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Abstract

A differential sensor has a directional response which approximates a measure-

ment of the kth-order spatial derivative of the pressure field. A sensor array com-

posed of a pair perpendicularly-oriented higher-order (possibly unequal orders) dif-

ferential sensors can be used to find the direction of acoustic signal sources. The

objective of my research is to devise a signal-processing algorithm to estimate the

direction-of-arrival (DOA) of a signal incident upon this type of sensor array. A

viable approach is herein proposed. The new direction finding method relies on

well-known eigen-based DOA estimation algorithms as a preceding stage. The

closed-form formulas can be then directly applied when certain prior knowledge

is available. This dissertation presents the derivation of closed-form formulas for

elevation and azimuth angle estimation with nine possible configurations. Neces-

sary assumptions and prior information needed for the algorithm are also discussed.

Monte Carlo simulations result shows that the proposed algorithm can successfully

estimate the elevation and azimuth angle of incident signal. The corresponding

Cramér-Rao Bounds (CRB) are derived so as to evaluate the performance of pro-

posed algorithm.
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Chapter 1

Introduction

1.1 Microphone Array

A microphone array is composed of a group of sensors placed in a certain spatial

pattern such that the array response carries the spatial information of the incoming

signals. The main objective of microphone array signal processing is to estimate

parameters or the signal of interest by using the information available at the out-

puts of the microphone array [1]. Typical assumptions made for microphone array

processing include isotropic and non-dispersive medium, plane wave propagation,

far field and zero mean white noise. Applications of microphone arrays are com-

monly applied to following area: noise reduction, echo reduction, source separation,

estimation of the number of sources and localization of signal sources.

The acoustic signal in microphone reception are often interfered by noise and

reverberation. Microphone array can be effective in handling these problems by

beamforming technique. Beamforming, which is widely used in sensor array signal

processing, is achieved by controlling or analyzing the phase and amplitude of the

received signal in each sensor. Besides the capability of noise mitigating, another

important application of microphone array is the direction of arrival estimation

which utilizes its advantage of directivity. Typical application of microphone ar-

ray includes noise reduction, dereverberation, echo reduction, direction of arrival

estimation and estimation of the number of sources.

1.2 Direction of Arrival

Direction of arrival (DOA) estimation (a.k.a direction finding), as a popular

topic of array signal processing, has been widely investigated over decades. In

general, the objective of DOA estimation is to find the elevation angle and azimuth

angle of an incident signal, as shown in Figure 1.2. Namely, it is to locate the

emitter which generates the incident signal. For acoustic signal, the emitter of
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Figure 1.1: Microphone array signal processing and applications

interests usually includes

• a talker in video conferencing,

• a submarine,

• a gun shot or an artillery,

• a whale, etc.

There are already a great number of practical applications for microphone ar-

ray direction finding. For example, the gun shot localization system developed by

Microflown Technologies can be adopted to detect the location of sniper in battle

field. Another example is the “Voice Tracker” designed by Acoustic Magic which

can automatically estimate the location of a speaker.

Direction of arrival estimation algorithm is one of the popular topics in micro-

phone (sensor) array signal processing. One important theoretical fundamental is

the vector space signal model popularized by Schmidt and others. They brought

16



Figure 1.2: Direction of arrival

up the concept of a parametric array manifold which connects the array signal pro-

cessing and powerful estimation tools including Minimum Mean-Square Estimation

(MMSE), Maximum Likelihood (ML) and the Cramér-Rao Bound (CRB). These

theoretic tools provide a benchmark for the sensor array direction finding perfor-

mance. However, conventional DOA estimation algorithm, such as the multiple

signal classification (MUSIC) [2] and ESPRIT [3], are only applicable to the pres-

sure sensors array. These algorithms estimate the steering vector â of incident signal

with ambiguity of an unknown complex-value (i.e. â = ca) by eigen-decomposing

the data correlation matrix. The measurement model of acoustic vector sensor

(AVS) array was first introduced by Nehorai and Paldi [4]. Ever since then, lots of

research has been conducted for extending conventional DOA estimation algorithm

to differential sensors. Nonetheless, little has been done for direction finding with a

pair of higher order differential sensors. This M.Phil. research investigates the di-

rection finding approach for a pair of orthogonally oriented differential sensors (with

possibly unequal order) based on eigen-based parameter estimation algorithms.

1.3 Differential Sensors

Highly directive microphones are useful, especially for enhanced “random effi-

ciency” (i.e., for improved suppression of background noises/interference off-axis)

and for a farther “distance factor” (i.e., the spatial reach of the microphone on-axis).

One type of directional microphones/hydrophones is the differential sensor.

A first-order differential sensor (a.k.a. a “pressure gradient” sensor) is often

implemented by measuring the pressure difference on the two sides of a diaphragm.

As this first-order spatial derivative is proportional to the particle velocity, the first-

order differential sensor is also called a uni-axial “velocity sensor” or a “velocity

17



hydrophone”. More mathematically, such a first-order differential sensor would

have a dipole-like directional response of cos(φ), where φ ∈ [0, 2π) denotes the

incident source’s angle measured with respect to the sensor axis. This represents a

figure-8, because their cos(φ) gain response resembles the digit “8”. This response

is bidirectional in nature, sensitive equally to incident energy from the front as well

as from the back, but little sideway pickup.

Figure 1.3: Gain pattern of higher-order differential sensors

As generalization to the above-mentioned first-order differential sensor – a kth-

order differential sensor (chapter 8.5 of [5], chapter 2.2 of [11]) measures a pressure

field at k + 1 closely spaced points along a straight line, then computes the kth-

order finite difference among them, to approximate a measurement of the kth-order

partial derivative of the pressure field [18, 19]). A kth-order differential sensor has

a directional gain response equal to the kth-order spatial derivative of the pressure

field. More mathematically, a k-order differential sensor has a directional response

of cosk(φ).

1.4 Principle of Differential Sensors

The response of a pressure gradient microphone (first-order differential sensor)

directly corresponds to the pressure difference between two points in space. If the

ratio of the displacement between two points to the wavelength is low, the pressure

gradient will be proportional to the particle velocity. While a velocity microphone’s

response directly corresponds to the particle velocity field.

Similarly, a n-th order differential sensor can be approximated as taking n-th

finite difference on pressure sensors. A general differential equation on the pressure

field may give us an insight of the underlying principle of the differential sensors.

Assume a plane-wave signal impinging on the sensors, the acoustic pressure field of

signal can be written as [11]

p(q, r, t) = P0e
j(ωt−qr cos θ) (1.1)

where P0 is the power of the signal source, ω is the angular frequency, q = ω
c = 2π

λ ,
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and r = ‖r‖ where r is the direction vector with respect to (0, 0). Omit the time

dependence and take n-th order spatial derivative with respect to r on (1.1) derives

dn

drn
p(q, r, θ) = P0(−jq cos(θ))ne−jqr cos(θ) (1.2)

The spatial derivative above can be approximated by computing the nth-order

finite difference multiplied by a bias error term. For example, the first-order spatial

derivative of pressure is

d

dr
p(q, r, θ) = −jP0q cos(θ)e−jqr cos(θ) (1.3)

The first-order finite difference can be written as [11]

∆p(q, r, θ)

∆r
=

p(q, r + d/2, θ)− p(q, r − d/2, θ)
d

(1.4)

=
−j2P0 sin(qd/2 cos θ)e−jqr cos(θ)

d

where d is the distance between pressure sensors .

Then the bias error term can be defined as dividing (1.4) by (1.3):

δ =
∆p/∆r

dp/dr
(1.5)

If the distance between sensor elements is small to a certain level (relative to the

wavelength), i.e. usually d
λ < 1/4 in which case the error term is less than 1dB, the

following approximation will be acceptable:

dp(q, r, θ)

dr
u

∆p(q, r, θ)

∆r
(1.6)

Similar derivations and conclusions could be obtained for higher-order case.

A typical hardware realization of the first-order differential sensor can be achieved

by measuring the pressure-difference across the two sides of a diaphragm. A rela-

tionship between the pressure field and acoustic particle velocity can be expressed

by Euler’s equation as [11]

−∇p = ρ
∂v

∂t
, (1.7)

where v is the acoustic particle velocity and ρ is the static density of medium.

The equation above shows that the derivative of particle velocity with respect

to time is directly related to the pressure gradient. Therefore, the response of

a first-order differential sensor contains not only the scalar pressure but also one

component of the particle velocity at that point. Based on the first-order differential

19



sensor, a higher-order differential microphone can be designed as a combination of

first-order microphones, where the order of new sensor is the sum of all component

orders.

1.5 A Bi-Axial Pair of Differential Sensors in Spatial

Collocation and Perpendicular Orientation

First-order differential sensors have been used for decades as a collocated pair

in perpendicular orientation, giving an array manifold of

a1(φ) =

[
cos(φ)

sin(φ)

]
. (1.8)

The above array manifold has a key advantage of independence from the frequency,

spectrum and bandwidth of the incident signal, thereby decoupling the frequency

coordinate from the direction-of-arrival coordinate. Such a pair is sometimes called

a “u-u probe”. It has been implemented in hardware [7–9]. Its beam patterns

and directivity have been studied in [12, 14]. Direction-finding formulas have been

advanced for it in [16]. Please refer to [20] for a literature review. 1

Similarly, for two higher-order differential sensors of order k1 and k2, arranged

bi-axially in perpendicularity and in spatial collocation, the pair’s array manifold

is equal to

ak1,k2(φ) =

[
cosk1(φ)

sink2(φ)

]
. (1.9)

This array manifold retains the frequency-decoupling advantage of (1.8). 2

Such dipole-like bidirectional higher-order sensors have been used as a triad,

with three component-sensors being collocated and perpendicularly oriented, for

direction finding. The azimuth-elevation direction-of-arrival estimation formulas

have been advanced in [16]. 3

For a pair of perpendicularly oriented uniaxial first-order velocity-sensors, direction-

finding formulas have been advanced in [20].

This research will propose direction-finding formulas for a pair of higher-order

dipole-like differential sensors perpendicularly oriented, whether collocated or not,

and regardless if the two sensors are of the same higher order.

1Incidentally, first-order differential sensors have been used in a collocated and perpendicular
triad, called a “tri-axial velocity-sensor”, or a “velocity-sensor triad”, or a “vector sensor”, or a
“vector hydrophone”. For comprehensive reviews of the “tri-axial velocity-sensor” literature, please
consult [13, 15,17].

2Incidentally, for a triad of higher-order differential sensors that are collocated in space and
perpendicular in orientation, direction-finding formulas have been advanced in [16].

3If each such higher-order sensor is realized by a linear array of isotropic sensors, the noise
statistics is analyzed in [18,19].
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1.6 The Advantages of using the differential sensors as

an array (pair or triad)

A differential sensor triad/pair is formed by three/two perpendicularly-oriented

differential sensors with a possible inner displacement. Figure 1.4 shows a triad con-

sists of three identical differential sensors oriented towards x, y, z axis respectively

and collocated (zero inner displacement) as a point-like array.

Each component sensor of the triad/pair reflects the particle-velocity (or n-th

power of particle-velocity) in its according orientation with a gain pattern given in

Figure 1.3. Such an array will deem the acoustic signal in a particle-velocity-field

manner instead of pressure field. The response of a differential sensor triad/pair car-

ries more information about the direction of incident signal than that of a pressure

sensor array with similar geometry. Thus, it has a characteristic of high directivity.

A higher-order differential microphone possesses higher directivity (narrower beam

pattern), but as a trade-off, the hardware design could be more complicated and

the price is often higher.

The accuracy of direction finding (DF) using a sensor array is, to a large extent,

related to the array aperture. A larger array aperture will bring a better resolution

for DF. Although an assumption of collocated sensor components gives a relatively

simple expression of manifold, the hardware realization of such design could be very

difficult. In fact, the existence of displacement between sensors is advantageous in

extending the spatial aperture while keeping the number of sensors unchanged.

For a pair of differential sensors, the displacement is necessary for unambiguous

direction-of-arrival estimation.

For a first order differential sensor triad, its special array manifold will intro-

duce a benefit of self-normalization to the eigen-based direction finding algorithm

[22]. The eigen-based (subspace-based) algorithm could be adopted to estimate

the steering vector ( â ) of incident signal by applying eigen-decomposition on the

data-correlation matrix, but with an ambiguity of a unknown complex coefficient

( â = ca ). Applying self-normalization method on â would give a unambiguous

estimation without the unknown complex c.

Such eigen-based algorithm has been widely applied in first-order differential sen-

sor array (vector sensor) including “Estimation of Signal Parameters via a Rotation

Invariance Technique (ESPRIT) [22–26], “Multiple SIgnal Classification (MUSIC)

and Root-MUSIC [27–29].

1.7 Organization of This Dissertation

This dissertation consists of seven sections. Chapter 2 will introduce the mea-

surement model adopted for this project as well as the core idea of the proposed
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Figure 1.4: A schematic of differential sensor triad

algorithm. Chapter 3 and 4 will present a qualitative discussion on how to derive

direction finding formulas. Detailed steps will be given, including deduction of equa-

tions and the investigation of prior knowledge requirements. Section 4.10 will briefly

summarize the possibility of extending the current approach to the collocated case.

Chapter 5 will show MATLAB simulation results. Monte Carlo simulations are

employed to test the proposed direction finding method. Chapter 6 will present the

Cramér-Rao bounds for elevation and azimuth angle direction-of-arrival estimation.

Finally, Chapter 7 will conclude the dissertation.
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Chapter 2

The Measurement Model And

Direction Finding

In this project, we are considering a sensor array which consists of two uni-

axial differential sensors (with possibly different order) oriented orthogonally and

displaced along the axis. Without changing the coordinate system, there are totally

nine configurations (three possible combinations of sensors’ orientation × three

types of displacement) for this type of sensor array, as shown in Figure 2.1. Similar

model has been adopted by Song [20].

Array manifold is often used to describe the responses of sensor array. For three

higher-order differential sensors shown in Figure 2.2, the array manifold is written

as:

a =

(sin(θ) cos(φ))kx ej(2π∆x/λ) sin(θ) cos(φ)

(sin(θ) sin(φ))ky ej(2π∆y/λ) sin(θ) sin(φ)

coskz(θ)ej(2π∆z/λ) cos(θ)

 =

u
kxej(2π∆x/λ)u

vkyej(2π∆y/λ)v

wkzej(2π∆z/λ)w


This general array manifold consists of three components corresponding to kx,

ky and kz-th order spatial derivative of the pressure field, which can be measured

by the differential sensor aligned in parallel to x, y and z axis respectively.

The ultimate objective is to solve the following problem: How to estimate the

elevation and azimuth angle of an acoustic incident signal, as far-field narrow-band

plane wave, impinging on the sensor array shown in Figure 2.1.

The data model is given as

z(tn) = as(tn) + n(tn)

where n(tn) is zero-mean white noise vector, s(tn) is a pure tone signal, z(tn) is the

received array response.

Since the parameter of interest only exists in the array manifold, the first step

is to estimate â. The proposed algorithm employs eigen-based (subspace-based)

parameter estimation algorithm as a preceding step, which may derive an estima-
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Configuration (a) Configuration (b) Configuration (c)

Configuration (d) Configuration (e) Configuration (f)

Configuration (g) Configuration (h) Configuration (i)

Figure 2.1: The nine configurations for a pair of differential sensors in orthogonality along
Cartesian axes

tion of â but correct to only within an unknown complex scalar. For N received

snapshots, an eigen-based parameter estimation algorithm will eigen-decompose the

data covariance matrix

Ĉ =
1

N

N∑
n=1

z(tn)z(tn)H

≈ E
[
z(tn)z(tn)H

]
= PsaaH + PnI

where Ps and Pn are the signal power and noise power respectively.

Ĉ has a principle eigenvector ca where c can be any complex number has a
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Figure 2.2: Three orthogonally oriented differential sensors

magnitude of 1/‖a‖.

Comparing to other conventional parameter estimation approaches such as Max-

imum Likelihood Estimation (MLE), eigen-based parameter algorithm is advan-

taged in following aspects

1) No prior knowledge of the noise statistics is needed.

2) No iteration needed, hence computationally faster and no initial coarse esti-

mation needed.

3) The eigen-decomposition separates the noise subspace from the signal+noise

subspace. This separation raises the signal-to-noise ratio in the sinal+noise

subspace,from which the unknown parameters are to be estimated.

For a sensor array which consists of two higher-order differential sensors, the

estimate of array manifold can be written in a general form as

â
(ε−axis)
ζ1,ζ2

≈ ca(ε−axis)
ζ1,ζ2

= c

[
ηk1

1 ej(2πλ∆ε)/µ

ηk2
2

]
(2.1)
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where

η1 =


u, if ζ1 = x,

v, if ζ1 = y,

w, if ζ1 = z;

η2 =


u, if ζ2 = x,

v, if ζ2 = y,

w, if ζ2 = z;

µ =


u, if ε = x,

v, if ε = y,

w, if ε = z;

the superscript ε specifies the displacement-axis between two uniaxial sensors; ζi ∈
{x, y, z} denotes the orientation of ith uniaxial sensor, with i=1,2, and ζ1 6= ζ2; k1

and k2 are the order of first and second differential sensor respectively. ej(2π∆ε)/λµ is

the phase factor introduced by displacement of the two sensors. ∆ε is the distance

between two sensors as shown in Figure 2.1. λ refers to the smallest wavelength of

the incident signal.

Since there are only two uniaxial sensors, the complex-value scalar c can not be

estimated as in tri-axial sensor array [16]. Unknown c can be eliminated by[
â

(ε−axis)
ζ1,ζ2

]
1[

â
(ε−axis)
ζ1,ζ2

]
2

=
ηk1

1

ηk2
2

ej(2π∆ε)/λµ (2.2)

⇒



(̂
ηk1

1

ηk2
2

)
=

∣∣∣∣∣∣
[
â

(ε−axis)
ζ1,ζ2

]
1[

â
(ε−axis)
ζ1,ζ2

]
2

∣∣∣∣∣∣ sgn

(
ηk1

1

ηk2
2

)
, (2.3)

µ̂ =
λ

2π∆ε
∠

sgn

(
ηk1

1

ηk2
2

) [
â

(ε−axis)
ζ1,ζ2

]
1[

â
(ε−axis)
ζ1,ζ2

]
2

 . (2.4)

where [·]i symbolizes the ith element of the vector inside the square brackets. Equa-

tion (2.3) and (2.4) require prior knowledge of the sign of ηk1
1 /η

k2
2 .

For above derivation, equation (2.2) is obtained by dividing the first element of

â
(ε−axis)
ζ1,ζ2

by its second element. Equation (2.3) and (2.4) are obtained by taking the

magnitude and phase from the left-hand-side of (2.2) respectively. In this way, we

derived two non-linear equations which only contain two unknown parameters (θ

and φ). Thus, the closed-form formulas for these two parameters could be derived

from (2.3) and (2.4).
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Chapter 3

Derivation of Closed-Form

Estimators of elevation and

azimuth angle for the General

Case

This chapter will elaborate the derivation of closed-form solution to the direction

of arrival estimator (θ̂, φ̂) based on Equation (2.2), (2.3) and (2.4) in Chapter 2.

For configuration (a), (b), (d), (f), (h), and (i) (refer to Figure 2.1), where either

η1 = µ or η2 = µ, the closed-form solutions are able to be derived. For configuration

(c), (e) and (g) where neither η1 = µ nor η2 = µ , the closed-form formula is

derivable only if the order of two sensors are equivalent. Section 3.7 will explain

this in detail. The closed-form formulas for these three special configurations will

be given in Chapter 4 under the assumption that the two sensors are equal-order.

For the definition of the nine configurations please refer to Figure 2.1.

To simplify the expressions in later derivation, Equations (2.3) and (2.4) can be

written as 

(̂
ηk11
ηk22

)
=

∣∣∣∣∣∣
[
â
(ε−axis)
ζ1,ζ2

]
1[

â
(ε−axis)
ζ1,ζ2

]
2

∣∣∣∣∣∣ sgn

(
ηk11
ηk22

)
, α

(
sgn

(
ηk11
ηk22

))
, (3.1)

µ̂ =
λ

2π∆ε
∠

sgn

(
ηk11
ηk22

) [
â
(ε−axis)
ζ1,ζ2

]
1[

â
(ε−axis)
ζ1,ζ2

]
2

 , β

(
sgn

(
ηk11
ηk22

))
. (3.2)

where α(·) and β(·) refer to two functions.

Some assumptions are needed (as given below) in order to apply the proposed

algorithm. Assumption [AS-1] is required such that

(̂
η
k1
1

η
k2
2

)
and η̂3 can be deter-

mined through equations (3.1) and (3.2). Besides [AS-1], none/some of the other

assumptions may be also required in order to unambiguously determine φ̂ and θ̂
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with a specific configuration. For convenience of references, these assumptions are

listed and labeled below:

[AS-1 ] sgn

(
η
k1
1

η
k2
2

)
is known for that specific configuration,

[AS-2 ] sgn
(
v
u

)
is known,

[AS-3 ] sgn (u), i.e., φ ∈
[
0, π2

)
∪
[

3π
2 , 2π

)
or φ ∈

[
π
2 ,

3π
2

)
, is known,

[AS-4 ] sgn (v), i.e., φ ∈ [0, π) or φ ∈ [π, 2π), is known,

[AS-5 ] sgn(w), i.e., θ ∈
[
0, π2

)
or θ ∈

[
π
2 , π

]
, is known.

3.1 y-axis and x-axis oriented sensors with displace-

ment along x-axis

Figure 2.1 ‘configuration (a)’ illustrates this configuration.

From equations (3.1) and (3.2).
(̂
uk1

vk2

)
= α

(
sgn

(
uk1

vk2

))
(3.3)

û = β

(
sgn

(
uk1

vk2

))
(3.4)

(
(3.4)k1/(3.3)

)1/k2/(3.4) derives

∣∣∣tan(φ̂)
∣∣∣ =

∣∣∣∣(̂vu)
∣∣∣∣ =

∣∣∣∣∣∣∣
(
βk1

α

) 1
k2

β

∣∣∣∣∣∣∣
which results

tan(φ̂) =

∣∣∣∣∣∣β
k1
k2
−1

α
1
k2

∣∣∣∣∣∣ sgn
(v
u

)
. (3.5)

With assumption [AS-2], tan(φ̂) can be determined via equation (3.5). Addi-

tionally, with assumption [AS-3], φ̂ in (3.5) can be unambiguously determined as

φ̂ =



π

2
[1− sgn(u)] + tan−1

(
sgn(u)

∣∣∣∣∣βk1/k2−1

α1/k2

∣∣∣∣∣
)
,

if sgn(v) > 0;

π

2
[3 + sgn(u)]− tan−1

(
sgn(u)

∣∣∣∣∣βk1/k2−1

α1/k2

∣∣∣∣∣
)
,

if sgn(v) < 0;

. (3.6)
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From (3.4) and (3.6),

sin(θ̂) =
û

cos(φ̂)
= β sec(φ̂). (3.7)

With assumption [AS-5], θ̂ in (3.7) can be unambiguously determined as

θ̂ =


sin−1

(
β sec(φ̂)

)
, if θ ∈

[
0,
π

2

)
;

π − sin−1
(
β sec(φ̂)

)
, if θ ∈

[π
2
, π
]
.

(3.8)

From the above derivation, (3.6) and (3.8) are obtained when assumptions [AS-

1], [AS-2], [AS-3], and [AS-5] hold, which is equivalent to [AS-3], [AS-4] and [AS-5]

hold. That is, the prior information required to unambiguously determine φ̂ and θ̂

for configuration (a) is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
, and θ ∈

[
0, π2

)
or[

π
2 , π

]
.

3.2 y-axis and x-axis oriented sensors with displace-

ment along y-axis

Figure 2.1 ‘configuration (b)’ illustrates this configuration.

From (3.1) and (3.2) 
(̂
uk1

vk2

)
= α

(
sgn

(
uk1

vk2

))
(3.9)

v̂ = β

(
sgn

(
uk1

vk2

))
(3.10)

(3.10)/
(
(3.9)(3.10)k2

)1/k1 derives

∣∣∣tan(φ̂)
∣∣∣ =

∣∣∣∣(̂vu)
∣∣∣∣ =

∣∣∣∣∣ β

(α βk2)
1/k1

∣∣∣∣∣
which results

tan(φ̂) =

∣∣∣∣∣β1−k2/k1

α1/k1

∣∣∣∣∣ sgn
(v
u

)
. (3.11)

With assumption [AS-2], tan(φ̂) can be determined via equation (3.11). Ad-

ditionally, with assumption [AS-3], φ̂ in (3.11) can be unambiguously determined
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as

φ̂ =



π

2
[1− sgn(u)] + tan−1

(
sgn(u)

∣∣∣∣∣β1−k2/k1

α1/k1

∣∣∣∣∣
)
,

if sgn(v) > 0;

π

2
[3 + sgn(u)]− tan−1

(
sgn(u)

∣∣∣∣∣β1−k2/k1

α1/k1

∣∣∣∣∣
)
,

if sgn(v) < 0;

(3.12)

From (3.10) and (3.12),

sin(θ̂) =
v̂

sin(φ̂)
= β csc(φ̂). (3.13)

With assumption [AS-5], θ̂ in (3.13) can be unambiguously determined as

θ̂ =


sin−1

(
β csc(φ̂)

)
, if θ ∈

[
0,
π

2

)
;

π − sin−1
(
β csc(φ̂)

)
, if θ ∈

[π
2
, π
]
.

(3.14)

From the above derivation, (3.12) and (3.14) are obtained when assumptions

[AS-1], [AS-2], [AS-3], and [AS-5] hold, which is equivalent to [AS-3], [AS-4] and

[AS-5] hold. That is, the prior information required to unambiguously determine

φ̂ and θ̂ for configuration (b) is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
, and

θ ∈
[
0, π2

)
or
[
π
2 , π

]
.

3.3 z-axis and x-axis oriented sensors with displace-

ment along x-axis

Figure 2.1 ‘configuration (d)’ illustrates this configuration.

From (3.1) and (3.2), 
(̂
uk1

wk2

)
= α

(
sgn

(
uk1

wk2

))
(3.15)

û = β

(
sgn

(
uk1

wk2

))
. (3.16)

Straightforward calculation from (3.16) shows that

∣∣∣cos(θ̂)
∣∣∣ = |ŵ| =

∣∣∣∣∣
(
βk1

α

)1/k2
∣∣∣∣∣

which results

cos(θ̂) =

∣∣∣∣∣βk1/k2

α1/k2

∣∣∣∣∣ sgn(w). (3.17)
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With assumption [AS-5], cos(θ̂) can be determined via equation (3.17). And θ̂

in (3.17) can be unambiguously determined as

θ̂ = cos−1

(
sgn(w)

∣∣∣∣∣βk1/k2

α1/k2

∣∣∣∣∣
)
. (3.18)

From (3.16) and (3.18),

cos(φ̂) =
û

sin(θ̂)
= β csc(θ̂). (3.19)

With assumption [AS-4], φ̂ in (3.19) can be unambiguously determined as

φ̂ =

 cos−1
(
β csc(θ̂)

)
, if φ ∈ [0, π) ;

2π − cos−1
(
β csc(θ̂)

)
, if φ ∈ [π, 2π) .

(3.20)

From the above derivation, (4.12) and (3.18) are obtained when assumptions

[AS-1], [AS-4], and [AS-5] hold, which is equivalent to

i) [AS-4] and [AS-5] hold if k1 is even. That is, the prior information required to

unambiguously determine φ̂ and θ̂ for configuration (d) is φ ∈ [0, π) or [π, 2π),

and θ ∈
[
0, π2

)
or
[
π
2 , π

]
.

ii) [AS-3], [AS-4] and [AS-5] hold if k1 is odd. That is, the prior information

required to unambiguously determine φ̂ and θ̂ for configuration (d) is φ ∈[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
, and θ ∈

[
0, π2

)
or
[
π
2 , π

]
.

3.4 z-axis and x-axis oriented sensors with displace-

ment along z-axis

Figure 2.1 ‘configuration (f)’ illustrates this configuration.

From (3.1) and (3.2) 
(̂
uk1

wk2

)
= α

(
sgn

(
uk1

wk2

))
(3.21)

ŵ = β

(
sgn

(
uk1

wk2

))
(3.22)

Straightforward calculation shows that

cos(θ̂) = β. (3.23)

Thus, θ̂ can be unambiguously determined through (3.23)

θ̂ = cos−1 (β) . (3.24)
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From (3.21) and (3.22),∣∣∣sin(θ̂) cos(φ̂)
∣∣∣ = |û| =

∣∣∣∣(αβk2

)1/k1

∣∣∣∣ (3.25)

which results

cos(φ̂) = csc(θ̂)
∣∣∣α1/k1βk2/k1

∣∣∣ sgn(u) (3.26)

With assumption [AS-3], cos(φ̂) can be determined via equation (3.26). Addition-

ally, with assumption [AS-4], φ̂ in (3.26) can be unambiguously determined as

φ̂ =

 cos−1
(

sgn(u) csc(θ̂)
∣∣∣α1/k1βk2/k1

∣∣∣) , if φ ∈ [0, π) ;

2π − cos−1
(

sgn(u) csc(θ̂)
∣∣∣α1/k1βk2/k1

∣∣∣) , if φ ∈ [π, 2π) .
(3.27)

From the above derivation, (3.24) and (3.27) are obtained when assumptions

[AS-1], [AS-3] and [AS-4] hold, which is equivalent to

i) [AS-3] and [AS-4] hold if k2 is even. That is, the prior information required to

unambiguously determine φ̂ and θ̂ for configuration (f) is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
.

ii) [AS-1], [AS-3] and [AS-4] hold if k2 is odd. That is, the prior information

required to unambiguously determine φ̂ and θ̂ for configuration (f) is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
, and θ ∈

[
0, π2

)
or
[
π
2 , π

]
.

3.5 z-axis and y-axis oriented sensors with displace-

ment along y-axis

Figure 2.1 ‘configuration (h)’ illustrates this configuration.

From (3.1) and (3.2) 
(̂
vk1

wk2

)
= α

(
sgn

(
vk1

wk2

))
(3.28)

v̂ = β

(
sgn

(
vk1

wk2

))
. (3.29)

Straightforward calculation shows that

∣∣∣cos(θ̂)
∣∣∣ = |ŵ| =

∣∣∣∣∣
(
βk1

α

)1/k2
∣∣∣∣∣ =

∣∣∣∣∣βk1/k2

α1/k2

∣∣∣∣∣
which results

cos(θ̂) =

∣∣∣∣∣βk1/k2

α1/k2

∣∣∣∣∣ sgn(w). (3.30)
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With assumption [AS-5], cos(θ̂) can be determined via equation (3.30). And θ̂

in (3.30) can be unambiguously determined as

θ̂ = cos−1

(
sgn(w)

∣∣∣∣∣βk1/k2

α1/k2

∣∣∣∣∣
)
. (3.31)

From (3.29) and (3.31),

sin(φ̂) =
v̂

sin(θ̂)
= β csc(θ̂). (3.32)

With assumption [AS-3], φ̂ in (3.32) can be unambiguously determined as

φ̂ =



π[1− sgn(ψ)− δ(ψ)] + sin−1
(
β csc(θ̂)

)
,

if φ ∈
[
0,
π

2

)
∪
[

3π

2
, 2π

)
;

π − sin−1
(
β csc(θ̂)

)
, if φ ∈

[
π

2
,
3π

2

)
;

(3.33)

where ψ = sin−1

(
λ

2π∆y
csc(θ̂)∠

(
sgn

(
vk1

wk2

) [
â

(y−axis)
y,z

]
1[

â
(y−axis)
y,z

]
2

))
, and δ(ψ) =

1, if ψ = 0

0, if ψ 6= 0
.

From the above derivation, (3.31) and (3.33) are obtained when assumptions

[AS-1], [AS-3] and [AS-5] hold, which is equivalent to

i) [AS-3] and [AS-5] hold if k1 is even. That is, the prior information required to

unambiguously determine φ̂ and θ̂ for configuration (h) is φ ∈
[
0, π2

)
∪
[

3π
2 , 2π

)
or
[
π
2 ,

3π
2

)
, and θ ∈

[
0, π2

)
or
[
π
2 , π

]
.

ii) [AS-1], [AS-3] and [AS-5] hold if k1 is odd. That is, the prior information

required to unambiguously determine φ̂ and θ̂ for configuration (h) is φ ∈[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
, and θ ∈

[
0, π2

)
or
[
π
2 , π

]
.

3.6 z-axis and y-axis oriented sensors with displace-

ment along z-axis

Figure 2.1 ‘configuration (i)’ illustrates this configuration.

From (3.1) and (3.2) 
(̂
vk1

wk2

)
= α

(
sgn

(
vk1

wk2

))
(3.34)

ŵ = β

(
sgn

(
vk1

wk2

))
. (3.35)
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Straightforward calculation shows that

cos(θ̂) = β. (3.36)

Thus, θ̂ can be unambiguously determined via (3.36),

θ̂ = cos−1 (β) . (3.37)

From (3.34) and (3.35),∣∣∣sin(θ̂) sin(φ̂)
∣∣∣ = |v̂| =

∣∣∣∣(αβk2

)1/k1

∣∣∣∣
⇒ |sin(φ)| = csc(θ̂)

∣∣∣α1/k1βk2/k1

∣∣∣ . (3.38)

which results

sin(φ̂) = csc(θ̂)
∣∣∣α1/k1βk2/k1

∣∣∣ sgn(v) (3.39)

With assumption [AS-4], sin(φ̂) can be determined via equation (3.39). Ad-

ditionally, with assumption [AS-3], φ̂ in (3.39) can be unambiguously determined

as

φ̂ =



π[1− sgn(v)− δ(v)] + sin−1
(

sgn(v) csc(θ̂)
∣∣∣α1/k1βk2/k1

∣∣∣) ,
if φ ∈

[
0,
π

2

)
∪
[

3π

2
, 2π

)
;

π − sin−1
(

sgn(v) csc(θ̂)
∣∣∣α1/k1βk2/k1

∣∣∣) , if φ ∈
[
π

2
,
3π

2

)
;

(3.40)

δ(v) =

1, if v = 0

0, if v 6= 0

From the above derivation, (3.37) and (3.40) are obtained when assumptions

[AS-1], [AS-3] and [AS-4] hold, which is equivalent to

i) [AS-3] and [AS-4] hold if k2 is even. That is, the prior information required to

unambiguously determine φ̂ and θ̂ for configuration (i) is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
.

ii) [AS-1], [AS-3] and [AS-4] hold if k2 is odd. That is, the prior information

required to unambiguously determine φ̂ and θ̂ for configuration (i) is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
, and θ ∈

[
0, π2

)
or
[
π
2 , π

]
.

3.7 Three Special Configurations

For configuration (c), (e) and (g) (refer to Figure 2.1), it’s not able to derive the

close-form solution. The common point of these three configurations is that neither

34



of η1 and η2 equals to µ; that is η1 6= η2 6= µ. In this case, it is not possible to

eliminate η1 or η2 in (3.1) by µ. Therefore, there is no way to get rid of k1 and k2

on the left-hand-side of (3.1) and (3.2). To find the unknown θ and φ, we have to

solve a high order equation set which may not has closed-form solutions.

For example, in configuration (e) η1 = u, η2 = w, µ = v, thus we have
uk1

wk2
= α

(
sgn

(
ηk1

1

ηk2
2

))
(3.41)

v = β

(
sgn

(
ηk1

1

ηk2
2

))
. (3.42)

Take square on both sides of (3.41) get(
sin2(θ) cos2(φ)

)k1

(cos2(θ))k2
= α2

⇒
(
sin2(θ)

(
1− sin2(φ)

))k1(
1− sin2(θ)

)k2
= α2.

According to (3.42) sin(φ) = β/ sin(θ), substitute β/ sin(θ) for sin(φ) in the equation

above, we derive

⇒

(
sin2(θ)

(
1− β2

sin2(θ)

))k1

(
1− sin2(θ)

)k2
= α2

⇒
(
sin2(θ)− β2

)k1(
1− sin2(θ)

)k2
= α2.

Let x = sin2(θ), and expand this equation by binomial expansion,∑k1
r=0

(
k1

r

)
xk1−r

(
−β2

)r∑k2
l=0

(
k2

l

)
(−x)l

= α2. (3.43)

This is a high order equation about x. There is no closed-form solution for such

case. So we may not be able to derive the closed-form solutions for configuration

(e), and neither (c) and (g) for the same reason. So in the rest part of this section

I will show the derivation of closed-form solutions for the other six configurations.

3.8 Summary

For the general case (k1 and k2 can possibly be unequal),

1. the closed-form estimators of φ and θ for configurations (a), (b), (d), (f), (h)

and (i) have been derived;
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2. neither the estimation of φ nor the estimation of θ is possible for configuration

(c), (e), and (g).

Table 3.1 summarizes all the closed-form formulas. The general prior information

required is to know in which octant the source resides.
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T
a
b
le

3
.1

:
F

o
rm

u
la

s
A

p
p
li
ca

b
le

F
o
r

A
n
y
k

1
a
n
d
k

2

C
o
n
fi
g
u
ra

ti
o
n

F
o
rm

u
la

s
P

ri
o
r

In
fo

rm
a
ti

o
n

R
eq

u
ir

ed

(a
)

φ̂
=

                    π 2
[1
−

sg
n
(u

)]
+

ta
n
−

1

  sgn
(u

)

∣ ∣ ∣ ∣ ∣ ∣ ∣β
( sg

n
( uk 1 v

k
2

)) k 1
/
k
2
−

1

α
( sg

n
( uk 1 v

k
2

)) 1/
k
2

∣ ∣ ∣ ∣ ∣ ∣ ∣  ,
if

sg
n
(v

)
>

0
;

π 2
[3

+
sg

n
(u

)]
−

ta
n
−

1

  sgn
(u

)

∣ ∣ ∣ ∣ ∣ ∣ ∣β
( sg

n
( uk 1 v

k
2

)) k 1
/
k
2
−

1

α
( sg

n
( uk 1 v

k
2

)) 1/
k
2

∣ ∣ ∣ ∣ ∣ ∣ ∣  ,
if

sg
n
(v

)
<

0
;

θ̂
=

        si
n
−

1

( β

( sg
n

( uk
1

v
k
2

)) se
c(
φ̂

) ,
if
θ
∈
[ 0
,
π 2

) ;

π
−

si
n
−

1

( β

( sg
n

( uk
1

v
k
2

)) se
c(
φ̂

)) ,
if
θ
∈
[ π 2

,π
] ;

φ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
) o

r

[ π
,

3
π 2

) o
r

[ 3
π 2
,2
π

) ,

θ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
]

(b
)

φ̂
=

                    π 2
[1
−

sg
n
(u

)]
+

ta
n
−

1

  sgn
(u

)

∣ ∣ ∣ ∣ ∣ ∣ ∣β
( sg

n
( uk 1 v

k
2

)) 1−
k
2
/
k
1

α
( sg

n
( uk 1 v

k
2

)) 1/
k
1

∣ ∣ ∣ ∣ ∣ ∣ ∣  ,
if

sg
n
(v

)
>

0
;

π 2
[3

+
sg

n
(u

)]
−

ta
n
−

1

  sgn
(u

)

∣ ∣ ∣ ∣ ∣ ∣ ∣β
( sg

n
( uk 1 v

k
2

)) 1−
k
2
/
k
1

α
( sg

n
( uk 1 v

k
2

)) 1/
k
1

∣ ∣ ∣ ∣ ∣ ∣ ∣  ,
if

sg
n
(v

)
<

0
;

θ̂
=

        si
n
−

1

( β

( sg
n

( uk
1

v
k
2

)) cs
c(
φ̂

)) ,
if
θ
∈
[ 0
,
π 2

) ;

π
−

si
n
−

1

( β

( sg
n

( uk
1

v
k
2

)) cs
c(
φ̂

)) ,
if
θ
∈
[ π 2

,π
] ;

φ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
) o

r

[ π
,

3
π 2

) o
r

[ 3
π 2
,2
π

) ,

θ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
]

(d
)

φ̂
=

        co
s−

1

( β

( sg
n

( uk
1

w
k
2

)) cs
c(
θ̂
)) ,

if
φ
∈

[0
,π

)
;

2
π
−

co
s−

1

( β

( sg
n

( uk
1

w
k
2

)) cs
c(
θ̂
)) ,

if
φ
∈

[π
,2
π

)
;

θ̂
=

co
s−

1

  sgn
(w

)

∣ ∣ ∣ ∣ ∣ ∣β

( sg
n

( u
k
1

w
k
2

)) k
1
/
k
2

α

( sg
n

( u
k
1

w
k
2

)) 1
/
k
2

∣ ∣ ∣ ∣ ∣ ∣ 

If
k

1
is

o
d
d
:

φ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
) o

r

[ π
,

3
π 2

) o
r

[ 3
π 2
,2
π

) ,

θ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
]

If
k

1
is

ev
en

:

φ
∈

[0
,π

)
o
r

[π
,2
π

)
,

θ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
]
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(f)
φ̂

= 

co
s −

1 (
sg

n
(u

)
csc(θ̂

) ∣∣∣∣∣ α (
sg

n (
u
k
1

w
k
2 ))

1
/
k
1

β (
sg

n (
u
k
1

w
k
2 ))

k
2
/
k
1 ∣∣∣∣∣ )

,

if
φ
∈

[0
,π

)
;

2
π
−

co
s −

1 (
sg

n
(u

)
csc(θ̂

) ∣∣∣∣∣ α (
sg

n (
u
k
1

w
k
2 ))

1
/
k
1

β (
sg

n (
u
k
1

w
k
2 ))

k
2
/
k
1 ∣∣∣∣∣ )

,

if
φ
∈

[π
,2
π

)
;

θ̂
=

co
s −

1 (
β (

sg
n (

u
k
1

w
k
2 )))

If
k

2
is

o
d
d
:

φ
∈ [0

,
π2 )

o
r [

π2
,π )

o
r [

π
,

3
π2 )

o
r [

3
π2
,2
π )

,

θ
∈ [0

,
π2 )

o
r [

π2
,π ]

If
k

2
is

ev
en

:

φ
∈ [0

,
π2 )

o
r [

π2
,π )

o
r [

π
,

3
π2 )

o
r [

3
π2
,2
π )

(h
)

φ̂
= 

π
[1
−

sg
n
(ψ

)−
δ(ψ

)]
+

sin
−

1 (
β (

sg
n (

v
k
1

w
k
2 ))

csc(θ̂
) )
,

if
φ
∈ [0

,
π2 )
∪ [

3
π2
,2
π )

;

π
−

sin
−

1 (
β (

sg
n (

v
k
1

w
k
2 ))

csc(θ̂
) )
,

if
φ
∈ [

π2
,

3
π2 )

;

θ̂
=

co
s −

1 
sg

n
(w

) ∣∣∣∣∣∣
β (

sg
n (

v
k
1

w
k
2 ))

k
1
/
k
2

α (
sg

n (
v
k
1

w
k
2 ))

1
/
k
2 ∣∣∣∣∣∣ 

If
k

1
is

o
d
d
:

φ
∈ [0

,
π2 )

o
r [

π2
,π )

o
r [

π
,

3
π2 )

o
r [

3
π2
,2
π )

,

θ
∈ [0

,
π2 )

o
r [

π2
,π ]

If
k

1
is

ev
en

:

φ
∈ [0

,
π2 )
∪ [

3
π2
,2
π )

o
r [

π2
,

3
π2 )

,

θ
∈ [0

,
π2 )

o
r [

π2
,π ]

(i)

φ̂
= 

π
[1
−

sg
n
(v

)−
δ(v

)]
+

sin
−

1 (
sg

n
(v

)
csc(θ̂

) ∣∣∣∣∣ α (
sg

n (
v
k
1

w
k
2 ))

1
/
k
1

β (
sg

n (
v
k
1

w
k
2 ))

k
2
/
k
1 ∣∣∣∣∣ )

,
if
φ
∈ [0

,
π2 )
∪ [

3
π2
,2
π )

;

π
−

sin
−

1 (
sg

n
(v

)
csc(θ̂

) ∣∣∣∣∣ α (
sg

n (
v
k
1

w
k
2 ))

1
/
k
1

β (
sg

n (
v
k
1

w
k
2 ))

k
2
/
k
1 ∣∣∣∣∣ )

,

if
φ
∈ [

π2
,

3
π2 )

;

θ̂
=

co
s −

1 
sg

n
(w

) ∣∣∣∣∣∣
β (

sg
n (

v
k
1

w
k
2 ))

k
1
/
k
2

α (
sg

n (
v
k
1

w
k
2 ))

1
/
k
2 ∣∣∣∣∣∣ 

If
k

2
is

o
d
d
:

φ
∈ [0

,
π2 )

o
r [

π2
,π )

o
r [

π
,

3
π2 )

o
r [

3
π2
,2
π )

,

θ
∈ [0

,
π2 )

o
r [

π2
,π ]

If
k

2
is

ev
en

:

φ
∈ [0

,
π2 )

o
r [

π2
,π )

o
r [

π
,

3
π2 )

o
r [

3
π2
,2
π )

w
h
ere

ψ
=

sin
−

1 (
λ

2
π

∆
y

csc(θ̂
)∠ (

sg
n (

v
k
1

w
k
2 ) [

â
(
y
−

a
x
is
)

y
,z

]
1

[
â
(
y
−

a
x
is
)

y
,z

]
2 ))

,
a
n
d
δ(ψ

)
= {

1
,

if
ψ

=
0

0
,

if
ψ
6=

0
.
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Chapter 4

Degenerated Cases for

Equal-Order sensors

This chapter discusses the closed-form solutions to the direction-of-arrival esti-

mator (θ̂, φ̂) under the assumption that the two sensors are equal-order, i.e. k1 = k2.

In this case, the closed-form formulas for most configurations can be derived based

on Table 3.1 except configuration (c), (e) and (g). In addition, section 4.10 also

explores the possibility of deriving close-form formulas for collocated differential

sensor pair. For the definition of assumptions used ([AS-1] to [AS-5]) in this chap-

ter please refer to Chapter 3.

4.1 y-axis and x-axis oriented sensors with displace-

ment along x-axis

For the degenerated case where the uniaxial velocity-sensors have the identical

order, the estimators φ̂ and θ̂ can be directly obtained from equations (3.6) and

(3.8) in Table 3.1 by setting k1 = k2 = k,

φ̂ =


π

2
[1− sgn(u)] + tan−1

(
sgn(u)

∣∣α−1/k
∣∣) , if sgn(v) > 0;

π

2
[3 + sgn(u)]− tan−1

(
sgn(u)

∣∣α−1/k
∣∣) , if sgn(v) < 0;

(4.1)

and

θ̂ =


sin−1

(
β sec(φ̂)

)
, if θ ∈

[
0,
π

2

)
;

π − sin−1
(
β sec(φ̂)

)
, if θ ∈

[π
2
, π
]
.

(4.2)

where the prior knowledge required is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
,

and θ ∈
[
0, π2

)
or
[
π
2 , π

]
.

39



4.2 y-axis and x-axis oriented sensors with displace-

ment along y-axis

For the degenerated case where the uniaxial velocity-sensors have the identical

order, the estimators φ̂ and θ̂ can be directly obtained from equations (3.12) and

(3.14) in Table 3.1 by setting k1 = k2 = k,

φ̂ =


π

2
[1− sgn(u)] + tan−1

(
sgn(u)

∣∣α−1/k
∣∣) , if sgn(v) > 0;

π

2
[3 + sgn(u)]− tan−1

(
sgn(u)

∣∣α−1/k
∣∣) , if sgn(v) < 0;

(4.3)

and

θ̂ =


sin−1

(
β csc(φ̂)

)
, if θ ∈

[
0,
π

2

)
;

π − sin−1
(
β csc(φ̂)

)
, if θ ∈

[π
2
, π
]
.

(4.4)

where prior knowledge required is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
, and

θ ∈
[
0, π2

)
or
[
π
2 , π

]
.

4.3 y-axis and x-axis oriented sensors with displace-

ment along z-axis

For this configuration, the estimation of φ and θ is not possible when k1 6= k2,

as shown in Table 3.1. However, when k1 = k2 = k, from equation (3.1) and (3.2)
(̂
uk

vk

)
= α

(
sgn

(
uk

vk

))
(4.5)

ŵ = β

(
sgn

(
uk

vk

))
(4.6)

Straightforward calculation shows that∣∣∣tan(φ̂)
∣∣∣ =

∣∣∣∣(̂vu)
∣∣∣∣ =

∣∣∣α−1/k
∣∣∣

which results

tan(φ̂) =
∣∣∣α−1/k

∣∣∣ sgn
(v
u

)
. (4.7)

With assumption [AS-2], tan(φ̂) can be determined via equation (4.7). Addi-
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tionally, with assumption [AS-3], φ̂ in (4.7) can be unambiguously determined as

φ̂ =



π

2
[1− sgn(u)] + tan−1

(
sgn(u)

∣∣∣α−1/k
∣∣∣) ,

if sgn(v) > 0;

π

2
[3 + sgn(u)]− tan−1

(
sgn(u)

∣∣∣α−1/k
∣∣∣) ,

if sgn(v) < 0;

(4.8)

From (4.6),

cos(θ̂) = ŵ = β. (4.9)

Thus, θ̂ in (4.9) can be unambiguously determined as

θ̂ = cos−1 (β) . (4.10)

From the above derivation, (4.8) and (4.10) are obtained when assumptions [AS-

1], [AS-2] and [AS-3] hold, which is equivalent to [AS-3], [AS-4] hold. That is, the

prior information required to unambiguously determine φ̂ and θ̂ for configuration

(c) is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
.

4.4 z-axis and x-axis oriented sensors with displace-

ment along x-axis

For the degenerated case where the uniaxial velocity-sensors have the identical

order, the estimators φ̂ and θ̂ can be directly obtained from equations (3.18) and

(4.12) in Table 3.1 by setting k1 = k2 = k,

θ̂ = cos−1

(
sgn(w)

∣∣∣∣ β

α1/k

∣∣∣∣) . (4.11)

and

φ̂ =

 cos−1
(
β csc(θ̂)

)
, if φ ∈ [0, π) ;

2π − cos−1
(
β csc(θ̂)

)
, if φ ∈ [π, 2π) .

(4.12)

where the prior knowledge required is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
,

and θ ∈
[
0, π2

)
or
[
π
2 , π

]
. Specially, if k is a even number, less prior knowledge is

required, i.e. φ ∈ [0, π) or [π, 2π), and θ ∈
[
0, π2

)
or
[
π
2 , π

]
.

41



4.5 z-axis and x-axis oriented sensors with displace-

ment along y-axis

For this configuration, the estimation of φ and θ is not possible when k1 6= k2,

as shown in Table 3.1. However, when k1 = k2 = k, from equation (3.1) and (3.2)
(̂
uk

wk

)
=

(
sin(θ̂) cos(φ̂)

cos(θ̂)

)k
= α

(
sgn

(
uk

wk

))
, (4.13)

v̂ = sin(θ̂) sin(φ̂) = β

(
sgn

(
uk

wk

))
. (4.14)

Straightforward deduction from (4.13) and (4.14):

sin2(θ̂) cos2(φ̂)

cos2(θ̂)
= α2/k

⇒
sin2(θ̂)

(
1− sin2(φ̂)

)
1− sin2(θ̂)

= α2/k

⇒
sin2(θ̂)

(
1− β2/ sin2(θ̂)

)
1− sin2(θ̂)

= α2/k

⇒ sin2(θ̂)− β2

1− sin2(θ̂)
= α2/k

⇒ sin2(θ̂) =
α2/k + β2

1 + α2/k
. (4.15)

Since θ ∈ [0, π], sin(θ) ≥ 0. Thus, we may obtain sin(θ̂) from (4.15) as

sin(θ̂) =

√
α2/k + β2

1 + α2/k
. (4.16)

With assumption [AS-5], θ̂ in (4.16) can be unambiguously determined as

θ̂ =


sin−1

√α2/k + β2

1 + α2/k

 , if sgn(w) > 0;

π − sin−1

√α2/k + β2

1 + α2/k

 , if sgn(w) < 0;

(4.17)

From (4.14) and (4.17),

sin(φ̂) =
v̂

sin(θ̂)
= β csc(θ̂) (4.18)
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With assumption [AS-3], φ̂ in (4.18) can be unambiguously determined as

φ̂ =

π[1− sgn(χ)− δ(χ)] + sin−1
(

csc(θ̂)β
)
, if sgn(u) > 0;

π − sin−1
(

csc(θ̂)β
)
, if sgn(u) < 0;

(4.19)

where χ = sin−1

(
λ

2π∆y
csc(θ̂)∠

(
sgn

(
uk

wk

) [
â

(y−axis)
x,z

]
1[

â
(y−axis)
x,z

]
2

))
, and δ(χ) =

1, if χ = 0

0, if χ 6= 0
.

From the above derivation, (4.17) and (4.19) are obtained when assumption [AS-

1], [AS-3] and [AS-5] hold, which is equivalent to [AS-3] and [AS-5] hold. That is, the

prior information required to unambiguously determine φ̂ and θ̂ for configuration

(e) is φ ∈
[
0, π2

)
∪
[

3π
2 , 2π

)
or
[
π
2 ,

3π
2

)
and θ ∈

[
0, π2

)
or
[
π
2 , π

]
.

4.6 z-axis and x-axis oriented sensors with displace-

ment along z-axis

For the degenerated case where the uniaxial velocity-sensors have the identical

order, the estimators φ̂ and θ̂ can be directly obtained from equations (3.27) and

(3.24) in Table 3.1 by setting k1 = k2 = k,

θ̂ = cos−1 (β) . (4.20)

and

φ̂ =

 cos−1
(

sgn(u) csc(θ̂)
∣∣∣α1/kβ

∣∣∣) , if φ ∈ [0, π) ;

2π − cos−1
(

sgn(u) csc(θ̂)
∣∣∣α1/kβ

∣∣∣) , if φ ∈ [π, 2π) .
(4.21)

where the prior knowledge required is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
,

and θ ∈
[
0, π2

)
or
[
π
2 , π

]
. Specially, if k is a even number, less prior knowledge is

required, i.e. φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
.

4.7 z-axis and y-axis oriented sensors with displace-

ment along x-axis

For this configuration, the estimation of φ and θ is not possible when k1 6= k2,

as shown in Table 3.1. However, when k1 = k2 = k, from equation (3.1) and (3.2)
(̂
vk

wk

)
=

(
sin(θ̂) sin(φ̂)

cos(θ̂)

)k
= α

(
sgn

(
vk

wk

))
, (4.22)

v̂ = sin(θ̂) cos(φ̂) = β

(
sgn

(
vk

wk

))
. (4.23)
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Straightforward deduction from (4.22) and (4.23):

sin2(θ̂) sin2(φ̂)

cos2(θ̂)
= α2/k

⇒
sin2(θ̂)

(
1− cos2(φ)

)
1− sin2(θ̂)

= α2/k

⇒ sin2(θ̂)− β2

1− sin2(θ̂)
= α2/k

⇒ sin2(θ̂) =
α2/k + β2

1 + α2/k
. (4.24)

Since θ ∈ [0, π], sin(θ) ≥ 0. Thus, we may obtain sin(θ̂) from (4.24) as

sin(θ̂) =

√
α2/k + β2

1 + α2/k
. (4.25)

With assumption [AS-5], θ̂ in (4.25) can be unambiguously determined as

θ̂ =


sin−1

√α2/k + β2

1 + α2/k

 , if sgn(w) > 0;

π − sin−1

√α2/k + β2

1 + α2/k

 , if sgn(w) < 0;

(4.26)

From (4.23) and (4.26),

cos(φ̂) =
v̂

sin(θ̂)
= β csc(θ̂). (4.27)

With assumption [AS-4], φ̂ in (4.27) can be unambiguously determined as

φ̂ =

 cos−1
(

csc(θ̂)β
)
, if sgn(v) > 0;

2π − cos−1
(

csc(θ̂)β
)
, if sgn(v) < 0.

(4.28)

From the above derivation, (4.26) and (4.28) are obtained when assumption [AS-

1], [AS-4] and [AS-5] hold, which is equivalent to [AS-4] and [AS-5] hold. That is, the

prior information required to unambiguously determine φ̂ and θ̂ for configuration

(e) is φ ∈ [0, π) or [π, 2π) and θ ∈
[
0, π2

)
or
[
π
2 , π

]
.
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4.8 z-axis and y-axis oriented sensors with displace-

ment along y-axis

For the degenerated case where the uniaxial velocity-sensors have the identical

order, the estimators φ̂ and θ̂ can be directly obtained from equations (3.31) and

(3.33) in Table 3.1 by setting k1 = k2 = k,

θ̂ = cos−1

(
sgn(w)

∣∣∣∣ β

α1/k

∣∣∣∣) . (4.29)

and

φ̂ =



π[1− sgn(ψ)− δ(ψ)] + sin−1
(
β csc(θ̂)

)
,

if φ ∈
[
0,
π

2

)
∪
[

3π

2
, 2π

)
;

π − sin−1
(
β csc(θ̂)

)
, if φ ∈

[
π

2
,
3π

2

)
;

(4.30)

where ψ = sin−1

(
λ

2π∆y
csc(θ̂)∠

(
sgn

(
vk

wk

) [
â

(y−axis)
y,z

]
1[

â
(y−axis)
y,z

]
2

))
, and δ(ψ) =

1, if ψ = 0

0, if ψ 6= 0

The prior knowledge required is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
, and

θ ∈
[
0, π2

)
or
[
π
2 , π

]
. Specially, if k is a even number, less prior information is

required, i.e. φ ∈
[
0, π2

)
∪
[

3π
2 , 2π

)
or
[
π
2 ,

3π
2

)
, and θ ∈

[
0, π2

)
or
[
π
2 , π

]
.

4.9 z-axis and y-axis oriented sensors with displace-

ment along z-axis

For the degenerated case where the uniaxial velocity-sensors have the identical

order, the estimators φ̂ and θ̂ can be directly obtained from equations (3.37) and

(3.40) in Table 3.1 by setting k1 = k2 = k,

θ̂ = cos−1 (β) . (4.31)

and

φ̂ =



π[1− sgn(v)− δ(v)] + sin−1
(

sgn(v) csc(θ̂)
∣∣∣α1/kβ

∣∣∣) ,
if φ ∈

[
0,
π

2

)
∪
[

3π

2
, 2π

)
;

π − sin−1
(

sgn(v) csc(θ̂)
∣∣∣α1/kβ

∣∣∣) , if φ ∈
[
π

2
,
3π

2

)
;

(4.32)

δ(v) =

1, if v = 0

0, if v 6= 0
.

The prior knowledge required is φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
,
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and θ ∈
[
0, π2

)
or
[
π
2 , π

]
. Specially, if k is a even number, less prior knowledge is

required, i.e. φ ∈
[
0, π2

)
or
[
π
2 , π

)
or
[
π, 3π

2

)
or
[

3π
2 , 2π

)
.

4.10 Degenerated Cases for Collocated Velocity-sensors

For collocated sensors, i.e. ∆ε = 0, the number of configuration reduces to three:

(1) η1 = u, η2 = v;

(2) η1 = u, η2 = w;

(3) η1 = v, η2 = w.

The estimate of array manifold can be written by simplifying (2.1) as

âζ1,ζ2 ≈ caζ1,ζ2 = c

[
ηk1

1

ηk2
2

]
. (4.33)

In this case, we can find only one equation about θ̂ and φ̂ by

(̂
ηk1

1

ηk2
2

)
=

[âζ1,ζ2 ]1
[âζ1,ζ2 ]2

. (4.34)

It is not enough to solve both unknown variables, as concluded below:

For configuration (1), the closed-form formula for azimuth angle φ̂ is derivable

only when k1 = k2. Closed-form formula for elevation angle θ̂ is underivable.

For configuration (2), neither formula can be deduced.

For configuration (3), neither formula can be deduced.

4.11 Summary

For the case of k1 = k2 = k, Table 4.1 shows all closed-form formulas of azimuth

and elevation angle estimator for nine configurations. The estimators of φ and θ

for configuration (a), (b), (d), (f), (h) and (i) can be deduced from Table 3.1. The

closed-form solutions of φ̂ and θ̂ for configuration (c), (e) and (g) are also available

in this case.

The prior information required for configuration (c), (e), (g) is less than other

configurations. Prior information about DOA required for these tree configurations:

know in which quadrant the source resides. Prior information required for other

configurations: know in which octant the source resides.

For a pair of collocated differential sensor, i.e. ∆ = 0, the closed-form formula

is not derivable.
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(a
)

φ̂
=

            π 2
[1
−

sg
n
(u

)]
+

ta
n
−

1

( sg
n
(u

)

∣ ∣ ∣ ∣ ∣α( sg
n

( uk v
k

)) −
1
/
k
∣ ∣ ∣ ∣ ∣) ,

if
sg

n
(v

)
>

0
;

π 2
[3

+
sg

n
(u

)]
−

ta
n
−

1

( sg
n
(u

)

∣ ∣ ∣ ∣ ∣α( sg
n

( uk v
k

)) −
1
/
k
∣ ∣ ∣ ∣ ∣) ,

if
sg

n
(v

)
<

0
;

θ̂
=

        si
n
−

1

( β

( sg
n

( uk v
k

)) se
c(
φ̂

)) ,
if
θ
∈
[ 0
,
π 2

) ;

π
−

si
n
−

1

( β

( sg
n

( uk v
k

)) se
c(
φ̂

)) ,
if
θ
∈
[ π 2

,π
] ;

φ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
) o

r

[ π
,

3
π 2

) o
r

[ 3
π 2
,2
π

)
θ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
]

(b
)

φ̂
=

            π 2
[1
−

sg
n
(u

)]
+

ta
n
−

1

( sg
n
(u

)

∣ ∣ ∣ ∣ ∣α( sg
n

( uk v
k

)) −
1
/
k
∣ ∣ ∣ ∣ ∣) ,

if
sg

n
(v

)
>

0
;

π 2
[3

+
sg

n
(u
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ta
n
−

1

( sg
n
(u

)

∣ ∣ ∣ ∣ ∣α( sg
n

( uk v
k

)) −
1
/
k
∣ ∣ ∣ ∣ ∣) ,

if
sg

n
(v

)
<

0
;

θ̂
=

        si
n
−

1

( β

( sg
n

( uk v
k

)) cs
c(
φ̂

)) ,
if
θ
∈
[ 0
,
π 2

) ;

π
−

si
n
−

1

( β

( sg
n

( uk v
k

)) cs
c(
φ̂

)) ,
if
θ
∈
[ π 2

,π
] ;

φ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
) o

r

[ π
,

3
π 2

) o
r

[ 3
π 2
,2
π

)
θ
∈
[ 0
,
π 2

) o
r
[ π 2

,π
]

(c
)

φ̂
=

            π 2
[1
−

sg
n
(u

)]
+

ta
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−

1
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n
(u

)

∣ ∣ ∣ ∣ ∣α( sg
n

( uk v
k
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1
/
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∣ ∣ ∣ ∣ ∣) ,
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)
>

0
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π 2
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sg

n
(u
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−

ta
n
−

1

( sg
n
(u

)

∣ ∣ ∣ ∣ ∣α( sg
n

( uk v
k

)) −
1
/
k
∣ ∣ ∣ ∣ ∣) ,

if
sg

n
(v

)
<

0
;

θ̂
=

co
s−

1
( β
( sg

n
( uk v

k

)))
φ
∈
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,
π 2

) o
r
[ π 2

,π
) o

r

[ π
,

3
π 2

) o
r

[ 3
π 2
,2
π

)
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(d
)

φ̂
= 

co
s −

1 (
β (

sg
n (

u
k

w
k ))

csc(θ̂
) )
,

if
φ
∈

[0
,π

)
;

2
π
−

co
s −

1 (
β (

sg
n (

u
k

w
k ))

csc(θ̂
) )
,

if
φ
∈

[π
,2
π

)
;

θ̂
=

co
s −

1 (
sg

n
(w

) ∣∣∣∣∣
β (

sg
n (

u
k

w
k ))

α (
sg

n (
u
k

w
k ))

1
/
k ∣∣∣∣∣ )

If
k
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o
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o
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∈
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o
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(e)

φ̂
= 

π
[1
−

sg
n
(χ
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δ(χ

)]
+
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−

1 (
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)β (
sg

n (
u
k

w
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,
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sg
n
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>

0
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π
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n (
u
k
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.
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(g
)
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=

        co
s−

1

( cs
c(
θ̂
)β

( sg
n

( vk w
k

)))
,

if
sg

n
(v

)
>
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−
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Chapter 5

Monte Carlo Simulation

For the simulation of afore-mentioned direction finding method, we consider a

pair of spatially-spread higher-order differential sensors with perpendicular orienta-

tion. The coordinate system is defined in Figure 2.1 corresponding to each possible

configuration. This approach requires the eigen-based DOA estimation algorithm

as a preceding step to derive an estimate of steering vector â. Suppose a far-field

narrow-band plane wave signal impinging on the sensors as s(tn), the following data

model is adopted in the simulation:

z(tn) = as(tn) + n(tn)

where n(tn) is zero-mean white noise vector, z(tn) is the received array response.

By eigen-decomposing the covariance matrix

R =
1

N
ZZH

where Z = [z(t0), z(t1), ..., z(tN )]T , the estimate of â for each incident signal can be

then obtained within a unknown complex scalar.

The Monte Carlo simulations will verify the efficiency and accuracy of the pro-

posed scheme. The following settings are applied: θ = 45◦, φ = 45◦, ∆/λ = 1/2.

∆/λ is known as the inter-antenna spacing parameter, with ∆ referring to the dis-

placement of two sensors and λ referring to the wavelength. Figure 2 plots the

RMSE of source’s elevation and azimuth angle estimates versus SNR, ranging from

0dB to 50dB. The RMSE is defined as

RMSE =

√√√√ 1

100

100∑
i=1

(γ̂i − γ)2

where γ = θ or φ, γ̂i symbolizes the estimation result of ith Monte Carlo experiment

among total 100.

Figure 5.1-5.2 and Figure 5.3 clearly shows that the proposed algorithm success-
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fully obtained the estimates of elevation and azimuth angle for the incident signal.

The RMSE is directly proportional to SNR which accords with our expectation.

However, when SNR is lower than a certain level, about 10dB, this algorithm may

fail. This is due to the inverse trigonometric functions in closed-form formulas which

may return a complex number if input exceeds the general domain of trigonometric

functions.
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Figure 5.1: Monte Carlo Simulations of Proposed Algorithm vs. Maximum Likelihood Estimation
vs. Cramér-Rao Bound for the estimator of elevation angle θ̂ in configuration (a) with following

settings: M = 100, θ = 45◦, φ = 45◦, ∆x/λ = 1/2

53



k1 = 1, k2 = 3

0 10 20 30 40 50

SNR (dB)

10-3

10-2

10-1

100

101

102

R
M

S
E

 (
°
)

k1 = 2, k2 = 2

0 10 20 30 40 50

SNR (dB)

10-3

10-2

10-1

100

101

102

R
M

S
E

 (
°
)

k1 = 3, k2 = 1

0 10 20 30 40 50

SNR (dB)

10-3

10-2

10-1

100

101

102

R
M

S
E

 (
°
)

Figure 5.2: Monte Carlo Simulations of Proposed Algorithm vs. Maximum Likelihood Estimation
vs. Cramér-Rao Bound for the estimator of azimuth angle φ̂ in configuration (a) with following

settings: M = 100, θ = 45◦, φ = 45◦, ∆x/λ = 1/2
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Chapter 6

Cramér-Rao Bound (CRB)

Derivation

In parameter estimation theory, the Cramér-Rao Bound gives the floor of the

error variance for any unbiased estimator. Given a statistical data model, the

Cramér-Rao Bound lower bounds show the best possible performance any unbiased

estimator could achieve. An unbiased estimator is said to be (fully) efficient if its

mean-square-error is equal to the Cramér-Rao Bound. A comparison with the CRB

would indicate how much improvement is possible in terms of estimation error

variance by using more complex estimation algorithms. Sometimes the possible

improvement is not worth the increased complexity.

A brief summary of the steps for deriving CRB:

(i) The first step is to derive the Fisher information matrix J. This step is

important and straightforward, but the process could be tedious and time-

consuming.

(ii) In many problems, the unknown parameter vector θ contains two subvectors:

parameter of interest θw and nuisance parameters θu. The Fisher information

matrix J is partitioned into blocks corresponding to θw, and blocks corre-

sponding to other (unwanted) parameters θu, and blocks corresponding to

the cross-terms. Then, partition CRB matrix CCR similarly and derive the

block of CCR corresponding to θw by the formula for the inverse of block

matrices. This step often involves complicated expressions.

For an N-element array, given the probability density for a single snapshot as

px|θ(x), where x is an N × 1 complex Gaussian random variable and θ is a D × 1

nonrandom unknown vector that we want to estimate, the log-likelihood function

for a single snapshot is

Lx(θ) , ln px|θ(x)

= − ln det [πKx(θ)]−
{(

xH −mH(θ)
)
Kx
−1(θ) (x−m(θ))

}
. (6.1)
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where mH(θ) is the mean and Kx
−1(θ) is the covariance matrix.

The Cramér-Rao Bound provides a lower bound CCR(θ) on the covariance ma-

trix of any unbiased estimate of θ. The covariance matrix of the estimation error

is given as

C(θ) , E

[(
θ̂ − θ

)(
θ̂ − θ

)T]
. (6.2)

The classic Cramér-Rao Bounds states that

C(θ) ≥ CCR(θ) , J−1, (6.3)

Matrix J is commonly called the Fisher Information Matrix (FIM), whose (i, j)th

entry is

Jij , E

[
∂Lx(θ)

∂θi
· ∂Lx(θ)

∂θj

]
= −E

[
∂2Lx(θ)

∂θi∂θj

]
. (6.4)

Using the same data model as in the aforementioned Monte Carlo simulations,

with M number of time samples, then the 2M × 1 data set equals

z =
[
z̃(Ts)

T , · · · , z̃(MTs)
T
]T

= s⊗ a︸ ︷︷ ︸
def
=µ

+
[
ñ(Ts)

T , · · · , ñ(MTs)
T
]︸ ︷︷ ︸

def
=n

, (6.5)

where s = ejϕ
[
ejTsω, · · · , ejMTsω

]T
represents a pure tone signal, ⊗ is the Kronecker

product, n is a 2M × 1 noise vector with a covariance matrix Γ = IM ⊗ Γ0.

In this case we have a 2×2 Fisher information matrix containing a (i, j)th entry

of

[J]ij = 2Re

[(
∂µ

∂[ψ]i

)H
Γ−1

(
∂µ

∂[ψ]j

)]
+ Tr

[
Γ−1 ∂Γ

∂[ψ]i
Γ−1 ∂Γ

∂[ψ]j

]
, (6.6)

where ψ = [θ, φ]T , Tr[·] denotes the trace operator.

Because only θ and φ are estimated, the CRBs for these estimators are the diagonal

elements of J−1. For each configuration among the nine configurations, I need to

derive the CRBs for elevation and azimuth angle estimates.

Figure 6.2 shows an example of Cramér-Rao bounds for configuration (a), i.e.

a pair of higher-order differential sensors with orientation along x -axis ( at (λ/2,

0, 0) ) and y-axis ( at (0, 0, 0) ). The coefficients used for this configuration are:

σ = 0.1, M = 100, k1 = 1, 2, 3 and k2 = 1, 2, 3.

The following relations among CRBs were observed:
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• If k1 and k2 are fixed, the CRBs for the configurations with x,z -oriented

differential sensors and y,z -oriented differential sensors can be obtained from

each other by shifting along a certain direction. Specifically, configuration (d)

and (h) are identical except a shift in φ; configuration (e) and (g) are identical

except a shift in φ; configuration (f) and (i) are identical except a shift in φ.

• All Cramér-Rao bound figures are symmetric, either with respect to θ = π/2

or φ = 0.

• With the order of the sensors increasing, i.e. k1 and k2 increase, the Cramér-

Rao bounds is higher at the edge but lower at other region (refer to the contour

map in Figure 6.3 ), which reveals that a higher order sensor will result in a

better performance for elevation-azimuth angle direction-of-arrival estimation

but poorer effective range.

The third point mentioned above can be explained by the gain pattern of the

differential sensors as shown in Figure 6.1. With the order of the sensor increasing,

the slope of sensor’s response is sharper in the middle region (near to 45◦) which

results in a better sensitivity, while flatter in the edge region (near to 0◦ and 90◦)

which results in a poorer sensitivity.
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Figure 6.1: An illustration of the differential sensors response

The orders of the sensors will also affect the proposed algorithm in following

aspects:

• The prior information required of the source’s incident region may be reduced

(from one octant to one quadrant of the sphere) if an even order is used.
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• For three special configurations (orientation of both sensors are different from

the orientation of the displacement), the two sensors’s order must be equal.

• Generally the lower the order, the lower will be for the computational com-

plexity as well as the hardware complexity.
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k1 = k2 = 1 k1 = 1, k2 = 2

k1 = 1, k2 = 3 k1 = 2, k2 = 1

k1 = 3, k2 = 1 k1 = 3, k2 = 3

Figure 6.2: The Cramér-Rao bound for elevation-azimuth direction-of-arrival estimation using a
pair of higher-order differential sensors: x -axis-oriented sensor at (λ/2, 0, 0) and y-axis-oriented

sensor at (0, 0, 0).
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k1 = k2 = 1 k1 = 1, k2 = 2

k1 = 1, k2 = 3 k1 = 2, k2 = 1

k1 = 3, k2 = 1 k1 = 3, k2 = 3

log10(CRB(θ))

-3.5 -2.0 -0.5 1.0 2.5 4.0

Figure 6.3: Contour plots of the Cramér-Rao bound for elevation-azimuth direction-of-arrival
estimation using a pair of higher-order differential sensors: x -axis-oriented sensor at (λ/2, 0, 0)

and y-axis-oriented sensor at (0, 0, 0).. The contour is in logarithmic scale.
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Chapter 7

Conclusion

Differential sensor array is advantageous in acoustic signal direction finding be-

cause of its small size and high directivity. With certain prior information known,

a pair of higher-order differential sensors is sufficient for the estimation of both

elevation angle and azimuth angle. This dissertation devises a DOA estimation

algorithm for a pair of orthogonal differential sensors. The proposed method can

be summarized as follow:

1. Compute the data covariance matrix from the received snapshots,

2. Apply eigen-decomposition on the data covariance matrix to obtain an esti-

mate of the steering vector â,

3. Use the closed-form formulas in Table 3.1 and Table 4.1 to calculate the

estimation of elevation angle and azimuth angle.

Chapter 3 and Chapter 4 elaborates the derivation of closed-form formulas of

DOA estimation for high order biaxial differential sensors. The problem is divided

into two parts: i) sensors with equal order, i.e. k1 = k2 = k and ii) sensors with

unequal order, i.e. k1 6= k2. For case i), the closed-form solutions for all nine

configurations could be derived under proper assumptions. Prior knowledge about

DOA (which octant the signal source resides in) and the ratio of the inter-sensor

spacing to the incident signals wavelength are required. For similar situation, Song

[16] has derived the formulas for first-order cases, i.e. k1 = k2 = 1. If k1 = k2 = k,

the prior information required for higher order case is the same as first order case.

For case ii), the closed-form formulas for configuration (c), (e) and (g) are not

derivable. The common point of these three configurations is that the orientation

of displacement is not the same as either of the two sensors’ orientation. The

equations derived in Chapter 3 (for case ii) are also valid for case i). Table 3.1 and

Table 4.1 provide clear summary of all derived formulas.

Monte Carlo simulation examined the validity of proposed direction finding

scheme. Figure 5.1, 5.2 and Figure 5.3 shows that the root mean square error

curve approaches the Cramér-Rao bound as signal-to-noise ratio increasing.
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Cramér-Rao bound 3-D graphs reveal the performance of the differential sensor

pair for different incident angle. The sensor’s order affects the performance in a

way that it shifts the most sensitive DOA region of the senor pair. The estimation

accuracy of the elevation and azimuth angle differs from one another, depending on

which configuration is applied.
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