

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

IN MEMORY DATA MANAGEMENT:
FROM HARDWARE TO APPLICATION

BO TANG

Ph.D

The Hong Kong Polytechnic University

2017

2

The Hong Kong Polytechnic University

Department of Computing

In Memory Data Management:

From Hardware To Application

Bo Tang

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

January 2017

ii

Abstract

With the availability of very large and inexpensive main memory, it is be-

coming practical to manage data managements in main memory and benefit from

high-speed access. For instance, in-memory database management systems (e.g.,

SAP HANA and Oracle TimesTen) provide much higher performance over disk-

oriented database management systems for relational data. In this thesis, we

identify and address some unsolved issues in in-memory data management, from

hardware to applications.

First, we exploit the hardware aspect (e.g., CPU and memory) to accelerate

distance computations (on data points), which are core subroutines in many ap-

plications, e.g., trajectory search, motif discovery and kNN classification. This

involves two research problems: (1) how to exploit every CPU cycle for compu-

tation, and (2) how to exploit every bit of main memory for caching data points.

Our work is orthogonal to existing pruning techniques and index structures on

data points. Regarding (1), we unlock the potentials of modern commodity C-

PUs (i.e., data parallelism, CPU caches, branch prediction). Regarding (2), we

propose to cache compact approximate representations of data points in main

memory in order to reduce the candidate refinement time in existing kNN search

methods. For each research problem above, we evaluate the performance of our

solutions on real datasets and show that our solutions are effective and scalable.

Next, we focus on the application aspect and consider in-memory OLAP

tools, which have been extensively used by enterprises to make better and faster

decisions. Specifically, we take the first attempt towards automatically extracting

top-k insights from in-memory OLAP cube. It is useful not only for non-expert

users, but also reduces the manual effort of data analysts. It has challenges on (i)

the effectiveness of the extracted insights and (ii) the efficiency of top-k insight

computation for in-memory data warehouses. We first propose a meaningful s-

coring function for insights to address (i). Then, we contribute a computation

framework for top-k insights, together with a suite of computation optimiza-

tion techniques to address (ii). Our experimental study on both real data and

iii

iv

synthetic data verifies the effectiveness and efficiency of our proposed solution.

Acknowledgements

I am deeply grateful to the many people who supported me during my PhD

life. First and foremost, I would like to express my deepest sense of gratitude

to my advisor, Dr. Man Lung Yiu, for the guidance during my study. He

advised, supported and challenged me during those four years. Without him, I

would not have the chance to complete this work. I would need an entire new

Acknowledgment section to list all that he taught me.

Second, a number of people directly contributed to the work described in

this thesis. I would also like to thank Prof. Kien A. Hua for his suggestions and

comments both on research and academic career. I am grateful to Dr. Leong

Hou U, and Dr. Yuhong Li, for taking me as a collaborator and for providing

valuable feedback. I thank Dr. Dongmei Zhang, who gave me the chance as a

Microsoft intern.

Most importantly, I would like to thank Dr. Kyriakos Mouratidis for his

herculean effort to teach and train me to be a professional researcher. I would

also thank Prof. Martin Kersten for told me where is the research beginning,

and Prof. Stefan Manegold for his thoughts and insights about how to be a pure

computer scientist. I was glad and proud to work with MonetDB team at the

v

vi

Dutch National Center for Mathematics and Computer Science. In addition, I

also had the pleasure of working with Dr. Chuanfei Xu, Mr. Kai Wang, Mr.

Jiahao Zhang, Mr. Shi Han, and Mr. Rui Ding.

Next, my appreciation also goes to many people inside and outside database

group at the Hong Kong Polytechnic University, who are: Eric Lo, Qiang Zhang,

Ziqiang Feng, Jianguo Wang, Capital Li, Yu Li, Wenjian Xu, Zhian He, Duncan

Yung, Petrie Wong, Jeppe Thomsen, Ran Bai, Edison Chan, Chris Liu and Henry

Yang, for their kindly help and support. I am grateful to Qiang Zhang for the

life in Hong Kong. He also gave me a lot of fun outside research.

Finally, I would like to acknowledge my friends and family for their support.

I wish to acknowledge a few of the close friends/teachers who supported in past

few years: Prof. Meng Ni, Prof. Min Zhu, Mrs. Li Ma, Mr. Ruidong Liu,

Mr. Qiaomu Shen and Mr. Yuhao Su. I also thank my mother and father,

who are awesome parent and I must apologize for not being able to stay with

them for many years. I would also thank my sister Ya Tang, who raised me up

together with my parents. She also offered me a lot of opportunities to explore

the wonderful world. Last, but not least, I want to thank my wife, Na Pan,

who has been together with me for many years. Her love, patience, support and

endless care enable me to carry through my Ph.D. study to the end.

Contents

Declaration i

Abstract iii

Acknowledgements v

Contents vii

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 In-memory Database Management System 1

1.2 Research Problems on In-memory Data Management 2

1.3 Thesis Organization . 4

vii

viii CONTENTS

2 Literature Review 7

2.1 In-memory Techniques . 7

2.2 Similarity Search on High Dimensional Data 9

2.2.1 Distance Functions . 9

2.2.2 High Dimensional Feature Vector 10

2.2.3 Time Series Data . 11

2.3 Multidimensional Data Exploration 12

2.3.1 Top-k Problems . 12

2.3.2 OLAP Data Cube . 12

2.3.3 Mining and Learning-based Techniques 13

2.3.4 Subspace Analysis . 13

2.3.5 Exploratory Analysis . 14

3 Exploit Every Cycle: Accelerating Distance Computation on

Modern Commodity CPUs 15

3.1 Introduction . 15

3.2 Preliminaries . 19

3.2.1 Fundamental Distance Measurement 19

3.2.2 Time Series Algorithms 20

3.3 Profiling of Algorithms . 23

CONTENTS ix

3.3.1 Experimental Setting . 24

3.3.2 Measurement Methodology 25

3.3.3 Identifying the Performance Bottleneck 26

3.4 Accelerating Distance Functions with SIMD 28

3.4.1 How do SIMD Instructions Reduce Stall? 29

3.4.2 Accelerating ED with SIMD 31

3.4.3 Accelerating DTW with SIMD 35

3.4.4 Accelerating Lower Bounds for DTW with SIMD 38

3.4.5 Accelerating Reference Index with SIMD 41

3.5 Experimental Study . 43

3.5.1 Subsequence Search . 43

3.5.2 Motif Discovery . 45

3.5.3 kNN Classification . 46

3.6 Chapter Summary . 47

3.6.1 Conclusion . 47

3.6.2 Research Directions . 48

4 Exploit Every Bit: Effective Caching for High-Dimensional N-

earest Neighbor Search 51

4.1 Introduction . 51

x CONTENTS

4.1.1 Technical Challenges . 54

4.1.2 Technical Contributions 55

4.2 Definition and Problem Statement 56

4.2.1 Definitions . 56

4.2.2 Research Objective . 57

4.2.3 Multi-step kNN Search 60

4.3 Histogram-based Caching for kNN Search 61

4.3.1 Histogram and Approximate Points 61

4.3.2 kNN Search Algorithm . 63

4.3.3 Histogram Solutions for kNN Algorithm 66

4.3.4 Effective Histogram Metric 69

4.3.5 Efficient Solution . 74

4.3.6 Extensions . 77

4.4 Cost Estimation Model . 81

4.4.1 I/O Cost Estimation . 81

4.4.2 Determining the Optimal τ 84

4.5 Experimental Study . 86

4.5.1 Experimental Setup . 86

4.5.2 Effect of Configurations 88

CONTENTS xi

4.5.3 Cost Estimation . 91

4.5.4 Performance Improvement 92

4.6 Chapter Summary . 96

5 Extracting Top-K Insights from Multidimensional Data 99

5.1 Introduction . 99

5.2 Problem Statement . 105

5.2.1 Data Model and Subspace 105

5.2.2 Composite Extractor . 106

5.2.3 Problem Definition . 111

5.3 Meaningful Insight Score . 113

5.3.1 Insight Score Function . 114

5.3.2 The Sig of Insight . 115

5.4 System Architecture . 120

5.4.1 Architecture Overview . 120

5.4.2 Extensibility . 121

5.4.3 In-memory techniques . 123

5.5 Insight Extraction . 123

5.5.1 Computation Framework 123

5.5.2 Computation Engine . 125

xii CONTENTS

5.5.3 Time Complexity Analysis 128

5.6 Optimization techniques . 129

5.6.1 Pruning by Upper Bound Score 129

5.6.2 Subspace Ordering . 130

5.6.3 Sibling Cube . 130

5.7 Computation Sharing . 134

5.7.1 Sharing within a Sibling Group 134

5.7.2 Sharing across Sibling Groups 137

5.8 Effectiveness Study . 141

5.8.1 Case Studies . 141

5.8.2 Insight Utility Study . 146

5.8.3 Human Effort Study . 148

5.9 Performance Evaluation . 150

5.9.1 Real dataset: Tablet sales 151

5.9.2 TPC-H dataset . 152

5.10 Chapter Summary . 155

5.10.1 Conclusion . 155

5.10.2 Future work . 155

6 Conclusion 157

CONTENTS xiii

6.1 Conclusion . 157

6.2 Future Research . 158

Bibliography 161

xiv CONTENTS

List of Figures

1.1 Research motivations . 3

1.2 Computer storage architecture 4

1.3 In-memory on-line analytical processing applications 5

3.1 Problems on time series data . 17

3.2 Busy vs. Stall time . 27

3.3 Profiling CPU stall . 27

3.4 Profiling existing solutions on DTW subsequence search and

classification . 28

3.5 Using SIMD for distance computation 29

3.6 Example for reducing branching statements 30

3.7 Horizontal accumulation . 33

3.8 Example for early stop . 34

3.9 SIMD DTW illustration, at i = 4 37

xv

xvi LIST OF FIGURES

3.10 LBEQ
Keogh SIMD illustration . 40

3.11 SISD-based and SIMD-based UCR-ED 43

3.12 SISD-based and SIMD-based UCR-DTW 45

3.13 [Subsequence search] vary query length 45

3.14 SISD-based and SIMD-based MK, EEG-MK 46

3.15 [Motif discovery] vary query length 46

3.16 Breakdown of CPU stalls and speedup, kNN Classification 47

4.1 Running time (wall-clock) of C2LSH 53

4.2 Total number of views per photo 53

4.3 Framework of caching on a high-dimensional dataset 58

4.4 Multi-step kNN methods, k = 2 60

4.5 Example of histogram-based coding 63

4.6 Effectiveness of histograms, with B = 4 buckets, on 2NN search,

WL = { q } . 69

4.7 Tree-based kNN search with our cache 78

4.8 Effect of caching policy, EXACT caching 89

4.9 Effect of dataset file ordering, EXACT caching 90

4.10 C-VA and HC-D comparison . 92

4.11 Remaining candidate size vs query I/O cost, axes in logscale . . . 93

LIST OF FIGURES xvii

4.12 The estimated and the measured query I/O cost of HC-W vs.

τ , k, CS at default setting . 95

4.13 Average response time (in logscale) vs. cache size CS, k, τ at

default setting . 95

4.14 Average response time (in logscale) vs. result size k, τ , CS at

default setting . 95

4.15 Performances vs. code length τ , on SOGOU, k, CS at default

setting . 95

4.16 Exact kNN search indexes, on IMGNET 96

5.1 Example of insights . 101

5.2 Examples of non-monotonicity 103

5.3 Example of composite extractor computation 110

5.4 Example of SG(S,Di) and Ce . 110

5.5 The significance of point insight 117

5.6 The significance of shape insight 118

5.7 The significance of outstanding No.1 119

5.8 The significance of rising trend 120

5.9 Top-k insight extraction system architecture 121

5.10 Running a composite extractor on a sibling group 127

5.11 Example of a data cube . 128

xviii LIST OF FIGURES

5.12 Data cube vs. sibling cube . 132

5.13 Running a composite extractor on a sibling group 135

5.14 Running a composite extractor on multiple sibling groups 139

5.15 Car sales shape insight: SG(〈∗, ∗,SUV,∗〉, Year) 143

5.16 Car sales point insight: SG(〈 *,*,SUV,* 〉, Year) 143

5.17 Tablet sales shape insight: SG(〈∗, · · · , ∗〉, Year) 144

5.18 Tablet sales point insight: SG(〈 *,· · · ,* 〉, Year) 145

5.19 Significances of top-2 insights in Tablet sales 145

5.20 Runtime on tablet sales vs. result size k 151

5.21 Performance results on the TPC-H data 153

List of Tables

2.1 Distance functions . 10

2.2 Comparison with related works 14

3.1 Computation techniques and distance functions used in time se-

ries problems . 21

3.2 Dataset information . 25

3.3 Instruction latency of SISD- and SIMD-ED 34

3.4 Instruction latency of SISD- and SIMD- DTW 37

3.5 Instruction latency of SISD- and SIMD- LBEQ
Keogh 41

4.1 kNN search on the cache, k = 1 66

4.2 Dataset information . 87

4.3 Effect of histogram categories, on SOGOU 91

4.4 Avg. refinement time (s) at default τ = 10 and at optimal τ∗ . . 92

xix

xx LIST OF TABLES

5.1 Car sales dataset (Year, Brand, Sales) 106

5.2 List of extractors, with the input SG(S,Dx) 107

5.3 Examples for extractors . 107

5.4 Composition taxonomy for adjacent extractors 108

5.5 Insights categories and evaluation procedures 116

5.6 Insight candidates for Ce = 〈(SUM,Sales),(∆prev,Year)〉 125

5.7 Case studies of insights on real datasets 142

5.8 User study result on the intern dataset with COUNT 149

5.9 Study on human effort (in minutes) 150

List of Algorithms

3.1 SISD-ED(q, tc) . 31

3.2 SISD-DTW (q, tc) . 35

3.3 SISD-LBEQ
Keogh(q, tc) . 38

3.4 SISD-LBref (ta, tb) . 41

4.5 kNN Search (Query q, Result size k) 65

4.6 Build-kNN-Histogram (Bucket number B, Value domain size

Ndom, Frequency array F ′) . 76

5.7 Insights (dataset R(D,M), depth τ , result size k) 124

5.8 ExtractΦ(SG(S,Di), Ce) . 125

5.9 Insights+Optimized (dataset R(D,M), depth τ , result size k) . 133

5.10 ExtractΦII(SG(S,Di), Ce) . 136

5.11 ExtractΦIII(SG(S,Di), Ce, hash table Ψ) 138

5.12 Insights+Sharing+Optimized (dataset R(D,M), depth τ , result

size k) . 140

xxi

xxii LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 In-memory Database Management System

Traditional Database Management Systems (DBMS) are designed to manage

a vast amount of data stored in hard disk. Query processing and optimization

techniques of traditional DBMS are tailored to exploit the characteristics of disk

storage mechanisms [41].

With the availability of very large and inexpensive main memory, it is be-

coming practical to manage data in main memory and benefit from high-speed

access. For instance, in-memory database management systems provide much

higher performance over disk-oriented database management systems for rela-

tional data. Specifically, SAP HANA [5] is an in-memory data management sys-

tem, which exploits the characteristics of modern hardware (e.g., massive main

memory, multi/many CPU cores) to improve the performance of transaction

processing and analytical processing.

1

2 1.2. RESEARCH PROBLEMS ON IN-MEMORY DATA MANAGEMENT

In the last two decades, we have been witnessing the advance of hardware

(i.e., cheaper RAM, multi/many cores). Many techniques (e.g., indexing, data

layout, parallelism, concurrency control, fault tolerance) have been proposed to

redesign the in-memory database management system. These works focus on

improving the efficiency of in-memory DBMS [105]. For example, in-memory

DBMS has efficient indexes (e.g., cache sensitive search trees) to avoid memory-

intensive scan, and columnar layout of relational table to accelerate scan / look-

up operators, as B+-tree and row-based layout are not suitable for in-memory

scenario.

1.2 Research Problems on In-memory Data Manage-

ment

In summary, these existing works focus on in-memory DBMS. In this the-

sis, we focus on three specific unsolved research problems in in-memory data

management from hardware to applications.

As shown in Figure 1.1(a), in the last decades, CPU speed improved at an

annual rate of 22-25% while memory (i.e., RAM) speed only improved at 2-11%.

Given these trends, the speed gap between CPU and memory RAM is becoming

larger and larger. Thus, CPU cache hierarchy was proposed to reduce expensive

main memory data access. However, there is a tradeoff between cache size and

access speed among these cache levels. For instance, L1 cache has the smallest

size and the fastest access speed, and L3 cache has the largest size with the lowest

access speed in modern commodity CPUs (as shown in Figure 1.2). In order to

CHAPTER 1. INTRODUCTION 3

fully exploit the computation ability of CPUs, we first investigate how to exploit

every cycles of CPUs for computation intensive workloads (e.g., similarity search)

in Chapter 3.

Time

Pe
rf
o
rm

an
ce

Year

P
ri

ce

1950 1960 1970 1980 1990 2000 2010 2020

$1012

$1011

$1010

$109

$108

$107

$106

$105

$104

$103

$102

$101

$100

$6,480,000

$4

RAM Price per GByte

(a) Memory wall (b) Memory price

Figure 1.1. Research motivations

At the same time, with the Moore’s law, the price of main memory is falling

down. For example, it needs 6 millions US dollar for a 1GB RAM in 1980s,

however it only needs 4 US dollar in 2015, as illustrated in Figure 1.1(b). With

such large amount of main memory, how to exploit every bit for applications in

massive dataset (e.g., similarity search on high dimensional dataset) is an open

question, which we study in Chapter 4.

In general, there are several data storage levels in computer storage architec-

ture (as shown in Figure 1.2), Chapter 3 and 4 focus on accelerating specific data

management task (i.e., similarity search) by unlocking the potential between two

or more levels in computer hardware (i.e, storage architecture).

In-memory on-line analytical processing (OLAP) is a core subroutine of in-

memory data management system. OLAP tools have been extensively used by

4 1.3. THESIS ORGANIZATION

Exploit Every Cycle

Chapter 3

Exploit Every Bit

Chapter 4

L0:

L1:

L2:

L3:

L4:

L5:

Register

L1 Cache
(SRAM)

L2 Cache
(SRAM)

L3 Cache
(SRAM)

Main Memory
(DRAM)

Local secondary storage
(local disk)

CPU register hold words retrieved
from L1 cache

L1 cache hold cache line retrieved
from L2 cache

L2 cache hold cache line retrieved
from L3 cache

L3 cache hold cache line retrieved
from main memory

Main memory holds disk blocks
Retrieved from local disk

Figure 1.2. Computer storage architecture

enterprises to make better and faster decisions.

By using the results and findings in Chapter 3 and 4, we propose an in-

memory computation framework to extract top-k insights from multidimensional

data in Chapter 5. It is a novel extension of current OLAP systems as it can

automatically extract useful insights from the dataset without any user’s input.

This is useful not only for non-expert users, but also reduces the manual effort of

data analysts. It has many applications in business intelligence area (as shown

in Figure 1.3).

1.3 Thesis Organization

The rest of this thesis is organized as follows. We summarize the literature

of our research problems in Chapter 2.

Chapter 3 (based on [92]) studies distance computation acceleration for d-

ifferent applications on modern commodity CPUs. Many existing algorithms

reduce the computation cost by pruning unpromising candidates with lower-

CHAPTER 1. INTRODUCTION 5

CPU

Algorithm

Storage

Sales Prediction

Promotion Strategy

Market Analysis

Business Analysis

Chapter 5

Figure 1.3. In-memory on-line analytical processing applications

bound distance functions. Even with these lower bounds, the above algorithms

remain computation intensive. In this chapter, we focus on an orthogonal re-

search direction that further boosts the performance by unlocking the potentials

of modern commodity CPUs. Our experimental study on real datasets shows

that our proposal can achieve up to 6 times of speedup.

Chapter 4 (based on [91]) discusses caching techniques for high dimensional

nearest neighbor search problem. Existing disk-based kNN search methods incur

significant I/O costs in the candidate refinement phase. We propose to cache

compact approximate representations of data points in main memory in order

to reduce the candidate refinement time during kNN search. First, we formulate

and solve a novel histogram optimization problem that decides the most effective

approximate representation scheme for data points. We then develop a cost

model for automatically tuning the optimal number of bits for encoding points.

In addition, our approach is generic and applicable to exact / approximate kNN

search methods. Extensive experimental results on real datasets demonstrate

6 1.3. THESIS ORGANIZATION

that our proposal can accelerate the candidate refinement time of kNN search

by at least an order of magnitude.

Chapter 5 (based on [90]) proposes an automatic and effective insights ex-

traction solution. Existing data analysis tools require tedious hit-and-trial from

the user, on manually posing queries, analyzing results and deciding what is in-

teresting. To alleviate this issue, we take the first attempt towards automatically

extracting top-k insights from multidimensional data. This is useful not only for

non-expert users, but also reduces the manual effort of data analysts. We propose

a meaningful scoring function in order to determine important insights. Then,

we contribute a computation framework for top-k insights, together with a suite

of optimization techniques to provide an efficient solution. Our experimental s-

tudy on both real data and synthetic data verifies the effectiveness and efficiency

of our proposed solution.

Chapter 6 concludes the thesis and discusses the future research directions.

Chapter 2

Literature Review

In this chapter, we review the existing works related to this thesis. Section

2.1 discusses in-memory data management techniques. Section 2.2 elaborates

similarity search on high dimensional dataset. Section 2.3 overviews multidi-

mensional dataset exploration.

2.1 In-memory Techniques

In order to design an efficient in-memory data management systems, various

aspects of research problems have been studied. Generally, the researches on

disk-based DBMS focus on optimizing the I/O access time. However, many

in-memory DBMS works exploit the following characteristics of modern CPUs

to improve the performance. For instance, SIMD and multi-core CPUs have

been used to speedup fundamental database operators (e.g., scalar aggregation,

scan) [107], sorting [26], and joining [74, 17, 15].

7

8 2.1. IN-MEMORY TECHNIQUES

1. CPU cache hierarchy: In order to hide memory latency from the pro-

cessor, CPU cache hierarchy is used. Modern commodity CPUs include

three levels cache (i.e., L1, L2, L3 in Figure 1.2). There are tradeoffs be-

tween cache size and access latency among these different cache levels. For

example, L1 is 32KB with 4 cycles access latency, and L3 is 24MB with

almost 100 cycles access latency in Intel Xeon E7-4850.

2. Single instruction multiple data (SIMD): Modern commodity CPUs

provide vector instructions (SIMD) operating on wide register (e.g., 256-

bits, 512-bits) can perform the same instruction on multiple data values in

parallel.

3. Hardware prefetcher: Modern commodity CPUs have built-in hardware

prefetcher. It allows to prefetch additional lines of instruction or data into

the L1 or L2 cache in CPU cores. It can reduce data and instruction access

latency.

4. Multi-core: A chip contains multiple cores, e.g., Intel i7 has 4 physical

cores in one chip. Different cores may execute different threads in parallel.

5. Simultaneous multithreading: This feature supports running multiple

concurrent threads in the same CPU core.

The performance of disk-based DBMS is measured by the total of disk I/O

times. Indexes for disk-based DBMS (e.g., B+ tree) are not suitable for in-

memory database systems. Thus, several in-memory indexes have been proposed

(e.g., Cache Sensitive Search Trees [73], Adaptive Radix Tree [58]) to support

effective query processing in-memory. Different data layouts (e.g., columnar

CHAPTER 2. LITERATURE REVIEW 9

layout [71], hybird of row and column layout [5]) have been proposed to achieve

good cache locality[54], better data compression [59] for efficient data scan and

look-up with in-memory environment. In the literature, many other optimization

aspects (e.g., concurrency control, fault tolerance) have been studied in literature

for in-memory DBMS. We refer the interested reader to a recent survey [105].

2.2 Similarity Search on High Dimensional Data

Typically, given a high dimensional dataset D and a query point q, the

similarity search is finding the similar objects of q in D with a specific distance

function f(·). K nearest neighbor (kNN) search and range queries are important

subclasses of similarity search. In this section, we introduce distance functions

in Section 2.2.1, then review the similarity search applications in Sections 2.2.2

and 2.2.3.

2.2.1 Distance Functions

We review the distance functions from the following aspects: distance func-

tion, computation complexity and distance metric, as illustrated in Table 2.1,

where m is the dimensionality of data objects in D. A distance is a metric

distance when it has identity, nonnegativity, symmetry and triangle inequality

properties [85].

10 2.2. SIMILARITY SEARCH ON HIGH DIMENSIONAL DATA

Distance function f(·) Complexity Metric Reference

L2 - norm (ED) O(m) Yes [44]

Dynamic Time Warping (DTW) O(m2) No [44]

Longest Common SubSequence (LCSS) O(m2) No [44]

Discrete Fréchet Distance (DFD) O(m2) Yes [44]

Earth Mover’s Distance (EMD) O(m2) Yes [30]

Kullback - Leibler Divergence (KL-D) O(m) No [30]

Edit Distance on Real Sequence (EDR) O(m2) No [33]

Edit Distance with Real Penalty (ERP) O(m2) No [33]

Table 2.1. Distance functions

2.2.2 High Dimensional Feature Vector

In this section, we overview the kNN search on high dimensional feature

vector with Lp-norm distance (e.g., L2 norm).

Multimedia object (e.g., image, video) can be represented by a high dimen-

sional feature vector. In high dimensional exact kNN search, tree-based indexes

(e.g., R-tree, X-tree, SR-tree) [18] suffer from the dimensionality curse [98], so

their running time for kNN search degenerates to that of linear scan. The VA-

file [98] and its variants VA+-file [37] proposes approximate representations of

points to support efficient linear scan.

We classify existing methods on approximate kNN search into two types:

(1) LSH based methods [48, 29, 64, 93, 39, 104] that provide theoretical result

accuracy guarantees. Specifically, LSH methods aim to compute c-approximate

kNN results in sub-linear time, i.e., the result distances are at most c times of

the exact result distances, and (2) Non-LSH based methods [10, 11, 99, 40, 20]

that optimize the result accuracy based on training data. Both types of methods

process a query q in two phases. First, we retrieve a candidate set of object

identifiers (the candidate generation phase). Then, we fetch their data points

CHAPTER 2. LITERATURE REVIEW 11

from a disk file to finalize the kNN results (the candidate refinement phase).

SK-LSH [104] rearrange the data file such that similar points are likely to be

placed on the same disk page. This would reduce the I/O cost in the candidate

refinement phase.

In addition, there exist some caching techniques for kNN search in the dis-

tance metric space [34, 85]. Falchi et al. [34] study caching the results of kNN

queries, whereas Skopal et al. [85] propose to cache the distances obtained from

kNN queries. These techniques are designed for metric space indexes (e.g., M-

tree [27], iDistance [52]).

2.2.3 Time Series Data

Time series data can also be modeled as high dimensional feature vectors

as discussed above. The similarity search problems on time series data: (i) the

subsequence search problem [38, 108, 33, 69, 83, 22, 72], (ii) the motif discovery

problem [67] and (iii) the kNN classification problem [33, 72]. Faloutsos et. al.

used R∗-tree to improve the performance of subsequence matching in time series

databases in [35]. However, as stated in [72], the existing indexing techniques [35,

9] are inefficient these similarity search problems.

The typical distance functions for time series similarity search are the Eu-

clidean distance (ED) and Dynamic Time Warping (DTW). Existing time series

algorithms rely on software-level optimizations such as lower-bound function-

s [35, 9, 69, 108, 72], early abandon techniques [72]. However, existing solutions

incur high CPU stall times and there are rooms to further improve the efficiency.

12 2.3. MULTIDIMENSIONAL DATA EXPLORATION

2.3 Multidimensional Data Exploration

Data exploration is about efficiently extracting knowledge from data [46].

In the following, we review the related work in each relevant area.

2.3.1 Top-k Problems

Top-k queries have been extensively studied in databases [47]. They require

user to specify a ranking function (or the weighting of attributes), and then

return k result objects. In contrast, our studied problem does not require any

user parameter and our results are insights rather than objects.

2.3.2 OLAP Data Cube

The OLAP data cube model [43] supports efficient aggregation on a multi-

dimensional dataset and allows users to navigate the aggregation result by op-

erations (e.g., slicing, dicing, drill up/down). Efficient construction algorithms

for data cubes have also been studied [36, 16]. For example, the iceberg cube

model [16] avoids computing the larger group-bys that do not meet minimum

support.

Advanced cubes have been proposed for other forms of analysis beyond

aggregation such as dominant relationship analysis [60], statistical analysis [61],

and ranking analysis [101, 102]. However, these techniques rely on monotonicity

and/or convexity of an aggregate measure to speedup query processing and or

reduce space size.

CHAPTER 2. LITERATURE REVIEW 13

2.3.3 Mining and Learning-based Techniques

Recent works [63, 2] employ data mining techniques (e.g., outlier detection,

cluster analysis) and machine learning techniques (e.g., inductive learning [66])

on datasets to perform pattern discovery and predictive analytics, respectively.

For example, [63] combined the best features of existing standard method-

ologies such as principal component and cluster analyses to provide a geometric

representation of complex data sets.

Inductive learning [66] is a process of acquiring knowledge by drawing in-

ductive inferences from teacher- or environment-provided facts. Although it is

one of the most common forms of learning, it has one fundamental weakness:

except for special cases, the acquired knowledge cannot be completely validated.

2.3.4 Subspace Analysis

Subspace analysis has been considered in [70, 68, 89, 102]. Pei et al. [70]

examine how to identify subspaces such that an object belongs to the skyline.

Hassan et al. [89] aim to discover contextual skyline objects that belong to the

skyline with respect to a subspace of measures subject to a conjunctive constraint

on dimensional attributes. [68] has studied various problems on subspace mining

analysis (e.g., subspace clustering, outlier mining).

The most related work to ours is [102]. Given a query object specified by

user, their problem is to find the top-R subspaces with the highest ‘promotive-

ness’ values. The ‘promotiveness’ value of an object in a subspace S is defined

in terms of (i) the rank of an object in S, and (ii) the number of objects in S.

14 2.3. MULTIDIMENSIONAL DATA EXPLORATION

2.3.5 Exploratory Analysis

In database community, various exploratory analysis techniques have been

designed to find interesting information (i.e., explain difference, finding outlier)

from the data. The most relevant works in exploratory analysis area are: Sarawa-

gi et al. [77], Wu. et. al [102], ARcube [101], IBM Cogons[1], and SEEDB [95].

We summarize these works in Table 2.2, with respect to three features, i.e., user

input, top-k, and result.

Approaches User input Top-k Result

Sarawagi. et. al [77] OLAP operations No anomalies

Wu. et. al [102] promotion objectives, integer k Yes subspaces

ARcube [101] aggregate queries, integer k Yes aggregate values

IBM Cogons [1] OLAP operations No aggregate values

SEEDB [95] queries No visualization

Table 2.2. Comparison with related works

In addition, in the database community, several works have investigated

efficient techniques for data exploration [75, 78, 32, 81]. We omit the discussion

of these works and refer readers to the recent overview paper [46].

Chapter 3

Exploit Every Cycle:

Accelerating Distance

Computation on Modern

Commodity CPUs

3.1 Introduction

Lots of similarity search algorithms in various applications (e.g., spatial,

multimedia, time series) are distance computation intensive. In this chapter, we

focus on boosting the performance of distance computation intensive algorithms

in time series applications.

Time series data has various applications in medical diagnosis, speech pro-

15

16 3.1. INTRODUCTION

cessing, climate analysis, financial analysis, etc. It has attracted extensive re-

search in the literature [9, 38, 67, 108, 69, 83, 22, 72].

We illustrate representative problems in Figure 3.1: (a) the subsequence

search problem, which takes a query sequence q and finds its most similar sub-

sequence tc of a time series t, (b) the motif discovery problem, which reports the

most similar pair of subsequences in a time series t, and (c) the kNN classification

problem.

These problems typically use the Euclidean Distance (ED) and Dynamic

Time Warping (DTW) as the similarity measure.

These problems are computation bound rather than disk I/O bound [72].

Many time series algorithms have been evaluated on commodity CPU [9, 38, 67,

108, 69, 83, 22, 72] in single machine. These works focus on devising lower-bound

distance functions to prune unpromising candidates and thus reduce calling ex-

pensive distance computations.

Even with these effective lower bounds, the above time series problems are

still computation intensive, especially for increasingly long time series nowadays

(e.g., medical physiological signals1). For example, the subsequence search on a

trillion scale time series [72] would take 3.1 hours (under the Euclidean distance)

and 34 hours (under Dynamic Time Warping) on a commodity PC.

Nevertheless, existing techniques overlook the characteristics of CPU and

they have not studied the effect of those characteristics on the CPU time. In

general, the CPU time consists of (i) busy cycles, for executing instructions, and

(ii) stall cycles, for waiting for instructions or data.

1http://www.physionet.org/physiobank/

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 17

(a) subsequence search

query q time series t

result

(b) motif discovery

result pair

(c) kNN classification

s1

s2

s11

query q
class 1

class 2 s12

……

……

result class

Figure 3.1. Problems on time series data

We raise the following questions:

Q1: “In these algorithms, where does time go?”

To answer this question, we profile the performance [7, 87] of existing time-

series algorithms (cf. Section 3.3). Surprisingly, most of the CPU time (70%) is

spent on stalling.

Q2: “What cause CPU stall cycles?”

According to our performance profiling, the CPU stall is mainly (more than

80%) caused by branch mispredictions, cache misses, and ALU stall in lower-

bound and distance functions.

Q3: “How to reduce CPU stall cycles in modern CPUs?”

Modern CPUs have built-in hardware for branch prediction, caching, and

processing vector data efficiently (through SIMD instructions). Recent research-

es have utilized these characteristics to offer speedup on different problems like

join [25], sorting [26], set intersection [49]. In this chapter, we will design effi-

cient implementations for lower-bound and distance functions by exploiting the

characteristics of modern commodity CPUs.

Note that our research direction is orthogonal to the development of lower-

18 3.1. INTRODUCTION

bound functions [9, 38, 67, 108, 69, 83, 22, 72]. Besides, our proposed techniques

are also applicable to mobile time series applications (e.g., continuous heart rate

monitoring on Apple watch) as Apple mobile processors (e.g., A5) have supported

advanced SIMD instructions since 20112.

Our proposed techniques achieve performance gain through: (i) reducing

branch mispredictions and cache misses, (ii) incorporating parallelism for vector

processing in our computations. We then elaborate these issues in the following

two paragraphs.

Conditional branches (e.g., if-then-else, case statements) are commonly used

in the lower-bound and distance functions on time series. With branch prediction,

a CPU can speculatively execute one path of a conditional branch. A correct

prediction can improve the performance due to the CPU’s instruction pipeline.

However, if the prediction is wrong (i.e., branch misprediction), then many CPU

cycles will be wasted to flush the instruction pipeline, flush and fetch the relevant

data, and restart the execution for the other branch. Therefore, it is desirable to

rewrite algorithms to use fewer branching statements and avoid cache pollution.

Also, we need to reduce non-compulsory cache misses brought by random memory

accesses in our algorithms.

Data-intensive functions, like lower-bound and distance functions on time

series, execute certain arithmetic operations (e.g., multiplication, division) that

incur many CPU cycles and thus cause ALU stall. To reduce ALU stall, we use

SIMD instructions to process multiple data values per instruction. For example,

a SIMD division instruction takes two vectors of values Va and Vb as input, and

2
https://en.wikipedia.org/wiki/Apple_mobile_application_processors

https://en.wikipedia.org/wiki/Apple_mobile_application_processors

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 19

perform division Va[i]/Vb[i] for each position i simultaneously. In this chapter,

we present vectorized implementations for lower-bound and distance functions by

using SIMD. In addition, our vectorized implementations are designed to avoid

using conditional branches.

Besides, our proposed techniques are generic and applicable to many time

series problems (e.g., subsequence search, motif discovery, kNN classification).

3.2 Preliminaries

3.2.1 Fundamental Distance Measurement

In this work, we consider two most popular distance functions, i.e., Euclidean

Distance (ED) and Dynamic Time Warping (DTW), in time series problems [35,

55, 62, 69, 72, 79]. We follow the suggestion from prior literatures [62, 72] that

every subsequence should be Z-normalized in order to capture the similarity

between the shapes of the sequences. Formally, the i-th value of a Z-normalized

sequence q̂ can be calculated by q̂[i] =
q[i]−µq
σq

, where µq and σq are the mean and

standard deviation of q, respectively, and q[i] indicates the i-th element of q. For

ease of presentation, we use dist(q, t) to denote the distance dist(q̂, t̂) between

Z-normalized subsequences in this chapter.

Euclidean Distance: This is the most common similarity metric in time se-

ries [35, 62, 72, 83, 108] due to its simplicity. We give the definition of squared

20 3.2. PRELIMINARIES

ED3 in Equation 3.1. It takes O(m) time for a query q of length m.

ED(q, tc) =

m∑
i=1

(q̂[i]− t̂c[i])2 (3.1)

Dynamic Time Warping: DTW can capture the similarity of two sequences

which may vary in time or have missing values. It is shown to be effective in time

series applications [12, 55, 79]. DTW aims to find the optimal alignment (i.e.,

minimum distance) between two sequences, according to the following recursive

equation.

DTW (q, tc) =(q̂[1]− t̂c[1])2 + min

DTW (q̂[2...last], t̂c)

DTW (q̂[2...last], t̂c[2...last])

DTW (q̂, t̂c[2...last])

(3.2)

where q̂[2...last] denotes the subsequence of q̂ containing values from the 2nd to

the last offset. To avoid pathological warping (and reduce the computational

cost), the literature [72] suggests to limit the warping length r such that q̂[i] can

be matched with t̂c[j] when |i − j| ≤ r. This reduces the time complexity of

DTW from O(m2) to O(mr).

3.2.2 Time Series Algorithms

In Table 3.1, we summarize the computation techniques (e.g., lower-bounds

functions and distance functions) that can be used in three representative time

3The squared distance preserves the relative ordering of distances, and it avoids ex-
pensive square root calculations.

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 21

series problems: subsequence search, motif discovery, and classification. Where

LB prefixed function provides a lower bound of the exact distance.

Table 3.1. Computation techniques and distance functions used in time series
problems

problem technique(s) distance

subsequence early distance stop ED

search LBKimFL, LB
EQ
Keogh, LB

EC
Keogh DTW

motif
LBref (uses reference indices) ED

discovery

classification early distance stop ED

(by kNN) LBKimFL, LB
EQ
Keogh, LB

EC
Keogh DTW

Subsequence search. Formally, given a time series t of length n, a query q of

length m, and a distance function dist(·), the subsequence search problem returns

a length-m subsequence tc ∈ t such that dist(q, tc) is the minimum (among all

length-m subsequences in t).

To the best of our knowledge, UCR Suite [72] is the state-of-the-art solution

for the subsequence search problem. It adopts the filter-and-refinement paradig-

m to reduce exact distance computations. Let bsf be the best-so-far distance

obtained during the search process. For ED subsequence search, UCR Suite does

not apply any lower-bound function. It accumulates the distance step-by-step

and early stops the distance computation dist(q, tc) as soon as the accumulated

value exceeds bsf . For DTW subsequence search, UCR Suite examines each can-

didate subsequence tc and applies lower-bound functions on tc in ascending order

of their computation cost: first LBKimFL, then LBEQ
Keogh and finally LBEC

Keogh. tc

gets pruned as soon as some LB(q, tc) exceeds bsf . If tc survives, then UCR Suite

executes the distance function on tc. We proceed to introduce these lower-bound

22 3.2. PRELIMINARIES

functions as follows.

LBKimFL is derived from the First and the Last sequence values, taking only

O(1) time to compute. It is defined as

LBKimFL(q, tc) = (q̂[1]− t̂c[1])2 + (q̂[m]− t̂c[m])2 (3.3)

LBEQ
Keogh is derived from the distance between the candidate subsequence t̂c and

the envelop of q̂. Given the warping length r, the upper and lower envelop of

q̂ are defined as q̂u[i] = maxi+rj=i−r q̂[j] and q̂l[i] = mini+rj=i−r q̂[j], respectively,

Accordingly, we have

LBEQ
Keogh(q, tc) =

m∑
i=1

(t̂c[i]− q̂u[i])2 if t̂c[i] > q̂u[i]

(t̂c[i]− q̂l[i])2 if t̂c[i] < q̂l[i]

0 otherwise

(3.4)

LBEC
Keogh is derived similarly to LBEQ

Keogh but the lower-bound is derived from the

distance between the query and the envelop of t̂c (i.e., switching roles).

Motif Discovery. Formally, given a time series t of length n, and a query

length m, the motif discovery problem returns a pair of length-m subsequences

tc, t
′
c ∈ t such that the Euclidean distance ED(tc, t

′
c) is the minimum among all

pairs.

MK [67] is a representative solution for motif discovery. It provides the first

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 23

non-trivial algorithm to discover exact motifs in time series dataset 4. To avoid

examining every subsequence pair, it proposes a reference based lower-bound.

Given a set of subsequences and their distances to a set of references R, the

lower-bound of two subsequences ta and tb can be derived as follows.

LBref (ta, tb) = max
ri∈R
|distRef [ri][ta]− distRef [ri][tb]| (3.5)

where distRef [ri][t] = ED(ri, t).

MK first constructs a sorted list of every subsequence in terms of their

distances to a reference. Intuitively, if the lower-bound of every 1st neighbor

pair (in terms of their positions in the sorted list) is worse than bsf , then it is

not necessary to examine further neighbor pairs (e.g., 2nd neighbor pairs) due

to the monotonicity of the sorted list. Thereby, MK iteratively examines the

subsequence pairs based on their sorted list positions. At the end of an iteration,

the search terminates when no neighbor pair has lower-bound better than bsf .

Classification. ED and DTW are widely accepted for describing the similarity

between time series in the classification problem [33]. We can apply the same

techniques for subsequence search (i.e., early distance stop for ED and lower-

bound techniques for DTW) to boost the classification process.

3.3 Profiling of Algorithms

We first describe our experimental platform and then present the profiling

result on existing time series algorithms.

4http://www.cs.ucr.edu/~eamonn/exact_motif/

http://www.cs.ucr.edu/~eamonn/exact_motif/

24 3.3. PROFILING OF ALGORITHMS

3.3.1 Experimental Setting

In all experiments, we use a machine with a 3.40GHz Intel(R) Core(TM)

i7-4770 CPU based on Haswell micro-architecture, 16 GB main memory, and a

SSD (solid state drive, 256GB capacity, 545 MB/s sequential read throughput).

The CPU has 4 physical cores and supports simultaneous multithreading. The

machine runs Ubuntu 14.04. All algorithms have been implemented in C++ and

compiled by GNU C++ compiler with level 3 optimization.

We use the following real datasets and list their information in Table 4.2.

All datasets are stored in the SSD.

• For the subsequence search problem, we use three datasets. Both ECG-

E5 and ECG-L6 are electrocardiography (ECG) recordings, and we use the

same query sequences (of length 421) as in [72] as the default query sequences.

EEG-C7 contains electroencephalography (EEG) recordings, and we random-

ly extract query sequences (of length 128) from the epileptic seizure recording

as in [84]. For each dataset, we follow the experimental methodology in [72],

and obtain a single time series by concatenating all data sequences.

• For the kNN classification problem, we use Weather 8 dataset, which contain-

s the temperature data extracted from weather forecast records. It contains

11,508 sequences, each sequence in Weather corresponds to a one-year time

series collected from 5,936 locations. We use the attribute “Country” as the

class attribute. We randomly choose data sequences as queries and exclude

5 http://www.physionet.org/physiobank/database/edb/
6 http://www.physionet.org/physiobank/database/ltstdb/
7 http://www.physionet.org/pn6/chbmit/
8 http://data.gov.uk/metoffice-data-archive

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 25

Table 3.2. Dataset information
dataset sequence length data size problem

ECG-E 1.60 · 108 611 MB subsequence
ECG-L 1.89 · 109 7.06 GB search
EEG-C 1.01 · 1010 37.5 GB

EEG-MK 1.80 · 105 704 KB motif
TAO-MK 7.42 · 105 2.82 MB discovery

Weather 1.81 · 103, 19.86 MB kNN classification

them from the data.

• For the motif discovery problem, we use two datasets: EEG-MK9 and TAO-

MK [62].

3.3.2 Measurement Methodology

Program execution time: According to the Intel performance analysis man-

ual [3], the program execution time (TR) consists of: computation time (TC),

branch misprediction stall (TBr), backend stall (TBe), and frontend stall (TFe).

The computation time (TC) is regarded as ‘CPU busy’, and the rest as ‘CPU

stall’. The backend stall occurs when the requested resource is being held-up

in back end. It includes ALU stall (TALU) and memory stall (TCache). TALU

is the ALU execution unit stall, which is caused by the execution of arithmetic

operations (e.g., divide, square root) that require many cycles. TCache is the

memory-bound stall, which is caused by L1 data cache misses, L2 cache misses,

L3 cache misses or TLB cache misses.

We summarize the breakdown of execution time in a CPU as follows:

9 http://www.cs.ucr.edu/∼mueen/OnlineMotif/index.html

26 3.3. PROFILING OF ALGORITHMS

TR = TC + Tstall; where TStall = TBr + TALU + TCache + TFe

Profiling experiments: To measure the above components of CPU time, we

used PAPI [21] to obtain hardware performance counters from CPU, e.g., the

number of stall cycles and the number of CPU cycles. In each subsequence search

and classification experiment, we report the average CPU time over 10 queries.

To ensure the confidence level, we repeat running each query until the maxi-

mum standard deviation of the important counters (UOPS RETIRED:RETIRE SLOTS,

CPU CLK UNHALTED:THREAD P) is less than 3%.

Experimental reproducibility: For the sake of experimental reproducibility,

we have posted the datasets and source codes at [6] 10.

3.3.3 Identifying the Performance Bottleneck

In this section, we profile the performance of existing solutions and then

identify the performance bottleneck. We conduct experiments to profile the

performance of representative solutions: (i) UCR Suite [72] for the subsequence

search problem, (ii) MK [67] for the motif discovery problem, and (iii) kNN

classification [72] for the classification problem.

CPU stall & CPU busy: Figures 3.2(a) and (b) report the CPU time break-

down of existing solutions into busy time and stall time, for subsequence search

and motif discovery, respectively.

10For consistency, we use the ‘float’ data type to represent time series values in all evaluated methods.

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 27

Observation: The majority (65–70%) of the CPU time is spent on stalling (i.e.,

wasted CPU cycles).

0%

20%

40%

60%

80%

100%

ECG-E ECG-L EEG-C

P
er

ce
nt

ag
e

of
 C

P
U

 ti
m

e

dataset

ED DTW ED DTW ED DTW
BUSY STALL

0%

20%

40%

60%

80%

100%

300 500 700 900

P
er

ce
nt

ag
e

of
 C

P
U

 ti
m

e

query length

BUSY STALL

(a) subsequence search (b) motif discovery
(UCR Suite) (MK)

Figure 3.2. Busy vs. Stall time

CPU stall breakdown: We then delve into CPU stall and plot the breakdown

of CPU stall time in Figures 3.3(a) and (b).

0%

20%

40%

60%

80%

100%

ECG-E ECG-L EEG-C

P
er

ce
nt

ag
e

of
 C

P
U

 s
ta

ll

dataset

ED DTW ED DTW ED DTW

TBr
TALU

TCache
TFe

0%

20%

40%

60%

80%

100%

300 500 700 900

P
er

ce
nt

ag
e

of
 C

P
U

 s
ta

ll

query length

TBr
TALU

TCache
TFe

(a) subsequence search (b) motif discovery
(UCR Suite) (MK)

Figure 3.3. Profiling CPU stall

Observation: The CPU stall is dominated (more than 80%) by ALU stall, cache

misses, and branch mispredictions penalties.

CPU time of different functions: The DTW function and its lower-bound

functions (LBKimFL, LB
EQ
Keogh, LB

EC
Keogh) are applicable to the subsequence search

problem and the classification problem [72]. We profile the performance of [72] on

28 3.4. ACCELERATING DISTANCE FUNCTIONS WITH SIMD

these two problems in Figure 3.4(a). Different functions incur different portions

of time and pruning ratio (cf. Figure 3.4(b)) in different scenarios. For exam-

ple, lower-bound functions LBEQ
Keogh, LB

EC
Keogh dominate the time for subsequence

search. However, the DTW computation incurs more time in kNN classification

problems.

0%

20%

40%

60%

80%

100%

Subsequence Search Classification

P
er

ce
nt

ag
e

of
 C

P
U

 ti
m

e

ECG-L WeatherEEG-C

LBKimFL

LBEQ
Keogh

LBEC
Keogh

DTW

0%

20%

40%

60%

80%

100%

Subsequence Search Classification

P
er

ce
nt

ag
e

of
 p

ru
ne

 r
at

io

ECG-L WeatherEEG-C

LBKimFL

LBEQ
Keogh

LBEC
Keogh

DTW

(a) CPU time (b) pruning ratio

Figure 3.4. Profiling existing solutions on DTW subsequence search and classifi-
cation

Observation: Different time series problems spend very different proportions of

time on different functions. Therefore, it is important to optimize the computa-

tion of both lower-bound functions LBEQ
Keogh, LB

EC
Keogh and the DTW function.

3.4 Accelerating Distance Functions with SIMD

As shown in the previous section, the majority of CPU stall is caused by

ALU stall, cache misses and branch mispredictions. In this section, we will

design vectorized implementations for exact distance and lower-bounds functions

to reduce those stalls. We will also evaluate the efficiency of our implementations

with experiments.

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 29

3.4.1 How do SIMD Instructions Reduce Stall?

3.4.1.1 SIMD vectorization: reduce ALU stall

The ALU stall is caused by the execution of arithmetic operations that

require many CPU cycles. For example, the ‘division’ instruction for two floating-

point values takes 24 CPU cycles [3].

Modern CPU provides SIMD instructions to perform the same instruction

(e.g, +,−,×, /,min,max) on multiple data values in parallel. For instance, Intel

i7-4770 and AMD Phenom II support the AVX2 instruction set (SIMD instruc-

tions on 256-bit registers). The SIMD instruction simd_div (e.g., _mm256_div_ps

in AVX2) performs division on 8 pairs of values in two SIMD registers Ra and Rb

simultaneously. It takes only 21 CPU cycles [3], which is much cheaper than ex-

ecuting the ‘division’ instruction on 8 pairs one-by-one (using 24*8=192 cycles).

Thus, SIMD instructions help reduce the ALU stall significantly.

Distance computation indeed fits well with SIMD instructions. As we illus-

trate in Figure 3.5, we may divide subsequences into groups of length 8, and then

apply SIMD instructions on each group to compute distances for pairs.

3.0 4.2 3.7 3.8 5.1 8.0 7.1 5.6

SIMD bits:

255 …… 128, 127 …… 0

Rq

q tc
^^

Rtc

Rdist

SIMD –

SIMD –

SIMD –

SIMD –

3.0 2.6 0.9 1.0 1.3 0.2 1.4 2.5

0.0 1.6 2.8 2.8 3.8 7.8 5.7 3.1

Figure 3.5. Using SIMD for distance computation

Typical SIMD width: Our CPU (Intel i7-4770) is a modern commodity CPU.

It supports the following SIMD widths and instruction sets: (i) 64 bits (i.e., MMX

30 3.4. ACCELERATING DISTANCE FUNCTIONS WITH SIMD

instruction set), (ii) 128 bits (i.e., SSE instruction set), (iii) 256 bits (i.e., AVX

instruction set). Since the MMX instruction set does not support floating-point

values, it cannot be used in time series problems. Thus, we report the results

for 128 bits (SIMD-128) and 256 bits (SIMD-256) in following experiments. For

simplicity, we set 256 bits (SIMD-256) as default SIMD register.

3.4.1.2 Hardware prefetching: reduce branch misprediction

Modern CPU is equipped with a branch prediction unit and it speculatively

executes a conditional branch to maximize the utilization of CPU resources. A

correct prediction can improve the performance due to the built-in instruction

pipeline and hardware prefetching. However, incorrect prediction will bring cache

pollution11 and waste CPU cycles to flush instructions and restart execution.

5 8 7 6 2 8 5 7

8 4 8 4 7 2 9 0

𝐴

𝐵:

8 8 8 6 7 8 9 7𝑅:

for (int i=0; i<8; i++)

if (A[i]<=B[i]) R[i]=B[i];

else R[i]=A[i];

goto if:

goto else:

5 8 7 6 2 8 5 7

8 4 8 4 7 2 9 0

8 8 8 6 7 8 9 7

simd_max

R = simd_max(A,B)

𝐴:

𝐵

𝑅:

5 8 7 6 2 8 5 7

8 4 8 4 7 2 9 0

𝐴

𝐵:

8 8 8 6 7 8 9 7𝑅:

for (int i=0; i<8; i++)

if (A[i]<=B[i]) R[i]=B[i];

else R[i]=A[i];

goto if:

goto else:

5 8 7 6 2 8 5 7

8 4 8 4 7 2 9 0

8 8 8 6 7 8 9 7

simd_max

R = simd_max(A,B)

𝐴:

𝐵

𝑅:

(a) code fragment and schematic (b) code fragment and schematic
for if-else statement for SIMD max instruction

Figure 3.6. Example for reducing branching statements

Some SIMD instructions help reduce branch misprediction. For example,

for the code fragment in Figure 3.6(a), the CPU may incur up to 8 branch

mispredictions in the worst case. In contrast, the alternative implementation in

Figure 3.6(b) has no branch mispredictions because it uses a single instruction

11
http://en.wikipedia.org/wiki/Cache_pollution

http://en.wikipedia.org/wiki/Cache_pollution

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 31

simd_max instead of conditional branches.

We observe that DTW and its lower-bound functions (cf. Section 3.2) have

many conditional branches. Therefore, we need to design SIMD implementations

for DTW and its lower-bound functions without using conditional branches.

3.4.2 Accelerating ED with SIMD

Before presenting our SIMD solutions, we first introduce the existing im-

plementation of Euclidean distance. We call it as SISD-ED (cf. Algorithm 3.1)

because it uses traditional CPU instructions, i.e., Single Instruction, Single Data

(SISD). According to Section 3.2, we perform Z-normalization on the subsequence

tc (cf. Line 3). It early stops the computation if the accumulated distance dist

exceeds the best-so-far distance bsf (cf. Line 5).

Algorithm 3.1 SISD-ED(q, tc)

Input: best-so-far bsf , mean µ and stdev. σ of candidate tc,
Output: squared distance dist

1: dist := 0
2: for i := 1 to m do
3: c := (tc[i]− µ)/σ . Z-normalization
4: dist := dist+ (c− q̂[idx])2 . accumulation
5: if dist ≥ bsf break . early stop

6: return dist

Next we demonstrate how we employ SIMD to accelerate ED(·) in different

steps. The intuition is to compute 8 offsets between q and tc by batch. In the

Z-normalization step, we can normalize 8 offset values simultaneously as follows.

32 3.4. ACCELERATING DISTANCE FUNCTIONS WITH SIMD

SIMD Z-normalization

1: Rc := simd_load(&tc[i]) . load tc

2: Rc := simd_sub(Rc, Rµ) . vectorized tc[i]− µ

3: Rc := simd_div(Rc, Rσ) . vectorized (tc[i]− µ)/σ

where Rc, Rµ, Rσ are the corresponding SIMD registers of variables c, µ,

and σ, respectively. Note that each register stores 8 floating-point values. In

the accumulation step, we can compute the distance of 8 offsets (t̂[i] − q̂[i])2 as

follows.

SIMD distance computation

1: Rq̂ := simd_load(&q̂[i]) . load q̂[0]...q̂[7]

2: Rd := simd_sub(Rq̂, Rc) . vectorized t̂[i]−q̂[i]

3: Rd := simd_mul(Rd, Rd) . vectorized (t̂[i]− q̂[i])2

Before examining the early stop condition (cf. Line 5 of Algorithm 3.1),

we need to accumulate 8 offset distances into dist. Since the AVX2 instruction

set has no single instruction to accumulate the values of an SIMD register, we

accomplish the accumulation by the following sequence of SIMD instructions.

SIMD distance accumulation

1: Rd := simd_hadd(Rd, Rd) . add horizontal pairs

2: Rd := simd_hadd(Rd, Rd) . add horizontal pairs

3: Sd := simd_extractf(Rd, 1)

4: Sd := simd_sadd(simd_cast(Rd), Sd)

5: dist := dist+ simd_scvt(Sd)

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 33

The accumulation employs instruction simd_hadd (e.g., _mm256_hadd_ps)

twice that horizontally adds adjacent pairs of 32-bit floating-point elements in the

input registers, and stores the results into an output register. Then decompose

the vector into two parts by simd_extractf and simd_cast. Next, we sum the

first value of two decomposed vectors (by simd_sadd), extract the lower 32-bit

floating-point element from the vector (by simd_scvt), and accumulate it into

dist. The accumulation process takes logarithmic cost to the SIMD register

length.

Figure 3.7. Horizontal accumulation

We illustrate the accumulation in Figure 3.7, with the initial content of

Rd : 〈1, 3, 4, 1, 2, 3, 1, 1〉 in the example. We first execute simd_hadd twice to

obtain Rd : 〈9, 9, 9, 9, 7, 7, 7, 7〉 and then decompose the vector into two parts by

simd_extractf and simd_cast. Next, we sum the first value of two decomposed

vectors (i.e., 9 and 7) by simd_sadd, extract the lower 32-bit floating-point ele-

ment from the vector (i.e., 16) by simd_scvt, and accumulate it into dist. The

34 3.4. ACCELERATING DISTANCE FUNCTIONS WITH SIMD

accumulation process takes logarithmic cost to the SIMD register length. Our

5 13 20 26 28 36 41 48

47 47 47 47 47 47 47 47𝑏𝑠𝑓:

compare ≥

𝑑𝑖𝑠𝑡:

F F F F F F F T

5 8 7 6 2 8 5 7

accumulate

5 8 7 6 2 8 5 7

𝑑𝑖𝑠𝑡 = 𝑠𝑖𝑚𝑑_𝑎𝑐𝑐𝑢𝑚𝑙𝑎𝑡𝑖𝑜𝑛(𝐴) =48

𝐴: 𝐴:

𝑏𝑠𝑓 = 47 compare ≥

T

5 13 20 26 28 36 41 48

47 47 47 47 47 47 47 47𝑏𝑠𝑓:

compare ≥

𝑑𝑖𝑠𝑡:

F F F F F F F T

5 8 7 6 2 8 5 7

Accumulate

5 8 7 6 2 8 5 7

𝑑𝑖𝑠𝑡 = 𝑠𝑖𝑚𝑑_𝑎𝑐𝑐𝑢𝑚𝑙𝑎𝑡𝑖𝑜𝑛(𝐴) =48

𝐴: 𝐴:

𝑏𝑠𝑓 = 47 compare ≥

T

(a) SISD-ED (b) SIMD-ED

Figure 3.8. Example for early stop

vectorized implementation reduces CPU cycles by (i) incorporating parallelism

for Z-normalization and distance computation, and (ii) reducing branching state-

ments for the early stop condition. Figure 3.8(a) shows that SISD-ED requires

verifying the early stop for every accumulation (i.e., 8 comparisons in total).

In SIMD-ED, we only verify the early termination once per 8 accumulations as

shown in Figure 3.8(b).

Cost analysis: We proceed to analyze the cost of the SISD and SIMD imple-

mentations based on the latency cycle information given in the Intel architecture

optimization manual [3].

Table 3.3. Instruction latency of SISD- and SIMD-ED
Step SISD-ED SIMD-ED

Z-norm.
op load t̂c[i], −, / setr, sub, div

cost 1+3+24 = 28 (1+3+21)/8 = 25/8

Distance op load q̂[i], −, × loadu, sub, mul
computation cost 1+3+5 = 9 (4+3+5)/8 = 12/8

Accumulation
op +

2·hadd, 2·add,
extractf, cvtss, cast

cost 3 (2*5+2*3+1+1+0)/8 = 18/8

Early stop cost 1 1/8

Total cost 41 7

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 35

Our analysis covers four steps in ED: (i) Z-normalization, (ii) distance com-

putation, (iii) distance accumulation, and (iv) early stop, as illustrated in Table

3.3. In each step, we list all used instructions and their latency cycles. For SIMD-

ED, the denominator in latency is 8 as it processes 8 offset values simultaneously.

In summary, SIMD-ED is 41/7 = 5.86 times faster than SISD-ED.

3.4.3 Accelerating DTW with SIMD

For the sake of our discussion, we first present the pseudo code of DTW

computation in Algorithm 3.2. It employs a matrix C[1..m][1..m] whose entry

C[i][j] is used to store the DTW value between subsequences q̂[1..i] and t̂c[1..j].

Then, we fill the matrix C by row-by-row ordering (Lines 2–3). Observe that

we cannot compute values in the same row (e.g., C[i][j − 1], C[i][j]) in parallel

because C[i][j] depends on C[i][j − 1].

Algorithm 3.2 SISD-DTW (q, tc)

Input: warping constraint length r, normalized query q̂ and candidate t̂c
Output: squared distance dist

1: Distance array C[1..m][1..m], initialized to +∞
2: for i := 1 to m do
3: for j := max(0, i− r) to min(m, i+ r) do
4: if i = 1 and j = 1 then
5: C[1][1] := (q̂[1]− t̂c[1])2

6: else
7: C[i][j] := (q̂[i]− t̂c[j])2+

min(C[i− 1][j], C[i− 1][j − 1], C[i][j − 1])

8: return C[m][m] as dist

To better utilize SIMD instructions, we rewrite the equation of C[i][j] into

36 3.4. ACCELERATING DISTANCE FUNCTIONS WITH SIMD

an alternative form as follows.

C[i][j] = (q̂[i]− t̂c[j])2 + min(Bi−1[j], C[i][j − 1]) (3.6)

where Bi−1[j] = min(C[i−1][j−1], C[i−1][j]). Since Bi−1[j] depends only on values

in the previous row of C (i.e., row i− 1), we can calculate consecutive values of

Bi−1 (e.g., Bi−1[j] to Bi−1[j + 7]) in a batch.

The above discussion enables us to rewrite Line 7 in SISD-DTW as the

following pseudo code using SIMD instructions.

Rewrite inner for-loop (i fixed) in Algorithm 3.2

1: jmin := max(0, i− r); jmax := min(m, i+ r)

2: for j := jmin to jmax, 8 offsets do

3: load Rx1 with C[i− 1][j, · · · , j + 7]

4: load Rx2 with C[i− 1][j − 1, · · · , j + 6]

5: RB := simd_min(Rx1, Rx2)

6: Bi−1[j, · · · , j + 7] = simd_store(RB)

7: C[i][j] := (q̂[i]− t̂c[j])2

8: C[i][jmin] := C[i][jmin] +Bi−1[jmin]

9: for j := jmin + 1 to jmax do

10: increment C[i][j] by min(C[i][j − 1], Bi−1[j])

The rewritten code has two nice properties: (i) avoid branch mispredictions

by using the simd_min instruction (Lines 3–5), (ii) reduce cache misses by uti-

lizing the data locality of C[i][j − 1] and C[i][j] (Line 10). Figure 3.9 illustrates

how our SIMD implementation works (when i = 4).

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 37

Figure 3.9. SIMD DTW illustration, at i = 4

Cost analysis: We analyze the latency of both SISD and SIMD implementations

of DTW in Table 3.4. The speedup of the SIMD implementation over SISD one

is: 48
14.625 = 3.28.

Table 3.4. Instruction latency of SISD- and SIMD- DTW
Step SISD-DTW SIMD-DTW

ED cost 28+9+3 (25+12+18)/8=55/8
(c.f. Table 3)

Take op 3*load, 2*cmp 2*loadu,min,storeu
Minimum cost 3*1+2=5 (2*4+3+3)/8 = 14/8

Accumulation
op + 2*load, 1*cmp, +

cost 3 2*1+1+3 = 6

Total 48 14.625

Optimized implementation: For ease of understanding, we employ m × m

matrices in the above algorithms. An optimized implementation is to use 2 float

arrays with size 2r + 1 (i.e., store C[i − 1] and C[i] in Line 7, Algorithm 3.2)

to compute DTW (for both SISD-DTW and SIMD-DTW). Since these 2 float

arrays can fit in low latency cache (e.g., L2 cache rather than L3 cache), we

use this optimized implementation for both SISD-DTW and SIMD-DTW in our

38 3.4. ACCELERATING DISTANCE FUNCTIONS WITH SIMD

code.

3.4.4 Accelerating Lower Bounds for DTW with SIMD

We proceed to present SIMD optimizations for lower-bound functions LBEQ
Keogh

and LBEC
Keogh. Since these two functions are similar, our discussion focuses on

LBEQ
Keogh.

Algorithm 3.3 SISD-LBEQ
Keogh(q, tc)

Input: best-so-far bsf , mean µ and stdev. σ of candidate tc, upper and lower
envelops q̂u and q̂l

Output: lower-bound distance lb
1: lb := 0
2: for i := 1 to m do
3: c := (tc[i]− µ)/σ . Z-normalization
4: if q̂u[i] < c then . distance of t̂c and the envelop of q̂
5: lb := lb+ (c− q̂u[i])2

6: else if q̂l[i] > c then
7: lb := lb+ (q̂l[i]− c)2

8: if dist ≥ bsf break . early stop

9: return lb

Similar to ED(·), we present the SISD implementation of LBEQ
Keogh in Algo-

rithm 3.3. It derives the lower-bound lb from the candidate subsequence tc and

the envelop of q which is handled by the if-then-else statement at Lines 4-7.

However, the if-then-else statement may cause many branch mispredictions in

CPU, leading to high stalling time (e.g., 10–20 clock cycles in modern CPU on

average). In addition, as reported in [45], the hardware prefetching (for reducing

cache misses) technique becomes less effective in the presence of multiple code

paths.

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 39

To avoid branch mispredictions and better utilize hardware prefetching, we

should remove branching, i.e., the if-then-else statement, in Algorithm 3.3.

Lemma 3.1 shows the alternative form of LBEQ
Keogh (cf. Equation 3.4 in Sec-

tion 3.2).

Lemma 3.1 (Alternative form of LBEQ
Keogh)

LBEQ
Keogh =

m∑
i=1

((t̂c[i]−min{t̂c[i], q̂u[i]}) + (max{t̂c[i], q̂l[i]} − t̂c[i]))2

Proof. LBEQ
Keogh (cf. Equation 3.4) consists of three cases.

Case 1: When t̂c[i] < q̂u[i], the first part (i.e., t̂c[i] − min{t̂c[i], q̂u[i]})

becomes zero so that the equation reduces to (q̂l[i]− t̂c[i])2.

Case 2: When t̂c[i] > q̂l[i], the second part (i.e., max{t̂c[i], q̂l[i]} − t̂c[i])

becomes zero so that the equation reduces to (t̂c[i]− q̂u[i])2.

Case 3: Otherwise, none of the first or the second part contributes so the

equation returns 0.

Since this form uses only min,max,+,−,×, we can readily implement them

by the corresponding SIMD instructions. Accordingly, the first part and the

second part of LBEQ
Keogh can be computed as follows. Then, we sum up both

parts.

SIMD t̂c[i]−min{t̂c[i], q̂u[i]} computation, 8 offsets

1: Rq̂u := simd_load(&q̂u[i]) . vectorized load q̂u[i]..q̂u[i+7]

2: Rdu := simd_min(Rq̂u , Rc) . vectorized min{t̂c[i], q̂u[i]}

3: Rdu := simd_sub(Rc, Rq̂u) . vectorized t̂c[i]−min{t̂c[i], q̂u[i]}

40 3.4. ACCELERATING DISTANCE FUNCTIONS WITH SIMD

SIMD max{t̂c[i], q̂l[i]} − t̂c[i] computation, 8 offsets

1: Rq̂l := simd_load(&q̂l[i]) . vectorized load q̂l[i]..q̂l[i+7]

2: Rdl := simd_max(Rq̂l , Rc) . vectorized max{t̂c[i], q̂l[i]}

3: Rdl := simd_sub(Rq̂l , Rc) . vectorized max{t̂c[i], q̂l[i]} − t̂c[i]

SIMD combining the result of Rdu and Rdl, 8 offsets

1: Rd := simd_add(Rdu, Rdl) . vectorized sum

2: Rd := simd_mul(Rd, Rd) . vectorized square

We illustrate our idea by a concrete example in Figure 3.10. First we extract

the min values between q̂u and t̂c of 8 offsets by simd_min and then store them

into Rdu. Next we subtract Rdu from tc to finish the first part computation.

The second part is performed similarly where the max values are stored into Rdl.

Next we combine the distance values from Rdu and Rdl to produce Rd. Finally

we multiply the values of Rd to generate the squared distance, and then execute

SIMD distance accumulation as described in Section 3.4.2.

Figure 3.10. LBEQ
Keogh SIMD illustration

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 41

Cost analysis: We analyze the latency for two implementations of LBEQ
Keogh.

We only list the detail cost at step (ii) distance computation in Table 3.5 as the

other three steps are the same as in SIMD-ED (cf. Table 3.3). SIMD-LBEQ
Keogh

outperforms SISD-LBEQ
Keogh by 43/9 = 4.78 times.

Step SISD-LBEQ
Keogh SIMD-LBEQ

Keogh

Dist. comp.
op

load q̂u[i] or q̂l[i] 2·loadu, 2·sub,
2·cmp, −, × min, max, add, mul

cost 1+2+3+5=11 (8+6+3+3+3+5)/8=28/8

Z-norm.
Accumulation cost 28+3+1 (25+18+1)/8

Early stop
(cf. Table 3.3)

Total 43 9

Table 3.5. Instruction latency of SISD- and SIMD- LBEQ
Keogh

3.4.5 Accelerating Reference Index with SIMD

Before proposing our SIMD solution, we first present the existing implemen-

tation of LBref in Algorithm 3.4.

Algorithm 3.4 SISD-LBref (ta, tb)

Input: best-so-far bsf , reference distance distref , # of reference R, two sub-
sequences ta, tb
Output: Boolean value

1: for i := 1 to R do
2: if |distref [i][a]− distref [i][b]| > bsf then
3: return true . can be pruned

4: return false . cannot be pruned

As the absolute value computation is not supported by the AVX2 instruction

42 3.4. ACCELERATING DISTANCE FUNCTIONS WITH SIMD

set, we rewrite |distref [i][a]− distref [i][b]| as:

max(distref [i][a], distref [i][b])−min(distref [i][a], distref [i][b])

Then, we design the SIMD implementation below for LBref . It avoids using

branching statements for early termination in Lines 7-8. We verify the early stop

only once by executing simd_cmp for 8 pairs of candidates.

SIMD LBref , for 8 offsets

1: Ra := simd_load(distref [i][a], · · · , distref [i+ 7][a])

2: Rb := simd_load(distref [i][b], · · · , distref [i+ 7][b])

3: Rbsf := simd_set1(bsf)

4: Rmax := simd_max(Ra, Rb)

5: Rmin := simd_min(Ra, Rb)

6: Rsub := simd_sub(Rmax, Rmin)

7: Ra := simd_cmp(Rsub, Rbsf , >)

8: return simd_testz(Ra, Ra)

We can further optimize LBref by sequentializing the memory access (and

reducing CPU cache misses). This requires changing the memory layout of distref

to distref [a][i] (i.e., swapping the role of rows and columns) so that Lines 1–2

have sequential main memory accesses.

Cost analysis: For each reference point i, SISD-LBref takes 6 cycles and SIMD-

LBref takes 27/8 cycles. We omit the detailed analysis here.

Alternative implementation: Another implementation for |distref [i][a]−distref [i][b]|

is to use simd_sub, simd_set and simd_andnot instructions only. Since this im-

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 43

plementation spends the same number of CPU cycles as in the above algorithm,

we omit its detail discussion in following experiments.

3.5 Experimental Study

In this section, we conduct extensive experiments to evaluate our proposed

techniques with existing solutions. Unless otherwise stated, we use the experi-

mental platform and measurement methodology in Section 3.3. Note that the

execution time includes both disk I/O time and CPU computation time. We de-

note SISD as the original implementation [72, 67] (for corresponding problems),

SIMD as the implementation with our proposed techniques.

3.5.1 Subsequence Search

UCR-ED: UCR-ED [72] is a representative solution for the ED-based subse-

quence search. It employs the early abandoning technique to accelerate the Eu-

clidean distance computation. We show the performance of SISD-based and

SIMD-based UCR-ED in Figure 3.11.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Total stall TCache TALU TBr TFe

C
P

U
 c

yc
le

s
(X

10
7)

SISD
SIMD-128
SIMD-256

0%

20%

40%

60%

80%

100%

ECG-E ECG-L EEG-C

P
er

ce
nt

ag
e

of
 C

P
U

 ti
m

e

dataset

SISD SIMD-256 SISD SIMD-256 SISDSIMD-256

BUSY STALL

(a) stall breakdown on ECG-E (b) CPU time breakdown

Figure 3.11. SISD-based and SIMD-based UCR-ED

44 3.5. EXPERIMENTAL STUDY

First, we investigate the components of CPU stall of the methods on the

dataset ECG-E in Figure 3.11(a). Since our SIMD-based solutions exploit SIMD

vectorization techniques, they incur fewer instructions and ALU stall (TALU)

than the SISD-based solution. The results on other datasets are similar to Fig-

ure 3.11(a), so we omit them for space reasons.

Second, we compare the CPU time of the methods in Figure 3.11(b). We

omit the results of SIMD-128, as it is similar to SIMD-256. Clearly, our SIMD-

based UCR-ED can reduce CPU stalls significantly (e.g., ∼20%).

UCR-DTW: Regarding the DTW-based subsequence search, UCR-DTW [72]

cascades three lower bound techniques (i.e., LBKimFL, LBEQ
Keogh, and LBEC

Keogh)

to pruning unpromising candidates without invoking expensive DTW computa-

tions. We breakdown the components of CPU stall of the methods on the dataset

ECG-E in Figure 3.12(a). Since our SIMD-based UCR-DTW accelerated both

the exact distance (cf. Section 3.4.3) and the lower bound computations (cf.

Section 3.4.4), SIMD-based UCR-DTW introduces fewer CPU stall cycles than

the SISD-based solution. Second, we compared the CPU time of the methods on

three datasets in Figure 3.12(b). The CPU busy ratio of SIMD-based UCR-DTW

is almost 50%, which is much higher than SISD-based UCR-DTW.

Execution Time Speedup: In this set of experiments, we report the execution

time of the methods on three time series datasets (i.e., ECG-E, ECG-L, and

EEG-C) varying on query lengths in Figure 3.13, where the lengths are from 256

to 4096 in UCR-ED and 128 to 1024 in UCR-DTW. Our proposed SIMD-based

methods are 1.8-3.8 and 1.5-3.2 times faster than UCR-ED and UCR-DTW,

respectively.

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 45

 0

 50

 100

 150

 200

 250

Total stall TCache TALU TBr TFe

C
P

U
 c

yc
le

s
(X

10
9)

SISD
SIMD-128
SIMD-256

0%

20%

40%

60%

80%

100%

ECG-E ECG-L EEG-C

P
er

ce
nt

ag
e

of
 C

P
U

 ti
m

e

dataset

SISD SIMD-256 SISD SIMD-256 SISDSIMD-256

BUSY STALL

(a) stall breakdown on ECG-E (b) CPU time breakdown

Figure 3.12. SISD-based and SIMD-based UCR-DTW

 1

 10

 100

 1000

256 512 1024 2048 4096

E
xe

cu
tio

n
tim

e
(s

)
lo

g-
sc

al
e

query length

SIMD SISD

 100

 1000

256 512 1024 2048 4096

E
xe

cu
tio

n
tim

e
(s

)
lo

g-
sc

al
e

query length

SIMD SISD

 1000

 10000

256 512 1024 2048 4096

E
xe

cu
tio

n
tim

e
(s

)
lo

g-
sc

al
e

query length

SIMD SISD

(a) ECG-E, ED (b) EEG-L, ED (c) ECG-C, ED

 0

 100

 200

 300

 400

128 256 512 768 1024

E
xe

cu
tio

n
tim

e
(s

)

query length

SIMD SISD

100

1000

2000

3000

4000

5000

128 256 512 768 1024

E
xe

cu
tio

n
tim

e
(s

)

query length

SIMD SISD

 600

 2600

 4600

 6600

 8600

128 256 512 768 1024

E
xe

cu
tio

n
tim

e
(s

)

query length

SIMD SISD

(d) ECG-E, DTW (e) ECG-L, DTW (f) EEG-C, DTW

Figure 3.13. [Subsequence search] vary query length

3.5.2 Motif Discovery

MK [67] makes use of (i) the exact distance calculation ED and (ii) the

lower-bound calculation LBref . The SIMD-based implementation of these two

functions has been introduced in Section 3.4.2 and 3.4.5, respectively. Figure

3.14(a) illustrates the reduced cycles of each CPU stall component in SISD-

based and SIMD-based MK. Figure 3.14(b) shows the improvement of the CPU

46 3.5. EXPERIMENTAL STUDY

cycles with respect to different query lengths. Again, the SIMD-based solution

introduces fewer stall cycles as compared with the SISD-based solution.

 0

 50

 100

 150

 200

Total stall TCache TALU TBr TFe

E
xe

cu
tio

n
C

P
U

 c
yc

le
s

(X
10

9)

SISD
SIMD-128
SIMD-256

0%

20%

40%

60%

80%

100%

300 500 700 900
P

er
ce

nt
ag

e
of

 C
P

U
 ti

m
e

query length

SISD SIMD-256 SISD SIMD-256 SISD SIMD-256 SISDSIMD-256

BUSY
STALL

(a) stall breakdown on EEG-MK (b) CPU time breakdown

Figure 3.14. SISD-based and SIMD-based MK, EEG-MK

We then compare the performance of the methods on the motif discovery

problem. Figure 3.15 plots the execution time (logscale) of the methods with

respect to the query length. The performance gap between our methods and

SISD widens as the query length increases. The speedup of SIMD over SISD

ranges from 2.2 to 6.0.

 1

 10

 100

 1000

300 500 700 900

E
xe

cu
tio

n
tim

e
(s

)

query length

SISD
SIMD-128
SIMD-256 100

 1000

300 500 700 900

E
xe

cu
tio

n
tim

e
(s

)

query length

SISD
SIMD-128
SIMD-256

(a) EEG-MK (b) TAO-MK

Figure 3.15. [Motif discovery] vary query length

3.5.3 kNN Classification

We show the breakdown of CPU stalls of UCR Suite based kNN classification

problem on Weather dataset in Figure 3.16. We set k=1 which is the default

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 47

setting in [33]. This problem is less computational intensive (one candidate per

sequence) when compared to the subsequence search problem (O(n) subsequences

per sequence) and the motif problem (O(n2) subsequence pairs per sequence).

Even though it is less computational intensive, the SIMD-based solution still

saves ∼50% stall cycles for DTW as compared to the SISD-based solution (cf.

Figure 3.16). Next we show the execution time speedup of the methods on

the kNN classification problem in Figure 3.16(c). kNN classification problem is

less computational intensive, Thus, the speedup by SIMD is lower than before.

Nevertheless, SIMD still outperforms all other methods.

 0

 300

 600

 900

 1200

Total stall TCache TALU TBr TFe

C
P

U
 c

yc
le

s
(X

10
6)

SISD
SIMD-128
SIMD-256

 0

 100

 200

 300

 400

Total stall TCache TALU TBr TFe

C
P

U
 c

yc
le

s
(X

10
7)

SISD
SIMD-128
SIMD-256

 0

 1

 2

 3

 4

ED DTW

E
xe

cu
tio

n
tim

e
sp

ee
du

p SISD
SIMD-128
SIMD-256

(a) UCR-ED (b) UCR-DTW (c) speedup
based breakdown based breakdown

Figure 3.16. Breakdown of CPU stalls and speedup, kNN Classification

3.6 Chapter Summary

3.6.1 Conclusion

In this work, we conduct performance profiling on existing solutions for time

series problems. We find that the performance bottleneck is caused by CPU

stalls. We have redesigned vectorized lower-bound and distance functions with

SIMD instructions for time series problems. Through our experimental results

and analysis, we have two key findings, which will shed light on the design and

48 3.6. CHAPTER SUMMARY

implementation of algorithms on modern commodity CPUs, which are used in

Chapter 5.

Firstly, the performance bottlenecks of different time series applications are

different. Even for the same time series algorithm, it may incur different bot-

tlenecks on different datasets, depending on the pruning power of each specific

lower bound function.

Secondly, the characteristics of modern CPUs (e.g., branch prediction u-

nit, hardware prefetching, vectorization) play important roles in the execution

time of an implementation. Frequently-used functions (e.g., lower-bound and

exact distance computations) need to be redesigned in order to unlock the full

potentials of modern commodity CPUs.

3.6.2 Research Directions

Emerging processor architectures have new characteristics and lead to op-

portunities for further optimization. For example, the ‘Many Integrated Core’

(MIC) architecture [53] combines a large number cores on a single chip (e.g.,

Intel Xeon Phi), so that the access time of data items across different cores may

depend on the distances between those cores. It becomes important to distribute

the workload and transfer data carefully among different cores / threads.

Although our proposed techniques can accelerate existing algorithms by 2-6

times in a single machine, they would take a few hours for very long queries

(especially for DTW similarity search). It becomes important to investigate

parallel algorithms that run on multiple machines. Some open issues include how

to distribute the load among machines, and how to reduce the communication

CHAPTER 3. EXPLOIT EVERY CYCLE: ACCELERATING DISTANCE
COMPUTATION ON MODERN COMMODITY CPUS 49

cost among machines.

50 3.6. CHAPTER SUMMARY

Chapter 4

Exploit Every Bit: Effective

Caching for High-Dimensional

Nearest Neighbor Search

4.1 Introduction

The k nearest neighbor (kNN) search takes a query point q and a point set

P as input, and returns k points of P that are nearest to q. It has a wide range of

applications in multimedia information retrieval [31], where multimedia objects

(e.g., images, audio, video) are modeled as data points with dimensionality in

orders of hundreds [93, 39].

Due to the curse of dimensionality in the high dimensional space [98], the

query efficiency of exact indexing methods degenerates to that of linear scan. Re-

51

52 4.1. INTRODUCTION

cent research, in both computer vision [10, 20] and database [93, 39, 40] commu-

nities, focus on finding approximate results for the kNN query. Locality sensitive

hashing (LSH) [48, 29, 42] is an attractive approach as it offers c-approximate

kNN results1 at a sub-linear time complexity of |n|. It reduces the dimensional-

ity of data by hashing similar data items into the same hash bucket with high

probability. Unlike conventional and cryptographic hash functions, LSH aims to

maximize the probability of a “collision” for similar data items. The structure

of LSH consists of a collection of hash tables. Each hash bucket contains a list of

object identifiers (object IDs) rather than actual points. The actual data points

are often stored in another file. At the query time, we process a query q in two

phases:

1. the candidate generation phase: retrieve a candidate set of object identifiers

from hash tables,

2. the candidate refinement phase: for all object identifiers in the candidate

set, fetch their data points from data point file in the hard disk, then

compute their distances to q and determine the k nearest results.

We mainly consider disk-based LSH [93, 39], which is suitable for very large

datasets that cannot fit into the memory. Existing LSH methods require fetching

a large set of candidates (typically hundreds or thousands) from the disk and

thus incur significant disk I/O costs. Therefore, the candidate refinement phase

turns out to be the performance bottleneck in recent LSH methods. To verify

this, we execute the state-of-the-art LSH method (C2LSH [39]) on three real

1A point p is called a c-approximate NN of q if dist(q, p) ≤ c · dist(q, p∗), where c is the
approximation ratio and p∗ is the exact NN of q.

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 53

 0

 0.2

 0.4

 0.6

 0.8

 1

NUS-WIDE
136MB

IMGNET
1.26GB

SOGOU
29.7GB

A
v
g

.
re

s
p

o
n

s
e

 t
im

e
(s

)

Cand.generation
Cand.refinement

Figure 4.1. Running time (wall-clock) of
C2LSH

Photos (log-scale)

V
ie
w
s
 (

lo
g

-s
ca

le
)

100 1000 10000 100000 1e+06 1e+07

1

10

100

1000

10000

Figure 4.2. Total number of views per
photo

high-dimensional datasets stored on the disk (used in the experimental study).

Figure 4.1 depicts the average running time (wall-clock time) per query of C2LSH

on these datasets. The candidate refinement stage is the performance bottleneck

and it motivates us to optimize the candidate refinement time.

In this chapter, we exploit a query log and devise caching techniques to re-

duce the candidate refinement time of high-dimensional kNN search. Caching can

benefit from the temporal locality of queries as observed in typical query logs [65].

Similarly, we expect that the query logs in multimedia retrieval systems exhibit

temporal locality. For example, In Flickr, a small fraction of photos receive most

of the views (see Figure 4.2, adopted from [94]). Although there exist caching

techniques [34, 85] for kNN search on distance-based indexing methods [27, 52],

they are not applicable to LSH methods. LSH methods require lookup of objects

by object identifiers; however, such lookup operation cannot be supported by the

caches in [34, 85].

In our caching problem, the main research question is: how to exploit the

54 4.1. INTRODUCTION

limited memory size and query workload to reduce the candidate refinement time.

In order to boost the cache hit ratio, we propose to cache conservative approxima-

tions of data points (i.e., representing each point in a few bits). Such conservative

representation provides lower and upper distance bounds, which can be used to

prune unpromising candidates and detect true kNN results early.

4.1.1 Technical Challenges

(1) Given the query workload (and the number of bits for encoding an approxi-

mated point), which scheme is the most effective for encoding data points?

(2) Given a cache size, what is the optimal number of bits for encoding a data

point?

Interestingly, we discover that we can cast challenge (1) as a histogram opti-

mization problem. Traditional histograms have been designed for the selectivity

estimation problem [51]; however, they are not effective with respect to our op-

timization goal. This motivates us to find the most effective histogram for our

problem. Our method exploits both the data distribution and the query workload

to develop compact approximations (of data points) that lead to tight distance

bounds.

For challenge (2), it is non-trivial to find the optimal number of bits for

encoding a data point in the cache. If each point occupies too few bits, then

the cache hit ratio becomes high but those cached points lead to loose distance

bounds. If each point occupies too many bits, then they provide tight distance

bounds but the cache hit ratio becomes low. In this chapter, we will develop a

cost model to find the optimal number of bits for encoding a data point.

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 55

The novelties of this chapter are: (i) we formulate a novel histogram opti-

mization problem for reducing the candidate refinement cost in kNN search, (ii)

our proposed solution is generic; it is applicable to not only LSH methods, but

also to exact tree-based indexes.

4.1.2 Technical Contributions

Our technical contributions are summarized as follows.

• we formulate an appropriate histogram metric for our problem, and design

an algorithm to construct an optimal histogram with respect to the novel

histogram metric for challenge (1) 〈Section 4.3〉;

• we extend our solution for exact tree-based indexes (e.g., iDistance, VP-

tree) 〈Section 4.3.6〉;

• we devise a cost model for estimating the performance of our solution and

for automatic tuning parameter in our solution, to address challenge (2)

〈Section 4.4〉;

• we demonstrate the superiority of our caching solution on three real dataset-

s, in particular, the largest dataset (SOGOU, 29.7 GB) has a real query

log 〈Section 4.5〉.

The remainder of this chapter is organized as follows. We formulate our

caching problem in Section 4.2 and present our histogram-based caching method

in Section 4.3, then provide a cost model and the optimal parameter setting in

Section 4.4. We conduct our experimental study in Section 4.5.

56 4.2. DEFINITION AND PROBLEM STATEMENT

4.2 Definition and Problem Statement

4.2.1 Definitions

We represent points and the distance both in the point form and the vector

form interchangeably.

Definition 4.1 (Point) A point p is defined as a d-dimensional tuple p =

(p.1, p.2, ..., p.d). Its vector form is defined as: −→p = [p.1, p.2, ..., p.d].

Definition 4.2 (Distance metric) The Euclidean distance distq(c) of a data

point c from a query point q is defined as:

distq(c) =

√√√√ d∑
j=1

(q.j − c.j)2 = ||−→q −−→c ||.

Then we define the kNN search problem as:

Definition 4.3 (kNN search problem) Given a query point q and a point

set P, the kNN search returns a subset R ⊂ P of k points such that distq(p) ≤

distq(p
′) for any p′ ∈ P −R.

In this chapter, we just return the identifiers of points in R but not the actual

points. This is reasonable for multimedia information retrieval applications.

As discussed in the introduction, we focus on accelerating disk-based LSH

methods (e.g., C2LSH [39]) without affecting their query results. These methods

access (i) a hash-based index I, whose hash buckets store point identifiers, and

(ii) a sequential file for the point set P, which supports direct access of data

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 57

point by identifier2.

During query processing, we first retrieve a candidate set C(q) from the

index I as follows:

Definition 4.4 (Candidate set C(q)) Given a query point q, the index I re-

ports a set of identifiers for candidate points C(q) = {idi}.

Then, we fetch the corresponding data points by identifiers from the file of P.

4.2.2 Research Objective

For typical disk-based LSH methods, the candidate refinement time Trefine

is usually much longer than candidate generation time Tgen (see Figure 4.1). In

this chapter, we aim to reduce Trefine significantly by caching points in RAM.

To boost the cache hit ratio, we propose to cache compact approximate points

(p′id), which will be elaborated in Section 4.3.

Figure 4.3 illustrates the framework of our caching problem for kNN search

on a high dimensional dataset. Our kNN search procedure (cf. Section 4.3)

consists of three phases: (1) candidate generation, (2) candidate reduction, (3)

candidate refinement. Both Phases 1 and 3 apply existing work directly and they

incur I/O. In Phase 1, we apply an existing index I. In Phase 3, we apply a

multi-step kNN search method [80, 56], which will be elaborated in Section 4.2.3.

Phase 2 incurs no I/O and it runs our proposed technique to reduce the number

of candidates before entering Phase 3.

2An alternative is to store P based on the distribution of clusters in data [52]. We will test
its effect in experiments.

58 4.2. DEFINITION AND PROBLEM STATEMENT

Cache of
compact

approximate

points {p'id}
Index I

(1) Retrieve

FDQGLGDWHV¶�LGHQWLILHUV�

{ idi } for query q
(2.1) Lookup

FDQGLGDWHV¶�SRLQWV

RAM

Disk

(2.1b)

Cache Hit

Return kNN results of q

Histogram Caching Policy

(2.2) Early pruning/

true result detection

(3) Multi-step

kNN search

I/O access

True result

Return result

Workload

File:Dataset

P

Figure 4.3. Framework of caching on a high-dimensional dataset

Since the candidate refinement time Trefine is dominated by the I/O cost,

we express it as: Trefine ≈ Tio ·Crefine, where Tio is the disk I/O cost for fetching

a data point and Crefine is the remaining candidate size for the refinement phase.

In general, Crefine is the sum of (i) the number of candidates not in the

cache, or (ii) the number of candidates in the cache but they cannot be pruned:

Crefine =(1− ρhit) · |C(q)|+ ρhit · (1− ρprune) · |C(q)|

=(1− ρhit · ρprune) · |C(q)| (4.1)

where ρhit is the cache hit ratio, and ρprune is the ratio of the number of pruned

candidates to the number of cache hits.

The scope of our problem: Our goal is to minimize the value of Crefine

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 59

before candidate refinement (and thus minimize Trefine). We can reduce Crefine

by two orthogonal aspects: (i) a caching policy that offers high hit ratio, and

(ii) compact approximation of points that provides tight distance bounds for

pruning.

The study of (i) caching policies is orthogonal to our problem. In fact,

our proposed solution can be applied with existing web caching policies [65],

e.g., Least-Recently-Used (LRU) and Highest-frequency-first (HFF). LRU is a

dynamic caching policy, whereas HFF is a static caching policy that requires a

query workload WL3 to decide the initial cache content. We will elaborate HFF

in Section 4.4. Our focus is issue (ii), which will be discussed in Section 4.3.

Formally, we define our problem as:

Definition 4.5 (Caching problem) Given a cache size CS, a workload of queries

WL, and a point set P , determine the cache content such that it minimizes∑
q∈WLCrefine(q).

Besides LSH methods, we will discuss how to adapt our proposed solution

for tree-based indexes (e.g., R-tree, X-tree, SR-tree) [18] in Section 4.3.6.

Note that our solution offers speedup without affecting the quality of query

results. If an exact tree-based index is used, the query results remain exact. If

an LSH method is used, the quality of its query results is preserved.

3It is usually the historical query log.

60 4.2. DEFINITION AND PROBLEM STATEMENT

4.2.3 Multi-step kNN Search

We illustrate multi-step kNN search methods [80, 56] in this section. Kriegel

et al. [56] present an efficient method that requires both lower and upper dis-

tance bounds functions. For example, suppose the candidate set of q is C(q) =

{p1, p2, p3, p4}. Figure 4.4 depicts the lower and upper distance bounds of these

candidates as intervals. Their exact distances (from q) are shown as gray dot-

s; However, they can be obtained only after fetching the exact points from the

disk. First, it calculates the k-th smallest lower distance bound lbk and the k-th

smallest upper distance bound ubk, among the candidates, the values of lb2 and

ub2 are shown in Figure 4.4. Since the upper distance bound of p1 is less than

lb2, lb3 and lb4, p1 must be a result so we need not fetch p1 from the disk. The

lower distance of p4 is larger than ub2, p4 cannot be a result so we also need not

fetch p4. It suffices to fetch p2 and p3 from the disk.

p1

distance from q

0 1 2 3 4 5 6

p2

p3

p4

lb2
ub2

min2

Figure 4.4. Multi-step kNN methods, k = 2

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 61

4.3 Histogram-based Caching for kNN Search

Histograms, generally, are designed to provide selectivity estimates on a sin-

gle column attribute of a relational table. In this section, we utilize a histogram

to define compact approximate representations of points. Then, we present a

kNN search algorithm with our proposed histogram-based cache. Finally, we

formulate the novel metric to build an effective histogram for kNN search.

4.3.1 Histogram and Approximate Points

We first define a histogram as follows:

Definition 4.6 (Histogram) A histogram H is defined as an array of buckets

which cover a domain interval (e.g., [0,..,Ndom])4. Let B be the number of buckets

in H. Each bucket (say, the i-th bucket) stores: (i) an interval [li..ui] of values,

and (ii) the total frequency freqi of values in the interval.

Figure 4.5b shows an example histogram. In our problem, we only care

about the bucket position i and its interval [li..ui], but not its frequency freqi.

Each bucket position can be represented by a binary code. In general, for a

histogram with B buckets, the code length is: τ = dlog2(B)e. We will examine

histogram construction methods in Section 4.3.3 and discuss the tuning of τ in

Section 4.4.

With a histogram H, we can convert an exact point p into an approximate

point p′ as follows:

4Ndom is the largest dimension value of all points in all dataset

62 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

Definition 4.7 (Bucket lookup) Given a value v, we define the function H(v) =

i, such that v is covered by the interval of the bucket i, i.e., li ≤ v ≤ ui.

Definition 4.8 (Approximate point p′) Given a d-dimensional point

p = (p.1, p.2, · · · , p.d), we define an approximate point p′ with respect to the global

histogram H as:

p′ = (H(p.1),H(p.2), · · · ,H(p.d)) .

Specifically, we approximate each dimension value by a τ -bit code. In general,

if the dataset has different domain sizes for different dimensions, then we may

apply normalization to scale each dimension.

For example, consider the point p1 = (2, 20) in Figure 4.5(a). According

to the example histogram in Figure 4.5(b), the values 2 and 20 are mapped to

the codes 00 and 10 respectively. Thus, we can represent p1 by a bit-string p′1 :

“ 00 10 ”. Figure 4.5(c) shows the cache content which stores the approximate

points p′1, p
′
2, p
′
3, p
′
4. To achieve a compact cache, we pack the bit-string encoding

of each point into one or multiple consecutive words in memory 5.

In subsequent discussion, we use a global histogram H to define all dimen-

sions of an approximate point p′. We will discuss alternative histograms in Sec-

tion 4.3.6.

5 With this implementation, an approximate point occupies d·τ
Lword

words, where Lword is the

memory word size (in bits). The value of Lword (typically 32, 64) is fixed by the CPU. During
kNN search, we can extract these cache items by performing bitwise operations on these words.

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 63

 0

 4

 8

 12

 16

 20

 24

 28

 0 4 8 12 16 20 24 28

2n
d

D
im

1st Dim

p1(2,20)

p2(10,16)

p3(19,30)

p4(26,4)

p5(11,18)

p6(3,24)

q(9,11)

(a) a dataset P, with d = 2

position interval frequency
/ code i [li..ui]

00 [0..7] 3
01 [8..15] 2
10 [16..23] 4
11 [24..31] 3

p′1 : |00|10|
p′2 : |01|10|
p′3 : |10|11|
p′4 : |11|00|

(b) a histogram H, (c) a cache,
with τ = 2 with CS = 16 bits

Figure 4.5. Example of histogram-based coding

4.3.2 kNN Search Algorithm

Algorithm 4.5 elaborates the framework of kNN search with histogram-based

caching. The corresponding steps in Figure 4.3 are also labeled in this algorithm.

First, we retrieve a set C(q) of candidates from the index I (Line 2), and then

check whether they are in the cache. For each candidate ci found in the cache

(Lines 5–6), we compute its lower/upper distance bounds to q as follows.

64 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

dist+q (p′) =

√√√√ d∑
j=1

max{|q.j − pl.j|, |q.j − pu.j|}2

dist−q (p′) =

√√√√√√√ d∑
j=1

0 if pl.j ≤ q.j ≤ pu.j

min{|q.j − pl.j|, |q.j − pu.j|}2 otherwise

where pl.j = lH(p′.j) and pu.j = uH(p′.j). For those candidates missing in the

cache, we will fetch their points from the disk (in the final phase).6

The next phase (Lines 7–13) focuses on reducing the candidate size (which do

not incur disk accesses). Among all candidates C(q), we derive the k-th minimum

lower bound distance lbk, the k-th minimum upper bound distance ubk (Lines

7–8). First, we prune candidates having ci.lb larger than ubk (Lines 10–11),

as they cannot be among k nearest neighbors. Second, we identify candidates

having ci.ub less than lbk (Lines 12–13), as they must be results and moved to the

result set R. Obviously, the effectiveness of this phase depends on the tightness

of distance bounds (and the histogram H). We will explore this issue in the

remaining subsections.

Finally, in the refinement phase, we apply a multi-step kNN search method [80,

56] (which incurs disk I/O), as described in Section 4.2.3, with the remaining

candidate set C(q). This search would fetch data points from P when necessary.

The update of the cache Ψ is optional; it is only required when a dynamic caching

policy (e.g., LRU) is used.

6 An optimization is to fetch those points from disk immediately, in order to tighten the
bounds lbk and ubk to be mentioned soon. However, this optimization is not effective when the
hit ratio is low (as few candidates can be pruned) or high (as lbk and ubk are tight already).

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 65

Algorithm 4.5 kNN Search (Query q, Result size k)

Disk data: Index I, Dataset file P
Memory data: Cache Ψ, histogram H
• Phase 1: candidate generation

1: Result set R := ∅
2: retrieve the candidate set C(q) from I
• Phase 2: candidate reduction

3: for each ci ∈ C(q) do . part 2.1: cache lookup
4: ci.lb := 0; ci.ub := +∞
5: if Ψ contains p′ci then . cache hit
6: ci.lb := dist−q (p′ci); ci.ub := dist+q (p′ci)

7: lbk := the k-th minimum of {ci.lb : ci ∈ C(q)}
8: ubk := the k-th minimum of {ci.ub : ci ∈ C(q)}
9: for each ci ∈ C(q) do . part 2.2

10: if ci.lb > ubk then . early pruning
11: remove ci from C(q)
12: else if ci.ub < lbk then . true result detection
13: move ci from C(q) to R
• Phase 3: candidate refinement

14: if |R| < k then
15: Multi-step-kNN(C(q),P,R) . Ref. [80, 56]

16: return R

Example: Assume k = 1 and consider the query q and dataset P in Fig-

ure 4.5a. We show the running steps of kNN search (Algorithm 4.5) in Ta-

ble 4.1. Suppose that the index I reports the candidate set for q as: C(q) =

{p1, p2, p3, p4, p5, p6}. Since the candidates p5 and p6 are missing in the cache, we

must access their points from the disk. The cache is used to retrieve approximate

points (p′1, p
′
2, p
′
3, p
′
4) of four candidates, as shown in Figure 4.5c. Then, we com-

pute their lower/upper distance bounds from q, and obtain the distance threshold

ubk = dist+q (p2) =
√

max{(9− 8), (9− 15)}2 + max{(11− 16), (11− 23)}2 =
√

62 + 122 =

13.42. We can prune p3 and p4 as their lower bound distances are above 13.42.

66 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

Finally, we apply multi-step kNN search [80, 56] on the remaining candidates

p1, p2, which costs at most 2 disk accesses. In summary, this example incurs at

most 4 disk accesses: 2 for p5, p6, and at most 2 for p1, p2.

Table 4.1. kNN search on the cache, k = 1
cache rectangle [lbi..ubi] pruned ?

(code array)

p1 : |00|10| ([0..7],[16..23]) [5.39..15]
p2 : |01|10| ⇒ ([8..15],[16..23]) [5.00..13.42]
p3 : |10|11| ([16..23],[24..31]) [14.76..24.41] yes
p4 : |11|00| ([24..31],[0..7]) [15.52..24.60] yes

4.3.3 Histogram Solutions for kNN Algorithm

In relational databases, histograms are used to summarize the data distribu-

tion and provide result size estimations for selection queries [51]. However, they

have not been used for supporting kNN search. This raises interesting questions:

4.3.3.1 Are existing histograms effective for kNN search?

(1) Heuristic histograms (e.g., equi-width, equi-depth) [50]. In order to

describe them, we use the notations in Definition 4.6, and denote F [x] as the

frequency of value x (in a table column). For equi-width histogram, all buckets

have the same width (ui− li); whereas for equi-depth histogram, all buckets have

approximately the same sum of frequencies (
∑ui

x=li
F [x]).

(2) V-optimal histogram [51], which minimizes the average estimation error

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 67

of selection queries according to the sum squared error (SSE) metric [51]:

MSSE(H) =
B∑
i=1

ui∑
x=li

(F [x]−AV G([li, ui]))
2

where AV G([li, ui]) =

∑ui
x=li

F [x]

ui−li+1 is the average frequency of values in bucket i.

We illustrate the effectiveness of these histograms on kNN search by an

example in Figure 4.6. We will evaluate its effectiveness on real datasets in

the experimental section. For ease of illustration, we consider a 1-dimensional

dataset {3, 4, 10, 12, 22, 24, 30, 31} and each value x in it has frequency F [x] = 1.

Suppose that q = 17 is the only query in the query workload WL. Assume that

the cache can hold all approximate points and the code length is τ = 2. Thus,

each histogram hasB = 2τ = 4 buckets. Figure 4.6 depicts the buckets (intervals)

of equi-width, equi-depth, and V-optimal histograms. Both equi-depth and V-

optimal histograms are the same in this example.

For each histogram, we run the kNN algorithm (in Section 4.3.2) to find 2NN

(k = 2) at q = 17, and show the running steps in the figure. Histogram buckets

are shown in the first column. By using distance bounds (lbk, ubk) in the second

column, we can prune unpromising candidates and detect true result early in

order to reduce the remaining candidate size. In this example, the ideal histogram

for our problem has zero remaining candidates (see the last column). On the

other hand, equi-width has 6 remaining candidates (in buckets 2©, 3©, 4©), and

equi-depth (and V-optimal) has 4 remaining candidates (in buckets 2©, 3©). These

histograms would incur higher cost than the ideal histogram in the candidate

68 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

refinement phase.

Differences from traditional histograms: Traditional histograms are de-

signed for the selectivity estimation problem. For example, a traditional his-

togram metric likeMSSE(H) [51]internal minimize the average estimation error

over all histogram buckets. It is fine to have a bucket with large width (ui − li),

as long as the values within the bucket have similar frequencies. However, for the

kNN problem, such a bucket causes loose distance bounds and thus not effective

in shrinking the candidate set. Furthermore, MSSE(H) does not exploit query

workload information, which is important for deriving an effective histogram for

our problem.

In Section 4.3.4.1, we will formulate a new histogram metric for building an

effective histogram for kNN search. Experiments show that our novel histogram

incurs lower I/O cost than existing histograms (e.g., equi-width, equi-depth, V-

optimal) on kNN search by at least 50%.

4.3.3.2 What is the optimal histogram for kNN search?

We demonstrate an example of the optimal histogram for kNN search in the

last row in Figure 4.6. Interestingly, in this histogram, the buckets close to q

are tight, and other buckets can be loose. It allows us to derive tighter bounds

(lbk, ubk), prune candidates in buckets 1, 4, and detect the candidates in buckets

2, 3 as true results. Since there are no candidates in the refinement step, it incurs

zero I/O cost in this example.

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 69

Figure 4.6. Effectiveness of histograms, with B = 4 buckets, on 2NN search,WL
= { q }

4.3.4 Effective Histogram Metric

4.3.4.1 Histogram Metric for kNN Search

This section formulates a histogram metric that captures the effectiveness of

a histogram for kNN search. In the following discussion, we associate notations

with the superscript q if they depend on q (e.g., Cqrefine, lb
q
k, ub

q
k).

Our goal is to minimize the remaining candidate size Cqrefine (cf. Eqn. 4.1)

before the candidate refinement phase in Algorithm 4.5. Note that Cqrefine is

influenced by the distance bounds lbqk, ub
q
k (obtained at Lines 7–8), which are

derived from the content of H. For each candidate c that hits in the cache Ψ, we

can skip it in candidate refinement in two cases:

• (i) if dist+q (c) ≤ lbqk, then it must be a true result

• (ii) if dist−q (c) ≥ ubqk, then it cannot be a result

Otherwise, the candidate requires refinement.

70 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

With the above observation, we proceed to define our histogram construction

problem as follows.

Definition 4.9 (Optimal kNN histogram problem) Let V = {v1, · · · , vn}

be the set of distinct dimensional values of data points in P.

Given the code length τ , the query workload WL, and the cache Ψ (i.e., a

set of points), the problem is to build a histogram H with B = 2τ buckets such

that (i) it covers all values in V , and (ii) it minimizes the following metric:

MWLkNN (H) =
∑
q∈WL

∑
c∈C(q)∧Ψ

refineH(c) (M1)

where refineH(c) =

0 if dist−q (c) ≥ ubqk

0 if dist+q (c) ≤ lbqk

1 otherwise

This optimal histogram construction problem is challenging as the number

of combinations of buckets lead to a huge search space O
(
n
B−1

)
, which is O(nB)

when B � n. Thus, we propose an approximate solution below.

4.3.4.2 Approximate Histogram Metric

Besides the huge search space O(nB), the above metric does not use his-

togram bucket intervals explicitly, thus rendering it inconvenient to develop a

solution.

To tackle these issues, we propose to approximate the metric (M1),MWLkNN (H),

in a form that can be efficiently solved. In order to minimize MWLkNN (H), we

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 71

should maximize the number of candidates that can satisfy refineH(c) = 0 for a

given query q. Note that there are two cases for refineH(c) = 0: (Case i) the

lower bound of c is larger than the k-th upper bound (i.e., dist−q (c) ≥ ubqk), so

c is not a result point and, (Case ii) the upper bound of c is smaller than the

k-th lower bound (i.e., dist+q (c) ≤ lbqk), so c must be a result point.

Observe that at most |C(q)| − k candidates can satisfy dist−q (c) ≥ ubqk in

(Case i), but at most k candidates can satisfy dist+q (c) ≤ lbqk in (Case ii). Since

|C(q)| − k � k, we focus on (Case i) and plan to minimize ubqk.

Recall that ubqk = kth minc∈C(q)∧Ψ dist
+
q (c) is contributed by k points in

C(q)∧Ψ. By denoting these k points as bq1, b
q
2, · · · , b

q
k, we have ubqk = max1≤r≤k dist

+
q (bqr).

We then define the error vector of a candidate in Def. 4.10.

Definition 4.10 (Error vector) Given a histogram H and a candidate c, we

define the error vector of c as
−−→
ε(c) = [ε(c).1, ε(c).2, ..., ε(c).d] where ε(c).j =

uH(c.j) − lH(c.j).

By using Lemma 4.1 (stated below), we derive: ubqk ≤ max1≤r≤k ||ε(bqr)|| +

distq(b
q
r). Note that each term distq(b

q
r) is a constant value (depending on q)

that cannot be optimized. As a heuristic, we approximate the minimization of

ubqk by minimizing the following Metric (M2):

M2WLkNN (H) =
∑
q∈WL

k∑
r=1

||
−−→
ε(bqr)||2 (M2)

Next, for convenience, we define a multi-set QR to store all bqr for queries in

72 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

the workload WL:

QR = {bqr : q ∈ WL, dist(q, bqr) ≤ ub
q
k, r ∈ [1, k]} (4.2)

Then, we define F ′[x] as the frequency of x in coordinates of candidates in QR,

where x ∈ [0, Ndom]:

F ′[x] = COUNT {bqr.j = x : bqr ∈ QR, j ∈ [1, d]} (4.3)

By Lemma 4.2 (stated below), we express Metric (M2) into the following

form using histogram bucket information.

M2WLkNN (H) =

B∑
i=1

ui∑
x=li

F ′[x] · (ui − li)2 (M3)

In the following analysis, we employ vectors to express distance computa-

tions in a concise manner.

Definition 4.11 (Distance on vectors) Let q be a query point and c be a can-

didate point. The Euclidean distance is distq(c), and the upper distance bound

dist+q (c) can be expressed in terms of the dot product of vectors:

dist+q (c) = ||(−→q −
−→
cu)||

where
−→
cu = [cu.1, cu.2, ..., cu.d] are defined by a histogram H as follows:

cu.j =

lH(c.j) if |q.j − lH(c.j)| > |q.j − uH(c.j)|

uH(c.j) otherwise

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 73

Lemma 4.1 (Distance inequality) Any candidate c satisfies

dist+q (c)− distq(c) ≤ ||
−−→
ε(c)||

Proof. Let
−→
A = −→c −−→q and

−→
∆c = [∆c.1,∆c.2, ...∆c.d]. Calculate ∆c.j as:

∆c.j =

ε(c).j if cu.j > cl.j

−ε(c).j otherwise

Since ||
−→
∆c|| = ||

−−→
ε(c)|| and distq(c) = ||

−→
A || always holds, we have:

dist+q (c) = ||(cu −−→q)|| ≤ ||(
−→
∆c +−→c −−→q)||2)

1
2

= (
−→
∆c ·
−→
∆c + 2

−→
∆c · (−→c −−→q) + (−→c −−→q) · (−→c −−→q))

1
2

= (||
−→
∆c||2 + 2

−→
∆c ·
−→
A + ||

−→
A ||2)

1
2

≤ (||
−→
∆c||2 + 2||

−→
∆c|| · ||

−→
A ||+ ||

−→
A ||2)

1
2 (by Cauchy inequality [88])

= ||
−→
∆c||+ ||

−→
A || = ||

−−→
ε(c)||+ distq(c)

Then, we have: dist+q (c)− distq(c) ≤ ||
−−→
ε(c)||.

Lemma 4.2 (Metric transformation)

∑
q∈WL

k∑
r=1

||
−−→
ε(bqr)||2 =

B∑
i=1

ui∑
x=li

F ′[x] · (ui − li)2

where ui − li denotes the width of bucket i.

74 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

Proof. ∑
q∈WL

k∑
r=1

||
−−→
ε(bqr)||2 =

∑
bqr∈QR

||
−−→
ε(bqr)||2 by Eqn.4.2

=
∑

bqr∈QR

d∑
j=1

(ε(bqr).j)
2 by Def. 4.10

=
∑

bqr∈QR

d∑
j=1

(uH(ε(bqr).j)
− lH(ε(bqr).j)

)2

=

Ndom∑
x=1

F ′[x] · (uH(x) − lH(x))
2 by Eqn.4.3

=

B∑
i=1

ui∑
x=li

F ′[x] · (ui − li)2 group by bucket id

4.3.5 Efficient Solution

We proceed to present an efficient solution for the simplified histogram met-

ric M2WLkNN (H)(M3). First, we represent the inner sum in Eqn. 4.4 as follows:

Υ([li, ui]) =

ui∑
x=li

F ′[x] · (ui − li)2
(4.4)

Then, we propose an efficient algorithm to construct histogram H that minimizes

the metric M2WLkNN (H).

We assume that the value domain is: 1..Ndom.7 Let OPT (n,m) be the

minimumM2WLkNN (H) value for the histogram covering the interval [1..n] with at

7We can extend this method to handle other value domain, e.g., by applying discretization on
floating-point values.

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 75

most m buckets. If t is the optimal splitting position for the last bucket, then we

have: OPT (n,m) = OPT (t,m−1)+Υ([t+1, n]), where Υ([t+1, n]) is the metric

value contributed by the last bucket ([t+1, n]), and OPT (t,m−1) is the minimum

metric value for the histogram covering [1..t] with at most m − 1 buckets. By

considering all splitting positions, we take OPT (n,m) as the minimum sum as

follows:

OPT (n,m) = min
1≤t<n

{OPT (t,m− 1) + Υ([t+ 1, n])} (4.5)

With Eqn. 4.5, we apply the dynamic programming approach to calculateOPT (n,m)

and the split positions, for all 1 ≤ n ≤ Ndom and 1 ≤ m ≤ B. Finally, we obtain

the optimal histogram H through these split positions.

Lemma 4.3 (Monotonicity of Υ) if l1 ≤ l2, Then Υ([l1, ui]) ≥ Υ([l2, ui]).

Proof. According to Eqn. 4.3, then F ′[x] ≥ 0. Since l1 ≤ l2, then,
∑ui

x=l1
F ′[x] ≥∑ui

x=l2
F ′[x] and (ui−l1)2 ≥ (ui−l2)2. Consider Υ([li, ui]) =

∑ui
x=li

F ′[x]·(ui−li)2

then we can conclude Υ([l1, ui]) ≥ Υ([l2, ui]).

Through Lemma 4.3, our algorithm can terminate when Υ([t + 1, n]) ≥

OPT (n,m). This technique can significantly reduce the running time when n is

very large. The details are presented in Algorithm 4.6.

Time Complexity: This algorithm is only executed once in the offline phase.

It has a total of O(Ndom ·B) calculations for OPT (n, b). In the worst case, each

calculation involves O(Ndom) values of t (Eqn. 4.5). Thus, its time complexity

is O(N2
dom ·B). It is independent of the dimensionality d and the data size |P|.

Histogram maintenance: We expect that the distribution of queries in the

76 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

Algorithm 4.6 Build-kNN-Histogram (Bucket number B, Value domain size
Ndom, Frequency array F ′)

1: let H be an empty histogram
2: OPT :=new 2D array(1..Ndom, 1..B) . for OPT values
3: pos :=new 2D array (1..Ndom, 1..B) . for split positions
4: for m from 1 to B do
5: for n from 1 to Ndom do
6: if m = 1 then
7: OPT (n, 1) := Υ([1, n])
8: else
9: OPT (n,m) = +∞

10: for each t from n− 1 to 1 do
11: if OPT (n,m) > OPT (t,m-1) + Υ([t+1, n]) then
12: OPT (n,m) := OPT (t,m− 1) + Υ([t+ 1, n])
13: pos(n,m) := t
14: else if Υ([t+ 1, n]) ≥ OPT (n,m) then
15: break . by Lemma 4.3

16: n := Ndom

17: for m from B to 1 do
18: if m = 1 then
19: l := 1, u := n
20: else
21: l := pos(n,m) + 1, u := n
22: n := pos(n,m)

23: insert the bucket [l..u] to H
24: Return H

workload does not change rapidly. Following the practice in search engines [65],

we propose to perform updates and rebuild the cache periodically (e.g., daily).

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 77

4.3.6 Extensions

4.3.6.1 Adaptation for tree-based indexes

The kNN search on tree-based indexes [19, 27, 52] exhibits interleaving steps

between candidate generation and candidate refinement. In this section, we

discuss how to adapt our proposed solution to speedup kNN search on tree-based

indexes.

We illustrate a general tree structure in Figure 4.7. Each node occupies

a disk block. A leaf node stores data points, whereas a non-leaf node stores

branching information for its children. Conceptually, we can divide the tree into

two parts: (i) the set of non-leaf nodes as the index I, and (ii) the set of leaf

nodes as the dataset P. The storage size of P is generally much larger than that

of I. We store the exact I in memory.

In this scenario, we consider each cache item to be a leaf node (i.e., approxi-

mate representations of all points in that node), but not an individual point. We

construct the cache as follows. First, we run queries in the query workload WL

and collect the access frequency of each leaf node. Then, we fill the cache with

leaf nodes in descending order of access frequency. Finally, with our technique

in Section 4.3.5, we can build the histogram H and determine the approximate

representations of data points (in leaf nodes).

Any tree-based kNN search solution A (e.g., [52, 19]) can utilize the above

cache, with some slight modifications described below. During kNN search, be-

fore we fetch a leaf node (by its Block ID), we first lookup it in the cache. If

the leaf node is not in the cache, then we load it from the disk. Otherwise, we

78 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

retrieve the node from the cache, examine its approximate points, and compute

lower and upper bounds for that node. In this implementation, our solution

provides tight lower and upper bounds for leaf nodes.

In addition, we can further optimize the algorithm as follows. We first

compute the lower and upper bound for each point in that node. These bounds

can be used to tighten ubk and prune some unpromising nodes and approximate

points. Then, the multi-step kNN search method determines which node should

be examined next. As we will illustrate in experiments (cf. Figures 4.16(a,c) in

Section 4.5.4.5), the above approximate caching solution performs better than

exact caching.

Figure 4.7. Tree-based kNN search with our cache

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 79

4.3.6.2 Alternative histogram categories

Besides the global histogram, we may use other histograms to convert a

point p into an approximate point p′.

Individual histogram: This approach employs a separate histogram Hi for

each dimension i = 1..d. It converts an exact point p to an approximate point

p′ as follows: p′ = (H1(p.1),H2(p.2), · · · ,Hd(p.d)) .

We proceed to discuss how to build these d histograms. Observe that our

histogram metric M3 is defined by using a frequency array: F ′[x] = COUNT {bqr.j =

x : bqr ∈ QR, j ∈ [1, d]}. We can decompose this array into individual frequency

arrays of the form: F ′j [x] = COUNT {bqr.j = x : bqr ∈ QR}. Then, we can express

metric M3 as follows:

B∑
i=1

ui∑
x=li

F ′[x] · (ui − li)2 =

B∑
i=1

ui∑
x=li

(

d∑
j=1

F ′j [x]) · (ui − li)2

=

d∑
j=1

(

B∑
i=1

ui∑
x=li

F ′j [x] · (ui − li)2)

Finally, for each dimension j, we find a histogramHj that minimizes
∑B

i=1

∑ui
x=li

F ′j [x]·

(ui − li)2 by applying Algorithm 4.6.

Multidimensional histogram: A multidimensional histogramHMD partitions

the space into buckets (i.e., bounding rectangles). Given an exact point p, we

compute its approximate point as p′ = HMD(p), which denotes the identifier of

the bucket enclosing p.

Due to the curse of dimensionality, a multidimensional histogram is not

80 4.3. HISTOGRAM-BASED CACHING FOR KNN SEARCH

effective for approximation. As such, we do not bother to extend our solution for

multidimensional histogram. Instead, we use an R-tree based multidimensional

histogram and test its effectiveness in the experimental study.

Global vs. Multidimensional histogram: Observe that each approximate

point p′ is associated with a bounding rectangle. Let wbr be the average width

of dimensions of a bounding rectangle. We proceed to compare the value of wbr

for the global histogram and the multidimensional histogram. In the following

discussion, we assume that data points fall in the space [0, 1]d with uniform

distribution.

We take an equi-width histogram as a simple global histogram. The number

of buckets is 2τ , where τ is the code length. Then we derive: wbr = 1
2τ . Note

that this value is independent of the dimensionality d.

Assume that a multidimensional histogram partitions the d-dimensional s-

pace such that each rectangle contains at least 2 points (out of n points in the

dataset). The average volume of each rectangle is at least 2
n . Thus, we derive

wbr ≥ (2
n)

1
d . Unfortunately, this value rises rapidly with the dimensionality d.

As an example, we set the data size n = 1000000, the dimensionality d = 100,

and the code length τ = 8. For the global histogram (equi-width), we have: wbr =

1
28

= 0.0039. For the multidimensional histogram, we have: wbr ≥ (2
1000000)

1
100 =

0.877. This example demonstrates that the global histogram achieves a much

smaller wbr than the multidimensional histogram.

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 81

4.4 Cost Estimation Model

Section 4.4.1 estimates the I/O cost of our proposed solution, as a function

of the cache size CS and the code length τ . In Section 4.4.2, we derive the optimal

code length τ (for a given CS) such that it leads to the lowest I/O cost.

Our analysis is based on two assumptions: (i) the distribution of queries

follows that of the historical query workload WL, and (ii) the caching policy is

HFF (highest-frequency-first).

Specifically, Highest-frequency-first (HFF) [65] is a static caching policy that

creates the cache offline and fixes the cache content at runtime. It places the

most frequent items into the cache, where the frequency of each cache item p

(i.e., candidate) is derived from the query workload WL as: freq(p) = |{q ∈

WL : p ∈ C(q)}|.

4.4.1 I/O Cost Estimation

4.4.1.1 Cost Estimation model

The I/O cost in the candidate refinement phase is decided by the remaining

candidate size Crefine, which is proportional to 1− ρhit · ρprune (by Eqn. 4.1).

For ρprune, we rewrite it as 1 − ρrefine where ρrefine is the ratio that a

(cache-hit) candidate requires refinement. By using the query workload WL, we

estimate ρrefine as the average value
∑

q∈WL ρ
q
refine/|WL|, where ρqrefine is the

candidate refinement ratio for a specific query point q.

We aim to estimate the cache hit ratio ρhit in Section 4.4.1.2 and the can-

82 4.4. COST ESTIMATION MODEL

didate refinement ratio ρqrefine for a specific query point q in Section 4.4.1.3.

4.4.1.2 Estimation of ρhit

Theorem 4.1 (Estimation of ρhit) Let ρhit and ρ∗hit be the cache hit ratio in

our proposed histogram based cache method (with equi-width histogram) and in

the exact cache method, respectively. Let Nitem and N∗item be the number of cache

items in our cache and in the exact cache, respectively. Let |P| be the dataset

cardinality, and Lvalue be the number of bits for representing a data value.We

have:

ρhit

≤ Lvalue

τ · ρ∗hit (if Nitem < |P|)

= 1 (otherwise)

Proof. First, we have: Nitem · τ = Nitem
∗ · Lvalue.

The proof for the case Nitem ≥ |P| is trivial. We thus focus on the case

Nitem < |P|. Let fi be the query frequency of data point i (according to the query

log WL). Without loss of generality, for the HFF caching policy, we arrange the

points in the cache in descending frequency order, i.e., f1 ≥ f2 ≥ · · · ≥ fn.

According the definition of hit ratio in HFF, we obtain: ρhit =
∑Nitem
i=1 fi∑|P|
i=1 fi

and

ρ∗hit =
∑N∗item
i=1 fi∑|P|
i=1 fi

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 83

Consider the ratio:

ρ∗hit
ρhit

=

∑N∗item
i=1 fi∑Nitem
i=1 fi

=
N∗item ·

∑N∗item
i=1 (fi)
N∗item

Nitem ·
∑Nitem
i=1 (fi)
Nitem

≥ N∗item
Nitem

· 1 (by Lemma 4.4) (4.6)

=
τ

Lvalue

Thus, we obtain: ρhit ≤ Lvalue

τ · ρ∗hit

Lemma 4.4 (Average weight monotone non-increasing)

∀N∗item ≤ Nitem,

∑N∗item
i=1 (fi)

N∗item
≥
∑Nitem

i=1 (fi)

Nitem

Proof. Trivial.

4.4.1.3 Estimation of ρqrefine upper bound

Theorem 4.2 (Estimation of ρqrefine upper bound) Given a query point q,

let b be its k-th upper bound candidate, let Dmax be the largest candidate distance

from q, and let gq(x) be the probability density function of candidate distances

from q. If gq(x) follows the uniform distribution, then:

ρqrefine ≤ min{
||
−−→
ε(bqk)||
Dmax

, 1}

84 4.4. COST ESTIMATION MODEL

Proof. First, we estimate ρqrefine as:

ρqrefine =

∫ ubqk
distq(b

q
k)
gq(x)dx∫ Dmax

0 gq(x)dx
=
distq(b

q
k)

+ − distq(bqk)
Dmax

According to dist+q (c)−distq(c) ≤ ||
−−→
ε(c)|| (proved in Appendix A), we have:

ρqrefine ≤
||
−−→
ε(bqk)||
Dmax

In addition, since ρqrefine ≤ 1, we complete the proof.

Remark: Although we assume gq(x) to be uniform distribution in the above

equation, our estimation is still quite accurate, as shown in our experimental

study.

4.4.2 Determining the Optimal τ

For any histogram, we can apply the I/O cost estimation equations in Sec-

tion 4.4.1 for each τ (from 1 to 32) and then choose the one that gives the lowest

estimated I/O cost.

For the equi-width histogram, we provide a closed-form equation to estimate

the optimal τ in constant time.

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 85

4.4.2.1 ρqrefine upper bound, for equi-width

For equi-width histogram, we estimate ρqrefine by Theorem 4.3. Since the

terms in Theorem 4.3 are independent of q, we can estimate ρqrefine for equi-width

histogram in constant time.

Theorem 4.3 (ρqrefine upper bound, for equi-width)

ρqrefine ≤ min{
√
d

Dmax
w, 1}

where w = 2Lvalue−τ is the bucket width of equi-width histogram, and Dmax = cR

is calculated by using the (R, c)-guarantee in the LSH scheme [93, 39].

Proof. By Lemma 4.2, we have: ρqrefine ≤
||
−−−→
ε(bqk)||
Dmax

=
√
d

Dmax
w. In addition, since

ρqrefine cannot be larger than 1, we complete the proof.

4.4.2.2 Determining τ , for equi-width

In this section, we derive the optimal τ for the equi-width histogram. Con-

sider the ratio of ρhit · ρprune (for our caching) to ρ∗hit (for exact caching). By

Lemma 4.3, we have:

ρhit · ρprune
ρ∗hit

≈
Lvalue
τ · ρ∗hit · (1−

√
d

Dmax
w)

ρ∗hit

=
Lvalue
τ
· (1−

√
d

Dmax
(2Lvalue−τ))

Observe that Lvalue, d are known for a given dataset, and Dmax can be calculated

by the LSH scheme and the query workload.

86 4.5. EXPERIMENTAL STUDY

To find the optimal τ , we simply iterate τ for each value in the range

[1..Lvalue], evaluate the ratio (ρhit · ρprune)/ρ∗hit, and then report the τ value

leading to the highest ratio.

4.5 Experimental Study

In this section, we experimentally evaluate the performance of our proposed

solutions and baseline solutions. Section 4.5.1 introduces the experimental set-

ting. Section 4.5.2 studies the sensitivity of solutions for different configurations

(e.g., ordering of the dataset file, caching policy, categories of histograms). Sec-

tion 4.5.3 demonstrates the accuracy of our estimation equations. Section 4.5.4

compares the performance of solutions with respect to various parameters.

All experiments are conducted on a PC with Intel i7-4770 3.40GHz CPU,

16G RAM, and 64-bit Ubuntu 13.04 operating system. The page (block) size

in this system is 4KB(4,096 bytes). All algorithms were implemented in C++,

and compiled by g++ 4.7.3 with O3 optimization. All datasets and indexes were

stored in hard disk and the OS cache was disabled, as in [106].

4.5.1 Experimental Setup

Datasets and queries: Table 4.2 summarizes the real datasets to be used in

our experimental study. They store the feature vectors extracted from images.

SOGOU, with raw data size 635 GB, is extracted from web images indexed by

Sogou8 (an image search engine in China). We followed [20] to extract a 960-

8http://www.sogou.com/labs/dl/p2.html

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 87

dimensional GIST descriptor from each image. Sogou also provides the query log

(of images) for this dataset. We also use two datasets from [86]: NUS-WIDE

(extracted from Flickr images), and IMGNET (extracted from an online image

database)9

Table 4.2. Dataset information
Dataset d # of P # of Qtest size per point file size

NUS-WIDE 150 267,415 50 600 bytes 136 MB

IMGNET 150 2,213,937 50 600 bytes 1.26 GB

SOGOU 960 8,304,965 50 3,840 bytes 29.7 GB

Next, we split the query log into: (i) a query workload WL, and (ii) a

testing query set Qtest. A sufficiently largeWL is used to populate the cache (in

Section 4.2.1), and to construct the histogram (in our solutions).

In each experiment, we execute the queries in Qtest and measure the average

query response time per query. We follow [93, 39] and fix the size of Qtest to 50.

Methods for comparison: We consider three baseline methods: NO-CACHE

(not using cache), EXACT (caching exact points), and C-VA (caching the whole

VA-file)10. For C-VA, we tune the number of bits per point so that the VA-file

fits into the cache. According to [97], the encoding scheme of VA-file is the same

as Equi-Depth.

Our proposed histogram-caching methods share the prefix HC in their names,

and apply the following histograms as stated in Section 4.3.1.

• Global histogram: HC-W (equi-width), HC-D (Equi-Depth), HC-V (V-

9
http://staff.itee.uq.edu.au/shenht/UQ_IMH/index.htm. The feature vector of them are 150

dimensions color histogram. However, they do not have real query logs. Following [93, 39], we generate
the query log by picking random points from P, and then remove those points from P.

10We use VA-file instead of VA+-file. VA+-file [37] requires Karhunen Loeve Transform (KLT), which
is not scalable for huge matrices on our datasets.

http://staff.itee.uq.edu.au/shenht/UQ_IMH/index.htm

88 4.5. EXPERIMENTAL STUDY

Optimal), HC-O (our optimal histogram for kNN search).

• Individual-dimension histogram: iHC-*.

It uses d histograms. For each dimension j, it builds a histogram Hj by

the corresponding HC-* method.

• Multidimensional histogram: mHC-R.

First, we build an R-tree with 2τ leaf nodes (by using a corresponding node

fanout). Then, we map the MBR of each leaf node to a bucket.

All methods use the same index I in the same experiment. In most experi-

ments, we employ C2LSH [39] as the index I. We use the C2LSH implementation

in [39] and its parameter tuning functions. At the end of Section 4.5.4, we employ

exact kNN search indexes (iDistance and VA-file).

Parameters setting: Unless otherwise stated, we use the following default

parameter values. The default result size is k = 10. The default cache size CS

is set as 40 MB, 400 MB, 8192 MB for NUS-WIDE, IMGNET, SOGOU, less

than 30% of the size, respectively. The default code length, τ = 10, is estimated

by using our equations in Section 4.4. We construct our HC-O histogram

by Algorithm 2. By default, we run each method by a single thread in each

experiment.

4.5.2 Effect of Configurations

Besides the above parameters, the configurations in our solutions include:

ordering of the dataset file P, caching policy, and the categories of histograms.

We proceed to examine the sensitivity of these choices on our solutions. We

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 89

conduct experiments on the SOGOU dataset with the default parameter setting.

The experimental results on NUS-WIDE and IMGNET are similar; we omit them

due to space reasons.

4.5.2.1 Effect of caching policy

The caching policy is an choice in our solution. We compare the HFF and

LRU policies as described in Section 4.2.2. As shown in Figure 4.8, HFF performs

better than LRU. Hence, we set HFF as default caching policy in subsequent

experiments.

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
vg

. Q
ue

ry
 r

ef
in

em
en

t t
im

e(
s)

Result size k

HFF
LRU

Figure 4.8. Effect of caching policy, EXACT caching

4.5.2.2 Effect of dataset file ordering

We investigate whether the physical ordering of the dataset file P affects

the candidate refinement time Trefine. We compare three orderings: (i) the

raw ordering in the dataset, (ii) the clustered ordering, which uses the iDistance

90 4.5. EXPERIMENTAL STUDY

ordering [52]. (iii) the sorted key ordering, which uses the SK-LSH ordering [104].

In this experiment, we use the EXACT caching method on SOGOU; we obtained

similar results for other methods. Figure 4.9 reports the query refinement time

for these orderings. For caching policy HFF, different orderings (Raw, Clustered

and Sortedkey) have similar performance. Thus, we use the raw ordering in

subsequent experiments.

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
vg

. Q
ue

ry
 r

ef
in

em
en

t t
im

e(
s)

Result size k

Raw
Clustered

SortedKey

Figure 4.9. Effect of dataset file ordering, EXACT caching

4.5.2.3 Effect of histogram categories

Next, we compare the global histograms (HC-W, HC-D, HC-O) and the

individual-dimension histograms (iHC-W, iHC-D, iHC-O), and a multidimen-

sional histogram (mHC-R).

Table 4.3 shows the histogram space (KB), the histogram construction time

(s), and the average candidate refinement time Trefine during kNN search. Due

to the curse of dimensionality, mHC-R is not effective. Global histograms and

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 91

individual-dimension histograms have similar Trefine. However, individual-dimension

histogram suffers from high construction time and occupies more space. For ex-

ample, it takes 23.8 days to construct iHC-O, but only 35.7 minutes to construct

HC-O. Thus, we only use global histograms (HC-W,HC-D, HC-O) in following

experiments.

Table 4.3. Effect of histogram categories, on SOGOU
HC-W iHC-W HC-D iHC-D HC-O iHC-O mHC-R

Space (KB) 8 1,200 8 1,200 8 1,200 1,204

Construction time (s) 0.000 0.004 300 2233 2,140 2.1e6 57.6

Average Trefine (s) 0.237 0.230 0.164 0.162 0.123 0.113 0.842

4.5.2.4 Effect of caching the whole VA-file

We compare methods C-VA and HC-D in Figure 4.10. While the SOGOU

dataset occupies 29.7 GB, we only vary the cache size in the range 1024–6144

MB, which corresponds to 3.4–20 % of the data. At small cache size, C-VA

incurs higher time than HC-D because C-VA caches all points but with fewer

bits per point. At large cache size, C-VA and HC-D have similar performance

since they maintain cache histogram by equi-depth method. Hence, we ignore

C-VA in following experiments.

4.5.3 Cost Estimation

Now we test the accuracy of cost estimation model developed in Section 4.5.3.

Figure 4.12 shows the estimated and the measured I/O cost of the method HC-

W, as a function of the code length τ . Observe that the estimated cost is close

to the measured cost. Also, the default code length (τ = 10) derived from our

92 4.5. EXPERIMENTAL STUDY

 0.2

 0.5

 0.8

 1.1

 1.4

 1024 2048 3072 4096 5120 6144

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e(

s)

Cache size(MB)

HC_D
C-VA

Figure 4.10. C-VA and HC-D comparison

cost model is close to the optimal τ measured in the experiment. We also show

the optimal τ for each method on each dataset in Table 4.4.

Table 4.4. Avg. refinement time (s) at default τ = 10 and at optimal τ∗

Dataset EXACT
HC-W HC-V

Default Optimal τ∗ Default Optimal τ∗

NUS-WIDE 0.3115 0.0451 0.0451 10 0.0555 0.0555 10
IMGNET 0.3709 0.0672 0.0495 11 0.0203 0.0182 11
SOGOU 0.4803 0.2368 0.2368 10 0.2173 0.1864 8

Dataset
HC-D HC-O

Default Optimal τ∗ Default Optimal τ∗

NUS-WIDE 0.0110 0.0110 10 0.0087 0.0087 10
IMGNET 0.0129 0.0112 11 0.0086 0.0071 11
SOGOU 0.1639 0.0839 8 0.1274 0.0468 8

4.5.4 Performance Improvement

In this section, we study the performance of our methods with respect to

different parameters.

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 93

4.5.4.1 The power of early pruning

Early pruning (including true hit detection) plays an important role in our

solution. In this experiment, we study the effectiveness of different histograms

for supporting early pruning.

Figure 4.11 shows the remaining candidate size of the methods with respect

to the number of I/O accesses. The performance of mHC-R (R-tree histogram)

is bad due to the curse of dimensionality. Observe that HC-O (using our his-

togram metric) achieves the best performance. On the other hand HC-V (using

the SSE histogram metric [51]) does not minimize the I/O cost. In subsequent

experiments, we ignore mHC-R due to its bad performance.

Remark: HC-O incurs lower I/O cost than HC-D by 50%.

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64 128 256

R
em

ai
ni

ng
 c

an
di

da
te

s
S

iz
e

Avg. query I/O cost

EXACT
mHC-R

HC-W
HC-V

HC-D
HC-O

Figure 4.11. Remaining candidate size vs query I/O cost, axes in logscale

Table 4.4 reports the average refinement time of the methods on all datasets

with default parameter setting. First, our method HC-O is faster than EXACT

by an order of magnitude. Second, although the default code length τ = 10 is not

94 4.5. EXPERIMENTAL STUDY

always the optimal (τ∗), our methods still perform much better than EXACT.

In subsequent experiments, we ignore HC-V as its performance is unstable; it

is worse than HC-W on NUS-WIDE and better than HC-W on IMGNET and

SOGOU.

4.5.4.2 Effect of the cache size CS

Figure 4.13 plots the average query response time of different methods for

different cache size CS. Our caching methods outperform the EXACT caching

method. They achieve the best performance when the cache size reaches only

1/3 of the dataset file size. HC-O is the best among all methods. We ignore the

baseline methods (NO-CACHE and EXACT) in the following experiments.

4.5.4.3 Effect of the result size k

Then we examine the effect of the result size k on our methods. For read-

ability, we plot the average query response time in log scale in Figure 4.14. The

query response time of all methods rises as k increases. HC-O is the best, fol-

lowed by HC-D, and then HC-W. This result also confirms the effectiveness of

our proposed histogram metric (used in HC-O).

4.5.4.4 Effect of the code length τ

The next experiment investigates the effect of code length τ on our meth-

ods. Figure 4.15 (a),(b),(c) show the average values of ρhit · ρprune, query I/O

cost, and refinement time respectively. Due to the space limit, we only show the

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 95

 0

 20

 40

 60

 80

 100

 120

 6 8 10 12 14 16 18 20

A
vg

. q
ue

ry
 I/

O
 c

os
t

Code length τ

Estimated
Measured

 0

 20

 40

 60

 80

 100

 120

 6 8 10 12 14 16 18 20

A
vg

. q
ue

ry
 I/

O
 c

os
t

Code length τ

Estimated
Measured

 0

 20

 40

 60

 80

 100

 120

 6 8 10 12 14 16 18 20

A
vg

. q
ue

ry
 I/

O
 c

os
t

Code length τ

Estimated
Measured

(a) NUS-WIDE (b) IMGNET (c) SOGOU

Figure 4.12. The estimated and the measured query I/O cost of HC-W vs. τ , k, CS
at default setting

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 2000 4000 6000 8000 10000

NO-CACHE
HC-W
C-VA

EXACT
HC-D
HC-O

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 2000 4000 6000 8000 10000

NO-CACHE
C-VA
HC-D

EXACT
HC-W
HC-O

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 2000 4000 6000 8000 10000

NO-CACHE
C-VA
HC-D

EXACT
HC-W
HC-O

 0.01

 0.1

 1

 10 30 50 70 90 110

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e(

s)

Cache size(MB)

 0.01

 0.1

 1

 100 300 500 700 900 1100

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e(

s)

Cache size(MB)

0.2

0.5

1.0

 1024 3072 5120 7168 9216

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e(

s)

Cache size(MB)

(a) NUS-WIDE (b) IMGNET (c) SOGOU

Figure 4.13. Average response time (in logscale) vs. cache size CS, k, τ at default
setting

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e(

s)

Result size k

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e(

s)

Result size k

0.1

0.5

1.0

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e(

s)

Result size k

(a) NUS-WIDE (b) IMGNET (c) SOGOU

Figure 4.14. Average response time (in logscale) vs. result size k, τ , CS at default
setting

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16 18 20

ρ h
it*

ρ p
ru

ne

Code length τ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 6 8 10 12 14 16 18 20

A
vg

. C
re

fin
e

Code length τ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 6 8 10 12 14 16 18 20

A
vg

. q
ue

ry
 r

ef
in

em
en

t t
im

e(
s)

Code length τ

(a) ρhit · ρprune (b) I/O cost (c) Refinement time(s)

Figure 4.15. Performances vs. code length τ , on SOGOU, k, CS at default setting

96 4.6. CHAPTER SUMMARY

experimental results on the largest dataset (SOGOU, 29.7G). Observe that dif-

ferent methods can have different optimal values for τ . For example, the optimal

τ for HC-W, HC-D, HC-O are 10, 8, 8, respectively. Again, HC-O is the best

and its performance is more robust to τ (e.g., at small τ).

4.5.4.5 Experiments on exact kNN search indexes

Finally, we compare the performance of HC-O and EXACT on three exact

kNN search indexes: iDistance11, VA-file[97] and VP-tree [19] on IMGNET.

Figure 4.16 shows that the query cost of HC-O is lower than EXACT caching by

at least an order of magnitude.

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

Result size k

EXACT HC-O
 0.01

 0.1

 1

 10

 0 20 40 60 80 100

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

Result size k

EXACT HC-O
 0.01

 0.1

 1

 10

 0 20 40 60 80 100

A
vg

. q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

Result size k

EXACT HC-O

(a) iDistance (b) VA-file (c) VP-tree

Figure 4.16. Exact kNN search indexes, on IMGNET

4.6 Chapter Summary

In high-dimensional kNN search, both exact and approximate kNN solutions

incur considerable time in the candidate refinement phase. In this chapter, we

investigate a caching solution to reduce the candidate refinement time. Our

caching method HC-O is faster than EXACT caching by at least an order of

11We use the implementation from:https://code.google.com/p/idistance/

CHAPTER 4. EXPLOIT EVERY BIT: EFFECTIVE CACHING FOR
HIGH-DIMENSIONAL NEAREST NEIGHBOR SEARCH 97

magnitude, on an approximate index (C2LSH) and on exact indexes (iDistance,

VP-tree and VA-file).

It is worth noting that our approach is general for any index and achieves

promising performance whenever the candidate refinement phase incurs signif-

icant time, including other kNN methods [10, 11, 99, 40, 20]. In future, we

plan to extend our caching techniques for advanced operations (e.g., kNN join,

density-based clustering) on high-dimensional data.

In addition, this chapter investigates how to efficiently utilize main memory.

It provides hints to optimize the performance of algorithms in Chapter 5.

98 4.6. CHAPTER SUMMARY

Chapter 5

Extracting Top-K Insights

from Multidimensional Data

5.1 Introduction

OLAP tools facilitate enterprise knowledge workers (e.g., executives, man-

agers, and analysts) on decision making in business intelligence applications.

Their interfaces allow users to navigate the aggregation result by operations

(e.g., slicing, dicing, drill up/down). Nevertheless, these tools still require user-

s to specify the dimensions (i.e., group-by attributes) in OLAP queries. This

analysis process requires tedious hit-and-trial from the user, on manually pos-

ing queries, analyzing results and deciding what is interesting [96]. To alleviate

this issue, semi-automatic methods [77, 82] can be used to detect local anoma-

lies or interesting views in an OLAP cube; however, these methods still require

the user to specify a target (e.g., an OLAP cell or a dimension). Recent vision

99

100 5.1. INTRODUCTION

papers [24, 96] and the industry [23] have called for automatic techniques to ob-

tain insights from data, helping users when they are not clear on what they are

looking for [81, 46].

Taking a step further, in this chapter, we take the first attempt to extract

interesting insights from facts in a multidimensional dataset (e.g., sales data). We

plan to: (i) formulate the concept of insight and propose a meaningful scoring

function for it, and (ii) provide efficient solutions to compute top-k insights

automatically.

Suppose that we have a car sales dataset with the schema (Year, Brand,

Category, Sales). OLAP tools support aggregation on data (e.g., the SUM of

Sales by Year and Brand, cf. Step 1 in Figure 5.1). However, aggregation alone

does not reveal much information (e.g., clear trend), as illustrated in Figure

5.1(a). In this work, we consider insight as an interesting observation derived

from aggregation in multiple steps. In following examples, we demonstrate how

insights provide valuable information by performing analysis operations (e.g.,

rank, difference [75]) over aggregation.

Example 1. (Yearly increased sales): We may compare the growth of

different brands by the yearly increased sales (cf. Step 2 in Figure 5.1). In

Figure 5.1(b), we observe that the yearly increased sales of Honda is rising with

years. The aggregation result of the sales of Honda (cf. Figure 5.1(a)) first

drops and then rises, whose trend is not intuitive to understand. In contrast,

our insight (cf. Figure 5.1(b)) provides a clear rising trend. This insight can be

effectively used to reveal the potential market and seek profits.

Example 2. (The rank of yearly increased sales among brands): Re-

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 101

garding the brand BMW, we have not found any “interesting” information about

it from raw aggregation (cf. Step 1) and yearly increased sales (cf. Step 2). Nev-

ertheless, we can obtain an insight by applying analysis operations on the yearly

increased sales. For example, if we rank the yearly increased sales across brands

(cf. Step 3), we derive: “the rank of BMW’s (across brands) yearly increased

sales falls with years”, as shown in Figure 5.1(c). Such insight implies that the

competitiveness of BMW decreases with years.

Step 2: (∆𝑝𝑟𝑒𝑣, Year)

Year

Step 3: (Rank, Brand)

Year

Brand

2010 2011 2012 2013 2014

Step 1: (SUM, Sales)

Year

Brand

2011 2012 2013 2014

Brand

2011 2012 2013 2014

40 35 36 43 58

38 34 34 29 36

13 10 14 23 27

20 18 20 17 19

Honda

Toyota

Ford

BMW

-5 1 7 15

-4 0 -5 7

-3 4 9 4

-2 2 -3 3

Honda

Toyota

Ford

BMW

4 3 2 1

3 4 4 2

2 1 1 3

1 2 3 4

Honda

Toyota

Ford

BMW

(b) Insight: rising trend of Honda’s
yearly increased sales

(c) Insight : falling trend of BMW’s
rank (across brands)

(a) Raw aggregation result

Figure 5.1. Example of insights

The above examples illustrate typical insights extracted from multidimen-

sional data. These insights have two usages in business intelligence applications.

First, they provide informative summaries of the data to non-expert users, who

do not know exactly what they are looking for [81, 46]. For example, a car

seller is looking for interesting patterns in car sales, without knowing the exac-

t patterns in advance. Insights can provide quick and informative summaries

of interesting observations in the data and reveal interesting patterns (e.g., the

102 5.1. INTRODUCTION

sales of SUV is the best across Category in BMW). Second, data analysts may

customize insights by their needs to guide directions for data exploration. For

example, a data analyst focusing on BMW brand may wish to find insights re-

lated to BMW, e.g., the rank of BMW’s yearly increased sales falls with year (as

insight in Figure 5.1(c)). Then, he will continue to investigate the reason why

such a trend happens.

Besides the above insights, the dataset may contain many other insights

for other combinations of group-by attributes and analysis operations. Even

with the aid of OLAP tools, it is tedious for data analysts to enumerate all

possible insights and evaluate their “importance” manually. Motivated by this,

we propose the top-k insight problem, which returns the best k insights with

respect to an importance measure. Our problem does not require users to specify

any input (e.g., group-by attributes, analysis operations in each step). Although

there exist several works on extending the capability of OLAP [77, 102, 101, 1],

they do not support automatic extraction of our proposed insights. We leave the

discussion of these works in the related work section (cf. Table 2.2).

Our problem poses challenges on (i) the effectiveness of the result and (ii)

the efficiency of computation. Regarding the effectiveness aspect, existing O-

LAP tools are lacking means to evaluate the importance of insights. We need a

meaningful scoring function that supports generality and comparability among

different insights. On the other hand, the efficiency aspect involves the following

three technical challenges.

C1) Huge search space: The search space is exponential to the number

of dimension attributes d and the depth of insight τ (i.e., the number of steps

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 103

in an insight). Also, the search space is polynomial to the domain sizes of di-

mensions and the combinations of analysis operations. We leave the analysis in

Section 5.2.3.

C2) Expensive insight computation: The evaluation of an insight re-

quires applying multiple analysis operations after aggregation (e.g., Steps 2 and

3 in the above example). Each analysis operation may require accessing multiple

values in aggregation results.

C3) Non-monotonicity of insight score: As we will explain shortly, the

insight score function is not monotonic. For example, there is no insight in BMW

with yearly increased sales (cf. Step 2), but there is an insight in the rank of

BMW (across Brand) with regard to the yearly increased sales, as shown in Figure

5.1(c). Moreover, there is no insight in the rank of Toyota (as Figure 5.2 (a))

in above example; but there is an insight in its children spaces (e.g., 〈*, Toyota,

SUV〉 in Figure 5.2(b), where SUV is a value for the Category dimension). Such

non-monotonicity prevents us from utilizing existing aggregation computation

methods [36, 103], which require the function to be monotonic.

#4

#3

#2

#1

2011 2012 2013 2014

R
an

k

Year

Toyota

#4

#3

#2

#1

2011 2012 2013 2014

R
an

k

Year

ToyotaToyota,SUV

(a) subspace 〈*, Toyota, *〉 (b) subspace 〈*, Toyota, SUV〉
score = 0.0001 score = 0.37

Figure 5.2. Examples of non-monotonicity

104 5.1. INTRODUCTION

While the problem of automatic insight extraction is challenging, we develop

efficient evaluation techniques that render insight extraction feasible for large-

scale applications (i.e., the execution time of our solution is sub-linear with data

size). Specifically, we devise a suite of optimization techniques to reduce the

computation cost. The contributions of this work are:

1. Formulate the top-k insight problem (Section 5.2) and propose a meaningful

scoring function for insights (Section 5.3);

2. Propose the architecture of our top-k insight extraction system (Section 5.4)

and the computation framework (Section 5.5);

3. Design a suite of optimization techniques — pruning, ordering, specialized

cube (Section 5.6) and computation sharing (Section 5.7) to speedup insight

extraction;

4. Verify the effectiveness of top-k insights on three real datasets by case study

and user study (Section 5.8), and demonstrate the efficiency of our proposal

(Section 5.9).

The remainder of this chapter is organized as follows. Section 5.2 formulates

our problem and Section 5.3 provides a meaningful score for insights. Section 5.4

describes the architecture of our proposed system and discusses its extensibil-

ity. Sections 5.5, 5.6 and 5.7 present the computation framework and a suite

of performance optimization techniques. Sections 5.8 and 5.9 demonstrate the

effectiveness and efficiency of our proposal, respectively. Section 5.10 concludes

this work and discusses the further research topics.

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 105

5.2 Problem Statement

In this section, we provide formal definitions of the multidimensional data

model, composite extractors, and the score function of insights. Finally, we

formulate our insight extraction problem and analyze its search space.

5.2.1 Data Model and Subspace

We are given a multidimensional dataset R(D,M) where D = 〈D1, ..., Dd〉

is the list of dimension attributes, andM is the measure attribute. Let dom(Di)

denote the domain of attribute Di. We assume that each Di satisfies |dom(Di)| >

11.

Consider the entire OLAP cube defined on the dataset D. Given a cube cell,

we can describe its attributes’ values by a subspace S and its aggregate value by

a measure S.M, as defined below.

Definition 5.1 (Subspace) A subspace is defined as an array S = 〈S[1], ..., S[d]〉,

where S[i] can take a value in dom(Di) or the value ∗ (i.e., ‘all’ values). Given

the dataset D, the aggregate measure S.M is defined as the aggregation of tuples

in D that match with S.

For simplicity, we also call S.M as the measure of subspace S.

It is convenient to analyze the change of cube cells (i.e., subspaces) by vary-

ing a single dimension. Therefore, we define a sibling group to cover subspaces

that differ on a single dimension only.

1We discard any attribute Di with |dom(Di)| = 1 because such an attribute is not meaningful for
analysis.

106 5.2. PROBLEM STATEMENT

Definition 5.2 (Sibling group) Given a subspace S and a dimension Di, a

sibling group is defined as SG(S,Di) = {S′ : S′[i] 6= ∗ ∧ ∀j 6= i, S′[j] = S[j]},

i.e., a set of subspaces that differ on Di only. We also call Di as a dividing

dimension for SG(S,Di).

Example: Table 5.1 illustrates an example dataset (car sales). It contains two

dimensions (Year, Brand) and a measure (Sales). By fixing the year (to 2010) and

varying the brand, we can compare the sales of different brands in the same year:

〈2010,Ford〉, 〈2010,BMW〉, 〈2010,Honda〉, 〈2010,Toyota〉. These four subspaces

belong to the sibling group SG(〈2010,*〉,Brand).

Tuples Tuples Tuples Tuples

2010, Ford, 13 2010, BMW, 20 2010, Honda, 40 2010, Toyota, 38
2011, Ford, 10 2011, BMW, 18 2011, Honda, 35 2011, Toyota, 34
2012, Ford, 14 2012, BMW, 20 2012, Honda, 36 2012, Toyota, 34
2013, Ford, 23 2013, BMW, 17 2013, Honda, 43 2013, Toyota, 29
2014, Ford, 27 2014, BMW, 19 2014, Honda, 58 2014, Toyota, 36

Table 5.1. Car sales dataset (Year, Brand, Sales)

5.2.2 Composite Extractor

We shall conduct analysis operations on a sibling group in order to derive

an observation. First, we introduce an extractor as a basic analysis operation on

a sibling group.

Definition 5.3 (Extractor) An extractor ξ takes a sibling group SG(S,Dx) as

input, and computes for each subspace Sc ∈ SG(S,Dx) a derived measure Sc.M′

based on (i) Sc.M and (ii) {(Sc′ , Sc′ .M) : Sc′ ∈ SG(S,Dx)}, i.e., the measures

of all subspaces in SG(S,Dx).

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 107

Inspired by Sarawagi et al. [75, 78] and market share analysis2, we propose

four instances of extractors (i.e., Rank, %, ∆avg, ∆prev) and describe their se-

mantics in Table 5.2. The extractor ∆prev imposes an requirement that Dx must

be an ordinal attribute, because prevDx(Sc) refers to the previous subspace of

Sc along Dx. The other extractors are applicable to any type of attribute. In

addition to these extractors, we also allow data analysts to define their own

extractors for their applications.

Extractor ξ Derived measure Sc.M′ for Sc Requirement

Rank the rank of Sc.M in SG(S,Dx) nil

% % of Sc.M over the SUM of measures in SG(S,Dx) nil

∆avg Sc.M− the AVERAGE of measures in SG(S,Dx) nil

∆prev Sc.M− prevDx(Sc).M Dx is ordinal

Table 5.2. List of extractors, with the input SG(S,Dx)

Example: We illustrate the output of the above extractors in Table 5.3. Consider

the sibling group SG(S,Year), where S=〈*,Ford〉. The extractor Rank computes

the rank of each Sc among all years. the extractor % calculates the percentage

of each Sc among all years. The extractor ∆avg returns the difference of each Sc

from the average measure. The extractor ∆prev obtains the difference of each Sc

from its previous subspace along Year.

Sib. group Measure Derived measure Sc.M′ for
SG(S,Dx) Sc.M Rank % ∆avg ∆prev

〈2010,Ford〉 13 4 15% -4.4
〈2011,Ford〉 10 5 11% -7.4 -3
〈2012,Ford〉 14 3 16% -3.4 4
〈2013,Ford〉 23 2 27% 5.6 9
〈2014,Ford〉 27 1 31% 9.6 4

Table 5.3. Examples for extractors

2
https://en.wikipedia.org/wiki/Market_share_analysis

https://en.wikipedia.org/wiki/Market_share_analysis

108 5.2. PROBLEM STATEMENT

We then introduce a composite extractor Ce to capture a multi-step analysis

operator on a sibling group.

Definition 5.4 (Composite extractor) Given a depth parameter τ , a com-

posite extractor Ce is defined as a length-τ array of pairs (Ce[i].ξ, Ce[i].Dx) such

that it satisfies: (i) Ce[1].ξ is an aggregate function and Ce[1].Dx is the measure

attribute M, (ii) each Ce[i] (i > 1) is an extractor, and (iii) adjacent extractors

are compatible. 3

Composition Taxonomy: We give a well-defined composition closure to ensure

the validity of generated composite extractors, as shown in Table 5.4. The result

of extractors in the first column serves as the input of extractors in the first row.

’X’ means a meaningful composition, ’7’ means a meaningless composition.

Example: The composite extractor Ce = 〈SUM, (∆prev,Year), (Rank, Brand)〉 is

valid according to Table 5.4. It corresponds to the semantic that ranks the value

of “difference from previous year” across all brands in the dataset in Table 5.1.

However, the composite extractor Ce = 〈SUM, (Rank, Year), (%, Brand)〉 is

invalid, because it does not make sense to calculate the percentage of ranking

positions.

ξ Rank % ∆avg ∆prev

Rank X 7 X X
% X 7 X X

∆avg X 7 X X
∆prev X 7 X X

Table 5.4. Composition taxonomy for adjacent extractors

3Two extractors Ce[i] and Ce[i+ 1] are compatible if the output set of Ce[i] can be used as the input
of Ce[i+ 1].

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 109

We assume that the aggregate function is SUM on the measure attribute

M in the dataset. Nevertheless, we will consider other aggregate functions and

multiple measure attributes in Section 5.4.2. The depth parameter τ captures

the complexity of a composite extractor. When τ = 1, a composite extractor is

the same as the aggregate function. We recommend to set τ to 2 or 3, which

are analogous to first-order and second-order derivatives in Mathematics, respec-

tively. For the examples in Figure 5.1, we can express steps 1–2 by a depth-2

composite extractor Ce = 〈(SUM,Sales),(∆prev,Year)〉, and express steps 1–3 by

a depth-3 Ce = 〈(SUM,Sales),(∆prev,Year),(Rank, Brand)〉.

Next, we define the result set of applying a composite extractor Ce on a

sibling group SG(S,Da), as in Definition 5.5.

Definition 5.5 (Result set of composite extractor) A composite extrac-

tor Ce takes sibling group SG(S,Da) as input, and computes the result set Φ =

{(S′, S′.Mτ) : S′ ∈ SG(S,Da)}, where the Sc.Mi denotes the level-i derived mea-

sure of a subspace Sc with respect Ce[i]. The value of Sc.Mi is defined recursively

as follows.

At any level i > 1, we obtain each S′.Mi by applying the extractor Ce[i].ξ

on the set {(Sc, Sc.Mi−1) : Sc ∈ SG(S′, Ce[i].Dx)}.

At level i=1, S′.M1 is the aggregate result on the measure M.

Example: Figure 5.3 shows the result set Φ after applying the composite ex-

tractor Ce = 〈(SUM,Sales),(%,Year)〉 on the sibling group SG(〈*,Ford〉,Year).

For example, at level 2, the derived measure of Sc=〈2014, Ford〉 is: Sc.M2 =

Sc.M1∑
S′∈SG(〈∗,Ford〉,Year) S

′.M1
= 27

13+10+14+23+27 = 31%, as illustrated in Figure 5.3,

110 5.2. PROBLEM STATEMENT

where S′.M1 is SUM(S′). We will propose an algorithm to compute the result

set in Section 5.5.2.

𝑆𝑐 𝑆𝑐 . 𝑀1

<2010, Ford> 13

<2011, Ford> 10

<2012, Ford> 14

<2013, Ford> 23

<2014, Ford> 27

𝑆𝑐 𝑆𝑐 . 𝑀2

<2010, Ford> 15%

<2011, Ford> 11%

<2012, Ford> 16%

<2013, Ford> 27%

<2014, Ford> 31%

13

13 + 10 + 14 + 23 + 27

27

13 + 10 + 14 + 23 + 27

……
……
……

Figure 5.3. Example of composite extractor computation

In some cases, a composite extractor is not applicable to some sibling groups.

For example, the composite extractor 〈(SUM,Sales),(%,Year)〉) cannot be applied

on the sibling group SG(〈*,*〉,Brand) because the subspaces in the group do not

have known values in the dimension ‘Year’. We discuss how to test the validity

of a composite extractor Ce on a sibling group SG(S,Di) as follows.

Definition 5.6 (validity of SG(S,Di) and Ce) A sibling group SG(S,Da) is a

valid input for composite extractor Ce iff for each pair (ξ,Dx) in Ce, Dx=Da

or S[Dx] 6= ∗.

level Extractor

2 (%,Year)

1 (SUM, Sales)

<2010, Ford>

……

<2014, Ford>

𝑆𝑐 𝑆𝑐 . 𝑀′

<2010, Ford> 15%

…… …

<2014, Ford> 31%

Valid

<*, Honda>

<*,Toyota>

<*, Ford>

<*, BMW>

Invalid

𝑆𝐺(<∗,∗>, Brand) 𝑆𝐺(<∗, For𝑑 >, 𝐘𝐞𝐚𝐫)

Sibling group Sibling group

Composite extractor

Result set

Figure 5.4. Example of SG(S,Di) and Ce

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 111

Example: In Figure 5.4, a sibling group SG(〈*,Ford〉,Year) is valid for the com-

posite extractor Ce = 〈(SUM,Sales),(%,Year)〉), as the dimension ‘Year’ in Ce[2]

has known values in every subspace Sc of SG(〈*,Ford〉,Year). However, the sib-

ling group SG(〈*,*〉,Brand) is not valid for the same Ce because SG(〈*,*〉,Brand)

does not have known values in the dimension ‘Year’.

5.2.3 Problem Definition

Intuitively, business analysts are interested in exceptional facts (e.g., sig-

nificant differences within a sibling group) and unexpected trends (e.g., rapid

rise during a time period). Let Φ be the result set after applying a composite

extractor Ce on a sibling group SG(S,Di). We propose to extract two types of

“insights” from Φ.

1. Point insight (outstanding): Outstanding (No.1 / Last) means that a

subspace is remarkably different from others in terms of Sc.Mτ .

2. Shape insight (trend): This insight is applicable when Di is an ordinal

dimension. A rising / falling trend means that Sc.Mτ exhibits such a trend

when Di increases.

We are also aware of other types of insights, e.g., those in the Microsoft

Power BI product [4]. We will discuss the extensions of our solution for other

types of insights in Section 5.4.2.

Formally, we denote a specific insight instance by (SG(S,Di), Ce,T) where T

is an insight type. Our problem is to find the top-k insights according to a score

function S(SG(S,Di), Ce,T), which we will elaborate in Section 5.3.

112 5.2. PROBLEM STATEMENT

Problem 1 (Insight problem) Given a dataset R(D,M) and composite ex-

tractor depth τ , find top-k insights {(SG(S,Di), Ce,T)} with the highest scores

among all possible combinations of sibling groups, composite extractors, and in-

sight types.

Search Space Size: Before presenting our solutions, we first analyze the search

space size of our problem, i.e., the number of possible insights (SG(S,Di), Ce,T),

where SG(S,Di) is a sibling group, Ce is a composite extractor, and T is an insight

type. In our analysis, let D = maxdi=1 |dom(Di)| be the maximum domain size,

β be the number of extractor types, and |T| be the number of insight types. The

search space of our solutions is as follows.

Lemma 5.1 (Search space size) The number of possible insights is O(|T| · d ·

(β · d)τ−1 · (D + 1)d).

Proof. First, the number of insight types is |T|. For the number of sibling

groups, the number of subspaces is O((D + 1)d), and there are O(d) choices for

Di.

An extractor (ξ, dim) has O(β · d) possible choices. Since a composite ex-

tractor contains τ − 1 extractors, there are O((β · d)τ−1) possible composite

extractors.

By multiplying the above terms, we obtain the number of possible insights:

O(|T| · d · (β · d)τ−1 · (D + 1)d).

The scope of this work: The insight problem involves two evaluation metric-

s: (i) efficiency, and (ii) effectiveness. For efficiency, we propose a computation

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 113

framework (in Section 5.5) with optimization techniques (in Sections 5.6, 5.7) to

find exact top-k insights efficiently. For effectiveness, we present our method-

ology to measure the score of an insight (in Section 5.3), and then verify the

effectiveness of top-k insights by case study and user study on real datasets (in

Section 5.8).

5.3 Meaningful Insight Score

The insight score reflects the interestingness of an insight. In order to rank

different insights, the insight score metric should exhibit: (i) generality (i.e., ap-

plicable to different types of insights), (ii) comparability (i.e, fair across different

types of insights).

We first discuss existing works for evaluating the interestingness of informa-

tion in the literature. In the problem context of [102], the score of a subspace S

is defined as:

S(q, S) = Rank(q, S)−1 · ObjCount(S)

where q is a given query tuple, ObjCount(S) is the number of tuples in S, and

Rank(q, S) is the percentile rank of q among tuples in S. Unfortunately, their

score function cannot be readily applied to our insights because (i) our problem

does not have any query tuple, (ii) the functions Rank(q, S)−1 and ObjCount(S)

do not capture the characteristics of our insights (e.g., point and shape insights).

The concept of interestingness has also been studied in the context of OLAP

cube analysis [77, 76, 100]. All of them define interestingness of a cell value (in the

cube) by how surprising that value differs from the expectation. The expectation

114 5.3. MEANINGFUL INSIGHT SCORE

is often set by the system in [77, 100], whereas [76] allows a user to specify a

list of “known cells” in order to set the expectation for other cells. Following

the above works, [28] propose to measure the interestingness of facets in textual

documents by using p-value. Unfortunately, all these notions of interestingness

are not applicable for our problem as they do not satisfy the properties (e.g.,

generality, comparability) of insight score.

5.3.1 Insight Score Function

We propose a more appropriate score function for an insight (SG(S,Di), Ce,T)

as:

S(SG(S,Di), Ce,T) = Imp(SG(S,Di)) · SigT(Φ) (5.1)

where Imp measures the impact in the sibling group SG(S,Di), SigT measures

the significance of type-T insight observed from Φ, and Φ is the result of Ce on

SG(S,Di).

The Impact Measure Imp: From the business viewpoint, the impact repre-

sents the market share of S. We employ

Imp(SG(S,Di)) =
∑
S′∈SG(S,Di)

SUM(S′)/SUM(〈∗, · · · , ∗〉),

so that its value domain is normalized in the interval [0, 1].

The Significance Measure SigT: It reveals the uncommonness of an observed

insight in the result set Φ. The higher score, the more uncommon/unexpected

of that insight. We intend to formulate SigT based on the p-value, which essen-

tially measures how extreme an event is. It also allows fair comparisons among

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 115

different types of insights because p-value is already normalized between 0 and

1. In addition, the usage of p-value has been justified by the user-study in [28].

Therefore, we use p-value to measure SigT.

5.3.2 The Sig of Insight

In statistics, the p-value is defined as “the probability of obtaining a result

equal to or more extreme than what was actually observed, with the given null

hypothesis being true” [57]. To achieve generality, we measure the p-value of

different types of insights by using different kinds of null hypotheses. We suppose

that the null hypotheses for different type of insights are common in real world.

We then propose significance functions for point insight and shape insight. The

detailed methodologies as follows.

5.3.2.1 Insight evaluation

We describe the significance evaluation procedure for each type of insight in

Table 5.5.

Please note that, alternatively, users may customize null hypotheses for per-

sonalized analysis and employ their own significance functions. We will discuss

them in the extensions in Section 5.4.2.

Measuring Sig of Point Insight. Let X = {x1, x2, ..., xn} be the set of numeric

values in the result Φ. In the business domain [8], the sales of products often

follow a power-law distribution4. Thus, we set the null hypothesis of point insight

4
https://en.wikipedia.org/wiki/Long_tail

https://en.wikipedia.org/wiki/Long_tail

116 5.3. MEANINGFUL INSIGHT SCORE

Insight types Description & Significance definition

Point Insight: Given a group of numerical values X = {x1, x2, ..., xn},
outstanding No.1 the significance of the biggest value xmax being Outstanding No. 1 of

X is defined by the p-value against the null hypothesis H0:
X follows a power-law distribution.

Significance i) sort X in descending order;
calculation: ii) conduct regression analysis for the values X/xmax

using power-law function α · i−β , where i is index
p-value of iii) use residuals in regression analysis to train a Gaussian model N(µ, δ);

outstanding No.1 iv) obtain the residual εmax by x̂max − xmax
v) calculate the p-value by P (ε > εmax|N(µ, δ)).
vi) compute the significance of xmax by 1− P (ε > εmax|N(µ, δ))

outstanding Last Replace xmax ∈ X by xmin ∈ X , and the significance calculation
is the same as Outstanding No.1

Example cf. Figure 5.7

Shape Insight: A time series has an remarkable trend (increase/decrease) with a certain
turbulence level (steadily/with turbulence).

trend For a time series X = 〈x1, x2, ..., xn〉, the trend insight reflects a
relatively sustained trend of Xi.
The significance of shape insight is defined by the p-value against
the null hypothesis H0 : X forms a shape with slope ≈ 0

Significance i) fit X to a line by linear regression analysis and obtain goodness-of-fit value r2.
calculation: ii) compute the slope of the X ’s fitted line

trend iii) employ a logistic distribution to capture the distributions of slope
L(µ, λ), µ = 0.2 and λ = 2

significance iv) calculate the p-value by P (s > |slope||L(µ, δ))
v) compute the significance of X by r2 · (1− P (s > |slope||L(µ, δ)))

Example cf. Figure 5.8

Table 5.5. Insights categories and evaluation procedures

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 117

as:

H0 : X follows a power-law distribution

The p-value should reveal how surprisingly the maximum value differs from the

rest of values in Φ with the hypothesis H0 is true5.

First, we sort X in the descending order and obtain the maximum value

xmax. Then, we fit the values in X/{xmax} to a power-law distribution, like in

Figure 5.5(a), where the prediction errors of xi ∈ X/{xmax} (i.e., subtracting

observed value xi from estimated value x̂i, also called residuals) approximately

follow Gaussian distribution N(µ, δ). Next, we obtain how surprisingly xmax was

observed against the hypothesis H0 is true by (i) deriving xmax’s prediction error

by εmax = x̂max − xmax, (ii) calculating the corresponding p-value p = Pr(ε >

εmax|N(µ, δ)), as we depicted in Figure 5.5(b). Finally, we obtain the significance

as SigT(Φ) = 1− p.

Power-law distribution
𝒙 𝒎𝒂𝒙

𝒙𝒎𝒂𝒙
𝑨

𝒙𝒎𝒂𝒙
𝑩

𝜱𝑨

𝜱𝑩

𝜖𝑩 = 𝒙𝒎𝒂𝒙
𝑩 -𝒙 𝒎𝒂𝒙 𝜖𝑨 = 𝒙𝒎𝒂𝒙

𝑨 -𝒙 𝒎𝒂𝒙

Pr(𝜖 > 𝜖𝑨|𝑁(𝜇, 𝛿))= 0.09

Pr(𝜖 > 𝜖𝑩|𝑁(𝜇, 𝛿))=0.62

𝜖
𝜇

𝑵(𝝁, 𝜹)

Residual

Power-law distribution
𝒙 𝒎𝒂𝒙

𝒙𝒎𝒂𝒙
𝑨

𝒙𝒎𝒂𝒙
𝑩

𝜱𝑨

𝜱𝑩

𝜖𝑩 = 𝒙𝒎𝒂𝒙
𝑩 -𝒙 𝒎𝒂𝒙 𝜖𝑨 = 𝒙𝒎𝒂𝒙

𝑨 -𝒙 𝒎𝒂𝒙

Pr(𝜖 > 𝜖𝑨|𝑁(𝜇, 𝛿))= 0.09

Pr(𝜖 > 𝜖𝑩|𝑁(𝜇, 𝛿))=0.62

𝜖
𝜇

𝑵(𝝁, 𝜹)

Residual

(a) Power-law distribution (b) p-value

Figure 5.5. The significance of point insight

We illustrate an example in Figure 5.5. For the result set ΦA, the prediction

error xAmax is large, so we obtain p = Pr(ε > εAmax|N(µ, δ)) = 0.09 and derive the

significance as SigT(ΦA) = 1−p = 0.91. For the result set ΦB, the prediction error

xBmax is small, so we derive the significance as SigT(ΦA) = 1−p = 1−0.62 = 0.38.

5We omit the minimum value discussion, as it is similar with the maximum case.

118 5.3. MEANINGFUL INSIGHT SCORE

Thus, ΦA is more significant than ΦB.

Measuring Sig of Shape Insight. Let X = 〈x1, x2, ..., xn〉 be the time series

of values in the result Φ. It is common that the trend is neither rising nor falling.

Therefore, we set the null hypothesis as:

H0 : X forms a shape with slope ≈ 0

In business intelligence applications, data analysts are attracted to a clear ris-

ing/falling trend, whose slope is very different from 0. Thus, the p-value should

measure how surprisingly the slope differs from 0.

𝑠𝑙𝑜𝑝𝑒𝐵 = 0.11, 𝑟𝐵
2 = 0.92

𝑠𝑙𝑜𝑝𝑒𝐴 = 1.02, 𝑟𝐴
2 = 0.99

1.0

𝑠𝑙𝑜𝑝𝑒𝐴 𝑠𝑙𝑜𝑝𝑒𝐵

0.21

Year

D
er

iv
ed

 m
ea

su
re

: 𝑀
𝜏

Slope

Significance

𝜇
𝒔𝒍𝒐𝒑𝒆𝑨 𝒔𝒍𝒐𝒑𝒆𝑩

Pr 𝑠 > |𝑠𝑙𝑜𝑝𝑒𝐵 | 𝛽(𝜇, 𝜆))=0.79

Pr 𝑠 > |𝑠𝑙𝑜𝑝𝑒𝐴 | 𝛽(𝜇, 𝜆))=0.11 𝜷(𝝁, 𝝀)

𝑠

-𝒔𝒍𝒐𝒑𝒆𝑨 -𝒔𝒍𝒐𝒑𝒆𝑩

𝑠𝑙𝑜𝑝𝑒𝐵 = 0.11, 𝑟𝐵
2 = 0.92

𝑠𝑙𝑜𝑝𝑒𝐴 = 1.02, 𝑟𝐴
2 = 0.99

1.0

𝑠𝑙𝑜𝑝𝑒𝐴 𝑠𝑙𝑜𝑝𝑒𝐵

0.21

Year

D
er

iv
ed

 m
ea

su
re

: 𝑀
𝜏

Slope

Significance

𝜇
𝒔𝒍𝒐𝒑𝒆𝑨 𝒔𝒍𝒐𝒑𝒆𝑩

Pr 𝑠 > |𝑠𝑙𝑜𝑝𝑒𝐵 | 𝐿(𝜇, 𝜆))=0.79

Pr 𝑠 > |𝑠𝑙𝑜𝑝𝑒𝐴 | 𝐿(𝜇, 𝜆))=0.11 𝑳(𝝁, 𝝀)

𝑠

-𝒔𝒍𝒐𝒑𝒆𝑨 -𝒔𝒍𝒐𝒑𝒆𝑩

(a) Slope of trends (b) p-value

Figure 5.6. The significance of shape insight

First, we fit X to a line by linear regression analysis (see Figure 5.6(a)),

and then compute its slope slope and the goodness-of-fit6 value r2. According to

[13], the distribution of slopes should follow a logistic distribution L(µ, λ), where

µ, λ are constant parameters. In Figure 5.6(b), the p-value is the probability of

the slope values equal to or larger than the observed slope of the rising trend7.

Specifically, we compute the p-value as p = Pr(s > |slope| | L(µ, λ)). Finally, we

define the significance as SigT(Φ) = r2 · (1 − p), where the goodness-of-fit value

6
https://en.wikipedia.org/wiki/Coefficient_of_determination

7We omit the falling trend discussion, as it is similar with rising trend.

https://en.wikipedia.org/wiki/Coefficient_of_determination

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 119

r2 is used as a weight.

We illustrate an example in Figure 5.6. Consider the shapes of blue dots and

red dots in Figure 5.6(a). After fitting blue dots to a line, we obtain the slope

slopeA = 1.02 and the goodness-of-fit value r2
A = 0.99. Similarly, after fitting red

dots, we obtain slopeB = 0.11 and r2
B = 0.92. As illustrated in Figure 5.6(b), we

then compute: pA = 0.11 and pB = 0.79. In this example, since slopeA > slopeB,

the significance of A (i.e., 0.88 = 0.99 ∗ (1− 0.11)) is larger than that of B (i.e.,

0.19).

Examples in real dataset. Figure 5.7 shows the significance value of the in-

sight “outstanding No.1” for two different pairs of (SG(S,Di), Ce). Figure 5.7(a)

shows that the highest bar is remarkably higher than other bars, thus the signif-

icance value is high (0.96). In Figure 5.7(b), since the highest bar is not much

higher than other bars, the significance is relatively low (0.36).

-5e+5

0

5e+5

10e+5

15e+5

For
d

BM
W

GM
C

Hyu
nd

ai

Volk
sw

g

M
az

da

Toy
ot

a

Hon
da

D
er

iv
ed

 m
ea

su
re

 M
2

Category:SUV

-1.5

0

1.5

3.0

2014 2013 2010 2012 2011

D
er

iv
ed

 m
ea

su
re

 M
3

Year

(a) Sig = 0.97 (b) Sig = 0.36

Figure 5.7. The significance of outstanding No.1

As another example, we then illustrate the significance of shape insights. In

Figure 5.8(a), the derived measure increases quickly from 01/2010 to 04/2011

(i.e., high slope), thus its significance is high (0.99). However, in Figure 5.8(b),

120 5.4. SYSTEM ARCHITECTURE

the derived measure rises slowly, so its significance is low (0.31).

 0

 2

 4

 6

 8

01/2010 04/2010 07/2010 10/2010 01/2011 04/2011

D
er

iv
ed

 m
ea

su
re

 M
2

Year

Price:$100-$199

 2

 2.3

 2.6

01/2010 04/2010 07/2010 10/2010 01/2011 04/2011

D
er

iv
ed

 m
ea

su
re

 M
2

Year

Vendor:Sony

(a) Sig = 0.99 (b) Sig = 0.31

Figure 5.8. The significance of rising trend

5.4 System Architecture

We first describe the architecture of our top-k insight extraction system in

Section 5.4.1, and then discuss the extensibility of our system in Section 5.4.2.

Finally, we highlight the in-memory techniques in this work in Section 5.4.3.

5.4.1 Architecture Overview

Figure 5.9 depicts the architecture of our system, which consists of three

layers.

1. The system configuration layer (at the bottom) allows user to configure

system settings, e.g., specify a new insight type, or customize the null

hypothesis based on the user’s belief. We will elaborate this layer in Section

5.4.2.

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 121

2. The insight extraction layer (in the middle) is the core component of our

system. First, it enumerates every possible pair (SG(S,Di), Ce) of sibling

group and composite extractor. Then, it feeds each pair (SG(S,Di), Ce) into

the computation engine and then invokes the insight engine to compute the

score. During this process, the layer maintains the top-k insights list.

3. The user interface layer (at the top) is front-end of our system. It presents

and visualizes the top-k insights to the users.

Figure 5.9. Top-k insight extraction system architecture

5.4.2 Extensibility

We have suggested some type(s) of the aggregate function, extractors, dataset,

insights, and their score functions so far. Nevertheless, our system is extensible

as follows:

Aggregate function and extractors: A composite extractor must take an

aggregate function as the level-1 extractor, and then take any other extractor

122 5.4. SYSTEM ARCHITECTURE

at higher levels. First, we support many typical aggregate functions in OLAP,

e.g., SUM, COUNT, AVERAGE, MAX, MIN. For example, we will consider the

aggregate function COUNT, in the user study in Section 5.8. Second, we also

allow the data analyst to define his own extractor (i.e., difference from Rank-

1) . Regarding the validity of composing extractors, we only need to slightly

revise the composite extractor adjunct taxonomy (cf. Table 5.4) to ensure the

validation of generated composite extractors.

Dataset: Since our system is built on top of an OLAP system, it can deal

any kind of dataset in the OLAP system. For a dataset with multiple measure

attributes, user can either choose one measure attribute, or specify a derived

measure as a weighted sum of other measure attributes [47] in system configura-

tion layer.

Customization of insights: Our system supports other insight types, e.g., the

correlation between two trends, and the seasonality of a trend [4]. Our score

functions, e.g., significance functions, are also customizable. Recall in Section

5.3.2 that the significance of an insight type is defined based on p-value, which

essentially measures how extreme an event is against a “common observation” in

real world. Data analysts may customize their “common observations” by their

domain knowledge.

Customization of the search space: Expert users may have some idea about

what they are looking for. As such, we enable expert users to declare constraints

and limit the search space. For example, an expert user may only consider sibling

groups related to BMW in the car sales dataset.

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 123

5.4.3 In-memory techniques

With the results and findings in Chapter 3 and 4, we proposed the in-memory

insight extraction system as Figure 5.9. Specifically, we illustrate efficient in-

memory data cube techniques in Section 5.6.3. We also improve cache locality

by sharing computation within / across sibling groups in Section 5.7.

5.5 Insight Extraction

We present a computation framework for insight extraction layer.

5.5.1 Computation Framework

Algorithm 5.7 is the pseudo-code of our computation framework for insight

extraction layer in the system architecture. It employs a heap H to keep the top-

k insights found so far. The algorithm needs to generate all possible instances of

composite extractor Ce and sibling group SG(S,Di). Then, it computes the in-

sight from every (SG(S,Di), Ce,T), and updates H upon finding a better insight.

Generally, the number of sibling groups is much larger than the number

of composite extractors. To keep the memory consumption manageable, we

adopt the divide-and-conquer approach to generate sibling groups. Specifically,

we implement this by a recursive function (Lines 9–18), which consists of two

phases.

In Phase I (Lines 9–14), we first check whether the pair (SG(S,Di), Ce) is

valid. If yes, then we compute the result Φ of the pair by Algorithm 5.8 which

124 5.5. INSIGHT EXTRACTION

Algorithm 5.7 Insights (dataset R(D,M), depth τ , result size k)

1: initialize a min-heap H ← ∅ . store top-k insights
2: let ubk be the k-th largest score in H
3: O ← enumerate all possible Ce with depth τ . enumerate Ce
4: for each Ce in O do
5: for i := 1 to d do . enumerate SG
6: initialize subspace S ← 〈∗, ∗, · · · , ∗〉
7: EnumerateInsight(S,Di, Ce)

8: return H

Function: EnumerateInsight (S, Di, Ce):
9: if isValid (SG(S,Di), Ce) then . Phase I

10: Φ← ExtractΦ(SG(S,Di), Ce) . Alg. 5.8: computation engine
11: for each T of insight do
12: S← Imp(SG(S,Di)) · SigT(Φ) . Sec. 5.3: insight engine
13: if S > ubk then
14: update H, ubk by (SG(S,Di), Ce,T)

15: for each value v ∈ dom(Di) do . Phase II
16: S

′ ← S, S
′
[Di]← v

17: for each j with S′[Dj] = ∗ do . enumerate SG

18: EnumerateInsight(S
′
, Dj , Ce)

will be elaborated in Section 5.5.2. Next, we compute the score for each insight

type and update H upon finding a better insight.

In Phase II (Lines 15–18), we create a child subspace S′ from S by instan-

tiating its value on dimension Di. For each S′, we pick a dimension Dj where

S′[Dj] = ∗, and then invoke a recursive call on the sibling group SG(S′, Dj)

Example: Given the dataset in Table 5.1, we illustrate the obtained insights

in Table 5.6. For ease of illustration, we only consider point insights and a

fixed composite extractor Ce = 〈(SUM,Sales),(∆prev,Year)〉. In Table 5.6, each

row shows a sibling group SG(S,Di) and its insight score S, i.e., the product of

impact Imp and significance Sig. Due to the page limit, we do not show the steps

for computing Imp and Sig. When k = 1, the top-1 insight corresponds to the

first row in Table 5.6.

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 125

SG(S,Di) S = Imp · Sig Point insight:
outstanding No.1

SG(〈*,*〉, Year) 0.61 = 1.00 · 0.61 〈2014〉
SG(〈*,Honda〉, Year) 0.16 = 0.38 · 0.42 〈Honda, 2014〉
SG(〈*,Toyota〉, Year) 0.14 = 0.30 · 0.45 〈Toyota,2014〉
SG(〈*,Ford〉, Year) 0.02 = 0.15 · 0.10 〈Ford,2013〉
SG(〈*,BMW〉, Year) 0.01 = 0.17 · 0.03 〈BMW,2012〉
SG(〈2014,*〉, Brand) 0.07 = 0.25 · 0.27 〈2014,Honda〉
SG(〈2012,*〉, Brand) 0.03 = 0.18 · 0.14 〈2012,Honda〉
SG(〈2013,*〉, Brand) 0.02 = 0.20 · 0.12 〈2013,Honda〉
SG(〈2011,*〉, Brand) 0.01 = 0.17 · 0.04 〈2011,Ford〉

Table 5.6. Insight candidates for Ce = 〈(SUM,Sales),(∆prev,Year)〉

5.5.2 Computation Engine

We introduce Algorithm 5.8 to apply a composite extractor Ce on a sibling

group SG(S,Di) and then compute a corresponding result set Φ. It enumerates

each subspace S′ ∈ SG(S,Di) (Line 3) and computes the derived measure of S′

with respect to Ce (Line 4). Finally, it inserts each S′ with its derived measure

into Φ and returns it to the caller.

Algorithm 5.8 ExtractΦ(SG(S,Di), Ce)

1: initialize a result set Φ← ∅
2: for each value v in dom(Di) do
3: S′ ← S, S′[Di]← v
4: M ′ ← RecurExtract(S′, τ, Ce)
5: insert (S′,M ′) into Φ

6: return Φ

Function: RecurExtract(Subspace S′, level, Ce):
7: if level > 1 then
8: initialize a result set Φlevel
9: Dξ ← Ce[level].Dx

10: for each value v in Dξ do
11: Sv ← S′, Sv[Dξ]← v
12: M ′v ← RecurExtract(Sv, level − 1, Ce)
13: insert (Sv,M

′
v) into Φlevel

14: M ′ ← derived S′.M ′ by applying Ce[level] on Φlevel . Def. 5.3
15: else
16: M ′ ← SUM(S′) . SUM(S′): data cube

17: return M ′

126 5.5. INSIGHT EXTRACTION

Conceptually, the computation of the derived measure (at Line 4) involves

building trees in the top-down manner and running extractors on tree nodes

in the bottom-up manner. This can be implemented by a recursive function

‘RecurExtract’.

In this function, the parameter level indicates the current level of the ex-

tractor in Ce. The initial level is τ , which corresponds to the highest level. Let

Dξ be the dimension used by the current extractor Ce[level] (Line 9). We exam-

ine each child subspace Sv (of S′), apply the level− 1 extractor to it recursively,

and insert Sv with its derived measure into a temporary result set Φlevel (Lines

10–13). Finally, we apply the current extractor on Φlevel to compute the derived

measure at the current level.

When we reach the bottom level (i.e., level = 1), it suffices to compute the

SUM of measures in the subspace S′. This can be obtained efficiently from a

data cube.

Example: Consider the composite extractor Ce = 〈(SUM,Sales),(∆prev,Year)〉

with the sibling group SG(〈2013,*〉,Brand) in Table 5.6. We illustrate the recur-

sive computation of derived measures in Figure 5.10. Each tree node represents

a recursive call of ‘RecurExtract’, and it is associated with a subspace Sv and a

derived measure M ′v. In the first phase, we build a tree in the top-down man-

ner. The second phase begins when we reach the bottom level (i.e., level = 1).

Next, we examine these tree nodes in the bottom-up manner and apply the corre-

sponding extractor on each tree node to compute its derived measure. Then, we

obtain the result set Φ={(〈2013,Ford〉,9), (〈2013,BMW〉,-3), (〈2013,Honda〉,7),

(〈2013,Toyota〉,-5)}. Finally, we compute the Sig value of Φ (cf. Section 5.3.2)

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 127

and the Imp value in order to obtain the insight score (i.e., 0.02).

2013 + Ford

2013, Ford

Phase I: build trees

Phase II: compute derived measures

Level 2: ∆𝑝𝑟𝑒𝑣

Level 1: SUM 2012, Ford

2013 + BMW

2013, BMW2012, BMW

2013 + Honda

2013, Honda2012, Honda

2013 +Toyota

{2012,Toyota} {2013,Toyota}

2013 + Ford

2013, Ford

Level 2: ∆𝑝𝑟𝑒𝑣

Level 1: SUM 2012, Ford

2013 + BMW

2013, BMW2012, BMW

2013 + Honda

2013, Honda2012, Honda

2013 +Toyota

{2012,Toyota} {2013,Toyota}

SUM = 14 SUM = 23

∆𝑝𝑟𝑒𝑣 = 23-14=9

SUM = 20 SUM = 17

∆𝑝𝑟𝑒𝑣 =17-20=-3

SUM = 36 SUM = 43

∆𝑝𝑟𝑒𝑣 = 43-36=7

SUM = 34 SUM = 29

∆𝑝𝑟𝑒𝑣 = 29-34=-5

Figure 5.10. Running a composite extractor on a sibling group

Ce = 〈(SUM,Sales),(∆prev,Year)〉, SG(〈2013,*〉,Brand)

Data cube optimization: Our framework performs aggregation frequently,

e.g., SUM(S) (Line 16 in Alg. 5.8), and Imp(SG(S,Di)) = SUMS′∈SG(S,Di)(S
′)/SUM(〈∗, ∗, · · · , ∗〉)

(Line 12 in Alg. 5.7). We can construct a data cube and utilize it to reduce the

aggregation cost.

A data cube [43, 16] is a collection of cuboids, where each cuboid stores

the group-by aggregate result for a particular set of dimensions. Figure 5.11(a)

illustrates a data cube built for a dataset with schema (A,B,C,M). It contains

eight cuboids. The content of cuboid 〈A,B〉 is shown in Figure 5.11(b).

To compute SUM(S) efficiently, we propose to store each cuboid as a hash

table. Given a subspace S, we can lookup the corresponding entry in the cuboid

and then retrieve SUM(S) in O(1) time.

128 5.5. INSIGHT EXTRACTION

*

A B C

AB AC BC

ABC

*

A B C

AB AC BA BC CA CB

ABC ACB BCA

1 2 3

4 5 6 7 8 9

10 11 12

key: A,B value: M
a1, b1 2
a1, b2 3
· · · · · ·
a2, b1 7
a2, b2 9
· · · · · ·
a3, b2 8
a3, b3 1

(a) a data cube (b) cuboid 〈A,B〉

Figure 5.11. Example of a data cube

5.5.3 Time Complexity Analysis

Since both Algorithms 5.7 and 5.8 spend most of the time on recursive calls,

we focus on analyzing the number of recursive calls in these algorithms. We follow

the notations in Section 5.2.3. In our analysis, D = maxdi=1 |dom(Di)| denotes

the maximum domain size, and β denotes the number of types of extractors.

For Algorithm 5.7: It invokes the recursive function ‘EnumerateInsight’ for all

possible insights of (SG(S,Di), Ce,T). Each recursive call examines |T| types of

insights. Combining this with the results in Section 5.2.3, the number of recursive

calls to ‘EnumerateInsight’ is O(|T| · d · (β · d)τ−1 · (D + 1)d).

For Algorithm 5.8: It examines each value of attribute Di and thus calls the

recursive function ‘RecurExtract’ for D times at most.

Let j be the current level in the function ‘RecurExtract’. When j > 1, the

function ‘RecurExtract’ examines each value of attribute Ce[i].Dx and thus calls

the function ‘RecurExtract’ for D times at most.

In summary, the number of recursive calls to ‘RecurExtract’ isO(D·
∏τ
j=2 dommax) =

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 129

O(Dτ).

5.6 Optimization techniques

In this section, we propose optimization techniques to reduce the running

time of our solution.

5.6.1 Pruning by Upper Bound Score

Consider the computation of insight score at Lines 10–12 in Algorithm 5.7.

The term Imp(SG(S,Di)) can be computed efficiently (cf. Section 5.5.2). How-

ever, it is expensive to compute Φ as it invokes Algorithm 5.8.

To reduce the cost, we propose an upper bound score

SUB(SG(S,Di), Ce,T) = Imp(S) (5.2)

and show that it serves as an upper bound of the insight score (cf. Lemma 5.2).

Lemma 5.2 (Upper bound property)

SUB(SG(S,Di), Ce,T) ≥ S(SG(S,Di), Ce,T)

Proof. By Def. 5.2, we have Imp(SG(S,Di)) = Imp(S) with S[i] = ∗ (Line 17,

Alg 5.7). Hence, S(SG(S,Di), Ce,T) = Imp(S) · SigT(Φ). Since SigT(Φ) ≤ 1, we

have: S(SG(S,Di), Ce,T) ≤ Imp(S) = SUB(SG(S,Di), Ce,T).

130 5.6. OPTIMIZATION TECHNIQUES

With this lemma, we can implement the following pruning rule before Line 10

in Algorithm 5.7. We compute SUB(SG(S,Di), Ce,T) and then compare it with

ubk (i.e., k-th insight score found so far). If ubk > SUB(SG(S,Di), Ce,T), then

we skip the execution of Lines 10–14.

5.6.2 Subspace Ordering

The effectiveness of the above pruning rule (cf. Section 5.6.1) depends on ubk

(i.e., k-th insight score found so far). To enable effective pruning, it is desirable

to obtain a high ubk as early as possible. Therefore, we propose techniques to

reorder both outer and inner loops (Lines 15–18) in Algorithm 5.7.

Ordering of outer-loop (Lines 15–16): Observe that the upper bound score

SUB(SG(S′, Di), Ce,T) = Imp(S′) depends on S′ only. Thus, we propose to com-

pute SUB for each subspace S′ at Line 16, and then examine those subspaces in

descending order of SUB.

Ordering of inner-loop (Lines 17–18): An intuitive strategy is to order

dimensions in ascending order of the domain size |dom(Dj)|. When |dom(Dj)| is

small, few subspaces will be generated and the average impact of each subspace

is expected to be high. This would increase the possibility to obtain a high ubk

early.

5.6.3 Sibling Cube

Our framework incurs significant overhead on (i) hash table lookup oper-

ation per computing SUM(S) (cf. Section 5.5.2), and (ii) sorting operation in

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 131

implementing subspace ordering (cf. Section 5.6.2).

In this section, we propose an sibling cube in order to reduce the number

of lookup operations in hash tables. Furthermore, our sibling cube can avoid

redundant sorting operations in our framework.

5.6.3.1 Sibling cube structure

Our sibling cube is designed in a fashion that suits better with the opera-

tions used in our framework. Specifically, our sibling cube is a collection of the

following cuboids:

Definition 5.7 (Cuboid in sibling cube) A cuboid is labeled by 〈D′〉 ◦ Di,

where D′ ⊂ D is a subset of dimensions and Di is a dimension not in D′.

The cuboid contains a cell for a subspace S if ∀j ∈ D′, S[j] 6= ∗ and ∀j /∈

D′, S[j] = ∗.

The cell for subspace S is an array of pairs 〈(vx,Mx) : vx ∈ dom(Di)〉 sorted

in the descending order of Mx. We require that Mx = SUM(S′), where S′ is a

child subspace of S with its dimension Di set to vx.

Following the example in Section 5.5.2, we consider a dataset with schema

(A,B,C,M). We compare a data cube with our sibling cube in Figure 5.12. A

cuboid in a data cube contains many cells (see Figure 5.12(a)). On the other

hand, a cuboid in an sibling cube contains fewer cells but each cell stores more

information (see Figure 5.12(b)).

132 5.6. OPTIMIZATION TECHNIQUES

Compared to the data cube, the sibling cube occupies at most d times the

space in the worst case. Nevertheless, the iceberg cube technique [16] can be

adapted to shrink our cube size significantly. Specifically, we only store entries

whose measures are above minsup% (e.g., 0.1%) of measure in the dataset. Our

experimental study shows that our sibling cube is small enough to fit in main

memory.

In the following discussion, we demonstrate the advantages of using the

sibling cube over the data cube.

5.6.3.2 Reducing hash table lookup operations

Our algorithms in Section 5.5 execute this operation: “Given a sibling group

SG(S,Di), retrieve SUM(S′) for each subspace S′ ∈ SG(S,Di).”

For example, we take SG(〈a1, ∗〉, B) as the sibling group and assume dom(B) =

{b1, b2, b3}. When using a traditional data cube, we issue three lookup operations

〈a1, b1〉, 〈a1, b2〉, 〈a1, b3〉 to the cuboid in Figure 5.12(a).

With our sibling cube, it suffices to issue one lookup operation (a1) to

the cuboid in Figure 5.12(b). Then, we can retrieve the list of entries for

〈a1, b3〉, 〈a1, b2〉, 〈a1, b1〉 and process the list sequentially.

key: A,B value: M
a1, b1 2
a1, b2 3
· · · · · ·
a2, b1 7
a2, b2 9
· · · · · ·
a3, b2 8
a3, b3 1

key: A value: B,M
a1 b3, 6 | b2, 3 | b1, 2
a2 b2, 9 | b1, 7 | b3, 5
a3 b2, 8 | b1, 4 | b3, 1

(a) data cube: cuboid 〈A,B〉 (b) sibling cube: cuboid 〈A〉 ◦B

Figure 5.12. Data cube vs. sibling cube

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 133

In addition to reducing lookup operations, the sibling cube improves the

data access locality (e.g., converting random accesses to sequential accesses) and

benefits the performance of CPU cache [14].

5.6.3.3 Avoiding sorting operations in loop ordering

When we implement the outer loop ordering (see Section 5.6.2) at Lines

15–16 in Algorithm 5.7, we need to sort subspaces S′ ∈ SG(S,Di) in descending

order of their upper bound scores (which can be derived from SUM values).

With our sibling cube, we can retrieve a sorted list directly and avoid sorting

operations on-the-fly.

We extend the computation framework (Algorithm 5.7) with the above op-

timization techniques, and then present the optimized computation framework

in Algorithm 5.9.

Algorithm 5.9 Insights+Optimized (dataset R(D,M), depth τ , result size k)

1: run Lines 1–3 in Alg. 5.7
2: construct an sibling cube SibCube . Sec. 5.6.3
3: sort Di ∈ D by ascending domain size . Sec. 5.6.2
4: run Lines 4–8 in Alg. 5.7 . call the function below

Function: EnumerateInsightI (S, Di, Ce):
5: if isValid(SG(S,Di), Ce) then
6: if ubk ≤ SUB(SG(S,Di), Ce,T) then . Sec. 5.6.1
7: Φ← use SibCube in ExtractΦ(SG(S,Di), Ce) . Alg. 5.8
8: run Lines 11–14 in Alg. 5.7

9: sorted list L← SibCube[S ◦Di] . Sec. 5.6.3
10: for each value-measure pair (v,M) ∈ L do . Sec. 5.6.2
11: S

′ ← S, S
′
[Di]← v

12: S
′
.SUM←M . stored value of SUM(S

′
)

13: run Lines 17–18 in Alg. 5.7 . Line 18: EnumerateInsightI

134 5.7. COMPUTATION SHARING

Algorithm 5.9 is an optimized version of Algorithm 5.7 (cf. Section 5.5.1)

that incorporates all optimization techniques in the above subsections. We em-

ploy a pruning technique (cf. Section 5.6.1) at Line 6. We apply loop ordering

techniques (cf. Section 5.6.2) at Lines 3 and 10. Also, we construct an sibling

cube SibCube (cf. Section 5.6.3) at Line 2, and then use it at Lines 7 and 9–10.

At Line 12, we store the value ofM, obtained at Line 10, in S
′
.SUM. When the

recursive call requires SUM(S
′
), it can access S

′
.SUM immediately.

5.7 Computation Sharing

This section presents computation sharing techniques to further accelerate

our solution.

5.7.1 Sharing within a Sibling Group

First, we identify sharing opportunities within a sibling group in an example.

Then, we devise the condition for sharing.

As an example, suppose that we apply the composite extractor Ce = 〈(SUM,Sales),(%,Year)〉

on the sibling group SG(〈∗,BMW〉,Year). Figure 5.13(a) illustrates the compu-

tation process of Algorithm 5.8 on this example. Observe that these trees have

the same content at level 1, as highlighted by red rectangles. In order to reduce

computation cost, we propose to identify the shared content and compute it only

once, as shown in Figure 5.13(b).

We discover that significant computation can be saved when certain con-

dition is satisfied. Specifically, we prove in Lemma 5.3 that, if a sibling group

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 135

20 18 20 17 19

 ∗, 𝐵𝑀𝑊 , 2010

2010 2011 2012 2013 2014BMW

…

20 18 20 17 19

 ∗, 𝐵𝑀𝑊 ,2012

2010 2011 2012 2013 2014BMW

 ∗, 𝐵𝑀𝑊 ,2010 ∗, 𝐵𝑀𝑊 ,2014……Level 2: %

Level 1: SUM

20 18 20 17 19

 ∗, 𝐵𝑀𝑊 , 2012

2010 2011 2012 2013 2014BMW

…

20 18 20 17 19

 ∗, 𝐵𝑀𝑊 , 2014

2010 2011 2012 2013 2014BMW

Level 2: %

Level 1: SUM

(a) no sharing

20 18 20 17 19

 ∗, 𝐵𝑀𝑊 , 2010

2010 2011 2012 2013 2014BMW

…

20 18 20 17 19

 ∗, 𝐵𝑀𝑊 ,2012

2010 2011 2012 2013 2014BMW

 ∗, 𝐵𝑀𝑊 ,2010 ∗, 𝐵𝑀𝑊 ,2014……Level 2: %

Level 1: SUM

20 18 20 17 19

 ∗, 𝐵𝑀𝑊 , 2012

2010 2011 2012 2013 2014BMW

…

20 18 20 17 19

 ∗, 𝐵𝑀𝑊 , 2014

2010 2011 2012 2013 2014BMW

Level 2: %

Level 1: SUM

(b) sharing with a sibling group

Figure 5.13. Running a composite extractor on a sibling group

Ce=〈(SUM,Sales),(%,Year)〉,SG(〈∗,BMW〉,Year)

SG(S,Di) and the last extractor of Ce have the same dimension (i.e., Ce[τ].Dx =

Di), then we can share the intermediate result at level τ − 1.

Lemma 5.3 (Sharing within a sibling group) Given a composite extractor

Ce and a sibling group SG(S,Di), if Ce[τ].Dx = Di, then all subspaces of SG(S,Di)

share the same intermediate result at level τ − 1.

Proof. Let S′ ∈ SG(S,Di) be a subspace. Since S′ and S differ on dimension

Di only, we have: SG(S′, Di) = SG(S,Di) ——(F).

According to Definition 5.5, we derive S′.Mτ from the set Φ′ = {(Sc, Sc.Mτ−1) :

Sc ∈ SG(S′, Ce[τ].Dx)}.

By combining (F) with the given condition Ce[τ].Dx = Di, we derive:

SG(S′, Ce[τ].Dx) = SG(S,Di). Therefore, Φ′ is independent of S′ and it can

be used to derive S′′.Mτ for any S′′ ∈ SG(S,Di).

We enhance the computation engine (Algorithm 5.8) with the above sharing

idea, and then obtain the optimized version in Algorithm 5.10.

136 5.7. COMPUTATION SHARING

Algorithm 5.10 ExtractΦII(SG(S,Di), Ce)

1: if Di 6= Ce[τ].Dx then . test for Lem. 5.3
2: Φ← ExtractΦ(SG(S,Di), Ce) . Alg. 5.8
3: else
4: initialize a result set Φ← ∅
5: S′ ← S, S′[Di]← dom(Di).first
6: (M ′,Φτ)← RecurExtractII(S′, τ, Ce)
7: for each value v ∈ dom(Di) do
8: S′ ← S, S′[Di]← v
9: M ′ ← derived S′.M ′ after applying Ce[τ] on Φτ

10: insert (S′,M ′) into Φ

11: return Φ

Function: RecurExtractII(Subspace S′, level, Ce):
12: initialize a result set Φlevel

13: Dξ ← Ce[level].Dx

14: if level > 2 then
15: for each value v in Dξ do
16: Sv ← S′, Sv[Dξ]← v
17: (M ′v,Φtemp)← RecurExtractII(Sv, level − 1, Ce)
18: insert (Sv,M

′
v) into Φlevel

19: else
20: Φlevel ← SibCube[S′ ◦Dξ] . Sec. 5.6.3

21: M ′ ← derived S′.M ′ by applying Ce[level] on Φlevel . Def. 5.3
22: return (M ′,Φlevel)

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 137

Algorithm 5.10 applies Lemma 5.3 (cf. Section 5.7.1) to accelerate the com-

putation of Ce on SG(S,Di). First, we check the condition in Lemma 5.3. If it is

not satisfied, then we revert back to calling Algorithm 5.8. Otherwise, we invoke

the function ‘RecurExtractII’ to compute an intermediate result set Φτ (Line 6)

and then reuse it to obtain the derived measure for each subspace in SG(S,Di).

Note that ‘RecurExtractII’ returns a pair (M ′,Φlevel), where Φlevel is the

intermediate result set for computing the derived measure M ′ of subspace S′.

Actually we only need Φlevel at level τ and only M ′ at other levels.

5.7.2 Sharing across Sibling Groups

We proceed to investigate sharing opportunities across multiple sibling group-

s.

Consider our computation framework in Algorithm 5.7. After fixing the

composite extractor Ce (at Line 4), we enumerate sibling groups and apply Ce

on each of them. In this example, we assume Ce=〈(SUM,Sales),(%,Brand)〉. Fig-

ure 5.14(a) illustrates the computation process when we apply Ce on multiple sib-

ling groups: SG(〈2010, ∗〉,Brand) · · · SG(〈2014, ∗〉,Brand), then SG(〈∗,Honda〉,Year)

· · · SG(〈∗,Ford〉,Year). Observe that, at level 2, the derived measures in green

rectangles are the same as those in red rectangles. This happens because some

subspace (〈2010,Honda〉:42%) appears in more than one sibling groups (SG(〈2010, ∗〉,Brand)

and SG(〈∗,Honda〉,Year)).

We illustrate how this method works with the example in Figure 5.14(b).

We employ a temporary hash table Ψ to store the derived measure S′.M ′ for

subspace S′ that we have processed before (in other sibling groups). Initially, Ψ

138 5.7. COMPUTATION SHARING

is empty. First, we examine SG(〈2010, ∗〉, Brand), and process four subspaces

〈2010, Ford〉, 〈2010, BMW〉, 〈2010, Honda〉, 〈2010, Toyota〉. Since Ψ is empty,

we need to compute the derived measures for the above subspaces and then insert

them into Ψ. Similarly, we populate Ψ when we examine SG(〈2011, ∗〉, Brand),

· · · , SG(〈2014, ∗〉, Brand). Finally, when we examine SG(〈∗,Honda〉,Year), we can

find its subspaces in Ψ and thus retrieve their derived measures from Ψ directly.

We then discuss how to incorporate the above techniques into our algo-

rithms. First, we apply the above technique and obtain an efficient computation

engine in Algorithm 5.11).

Algorithm 5.11 ExtractΦIII(SG(S,Di), Ce, hash table Ψ)

1: initialize a result set Φ← ∅
2: for each value v in dom(Di) do
3: S′ ← S, S′[Di]← v
4: if Ψ contains S′ then
5: M ′ ← Ψ[S′] . get from Ψ
6: else
7: M ′ ← RecurExtract(S′, τ, Ce) . function in Alg. 5.8
8: Ψ[S′]←M ′ . store into Ψ

9: insert (S′,M ′) into Φ

10: return Φ

To save computation cost, we need to detect the shared content and reuse

it, as depicted in Figure 5.14(b). We present Algorithm 5.11 to integrate Algo-

rithm 5.8 with a sharing technique (cf. Section 5.7.2). It employs a hash table

Ψ to store the derived measure S′.M ′ for subspace S′ that we have processed

before (in other sibling groups). If Ψ contains S′, then we can retrieve its de-

rived measure from Ψ immediately. Otherwise, we need to compute the derived

measure and then store it into Ψ.

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 139

Year

Brand

2010 2011 2012 2013 2014

Level 1: SUM

(b)

Year2010 2011 2012 2013 2014

(a)

SG ∗, 𝐻𝑜𝑛𝑑𝑎 , Year

SG ∗, 𝑇𝑜𝑦𝑜𝑡𝑎 , Year

SG ∗, 𝐹𝑜𝑟𝑑 , Year

Level 2: %

Brand

36% 36% … … …

34% 35% … … …

12% 10% … … …

18% 19% … … …

Honda

Toyota

Ford

BMW

40 35 36 43 58

38 34 34 29 36

13 10 14 23 27

20 18 20 17 19

Honda

Toyota

Ford

BMW

Year2010 2011 2012 2013 2014

Brand

36% 36% 35% 38% 41%

34% 35% 33% 26% 26%

… … … … …

… … … … …

Honda

Toyota

Ford

BMW

SG ∗, 𝐵𝑀𝑊 , Year

(a) no sharing

Year2010 2011 2012 2013 2014

SG ∗, 𝐻𝑜𝑛𝑑𝑎 , Year

SG ∗, 𝐵𝑀𝑊 , Year

SG ∗, 𝐹𝑜𝑟𝑑 , Year

Level 1: SUM

Level 2: %

Year

Brand

2010 2011 2012 2013 2014

40 35 36 43 58

38 34 34 29 36

13 10 14 23 27

20 18 20 17 19

Honda

Toyota

Ford

BMW

Honda

Toyota

Ford

BMW

36% 36% 35% 38% 41%

34% 35% 33% 26% 26%

12% 10% 13% 21% 19%

18% 19% 19% 15% 14%

SG ∗, 𝑇𝑜𝑦𝑜𝑡𝑎 , Year

Brand

(b) sharing across sibling groups

Figure 5.14. Running a composite extractor on multiple sibling groups

Ce=〈(SUM,Sales),(%,Brand)〉

140 5.7. COMPUTATION SHARING

Second, by using all techniques in Sections 5.6,5.7, we have an efficient

computation framework in Algorithm 5.12 for insight extraction layer.

Algorithm 5.12 Insights+Sharing+Optimized (dataset R(D,M), depth τ , re-
sult size k)

1: create a hash table Ψ
2: run Lines 1–3 in Alg. 5.9
3: for each Ce ∈ O do
4: clear Ψ
5: for i := 1 to d do
6: initialize subspace S ← 〈∗, ∗, · · · , ∗〉
7: EnumerateInsightIII(S,Di, Ce,Ψ)

8: return H

Function: EnumerateInsightIII (S, Di, Ce, Ψ):
9: if isValid (SG(S,Di), Ce) then

10: if ubk ≤ SUB(SG(S,Di), Ce,T) then
11: if Di 6= Ce[τ].Dx then
12: ExtractΦIII(SG(S,Di), Ce,Ψ) . Alg. 5.11
13: else
14: ExtractΦII(SG(S,Di), Ce) . Alg. 5.10

15: run Line 8 in Alg. 5.9

16: run Lines 9–13 in Alg. 5.9 . Line 13: EnumerateInsightIII

Algorithm 5.12 is an integrated version of Algorithm 5.9 that incorporates

sharing computation techniques in Section 5.7. We employ sharing within a

sibling group (cf. Section 5.7.1) at Line 14. We apply sharing across sibling

groups (cf. Section 5.7.2) at Line 12. Hash table Ψ will be flushed for each

composite extractor at Line 4.

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 141

5.8 Effectiveness Study

In this section, we evaluate the effectiveness of our top-k insight extraction

system by (1) case study, (2) insight utility study, and (3) human effort study

on real datasets.

5.8.1 Case Studies

We collect the following two real datasets (i.e, car sales and tablet sales),

and then demonstrate the insights obtained from these datasets.

Car sales dataset8: The dataset contains 276 tuples. Each tuple (i.e., a car)

has 4 dimensions and a measure Sales. The domain sizes of dimensions are: Year

(5), Brand (8), Category (8) and Model (55).

Tablet sales dataset9: The dataset contains 20,685 tuples. Each tuple (i.e., a

tablet) has 11 dimensions and a measure Sales. The domain sizes of dimensions

are: Year (11), CPU (2), OS (7), Connectivity (5), Price (23), Region (9), Country

(54), Product (2), Resolution (18), Size (9) and Vendor (157).

Table 5.7 shows the top-2 insights on car sales and tablet sales, respectively,

at τ=2 and τ=3. For convenience, we have omitted ∗ in sibling groups in Table

5.7. For example, SG({SUV},Year) is equivalent to SG(〈*,*,SUV,*〉, Year). We

then elaborate some of these insights from Figure 5.15 to 5.18.

Insights from car sales: We first compare our insight with a raw aggregation

result on car sales. Figure 5.15(a) refers to the shape insight in Table 5.7(a).

8
http://www.goodcarbadcar.net/p/sales-stats.html

9This is a private real dataset collected from the industry.

http://www.goodcarbadcar.net/p/sales-stats.html

142 5.8. EFFECTIVENESS STUDY

Insight score SG(S,Di) composite extractor Ce
Top-1 0.31 SG({SUV},Brand) 〈(SUM,Sales),(∆avg ,Category)〉
Point When measuring the importance of SUV sales for a certain Brand,

Ford is Outstanding No.1.
Top-2 0.30 SG({SUV},Year) 〈(SUM,Sales),(%,Category)〉
Shape There is a rising trend of SUV’s market share.

(a) car sales, top-2 insights with τ = 2
Top-1 0.32 SG({SUV},Year) 〈(SUM,Sales),(%,Year),(∆avg ,Category)〉
Point In 2014, SUV exhibits most advantage over other categories than ever.
Top-2 0.25 SG({Ford},Year) 〈(SUM,Sales),(%,Brand),(∆avg , Year)〉
Shape There is a falling trend of Ford’s market share.

(b) car sales, top-2 insights with τ = 3
Top-1 0.96 SG({*},Year) 〈(SUM,Sales),(∆prev ,Year)〉
Shape The yearly increase of tablet sales is slowing down.
Top-2 0.64 SG({WiFi},Year) 〈(SUM,Sales),(∆prev ,Year)〉
Shape The yearly increase of sales of WIFI based tablets is slowing down.

(c) tablet sales, top-2 insights with τ = 2
Top-1 0.99 SG({ * },Year) 〈(SUM,Sales),(∆prev ,Year),(∆avg ,Year)〉
Point 2012/04-07’s yearly increase of tablet sales is remarkably lower than ever.
Top-2 0.96 SG({Tablet},Year) 〈(SUM,Sales),(%,Year),(Rank,Year)〉
Shape There is a rising trend of Tablet (vs. eReader) sales.

(d) tablet sales, top-2 insights with τ = 3

Table 5.7. Case studies of insights on real datasets

Its SG(〈*,*,SUV,*〉, Year) means that we compare SUV cars by year. Its Ce =

〈(SUM,Sales),(%, Category)〉 means that we analyze the percentage of SUV’s

sales among all categories. Figure 5.15(a) shows that such a percentage rises with

year. On the other hand, the raw aggregation result for the same SG(〈*,*,SUV,*〉,

Year) does not reveal much information.

Figure 5.16(a) refers to the point insight (outstanding No.1) in Table 5.7(b).

Its SG(〈 *,*,SUV,* 〉, Year) means we compare SUV cars by year. Its Ce =

〈(SUM,Sales),(%,Year),(∆avg, Category)〉 means we analyze SUV’s yearly share

over the average yearly share of all categories. Figure 5.16(a) shows that 2014,

SUV exhibits most advantages over the other years. However, the raw aggrega-

tion result in Figure 5.16(b) does not reveal this information.

Insights from tablet sales: Then we compare our insight with a raw aggre-

gation result on tablet sales. Figure 5.17(a) refers to the top-1 shape insight in

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 143

20

25

30

35

40

2010 2011 2012 2013 2014

D
er

iv
ed

 m
ea

su
re

 M
2

Year

10e+5

12e+5

14e+5

16e+5

2010 2011 2012 2013 2014
S

U
M

Year

(a) insight: rising trend (b) raw aggregation result

Figure 5.15. Car sales shape insight: SG(〈∗, ∗,SUV,∗〉, Year)

-1.5

0

1.5

3.0

2014 2013 2010 2012 2011

D
er

iv
ed

 m
ea

su
re

 M
3

Year

10e+5

12e+5

14e+5

16e+5

2014 2013 2010 2012 2011

S
U

M

Year

(a) Point insight: Outstanding No.1 (b) raw aggregation result

Figure 5.16. Car sales point insight: SG(〈 *,*,SUV,* 〉, Year)

144 5.8. EFFECTIVENESS STUDY

Table 5.7(c). Its SG(〈∗, · · · , ∗〉, Year) means that we compare the tablet sales by

year. Its Ce = 〈(SUM,Sales),(∆prev,Year)〉 means that we analyze the incremen-

tal sales between successive years. As shown in Figure 5.17(a), the incremental

sales falls with year. In contrast, the raw aggregation result in Figure 5.17(b)

only shows a rising trend, but it is not as informative as the above insight.

Figure 5.18(a) refers to the point insight (outstanding Last) in Table 5.7(d).

Its SG(〈 *,· · · ,* 〉,Year) means we compare tablet sales by year. Its Ce =

〈(SUM,Sales), (∆prev, Year), (∆avg, Year)〉 means we analyze the incremental

sales of each year over the average of incremental sales among all years. Figure

5.18(b) shows that 07/2012 is the “outstanding last” when compared with the

other years. On the other hand, the raw aggregation result in Figure 5.18(b)

does not reveal the above insight.

0

1e+5

2e+5

3e+5

4e+5

04/2011 07/2011 10/2011 01/2012 04/2012

D
er

iv
ed

 m
ea

su
re

 M
2

Year

6e+5

8e+5

10e+5

12e+5

14e+5

16e+5

01/2011 04/2011 07/2011 10/2011 01/2012 04/2012

S
U

M

Year

(a) insight: falling trend (b) raw aggregation result

Figure 5.17. Tablet sales shape insight: SG(〈∗, · · · , ∗〉, Year)

Top-2 insights in tablet sales:

In this section, we discuss the two insights in Table 5.7(c). We illustrate the

significance of these two insights, i.e., SigShape(Φ1) and SigShape(Φ2), in Figures

5.19(a) and (b), respectively.

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 145

-4e+5

-2e+5

0

2e+5

04/2011 07/2011 10/2011 01/2012 04/2012 07/2012

D
er

iv
ed

 m
ea

su
re

 M
3

Year

6e+5

8e+5

10e+5

12e+5

14e+5

16e+5

01/2011 04/2011 07/2011 10/2011 01/2012 04/2012 07/2012
S

U
M

Year

(a) Point Insight: Outstanding Last (b) raw aggregation result

Figure 5.18. Tablet sales point insight: SG(〈 *,· · · ,* 〉, Year)

0

1e+5

2e+5

3e+5

4e+5

04/2011 07/2011 10/2011 01/2012 04/2012

D
e

ri
v
e

d
 m

e
a

s
u

re
 M

2

Year

-3e+5

-2e+5

-1e+5

0

1e+5

2e+5

3e+5

04/2011 07/2011 10/2011 01/2012 04/2012

D
e

ri
v
e

d
 m

e
a

s
u

re
 M

2

Year

(a) SigShape(Φ1)=0.96 (b) SigShape(Φ2) =0.99

Figure 5.19. Significances of top-2 insights in Tablet sales

146 5.8. EFFECTIVENESS STUDY

The top-1 shape insight is with SG({*}, Year) and 〈(SUM,Sales),(∆prev,Year)〉.

We compute its insight score as:

S(SG(∗,Year), 〈(SUM,Sales), (∆prev,Year)〉, Shape)

= Imp(SG(∗,Year) · SigShape(Φ1)

= 1 · 0.96 = 0.96.

The top-2 shape insight is with SG({WiFi},Year) and 〈(SUM,Sales),(∆prev,Year)〉.

We compute its insight score as:

S({WiFi},Year), 〈(SUM,Sales), (∆prev,Year)〉, Shape)

= Imp(SG({WiFi},Year) · SigShape(Φ2)

= 0.643 · 0.99 = 0.64.

5.8.2 Insight Utility Study

In this section, we assess the utility of our top-k insights by 6 domain experts

from a leading IT company.

Intern dataset: This dataset is obtained from the University Relationship (UR)

team of the above IT company from 2012 to 2016. It contains 1,201 tuples. Each

tuple (i.e., an intern) has 15 dimensions. The domain sizes of dimensions are:

Year (4), Group (50), Name (1109), FullTime (2), Start Quarter (13), End

Quarter (13), Duration (4), Mentor (300), Nationality (16), Degree (3), Origin

(20), University (200), Department (813), Research Area (511), Advisor (831).

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 147

The aggregate function is COUNT in this study.

Study methodology: We first extract top-5 insights with depth-2 and depth-3

composite extractors, and illustrate these insights in Table 5.8. Due to commer-

cial reasons from the data provider, we anonymize some attributes by pseudo-

values (e.g., A, B, C, D).

In the following user study, we invite the 3 UR managers and 3 data analysts

(from the above IT company) and call them the domain experts because they have

conducted analysis on this dataset before. We conducted one-to-one interviews

with them, collected their comments on our insights, and also asked them to rate

the insights by the following two metrics:

1. Usefulness: (from 1 to 5), a higher score indicates a more useful insight.

2. Difficulty: (from 1 to 5), a higher score indicates that the insight is more

difficult to be obtained by using an existing data analysis tool (i.e., Mi-

crosoft Excel PivotTable).

Results and Feedback: In these interviews, the domain experts appreciated

our top-k insights and found them to be quite useful. They agreed that most

of our insights are actionable. For example, The UR team may take actions to

balance the nationality ratio based on these insights, and analyze the famous

groups by the check-in and check-out interns in each quarter.

We report the ratings of our top-5 insights by the domain expert in Table

5.8. Tables 5.8(a) and (b) illustrate the top-5 insights extracted from the in-

tern dataset with depth-2 and depth-3 composite extractors, respectively. Each

148 5.8. EFFECTIVENESS STUDY

insight has five attributes: usefulness score, difficulty score, sibling group, com-

posite extractor, and its meaning in English. We conducted one-on-one inter-

views with 6 domain experts (i.e., managers, data analysts) from the leading

IT company. In these interviews, we provided the last three attributes to them

in a questionnaire, and then asked them to rate the insights by usefulness and

difficulty. We reported the average ratings in Table 5.8.

The average usefulness score of depth-2 insights and depth-3 insights are

3.24 and 3.76, respectively. On the other hand, the average difficulty score of

depth-2 insights and depth-3 insights are 2.88 and 4.12, respectively. In summary,

the domain experts agreed that depth-3 insights are more useful, however, these

insights are harder to be summarized by their data analysis tool.

5.8.3 Human Effort Study

In this section, we measure the time taken by users to obtain our insights

by using two existing tools: (i) SQL queries, (ii) Microsoft Excel PivotTable.

Observe that these tools cannot be readily applied to extract our top-k insights.

Nevertheless, we can provide users with a sibling group SG and a composite

extractor Ce, then ask users to compute the result of applying Ce on SG.

In this study, we invited 4 senior database researchers, who are proficient in

SQL queries and familiar with Microsoft Excel PivotTable (i.e., a data analysis

tool). To make this study manageable, we chose the top-3 insights obtained from

car sales with depth-2 composite extractors. This car sales dataset and the depth

of composite extractor (i.e., τ = 2) were chosen because it is smallest and simple

for human effort study. We provided the participants with the sibling groups and

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 149

Usefulness Difficulty SG(S,Di) Composite Extractor Ce
2.8 2.6 SG({*}, End Quarter) 〈(COUNT),(∆Prev, EndQuarter)〉
Top-1 Insight We consider the increase of check-out interns in each quarter

with the previous quarter. The largest increase happens in 2016Q2 .

2.6 2.2 SG({3 months}, Nationality) 〈(COUNT),(∆avg, Duration)〉
Top-2 Insight The internship duration of interns from Country B

is always 3 months.

3.6 3.6 SG({6 months}, Start Quarter) 〈(COUNT),(∆Prev, StartQuarter)〉
Top-3 Insight Consider the increase of check-in interns whose internship

duration is 6 months among successive start quarters.
The largest increase happens in 2015Q1.

3.6 3.0 SG({PhD}, Nationality) 〈(COUNT),(∆avg, Degree)〉
Top-4 Insight Consider all interns from Country A.

The number of PhD interns is obviously higher than
the number of interns with other degrees.

3.6 3.0 SG({Undergraduate}, Year) 〈(COUNT),(Rank, Degree)〉
Top-5 Insight Regarding the rank (i.e., rank by the number of interns)

of each degree among all years,
the rank of undergraduates is the lowest in 2013.

(a) Top-5 insights from Intern Dataset with τ = 2

3.8 3.6 SG({PhD}, Year) 〈(COUNT),
(%, Year),(∆avg, Degree)〉

Top-1 Insight Consider the percentage of interns in each year by their degrees.
The percentage of PhD interns is the highest in 2014.

3.4 4.4 SG({2015Q2}, Group) 〈(COUNT),
(%, Group), (∆avg, EndQuarter)〉

Top-2 Insight Group A at 2015Q2 is the best in terms of the percentage
of check-out interns among all quarters.

3.4 4.4 SG({2016Q1}, Group) 〈(COUNT),
(%, Group), (∆prev, StartQuarter)〉

Top-3 Insight Group B at 2016Q1 is the best in terms of the increased
percentage of check-in interns among all successive quarters.

4.4 4.0 SG({University H}, Group) 〈(COUNT),
(%, Group), (∆avg, University)〉

Top-4 Insight Group C is the most popular group among all
research groups for the interns from University H.

3.8 4.2 SG({2014Q3}, Group) 〈(COUNT),
(%, Group), (∆avg, EndQuarter)〉

Top-5 Insight Group D at 2014Q3 is the worst in terms of
the percentage of check-out interns among all quarters.

(b) Top-5 insights from Intern Dataset with τ = 3

Table 5.8. User study result on the intern dataset with COUNT

150 5.9. PERFORMANCE EVALUATION

Given information Analysis tool User 1 User 2 User 3 User 4

(SG,Ce) pairs
SQL Query 20.2 23.4 34.7 38.5

Excel PivotTable 12.6 10.8 17.3 16.1

Table 5.9. Study on human effort (in minutes)

composite extractors of those insights, and then asked them to compute the result

in each case by two methods: (i) SQL queries and (ii) Microsoft Excel PivotTable,

respectively. For each participant, we measure the total time of computing all

three insights by using SQL queries and Microsoft Excel PivotTable, respectively.

We exclude the time of loading data into the database and Excel files.

We reported the time taken in Table 5.9. On overage, the participants spent

29.2 minutes with SQL queries and 14.2 minutes with Microsoft Excel PivotTable

to complete the above task. In contrast, our system just takes 0.17 seconds to

compute the top-3 insights.

5.9 Performance Evaluation

We proceed to evaluate the performance of our solutions. In this work, we

store all the raw data and data cube in main memory. The performance of our

solutions are measure by the total running time. We conducted all experiments

(with single thread) on a machine with an Intel i7-3770 3.4GHz processor, 16GB

of memory. We implemented our three solutions in C#. We denote the baseline

solution (cf. Algorithm 5.7) for Extracting top-K Insights problem as EKI. EKIO

(cf. Algorithm 5.9) applies all optimization techniques in Section 5.6. EKISO (cf.

Algorithm 5.12) applies techniques in Section 5.6 (optimizations) and Section 5.7

(computation sharing).

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 151

We report the running time (i.e., wall clock time) of solutions in our ex-

periments. Before running experiments, we load the datasets from disk to main

memory. SUM is used as the aggregate function. As discussed in Section 5.2.2,

unless otherwise stated, the depth of composite extractor τ is set to 2 or 3 by

default.

First, we show the efficiency of our solutions on a real dataset. Then, we

investigate the efficiency and scalability of our solutions on TPC-H data with

respect to various parameters.

5.9.1 Real dataset: Tablet sales

Among the real datasets described in Section 5.8, we use only the tablet sales

dataset as it is much larger than the car sales and intern dataset. In Figure 5.20,

we vary the result size k and report the running time of solutions on the tablet

sales dataset. EKIO performs better than EKI by 10 times, implying the power

of our proposed sibling cube and optimization techniques. Since EKISO employs

computation sharing techniques, it further outperforms EKIO by an order of

magnitude.

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e
(s

ec
)

Top-k

EKI
EKIO

EKISO
 10

 100

 1000

 10000

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e
(s

ec
)

Top-k

EKI
EKIO

EKISO

(a) at τ=2 (b) at τ=3

Figure 5.20. Runtime on tablet sales vs. result size k

152 5.9. PERFORMANCE EVALUATION

5.9.2 TPC-H dataset

TPC-H10 data: By default, we generate TPC-H data with scale factor set to 1.

We extract the lineitem table, which contains 6,001,215 tuples and 16 dimensions.

We use l extendedprice (ranging from 901.00 to 104949.50) as measure. We use

the following 6 dimensions; their domain sizes are as follows: l shipdate(2526),

l discount(11), l returnflag(3), l shipinstruct(7), l shipmode(4) and l linestates(2).

We then study the efficiency and scalability of our methods for various pa-

rameters. The default parameter setting is: the number of tuples N=1,000,000,

the depth of composite extractor τ=2, the result size k=10, and the number of

dimensions d=6.

Effect of result k: Figure 5.21(a) compares the performance of our solutions

by varying k from 1 to 100. EKISO is two orders of magnitude faster than

EKI. It allows us to obtain the top-1, top-10, top-100 results at 94s, 137s, 622s,

respectively. Its running time scales sub-linearly with k.

Effect of number of tuples N : Then we test the performance of our solutions

with respect to N . According to Figure 5.21(b), EKISO outperforms EKI by at

least two orders of magnitude. Their performance gap widens as N increases.

The running time of EKISO also rises sub-linearly with N .

Effect of dimensions d: In Figure 5.21(c), we vary the number of dimensions

d from 2 to 10. In addition to the 6 dimensions mentioned earlier, we include

4 more dimensions when d > 6: l suppkey(1000) l tax(9), l linenumber(7) and

l quantity(50). When d is small (≤ 4), we can obtain top-10 results in 1–2

10
http://www.tpc.org/tpch/

http://www.tpc.org/tpch/

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 153

 100

 1000

 10000

 100000

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e
(s

ec
)

Top-k

EKI
EKIO

EKISO 10

 100

 1000

 10000

 100000

10K 100K 500K 1M 6M

R
un

ni
ng

 ti
m

e
(s

ec
)

of Tuples

EKI
EKIO

EKISO

(a) vary result size k (b) vary number of tuples N

 100

 1000

 10000

 100000

 2 4 6 8 10

R
un

ni
ng

 ti
m

e
(s

ec
)

of Dimensions

EKI
EKIO

EKISO
 100

 1000

 10000

 100000

2 3 4

R
un

ni
ng

 ti
m

e
(s

ec
)

τ

EKISO
EKIO

(c) vary dimensionality d (d) vary depth τ

 1

 10

 100

 1000

 10000

 100000

High(2526) Median(86) Low(7)

R
un

ni
ng

 ti
m

e
(s

ec
)

Domain size

EKI
EKIO

EKISO

 0

 20

 40

 60

 80

 100

0.1 1 2 3 4 5

S
ib

lin
g

cu
be

 s
iz

e
(M

B
)

minsup (%)

(e) vary domain size (f) cube size vs minsup

0

20

40

60

80

100

2 4 6 6 10

R
un

tim
e

br
ea

kd
ow

n
(%

)

of dimensions

Build-Cube
Measure-Sig.

Execute-Algo.

(g) running time breakdown

Figure 5.21. Performance results on the TPC-H data

154 5.9. PERFORMANCE EVALUATION

minutes. At large values of d, the running time becomes high due to the huge

combinations of composite extractors and sibling groups. The performance gap

widens with d, and EKISO achieves three orders of magnitude improvement over

EKI at d=10.

Effect of depth τ : Next, we examine the performance of our solutions with

respect to the depth of composite extractor (from 2 to 4). As illustrated in

Figure 5.21(d), the running time rises with the depth because the number of

possible composite extractors increases rapidly with τ . EKISO again outperforms

the other solutions. We omitted EKI as it is too slow.

Effect of domain size: In this experiment, we vary the domain size of the

l shipdate dimension and fix the domain size of other dimensions. The default

domain size of l shipdate is 2562 values (one per day). We obtain smaller domain

sizes by changing the granularity: 84 values (one per month), 7 values (one per

year). As displayed in Figure 5.21(e). EKISO is significantly faster than EKI.

EKISO and EKIO perform similarly at low and median domain sizes because the

total number of sibling groups is quite small.

5.9.2.1 Sibling cube evaluation

Finally, we evaluate the space and running time overhead of our sibling cube.

Space: Figure 5.21(f) displays the sibling cube size with respect to the iceberg

constraint minsup. The size of sibling cube ranges from 87.6MB to 1.68MB. All

of them can fit in main memory.

Running time breakdown: Figure 5.21(g) shows the breakdown of the run-

CHAPTER 5. EXTRACTING TOP-K INSIGHTS FROM
MULTIDIMENSIONAL DATA 155

ning time of EKISO. We vary the dimensionality d from 2 to 10. Observe that the

sibling cube construction time and insight significance measurement time occupy

only less than 5% of the total running time.

5.10 Chapter Summary

5.10.1 Conclusion

This work investigates how to extract top-k insights from multidimensional

data. We propose a systematic computation framework for this problem, and

a suite of performance optimization techniques (e.g., pruning, ordering, sibling

cube and computation sharing). Our effectiveness studies (e.g., case study, utility

study) have demonstrated that top-k insights reveal meaningful observations

on different real datasets. Our best solution EKISO outperforms the baseline

solution by several orders of magnitude.

5.10.2 Future work

This work takes the first attempt to extract insights hidden in the data.

We want to pursue several promising directions in the future to support both

expert data analysts and non-expert executives or managers. First, we plan to

incorporate user feedback in insight extraction. Second, for massive datasets, we

will investigate how to extract insights efficiently in a distributed environment.

156 5.10. CHAPTER SUMMARY

Chapter 6

Conclusion

6.1 Conclusion

In the area of in-memory data management systems, there are many open

research questions for both academia and industry to address. In Chapter 1,

we present the big picture of in-memory data management systems and discuss

the achievements of existing works. We then explore some unsolved problems on

in-memory data management.

A major challenge is to identify the problems in existing works or define new

promising directions. To tackle it, we survey both in-memory data management

techniques (software-level) and the characteristics of CPU and main memory

(hardware-level). We discover that the speed gap between CPU and memory is

becoming large. This led us to exploit every cycle in modern CPUs in Chapter 3.

We also realized existing in-memory data management, in particular, similarity

search on high dimensional dataset, did not fully unlock the potential of main

157

158 6.2. FUTURE RESEARCH

memory. This motivated us to exploit every bit in main memory in Chapter 4.

With the above two fundamental bricks (CPU utilization, RAM utilization),

we faced another challenge: how to apply these techniques to applications ? To

do so, we first define the concept of insight and design an in-memory computation

framework to extract top-k insights from multidimensional datasets. Our system

can extract insights from different datasets (i.e., sales, business) automatically

and effectively, which is not only useful for non-expert users, but also reduce the

manual effort of the data experts.

6.2 Future Research

The road for more efficient and intelligent in-memory data management

systems is wide open. We now present opportunities for future research.

Our first two works only focus on specific research problems (i.e., accelerate

distance computation, utilize main memory for efficient similarity search). In

each case, we only exploit these characteristics of existing hardware (e.g., CPUs,

RAM). However, both of them can be extended to more general scenarios. On

one hand, we can use the SIMD vectorization techniques in Chapter 3 to accel-

erate the algorithms in Chapter 4 and Chapter 5. On the other hand, we are

not aware of existing compilers can convert hardware oblivious algorithms/code

to hardware conscious version by exploiting the underlying CPU architecture

automatically. If we can provide such tool by extending the techniques in Chap-

ter 3, it will be not only useful for database community but also for compiler

community. In Chapter 4, we study how to exploit every bit to accelerate the

CHAPTER 6. CONCLUSION 159

similarity search on high dimensional data. How to extend our proposed tech-

niques for in-memory scenario (i.e., the data and index are in the main memory)

is an interesting problem.

In Chapter 5, we propose the concept of insight and provide a prototype for

insight extraction. it has raised several new issues: (i) different statistical models

of insight, (ii) ground truth insights in the dataset and (iii) human-in-the-loop

exploration, etc. In addition, the challenge of data exploration is still open, i.e.,

build an efficient and effective interactive/automatic data exploration system.

We believe that in-memory data management has a bright future ahead.

Eventually, in-memory data management will be able to process terabytes of

data within seconds on a laptop.

160 6.2. FUTURE RESEARCH

Bibliography

[1] Ibm cogons. http://www.ibm.com/analytics/us/en/technology/

cognos-software/.

[2] Ibm watson analytics. https://www.ibm.com/analytics/

watson-analytics.

[3] Intel 64 and IA-32 architecutres optimization reference manual.

http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-optimization-manual.pdf.

[4] Quick insights in microsoft power bi. https://goo.gl/ASuJlp.

[5] Sap hana. http://www.sap.com/product/technology-platform/hana.

html.

[6] Source codes and datasets for experimental study. http://goo.gl/mwDTxP.

[7] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and David A Wood.

Dbmss on a modern processor: Where does time go? In VLDB, pages

266–277, 1999.

161

http://www.ibm.com/analytics/us/en/technology/cognos-software/
http://www.ibm.com/analytics/us/en/technology/cognos-software/
https://www.ibm.com/analytics/watson-analytics
https://www.ibm.com/analytics/watson-analytics
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://goo.gl/ASuJlp
http://www.sap.com/product/technology-platform/hana.html
http://www.sap.com/product/technology-platform/hana.html
http://goo.gl/mwDTxP

162 BIBLIOGRAPHY

[8] Chris Anderson. The long tail: Why the future of business is selling more

for less. Hyperion, 2008.

[9] Ira Assent, Ralph Krieger, Farzad Afschari, and Thomas Seidl. The ts-tree:

efficient time series search and retrieval. In EDBT, pages 252–263. ACM,

2008.

[10] Vassilis Athitsos, Jonathan Alon, Stan Sclaroff, and George Kollios. Boost-

map: A method for efficient approximate similarity rankings. In CVPR,

pages 268–275. IEEE, 2004.

[11] Vassilis Athitsos, Marios Hadjieleftheriou, George Kollios, and Stan

Sclaroff. Query-sensitive embeddings. ACM Transactions on Database

Systems (TODS), 32(2):8, 2007.

[12] Vassilis Athitsos, Panagiotis Papapetrou, Michalis Potamias, George Kol-

lios, and Dimitrios Gunopulos. Approximate embedding-based subsequence

matching of time series. In SIGMOD, pages 365–378. ACM, 2008.

[13] Narayanaswamy Balakrishnan. Handbook of the logistic distribution. CRC

Press, 2013.

[14] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Özsu. Multi-

core, main-memory joins: Sort vs. hash revisited. PVLDB, pages 85–96,

2013.

[15] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. Main-

memory hash joins on multi-core cpus: Tuning to the underlying hardware.

In ICDE, pages 362–373. IEEE, 2013.

BIBLIOGRAPHY 163

[16] Kevin Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse

and iceberg cube. In SIGMOD Record, pages 359–370. ACM, 1999.

[17] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and evaluation of

main memory hash join algorithms for multi-core cpus. In SIGMOD, pages

37–48. ACM, 2011.

[18] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-

dimensional spaces: Index structures for improving the performance of

multimedia databases. ACM Computing Surveys (CSUR), 33(3):322–373,

2001.

[19] Leonid Boytsov and Bilegsaikhan Naidan. Learning to prune in metric and

non-metric spaces. In Advances in Neural Information Processing Systems,

pages 1574–1582, 2013.

[20] Jonathan Brandt. Transform coding for fast approximate nearest neighbor

search in high dimensions. In CVPR, pages 1815–1822. IEEE, 2010.

[21] Shirley Browne, Jack Dongarra, Nathan Garner, George Ho, and Philip

Mucci. A portable programming interface for performance evaluation on

modern processors. International Journal of High Performance Computing

Applications, 14(3):189–204, 2000.

[22] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh.

isax 2.0: Indexing and mining one billion time series. In ICDM, pages

58–67. IEEE, 2010.

[23] Surajit Chaudhuri. What next?: a half-dozen data management research

goals for big data and the cloud. In PODS, pages 1–4. ACM, 2012.

164 BIBLIOGRAPHY

[24] Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. An overview

of business intelligence technology. Communications of the ACM, pages

88–98, 2011.

[25] Shimin Chen, Anastassia Ailamaki, Phillip B Gibbons, and Todd C Mowry.

Improving hash join performance through prefetching. ACM Transactions

on Database Systems (TODS), 32(3):17, 2007.

[26] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy,

Mostafa Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and

Pradeep Dubey. Efficient implementation of sorting on multi-core simd

cpu architecture. PVLDB, 1(2):1313–1324, 2008.

[27] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access

method for similarity search in metric spaces. In VLDB, pages 426–435,

1997.

[28] Debabrata Dash, Jun Rao, Nimrod Megiddo, Anastasia Ailamaki, and Guy

Lohman. Dynamic faceted search for discovery-driven analysis. In CIKM,

pages 3–12. ACM, 2008.

[29] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable distributions. In Sym-

posium on Computational Geometry, pages 253–262, 2004.

[30] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z Wang. Image retrieval:

Ideas, influences, and trends of the new age. ACM Computing Surveys

(CSUR), 40(2):5, 2008.

BIBLIOGRAPHY 165

[31] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Ze Wang. Image retrieval:

Ideas, influences, and trends of the new age. ACM Computing Surveys

(CSUR), 40(2), 2008.

[32] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Explore-

by-example: An automatic query steering framework for interactive data

exploration. In SIGMOD, pages 517–528. ACM, 2014.

[33] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Ea-

monn J. Keogh. Querying and mining of time series data: experimental

comparison of representations and distance measures. PVLDB, 1(2):1542–

1552, 2008.

[34] Fabrizio Falchi, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and

Fausto Rabitti. Caching content-based queries for robust and efficient im-

age retrieval. In EDBT, pages 780–790. ACM, 2009.

[35] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast sub-

sequence matching in time-series databases. In SIGMOD, pages 419–429.

ACM, 1994.

[36] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Mot-

wani, and Jeffrey D Ullman. Computing iceberg queries efficiently. In

VLDB, pages 299–310, 1999.

[37] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El

Abbadi. Vector approximation based indexing for non-uniform high dimen-

sional data sets. In CIKM, pages 202–209. ACM, 2000.

166 BIBLIOGRAPHY

[38] Ada Wai-Chee Fu, Eamonn Keogh, Leo Yung Lau, Chotirat Ann

Ratanamahatana, and Raymond Chi-Wing Wong. Scaling and time warp-

ing in time series querying. The VLDB Journal, 17(4):899–921, 2008.

[39] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. Locality-sensitive

hashing scheme based on dynamic collision counting. In SIGMOD, pages

541–552. ACM, 2012.

[40] Jinyang Gao, Hosagrahar Visvesvaraya Jagadish, Wei Lu, and Beng Chin

Ooi. Dsh: data sensitive hashing for high-dimensional k-nnsearch. In

SIGMOD, pages 1127–1138. ACM, 2014.

[41] Hector Garcia-Molina and Kenneth Salem. Main memory database sys-

tems: An overview. IEEE Transactions on knowledge and data engineering

(TKDE), 4(6):509–516, 1992.

[42] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in

high dimensions via hashing. In VLDB, pages 518–529, 1999.

[43] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Re-

ichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube:

A relational aggregation operator generalizing group-by, cross-tab, and sub-

totals. Data Mining and Knowledge Discovery, pages 29–53, 1997.

[44] Joachim Gudmundsson, Patrick Laube, and Thomas Wolle. Computational

movement analysis. In Springer handbook of geographic information, pages

423–438. Springer, 2011.

[45] John L. Hennessy and David A. Patterson. Computer Architecture - A

Quantitative Approach (5. ed.). Morgan Kaufmann, 2012.

BIBLIOGRAPHY 167

[46] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of

data exploration techniques. In SIGMOD, pages 277–281. ACM, 2015.

[47] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of

top-k query processing techniques in relational database systems. ACM

Computing Surveys (CSUR), 40(4), 2008.

[48] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: To-

wards removing the curse of dimensionality. In STOC, pages 604–613.

ACM, 1998.

[49] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. Faster set intersec-

tion with simd instructions by reducing branch mispredictions. PVLDB,

8(3):293–304, 2014.

[50] Yannis E. Ioannidis. The history of histograms (abridged). In VLDB, pages

19–30, 2003.

[51] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Ken-

neth C. Sevcik, and Torsten Suel. Optimal histograms with quality guar-

antees. In VLDB, pages 275–286, 1998.

[52] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.

idistance: An adaptive b+-tree based indexing method for nearest neighbor

search. ACM Transactions on Database Systems (TODS), 30(2):364–397,

2005.

[53] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and Huynh Phung

Huynh. Improving main memory hash joins on intel xeon phi processors:

An experimental approach. PVLDB, 8(6):642–653, 2015.

168 BIBLIOGRAPHY

[54] Martin Kaufmann and Donald Kossmann. Storing and processing temporal

data in a main memory column store. PVLDB, 6(12):1444–1449, 2013.

[55] Eamonn Keogh and Chotirat Ann Ratanamahatana. Exact indexing of

dynamic time warping. Knowledge and Information Systems, 7(3):358–

386, 2005.

[56] Hans-Peter Kriegel, Peer Kröger, Peter Kunath, and Matthias Renz. Gen-

eralizing the optimality of multi-step k -nearest neighbor query processing.

In SSTD, pages 75–92, 2007.

[57] Martin Krzywinski and Naomi Altman. Points of significance: Significance,

p values and t-tests. Nature methods, pages 1041–1042, 2013.

[58] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix

tree: Artful indexing for main-memory databases. In ICDE, pages 38–49.

IEEE, 2013.

[59] Christian Lemke, Kai-Uwe Sattler, Franz Faerber, and Alexander Zeier.

Speeding up queries in column stores. In International Conference on Data

Warehousing and Knowledge Discovery, pages 117–129, 2010.

[60] Cuiping Li, Beng Chin Ooi, Anthony KH Tung, and Shan Wang. Dada: a

data cube for dominant relationship analysis. In SIGMOD, pages 659–670.

ACM, 2006.

[61] Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, and Yizhou Sun. Sampling

cube: a framework for statistical olap over sampling data. In SIGMOD,

pages 779–790. ACM, 2008.

BIBLIOGRAPHY 169

[62] Yuhong Li, Leong Hou U, Man Lung Yiu, and Zhiguo Gong. Discovering

longest-lasting correlation in sequence databases. PVLDB, 6(14):1666–

1677, 2013.

[63] P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson,

M. Alagappan, J. Carlsson, and G. Carlsson. Extracting insights from the

shape of complex data using topology. Scientific Reports, 3, 2013.

[64] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-

probe lsh: Efficient indexing for high-dimensional similarity search. In

VLDB, pages 950–961, 2007.

[65] Evangelos P. Markatos. On caching search engine query results. Computer

Communications, 24(2):137–143, 2001.

[66] Ryszard S Michalski. A theory and methodology of inductive learning. In

Machine learning, pages 83–134. Springer, 1983.

[67] Abdullah Mueen, Eamonn J. Keogh, Qiang Zhu, Sydney Cash, and

M. Brandon Westover. Exact discovery of time series motifs. In SDM,

pages 473–484. SIAM, 2009.

[68] Emmanuel Alexander Müller. Efficient knowledge discovery in subspaces of

high dimensional databases. PhD thesis, RWTH Aachen University, 2010.

[69] Panagiotis Papapetrou, Vassilis Athitsos, Michalis Potamias, George Kol-

lios, and Dimitrios Gunopulos. Embedding-based subsequence matching in

time-series databases. ACM Transactions on Database Systems (TODS),

36(3):17, 2011.

170 BIBLIOGRAPHY

[70] Jian Pei, Yidong Yuan, Xuemin Lin, Wen Jin, Martin Ester, Qing Liu, Wei

Wang, Yufei Tao, Jeffrey Xu Yu, and Qing Zhang. Towards multidimen-

sional subspace skyline analysis. ACM Transactions on Database Systems

(TODS), pages 1335–1381, 2006.

[71] Hasso Plattner. A common database approach for oltp and olap using an

in-memory column database. In SIGMOD, pages 1–2. ACM, 2009.

[72] Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen, Gus-

tavo E. Batista, M. Brandon Westover, Qiang Zhu, Jesin Zakaria, and Ea-

monn J. Keogh. Searching and mining trillions of time series subsequences

under dynamic time warping. In KDD, pages 262–270. ACM, 2012.

[73] Jun Rao and Kenneth A Ross. Cache conscious indexing for decision-

support in main memory. In VLDB, pages 78–89, 1999.

[74] Kenneth A. Ross. Efficient hash probes on modern processors. In ICDE,

pages 1297–1301. IEEE, 2007.

[75] Sunita Sarawagi. Explaining differences in multidimensional aggregates. In

VLDB, pages 7–10, 1999.

[76] Sunita Sarawagi. User-adaptive exploration of multidimensional data. In

VLDB, pages 307–316, 2000.

[77] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven

exploration of olap data cubes. In EDBT, pages 168–182. ACM, 1998.

[78] Sunita Sarawagi and Gayatri Sathe. i3: intelligent, interactive investigation

of olap data cubes. In ACM SIGMOD Record, page 589. ACM, 2000.

BIBLIOGRAPHY 171

[79] Doruk Sart, Abdullah Mueen, Walid A. Najjar, Eamonn J. Keogh, and

Vit Niennattrakul. Accelerating dynamic time warping subsequence search

with gpus and fpgas. In ICDM, pages 1001–1006. IEEE, 2010.

[80] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neigh-

bor search. In SIGMOD, pages 154–165. ACM, 1998.

[81] Thibault Sellam and Martin L Kersten. Meet charles, big data query ad-

visor. In CIDR, 2013.

[82] Thibault Sellam, Emmanuel Müller, and Martin L Kersten. Semi-

automated exploration of data warehouses. In CIKM, pages 1321–1330.

ACM, 2015.

[83] Jin Shieh and Eamonn J. Keogh. isax: indexing and mining terabyte sized

time series. In KDD, pages 623–631. ACM, 2008.

[84] Ali H Shoeb and John V Guttag. Application of machine learning to

epileptic seizure detection. In ICML, pages 975–982. IEEE, 2010.

[85] Tomás Skopal, Jakub Lokoc, and Benjamin Bustos. D-cache: Universal dis-

tance cache for metric access methods. IEEE Transactions on Knowledge

and Data Engineering (TKDE), 24(5):868–881, 2012.

[86] Jingkuan Song, Yang Yang, Yi Yang, Zi Huang, and Heng Tao Shen. Inter-

media hashing for large-scale retrieval from heterogeneous data sources. In

SIGMOD, pages 785–796. ACM, 2013.

[87] Shriram Sridharan and Jignesh M Patel. Profiling r on a contemporary

processor. PVLDB, 8(2):173–184, 2014.

172 BIBLIOGRAPHY

[88] J Michael Steele. The Cauchy-Schwarz master class: an introduction to

the art of mathematical inequalities. Cambridge University Press, 2004.

[89] Ayesha Sultana, Norfaeza Hassan, Chengkai Li, Jun Yang, and Cong Yu.

Incremental discovery of prominent situational facts. In ICDE, pages 112–

123. IEEE, 2014.

[90] Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, and Dongmei Zhang. Ex-

tracting top-k insights from multi-dimensional data. In SIGMOD, pages

1509–1524. ACM, 2017.

[91] Bo Tang, Man Lung Yiu, and Kien A Hua. Exploit every bit: Effective

caching for high-dimensional nearest neighbor search. IEEE Transactions

on Knowledge and Data Engineering (TKDE), 28(5):1175–1188, 2016.

[92] Bo Tang, Man Lung Yiu, Yuhong Li, and Leong Hou U. Exploit every

cycle: Vectorized time series algorithms on modern commodity cpus. In

International Workshop on In-Memory Data Management and Analytics,

pages 18–39. Springer, 2016.

[93] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and efficiency

in high dimensional nearest neighbor search. In SIGMOD, pages 563–576.

ACM, 2009.

[94] Roelof van Zwol. Flickr: Who is looking? In Web Intelligence, pages

184–190. IEEE, 2007.

[95] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran,

and Neoklis Polyzotis. SEEDB: efficient data-driven visualization recom-

mendations to support visual analytics. PVLDB, pages 2182–2193, 2015.

BIBLIOGRAPHY 173

[96] Abdul Wasay, Manos Athanassoulis, and Stratos Idreos. Queriosity: Au-

tomated data exploration. In IEEE Congress on Big Data, pages 716–719.

IEEE, 2015.

[97] Roger Weber and Stephen Blott. An approximation based data structure

for similarity search. Technical report, Citeseer, 1997.

[98] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis

and performance study for similarity-search methods in high-dimensional

spaces. In VLDB, pages 194–205, 1998.

[99] Yair Weiss, Antonio Torralba, and Robert Fergus. Spectral hashing. In

NIPS, pages 1753–1760, 2008.

[100] Ping Wu, Yannis Sismanis, and Berthold Reinwald. Towards keyword-

driven analytical processing. In SIGMOD, pages 617–628. ACM, 2007.

[101] Tianyi Wu, Dong Xin, and Jiawei Han. Arcube: supporting ranking ag-

gregate queries in partially materialized data cubes. In SIGMOD, pages

79–92. ACM, 2008.

[102] Tianyi Wu, Dong Xin, Qiaozhu Mei, and Jiawei Han. Promotion analysis

in multi-dimensional space. PVLDB, pages 109–120, 2009.

[103] Dong Xin, Jiawei Han, Xiaolei Li, Zheng Shao, and Benjamin W Wah.

Computing iceberg cubes by top-down and bottom-up integration: The

starcubing approach. IEEE Transactions on Knowledge and Data Engi-

neering (TKDE), pages 111–126, 2007.

174 BIBLIOGRAPHY

[104] Liu Yingfan, Cui Jiangtao, Huang Zi, Li Hui, and Shen Hengtao. Sk-lsh

: An efficient index structure for approximate nearest neighbor search.

PVLDB, 7(9):745–756, 2014.

[105] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang.

In-memory big data management and processing: A survey. IEEE Trans-

actions on Knowledge and Data Engineering (TKDE), 27(7):1920–1948,

2015.

[106] Yi Zhang and Jun Yang. Optimizing i/o for big array analytics. PVLDB,

5(8):764–775, 2012.

[107] Jingren Zhou and Kenneth A. Ross. Implementing database operations

using simd instructions. In SIGMOD, pages 145–156. ACM, 2002.

[108] Haohan Zhu, George Kollios, and Vassilis Athitsos. A generic framework

for efficient and effective subsequence retrieval. PVLDB, 5(11):1579–1590,

2012.

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	In-memory Database Management System
	Research Problems on In-memory Data Management
	Thesis Organization

	Literature Review
	In-memory Techniques
	Similarity Search on High Dimensional Data
	Distance Functions
	High Dimensional Feature Vector
	Time Series Data

	Multidimensional Data Exploration
	Top-k Problems
	OLAP Data Cube
	Mining and Learning-based Techniques
	Subspace Analysis
	Exploratory Analysis

	Exploit Every Cycle: Accelerating Distance Computation on Modern Commodity CPUs
	Introduction
	Preliminaries
	Fundamental Distance Measurement
	Time Series Algorithms

	Profiling of Algorithms
	Experimental Setting
	Measurement Methodology
	Identifying the Performance Bottleneck

	Accelerating Distance Functions with SIMD
	How do SIMD Instructions Reduce Stall?
	Accelerating ED with SIMD
	Accelerating DTW with SIMD
	Accelerating Lower Bounds for DTW with SIMD
	Accelerating Reference Index with SIMD

	Experimental Study
	Subsequence Search
	Motif Discovery
	kNN Classification

	Chapter Summary
	Conclusion
	Research Directions

	Exploit Every Bit: Effective Caching for High-Dimensional Nearest Neighbor Search
	Introduction
	Technical Challenges
	Technical Contributions

	Definition and Problem Statement
	Definitions
	Research Objective
	Multi-step kNN Search

	Histogram-based Caching for kNN Search
	Histogram and Approximate Points
	kNN Search Algorithm
	Histogram Solutions for kNN Algorithm
	Effective Histogram Metric
	Efficient Solution
	Extensions

	Cost Estimation Model
	I/O Cost Estimation
	Determining the Optimal

	Experimental Study
	Experimental Setup
	Effect of Configurations
	Cost Estimation
	Performance Improvement

	Chapter Summary

	Extracting Top-K Insights from Multidimensional Data
	Introduction
	Problem Statement
	Data Model and Subspace
	Composite Extractor
	Problem Definition

	Meaningful Insight Score
	Insight Score Function
	The Sig of Insight

	System Architecture
	Architecture Overview
	Extensibility
	In-memory techniques

	Insight Extraction
	Computation Framework
	Computation Engine
	Time Complexity Analysis

	Optimization techniques
	Pruning by Upper Bound Score
	Subspace Ordering
	Sibling Cube

	Computation Sharing
	Sharing within a Sibling Group
	Sharing across Sibling Groups

	Effectiveness Study
	Case Studies
	Insight Utility Study
	Human Effort Study

	Performance Evaluation
	Real dataset: Tablet sales
	TPC-H dataset

	Chapter Summary
	Conclusion
	Future work

	Conclusion
	Conclusion
	Future Research

	Bibliography

