suggesting a non-balanced distribution of
surveyed projects. This unsymmetrical distribution was principally attributed to the
imbalanced level of economic development, especially located in the large cities, such
as Shanghai, Beijing, Guangzhou and Shenzhen. The distribution of investment value
of the projects was primarily placed on the spectrum ranging from 100 to 1000 million,

with a total percentage of 46.67%.
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5.3 Data Analyses and Results

5.3.1 Descriptive Statistics and Analysis of Variance

Descriptive statistics analysis of responses derived from targeted respondents is
presented in Table 5.4, showing the mean score with the standard deviation of each
indicator. The bold value in Table 5.4 denotes the ranking of importance ratings for
each indicator. As demonstrated by Fraenkel et al. (1993), in case of two or more
indicators processing the same mean value, the one with lower standard deviation
would be deemed as more influential. Therefore, the ranking of KI is much higher than
that of TC with the same mean value. Of all the seven indicators, Clash detection and
design coordination obtain the highest mean score with a value of 4.41 and 4.29,
respectively. These are followed by drawing error (4.17), constructability and
practicability (4.03), and human error (3.92). Knowledge and information sharing, and

teamwork and cooperation are the two least scored indicators.

Table 5.4 Measurement indicators for constructs in assessment of reducing design error

Construct Code Items description Mean SD

Clash detection CD  Early detection of collisions via BIM substantially 4.41(1) 0.66
reduced design error and subsequent rework

Design DC Integrating and coordinating all the design 4.29(2) 0.76

coordination systems with the goal of avoiding conflicts and
enhancing collaboration

Human error HE  Human error could be reduced through the 3.92(5) 0.87
implementation of BIM

Drawing error DE  Drawing errors/omissions could be greatly 417(3) 0.78
ameliorated through BIM implementation

Teamwork and TC BIM could enhance TC in the early design phase ~ 3.88(7)  0.90

cooperation with the purpose of enhancing communication and
facilitate design process
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Constructability CP BIM could substantially improve the efficiency 4.03(4) 0.83
and practicality and effectiveness of delivery processes and the
constructability of a facility

Knowledge and Kl Kl could be sufficiently interchanged and applied  3.88(6) 0.83
information among construction practitioners, thus to discover
sharing and alleviate problems in the early design phase

The aggregated impacts of BIM on design error reduction (DER) was also
measured by the same respondents via the five-scale method. Results showed a mean
value of 4.03 with the standard deviation 0.81. This aggregated factor was used to as
the dependent variable for later regression analysis. Reliability of the constructs was
tested by deploying Cronbach’s coefficient alpha. The alpha levels for each of the
constructs were higher than the threshold of 0.70, indicating the scales were a reliable
measure to be accepted (Cronbach, 1951). A test for internal consistency and reliability
of these indicators provided a satisfactory Cronbach’s coefficient alpha of 0.874.
ANOVA tests were then performed to identify how the aggregated impacts of BIM on
DER were associated with different types of project participants, respondents’ work
experience, and project size. The results of these tests are illustrated in Table 5.5 and

Table 5.6.

Table 5.5 Results of ANOVA tests for the aggregate impacts of BIM on DER by
respondent’s background

Parameter  Category N Mean SD Ss§? F-value p-value
type of . Between
project Client 25 3.96 0.83 groups 0.57 0.29 0.831
participants
Designer 32 4.16 0.86  Withingroups  76.09
Contractor 35 3.84 0.65  Total 76.66
Consultant 28 4.09 0.96
Work Between
experience Below 2 22 3.76 0.74 groups 3.64 1.43 0.232
2-5 39 4.02 0.82  Withingroups  73.03
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5-10 42 4.18 0.79  Total 76.67

10-15 12 3.96 0.86

Above 15 5 3.92 0.71

45S= sum of squares

As displayed in Table 5.5, designers report the highest rating than any other type
of project participants. And the type of project participants is found to be insignificantly
associated with the dependent variable, indicating that the impacts of BIM on DER
have no significant correlation with the type of project participants. A similar result is
also revealed in the association between respondents’ work experience and the impacts
of BIM on DER. Both of the results are further analyzed by the ordinary least squares
(OLS) regression method, which indicates the same insignificant outcomes. Although
no statistically significant differences are evidenced by ANOVA test between the
impacts of BIM on DER and project size, as shown in Table 5.6, the result of OLS
regression analysis demonstrates the two variables are statistically positively associated
(F= 8.059, p= 0.005, B= 0.131). This result suggests that larger projects may have
greater impacts on design error reduction through BIM implementation. A series of
ANOVA tests are also conducted to assess the differences in the mean value of seven
independent variables (including CD, DC, HE, DE, TC, CP, KI) from different
backgrounds. The comparison results reveal that none of the difference is significant at
the level of 5% confidence interval (p-values range from 0.156 to 0.760), indicating
that both the types of project participants and work experience have not aroused

substantial data biases.

Table 5.6 Results of ANOVA tests for the aggregate impacts of BIM on DER by project
background
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F- p-

Parameter Category N % Mean SD SSe
value value

Project Below 100 Between
size million 22 18.33 4.18 0.85 groups 5.87 1.89 0.121

100-500 30 2500 397 o077 Within 70.80

million groups

500-1000 26 2167 417 065 Total 76.67

million

1000-1500

million 18 1500 3.76 0.78

1500-2000 13 1083 389 0.75

million

Above 2000 11 917 385 104

million

a5S= sum of squares
5.3.2 Multiple Regression Analysis

In identifying the impacts of seven potential influential indicators on design error
reduction, multiple regression analysis was performed by using SPSS (Version 20) with
the data from 120 respondents. Multiple regression analysis is employed to investigate
the relationship between a single dependent variable (DER) and several potential
independent variables, including clash detection (CD), design coordination (DC),
human error (HE), drawing error (DE), teamwork and cooperation (TC),
constructability and practicality (CP), knowledge and information sharing (KI). An
assessment of internal consistency and reliability of these indicators provides a
satisfactory Cronbach’s coefficient alpha of 0.874. Multicollinearity is tested by the
variance inflation factors (VIF), a measure that evaluates the degree of multicollinearity
among the predictive variables (O’brien, 2007). Most commonly used the rule of thumb
associated with VIF is 10, indicating a sign of severe collinearity among potential
independent variables (Draper and Smith, 2014). Standardization of the coefficient is
habitually employed to address the problems that which of the predictable variables
have a greater effect on the dependent variable regardless of the different units
measured in the multiple regression model (Aiken et al., 1991). Regression diagnostics
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was undertaken to examine the appropriateness of the assumptions made by fitting a
regression model to a specific set of data (Belsley et al., 2005). With the utilization of
SPSS 20.0, it is found that the regression model is generally fitted under the following
assumptions of linearity (the relationships between the DER and the predictive variable
is linear), normality (the errors is normally distributed), homoscedasticity (the errors
variance is constant), and independence (the errors associated with one observation are
not correlated with the errors of any other observation).

The resultant outcomes of regression analysis on the single dependent variable
DER and the independent variables are depicted in Table 5.7. The maximum VIF (2.368)
in the Table was greatly lower than the threshold point of 10, implying that
multicollinearity would not increase the standard errors of the DER model estimate
(VIF ranging from 1.748 to 2.369). Multiple regression equations (RPE) with six
determining factors are finally reflected as Equation 5.1. The outcomes from the best-
fit evaluation of multiple regression model indicated a p-value of less than 0.05 with its
associated adjusted R? values more than 0.70, which implied goodness-of-fit models.
Results of the multiple regression analysis revealed the value of adjusted R? was 0.752,
indicating a good fit model. The Durbin-Watson value was 2.094, which meant the
residual errors was also normally distributed.

Table 5.7 Multiple regression analysis for DER model

Model Design error reduction model
Unstandardized coefficients Stand:_;lr@zed Multicollinearity
Independent coefficients ) "
variable
B Standard B VIE
error
Constant 0.255 0.276
CD 0.506*** 0.600 0.433 1.759 0.001 1.866
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DC 0.245* 0.074 0.216 2.225 0.028 2.368
HE -0.022 0.063 -0.021 -0.346  0.230 1.748
DE 0.255*** 0.064 0.239 3.813 0.000 1.883
TC 0.049* 0.062 0.021 0.256 0.032 2.186
CP 0.236** 0.060 0.203 1.759 0.002 1.866
Kl 0.122* 0.063 0.105 1.936 0.026 2.019

Note: Where clash detection = CD, design coordination = DC, human error = HE, drawing error
= DE, teamwork and cooperation = TC, constructability and practicality = CP, knowledge and
information sharing = KI; P* < 0.05, P** < 0.01, P*** < 0.001

As shown in Table 5.7, all the six independent variables (CD, DC, DE, TC, CP,
and KI) are statistically significant with the dependent variable DER, except for HE.
The p-value of this independent variable indicates that human error is not significantly
associated with DER at the 5% level of the confidence interval. Consequently, the
regression analysis determined six significant independent variables, which are
positively associated with the dependent variable DER. These are:

CD***: Early detection of collisions via BIM substantially reduced design error
and subsequent rework.

DC*: Integrating and coordinating all the design systems with the goal of avoiding
conflicts and enhancing collaboration.

DE***: Drawing errors/omissions could be greatly ameliorated through BIM
implementation.

TC*: BIM could enhance teamwork in the early design phase with the purpose of
enhancing communication and facilitate the design process.

CP**: BIM could substantially improve the efficiency and effectiveness of delivery

processes and the constructability of a facility.
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KI*: Knowledge and information could be sufficiently interchanged and applied
among construction practitioners, thus to discover and alleviate problems in the early
design phase.

Drawn on the six determining indicators, the design error reduction model was

modified ( and the associated valences of the standardized B weights) to demonstrate

the causal relationship between the dependent and independent variables, as shown in
Figure 5.1. Final model coefficients are presented in Table 5.7. The regression equation
can be expressed as:

DER Model = 0.255 + 0.506CD + 0.245DC + 0.255DE + 0.049TC + 0.236CP +

0.122KI Eg. (5.1)

Clash Detection

Design Coordination

0.433***

Human Error

Drawing Error 0.239%%*: —» | Design Error Reduction

Teamwork & Cooperation /

0.203**

0.021

0.105*

Constructability &

Practicality
_ Significant
Knowledge & Information
Management |  TTTTmomosoee > Non-significant

Figure 5.1 Results of multiple regression analysis for design error reduction model

5.4 Discussion of Findings

The primary research objective of this chapter is to identify the impacts of BIM in
reducing design error in Mainland China, a country with the largest construction

industry of the world. Literature review is employed to conduct an overview of the
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implementation of BIM in reducing design error in Chinese mainland construction
projects, thus to establish a conceptual framework to measure how the contributory
indicators affecting design error through the implementation of BIM. Then, data
derived from questionnaire survey is used to examine the conceptual model with the
purpose of developing a validated and modified model based on the practices of
construction practitioners.

Seven potential indicators are found to be influential factors affecting design error
from literature, which comprise clash detection (CD), design coordination (DC), human
error (HE), drawing or document errors/omissions (DE), teamwork and cooperation
(TC), constructability and practicality (CP), and knowledge and information
management (KI). Clash detection and design coordination are found to be the two-
most important (Mean = 4.41, 4.29 respectively) indicators from respondents’ rating.
This corresponds with the previous investigations that BIM was frequently used as a
visualization tool allowing for automatic detection of errors related to building
components (Lee et al., 2012; Lee et al., 2015; Love et al., 2011c).

Then, multiple regression analysis (ordinary least square) is deployed to inspect
and verify the latent indicators. Ultimately, six determining indicators are identified.
As shown in Fig. 5.2, six attributable factors are revealed to be statistically significant
with the impacts of BIM on design error reduction, among which clash detection

(standardized B = 0.433, p*** < 0.001) has the best ability to positively affect design

error reduction. Thus, clash detection is perceived as the most beneficial factor from

the implementation of BIM in deducting design error. After CD, DE ( standardized B =
0.239, p*** < 0.001), DC (standardized B = 0.216, p*** < 0.05), and CP (standardized

B = 0.433, p** < 0.01) are also found to have great potential impacts on design error
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reduction. Kl (standardized 8 = 0.105), p* < 0.05) and TC (standardized g = 0.021, p*

< 0.05) are the two least influential factors affecting design error. Noteworthy, the
indicator of human error is excluded from the model by conducting multiple regression
analysis using ordinary least square method. Results showed that human error is no
statistically significant associated with the dependent variable DER. This outcome is in
consistent with the Reason (2000) and Love et al. (2011c)’s belief that human error is
an innate feature of human nature. Also, Foord and Gulland (2006) ascertained that it
is impossible to design technological systems to preclude human errors. Additionally,
the assertion that BIM will reduce human errors during design stage is misguided, with
respect to the diverse sets of exogenous and endogenous variables affecting a designer’s
cognition and capability to execute tasks (Busby, 1999; Love et al., 2011a).

The research findings provide several practical implications. BIM users need to
boost their professions to facilitate the design process and to proficiently plan and
manage the design and documentation process with the aim of intensifying the
effectiveness of clash detection, design coordination, and drawing error containment.
In addition, the teamwork of all construction practitioners engaged in the design process
should be improved to reach close cooperation and collaboration through the extensive
utilization of BIM. Moreover, designers should enhance the constructability and
practicality of design work through effectively facilitating knowledge and information
sharing process both within different design teams and among all stakeholders. Despite
of these implications from empirical study, as indicated by Love et al. (2011c), BIM
will considerably improve the efficiency and effectiveness of design process only by
juxtaposing with other organizational and project-related strategies that have been
verified. Otherwise, BIM will become a sole driver for error containment, which may

give rise to the failures that would impair the performance and productivity of
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construction projects. The effective implementation of BIM in design stage can be a
source of improving productivity for subsequent stages, such as construction and

operation (Son et al., 2015).
5.5 Chapter Summary

Design error is not only a recognized hazard for cost and schedule overruns in Chinese
construction projects, but a global plague in the construction industry. Findings from
this chapter consolidate the existent knowledge with recent new evidence from
Mainland China projects, which aids to expand the existing intellectual cognition with
respect to construction community by construction practitioners. Assessing the effects
of BIM implementation on design error reduction are vitally important for promoting
industry practice. Based on an investigation of 120 respondents from BIM-based
construction projects, this chapter has developed a design error reduction (DER) model
to measure the impacts of BIM implementation in reducing design error. Finally, six

determining factors are identified.
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CHAPTER 6 THE IMPACTS OF BIM

IMPLEMENTATION ON CONSTRUCTION

PRODUCTIVITY

6.1 Introduction

Relied on the investigation of 120 professionals from BIM-based construction projects,
Chapter 5 has empirically examined how and to what extent the impacts of BIM
implementation on design error reduction during the design stage. Although building
up a design error reduction model and proffering insightful thoughts into the association
between BIM implementation and design error reduction, the positivistic research in
Chapter 5 has not comprehensively investigated the impacts of BIM on construction
projects during the construction stage. As illustrated in Chapter 2, the large majority of
prior studies have primarily concentrated on identifying incentive factors and barriers
of BIM adoption in the construction industry (Bernstein and Pittman, 2004; Cerovsek,
2011a; Ku and Taiebat, 2011; Gu and London, 2010), or on unfolding project benefits
gained from BIM utilization in construction projects (Bryde et al., 2013; Poirier et al.,
2015; Hergunsel, 2011; Barlish and Sullivan, 2012), or on reporting the business value
or potential profitability of applying BIM (Bernstein, 2015; Bernstein et al., 2012;
Young et al., 2009; Lee et al., 2012). Nevertheless, despite of some research having
measuring the impacts of BIM on labor productivity at activity level (Poirier et al., 2015;
Kim et al., 2015), sparse scholarly attention has been focused on demonstrating the
principal impacts of BIM implementation on construction productivity at project level

during the construction stage.
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Therefore, drawn on the conceptual framework concerning the impacts of BIM
implementation on construction productivity, as developed in Chapter 4, this chapter
aims to test the conceptual model for probing deeper into how and to what extent the
contributory factors can influence the project-level construction productivity. As
illustrated in Chapter 4, the variables of labor productivity (LP), communication and
coordination (CC), site resource planning and management (SRPM), SSS (simulate
master schedule and construction sequences), shorten project duration (SPD), quantity
takeoff and cost estimation (QTCE), and minimize project cost (MPC) are perceived as
reflective factors on BIM-enabled construction productivity gains. Additionally,
productivity performance ratio is utilized to measure the aggregate impact of BIM

implementation on construction productivity.

6.2 Methods of Data Collection

6.2.1 Measurement Development

With the aim of empirically testing the conceptual framework proposed in Section 3.3,
the questionnaire survey was utilized as the primary means to collect data from BIM-
based construction projects. The advantage of using questionnaire survey is to have a
large amount of quantitative data, allowing exploring and synthesizing the major
findings (Creswell, 2013). Eisenhardt (1989) suggested that mixed data collection
methods, comprised of document analysis and semi-structured interviews, were
deployed to better conceive the questionnaire survey and to obtain more accurate,
specialized, and elaborate information from the target respondents. In achieving this,
an exploratory and exhaustive document analysis was first performed to gain a
preliminary understanding of the influential indicators affecting construction

productivity through the implementation of BIM. Based on the information gleaned
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from the literature and industry practice, a draft of the questionnaire survey was
formulated in plain and clear language to reinforce the respondents’ ability to make a
sound judgment (Aibinu and Jagboro, 2002). Semi-structured interviews with ten
experts were then carried out to pre-test the rationality and validation of related
constructs. The ten interviewed professions with different backgrounds incorporated
two academic researchers, two owners/clients, two designers, two general contractors,
and two consultants. All these professionals have specialized knowledge of BIM
implementation and experienced industry practices. Based on the comments from these
professionals, some vague expressions regarding measurement items were further
revised and subsequently distribute to targeted project-based respondents.

The modified questionnaire associated with the analysis in this chapter was
structured into two parts. The first part attains general information such as the type of
project participants, year of implementing BIM, project size, and so forth. The second
part was designed to evaluate and measure the extent of attributable factors on
construction productivity in the surveyed project, and assess the BIM-enabled
productivity gains. Finally, a total of eight variables have been measured in the
questionnaire survey: productivity performance ratio (PPR), labor productivity (LP),
communication and coordination (CC), site resource planning and management
(SRPM), simulate master schedules and construction sequences (SSS), shorten project
duration (SPD), quantity takeoff and cost estimation (QTCE), minimize project cost
(MPC). The variable of PPR was utilized to evaluate the aggregated impact of BIM
implementation on project-level construction productivity, which was measured by the
five-point scale items (“1” = not at all influential; “5” = extremely influential), and
the variables of LP, CC, SRPM, SSS, SPD, QTCE, and MPC were all operationalized

as reflective constructs based on five-point Likert scale (i.e. 1 represents “strongly
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disagree” and 5 indicates “strongly agree”), and their detailed measurement items are

presented in Table 6.1.

Table 6.1 Measurement items for constructs in analysis of the impacts of BIM
implementation on construction productivity

Abbr.  Construct Reference
. Sacks and Barak (2008); Kaner et al. (2008); Khanzode
LP Labor productivity et al. (2008); Poirier et al. (2015)
Communication and Ho et al. (2013); Kim et al. (2015); Nath et al. (2015);
cC L Grilo and Jardim-Goncalves (2010); Gu and London
coordination
(2010)
SRPM Site resource planning Chau et al. (2004); Wang et al. (2004); Becerik-Gerber et
and management al. (2011); Kim et al. (2015)
Simulate master Moon et al. (2014); Azhar (2011); Kim et al. (2015);
SSS schedules and Wang et al. (2014a); Grilo and Jardim-Goncalves
construction sequences (2010)
Becerik-Gerber and Rice (2010); Azhar (2011); Nath et
SPD  Shorten project duration  al. (2015); Kim and Cho (2015); Bryde et al. (2013);
Issa and Suermann (2009)
. Cheung et al. (2012); Azhar (2011); Singh et al. (2011);
QTCE Ssltj?rggt% :]akeoff and cost Mills et al. (1999); Grilo and Jardim-Goncalves (2010);
Li et al. (2014a); Shen and Issa (2010);
Becerik-Gerber and Rice (2010); Azhar (2011); Giel and
MPC  Minimize project costs Issa (2011); Barlish and Sullivan (2012); Bryde et

al. (2013)

Note: Abbr. = Abbreviation

6.2.2 Sampling and Data Collection

This investigation only incorporated professionals and construction projects from the

Mainland China to construct the sampling frame. Since the implementation of BIM was

relatively rare in China, a completely random sampling or stratified sample would not

be appropriate. Alternatively, diversified sorts of BIM-based construction projects and

proper respondents were selected and identified by contacting professionals in BIM

implementation, visiting pioneering corporations skilled in adopting BIM, searching
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technical groups of developing BIM technology. The extent of data reliability is
primarily determined by the data source and the background of corresponding personnel
who filled out the questionnaire (Oppenheim, 2000). Thus, it was vitally important for
respondents to have experiences and detailed knowledge regarding BIM
implementation on construction projects. Therefore, the target respondents were
identified by selecting knowledgeable senior and professional personnel directly
involved in BIM-based construction projects. Consequently, a wide variety of BIM-
based projects with five developed geographic locations, together with different types
of well-informed project participants was selected to intensify the representativeness of
the sample and thus yield a better view of industry practice.

The data of questionnaire survey was collected by using three means including

personal visits, e-mail invitation, and online survey system (www.sojump.com). Over

a period of 3 months from March 2016 to May 2016, ultimately, a total of 143
questionnaires were returned from four regions with five cities of China, including
North (Beijing), South (Guangzhou and Shenzhen), East (Shanghai), West (Chongging).
After further omission of invalid or incomplete questionnaires, the remaining 102 valid
questionnaires, representing a great response rate of 71.33%, were identified and used
for subsequent analysis. Before filling out the survey, to avoid common method
variance, the information of respondents and their answers were kept confidential. This
procedural control means could assist in mitigating the potential response bias resulting
from consistency motif and social desirability. After completing the questionnaires,
most respondents were glad to provide further explanations of their answers and
expected to obtain the results of the questionnaires. Among the 102 valid responses,
41.18% were collected by personal visits, with the remaining 33.33% and 25.49%

gleaned by e-mail invitation and the online survey system, respectively. Analysis of
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variance and Chi-square test were employed to compare the answers from the three
types of responses, and no significant differences were discovered. The demographic
characteristics of the samples relating to the 102 valid responses are presented in Table
6.2 and Table 6.3.

Table 6.2 Demographic information of targeted projects

Parameter Category N %

;rzzject Below 100 million 17 16.67
100-500 million 24 23.53
500-1000 million 19 18.63
1000-1500 million 19 18.63
1500-2000 million 13 12.75
Above 2000 million 10 9.80

Location  North China 26 25.49
East China 42 41.18
South China 27 26.47
West China 7 6.86

As shown in Table 6.2, the surveyed projects are diverse in terms of project size and
location in order to enlarge the representative of samples. The majority (93.14%) of
BIM-based projects are mainly located in the regions of East China, North China, and
South China, especially in the large cities, such as Shanghai, Beijing, Guangzhou and
Shenzhen, indicating a possible non-balanced distribution of the surveyed projects.
Such a non-balanced distribution could be principally attributed to the unbalanced level
of economic development in China at present. The distribution of investment value of
the projects was primarily placed on the spectrum ranging from 100 to 1500 million,
with a total percentage of 60.78%. In order to properly examine whether the responses
corresponding to the eight variables were affected by the project size, a chain of
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ANOVA tests were performed to compare the differences in the mean values of the
constructs, and no statistically significant association between project size and these
measurement items (p-values of the ANOVA tests for PPR, LP, CC, SRPM, SSS, SPD,
QTCE, MPC are 0.140, 0.182, 0.569, 0.772, 0.096, 0.567, 0.905, 0.753 respectively).

Table 6.3 Demographic information of targeted respondents

Parameter  Category N % Parameter Category N %
a -
Typeof  qjient 20 1961 Number 1-2 56 54.90
project
participants  Hqioner 20  19.61 3-4 31 30.39
Contractor 38 37.25 56 1 10.78
Consultant 24 23.53 Above 6 4 3.92
b
Work Below 2 27 2647 Number’  Belowl 16 15.69
experience
2.5 43 42.16 1-3 46 4510
5-10 22 2157 35 30 29.41
10-15 6 5.88 57 8 7.84
Above 15 4 3.92 Above 7 2 1.96

aNumber of BIM-based projects involved; "Number of years for implementing BIM.

The respondents come from a mixed type of project participants to further enlarge
the diversity of targeted respondents, with 19.61% from clients/owners, 19.61% from
designers, 37.25% from general contractors, and 23.53% from BIM consultants. Most
of the respondents are senior and professional personnel knowledgeable of BIM
implementation or directly involved in the BIM-based projects. 41.18% of the
respondents had more than 5 years’ work experience, and all of the respondents had the
experience of implementing BIM or directly participating in BIM-based construction
projects, indicating that samples are perceived sufficiently to acquire sound judgement
from qualified respondents in this research. However, 54.90% of the respondents only

participated in one or two BIM-based projects. Corresponding to this results, 60.78%
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of the respondents showed that years of implementing BIM were still at the embryonic
stage (less than 3 years). These results indicated that the implementation of BIM in

Chinese construction projects was still in an infant and immature development stage.
6.3 Data Analyses and Results

6.3.1 Descriptive and Comparative Analyses

Descriptive statistics analysis of responses derived from targeted respondents is
presented in Table 6.4, showing the mean score with a standard deviation of each
variable. The variable of productivity performance ratio (PPR) was also measured by
the same respondents via the five-scale method to assess the aggregated impacts of BIM
on construction productivity. Results show a mean value of 4.08 with the standard
deviation 0.67. This aggregated factor is used to as the dependent variable for later
regression analysis. Of all the seven influential variables, SPD, SSS and CC obtain the
relative highest mean score with a value of 4.40, 4.26, and 4.24, respectively, implying
that these three variables were considered as the most influential factors affecting
construction productivity through BIM implementation. The mean value of labor
productivity (M= 4.01, SD= 0.64) and quantity takeoff and cost estimation (M= 4.07,
SD= 0.57) are also at the relatively high level, suggesting that BIM-enabled labor
productivity improvement and better cost estimation processes are also the prominent
indicators influencing construction productivity. The mean score of SRPM and MPC,
albeit ranked at the bottom of the list, are still considerably larger than the neutral value

of 3 on a five-point Likert scale.

Table 6.4 Measurement items in analysis of construction productivity

Variable Code Mean SD Items description
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Labor productivity

Communication and
coordination

Site resource
planning and
management

Simulate master
schedules and
construction
sequences

Shorten project

duration

Quantity takeoff and
cost estimation

Minimize project
costs

LP

CC

SRPM

SSS

SPD

QTCE

MPC

4.01

4.24

3.82

4.26

4.40

4.07

3.76

0.64

0.66

0.64

0.60

0.62

0.57

0.65

BIM implementation has greatly enhanced
construction labor productivity

BIM implementation can foster communication
and coordination among different project
participants, thus to facilitate the construction
process

BIM implementation has increased the efficiency
of resource planning and management in a timely
manner to avert redundancy or deficiency

BIM implementation can predict potential
conflicts and construct a reasonable construction
schedule with rational construction sequences

BIM implementation can significantly save
project time due to less rework, improved
quality, and enhanced collaboration

BIM implementation has enabled a faster
execution of quantity takeoff and cost estimation
processes.

BIM implementation has enabled fewer
production defects with less rework, reduced
change orders to achieve cost savings.

Reliability of the constructs was tested by deploying Cronbach’s coefficient alpha.

The alpha levels for each of the constructs were higher than the threshold of 0.70,

indicating the scales were a reliable measure to be accepted (Cronbach, 1951). A test

for internal consistency and reliability of these indicators provided a satisfactory

Cronbach’s coefficient alpha of 0.769. A series of ANOVA tests were then performed

to identify how the answers regarding productivity performance ratio (PPR) are

associated with respondents’ backgrounds. As shown in Table 6.5, the mean value of

PPR is not statistically significantly associated with the respondents’ work experience

and the number of BIM-based projects involved. However, the association between

years for implementing BIM and PPR is found to be statistically significant. Generally,

the more experience respondents have for BIM implementation, the more benefits they

would explore for productivity improvement.
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Table 6.5 Results of ANOVA tests for PPR by respondents’ backgrounds

Parameter ~ Category N Mean SD SS*  F-value p-value
Work Below2 27 398 058 Betweengroups 141 1321  0.240
experience
2-5 33 402 0.64 Withingroups  43.97
5-10 22 432 067 Total 45.37
10-15 6 400 055
Above15 4 450 058
Number* 1.2 56 409 061 Betweengroups 059  0.427  0.734
3-4 31 413 0.67 Withingroups  44.79
56 11 400 1.00 Total 45.37
Above 6 4 450 058
Number” — Belowl 16 387 (054 Betweengroups 4.66 2773  0.031
13 46 396 056 Withingroups  40.72
3-5 30 427 069 Total 45.74
51 8 450 1.07
Above 7 2 450 071

aNumber of BIM-based projects involved; "Number of years for implementing BIM; 25S= sum
of squares.

In order to formally examine whether the survey responses were biased due to the
different types of project participants, a series of ANOVA tests were then performed to
assess the differences in the means of the core multi-scale variables (including PPR, LP,
CC, SRPM, SSS, SPD, QTCE, MPC) among different project practitioners. The
comparison results shown in Table 6.6 reveal that none of the difference is significant
at the level of 5% confidence interval (p-values for the ANOVA tests for PPI, LP, CC,
SRPM, SSS, QTCE, and MPC are 0.114, 0.650, 0.374, 0.458, 0.238, 0.169, 0.321, and
0.198 respectively)

Table 6.6 ANOVA tests for core variables from different types of project respondents

Variables F-value p-value

PPI 2.032 0.114
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LP 0.619 0.650

CC 1.073 0.374
SRPM 0.886 0.458
SSS 1.433 0.238
SPD 1.715 0.169
QTCE 1.182 0.321
MPC 1.647 0.198

6.3.2 Stepwise Regression Analysis

In identifying the impacts of seven BIM-enabled potential influential indicators on
construction productivity, multiple regression analysis was performed by using SPSS
(Version 20) with the data from 102 respondents. Multiple regression analysis is used
to analyze the relationship between a single dependent variable productivity
performance ratio (PPR) and several independent variables, including labor
productivity (LP), communication and coordination (CC), site resource planning and
management (SRPM), SSS (simulate master schedule and construction sequences),
shorten project duration (SPD), quantity takeoff and cost estimation (QTCE), and
minimize project cost (MPC).

A test for internal consistency and reliability of these indicators provides a
satisfactory Cronbach’s coefficient alpha of 0.769. Multicollinearity is tested by the
variance inflation factors (VIF), a measure that evaluates the degree of multicollinearity
among the predictive variables (O’brien, 2007). Most commonly used rule of thumb
associated with VIF is 10, indicating a sign of severe collinearity among potential
independent variables (Draper and Smith, 2014). Standardization of the coefficient is
habitually employed to address the problems that which of the predictable variables
have a greater effect on the dependent variable regardless of the different units
measured in the multiple regression model (Aiken et al., 1991). Regression diagnostics
was undertaken to examine the appropriateness of the assumptions made by fitting a
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regression model to a specific set of data (Belsley et al., 2005). With the utilization of
SPSS 20.0, it is found that the regression model is generally fitted under the following
assumptions of linearity (the relationships between the DER and the predictive variable
is linear), normality (the errors is normally distributed), homoscedasticity (the errors
variance is constant), and independence (the errors associated with one observation are
not correlated with the errors of any other observation). The term (R?) indicates how
much variation in the dependent variable is explained by a group of independent
variables, where a higher value indicates more powerful model. In addition, only those
variables with a p-value less than 5% were retained for inclusion in the final regression
model equations. The adjusted coefficients of determination (adjusted R?) are evaluated
to measure the goodness-of-fit of the regression model, since it does not automatically
increase with the additional predictor variables.

Stepwise regression is regarded as a powerful instrument for automatically
determine the best combination of potential predictive variables that best fits the
dependent variable. The results of regressions on the single dependent variable PPR
and the independent variables are depicted in Table 6.7. The maximum VIF (2.368) in
the Table was greatly less than the threshold point of 10, indicating that
multicollinearity would not increase the standard errors of the DER model estimate
(VIF ranging from 1.748 to 2.369). Multiple regression equations (RPE) with six
determining factors are finally constructed as Equation 6.1. The resultant outcomes
from the best-fit evaluation of multiple regression model indicated a p-value of lower
than 0.05 with the associated adjusted R? values more than 0.7, which implied
goodness-of-fit models. Results of the stepwise regression analysis revealed the value
of adjusted R? was 0.73, indicating a good fit model. The Durbin-Watson value was

1.899, which meant the residual errors was also normally distributed.
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Table 6.7 Multiple regression analysis for construction productivity gains model

Model Construction Productivity Model
Unstant_:iqrdized Standgr@ized Multicollinearity
Independent coefficients coefficients . .
variable B Standard 5 VIF
error
Constant -1.580 0.382
LP 0.180 0.075 0.171 2.396 0.019 1.667
cC 0.165 0.061 0.164 2.705 0.008 1.191
SRPM 0.174 0.073 0.165 2.374 0.020 1.567
SSS 0.204 0.077 0.182 2.670  0.009 1.506
SPD 0.310 0.077 0.286 4.017  0.000 1.650
QTCE 0.178 0.078 0.161 2.276 0.025 1.449
MPC 0.166 0.068 0.152 2.438 0.017 1411

Note: P* < 0.05, P** < 0.01, P*** < 0.001

As illustrated in Table 6.7, the stepwise regression analysis determined seven
significant independent variables, which are all positively associated with the
dependent variable PPR. These are:

LP*: BIM implementation has greatly enhanced construction labor productivity.

CC**: BIM implementation can foster communication and coordination among
different project participants, thus to facilitate the construction process.

SRPM*: BIM implementation has increased the efficiency of resource planning
and management in a timely manner to avert redundancy or deficiency.

SSS**: BIM implementation can predict potential conflicts and construct a
reasonable construction schedule with rational construction sequences.

SPD***: BIM implementation can significantly save project time due to less

rework, improved quality, and enhanced collaboration.
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QTCE*: BIM implementation has enabled a faster execution of quantity take off
and cost estimation processes.

MPC*: BIM implementation has enabled fewer production defects with less
rework, reduced change orders.

Drawn on the seven determining indicators, the construction productivity

improvement model was modified ( and the associated valences of the standardized

weights) to demonstrate the causal relationship between the dependent and independent
variables, as shown in Figure 6.1. Final model coefficients are presented in Table 6.7.
The regression equation can be expressed as:

PPR = -1.58 + 0.180LP+ 0.165CC + 0.174SRPM + 0.204SSS + 0.310SPD +

0.178QTCE + 0.166MPC Eq. (6.1)
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Figure 6.1 Results of multiple stepwise regression analysis of construction productivity gains
model

6.4 Discussion of Findings

The increasing complexity of building designs with the development of building
structures, materials, equipment indicates that only simple rules and guidelines cannot
fulfill the requirements of current projects. Drawn on the conceptual framework
concerning the impacts of BIM implementation on construction productivity, Chapter
6 has empirically tested the conceptual model for probing deeper into how and to what
extent the contributory factors can influence the project-level construction productivity.
Results of ANOVA tests indicate that the number of years of implementing BIM has
positive impact on productivity performance ratio, which means the more experience
respondents have for BIM implementation, the more benefits they would explore for
productivity improvement. Furthermore, results from multiple stepwise regression
analysis suggest that reflective constructs (incorporating labor productivity,
communication and coordination, site resource planning and management, simulate
master schedule and construction sequences, shorten project duration, quantity takeoff
and cost estimation, and minimize project cost) are all positively statistically significant
with productivity performance ratio, suggesting that, productivity performance ratio
increases with these seven reflective factors. Relied on the BIM-based construction
productivity gains model, results also reveal that shorten project duration (standardized

B = 0.286, p*** < 0.001) has the best ability to influence productivity performance

ratio through BIM implementation. In addition, simulate master schedule and

construction sequences (standardized § = 0.182, p** < 0.01) and labor productivity
(standardized B = 0.171, p* < 0.05) have also been identified as the most effective way

to enhance construction productivity. Furthermore, the implementation of BIM in
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construction projects can have better site resource planning and management, foster
communication and coordination, facilitate quantity takeoff and cost estimation. All

these factors have been identified to greatly affect productivity performance ratio.
6.5 Chapter Summary

This chapter has empirically tested a research model to identify how and to what extent
the impacts of BIM implementation influence construction productivity. The results
from multiple stepwise regression analysis based on the 102 responses from Chinese
mainland construction projects reveal that BIM-enabled shorten project duration plays
an important role in impacting the BIM-enabled productivity gains. Apart from SPD,
other seven control variables (including CC, SRPM, SSS, QTCE, MPC) are also found
to significantly influence the productivity performance ratio of surveyed construction
projects. Overall, the results provide evidence that productivity performance ratio is

positively associated with the seven identified indicators.
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CHAPTER 7 CONCLUSIONS

7.1 Introduction

This chapter concludes this research by summarizing the research findings and how the
research propositions have been addressed. Major research findings are summarized
from document analysis, model development, and model validation. Then, a summary
of the contributions to knowledge in the construction industry is given. Finally,

limitations of the research and recommendations for further directions are discussed.
7.2 Summary of Research Findings

This research aims to identify the impacts of BIM implementation on construction
productivity. To achieve this, theoretical foundations derived from document analysis
and empirical project-based data from Chinese mainland construction projects were
gleaned and analyzed to investigate: (1) the extant research theories related to the status
of BIM implementation and basic characteristics of construction productivity; (2) the
BIM-enabled design error reduction (DER) model during design stage, as well as a
conceptual framework regarding BIM-based construction productivity gains model; (3)
the impacts of BIM implementation in reducing design error by using the conceptual
model based on the different design error reduction (DER) indicators; (4) the
conceptual model for probing deeper into how and to what extent the implementation
of BIM can influence the project-level construction productivity based on the empirical
data from BIM-based construction projects. The major findings of these investigations
are summarized as follows.

(1) To establish the theoretical foundation of this research, extant research

regarding BIM related research on the construction industry and basic characteristics
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of construction productivity are examined and reviewed. The literature review provides
insights into the desirability and complexities in enhancing construction productivity
both in design and construction stage. Results from literature review also suggest that,
not only rare empirical research has been placed on quantifying the impacts of BIM on
design error reduction, and quantitatively measuring the extent to which attributable
factors could have the better ability to contain design error, but sparse scholarly
attention has been focused on quantitatively demonstrating the principal impacts of
BIM implementation on construction productivity at project level during construction
stage

(2) Document analysis is conducted to further evaluate the impacts of BIM
implementation on the construction process. First, driven by the presence and severity
of design error, together with the aim of elevating design productivity, a conceptual
framework of design error reduction model which aims to measure the impacts of BIM
implementation on productivity during design stage is developed. Results also indicate
that the effective implementation of BIM in design stage could be a source of improving
productivity for subsequent stages, such as construction and operation. Then, a
conceptual framework of BIM-enabled construction productivity gains model is also
proposed to assess the impacts of BIM implementation on construction productivity
during the construction stage.

(3) With regard to the impacts of BIM in reducing design error, results from
multiple regression analysis reveal that six attributable factors (including clash
detection, design system coordination, drawing error, teamwork and cooperation,
constructability and practicality, and facilitate knowledge and information sharing) are
found to be positively statistically associated with the aggregate impacts of BIM

implementation on design error reduction, among which clash detection has the best
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ability to positively affect design error reduction. Noteworthy, the indicator of human
error is excluded from the model due to the non-significant association with the DER.
In addition, research findings also imply that BIM will considerably improve the
efficiency and effectiveness of design process only by juxtaposing with other
organizational and managerial project-related strategies that have been verified.
Otherwise, BIM will become a sole driver for error containment, which may give rise
to the failures that would impair the performance and productivity of construction
projects.

(4) Drawn on the conceptual framework concerning the impacts of BIM
implementation on construction productivity, Chapter 6 has empirically tested the
conceptual model for probing deeper into how and to what extent the contributory
factors can influence the project-level construction productivity. Results of ANOVA
tests indicate that the number of years of implementing BIM has a positive impact on
productivity performance ratio, which means the more experience respondents have for
BIM implementation, the more benefits they would explore for productivity
improvement. Furthermore, results from multiple stepwise regression analysis suggest
that reflective constructs (incorporating labor productivity, communication and
coordination, site resource planning and management, simulate master schedule and
construction sequences, shorten project duration, quantity takeoff and cost estimation,
and minimize project cost) are all positively statistically significant with productivity
performance ratio, suggesting that, productivity performance ratio increases with these
seven reflective factors. Relied on the BIM-based construction productivity gains
model, results also reveal that shorten project duration has the best ability to influence

productivity performance ratio through BIM implementation.
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7.3 Contributions of the Research

Productivity is of utmost importance to the construction industry as the construction
projects become increasingly fragmental to manage and control in China. In the
meantime, the rapid development of China’s urban construction projects brought about
increased urgencies to reduce design and construction time, and to tighten project
budgets and amidst more complex projects. Additionally, the prevalence of lower
construction productivity and its resultant accumulative inefficiencies on the overall

performance of construction projects is a leitmotiv within the construction industry. BIM as a
fundamentally innovative approach of producing, sharing and exerting project lifecycle
information could be applied in all stages of a construction project to support increased
productivity gains.

This study makes several contributions to the extant literature on BIM and
construction productivity. First, this research can enrich theoretical development in the
fields of BIM and construction productivity. By reviewing the existing research, this
study provides a comprehensive understanding with respect to the concepts of BIM and
construction productivity. The research findings and gaps identified in previous studies
could serve as the basis for recommending future research in relevant fields.

Second, as an exploratory effort to build up the relationship between BIM and
construction productivity, a design error reduction model and BIM-enabled construction
productivity gains model have been developed from document analyses to identify the
potential relationship between BIM implementation and construction productivity both
in design and construction stage.

Third, based on the investigation of the impacts of BIM implementation in
reducing design error, this study modifies the original model by excluding human error,

and identifies how the influential attributes affect the BIM-enabled design error
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reduction model in the design stage. Also, through providing empirical evidence that
BIM implementation can significantly influence construction productivity in
construction projects, beneficial results can be a stimulating factor facilitating
construction practitioners using BIM technology in China. The findings could help to
develop a more comprehensive understanding of the reasons why construction
organizations implement BIM in construction projects and provide a more dynamic

picture of how construction productivity may vary as the attributable factors change.

7.4 Limitations of the Research

First, the limitation of this research is attributed to the limited sample size. Since the
implementation of BIM has been relatively rare in Mainland China, limited data were
collected and analyzed to identify relative issues. Also, the interaction and relationship
between factors are not considered in this study due to their low correlation. In addition,
the results have been primarily subjective to the participants’ responses. A
questionnaire survey was employed as the primary means to collect perceptual data
from project respondents, and no case studies were performed to validate the proposed
conceptual framework. This may generate potential response biases related to
subjectivity and social desirability. Finally, this study was conducted in a specific
cultural and market in the Chinese mainland construction industry. This may limit the

universality of the related results to other backgrounds.

7.5 Recommendations for Future Research

Future research direction could examine more relevant variables in the models and
therefore develop a more comprehensive theoretical framework for understanding and
assessing the impacts of BIM implementation on construction productivity. Further

research could also attempt to collect project-based data from multiple sources, and use
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both objective and subjective data to measure the variables related to productivity gains.
These could help to cross-validate the collected data and, therefore, further control the
negative impacts of potential response biases on data analysis results. Furthermore,
present research could be extended to cross-nation level to compare the results from

different backgrounds.
7.6 Chapter Summary

In summary, this chapter systematically generalizes the major findings and highlights
the significance and contributions. Then, the limitations of the current study are

discussed. Finally, recommendations for future research have been proposed.
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Appendix I: Questionnaire on the Impacts of BIM

Implementation in Reducing Design Error
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Appendix 1l: Questionnaire on the Impacts of BIM

Implementation on Construction Productivity
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