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Abstract

This thesis introduces a mean-field formulation to investigate the multi-period mean-
variance model with cash flow, liability and uncertain exit time. As this model cannot
be decomposed by a stage-wise backward recursion stage by stage on the basis of
dynamic programming, it is a nonseparable problem. This thesis devotes to resolving
this nonseparability as well as searching analytical optimal solutions and numerical
example.

On the one hand, the original bi-objective mean-variance problem can be trans-
formed into a single-objective one by putting weights on the mean and variance. In
substitution of the parameterized method, a mean-field formulation is employed to
tackle various optimal multi-period mean-variance policy problems with cash flow
and uncertain exit time, respectively. As a matter of fact, parameterized method
and embedding technique cannot work smoothly when these constraints are consid-
ered. We will illuminate the efficiency and accuracy of mean-field formulation when
models are not separable in dynamic programming. By taking expectation of the
constraints with some calculations, in the language of optimal control, the state space
and the control space will be enlarged, then the objective function becomes separable
enabling us to use dynamic programming to solve this problem in expanded spaces.
An analytical form of optimal policy and efficient frontier are also derived in this
thesis.

On the other hand, we take into account the liability on mean-variance model.

Vil



Since in dynamic mean-variance problems, the optimal portfolio policy is always
linear with current wealth and liability. Therefore, we employ the mean-field method
and derive analytical optimal policies whose results are more explicit and accurate
compared with the solution from embedding technique. During the whole derivation,
the relationship among investment, cash flow and liability plays an important role.
We investigate several cases such correlated or uncorrelated return rates at the same
period, and we also illustrate the differences as well as the effects on optimal strategies

theoretically and numerically.
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Notation

Uy
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qt

: the value of the assets that the manager controls at

time ¢

: the value of the liability that the manager controls at

time ¢

. the investment at the start of the ¢ period in the i-th

risky asset

. the risk-free return rate of the investment during the

t period

: the return rate of the i-th risky investment during the

t period

. the excess return rate of the i-th investment during

the t period

the random cash flow of the investor during the ¢

period
: the random rate of the liability during the ¢ period

. the n-dimensional identity matrix
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Chapter 1

Introduction

1.1 Background of Mean-Variance Model

Most of us own a portfolio of assets, which may include real assets, such as a house,
a car, or a laptop, and financial assets, such as stocks and bonds. Portfolio selection
is a tool concerning the pursuit of the most desirable group of funds, which is vital in
the process of gathering wealth. Rational investors prefer a higher expected return
as well as a lower risk. However, the portfolio with maximum expected return is
not always the one with lowest risk. Mean-variance portfolio selection refers to the
design of optimal portfolios balancing the gain with the risk, which are in expression
of expectation and variance of final return, respectively. For the sake of tracing out
the efficient frontier for this bi-objective optimization problem, a typical method is
to put weights on both mean and variance so as to convert the original problem into
a single-objective one.

The mean-variance model, which is introduced by Markowitz, has provided a fun-
damental basis for designing the optimal strategy balancing the trade-off between
return and risk. The principles introduced in Markowitz (1952) are still at the core
of many modern approaches for asset allocation, investment analysis and risk man-
agement. In recent years, research on mean-variance portfolio selection problems

has been well developed. Li and Ng (2000) extended Markowitz’s model in single



period to dynamic version and derived analytical solution by the embedding tech-
nique. Costa and Nabholz (2007) generalized the results of Li and Ng (2000) for
the case where the intermediate variances and expected values of the portfolio are
also considered in the performance criterion and/or constraints. Zhou and Li (2000)
introduced a stochastic linear quadratic control as a general framework to study the
mean-variance problem in a continuous-time setting and also derived analytical opti-
mal policy and explicit expression of efficient frontier. Li et al. (2002) developed it to
a constrained one in which short-selling is disallowed. Yin and Zhou (2004) studied a
discrete-time problem where the market regime switches among finite market states
and also revealed their relationship with the continuous-time counterparts. Based
on local mean-variance efficiency, the portfolio selection problem has been developed
by a time-consistent formulation by Czichowsky (2013) for both discrete and con-
tinuous time cases. Cui et al. (2014) presented a mean-field method to deal with
the multi-period mean-variance optimal policy problem and also get the analytical
optimal strategies and efficient frontiers. Pang et al. (2014) discussed a contin-
uous mean-variance problem under partial information by dynamic programming
approach through analyzing the process of filtering and wealth evolution.
Asset-liability management is a financial tool for an investor that sets out to
maximize their wealth. The aim of asset-liability management is to reduce risks as
well as to increase returns and it has been used successfully for banks, pension funds,
insurance companies and wise individuals. A judicious investment considers assets
and liabilities simultaneously. A financial institution taking liabilities into account
can operate more soundly and lucratively. Krouse (1970) noticed that many mean-
variance models concentrated only on assets and with little or no effort being directed
to the liabilities. The mean-variance framework of asset-liability management was
first investigated in a single time period by Sharpe and Tint (1990). Leippold et al.
(2004) derived the closed form optimal policies and mean-variance frontiers under
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exogenous and endogenous liabilities using a geometric approach; Chiu and Li (2006)
analyzed asset-liability management in continuous-time period by employing stochas-
tic optimal control theory; Xie et al. (2008) considered the situation where the market
is incomplete. Chen and Yang (2011) studied the case with regime switching; Zeng
and Li (2011) investigated the models under benchmark and mean-variance criteria
in a jump diffusion market. Wu and Li (2012) considered regime switching and cash
flow together in the model.

An important assumption is that the exact exit time is deterministic, which means
that time horizon of the investment is deterministic in the portfolio selection models.
However, it is more realistic for the original investment schedule to be changed
or abandoned because of some accidents or unexpected events such as resignation,
sudden illness, huge consumption etc. Thus, in the real world, it is better to adjust
the constraint with an uncertain exit time assumption so that the investment horizon
is undetermined. Under a pure deterministic investment condition, Yaari (1965)
considered a case where the death date of an individual can not be determined and
discussed the problem of consumption. The work was extended to a multi-period
version with the setting of uncertain exit time and only one risky asset by Hakansson
(1969). Merton (1971) use an independent Poisson process to define the uncertain
time and introduced the constraint into the problem. Li and Xie (2010) investigated
the optimal mean-variance portfolio strategy under the setting of an uncertain and
continuous time horizon. Yi et al. (2008) incorporated an uncertain exit time into
the multi-period mean-variance model. The constraints of regime switching and
uncertain exit time were introduced by Wu and Li (2011) Yao et al. (2013) extended
the model and added the uncontrolled cash flow and uncertain time horizon.

Most studies above are under a circumstance that the asset and liability are
independent. In fact, the returns of risky assets or liability always exhibit some de-

pendency in different time periods. Correlated returns are necessary and meaningful
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to be considered in the mean-variance portfolio selection. Since the model becomes
difficult to solve, there are a few works in the literature. Balvers and Mitchell (1997)
was the first to derive an explicit solution to the dynamic portfolio problem when
the returns are autocorrelated by a normal ARMA(1,1) process. Xu and Li (2008)
investigated a dynamic portfolio selection in a market with one risky asset and one
risk-free asset, and Zhang and Li (2012) extended it to the case with uncertain exit
time. Gao and Li (2014) considered the capital market consisting of all risky assets.
By an embedding technique, last three derived analytical optimal strategies.

The following is a general summary of the analytical solution of the mean-variance
optimal policy problem. Markowitz (1952) proposed the single period model, and
the analytic solution was given by Merton (1972) under the situation with allowed
short-selling and positive definite covariance matrix. However, it is more delicate to
consider multi-period and continuous-time cases. In order to use dynamic program-
ming to tackle this problem, the following principle of optimality should be satisfied:
regarding the optimal policy, no matter what the initial decision or initial state is,
the remaining decision should constitute the optimal strategies with the state root-
ing in the first decision (See Bellman (2010)). That is to say, the objective function
should be decomposed by a backward recursion when the problem is separable. Nev-
ertheless, the variance of asset in the M-V model is inconsistent with the smoothing
property, i.e.,

Var (Var(-|F;)|Fy) # Var(-|F), Vj>k,

the information set at period k is denoted as Fj. Therefore, the multi-period mean-
variance problem is un-separable in the sense of dynamic programming. Thus all tra-
ditional methods are invalid to derive the optimal stochastic control solution. There
are three main methods to deal with this problem involving embedding technique,

parameterized method, and mean-field formulation.



Let us first review the embedding technique by Li and Ng (2000) in detail which
is widely used to solve the noseparability (See Leippold et al. (2004), Chiu and
Li (2006), Yi et al. (2008), Li and Xie (2010), Zhang and Li (2012), Yao et al.
(2013) etc.). We assume there are n kinds of risky assets with given return m; =

1

[mt>"' ’m?]/

and one risk-free asset with given return n; in the financial market.
An investor wants to allocate his/her wealth within a time horizon T for obtaining
the highest return with lowest risk, and he/she plans to take part in the financial
market with initial asset wy at time 0. Li and Ng (2000) formulated the classical

multi-period mean-variance portfolio selection model as follows :

min wVar[wr| — E[wyr],

n n

ste = Yoot = 31t 0

i=1 i=1 ’ ’
= Rg'Ut + NiWe,

t=0,1,2,---, T — 1.

The total asset at time ¢ is denoted as w;, and v¢ denote the ith risky investment.
Trade-off parameter w > 0 on behalf of the risk aversion degree. By dynamic pro-
gramming, it is difficult to solve this problem. Therefore, an embedding scheme is

adopted and a family of auxiliary problems were applied to solve the model.
A(w,)) min Elww? — Awr],

/
s.t. wip = nawy + Ry

therefore we transform the problem to a separable linear-quadratic stochastic control
(LQSC) formulation and solve it by employing dynamic programming.

We briefly summarize the parameterized method to overcome the nonseparability.
An auxiliary variable d was introduced by Li et al. (2002) with the constraint E(wr) =
d which denoted the expected asset in the terminal period. The following slightly

modified and equivalent version of (1.1) was given as (the no-shorting constraint is



omitted here),

(MV(d)) mﬂin Var[wr] = E[(wr — d)?],

s.t. ]E[UJT] = d,
W1 = MWy + R;/Ut,

t=0,1,2,...,T — 1.

By employing the Lagrangian relaxation and introducing the Lagrangian multiplier

A, we transform the problem to the following LQSC formulation,
(L(A)) min E(wr — d)* — AE(wr — d),
s.b. wi = ngwy + Ry,

t=0,1,2,...,T — 1.

Therefore, the optimal strategies can be derived by maximizing the dual function
L(X\). Set v = d+ A/2, we can rewrite the Lagrangian problem (L()\)) as the
following LQSC problem,

(MVH(v)) min E(wy —7)?,
s.b. Wy = ngwy + Ry,

t=0,1,2,...T 1.

which is a special mean-variance hedging problem. Under a quadratic objective func-
tion, the investor can hedge the target v by his/her portfolio. (MV H(+)) has been
well investigated and can be solved by different methods such as LQSC theory (see
Li et al. (2002)), martingale/convex duality theory (see Schweizer et al. (1996), Xia
and Yan (2006)) and sequential regression method (see Cerny and Kallsen (2009)).

Another method is the mean-field formulation approach developed by Cui et al.
(2014). The mean-field method can solve the problem where both the objective
functional and the dynamic system involve their expectations and state processes.

6



The theory of mean-field method has been well investigated with widespread appli-
cation during the past few years. Typically, Yong (2013) proposed the mean-field LQ
control problems; Li-Zhou-Lim Li et al. (2002), Li-Zhou Li and Zhou (2006), Fu-Lari-
Lavassani-Li Fu et al. (2010) investigated the application on financial area through
the theory. It is demonstrated that the mean-field method improves the quality of
optimal policy compared with some existing results in the previous literature, and fig-
ures a new way in tackling the stochastic control problems with non-separability such
as multi-period mean-variance model. Even though there were lots of applications
appeared in previous literature, the mean-field method still has largely unexplored

area and application.

1.2 Contributions and Organization

In this thesis, we study mean-variance portfolio selection with cash flow under the
framework of asset-liability management. The main difficulty in solving this problem
is the nonseparability. As mentioned above, most multi-period mean-variance mod-
els derive the analytical optimal policies based on the embedding technique. One of
the prominent features of the embedding technique is that it builds a bridge between
multi-period portfolio selection problems and standard stochastic control models.
Embedding scheme is indeed an efficient way to deal with problems with nonsepara-
ble property. However, it is prone to involve inefficient and complicated calculation
during the derivation of the optimal strategies and efficient frontiers by embedding
since an auxiliary problem should be built and a long list of notation should be estab-
lished, especially when adding some constraints such as asset-liability management,
uncertain exit time and risk control over bankruptcy and/or serial correlated returns.
We resort to exploring new methods to solve the optimal multi-period mean-variance

policy with cash flow efficiently.



In Chapter 2 we present a brief introduction of multi-period mean-variance port-
folio selection problem. Some useful lemmas also will be given to proof the theorem
in the following chapters.

Chapter 3 tackles the optimal multi-period mean-variance policy problem with
cash flow by using the mean-field method addressed in Cui et al. (2014). We can
enlarge the state space and control space by taking expectation on both sides of the
constraints as well as some calculations. The objective function becomes separable
enabling us to tackle the problem by dynamic programming in the expanded spaces.
Under the construction of the new formulation, we can turn the original problem
which is nonseparable into a stochastic linear quadratic control problem which is
solvable. There is a property that the optimal strategy is always linear to the current
wealth and cash flow. Thus, we can derive the analytical optimal strategies and give
the optimal expectation of the final surplus in analytical form. Compare the results
with those from the embedding method, we see that these results are more accurate
and explicit. Another important thing is that the relationship of returns is vital in
the whole derivation. We first assume that there is no correlation between the assets
and cash flow in the same time period, then we investigated the case with correlated
setting. Numerical examples are given to shed light on the optimal strategies in this
chapter.

Chapter 4 is devoted to tackling the multi-period mean-variance problem by
mean-field formulation method, adding the constraints of cash flow and uncertain
exit time. It is showed that compared with embedding method, mean-field method
is simpler in calculation (see Yi et al. (2008)). When the constraints of cash flow
and uncertain exit time are considered, neither of the parameterized method and the
embedding technique can work smoothly. We emphasize that mean-field formula-
tion is more efficient and accurate when those models are not separable in dynamic
programming. In the third section, we introduce mean-field formulation and use

8



it to deal with the nonseparability of a simple multi-period mean-variance problem
without uncertainty. Then we employed the mean-field formulation to solve the M-V
problem when the exit time is indeterminate. We directly assume that the assets
and cash flow are correlated, and show the efficiency and accuracy by presenting
numerical examples. When the terminal exit time is deterministic, results from the
mean-field formulation are the same with that from parameterized method, which
also presents the accuracy of these two methods.

Chapter 5 deals with the multi-period asset-liability mean-variance portfolio se-
lection problem with cash flow. We directly assume the assets and cash flow are
correlated and derive strictly the optimal strategies of the mean-variance model with
uncorrelation of assets and liability as well as the solution with correlation of assets
and liability respectively. The effect of control over liability is showed theoretically
and numerically. When the liability control is left out and the correlation between
asset and cash flow are consistent with the model in Chapter 3, the results are also
the same as it.

Chapter 6 resolves the problem of Chapter 5 with uncertain exit time. Mean-field
formulation is proved to be also efficient when we take all the additional condition
mentioned above into account. We directly concern the case that the assets and cash
flow are correlated. The model becomes much more complex but it is always the
case in real financial market. We prove that the similar results hold when different
constraints are added. In other words, the results in this Chapter can be reduced to
chapter 5 when the investor exit time is deterministic.

The whole thesis deals with the multi-period mean-variance asset-liability port-
folio selection problem with different constraints, such as cash flow, uncertain exit
time, correlated returns between asset and cash flow by employing the mean-field
formulation. We can also consider other situations such as regime switching or time

consistent problems. Chapter 7 provide the conclusion and future work of the thesis.
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Chapter 2

Preliminary

In chapter 2, we introduce the basic construction of multi-period mean-variance
problem with liability. Some characteristics are introduced in order to deriving the

analytical solution of optimal strategy.

2.1 Basic Formulation

We assume the financial market that have one liability, one risk-free capital and n
risky capitals within a time horizon T'. Let n, represent the deterministic return of
the risk-free capital, m; = [my 1, mea, -+ ,my,]" be the vector of random returns of n
risky capitals, and ¢; is represented as random return of the liability at period t. The
investor will join the financial market at the beginning of time period 0 and propose
to quit the investment at time 7. Let wy denote the initial wealth, and [y denote
the initial liability. At the beginning of every time period ¢ between 0 and T, he/she
can reallocates his/her portfolio selection in order to maximize the expect return as
well as minimize the risk.

At different time periods ¢, the random variable ¢; and the random vector m; =
[m}, -+ ,m}) are assumed to be statistically independent and are defined from the
probability space (2, F, P).

The only information about ¢; and m; are their first two moment. We further

11



define their covariance matrix is positive definite. Thus,

(&) ==[(5) e ] =[(3)] 1t 1o

Due to Cov[(my, ¢)'] = 0, the following matrix is also positive definite for

t=0,1,---,---,T—1
n; nE[my]  nE[g]
nE[my] E[mimy] Elmug] | > 0.
nElq] Elgm] Elg]
Let Ry = (R}, -+, R) represents the excess return vector of risky assets which is
equal to (e} —ng, -+, el —n;). According to the upper assumptions, we get

ntIE[Rt] E[Rth] E[tht]
nEla] ElgR]  E[gf]

1 0 0 n? nE[my]  nE[g) 1 -1 0
=l-1 1 0 niE[my] E[mgm}] E[muq] 0 I o0
0 0 1 nElg] Elgm}]  E[g?] 0 0 1

n? nE[R)]  niElg] )

>0,

where I denotes the n x n identity matrix, 0 and 1 denote the n-dimensional all-zero

and all-one vectors respectively, which imply,
E[R,R;] - 0,
El¢7] — Elg: RiJE™ (R, R{E[Rq:] > 0,

n; (1 — E[RJE ' [R,R]E[R;]) > 0.

Therefore 0 < E[R}JE7'[R;R,|E[R;] < 1. In order to express the equation more

12



concisely, we define the following symbol

B, £ E[RJET' R, RJE[R,],

B, £ E[¢, R]E'[R,R]E[R,],
B; 2 B[, R)JE~'[R,R)E[c,Ry],
B, £ E[q.R{E™ [R,R]E[Ry],
B'y £ B[ R]JE~' [R R{E[Ryqy],
B, 2 E[e,R|E " [R:R]E[Ruq:].

If there is no correlation between the return rates and cash flow during each period,

we have

B\t = E[Ct]Bt and Et = (E[Ct])QBt.

If there is no correlation between the return rates and liability during each period,

we have

B, =E[g)]B; and B, = (E[g])*B:.

At the beginning of time period ¢, the wealth and liability of the investor are denoted
by w; and [; respectively. Therefore, the surplus is denoted by w; — l;. If v! is the
money invested in the i-th risky asset for i = 1,2, -+ n at period ¢, thus w,— > | v;
can be defined as risk-free investment. In this thesis we suppose the liability is
exogenous. In other words, the investor’s strategies cannot effect the liability because
of its uncontrollability.

Fi =o0(Ro, Ry, - ,Ri_1,¢0,C1, "+ ,C1-1,G0,q1, "+ ,q—1) represents the informa-
tion set at the start of time period t for t = 1,2,--- T — 1, and Fy represents the
trivial o-algebra over © . Thus, E[-|Fo] is equal to the unconditional expectation
E[-]. We denote m, = (7}, 72, ---, m")" € F; which means all admissible investment
strategies are F;-adapted Markov controls and F; = o(wy, l;). Moreover, if v; and R;
are independent, {wy,[;} is an adapted Markovian process.

13



If there is no liability (¢; = l; = 0) in this portfolio selection model. That is to say,
there are just one risk-free asset and n kinds of risky assets in the financial market.
Then the information set is denoted by F; =0 (R, Ry, - -+, R;—1) at the beginning of
period t, and covariance matrix is also positive definite

Ot11 *+° Otln
Cov (my) = E[mymy] — E[me]E[mg] = |+ - - 0.

Otin " Otnn

We can also get the similar result as the first case, i.e., 0 < E[R,|E~ 'R, R}JE[R;] < 1.
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Chapter 3

Mean-Field Method for Optimal

Multi-Period Mean-Variance
Policy with Cash Flow

We study the multi-period portfolio selection problem with cash flow under the
framework of mean-variance model by using the mean-field method in this chapter.
The model is formulated in minimizing the variance with an indeterministic expected
return. Due to the variance term, the model is non-separable and we need to tackle
it by introducing the mean-field formulation. Compared to the embedding technique
proposed by Li and Ng (2000) and the parameterized method developed by Li et al.
(2002), the mean-field method can result in the optimal policy more easily and
directly to the whole process. We first reduce the case when the return rates between
assets and cash flow are uncorrelated, then we extend it to the correlated setting.
We derive the analytical form of optimal strategies as well as the optimal value in
expression for the initial problem. Finally, the numerical examples in both cases are

given to illustrate the results established in this work.
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3.1 Mean-Field Formulation

Similar with the classical multi-period mean-variance portfolio selection model which
we have mentioned in Chapter 1, we transform the bi-objective optimization problem
to a single-objective one. Thus,

( min Var(wr) — AE[wy],

St Wi = My (wt -3 vi) + > mivl + ¢ (3.1)

= nwy + Rjv, + ¢,
t=01,.-. T—1.

Here X\ represents the trade-off parameter. Because of smooth property is no longer
hold on the variance, we cannot solve this multi-period mean-variance model by
using dynamic programming directly. In order to tackle this difficulty, we employ
the mean-field formulation approach proposed by Cui et al. (2014) in this section. A
mean-field type method transform the problem to another formulation where either
the dynamic system or the objective functional involves their expectations and state
processes .

Thus, we construct the mean-field formulation for problem (3.1). Firstly, accord-
ing to the independence between R; and v;, the dynamics equations of the wealth
expectation can be derived as

{ Elwi] = mElwi] + E[R}]E[ve] + Elce], (3.2)

]E[w()] = Wyp.

where t = 0,1,--- ;7 — 1. Combining the dynamics equation (3.1) and the expecta-
tion equations (3.2), we have the following
W1 — E[UJH_I] = Ny (U}t — E[wt]) —+ R;Ut — E[R;]E[’Ut] -+ (Ct — E[Ct])
= n(w; — E[wy]) + R; (v, — E[v]) + (R, — E[R}])E[vy]
+(c: — Elcr]),

Wy — E[wo] = 0.

(3.3)
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By doing this kind of transformation, we enlarge the control space (v;) and state
space (w;) into (Elvy],v; — E[vy]) and (E[w], wy — Elwy]), respectively.
Secondly, even though the new control vectors v, — E[v;| and E[v;] are indepen-

dently determined at time ¢, they also should satisfy the following equation

E(v; — E[vy]) = 0.

Furthermore, we confine v; and w; are F;-measurable. E[v;] and E[w;| are Fo-
measurable. Therefore, we have v, — E[v;] and w; — E[w;]| are F;-measurable while
Fi = o(Efw], wy — E[wy]).

It is necessary to emphasize that we cannot observe the state E[w; 1] directly
in the financial market. Actually, we computed E[w; 1] according to the dynamic
equation (3.2) after we chose the E[v;]. Moreover, we observed the wealth level w;
at the period ¢t + 1 then derived the F;-measurable state w1 — E[w;41]. The control
system vy — E[v;] and E[v;] are consistent satisfying the constraint E(v, — E[vy]) = 0.

Based on the above construction, we can equivalently reformulate problem (3.1)
into a linear quadratic optimal stochastic control problem in mean-field type.

( min E[(wT — E[wT])2] — AE[wr],

s.t. E[w] satisfies dynamic equation (3.2),
wy — EJw,] consist with equation (3.3), (3.4)
E(v; — E[v)) = 0,
t=0,1,---,T — 1.

We are able to solve the multi-period mean-variance model with cash flow in this
mean-field formulation by dynamic programming. However, during the solution pro-

cess, we should pay attention to the imposed control vector v; — E[vy].

17



3.2 The Optimal Strategy with Uncorrelation be-
tween Return Rates and Cash Flow

3.2.1 The Dynamic Programming and Optimal Strategy

We assume the return rates between assets and cash flow are uncorrelated at every
period in this subsection, i.e., R; and ¢; are independent with each other during time

period t.

Theorem 3.1. The best strategy of (3.4) under the constraint of uncorrelation is

derived as

m; — Elr] = —ni(w, — Elw,])E7' R, R]E[(R,)],

E[r}] = (E[Rth] — E[Rt]E[RQ])_l (;ZEE[RA) (3.5)
A E~'[R,R;|E[R,]

2B 1—- B

Proof. The dynamic programming approach is employed to prove the theorem.
Given the information set J; at time period ¢, we define the following cost-to-go

functional of problem (3.4)

J(E[w], wy — Elwy]) = H}iHE[JtH(E[th]» W41 — E[wtﬂ])‘}—t],

with the boundary condition Jr(E[wr], wr — Elwr]) = (wr — Elwr])? — AE[wr].

We begin from stage T'— 1. Thus the conditional expectation at t =T — 1 is

(3.6)
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where

(nT—l(wT—l — Elwr_1]) + Ry (vr—1 — Elor 1)) + (Rp_; — B[Ry ])E[vr ]

+(er1 — E[CT—I])>2
= (nr-1(wry —E[wT—l]))2 + (Rp_y(vr— _E[UT—l]))2

+((Rp_y — E[Ry_)Elvr—])” + (er—1 — Eler])’

( 1(wr—y — Elwyr_y )) (R (vr—1 — Efvr- 1]))
+2(nro1 (wr1 — Elwr])) (Ry_; — E[Ry_,])E[vr_1])

( 1(wr_1 — [wT1))(CT1— CTl)

+2(vr_1 — EBlvr1]) (Rr—1) (Rp_y — B[Ry ) Efvr_i]

+2Rp_;(vr—1 — E[vr1])(er-1 — Eler—1])
( E[RT_l])E[UT—l] (CT_1 - ]E[CT_l]) .

Since w! — E[w}], E[w}], vi — E[v{], E[v}], are F;-measurable, we get

&=

(Rp-s(or ~ Eloroa])) |7

(vr—1 — Efor_1]) E[Rr—1 Ry_) (vr—1 — Efor_1]),
E[((Ry-y ~ ElRy_)Elor_]) | Fr]

El(vr1)] (ElRr—1Ry_,] - E[Rr 1 JE[Ry_] ) Elvr_1],
E :(CTA ~ Eler_1])* fol} = E[c}_1] — Eler—i)?,

E [2n7_1(wr-1 = Elwr—i]) Ry_y(vr—1 = Elor—i)| Fr-1]
= 2071 (wr-1 — Elwr_])E[Ry_](vr-1 — Efvr_i]),

2
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and

E 2nT \(wr_y — Elwr_y]) (R, — B[R} |])Elvr_i] fT_l} —0,
E 2nT 1(wT 1 —E[wT 1])(CT 1 —E[CT 1])‘]‘}—1} =0,
E:Q(UT—l — Elor_1]) (Rr- 1)<RT 1 E[R%_1]>E[UT—1] fT—l}
= 2(vrs — Elor))' (E[Rr—1 Ry\] — E[Rr1E[Ry_) )Elor],
E :zR'T_l(UT_l — E[vr_1])(er_1 — Eler_i]) ]—"T_l]
= Q(E[CT—lR/T_l] - E[CT—l]E[RIT_1)(UT—1 - E[UT—lba
E :Q(Rif_l — B[Ry ) Efvr_1](cr—1 — Eler_y]) ]-“T_l]
= 2(Efer1Ry ] ~ Efer|E[R;,])Elor] = 0.
Note that E[vi — E[v]]|F] = 0, which implies
]E[E [2 vr_1 — ) (Ry_ 1)<R'T X —IE[R’T_IDE[?JT,l] fT,l] fo]
= E[2(er1 - ( [Ry_1Ry_,] — [RT,l]E[Ré,,_I])]E[vT,l]‘fo] —0,
E[E [QRT V(o1 — Elvp_a])(er—1 — Eler—1]) fol} -7'—0}
E[ ler—1 R\ — Eler B[R} (vr—1 — Elvr_y)) fo} — 0.
Therefore, we can reduce (3.6) into
E[Jr(E[wr], wr — E[wT])|fT 1]
= E[(wr — E[wr])? — AE[wr]|Fr_1]
= E[(nr- 1<wT = E[wT—l]) + Ry y(vrs = Elor-a) + (R, — B[Ry, )JElvr_d]

+(cr—q — E[CT_1])> — /\(nT—lE[wT—l] +E[R,_E[vp_] + ]E[CT_l]) ]:T—1i|

— (nr1)2(wr_1 — Elwr1])* + (vr—1 — Elor 1)) E[Rr 1 Ry, ] (vr_1 — E[vr_4])
+E[(vr 1)) (E[Rr1Ry_,] — B[Ry 1JE[R)_) )E[vr_1] + El(er—1)?] - Eler [
+2n7_1 (wr—1 — Elwr_1])E[R}_ | (vr—1 — E[vr_1])
—Anp_1Elwr—] — AE[Rp_ JE[vr_1] — AE[er—4].

(3.8)
The optimal strategies at period T — 1 can be derived by minimizing the above
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equation corresponding to vy

vp_y — Elop_] = —np_y(wp_y — Elwp 1 ])E7 Ry Ry JE[(Rp-1)],

_]_)\
Efvr1] = (ElRr—1 Ry_i) — E[RrE[R;_,])  SE[Rr-1] (3.9)
_AET Ry Ry |E[Ry ]
2 1—Br_ ’
where
BT—l = E[Rép_l]Eil[RT_lR/T_l]]E[RT_l]. (310)

Substituting the optimal strategies back to (3.8), we obtain

JT—1(]E[UJT—1], wr—1 — E[wT—l])

= E[Jr(Elwr], wr — Elwr])|Fr_1]

= (np-1)*(wr—1 — Elwr_1])” + (El(er-1)?] — Eler—1]?) — Ang_1Efwr_]

_/\E[CT—I] - (nT—1>QBT—1(wT—1 — E[wT_1])2 — (gE[R/Tl]lE__ gj:lR,Tl]>

< (BLAr 1Ry~ Bl By ) (5 2y
= (n71)2(1 = Br1) (wr1 — Efwr1])” + (E[}_,] — Eler1]?)

/\2 BT_1

41— Bp_,

= fPra (wT—l - E[wT—l])2 — Ao Elwr_i] + Ap_y,

—AanlE[wal] — )\E[CTfl] —

(3.11)

where
Bro1= (nr_1)*(1 — Br_1),
77T—1 = Nr-1, (312>

A Br_,

Ary = E[G ] —Eler )’ — AEler] - 41—Bp_
— Bry
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Repeating the process at time 7" — 2, we have

JT—2<E[wT—2]> Wr—2 — E[UJT—Q])
= ]E[JT—l(E[wT—l],wT—l - E[wT—l])’FT—ﬂ
= E[ﬁTﬂ (wal - E[wal])2 — Anp_1Elwr_1] + ATfl‘-FT72]
= Broi(nr—s)?(wr—2 — E[wT—zD2 + Br_i1 (vr—2 — Efvr_o]) E[Rr_2 Rfp_,)]
x(vr_3 — Elvr_s]) + Br1El(vr )] (ElRr 2 Ry_o) — B[Ry ]E[R}_,] ) Elor -
+Br-1E[ck_y) — BroiEler—a]® + 2Br_1nr_s (wr_s — Elwr_o])E[R_,]
X (UT—2 - E[W—ﬂ) — Anr_inr—2E[wr_o] — Anr_1E[R_,|Elvr_o]
—Mnr_1Eler_o] + Ar_;.
(3.13)
The optimal strategies at period T — 2 can be derived by minimizing the above

equation with respect to vy_s

vr—o — Elvr_s] = —nr_o(wr_o — E[wT—Q])Eil[RT—ZR/T_Q]E[(RT—Q)]’

Blor-] = (ElRr-Fy o)~ Bl aBlRr ) (F2BlRrd)
~ M ET Ry Ry B[Ry

B 2671 1—Br_

Substituting the optimal strategies back to (3.13), we obtain

JT—Q(E[wT—2]> Wr—2 — E[wT—Q])

= Bro1(nr—2)*(1 = Br_s)(wr—s — Elwr_o])” + Br_1(E[E_y] — Eler_2]?)

/\277% 1 Brs
e Bl ] CElen o] — B - Ap_
Anr-inr—2E[wr o] 2>‘77T 1Eler—s] — Br 1<45:2r1 1 _BT2> o
= Broo(wr—s — Elwr])” — Anpr_oE[wr o] + Ay,
(3.15)
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where

Br_o = Pr-i(nr—2)*(1 — Br_s),

Nr—2 = MNr-inr-2,
Apr o= Ar i+ 5T—1E[C%—2] - 5T—1E[CT—2]2 - AnT—lE[CT—Q] <3'16)
_)‘277%—1 Br_,
4Br—1 1 — Br_o

Assume that the following equation (3.17) holds at time ¢t 4 1, then we can prove it

according to mathematical induction.

Jir1(E[we], wen — Elwiya]) = Brn (wt+1 - E[wt+1])2 — M1 Elwiga] + Agy,
(3.17)

where

Bis1 = Praa(ni1)?(1 — Bi),
M+1 = Me42M41,

)‘277t2+2 By
4B140 1 — Bt-i—l’

(3.18)

Appr = Ao+ BioElef ] — BreaEler]* — ApyoEleia] —

and

BT = 1, nr = 1, AT =0. (319)

According to the equation (3.3) and (3.17), we derive the result at time ¢.

Ji(Elwy], wy — Elwy])
= E[Ji1(Blwi], wipr — Elw 1)) F]
= E[Bir1 (w1 — Elwent])” — MppsrElwg] + vyt | F]
= Brra(n)*(we — E[wt])2 + Brr (ve — Efvg)) B[R RY] (vr — Efur])
+BinE((0)) (EIR ;] — EIRE[R] ) E[v] + S ElcH] — fusEler)
+28 110 (wi — Elwy])E[R]] (v; — Elvg]) — MpsrneElwy] — My B[R] E[v,]
Bl + Ay,
(3.20)
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The optimal strategies at period ¢ can be derived by minimizing the above equation

corresponding to v,

vy — Elvg] = —ny(wy — E[w,)E[R,R{E[(Ry)],

Elo] = (B{R.A) ~ BIRIEIR]) (522 E(R))

_ M B[R RYE[R,]
20141 1-B

Substituting the optimal strategies back to (3.20), we obtain

Jt(]E[wt]a wy — E[wt])
= Bri(n)*(1 = By) (w, — E[wy])” + Biya (El(c2)?] — E[e]?)

A2 By
—MeneElw] — A Ele] — 3 AR
The+170 [ t] \ N1 [t] gl(4ﬁt+1 Bt>
Ne+1 SN2 t
— - B A
5t+1<( [ce] + 28101 t) ) RaAVAR]
= ﬁt(’wt— [w ]) — AnElw] + Ay,

where
Bi = Brr1(n)*(1 — By),
Nt = Ne+1Mt,

A= A+ 5t+1E[C?] - /8t+1E[ct]2 — My Ele] —

Substituting E[v}] to the dynamics eqation in (3.2) yields

My By

E =n,E
[wt-i-l] 1t [wt] + 211 — B,

+ Elc],

which implies

t—1

)\ .
E[w;] —wOan+Z 2;;11_1 +IE[C]~]) H ny.

I=j+1
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48101 1 — By

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



Typically, we know the optimal value of problem (3.1) is equal to Jy. Thus,

Var(wr) =

Jo(E[wo], wo — E[wo]) + AE[wr]

T-1 T-1

>\77 j+1
= —Anowo + Ao + >\<wo ng + I
ILmes2 G

3.2.2 Numerical Examples

+Ecj H nl>

l=j5+1

(3.26)

According to the data provided in Elton et al. (2009), We investigate the example of

a pension fund consisting of S&P 500 (SP), the index of Emerging Market (EM) and

small Stock (MS) of U.S market. Moreover, we consider a bank account and cash

flow in the model. Table 3.1 gives the expected return, standard deviation and the

correlation coefficients between the three assets and cash flow. The annual risk free

return rate is setted as 5% (n; = 1.05).

Thus,

Table 3.1: Data for assets and cashflow without correlation

SP EM MS cashflow
Expected return 14% 16% 1% 1
Standard deviation 18.5% 30% 24% 20%
Correlation coefficient
SP 1 0.64 0.79 0
EM 0.64 1 075 0
MS 0.79 0.75 1 0
cashflow 0 0 0 1
0.09 0.0342 0.0355 0.0351
E[R;] = [ 0.11 ], Cov(R;) = [ 0.0355 0.0900 0.0540 |,
0.12 0.0351 0.0540 0.0576
0.0423 0.0454 0.0459
E[R:R;] = | 0.0454 0.1021 0.0672
0.0459 0.0672 0.0690
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The correlation coefficient of the i-th asset and the cashflow is defined as

p= (p17p27103)7 where

This means the return rates between assets and the cashflow are uncorrelated. Thus,
we have
Elc:R;] = E[c]E[Ry],

E[c]] = E[c))? + Var(c,).

Hence,

Cov Rt - COV(Rt) COV(Ct, Rt)
¢ ) ) \Cov(e, Ry)  Var(e)

0.0342 0.0355 0.0351

0.0355 0.0900 0.0540

0.0351 0.0540 0.0576
0 0 0 0.

oS O OO

400

=0.

In order to make the equations more clearly, we define the notation as follow,

1.0589 1.0589
Vi = E ' RRIE[R] = | —0.1196 | , Yy =E 'R R}E[c;R;] = | —0.1196
1.1033 1.1033

B; = 0.2190. (3.27)

We assume the market period ¢ = 5. Thus we have the optimal expected value of

asset in different time period.

are given by

E[w] = (4.4452,5.9109, 7.4072, 8.9431, 10.5268).
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We suppose the initial wealth wy = 3, and trade-off parameter A = 1, then the

optimal strategy is derived as follows,
vy = —1.05(wy — 4.3103)Y; — Ys,
v} = —1.05(w; — 5.5259)Y; — Y5,
vy = —1.05(we — 6.8022)Y) — Y5,
vy = —1.05(ws — 8.1423)Y; — Y5,

vl = —1.05(wy — 9.5494)Y; — Y.

The optimal final variance is Var(ws) = 1.9294.

3.3 The Optimal Strategy with Correlation be-
tween Return Rates and Cash Flow

3.3.1 The Dynamic Programming and Optimal Strategy

We assume the return rates between assets and cash flow are correlated during each

period t in this subsection.

min Var(wr) — AE[wr],
(3.28)
s.t. W1 = NyWy + R;Ut + Ct,
where
Wiyl = MWy + R;Ut + Ct, (329)
E[wt+1] = nt]E[wt] + ]E[R;]E[Ut] + ]E[Ct], (330)

Wi — Elwiga] = ne(we — Elwy]) + Ri(ve — Elvg]) + (R — E[R])E[ve] + (¢ — E[ce]).
(3.31)

We define the cost-go-functional as

Ji(E[wy, w; — Efwy]) = rr;itnE[JtH(E[th}, Wyl — E[wtﬂ])‘}_t},
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with the boundary condition Jr(E[wr], wr —E[wr]) = (wr —E[wr])?— AE[wr]. Thus,

[
[(wr — Efwr])? = AE[wr]|Fr_i]
— E|(nro1(wr1 — Elwr_]) + Rp_y (o1 — Elor1]) + (R, — B[Ry, DE[vr_i]
( -FTfl} :
(3.32)

where

(wr1(wr s = Blwr]) + Ry (o1 — Elor ) + (Rp_y — B[Ry, )JElvr 1]
Hera —Eler1]))
= (nr_1(wr_ —E[wT 1))+
+((Ry_y — E[Rp_ ) E[vr—
+2(np_1 (wr—y — [
+2(n E[
( wT 1 [
(UT 1—E UT 1])/(RT—1)( %—1 E[RT—1])E[UT—1])

2 2

(RT 1(vr—1 = Elor_i]))
1] (CT 1= [CT71])2
)(RT 1(vr—1 — Efvr— 1]))
)((Rér  —E[Ry 1])E[UT—1])
)(

cr1—E CT 1)

1))
leT 1 — Bjwr— 1)
1])

wr—

+2Rp_ (vr—1 — E[vr1])(er-1 — Eler—1])
+2(Ry_y — E[R}_])Elvr_1](cr—1 — Eler_1])

(3.33)
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Since w;

&=

N = =

H &= &8 I &5 &=

2 1 &8 |

— E[w]], E[w!], vi — E[v}], E[v}] are F;-measurable, we get

2

(Rpos (71~ Efor_a)) [ Froa]

(vr—1 — E[UT_l])/E[RT—lR/T_l] (vr_1 — Efor_4]),
((Ry-y ~ BBy DEra)) |Froi]

El(or—1)] (ElRr—1Ry_,] - E[Rr1[E[Ry_] ) E[vr_1],

(er—1 — E[CT—l])2‘FT—1} = E[(cr-1)?] — Eler—1J?,
2np_y(wp—1 — Elwr_1]) Ry (vp—1 — Elvr_q])| Fr- 1]

2np_y (wr—1 — Elwr]) B[R] (vr—1 — Efvr—1]),

2y (wr—y — Elwp 1)) (R — B[Ry _])Elvr ] ]:T—1] =0,
2ny_1(wr—1 — E[wr_1])(er—1 — Eler—i])| Fr- 1] =0,

2(vr—1 — Elvr_1]) (Rr- 1)<RT  — B[Ry 1]>E[UT—1] ~7:T_1]

)
2(vr1 — Elor1)) (E[Rr1Ry_,] - E[Rr 1 [E[R,_] ) Elvr_i],
2B7 . (vr-1 — Bler—i])er — Eler])| Fro|

Q(E[CT—IR/T—I] - ]E[CT—I]]E[R/T—I) (vr—1 — Elvr_1]),

:Q(R/T—l — E[R}_,])E[vr—1](cr—1 — Eler_1]) fT—1i|
2(Eler 1 Ry_y] - Eler 1JE[Ry_,] ) Efor ).

Note that E[v] — E[v]]|F,] = 0, which implies

&=

&

[E[z vr_1 — Evr_1]) (Br— 1)<R’T_1 —E[R’T_l])E[UT_l]‘fT_l]‘FO]
E[Z (vr—1 — Elvr_] (E[RT \Ro ] — B[Ry B[R} 1])]E[UT_1]’JTO]

|

E

[2RT L(vr—1 — E[or_1])(er—1 — Eler_1])

Fra |

E|:2 CT 1RT 1 CT 1]E[RT 1)('UT 1= ]E[UT 1 ‘f0i| = 0.
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Therefore, we can reduce (3.32) into

Jr(Elwr], wr — Elwr])|Fr_i]
(wr — Elwr])? = AE[wr]| Fr_1]

[
[
[(nT_1<wT  Blwra) 4 By (s —Blora) & (R ~ (R JBler
(

(nT 1)2(U)T 1= E[wT 1]) + (UT 1= E[UT—l]) E[RT—IRT_1](UT—1 - ]E[UT—l])

+E[(vr_1)) (ElRr1 Ry_y] — B[Ry B[R}, Elor 1] + El(er—1)?) - Eler_1 ]
+2TLT_1 (wT_1 — E[wT_l])E[Ri[_l] (’UT_1 — E[UT—I])

+2(Eler_1 Ry_y] — Eler |E[Ry_,] )Elor 1] — A E[wr 1] - XE[Ry_,JE[vr 1]
—)\E[CTfl].

(3.34)

The optimal strategies at period T'— 1 can be derived by minimizing the above

equation corresponding to vr_;

vp_1 — Elor_1] = —np_1(wr—y — ]E[wT—l])Eil[RT—IR/T_l]E[(RT—I)],
Elor ) = = (B{Rr By) — ELRr B[R )

X (E[CT—IRT—I] — Eler1]E[Rr_1] — gE[RT—ID (3.35)

A5 NET'Rr Ry JE[Rr ]
- (E[CT_l] + E B BT_1> 1— Br_;

—E-! [RT_lRlel]E[CT—lRT—l]v

where

By = E[Rp_|JE7 Ry Ry |E[Rr-1],
Br-i = Eler1 Ry JET Ry Ry |E[Rr—i], (3.36)
By, = E[CT—lRif—l]]Eil[RT—lRL_ILl]E[CT—lRT—l]-
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Substituting the optimal strategies back to (3.34), we obtain

JT—1(E[UJT—1]7 wr—1 — E[wT—l])
= (np-1)*(wr—1 — Elwr_1])” + (El(er-1)?] — Eler—1]?) — Anr_1Efwr_]

—AE[cr_1] — (nr—1)*Br_ (wTﬂ — E[wT,l])Q
- ((E[CT—l] + % — éT—l) E[RT_I]lE_ éfT;lRT_I]

~Eler—1 Ry JE7 [Rroi Ry 1)) (E[Rr-1Ry ] - E[RrAEIR; )

A~ E-YRy 1Ry |JE[Rr_4]
X ((E[CT—l] t3- Br,) T ET; (3.37)
~E~Y Ry Ry, [Eler 1 Rr1))
= (n7_1)*(1 — Br_y) (wr—1 — Efwr_])” + (E[(cr—1)?] — E[er1]?)
A~ Br_
—/\nT—lE[wT—l] — )\E[CT_I] — <(E[CT_1] —+ 5 — BT_I)Q%
— br
A~ - _ -
—2(Eler_1] + 5~ Br_1)Br_1 + Br_1 — B%_1>
= PBra (wa1 - E[UJTA])Q — Anp_ 1 Elwr_1] + Ap_y,
where
Br-1 = (nT—1)2(1 - BT—1),
nr-1= nNr-i,
A~ Br_
AT—l = E[(CT_l)z] — E[CT_1]2 — )\E[CT_l] — ((E[CT_l] -+ 5 - BT_l)Q%
— br
A~ ~ _ ~
—2(Eler—1] + 5 Br_1)Br-1+ Br-1 — B%—1>-
(3.38)
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Repeating the process at time 7" — 2, we have

Jr2(Elwr o], wr—o — E[wr_])
= E[JT—l(E[wT—l],wT—l - E[wT—l]”«FT—Q}
= E[ﬁTﬂ (’LUTA - E[’LUTA])Q — A1 Efwr_] + AT71|FT72]
= 5T—1(7LT—2)2(U7T—2 - E[wT—ﬂ)Q + 5T—1 (UT—2 - E[UT—Q])/E[RT—QR/T_Q]
X (vr—a — Elvrs]) + r1E[(vr—2)'|(E[Rr 2 Ry_s] — E[Rr o]E[R}_,))
xEfvr_s] + Bro1E[(cr—2)?] — Br-1E[cr—o)?
+2Br_1n7r—2 (wT—2 — E[wT—Z])E[R/T_Q] (UT—2 — E[UT—z])
+2071 (Eler—2Ry_y] — Eler2|E[Ry_y]) Elvr—s
—Anr_anr_oElwr_o] — Anr_1E[Ry o) Elvr_o] — Anpr_1Elcr_s] + Ar_y.
(3.39)

The optimal strategies at period T — 2 can be derived from the above equation

corresponding to vy_o
vp_g — Elor_o] = —np_o(wr_o — E[wT—Q])Eil[RT—QR,T_Q]E[(RT—Q)L

Elur-s) = — (B[Rr_2Ry_o) — ELRr SJE[R] o))

Anr_1
25T_1E[RT—2]> (3.40)

Mo 5 )E_l[RT2R/T—2]E[RT2]
1 — Br

X <E[CT_2RT_2] — Eler—o]E[Rr_o] —

= (E[CT—2] +

—E-! [RszRf/T72:|E[CT72RT72] .
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Substituting the optimal strategies back to (3.39), we obtain

JT—2(]E[UJT—2], Wr—2 — ]E[wT—QD
= Broi(ng—2)*(1 — Br_s) (wr_s — Elwr_2))” + Br_1(El(cr—2)?] — Eler—]?)
—nr_anroElwr o] — Anr 1 Eler o]

—Pr-1 <<]E[CT—2] +

Br_s
1—DBr_,

Anr_1

_B)?
2871 r-2)

N _ N
—2(Eler—s] + el Br_)Br_s+ Br_s — B:2r,2> +Ar_y

where

5T—2 =
nNr—2 =

Ap_g =

2071 )
= Broa(wr—s — Elwr_s])” — Apr_sElwr_s] + Ar_s,
(3.41)
BT—l(nT—z)Q(l - BT—Q),
Nr—inr-2,
Ar_y + BT—IE[(CT—Q)Z] - ﬁT—l]E[CT—ﬂQ - )\nT—IE[CT—2] (3 42)
Anr—1 -~ 2 Br_ .

—Br [ (Eler — By ) —

fr 1<( ler )2\] * 2871 g 2) 1—Br_o
~2(Eler—o) + 51— — Br-s) Bros + Bro — Bi,).

Br-1

Assume that the following equation (3.43) holds at time ¢ + 1, we prove it according

to the mathematical induction.

Jii1 (Blwiga], werr — Blwp]) = Bryr (wigr — E[wt+1])2 — A1 Efwe] + A,

where

(3.43)
Bira(nis1)*(1 — Biga),
MNt4+2M¢ 41,
Avio + BioE[(cs1)?] — BrroElei1]? — AjpoE[ci1] (3.44)
/\77t+2 3 2 B '
_ E _ B _
B2 <( [een] + 20142 1) 1— B

A ~ ~ ~ ~
—2(]E[ct+1] + U Bt+1)Bt+1 + Biy1 — Bt2+1)7
2B42
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and

ﬁT = 17 nr = 17 AT =0. (345)
According to equations (3.43) and (3.44), we derive the result at time ¢.

Je(E[wy], wy — E[wy))

= E[Ji1(Elwiga], wisr — Elwigq])| F]

= E[Bir1 (w1 — Elwent])” — MppsrElwei] + Avyr | F]

= Brr(ne)? (we — E[wt])2 + Br1 (ve — Elve)) B[R, Ry (v — Eur])
+BinE[(0)) (E[RF;) — E[RJE[R] )E[v] + fraEl(e)?) - fusEler]
+28 110 (wy — Elw])E[R]] (v; — Ev])
28,11 (Elei i) — Ele B[R] )E[vs]
—ManiBlwy] — A E[RYE[v] — AneaEled] + Agya.

(3.46)

The optimal strategies at period ¢ can be derived from the above equation corre-

sponding to v,
v — Efv)] = —ny(wy — Efw,))E7 R, RE[(Ry)),

/\77t+1
25t+1

—E MR R)E[c, Ry).

Elu) = — (B[R] — E[RJE(R]) " (Elek) — EleB[R) - 51 E(R) )

M 5 ) E'[R,RE[R,]

—(E - B
< o] + 2841 ' 1- B

(3.47)

Substituting the optimal strategies back to (3.46), we obtain

Ji(Ewy], w; — Elwy])

= Bu1(ne)*(1 = By) (we — Elwi])” + Brar (El(c:)?] — Elei]?)
=AM pandBlwe] — Ay Ele]
—Bis1 <(E[Ct] +
+A¢1

= b (wt — E[wt])Q — \nE[w] + Ay,

A1
28141

AN41
28141

- §t)2 - 2(]E[Ct] + - Et)-/B\t + Et — §t2>

(3.48)
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where

By = 6t+1(nt>2<1 - Bt);
M= Ner1T,

Ay= A+ 5t+1E[(Ct)2] - 5t+1]E[Ct]2 — M1 Eley]

\ \ (3.49)
M+1 5 M+1 S\ D
— E - B —2(E — B))B
i <<A o) + 550, B 7=, 2(Eled + 55~ BB,
VB, - Bf).
Substituting E[v}] to the equation (3.30) we have
A ~. By
Elwi 1] = mEBlw] + (Ble] + 224 — B) — B, +E[e)]. (3.50)
20111 1—-DB;
Therefore,
t—1 t—1 n B, t—1
i+1 D j 3
E[wt] :w()an—i— ( 2ﬁy+1 — B, )ﬁ —B]+E[Cj]) H ny.
= j=0 l=j+1
(3.51)
Typically, we know the optimal value of (3.28) is equal to Jy. Thus,
Var(wT) = J()(]E[U)(ﬂ, Wy — E[wo]) + )\E[MT]
T-1 T-1
)\77]+1 5 B;
= —)\770U)0+A0+)\(w0}]:[0nk+]2( 26+1_ j)]_—Bj
R T-1
_Bj + E[Cﬂ) H Tll> .
I=j+1
(3.52)

3.3.2 Numerical Examples

Similar to the uncorrelation case, table 3.2 gives the expected return, standard de-
viation and the correlation coefficients between the three assets and cash flow. We

also assume the risk-free return rate as 5% (n, = 1.05).
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Table 3.2: Data for assets and cashflow with correlation

SP EM MS cashflow
Expected return 14% 16% 17% 1
Standard deviation 18.5% 30% 24% 20%
Correlation coefficient

SP 1 0.64 0.79 p1

EM 0.64 1 075 P2

MS 079 07 1 P3

cashflow p1 P2 03 1

Thus,
0.09 0.0342 0.0355 0.0351
E[R;] = [ 0.11 ], Cov(R;) = [ 0.0355 0.0900 0.0540 |,

0.12 0.0351 0.0540 0.0576

0.0423 0.0454 0.0459
E[R.R)] = [ 0.0454 0.1021 0.0672
0.0459 0.0672 0.0720

We define the correlation coefficient of the cash flow and i-th asset as p = (p1, p2, p3),

where
_ Cov(cy, RY)
\/Var(ct)\/Var(Ri) ’

which means return rates between assets and the cashflow are correlated. Thus, we

Pi

have
E[c;Rl] = E[c¢,]JE[R] + piy/ Var(c;)4/ Var(RY),
E[c]] = E[c/)? + Var(cy).

Assume that

p = (p1,p2,p3) = (—0.25,0.5,0.25).
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Thus,
COV Rt _ COV(Rt> COV(Ct, Rt)
¢ ) )  \Cov(ey, Ry)  Var(e)
0.0342 0.0355 0.0351 —0.0092
0.0355 0.0900 0.0540  0.0300

0.0351 0.0540 0.0576  0.0120
—0.0092 0.0300 0.0120  0.0400

>0.

Employing the above formula of E[c; R!], we have E[c; R;] = (0.0898,0.1510, 0.1440)’.

Moreover, in order to simplify the equations, we define the following notation

1.0589 —0.3451
Vi =E ' RRIE[R] = | =0.1196 | , Yy =E'[RR)E[c;R;] = | 0.4490
1.1033 1.6342

B,=02145, B, =02144, B,= 0.2507. (3.53)

Suppose the investor will exit the financial market at time ¢ = 5. Thus we have the

optimal expected value of asset in different time period
Elw] = (E[w:], E[ws], E[ws], Elw,], Elws))
is given by
E[w] = (4.4453,5.9111, 7.4075, 8.9436, 10.5275).

We suppose the initial wealth wy = 3, and trade-off parameter A = 1. Then we

substitute the data to the optimal strategy equation,
vy = —1.05(wy — 5.2628)Y; — Y5,

v* = —1.05(w; — 6.4785)Y; — Ya,
i = —1.05(ws — 7.7549)Y; — Ya,
5 = —1.05(ws — 9.0951)Y; — Ya,
i = —1.05(wy — 10.5024)Y; — Ya.
The variance of the final optimal wealth levels is Var(ws) = 0.6002.
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3.4 Conclusion

Using the mean-field method, the state variable transformation technique and the
dynamic programming approach, we obtain in this chapter the closed-form expres-
sions for the optimal investment strategy of our multi-period mean-variance portfolio
selection problem with cash flow. Compared with previous literatures, our method

is simpler yet more efficient, and the result is more concise and powerful.
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Chapter 4

Mean-Variance Portfolio Selection
with Cash Flow under an
Uncertain Exit Time

Most investors realize that they never know exactly the time exiting the market.
That is due to many factors which can affect the exit time, for example, the price
movement of risky assets, securities markets behavior, exogenous huge consumption
such as purchasing a house or an accident. Therefore, it is more realistic to adjust
the restrictive constraint to an uncertain exit time assumption that the investment
horizon is undetermined. Many papers (see Yi et al. (2008); Li and Xie (2010); Wu
and Li (2011); Zhang and Li (2012)) concerned with multi-period mean- variance
model and derived analytical solutions for their problems. The main difficulty of
the model is the non-separability induced by the variance term. There are several
methods to conquer it, such as the embedding technique proposed by Li and Ng
(2000), the parameterized method developed by Li et al. (2002), and the mean-field
formulation presented by Cui et al. (2014) and etc. In fact, when the investor exits the
capital market with an uncertain time, the first two methods do not work smoothly
and efficiently. In this chapter, we focus on the mean-field method to tackle the
mean-variance model with cash flow and the time horizon of investment is uncertain.

We drive the analytical optimal strategies and present numerical examples to show
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the efficiency and accuracy by employing the mean-field formulation. The results
are much more explicit and accurate compared with the similar model solved by the
embedding technique. We directly introduce the mean-field formulation to solve an
uncertain exit model with correlation return rates between the assets and cash flow.
The results can reduce to those derived in Chapter 3 if we fix the expected return
and the exit time to the terminal, which suggests further that our methods make

sense.

4.1 The Model

The investor plans to optimize the portfolio selection during time period 1. However,
the investment might be forced to be changed or abandoned at an uncertain time 7
before T" because of some accidents or unexpected events such as sudden resignation,
serious illness, huge consumption and etc.

We define the 7 as an exogenous random variable. The probability mass function
is defined as p; = Pr{r = t}. Thus, investor will quit the financial market eventually

at time T'A 7 = min{7T, 7}. We have the following probability mass function

Dt t=1,2,--- T —1,
=Pr{T'AT=t}= —
P 1= "y, t=T
j=1
In order to derive the optimal strategy v; = [(v})*, (v3)*, -+, (vP)*]’, we introduce

the following multi-period mean-variance model with cash flow and uncertain exit

time.

min  Var™ (wpa,) — AET [wra,],

Wi = thvt ( Z )n+ (1)
pa

_ntwt+RUt+Ct, 0]_ T—]_,

where A represents the trade-off parameter. We define E(7[wra,] and Var(™ (wrpr)
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as follows,

T

T
E™ [wrar] 2 ZE[@UTM‘T AT = t] Pr{T AT =1t} = ZE[wt]pt,
=1

t=1

T T
Var™ (wrpr) 23 Var (wra [T AT = )P{T AT =t} =Y Var(w,)p,

t=1 t=1
Thus we can rewrite the model as follows,
T
min Zpt{\/ar(wt) — )\E[wt]}, (4.2)

t=1
s.b. w1 = nywy + Ry + ¢4

4.2 The Mean-Field Formulation

Similar with the construction we mentioned in section 3.1, we have the following

dynamic equations

Elwe1] = mElw,] + E[R}|E[v,] + E[c,],
(4.3)
E[wo] = Wy,
W41 — E[wt+1] = Tt (wt - ]E[wt]> + R;Ut - ]E[R;]E[/Ut] + (Ct - E[Ct])
= n(w; — E[wy]) + R; (v, — E[v]) + (R, — E[R}])E[vy]
(4.4)
+(cr — Ela]),
Wy — E[’wo] = O,
where t = 0,1,--- ,T — 1. Therefore, we can equivalently reformulate problem (4.2)
to a linear quadratic optimal stochastic control problem in a mean-field type.
( T
min > pi{E[(w, ~ Ew))?] ~ AE[w]},
t=1
st. E(v, — Efw]) =0,
(4.5)

E[w,] satisfies dynamic equation (4.3),
wy — E[w] satisfies dynamic equation (4.4),

\ t=0,1,---,T—1.
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We are able to solve the multi-period mean-variance model with cash flow and un-
certain exit time in this mean-filed formulation by dynamic programming. However,

during the solution process, we should pay attention to the imposed control vector

vy — Eluvy].

4.3 The Optimal Strategy with Correlation be-
tween Return Rates and Cash Flow under Un-
certain Exit Time

We derive the optimal strategy of problem (4.5) by employing the dynamic program-
ming in this section. Before we get the main results, one useful lemma is introduced

as follows.

Lemma 4.1. If the matrix E[R,R}] — E[R;|E[R}] is invertible, then

1

T BtE_l[RtR;]E[Rt].

(ElR.R) - EIRJE[R)) EIR] =

Proof. Applying Sherman-Morrison formula (lemma ?7) directly gives rise to the

result. O

Remark 4.1. Lemma 4.1 is the same as the one in Cui et al. (2014). In order to

keep the solution procedure intact, we present them here again.

Theorem 4.1. We derived the optimal portfolio section of problem (4.5) as follows

vy — Efve] = —ne(w; — Blw,])E7 R, RIE[(Ry)],

ANt
2841

— E_l [RtR;]E [Cth] s

Elo] = (BIR ) - EREIR])  (EleiR) - EleBIR] - S E[R) )

A1 5 ) E~'[R,R}|E[R)]

—(E _B
(Bl + 35— B) =5

(4.6)
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and the optimal expected wealth value is

. B,
E[w,] —wOHn;mL E ( QZﬁi —Bj)1 JB ) H ny, (4.7)
J+ - P

J l=j+1

fort=1,2,---,T.

Proof. Given an information set 7; = o (E[w],w; — E[w]), we prove it by em-

ploying the backward recursion, and define the cost-go-functional as follows

J(E[w], wy — Elwy]) = IT});{DE[JI:H(E[WH]’ wi1 — Elwe1])| F

+ pe(we — E[wy])® — pAE[wy). (4.8)

with the boundary condition

Jr(EBwr),wr — Elwr]) = pr{E[(wr - Elwr])?] - XE[wr]}

and [Jy(-) =1, >_4(-) = 0 in this section.

Thus, we begin from the T — 1 state

E[J

= PT]E[

= PT]EK?”LT—l(wT—l — Elwr1]) + Ry (vr—1 — E[vr1]) (4.9)

Elwr], wr — Elwr])| Fr_i]

7
(wr — Elwr])? — AE[wr]|Fr_i]

Ry — B[R JEfor ] + (er — Eler 1))
(- sBfwr1] + B[Ry L [Elvr-i] + Eleri] )| Fr1],
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where

(wr1(wr s = Blwra]) + Ry (o1 — Blor ) + (Rp_y — B[Ry, )JElor 1]
+(er—1 — E[CT—I])>2
= (nr-1(wros = Efwr1])” + (Rpoy (vr—1 = Efvra]))”
+((Bpy — B[Ry E[ori])” + (er—1 — Elera])”
(R (vr—1 — Elor_ 1]))
((Rér 1 E RT 1])E[UT—1])
(

cr—1 — Eler- 1)

’wT 1 — Bjwp—

)
)
1(wr—y — Elwr_ )

]
+2(nr- Elwr-.))
+(T1’LUT1— Elwr_1])
+2(nr- Elwr-.))
+2(

vr_1 — Efor1]) (Rr—1) (R, — B[Ry ) E[vr—]
+2Rp_;(vr—1 — E[vr1])(er-1 — Eler—1])
( E[RT_l])E[UT—l] (CT_1 - ]E[CT_l]) .

(4.10)

Since wi — E[w}], E[w]], vi — E[v}], E[v}], are F;-measurable,

E :(nT_l(wT_l — E[wT—l]))Zl]:T—l} = (nT—1)2(wT—1 - E[wT—l])27

E[(Rp_y(or 1 - E[UT_l]))Z(fT_l]

= (vr—1 — E[vr_1]) E[Rr—1 Ry_1] (vr—1 — E[vr_1]),
E[((Ry-y ~ ElRy_)Elor_]) | Fr]

= El(vr—1)] (E[Rr—1 Ry_,] - E[Rr|E[Ry_,] )Elvr 1],
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and

E :(CT—I ~ Eler_1])* ]:T—l] = E[ct_y] — Eler—i]?,
E:ZnT—l(wT—l — Elwp_1]) Ry (vr—1 — E[vp_4]) | Fr- 1}
= 2ng1 (wr-1 — Elwr1])E[Ry_1](vr—1 — Efvr_]),

E (2071 (wr_1 — Elwr1]) (Rp_, — E[R}_,))Elor
E[2n71(wr—y = Elwr 1)) er—s — Bler1])| Fr] =0,
E:Q(UT—l — Elvr1]) (Rr- 1)(RT 1 — E[Ry 1])E[UT—1]

2Ry, (vr-1 — Efvri]) (er-1 — Bler—i])| Fr
2(Eler 1 Ry_y] — Eler 1 |JE[Ry_; ) (vr—1 — Elvr 1)),
2Ry, ~ IRy ))Efvr—](er— — Eler—1])| Fr]
2(Eler 1 Ry_y] — Eler 1JE[Ry_] ) Efvr ]

S L <

Note that E v} — E[vf]|Fo] = 0, which implies

&=

&=

[E[Q vr_1 — Elvr_1]) RT 1)<RT 1 E[Rérq])E[UT—l]‘FT—l]‘}—O]
E[Q vr_1 — Efvp_i] (IE[RT Ry ] — E[Rr_1]E[R}_ 1])]E[UT_1]’.FO

[E[ZRT L(vr—1 — Elvp_q])(cr—1 — Eler—1] ’}"T 1”.7-"0}

E[Q CT 1RT 1 CT 1]E[RT 1)(UT 1 — E[UT 1 ‘./—"0} = 0.
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]:T—1i| = Oa

)

=0,



Therefore, we can reduce (4.9) into

E[(wT — E[wT])2 — )\E[’LUT”./—'.T_J

E| (nr-1(wr-1 — Efwra]) + Ry y(vr-1 — Elor1]) + (Rp_y — B[Ry, ))Elvr_d]

+(cr—1 — Elera ) )\(nT 1Elwr_1] + E[Ry_|E[vr_1] + Eler— 1)‘]—} 1}

(nT—1>2(wT 1 E[wT 1]) + (UT 1— E[UT—l]) E[RT—IRT_1](UT—1 - ]E[UT—l])

+E[(vr_1)) (ElRr1 Ry_y] — B[Ry JE[Ry_,) Elor 1] + E[c_,] - Elor_4?
+2TLT_1 (wT_1 — E[wT_l])E[Ri[_l] (’UT_1 — E[UT_l])

+2(Eler-1 Ry,) ~ Efer_1JE[Ry ] ) Elor-]

_)\anlE[wal] — )\E[R&wfl]E[’UTfl] —

)\E[CTfl] .

(4.11)

The optimal strategies at period T'— 1 can be derived by minimizing the above

equation with respect to vy_q

V-1 — E[UT—I] = _nT—l(wT—l — E[wT—l])Ei

MRy Ry L E[(Rr-1)],

1
Efor 1] =~ (ElRr-1Ry_,] - E[Rr B[R]
A
X (E[CT—IRT—I] — E[CT_l]E[RT_l] — §E[RT_1]> (412>
A~ E_l[RT,lR’Tfl]]E[RT,l]
= (E[CT—l] + 5 BT—1> 1— Br,
_E_l[RT—lleLl]E[CT—lRT—l]v
where
Broi= E[Rp,]E7 [Rr-1 Ry, JE[Rr-4],
§T,1 = E[CTflR'/]“_l]E_l[RTflR/T_l]E[RTfl]; (413)
BT_1 = E[CT_lRf_p_l]]Efl[RT_lR/T_l]]E[CT_lRT_l].
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Substituting the optimal strategies back to (4.11), we obtain

JT—1<E[wT—1]> Wr—1 — E[wT—l])
]E[JT(E[U]T]7 wr — E[wT])|-7:T—1] +pT—1(wT—1 - E[MT—1])2 - pT—l)\E[wT—l]
pr(nr—1)?(wr—1 — Elwr1]))* + pr(El&_,] — Eler_1]?) — prany_ Efwy_y]

—pT)\E[CTA] - PT(”TA)QBTA (wal - E[UJTA])Q

~ E[R,_JE 'Ry R,
—pT<(E[cT_1] —i—é _BT—l) [R7r_4] [Rr-1Rp_y]
1—Br

2
~Eler—1 Ry JE7 [Rr-1 Ry 1)) (ElRr-1Ry ] — E[RrA B[Ry )

A5 E-YRr_1 Ry |E[Rr-
< ((Bler) + 2 = Bry) 2 Tll_};;]l[ =

2
—E_l[RTAR'T_l]E[CTARTA]) + pr-1(wr—1 — Elwr_1])? — pr_1 AE[wr_1]

(pr(nr—1)2(1 = Br_1) + pro1) (wro1 — Blwr1])* + pr(E[&_,] — Eler_1]?)
—Aprnr-1 + pr-1)Elwr-1] — prAE[cr-]

—pT<(E[cT_1] + % — Br)
+Br_ - B},)

Br1 (wr—y — Blwr_1])* = Mpr1Elwr_1] + Ag_y,

B — )\ o~ -~
21+B;_1 — 2(E[CT_1] —+ 5 — BT—I)BT—I

(4.14)

Br-1 = pr(nr_1)*(1 — Br_1) + pr_1,

nr—1 = prir—1 + Pr—1,

Ap_q = pTE[CQT—ﬂ - pTE[CT—1]2 - pT)\E[CT—l]

Br_4
1—-Br

A o~ -
— Q(E[CT—l] + = — BT—I)BT—I

—PT<(E[CT—1] + é — B\T—l)z 7

2
+Br_q — E%A).

(4.15)
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Repeating the process at time 7" — 2, we have

JT—2(]E[UJT—2], Wr—2 — E[wT—z])
= E[JT—l(]E[wT—l] Wr-1 — E[wT—l])‘«FT—Q] +pra(wr—s — E[wT—2])2 — pr—2AE[wr o]
= E[ﬁTq(qu — E[wr_1] )2 — A\np_ 1 Elwr_1] + Ap_y | Fr_ 2}
+pr2(wr—s — Elwr_s])* — pr o AE[wr 5]
= Broi(nr—o)*(wr—s — E[UJTJ]) + Br_1 (vr—2 — E[vr_s]) E[Rr_o R _,]
x (vr_3 — Elor_s]) + Br1El(vr )] (E[Rr 2 Ry_o) - E[Rr B[R}, | Elvr-
+Br1E[cG_y] — BroaEler—a)? + 2Br_1nr_2 (wr—s — Elwr_o])E[R)_,]
% (vr—s — Elvr_a]) + 2Br_y (E[CT,QR'T_Q] . E[CT,Q]E[R'T_Q])E[UT,Q]
—\r_ing_oBlwr_s] — M1 B[Ry S |E[vr_o] — Mpr_1Eler_o] + Ar 4
+pr_a(wr—o — Elwr_»])? — pr o Elwr_o].
(4.16)
The optimal strategies at period T'— 2 can be derived from the above equation

corresponding to vy_o
vr—g — Blur_s] = —ngp_s(wr—s — Elwr_o))E [Rr_o Ry _,|E[(Rr—2)],

Elvr-) = - (B[Rr—2 ) — ElRr B[R] o))

AUT—1
55 ElRra]) (41

Moy ) E™ [Rr—o Ry |E[Rr—s
- Pr-2
2B7r-1 1= Br o
_Eil[RT_QRIIT_Z]E[CT_QRT_Q].

X (E[CT_QRT_Q] - E[CT—Q]E[RT—Q] -

= (E[CT_Q] +
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Substituting the optimal strategies back to (4.16), we obtain

Jr_o(Elw;_s], wi—g — Efwy_s])

= Br_1(nr-2)*(1 = Br_s)(wr—s — Elwr_o])” + Br_1(E[G_y) — Eler_s?)
—Mr_anroElwr o] — Anr 1 Eler o]

—Br-1 ((E[CT_Q] +

where

Pr—o =
Nr—2 =
Ap_g =

e B T (19
—2(E[er—a] + ;\Z;_i — §T—2)§Tf2 + Br_s— B\:zrfz)
+Ar_1 + proo(wr_o — E[wT—z])2 — pr—2AE[wr o]
= Br_o(wr_s — E[wT—Q])2 — Anr—2E[wr_o] + Ar_s,
Br-1(nr—2)*(1 — Br_s) + pr—2,
Nr-1nr—o + Pr_o2,
Ar-1+ Br-1Elers] — Br1Bler—o]* — A1 Eler-] (4.19)

AN ~ Br_
_/BT—1<(E[CT—2] + 2l _BT—2)2#

\ 2871 1 —Br
—2(E[CT,2] + el BT—Z)BT72 + Br_a — B:2r—2)'
2871

Assume that the following equation (4.20) holds at time t + 1, we prove it according

to the mathematical induction.

Jor1(Elwa], wip — Elwia]) = By (wt-i—l - E[wt+1])2 — M Elwega] + A,

where

(4.20)
Bir1 = Brr2(ner1)*(1 — Big1) + prsa,
Ni+1 = M42Nt41 + P,
A1 = Ao + 5t+2E[C§+1] — BriaElcia]® — MpyaElcii] (4.21)
Ao 3 2 B '
_ E Atz p _ ot
P2 <( [Ctﬂ)]\ * 2Bt+2 1) 1 — Biy
—2(Elcrsa] + o042 _ By )Biy + By — Bt2+1)'
2/6t+2
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and
Bbr=pr, mr=pr, Ar=0. (4.22)

According to the equation (4.20) and (4.22), we derive the result at time t.

Ji(Elwy], wy — Elwy])
= E[Ji1(Elwe], wisr — Elwen])|F] 4 pe(we — Elwy])? — p AE[w]
= E[Bi1 (w1 — E[wt+1])2 — My Elweer] + Apa | F] + pe(wy — Elwy])? — pAE[w]
= Brra(ng)*(w — ]E[wt])2 + By (ve — Elvd)) B[R, Ry) (v — E[ur])
+ 81 El(vr)) (ELR.R)) - E[RE[R] ) Elv] + BinElet] - friEle?
2811 (we — Efwy])E[RY] (ve — E[ve])
+28111 (Elee)) - Ele]E[R) )Elv]
—AneriE[wy] — A E[RE[ve] — AMpepaEed] + Agi
+pi(w; — E[wy])? — pAE[wy).
(4.23)
The optimal strategies at period ¢ can be derived from above equation corresponding

tot

vy — Efve] = —ne(wy — Elw,])E7' R, RIE[(Ry)],

ANt
2841

— ]Eil [RtRé]E[Cth] .

Elv] = — (B[R] ~ BIRJEIR]) " (BleR) — EleJB{R] - S11E(R)

M1 5\ ETRRE[R]
_(E _B
(=hed + 2B ) -5,

(4.24)
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Substituting the optimal strategies back to (4.23), we obtain

J(Elur], wy — Efuw])

= (Beea (0= B) 1) s — Bla])* + B (Blch] — Bl )
A+ p B = Bl = B ((Bled + 534 — B 1=
(e + M BB+ By — B?) + Avy

25t2+1
= b (wt — E[wt]) — M\nE[w] + Ay,

(4.25)
where
Bi = Br1(ne)*(1 = By) + pr,
Ne = MNi+1M + Piy
Ar= Apyr + 5t+1E[Cf] - ﬁt+1E[Ct]2 - /\nt—i—lE[Ct} (4 26)
A1 n2 By Al B\ B
— E - B —2(E — By)B
Ao ((Bled + 5507 = BT~ 2(Bled + 35~ BB,
VB, - Bf).
Substituting E[v}] to the dynamics eqation in (4.3) yields
)\ g B ~
Elwi 1] = mElw] + (Elo] + 22 — B)—— — B, + E[c]. (4.27)
2811 1-B
Therefore,
t—1 t—1 v B R t—1
]E[wt] = Wy an + Z <(E[Cj] + g+l — B]> J — Bj + E[CJ]> H ny.
Py — 20541 1 — B, -
= J= l=j+1
(4.28)
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Typically, we know the optimal value of (4.5) is equal to Jy. Thus,

T
Z peVar(w,)
=1

= Jo(Elwp], wg — Efwy]) + Zpt/\IE[wt]

t=1

T t—1 t—1
A ~
= —Anowy + Ag + ZPM (wg H ng + Z ((E[cj] + 2gj.+1 _ B
t=1 k=0 j=0 7+1

—B; + E[@) I1 nl).

t—1

I=j+1

(4.29)

O

The optimal strategy obtained in Theorem 4.1 will keep the same as the result

established in section 3.3 if the exit time is determined by T.

4.4 Numerical Example

Example 4.1. Consider the example in Section 3. Here we ignore the case of un-

correlation, i.e., the asset return rates and cash flow are correlated.

Table 4.1: Data for assets and cashflow example

SP EM MS

cashflow

Expected return 14% 16% 1% 1
Standard deviation 18.5% 30% 24% 20%

Correlation coefficient

SP

EM

MS
cashflow

1 064 079  p
064 1 075  p
079 075 1 ps

p1 P2 P3 1

52



Thus,

0.09 0.0342 0.0355 0.0351
E[R;] = [ 0.11 ], Cov(R;) = [ 0.0355 0.0900 0.0540 |,
0.12 0.0351 0.0540 0.0576

0.0423 0.0454 0.0459
E[R,R;] = | 0.0454 0.1021 0.0672
0.0459 0.0672 0.0720

The correlation coeflicient between cash flow and i-th asset are defined as

p = (p1, P2, P3),
B Cov(cy, RY)
\/Var(ct)\/Var(Ri)'

Therefore, we have the following eqation

E[c,R]] = E[c,]E[R!] + p;\/Var(c,)/ Var(R?),

E[c]] = E[ci)? + Var(cy).

Pi

Assume that

p= (/)1>P2ap3) = (_0257057025)

Co Rt L COV(Rt) COV(Ct, Rt)
v ¢ - \Cov(e, R))  Var(e)
0.0342 0.0355 0.0351 —0.0092
0.0355 0.0900 0.0540 0.0300

0.0351 0.0540 0.0576  0.0120
—0.0092 0.0300 0.0120  0.0400

Thus,

=0.

Employing the above formula of E[c;Ri], we have E[c,R;] = (0.0898,0.1510,0.1440)".

Moreover, in order to simplify the equations, we define the following notation

1.0589 —0.3451
Y = E MRRE[R,] = | —0.1196 | , Yo =E '[R.R]]E[c,R,] = | 0.4490
1.1033 1.6342
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Br_1 = 02145,  Bp_; =0.2144,  Br_, = 0.2507. (4.30)

The probability mass function of an exit time 7 is
(p1, P2y P3; pas ps) = (0.10,0.15,0.2,0.25,0.3),
respectively, for t = 1,2, 3,4,5. Thus we can derive the optimal expected value as
Elw] = (E[wi], E[ws], E[ws], E[wa], E[ws]),
is given by
E[w] = (4.3676,5.7763,7.2341,8.7473,10.3214).

We suppose the initial wealth wy = 3, and trade-off parameter A = 1. Thus
vy = —1.05(wy — 4.9178)Y; — Y5,
v] = —1.05(w; — 6.1647)Y; — Y5,
vy = —1.05(wy — 7.4785)Y; — Ys,
vy = —1.05(w3 — 8.8585)Y; — Vs,

vl = —1.05(wy — 10.3061)Y; — Ya.

The mean and variance of the final optimal value are E()(ws.,) = 8.0333 and

Var(™ (wsar) = 1.7700, respectively.
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Chapter 5

Multi-Period Mean-Variance
Asset-Liability Management with

Cash Flow

We investigate the multi-period asset-liability mean-variance portfolio selection with
cash flow in this chapter. Based on the framework of mean-variance model with mean-
field formulation in Chapter 3, we directly assume that the return rate between assets
and cash flow are correlated. Then we investigate the cases where the return rates
between assets and liability are uncorrelated as well as correlated. We derive the
analytical form of optimal strategies and optimal value in expression for the new
model. Finally, the numerical examples for both cases are given to illustrate the

results.

5.1 Mean-Field Formulation

The goal of the portfolio selection problem with liability and cash flow is investigating
the optimal strategy, v; = [(v})*, (v2)*, --+, (v1)*]" , which can be derived from the
following model,
min Var(wr) — A\E[wr],
st wip = nywy + Rjog + ¢y, (5.1)
lyvy = qly, fort=0,1,---,T—1.
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Here X represents the risk aversion. Thus, we construct the mean-field type of model
(5.1). According to the independence between R; and v;, ¢; and [;, the dynamic

equations of the expectation of the wealth and liability are presented as follows
{ Elwey1] = nElw,] + E[R,E[v,] + E[ey],

]E[U)()] = Wy,

Elli1] = Elg|E[L], (5.2)
E[lo] = 1,
where t = 0,1,--- , T — 1. Combining the equations (5.1) and (5.2) we have
Wiyl — E[thrl] = Ny (wt — ]E[wt]) + R;Ut — E[R;]E[’Ut] + (Ct — E[Ct])
= ny(w; — E[wy]) + R;(v; — E[v]) + (R, — E[R}])E[vy]
(5.3)
+(c — E[ce]),
Wy — E[wo] = O,
levr = Ell] = a(le — E[L]) + (¢ — Eq])E[L], (5.4)
lo - E[lo] = 0, .
where t =0,1,--- ,T — 1. By conducting this kind of transformation, we enlarge the

state-space (wy, l;) and control space (v;) into (E[w,], w, — E[wy], E[l],{; — E[l]) and
(E[ve], vy — Elvy]), respectively.
Based on the above construction, we can equivalently reformulate problem (5.1)

to a linear quadratic optimal stochastic control problem in mean-field type.
((min E[(wr — E[wr])®] — AE[wr],
s.t. E[w] satisfies dynamic equation (5.2),
E[l;] satisfies dynamic equation (5.2),
wy — E[wy] satisfies (5.3), (5.5)
Iy — E[l;] satisfies (5.4),
E(v — E[uv]) = 0,
E(l; —E[l])=0, t=0,1,---,T—1.

\
We are able to solve the mean-variance asset-liability portfolio with cash flow in this
mean-field formulation by dynamic programming.
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5.2 The Optimal Strategy with Uncorrelation

5.2.1 The Dynamic Programming and Optimal Strategy

On the one hand, we directly assume the return rates of assets and cash flow are
correlated during each period ¢. On the other hand, in this subsection we assume
return rates between assets and liability are uncorrelated during each period t, i.e.,

R; and ¢; are independent.

Theorem 5.1. Optimal strategy of problem (5.5) under the constraint of uncorre-
lation is derived as
vp_1 — Elop_1] = —np_i(wp_y — Elwp 1 ])E~ Ry Ry JE[Rp_4]

+(lp—1 — E[lel])E_l[RTflRaﬂ_JE[QTflRTfl]a

Elvr 1) = (B{Re—1 By_) — B[Ry JE[Ry])

x (Eler1Rra] — Eler A JE[Ry ] - %E[ ) (5.6)

E7 [Rro1 Ry JE[Rr-i]
1—Br

= <E[CT—1] + % - ET—l)

—Eil [RT—IRIT_l]E[CT—lRT—I] .

Proof. The dynamic programming approach is employed to prove the theorem.
Given the information set F; at time period ¢, we have the following cost-to-go
functional of problem (5.5)

Ji(E[wy], wy — Elw,], E[li], l; — E[l])

= r%inE[Jt+1(E[wt+l]a wiy1 — Elwe ], Bllia], L — Elli4a]) |Ft}7

with the boundary condition
JT(E[UJT, wr — ]E[U}T], E[ZT], lT — E[ZT]) = (wT — lT — E[wT — ZT])Q — )\E[wT — lT]
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We begin from stage T'— 1. Thus the conditional expectation at t =T — 1 is

E[JT(]E wT — E[wT], E[ZT], lT — E[ZT])‘.FT,J
= ]E[(wT — lT — wT — lT])2 - )\E[U)T - ZTH-FTfl]

(nT 1(wr—1 — Elwr]) + Ry (vr—1 — E[vr1]) + (Rp_y — E[Rp_])Elvr_]

= E
+(er—1 — Elera]) = gra(tr1 = Elir 1)) = (gr—1 — Elgr 1)Elir1))
~\(nr 1 Elwr ] + E[Ry_ B[y 1] + Eler_] - Elgr 1JEfiz—] )| 1],

(5.7)

where

(”T—l(wT—l — Elwr1]) + Ry (vr-1 — E[vr1]) + (Rp_y — E[R_])E[vr_]

Hero ~ Eler)) — gri(br—1 — Ellr) ~ (gr—1 — Elgr)JElir—i])
= (nr_1(wr—1 — Efwr_1]))* + (Rp_y (vr—1 — Elvor_1]))*
+((Ry_y — B[Ry, ))Evr—1))* + (cr—1 — Eler1])” + (g7-1(Ir—1 — Ellr—1)))*

+((C]T 1= E[QT 1]) [lT 1])2 + 2”T—1(wT—1 - E[wT—1])R/T_1(UT—1 - E[UT—l])
1 Elwr_1])(Ry_y — E[Ry_])E[vr—i]
+2n7_ 1(wT 1 — E[wr_1])(er—1 — Eler—])

( E[ Dar—1(lr—1 — E[lr_1])

( Efwr1])(gr—1 — Elgr1])Ellr-1]
+2(vp-1 — E[’UT—l])/RT—l(RéFfl — E[Ry_])Elvr-1]
+2Ry_ (vr—1 — E[vr—i])(er—1 — Eler—1])
[
[

wr-1

vr-1])
—2R%_ (vr—1 — E[vr_1])gr-1(lr—1 — E[lr_1])
—2Rp_(vr—1 — Elvr—])(gr—1 — Elgr—1])E[lr—1]
+2(Ryy — B[Ry [)E[vr](er1 — Eler-a])
—2(Ryp_y — E[Rp_\))E[vr-]gr—1(lr-1 — Ellr-1])
(R% 1 — B[Ry ))E[vr—1](gr-1 — Elgr—1])E[lr—1]
—2(cr—1 — Elera])gra(lr—1 — E[lr_1])

—2(cr—1 — E[er])(gr—1 — E[gr—1])E[lr_1]
+2qr-1(lr—1 — Ellr1])(gr—1 — Elgr 1)) E[lr1].
(5.8)
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Since w! — E[w!], E[w}], vi — E[v], E[v}], are F;-measurable,

_(nT—l(wT—l - E[wT—l]))2‘fT—l] = (np—1)*(wr—1 — E[wT—l])Qa
[(Ros(vr—s — Elora])) | 7]

(vr—1 — Elvr_1]) E[Rr—_1 Ry, (vr—1 — E[vr_1)),

Ry — BB )Blor)) |71

El(or1)] (ElRr-1 Ryi] - B[R B[R] )Elor ],

E ©&

ﬁ

_(CT 1 — Eler- 1]) Fr- 1} = E[c7_,] — Eler)?,

(ara(trs - wlmﬂﬂw}ZM@AWPJ—mwﬁw,
(a1 — Elor—)Elir1)*| Frs] = (Elg_] - Elori]? ) Elir1 )%
207y (wr o —E leRwal—quMﬁpq

RT 1 (UT 1 _E[UT—I])a

= 27’LT 1 (w

[
- [wT1
[

)
)E
wr—1]) (Rp_y — E[Rr_])Efvr_]
)
)

E 27’LT 1(UJT 1 — E fT_1i| = 0,
E|2np_ 1<wT 1 — Elwr_y (CT 1— [CT 1]) ~7:T—1] = 07
E|2nr_1(wr—1 — Elwr_1])gr-1(lr—1 — E[lr_1]) -FT—li|

271 Elgr—1)(wr—1 — Elwr1])(ir—1 — Ellr—1]),

2ny—1(wr-1 — Elwr—1])(gr-1 — E[QTA])EUTA]‘]ETA] =0,
:Z(UTfl — E[vr—1]) (Rr—1) (R/Tfl - E[R/TADE[UTA] -7:T71} =0,
2Ry (vr-1 = Elvr—i])(er-1 ~ Eler])| Fr

2(Eler—1 Ry_y] — Eler—1|E[Ry_,) (vr—1 — Elor—i]) = 0,

2Ry (vr1 — Efor—1])gr—(lr—1 — Ellr—1]) | Fr 1]

= 2E[gr_1 Ry_,)(vr—1 — Elvr—1])(lr—1 — E[lr_1]),

_QRT V(vr—1 = Elvra])(gr-1 — Elgr—1])E[lr ‘FT 1}
2(Elgr—1Ry_y] — Elgr1JE[Ry_,]) (vr—1 — Elvr1)E[lr1] = 0,

:Q(RT , — E[R}_\))E[vr_1](er—1 — Eer—1] ‘]:T 1]
2( cr—1Ryp 4] — E[er 1 ]E[Ry_ 1]>E[UT 1),
E[2(R; W%J)WTJWwUTl—Mhl‘FrJZQ

H EH =

ﬁ

ﬁ

&=

99



and
E[2(Rr_, — E[Rp_)Elvr-1)(ar-1 — Elar—1])Eliz—1] | Fr-1]
= 2(Elgr_ 1RT ) = Elgr 1 B[Ry, ]) E[vr 1 ]JE[lr 1] = 0.
E 2(07’ 1= [CT 1])QT 1(lr- I_E[ZT 1 ‘FT 1]

(E qr-1¢r-1) — Elgr_1|E[cr— 1])(ZT 1 — E[lr_1]) =0,
2(07’ 1 — Eler_1])(gr—1 — Elgr—1])E[lr_1] ]:T—l}
= (E qr-1¢7-1) E[QT—l]E[CT—l])EUT—l] =0,
2C]T 1(lr—1 — Ellp_1])(gr-1 — Elgr-1])E[lr_1] ]:T—l]
Q(E 47_1) — Elgr-1]?) (lr—1 — E[ly1])E[lr—1] = 0.

ﬁ |
N

ﬁ |
N

Therefore, we can reduce (5.7) into

E[JT(E wT — E[wT], E[ZT], lT — E[ZT])‘.FT,J
= E[(U}T — lT — wT — lT])2 - )\E[U)T - lTH-FTfl]
[

(nT 1(wr—1 — Elwr1]) + Rp_y(vr—1 — E[vr1]) + (Rp_y — E[Ry_ ) Efvr]

I
=

+(cr-1 — Eler—1]) — gr—1(lr—1 — E[lr—1]) — (gr-1 — E[QT—l])EUT—l])
—~A(nr-1Elwr-] + B[Ry JE[or-1] + Eler-] — ElgrElir] ) | Fr1]

= (np-1)*(wr—1 — E[wT—l])2 + (vr—1 — E[”T—l]),E[RT—1R/T_1](UT—l — Efvr_1])
+El(vr_1)] (ElRr-1Ry_y] — B[Rz 1JE[R;_,] )Elvr 1] + El(cr1)%] - Elor_1)
FE[GE ) (1 — Ell—])? + (Elg_] — Elgr—a]? ) Elir_i)
+2np_q (wT—1 - E[wT—lDE[R’T—ﬂ (UT—l - E[UT—I])
—2n71E[gr1](wr-1 — Elwr—1])(Ir-1 — E[lr-1])
—2E[gr1 Ry ](vr—1 — Elvr])(lr-1 — E[lr-1])
+2<E[CT,IR'T,1] - JE[CTA]JE[R'T,I])E[UT,I]
—Mnr_1Elwr_1] — NE[R}_{|E[vr_1] — AE[er_1] + AE[gr_1]E[l7_1].

(5.9)

The optimal strategies at period T — 1 can be derived from the above equation
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corresponding to vr_q

vp_1 — Elvr_1] = —np_q (wr—1 — ]E[UJTA])E_I[RTAR'TA]E[RTA]

+(lp—1 — EUT—lDE_l[RT—lR,T_1]E[QT—1RT—1]7

Elvr1) = (B[Rr1 By_) — ElRr B[Ry )

A (5.10)
X (E[CT—lRT—l] — E[CT_l]E[RT_I] — §E[RT_1}>
A \EURra Ry JElRr]
= (E[CT—I] + 57 BT—1> 1— By,
~ERr—1 Ry ]Eler—1 Ry
where
Broi = E[Rp LB [Rr—1 Ry JE[Rr—d],
Br_y = Eler1 Ry JE7 Ry Ry 4 JE[Rr—i],
ET—1 = E[CT—1R’T_1]E71[RT—1RT_1]E[CT—1RT—1], (5.11)
Br_y = Elgr-1 Ry 1]E71[RT—1RT_1]]E[RT—1]7
B'ry = Elgr 1Ry JE7 Ry Ry B[Ry 1q71]
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Substituting the optimal strategies back to (5.9), we obtain

Jr-1(Elwr-1), wr—1 — Elwr 1], Elly—1], lr—1 — E[lp-1])

= (n71)*(wr1 = Elwra])” + (Bl(er-1)?] — Eler-]?)
FE[GE o) (1 — Elly—1))? + (Eldé] - Elar—1)? ) Elir_1 )
—2np_ 1 Elgr_iJ(wr—1 — Elwr_1])(lr—1 — Ellp_1]) — Mg Elwr_1] — AE[ep_4]
FAE[gr 1 |E[lr1] = (nr-1)? Bra(wr—1 — Elwr1])? = By (lr—1 — E[ly_4])?

+2nT—1§T71(wT71 — E[wr—1])(lr—1 — E[lr—1])

A~ E[R,_,JEYRp_ Ry
—<<E[CT—1] + 5 _BT—1> [ T 1]1 é T—-14vp 1]
- D17-1

~Eler—1 Ry JE [Rr_1 Ry ] ) (E[Rr1 Ry ) - ElRr_JER; )

E~[Ry—1 Ry |E[Rr—1]
1 — Br

< ((Ber—i] + 5 — Broi)
~E~[Ry 1Ry _i[Eler 1 Rr1])
= (n7-1)*(1 = Br_1)(wr—1 — Efwr.1])” + (El(cr-1)?) — Eler_1]?)
+(El¢7_,] — Br_y) (lp—1 — E[lp—4])?
~9(ng1Elgr1] — nr1Brr) (wr — Efwr])(lr—1 — Ellz1])
+ (E[q%_l] - E[qT,l]Q)E[zT,l]Q — A Efwr_1] — AE[er_1] + AE[gr_1[Ellr_i]

A ~ ~
— 2(Eler—1] + 5~ Br_1)Br_1

+Br - B2,)
= fT—l(wT—l - E[wT—l])2 - 277T—1(w'r—1 - E[wT—l])(lT—l - ]E[ZT—l])
+er—1(lr-1 — Ellr-1])? = M1 Blwra] + M Ellr ] + 071 Ellr 1> + Ar_y,
(5.12)
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where

§r—1 = (nr—1)*(1 — Br_1),

nr—1 = nraElgr ] — ”T—lET—l,
er-1 = Elgi_4] — Br_y,

(r-1= nr_1,

Or—1 = Elgr_1],

dr_1 = E[Q%fl] - E[QTAP?

A5 Br_
Ary = E[(er1)’] = Eler1]* = AE[er ] — ((E[CTA] T BT71)21 %;
— D11
A~ ~ ~ ~
—2(Eler—1] + 3~ Br_1)Br_1+ Br_1 — B%_l)
(5.13)

Repeating the process at time T' — 2, we have

Jr—2(Elwr o], wr—o — Elwr o], E[lr_o], Ir—2 — E[lr_»])
]E[JTA(E[’LUTA], wr_y — Elwr_1], Ellp_1], lp—1 — E[ZTA])U'—TQ]
]E[fT—1 (wT—l - E[wT—l])2 - 277T—1(wT—1 - E[wT—l])(lT—l - E[lT—l])
+er_1(lr—1 — Ellr1])* — Mr—1Elwr_1] + Mr_1Ellp_1] + 01 E[lr4]?
+AT—1|-FT—2}

E [gm [nr-a(wr_2 — Elwr_s]) + By y(vr—2 — Elvr_s)

(B ~ B[Ry )Elvr_s] + (er—s — Eler_])]

—2n7_1 [QT72<ZT72 —E[lr_s]) + (gr—2 — ]E[QT72])E[ZT72]]
xhpﬁmq—Empm+Raqu—dep
+(Ry_y — E[Ry_ o) Elvr_s] + (or—2 — Eler-])|

+er—1 [QT—2(ZT—2 —E[lr—2]) + (g7-2 — E[QT—Q])E[ZT—2H
_)\CT—l (nT_QE[wT_Q] + E[R&«_Q]E[’UT_Q] + ]E[CT_Q])

2

+M0r_1Elgr_o]E[lr_o] + 5T71(E[QT72]E[ZT72]>2 +Ap_y

-
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Thus,

JT—Q(E[wT—Z]a wr—2 — E[wT—z], E[ZT—2]7 lp—g — EUT—Q])
= §T—1 [n%_g (wT—2 _E[wT—2])2 + (UT—z —E[UT—2])/E[RT—2R/T_2] (UT—z —E[UT—2])
+2n7_s (wr—s —Elwr_o])E[R}_,] (v —E[vr_2])
+E[vr o (E[Rr—2 Ry o] — B[Ry o|E[Ry o] ) Elvr o]
+(El(cr—)°) — Eler]?) + 2(Eler—2Ry_] — Eler oE[Ry_y] ) Elvr )]
2071 [nT—QE[QT—Q] (Ir—s — Elly_s]) (wr—s — E[wr_s])
+E[gr_o2 R, (ZT—Q - E[ZT—2]) (UT—2 - E['UT—Q])}
+er—1 [E[Q%fz] (lr—2=E[lr—o])* +(Elgi_o] — (E[(JTJ])Q)(EUTJ])Q]
_)\CT—l (TLT_QE[’LUT_Q] + ]E[RIT_z]]E['UT_Q] + E[CT_Q])
+XN0r_1E[gr_o|E[lr_2) 4+ d7_1(E[gr_o]E[lr_2])* + Ap_;.
(5.14)
The optimal strategies at period T'— 2 can be derived from the above equation

corresponding to vy_o

vr-2 — E[vr—s] = —nr_a(wr_s — Elwro])E7 Ry o Ry ]E[(Rr-2)]
+nr_1&5t, (lT72 — E[leZ])E_l[RT72R&“72]E[QT72RT72]7

Elvr ) = = (BlRr-2 o) — ElRr B[R o))

\C (5.15)
x (Bler—2Rr—2] — Eler 5]E[Rr ] - %;“jE[Rm])
_ Nro1 5 \ET[Rr—o Ry o]E[Rr—s]
- (E[CH] T ”) 1— Br_,

—E_l [RT_QR/T_Q]E[CT_QRT_Q] .
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Substituting the optimal strategies back to (5.14), we obtain

JT—2(E[MT—2], Wr—2 — ]E[UJT—Q], E[ZT—2], lp—g — ]E[ZT—Q])
= fT—l(nT—2)2(wT—2 - E[wT—z])2 + &r-1(E[(cr-2)?] — Eler—s]?)

ter_1E[g7 ) (Ilr—2 — E[lr—2])* + er—s (E[Q%fz] - E[QT—2]2)EUT—2]2
=2nr_1nroElgr o) (wr—2 — Elwr_o])(Ir—2 — E[lr_2])
—/\CT—lnT—zE[wT—Q] - /\CT—1E[CT—2] + /\‘gT—lE[QT—Q]E[lT—2]
+0r—1(Elgr_o]E[lr—2])? + Ar_1 — Er_1(np—2)* Br_s(wr—s — Elwr_s])?
_77%71577&13572(”*2 — E[lr_»])?

+277T—1nT—2§T—2(wT—2 - E[wT—Q])(lT—z - E[ZT—2])

ANr-1 5 E[R} ,JE7 Ry 2Ry )
—€r1 ((E[CT—Q] + T BT—Q) — B,

~Eler 2Ry _oJE " [Rr > Ry_o) ) (E[Rr > Ry_o) — B[Ry 5]E[R_,)
ANr-1 5 E~Rr_oRy_,JE[Rr_s

x ((E[CT_Q] + 2§T_1 ~ Byr) [ ! BTL [Ry_o]
—E_l[RT_QR/TfﬂE[CT_gRT_Q])

= &r1(nr—2)’(1 — Br_s)(wr—s — Elwr_a])” + &r—1(El(cr—2)?] — E[er_s]?)
+(€T71E[‘J%72] - 77%715523%72) (Ilp—2 — E[leZ])Q
—2n7r—1 (nT—QE[QT—Q] - nT—QET—Q) (wT—Z - E[wT—z])(lT—Q - EUT—Q])
+€er—1 (E[Q%—ﬂ - E[QT—2]2>]E[ZT—2]2 - )\CT—lnT—2]E[wT—2] - )\CT—l]E[CT—z]
+A0r_1Elgr—o|Ellr_s] + 5T—1(E[QT—2]]EUT—2])2 + Ap_y

ACr-1 2 Bros
=& 1 ( (Eler— — Br_
&r 1(( ler—a] + 2%r T 2) 1— Br,
T-1

—2(Eler—s] + - B\T—2)§T72 + Br_s— ECQF—Q)
271
= &r9 (wT—Q - E[wT—Q]) - 277T—2(wT—2 - E[wT—Q])(lT—Q - ]E[ZT—Q])
ter—o(lr—2 — Ellr_s])? — M r—oE[wr_s] + A07_sE[lr_s] + or_oE[lr_o]* + Ar_,

(5.16)
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where

Er—1(nr—2)*(1 — Br_s),

nr-1 (nT—QE[C]T—Q] - nT—QET—2)a

er 1 E[g7_o] — U%—lfthé“—m

Cr—1nr—2,

9T—1E[QT—2]7

er-1 (Elgd_o] — Elar ]?) + 671 (Elar])?,

Ar_y + &r1E[(er—2)?] — Er—1Eler—a)® = Mr—1E[er—2]

)\CT—I = 2 BT—2
& A (Elem — Bp_5) ———
&r 1(( ler—o] + %, T 2) 1— By,
—2(E[CT_2] + o BT—2)BT—2 + Br—s — B%—z)
2601

(5.17)

Assume that the following equation (5.18) holds at time t + 1, we prove it according

to the mathematical induction.

where

Jt+1(E[wt+1]a W1 — gE[thrl]’E[ltJrl]; lig1 — E[lt+1])
= & (Wi — Elwia])” — 201 (0 — Elwiga]) (leer — Ellega])
et (b1 — Eller1])? = M1 Elwig1]) + N1 Ellia] + 01 B[l ]® + Avsr,

Ei2(11441)(1 = Biya),

Nt+2 (ntHE[th] - nt+1§t+1)7

€t+2E[QtQ+1] - nt2+2£1;-123£+17

Gi+2Net1,

Or+2B[qr+1],

i (Elaa] ~ Elgen]?) + bria(Elaa))?

Appa + Erp2Bl(cr41)?] = EraBler1]” — ACeraE[cri1]

A . B
_§t+2((E[Ct+1] + Grva B )

Y 28142 1 =B
—Z(E[ctH] AR S Bt+l)Bt+1 + B — Btz—i—l)’
28142
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and

gT:l? 77T:1> 6T:17 CT:17 eTzlu 6T:()7 ATZO

According to equation (5.18) and (5.19), we derive the result at time ¢.

Ji(E[wy], wy — Elw], E[l;], l; — E[l])
= E[Ji1(Elwi], wipr — Elwisa], Ellisa], ligr — Ellpa]) | F]

= Eln(wen — Elwen])” — 2 (wes — Elwr]) (s — Ellia])
el = Ellena))? = AGaElwe] + Mo Blle] + 0aEllia]? + Ao | 7]
- E [5 [, — Efun]) + Rior — Elod)) + (B — B{RI)E[u] + (e~ Ble)]
211 vl — Ell]) + (a0 — Bl Ell] | e (w0, — Efwr)) + Ri(vr — Elue]
+(R, — E[RI)E[w] + (e — Eled])] + evsa [l — ELU)) + (@ — Ela))EL)’

A1 (neE[w,] + E[RYE[ve] + Elee]) + Mpr E[qJE[L] + 0,11 (E[g|E[L])

+A¢41

7
— & o (wi—Efwd]) "+ (v~ Elu)) B[R R (0 —E[vr)
12, (i —Efwi])E[Ry) (v~ Elui]) + Eof] (E[R,R;) ~ E[R/JE[R])Elv]
+(E[(0)?) — Elei)?) +2(Elei )] — El]E[R) )Elu]
211 [ lae] (e — BIL]) (e — Efwi]) + ElgoR)) (i — E[L]) (v — Efuy])]
erin [El?) (L —E[L])? + (Elg?] - (Ela])?)(E[L])

—Aer1 (neE[wy] + E[R)E[v] + Elcy]) + MNe1 B[t E[le] + 61 (Elge]E[L])? + Apga.

(5.20)

The optimal strategies at period ¢ can be derived from the above equation corre-
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sponding to t

vi — Elvg] = —ny(wy — Elw,])E~'[R, R} |E[(R;)]
+ne1éh (e — E[L])E- R R} E[q. Ry],

MM:—@MMM—MMH&DA@M&FEMEWJ—%E

— EYRR)E[c; Ry).

E[R])

MGl 5 ) E~'[R,R;|E[R,]

— (E ~B
([CtHQgH_1 ! 1- B,

(5.21)

Substituting the optimal strategies back to (5.20), we obtain

(B, wy — Elws], EL], 1 — E[L))
= &a(ne)? (i — Efwd])” + &1 (E[()?] - Ele?)
e Blo2)(l — B[ + e (Ele?] — Ela?)ElLL?
=21 Eq] (we — Elw]) (I — E[4])
= ACer1Blwy] = A Eler] + A0 1 E[g) B[] + 641 (Bl@]E[L])? + App
—&i1 () By (wy, — Elwy])® — 17,6 Bi(l — E[1])?
+2n 41 By (we — Elwy]) (I — E[l,])
(O AR L
x (E[R,R;] - E[RJE[R]))
< ((Bled + 01— ) B IR
= §t+1(nt)2(1 - Bt)( E[wt])2 + §t+1(E[<Ct)2] - E[Ct]2)
+(er1Blg?] — nf 1 &30 By) (I — E[L])?
—2041 (neElge) — i By) (we — Elwy]) (I — E[l;])
+€rq <E[QE] - E[Qt]2>E[lt]2 — AGr1mBlw] — A1 Eler] + Ap 1 E[q ] E[l]
0041 (Bl@E[L])? + A

)\Ct+1
—&t41 ((E[Ct] + %

~ Bl RJE[R.F))

)‘Ct+l
2€t+1

_B) ~B)Bi+ Bi- BY).

(5.22)
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Thus,

Ji(Ewy], wy — gE[wt], E[l],l; — E[l;])
= & (w —Elw])” — 2m(w, — Efwy])(l; — E[l]) + e (I, — E[l,])?
—AGE[wy] + NE[l] + 6, E[l}])? + Ay,

where

&= &a(ne)*(1 = By),

e = T+ (ntE[Qt] - ntﬁt)a

¢ = ernlBlgf] — Ut2+1f;r113£7

G = Ceinu,

O = 01 Elaq],

0 = e (Elg?) — Elai)?) + i (Ela)”
Ar= A1+ EnE[(er)?] = §nEled]® — MG Elel]

6 ((Bled + 562 - B)* {25 — 2(Blad + 3¢ ~ B) B+ Bi -

)

28441 1-B 28141
(5.23)
Substituting E[v}] to the dynamics eqation in (5.2) yields
A ~. B
Elwi 1] = mElw,] + (Ele] + i1 _ By) — B, +E[cy]. (5.24)
28141 1—- B
Therefore,
A _ B R t—1
Elw] = w ny + ( jH—B —B-+]Ec-> n.
t OH k Z 2€J+1 )1_Bj J []] l:qu l
(5.25)
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Typically, we know the optimal value of problem (3.1) is equal to Jy. Thus,

Var(wr)
= Jo(E[wo], Wy — E[wo], ]E[lo], lo — E[lo]) + )\IE[wT]
T-1 T-1 )\C N B.
= —/\Cow() —I— )\eolo —f- 50[3 —I— AO —f- )\(wo H T + Z <(]E[C]} + Jj+1 _ B]) J
k=0 =0 26541 1=5;
N T-1
—Bj + E[Cj]) H nl).
l=j5+1
(5.26)

5.2.2 Numerical Examples

Table 5.1 gives the expected return, standard deviation and the correlation coeffi-
cients among the assets, cash flow and liability. We also assume the risk-free return

rate as 5% (n, = 1.05).

Table 5.1: Data for assets, cashflow and liability

SP EM MS cashflow liability
Expected return 14%  16% 1% 1 10%
Standard deviation 18.5% 30% 24% 20% 20%
Correlation coefficient

SP 1 0.64 0.79 p1 0
EM 0.64 1 075 P2 0
MS 0.79 075 1 03 0
cashflow P1 P2 P3 1 0
liability 0 0 0 0 1
Thus,
0.09 0.0342 0.0355 0.0351
E[R;] = [ 0.11 ], Cov(R;) = [ 0.0355 0.0900 0.0540 |,
0.12 0.0351 0.0540 0.0576

0.0423 0.0454 0.0459
E[R.R)] = [ 0.0454 0.1021 0.0672
0.0459 0.0672 0.0720
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The correlation coefficient between cash flow and i-th asset are defined as p =

(P15 P25 P3),
_ Cov(ct, RY)
\/Var(c;)\/ Var(R})

Therefore, we have the following eqation

E[c:R!] = E[e;]E[R!] + pi\/Var(c;)1/ Var(R}),

E[Cﬂ :E[Ct]2 + Var(ce;), Eleq)] = E[ei]Elg], Elg:Ri] = E[R;]E[qy].

Pi

Assume that p = (p1, p2, p3) = (—0.25,0.5,0.25). Thus,
Cov Rt . COV(Rt> COV(Ct, Rt)
¢ ) ) \Cov(e, Ry  Var(g)
0.0342 0.0355 0.0351 —0.0092
0.0355 0.0900 0.0540  0.0300

0.0351 0.0540 0.0576  0.0120
—0.0092 0.0300 0.0120  0.0400

=0.

In order to make the equations more clearly, we define some notations as follows

1.0589
Y; = E7'RRE[R] = | —0.1196
1.1033

)

—0.3490
Yy = B RR)E[c,R] = | 0.4493 |,
1.6365

0.1059

0.1103

B, = 0.2145, B, = 0.2144, B, = 0.2507, B, = 0.0215, B’; = 0.0021. (5.27)

We assume the investor will exit the market at period ¢ = 5. Therefore we define

the optimal expected value as



Substituting the data, we have
E[w] = (4.4454,5.9112,7.4078, 8.9439, 10.5279).

The initial wealth is wy = 3 while initial liability [ = 1 and trade-off parameter
A = 1. Thus,

vy = —1.05(wo — 5.2629)Y; — Y2 4+ 0.000075Y5ly, ,

v; = —1.05(w; — 6.4786)Y; — Y5 + 0.0008Y304,

vy = —1.05(we — 7.7551)Y; — Y5 + 0.0085Y31,,

vy = —1.05(ws — 9.0954)Y; — Y2 4 0.0920Y515,

i = —1.05(wy — 10.5027)Y; — Y3 + 1.0000Y53l,.

The variance of the final optimal wealth levels is Var(ws) = 0.5996.

5.3 The Optimal Strategy with Correlation
5.3.1 The Dynamic Programming and Optimal Strategy

On the one hand, we directly assume the return rates of assets and cash flow are
correlated during each period t. On the other hand, in this subsection we assume
return rates between liability and assets are correlated during each time ¢, i.e., ¢
and R; are not independent.

Thus, we investigate the following model by employing the mean-field method

min Var(wT — ZT) — )\E[UJT — lT],
s.t. Wiy1 = MWy + R;Ut + ¢4, (528)
lt+1:qtlt7 fOI't:O,l,"',T—l,

where
W41 = MWy + R;’Ut + Ct, (529)

Elwis1] = niE[wy] + E[R}E[ve] + E[ey], (5.30)
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Ell,.1] = E|gE[L], (5.31)

w1 — Elwia] = ne(wy — Elwy]) + Ri(ve — Elvg]) + (B — E[R}])E[ve] + (¢ — E[cr]),
(5.32)
lepr — Bl ] = qu(le — E[l]) + (¢ — El@:])E[L]. (5.33)
Given the information set JF; at time period t, we have the following cost-to-go
functional of problem (5.5)
Ji(E[we], wy — Efwe], E[l], 1 — E[l])

= II}&HE[JH& (E[wt+1]7 W1 — E[’lUt+1], E[lt-i-l]? lt-i-l - E[lt‘f‘l]) “E] ’

with the boundary condition
JT(E[IUT],UJT - E[’UJT],]E[ZT], ZT - E[ZT]) == (wT — lT - E[wT — lT]>2 — )\E[U)T — lT]
Thus,

E[JT<E wT - E[wT], E[ZT], lT - E[ZT])‘FT,J
= E[(wT — lT — wT - lT])2 - )\E[U)T - lT“-FTfl]
E[<nT H(wr-—1 — Elwr_1]) + Ryp_y (vr—1 — E[or—]) + (Ryp_, — E[R7_])Elvr_i]

+(CT—1 - E[CT—l]) - QT—l(lT—l - E[ZT—I]) - (QT—l - E[QT—l])E[lT—1]>2
_A(nT—lE[wT—l] + E[Ry_JE[vr_1] + Eler 1] — E[QT—I]]E[ZT—ID ‘fT—l]a

(5.34)
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where

(”T—l(wT—l — Elwr1]) + Ry (vr—1 — Elvr]) + (Rp_y — E[Ry_])E[vr 4]

+(er—1 — Eler—1]) — qr—1(lp—1 — E[lr—1]) — (gr—1 — E[QT—l])E[lT—1]>2

= (nr_1(wr_1 — E[wT—1]))2 + (R (vr—1 — E[UT—l]))2
+((Ry—y = E[Ry)Elvra])” + (er-1 = Eler—])” + (qr-1 (-1 — Eflr-1])
+((gr—1 — Elgr1])E[l7- 1])2 + 2nr 1 (wr—y — Elwr|) Ry (vr-1 — Elvp_4])
+2n71(wr—1 — Elwr—1])(Ry_y — E[Ry_4])E[vr-1]

)(er—1 — Eler-1])

Yar—1(lr—1 — E[lr_1])

Elwr_1])(gr—1 — Elgr_1])E[lr_1]

2

—2np_1(wr—y — E

( [wr-1]
+2np_q (wr—1 — Ejwr_q]
( [wr—1]

[wr-1]

—QTZT—1(U/T—1 -

+2(vr—1 — E[vr1])' Rr—1(Ry_y — E[Rp_4])E[vr_4]

]
+2Ry_ (vr—1 — E[or—])(er—1 — Eler—i])
—2Rp_y(vr—1 — Elor—1])gr—1(lr—1 — Ellr—1])
—2Rp_y(vr—1 — E[vor—1])(gr—1 — Elgr—1]) E[lr—1]
+2(Rp_y — B[Ry ])Elvr—1](cr-1 — Eler-—1])
—2(Ry_y — E[Ry_ E[vr_1]gr—1(lr—1 — E[lr—1])
_2(Rér—1 - E[R,T— DE[UT—I](QT—l - E[CIT—l])EUT—l]

—2(cr—1 — E[era])gra(lr—1 — E[lr_1])
—2(cr-1 — Eler—1])(gr-1 — Elgr1])E[lr-1]
+2qr-1(lr-1 — Ellr—1])(gr-1 — Elgr—1])E[l71].
(5.35)

74



Since w;

&=

&=

E & =

E =

pahﬂwﬂ—ﬁwpm@pﬂ—qun
2(Eler—1Ry_y] — Eler—1|E[Ry_) (vr—1 — Elor—1]) = 0,

:QR/TA(UTA — Elor])gr-1(lr—1 — E[lz-1])
2E[qr-1 R _1](vr—1 — E[or—1])(lr—1 — E[lz—1]),
2Ry (vr—1 — E[vr—1])(gr-1 — Elgr—1])E[lr-1] ‘]:T—l}

— E[w}], E[w!], vi — E[v}], E[v}], are F;-measurable,
E :(nT—l(wT—l - E[wT—l]))Z‘fT—l] = (nT—1)2(wT—1 - E[wT—l])Qa
E[(Rr-s(or1 — Blor )

]

(UT 1= E[UT 1]),E[RT lR/T_1](UT—1 - E[UT—l]),

((R/T 1 — E[Rr_)E[vr- 1])2 ]:T—l]
E{(vr-1)) (ElRr—1 Ry\] — E[Rr1E[Ry_) Efer],

(CT 1 — Eler- 1]) ]:T—l} = E[c7_,] — Eler)?,

[(ar-(trs — Elir 1]))2\5% 1] = Blad 1]ty — Blirai])?
[((ar+ — BlarDElr1)° | Fri| = (Bladi] - ElarJ?)Eliri]?
2071wt — Elwr)) By (o1 = Elvri])| Fr

2np—1 (wr—1 — Elwr])E[Ry_] (vr-1 — E[vr-1]),

27 (wros = Elwr]) (R, — B[Ry Elvr—i]| Fro | = 0,
2n7-1 (wr—1 — Elwr—i])(er- = Eler—i])| Froa| =0,

2np_1(wr-1 — Elwr—1])gr-1(lr—1 — Ellr1]) -FT—li|

-QanlE[QTfl](wal — Elwr—1])(Ir-1 — E[lr-1]),

—2nT71<wT71 — Elwr1])(gr—1 — E[CZTA])E[ZTA]‘]:TA] =0,
2(vr-1 ~ Elori]) (Rr-1) (R, — E[Ry ) Blor_a]| Fr_i]
2(vr_y — E[UT,l])’(E[RT,lR'T,I] - E[RT,l]E[R'T,l])E[vT,l] —0,

Froi]

Froi]

:_Q(E[QT—lR/T—l] - E[C]T—l]E[R/T—lD(UT—l — Elvr_1])Ellr_1] = 0,
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and

E 2(R _, — E[R,_))Elvr_1](er—1 — Elcr—1)) ]:T—l]
szanrl Eler_1]E[R}_,] ) Elor_1),

E|2(R} [Rr&EMqudhA—qubﬁpqza
E|2(Ry_, — E[Ry_)E[vr_1](ar—1 — Elgr1])E[lr_1] FT—1i|
22(E qr- IRT || = Elgr]E[Ry_, ) Elvr1]E[lr],
E|2(cr—1 — Eler—1))ar—1(ir—1 — Ellr_1)) ]:T_1]

= 2(E qr-1cr-1] = Elgra]Elera]) (lr—1 — Ellp1]) = 0,

E 2(CT 1 [CT 1])(QT—1 —E[QT—l])E[lT—1] fT—1i|
= 2(E qr-1¢7-1) E[QT—1]E[CT—1])EUT—1L
E 2CIT (lT 1 E[ZT—lD(QT—I - E[QT—1])EUT—1] -FT—I]

2(E ¢71) — Elgr1]?) (lr—1 — E[ly_1])E[lz—1] = 0.

Therefore, we can reduce (5.34) into

]E[JTGE U)T — E[U)T], EUT], lT — ]E[ZT])’FT,J

= E[ wr — lT — U)T — lT])2 - )\E[wT - lT”‘FTfl}
[

(Ry

I
&=

(nT (wr—y — Elwr_]) + Ry_, (vr—1 — Elor_y))

E[R7_])E[vr_1] + (cr—1 — E[er—1])
—@pwpﬂ—quh—mpi—Emummbqu
—A<nT,1E[wT,1] + E[Ry_JE[vr_1] + Eler_y] — E[qT,l]E[zT,l])

+

2

Froa].
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Thus,

E[JT(E[wT], wr — Elwr|, Ellr], Ir — ]E[ZT])UET*J

= (np-1)*(wr—1 — E[wT—l])2 + (vp_1 — ]E[UT—I])/]E[RT—IR/T—l] (vr—1 — E[vr_1])
+E|(or 1)) (E[Rr 1 Ry_y] — B[Ry 1JE[Ry_,] )Elvr ) + (7))
—Eler 1 + Elg3_ )t — Eltr1])* + (Elgh_,] - Elgr1]?) Elir?
+2nT—1(wT—1 - E[wT—l])E[R/T—ﬂ (UT—l — E[UT—I])
—2np_1Elgr_1](wr—1 — Elwr_1])(lr—1 — E[lp_1])
—2E[gr 1 Ry | (vr—1 — Elvr1])(lr—1 — Elly1])

+2(Eler1Ry_,] — Eler 1 |E[Ry_,] )Efvr_1]
_Q(E[QTflR/Tfl] Elgr1]E[Rr_])Elvr—1]E[lr_1]
—Q(E[QTACT 1] = Elgr-1]E[er- 1])E[ZT71]

[
—)\nT_l]E[wT 1] )\]E[R/T 1]]E[’UT 1] )\]E[CT_l] +)\E[qT_1]]E[lT_1].

(5.36)
The optimal strategies at period T"— 1 can be derived from the above equation

corresponding to vy_;
vr1 — Elop1] = —np_(wr—1 — E[wT—leil[RT—IRL[_l]]E[RT—I]

+(lp—1 — Elly_1))E7 [Rr_1 Ry |Elgr—1 Rr_1],

Elvr_1] =— (E[RT—IR/T—I] - E[RT—l]E[R/T—lD R

(5.37)
A
x <]E[cT_1RT_1] — Efer1JE[Rr1] - SE[Rr_1]
—(E[QTARTA] - E[QTA]E[RTA])EUTA]),
where
Broy = ElRy_JE" [Rr-1Ry_,E[Rr-)
Br_i = Eler—1 Ry JET [Rr—1 Ry JE[Rr—i],
ET—I = E[CT—lRT 1]E 1[RT 1RT 1]E[CT IRT—1]7 (5 38)
Bri = Elgr-1 Ry |E” 1[RT 1Ry JE[Rr-4], '
By = E[QT—lR/T 1]E 1[RT 1RT 1]E[RT—1(]T—1]7
Broi = Eler Ry JE Ry Ry JE[Rr_1qr_1)].
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Substituting the optimal strategies back to (5.36), we obtain

Jr 1 (Elwr ], wroy — Elwr ], Elly 1], lp—1 — E[lp_1])

= E[Jr(Elwr), wr — Efwr], E[lr], Iy — E[lz])| Fr-i]

= (n7-1)*(wr—1 — Elwr- 1]) + (E[(er-1)*] — E[er—1]?)
+E[g7_1](lp—1 — Ellp—1])* + (Elg7_,] — Elgr— )E[ZT 1]?
—2nr1E[gr—1)(wr—1 — Elwr_1])(lr-1 — Ellr—1]) — Anp_1Elwr_1]

_)\E[CT—I] + /\]E[QT—I]EUT—l] (nT—l)QBT—l(wT—l - E[wT—l])2
—By_(Ir—1 — Ellr1])* + 2n7—1 Br—1 (wr—1 — Elwr—1])(Ir—1 — E[l7-1])

—2 (E[QTACTA] - E[QTA]E[CTA])EUTA]

~(Bler—1 By ] - Eler ][Ry ,) - SE[R). .|

~(Elgr—1Rp_) - Elar—1|E[Ry_))Ellr])

(ELRr1By RT_I]E[R'T_I])_l

( cr-1BRr-1] — Eler1JE[Rr1] — %E[RT—I]

—(Elgr-1Rr-1] — E[QTA]E[RTA])E[ZTA])

= (n7-1)*(1 = Br_1)(wr—1 — Efwr1])”* + (El(cr-1)?) — E[er—1)?)
+(Elgz—1] = Br_y) (lr—1 = Elr1])?
—2(nr1Elgr1] — nr—1Br—1) (wr—1 — Efwr—1])(lr—1 — E[lr-1])
+ (Bl 1] — Elgr—1*)Eliz—1]* = Anp_1Efuwr_1] = XEler
+AE[gr_1]E[lr—1] — 2(Elgr—1¢r-1]) — Elgr-1]E[cr—1]) Ellr_1]

—((E[CTfl] 4+ = — B\Tfl) — - — 2(E[CT,1} + % - éT—1)35T71

X

X

)(E[QT—I]BT—l - ET—l) +Br_ By, — B\T—IE[QT—I]
+2(
1 —Br

+§T‘1)EUT—1] - (B/T—l — Elgr-1]* + <§T_11__§T[(i_1]) )EUT—l]Q

= & (wT—l - ]E[wT—l])2 - 277T—1(wT—1 - E[wT—l])(lT—l - E[ZT—l])
t+er_1(lp—1 — Ellp-1])* = Mr1E[wr—1] + N7 1 E[lr_1] + 0r_1E[l7_1]?
+A7_q,

2

(5.39)
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where

{r1 =

Nr—1

€r—1

Cr-1

071

5T—1

Ar_y

(nr-1)*(1 = By_y),
nT—lE[C]T—l] - nT—1§T—17
E[qg“—l] - BCIT—17

nr-i,

Elgr1] — ;(E[QTlch] - E[QTA]E[CTA])

A — ~ ~
(Eler—1] + =) (Elgr—1]Br—1 — Br-1) + Br_1Br_1 — Br_1E[gr_1]

2 2
5 T
+ T71)7
2
Br_1—Elgr_
Elgr_1] — Elgr-1]* - (B/T—l — Elgr_1]* + ( z II_BT[q: 1]) >,
A5 Br_

Ef(cr—1)*] - Eler]* — AB[er ] — <(E[CT_1] + - - BT_1)2L

)\ 2 1 — BT—l
~2(Eler] + 3 - Br 1)Br 1+ By — E?m)-

(5.40)

Repeating the process at time 7" — 2, we have

JT—Q(E[IUT—QL Wr—2 — E[IUT—Q], E[lT—Q], lr—o — E[ZT—Z])
E[JT—l(E[wT—ﬂ, Wr—1 — E[wT—1], E[ZT—l], lp—1 — E[ZT—l]”FT—Q]
E[¢r-1 (wr—1 — Elwr_1))” = 2nr_1(wr—1 — Elwr_1])(lr—1 — Ellr_1])
+er_1(lr—1 — Ellr_1])? = Xr-1Elwr_1] + Mr_1Elly_4]
+or_1Ellr_1]* + AT—l\FT—Q] .
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Thus,

Jr_o(Elwr—s), wr—2 — Elwr—o], Ellr—s], lr—2 — E[l7—s])

= E [&—1 [nT—2(wT—2 — Elwr_2]) + Ry_s(vr—2 — Elvr_2])
+(Rp_y — B[R] Elvr—o] + (cr—2 — E[CT—ﬂ)] :
—2n7-1 [C]T—z(lT—z — Ellr—s]) + (gr-2 — E[QT—Q])EUT—'Z]]
x [nr-a(wr—s = Elwr-s]) + Ry_y(vr—2 — Eler_a))
+(Ryy — E[Rp_)Evra] + (e — Eler )]

+er—y [C]T—Q(lT—Q —Ellr—2]) + (gr—2 — E[QT—z])E[lT—QH
— (-1 (nT—2E[wT—2] + E[R}_,)Evr_o] + E[CT—Q])

2

+A07_1Elqr_o|E[lr—_s] + d7—1(Elgr—_2|E[lr—_2])* + Ar_4 }_T—Z:|

= {1 [nzT_g (wT—Q _E[wT—Q])2 + (UT—z _E[UT—2])/E[RT—2R/T_2] (UT—z —E[UT—z])
+2n7_9 (wT_Q —E[wT_g])E[R’T_2] (UT_2 _E[UT_Q])
+E[v7_o) (E[Rr—2Ry_s] — E[Rr|E[Ry_,]) E[vr—s]
+(El(cr—2)°) — Eler]?) + 2(Eler—2Ry_] — Eler oJE[Ry_y] ) Elvr )]
2071 [nT—ZE[QT—Q] (lT—2 - ]E[ZT—2]) (wT—2 - E[wT—2])
+E[qr—2Ry_y)(lr—2 — Ellr—s]) (vr—2 — Elvr_s])
+(Elgr—2Ry_,y] — Elgr—o|E[Ry_,] ) E[vr—o|E[lr—o]
+(E[QT—2CT—2] - E[QT—2]E[CT—2])E[ZT—2]}
ter1 [Elgh_o](r—a—Ellr ) + (Elgh_o] — (Elar—2]))(Elir )]
A1 (nroEfwr o] + E[Ry_,|E[vr o] + Eler )
+ A0 1 Elgr_o]E[lr_o] 4 071 (Elgr_o]E[lr_5])* + Ap_1.

(5.41)

The optimal strategies at period 7' — 2 can be derived from the above equation
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corresponding to vr_o

vp_g — Elvp_s] = —np_s(wp_y — Elwp_o])E7 [Rp o Ry H]E[(Rr_)]

+nr_1&0t, (lT—Q - ]E[ZT—2])E71 [Rr—o Ry ) Elqr—oRr—s],

Elvr-s) = = (B[Rr_2Rp_o) — ElRr oJE[R) o))

(5.42)
X (E[CT_QRT_Q] - E[CT_Q]]E[RT_Q] — ;CTlE[RT_Q]
§r—1
e (Elar—s Ry ] = Elor oJE[Rr))Ellr o] )
T-1
Substituting the optimal strategies back to (5.41), we obtain
Jr2(Elwr o], wr—o — Elwr o], Ellr o], lr—2 — E[lr_5])
= &r1(nr—)?(wr—s — Elwr—s])” + &r_1(E[(cr—2)?] — Eler—]?)
+er1Elgt_o)(lr—2 — Ellr—2])? + er— <]E[q7212] - E[qﬁzP)E[lTa]Z
—277T—1nT—2E[C]T—2](wT—2 - E[wT—z])(lT—z - E[lT—2D
—Ar_1nr—oElwr_s] — AXr—1E[cr_o] + A0r_1E[gr_o]E[l7_o]
+07_1(E[gr—o|E[lr—2])* + Ar_1 — &r—1(nr—2)? Br—2(wr—_s — Elwr_s])?
—77%—155113%—2(%*2 - E[leZ])Q
+277T—1nT—2§T—2(wT—2 - E[wT—z])(lT—z - EUT—Q])
—2n7_1(Elgr—scr—s] — Elgr_o]E[cr_o] ) E[lr_o]
~6r-1(Blor-aRyo] — BlerfER ) ~ 52EIRy. ] — 2= (Blar-oF )
T-1 fT:11

~Elgr—o B[Ry ) Ellr—2] ) (ElRr—2Rr ) — ElRr_EIR; ;)
ACr-1

X (E[CT—QRT—Q] — Elcr—o]E[Rr—o] — T E[Ry_s]
_Zi (Elgr—2Rr—2] - E[qT—z]E[RT_z])E[zT_z]).
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Thus,

Jr—o(E[wr_s], wr—s — Elwr_s], Ellr—s], lr—s — E[l7_])

= &r_1(nr_2)*(1 = Br_s)(wr—s — Elwr_s])” + &r-1(E[(cr—2)?] — Eler—2)?)
+(eriBloF ] — 1716711 Br_s) (lr—2 — E[lr—s])?
2071 (nr—2Egr—s] — np_2Br2) (wr—s — Elwr_o])(Ir—o — E[lr—s])
teroa (Elgh ) ~ Elgr-af ) Ellr—]? = Xranr—oElwr o]
—A¢r-1E[er—a] + Mr_1Elgr-o]Ellr_o] + 6r-1(Elgr—2]E[lr-o])?

—2n7r—1 (E[QT—2CT—2] - E[QT—2]E[CT—2])E[ZT—2] + Ay

A1 2 DBr_s
—&r 1| (Eler_s| + — Bp_
§r—1 <( [er—a] 2% . T 2) 1— Br_,
N~ N - N
—Q(E[CT—Q] + (-1 - BT—2)BT—2 + Br_s — B%_2>
2871
o e =
(E[CTQ] + 2% )(E[QT72]BT72 - Bsz) + Br_oBr_o — Br_oElqr_]
Lo 71
& 1( 1— Br_,
9 — 2
M 2, (Br—2—Elgr-o]) 2
+§T—2>E[ZT—2] e (B 172 — Elgr_o]” + 1B, )E[ZT—Q]

= {ro (wT—2 - E[wT—z])2 - 27]T—2(wT—2 - E[wT—2])(lT—2 - ]E[ZT—Z])
ter—a(lr—2 — Ellr_s])? — M r—oE[wr_s] + A0p_oE[lr_s] + or_oE[lr_o]* + Ar_,
(5.43)
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where

§r—o = &r_1(nr—2)*(1 — Br_s),

Nr—-2 = 7r-1 (nT—QE[QT—Q] - nT—2§T—2)a
er—o = er1E[gF_,] — 77:2r7155313’m,
Cr—2 = Croinr-s,
Op_o = 9T—1]E[QT—2] - ;nT—l(E[QT—2CT—2] - E[QT—Q]E[CT—2]) + 2771_1
(E[Csz] + )\CT_I) (E[Qsz]Bsz - Esz) + Br_oBr_s — /B\T72E[QT72]

% < 2871
+§T72) )

0p_9 = €r_q (E[q%_g] - E[QT—2]2) + 071 (E[gr—2])?

1—Br_

2 = 2
Nr—1 ( / 2 (BT—2 — E[QT—Q]) >
— B'r_o—Elgr_
&y T-2 [qr—a]® + 1B, ,

Ar_o = Ap_y+ &raE[(er—2)?] — &roiEler—a]* — Mr—1E[er_s]

Mr-1 5 2 Bro
—&r1 <(E[CT—2] + %r — BT—2) 1By,

N+ o~ _ N
CT 1 _ BT72)BT72 -+ BT*Q — B%fQ) .
2871

-2 (E[CT,Q] +

(5.44)
Assume that the following equation (5.45) holds at time ¢ + 1, we prove it according

to the mathematical induction.

Jer1 (Elwiga], wen — gE[wt-l—l]aE[lt—l—l]v liv1 — E[li11])
= &1 (wt+1 - E[wt+1]) = 201 (w1 — Elwea]) (L — Ellia])
ter1(lerr — Ellen])? = A E[win] + M Ellen] + 01 B[l ]* + App,

(5.45)

83



where

Ee1 = Erpa(ne1)*(1 — Biga),

N1 = M2 (nt+1E[Qt+1] - nt+1§t+1);

€141 = €t+2E[%2+1] - 771:2+2515_+12B£+17
Ct+1 = <t+2nt+17

2 2
Orp1 = OppoElqig] — N2 (Elger1ce41) — Elgrs1]Elcisa]) + 77;\+2

A — ~ ~

(Elcisa] + 2<t+2) (Elgi+1)Bisr — Bis1) + By Bir1 — BiiElqii]
% ( 42
1= By

+§t+1>7

Opp1 = €442 <E[Qt2+1] - E[Qt+1]2> + 5t+2(E[CIt+1])2

2 Bi1 —Elq ?
_w<B,t+l — Elge]” + (Brs 1) ),
Eita 1 = Biya

Appr = Ay + §oE[(cer1)?] — GaEler1] — AgoBlcepd]

A ~ B
2§t+2 _ Bt+1)2 t+1
§i+2 1 — By

A PR - .
Git2 _ Bt+1)Bt+1 + By — Bf+1),
28142

—&t12 ( (E[Ct+1] +

—2 (E[Ct+1] +

(5.46)

and

gT:17 77T:17 6T:17 CT:17 GT:17 6T:O7 ATZO
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According to equations (5.45) and (5.46), we derive the result at time ¢.

J(E[wy], wy — E[wy], B[ly], l; — E[l;])

= E[Je1(Elwe], wipr — Blwea], Ellia], b — Ellea]) | F]

= E[&1(wir — E[wt+1])2 = 201 (weyr — Elwea]) (legr — Elliga])
terr1 (v — Ellir1])? = M1 Elwis] + A1 Ellii1] + 01 Elli1]?

+At+1|-/—_-t}
— Bt o  Blus) + Rito ~ Blod) + (7~ EIRDELud + (e~ Ble))]
—2ne [ ar(le — Ell)) + (a0 — Bl [l | [me (e, — Efwr)) + Bi(v: — Elug]

+(R; — E[R])E[ve] + (et — E[Ct])] + €1 [Qt(lt —E[L]) + (& — E[Qt])E[lt]} :
Aot (neElwy] + E[RE[ve] + E[ct]) + Mpsr Eg]E[l:] + 6,11 (E[ge|E[L])

+A¢1 ft}
- [ng (wi—E[w)))*+ (v,—E[v]) B[R, R} (v, —E[vy)
+2n; (wy—E[w,])E[R}] (v, —E[v,]) + E[v;] (E[R,R}] — E[RJE[R}])E[v,]

+HE[(c)?] = E[ci)?) + 2(Ele. By — E[ct]E[RQ])E[vt]]
o [ntIE[qt] (s — B[] (wr — Elwy]) + Elg Ry (I — EL]) (v, — Elvy)
+(Elg:R;] — Elg]E[R]])E[v]E[l:] + (Elgsci] — E[Qt]E[Ct])E[lt]}

(
eve |Elgd] (h—Ell))? + (Elg?] — (Bla))(E[L))?]
A1 (neE[w,] + E[RE[ve] + Eler]) + Mp E[g B[] + 0011 (E[g]E[L])
+A¢1

(5.47)

The optimal strategies at period ¢ can be derived from the above equation corre-
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sponding to v,

i — B[] = —ni(w; — Elw] )JE7 R RE[(R,)]

+i1és (e — E[L])E [RyR{]E[q, Ry,
Efri] = — (ELR.R)] ~ EIRJEIR])  (EleiR] ~ E[o]E[R)]
)\Ct+1 Ne+1
6 TEIR] ~ £ (ElacR] ~ Bla]E[R))EL))
i1 5 1 (Be — Elg))E[L]\ E7 R R E[R]
2%, T € )15
—EY[R,R)E[c,R,] + %E‘I[RtRQ]E[tht]]E[lt].

t+

(5.48)

= (E[ct] +

Substituting the optimal strategies back to (5.47), we obtain

Ju(Efwd], wy — Elwy), E[L], L — E[L))
= §t+1(”t)2(wt - E[wt])2 + &1 (E[(er)?] — Eled?)
+ernElgf]( — EIL])? + €1 (Elg?) — Elal?) ELJ?
=201 Blg] (wr — Elw]) (I — E[L;])
—AGp1Elwy] — A1 Eled] + A E[@)E[l] + 61 (E[@)E[ld])* + Ava
—&er1(ne)* By(wy — Elw])® — 77t2+15t_+113£(lt —E[l,))?
+2 1m0 By (w, — Elw,]) (I, — E[l])
2141 (Elgicr] — Elq)Ele,] ) E[l)]

) S, i AG
§t+1<E[Cth] E[Ct]E[Rt]l 28§11

—

B[R] ~ ¢ (Elg R ~ Elo E[R)EL))

X (E[Rth] — E[Rt]lE[Ré]) _

S BIR) - 2 (BluR) ~ EloJEIR)EL).

% (E[Cth] — Ele]E[R] —
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Thus,

Je(E[wy], wy — E[wy], E[lg], l; — E[l;])
= &a(n)*(1— By) (wt - E[wt]>2 + &1 (E[(er)?] — Eler]?)

+(een1Elg7] — nf &4 B (I — E[L])?
—2041 (ntE[qt] - ntgt) (we — E[wy])(l: — E[l:])

terrt (Elg?) - Elg? B2 — AGuamiBlur] = AGEle] + My ElgElL]

+0 11 (E[GE[L])* — 20611 (Elgier] — ElgEle])E[L] + Avp

>\Ct+1 5 \2 Bt )\Ct+1 S5\ D > 32
—&i ((E[ct] + 28441 a Bt) 1-— B B Q(E[ct] * 2811 a Bt)Bt + B = Bt)
(E[Ct] + A€t+1) (E[qt]Bt — Et) —+ BtEt — EtE[qt]

28111 n gt)E[lt]

+277t+1< )

= &(w, —E[w])” - 2n(w, — Elw)) (I, — E[L]) + (s — E[L,])?
—AGE[w] + MNE[L] + 6E[1]? + A,

(5.49)
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where

&= &a(m)*(1 - By),

me = 1 (neElge) — nBy),

et = ernBlgf] — 77t2+15t_+113£a

G = Gine,

0 = 01 Elq] — ;nt—i—l (Elgece] — Elq:]E[cq])

(Ele] + 2541) (B[] B, — B,) + BB, — BEla)]

2 t
i 77;\+1 ( 2811 — n ?t 7
— Dy
2 B; — Elg])’
0 = €11 E[CJ?] - E[QtP + 5t+1(E[Qt])2 200 B’y — E[Qt]2 + (t—[%]) )
i1 1—- B,

Ay = Apyr + §t+1E[(Ct)2] - €t+1E[Ct]2 — A+ 1E[c]

AGit1 B B,
- t
2§t+1

A e~
— 2(E[Ct] + Ct—H - Bt)Bt + Bt - Btz)

=141 <(E[Ct] + 1_—Bt 211

(5.50)

Substituting E[v}] to the dynamics eqation in (5.30) yields

E[w,11] = neEfw,] + <E[ct] L2 B R+ Et) ~ B, + B, +E[c],

28441 1 - By
(5.51)

which implies

AGi+1 5 =\ B
Efw,] —UJOan+Z( 25;_1 - B; — E[Qj]+Bj) ’

~B; + B, +Elg;)) H n.

l=j5+1
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Typically, we know the optimal value of (5.28) is equal to Jy. Thus,

Var(wr)
== Jo(E[wg], Wy — E[wo], E[lo], l() — E[lo]) + )\E[MT]
T-1
= —)\Cowo + )\90[0 + 50[8 + AO + )\<w0 H N
S A k=0 B (5.53)
+ Elc;] + j+1—§4—Eq~+§4 J
;0 i)+ 56 = By~ Elo) + B
R T-1
_Bj + Bj + E[Cﬂ) H nl).
I=j+1

5.3.2 Numerical Examples

Similar to the uncorrelation case, Table 5.2 gives the expected return, standard
deviation and the correlation coefficients among three assets, cash flow and liability.

We assume the risk-free return rate is defined as 5% (n; = 1.05).

Table 5.2: Data for assets, cashflow and liability with correlation

SP EM MS cashflow liability
Expected return 14%  16% 17% 1 10%
Standard deviation 18.5% 30% 24% 20% 20%
Correlation coefficient

EM 0.64 1 075 P2 P2
cashflow P1 P2 03 1 P4
liability p1 P2 D3 P
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Thus,

0.09 0.0342 0.0355 0.0351
E[R;] = [ 0.11 ], Cov(R;) = [ 0.0355 0.0900 0.0540 |,
0.12 0.0351 0.0540 0.0576

0.0423 0.0454 0.0459
E[R,R;] = | 0.0454 0.1021 0.0672
0.0459 0.0672 0.0720

The correlation coefficient between cash flow and i-th asset are defined as p =

(/)1, P2, Ps) )
_ Cov(cy, RY)
\/Var(ct)\/Var(Ri) '

Therefore, we have the following eqation

Pi

E[c;R!] = E[c;]E[R!] + pin/Var(c;)/ Var(RE).

The correlation coefficient between liability and i-th asset are defined as p = (p1, p2, 3),

ﬁi _ COV(qt, R;) ]
V/Var(q)y/Var(R))

Therefore, we have

Elq.R] = Elq:|E[R)] + pi/Var(g)y/ Var(R).

Typically, py is defined as

Cov(ct, qr)

B \/ Var(c;) \/Var(qt) '

>)

Thus,

Elciqi] = Ele]Elg,] + pay/ Var(c:)v/ Var(q.),
E[c}] = E[c]? + Var(cy),
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E[qzﬂ = E[Qt]2 + Var(q;).

Assume that p = (p1, p2, p3) = (—0.25,0.5,0.25), p = (p1, p2, p3) = (—0.2,0.4,0.3)
and py = 0.1. Thus,
Co R, [ Cov(R;) Cov(c, Ry)
v Ct - \Cov(e, Ry)  Var(c)
0.0342 0.0355 0.0351 —0.0092
0.0355 0.0900 0.0540 0.0300

0.0351 0.0540 0.0576  0.0120
—0.0092 0.0300 0.0120  0.0400

=0.

In order to make the equations more clearly, we define some new notation as

1.0589
V) = E'RR)E[R] = | —0.1196 | ,
1.1033

—0.3490
Yy = E MR R)E[c;R)] = | 0.4493 |,
1.6365

—1.0411
Yy =E ' [RRE[qR] = | 0.1754
0.8209

B, =0.2145, B, =02144, B, =0.2507,

_ (5.54)
B, — 00241, B, =00218 B, —=0.0488.

We assume the investor will exit the market at period ¢ = 5. Therefore we define

the optimal expected value as

Substituting the data

E[w] = (4.4487,5.9181,7.4184,8.9584, 10.5464).
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The initial wealth are defined as wy = 3 while initial liability /[, = 1 and trade-off

parameter A\ = 1. Thus, we substitute the data to the optimal equation
vy = —1.05(wy — 5.2629)Y; — Y5 + 0.000075Y5,
vy = —1.05(w; — 6.4820)Y; — Y5 + 0.0008Y30;,
vy = —1.05(wy — 7.7620)Y; — Y5 + 0.0085Y31,,
vy = —1.05(ws — 9.1060)Y; — Y5 + 0.0920Y305,

(

vy = —1.05(wy — 10.5172)Y] — Y5 + 1.0000Y314.

The optimal variance at terminal time period is Var(ws) = 0.6182.
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Chapter 6

Multi-Period Mean-Variance
Asset-Liability Management with

Cash Flow under an Uncertain
Exit Time

Based on the framework of mean-variance model with mean-field formulation in
Chapter 4, we directly assume that the return rates between assets and cash flow are
correlated. Then we investigate the case when all the additional conditions mentioned
above are taken into account. We derive the analytical form of optimal strategies and
optimal value in expression for the new model. Finally, the numerical examples in

both cases are given to illustrate the results established in this work.

6.1 The Model

We define the similar probability mass function under the construction of Chapter

4. Thus, we introduce the following multi-period mean-variance asset-liability model
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with cash flow and uncertain exit time.

( min Var(T) (wT,\T — lT/\T) — )\]E(T) [wT/\‘r - lT/\‘r]v

st Wi = Zmivi + (wt — Zv§> ne + ¢ (6.1)
i=1 i=1 ’
= naw; + Rivy + ¢,

\ lt+1:(]tlta fOI‘t:071,"‘,T—1,

where A > 0 represents the risk aversion. We define E™[wg,] and Var™ (wya,) as

follows,

>

WERE

EO[wrar — Ipas] E[wrnr — lrar| T AT = t|Pr{T AT =t}

E[wt - lt]pt7

o~
Il
—

T
Var® (wppy — lpps) 2 > Var(wrar — bpae | T AT =) Pr{T AT =t}

o~
—

]~

Var(w; — ;) py-

t=1

Then we can rewrite the model as ,

min ipt{\far(wt — 1) — NE[wy — lt]},
= (6.2)

s.t. W1 = NyWy + Rgvt + Ct,

lt+1:qtlt7 fOI't:O,l,"',T—l.
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6.2 The Mean-Field Formulation

Similar to the construction we mentioned in Section 5.1, we have the following dy-

namic equation

{ Elw1] = mElwy] + E[R,E[v,] + E[ey],

E[wo] = Wy,

Elli1] = ElgJE[L], (6.3)
]E[ZO] = l07
Combining the dynamic equations in (6.2) and (6.3), we have
W1 — E[UJH_I] = Ny (U}t - E[wt]) + R;Ut - E[R;]E[’Ut] + (Ct - E[Ct])
= n(w; — E[w]) + R; (v, — E[v]) + (R, — E[R}])E[vy]
(6.4)
+(c: — Elcr]),
Wy — E[wO] = 07
levr = Ellia] = qo(le — E[L]) + (@ — Elq])E[L], (6.5)
lo - E[lo] == 0, .
where t = 0,1,--- ,T — 1. Therefore, we can equivalently reformulate problem (6.2)
to a linear quadratic optimal stochastic control problem in mean-field type
( T
min Zpt{E[(wT — Iy — E[wr — I7])?] = AE[wr — lT]},
t=1
s.t. Elw| satisfies dynamic equation (6.3),
E[l;] satisfies dynamic equation (6.3),
(6.6)

wy — E[wy] satisfies (6.4),

l; — E[l;] satisfies (6.5),

E(v; — E[v]) = 0,

E(l, - E[l,])=0, t=0,1,---,T—1.

\

Thus, we are able to solve the multi-period mean-variance asset-liability model with
cash flow and uncertain exit time in this mean-field formulation by dynamic pro-
gramming.
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6.3 The Optimal Strategy with Correlation under
Uncertain Exit Time

Theorem 6.1. We derive the optimal portfolio selection of problem (6.6) as

vr — Efvg] = —ny(wy — Elw, ) E~' R, R}|E[(R;)]

1181 (I — E[L])EH R RE[q Ry,

-1 6.7
Eln) =~ (B[R] ~ E[RJER])  (EleiR) - BloJER) (O
)\Ct—H +1
B[R] - 2 (E[. R — ElgJE[R])E[])
2841 i1
the expect value of optimal wealth can be presented as
t—1 t—1
~ — B.
= o [T 30 ( (Bl )+ 522 - B - Blgl + B) 1=
= 7=0 J+1 J (6 8)
~B; + B, +Elgj)) H n,
l=j+1

fort =1,2,---,T and [[,(-) = 1, >_4(-) = 0 in this section.

Proof. Given an information set F;, we prove it by employing the backward

recursion

Ji(Blwy], w, — Elwy], B[], I, — E[l,]) = min [Je1| Fe] + pe(we — 1y — Elw, — 14])?

— pAE[w; — 1], (6.9)

with the boundary condition

Jr(Elwr), wr — Efwy], Elly], iy — Elly]) = pT{(wT—lT—E[wT—lT])2 —A]E[wT—lT]}.
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Thus,
E JT(E[U}T], wr — E[wT], E[ZT], lT — E[ZT])‘.FT,J
= ]E (’LUT — lT — E[UJT — lT])2 — )\E[U)T — ZT“]:T—l]
= E[(“T—l(wT—l — E[wr_1]) + By (vr—1 — E[vr—1]) + (Rp_y — E[Ry_])E[vr_4]
+(er—1 — Eler—1]) —qr—1(lr—1 — Ellr1]) — (gr-1 — E[QT—l])E[lT—1]>2
—/\(nT—lE[wT—1] + E[Ry_JE[vr_1] + Eler 1] — E[QT—I]]E[ZT—ID Froa),

(6.10)

where

(nT—l(wT—l — Elwr-1]) + Ry (vr-1 — Elor1]) + (Ry_; — E[Ry_4])E[vr—i]

Her ~ Eler]) — gri(tr—1 — Ellr)) ~ (gr—1 — ElgrJElir—1])
= (nT—l(wT—1 - E[wT—1]))2 + (R/T_1(UT—1 - E[UT—I]))Q
+((Rp_y — E[Ry_\))Elvr—1))” + (er—1 — Eler_1])”

+(gr—1(lr-1 = Ellz1]))* + ((gr—1 — Elgr1])E[lr1])
JRp_y(vr—1 — Elvr_1])
wr—1])(Ry_y — E[Rp_])E[vr—i]
—1])(er—1 — Eler—4])
)
=1))

2

+2n7_ 1 (wr—1 — E[wr_
+2np_1 (w1 —
+2np_q (wr_1 —
( qr—1(lr—1 — E[lr1])
(qr—1 — Elgr1])E[lr 1]
(Bp_y — B[Ry, ])E[or]

E|

El
—2np_q(wr—1 — Elwr_y
—2np_(wr—1 — E|

—|—2(’UT 1 —E[UT 1 )/RT 1

]
+2R7 (v — [UT—l])(CT_1 —E[CT_l])
—2Rp_y(vr—1 — E[vor—1])gr-1(lr—1 — Ellr1])
—2Ry_(vr—1 — E[vr—1])(¢r—1 — Elgr—1])E[l7]
+2(Rp_y — B[Ry ])Elor—1)(cr—1 — Eler—])
(RT 1 — B[Ry ))E[vr—1lgr—1(lr—1 — E[lr—1])
—2(Rp_y — E[Rp_1]))E[vr—1](gr—1 — Elgr—1])E[lr—1]
—2(cr1 — [CT—l])CIT—l(lT—l - EUT—l])

—2(cr—1 — Eler])(gr—1 — Elgr—1])E[lr—1]
+2qr-1(lr—1 — Ellr1])(qr—1 — Elgr1])E[lr_1].
(6.11)
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Since w! — E[w!], E[w}], vi — E[v], E[v}], are F;-measurable,

_(nT_l(wT_l - E[wT—l]))Q‘fT—l] = (np-1)*(wr—1 — E[wT—l])Qa

(Rpos(oros —Efora)) o]

(vr—1 — E[UT_J)IE[RT—lR/T_l] (vr_1 — Efor_4]),
((Ry-y ~ IRy )Elor_]) | Fr]

El(or—1)] (ElRr—1Ry_,] - E[Rr1[E[Ry_] ) Elvr_1],

I = &

&=

E :(CT—I - E[CT—l])2 ]:T—l} = E[cG_| — E[er1?,

E|(qr1(r1 — Elir1)))*|Fro1 | = Elgd_)(r—1 — Elir1])2,
E|((ar-1 — Elgr-1DEliz-1))*| Fro1| = (Elgd_.) - Elar—)* ) Ellr—1 %,
E[2n7-1(wr1 — Elwr 1) Ry, (vr—1 — Elor-i])| Fr

= 2npy (wr-1 — Blwr ) B[Ry ] (vr1 — Elvr_4]),

E:QnT 1(wry — Elwpa]) (Ry_; — B[Ry ])Elvr_4] -FT—I} =0,
E:QnT 1(wr—1 — Elwr_1])(er—1 — E[er—1]) -FT—l] =0,
E|2n5 1 (wp 1 — Blwr 1])gr 1 (lr1 — Eflr 1)) -7'—T71}

= 2071 Elgr 1] (wry — Efwr1])(Ir—1 — E[lr_1)),

_zanl<wal — Elwr1])(gr—1 — E[QTA])E[ZTA]‘]ETA] =0,
2(vr—1 — Elor—]) (Br—) (B, ~ B[Ry )Elor| Fr_i

= 2(vr-s — Blor 1)) (E[Rr 1 Ry_y) — E[Rr B[Ry, ] )Efor 1] =0,

E 2R, (vr-1 — Elor_])(er-1 — Bleri])|Fri]
= 2(Eler—1 Rp_y] — Eler1JE[Ry_y) (vr—1 — E[vr—1]) =0,

E_QRT V(ory = Elora])gr—i(lr—1 — Ellr1]) | Fr- 1]
:2E[QT R J(or—y — Efvpa])(lp—y — E[lr_1]),

E_2RT (o1 = Elura])(gr—1 — Elgr1])E[lr ‘]:T 1}
= 2(Elgr—1Ry_,] — Elgr—1|E[Ry_1]) (vr—1 — E[vr_1])E[lr—1] = 0,

B[2(Ry_y — BBy Eler ] (er1 — Bler])|Fra
:2(1{3 cr_1Ro ] — Eler1|E[R}_ 1]>E[UT_1]
E[2(Ry_, — E[Ry_,))Elvr—i]ar—i(lr—1 — E[lr_1))
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and
E[2(Rr_, — E[Rp_)Elvr-1)(ar-1 — Elar—1])Eliz—1] | Fr-1]
= 2(E[gr- 1RT \] — Elgr]E[Ry_,])E[vr_1]E[lr_4],
E 2(07’ 1= [CT 1])QT 1(lr- I_E[ZT 1 ‘FT 1]
(E qr-1¢r—1) — Elgr_1]E[cr— 1])(ZT 1 — E[lr_1]) =0,
Froi]

ﬁ |
N

2(07’ 1 — Elera])(gr-1 — Elgr—1])E[lr_4]
= (E qr-1Cr— 1 E[QT—l]E[CT—l])E[lT—l]a
2C]T 1(lr—1 = Ellr1])(qr-1 — Elgr—1])E[lr 1] ]:T—l]
= 2(El¢3_] — Elgr—1]*) (lr—1 — Ellr1])E[lr_] = 0.

ﬁ |
b

Therefore, we can reduce (6.10) into

E[(wr — Iy — Elwy — I7])* — AE[wy — I7]|Fr_1]

= B[ (nr1(wr s — Blwr)) + Bp_y(or1 — Efvr 1))
+(Rp_y — E[Ry_1)E[vr-1] + (71 — Eler-1])
~ar (i1 ~ Blir1)) ~ (a1 ~ Blar 1JEfir])
—A<an1E[waﬂ + E[R;_]E[vr_1] + Elcr_1] — E[QTA}EUTAD Fr-1]

= (np_1)*(wr—1 — E[wT—l])2 + (vr—1 — Elop_1)) E[Rr_1 Ry_ | (vr-1 — Efvr_1])
+E[(or 1)) (E[Rr 1 Ry_y] — B[Ry 1JE[Ry_,] )Elvr ) + E[(cr-1)?
—Eler 1]? + Elg ] (1 — Eltr1])* + (Elgd_y] — Elar—1]* ) Btz
+2n71 (wr—1 — Elwr_1])E[Ry_] (vr—1 — E[vr_1])
—2n7 1 Elgr1](wr-1 — Elwr—1])(lr—1 — E[l7-1])
—2E[gr—1 Ry ](vr—1 — E[vr—1])(lr—1 — E[lr—1])
+2(Eler—1Ry_y] - Eler 1]E[R}_,] )Elor 1]
~2(Elgr-1Ry_y] — Elgr1JE[Ry_,]) E[vr—1|E[lr-1]

—Q(E[QTACTA] - E[QTA]E CTfl])E[lel]
—)\nT_l]E[wT_l] — )‘E[R/T—l E[’UT_l] — )\]E[CT_l] + )\E[QT—l]]E[lT—l]-

[
]
(6.12)

The optimal strategies at period T"— 1 can be derived from the above equation
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corresponding to vr_q

where

vp_1 — Elvr_1] = —np_1(wr—1 — E[walb]E_l[RTflRIQLJE[RTfl]

+(lp—1 — E[ZT—I])E_l[RT—IR/T_l]E[QT—IRT—I]7

Elur+] = — (E[Rr-1Ry ]~ E{Rr 1JB[Ry)) (6.13)

x (E[CT_lRT_l] — Eler_1]E[Rr_1] —

A

EE[RT_I]

~ (Elgr— Rr—1] ~ ElgrJE[Rr_1))Elir_]).

B[Ry JE™ [Rr—1 Ry JE[Rr_1],
Eler—1 Ry JE Ry Ry JE[Rr4],
Eler 1 Ry JE7 [Rr—1 Ry [E[er—1 Rr—a],
(6.14)
Elgr—1 Ry JE~ Ry Ry JE[Rr—i],
Elgr—1 Ry _JE Ry Ry JE[Rr_1qr-1],

Eler1 Ry 4 JE7 Rr—1 Ry JE[Rr—1g7-1]-
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Substituting the optimal strategies back to (6.12), we obtain
JT—l(E[wT—l];wT—l - E[wT—l]yEUT—l]a lr—1 — E[ZT—l])
= E[JT(E[’IUT], wr — E[’LUT],]E[ZT], lT — ]E[ZT])LFT,J
+pT—1(wT—1 — 1 — E[wT—l - lT—l])2 - pT—1/\E[wT—1 - lT—l]
= PT{(”T—l)Z(wT—l — Elwr_1])” + (E[(cr—1)?] — Eler—1]?)

FEIGE ] (71 — Eltr—))? + (Eldé_] - Elr—1)* ) Elir_1)
—2nT—1E[QT—1](wT—1 - ]E[wT—l])(lT—l - EUT—l])
— A1 E[wr_1] — AE[er_1] + AE[gr—1|E[lr_1]
_(nT—1)2BT—1(wT—1 - E[wT—l])2 - Bélul(lT—l - E[ZT—l])2
+2n7_1Br_1(wr—1 — Elwr_1])(lr—1 — E[lr_1])
_Z(E[QT—lcT—l] - E[CJT—l]E[CT—l])E[lT—1]

(E Cr— 1RT 1 CT 1]E[R/T—l] - %E[R;“—l]

— (Blar 1 Ry_y] — Blar 1 JE[Ry_))Eliz))
X (E [Rr_1Ry_|] — E[Rr_ 1]E[R’T1]>1
x (Bler—1 Rr—1] — Eler 1JE[Rr 1] - %E[Rm]
~ (Elgr-1Fr] - Blgr_JElRr_ ) Elir_i]) |

‘|'pT—1(wT—1 —lp_y — I[‘3[@UT—1 - lT—l])2 - pT—l)\E[wT—l - lT—l]-
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Thus,
JT—1(]E[UJT—1], wr-1 — ]E[wT—l]a EUT—lL lr—1 — E[lT—l])

= pT{(nT1)2(1 — Br_1)(wr—1 — E[wr1])” + (E[(cr—1)?] — Eler_1]?)
+(Elgg_1] = Br_y) (lr—1 — E[lz1])?
_2(nT—1E[QT—1] - nT—lgT—l) (wT—l - E[wT—l])(lT—l - E[ZT—l])

+<E[Q%_1] - E[QTfl]Q)E[lel]Q - )\anﬂE[qu] - )\E[CTA] + )\E[QTA]EUTA]

—2(E[QT—ICT—1] - E[QT—I]E[CT—I])EUT—I] - ((E[CT—1] + % o ET_I)Ql —Bg;_l

A ~ ~ ~ ~
—2(Eler—1] + 5~ Br_1)Br_1+ Br_1 — Br_?r_l)
)\ —_— ~ P ~
(E[CT—I] + 5) (E[QT—I]BT—I - BT—I) + Br_1Br_1 — By 1 Elgr 1]
+2(
1—Br

+§T—1>E[ZT_1] — (B/T—l - E[QT—1]2 + (ET_ll__gj[jij;_l])2>E[ZT—1]Q}

+pT—1(wT—1 —lp_1 — E[wT—l - lT—l])2 - pT—l)\E[wT—l - lT—l]
= {r (wT—1 - E[wT—l])2 - 27]T—1(wT—1 - E[wT—l])(lT—l - ]EUT—l])

+er—1(lp—1 — EUT—1])2 — M1 Elwr_1] + N0r_1E[lr_4] + 5T—1E[ZT—1]2 + Ap_q,
(6.15)
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where

¢r 1= pr(nr_1)*(1 — Br_1) + pri,
nr-1= pr(nr_1Elgr-1] — nT—1§T—1) + pr—1,
er—1 = pr(Elgp_,] — Bp_y) + pr-1,

C(r—1 = Dprnr—1+pr-i,

> Do
—

br1= pr (E[QTI] — < (Elgr-icr1] — E[QTA]E[CTA])

Do >

)(E[QT—l]BT—l - ET—l) + ET—IET—I - ET—IE[QT—I]
1 — Br

(]E[CT—1] +

A

@zm))

_ (B/Tfl - E[QTA]Q + (ETll—_gT[qil]y))’

AT—l =

CT 1 [CT 1] —)\E[CT—l]

op_1 = ( [¢7_1] — Elgr_1]?

Br_,
1—Bry

N o~
— 2(Eler—1] + = — Br_1) Br—1

(( CT1+——BT 1)2 5

4+ B — E%l))

(6.16)
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Repeating the process at time 7" — 2, we have

Jr2(Elwr o], wr—o — Elwr o], Ellr o], Ir—o — E[lr_3])
= E[Jr_1(Elwr_i], wr—1 — Elwr_1], Elly_1], lr—1 — Ellp_1])| Fr_s]
+pr_o(wr_o — lp_o — Blwp_s — lp_])* — proAE[wr_s — Ip_s]
= Elr1 (wro1 — Efwr-1))” = 2nr-1(wr—1 = Blwri)) (b — Eflr1])
ter—1(lr—1 — Ellr_1])? = Mr-1E[wr—_1] + M7 E[lp_1] + or_1E[lr_1]?
+ A7 1| Fros] 4+ pros(wr—s — ly—s — Elwr_s — lr_5])? — pr_sAE[wr_s — l7_o]

= E [ET—l [nT—z(wT—2 — Elwr o)) + Ryp_s(vr—2 — Elvr_a]) + (R7_y — E[R7_,])E[vr 2]

Her—s — Efer_a])| — 2071 [ar—a(ir—s — Ellr_s)) + (ar_» ~ Elgr_2))Eliz_s]

[”T—2(wT—2 — Elwr_s]) + Ry_o(vr—2 — Elvr o)) + (R7_y — E[R7_])E[vr 5]

+(cr—2 — E[CT—2])] +er—1 [QT—2(ZT—2 —E[lr_o]) + (g7—2 — E[QT—z])E[lT—QH

_>\CT71 (nT,QE[U)T,Q] + ]E[err_ﬂ]E[Ung] + E[CT,QD

+A0r_1Elgr—o|Ellr_s] + 5T—1(]E[QT—2]]EUT—2])2 +Ap_y

]:T—Q:|

+pT—2(wT—2 —lp_9 — E[wT—Q - lT—Q])2 - pT—2)\E[wT—2 - lT—2]-
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Thus,

Jr—2(Elwr_s], wr_s — Elwr_o), Ellr_s], lr—s — Ellz_s])

= &ra s (wr 2 —Blwr o)) + (vr > —E[vr ) E[Rr 2Ry, (o>~ Efvra))
2np o (wr—o—Elwr o] )E[Ry_o] (vr—2—E[vr )
+E[vh ) (E[Rr—2Ry ) — E[Rr_o|E[Ry_,))Efor_o]
+(El(cr-2)") — Eler-o]?) +2(Eler 2 Ry_y) — Eler oE[Ry_y] )E[vr ]
2071 |n7_2Elgr-2] (ir— — Elir—a]) (wr—> — Elwr_s])
+E[gr_2Ry_o)(lr— — Ellr—2]) (vr—s — Elor_s))
+(Elgr2Ry_s] — Elar o]E[Ry_o] ) Elvr |E[lr]
+(Elgr—ser—2) — Elgr-s]Eler—2))Ellr_]|
tero [Blah (-2 Ellr)* +(Elgh o]~ (Elar—a])?) Elir—2))?]
~A¢r—1 (ng—sE[wr—s] + E[Ry_y]E[vr_s] + Elcr_o))
N0 Elar_oJEllr—o] + 671 (Elgr_oEllr_])? + Ay

+pT—2(wT—2 —lr—2 — E[wT—Q - lT—2])2 - pT—2)\E[wT—2 - lT—2]-
(6.17)
The optimal strategies at period T"— 2 can be derived by from above equation cor-

responding to vy_o

vr—2 = Elvr—a] = —nr_s(wr—s — Elwr o) )E" [Rr—2 Ry ]E[(Rr—o)]

+nr—1&01 (Ir—a — Ellr_o])E" [Rr_o Ry, E[qr_o Rr—o),

Elor—s] =— (E[RT—2R%_2] - E[RT—Q]E[R/T—Q]) B (6.18)
X (E[CT—QRT—z] - E[CT—z]E[RT—z] - ;g;iE[RT—Q]
~ ¢ (Elar2Rr ] ~ Elor oJE[Rr-])Ellr o])
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Substituting the optimal strategies back to (6.17), we obtain

Jr-2(Blwra], wr—s ~ Elwr-a], Ellr-a), lr-» — Elir-s))

= &) (wrz — Efwr o))" + & (El(er)°) - Eler )
teraBlad o) (ir-2 — Bllr-al)? + er-1(Elad o] — Elgr—)? ) Ellr—of?
~2r-1n—aElgr-a](wr—2 — Elwr—o])(lr—» — Ellr—s])
~Ar-1nr—oElwr_s] — Aer_1Eler—a] + Ar_ 1 Elgr_]E[lr_o]
+67-1(Elgr—JEllr—)® + Ag—y = €r1 (n7-2)* Br—s(wr—2 — Elwr—s])
—07 &1 Br_o(lr—2 — Ellr—»])°
4201 Br-s(wr— — Elwr—s))(r—» — Elir—s))

—2n7_1(Elgr—scr—s] — Elgr_s]E[cr_o] ) E[lr_o]

~&r1 (Eler o Ryy] — Bler 5JE[Ry_] - % B[R,
N Zz:i (Elgr—oRy_s] — E[QT—Q]E[R},Q])E[ZT_ﬂ)

X (E[RHR’T_Q] — E[Ry_5]E| R’T_2]> -

x(Eler—2Rr s] — Elor B[Ry ] - QZEE[ Ry
_zzj (E[QT—QRT—2] - E[QT—2]E[RT_2])E[ZT_2])

‘|'pT—2(wT—2 —lp_g — E[wT—Q - lT—Q])2 - pT—Q)\E["LUT—2 - lT—z]-
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Thus,

Jr—o(Elwr—o], wr—2 — Elwr_s], Elly_s], lr—> — E[l7_2])

= &r_1(nr_2)*(1 = Br_s)(wr—s — Elwr_])” + &r-1(E[(cr—2)?] — Eler—2)?)
+(eriBlgF ] — 1716711 Br_o) (lr—2 — E[lr—s])?
2071 (nr—2E[gr—s] — np_2Br2) (wr—s — Elwr_o])(Ir—o — E[lr—s])
+er_a (Elap o] — Elar—al? )Elir_of?
—Ar—1nr—aB[wr_o] — A(r—1Eler—o] + Ar_1Elgr—o]E[lr o]
+071(ElgroEllr—2])? — 2001 (Elgr—2cr—2] — Elgr—2]Elcr o)) Ellr o] + Az

ACr—1 2 Br_s Mro1 =~ =~

—&r1 ((E[CTQ] + s sz) 1-B,, Q(E[Csz] + e Bsz)Bsz
+Br_s — E%_2>
A — ~ ~
(E[CTQ] + 2?; 11) (E[QT72]BT72 - Bsz) + Br_oBr_o — Br_oElqr_]
+277T—1< - B,
— 2

_ M1 ( _ 2, (Br—2—Elgr-o]) 2

+§T—2>E[ZT—2] e (B r-2 — Elgr_o]” + - Bry )E[ZT—Q]

+pT—2(wT—2 —lp_9 — IEJ[UJT—2 - lT—2])2 - pT—Z)\E[wT—Q - lT—Z]

= &ro (wT—z - E[wT—Q])2 - 277T—2(wT—2 - E[wT—z])(lT—2 - ]E[ZT—Q])
ter_o(lp—o — Ellp—2])?* — A r—oE[wr_2] + A7 _oE[lr_o] + dr2E[lr_o]* + Ar_o,
(6.19)
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where

§r—o = &r_1(nr—2)*(1 — Br_s) + pr_o,

Nr—2 = Nr-1 (nT—QE[QT—Q] - nT—2§T—2) + pr-2,

er—o = er1E[gF_,] — 77%7155£1B/T72 + pr-2,
(r-2= (r-1nr_2 +pr-2,
2 207
Or—o = Or_1E[gr_o] — XnT—l(E[QT—2CT—2] - E[QT—Q]E[CT—Z]) + 77; .
oy _ S
(E[Csz] + )(E[QT72]3T72 - Bsz) + Br 9By 9 — By oElqr ]

% < 2871
1—Br_

+§T72) + pPr—2,

0p_9 = €r_q (E[q%_g] - E[QT—2]2) + 071 (E[gr—2])?

2 = 2
Nr—1 ( / 2 (BT—2 — E[QT—Q]) >
— B'r_o—Elgr_
&y T-2 [qr—a]® + 1B, ,

Ar_o = Ap i+ &raE[(er—2)?] — &roiEler—a]* — Mr—1E[er_s]
Mr-1 5 Brs

2
_ B, )22
2671 r-2) 1—Br_,

Nt o~ _ N
CT 1 — BT72)BT72 -+ BT*Q — B%fQ) .
2871

—&r1 <(E[CT—2] +

-2 (E[CT,Q] +

(6.20)
Assume that the following equation (6.21) holds at time ¢ + 1, we prove it according

to the mathematical induction.

Jir1 (Elwig], wipr — Elwea], Ellia], b — Ellia])

= §t+1(wt+1 - E[wt+1])2 = 21 (Wi — Elwia]) (ler — Ellera])
terrt(lar = Eller1])? = MG B[wig] + Aea Ellen] + 61 Ellen]” + Avi,
(6.21)
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where

and

§i41
Nt+1
€141

41

011

Ot+1

= &o(ng1)?*(1 — Biyr) + pegas
= g2 (e Elge] — neaBrgr) + pesa,
= €t+2E[th+1] - 771:2+25;r123£+1 + P+,

= G+2Mit1 + D1,

9 2
= O2E[qi1] — N2 (E[Qt+lct+1] - E[Qt+1]E[Ct+l]) + 77;\+2
A ¥el B.. B B
(]E[ctﬂ] n <t+2) (E[qt+1]Bt+1 _ Bt+1) + Biy1Biy1 — B Elgi]

% ( 28112
1—- B

+§t+1> + De+1,

= €42 <E[Qt2+1] - E[Qt+l]2> + 5t+2(E[CIt+1])2

(§t+1 - ]E[C]t+1]>2 ) ’

2
N
42 (B/t-H . E[Qt+1]2 + - Bt+1

§t+2

= Appo + EoB[(ci1)?] = Eq2Blee1]? — AGraElcip]

A ~ B
2§t+2 _ Bt+1)2 t+1
§i2 1 — By

A . - N
ez _ Bt+1)Bt+1 + Bii1 — Bt2+1)7
28142

—&t12 ( (E[Ct+1] +

—2(E[cia] +

(6.22)

& =pr, nr = pr, €r = pr, (v =pr, Or =pr, o7 =0, Ap =0.
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According to equation (6.21) and (6.22), we derive the result at time ¢.

Jt(E[wt]> Wy — E[wt]7 E[ltL i — E[lt])
= E[J1(Elwi], wier — Elwia], Ellia], livr — Elle])|F]
+pi(wy — Iy — Elwy — 1])? — pAE[wy — 1]

= E[¢1 (w1 — Elwin))” — 20001 (werr — Elwe]) (lerr — Ellia]) + €1 (lirr — Elle])?

A1 Elwig1] + M1 Ellp1] + 8 Ellpa)? + At+1|ft}
+pi(wy — Iy — Elwy — 1])? — pAE[wy — 1]
= E [§t+1 [nt(wt — Elw]) + Ry(v, — E[vi]) + (B, — E[R))E[ve] + (¢ — E[Ct])] :
211 a5l — Ell]) + (a0 — Bl Ell] | e (w0 — Efwr)) + Ri(vr — Elue]
+(R; — E[R)E[v¢] + (c; — E[Ct])] + e [qe(le — E[L]) + (g — E[Qt])E[lt]]2
—AGr1 (nE[wy] + E[R)]E[vy] + E[ct]) + M1 E[@]E[L] + 641 (Elg|E[L])* + A | F
+pe(wy — Iy — Elwy — 1])? — prAE[wy — 1]

- [n? (wi—Efwi])*+ (vi—E[vi]) B[R, R (v, — E[vr))
+2n, (wy—Efwy] ) E[R) (v,—E[vi]) + E[v)) (B[R, R)] — E[RE[R}])E[v]

+(El(0)?) — Elei)?) +2(Eleu )] — E[e]E[R) ) Elv]
2141 [ntE[qA <zt - [th)( - [ ) + Elac i) (1 — E[L]) (v — Ef))
+(Elg:R) — El0JE[R))Elu]EL] + (Elgici] — Elg]JE[c])E[L] |

+et+1[xﬁz[m<zt [ ) +(E m—< | A)Z)(E[ztw}
—AGr1 (niE[wy] + E[R)]E[vy] + E[ct]) + My E[@]E[L] + 641 (E[@E[L])? + Aria

+pi(we — Iy — Elwy — 1i])? — pAE[w, — 1y).

(6.23)
The optimal strategies at period ¢ can be derived from the above equation corre-

sponding to v,

v — Efve] = —ny(wy — E[wt])Efl[RtRﬂI_El[(Rt)] + e (b — E[L])ETH R RIE[g: Ry,
Efv] = (E[R K] - E[RJE[R]))

;g: Bl = % (Bl 1] — Elg|E[R])E[L]).

(6.24)

x (E[cth] _E[c]E[R:] —
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Substituting the optimal strategies back to (6.23), we obtain

Jo(Blw], w, — Efw], EL), 1, — E[L])
= &r(n)?(w — Elw)” + &1(E[()?] — Ele?)

e El) (L — EIL])? + evvn (Elg?] - Ela)? ) B2
201 Elge)(w, — Efuwy]) (1, — E[L,)
NG Elwy] = AGElel + At ElG B[] + 8 (BlgE[L]) + Avy
&1 ()2 Bo(w, — Elwr])® — 21654 Byl — E[L])?
+201n,By(w, — Elw]) (1 — E[L])
2041 (Elgicr] — ElgeJEle,] ) E[l,]

>\<t+1
2£t+1

€ (Eleuft] ~ El0]ELR) - 5 B[R] — 3 (Blg.Fy] ~ ElaJE[R)E[L))

X (E[Rth] - IE[RJIE[R'])

)\Ct 1 Ne+1

56 JELR] - £ (Ela R - ElaE[REL)
+pi(w — Iy — Elwy — ])* — pAE[wy — 1]

= &(n)*(1 — By) (w, — E[w,))” + &1 (E[(c:)?] — E[e,]?)
+(een1Blg?] — ni &4 B (I — E[L])?

— 211 (neElge] — neBy) (we — Elwy]) (I — E[ly])

X (E[cth] —E[c]E[R:] —

err (Elo?] — Bla? B[] = A amElw] = AGEle] + My Elg]ElL

+5t+1(E[Qt]E[lt])2 — 201 (E[tht] - E[Qt] [ ]) [lt] + Apia

)\Ct+1 5\2 Bt Ct+1 D
_£t+1 ((E[Ct] + 25“_1 - Bt) ]_——Bt — Q(E[C ] + 2€t+1 - Bt)Bt + Bt B2>
A, —
(Eled] + 22 ) (Ela:) B, — B:) + BB, — BiE[q]
—|—2nt+1( t+1 = + §t>E[lt]
Mt ( (B. — Ela)’
—&—; (B . —E[q]? + 1_—Bt>E[lt]2

+pi(wy — Uy — Elwy — 1])? — pAE[w;, — 1]
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Thus,

Ji(Elw], wy — gE[wt], E[l:],l: — E[l])
= &(w — Efwy])” — 2, (w, — Elw,]) (1

—AGE[wy] + ME[L] + §E[L]? + Ay,

—E[l]) + &(l; — E[l4])? (6.25)

where
&= &a(n)*(1 = By) + pr,
M= M+ (ntE[Qt] — ntEt) + P,
e = enBlgf] — nfa &G B+ b,

Gt = Gey1ny + P,

0y = 0i11E[q:] — %ﬁtﬂ(E[QtCt] - E[Qt]E[Ct])

AGt+1 - 5% DB
+277t+1 <(E[Ct] + %1 ) (E[Qt]Bt Bt) + BB, — B/E[q]
A

+ t) +pt7

0 = €41 (E[qf] — E[Qt]2> + 61 (B[q])? — zf_:(B/t _ E[qt]2 I (Etl—_EBEtDz)’

Ar= Ay + §t+1E[(Ct)2] - §t+1E[Ct]z — A1 Eley]

1—- DBy

)‘<t+1 5\2 DBy )\Ct+1 S\ D n N2
_ E _B _2(E _B)B,+B,—B )
i1 (( ] + 2% t) 1— B, ( [c] + %11 t) t + Dy t

(6.26)

Substituting E[v]] to the dynamic equation in (6.3) yields

B ~ J—
tB — Bt + Bt + E[Ct].

- Dt

Efwrn] = nElu] + (Efed] + 22:1 B~ Ela] + B.)

(6.27)

Therefore,

_ B
wt—onnk+Z< 2211—3 Elg;] + Bj)——

~B; + B, +Elg;)) H n.
l=5+1
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Typically, we know the optimal value of (6.6) is equal to Jy. Thus,

T
Z peVar(w;)
t=1

~B; —Elg;]+ B)) 2k

—Aowo + Moly + dol§ + Ao + Zpt (wo an * Z <
k=0 =
— B, + B, +Ecj H nl)

JQ(]E[U)()], Wy — E[wo],]E[lo], l() — E[lo]) + Zpt)\E[wt]

t=1

(6.29)

t—1 t—1

)\C]+1
2€]+1

l=7+1

O

The optimal strategy obtained in Theorem 6.1 will keep the same as the result

6.4 Numerical Example

established in section 5.2 if the exit time is determined by T.

Example 6.1. Consider the example in Section 5. Here we ignore the case of un-

correlation between R; and ¢, i.e., the return rates and cash flow are correlated.

Table 6.1: Data for assets and cashflow example

SP EM MS cashflow liability
Expected return 14%  16% 1% 1 10%
Standard deviation 18.5% 30% 24% 20% 20%
Correlation coefficient
SP 1 0.64 0.79 1 1
EM 0.64 1 0.75 P2 Do
cashflow P1 P2 P3 1 2
liability P1 P2 P3 P 1
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Thus,

0.09 0.0342 0.0355 0.0351
E[R] = [0.11], Cov(R,) = | 0.0355 0.0900 0.0540 | ,
0.12 0.0351 0.0540 0.0576

0.0423 0.0454 0.0459
E[R,R)] = [ 0.0454 0.1021 0.0672
0.0459 0.0672 0.0720

Using the formula mentioned in section 5.3, we have E[¢, R;] = (0.0898,0.1510, 0.1440)".

Moreover,

1.0589

V) = E'RR)E[R] = | —0.1196 | ,
1.1033
—0.3490

Yy = B RR)E[c;R] = | 0.4493 |,
1.6365
—1.0411

Yz = E'R,R)E[qR,] = | 0.1754
0.8209

B, = 0.2145, B, =0.2144, B, = 0.2507,
B (6.30)
B, — 00241, B, =00218 B, = 0.0488.

The probability mass function of an exit time 7 is
(p1, P2, P3, P4, p5) = (0.10,0.15,0.2,0.25,0.3),
respectively, for t = 1,2,3,4,5. Then we define the optimal expected value as follow
Elw] = (E[wi], Ews], E[ws], Elwa], E[ws])
substituting the data we have

E[w] = (4.3710,5.7834,7.2450, 8.7621, 10.3403).
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The initial wealth, initial liability and trade-off parameter are defined as wy = 3,

lp =1 and A\ = 1 respectively. Thus, we substitute the data to the optimal equation
vy = —1.05(wy — 4.9032)Y; — Y5 + 0.1595Y3j,
vy = —1.05(w; — 6.1660)Y; — Y + 0.2377Y30y,
vy = —1.05(wy — 7.4853)Y; — Y5 + 0.3458Y30,,
v; = —1.05(w; — 8.8694)Y; — Y5 + 0.5373Y3l5,

i = —1.05(wy — 10.3209)Y; — Y3 + 1.0000Y3l,.

The mean and variance of the final optimal value are E(T)(wMT) = 8.0462 and

Var™ (ws,) = 0.3901, respectively.
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Chapter 7

Conclusions and Future Work

Conclusions of the thesis are given in this chapter. We also indicate some new direc-

tions and future work related to the Mean-Variance model.

7.1 Conclusions

The thesis investigates the multi-period asset-liability mean-variance portfolio selec-
tion with cash flow. It is a nonseparable dynamic programming problem since it
cannot be solved under the backward recursion. In this thesis, we first formulate the
problem in deterministic terminal expectation and solve it by mean-field method. By
transforming the original model to mean-field formulation, we turn it into a solvable
stochastic control problem. Second, we employ dynamic programming and math-
ematical induction to deal with the model. By these two methods, we derive the
analytical optimal strategies and optimal value of multi-period mean-variance port-
folio selection problems with various kinds of constraints, such as with cash flow,
uncertain exit time, liability. The relations of them are given and the effects of dif-
ferent constraints are illustrated by numerical examples. Our methods are showed to

be much more efficient and accuracy compared with other methods in the literature.
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7.2 Future Work

We list the future work of the related topics as follows.

1. This thesis supposes that there is only one deterministic market state. How-
ever, the underlying market environment is random and there are various mar-
ket states in the real world. In recent years, regime-switching models have
become popular for reflecting the various states of the financial market. In
the future, using mean-field formulation to tackle mean-variance model with

regime-switching is worthwhile and challenging.

2. Although asset-liability mean-variance portfolio selection is an important issue
in modern finance theory, the time-consistent problem has not attracted much
attention. In the future work, seeking for time-inconsistent optimal strategy

and efficient frontier for asset-liability management is indeed meaningful.
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