
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



THE IMPACTS OF BIM IMPLEMENTATION ON 

CONSTRUCTION PROJECT PRODUCTIVITY: 

EXPERIENCES FROM CHINA 

 

 

 

                                                     

ZHOU XIN 

 

M.Phil 

 

 

The Hong Kong Polytechnic University 

 

2017 

 

 



The Hong Kong Polytechnic University 

Department of Building and Real Estate 

 

 

 

The Impacts of BIM Implementation on Construction 

Project Productivity: Experiences from China 

 

 

                                                            

ZHOU Xin 

 

 

A thesis submitted in partial fulfilment of the requirements for 

the degree of Master of Philosophy 

 

                                                                    

January 2017 



I 

CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no material previously published or written, nor material that 

has been accepted for the award of any other degree or diploma, except where due 

acknowledgement has been made in the text. 

  Signed 

ZHOU Xin 



II 

Abstract 

Construction productivity has long been a concern in both industry and academia, for 

it can be improved to foster sustaining economic growth and generate substantial social 

wealth and welfare. Being the most dominating factor contributing to the remarkable 

economic profitability of most construction projects, productivity is receiving 

incessantly increasing concern with respect to the production efficiency of the whole 

construction industry. However, construction industry worldwide has been undergoing 

a substantial and continuous decrease in construction productivity over the past several 

decades. During the past ten years, the construction productivity growth rate of China 

has decreased dramatically combined with the decline of the average growth rate of 

labor productivity of China. 

Driving by the increasing pressure of improving productivity, over the recent 

several decades, the architecture, engineering, and construction (AEC) industry has 

long been making every effort to seek effective approaches to reduce cost, shorten 

project duration, enhance the quality of construction projects thus to improve 

productivity. BIM was most commonly perceived as a visualization tool for 

coordinating and promoting communication of AEC sector in order to reduce rework, 

predict collisions, enhance project productivity, shorten project time, decrease project 

costs, and improve quality and safety of construction projects. Generally, BIM is 

regarded as an emerging, promising, and innovative technology and process, 

dramatically transformed the way of a building from the original conception onwards 

to demolition. It allows multiple disciplinary information to be encapsulated within one 

model, and dramatically transform the conventional design formats and communication 

approaches of AEC sector whereby players depend heavily on 2D CAD-based model 

towards a 3D digital interacted model. However, research on showing a clear 
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understanding of the impacts of BIM on construction productivity through BIM 

implementation is scarce.  

A comprehensive review of existing research in BIM implementation and 

construction productivity reveals the research gaps. First, as BIM has been evidenced 

by many researchers as an effective means for facilitating design processes, reducing 

design error, thus to achieve productivity gains, numerous previous researchers have 

investigated the attributable factors affecting design error, attempting to seek out 

effective strategies to prevent or mitigate design errors. However, rare empirical 

research has been placed on quantifying the impacts of BIM on design error reduction, 

and quantitatively measuring the extent to which attributable factors could have the 

better ability to contain design error. In addition, due to the great potential of BIM for 

addressing construction inefficiencies and lower productivity in the construction 

projects, the past decade has witnessed an increasing research interest in BIM both in 

design and construction stage. Nevertheless, the large majority of prior studies have 

primarily concentrated on identifying incentive factors and barriers of BIM adoption in 

the construction industry, or on reporting the business value or potential profitability of 

applying BIM. Sparse scholarly attention has been focused on quantitatively 

demonstrating the principal impacts of BIM implementation on construction 

productivity at project level during the construction stage. 

To fill this research gap, this research aims to identify the impacts of BIM 

implementation on construction productivity. The following objectives are achieved in 

this research: (1) to conduct a comprehensive review of the extant research theories 

related to the status of BIM implementation and basic characteristics of construction 

productivity; (2) to theoretically develop a BIM-enabled design error reduction (DER) 

model during design stage, as well as build up a conceptual framework regarding BIM-
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based construction productivity gains model; (3) to examine the impacts of BIM 

implementation in reducing design error by using the conceptual model based on the 

different design error reduction (DER) indicators; (4) to test the conceptual model for 

probing deeper into how and to what extent the implementation of BIM can influence 

the project-level construction productivity based on the empirical data from BIM-based 

construction projects. 

Through document analysis, research gaps, as well as the related definition of 

construction productivity and BIM, were identified in achieving objective 1. By a 

subsequently further literature review, a design error reduction model and BIM-enabled 

construction productivity gains model have been developed. Questionnaire survey and 

semi-structured interview were used to collect project-based data in order to test the 

proposed model. Descriptive statistics and multiple regression analysis were utilized to 

investigate and analyze the data for achieving objectives 3 and 4. 

The primary findings obtained in this study include the following aspects. First, 

research gaps on quantifying the impacts of BIM implementation on construction 

productivity has been identified through a comprehensive literature review. Then, a 

conceptual framework of design error reduction model is developed to evaluate the 

impacts of BIM implementation in reducing design error during the design stage. 

Furthermore, BIM-enabled construction productivity gains model has also been built 

up to assess the impacts of BIM implementation on construction productivity during 

the construction stage. After the development of these models, empirical data is utilized 

to test the proposed models. For the DER model, six attributable factor (including clash 

detection, design system coordination, drawing error, teamwork and cooperation, 

constructability, and practicality, and knowledge and information management) are 

found to be positively statistically associated with the aggregate impacts of BIM 
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implementation on design error reduction, among which clash detection has the best 

ability to positively affect design error reduction. For the BIM-enabled construction 

productivity gains model, reflective constructs (incorporating labor productivity, 

communication and coordination, site resource planning and management, simulate 

master schedule and construction sequences, shorten project duration, quantity takeoff 

and cost estimation, and minimize project cost) are all positively statistically significant 

with productivity performance ratio, suggesting that productivity performance ratio 

increases with these seven reflective factors. 

This research can enrich theoretical development in the fields of BIM and 

construction productivity by reviewing the existing research. The research findings and 

gaps identified in previous studies could serve as the basis for recommending future 

research in relevant fields. As an exploratory effort to build up the relationship between BIM 

and construction productivity, a design error reduction model and BIM-enabled 

construction productivity gains model have been developed to identify the potential 

relationship between BIM implementation and construction productivity both in design 

and construction stage. This model could also be used by researchers for future 

investigation. Furthermore, the findings derived from this research could help to 

develop a more comprehensive understanding of the reasons why construction 

organizations implement BIM in construction projects and provide a more dynamic 

picture of how construction productivity may vary as the attributable factors change. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

This chapter introduces the research background, identifies the research gaps, and 

proposes the research aims and objectives. Then, the significance and value of the 

current study are highlighted. Finally, the structure of the thesis is presented. 

1.2 Research Background 

China’s construction industry has been playing a progressively leading role in the 

process of national economic growth (Lu and Fox, 2001). According to China 

Statistical Yearbook (2014), construction industry achieved 3.9 trillion Yuan in terms 

of total output value in 2013, accounting for 6.90% of the national gross domestic 

product (GDP) of China. During the last several decades, Chinese construction industry 

experienced a fluctuant variation in the share of GDP, but it has maintained a sustained 

increase over the last ten years (Figure 1.1). Due to the unceasingly growing proportions 

in the share of GDP together with the commencement of Open Door Policy (Chen, 

1998), China’s construction industry has faced the severe challenge and incremental 

competitiveness from worldwide. This situation was further reinforced by the accession 

of China into the World Trade Organization (WTO) due to the market globalization. 

Therefore, it is indispensable to develop an effective and efficient approach to improve 

competitiveness and performance of Chinese construction industry so as to sustain 

China’s economic development (Xue et al., 2008). 

Construction productivity has long been a concern in both industry and academia, 

for it can be improved to foster sustaining economic growth and generate substantial 

social wealth and welfare (Park et al., 2005; Kenley, 2014; Tookey, 2011). Driving by 
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the increasing pressure of improving productivity, over the recent several decades, the 

architecture, engineering, and construction (AEC) industry has long been making every 

effort to seek effective approaches to reduce cost, shorten project time, enhance the 

quality of construction projects thus to improve productivity (Azhar, 2011). Being the 

most dominating factor contributing to the remarkable economic profitability of most 

construction projects (Yi and Chan, 2014; Kenley, 2014), productivity is receiving 

incessantly increasing concern with regard to the production efficiency of the whole 

construction industry. Although economic growth is not only decided by the 

productivity, it is a significantly crucial determinant measuring the performance of the 

whole construction industry of China. 

 

 Figure 1.1 Construction Industry’s Share in GDP of China, 1978-2013 

(Source: China Statistical Yearbook 2014) 

However, serving as the most predominant and challenging industry of the world, 

construction industry has been undergoing substantial and continuous decrease in 

construction productivity over the past several decades (Arditi, 1985; Tucker, 1986; 

Rojas and Aramvareekul, 2003b; Rojas and Aramvareekul, 2003a; Crawford and Vogl, 

2006; Siriwardana and Ruwanpura, 2012; Bröchner and Olofsson, 2012). According to 
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China Statistical Yearbook (2012), the productivity growth rate of China has decreased 

dramatically since 2007 (Figure 1.2). Besides, the average growth rate of labor 

productivity of China has fallen since 2004 (Figure 1.3). It declined from 0.2 in 2004, 

through a turbulent period, eventually down to 0.09 in 2011. Consequently, China’s 

construction industry has the urgency to improve productivity. In order to investigate 

related factors leading to the decline in productivity, factors affecting construction 

productivity have been explored by a number of scholars, for it is a prerequisite for 

improving productivity (Mojahed and Aghazadeh, 2008). These contributory factors 

include labor productivity, planning and scheduling, rework (quality control), change 

orders, cost, technology, communication, and so forth. Thus, the construction industry 

has been facing a large paradigm shift to improve productivity and reduce overall costs 

of construction projects through effective coordination, cooperation, and 

communication of all stakeholders and practitioners (Arayici et al., 2012).  

 

Figure 1.2 Construction Productivity Growth Rate of China, 2002-2011 

(Source: China Statistical Yearbook 2012) 
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Figure 1.3 Average Growth Rate of Construction Labor Productivity, 2002-2011 

(Source: China Statistical Yearbook 2012) 

 

Many of efforts have been made to improve construction productivity, such as 

design-building project delivery system (Dahl et al., 2005), lean construction (Sacks et 

al., 2010a), construction virtual prototyping (CVP) technology (Huang et al., 2007), 

augmented reality (AR) (Wang et al., 2014b). In recent years, the architecture, 

engineering, and construction industry have witnessed an expanding adoption of 

building information modeling (BIM) in construction. As stated by Brynjolfsson and 

Yang (1996), the contribution of a new technology can be properly measured by 

productivity efficiently and effectively. Besides, productivity improvements are 

noticeable through the utilization of transformative new information technology by 

improving communication among all stakeholders (Triplett and Bosworth, 2004). Wei 

and Lin (2004) also ascertained that much attention should be placed on the 

development of information technology due to its innovative and integrated features. 

As construction industry are being confronted with great challenges to improve 

productivity, efficiency, and profitability of construction projects (Arayici et al., 2011b), 

BIM is currently considered as a transformative information technology to achieve 

these goals. 
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BIM is regarded as an emerging, promising, and innovative technology and 

process, dramatically transformed the way of a building from the original conception 

onwards to demolition (Hardin, 2011; Azhar et al., 2012). Succar (2009) defines BIM 

as a visualization tool or an integrated process that generates a systematic approach to 

simulate and manage the design, construction, and operation information of a building 

in digital model throughout its lifecycle. As BIM allows multiple disciplinary 

information to be encapsulated within one model, it serves as a dynamic repository 

providing synchronous physical and functional information of a building varying from 

design, construction, operation, maintenance, till to demolition (Lu and Li, 2011). BIM 

also gives rise to all the practitioners incorporated in the construction projects, like 

government, owners, designers, contractors, construction professionals, supervisors, 

and so on, to utilize and manipulate information in the models (Li et al., 2014a). BIM 

thus dramatically transform the conventional design formats and communication 

approaches of AEC sector whereby players depend heavily on 2D CAD-based model 

towards a 3D digital interacted model.  

As the increasing challenges faced by China’s construction industry due to the 

market globalization after the commencement of reform and opening policy and the 

accession to the World Trade Organization (WTO), it is indispensable to develop an 

effective and insightful approach to improve the whole productivity and 

competitiveness of China’s construction industry (Xue et al., 2008). With the ever-

escalating pressure of improving construction productivity, BIM was most commonly 

perceived as a visualization tool for coordinating and promoting communication of 

AEC sector in order to reduce rework, predict collisions, and enhance productivity, time, 

cost, quality and safety of a construction project (Zuppa et al., 2009). However, the 

relationship between BIM and construction productivity has not been empirically and 
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distinctly identified and measured due to lack of quantitative measurements for 

evaluating the impacts and value produced by the application of BIM. In addition, 

grounded on the inconclusive and uncertain outcomes both in monetary and managerial 

aspects, construction professionals are confronted with the dilemma of making a 

decision whether to recognize and enforce BIM technology in construction projects 

(Succar, 2010; Barlish and Sullivan, 2012; Li et al., 2014a). 

Recently, a number of studies have been focused on facilitating the 

implementation of BIM in Mainland China. Zhang et al. (2011) proposed a 4D-BIM 

dynamic approach to monitoring construction resource and cost in real-time in order to 

enhance the level of management and cost control. Li et al. (2010) suggested that the 

developer-driven approach was frequently recognized as the most efficient way to 

promote the application of BIM technology in China. He et al. (2012) pointed out that, 

while the development of BIM technology in China was still in preliminary stage, it 

would be broadly applied to the whole construction industry of China. Also, the main 

barriers of broadly implementing BIM in China have been investigated and analyzed 

by Zhang (2010). Results indicated that values and benefits of BIM usage can be really 

realized at some stage, but the lack of professional knowledge regarding BIM and 

inefficiency of current construction system are the major factors inhibiting the 

development of BIM implementation in China. However, research on showing a clear 

understanding of the impacts of BIM on construction productivity and quantify the 

productivity gains through BIM implementation is scarce. Thus, based on the current 

status of BIM implementation in China, there is a great need to find out a way to obtain 

significant productivity improvements by implementing BIM technology. This study 

attempts to fill this knowledge gap by examining the current BIM practices, identifying 

contributory factors of productivity, develop a preliminary conceptual framework 
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regarding BIM and productivity relationship. In addition, this study will leverage the 

relationship of BIM implementation on each of productivity gains indicators so as to 

measure the extent to which these indicators have the better ability to improve 

construction productivity with the implementation of BIM. 

1.3 Research Gaps  

Due to the great potential of BIM for addressing construction inefficiencies and lower 

productivity in the construction industry, the past decade has witnessed an increasing 

research interest in BIM both in design and construction stage. As illustrated in Chapter 

2, the large majority of prior studies have primarily concentrated on identifying 

incentive factors and barriers of BIM adoption in the construction industry (Bernstein 

and Pittman, 2004; Cerovsek, 2011a; Ku and Taiebat, 2011; Gu and London, 2010), or 

on unfolding project benefits gained from BIM utilization in construction projects 

(Bryde et al., 2013; Poirier et al., 2015; Hergunsel, 2011; Barlish and Sullivan, 2012), 

or on reporting the business value or potential profitability of applying BIM (Bernstein, 

2015; Bernstein et al., 2012; Young et al., 2009; Lee et al., 2012). Nevertheless, despite 

of some research having measuring the impacts of BIM on labor productivity at activity 

level (Poirier et al., 2015; Kim et al., 2015), sparse scholarly attention has been focused 

on quantitatively demonstrating the principal impacts of BIM implementation on 

construction productivity at project level during the construction stage. 

As illustrated in Chapter 3, BIM has been evidenced by many researchers as an 

effective means for facilitating design processes (Eastman et al., 2008; Son et al., 2015; 

Sacks et al., 2010b; Sacks et al., 2010a; Taylor and Bernstein, 2009), reducing design 

error (Linderoth et al., 2014; Love et al., 2011c; Rajendran et al., 2013), thus to achieve 

productivity gains (Sacks and Barak, 2008). Additionally, numerous previous 
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researchers have investigated the attributable factors affecting design error (Josephson 

and Hammarlund, 1999; Love et al., 2012; Love et al., 2011c; Lopez et al., 2010), 

attempting to seek out effective strategies to prevent or mitigate design errors (Love et 

al., 2008; Busby, 2001; Love et al., 2012). However, rare empirical research has been 

placed on quantifying the impacts of BIM on design error reduction, and quantitatively 

measuring the extent to which attributable factors could have the better ability to 

contain design error. 

1.4 Research Objectives 

This research aims to identify the impacts of BIM implementation on construction 

project productivity based on the questionnaire survey from informed senior and 

specialized personnel directly participating in BIM-based projects. The specific 

objectives of this research are shown below:  

(1) To conduct a comprehensive review of the extant research theories related to 

the status of BIM implementation and basic characteristics of construction 

productivity; 

(2) To theoretically develop a BIM-enabled design error reduction (DER) model 

during design stage, as well as build up a conceptual framework regarding 

BIM-based construction productivity gains model; 

(3) To examine the impacts of BIM implementation in reducing design error by 

using the conceptual model based on the different design error reduction (DER) 

indicators 

(4) To test the conceptual model for probing deeper into how and to what extent 

the implementation of BIM can influence the project-level construction 

productivity based on the empirical data from BIM-based construction 

projects 
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1.5 Significance and Value of Research 

Productivity is of utmost importance to the construction industry as the construction 

projects become increasingly fragmental to manage and control in China. In the 

meantime, the rapid development of China’s urban construction projects brought about 

increased urgencies to reduce design and construction duration, and to tighten project 

budgets and amidst more complex projects. BIM as a fundamentally innovative way of 

producing, sharing and exerting project lifecycle information, can be applied in all 

stages of a construction project to support increased productivity gains. Furthermore, 

BIM is also perceived as a solution to a number of inefficiencies in the construction 

industry. From an academic perspective, this research can get an overall understanding 

of factors affecting construction productivity and the impacts of BIM implementation 

on construction productivity both in design and construction stage. Also, it may lay the 

foundation of methods for improving construction productivity by the usage of BIM, 

and quantitatively measure the impacts of BIM implementation on construction project-

based productivity in Mainland China. From a practical perspective, this study can 

show the impacts of BIM on construction productivity and quantify the productivity 

gains through BIM implementation. Beneficial results of BIM implementation can be 

a stimulating factor facilitating the application of BIM in Chinese construction projects.

  

1.6 Structure of the Thesis 

The dissertation is organized into seven chapters.  

Chapter 1 introduces the whole research picture, including the research 

background, research gaps to be addressed, overall research aim and specific objectives, 

and the significance and values of the research. Chapter 2 comprehensively reviews the 
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existing literature from a broad perspective focusing on BIM implementation and 

construction productivity to lay the foundation of present study. Chapter 3 introduces 

the research design of the present study, and introduce the research methods and 

analysis techniques employed in this research. Chapter 4 theoretically develops a BIM-

enabled design error reduction model and BIM-based construction productivity gains 

model. Chapter 5 empirically identifies the impacts of BIM implementation in reducing 

design error by using the conceptual model based on the different design error reduction 

(DER) indicators during the design stage. Chapter 6 tests the BIM-based productivity 

gains model for probing deeper into how and to what extent the implementation of BIM 

can influence the project-level construction productivity based on the empirical data 

from BIM-based construction projects. 

1.7 Chapter Summary 

This chapter outlines the overall picture of this research. Background information is 

introduced first. The research gaps, and research aim and objectives are proposed and 

explained. Then, the significance of the research is presented. The structure of the thesis 

is finally outlined. 
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CHAPTER 2 AN OVERVIEW OF BIM AND 

CONSTRUCTION PRODUCTIVITY 

2.1 Introduction 

With the aim of reviewing the literature so as to laying the foundation of the present 

study, this chapter begins with comprehensively defining BIM from various 

perspectives. Section 2.2.2 gives an overview of BIM-related research. Research on 

current adoption of BIM in the construction industry, general benefits of BIM 

implementation, limitations of BIM implementation, and interoperability issues are 

identified from literature review, and some of the leading research paper and surveys 

are discussed here. Section 2.3 reviews construction productivity. In this section, the 

definition of construction productivity is verified from different perspectives. Then, 

productivity measurements are reviewed and categorized based on activity, project, and 

industry level. Finally, factors affecting construction productivity are further examined 

and identified. Section 2.4 summarizes this chapter. 

2.2 Building Information Modeling (BIM) 

2.2.1 Definition of BIM 

BIM as a rapid diffusion term, while emerging, aroused a great deal of attention in both 

construction industry and academia. The ambiguous feature of this term determines the 

widespread definition from various professions or institutions. In this section, numerous 

previous studies have been focused on the definition of BIM in different perspectives, 

and a generally accepted definition will be discussed. 

Synonymous terms, such as object-oriented modeling, building product model, 

construction virtual design, virtual prototyping and nD modeling had been employed to 
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define BIM (Aranda-Mena et al., 2009). The concept of BIM can be originally traced 

back to the term “integrated project database” (IPDB) proposed by Amor and Faraj 

(2001). Björk and Penttilä (1989) defines IPDB as “a building product model that 

contains conceptual structures specifying what kind of information is used to describe 

the building and how such information is structured.” Gann et al. (1996) define it as “a 

single project database as an electronic data model to which all participants refer 

throughout the process of design, construction, operation, and maintenance.” As an 

evolution of these terms, the term BIM was initially popularized by Jerry Laiserin in 

around 2002, referring as a tool of using, transferring and exchanging information 

(Eastman et al., 2008; Aranda-Mena et al., 2009). With the widespread distribution of 

the concept both in the construction industry and academia, an abundance of researchers 

and institutions attempted to define BIM in diverse approaches.  

Define BIM as a technology  

As indicated by Singh et al. (2011), BIM is “an advanced approach to object-oriented 

CAD, which extends the capability of traditional CAD approach by defining and 

applying intelligent relationships between the elements in the building model, including 

both geometric and non-geometric data such as object attributes and specifications”. 

Eastman et al. (2008) define BIM as “a modeling technology and associated set of 

processes to produce, communicate, and analyze building models.” More specifically, 

information such as geometric and geographic information, spatial distribution, 

quantities and attributes of building components, scheduled duration and cost 

estimation are all embraced and integrated into a BIM model. 

Define BIM as a process 

As perceived by Kymmell (2008), BIM is a 3D simulation model of the building and 

its associated components, developed in the process of planning, design, construction 
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and operation of a building. The Associated General Contractors of America (AGC) 

maintains that BIM is a data-rich, object-oriented, 3D intelligent and parametric digital 

representation of a facility, which is created and developed by the usage of the 

computer-generated model to simulate the process of a facility being conceived, 

constructed, and operated (AGC, 2005; AGC, 2006). The National Building 

Information Modeling Standards (NBIMS) committee of USA defines BIM as a shared 

3D digital model that carries entire information relating to a facility, including its 

physical and functional characteristics, and establishing a credible base for decisions 

during its lifecycle. It is a shared repository of building information data allowing 

different stakeholders to add, extract or alter information at different stages throughout 

its lifecycle (NBIMS, 2010). Azhar et al. (2012) define BIM as a virtual process 

allowing all practitioners to perform and collaborate in one integrated virtual model. 

The McGraw-Hill (2009) report also defines BIM as the process of creating and using 

digital models for design, construction and/or operations of projects.  

Despite a concerted effort to BIM definitions, no unified consensus is reached to 

define BIM precisely and accurately. This research followed a generally accepted 

definition by Eastman et al. (2011), regarding BIM as a modeling approach with its 

associated building components and a set of processes to generate, coordinate, and 

analyze building models. This definition was further reinforced by Lu and Li (2011), 

stating that as BIM allows multiple disciplinary information to be encapsulated within 

one model, it serves as a dynamic repository providing synchronous physical and 

functional information of a building varying from design, construction, operation, 

maintenance, till to demolition. 
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2.2.2 Overview of BIM-Related Research  

Over the past decade, a substantial amount of BIM-related publications has been 

generated. Retrieval from previous academic journals can provide great benefits from 

identifying the major research topics, and gaining insightful thoughts into extant 

research regarding BIM in the AEC industry (Becerik-Gerber and Kensek, 2009), thus 

to lay the foundation of present study where most efforts are needed and subsequent 

future research agenda (Wong and Zhou, 2015). The two-stage review methods 

employed by Tsai and Wen (2005) and Ke et al. (2009) were first adopted to illustrate 

the major research outputs published in the first-tier journals in terms of a chosen topic. 

Based on the assumption that a research team may deliver its research outcomes to a 

high-tier journal with similar topics in its area (Ke et al., 2009), this study first selected 

a powerful search engine to determine journals that published the most BIM-related 

articles. The search was further refined by referring to the journal ranking list of Chau 

(1997) in the fields of construction engineering and management. A three-stage review 

method was further developed by Hong et al. (2011) to acquire a more elaborated 

understanding of related research fields. This method aims to improve the coverage of 

publications which the search engine may miss out, due to the limitation of publication 

year. Since this study was designed to conduct a documentary analysis of BIM-related 

papers published between 2006 and 2016, acquiring a distinct and exhaustive 

investigation of BIM-related research, the two-stage literature review method was 

deployed, which is depicted in Fig. 2.1. 

 

 

 

 

 

 
T/A/K 

search 

Search 

engine 

Papers 



 

15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: T/A/K – Title/Abstract/Keywords 

Figure 2.1 Review framework (adapted from Ke et al. 2009) 

In the first stage, a comprehensive desktop search was conducted based on the 

“title/abstract/keyword” search method through the powerful search engine Scopus. 

The advanced search Scopus was chosen as it covers a more expanded spectrum of 

journals, faster citation analysis, and more articles than any other search engine 

(Falagas et al., 2008). Search keywords contained building information model(l)ing, 

building information model, construction virtual design, and construction virtual 

prototyping. Papers that included these particular terms in view of the title, abstract, or 

keywords were possibly considered to meet the requirements of this research. This 

search was further confined to the subject area such as “engineering,” “business, 
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management, and accounting,” “social science,” “environmental science,” “decision 

sciences,” “multidisciplinary,” “economics, econometrics, and finance,” and “energy” 

with the document type of “article or review.”  

The search results derived from stage 1 indicated that a total of 1184 BIM-related 

papers had been published from 2006 to 2016. To restrict the deviations of unwanted 

or irrelevant publications, these search results were only analyzed based on the top-

ranked construction-related journals and the number of BIM-related articles published 

annually. Therefore, Automation in Construction (AIC) that have published the most 

BIM-related papers was selected as target journals in stage 2. As the major research of 

this study is to examine extant research on BIM, academic journals that have high 

quality and significant impact on the research community of construction were also 

incorporated in the second stage. Six leading construction journals identified by Chau 

(1997) were included in the second stage for further analysis: Construction 

Management and Economics (CME), Engineering, Construction and Architectural 

Management (ECAM), Journal of Management in Engineering (JME), International 

Journal of Project Management (IJPM), and Building Research and Information (BRI). 

Apart from these, Journal of Computing in Civil Engineering (JCCE), another peer-

reviewed journal that had published frequently cited BIM-related papers was also added 

to the final target journal list. Therefore, eight journals were selected for further analysis 

in total during the second stage. Furthermore, Scopus can cover all of the publications 

within selected journals from 2006 to 2016. 

In the second stage, a more detailed and comprehensive search within the eight 

target journals was carried out with the help of the same search engine, Scopus. Similar 

to the first stage, the search at this stage was also confined to the above subject area 

under the document type of “article or review.” Articles under the broad categories of 
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editorial, book review, discussions/closures, and letter to the editor were excluded from 

the analysis. This resulted in a total of 311 probable BIM-related articles. After the 

removal of those articles including BIM-related items in the title, abstract or keyword 

but focused on irrelevant topics, as a result, a total of 305 BIM-related papers were 

identified. The analyses and review process are primarily based on these 305 identified 

research papers. 

The distribution of the 305 identified papers issued in the eight target journals was 

shown in Table 2.1 within the period from 2006 to 2016. It is obvious that research on 

BIM-related studies has been increasing constantly within the studied period. Academic 

papers issued during the period from 2009 to 2012 had been experiencing a relative 

stabilized growing trend. Subsequently, the number of published papers dramatically 

emerged from 2013 to 2016, with a total number of 230 publications indicating a new 

peak in 2016. Within the studied period, AIC, the most frequently cited journal, was 

considerably greater than any other target journals, with a total of 183 papers, 

accounting for 59.67% of all identified papers, followed by 42 papers issued in JCCE, 

and 36 papers issued in JCEM. The percentage of the three selected journals possess 

about 85.25% of all 305 papers, indicating the mainstream sources of BIM-related 

publications within the studied period. 

Table 2.1 BIM-related papers issued between 2006 and 2016 

Journal 

list 
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total Percentage 

AIC 
3 3 2 4 12 14 8 29 37 43 27 182 59.67% 

JCCE 
   4 2 1 4 4 3 7 17 42 13.77% 

JCEM 
  1 1 2 1 4 7 7 2 11 36 11.80% 

JME 
   1   1  8 2 5 17 5.57% 

CME 
 1      2 2 3 3 11 3.61% 

ECAM 
   1  1 1 1  4 3 11 3.61% 
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IJPM 
     1  1  1 1 4 1.31% 

BRI 
   1   1     2 0.66% 

Eight 

journals 
3 4 3 12 16 18 19 44 57 62 67 305 100.00% 

 

Research papers and reports can be a representative symbol implying the extent to 

which industrial research and development (R&D) of a specific area was developed. 

The number of academic research publications in a country may indicate the 

development level of the industrial innovation and practices in this research area of the 

particular location. As shown in Fig. 2.2, the country of origin published the most BIM-

related papers was U.S., with a total of 110 identified papers, follow by 50 papers in 

South Korea, 39 papers in U.K. and 38 papers in Australia. The total amount of BIM-

related papers published with the first authorship in the four countries comprised 77.7% 

(237 out of 305) of the total identified papers in the target journal. The contribution of 

these four countries to BIM-related research was considerably higher than that of other 

countries or regions. These facts may be perceived as logical and understandable when 

examining the degree of implementing BIM in construction projects within the four 

developed countries. Construction industrial practices with great emphasis on 

information technology such as BIM greatly boosted the development of BIM-related 

studies in those fields. 

Figure 2.2 Research origin of BIM-related papers published 
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2.2.2.1 Research on Implementation of BIM in the Construction Industry 

Over the past years, the architecture, engineering, and construction (AEC) industry has 

witnessed an accelerated diffusion of BIM, supposed to act as an emerging, promising, 

and innovative technology and process, dramatically transforming the way of a building 

from the original conception onwards to demolition (Hardin, 2011; Azhar et al., 2012). 

With the ever-accelerating adoption of BIM, the profitability, efficiency, relationship 

within related practitioners, are supposed to be improved through enhanced 

collaboration (Azhar, 2011). 

In recent years, BIM is gradually being extensively adopted by construction 

professionals and practitioners in the process of effectively enhancing the design, 

construction and operation level throughout a building’s lifecycle (Arayici et al., 2011a). 

As construction industry are being confronted with great challenges to improve 

productivity, efficiency, and profitability of construction projects (Arayici et al., 2011b), 

BIM is currently considered as a transformative information technology to achieve 

these goals. According to McGraw-Hill (2008) Construction Report, 35% of BIM users 
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were reported to be very heavy users while 38% were light users. And the highest level 

of usage of BIM was supposed to grow rapidly to 45% in 2009, in which architects and 

owners were the heaviest users of BIM compared to the engineers and contractors. Also, 

McGraw-Hill (2009) indicated that nearly 39% of the construction industry of major 

projects in the USA were now utilizing BIM during the process of design and 

construction procurement. Additionally, in china over the past several years, the 

implementation of BIM has been growing rapid, especially amidst large companies that 

can capitalize best on its value, indicating that Chinese constructor has gradually 

perceived the great potential benefits of BIM adoption in construction projects 

(Bernstein, 2015). 

Likewise, enhancing adoption of BIM is receiving continuous proliferation in 

academic articles. Gu and London (2010) pointed out that on account of various 

business incentives, such as the need for sustainable design and construction, integrated 

as-built database for facilities management, the adoption of BIM in AEC industry is 

particularly promising. They also established and developed a Collaborative BIM 

Decision Framework to facilitate BIM adoption through a Focus Group Interviews 

(FGIs) analysis. Singh et al. (2011) proposed a conceptual framework that specified the 

developed features and technical requirements of using BIM-server as a multiple 

disciplinary collaboration platform. The framework was significantly developed by 

utilizing focus group interviews (FGIs) on behalf of the various disparate AEC 

disciplines, case study of a specific project that exerted a state-of-art BIM server, and 

combined with a critical review and detailed analysis of existing collaboration 

platforms. They also found that the support technology requirements were of great 

importance in expediting technology management and adoption across disciplines. In 

addition, greater intelligent and automated collaboration support in design and 
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construction can be achieved by promoting BIM-server investigation and development. 

Lu et al. (2012) proposed a generic model to practically identify and measure the 

benefits of BIM by comparing two learning curves, which can be used as a learning 

tool to promote the adoption of BIM. Porwal and Hewage (2013) also proposed a 

structured and collaborative BIM-based partnering framework for public procurement 

construction projects, in order to facilitate widespread adoption of BIM and maximizing 

the benefits out of BIM implementation. A BIM model can be widely used for 

multifarious purposes, e.g., virtually planning and design, construction scheduling, cost 

estimation, data integration, collision detection, and facilities management (Azhar et al., 

2008; Schlueter and Thesseling, 2009; Azhar, 2011; Lu et al., 2012). Consequently, 

BIM is arguably perceived as an instrumental tool for mitigating the construction 

industry’s scattered nature, enhancing efficiency, and lowering the high costs of 

inadequate collaboration (Succar, 2009; Lu et al., 2012). 

As indicated by Bernstein (2015), in China, contractors are currently at higher 

adoption levels than architects. However, generally, the current utilization rate of BIM 

is still in a relatively infant stage. This was evidenced by the survey (CCIA, 2013), 

85.05% of construction enterprises reported that they have not been involved in any 

BIM-based projects. 

2.2.2.2 Research on General Benefits of BIM Implementation 

As a term and method that is rapidly gaining popularity, BIM is under the scrutiny of 

many building professionals questioning its potential benefits on their projects (Barlish 

and Sullivan, 2012). The beneficial impacts of utilizing BIM have been broadly 

explored, like more efficient and effective process of sharing or modifying information, 

reduced costs, enhanced design quality, greater integrated data, decreased change 

orders, improved interoperability, and better life-cycle management (Howard and Björk, 
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2008; Barlish and Sullivan, 2012; Love et al., 2011c; Azhar, 2011). More specifically, 

BIM can store the entire design information into a share and open repository effectively 

to achieve integration and uniqueness of information. Also, synchronized information 

with regard to the construction schedule, cost, safety, and quality can be obtained by 

applying BIM in order to fully accomplish specified progress (Baoping et al., 2010). 

During the operation and maintenance stages, BIM can well control of all related 

information, such as physical and functional information, facilities performance, to 

regularly assess the status, thus to adjust the schedule in time to enhance management 

level in the process. Generally, BIM enables the production process more efficient, with 

tighter schedules, lower project costs, less rework, better collaboration among 

practitioners, as well as enhanced productivity (Farnsworth et al., 2015). 

Despite widespread recognized benefits of BIM usage, users are supposed to take 

additional cost and time/schedule benefits into consideration (Lu and Li, 2011; Becerik-

Gerber and Rice, 2010). For example, based on the 32 major projects that utilized BIM, 

the case studies conducted by Stanford University Center for Integrated Facilities 

Engineering (CIFE, 2007) indicated great beneficial consequences, like up to 40% 

reduction of unexpected change, more accurately cost estimation compared with 

traditional ones, up to 80% reduction in time taken to generate a cost estimate, up to 

10% of contract value cut down through clash detections, and up to 7% reduction in 

project duration. Issa and Suermann (2009) performed a questionnaire survey revealed 

that quality, on-time completion, and units per labor-hour were explored as the top 3 

benefits resulting from implementing BIM. Jung and Joo (2011) developed a 

comprehensive framework and evaluation methodology to quantify the overall benefits 

and effectiveness of BIM usage, with the purpose of identifying promising areas and 

driving factors for practical construction projects. The proposed framework served as a 
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foundation to improve the communications with shared understanding. Barlish and 

Sullivan (2012) carried out a case study approach to provide a more comprehensive 

methodology to identify the benefits of BIM, as a result of more holistic and exhaustive 

framework for measuring benefits of BIM usage. Also, Love et al. (2013) established a 

benefits evaluation framework to obtain a wide range of benefits by incorporating 

intangible benefits and costs apart from return on investment.  

2.2.2.3 Research on Limitations of BIM Implementation 

Nevertheless, adoption of any emerging technology in any industry would pose 

challenges (Porwal and Hewage, 2013). Current work practices may need a great shift 

to better accommodate the changes brought by the application of new technology to 

facilitate collaboration and achieve better consequences (Cerovsek, 2011b; Gu and 

London, 2010). Specifically, it is not only a shift in technology implemented but also a 

tremendous adjustment or transformation to the existing practices that practitioners 

work (Porwal and Hewage, 2013). A mass of factors have been identified as the major 

factors hindering adoption of BIM, like lack of initiative and training chance, dispersed 

and complex features of the AEC industry, obscured roles, responsibilities, and 

distribution of benefits (Gu and London, 2010). In addition, technological obstacles for 

BIM implementation, with respect to the changes of organizational form and 

procurement processes, are also deemed as one of the major factors impeding 

widespread adoption of BIM. Also, sometimes, industry people are reluctant to make 

changes with existing work practice and hesitate to learn new concepts and technologies. 

An effective approach of adopting a new technology is to encompass it in the 

contract as a mandatory condition by the client or owner, who has the ultimate decision-

making power to determine the usage of BIM. However, public sectors often have 

concerns concerning the immature market and mechanism of utilizing BIM and are also 
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afraid of diminishing competitive capability by increasing construction project costs 

with the implementation of BIM (Porwal and Hewage, 2013). Eadie et al. (2013) 

comprehensively investigated the reasons for not adopting BIM in construction projects 

via 92 surveyed practitioners that utilized BIM. Results implied that lack of expertise, 

lack of client demand, cultural resistance, and high investment cost were considered as 

the leading factors inhibiting BIM implementation.  Table 2.2 summarized the barriers 

and limitations of BIM technology implementation, indicating that BIM 

implementation could be influenced and contained by multifarious factors, including 

but not limited to technological, organizational, or cultural issues. 

Table 2.2 Summary of barriers and limitations on BIM implementation 

Code Barriers and limitations Sources 

BL01 High investment costs with lower rate of 

return on investment  

Ku and Taiebat (2011), Porwal 

and Hewage (2013), Azhar (2011), 

Eadie et al. (2013) 

BL02 Technological obstacles: lack of data 

and software interoperability 

Taylor (2007), Gu and London 

(2010), Bernstein and Pittman 

(2004), Grilo and Jardim-

Goncalves (2010), Ku and Taiebat 

(2011), Cerovsek (2011a), Porwal 

and Hewage (2013), Love et al. 

(2011c), Howard and Björk (2008) 

BL03 Lack of industrial standards and 

guidelines in BIM implementation 

Ku and Taiebat (2011), Eastman et 

al. (2011), Eastman et al. (2009) 

BL04 Lack of statutory and normalized 

contractual agreements in distributing 

Taylor (2007), Gu and London 

(2010), Bernstein and Pittman 

(2004), Grilo and Jardim-
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responsibilities, risk, and reward among 

contracting parties 

Goncalves (2010), Ku and Taiebat 

(2011), Arayici et al. (2011b), 

Porwal and Hewage (2013) 

BL05 Lack of trained and proficient 

professionals familiar with BIM 

implementation process and software 

Gu and London (2010), Ku and 

Taiebat (2011), Arayici et al. 

(2011b), Eadie et al. (2013) 

BL06 The resistance to change traditional 

practice and procurement method 

Taylor (2007), Gu and London 

(2010), Grilo and Jardim-

Goncalves (2010), Arayici et al. 

(2011b), Porwal and Hewage 

(2013), Eadie et al. (2013) 

BL07 Lack of scientific and authentic studies 

quantifying the perceived value of BIM 

Gu and London (2010), Arayici et 

al. (2011b) 

2.2.2.4 Interoperability Issues 

Due to the substantial different applications used by various practitioners, together with 

the diverse fragmental variables involved in the building construction projects, 

interoperability has become a great challenge that the AEC industry currently 

confronted with (Grilo and Jardim-Goncalves, 2010). To keep such information open 

and non-proprietary, it is necessary to develop and establish a standard platform, where 

different software package can communicate with each other. The value of 

interoperability on BIM was explored and evaluated by many research scholars.  

As indicated by Grilo and Jardim-Goncalves (2010), in order to achieve integrated 

use of BIM technology, it is crucial for construction projects to enhance communication 

and coordination interactions between different players, thus to improve 

interoperability. They believed that BIM approach can facilitate to achieve efficiency 

and differentiation value levels, which means greater cost beneficial results and less 
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risky outcomes by disposing of the need for interoperability in BIM. They also 

concluded that great emphasis should be placed on collaboration and channel 

interaction types of interoperability, which can facilitate BIM to achieve higher value 

level, i.e. value innovation. Arayici et al. (2011a) asserted that it is not a simple 

approach to learning a type of new software, but a paradigm shift to training staff, 

rearrange workflows and responsibilities and transform the way of modeling 

construction (Arayici and Aouad, 2010; Arayici et al., 2011a). 

To facilitate data exchange between heterogeneous AEC software applications, 

the Industry Foundation Class (IFC) has been designed to sustain a wide range of BIM 

exchanges in the construction industry (Eastman et al., 2011; Venugopal et al., 2012). 

Despite its necessary to exchange modeling data, IFC alone is not a sufficient condition 

for achieving full interoperability between different building information modeling 

(BIM) software applications (Eastman et al., 2009). In order to achieve specific model 

view, a set of standardization efforts has been developed, such as Model View 

Definitions (MVD), which is required to specify exactly what types of information 

should be exchanged and in what form and structure the IFC schema are to be used 

(Venugopal et al., 2012). 

2.3 Construction Productivity 

2.3.1 Definition of Construction Productivity 

Construction productivity has long been a concern in both industry and academia, for 

it can be improved to foster sustaining economic growth and generate substantial social 

wealth and welfare (Park et al., 2005; Kenley, 2014; Tookey, 2011). Being the most 

dominating factor contributing to the remarkable economic profitability of most 

construction projects (Yi and Chan, 2014; Kenley, 2014), productivity is receiving 

incessantly increasing concern with regard to the production efficiency of the whole 
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construction industry. Nevertheless, there is no unified agreement on the definition of 

“productivity” (Yi and Chan, 2014; Thomas and Mathews, 1986) in both construction 

industry and academia. Additionally, it can be measured in diverse approaches 

determined by the application of specific domain, like an industry, an individual 

enterprise or just a concrete project. The Merriam-Webster definition of “productivity” 

is the rate at which goods are produced or work is completed. As stated by the Oxford 

English Dictionary, productivity is the state or quality of being productive. Wikipedia 

defines productivity as an average measure of the efficiency of production. To sum up, 

productivity can be defined as the power of being productive, efficiency and the rate at 

which goods are produced. 

Generally, construction productivity is commonly and concisely expressed as the 

rate of output to its associated input in the production process. Thus, construction 

productivity can be regarded as an indicator measuring the effectiveness of construction 

production process denoted by the ratio of output obtained to input devoted. According 

to Chau and Walker (1988), productivity estimation that adopts one or more inputs or 

factors, but not all factors, is called partial productivity. A common example of partial 

productivity is labor productivity, usually expressed as output per hour. Despite its 

relatively simple concept to comprehend and express, labor productivity may be 

completely incorrectly in measuring resources utilization rate. An alternative term, for 

example, total factor productivity, where outputs and all identifiable inputs are 

considered, was applied by Chau and Walker (1988) to establish an operational 

framework for measuring construction productivity by utilizing diverse construction 

cost and price indexes at the industry level. Since this research aims to identify the 

relationship between BIM and construction productivity on project level, partial 
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productivity with selected inputs is more appropriate for this research at project-level 

due to the fragmental and multiple variables involved.  

2.3.2 Measuring Construction Productivity 

The measurement of construction productivity is highly diversified based on the 

utilization of various purposes or sectors in the construction industry, ranging from 

evaluating economics state of a country to a specific type of craft or individual crew 

(Thomas et al., 1990). Hence, it is improper and inadequate to define or measure 

construction productivity simply exerting a single measure or meaning, even if accurate 

(Thomas et al., 1990; Bröchner and Olofsson, 2012; Ellis Jr and Lee, 2006). Numerous 

previous studies have been conducted concentrating on standardizing the measurement 

of construction productivity(Park et al., 2005; Oglesby et al., 1989).  However, no 

identical and universal methods and norms have been achieved to measure construction 

productivity on accounts of intricate, fragmental and dynamic nature of uncertainties 

contained of construction projects (Chau and Walker, 1988; Oglesby et al., 1989; Park 

et al., 2005; Siriwardana and Ruwanpura, 2012; Hughes and Thorpe, 2014). Given a 

specific task or a change, construction productivity can be measured in various 

alternative approaches.  Generally, three measurements are frequently applied in the 

construction industry in the literature (Oglesby et al., 1989; Arditi and Mochtar, 2000). 

2.3.2.1 Activity Level 

Firstly, an activity-oriented model which define productivity as labor productivity has 

been widely used by project executives and contractors to control and monitor field 

activities (Arditi and Mochtar, 2000).  One may prefer a relatively easier way to 

measure construction productivity for detailed estimating or scheduling at the activity 

or site level. And it is unsurprisingly that labor productivity was perceived as one of the 
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best indicators for measuring construction productivity.  Being the focal point of 

construction industry, a plenty of past research efforts had been made on measuring 

labor productivity (Hanna, 2001; Hanna et al., 2005; Hanna et al., 2008; Allmon et al., 

2000; Ellis Jr and Lee, 2006; Rojas and Aramvareekul, 2003a; Song and AbouRizk, 

2008; Crawford and Vogl, 2006; Chau and Walker, 1988). For example, Thomas et al. 

(1990) performed a factor model together with expectancy theory model of motivation 

to model construction labor productivity. Song and AbouRizk (2008) developed a 

systematic method to measure and estimate labor productivity by exerting a consistent 

measurement system to quantify outputs and inputs, thus to establish a systematical 

system of acquiring data that synthesized and synchronized all historical and current 

projects’ data. Then, a labor productivity model regarding steel drafting and fabrication 

activities was set up by using artificial neural work and discrete-event simulation 

modeling techniques.  Siriwardana and Ruwanpura (2012) developed a Worker 

Performance Index (WPI) tool that integrated various different factors, such as 

management, supervisor assessment, motivation, and technical skills, to evaluate and 

examine the construction worker performance quantitatively, thus to improve 

construction productivity. Because of its labor-intensive characteristics, construction 

activity-level productivity can be generally perceived as labor productivity and is 

calculated as Eq. (2.1), defining output as work quantities installed and input as actual 

labor hours expended (Rojas and Aramvareekul, 2003a; Song and AbouRizk, 2008; 

Hanna et al., 2008). 

             Labor productivity = work quantity installed / actual labor hours                   

(2.1) 
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It indicates the number of quantities installed per labor hour. Thus, higher values 

of productivity signify better productivity performance. Labor productivity can be 

useful for contractors in bidding and monitoring field activities. 

2.3.2.2 Project Level 

However, this aforementioned approach is insufficient and intricate as a typical 

representation of measuring global productivity values of construction projects, where 

diverse and fragmental variables are embraced (Mohammadian and Waugh, 1997). 

Consequently, Ellis Jr and Lee (2006) developed a project level productivity (PLP) 

method to measure construction productivity that included all project activities based 

on field data, uniformly quantified by the notion of an equivalent work unit (EWU) and 

total worker hours expended, and mathematically denoted as: 

                                PLP = total worker hours / total EWU                                            (2.2) 

This approach provides an opportunity for construction professionals to determine 

project performance by combining multitudinous continuous concurrent and correlated 

work items into PLP as a whole, regardless of units of measurement and types of work. 

For example, Park et al. (2005) proposed a feasible productivity data collection tool, 

named Construction Productivity Metrics System (CPMS), which classifies 56 

measurement elements into seven categories envisaged to measure output directly 

based on the installed items, such as area, length, volume, or weight, for benchmarking 

aims. 

But when it refers to the construction project as a whole, a more accurate 

measurement of construction productivity can be expressed as the project productivity 

index (PPI) (Hanna et al., 2005), as shown in Eq. (2.3), the ratio between actual total 

work hours performed and estimated or planned total work hours performed. While 

project-level productivity is on grounds of construction activities, this measurement 
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rules out the differences between units of measurement and types of work by dividing 

the budgeted (baseline) work hours by actual work hours. The established benchmark 

or baseline can be utilized by projects managers and construction executives to trace 

the productivity changes or compare with other projects. 

PPI = earned total work hours performed / actual total work hours performed          

(2.3) 

A PPI less than 1 indicated that more work hours were needed to reach completion, 

whilst a more productive project would get a PPI greater than 1. Generally, higher PPI 

stands for the greater level of production efficiency (Hanna et al., 2005). This approach 

can be further developed and mathematically expressed as Eq. (2.4). 

  Productivity performance ratio (PPR) = Actual productivity / Expected 

productivity                      (2.4) 

PPR is also a unitless measurement expressed as the actual productivity over 

baseline productivity (Thomas and Yiakoumis, 1987). It eliminates the difference 

between different job types. 

2.3.2.3 Industry Level 

It is undoubtedly that construction industry has commonly and frequently been 

perceived as the paramount and enabling indicator contributing to the sustainable 

growth of a nation’s economy. An economics method has been utilized to define 

construction productivity at the industry level, which can be expressed by economists 

and accountants as the total factor (multifactor) productivity (TFP), a more accurately 

expression: the ratio of total output production to its corresponding identifiable input 

resources (Chau and Walker, 1988; Thomas et al., 1990; Hanna et al., 2005; Hanna et 

al., 2008). As demonstrated in Eq. (2.4), total outputs and inputs can be both measured 

in dollars (Thomas et al., 1990; Arditi and Mochtar, 2000): 
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          TFP = Total output / Total input = dollars of output / dollars of input               

(2.5) 

where resource inputs include all determinants, namely tangible physical inputs, 

like labor, materials (raw materials and equipment), capital, investment, likewise 

intangible sectors, such as skills, management and technologies (Chau and Walker, 

1988; Thomas et al., 1990; Arditi and Mochtar, 2000; Hanna et al., 2005; Hanna et al., 

2008; Hughes and Thorpe, 2014; Crawford and Vogl, 2006). As pointed out by Chau 

and Walker, output is usually expressed as gross or value-added. For the construction 

industry, the concept of gross has been in common use due to the importance of 

intermediate inputs, such as new materials. Thus, gross product originating can be 

likewise adopted to express the output of a private industry (Rojas and Aramvareekul, 

2003a). TFP can be used as an economic indicator to predict the economic status of a 

nation or a society or for governmental agencies carrying out decision-making policy 

(Thomas et al., 1990; Bröchner and Olofsson, 2012). Furthermore, it can also be applied 

to evaluate the industry trends or in contrast with other industry sectors (Council, 2006; 

Song and AbouRizk, 2008), such as manufacture sector.  

Industry standard productivity measurements must first be set up to serve as a 

standard enforced in present practical work before substantial improvements and 

foreseeable benefits can be realized (CII, 2001; Song and AbouRizk, 2008). To improve 

productivity, a good system is needed to measure and track productivity so that the 

impact of productivity improvement efforts can be judged. In conclusion, previous 

experience reveals that no generally accepted productivity measurement standards are 

existing for estimation purposes. Productivity can be expressed and measured in various 

approaches from disparate perspectives by different people, in terms of the level of 

aggregation, the source of data, and the boundary of the production process, resulting 
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in incomparable or ambiguous values (Chau and Walker, 1988). In this research, 

productivity performance ratio (PPR) was employed as the primary measurement 

method to evaluate the impacts of BIM on construction projects productivity. 

2.3.3 Factors Affecting Construction Productivity 

2.3.3.1 General Factors 

Factors affecting construction productivity has been explored and certified by a 

multitude of scholars, for it is a prerequisite for improving productivity. It is unlikely 

to improve construction productivity without recognizing the influential factors that 

impact productivity (Mojahed and Aghazadeh, 2008). Additionally, factors affecting 

construction productivity can be dynamic, varying with diverse background and 

projects (Koehn and Brown, 1986). A survey carried out by Arditi (1985) indicated that 

productivity improvement should endeavor in enhancing marketing practices, planning 

and scheduling, labor management issues, site supervision, industrialized building 

systems, equipment policy and engineering design. Lim and Alum (1995) identified 17 

factors impacting construction productivity, including management and manpower 

issues. Lacking skilled supervisors and workers and high rate of labor turnover were 

perceived as top three items affecting construction productivity in Singapore. 

Olomolaiye et al. (1998) classified factors into two categories, internal (management 

practice, technology, labor skills, and training) and external (design, environment, 

changes made by the client, economic development level, and political social stability) 

respectively. Arditi and Mochtar (2000) analyzed the findings of surveys of the top 400 

US contractors and concluded that five major points: cost control, scheduling, design 

practices, labor training, and quality control respectively, were deemed as of great 

importance to impede construction productivity. Makulsawatudom et al. (2004) 

identified ten most influential factor affecting construction productivity of Thailand, 
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namely in order, material shortage, incomplete drawing, lack of professional 

supervisors, ineffective tools and equipment, absenteeism, insufficient communication, 

instruction time, poor site layout, inspection delay and rework. Hughes and Thorpe 

(2014) investigated top 15 factors ranked by relative importance index that influenced 

construction productivity. Three major factors, that is, rework, poor supervisor 

competency and incomplete drawing, were perceived most likely to affect construction 

productivity. Issa and Suermann (2009) conducted a survey based on six primary 

construction key performance indicators commonly used in the construction industry: 

quality control (rework), on-time completion, cost, safety, dollar/unit performed, and 

units per man hour. Results showed that quality, on-time completion, and units per man 

hour were the highest ranking KPIs responses preferred. Chelson (2010) also 

ascertained that key indicators of productivity improvement could be placed on the 

amount of request for information (RFI), rework reduction, schedule compliance, and 

change orders due to design and construction interferes. Specific factors will be 

presented in the next section and Table 2.3 summarizes related publications of factors 

affecting construction productivity. 

2.3.3.2 Specific Factors 

Manpower Factors 

Because of its labor-intensive feature, project-level construction productivity could be 

greatly influenced and determined by construction labor productivity. As indicated by 

Rojas and Aramvareekul (2003b) and Lim (1996), the improvement of labor 

productivity has become one of the major approaches contributing to the profitability 

of construction industry. 

Much of previous research has been investigated to identify the improvement 

drivers of labor productivity. For example, Yi and Chan (2014) presented a state of the 
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art review on construction labor productivity from different levels, namely, industry, 

project, and activity. Major research areas like factors affecting labor productivity are 

identified and future research trends are proposed. A recent survey conducted by Rojas 

and Aramvareekul (2003b) demonstrated that management skills, such as strategic 

management, procurement management, and manpower issues, like improving training 

programs, enhancing worked motivation, had substantial room for labor productivity 

improvement. Hanna et al. (2008) also pointed out that the appropriate use of shift work 

was critical, seeing that it may, if used improper, have detrimental to construction labor 

productivity. Hinze (2011) noted that both additional working days and increased 

workforce could decrease labor productivity. Mojahed and Aghazadeh (2008) 

maintained that skills and experience of the workforce, management, job planning, 

workers’ motivation, and material availability, were the major concern of improving 

productivity by implementing related index technique. Further analysis indicated that 

skills and experience of the workforce would be confronted with greater challenges 

because of lacking skillful labor. 

Rework 

Rework is frequently regarded as an unexpected process of redoing works or activities 

that are inaccurately or inappropriately enforced in the previous stage (Hughes and 

Thorpe, 2014). A diverse sort of factors, such as omissions and errors, design changes, 

inefficient management, failures may result in rework, which could affect the 

productivity of construction projects in adverse. 

Former research demonstrated that cost of rework (quality) could be quite high in 

terms of overall project costs. For example, Barber et al. (2000) developed a 

methodology to measure the cost of quality failures of typical projects, which were 

identified to occupy a considerable percentage of total cost. The case study of two 
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projects conducted by Love and Li (2000) maintained that cost of rework could account 

for 3.15% of project contract value increase. Findings also suggested that omissions 

and errors, design changes resulting from inadequate design, insufficient coordination, 

poor communication (Hwang et al., 2009), were the major causes contributing to 

rework. Love (2002) revealed that 52% of cost overruns could be attributed to rework, 

which could in turn account for 10% to 15% of contract value (Sun and Meng, 2009).   

Technology Factors  

Although previous views indicated a technologically stagnant industry (Zhai et al., 2009; 

Goodrum et al., 2010), the implementation of advanced technology has been of great 

concern concerning improving construction productivity. Allmon et al. (2000) insisted 

that, generally, a positive relationship can be explored between technology innovation 

and productivity enhancement. For example, as pointed out by Zhai et al. (2009), 

information technology had a positive impact on enhancing automation and integration 

of information systems, of which higher level means greater improvement in 

construction productivity. A study was conducted by Goodrum and Haas (2002), 

through examining 200 construction activities over a 22 years duration at the activity 

level. As a result, advanced equipment technology gave rise to a greater improvement 

in productivity over that of partial factor productivity. A similar survey was conducted 

by Goodrum and Haas (2004), which realized significant long-term improvement in 

construction productivity through promoting equipment technology. By analyzing 100 

construction activities from 1977 to 2004, Goodrum et al. (2009) found that significant 

improvement in material technology can be an effective approach to enhancing both 

labor and partial construction productivity. Another research conducted by Grau et al. 

(2009) indicated that materials tracking technology can dramatically improve the craft 

labor productivity. Hewage et al. (2008) ascertained that enhanced usage of information 
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technology could greatly improve on-site communication between managers and 

workers, as well as worker satisfaction. 

Time/Schedule 

Completing projects within prescribed time can be a commonly recognized indicator of 

project efficiency. However, the incremental proportion of construction projects is 

suffering from serious time overruns by now. For example, Siriwardana and Ruwanpura 

(2012) pointed out that frequent and extensive delays of a project can be the dominating 

contributor to the construction productivity losses. Any delays or extension of time 

would probably result in prolonged project duration, usually companied by lower 

productivity and higher construction cost. As indicated by Assaf and Al-Hejji (2006), 

change order was identified to be the major factor causing delays of large construction 

projects. 

Shift work or extended overtime can also be one of the efficient approaches to 

accelerate the schedule, thus to improve productivity. Adrian (1987) revealed that 

arranging more difficult and complex construction works in the mornings over 

afternoons had greater beneficial impacts of productivity improvement regarding shift 

work to accelerate scheduling. Research into extended overtime of labor intensive 

trades was also explored by Hanna et al. (2005), which indicated a negative rate of labor 

productivity increase.  

Cost 

In general, lower cost usually results from higher construction efficiency that fully 

utilizes all the resources involved. Greater prospective profitability could be realized 

by the increasing revenue as a consequence of lower project cost. Accompanied by the 

unceasing incremental scale and complexity of construction projects (Tucker, 1986; 

Chan et al., 2004), as pointed out by Siriwardana and Ruwanpura (2012), cost overruns 
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have been perceived as one of the primary factors affecting construction productivity. 

For example, in recent years, construction costs have increased at a disproportionate 

ratio compared with the rate of inflation (Tucker, 1986; Oglesby et al., 1989; Arditi and 

Mochtar, 2000). Tucker (1986) indicated that construction labor costs, assumed to be 

33-50% of overall project costs (Hanna, 2001; Hanna et al., 2005; Hanna et al., 2008; 

Siriwardana and Ruwanpura, 2012), was deemed as the main and major cause that 

resulting in the project overspending. As indicated by Kaming et al. (2010), the 

paramount causes of time and cost overruns were design changes, poor labor 

productivity, inadequate planning and lack of resources. 

Management factors 

As stated by Tucker (1986), due to its increasing scale and complexity, the collaboration 

and coordination of all practitioners, including owners, contractors, consultants etc., 

has become the greatest challenge for construction projects. According to Tucker 

(1986), for purpose of improving construction productivity, focused attention should 

be paid to management issues that enhance communication with construction 

practitioners. Large amounts of opportunities can be found in project orientation, 

planning, communication, design, technology, etc. Abdel-Wahab et al. (2008) also 

pointed out that efforts should be focused on organizational management practice to 

facilitate further improvement of productivity of the UK construction industry. Rivas 

et al. (2010) revealed that rational plan and arrangement of materials, tools, and 

equipment were the major factors affecting construction productivity. Also, as 

identified by Dai et al. (2009), the availability and management of jobsite materials, 

tools, and equipment could have tremendous impacts on labor productivity. 

Table 2.3 Summary of Related Publications of Factors Affecting Construction Productivity 

Authors 
Labor 

Productivity 
Rework Time Cost Technology Management 
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Naoum (2016)  *  *      *  * 

Yi and Chan (2014)  *           

Hughes and Thorpe 
(2014) 

   *    *    * 

Siriwardana and 
Ruwanpura (2012) 

 *    *  *     

Hinze (2011)  *    *  *     

Liu et al. (2011)  *           

Rivas et al. (2011)  *  *        * 

Diekmann and Heinz 
(2001) 

 *           

Dai et al.  (2011)  *           

Jarkas and Horner 
(2011) 

 *           

Goodrum et al. (2010)          *   

Kaming et al. (2010)      *  *     

Mawdesley and Al-
Jibouri (2010) 

                     * 

Dai et al. (2009a)  *          * 

Dai et al. (2009b)  *          * 

Zhai et al. (2009)                    *   

Hwang et al. (2009)              *  *  *    * 

Eastman and Sacks 
(2008) 

 *        *   

Song and AbouRizk 
(2008) 

 *           
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Hanna et al. (2008)  *           

González et al., 2008  *           

Hewage et al. (2008)          *  * 

Abdel-Wahab et al. 
(2008) 

 *          * 

Mojahed and 
Aghazadeh (2008) 

 *          * 

Kazaz and Ulubeyli 
(2007) 

 *           

Crawford and Vogl 
(2006) 

 *  *      *  * 

Assaf and Al-Hejji 
(2006) 

     *       

Ezeldin and Sharara 
(2006) 

            

Hanna et al. (2005)  *    *       

Horman and Thomas 
(2005) 

 *          * 

Fayek and Oduba 
(2005) 

 *          * 

Ng et al. (2004)  *  *  *      * 

Makulsawatudom et al. 
(2004) 

   *  *    *  * 

Goodrum and Haas 
(2004) 

 *        *   

Rojas and Aramvareekul 
(2003b) 

 *  *  *      * 

Rojas and Aramvareekul 
(2003a) 

 *           

Ballard et al. (2003)      *      * 

Cox et al. (2003)  *  *  *  *    * 
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AbouRizk et al. (2001)  *           

Barber et al. (2000)    *    *    * 

Love and Li (2000)    *    *    * 

Goodrum et al. (2002)          *   

Goodrum and Haas 
(2002) 

         *   

Allmon et al. (2000)  *        *  * 

Arditi and Mochtar 
(2000) 

 *  *  *  *     

Hanna et al. (1999a)  *  *  *       

Hanna et al. (1999b)  *  *  *       

Hanna et al. (1999c)  *  *  *  *     

Lim (1996)  *           

Lim and Alum (1995)  *          * 

Thomas et al. (1990)  *          * 

Oglesby et al. (1989)        *     

Adrian (1987)  *    *       

Koehn and Brown 
(1986) 

 *           

Tucker (1986)  *      *    * 

Arditi (1985)  *          * 

Maloney (1983)  *          * 
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2.4 Chapter Summary 

This chapter first explores the various definition of building information modeling and 

gives an overview of BIM-related publication in target journals. The current adoption 

of BIM and general benefits of BIM implementation in the construction industry have 

been comprehensively reviewed and identified. Interoperability issues and limitation of 

BIM in the construction industry have also been discussed. Then, construction 

productivity has been reviewed based on selected paper from well-known academic 

journals in construction management. A comprehensive definition of construction 

productivity from different perspectives has been developed. Primarily used 

measurements have been reviewed in measuring construction productivity. Finally, 

factors influencing productivity has been explored and identified by inclusive literature 

review.  
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CHAPTER 3 RESEARCH DESIGN AND 

METHODOLOGY 

3.1 Introduction 

This chapter firstly provides an overview of how the research is conducted, as well as 

the research process in detail. Then a comprehensive review of research methods and 

analysis techniques employed in this research are introduced. 

3.2 Research design 

3.2.1 Research Approach 

To identify the research problems and achieve the four specific research objectives 

presented in Chapter 1, the research framework is well-designed by combining 

qualitative and quantitative methodologies, applying appropriate research methods and 

data analysis tools, formalizing a logical research process. 

This research aims to identify the relationship between BIM implementation and 

construction productivity both in design and construction stage. Through literature 

review, research gaps, as well as the related definition and basic features of construction 

productivity and BIM, were identified in Chapter 2. Then, by a subsequently further 

document analysis, a design error reduction model and BIM-enabled construction 

productivity gains model have been developed in Chapter 4. Chapter 5 assessed the 

impacts of BIM implementation in reducing design error, validate the conceptual model 

based on the different design error reduction (DER) indicators, as established in Chapter 

4. Finally, the identified influential factors regarding construction productivity were 

utilized to test the proposed model with the aim of exploring how the BIM-enabled 
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factors affecting project-level construction productivity, as analyzed in Chapter 6. The 

research framework for achieving these four objectives is shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Research Framework 

3.2.2 Qualitative research and quantitative research 

It is believed that the study of positivist epistemology (theoretically grounded) 

principally holds the assertion that the existence of a priori fixed relationships within 

phenomena could be typically and structurally investigated, in an attempt to advance 

foreseeable perception of a phenomena or theory (Orlikowski and Baroudi, 1991). 

Hence, the research problems addressed by positivists reveal the need to determine and 

evaluate the causal relationships among variables, whereby causes determine or 

influence outcomes (Creswell, 2013). Since this study aims to increase the body of 
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knowledge concerning the relationship between BIM implementation and construction 

productivity, positivist research methods are appropriately applied.   

Research approaches are schemes and procedures for research that follow the steps 

from expansive assumption to specific methodology of gathering, analyzing, and 

interpreting data (Creswell, 2013). Chambers English Dictionary defines research as a 

process of conducting a careful search and systematic investigation in order to increase 

the stock of knowledge (Fellows and Liu, 2015). The Concise Oxford Dictionary 

extensively proposes a broader definition of research as an endeavor to perform the 

systematic, scientific, and critical investigation into the extant or previous study of 

materials, sources of a subject towards the foundation of facts and conclusions, devising 

new applications (Fellows and Liu, 2015; Creswell, 2002). The purpose of the research 

process is to generate a new perception of knowledge or deepen understanding of a 

specific topic or issue (Neuman, 2002; Kothari, 2004). Qualitative research and 

quantitative research are generally perceived as two primary approaches of empirical 

research methods, that are fundamentally differentiated in data collection and analysis 

methods (Fellows and Liu, 2009).  

With the intention of achieving the research objectives, qualitative research 

approaches that are drawn on observations, documentary analysis and interviews taken 

from real world modeling projects aim to investigate a question without attempting to 

quantifiably measure variables or identify potential relationships between variables 

(Creswell, 2002; Tashakkori and Teddlie, 1998). It is viewed that qualitative research 

methods could be beneficial for developing new theoretical thoughts and giving 

explanations of a phenomenon (Fellows and Liu, 2015). Generally, qualitative research 

is employed as a method of exploratory research as a basis for later quantitative research 

hypotheses. A quantitative research approach involves a systematic empirical 
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investigation of the phenomena and quantifying their relationships among variables 

through a rigorous data analysis techniques. The primary data collection methods of 

quantitative research are drawn on experimental, correlational, and survey approaches 

(Creswell, 2002). These methods produce results that are easy to summarize, compare, 

and generalize. Statistics derived from quantitative research can be used to establish the 

existence of associative or causal relationships between variables, which are consistent 

with the philosophical and theoretical stance of positivism. 

In either qualitative or quantitative research, the researcher(s) may collect primary 

or secondary data. Primary data is data collected specifically for the research, such as 

through interviews or questionnaires. Secondary data is data that already exists, such as 

census data, which can be re-used for the research. It is good ethical research practice 

to use secondary data wherever possible. In accordance with positivist methodology, 

this research employs quantitative data collection and analysis methods to empirically 

test the established research model. 

3.3 Research Methods Adopted 

As evidenced by Kothari (2004), research methods indicated that the behaviors or tools 

applied to choose and develop research techniques while research techniques refer to 

those detailed operations we apply to record data, process data, analyze data and so 

forth (Kothari, 2004).  In order to achieve related research objectives, several research 

methods will be adopted during the research process. 

3.3.1 Document Analysis 

Document analysis is envisaged to address research problems and questions by 

investigating a variety of recorded information and published documents, incorporating 

academic publications, industry reports, and reports by international organizations, 
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either digital or printed (Patton, 1990). As summarized by Bowen (2009), the primary 

sources of document analysis are diverse sorts of documentation, including background 

papers, books and brochures, journals, newspapers, and so forth. Document analysis 

can supplement the information obtained through other methods, such as interview and 

questionnaire survey under certain circumstances (Bell, 2014). Generally, document 

analysis is the principal qualitative method for in-depth content analysis and systematic 

review of existing data, which can be grouping into two approaches in detail based on 

the origins of data sources, namely, content analysis and existing data analysis. Content 

analysis is defined as any technique for acting inferential processes that objectively and 

systematically review and identify references from a theoretical perspective (Holsti, 

1969). In this study, literature review is the major form of such analysis to collect 

background information of a research study. Literature review is a frequently used 

methodology applied to systematically review and consolidate the extant knowledge, 

research findings, theoretical and practical contributions in a certain research domain 

based on secondary sources (Merriam, 1998). It could help researchers to explore 

research problems of extant works with the aim of setting up a theoretical foundation 

for the current research and identifying knowledge gaps. In this research, a 

comprehensive review of construction productivity and the implementation of BIM has 

been conducted. Research gaps were identified and summarized to initiate the research 

objectives, serving as a solid foundation for future analyses. Official publications and 

reports were reviewed to explore existing achievements in the current construction 

practice. Existing data analysis in this study encompassed the collection and descriptive 

analysis of time-series data in public available statistical yearbooks.  

The advantages of document analysis were identified by Caulley (1983). First, 

document analysis is the most efficient way of collecting certain types of data, such as 
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background information and it also can collect some types of retrospective data. Besides, 

information obtained from documents is more reliable than that of observations and 

interviews, because people may be unwilling to provide certain information. In addition, 

document analysis is more convenient to perform than questionnaires, interviews, and 

observations. Finally, document analysis is an inexpensive and time-saving method to 

collect data implying research trends.  

3.3.2 Questionnaire Survey 

It is generally believed that survey could be the most commonly-used method in the 

fields of construction management, as samples of data could be gleaned from a large 

population in a standardized form (Saris and Gallhofer, 2007). As stated by Mangione 

(1995), surveys are a comparatively inexpensive way of collecting data by allowing 

respondents to have enough time to fill out the questionnaire and make inquiries if 

needed. Besides, it can keep confidential information from respondents, and responses 

could be evaluated in a relatively short time. In addition, respondents could fill out the 

questionnaire at their early convenience and provide adequate time allowing 

respondents sufficiently perceive the context of a set of questions. 

The questionnaire survey is an effective instrument for conducting empirical 

research for collecting quantitative data without the physical reach of the respondents 

with the purpose of selecting the answers from target respondents in a standardized 

form. Standardized data could be derived from respondents by providing them a series 

of choices for any single question. The design of questionnaire should avoid any 

ambiguous and complicated expressions and be effortless to understand and answer 

(Oppenheim, 2000). The merit of conducting questionnaire surveys is to obtain a large 

amount of quantitative data, providing sources of investigating and synthesizing the 

major findings. However, the quality control of the data becomes difficult. 
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In this research, a questionnaire survey was utilized to solicit the professional 

views of the proposed models. Respondents were asked to rate the level of agreement 

on the importance of each separate items based on a five-point Likert scale (1 indicates 

“strongly disagree” and 5 indicates “strongly agree”), 

3.3.3 Semi-structured Interview 

An interview can be described as a conversation with a purpose (Bingham and Moore, 

1924). Dane (1990) defined an interview as a structured conversation used to complete 

a survey, in which the survey devises the structure of the conversation with the purpose 

of data collection. It can be conducted in different ways, such as face-to-face interviews, 

telephone interviews, and mail surveys. When the inquiries/questions regarding the 

research topic are addressed, a well-structured interview is one of the most effective 

ways to collect firsthand data if only interviewees can respond based on an accurate 

understanding of the questions. Among the various interview types, expert interviews, 

in which the interviewees are experts or experienced practitioners within the research 

areas, is an effective and widely used means to directly collect the in-depth, practical 

and up-to-date information. 

Semi-structured interview is a method of research adopted most often in 

qualitative research (Longhurst, 2003). It is an information interchange process where 

interviewers aim to elicit useful and meaningful information from interviewees by 

asking informal and open-ended questions in order to develop a keen understanding of 

the relevant determined topic and bring about the opportunity for unfolding innovative 

new ways of perceiving and comprehending particular topic predetermined (Cohen and 

Crabtree, 2006). In the present study, this method was used to optimize and finalize the 

key factors/criteria which were tentatively identified by literature review and document 

analysis, and dig out practical problems existing in the current research process. 
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3.4 Facilitated Data Analysis Techniques 

3.4.1 Descriptive Statistics and Analysis of Variance 

Useful information cannot be extracted unless raw data collected from various samples 

is well organized (Russo, 2004). Therefore, descriptive statistics that can organize, 

summarize, simplify, and interpret data sets effectively should be used to analyze the 

sample data (Lee, 2008). In this research, descriptive statistical techniques were applied 

to quantitatively describe or summarize features of a dataset in order to identify the 

characteristics of particular groups and describe the similarities and differences among 

variables. Central tendency such as mean value, and measures of variability such as 

standard deviation were generated. Analysis of variance (ANOVA) was performed to 

provide a statistical test of whether the mean differences of the multiple groups were 

significantly associated with each other. In addition, ANOVA test could disclosure how 

demographic variables influence participants’ responses.  

3.4.2 Mean Score Ranking Technique 

Ranking the relative importance of each variable was established by the “mean score” 

method. Rankings of various influential factors were obtained by calculating the means 

for the overall sample as well as for separate groups of respondents. If two or more 

factors happened to have the same mean value, the one with lower standard deviation 

was assigned a higher rank. 

3.4.3 Multiple Regression Analysis 

Regression analysis, perceived as the most broadly and frequently adopted statistical 

technique, is a robust instrument for investigating and modeling the causal relationship 

among variables (Efroymson, 1960). This instrument can be applied in various research 

fields, such as social sciences, economics, engineering, management sciences, physical 
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sciences, and so forth. Multiple regression analysis is the most common form utilized 

to evaluate and analyze the relationship between a single dependent variable and several 

independent variables (Edwards, 1985). It describes the process of how the typical 

value of the dependent variable varies while the independent variable alters. Also, it 

helps to establish a mathematical equation used to measure the proposed model being 

investigated. The adjusted coefficient of determination (adjusted R2) has been widely 

recognized as a measure to evaluate the goodness-of-fit of the regression model. It 

judges the fit of proposed model by the comparison of different regression equations 

with different number of independent variables or sample sizes (Srivastava et al., 1995). 

It is of great significance to select and combine appropriate predictive variables to 

evaluate the dependent variable while addressing a large number of potential 

explanatory independent variables. Stepwise regression is regarded as a powerful 

instrument for automatically determine the best combination of potential predictive 

variables that best fits the dependent variable (Efroymson, 1960; Kutner et al., 2004). 

The variable selection process terminates when all variables fit the criterion to stay in 

the model and no variables outside the model fit the criterion to enter.  

3.5 Chapter Summary 

This chapter first describes the research design. Then, the major research methods, 

including document analysis, questionnaire survey, and expert interview, are discussed 

in details. The subsequent data analysis tools are introduced. In this research, a mixed 

research methodology, incorporating qualitative and quantitative research methods, 

was deployed to achieve research objectives. 
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CHAPTER 4 THE IMPACTS OF BIM 

IMPLEMENTATION ON CONSTRUCTION PROCESS: A 

CONCEPTUAL FRAMEWORK 

4.1 Introduction 

This chapter aims to review the impacts of BIM implementation in reducing design 

error during the design stage from literature with the aim of establishing a conceptual 

design error reduction framework with respect to the causal relationship between the 

impacts of BIM implementation and construction productivity in the construction stage. 

4.2 Reduction of Design Error during Design Stage 

4.2.1 The Desirability of Reducing Design Error in Construction Projects 

The term ‘error’ could be defined as the occurrence of unexpected, erroneous or 

deviated outcomes when carrying out a particular assignment or towards the desired 

goal (Reason and Hobbs, 2003). As stated by Reason (2000), “it is not a cause of an 

event, but a symptom of a much deeper problem within a system”. The concept of 

design errors, also known as design deviations, are inherently defined as the errors, 

omissions, or changes arising from the design process (Burati Jr et al., 1992). With the 

increasing complexity of building construction projects, design errors are generally 

criticized as the major contributor to the failure of buildings and other civil engineering 

projects (Lopez et al., 2010; Lopez and Love, 2011), quality defects (Josephson and 

Hammarlund, 1999; Sun and Meng, 2009), accidents (Lopez and Love, 2011; Lopez et 

al., 2010; Rasmussen et al., 1990), lower productivity (Abdul Kadir et al., 2005), as 

well as the cost overruns and schedule delays of construction projects (Love, 2002; 

Love et al., 2010; Sun and Meng, 2009; Al Hattab and Hamzeh, 2015). Omissions or 
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errors generated in the design phase may have severe impacts on later stages, such as 

construction and operation, along with the overall project performance (Al Hattab and 

Hamzeh, 2015). For example, Linderoth et al. (2014) stated that the cost of design errors 

can be as high as 26% of the total cost as a result of deficiency, which in turn 

incorporated 2-9% of production cost in building and construction projects. A similar 

study conducted by Burati Jr et al. (1992) suggested that design errors accounted for 

79% of total deviation costs, with a subsequent 9.5% of total project budgets. Lopez 

and Love (2011) carried out a study by adopting questionnaire survey received from 

139 projects. Results showed that the mean direct and indirect costs of design errors 

were explored to be 6.9% and 7.4%, respectively. Barber et al. (2000) also revealed that 

design errors contributed to 50% of costs with respect to quality failures in civil 

engineer projects. These results indicated that design error costs were substantially 

proportioned within overall project costs. Subsequently, once design errors are 

determined reworks or change orders are inextricably entailed to rectify or repair them 

that has occurred in order to match the desired requirements (Lopez and Love, 2011), 

which result in schedule growth, poor productivity with low profitability (Thomas and 

Napolitan, 1995; Ibbs, 1997; Hanna et al., 2002; Moselhi et al., 2005; Bower, 2000; 

Love et al., 2014). Sun and Meng (2009) reported that the cost of rework can result in 

10-15% of contract value in construction projects. Hanna et al. (1999) quantified the 

impacts on labor efficiency by collecting data from 43 projects. The results of statistical 

analysis showed an evident increase in time elongation and subsequent decrease in 

labor efficiency. The adverse relationship between the number of rework and 

productivity was also identified by Ibbs (1997) and Manzoor Arain and Sui Pheng 

(2005). Bryde et al. (2013) also stated that construction quality can be immensely 

improved by a more accurate integrated process of design and documentation.  
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 Driven by the presence and severity of design error, consequently, design errors 

are automatically perceived as a problematic issue and plague required to be addressed 

in construction projects (Al Hattab and Hamzeh, 2015). Numerous previous studies had 

been preoccupied with the causes and prevention strategies of design errors, with the 

purpose of attempting to build defenses to avert errors or mitigate their effects (Lopez 

et al., 2010; Love et al., 2014; Al Hattab and Hamzeh, 2015). Love et al. (2011c) 

established a systemic framework for error containment and reduction, and proposed a 

set of organizational and project defense strategies to minimize their occurrence. The 

impacts of organizational practices and project management strategies on reducing 

design errors were also emphasized by Love (2002). As stated by Love et al. (2010), if 

error reduction is evidenced as a primary performance indicator by owners, due to these 

great beneficial incentives, the occurrence of errors could be substantially decreased in 

construction projects by demanding relatively enforceable terms bound into contracts 

with the aim of improving the quality of contract documentation.  

4.2.2 BIM-based Design Error Reduction Model 

Numerous previous researchers have investigated the attributable factors affecting 

design error (Josephson and Hammarlund, 1999; Love et al., 2012; Love et al., 2011c; 

Lopez et al., 2010), attempting to seek out effective strategies to prevent or mitigate 

design errors (Love et al., 2008; Busby, 2001; Love et al., 2012). Managerial factors 

(e.g. adverse behavior, ineffective coordination and integration, inferior 

constructability) and organizational factors (e.g. inexperienced personnel, insufficient 

information and knowledge sharing pattern, inadequate quality assurance) were 

identified to be the principal factors influencing design errors (Lopez et al., 2010; Love 

et al., 2012; Love et al., 2011b). Prevention strategies, such as a system dynamics model, 

had also been developed by Love et al. (2000), which can enable designers and 
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managers effectively manage the process of design documentation, thus to ameliorate 

design errors. It is believed that BIM is the most frequently conceived of as a powerful 

tool for visualizing and coordinating AEC work, thus to predict collisions, avoid errors 

and omissions (Zuppa et al., 2009). However, rare research had been placed on 

measuring and quantifying the impacts of BIM implementation in reducing design error. 

Thus, this chapter aims to thoroughly assess the effects of BIM in reducing design error, 

as well as develop a design error reduction model. 

BIM has been evidenced by many researchers as an effective means for facilitating 

design processes (Eastman et al., 2008; Son et al., 2015; Sacks et al., 2010b; Sacks et 

al., 2010a; Taylor and Bernstein, 2009), reducing design error (Linderoth et al., 2014; 

Love et al., 2011c; Rajendran et al., 2013), thus to achieve productivity gains (Sacks 

and Barak, 2008). For example, Baoping et al. (2010) pointed out that the 

implementation of BIM could effectively integrate various professional design 

information, and sufficiently boost the ability to share and reuse this information. 

Research efforts to date also demonstrated that BIM had the ability to facilitate 

information sharing and enhance communication among project practitioners, and 

furnish innovative solutions for better design (Fan et al., 2014). As evidenced by 

Eastman et al. (2008), BIM made it possible for all the parties participating early in the 

projects and simultaneously addressing the design information with the purpose of 

shortening the time and reducing errors/omissions. Al Hattab and Hamzeh (2015) 

proposed a novel design error management strategy by applying social network theory 

and agent-based simulation, which was concentrated on team structures, interaction 

mechanics, and error diffusion dynamics with the aim of proffering underlying 

beneficial outcomes of integrating BIM and lean in design error reduction and diffusion 

containment. The combination of BIM and lean management theory in construction 
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was also employed by Tauriainen et al. (2016) to improve the design management 

process. As indicated by Sacks and Barak (2008), BIM is particularly highly valuable 

at the early stages of design, which will directly contribute to a productivity gain in 

design documentation. Sacks and Barak (2008) found that the potential productivity 

gain can be achieved ranging from 15% and 41% of the hours required for a project in 

the drawing phase. Li et al. (2014b) presented and analyzed five comparable large-scale 

projects in different phases of lifecycle under various circumstances, to demonstrate 

productivity improvement due to the adoption of BIM enabling easier sharing and 

integration of information and convenient collaboration.  

However, rare empirical research has been placed on quantifying the impacts of 

BIM on design error reduction, and quantitatively measuring the extent to which 

attributable factors could have the better ability to contain design error. This chapter 

first developed a conceptual framework of BIM-based design error reduction (DER) 

model based on the data from literature review, as shown in Fig 3.1. Specific factors 

were reviewed and described in the following section. 

Clash Detection

Design Coordination

Human Error

Drawing Error

Teamwork & Cooperation

Constructability & 

Practicality
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Significant
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Figure 4.1 Conceptual framework of design error reduction model via BIM 

4.2.2.1 Clash Detection  

Clash detection can be the most effective means for time and cost saving by using BIM. 

Conflicts, which may give rise to inconsistencies and disputes of design, could be 

identified before the building was actually constructed, hence to facilitate coordination 

between designers and contractors (Eastman et al., 2011). As stated by Azhar (2011), 

BIM technology could be primarily used as a virtual instrument to identify latent 

collisions or clashes among a variety of structural, mechanical, electrical, and plumbing 

systems. Early detection via the BIM model in the design phase could be beneficial for 

error reductions, with consequent cost and schedule savings. In addition, clash detection 

could be an efficient way to accelerate the construction process, reduce project budgets, 

minimize errors and yield a better construction process (Eastman et al., 2008). 

4.2.2.2 Design System Coordination 

Design coordination could be perceived as the major strengths of implementing BIM 

in the early design stage by integrating and coordinating all the design systems with the 

goal of avoiding conflicts. A conceptual framework proposed by Wang et al. (2013b) 

denoted that BIM could be utilized as a practical tool for integrating facility 

management (FM) works into early design stage with the intention of consolidating 

collaboration between design team and FM team, thus to reduce modifications. As 

indicated by Eastman et al. (2011), the application of BIM can coordinate all the design 

systems of a building, and synthesize them into one model. To facilitate data exchange 

among different design systems, BIM can be utilized as an effective tool where different 

software package can communicate with each other (Grilo and Jardim-Goncalves, 

2010), thus to enhance interoperability and design system coordination. 
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4.2.2.3 Human Error 

Design consultants always ascertained that the implementation of BIM could enhance 

the quality of the documents by reducing human error as well as motivating architects 

to facilitate the building process from a virtual finalized project model in the design 

stage (Software, 2008). Reduced human error could yield the better ability to decrease 

mistakes or omissions which would arise design error and subsequent schedule growth 

(Love et al., 2011). A bad apple theory of human error proposed by Love et al. (2011a) 

was regarded as latent conditions contributing to errors. A systemic model was further 

developed with the aim of aiding BIM in reducing these errors. 

4.2.2.4 Drawing or Document Errors/Omissions 

BIM can be utilized as a tool for efficiently simulating and analyzing design drawing 

and documents with the purpose of reducing incomplete, incorrect, and remiss drawings 

or documents (Azhar, 2011). Four detailed case studies that utilized BIM were analyzed 

by Kaner et al. (2008), revealing certain amelioration in design quality due to error-free 

drawings. Sacks (2004) explored that the cost of drafting could be reduced by 

approximately 80-84% through the 3D parametric modeling. Another research carried 

out by Sacks and Barak (2008) suggested that the underlying productivity gains from 

3D modeling could be ranged from 15% to 41% of the time requisite for drawing 

outputs. Bernstein et al. (2012) also indicated that the production cycle of design 

process could be substantially diminished by applying BIM in reducing document 

errors and omissions. Any design changes incorporated in the BIM model could be 

automatically updated, resulting in less rework by reducing drawing errors and 

omissions (Eastman et al., 2011; Rajendran et al., 2013).  
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4.2.2.5 Teamwork and Cooperation 

The successful implementation of BIM allows all project stakeholders engaged in the 

early design phase with the purpose of enhancing communication and collaboration 

compared with the traditional processes (Azhar et al., 2012). As the diffusion of BIM 

implementation accelerates, collaboration among project practitioners should be 

promoted. A case study reviewed by Aranda-Mena et al. (2009) implied that the 

implementation of BIM can increase the confidence of design processes, improve co-

ordination between various practitioners, thus to reduce rework and enhance the 

functionality of design. Rajendran et al. (2013) also stated that BIM have the ability to 

provide visible connections among project practitioners so as to foster design process 

and faster collaboration. Meanwhile, synchronized information with respect to 

construction time, cost and quality could be afforded in the BIM model with the aim of 

achieving common objectives (such as error reduction) within all participants (Baoping 

et al., 2010; Wu and Issa, 2013). 

4.2.2.6 Constructability and Practicality 

It is believed that BIM technology will substantially elevate the efficiency and 

effectiveness of delivery processes and the constructability of a facility (Sacks et al., 

2010b; Rajendran et al., 2013). Bynum et al. (2013) ascertained that the capability of 

applying BIM to virtually constitute a building prior to constructing the real-world 

building yields an operative approach to examine its constructability in the real projects 

and to address any indeterminacies or discrepancies during the design process. This 

resulted in more efficient work of advancing design process and decreasing design 

errors. Also, the digital and computable data could be easily utilized by project teams 

to enhance the constructability and practicality of construction projects (Azhar, 2011), 
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as well as promote cooperation and coordination of all project participants (Rajendran 

et al., 2012).  

4.2.2.7 Facilitate Knowledge and Information Sharing 

Knowledge and information could be interchanged and applied among construction 

practitioners  and site engineers to discover and alleviate problems on site and decrease 

the time and cost of addressing matters related to constructability (Benjaoran and 

Bhokha, 2009; Ho et al., 2013). As ascertained by Linderoth et al. (2014), BIM can 

perform a vital role in facilitating knowledge, information, and expertise sharing in 

order to prevent design errors. Motawa and Almarshad (2013) proposed an integrated 

knowledge-based BIM system to capture information and knowledge with the purpose 

of perceiving the extent to which a building is deteriorating, thus to carry out preventive 

or corrective measures. A corresponding system developed by Ho et al. (2013) 

indicated that the BIM-based knowledge sharing management (BIMKSM) system 

could be an effective process of promoting knowledge sharing among construction 

practitioners. A study performed by Josephson and Hammarlund (1999) suggested that 

the lack of knowledge, information, and motivation were generally considered to be the 

primary factors inducing the occurrence of defects due to design errors in building 

construction projects. Results showed that a total of 62% of design defects could be 

ascribed to the inadequacy of knowledge and information.  

4.3 Impacts of BIM Implementation on Construction Productivity 

during Construction Stage 

4.3.1 Introduction 

Although the usage of BIM for improving construction productivity has attracted much 

attention of researchers, little research has been reported on quantifying the 
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comprehensive impacts of BIM implementation on construction productivity in 

construction stage. For example, Issa and Suermann (2009) conducted a survey 

assessing the impact of BIM implementation on construction process based on six 

primary construction key performance indicators commonly used in the construction 

industry: quality control (rework), on-time completion, cost, safety, dollar/unit 

performed, and units per man hour. Results showed that quality, on-time completion, 

and units per man hour were the highest ranking KPIs responses preferred when 

utilizing BIM. Case studies conducted by Chelson (2010) demonstrated that field 

productivity gains could be improved as high as 5 to 40% according to BIM practices. 

Bryde et al. (2013) investigated 35 construction projects that adopted BIM and 

identified the most reported benefits of BIM implementation were cost savings and 

containments, together with reduced project schedules. Generally, when a building is 

constructed in a BIM-based virtual environment, productivity gains can be achieved 

through better collaboration and coordination among AEC professionals, diminished 

production cycle times, reduced project costs with faster cost estimation, and improved 

quality performance (Eastman et al., 2011; Bryde et al., 2013). 

4.3.2 BIM-based Construction Productivity Gains 

4.3.2.1 Labor Productivity (LP) 

The positive impacts of BIM on labor productivity had been investigated and 

demonstrated by many scholars. Four detailed case studies that utilized BIM were 

analyzed by Kaner et al. (2008), revealing certain amelioration in design quality due to 

error-free drawings, and a stable growing enhancement in labor productivity. Khanzode 

et al. (2008) investigated a case study quantitatively measuring the benefits of BIM on 

labor productivity. Findings showed that labor productivity of all the MEP contractors 

could be improved ranging from 20%-30% through BIM-enabled coordination of MEP 
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systems. Poirier et al. (2015) conducted an action research which aimed at assessing 

and quantifying the impacts of BIM on project performance in terms of labor 

productivity based on a large commercial project. Results indicated an apparent 

increase in labor productivity, and a substantial improvement ranging from 75% to 240% 

when combined with BIM and prefabrication. Furthermore, this research initiated an 

idea allowing organizations to incessantly evaluate the project performance in the light 

of labor productivity. 

4.3.2.2 Communication and Coordination (CC) 

Ho et al. (2013) developed a visual BIM-based knowledge sharing platform allowing 

project professionals to communicate and reused information easily and effectively, 

thus to reduce the time and cost for addressing construction problems. As indicated by 

Nath et al. (2015), significant productivity improvement opportunities could be 

obtained by BIM-enabled tool for enhancing communication and collaboration among 

all project participants. Improved collaboration would greatly enhance the flexibility 

and clarity among all project stakeholders with the aim of facilitating construction 

process. In addition, the proactive involvement of all practitioners could streamline the 

integrated information sharing process to discover and address problems in a timely 

manner (Kim et al., 2015). 

4.3.2.3 Site Resource Planning and Management (SRPM) 

BIM has been utilized for Augmented Reality (AR) to enhance the productivity of on-

site work. Likewise, a workspace conflict verification system was developed by Moon 

et al. (2014) to analyze the workspace information by integrating algorithms that 

include the automated generation of workspace models and an automatic check of 

workspace conflict based on BIM simulation. This practical system can reduce 
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workspace conflicts to improve productivity, and overlapped activities can be 

rescheduled to minimize the collisions. Additionally, by using BIM models, 

construction professionals can figure out and optimize the labor force along with 

required materials and equipment during construction. Combined with construction 

schedules, accurate quantities of materials and equipment can be evaluated by BIM 

model with the purpose of offering sufficient resource at different points in time, as 

well as decrease wastage (Chau et al., 2004; Becerik-Gerber et al., 2011; Kim et al., 

2015). 

4.3.2.4 Simulate master schedules and construction sequences (SSS) 

With a 3D BIM model, it is available to virtualize constructability and construction 

sequences of projects before commencement (Grilo and Jardim-Goncalves, 2010), thus 

to predict potential collisions and construct a reasonable construction schedule with 

rational construction sequences. For example, a building information model can be 

effectively applied to coordinate material distribution and optimize delivery schedules 

for all building components and construction processes. BIM software makes the 

quantities of building components automatically inserted, extracted or updated when 

any modifications made within the model, resulting in approximately 80% reduction of  

time for cost estimation (Azhar, 2011). Wang et al. (2014a) proposed an interface 

system that deployed the BIM’s ability with respect to quantity takeoffs of required 

materials to support site schedules and sequences simulation, coordinate multiple 

operational sequences, and estimate resource allocation schemes, ultimately leading to 

the generation of better project schedule. This can serve as a base to precisely arrange 

time duration and allocation strategies of work tasks in order to create a reasonable and 

optimal construction schedule. It should be noted that BIM-based decision support 

method for master planning could be primarily applied in design and construction stage. 
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Therefore, Kim et al. (2015) developed an integrated decision support systems  

allowing automatically assessment and visualization of multiple development scenarios 

to assist stakeholders in making informed decisions for the master plans over time. 

4.3.2.5 Shorten Project Duration (SPD) 

Time savings has been regarded as the most beneficial factors that utilizes BIM for 

productivity improvement during construction. A study performed by Bryde et al. (2013) 

showed that significant time savings were obtained by the implementation of BIM 

during design and construction process, leading to improved coordination and 

communication of all practitioners. Enhanced collaboration among different 

practitioners could facilitate the decision-making process, and reduce rework due to 

better production quality with the aim of reaching duration improvement (Azhar, 2011; 

Issa and Suermann, 2009). In addition, drawings from different professions can be 

imported to BIM software to conduct clash detection, thus to save time and reduce 

repeated work. This can lead up to 7% reduction in project duration (CRC, 2007). Nath 

et al. (2015) proposed a BIM-based workflow in an attempt to streamline the shop 

drawings generation process, suggesting that total productivity could be improved by 

nearly 38% for the whole time. This could substantially reduce the error-prone manual 

manipulation of extracting building components information into actual construction 

process (Kim and Cho, 2015). 

4.3.2.6 Quantity Takeoff and Cost Estimation (QTCE) 

Conventional ways of cost estimates have difficulties to accommodate cost overruns 

incurred by unexpected omissions or errors, unforeseen situation, like delay and rework 

(Mills et al., 1999). Due to the complex consumption and disbursement of funds and 

limited technologies to instantly update the enormous amount of information, it is hard 
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for stakeholders to manage and control detailed cost, coping with data in real time (Li 

et al., 2014a). Numerous previous studies have demonstrated that BIM is a prominent 

approach of addressing costs problems by optimizing construction design, construction 

schedule, and resource management, reducing rework and minimizing unnecessary 

errors and waste (Singh et al., 2011; Li et al., 2014a). 

Based on the quantitative information in the BIM, construction cost estimation can 

be produced by linking it to a cost database. Any detailed information or changes made 

to the project will be reflected in the model (Grilo and Jardim-Goncalves, 2010). Shen 

and Issa (2010) demonstrated that BIM-assisted Detailed Estimating (BADE) tools 

have advantages of traditional estimating methods for entry-level users. The 

performance of detailed estimate was considerably affected by both the visualization 

and aggregation functions of BADE tool. Wang et al. (2013a) proposed a framework 

and explored that BIM can be beneficial to facility management in the design phase, 

where early adoption of BIM can dramatically reduce life-cycle costs. As figured out 

by Li et al. (2014a), BIM-base cost estimates can largely alleviate the workloads of 

estimators and reduce the likelihood of loss and errors. They also proposed a cost-

oriented framework in order to prove the merits of BIM. Azhar (2011) also pointed out 

that BIM-based approach can achieve nearly 40% reduction of unbudgeted change and 

3% improved precision of cost estimation. 

4.3.2.7 Minimize Project Costs (MPC) 

Potential productivity improvements can also be found in minimizing project costs. 

Giel and Issa (2011) carried out case studies concentrated on return on the investment 

(ROI) of implementing BIM based on three similar projects. Findings implied that BIM 

was a desirable and valuable investment, as it could be beneficial for cost savings 

associated with less rework, reduced requests for information (RFIs), fewer change 
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orders, and shortened project duration. BIM allows clash detection and in the early 

design stage, thus to avoid rework and change orders in the construction stage. While 

applying BIM technology, conflicts or design deficiencies can be identified before 

actual construction, hence, the cost of rework can be substantially decreased (Barlish 

and Sullivan, 2012). As identified by Bryde et al. (2013), significant cost savings could 

be achieved by effectively implementing BIM on construction projects due to the 

enhanced collaborative environment within less rework and fewer change orders.  

4.3.3 A Conceptual Framework 

Based on the aforementioned factors, a conceptual model was developed to evaluate 

the impacts of BIM on construction productivity, as shown in Figure 3.2. 
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Figure 4.2 Conceptual framework of BIM-enabled construction productivity gains model 
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4.4 Chapter Summary 

This chapter first expresses the desirability of reducing design error in the construction 

projects, then research on the impacts of BIM implementation in reducing design error 

during design stage are examined to establish a conceptual framework of design error 

reduction model. By reviewing relevant research with respect to the impacts of BIM on 

construction productivity, a conceptual framework of BIM-enabled construction 

productivity gains model is also built up. 
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CHAPTER 5 THE IMPACTS OF BIM 

IMPLEMENTATION IN REDUCING DESIGN ERROR  

5.1 Introduction 

This Chapter aims to assess the impacts of BIM implementation in reducing design 

error, validate the conceptual model based on the different design error reduction (DER) 

indicators, as established in Chapter 4, incorporating clash detection (CD), design 

coordination (DC), human error (HE), drawing error (DE), teamwork and cooperation 

(TC), constructability and practicality (CP), and knowledge and information sharing 

(KI), and identify which indicator can yield the better ability to predict the effects of 

BIM implementation in reducing design error. Seven underlying attributable indicators 

identified from the literature are discussed in section 5.2. Section 5.3 describes 

measurement development and the methods of data collection. Data analysis and results 

are presented and discussed in section 5.4. These outcomes are further analyzed in 

section 5.5. Section 5.6 summarizes the chapter. 

5.2 Methods of Data Collection 

5.2.1 Measurement Development 

With the purpose of identifying the impacts of BIM in reducing design error, a 

questionnaire survey was conducted as the primary means of collecting project-based 

data. Generally, a questionnaire survey is applied to collect quantitative data scaled by 

respondents, and thus for statistical analysis. The strength of utilizing questionnaire 

survey is to acquire a large amount of quantitative data, providing sources of 

investigating and synthesizing the major findings (Creswell, 2013). As suggested by 

Bradburn et al. (1992), the mixed data collection methods, consisting of literature 
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review and semi-structured interviews, were employed in order to better design the 

survey and to acquire more accurate, valid, and detailed information with respect to the 

respondents. In achieving this, an exploratory and thorough literature review was 

initially performed to gain a rudimentary understanding of the attributable factors 

affecting design errors through the implementation of BIM. Drawn on the information 

gleaned from the literature, a draft of the questionnaire survey was created in plain and 

clear language to strengthen the respondents’ ability to make a sound judgment (Aibinu 

and Jagboro, 2002), in order to collect data regarding BIM-related factors influencing 

design error. Then, with the purpose of yielding a balanced review of the research topic 

from different backgrounds, the questionnaire was sent to 14 experts in the field of BIM 

implementation, incorporating two academic researchers, three clients, three designers, 

three contractors, and three consultants. The aim of this pre-test process was to evaluate 

the appropriateness and rationality of the questionnaire, examine the scope and content, 

as well as identify the obscure expressions (Oppenheim, 2000). Based on the feedback 

from experts, the questionnaire was further modified and subsequently disseminate to 

targeted project-based respondents.  

The questionnaire items applied to measure the impacts of BIM in reducing design 

errors were developed built on the information captured from the literature and experts’ 

views. These factors were principally based on a comprehensive review of the 

frameworks presented by Eastman et al. (2011), Rajendran et al. (2013), Azhar (2011), 

Azhar et al. (2012), Lee et al. (2015) and Love et al. (2011c) as well as the outcomes of 

preliminary expert interviews. With the additional modification based on the feedback, 

a total of 7 factors were ultimately encompassed into the questionnaire (see Table 5.1). 

The overall impact of BIM implementation in reducing design error was evaluated on 

a five-point scale. Then, respondents were asked to rate the level of agreement on the 
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importance of each separate items based on a five-point Likert scale (1 indicates 

“strongly disagree” and 5 indicates “strongly agree”), and their detailed measurement 

items are presented in Table 5.1. 

Table 5.1 Measurement items for analyzing the impacts of BIM in reducing design error 

Code  Items  Reference 

CD Clash detection Eastman et al. (2011); Azhar (2011); Eastman et 

al. (2008); Eastman et al. (2011) 

DC Design coordination Wang et al. (2013b); Eastman et al. (2011) 

HE Human error Lee et al. (2015); Love et al. (2011b); Love et al. 

(2011a); (Love et al., 2011c) 

DE Drawing error Azhar (2011); Kaner et al. (2008); Sacks (2004); 

Sacks and Barak (2008); Bernstein et al. (2012); 

Eastman et al. (2011); Rajendran et al. (2013) 

TC Teamwork and cooperation Azhar et al. (2012); Aranda-Mena et al. (2009); 

Rajendran et al. (2013); Baoping et al. (2010); Wu 

and Issa (2013) 

CP Constructability and 

practicality 

Sacks et al. (2010b); Rajendran et al. (2013); 

Bynum et al. (2013); Azhar (2011) 

KI Knowledge and information 

sharing  

Linderoth et al. (2014); Benjaoran and Bhokha 

(2009); Ho et al. (2013); Motawa and Almarshad 

(2013); Josephson and Hammarlund (1999) 

Note: Where CD = clash detection, DC = design coordination, HE = human error, DE = drawing 

error, TC = teamwork and cooperation, CP = constructability and practicability, KI = knowledge 

and information sharing. 

5.2.2 Sampling and Data Collection 

This study only incorporated experts and construction projects from the Chinese 

mainland to construct the sampling frame. Since the implementation of BIM was 

relatively rare in China, a completely random sampling or stratified sample would not 

be appropriate. Alternatively, diversified sorts of BIM-based construction projects and 

proper respondents were selected and identified by contacting professionals in BIM 

implementation, visiting pioneering corporations skilled in adopting BIM, searching 

technical groups of developing BIM technology. The target respondents were identified 
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by selecting the informed senior and specialized personnel directly participating in 

BIM-based projects. Consequently, a wide variety of BIM-based projects with five 

developed geographic locations, together with different project characteristics was 

selected to intensify the representativeness of the sample and thus yield a better view 

of industry practice. 

The finalized questionnaire involves two parts. The first part was designed to 

collect background information regarding the respondents and projects, such as work 

experience, educational background, type of project participants, the number of BIM-

based projects involved in, and so forth. The second part contains rating the overall 

impact of BIM implementation in reducing design error and the seven contributory 

factors. The data of questionnaire survey was collected by using three means including 

e-mail invitation, online survey system (www.sojump.com) and personal visits. Over a

period of 3 months from November 2015 to January 2016, ultimately, a total of 155 

questionnaires were returned from four regions with five cities of China, including 

North (Beijing), South (Guangzhou and Shenzhen), East (Shanghai), West (Chongqing). 

After excluding invalid or incomplete questionnaires, the remaining 120 valid 

questionnaires, representing a great response rate of 77.4%, were identified and used 

for subsequent analysis. After completing the questionnaires, most respondents were 

glad to provide further explanations of their answers and expected to obtain the results 

of the questionnaires. Among the 120 valid responses, 46.67% were collected through 

the online survey system, with the remaining 35% and 18.33% gleaned by personal 

visits and e-mail invitation, respectively. ANOVA and Chi-square test were employed 

to compare the answers from the three types of responses, and no significant differences 

were found. The demographic information of these 120 respondents is presented in 

Table 5.2. 

http://www.sojump.com/
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Table 5.2 Demographic information of targeted respondents 

Parameter Category N % Parameter Category N % 

type of 

project 

participants 

Client 25 20.83 
Numbera 1-2 83 

69.17 

Designer 32 26.67 
3-4 25 

20.83 

Contractor 35 29.17 
5-6 8 

6.67 

Consultant 28 23.33 
Above 6 4 

3.33 

Work 

experience 
Below 2 22 18.33 

Numberb Below 1 8 
6.67 

2-5 39 32.50 
1-3 67 

55.83 

5-10 42 35.00 
3-5 30 

25.00 

10-15 12 10.00 
5-7 10 

8.33 

Above 15 5 4.17 
Above 7 5 

4.17 

Educational 

background 

Below 

junior 

college 

5 4.17 

Junior 

college 
9 7.50 

Bachelor 65 54.17 

Master 33 27.50 

Doctor 8 6.67 

aNumber of BIM-based projects involved; bNumber of years for implementing BIM. 

The respondents come from a mixed type of project participants, with 20.83% from 

clients, 26.67% from designers, 29.17% from general contractors, and 23.33% from consultants. 

Most of the respondents are senior and professional personnel knowledgeable of BIM 

implementation or directly involved in the BIM-based projects. 49.17% of the respondents 

showed more than 5 years’ work experience. In addition, 88.34% hold Bachelor’s degree or 

higher degree. These are perceived sufficient to acquire sound judgement from qualified 

respondents in this research. However, 69.17% of the respondents only participated in one or 

two BIM-based projects. In consistent with this results, 62.50% of the respondents showed that 

years of implementing BIM were still stayed on the preliminary stage (below 3 years). The 
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results indicated that the implementation of BIM in Chinese construction projects was 

still in an infant and immature stage.  

Table 5.3 Demographic information of targeted projects 

Parameter Category N % 

Project size 
Below 100 million 22 18.33 

100-500 million 30 25.00 

500-1000 million 26 21.67 

1000-1500 million 18 15.00 

1500-2000 million 13 10.83 

Above 2000 million 11 9.17 

Location 
North China 28 23.33 

East China 56 46.67 

South China  24 20.00 

West China 12 10.00 

As shown in Table 5.3, the projects are diverse in terms of project size and location. 

The majority (86.67%) of BIM-based projects are mainly located in the regions of East 

China, North China, and South China, suggesting a non-balanced distribution of 

surveyed projects. This unsymmetrical distribution was principally attributed to the 

imbalanced level of economic development, especially located in the large cities, such 

as Shanghai, Beijing, Guangzhou and Shenzhen. The distribution of investment value 

of the projects was primarily placed on the spectrum ranging from 100 to 1000 million, 

with a total percentage of 46.67%.      
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5.3 Data Analyses and Results 

5.3.1 Descriptive Statistics and Analysis of Variance 

Descriptive statistics analysis of responses derived from targeted respondents is 

presented in Table 5.4, showing the mean score with the standard deviation of each 

indicator. The bold value in Table 5.4 denotes the ranking of importance ratings for 

each indicator. As demonstrated by Fraenkel et al. (1993), in case of two or more 

indicators processing the same mean value, the one with lower standard deviation 

would be deemed as more influential. Therefore, the ranking of KI is much higher than 

that of TC with the same mean value. Of all the seven indicators, Clash detection and 

design coordination obtain the highest mean score with a value of 4.41 and 4.29, 

respectively. These are followed by drawing error (4.17), constructability and 

practicability (4.03), and human error (3.92). Knowledge and information sharing, and 

teamwork and cooperation are the two least scored indicators.  

Table 5.4 Measurement indicators for constructs in assessment of reducing design error    

Construct Code Items description Mean SD 

Clash detection CD Early detection of collisions via BIM substantially 

reduced design error and subsequent rework 

4.41(1) 0.66 

Design 

coordination 

DC Integrating and coordinating all the design 

systems with the goal of avoiding conflicts and 

enhancing collaboration 

4.29(2) 0.76 

Human error HE Human error could be reduced through the 

implementation of BIM 

3.92(5) 0.87 

Drawing error DE Drawing errors/omissions could be greatly 

ameliorated through BIM implementation 

4.17(3) 0.78 

Teamwork and 

cooperation 

TC BIM could enhance TC in the early design phase 

with the purpose of enhancing communication and 

facilitate design process 

3.88(7) 0.90 
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Constructability 

and practicality 

CP BIM could substantially improve the efficiency 

and effectiveness of delivery processes and the 

constructability of a facility 

4.03(4) 0.83 

Knowledge and 

information 

sharing  

KI KI could be sufficiently interchanged and applied 

among construction practitioners, thus to discover 

and alleviate problems in the early design phase 

3.88(6) 0.83 

The aggregated impacts of BIM on design error reduction (DER) was also 

measured by the same respondents via the five-scale method. Results showed a mean 

value of 4.03 with the standard deviation 0.81. This aggregated factor was used to as 

the dependent variable for later regression analysis. Reliability of the constructs was 

tested by deploying Cronbach’s coefficient alpha. The alpha levels for each of the 

constructs were higher than the threshold of 0.70, indicating the scales were a reliable 

measure to be accepted (Cronbach, 1951). A test for internal consistency and reliability 

of these indicators provided a satisfactory Cronbach’s coefficient alpha of 0.874. 

ANOVA tests were then performed to identify how the aggregated impacts of BIM on 

DER were associated with different types of project participants, respondents’ work 

experience, and project size. The results of these tests are illustrated in Table 5.5 and 

Table 5.6. 

Table 5.5 Results of ANOVA tests for the aggregate impacts of BIM on DER by 

respondent’s background 

Parameter Category N Mean SD   SSa F-value p-value 

type of 

project 

participants 

Client 25 3.96  0.83  
Between 

groups 
0.57 0.29 0.831  

Designer 32 4.16  0.86  Within groups 76.09   

Contractor 35 3.84  0.65  Total 76.66   

Consultant 28 4.09  0.96      

Work 

experience Below 2 22 3.76  0.74  
Between 

groups 
3.64 1.43 0.232  

2-5 39 4.02  0.82  Within groups 73.03   



 

76 

 

5-10 42 4.18  0.79  Total 76.67   

10-15 12 3.96  0.86      

Above 15 5 3.92  0.71          

aSS= sum of squares 

As displayed in Table 5.5, designers report the highest rating than any other type 

of project participants. And the type of project participants is found to be insignificantly 

associated with the dependent variable, indicating that the impacts of BIM on DER 

have no significant correlation with the type of project participants. A similar result is 

also revealed in the association between respondents’ work experience and the impacts 

of BIM on DER. Both of the results are further analyzed by the ordinary least squares 

(OLS) regression method, which indicates the same insignificant outcomes. Although 

no statistically significant differences are evidenced by ANOVA test between the 

impacts of BIM on DER and project size, as shown in Table 5.6, the result of OLS 

regression analysis demonstrates the two variables are statistically positively associated 

(F= 8.059, p= 0.005, B= 0.131). This result suggests that larger projects may have 

greater impacts on design error reduction through BIM implementation. A series of 

ANOVA tests are also conducted to assess the differences in the mean value of seven 

independent variables (including CD, DC, HE, DE, TC, CP, KI) from different 

backgrounds. The comparison results reveal that none of the difference is significant at 

the level of 5% confidence interval (p-values range from 0.156 to 0.760), indicating 

that both the types of project participants and work experience have not aroused 

substantial data biases. 

Table 5.6 Results of ANOVA tests for the aggregate impacts of BIM on DER by project 

background 
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Parameter Category N % Mean SD SSa 
F-

value 

p-

value 

Project 

size 
Below 100 

million 
22 18.33 4.18 0.85 

Between 

groups 
5.87 1.89 0.121 

100-500

million
30 25.00 3.97 0.77 

Within 

groups 
70.80 

500-1000

million 
26 21.67 4.17 0.65 Total 76.67 

1000-1500 

million 
18 15.00 3.76 0.78 

1500-2000 

million 
13 10.83 3.89 0.75 

Above 2000 

million 
11 9.17 3.85 1.04 

aSS= sum of squares 

5.3.2 Multiple Regression Analysis 

In identifying the impacts of seven potential influential indicators on design error 

reduction, multiple regression analysis was performed by using SPSS (Version 20) with 

the data from 120 respondents. Multiple regression analysis is employed to investigate 

the relationship between a single dependent variable (DER) and several potential 

independent variables, including clash detection (CD), design coordination (DC), 

human error (HE), drawing error (DE), teamwork and cooperation (TC), 

constructability and practicality (CP), knowledge and information sharing (KI). An 

assessment of internal consistency and reliability of these indicators provides a 

satisfactory Cronbach’s coefficient alpha of 0.874. Multicollinearity is tested by the 

variance inflation factors (VIF), a measure that evaluates the degree of multicollinearity 

among the predictive variables (O’brien, 2007). Most commonly used the rule of thumb 

associated with VIF is 10, indicating a sign of severe collinearity among potential 

independent variables (Draper and Smith, 2014). Standardization of the coefficient is 

habitually employed to address the problems that which of the predictable variables 

have a greater effect on the dependent variable regardless of the different units 

measured in the multiple regression model (Aiken et al., 1991). Regression diagnostics 

http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Units_of_measurement
http://en.wikipedia.org/wiki/Units_of_measurement
http://en.wikipedia.org/wiki/Multiple_regression
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was undertaken to examine the appropriateness of the assumptions made by fitting a 

regression model to a specific set of data (Belsley et al., 2005). With the utilization of 

SPSS 20.0, it is found that the regression model is generally fitted under the following 

assumptions of linearity (the relationships between the DER and the predictive variable 

is linear), normality (the errors is normally distributed), homoscedasticity (the errors 

variance is constant), and independence (the errors associated with one observation are 

not correlated with the errors of any other observation).  

The resultant outcomes of regression analysis on the single dependent variable 

DER and the independent variables are depicted in Table 5.7. The maximum VIF (2.368) 

in the Table was greatly lower than the threshold point of 10, implying that 

multicollinearity would not increase the standard errors of the DER model estimate 

(VIF ranging from 1.748 to 2.369). Multiple regression equations (RPE) with six 

determining factors are finally reflected as Equation 5.1. The outcomes from the best-

fit evaluation of multiple regression model indicated a p-value of less than 0.05 with its 

associated adjusted R2 values more than 0.70, which implied goodness-of-fit models. 

Results of the multiple regression analysis revealed the value of adjusted R2 was 0.752, 

indicating a good fit model. The Durbin-Watson value was 2.094, which meant the 

residual errors was also normally distributed. 

Table 5.7 Multiple regression analysis for DER model 

Model Design error reduction model 

Independent 

variable 

Unstandardized coefficients 
Standardized 

coefficients 
t p 

Multicollinearity 

B 
Standard 

error 
β VIF 

Constant   0.255 0.276 

CD  0.506*** 0.600 0.433 1.759 0.001 1.866 
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DC   0.245* 0.074 0.216 2.225 0.028 2.368 

HE -0.022 0.063 -0.021 -0.346 0.230 1.748 

DE 0.255*** 0.064 0.239 3.813 0.000 1.883 

TC 0.049* 0.062 0.021 0.256 0.032 2.186 

CP 0.236** 0.060 0.203 1.759 0.002 1.866 

KI 0.122* 0.063 0.105 1.936 0.026 2.019 

Note: Where clash detection = CD, design coordination = DC, human error = HE, drawing error 

= DE, teamwork and cooperation = TC, constructability and practicality = CP, knowledge and 

information sharing = KI; P* < 0.05, P** < 0.01, P*** < 0.001 

As shown in Table 5.7, all the six independent variables (CD, DC, DE, TC, CP, 

and KI) are statistically significant with the dependent variable DER, except for HE. 

The p-value of this independent variable indicates that human error is not significantly 

associated with DER at the 5% level of the confidence interval. Consequently, the 

regression analysis determined six significant independent variables, which are 

positively associated with the dependent variable DER. These are: 

CD***: Early detection of collisions via BIM substantially reduced design error 

and subsequent rework. 

DC*: Integrating and coordinating all the design systems with the goal of avoiding 

conflicts and enhancing collaboration. 

DE***: Drawing errors/omissions could be greatly ameliorated through BIM 

implementation. 

TC*: BIM could enhance teamwork in the early design phase with the purpose of 

enhancing communication and facilitate the design process. 

CP**: BIM could substantially improve the efficiency and effectiveness of delivery 

processes and the constructability of a facility. 
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KI*: Knowledge and information could be sufficiently interchanged and applied 

among construction practitioners, thus to discover and alleviate problems in the early 

design phase. 

Drawn on the six determining indicators, the design error reduction model was 

modified ( and the associated valences of the standardized β weights) to demonstrate 

the causal relationship between the dependent and independent variables, as shown in 

Figure 5.1. Final model coefficients are presented in Table 5.7. The regression equation 

can be expressed as: 

DER Model = 0.255 + 0.506CD + 0.245DC + 0.255DE + 0.049TC + 0.236CP + 

0.122KI   Eq. (5.1) 

Clash Detection

Design Coordination

Human Error

Drawing Error

Teamwork & Cooperation

Constructability & 

Practicality

Knowledge & Information 

Management

Design Error Reduction

0.433***

0.216*

0.021

0.239***

0.021*

0.203**

0.105*

Significant

Non-significant

 

Figure 5.1 Results of multiple regression analysis for design error reduction model 

5.4 Discussion of Findings 

The primary research objective of this chapter is to identify the impacts of BIM in 

reducing design error in Mainland China, a country with the largest construction 

industry of the world. Literature review is employed to conduct an overview of the 
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implementation of BIM in reducing design error in Chinese mainland construction 

projects, thus to establish a conceptual framework to measure how the contributory 

indicators affecting design error through the implementation of BIM. Then, data 

derived from questionnaire survey is used to examine the conceptual model with the 

purpose of developing a validated and modified model based on the practices of 

construction practitioners.  

Seven potential indicators are found to be influential factors affecting design error 

from literature, which comprise clash detection (CD), design coordination (DC), human 

error (HE), drawing or document errors/omissions (DE), teamwork and cooperation 

(TC), constructability and practicality (CP), and knowledge and information 

management (KI). Clash detection and design coordination are found to be the two-

most important (Mean = 4.41, 4.29 respectively) indicators from respondents’ rating.  

This corresponds with the previous investigations that BIM was frequently used as a 

visualization tool allowing for automatic detection of errors related to building 

components (Lee et al., 2012; Lee et al., 2015; Love et al., 2011c).  

Then, multiple regression analysis (ordinary least square) is deployed to inspect 

and verify the latent indicators. Ultimately, six determining indicators are identified. 

As shown in Fig. 5.2, six attributable factors are revealed to be statistically significant 

with the impacts of BIM on design error reduction, among which clash detection 

(standardized β = 0.433, p*** < 0.001) has the best ability to positively affect design 

error reduction. Thus, clash detection is perceived as the most beneficial factor from 

the implementation of BIM in deducting design error. After CD, DE ( standardized β = 

0.239, p*** < 0.001), DC (standardized β = 0.216, p*** < 0.05), and CP (standardized 

β = 0.433, p** < 0.01) are also found to have great potential impacts on design error 
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reduction. KI (standardized β = 0.105), p* < 0.05) and TC (standardized β = 0.021, p* 

< 0.05) are the two least influential factors affecting design error. Noteworthy, the 

indicator of human error is excluded from the model by conducting multiple regression 

analysis using ordinary least square method. Results showed that human error is no 

statistically significant associated with the dependent variable DER. This outcome is in 

consistent with the Reason (2000) and Love et al. (2011c)’s belief that human error is 

an innate feature of human nature. Also, Foord and Gulland (2006) ascertained that it 

is impossible to design technological systems to preclude human errors. Additionally, 

the assertion that BIM will reduce human errors during design stage is misguided, with 

respect to the diverse sets of exogenous and endogenous variables affecting a designer’s 

cognition and capability to execute tasks (Busby, 1999; Love et al., 2011a). 

The research findings provide several practical implications. BIM users need to 

boost their professions to facilitate the design process and to proficiently plan and 

manage the design and documentation process with the aim of intensifying the 

effectiveness of clash detection, design coordination, and drawing error containment. 

In addition, the teamwork of all construction practitioners engaged in the design process 

should be improved to reach close cooperation and collaboration through the extensive 

utilization of BIM. Moreover, designers should enhance the constructability and 

practicality of design work through effectively facilitating knowledge and information 

sharing process both within different design teams and among all stakeholders. Despite 

of these implications from empirical study, as indicated by Love et al. (2011c), BIM 

will considerably improve the efficiency and effectiveness of design process only by 

juxtaposing with other organizational and project-related strategies that have been 

verified. Otherwise, BIM will become a sole driver for error containment, which may 

give rise to the failures that would impair the performance and productivity of 
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construction projects. The effective implementation of BIM in design stage can be a 

source of improving productivity for subsequent stages, such as construction and 

operation (Son et al., 2015). 

5.5 Chapter Summary 

Design error is not only a recognized hazard for cost and schedule overruns in Chinese 

construction projects, but a global plague in the construction industry. Findings from 

this chapter consolidate the existent knowledge with recent new evidence from 

Mainland China projects, which aids to expand the existing intellectual cognition with 

respect to construction community by construction practitioners. Assessing the effects 

of BIM implementation on design error reduction are vitally important for promoting 

industry practice. Based on an investigation of 120 respondents from BIM-based 

construction projects, this chapter has developed a design error reduction (DER) model 

to measure the impacts of BIM implementation in reducing design error. Finally, six 

determining factors are identified. 
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CHAPTER 6 THE IMPACTS OF BIM 

IMPLEMENTATION ON CONSTRUCTION 

PRODUCTIVITY 

6.1 Introduction 

Relied on the investigation of 120 professionals from BIM-based construction projects, 

Chapter 5 has empirically examined how and to what extent the impacts of BIM 

implementation on design error reduction during the design stage. Although building 

up a design error reduction model and proffering insightful thoughts into the association 

between BIM implementation and design error reduction, the positivistic research in 

Chapter 5 has not comprehensively investigated the impacts of BIM on construction 

projects during the construction stage. As illustrated in Chapter 2, the large majority of 

prior studies have primarily concentrated on identifying incentive factors and barriers 

of BIM adoption in the construction industry (Bernstein and Pittman, 2004; Cerovsek, 

2011a; Ku and Taiebat, 2011; Gu and London, 2010), or on unfolding project benefits 

gained from BIM utilization in construction projects (Bryde et al., 2013; Poirier et al., 

2015; Hergunsel, 2011; Barlish and Sullivan, 2012), or on reporting the business value 

or potential profitability of applying BIM (Bernstein, 2015; Bernstein et al., 2012; 

Young et al., 2009; Lee et al., 2012). Nevertheless, despite of some research having 

measuring the impacts of BIM on labor productivity at activity level (Poirier et al., 2015; 

Kim et al., 2015), sparse scholarly attention has been focused on demonstrating the 

principal impacts of BIM implementation on construction productivity at project level 

during the construction stage. 
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Therefore, drawn on the conceptual framework concerning the impacts of BIM 

implementation on construction productivity, as developed in Chapter 4, this chapter 

aims to test the conceptual model for probing deeper into how and to what extent the 

contributory factors can influence the project-level construction productivity. As 

illustrated in Chapter 4, the variables of labor productivity (LP), communication and 

coordination (CC), site resource planning and management (SRPM), SSS (simulate 

master schedule and construction sequences), shorten project duration (SPD), quantity 

takeoff and cost estimation (QTCE), and minimize project cost (MPC) are perceived as 

reflective factors on BIM-enabled construction productivity gains. Additionally, 

productivity performance ratio is utilized to measure the aggregate impact of BIM 

implementation on construction productivity. 

6.2 Methods of Data Collection 

6.2.1 Measurement Development 

With the aim of empirically testing the conceptual framework proposed in Section 3.3, 

the questionnaire survey was utilized as the primary means to collect data from BIM-

based construction projects. The advantage of using questionnaire survey is to have a 

large amount of quantitative data, allowing exploring and synthesizing the major 

findings (Creswell, 2013). Eisenhardt (1989) suggested that mixed data collection 

methods, comprised of document analysis and semi-structured interviews, were 

deployed to better conceive the questionnaire survey and to obtain more accurate, 

specialized, and elaborate information from the target respondents. In achieving this, 

an exploratory and exhaustive document analysis was first performed to gain a 

preliminary understanding of the influential indicators affecting construction 

productivity through the implementation of BIM. Based on the information gleaned 
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from the literature and industry practice, a draft of the questionnaire survey was 

formulated in plain and clear language to reinforce the respondents’ ability to make a 

sound judgment (Aibinu and Jagboro, 2002). Semi-structured interviews with ten 

experts were then carried out to pre-test the rationality and validation of related 

constructs. The ten interviewed professions with different backgrounds incorporated 

two academic researchers, two owners/clients, two designers, two general contractors, 

and two consultants. All these professionals have specialized knowledge of BIM 

implementation and experienced industry practices. Based on the comments from these 

professionals, some vague expressions regarding measurement items were further 

revised and subsequently distribute to targeted project-based respondents. 

The modified questionnaire associated with the analysis in this chapter was 

structured into two parts. The first part attains general information such as the type of 

project participants, year of implementing BIM, project size, and so forth. The second 

part was designed to evaluate and measure the extent of attributable factors on 

construction productivity in the surveyed project, and assess the BIM-enabled 

productivity gains. Finally, a total of eight variables have been measured in the 

questionnaire survey: productivity performance ratio (PPR), labor productivity (LP), 

communication and coordination (CC), site resource planning and management 

(SRPM), simulate master schedules and construction sequences (SSS), shorten project 

duration (SPD), quantity takeoff and cost estimation (QTCE), minimize project cost 

(MPC). The variable of PPR was utilized to evaluate the aggregated impact of BIM 

implementation on project-level construction productivity, which was measured by the 

five-point scale items (“1” = not at all influential; “5” = extremely influential), and 

the variables of LP, CC, SRPM, SSS, SPD, QTCE, and MPC were all operationalized 

as reflective constructs based on five-point Likert scale (i.e. 1 represents “strongly 
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disagree” and 5 indicates “strongly agree”), and their detailed measurement items are 

presented in Table 6.1. 

Table 6.1 Measurement items for constructs in analysis of the impacts of BIM 

implementation on construction productivity 

Abbr. Construct Reference 

LP Labor productivity 
Sacks and Barak (2008); Kaner et al. (2008); Khanzode 

et al. (2008); Poirier et al. (2015) 

CC 
Communication and 

coordination 

Ho et al. (2013); Kim et al. (2015); Nath et al. (2015); 

Grilo and Jardim-Goncalves (2010); Gu and London 

(2010) 

SRPM 
Site resource planning 

and management 

Chau et al. (2004); Wang et al. (2004); Becerik-Gerber et 

al. (2011); Kim et al. (2015) 

SSS 

Simulate master 

schedules and 

construction sequences 

Moon et al. (2014); Azhar (2011); Kim et al. (2015); 

Wang et al. (2014a); Grilo and Jardim-Goncalves 

(2010) 

SPD Shorten project duration 

Becerik-Gerber and Rice (2010); Azhar (2011); Nath et 

al. (2015); Kim and Cho (2015); Bryde et al. (2013); 

Issa and Suermann (2009) 

QTCE 
Quantity takeoff and cost 

estimation 

Cheung et al. (2012); Azhar (2011); Singh et al. (2011); 

Mills et al. (1999); Grilo and Jardim-Goncalves (2010); 

Li et al. (2014a); Shen and Issa (2010);  

MPC Minimize project costs 

Becerik-Gerber and Rice (2010); Azhar (2011); Giel and 

Issa (2011); Barlish and Sullivan (2012); Bryde et 

al. (2013) 

Note: Abbr. = Abbreviation 

6.2.2 Sampling and Data Collection 

This investigation only incorporated professionals and construction projects from the 

Mainland China to construct the sampling frame. Since the implementation of BIM was 

relatively rare in China, a completely random sampling or stratified sample would not 

be appropriate. Alternatively, diversified sorts of BIM-based construction projects and 

proper respondents were selected and identified by contacting professionals in BIM 

implementation, visiting pioneering corporations skilled in adopting BIM, searching 
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technical groups of developing BIM technology. The extent of data reliability is 

primarily determined by the data source and the background of corresponding personnel 

who filled out the questionnaire (Oppenheim, 2000). Thus, it was vitally important for 

respondents to have experiences and detailed knowledge regarding BIM 

implementation on construction projects. Therefore, the target respondents were 

identified by selecting knowledgeable senior and professional personnel directly 

involved in BIM-based construction projects. Consequently, a wide variety of BIM-

based projects with five developed geographic locations, together with different types 

of well-informed project participants was selected to intensify the representativeness of 

the sample and thus yield a better view of industry practice. 

The data of questionnaire survey was collected by using three means including 

personal visits, e-mail invitation, and online survey system (www.sojump.com). Over 

a period of 3 months from March 2016 to May 2016, ultimately, a total of 143 

questionnaires were returned from four regions with five cities of China, including 

North (Beijing), South (Guangzhou and Shenzhen), East (Shanghai), West (Chongqing). 

After further omission of invalid or incomplete questionnaires, the remaining 102 valid 

questionnaires, representing a great response rate of 71.33%, were identified and used 

for subsequent analysis. Before filling out the survey, to avoid common method 

variance, the information of respondents and their answers were kept confidential. This 

procedural control means could assist in mitigating the potential response bias resulting 

from consistency motif and social desirability. After completing the questionnaires, 

most respondents were glad to provide further explanations of their answers and 

expected to obtain the results of the questionnaires. Among the 102 valid responses, 

41.18% were collected by personal visits, with the remaining 33.33% and 25.49% 

gleaned by e-mail invitation and the online survey system, respectively. Analysis of 

http://www.sojump.com/
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variance and Chi-square test were employed to compare the answers from the three 

types of responses, and no significant differences were discovered. The demographic 

characteristics of the samples relating to the 102 valid responses are presented in Table 

6.2 and Table 6.3. 

Table 6.2 Demographic information of targeted projects 

Parameter Category N % 

Project 

size 
Below 100 million 17 16.67 

100-500 million 24 23.53 

500-1000 million 19 18.63 

1000-1500 million 19 18.63 

1500-2000 million 13 12.75 

Above 2000 million 10 9.80 

Location 
North China 26 25.49 

East China 42 41.18 

South China  27 26.47 

West China 7 6.86 

As shown in Table 6.2, the surveyed projects are diverse in terms of project size and 

location in order to enlarge the representative of samples. The majority (93.14%) of 

BIM-based projects are mainly located in the regions of East China, North China, and 

South China, especially in the large cities, such as Shanghai, Beijing, Guangzhou and 

Shenzhen, indicating a possible non-balanced distribution of the surveyed projects. 

Such a non-balanced distribution could be principally attributed to the unbalanced level 

of economic development in China at present. The distribution of investment value of 

the projects was primarily placed on the spectrum ranging from 100 to 1500 million, 

with a total percentage of 60.78%. In order to properly examine whether the responses 

corresponding to the eight variables were affected by the project size, a chain of 
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ANOVA tests were performed to compare the differences in the mean values of the 

constructs, and no statistically significant association between project size and these 

measurement items (p-values of the ANOVA tests for PPR, LP, CC, SRPM, SSS, SPD, 

QTCE, MPC are 0.140, 0.182, 0.569, 0.772, 0.096, 0.567, 0.905, 0.753 respectively). 

Table 6.3 Demographic information of targeted respondents 

Parameter Category N % Parameter Category N % 

Type of 

project 

participants 

Client 20 19.61 
Numbera 1-2 56 

54.90 

Designer 20 19.61 
3-4 31 

30.39 

Contractor 38 37.25 
5-6 11 

10.78 

Consultant 24 23.53 
Above 6 4 

3.92 

Work 

experience 
Below 2 27 26.47 

Numberb Below 1 16 
15.69 

2-5 43 42.16 
1-3 46 

45.10 

5-10 22 21.57 
3-5 30 

29.41 

10-15 6 5.88 
5-7 8 

7.84 

Above 15 4 3.92 
Above 7 2 

1.96 

aNumber of BIM-based projects involved; bNumber of years for implementing BIM. 

The respondents come from a mixed type of project participants to further enlarge 

the diversity of targeted respondents, with 19.61% from clients/owners, 19.61% from 

designers, 37.25% from general contractors, and 23.53% from BIM consultants. Most 

of the respondents are senior and professional personnel knowledgeable of BIM 

implementation or directly involved in the BIM-based projects. 41.18% of the 

respondents had more than 5 years’ work experience, and all of the respondents had the 

experience of implementing BIM or directly participating in BIM-based construction 

projects, indicating that samples are perceived sufficiently to acquire sound judgement 

from qualified respondents in this research. However, 54.90% of the respondents only 

participated in one or two BIM-based projects. Corresponding to this results, 60.78% 
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of the respondents showed that years of implementing BIM were still at the embryonic 

stage (less than 3 years). These results indicated that the implementation of BIM in 

Chinese construction projects was still in an infant and immature development stage.                                                                                                                      

6.3 Data Analyses and Results 

6.3.1 Descriptive and Comparative Analyses 

Descriptive statistics analysis of responses derived from targeted respondents is 

presented in Table 6.4, showing the mean score with a standard deviation of each 

variable. The variable of productivity performance ratio (PPR) was also measured by 

the same respondents via the five-scale method to assess the aggregated impacts of BIM 

on construction productivity. Results show a mean value of 4.08 with the standard 

deviation 0.67. This aggregated factor is used to as the dependent variable for later 

regression analysis. Of all the seven influential variables, SPD, SSS and CC obtain the 

relative highest mean score with a value of 4.40, 4.26, and 4.24, respectively, implying 

that these three variables were considered as the most influential factors affecting 

construction productivity through BIM implementation. The mean value of labor 

productivity (M= 4.01, SD= 0.64) and quantity takeoff and cost estimation (M= 4.07, 

SD= 0.57) are also at the relatively high level, suggesting that BIM-enabled labor 

productivity improvement and better cost estimation processes are also the prominent 

indicators influencing construction productivity. The mean score of SRPM and MPC, 

albeit ranked at the bottom of the list, are still considerably larger than the neutral value 

of 3 on a five-point Likert scale. 

Table 6.4 Measurement items in analysis of construction productivity  

Variable Code  Mean SD Items description 
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Labor productivity LP 4.01 0.64 
BIM implementation has greatly enhanced 

construction labor productivity 

Communication and 

coordination 
CC 4.24 0.66 

BIM implementation can foster communication 

and coordination among different project 

participants, thus to facilitate the construction 

process 

Site resource 

planning and 

management 

SRPM 3.82 0.64 

BIM implementation has increased the efficiency 

of resource planning and management in a timely 

manner to avert redundancy or deficiency 

Simulate master 

schedules and 

construction 

sequences 

SSS 4.26 0.60 

BIM implementation can predict potential 

conflicts and construct a reasonable construction 

schedule with rational construction sequences 

Shorten project 

duration 
SPD 4.40 0.62 

BIM implementation can significantly save 

project time due to less rework, improved 

quality, and enhanced collaboration 

Quantity takeoff and 

cost estimation 
QTCE 4.07 0.57 

BIM implementation has enabled a faster 

execution of quantity takeoff and cost estimation 

processes. 

Minimize project 

costs 
MPC 3.76 0.65 

BIM implementation has enabled fewer 

production defects with less rework, reduced 

change orders to achieve cost savings. 

Reliability of the constructs was tested by deploying Cronbach’s coefficient alpha. 

The alpha levels for each of the constructs were higher than the threshold of 0.70, 

indicating the scales were a reliable measure to be accepted (Cronbach, 1951). A test 

for internal consistency and reliability of these indicators provided a satisfactory 

Cronbach’s coefficient alpha of 0.769. A series of ANOVA tests were then performed 

to identify how the answers regarding productivity performance ratio (PPR) are 

associated with respondents’ backgrounds. As shown in Table 6.5, the mean value of 

PPR is not statistically significantly associated with the respondents’ work experience 

and the number of BIM-based projects involved. However, the association between 

years for implementing BIM and PPR is found to be statistically significant. Generally, 

the more experience respondents have for BIM implementation, the more benefits they 

would explore for productivity improvement. 
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Table 6.5 Results of ANOVA tests for PPR by respondents’ backgrounds 

Parameter Category N Mean SD   SSa F-value p-value 

Work 

experience 
Below 2 27 3.98  0.58  Between groups 1.41 1.321 0.240  

2-5 33 4.02  0.64  Within groups 43.97   

5-10 22 4.32  0.67  Total 45.37   

10-15 6 4.00  0.55      

Above 15 4 4.50  0.58      

Numbera 1-2 56 4.09  0.61  Between groups 0.59  0.427 0.734  

3-4 31 4.13  0.67  Within groups 44.79    

5-6 11 4.00  1.00  Total 45.37    

Above 6 4 4.50  0.58      

Numberb Below 1 16 3.81  0.54  Between groups 4.66  2.773 0.031  

1-3 46 3.96  0.56  Within groups 40.72    

3-5 30 4.27  0.69  Total 45.74    

5-7 8 4.50  1.07      

Above 7 2 4.50  0.71          

aNumber of BIM-based projects involved; bNumber of years for implementing BIM; aSS= sum 

of squares. 

In order to formally examine whether the survey responses were biased due to the 

different types of project participants, a series of ANOVA tests were then performed to 

assess the differences in the means of the core multi-scale variables (including PPR, LP, 

CC, SRPM, SSS, SPD, QTCE, MPC) among different project practitioners. The 

comparison results shown in Table 6.6 reveal that none of the difference is significant 

at the level of 5% confidence interval (p-values for the ANOVA tests for PPI, LP, CC, 

SRPM, SSS, QTCE, and MPC are 0.114, 0.650, 0.374, 0.458, 0.238, 0.169, 0.321, and 

0.198 respectively) 

Table 6.6 ANOVA tests for core variables from different types of project respondents 

Variables F-value p-value 

PPI 2.032 0.114 
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LP 0.619 0.650 

CC 1.073 0.374 

SRPM 0.886 0.458 

SSS 1.433 0.238 

SPD 1.715 0.169 

QTCE 1.182 0.321 

MPC 1.647 0.198 

6.3.2 Stepwise Regression Analysis 

In identifying the impacts of seven BIM-enabled potential influential indicators on 

construction productivity, multiple regression analysis was performed by using SPSS 

(Version 20) with the data from 102 respondents. Multiple regression analysis is used 

to analyze the relationship between a single dependent variable productivity 

performance ratio (PPR) and several independent variables, including labor 

productivity (LP), communication and coordination (CC), site resource planning and 

management (SRPM), SSS (simulate master schedule and construction sequences), 

shorten project duration (SPD), quantity takeoff and cost estimation (QTCE), and 

minimize project cost (MPC).  

A test for internal consistency and reliability of these indicators provides a 

satisfactory Cronbach’s coefficient alpha of 0.769. Multicollinearity is tested by the 

variance inflation factors (VIF), a measure that evaluates the degree of multicollinearity 

among the predictive variables (O’brien, 2007). Most commonly used rule of thumb 

associated with VIF is 10, indicating a sign of severe collinearity among potential 

independent variables (Draper and Smith, 2014). Standardization of the coefficient is 

habitually employed to address the problems that which of the predictable variables 

have a greater effect on the dependent variable regardless of the different units 

measured in the multiple regression model (Aiken et al., 1991). Regression diagnostics 

was undertaken to examine the appropriateness of the assumptions made by fitting a 

http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Units_of_measurement
http://en.wikipedia.org/wiki/Units_of_measurement
http://en.wikipedia.org/wiki/Multiple_regression
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regression model to a specific set of data (Belsley et al., 2005). With the utilization of 

SPSS 20.0, it is found that the regression model is generally fitted under the following 

assumptions of linearity (the relationships between the DER and the predictive variable 

is linear), normality (the errors is normally distributed), homoscedasticity (the errors 

variance is constant), and independence (the errors associated with one observation are 

not correlated with the errors of any other observation). The term (R2) indicates how 

much variation in the dependent variable is explained by a group of independent 

variables, where a higher value indicates more powerful model. In addition, only those 

variables with a p-value less than 5% were retained for inclusion in the final regression 

model equations. The adjusted coefficients of determination (adjusted R2) are evaluated 

to measure the goodness-of-fit of the regression model, since it does not automatically 

increase with the additional predictor variables. 

Stepwise regression is regarded as a powerful instrument for automatically 

determine the best combination of potential predictive variables that best fits the 

dependent variable. The results of regressions on the single dependent variable PPR 

and the independent variables are depicted in Table 6.7. The maximum VIF (2.368) in 

the Table was greatly less than the threshold point of 10, indicating that 

multicollinearity would not increase the standard errors of the DER model estimate 

(VIF ranging from 1.748 to 2.369). Multiple regression equations (RPE) with six 

determining factors are finally constructed as Equation 6.1. The resultant outcomes 

from the best-fit evaluation of multiple regression model indicated a p-value of lower 

than 0.05 with the associated adjusted R2 values more than 0.7, which implied 

goodness-of-fit models. Results of the stepwise regression analysis revealed the value 

of adjusted R2 was 0.73, indicating a good fit model. The Durbin-Watson value was 

1.899, which meant the residual errors was also normally distributed. 
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Table 6.7 Multiple regression analysis for construction productivity gains model 

Model Construction Productivity Model 

Independent 

variable 

Unstandardized 

coefficients 

Standardized 

coefficients 
t p 

Multicollinearity 

B 
Standard 

error 
β VIF 

Constant -1.580 0.382     

LP 0.180 0.075 0.171 2.396 0.019 1.667 

CC 0.165 0.061 0.164 2.705 0.008 1.191 

SRPM 0.174 0.073 0.165 2.374 0.020 1.567 

SSS 0.204 0.077 0.182 2.670 0.009 1.506 

SPD 0.310 0.077 0.286 4.017 0.000 1.650 

QTCE 0.178 0.078 0.161 2.276 0.025 1.449 

MPC 0.166 0.068 0.152 2.438 0.017 1.411 

Note: P* < 0.05, P** < 0.01, P*** < 0.001 

As illustrated in Table 6.7, the stepwise regression analysis determined seven 

significant independent variables, which are all positively associated with the 

dependent variable PPR. These are: 

LP*: BIM implementation has greatly enhanced construction labor productivity. 

CC**: BIM implementation can foster communication and coordination among 

different project participants, thus to facilitate the construction process. 

SRPM*: BIM implementation has increased the efficiency of resource planning 

and management in a timely manner to avert redundancy or deficiency. 

SSS**: BIM implementation can predict potential conflicts and construct a 

reasonable construction schedule with rational construction sequences. 

SPD***: BIM implementation can significantly save project time due to less 

rework, improved quality, and enhanced collaboration. 
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QTCE*: BIM implementation has enabled a faster execution of quantity take off 

and cost estimation processes. 

MPC*: BIM implementation has enabled fewer production defects with less 

rework, reduced change orders. 

Drawn on the seven determining indicators, the construction productivity 

improvement model was modified ( and the associated valences of the standardized β 

weights) to demonstrate the causal relationship between the dependent and independent 

variables, as shown in Figure 6.1. Final model coefficients are presented in Table 6.7. 

The regression equation can be expressed as: 

PPR = -1.58 + 0.180LP+ 0.165CC + 0.174SRPM + 0.204SSS + 0.310SPD + 

0.178QTCE + 0.166MPC   Eq. (6.1) 

Productivity Performance 

Ratio

Labor productivity 

improvement

Enhanced communication 

and coordination

Better site resource planning 

and management

Facilitate simulating master 

schedules and construction 

sequences

Shorten project duration

Foster quantity takeoff and 

cost estimation

Minimize project costs

BIM

Implementation

0.171*

0.164**

0.165*

0.182**

0.286***

0.161*

0.152*
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Figure 6.1 Results of multiple stepwise regression analysis of construction productivity gains 

model 

6.4 Discussion of Findings 

The increasing complexity of building designs with the development of building 

structures, materials, equipment indicates that only simple rules and guidelines cannot 

fulfill the requirements of current projects. Drawn on the conceptual framework 

concerning the impacts of BIM implementation on construction productivity, Chapter 

6 has empirically tested the conceptual model for probing deeper into how and to what 

extent the contributory factors can influence the project-level construction productivity. 

Results of ANOVA tests indicate that the number of years of implementing BIM has 

positive impact on productivity performance ratio, which means the more experience 

respondents have for BIM implementation, the more benefits they would explore for 

productivity improvement. Furthermore, results from multiple stepwise regression 

analysis suggest that reflective constructs (incorporating labor productivity, 

communication and coordination, site resource planning and management, simulate 

master schedule and construction sequences, shorten project duration, quantity takeoff 

and cost estimation, and minimize project cost) are all positively statistically significant 

with productivity performance ratio, suggesting that, productivity performance ratio 

increases with these seven reflective factors. Relied on the BIM-based construction 

productivity gains model, results also reveal that shorten project duration (standardized 

β = 0.286, p*** < 0.001)  has the best ability to influence productivity performance 

ratio through BIM implementation. In addition, simulate master schedule and 

construction sequences (standardized β = 0.182, p** < 0.01) and labor productivity 

(standardized β = 0.171, p* < 0.05) have also been identified as the most effective way 

to enhance construction productivity. Furthermore, the implementation of BIM in 
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construction projects can have better site resource planning and management, foster 

communication and coordination, facilitate quantity takeoff and cost estimation. All 

these factors have been identified to greatly affect productivity performance ratio. 

6.5 Chapter Summary 

This chapter has empirically tested a research model to identify how and to what extent 

the impacts of BIM implementation influence construction productivity. The results 

from multiple stepwise regression analysis based on the 102 responses from Chinese 

mainland construction projects reveal that BIM-enabled shorten project duration plays 

an important role in impacting the BIM-enabled productivity gains. Apart from SPD, 

other seven control variables (including CC, SRPM, SSS, QTCE, MPC) are also found 

to significantly influence the productivity performance ratio of surveyed construction 

projects. Overall, the results provide evidence that productivity performance ratio is 

positively associated with the seven identified indicators.  
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CHAPTER 7 CONCLUSIONS 

7.1 Introduction 

This chapter concludes this research by summarizing the research findings and how the 

research propositions have been addressed. Major research findings are summarized 

from document analysis, model development, and model validation. Then, a summary 

of the contributions to knowledge in the construction industry is given. Finally, 

limitations of the research and recommendations for further directions are discussed. 

7.2 Summary of Research Findings 

This research aims to identify the impacts of BIM implementation on construction 

productivity. To achieve this, theoretical foundations derived from document analysis 

and empirical project-based data from Chinese mainland construction projects were 

gleaned and analyzed to investigate: (1) the extant research theories related to the status 

of BIM implementation and basic characteristics of construction productivity; (2) the 

BIM-enabled design error reduction (DER) model during design stage, as well as a 

conceptual framework regarding BIM-based construction productivity gains model; (3) 

the impacts of BIM implementation in reducing design error by using the conceptual 

model based on the different design error reduction (DER) indicators; (4) the 

conceptual model for probing deeper into how and to what extent the implementation 

of BIM can influence the project-level construction productivity based on the empirical 

data from BIM-based construction projects. The major findings of these investigations 

are summarized as follows.  

(1) To establish the theoretical foundation of this research, extant research

regarding BIM related research on the construction industry and basic characteristics 
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of construction productivity are examined and reviewed. The literature review provides 

insights into the desirability and complexities in enhancing construction productivity 

both in design and construction stage. Results from literature review also suggest that, 

not only rare empirical research has been placed on quantifying the impacts of BIM on 

design error reduction, and quantitatively measuring the extent to which attributable 

factors could have the better ability to contain design error, but sparse scholarly 

attention has been focused on quantitatively demonstrating the principal impacts of 

BIM implementation on construction productivity at project level during construction 

stage 

(2) Document analysis is conducted to further evaluate the impacts of BIM

implementation on the construction process. First, driven by the presence and severity 

of design error, together with the aim of elevating design productivity, a conceptual 

framework of design error reduction model which aims to measure the impacts of BIM 

implementation on productivity during design stage is developed. Results also indicate 

that the effective implementation of BIM in design stage could be a source of improving 

productivity for subsequent stages, such as construction and operation. Then, a 

conceptual framework of BIM-enabled construction productivity gains model is also 

proposed to assess the impacts of BIM implementation on construction productivity 

during the construction stage. 

(3) With regard to the impacts of BIM in reducing design error, results from

multiple regression analysis reveal that six attributable factors (including clash 

detection, design system coordination, drawing error, teamwork and cooperation, 

constructability and practicality, and facilitate knowledge and information sharing) are 

found to be positively statistically associated with the aggregate impacts of BIM 

implementation on design error reduction, among which clash detection has the best 
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ability to positively affect design error reduction. Noteworthy, the indicator of human 

error is excluded from the model due to the non-significant association with the DER. 

In addition, research findings also imply that BIM will considerably improve the 

efficiency and effectiveness of design process only by juxtaposing with other 

organizational and managerial project-related strategies that have been verified. 

Otherwise, BIM will become a sole driver for error containment, which may give rise 

to the failures that would impair the performance and productivity of construction 

projects. 

(4) Drawn on the conceptual framework concerning the impacts of BIM

implementation on construction productivity, Chapter 6 has empirically tested the 

conceptual model for probing deeper into how and to what extent the contributory 

factors can influence the project-level construction productivity. Results of ANOVA 

tests indicate that the number of years of implementing BIM has a positive impact on 

productivity performance ratio, which means the more experience respondents have for 

BIM implementation, the more benefits they would explore for productivity 

improvement. Furthermore, results from multiple stepwise regression analysis suggest 

that reflective constructs (incorporating labor productivity, communication and 

coordination, site resource planning and management, simulate master schedule and 

construction sequences, shorten project duration, quantity takeoff and cost estimation, 

and minimize project cost) are all positively statistically significant with productivity 

performance ratio, suggesting that, productivity performance ratio increases with these 

seven reflective factors. Relied on the BIM-based construction productivity gains 

model, results also reveal that shorten project duration has the best ability to influence 

productivity performance ratio through BIM implementation. 
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7.3 Contributions of the Research  

Productivity is of utmost importance to the construction industry as the construction 

projects become increasingly fragmental to manage and control in China. In the 

meantime, the rapid development of China’s urban construction projects brought about 

increased urgencies to reduce design and construction time, and to tighten project 

budgets and amidst more complex projects. Additionally, the prevalence of lower 

construction productivity and its resultant accumulative inefficiencies on the overall 

performance of construction projects is a leitmotiv within the construction industry. BIM as a 

fundamentally innovative approach of producing, sharing and exerting project lifecycle 

information could be applied in all stages of a construction project to support increased 

productivity gains.  

This study makes several contributions to the extant literature on BIM and 

construction productivity. First, this research can enrich theoretical development in the 

fields of BIM and construction productivity. By reviewing the existing research, this 

study provides a comprehensive understanding with respect to the concepts of BIM and 

construction productivity. The research findings and gaps identified in previous studies 

could serve as the basis for recommending future research in relevant fields.  

Second, as an exploratory effort to build up the relationship between BIM and 

construction productivity, a design error reduction model and BIM-enabled construction 

productivity gains model have been developed from document analyses to identify the 

potential relationship between BIM implementation and construction productivity both 

in design and construction stage.  

Third, based on the investigation of the impacts of BIM implementation in 

reducing design error, this study modifies the original model by excluding human error, 

and identifies how the influential attributes affect the BIM-enabled design error 
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reduction model in the design stage. Also, through providing empirical evidence that 

BIM implementation can significantly influence construction productivity in 

construction projects, beneficial results can be a stimulating factor facilitating 

construction practitioners using BIM technology in China. The findings could help to 

develop a more comprehensive understanding of the reasons why construction 

organizations implement BIM in construction projects and provide a more dynamic 

picture of how construction productivity may vary as the attributable factors change.  

7.4 Limitations of the Research 

First, the limitation of this research is attributed to the limited sample size. Since the 

implementation of BIM has been relatively rare in Mainland China, limited data were 

collected and analyzed to identify relative issues. Also, the interaction and relationship 

between factors are not considered in this study due to their low correlation. In addition, 

the results have been primarily subjective to the participants’ responses. A 

questionnaire survey was employed as the primary means to collect perceptual data 

from project respondents, and no case studies were performed to validate the proposed 

conceptual framework. This may generate potential response biases related to 

subjectivity and social desirability. Finally, this study was conducted in a specific 

cultural and market in the Chinese mainland construction industry. This may limit the 

universality of the related results to other backgrounds. 

7.5 Recommendations for Future Research 

Future research direction could examine more relevant variables in the models and 

therefore develop a more comprehensive theoretical framework for understanding and 

assessing the impacts of BIM implementation on construction productivity. Further 

research could also attempt to collect project-based data from multiple sources, and use 
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both objective and subjective data to measure the variables related to productivity gains. 

These could help to cross-validate the collected data and, therefore, further control the 

negative impacts of potential response biases on data analysis results. Furthermore, 

present research could be extended to cross-nation level to compare the results from 

different backgrounds. 

7.6 Chapter Summary 

In summary, this chapter systematically generalizes the major findings and highlights 

the significance and contributions. Then, the limitations of the current study are 

discussed. Finally, recommendations for future research have been proposed. 
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Appendix I: Questionnaire on the Impacts of BIM 

Implementation in Reducing Design Error 

尊敬的专家： 

    您好， 

    非常感谢您能在百忙之中抽出宝贵的时间来参与此次问卷调查，本次调查

以学术研究为目的，其宗旨在于调查 Building Information Modeling (BIM)技术在

设计阶段对设计错误的影响及其关系。建筑信息模型（BIM）概念自引入中国

以来，得到了业界与学术界的广泛认可，这一革命性，创新性的理念，在中国

建筑行业掀起了一股 BIM 的应用热潮。但是国内建筑业对 BIM 的相关研究和应

用仍处于探索阶段。 

    您的看法对这一研究课题将有非常重要的启发和帮助，因此冒昧邀请您参

与此次问卷调查，给您带来的不便我深感抱歉。您所提供的信息只做学术研究

之用，采用匿名回答的方式，本人将对其严格保密。问卷总共包括 2 个部分，

全部完成仅会使用您 5 至 10 分钟的时间。如果您需要，我们将为您提供本次调

查的汇总和分析结果，以便您了解其他专家对这些问题的看法。请将此问卷返

回至 jason.zhou@                            或 270154089@           。 

    敬祝    身体健康、工作顺利 

周鑫 

香港理工大学建筑及房地产

学系 
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第一部分  背景资料 （请勾选“☒”） 

1. 您所在的组织机构：

☐业主单位  ☐设计单位  ☐施工单位  ☐咨询公司

2. 您从事建筑行业的年限：

☐0-2年 ☐2-5年 ☐5-10年 ☐10-15 年 ☐15年以上

3.您的学历背景：

☐初中及以下 ☐高中 ☐大专 ☐本科 ☐硕士 ☐博士

4. 您接触 BIM的时间：

☐1年以下 ☐1-3年 ☐3-5年 ☐5-7年 ☐ 7年及以上

5. 目前，您所参与的使用 BIM技术的施工项目：

☐1-2个 ☐3-4个 ☐5-6个 ☐6个以上

6. 您现在所参与的项目总合同金额为多少：

☐1亿以下  ☐1-5亿  ☐5-10亿  ☐10亿-15亿  ☐15亿-20亿  ☐20亿以上

第二部分  调查问卷 

一、问卷说明（共 7题）：本部分用于调查被访者通过实际工作中的经验及观

察，指出 BIM 技术的应用在设计阶段对设计错误的总体影响，以及对哪些因素

的影响能够有效地减少设计错误的发生，请标出您认为符合的选项： 

1- 强烈不同意 2-不同意 3-中立 4-同意 5-强烈同意
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BIM 应用的效果 

1. 基于 BIM 建立的 3D 可视化模型，能够有效减少

设计错误发生的可能性
☐1 ☐2 ☐3 ☐4 ☐5

2. 基于 BIM 建立的 3D 可视化模型，能有效进行碰

撞检查，消除构件内部潜在冲突发生的可能性
☐1 ☐2 ☐3 ☐4 ☐5

3. 基于 BIM 建立的 3D 可视化模型，能够有效减少

人为错误发生的可能性
☐1 ☐2 ☐3 ☐4 ☐5

4. 基于 BIM 建立的 3D 可视化模型，能使项目各专

业进行协同设计，减少建筑各系统之间设计冲突
☐1 ☐2 ☐3 ☐4 ☐5

5. 基于 BIM 建立的 3D 可视化模型，能够有效减少

传统模式下，图纸经常发生的错误与疏漏
☐1 ☐2 ☐3 ☐4 ☐5

6. 基于 BIM 建立的 3D 可视化模型，能够有效提高

设计图纸的实际可操作性与可施工性
☐1 ☐2 ☐3 ☐4 ☐5

7. 基于 BIM 建立的 3D 可视化模型，能够提高项目

各参与方团队合作效率 ☐1 ☐2 ☐3 ☐4 ☐5

8. 基于 BIM 建立的 3D 可视化模型，能够有效促进

项目各参与方，知识共享与信息交流
☐1 ☐2 ☐3 ☐4 ☐5

 

再次感谢您的参与！ 

如果您希望收到本调研的分析结果，请留下您的联系方式： 
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Appendix II: Questionnaire on the Impacts of BIM 

Implementation on Construction Productivity 

尊敬的专家： 

    您好， 

    非常感谢您能在百忙之中抽出宝贵的时间来参与此次问卷调查，本次调查

以学术研究为目的，其宗旨在于调查 Building Information Modeling (BIM)技术在

施工阶段对建设项目生产力的影响及其关系。建筑信息模型（BIM）概念自引

入中国以来，得到了业界与学术界的广泛认可，这一革命性，创新性的理念，

在中国建筑行业掀起了一股 BIM 的应用热潮。但是国内建筑业对 BIM 的相关研

究和应用仍处于探索阶段。 

    您的看法对这一研究课题将有非常重要的启发和帮助，因此冒昧邀请您参

与此次问卷调查，给您带来的不便我深感抱歉。您所提供的信息只做学术研究

之用，采用匿名回答的方式，本人将对其严格保密。问卷总共包括 2 个部分，

全部完成仅会使用您 5 至 10 分钟的时间。如果您需要，我们将为您提供本次调

查的汇总和分析结果，以便您了解其他专家对这些问题的看法。请将此问卷返

回至 jason.zhou@               或 270154089@            。 

    敬祝    身体健康、工作顺利 

周鑫 

香港理工大学建筑及房地产

学系 

第一部分  背景资料 （请勾选“☒”） 
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1. 您所在的组织机构： 

☐业主单位  ☐设计单位  ☐施工单位  ☐咨询公司  

2. 您从事建筑行业的年限： 

☐0-2年     ☐2-5年    ☐5-10年    ☐10-15 年    ☐15年以上 

3. 您接触 BIM的时间： 

☐1年以下   ☐1-3年   ☐3-5年   ☐5-7年   ☐7年及以上 

4. 目前，您所参与的使用 BIM技术的施工项目： 

☐1-2个    ☐3-4个    ☐5-6个    ☐6个以上 

5. 您现在所参与的项目在哪一阶段使用 BIM: 

☐设计阶段  ☐施工阶段  ☐运营维护阶段  ☐拆除改造阶段  ☐项目全寿命周

期 

6. 您现在所参与的项目总合同金额为多少： 

☐1亿以下  ☐1-5亿  ☐5-10亿  ☐10亿-15亿  ☐15亿-20亿  ☐20亿以上 

 

第二部分  调查问卷 

二、问卷说明（共 8题）：本部分用于调查被访者通过实际工作中的经验及观

察，指出 BIM 技术在施工阶段对项目建设生产力的总体影响，以及对哪些因素

的影响能够有效地提高项目建设生产力，请标出您认为符合的选项： 

1-强烈不同意 2-不同意 3-中立 4-同意 5-强烈同意 
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BIM 技术的应用 强烈不同意         强烈同意 

1. BIM 技术在施工阶段的应用，能够有效地提高项

目整体生产力的表现 
☐1 ☐2 ☐3 ☐4 ☐5 

2. BIM 技术在施工阶段的应用，能够有效提高项目

劳动生产力 
☐1 ☐2 ☐3 ☐4 ☐5 

3. BIM 技术在施工阶段的应用，能够有效促进项目

各参与方协作与交流，促进生产进程 
☐1 ☐2 ☐3 ☐4 ☐5 

4. BIM 技术在施工阶段的应用，能够合理配置劳动

力，材料 ，设备等资源，提升资源管理及利用效

率，减少资源浪费 

☐1 ☐2 ☐3 ☐4 ☐5 

5. BIM 技术在施工阶段的应用， 能够模拟与分析施

工总体计划与施工顺序，合理安排施工计划和施

工场地，避免工序冲突 

☐1 ☐2 ☐3 ☐4 ☐5 

6. BIM 技术在施工阶段的应用，能够有效地减少返

工，提高生产质量，从而缩短项目工期 
☐1 ☐2 ☐3 ☐4 ☐5 

7. BIM 技术在施工阶段的应用，能够有效提高工料

估算与成本预算效率，实现造价的动态控制 
☐1 ☐2 ☐3 ☐4 ☐5 

8. BIM 技术在施工阶段的应用，能够灵活应对设计

变更，减少返工，从而减少项目成本 
☐1 ☐2 ☐3 ☐4 ☐5 

其他（请详述）: ☐1 ☐2 ☐3 ☐4 ☐5 

 

 

再次感谢您的参与！ 
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