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Abstract 

Facial expression recognition has been a long standing problem and attracted 

growing interest from the affective computing community. This thesis presents the 

research I conducted for facial affect recognition with novel hand-crafted features and 

deep learning. Three main contributions are reported in this thesis. They include: (1) 

an effective approach with novel features for facial expression recognition in video; (2) 

a framework with multiple tasks for detecting and locating pain events in video; and 

(3) an effective method with a deep convolutional neural network for smile detection 

in the wild.  

In the first investigation, I propose novel features and an application of 

multi-kernel learning to combine multiple features for facial expression recognition in 

video. A new feature descriptor called Histogram of Oriented Gradients from Three 

Orthogonal Planes (HOG-TOP) is proposed to characterize facial appearance changes. 

A new effective geometric feature is also proposed to capture facial configuration 

changes. The role of audio modality on affect recognition is also explored. Multiple 

feature fusion is used to combine different features optimally. Experimental results 

show that our approach is robust in dealing with video-based facial expression 

recognition problems under lab-controlled environment and in the wild compared 

with the other state-of-the-art methods.  
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In the second investigation, I propose an effective framework with multiple tasks 

for pain event detection and locating. Histogram of Oriented Gradients (HOG) of 

fiducial points (P-HOG) and HOG-TOP are used to characterize spatial features and 

dynamic textures from video frames and video segments. Both frame-level and 

segment-level detections are based on trained Support Vector Machines (SVMs). Max 

pooling strategy is further used to obtain the global P-HOG and global HOG-TOP, 

and an SVM with multiple kernels is trained for pain event detection. Finally, an 

effective probabilistic fusion method is proposed to integrate the three different tasks 

(frame, segment and sequence) to locate pain events in video. Experimental results 

show that the proposed method outperforms other state-of-the-art methods both in 

pain event detection and pain event locating in video. 

In the third investigation, I propose an effective approach for smile detection in 

the wild with deep learning. Deep learning can effectively combine feature learning 

and classification into a single model. In this study, a deep convolutional network 

called Smile-CNN is used to perform feature learning and smile detection 

simultaneously. I also discuss the discriminative power of the learned features from 

the Smile-CNN model. By feeding the learned features to train an SVM or AdaBoost 

classifier, I show that the learned features have impressive discriminative power. 

Experimental results show that the proposed approach can achieve a promising 
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performance in smile detection.  
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Chapter 1  Introduction  

1.1 Motivation 

Two channels have been developed for human beings to communicate in social 

life: auditory channel and visual channel. Auditory channel carries speech and vocal 

language, visual channel carries facial expressions and body gestures. Facial 

expressions, as a powerful visual channel, play a vital role for human beings to 

convey emotions and transit messages. Facial expressions, together with voice, 

language and body gestures, constitute the principal communication system in social 

context (Corneanu et al., 2016). Automatic facial affect analysis system aims to 

interpret and understand human psychological activities by analyzing facial 

expressions. This technique can be widely used in many fields like security (e.g. lie 

detection), medicine (e.g. pain monitoring) and human computer interaction (e.g. 

interactive games) (Zeng et al., 2009). Automatic facial expression analysis has been 

an active research field in the past two decades with the development of psychology, 

computer science and artificial intelligence.  

There are two main streams in the current research on automatic facial affect 

analysis: message and sign judgment (Cohn and Ekman, 2005). The aim of message 

judgment is to infer a kind of emotion behind a displayed facial expression, six 
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universal facial expressions are widely considered for message judgment: anger, 

disgust, fear, happiness, sadness and surprise, as shown in Figure 1-1. Sign judgment 

aims to describe fine-grained facial component and muscle movements. These atomic 

facial motions are called facial action units (AUs). The Facial Action Coding System 

(FACS) (Ekman et al., 2002) is the best known and commonly used tools developed 

to describe facial action units.  

 

Figure 1-1. Six basic facial expressions from the database (Kanade et al., 2000)). 1, 

disgust; 2, fear; 3, joy; 4, surprise; 5, sadness; 6, anger. 

Facial expressions are caused by facial muscle movements which are subtle and 

transient. To capture and represent these movements is a key issue to be addressed in 

facial expression analysis. Recent advances in computer vision and machine learning 

open up the possibility of automatic facial expression recognition. Many efforts have 

been made to handle this problem. The methodologies used are commonly 

categorized into appearance based methods and geometry based methods (S. Z. Li and 

Jain, 2011). Appearance based methods commonly apply feature descriptors to model 

facial texture changes created by wrinkles, bulges and muscle movements; geometry 
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based methods generally apply the geometric properties of a face such as the facial 

landmarks to describe face shape or configuration. 

Conventional automatic facial expression analysis techniques require domain 

expertise to create a feature descriptor which can effectively transform the raw data 

(such as the pixel values of an image) into an effective representation (Y. LeCun et al., 

2015). Recently, deep learning, which aims to discover and automatically learn good 

representations from raw data with a complex hierarchical model composed of 

multiple layers, has attracted significant attention. Various deep learning models such 

as Deep Belief Networks (DBNs) (G. E. Hinton, Osindero, S.,  Teh, Y. W, 2006), 

Convolutional Neural Networks (CNNs) (Yann LeCun et al., 1989) and Stacked 

Auto-Encoders (Bengio et al., 2007) etc. have been developed for many applications 

including computer vision, natural language processing and automatic speech 

recognition etc. CNNs are inspired by the visual system’s structure, especially by the 

visual models proposed in (Hubel and Wiesel, 1962). Recent study (Serre et al., 2007) 

pointed out that the physiology of the visual system is consistent with the processing 

style found in convolutional neural networks. Due to its superiority of dealing with 

2-D images, CNNs have become the first choice for a wide range of computer vision 

tasks including visual recognition, object detection and image classification. 

Automatic facial expression analysis is important and desirable for various 
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applications. In this thesis, efforts are made to address the following several issues. 

(1) An effective and robust facial expression recognition system needs to address 

two issues: feature extraction and multimodal fusion. Current research shows 

that designing a kind of robust and effective feature is still important and 

meaningful. I have made efforts to design robust features to effectively 

characterize the facial appearance and configuration changes caused by facial 

muscular activities. Multimodal fusion is another key aspect to the facial 

expression recognition system. Multimodality can provide more information 

and improve emotion inference. Nevertheless, how to mine useful 

representations from different modalities and how to integrate these different 

representations optimally remain very challenging problems, which need to be 

carefully addressed. The potentials of audiovisual modalities on facial affect 

recognition have also been explored and an effective framework which can 

combine the audiovisual modalities optimally has been developed to perform 

the facial expression recognition in video.  

(2) Except for the six universal facial expressions (anger, disgust, fear, happiness, 

sadness and surprise), research on pain analysis has also been conducted. 

Automatically detecting and locating pain events in video is an important task 

in medical assessment. It is a challenging problem in facial expression analysis 
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due to spontaneous faces, head movements and pose variations. The role of 

facial information at various time scales (frame, segment and sequence) are 

explored and a new framework is proposed to address this issue.  

(3) Smile or happiness is one of the most universal facial expressions in our daily 

life. Smile detection in the wild is an important and challenging problem, 

which has attracted a growing attention from affective computing community. 

Deep learning has recently demonstrated outstanding performance in image 

classification, speech recognition and natural language understanding. An 

attractive property of deep learning is representation learning. With multiple 

layers, deep learning methods transform the raw pixels into hierarchical 

abstract representations. Convolutional Neural Network (CNNs) is proposed 

for smile detection in this thesis. I also investigate what kinds of learned 

representations are useful for facial recognition. 

1.2 Statements of Originality 

This thesis presents my research on facial expression recognition with multiple 

features and deep learning. The work described in this thesis was carried out at the 

Department of Electronic and Information Engineering, The Hong Kong Polytechnic 

University, between September 2013 and September 2016, under the supervision of 

Dr Zheru Chi.  
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The thesis consists of six chapters. The work described in this thesis was 

originated by the author except where acknowledged and referenced, or where the 

results are widely known. The following states the original contributions: 

(1) An effective approach for facial expression recognition in video with novel 

features and multi-kernel learning is the work of the author. In this investigation, a 

new feature descriptor called Histogram of Oriented Gradients from Three Orthogonal 

Planes (HOG-TOP) was proposed to extract dynamic textures from video sequences 

to characterize facial appearance changes. A new effective geometric feature derived 

from the warp transformation of facial landmarks was proposed to capture facial 

configuration changes. Moreover, the role of audio modalities on recognition was also 

explored in my study. The multiple feature fusion with multi-kernel learning was 

applied to tackle the video-based facial expression recognition problems under 

lab-controlled environment and in the wild, respectively. More details are presented in 

Chapter 3. 

(2) A new framework for pain event detection and locating in video is the work 

of the author. In this investigation, the role of facial information at various time scales 

(frame, segment and sequence) was investigated to address the problem of pain 

analysis in video. I propose a method fusing spatial feature and spatial-temporal 

feature for pain event detection and a multiple-task fusion method for locating pain 



7 

events, respectively. More details are described in Chapter 4. 

(3) An effective approach for smile detection in the wild with a deep 

convolutional network (CNN) model is the work of the author. In this investigation, a 

deep convolutional network called Smile-CNN was constructed to perform feature 

learning and smile detection simultaneously. A study was also carried out to analyze 

the ability of the Smile-CNN model to tackle the nuisance factors such as pose 

variations and background. More details are given in Chapter 5. 

1.3 Outline of the Thesis 

The thesis consists of six chapters. The thesis is outlined as follows. 

Chapter 2 introduces basic principles of facial expression recognition, deep 

learning, and information fusion at different levels. The chapter also reviews some 

recent important developments of video based facial expression recognition, pain 

recognition in video and smile detection in the wild.  

Chapter 3 discusses our approach for facial expression recognition in video with 

novel features and multiple feature fusion. The potentials of visual modalities (face 

images) and audio modalities (voice) are explored. In addressing visual modalities, a 

new feature descriptor called HOG-TOP is proposed to characterize facial appearance 

changes. Moreover, an effective geometric warp feature derived from the warp 

transformation of facial landmarks is proposed to characterize facial configuration 
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changes. The role of audio modalities for affect recognition is also explored. A 

multiple feature fusion method with multi-kernel learning is further employed to deal 

with facial expression recognition under lab-controlled environment and in the wild, 

respectively. Experimental results conducted on several public databases are also 

reported in this chapter.  

In Chapter 4, my work for pain event detection and locating in video is presented. 

A new framework with multiple tasks is proposed to tackle this problem. Considering 

that information with various time scales (frame, segment and sequence) can make 

different contributions, I propose to combine three different tasks, that is, frame, 

segment and sequence detection, to effectively detect and locate pain events in video. 

A method which combined spatial feature and spatial-temporal feature for pain event 

detection and a multiple-task fusion method for locating pain events are introduced, 

respectively. Experimental results conducted on a public shoulder pain database are 

reported in this chapter. 

Chapter 5 presents my work on smile detection in the wild with CNN. A deep 

convolutional network model called Smile-CNN is proposed to perform feature 

learning and smile detection simultaneously. I further explore the discriminative 

power of the learned features which are taken from the neuron activations of the last 

hidden layer of the Smile-CNN model. Experimental results conducted on a public 
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“smile in the wild” database are reported in this chapter. 

Chapter 6 concludes the research work presented in this thesis and discusses 

some potential directions for future research.  
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Chapter 2  Literature Review  

In this chapter, basic principles of facial expression recognition and deep 

learning are introduced. Some recent important developments of video based facial 

expression recognition, pain recognition in video and smile detection in the wild are 

also reviewed. 

2.1 Facial Expression Recognition in Video 

Faces are powerful nonverbal tools for human beings to transmit message and 

communicate with each other (Cowie et al., 2001). Facial expressions provide valuable 

information and important cues to understand the emotions and intentions of human 

beings. Facial expression recognition has been an active research field for more than 

two decades. We have witnessed much progress that has been made for addressing 

this problem.  

Previous works mainly focused on static and single face image based facial 

expression recognition (Liang et al., 2005; M. Lyons et al., 1998; M. J. Lyons et al., 

1999; Shan et al., 2005; Wong and Cho, 2009). In those methods, Gabor filters 

(Feichtinger and Strohmer, 1998), Local Binary Patterns (LBP) (Ojala et al., 2002), 

Histograms of Oriented Gradients (HOG) (Dalal and Triggs, 2005) and 

Scale-Invariant Feature Transform (SIFT) are commonly applied to extract 
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appearance features from face images. Recently, facial expression recognition in 

video has attracted great interest. Compared with a static image, a video sequence can 

provide not only spatial appearance information but also facial motions and 

accompanied speech. The methods of video based facial expression recognition can 

be categorized into static image based methods, dynamic texture based methods and 

audiovisual based methods. Figure 2-1 illustrates the differences of the three methods. 

I will review these methods in detail.  

 

Figure 2-1. The diagram of the three kinds of methods. 

2.1.1 Static Image Based Methods 

Many researchers applied static image based models to handle the problem of 

video based facial expression recognition. In general, one or several peak face frames 

are first selected and feature descriptors are applied to extract geometric or 

appearance feature representations from these selected face images. For instance, the 



12 

methods reported in (Chew et al., 2011; Lucey et al., 2010; Taheri et al., 2011) applied 

the facial landmarks to characterize the whole face shape. And the method in (Saeed 

et al., 2012) measured the displacements of several selected candidate fiducial points 

as geometric features. Bag of Words (BoW) based on multi-scale dense SIFT features 

were applied to represent facial appearance textures in (Karan Sikka et al., 2012). A 

novel local feature descriptor called Local Directional Number pattern (LDN) was 

proposed to extract appearance features in (Ramirez Rivera et al., 2013). However, 

automatically distinguishing key frames from a video sequence is usually difficult. 

Some methods (Dahmane and Meunier, 2011; Dhall et al., 2011; Valstar et al., 2011) 

attempted to classify each individual frame first and adopted a voting scheme to label 

the video sequence. In these methods, it is necessary to extract features from each 

frame and to classify each frame, which is time consuming.  

2.1.2 Dynamic Texture Based Methods 

There exists a drawback for static image based methods: extracting feature from 

individual frame fails to consider spatial temporal information among frames, which 

is useful to describe facial muscle motions. Dynamic texture based methods were 

proposed to effectively tackle this problem. Dynamic texture based methods aim to 

simultaneously model the spatial appearance and dynamic motions in a video 

sequence. Local Binary Patterns from Three Orthogonal Planes (LBP-TOP), a 
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temporal extension of local binary patterns, proposed by Zhao et al. (Zhao and 

Pietikainen, 2007), has been widely used for video based facial expression recognition. 

Following LBP-TOP, a facial component LBP-TOP was proposed in (X. Huang et al., 

2011). A Local Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) 

was proposed in (Senechal et al., 2011). A Spatial Temporal Local Monogenic Binary 

Pattern (STLMBP) feature descriptor was proposed in (X. Huang et al., 2014; X. 

Huang et al., 2012). In addition, Long et al. (Long et al., 2012) employed Independent 

Component Analysis (ICA) to learn spatiotemporal filters from videos, and then 

extracted dynamic textures using the learned filters. The method in (Chew et al., 2012) 

employed a sparse temporal representation to model the temporal dynamics of facial 

expressions in video. Li et al. (Y. Li et al., 2013) developed a dynamic Bayesian 

network to simultaneously and coherently represent the facial evolvement at different 

levels.  

2.1.3 Audiovisual Based Methods 

Static image based methods and dynamic texture based methods only rely on 

visual modalities. However, audio or speech also plays an important role for human 

beings to convey emotions and intentions. Audio modalities can provide 

complementary information to visual modalities. Recently, audiovisual based methods 

for affect recognition have attracted growing attention from the affective computing 
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community. A number of approaches have been proposed to combine audio and visual 

modalities for affect recognition (Chen et al., 2014; Kanou et al., 2013; Ringeval et al., 

2014; Karan Sikka et al., 2013; S. Zhang et al., 2012). Audiovisual based methods 

generally couple acoustic features extracted from voice with visual features extracted 

from face images to tackle the problem. The method in (Ringeval et al., 2014) 

incorporated voice and lip activities to perform emotion recognition in video. Kim et 

al. (Kim et al., 2013) built a two layer deep belief network (DBN) to learn the feature 

representations from audiovisual modalities and the learned features were further used 

to perform emotion recognition. The methods in (Karan Sikka et al., 2013; Sun et al., 

2014) extracted several different appearance features like HOG and SIFT etc. and 

these extracted features were further coupled with acoustic features to recognize 

emotions in the wild.  

2.1.4 Motivation 

The studies surveyed above demonstrate that feature extraction plays a central 

role on facial expression recognition in video. Designing robust and effective features 

is important and meaningful. LBP-TOP is widely used for modeling dynamic textures. 

However, there are two limitations of LBP-TOP. One is high dimensionality. The size 

of LBP-TOP coded in each block using a uniform pattern is 59×3. A video sequence is 

generally divided into many blocks, which will generate a very high dimensional 
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feature vector. Moreover, although LBP-TOP is robust to deal with illumination 

changes, it is insensitive to facial muscle deformations. It is necessary to design novel 

features which are more robust to characterize facial appearance changes with a more 

compact representation. In addition, configural and shape representations play an 

important role in human vision for the perception of facial expressions (Martinez and 

Du, 2012). Compared with appearance features, only small efforts have been made for 

facial expression recognition with geometric features. I believe that previous works 

have not yet fully exploited the potentials of configuration representations. 

Characterizing face shapes with facial landmarks (Chew et al., 2011; Lucey et al., 

2010) or measuring displacements of fiducial points (Chen et al., 2015; Saeed et al., 

2012) only are not sufficient to capture facial configuration changes, especially the 

subtle non-rigid changes. It is necessary to design novel geometric features to 

effectively capture locally subtle shape changes or deformations. 

In this thesis (Chapter 3), I propose a novel feature called HOG-TOP, which is 

more compact and effective to characterize facial appearance changes, and introduce a 

more robust geometric feature to capture facial configuration changes.  
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2.2 Pain Analysis in Video 

2.2.1 Background 

Pain monitoring and measurement is an important task in medical assessment. 

Pain diagnosis can be used to identify many surgical diseases, like shoulder frozen, 

arthritis and ligament injury etc. (Lucey et al., 2012). A great challenge is how to 

effectively assess and measure the pain, since pain is a kind of subjective feeling. A 

widely used technique to evaluate pain is patient’s self-reporting, which is convenient 

and easy to operate. It is typically measured by either through a clinical interview or 

by using a Visual Analog Scale (VAS) (Lynch et al., 2011). With VAS, a patient is 

asked to mark his pain on a linear scale with a range from 0 (“no pain”) to 10 (“the 

worst pain”). It has become a very popular method due to its simplicity in 

implementation. However, this method has several limitations such as idiosyncratic 

use, subjective variations etc. (Williams et al., 2000). Therefore, it is not available for 

some important populations like young children, people who are deaf-and-dumb, and 

patients who require assisted breathing. Some researchers attempted to acquire a 

continuous measure of pain through analyzing tissue pathology, neurological 

“signatures” and so on (Turk and Melzack, 2001). These efforts are difficult because 

they are often inconsistent with other evidence of pain (Turk and Melzack, 2001). It is, 
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therefore, necessary to find a reliable and effective method for pain analysis.  

A potential solution for pain detection is to analyze facial expression. Facial 

expression is a powerful nonverbal way for human beings to transmit messages and 

reveal emotions. Pain as a kind of emotion or affection, can be displayed by facial 

expression. With the advancement of techniques for facial expression recognition, 

recently, automatic pain detection through analyzing facial expressions has become an 

evolving research area and has attracted a growing interest from affective computing 

community. 

2.2.2 Current Research for Pain Analysis in Video 

A significant contribution to the research on pain analysis was the introduction of 

the UNBC-McMaster shoulder pain dataset (Lucey, Cohn, Matthews, et al., 2011), 

which recorded videos of faces of adult subjects with shoulder injuries. All the videos 

in the dataset were provided with two levels of annotation for measuring pain: frame 

level and sequence level. For the frame annotation, it followed the description 

proposed in (Prkachin and Solomon, 2008) which defined pain as the sum of the 

intensities of certain facial action units including brow lowering, orbital tightening 

and eye closure and then employed Facial Action Coding System (FACS) (Ekman et 

al., 2002; Essa and Pentland, 1997) to code each frame. Figure 2-2 shows some image 

sequences selected from this database.  
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Figure 2-2. The image sequences from the UNBC database. 

Pain detection can be regarded as a spontaneous facial expression recognition 

problem. An early research on automatic pain recognition was done by Ashraf et al. 

by developing a “pain-no pain” detection system (Ashraf et al., 2009). In their 

framework, Active Appearance Models (AAMs) were used to extract shape and 

appearance features from face images. An SVM was trained for classification. Both 

frame-level detection and sequence-level detection results were reported in their study. 

After that, different approaches have been proposed to address this problem. Lucey et 

al. (Lucey et al., 2008) pointed out that temporal information played a vital role in 

pain recognition and experiments showed that by compressing the spatial signal 

instead of the temporal signal, a better pain recognition performance could be 

achieved. In addition, some researchers considered utilizing the relationship between 

facial expressions and facial action units defined in Facial Action Coding System 

(FACS) to recognize pain. Pain could be defined as a combination of several action 

units (Prkachin, 1992). The works of automatically recognizing pain in video via 
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facial action units were reported in (Lucey, Cohn, Matthews, et al., 2011; Lucey et al., 

2012; Lucey, Cohn, Prkachin, et al., 2011). Hammal et al. (Hammal and Cohn, 2012) 

proposed a method based on Log-Normal filters and SVMs for four-level pain 

intensity estimation. Sebastian et al. also worked on pain intensity estimation 

(Kaltwang et al., 2012) in which they extracted shape and appearance features from 

face images and Relevance Vector Regression (RVR) was trained to predict pain 

intensity levels.  

2.2.3 Motivation 

The works investigated above mostly focused on frame-level detection, i.e. 

detecting the pain occurrence or intensity in each video frame. Some methods also 

provided sequence-level detection results (Ashraf et al., 2009; Lucey et al., 2012). In 

these methods, a video sequence under test is predicted as pain if the average score of 

its member frames exceeds a threshold. In other words, these methods are still based 

on a frame level detection mechanism. When a video sequence is long, it is 

computationally very time consuming. A better way is to apply a global feature vector 

to characterize the whole video sequence. In addition, performing the sequence-level 

detection can reduce the number of training instances and therefore the training would 

be more efficient. The works reported in (K. Sikka et al., 2014; Wang et al., 2012) 

attempted to recognize pain at sequence level. In (Wang et al., 2012), a video 
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sequence was first transformed into a feature vector of fixed length by applying 

Bag-of-Words (BoW), and a SVM was trained to classify the sequence level feature. 

In (K. Sikka et al., 2014), a method called Multiple Segments and Multiple Instance 

Learning (MS-MIL) was proposed to jointly detect and locate pain events in video.  

Most previous works surveyed above only used spatial information and ignored 

spatial temporal information. I believe that information at various time scales (frame, 

segment and sequence) plays different roles. All these information can provide 

complementary cues. So a new framework which combines three different tasks 

(frame-level, segment-level and sequence-level detection) has been developed to 

effectively detect and locate pain events in video. In this study (Chapter 4), 

experimental results show that multiple features with kernel fusion is efficient for pain 

event detection and combining three tasks (frame-level, segment-level and 

sequence-level detection) for locating pain events is more robust than carrying out any 

individual task alone.  

2.3 Smile Detection in the Wild 

Smile or happiness is one of the most universal facial expressions. Although 

some previous works which handled a facial expression recognition problem also 

included happiness recognition, they mainly focused on facial expression recognition 

under lab-controlled environment, in which people depicted in these images exhibit in 
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a nearly front view with clean background and similar scale. The facial expressions 

displayed in the wild are more natural than those demonstrated under lab-controlled 

environment. Figure 2-3 shows some smile face images under lab-controlled 

environment and in the wild, respectively. The face images shown in the top row and 

middle row are from CK+ (Lucey et al., 2010) and JAFFE (M. Lyons et al., 1998) 

databases, respectively. And the face images shown in the bottom row are from the 

GENKI4K (Whitehill et al., 2009) database. It can be seen that smile faces under 

lab-controlled environment are in the front view with clean backgrounds and in 

similar scale. On the other hand, smile faces in the wild have various poses, 

illuminations and scales.  

 

Figure 2-3. Smile face images under lab-controlled (top and middle rows) and in the 

wild (bottom row). 

Emotions or intentions revealed by facial expressions in the wild are closer to the 

real inner psychological activities of human beings. Facial expression analysis in the 
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wild is important and meaningful. However, various limitations such as imprecise 

face detection and alignment, variation of illumination, pose changes and complex 

background increase the difficulty of facial expression recognition in the wild. It 

remains a significant research challenge. To tackle this problem, a reliable and 

extensive database is necessary. Jacob et al. (Whitehill et al., 2009) collected pictures 

which were photographed in real word and built the GENKI4K database. With this 

database, they explored necessary characteristics of the training set, image registration, 

feature representation, and machine learning algorithms for smile detection in the wild. 

After that, Shan (Shan, 2012) proposed to use pixel intensity differences to extract 

features and AdaBoost was trained to perform smile detection in the wild. Liu et al. 

(M. Liu et al., 2012) argued that unlabeled reference data could enhance the 

performance of facial expression recognition in the wild, they further combined 

labeled data and unlabeled reference data to deal with smile detection in the wild. Jain 

et al. (Jain et al., 2014) combined Gaussian derivatives with LBP to provide a robust 

descriptor which could effectively extract texture patterns from facial images and they 

applied this feature descriptor for smile detection. In (An et al., 2015), Le et al. first 

employed LBP and HOG to extract appearance features from face images, and 

Principal Component Analysis (PCA) was applied to reduce the dimensionality of the 

features. Finally, Extreme Learning Machine (ELM) was trained to perform the 
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classification. 

From the research works mentioned above, I observe that hand-crafted features 

coupled with a supervised learning method are widely used. Some works (Devries et 

al., 2014; Ijjina and Mohan, 2014; Lawrence et al., 1997; Matsugu et al., 2003) have 

highlighted the effectiveness of deep learning methods for facial expression 

recognition. A rule-based algorithm for robust facial expression recognition combined 

with robust face detection using a convolutional neural network was proposed in 

(Matsugu et al., 2003). It tried to address the problem of subject independence as well 

as translation, rotation, and scale invariance in the recognition of facial expression. In 

(Devries et al., 2014), they introduced a multi-task convolutional neural network that 

simultaneously predicted facial landmarks and facial expression. Earnest et al. (Ijjina 

and Mohan, 2014) proposed an approach for facial expression recognition using deep 

convolutional neural networks (CNNs) based on features generated from depth 

information only. Glauner (Glauner, 2015) applied different CNNs to both the entire 

face and mouth region for smile recognition on the DISFA (Mavadati et al., 2013) 

database. Glauner’s work focused on smile detection under lab-controlled 

environment. Zhang et al. (K. Zhang et al., 2015) proposed a CNN that used both 

recognition and verification signals as supervision to learn expression features for 

smile detection in the wild. They applied CNN to perform the classification directly 
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and did not investigate the representation learning of CNN. In their study, there was 

also no exploration on how the nuisance factors like pose variations, background and 

scales would affect the recognition ability of the CNN.  

2.4 Deep Neural Networks and Deep Learning 

Neural networks are inspired by biological neural networks, especially the 

central nervous systems of the brain. Neural networks provide an efficient way to 

estimate or approximate complex non-linear functions. Feed forward network is one 

of the most widely used neural networks. It generally consists of many layers, 

including an input layer, one or more hidden layers and an output layer. Figure 2-4 

illustrates a typical feed forward network with one hidden layer. It transforms 𝐷 

inputs to 𝐾  outputs. The network parameters 𝑊  can be learned by using the 

technique of error propagation with gradient descent.  

 

Figure 2-4. A feedforward network with one input layer, one hidden layer and one 

output layer (Bishop, 2007). 
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The neural networks with one or two hidden layers are called shallow networks. 

On the other hand, the deep networks often include more hidden layers. Deep 

networks can represent a function more compactly than shallow networks (Bengio, 

2009). Depth plays a key role for feature learning or representation learning.  

Conventional computer vision and machine learning systems often consist of 

three components: preprocessing, feature extraction and classification. Feature 

extraction often plays a central role. In order to design robust and effective features, 

careful engineering and considerable domain expertise are needed to transform raw 

data into high-level representations, which amplifies aspects of raw data that are 

important for discrimination and suppress irrelevant variations (Y. LeCun et al., 

2015).  

Different from hand designed features, feature learning or representation learning 

aims at training models with raw data to make the models automatically discover the 

representations which are useful for classification or prediction (Bengio et al., 2013). 

Deep learning methods are representation learning methods with multiple levels of 

representations, which are obtained by constituting non-linear modules layer by layer.  

Deep learning methods have attracted growing interest since 2006. A group of 

researchers (Bengio et al., 2007; G. E. Hinton, Osindero, S.,  Teh, Y. W, 2006; 

Poultney et al., 2007) introduced an efficient training algorithm namely greedy layer 
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wise unsupervised pre-training to learn a hierarchical architecture with multiple layers. 

The core idea of this training algorithm is that each layer is pre-trained with an 

unsupervised learning algorithm, one layer after the other; after having thus initialized 

a number of layers, the whole neural network can be fine-tuned with respect to a 

supervised training criterion (Bengio, 2009). Several deep learning models like Deep 

Belief Network (DBN) (G. E. Hinton and Salakhutdinov, 2006) and Deep Boltzmann 

Machine (DBM) (Salakhutdinov and Hinton, 2009) applied this algorithm to train 

deep networks and achieved promising performance for prediction or generalization.  

Although training is a big challenging issue for most deep networks, there is one 

particular type of deep network that is possible to train: Convolutional Neural 

Network (CNN). CNNs are inspired by the visual system’s structure, especially by the 

visual models proposed in (Hubel and Wiesel, 1962). Fukushima (Fukushima, 1980) 

first proposed computational models based on local connectivity between neurons and 

hierarchical layers. LeCun et al. further developed CNN for pattern recognition tasks 

and achieved promising performance (Yann LeCun et al., 1989; Yann LeCun et al., 

1998). Recent study (Serre et al., 2007) pointed out that the physiology of the visual 

system is consistent with the processing style found in CNNs. Due to its superiority of 

dealing with 2-D images, CNNs have become the first choice for a wide range of 

computer vision tasks including visual recognition (Kavukcuoglu et al., 2010), object 
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detection (Eslami and Williams, 2012) and image classification (Krizhevsky et al., 

2012).  

Some research works on using CNNs for facial expression recognition have also 

been reported (M. Liu et al., 2013; Tang, 2013). CNNs can be used for feature 

learning. It can be first trained using a supervised/unsupervised method to learn 

abstract representations from raw data and the abstract representations (generally 

corresponding to the higher level hidden latent variables) are treated as learned 

features and fed to train other classifiers like a SVM (Bengio, 2009). In (Rifai et al., 

2012), consecutively designed a multi-scale Contractive Convolutional Network 

(CCNET) and a Contractive Discriminative Analysis (CDA) to learn the features 

which are robust to handle the illumination and pose changes for emotion recognition. 

Kim et al. (Kim et al., 2013) utilized DBNs to learn audio-visual features for emotion 

classification. The experimental results demonstrated that DBNs could generate 

representative features effectively. Liu et al. (P. Liu et al., 2014) proposed a novel 

Boosted Deep Belief Network (BDBN) for performing feature learning, feature 

selection and classifying in a unified loopy framework. Samira et al. (Ebrahimi Kahou 

et al., 2015) employed a hybrid architecture which combined a CNN with a recurrent 

neural network (RNN) for emotion recognition in video. With extra training data, Yu 

and Zhang (Yu and Zhang, 2015) built a learning model with the ensemble multiple 
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CNNs for static image based facial expression recognition. Ng et al. (Ng et al., 2015) 

applied a pre-trained CNN and transfer learning for facial expression recognition on 

small databases. Joy et al. proposed to fuse deep learned and hand-crafted features for 

automatic pain estimation (Egede et al., 2017).  

2.5 Fusion Methods 

Fusion methods are widely used and play a vital role in many computer vision 

applications. In general, fusion can be performed at four different levels: sensor level, 

feature level, matching score level and decision level (Nandakumar et al., 2008). For 

sensor level fusion, raw data obtained from different sensors are combined to produce 

a new raw data, which is more informative than the inputs. For feature level fusion, 

the raw data are transformed to representative features by applying hand-crafted 

feature descriptors or pre-trained deep neural networks, and these extracted features 

are further fused to generate a new feature vector. Feature fusion aims to remove 

redundant or irrelevant information and to improve the discriminative ability of 

multiple features. Feature combination or weighted combination is a simple type of 

feature fusion (Mangai et al., 2010). For matching score level fusion, multiple 

modalities or instances are first compared to templates to compute the similarity 

scores and the scores are integrated to generate a single fused score (Hicklin et al., 

2006). Three score fusion techniques are widely used: transformation-based score 
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level fusion, classifier-based score level fusion and density-based score level fusion 

(He et al., 2010; Nandakumar et al., 2008). For decision level fusion, the predicting 

results of a set of classifiers are transformed to a single final output, which is expected 

to outperform each individual classifier.  

In general, feature fusion can be performed before the training process; score 

fusion can be used after matching; and decision fusion can be employed after 

classification. Fusion methods attempt to explore different features, matching scores 

or decision values to achieve a better overall performance. In order to further enhance 

the recognition ability of an automatic facial expression recognition system, different 

fusion methods can be explored. For example, Zhang et al. (Y. Zhang and Ji, 2005) 

applied multisensory information fusion technique and dynamic Bayesian networks 

(DBN) to model and understand the temporal behaviors of facial expressions in image 

sequences. Thiago et al. (Zavaschi et al., 2013) proposed a novel method which 

employed a combination of two different feature sets in an ensemble approach. The 

feature fusion and decision fusion were both used in their method. Turan et al. (Turan 

and Lam, 2014) proposed a feature fusion method based on Canonical Correlation 

Analysis (CCA) for facial expression recognition. Liu et al. (W. Liu and Wang, 2006) 

proposed a method for facial expression recognition based on the fusion of multiple 

Gabor feature sets. In (Sun et al., 2014), Sun et al. explored the feature fusion with 
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multiple kernel fusion (A proof of multiple kernel fusion with linear kernels being 

equivalent to a weighted feature fusion is given in Section 3.2.4) and the classifier 

fusion with a hierarchical fusion strategy. In (Z. Liu et al., 2013), Liu et al. proposed 

the use of a new image representation and multiple feature fusion to handle the 

problem of facial expression recognition. They also demonstrated that combining the 

classification results of multiple features at score level could further improve 

recognition performance.   
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Chapter 3  Facial Expression Recognition in 

Video with Multiple Feature Fusion  

3.1 Introduction 

In this chapter, the proposed effective framework based on multiple feature 

fusion for facial expression recognition in video is presented. In this study, both the 

potentials of visual modalities (face images) and audio modalities (speech) are 

explored. In addressing visual modalities, I extend the Histograms of Oriented 

Gradients (HOG) (Dalal and Triggs, 2005) to temporal Three Orthogonal Planes 

(TOP), inspired by a temporal extension of local binary patterns, LBP-TOP (Zhao and 

Pietikainen, 2007). The proposed HOG-TOP is used to characterize facial appearance 

changes. Experimental results show that HOG-TOP performs as well as LBP-TOP for 

facial expression recognition. In addition, compared with LBP-TOP, HOG-TOP is 

more compact and computationally efficient. Moreover, an effective geometric warp 

feature derived from the warp transformation of facial landmarks is proposed to 

characterize facial configuration changes. The proposed geometric warp feature is 

more effective compared with other previously proposed geometric features (Chen et 

al., 2015; Chew et al., 2011; Lucey et al., 2010). The role of audio modalities on 

affect recognition is also explored in this work. The audio modalities can provide 
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some complementary information, especially for facial expression recognition in the 

wild. Finally, a multiple-feature fusion method is developed to deal with facial 

expression recognition under lab-controlled environment and in the wild, respectively. 

The diagram of our proposed framework is shown in Figure 3-1. Geometric features 

coupled with dynamic textures (HOG-TOP) are used to deal with lab-controlled facial 

expression recognition. Acoustic features and dynamic textures (HOG-TOP) are fused 

to tackle facial expression recognition in the wild.  

 

Figure 3-1. Block diagram of our proposed framework. Geometric features coupled 

with dynamic textures HOG-TOP are used to deal with lab-controlled facial 

expression recognition; acoustic features and dynamic textures HOG-TOP are fused to 

tackle facial expression recognition in the wild. 
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3.2 Methodology 

3.2.1 Histograms of Oriented Gradients from Three 

Orthogonal Planes 

Histograms of oriented gradients (HOG) were first proposed for human detection. 

The basic idea of HOG is that local object appearance and shape can often be 

characterized rather well by the distribution of local intensity gradients or edge 

directions (Dalal and Triggs, 2005). HOG is sensitive to object deformations. Facial 

expressions are caused by facial muscle movements. For example, mouth opening and 

raised eyebrows will generate a “surprise” facial expression. These movements could 

be regarded as types of deformations. HOG can effectively capture and represent 

these deformations (Orrite et al., 2009). However, the original HOG is limited to deal 

with a static image. In order to model dynamic textures from a video sequence with 

HOG, I extend HOG to 3-D to compute the oriented gradients on Three Orthogonal 

Planes XY, XT, and YT (TOP), i.e. HOG-TOP. The proposed HOG-TOP is able to 

characterize facial appearance changes and facial muscular motions.  
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Figure 3-2. The textures in XY, XT and YT planes. 

A video sequence includes three orthogonal directions, i.e. X, Y, and T (time) 

directions. Figure 3-2 illustrates the textures extracted from the three orthogonal 

planes. The X-Y plane provides spatial appearance, and X-T and Y-T planes record 

temporal or motion information along the time. In this study, I propose to compute the 

distributions of oriented gradients of each plane to obtain HOG features, namely 

HOG-XY, HOG-XT and HOG-YT, as shown in Figure 3-3.  

 

Figure 3-3. The HOG from Three Orthogonal Planes (TOPs). 

Each point in a video sequence includes three orthogonal neighborhoods lying on 

X-Y, X-T and Y-T planes, respectively. The gradients along X, Y and T directions are 

first computed with a 3×3 Sobel mask. The gradient orientations are further defined as 

𝜃𝑋𝑌 = tan−1(𝐺𝑌/𝐺𝑋), 𝜃𝑋𝑇 = tan−1(𝐺𝑇/𝐺𝑋), 𝜃𝑌𝑇 = tan−1(𝐺𝑇/𝐺𝑌), where 𝐺𝑋, 𝐺𝑌, 
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and 𝐺𝑇 are the gradients along the X, Y and T directions, respectively. These angles 

are further quantized into K bins in a range of  0° − 180° or 0° − 360°. 

Enumerating the appearance of these gradient orientations can obtain a histogram 

in each plane. The three histograms are concatenated to form a global description with 

the spatial and temporal features. Figure 3-3 shows that the three histograms from the 

three planes are combined into a single one. The HOG-TOP computation algorithm is 

shown in Algorithm 1. 

Algorithm 1: HOG-TOP 

Input:  

Video sequence V, which contains N frames with the same width and height. 

Output:  

The histograms of oriented gradients from three orthogonal plans (HOG-TOP). 

Algorithm: 

Get the number of frames N, frame width and height. 

  for t=2:N-1 

    for x=2:width-1 

      for y=2:height-1 

get the local patch in X-Y, X-T, and Y-T planes. 

𝑷𝐱𝐲=V(x-1:x+1, y-1:y+1, t); 

𝑷𝐱𝐭=V(x-1:x+1, y, t-1:t+1); 

𝑷𝐲𝐭=V(x, y-1:y+1, t-1:t+1); 

Compute the gradients 𝑮𝑿, 𝑮𝒀 and 𝑮𝑻  

Compute gradient orientations 𝜽𝑿𝒀, 𝜽𝑿𝑻, 𝜽𝒀𝑻 

Quantize the orientations 𝜽𝑿𝒀, 𝜽𝑿𝑻, 𝜽𝒀𝑻 into one of 9 bins for each plane. 

Count the appearance of these quantized orientations and obtain a histogram in 

each plan, i.e. HOG-XY, HOG-XT and HOG-YT. 

      end  

    end  

  end 

Normalize the HOG-XY, HOG-XT and HOG-YT respectively. Concatenate the three 

histograms into a long histogram. 
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LBP-TOP computes the difference of a pixel with respect to its neighborhood, 

making LBP-TOP robust in dealing with illumination changes. HOG-TOP computes 

the oriented gradients of a pixel, which is more effective to capture object 

deformations. Facial expressions are caused by facial muscle movements, which can 

be regarded as types of muscle deformations. HOG-TOP is therefore more effective to 

characterize facial appearance changes than LBP-TOP. Another advantage of 

HOG-TOP is the feature dimensionality. Compared with LBP-TOP, the size of 

HOG-TOP is much smaller than that of LBP-TOP. The size of LBP-TOP coded using 

a uniform pattern is 59×3, while the size of HOG-TOP quantized into 9 bins is 9×3, 

which is much more compact than that of LBP-TOP. 

 

Figure 3-4. The HOG-TOP features extracted from each block are concatenated to 

represent the whole sequence. 

Moreover, a block-based method is also introduced in this study, as shown in 

Figure 3-4. The image sequence can be divided into many blocks and HOG-TOP 
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features are extracted from each block. The HOG-TOP features of all the blocks can 

be concatenated to represent the whole sequence. In our experiments, the face image 

is first cropped from the original image and resized to 128×128. The face image is 

partitioned into 8×8 blocks with each block having a size of 16×16. The number of 

bins is set to 9 with an angle range of 0° − 180°. 

3.2.2 Geometric Warp Feature 

In this section, a more robust geometric feature namely geometric warp feature, 

which is derived from the warp transform of the facial landmarks, is introduced. 

Facial expressions are caused by facial muscle movements. These movements result 

in the displacements of the facial landmarks. Suppose that each face image consists of 

a number of sub-regions. These sub-regions are triangles with their vertexes located at 

facial landmarks, as shown in Figure 3-5. The displacements of facial landmarks 

cause the deformations of these triangles. I propose to utilize the deformations to 

represent facial configuration changes.  

Facial expression can be considered as a dynamic process including onset, peak 

and offset. There exist the displacements of the corresponding facial landmarks 

between onset (neutral face) and peak (expressive face). Given a set of facial 

landmarks s = (𝑥1, 𝑦1,  𝑥2, 𝑦2, …  𝑥𝑛,  𝑦𝑛), where (𝑥𝑖, 𝑦𝑖) denote the coordinates 

of the 𝑖-th facial landmark. These facial landmarks make up the mesh of a face, as 
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shown in Figure 3-5. 

 

Figure 3-5. Facial landmarks characterizing the shape of a face. 

 

Figure 3-6. A pixel (𝑥, 𝑦) lying in a triangle ∆ABC of the neutral face is transformed 

to another pixel (𝑢, 𝑣) lying in a triangle ∆A′B′C′ of the expressive face. 

As illustrated in Figure 3-5, there are many small triangles covering the face, and 

each triangle is determined by three facial landmarks. Facial muscle movements cause 

the deformations of the triangles when a neutral face transforms to an expressive face.  

Suppose that a pixel (𝑥, 𝑦) which lies in a triangle ∆ABC belonging to the 

neutral face, and the corresponding pixel (𝑢, 𝑣) lies in a triangle ∆A′B′C′ on the 

expressive face, as shown in Figure 3-6. From (Matthews and Baker, 2004), the pixel 

(𝑥, 𝑦) can be expressed with a linear combination of the three vertexes. 

    [
𝑥
𝑦] = [

𝑥1

𝑦1
] + 𝜆1 [

𝑥2 − 𝑥1

𝑦2 − 𝑦1
] + 𝜆2 [

𝑥3 − 𝑥1

𝑦3 − 𝑦1
]    (3-1) 

And the coefficients 𝜆1, 𝜆2 can be obtained as 
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λ1 =
(x−x1)(y3−y1)−(y−y1)(x3−x1)

(x2−x1)(y3−y1)−(y2−y1)(x3−x1)
     (3-2) 

λ2 =
(x2−x1)(y−y1)−(y2−y1)(x−x1)

(x2−x1)(y3−y1)−(y2−y1)(x3−x1)
     (3-3) 

The point (𝑢, 𝑣) in the triangle of the expressive face can be defined with the 

three vertexs and 𝜆1, 𝜆2 

[
𝑢
𝑣

] = [
𝑢1

𝑣1
] + 𝜆1 [

𝑢2 − 𝑢1

𝑣2 − 𝑣1
] + 𝜆2 [

𝑢3 − 𝑢1

𝑣3 − 𝑣1
]    (3-4) 

Combining Eq. (3-2) with Eq. (3-3), Eq. (3-4) can be rewritten as: 

[
𝑢
𝑣

] = [
𝑎1 + 𝑎2𝑥 + 𝑎3𝑦
𝑎4 + 𝑎5𝑥 + 𝑎6𝑦]      (3-5) 

Each pair of triangles between the neutral face and the expressive face can define 

a unique affine transform and each transform is determined by 6 parameters 

a1, a2, … a6. The 6 parameters for each warp transform are computed and all the 

parameters are concatenated as a long global feature vector, which is used to 

characterize facial configuration changes. Experiments show that the proposed 

geometric warp feature is more effective than the other geometric features (Chen et al., 

2015; Chew et al., 2011; Lucey et al., 2010).  

3.2.3 Acoustic Feature 

Visual modality (face images) and audio modality (speech) can both convey the 

emotions and intentions of human beings. Audio modality also provides some useful 

clues for affect recognition in video. For instance, with voice signal, Meudt and 

Schwenker (Meudt and Schwenker, 2014) proposed an enhanced autocorrelation 
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(EAC) feature for emotion recognition in video.   

One successful acoustic feature extraction is to obtain the time series of multiple 

paralinguistic descriptors and then using pooling operations on each time series to 

extract feature vectors. Schuller et al. (Schuller et al., 2010) showed how to compute 

the acoustic features by taking 21 functionals of 38 low level descriptors and their 

first regression coefficients. The 38 low-level descriptors shown in Table 3-1 are first 

extracted and smoothed by simple moving average low-pass filtering. After that, 21 

functionals are employed and 16 zero-information features are eliminated. Finally, 

two single features: the number of onsets (F0) and turn duration are added. A total of 

1,582 acoustic features are extracted from each video. These acoustic features include 

energy/spectral Low Level Descriptors (LLD) (top 6 items in Table 3-1) and voice 

related LLD (bottom 4 items in Table 3-1).  

The representation ability of acoustic features for affect recognition is explored 

in this study. Experimental results show that audio modalities (speech) can provide 

useful complementary information in addition to visual modalities. The visual 

features coupled with acoustic features can achieve better performance for facial 

expression recognition in the wild. 
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Table 3-1. Acoustic features: 38 low level descriptor along with their first regression 

coefficients and 21 functionals ( (Schuller et al., 2010)). 

Descriptors Functionals 

PCM loudness Position max./min. 

MFCC (0-14) Arithmetic mean 

Log mel freq. band (0-7) Skewness, kurtosis 

LSP frequency (0-7) Lin. regression coeff. 

F0 Lin. regression error 

F0 envelope Quartile 

Voicing prob. Quartile range 

Jitter local Percentile 

Jitter consec. frame pairs Percentile range 

Shimmer local Up-level time 

 

3.2.4 Multiple Feature Fusion 

Features from different modalities can make different contributions. A traditional 

SVM concatenates different features into a single global feature vector and uses a 

single kernel for all these different features. However, constructing an individual 

kernel for each type of features and integrating these kernels optimally can enhance 

the discriminative power of these features. The study in (Gönen and Alpaydın, 2011) 

showed that using multiple kernels with different types of features can improve the 

recognition performance. A multiple kernel SVM was designed to learn both the 

decision boundaries between data from different classes and the kernel combination 

weights through a single optimization problem (Lanckriet et al., 2004). 

Given a training set 𝑆 = {(𝐱𝑖, 𝑦𝑖)|𝐱𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈ {−1,1}}𝑖=1
𝑁 , a decision line is 
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obtained by solving the following primal optimization problem, 
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In general, we solve the dual form of the primal optimization problem. The dual 

formulation of the traditional single kernel SVM optimization problem is given by 

max
𝛼

[∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾𝑖𝑗

𝑁
𝑗=1

𝑁
𝑖=1 ]   (3-7) 

subject to 
1

0
N

i i

i

y


 , 0
i

C  , where 𝐾𝑖𝑗  is the kernel matrix, and 𝐾𝑖𝑗 =

𝑘(x𝑖, x𝑗) , 𝑘(∙,∙) is the kernel function and x𝑖, x𝑗 are the feature vectors. Multiple 

kernel fusion applies a linear combination of multiple kernels to substitute for the 

single kernel. In this study, I adopt the formulation proposed in (Rakotomamonjy et al., 

2008), in which the kernel is actually a convex combination of basis kernels: 

𝐾𝑖𝑗 = ∑ 𝛽𝑚𝑘𝑚(𝐱𝑖, 𝐱𝑗)𝑀
𝑚=1      (3-8) 

with 
1

0, 1
M

m m

m

 


   . 

A multiple kernel fusion framework is employed to deal with facial expression 

recognition under lab-controlled environment and in the wild, respectively, as shown 

in Figure 3-1. HOG-TOP and acoustic feature are optimally fused to handle the 

problem of facial expression recognition in the wild, while HOG-TOP and geometric 

warp feature are combined to tackle the problem of facial expression recognition under 

lab-controlled environment.  
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In the followings, I detail how to find an optimal combination of HOG-TOP and 

acoustic feature for facial expression recognition in the wild. It can be easily extended 

to the problem of facial expression recognition under lab-controlled environment. 

The dynamic texture HOG-TOP is denoted as 𝐱 and the acoustic feature as 𝐳, 

then we have 

𝐾𝑖𝑗 = 𝛽𝑘1(x𝑖, x𝑗) + (1 − 𝛽)𝑘2(z𝑖, z𝑗)    (3-9) 

with 0 ≤ β ≤ 1, where 𝐾 is the kernel matrix, 𝑘1(∙,∙), 𝑘2(∙,∙) are the basis kernels. 

The basis kernels could be linear kernel, radial basis function (RBF) kernel and 

polynomial kernel, etc. In order to find the decision boundary, it’s necessary to learn 

the kernel weight β and coefficient α. In this work, a linear kernel is constructed for 

each type of feature and a two-step method is used to search for the optimal values 

of  β and α′s. Two nested iterative loops are set to optimize both the classifier and 

kernel combination weights. In the outer loop, the grid search is adapted to find the 

kernel weight β. In the inner iteration, a solver of SVM (LIBSVM (Chang and Lin, 

2011) is used in our work) is implemented by fixing the kernel weight β to find the 

coefficients α. Then given a sample which contains the visual feature HOG-TOP 𝐱 

and the acoustic feature 𝐳, the predict label y can be obtained by 

y = sgn(∑ 𝑦𝑖𝛼𝑖(𝛽𝑘1(𝐱𝑖, 𝐱) + (1 − 𝛽)𝑘2(𝐳𝑖, 𝐳)) + 𝑏𝑁
𝑖=1 )  (3-10) 

In this work, the one-vs-one method is employed to deal with the multiclass-SVM 
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problem and the max-win voting strategy is adapted to do the classification. Finally, 

the β value and α values with the highest overall classification accuracy in the 

validation data set are obtained as the optimal kernel weight and coefficients. The 

algorithm to compute the optimal kernel weight is shown in Algorithm 2. 

Algorithm 2: Compute optimal kernel weight 𝜷∗ 

Input: Training set, HOG-TOP and acoustic feature 𝑺 = {(𝐱𝒊, 𝐳𝒊, 𝒚𝒊)}𝒊=𝟏
𝑵  

Validation set, HOG-TOP and acoustic feature 𝑻 = {(𝐱𝒌, 𝐳𝒌, 𝒚𝒌)}𝒌=𝟏
𝑴  

Output: Optimal kernel weight 𝜷∗. 

Algorithm: 

  Initialize highest classification accuracy 𝒄∗ = 𝟎 and optimal kernel weight 𝜷∗ =

𝟎. 

  for = 𝜷:0.01:1 

Apply Eq. (3-9) to compute the kernel matrix.  

Solve Eq. (3-7) to get the coefficients 𝒂 and bias 𝒃.  

With coefficients 𝒂 and bias 𝒃, apply Eq. (3-10) to test the SVM on the 

validation set and compute the classification accuracy 𝒄. 

if (𝒄∗ < 𝒄) 

  𝒄∗ = 𝒄,  

  𝜷∗ = 𝜷 

    end 

  end 

 

Although I applied multiple kernel fusion to combine multiple features, it can be 

proved that multiple kernel fusion is equivalent to weighted feature combination. In 

my work, I applied two different feature sets 𝐱 and 𝐳. Based on the definition in 

(Mangai et al., 2010), feature fusion would produce a new combined feature vector as 

(𝐱, 𝐳). If we consider a weighted combination, the new feature vector can be written 

as (𝑐1x, 𝑐2z) assuming that all the features in the same set has the same weight. When 
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we train an SVM to perform the classification, we first apply a kernel function to 

transform the new feature vector:  

𝑘([𝑐1𝐱𝑖, 𝑐2𝐳𝑖], [𝑐1𝐱𝑗, 𝑐2𝐳𝑗])      (3-11) 

For the linear kernel, it can be written as: 

[𝑐1𝐱𝑖
𝑇 , 𝑐2𝐳𝑖

𝑇] ∙ [𝑐1𝐱𝑗, 𝑐2𝐳𝑗] = 𝑐1
2(𝐱𝑖

𝑇 ∙ 𝐱𝑗) + 𝑐2
2(𝐳𝑖

𝑇 ∙ 𝐳𝑗)  (3-12) 

The above equation can be rewritten as 

  𝑐1
2(𝐱𝑖

𝑇 ∙ 𝐱𝑗) + 𝑐2
2(𝐳𝑖

𝑇 ∙ 𝐳𝑗) = 𝛽1 𝑘1(𝐱𝑖, 𝐱𝑗) + 𝛽2 𝑘2(𝐳𝑖, 𝐳𝑗)  (3-13) 

where 𝛽1 = 𝑐1
2, 𝛽2 = 𝑐2

2, 𝑘1 and 𝑘2 are both linear kernels.  

In my work, I applied the following expression to combine two feature sets: 

     𝛽 𝑘1(𝐱𝑖, 𝐱𝑗) + (1 − 𝛽) 𝑘2(𝐳𝑖, 𝐳𝑗)    (3-14) 

with a constraint: 0 ≤ 𝛽 ≤ 1. At the training stage, the kernel fusion is actually 

equivalent to the weighted feature combination with 𝑐1
2 = 𝛽  and 𝑐2

2 = 1 − 𝛽 , 

which is actually a kind of feature fusion. 

At the classification stage, we apply the following decision function:  

y = sgn(∑ yiαi(𝛽𝑘1(𝐱𝑖, 𝐱) + (1 − 𝛽)𝑘2(𝐳𝑖, 𝐳)) + bN
i=1 )   (3-15) 

At first sight, Eq. (3-15) seems to use a score fusion to combine the contributions 

from two feature sets. Using Eq. (3-13), Eq. (3-15) can be rewritten as 

y = sgn (∑ yiαi(𝑐1
2(𝐱𝑖

T ∙ 𝐱) + 𝑐2
2(𝐳i

T ∙ 𝐳)) + bN
i=1 )   (3-16) 

We can further obtain  

y = sgn(∑ yiαi([𝑐1𝐱𝑖
T, 𝑐2𝐳𝑖

T] ∙ [𝑐1𝐱, 𝑐2𝐳]) + bN
i=1 )    (3-17) 
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where [𝑐1𝐱𝑖
T, 𝑐2𝐳𝑖

T] denotes the weighted combination of the support feature vector 

and [𝑐1𝐱, 𝑐2𝐳] is the weighted combination of the test feature vector. It means that 

the SVM classification with multiple linear kernels is equivalent to classifying the 

weighted combination of the test feature vector directly. It clearly shows that 

multi-kernel classification with linear kernels is actually a feature fusion method with 

weighted combination of different features. 

For a non-linear kernel function, it involves a mapping from the original feature 

space to a higher-dimensional feature space:   

     𝑘(𝐱𝑖, 𝐱𝑗) = 𝜙(𝐱𝑖)
𝑇 𝜙(𝐱𝑗)     (3-18) 

For two non-linear kernels, we can get: 

     𝛽1𝑘1 (𝐱𝑖, 𝐱𝑗) + 𝛽2𝑘2(𝐳𝑖, 𝐳𝑗) = 𝑐1
2𝜙1

(𝐱𝑖)
𝑇 𝜙1(𝐱𝑗) + 𝑐2

2𝜙2
(𝐳𝑖)

𝑇 𝜙2(𝐳𝑗)   (3-19) 

And, the right side of Eq. (3-19) can be written as for non-linear kernels, 

𝑐1
2𝜙1(𝐱𝑖)

𝑇 𝜙1(𝐱𝑗) +  𝑐2
2𝜙2(𝐳𝑖)

𝑇 𝜙2(𝐳𝑗)

  = [𝑐1𝜙1(𝐱𝑖)
𝑇 , 𝑐2𝜙2(𝐳𝑖)𝑇] ∙ [𝑐1𝜙1(𝐱𝑗), 𝑐2𝜙2(𝐳𝑗)]

   (3-20) 

It shows that multiple non-linear kernel fusion is also a type of feature fusion in the 

mapped high-dimensional feature space. For the SVM classification with multiple 

non-linear kernels, with Eq. (3-17) and Eq. (3-20), we can obtain 

 

y = sgn(∑ yiαi([𝑐1𝜙1(𝐱i)
𝑇, 𝑐2𝜙2(𝐳i)

𝑇] ∙ [𝑐1𝜙1(𝐱), 𝑐2𝜙2(𝐳)]) + bN
i=1 )  (3-21) 

 

where [𝑐1𝜙1(𝐱i)
𝑇, 𝑐2𝜙2(𝐳i)

𝑇]  and [𝑐1𝜙1(𝐱), 𝑐2𝜙2(𝐳)]  denote the weighted 

combination of support feature vector and test feature vector in the mapped 
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high-dimensional feature space, respectively. It is reasonable to conclude that SVM 

classification with multiple non-linear kernels is also equivalent to classifying the 

weighted combination of the test feature vector in the mapped high-dimensional 

feature space. 

3.3 Experiments and Discussion 

3.3.1 Data Sets 

In order to evaluate the proposed methods, I conduct the experiments on three 

public data sets: the Extended Cohn-Kanade (CK+) data set (Lucey et al., 2010), the 

GEMEP-FERA 2011 data set (Valstar et al., 2011) and the Acted Facial Expression in 

Wild (AFEW) 4.0 (Abhinav Dhall et al., 2012) data set. I first give a brief description 

to these three data sets. 

The Extended Cohn-Kanade (CK+) data set contains 593 image sequences 

from 123 subjects. The face images in the database are collected under lab-controlled 

environment. The image sequences vary in duration from 10 to 60 frames. In total, 

327 of 593 image sequences have emotion labels and each is categorized into one of 

the following seven emotion classes: anger (An), contempt (Co), disgust (Di), fear 

(Fe), happiness (Ha), sadness (Sa) and surprise (Su). Each image sequence changes 

from the onset (the neutral frame) to the peak (the expressive frame). In addition, the 
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X–Y coordinates of 68 facial landmark points were given for each image in the 

database. The landmark points of key frames of each video sequence were manually 

labelled, while the remaining frames were automatically aligned using the AAM fitting 

algorithm (Matthews and Baker, 2004).  

The GEMEP-FERA 2011 data set contains 289 video sequences from 10 actors 

who were trained by a professional director. It is divided into a training set of 155 

sequences and a test set of 134 sequences. Each sequence is categorized into the 

following five emotions: anger (An), happiness (Ha), relief (Re), fear (Fe), and 

sadness (Sa). Only the training set provides emotion labels. This database is more 

challenging than the CK+ database, since there are head movements and gesture 

variations in image sequences.  

The Acted Facial Expression in Wild (AFEW) 4.0 data set includes video 

clips collected from different movies which are believed to be close to real world 

conditions. The database splits into a training set, a validation set and a test set. There 

are 578 video clips in the training set. The validation and test sets have 383 video 

clips and 407 video clips, respectively. Each video clip belongs to one of the seven 

categories: anger (An), disgust (Di), fear (Fe), happiness (Ha), neutral (Ne), sadness 

(Sa), and surprise (Su). This database provides original video clips and aligned face 

sequences. They applied the model proposed in (Zhu and Ramanan, 2012) to extract 
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the faces from video clips and align the faces. Different from the CK+ and 

GEMEP-FERA 2011 data sets, facial expressions in AFEW 4.0 are more natural and 

spontaneous. The variations in illumination, pose and background in image sequences 

increase the complexity of facial expression analysis. 

 

Figure 3-7. The selected image sequences from the three databases. From top to 

bottom: CK+, GEMEP-FERA2011 and AFEW 4.0. 

Figure 3-7 shows the selected image sequences from the three databases. The 

first row is the face images from the CK+ database, which are frontal-view and 

lab-controlled faces. The middle row shows the images from the GEMP-FERA 2011 

database. There exist head movements and gesture variations. The bottom row is an 

image sequence from the AFEW 4.0 database. It can be seen that the background is 

complex and there exist both illumination changes and pose variations.  

3.3.2 Feature Extraction 

In our experiments, three types of features were extracted, namely HOG-TOP, 
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geometric warp feature and acoustic feature.  

In extracting HOG-TOP from image sequences, each face image was first 

cropped and resized to 128×128. The resized face image was then partitioned into 8×8 

blocks with a size of 16×16. The bin number was set to 9 with an angle range of 0° −

180°. In each block, an HOG-TOP was obtained with a dimension of 3×9=27. The 

HOG-TOP of the 8×8 blocks are further concatenated into a long feature vector with a 

dimension of 3×9×8×8=1728. 

Facial landmarks were used to compute the geometric warp features. I computed 

the warp transform of facial landmarks between the neutral face and an expressive 

face. Each face contains 68 facial landmarks. These facial landmarks divide the face 

into many non-overlap sub regions by Delaunay triangulation. In this work, 109 pair 

of triangles (the smallest number of triangles available in face images) was acquired. 

Each pair of triangles between the neutral face and an expressive face can define a 

unique transform and each affine transform is determined by six parameters. The warp 

transform coefficients are finally concatenated as a feature vector of 6×109=654 

elements to represent the geometric warp feature.  

The acoustic features with a length of 1582 used in this work are provided by the 

database (Abhinav Dhall et al., 2012; Dhall et al., 2014). The acoustic features were 

extracted by applying the open-source Emotion Affect Recognition (openEAR) toolkit 
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(Eyben et al., 2009) backend OpenSMILE (Florian Eyben et al., 2010). 

3.3.3 Experimental Results 

3.3.3.1 A Comparison of HOG-TOP and LBP-TOP 

I first compare the performance of HOG-TOP proposed in this work with 

LBP-TOP proposed in (Zhao and Pietikainen, 2007). When computing the LBP-TOP 

features, the general settings adopted in most reported works are used. The resized 

face image is partitioned into 4×4 blocks. The LBP-TOP is coded with a uniform 

pattern. The LBP-TOP histogram of each block is a feature vector of 3×59=177 

elements. The length of the feature vector consists of 4×4 blocks is 3×59×4×4=2832. 

There are 327 image sequences with emotion labels belonging to 118 subjects in 

the CK+ database. I followed the protocol proposed in (Lucey et al., 2010) and took the 

leave-one-subject-out cross validation strategy. Each time the samples from one subject 

were used for testing and the remaining samples from all other subjects were used for 

training.  In order for each subject to be evaluated once, I carried out 118 validations. 

The classification accuracy obtained on the CK+ database by using two types of 

features is shown Table 3-2.  

I also compare the performance of the two features in the GEMEP-FERA 2011 

database. Since only the emotion labels of the training set are publicly available. Only 
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the training set is used to do the evaluation. There are seven subjects in the training 

set. I adopted the leave-one-subject-out strategy and carried out seven cross 

validations. Table 3-3 shows the performance obtained by applying the two feature 

descriptors. 

As for the AFEW 4.0 database, I utilize the training set to train an SVM classifier 

and test the classifier on the validation set. The database provided a baseline method 

(Dhall et al., 2014) which employed LBP-TOP to represent the dynamic textures of 

the video sequence and trained an SVM with non-linear RBF kernel for emotion 

classification. The accuracy obtained on the AFEW 4.0 database by applying two 

types of features is shown in Table 3-4. The overall accuracy is used to evaluate the 

performance. The overall accuracy is defined as 

  𝑂𝑎𝑐𝑐 =
∑ ∑ 𝑚𝑛𝑘

𝐾
𝑘=1

𝑁
𝑛=1

∑ ∑ 𝑀𝑛𝑘
𝐾
𝑘=1

𝑁
𝑛=1

      (3-22) 

where K is the number of classes, N is the number of cross validation folds, 𝑚𝑛𝑘 is the 

number of correctly predicted samples of the 𝑘-th class in the 𝑛-th fold, and 𝑀𝑛𝑘 

denotes the total samples of the 𝑘-th class in the 𝑛-th fold. The classification rate of 

each individual facial expression (𝑘-th class) over n validation folds is given by 

∑ 𝑚𝑖𝑘
𝑁
𝑖=1

∑ 𝑀𝑖𝑘
𝑁
𝑖=1

. 
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Table 3-2. The classification accuracy of LBP-TOP and HOG-TOP on the CK+ 

database (%). 

 Overall Anger Contempt Disgust Fear Happiness Sadness Surprise 

LBP-TOP 89.3 

 

75.6 88.9 93.2 80.0 98.5 78.6 92.8 

HOG-TOP 89.6 88.9 66.7  94.9 76.0  95.6  67.9  97.6  

 

Table 3-3. The classification accuracy of LBP-TOP and HOG-TOP on the 

GEMEP-FERA 2011 database (%). 

 Overall Anger Fear Joy Relief Sadness 

LBP-TOP 53.6 56.2  26.7  58.1  51.6  74.2  

HOG-TOP 54.2 43.7  36.7  61.3  54.8  74.2  

 

Table 3-4. The classification accuracy of LBP-TOP and HOG-TOP on the AFEW 4.0 

database (%). 

 Overall Neutral Anger Disgust Fear Happiness Sadness Surprise 

LBP-TOP 30.6 19.0  50.0  25.0  15.2  57.1  16.4  21.7  

HOG-TOP 35.8 58.7  73.4  22.5  4.3  60.3  4.9  2.2  

 

Experimental results show that the overall classification accuracy obtained by 

using HOG-TOP on the CK+ database and the GEMEP-FERA 2011 database is 89.6% 

and 54.2%, respectively. It is competitive with the result of 89.3% and 53.6% 

obtained by applying LBP-TOP on the two databases. While the overall classification 

rate of HOG-TOP on the AFEW 4.0 database is 35.8%, which is better than 30.6% 

obtained by using LBP-TOP, meaning that HOG-TOP is more robust in capturing the 
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subtle facial appearance changes in the wild. In addition, HOG-TOP with a length of 

1728 is more compact than LBP-TOP with a length of 2832.  

I also compare the computational speeds of the two features under the 64-bit Win 

7 operating system with a Core i7 CPU. The two features are computed with Matlab 

8.2. The computation time depends on the block size and sequence duration. With the 

same block size (16×16) and sequence duration (11 frames), the computation time of 

HOG-TOP and LBP-TOP is 0.027s and 0.042s, respectively, showing the 

computational efficiency of HOG-TOP.  

3.3.3.2 Facial Expression Recognition Under Lab-controlled 

Environment 

A model which combines HOG-TOP and geometric warp was developed to 

handle the problem of facial expression recognition under lab-controlled environment. 

The following feature sets are evaluated in this experiment: geometric warp feature, 

dynamic appearance feature (HOG-TOP), hybrid feature I and hybrid feature II. 

Hybrid feature I denotes the feature vector of concatenating HOG-TOP and geometric 

warp feature directly and hybrid feature II is the optimal combination of the 

HOG-TOP and geometric warp feature.  

I first compare our proposed geometric warp feature with the other geometric 

features on the CK+ data set. All the methods take the leave-one-subject-out cross 
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validation. Experimental results are shown in Table 3-5. The method in (Lucey et al., 

2010) applied a set of facial landmarks to characterize the face shape directly. Chew et 

al. (Chew et al., 2011) applied a constrained local model to extract similarity 

normalized shape as geometric features. The shifts of the facial landmarks between 

the neutral face and the expressive face were computed to represent the geometric 

feature in (Chen et al., 2015). Table 3-5 shows that our proposed geometric warp 

feature achieves a superior performance compared with the other geometric features, 

meaning that the proposed geometric warp feature is more effective to capture facial 

configuration changes. 

Table 3-5. The results of the different geometric features on the CK+ database (%). 

(GWF is our proposed geometric warp feature). 

 GWF Lucey et al. Chew et al. Chen et al. 

Anger 86.7 35.0 70.1 62.2 

Contempt 94.4 25.0 52.4 72.2 

Disgust 96.6 68.4 92.5 86.4 

Fear 36.0 21.7 72.1 56.0 

Happiness 98.5 98.4 94.2 91.3 

Sadness 75.0 4.0 45.9 39.3 

Surprise 96.4 100.0 93.6 95.2 

Overall 89.0 66.7 82.3 79.2 

I further evaluate hybrid feature I and hybrid feature II with the 

leave-one-subject-out cross validation on the CK+ database and compare the 

performance with that obtained by applying geometric feature and HOG-TOP alone. 
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Table 3-6 shows the classification accuracy obtained by using the two different 

feature sets and two different combination schemes. Figure 3-8 shows the confusion 

matrices of using two different feature sets and two different combination schemes. 

Experimental results illustrate that the emotions “disgust”, “happiness” and “surprise” 

have higher classification rates than the other emotions, indicating that these three 

emotions are easier to be distinguished than the others. 

      

(a)                              (b) 

       

(c)                              (d) 

Figure 3-8. The confusion matrices obtained by using two feature sets and two 

combination schemes on the CK+ database: (a) HOG-TOP, (b) geometric feature, (c) 

hybrid feature I and (d) hybrid feature II. (An: Anger, Co: Contempt, Di: Disgust, Fe: 

Fear, Ha: Happiness, Sa: Sadness, and Su: Surprise). 
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Table 3-6 also shows that hybrid feature I (91.4%) and hybrid feature II (95.7%) 

outperform the geometric warp feature (89.0%) and HOG-TOP (89.6%) applied 

individually. It can be concluded that different features (hybrid feature I) can provide 

complementary information and multiple feature fusion can further enhance the 

discriminative ability of the combined features (hybrid feature II).  

Table 3-6. The classification accuracy obtained by using two feature sets and two 

combination schemes on the CK+ database (%). 

Feature set Overall Anger Contempt Disgust Fear Happiness Sadness Surprise 

HOG-TOP 89.6 88.9 66.7  94.9  76.0  95.6  67.9  97.6  

Geometric feature 

Feature 

89.0 86.7  94.4 96.6  36.0  98.5  75.0  96.4  

Hybrid Feature I 91.4 95.6 94.4 94.9 52.0 98.5 78.6 96.4 

Hybrid Feature II 95.7 100.0  94.4  96.6  84.0  100.0  78.6  98.8  

 

I also compare our method with the other methods. All the methods compared 

follow the baseline method (Lucey et al., 2010) and take the leave-one-subject-out 

cross validation. The method in (Lucey et al., 2010) and (Chew et al., 2011) combined 

geometric feature and appearance feature and trained an SVM to perform the 

classification. In (X. Huang et al., 2011), a weighted component-based feature 

descriptor to extract dynamic appearance feature was utilized and multiple kernel 

learning was applied to train the SVM for recognition. A sparse temporal 

representation classifier was proposed for facial expression recognition in (Chew et al., 
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2012). The method in (X. Huang et al., 2012) applied spatiotemporal local monogenic 

binary pattern (STLMBP) feature to handle the problem of facial expression 

recognition. 

As can be seen from Table 3-7, the HOG-TOP (89.6%) and geometric feature 

(89.3%) proposed in our method can achieve a competitive performance compared 

with SPTS+CAPP (Lucey et al., 2010) (88.4%), CLM (Chew et al., 2011) (82.4%) 

and STLMBP (X. Huang et al., 2012) (88.4%). It demonstrates the effectiveness of 

our proposed features. The hybrid feature II as the optimal combination of HOG-TOP 

and geometric feature achieves a superior performance compared with the other 

methods tested, showing the effectiveness of the multiple feature method. 

Table 3-7. Performance comparison with other methods on CK+ database. 

Method Accuracy (%) 

HOG-TOP  89.6 

Geometric feature 89.0 

Hybrid Feature I 

 

91.4 

Hybrid Feature II 95.7 

SPTS+CAPP (Lucey et al., 2010) 88.4 

CLM (Chew et al., 2011) 82.4 

STLMBP (X. Huang et al., 2012) 88.4 

 
STR (Chew et al., 2012) 94.9 

 
CFD (X. Huang et al., 2011) 93.2 
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3.3.3.3 Facial Expression Recognition in the Wild 

HOG-TOP and acoustic feature are fused to tackle the problem of facial 

expression recognition in the wild. I first evaluate our method on the validation set. 

Four feature sets are explored: HOG-TOP only, acoustic feature only, hybrid feature I 

and hybrid feature II. Hybrid feature I concatenates the HOG-TOP and acoustic 

feature directly. Hybrid feature II is the optimal combination of the HOG-TOP and 

acoustic feature. 

Table 3-8 shows the classification accuracy obtained by applying two different 

feature sets and two combination schemes. The corresponding confusion matrices are 

shown in Figure 3-9. The classification rates shown in Table 3-8 are much lower than 

the results shown in Table 3-6. Different from facial expressions under lab-controlled 

environment in which the actors or subjects can pose distinguished facial expressions, 

the facial expressions in the wild are more subtle. The factors including head 

movements, pose variations etc. also increase classification difficulties. And 

sometimes, several facial expressions in the wild may appear together, which makes a 

facial expression to be confused with other expressions.  

It can be seen that the classification rate of emotion “surprise” is the lowest. The 

confusion matrices shown in Figure 3-9 show that the emotion “surprise” is mostly 

misclassified as emotions “anger”, “happiness” and “neutral”. The emotions “anger” 
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and “neutral” have higher recognition accuracies than the other emotions. Hybrid 

feature I and hybrid feature II outperform the HOT-TOP and acoustic feature used 

individually, indicating that two feature sets are complementary with each other. 

Hybrid feature II achieves a superior performance compared with hybrid feature I, 

demonstrating that the effectiveness of the multiple features in dealing with the facial 

expression recognition problem in the wild. 

Table 3-8. The classification accuracy obtained by using two different feature sets and 

two combination schemes on the validation set of the AFEW 4.0 database (%). 

Feature set Overall Neutral Anger Disgust Fear Happiness Sadness Surprise 

HOG-TOP 35.8 58.7 73.4 22.5 4.3 60.3 4.9 2.1 

Acoustic feature 32.9 57.1 64.1 15.0 26.1 34.9 14.7 0.0 

Hybrid Feature I 37.6 65.1 75.0 12.5 8.70 57.1 13.1 4.4 

Hybrid Feature II 40.2 69.8 76.6 17.5 15.2 63.5 9.8 2.1 

 

 

      

(a)                             (b) 
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(c)                             (d) 

Figure 3-9. The confusion matrices obtained by using two feature sets and two 

combination schemes on the validation set of AFEW 4.0 database. (a) HOG-TOP, (b) 

acoustic feature, (c) hybrid feature I and (d) hybrid feature II. (An: Anger, Di: Disgust, 

Fe: Fear, Ha: Happiness, Ne: Neutral, Sa: Sadness, and Su: Surprise). 

Hybrid feature II which achieves the best performance on the validation set was 

further applied to evaluate the test set. The overall recognition accuracy on the test set 

is 45.2%. Table 3-9 shows the results compared with the other methods. The baseline 

method in (Dhall et al., 2014) combined LBP-TOP and the acoustic feature. Lip 

activity was incorporated with voice in (Ringeval et al., 2014) to tackle the emotion 

recognition problem. The method in (X. Huang et al., 2014) used dynamic textures 

only and the method in (Meudt and Schwenker, 2014) applied the voice only. The 

method in (Sun et al., 2014) employed audiovisual feature for emotion recognition. 

Table 3-9 shows that our method (45.2%) improves significantly compared with the 

baseline method (Dhall et al., 2014) and the method in (Ringeval et al., 2014), with an 

improvement of about 11% and 10%, respectively. Our method is also better than (X. 
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Huang et al., 2014) (41.5%) and EAC (Meudt and Schwenker, 2014) (40.1%). 

Compared with the method in (Kaya and Salah, 2014) (44.2%), our performance is 

still competitive. Moreover, our proposed method (Chen et al., 2014) participated in 

the second emotion recognition in the wild challenge (EmotiW 2014) (Dhall et al., 

2014) and achieved the second runner-up award.  

Table 3-9. Performance comparison with other methods on the test set of AFEW 4.0 

database. 

Method Accuracy (%) 

HOG-TOP+Voice (My method) 45.2 

LBP-TOP + Voice (Dhall et al., 2014) 33.7 

Lip activity + Voice (Ringeval et al., 2014) 

 

(Ringeval et al., 2014)  

35.3 

STLMBP (Huang 2014 et al. 2014) 41.5 

EAC (Meudt and Schwenker, 2014) 40.1 

LBP+ELM (Kaya and Salah, 2014) 44.2 

SIFT + BoW + Voice (Sun et al., 2014) 47.2 

DCNN + SIFT + Voice (M. Liu et al., 2014) 50.2 

 

Sun et al. (Sun et al., 2014) applied multimodal features (HOG, LBP, SIFT and 

audio features) and multiple kernel learning to handle this problem and won the first 

runner-up award with a classification accuracy of 47.17%. Liu et al. (M. Liu et al., 

2014) utilized another database (Celebrity Faces in the Wild (CFW), (X. Zhang et al., 

2012) to train a deep convolutional neural network (DCNN) and combined the learned 

features with other hand-designed features (HOG, SIFT and audio features) to tackle 
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this problem. With more training data, they acquired a classification accuracy of 50.37% 

and won the champion of this challenge.  

3.3.3.4 Decision fusion versus Feature fusion 

The multiple feature fusion method applied in this work is a kind of feature 

fusion method. Another technique, namely decision-level fusion, is also widely used 

in computer vision community to deal with multiple sets of features. In a preliminary 

study, the effectiveness of the two techniques for facial expression recognition in 

video was explored. A preliminary experiment was conducted on the AFEW 4.0 

database. As mentioned above, the one-vs-one technique was employed to tackle the 

multiclass-SVM problem, and max-win voting strategy was used to conduct the 

classification. For decision-level fusion, I first applied the HOG-TOP and acoustic 

feature separately and then saved the predict results, i.e. the number of votes for each 

class of the two features, respectively. After that, the votes obtained by each 

individual feature were added and based on these combined votes, the max-win voting 

strategy was carried out again to make the final decision. The overall classification 

rate is computed as the performance of decision-level fusion method. 
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Figure 3-10. A comparison of different methods on the validation set of the AFEW 4.0 

database. 

Figure 3-10 shows the experimental results of the different methods tested. The 

overall accuracies of HOG-TOP, acoustic feature and feature-level fusion shown in 

Figure 3-10 are the same as those shown in Table 3-8. Experimental results show that 

feature fusion outperforms the decision fusion method, although they both utilize the 

same multiple sets of features and improve the recognition performance over 

individual features. 

3.3.3.5 The Effect of Block Size on HOG-TOP 

I further explore the representation ability of HOG-TOP with different block 

sizes, from 8×8 to 32×32. Table 3-10 shows the parameters used for extracting 

HOG-TOP. The blocks with a small size (12 and 16) are not overlapped and large 

blocks (24×24 and 32×32) are half overlapped. HOG-TOP is employed to evaluate on 

the CK+ database and the AFEW 4.0 database. Experimental results are shown in 
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Tables 3-11 and 3-12. 

Table 3-10. The parameters used for extracting HOG-TOP. 

Image size Block size Overlap Blocks 

96×96 12×12 No 8×8 

96×96 24×24 Half 7×7 

128×128 16×16 No 8×8 

128×128 32×32 Half 7×7 

It can be seen that the HOG-TOP with various block sizes achieve the similar 

overall accuracy. It can be concluded that HOG-TOP is robust to scales. For facial 

expressions under lab-controlled environment (Table 3-11), HOG-TOP with a small 

size (12) is more effective to recognize the facial expressions “fear” and “contempt” 

which have subtle facial muscle activities. A small block size is more robust to 

capture local subtle appearance changes than a large block size. For facial expressions 

in the wild (Table 3-12), HOG-TOP with a large size (24 and 32) achieves a superior 

performance for the facial expression “surprise”, indicating that HOG-TOP with a 

large block size is more robust to distinguish “surprise” expression from others in the 

wild. Table 3-12 also shows that HOG-TOP with various block sizes outperforms the 

LBP-TOP (30.6%) for facial expression recognition in the wild. 

 

 

 



66 

Table 3-11. The performance of HOG-TOP with various block sizes on the CK+ 

database (%). 

 
12×12 24×24 16×16 32×32 

Angry 84.4 80.0 88.9 84.4 

Contempt 72.2 66.7 66.7 66.7 

Disgust 93.2 93.2 94.9 96.6 

Fear 88.0 80.0 76.0 72.0 

Happy 95.7 95.7 95.7 97.1 

Sad 64.3 64.3 67.9 60.7 

Surprise 96.4 96.4 97.6 97.6 

Overall 89.3 87.8 89.6 88.7 

Table 3-12. The performance of HOG-TOP with various block sizes on the AFEW 4.0 

database (%). 

 12×12 24×24 16×16 32×32 

Neutral 54.0 38.1 58.7  46.0  

Angry 71.9 71.9 73.4  73.4  

Disgust 20.0 15.0 22.5  20.0  

Fear 6.50 15.2 4.30  13.0  

Happy 57.1 63.5 60.3  60.3  

Sad 4.90 9.80 4.90  9.80  

Surprise 2.20 13.0 2.20  8.70  

Overall 34.2 35.2 35.8  36.0  

3.3.4 Discussion 

The experimental results reported above demonstrate that the proposed 

framework can efficiently handle the problem of facial expression recognition in 

video. Facial expressions under lab-controlled environment are different from those in 

the wild which are more natural and spontaneous. Two approaches are proposed to 

tackle the two different facial expression recognition problems in this work. The 
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HOG-TOP feature outperforms the geometric feature and audio feature in the two 

approaches, indicating that facial appearance plays an important role for both facial 

expression recognition problems. Compared with LBP-TOP, HOG-TOP is more 

compact and effective to characterize facial appearance changes. Facial configuration 

changes also provide useful clues for facial expression analysis. The facial landmarks 

can be located exactly on a face image under lab-controlled, representing the facial 

configuration changes caused by facial muscle movements. A new effective geometric 

feature based on warp transform of facial landmarks is proposed and the new 

geometric warp feature is robust to capture facial configuration changes. On the other 

hand, it is very challenging to locate facial landmarks on face images in the wild. 

However, the voice also plays an important role on affect recognition. Instead of using 

geometric feature, acoustic feature is employed for facial expression recognition in 

the wild. Experimental results show that different features can make different 

contributions to facial expression recognition and the multiple feature fusion can 

enhance the discriminative ability of the multiple features. It can be seen that for 

facial expression recognition in the wild, although our method outperforms the 

baseline method, the performance is in general not as good as that in facial expression 

recognition under lab-controlled. Facial expression recognition in the wild is much 

more challenging and it will be one of our future research focuses. 
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3.4 Summary 

Video based facial expression recognition is a challenging and long standing 

problem. In this chapter, I discuss the potentials of audiovisual modalities and propose 

an effective framework with multiple-feature fusion to handle this problem. Both the 

visual modality (face images) and audio modality (speech) were utilized in this study. 

A new feature descriptor called histogram of oriented gradients from three orthogonal 

planes (HOG-TOP) is proposed to extract dynamic textures from video sequences to 

characterize facial appearance changes. Experiments conducted on three public 

databases (CK+, GEMEP-FERA 2011, AFEW4.0) have shown that HOG-TOP 

performs as well as a widely used feature LBP-TOP in representing dynamic textures 

from video sequences. Moreover, HOG-TOP is more effective to capture subtle facial 

appearance changes and robust in dealing with facial expression recognition in the 

wild. In addition, HOG-TOP is more compact and computationally more efficient. In 

order to capture facial configuration changes, an effective geometric feature deriving 

from the warp transform of the facial landmarks is also introduced. Realizing that 

voice is another powerful way for human beings to transmit message, I also explored 

the role of voice and employed the acoustic feature for affect recognition in video. 

The multiple-feature fusion was applied to deal with facial expression recognition 

under lab-controlled environment and in the wild. Experiments conducted on two 
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facial expression datasets, CK+ and AFEW 4.0 demonstrate that our approach can 

achieve a promising performance for facial expression recognition in video.  
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Chapter 4  A New Framework with 

Multiple Tasks for Detecting and 

Locating Pain Events in Video 

4.1 Introduction 

Pain analysis in video has two problems to be solved: pain event detection and 

pain event locating. The first problem is to detect whether there exists any pain event 

in a video sequence; the second problem is to locate the pain events in a video 

sequence if there is any. In this chapter, a new framework with multiple tasks is 

proposed to jointly tackle the two problems. Considering that information with 

various time scales (frame, segment and sequence) can make different contributions, I 

propose to combine three different tasks, that is frame-level, segment-level and 

sequence-level detection, to effectively detect and locate pain events in video. Figure 

4-1 shows the pipeline of our proposed framework. In this framework, HOG of 

fiducial points (P-HOG) is used to characterize spatial features from video frames and 

an SVM classifier is trained for frame-level detection. In order to further exploit 

spatial-temporal information among contiguous frames, segment-level detection is 

proposed to assist the frame-level detection. HOG from three orthogonal planes 

(HOG-TOP) are applied to model dynamic textures of video segments. An SVM 
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classifier is trained as a segment-level paint event detector. I further apply the max 

pooling strategy to obtain global P-HOG and HOG-TOP to represent the whole video 

sequence and employ multiple kernel fusion to optimally combine the two types of 

global features. An SVM with multiple kernels is trained to perform the 

sequence-level (pain event) detection. At last, an effective probabilistic fusion method 

is proposed to integrate the detection results of the three different tasks (frame-level, 

segment-level and sequence-level detection) to locate pain events in video. By 

integrating three different tasks, the proposed method provides a more robust and 

precise detection of pain events in video than the other previously reported techniques 

which usually focus on one of these tasks only. 

 

Figure 4-1. The pipeline of our proposed framework for joint pain event detection and 

locating in video. 
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4.2 Methodology 

4.2.1 Frame-level Detection 

Frame-level detection tries to detect the pain presence/absence of each frame, 

which is a binary classification problem. For frame-level detection, an SVM with 

spatial features extracted from video frames was trained for this task. For facial 

expression analysis, there are two major types of features considered: appearance and 

geometric features. Geometric features often use facial fiducial points to describe the 

face shape while appearance features mainly characterize the textures of faces. In this 

study, both geometric information (facial fiducial points) and appearance information 

(HOG) were utilized. I extracted HOG from the neighborhoods of facial fiducial 

points (P-HOG) to characterize the spatial feature of each video frame and trained an 

SVM to perform the classification.  

Facial expressions are caused by facial muscle movements, especially the 

muscles around the mouth, nose and eyes. Features can be extracted from the 

interesting regions directly. A face image was first tracked with active appearance 

models (AAMs) (Matthews and Baker, 2004), and some facial landmarks were 

labeled on the face, such as the blue points shown in Figure 4-2. The facial landmarks 

around the face outline are ignored and only the landmarks around the mouth, nose 
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and eyes are considered. We can define a neighborhood (a local patch) centered in 

each landmark and extract the appearance features from each local patch. Here HOG 

is employed to characterize appearance features. The HOG features extracted from 

each local patch are concatenated to form a global feature vector to represent the 

whole spatial appearance feature of each frame. 

 

Figure 4-2. Extracting HOG features from the neighborhoods (red rectangles) around 

the fiducial points (P-HOG). The fiducial points around the face outline are ignored. 

In our experiments, each video frame was tracked with 66 facial landmarks. The 

49 fiducial points which cover the brows, eyes, nose and mouth were utilized, as 

shown in Figure 4-2. A 16×16 local patch centered on each fiducial point was 

cropped and 49 local patches from each frame were obtained. HOG was further used 

to encode each local patch. The vector length of HOG extracted from a local patch 

with the default setting is 36 (Dalal and Triggs, 2005). The global feature including 

the HOGs from 49 local patches is a vector with a length of 36×49 = 1764.  
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4.2.2 Segment-level Detection 

Some previous studies have pointed out that facial expression is a dynamic and 

contiguous process (Koelstra et al., 2010; Scherer and Ekman, 1982). It means that in 

a video sequence, pain frames and no-pain frames are clustered by themselves. Figure 

4-3 shows the ground truth frame labels in a video sequence. It can be seen that there 

are three pain events in this video sequence, although the duration of each pain event 

is different. The pain frames of each pain event are contiguous and the no-pain frames 

between pain events are also contiguous. It inspires us to consider segment-level 

detection. Each long video sequence can be partitioned into many non-overlap 

segments with each segment containing a set of contiguous frames. We can locate the 

clustered pain/no-pain frames by classifying each segment.  

 

Figure 4-3. The ground truth frame labels in a video sequence. We can find the 

pain/no-pain frames are generally contiguous and clustered. 

In this work, HOG from Three Orthogonal Planes (HOG-TOP) is applied to 

extract the dynamic textures from segments, as I have described in Section 3.2.1 of 
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Chapter 3.  

A block-based method is also applied in this study. The video segment is divided 

into a number of block volumes and HOG-TOP features are extracted from each block 

volume. The HOG-TOP features of all the block volumes are concatenated together to 

represent the whole video segment. In experiments, the face image is first cropped 

from the original image and resized to 64×64. The face image is partitioned into 8×

8 blocks with each block with size of 8×8. The number of bins is set to 9 with an 

angle range of 0° − 180°. Each block can generate a HOG-TOP with a dimension of 

3×9=27. All the HOG-TOP features of the 8×8 blocks are concatenated into a long 

feature vector with a dimension of 3×9×8×8 = 1728.  

After feature extraction, an SVM was trained for segment-level detection. In our 

experiment, a segment contains at least one pain frame is labeled as a positive 

instance (pain segment) and a segment which contains only no-pain frames is labeled 

as a negative instance (no-pain segment).  

4.2.3 Sequence-level Detection 

In order to detect whether there exist pain events in a video sequence, a 

sequence-level detection method which is based on multiple-feature fusion is 

proposed. At first, the max-pooling strategy is adopted to transform the frame-level 

feature (P-HOG) and segment-level feature (HOG-TOP) to a global P-HOG and a 
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global HOG-TOP, respectively. After that, multiple kernel fusion is applied to find an 

optimal combination of the two kinds of features. Finally, an SVM with multiple 

kernels is trained to perform the classification.  

Given a long video sequence with 𝑁 frames segmented into 𝑀 segments, after 

feature extraction, we can obtain 𝑁 P-HOG features and 𝑀 HOG-TOP features. 

Here, the max-pooling strategy is used to get the global P-HOG and global HOG-TOP. 

Suppose that we have a set of features 𝐒 = {𝐱𝑖 ∈ ℝ𝐷|𝑖 = 1,2, … 𝑁}, and 𝐱𝑖 is a 

D-dimension feature vector, i.e. 𝐱𝑖 = (𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝐷). Here I denote the final feature 

vector after the max pooling as 𝐅. Then the elements in 𝐅 should satisfy 

                𝐹𝑗 = max
𝑖=1,2,…𝑁

𝑥𝑖𝑗     𝑗 = 1,2, … 𝐷                   (4-1) 

where F𝑗  is the j-th element of 𝐅 and 𝑥𝑖𝑗  is the j-th element of 𝐱𝑖 . Eq. (4-1) 

shows that each element in 𝐅 is the maximum value of all the corresponding 

elements in the feature set 𝐒, where 𝐒 is a 𝑁×𝐷 matrix, with 𝑁 being the number 

of feature vectors and 𝐷 the dimensionality of each feature vector. Then 𝐅 contains 

the maximum value of each column in 𝐒. Max pooling transforms a set of feature 

vectors to a global feature vector, which is used to represent the whole video 

sequence.  

After obtaining the global features, the next thing is to train a classifier to 

perform the detection. SVM is a widely used classification model. However, a 
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traditional SVM with a single kernel is not efficient to handle the training problem of 

multiple features. Recently, multiple kernel fusion has attracted a growing attention. 

Previous works have showed that multiple kernels can enhance the discriminative 

power of the SVMs (Chen et al., 2014; Karan Sikka et al., 2013).  

 

Figure 4-4. The flowchart of sequence-level detection with a multiple kernel SVM. 

In this study, there are two types of features: global P-HOG and global 

HOG-TOP. Multiple kernel fusion is applied to find an optimal fusion of the two 

types of features, as I have described in Section 3.2.4 of Chapter 3. The flow chart of 

the framework is shown in Figure 4-4. I adopt the formulation proposed in 

(Rakotomamonjy et al., 2008) in which the kernel is actually a convex combination of 

several basis kernels. Define the global P-HOG as 𝐱 and global HOG-TOP as 𝐳, 
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then we have 

        𝐾𝑖𝑗 = 𝛽1𝑘1(x𝑖, x𝑗) + 𝛽2𝑘2(z𝑖, z𝑗)     (4-2) 

with 𝛽1, 𝛽2 > 0, 𝛽1 + 𝛽2 = 1.  

The basis kernels can be linear kernels, radial basis function (RBF) kernels and 

polynomial kernels, etc. In this study, I use a linear kernel for each type of features 

and adopt the grid search with LIBSVM (Chang and Lin, 2011) to learn the kernel 

weights β1, β2 and coefficients α. 

Given a test sample which contains global P-HOG 𝐱 and global HOG-TOP 𝐳, 

the label y can be predicted by 

 y = sgn(∑ 𝑦𝑖𝛼𝑖(𝛽1𝑘1(𝐱𝑖, 𝐱) + 𝛽2𝑘2(𝐳𝑖, 𝐳)) + 𝑏𝑁
𝑖=1 )    (4-3) 

4.2.4 Probabilistic Fusion of Three Tasks 

The proposed framework aims to effectively detect and locate pain events in 

video. I have illustrated how to apply a sequence-level detection method which 

incorporated multiple features (global P-HOG and HOG-TOP) and multiple kernel 

fusion for pain event detection. For pain event locating, a probabilistic fusion method 

is proposed to integrate three different tasks (frame-level, segment-level and 

sequence-level detection) to achieve this goal. Figure 4-5 shows the semantic diagram 

of combining three tasks for pain event locating. Frame-level detection can detect the 

pain presence/absence of each individual frame. Segment-level detection can obtain 
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the clustered pain/no-pain frames in a video sequence. And sequence-level detection 

can eliminate some false positives caused by frame and segment detection in a true 

negative video sequence. I will show that the combined multiple-task outperforms any 

individual task, and each task plays a different but vital role for pain event locating. 

 

Figure 4-5. Multiple-task (frame, segment and sequence detection) fusion for pain 

event locating. 

The classifiers trained for the three tasks in our work are all SVMs. The output of 

an SVM is a decision value obtained by a linear function, δ = 𝐰𝐱 + b. The sigmoid 

function is applied to transform the decision value δ to a probability p = 1/(1 +

𝑒−𝛿). Note that for the frame-level detection, each frame has a probability; while for 

the segment-level detection; the frames contained in the same segment share the same 

probability.  

I denote the probability of a frame which is predicted as a pain frame by 𝑝𝑓 and 
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it can be acquired from the frame-level detection. 𝑝𝑠 is the probability of a segment 

which is predicted as a positive segment, meaning that the segment contains at least 

one pain frame. 𝑝𝑠 can be obtained from the segment-level detection. I define the 

following rule to fuse the frame probability and segment probability: 

𝑝 = {
𝑝𝑓           |𝑝𝑓 − τ|  > |𝑝𝑠 − τ|

𝑝𝑠           |𝑝𝑓 − τ|  < |𝑝𝑠 − τ|
     (4-4) 

where τ is a threshold and it is set to 0.5 in our experiment.  |𝑝f − τ| is the distance 

between the frame probability and the threshold, while |𝑝s − τ| is the distance 

between the segment probability and the threshold. The distance shows the confidence 

of a prediction. The greater the distance is, the higher confidence of a prediction is. 

However, combining the frame-level and segment-level detection might still not be 

able to achieve a reliable prediction. For instance, considering a true negative video 

sequence, meaning there are no pain frames in it. If we integrate the frame-level 

detection and the segment-level detection only, we would most likely see some false 

positives. In order to eliminate these false positives, I bring in the sequence-level 

detection. 

Suppose that the prediction of sequence-level detection is 𝑦 = 1 when the 

sequence is predicted as a positive instance and 𝑦 = 0  when the sequence is 

predicted as a negative instance. The fused frame probability defined in Eq. (4-4) is 

multiplied by the sequence prediction 𝑦. Then, the final frame probability which 
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combines the three detections is defined as  

              𝑝 = {
𝑝𝑓  ∙ 𝑦          |𝑝𝑓 − τ|  > |𝑝𝑠 − τ|

𝑝𝑠  ∙ 𝑦          |𝑝𝑓 − τ|  < |𝑝𝑠 − τ|
            (4-5) 

Compared with Eq. (4-4), Eq. (4-5) brings in the sequence-level prediction which 

can wipe out the false positives caused by the frame-level and segment-level detection 

in a true negative video sequence.  

4.3 Experiments and Discussion 

4.3.1 Data Sets 

In order to evaluate the method, I conducted the experiments on the 

UNBC-McMaster shoulder pain dataset (Lucey, Cohn, Prkachin, et al., 2011). This 

dataset includes 200 sequences from 25 subjects. Each subject was suffered from 

some kind of shoulder pain and was requested to make some passive or active 

movements. Active tests were performed with the patient in a standing position. 

Passive tests were performed with the help of a physiotherapist. More details about 

the dataset can be found in (Lucey, Cohn, Prkachin, et al., 2011). 

The facial expressions recorded in the dataset are spontaneous with head 

movements. Each video frame provides 66 facial landmarks tracked by using the 

active appearance model. The dataset provides two kinds of labels: frame-level label 

and sequence-level label. The frame-level label is called Prkachin and Solomon pain 
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intensity (PSPI) metric which is a sum of the intensities of certain facial action units 

from Facial Action Coding System (FACS) (Essa and Pentland, 1997). The PSPI 

(with a range from 0 to 16) can describe the pain intensity of each frame. My work 

focuses on detecting pain presence/absence on each frame. A frame with PSPI greater 

than 1 is considered as a pain frame; otherwise the frame is a no-pain frame. This 

database also provides the sequence-level label called Observer Pain Intensity (OPI) 

rating that categorizes each sequence into one of the six intensities from 0 (no-pain) to 

5 (strong pain). Following the protocol proposed in (Lucey et al., 2008; K. Sikka et al., 

2014), all the video sequences are classified into “pain” and “no pain” in our study. 

When OPI ≥ 3, the sequence is a positive instance (pain) and when OPI = 0, the 

sequence is a negative instance (no-pain). The video sequences with a pain intensity 

of 1 or 2 were removed. I consider both of frame-level and sequence-level labels and 

select 139 video sequences with 50 positive instances and 89 negative instances for 

the experiments. Table 4-1 shows the distributions of positive video sequences and 

negative video sequences. A positive video sequence has its OPI of greater than or 

equal to 3 and there at least exist some pain frames in the video sequence. On the 

other hand, a negative sequence contains no-pain frames with an OPI equal to 0.  
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Table 4-1. The description of positive and negative sequences. 

Positive 

sequence 

(OPI=3,4,5) 

Containing some pain frames  
50 sequences 

Negative 

sequence 

(OPI=0) 

Containing no-pain frames only 
89 sequences 

 

4.3.2 Pain Event Detection 

I first evaluate my method for pain event detection. As mentioned above, two 

types of features are employed: P-HOG and HOG-TOP. HOG features of each frame 

were extracted from local patches around the facial landmarks provided by the dataset. 

In order to compute HOG-TOP, the facial landmarks were used to crop the face region 

from each frame and the face region was resized to 64×64. After that, the face 

sequences were separated into a number of non-overlapping fixed length segments 

and HOG-TOP feature descriptor were used to extract the dynamic textures from each 

segment. The max pooling was further used to acquire the global features from the 

feature set.  

In this experiment, I took the leave-one-subject-out cross validation strategy. The 

video instances from one subject were used for testing and the video instances from 

the other subjects were used for training. In each cross validation, there was no 

overlapping between the subjects in the training and test data. Since there are 25 

subjects, I carried out 25 cross validations. I followed the strategy employed in 
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(Lucey et al., 2008; K. Sikka et al., 2014) and used the overall classification rate for 

performance evaluation. 

At first, the global P-HOG and HOG-TOP were applied individually. An SVM 

with a linear kernel was trained for the classification. The overall classification 

accuracy acquired by using P-HOG is 87.1%. For HOG-TOP, different segment 

lengths were set to explore the performance of HOG-TOP under different scales. 

Table 4-2 shows the overall classification rates obtained by applying HOG-TOP with 

different scales. S1-10 is the scale setting 1 with a segment length of 10 (10 frames in 

each segment). The similar interpretation can be given to S2-15 and S3-20. Since 

P-HOG is the frame-level feature, the segment length does not affect P-HOG. The 

performance of P-HOG is the same in all of the three settings. Experimental results 

show that global P-HOG can achieve a higher accuracy than global HOG-TOP. Since 

P-HOG extracts features from specific regions, it is more effective to characterize 

subtle facial appearance changes.  

Table 4-2. Accuracy obtained by using individual and combined feature sets (%). 

Name-Segment 

length 
HOG-TOP P-HOG Hybrid Feature 

S1-10 82.0 87.1 91.4 

S2-15 79.9 87.1 91.4 

S3-20 83.4 87.1 90.6 

 

Multiple kernel fusion was further applied to combine the P-HOG and 
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HOG-TOP features optimally and trained an SVM with multiple kernels to perform 

the classification. I compare the results with P-HOG and HOG-TOP features applied 

individually. Table 4-2 demonstrates that the hybrid feature outperforms the individual 

features, with an improvement of around 5%, meaning that P-HOG and HOG-TOP 

can make different contributions to the classification and multiple kernel fusion can 

further enhance the discriminative power of an SVM. 

Table 4-3. A comparison of our method with other methods for pain event detection in 

video (MS-Multiple Segments). 

Methods Accuracy (%) Subjects-samples 

Lucey et al.  81.0 20-142 

Ashraf et al. 68.3 20-142 

BoW + Max + SVM  81.5 23-147 

MS-MIL  83.7 23-147 

Our method-S1-10 91.4 25-139 

Our method-S2-15 91.4 25-139 

Our method-S3-20 90.6 25-139 

 

I further compare our method with the other methods. The results are shown in 

Table 4-3. The best performance in our method is S2-15 with a classification rate of 

91.4%. The improvement is significant compared with the methods reported in 

(Ashraf et al., 2009) (68.3%) and (Lucey et al., 2008) (81.0%). The methods reported 

in (Ashraf et al., 2009; Lucey et al., 2008) used frame-based detection. Experimental 

results shows that a sequence based detection method can achieve a better 
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performance than a frame based detection method. In addition, the algorithms 

reported in (Wang et al., 2012) employed BoW to encode each frame and adopted the 

max pooling strategy to obtain a global feature from all the frames of a video 

sequence, and an SVM was trained for classification. The performance (81.5%) is 

comparable with HOG-TOP applied individually in our method, but is not as good as 

when the hybrid feature is used in our method. It shows that multiple features can 

make different contributions and achieve better performance. Note that Multiple 

Instance Learning (MIL) was applied in (K. Sikka et al., 2014). Our best performance 

(91.4%) is better than that reported in (K. Sikka et al., 2014) (83.7%), with an 

improvement of about 8%. Although the classification accuracy in our method is 

affected by the segment length, as shown in Table 4-3, I have shown that even the 

lowest accuracy (90.6%) achieved in our method is still better than the other methods.  

4.3.3 Locating Pain Events 

Locating pain events focus on predicting the pain presence/absence at the frame 

level. Like pain event detection, I also took the leave-one-subject-out cross validation 

strategy. In our experiment, two evaluation metrics used in (K. Sikka et al., 2014) 

were utilized: classification accuracy and maximum F1-score. F1-socre is defined as 

F1 = 2𝑅 ∙ 𝑃 (𝑅 + 𝑃)⁄ , known to give a trade-off between recall (R =
𝑇𝑃

𝑇𝑃+𝐹𝑁
) and 

precision (P =
𝑇𝑃

𝑇𝑃+𝐹𝑃
), where TP is the true positive. In this experiment, it means 
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that a pain predicted was actually labeled in the test face image. FP is the false 

positive, meaning that a pain predicted does not exist in the test face image. FN is the 

false negative, meaning when a pain appears in the test face image but it is missed in 

the prediction. The dataset provides a PSPI with a range of 0~16 to indicate the pain 

intensity for each frame. My study attempts to detect pain/no-pain frames. I first 

transformed the PSPI to a binary label. In my experiment, a frame is labeled as a pain 

frame when PSPI >= 2; otherwise, it is a no-pain frame.  

 

Figure 4-6. Performance of pain event locating obtained by three different tasks. 

For frame-level detection, P-HOG was extracted from each frame and an SVM 

was trained to perform the binary classification. The locating accuracy is 76.9% and 

the maximum F1-socre is 0.452. For the segment-level detection, HOG-TOP was 

applied to extract the dynamic textures from each segment and an SVM was trained to 

perform the classification. I set different segment lengths to explore the performance 
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of segment-level detection at different scales. Figure 4-6 shows the locating accuracy 

and the maximum F1-score of segment-level detection with different scales. 

Experimental results show that there is no much difference on the performance under 

different scales. Compared with the frame-level detection, the segment-level detection 

achieves a higher locating accuracy while obtaining a lower maximum F1-score.  

Figure 4-6 also shows the performance of pain event locating based on the 

sequence-level detection. In this case, all the frames contained in a video sequence 

share the same prediction result. The locating accuracy and the maximum F1-score 

are 56.9% and 0.358, respectively. Since there are a small amount of pain frames in a 

positive video sequence, when all the frames share the same prediction output, there 

are too many false positives which make the sequence-level detection is not as good 

as the frame-level detection.  

From the experimental results of three individual detections, I realize that 

information with various time scales (frame-level, segment-level and sequence-level) 

can make different contributions. Each piece of information is complementary with 

one another, which inspires us to combine three detection methods to enhance the 

paint event locating performance. 
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(a) 

 

(b) 

Figure 4-7. Performance of three different detection methods and the combined 

detection methods. (a) Locating accuracy; (b) Maximum F1-score. 

Three detection methods (frame-level, segment-level and sequence-level 

detection) are combined by applying Eq. (4-5). Experimental results are shown in 

Figure 4-7. The segment length is only meaningful to segment-level detection. It is 

obvious to find that the combined method outperforms individual detection methods. 

It also can be seen that a combination of three detection methods performs better than 

a combination of two detection methods (frame-level and segment-level detection), 



90 

especially for the maximum F1-score, with an improvement of about 3%. Bringing in 

the sequence-level detection can eliminate some false positives in a negative video 

sequence. Figure 4-8 shows the pain event locating results in a positive video 

sequence and a negative video sequence, respectively. We can see that three different 

tasks can complement with one another and integrating the three tasks can achieve a 

better performance. Figure 4-8 (a) shows that some false positives generated by the 

frame-level detection method can be wiped out when I bring in the segment-level 

detection method. Figure 4-8 (b) also illustrates that the sequence-level detection 

method can eliminate some false positives generated by the frame-level detection 

method on a negative video sequence. 

 

(a)                                   (b) 

Figure 4-8. Locating pain events in a positive video sequence (a) and a negative video 

sequence (b). (Top) The first three frames are frames 20, 100 and 180 which are pain 

frames and the other no-pain frames. (Middle) The ground truth and the prediction 

results made by three individual tasks. (Bottom) The ground truth and the fusion 

results by integrating three different tasks.  
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I also compare our method with some other methods. There are little previous 

work trying to tackle both pain detection and locating tasks except for the study 

reported in (K. Sikka et al., 2014) in which Sikka et al. proposed a method called 

MS-MIL to jointly detect and locate pain events in video. They also designed an 

MS-SVMmax method for the comparison purpose. I compare my method with 

MS-MIL and MS-SVMmax in Table 4-4. The detection accuracy measures the 

performance of video based pain event detection as discussed in Section 4.3.2. 

Locating accuracy and maximum F1-score demonstrate the performance of pain event 

locating. We can find that the locating accuracy in our method is much higher than 

MS-SVMmax and MS-MIL reported in (K. Sikka et al., 2014), with an improvement of 

about 13% and 10%, respectively. The maximum F1-score is also higher than 

MS-SVMmax and slightly better than MS-MIL. Although the number of samples in our 

experiments is slightly less than that in (K. Sikka et al., 2014), it is reasonable to 

conclude that our method compares favorably with MS-SVMmax and MS-MIL for 

pain event detection. For pain event locating, our method can achieve a comparable 

maximum F1-score as MS-MIL while obtaining a much higher locating accuracy.  
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Table 4-4. A comparison of our method with some other methods for joint pain event 

detection and locating in video. 

Method Location Acc. Max-F1 Detection Acc. Subjects-Samples 

MS-SVMmax  72.64% 0.471 77.17% 23-147 

MS-MIL  76.08% 0.523 83.70% 23-147 

Our method-S1 85.96% 0.527 91.37% 25-139 

Our method-S2 86.08% 0.542 91.37% 25-139 

Our method-S3 85.37% 0.542 90.65% 25-139 

 

4.3.4 The Effect of Segment Length 

A challenging problem for this work is to set the length of a segment when 

computing HOG-TOP. In my experiments, I explored the effect of the segment length 

for pain event detection and locating. Since there is no overlap between the segments, 

segment length is the only parameter I need to consider. I set different segment 

lengths with a range from 10 to 30 and evaluated the performance of pain event 

detection and locating. Figure 4-9 shows the detection accuracy obtained by three 

different feature sets under different segment scales. P-HOG is a frame feature which 

is not affected by segment length. The performance of P-HOG is therefore the same 

under six different segment lengths. On the other hand, HOG-TOP is a kind of 

dynamic texture feature to characterize spatial-temporal information of an image 

sequence. The segment length affects the detection performance of HOG-TOP 

significantly. It can be seen that the highest accuracy achieved is 83.4% when the 
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segment length is set to 20 (Seg.-20). The performance falls to 76.9% when the 

segment length is set to 30 (Seg.-30). It suggests that a too long segment for 

HOG-TOP will reduce discrimination power of the feature and result in a low 

classification rate. However, when multiple kernel fusion is used to combine P-HOG 

and HOG-TOP, it can be seen that the performance achieved by different hybrid 

features is comparable. The gap between the highest accuracy (91.4%) and the lowest 

accuracy (90.6%) is small. 

 

Figure 4-9. The detection accuracy obtained by three different feature sets under 

different segment scales.  

I further analyze the effects of segment length for pain event locating. Figure 

4-10 (a) and Figure 4-10 (b) show the locating accuracy and maximum F1-score 

acquired by the segment-level detection and the combined detection method, 

respectively. Experimental results demonstrate that when the segment length is set to 

a large value (e.g. greater than or equal to 25), the locating accuracy and maximum 

F1-score obtained by the segment-level detection drop quickly. 
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(a) 

 

 (b)  

Figure 4-10. The performance of segment-level detection and the combined detection 

method with different segment lengths. (a) Locating accuracy; (b) Maximum 

F1-score. 

Moreover, when I integrate the three different tasks (frame-level, segment-level 

and sequence-level detection), since the frame and sequence detection does not rely 

on the segment length, the performance of the combined detection is only affected by 

the segment-level detection. It can be seen that with a large segment length, the 
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combined detection method cannot perform as well as that with a smaller segment 

length, suggesting that a too long segment tends to bring in more false positives and 

also weaken the performance of the combined detection method. In experiments, I 

determined the segment length by a try-and-error method. I found that a segment 

length between 10 and 20 frames can achieve a promising performance for both pain 

detection and locating. 

4.3.5 Multi-Task Fusion 

This work proposes a probabilistic fusion method to combine the three tasks. 

Another widely used technique is linear regression. Suppose that there are three 

probabilities 𝑝1 (frame level), 𝑝2 (segment level), 𝑝3  (sequence level) from the 

three tasks. The integrated probability is 𝑤1𝑝1 + 𝑤2𝑝2 + 𝑤3𝑝3, where the weights 

𝑤𝑖 can be trained by the linear regression method. I conducted a comparison study 

between the linear regression model and our proposed probabilistic fusion model. The 

comparison results of the two methods are shown in Figure 4-11. 

Figure 4-11 shows that with different segment lengths (10, 15 and 20 shown in the 

figures), the two methods obtain compatible pain event locating accuracies, while the 

maximum F1-score obtained by our proposed probabilistic fusion model is higher than 

that by the linear regression model. F1 score is a trade-off between recall accuracy and 

precision. In this work, the number of negative samples is much greater than that of 
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positive samples. This is an imbalanced training problem and therefore F1 score is a 

better measure on the performance of a model. It means that our probabilistic fusion 

model (PFM) is more robust to combine the three tasks.  

 

(a) 

 

(b) 

Figure 4-11. The performance of the linear regression model (LRM) and our 

probabilistic fusion model (PFM). (a) Locating accuracies; (b) Maximum F1-scores. 

4.4 Discussion 

Experimental results reported in Section 4.3.2 show the effectiveness of my 

proposed method in pain event detection. P-HOG can effectively characterize the 
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spatial appearance of facial expressions. HOG-TOP can characterize the dynamic 

appearance changes caused by facial activities. In fact, these two types of features 

capture information from different time scales. Pain, as a kind of facial expression, 

actually is a dynamic process. These two kinds of information can be used to build a 

more useful model to characterize this dynamic process. Moreover, in order to take 

advantages of both types of features, multiple kernel fusion is used to integrate the 

two features optimally. Multiple features with an optimal combination can achieve a 

better performance than individual feature.  

Experimental results reported in Section 4.3.3 show that a multiple-task fusion 

based on three different tasks is more robust to deal with pain event locating than any 

individual task. In the dataset I used, a negative video sequence contains no-pain 

frames. Even in a positive video sequence, the number of pain frames accounts for a 

small part of the whole sequence. It means that there are much more negative 

instances than positive instances in these videos. This is an unbalance training 

problem. The frame-level and segment-level detection tend to make a large number of 

false positives. But when I combine the two detection methods, they can complement 

each other and achieve a better performance. It suggests that the pieces of information 

from different time scales are complementary and they can be used to reduce false 

positives. I also observe that the sequence-level detection can help in eliminating 
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some false positives made by the frame-level and segment-level detection in negative 

video sequences. The maximum F1-score can be improved slightly when I bring in 

the sequence-level detection, as shown in Figure 4-7.  

4.5 Summary 

In this chapter, a novel framework is presented for joint pain event detection and 

locating in video. I propose to combine three detection tasks, frame-level, 

segment-level and sequence-level detection, to handle (1) pain event detection which 

determines whether there exist pain events in a video (a pain/no-pain classification 

problem) and (2) pain event locating (predicting pain presence/absence in each 

frame).   

For pain event detection, a multiple-feature fusion method which combines 

spatial feature and spatial temporal feature is presented. Both the static attributes of 

video frames and dynamic attributes of sequences were explored in this study. P-HOG 

is applied to extract spatial features from video frames to represent static attributes. 

HOG-TOP is used to characterize the dynamic textures of video segments. Max 

pooling strategy is employed to form a global P-HOG and global HOG-TOP to 

characterize the whole video sequence. Multiple kernel fusion is used to find an 

optimal combination of these two types of global features. Finally, an trained SVM 

with multiple kernels is utilized to detect whether there exist any pain events in video.  
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For pain event locating, a multiple-task fusion method is proposed. I first address 

three sequential tasks namely frame-level detection, segment-level detection and 

sequence-level detection. For the frame-level detection, an SVM with P-HOG features 

was trained to predict pain presence/absence on each frame. Noting that pain frames 

or no-pain frames are contiguous in a video sequence, I also propose to detect the pain 

segments of contiguous frames. An SVM was trained with HOG-TOP features 

extracted from video segments to perform the segment-level detection. At last, the two 

detection methods were coupled with the sequence-level detection to locate pain 

events in video. This method utilizes information from different time scales and 

achieves a promising performance on the public UNBC-McMaster Shoulder Pain 

dataset. 
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Chapter 5   Smile Detection in the Wild 

with Deep Convolutional Neural 

Network 

5.1 Introduction 

In this chapter, an effective approach for smile detection in the wild with deep 

learning is presented. A favorable superiority of deep learning lies in that it not only 

can perform the classification effectively, but also can learn some high level abstract 

representations from raw inputs because of the hierarchical multiple layers of a deep 

learning model. The activations of the hidden layers can be extracted as the learned 

abstract representations. These representations can be used to train a traditional 

classifier such as SVM or AdaBoost.  

In order to take advantages of deep learning, I apply deep convolutional network, 

a widely used deep learning model, to handle this problem. This work addressed the 

following tasks: 1) developing a deep convolutional neural network namely 

Smile-CNN to perform the smile detection in the wild; 2) feature learning with 

Smile-CNN; 3) training SVM and AdaBoost with these learned features to evaluate 

their discriminative power; 4) investigating into the effects of the image background 

and pose variations to the problem of smile detection in the wild. 
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5.2 Methodology 

5.2.1 Multilayer Perceptron 

A feedforward network, also known as MultiLayer Perceptron (MLP), has 

become a widely used neural network model. An MLP consists of multiple layers of 

nodes and each layer is fully connected with the next layer. Figure 5-1 shows an MLP 

with one hidden layer. 

 

Figure 5-1. An MLP with one hidden layer. 

Each node in hidden layer and output layer is normally a neuron with a 

non-linear activation function. The outputs of each layer can be defined as: 

𝐱𝑙 = 𝑓(𝒖𝑙), with 𝒖𝑙 = 𝐰𝑙𝐱𝑙−1 + 𝒃𝑙              (5-1) 

where 𝐱𝑙 denotes the output of the 𝑙 layer, 𝐱𝑙−1 indicates the output of the 𝑙 − 1 

layer, 𝐱0 is the input, 𝐰𝑙  is the connection weights, 𝒃𝑙  is the bias, 𝑓  is the 
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activation function. The sigmoid function (𝑓(x) = 1/(1 + 𝑒−𝑥))  is commonly 

adopted. 

MLP can be trained by applying a supervised learning technique called the error 

back propagation algorithm. Given a training set with 𝑁 samples, each training 

sample is categorized into one of 𝐾  classes and the ground truth label 𝐭 is a 

K-length vector with 0 and 1. For each training sample 𝑖, we can obtain the following 

error: 

     𝑒𝑖 =
1

2
∑ (𝑦𝑗

𝑖 − 𝑡𝑗
𝑖)2 =

1

2

𝐾
𝑗=1 ‖𝐲𝑖 − 𝐭𝑖‖

2

2
            (5-2) 

where 𝑒𝑖 is the error, 𝑦𝑗
𝑖 is the 𝑗-th predicted result, and 𝑡𝑗

𝑖 is the 𝑗-th ground truth 

of the 𝑖-th sample. We can further define the accumulated error of 𝑁  training 

samples: 

E =
1

𝑁
∑ 𝑒𝑖

𝑁
𝑖=1 =

1

2𝑁
∑ ‖𝐲𝑖 − 𝐭𝑖‖

2

2𝑁
𝑖=1                 (5-3) 

With error back propagation, we have, 

   𝜹𝑙 = (𝐰𝑙+1)𝑇𝜹𝑙+1 ∘ 𝑓′(𝒖𝑙)                 (5-4) 

where δ is the “errors” back propagated from output layer, the operator “∘” denotes 

the element-wise multiplication. For the output layer, the δ takes a slight different 

form: 

                         𝜹𝐿 = (𝐲 − 𝐭) ∘ 𝑓′(𝒖𝐿)                      (5-5) 

where 𝐲 is the predicted output vector, 𝐭 is the target output vector. 𝑓(∙) is the 

activation function. We can easily get the derivative of the sigmoid function as: 
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𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)). We can get the update rules for the trainable weights 𝐰 

and bias 𝐛. 

𝜕𝐸

𝜕𝐰𝑙
= 𝒙𝑙−1(𝜹𝑙)𝑇, Δ𝐰𝑙 = −𝜂

𝜕𝐸

𝜕𝐰𝑙
 , 𝐰𝑙 = 𝐰𝑙 + Δ𝐰𝑙    (5-6) 

𝜕𝐸

𝜕𝒃𝑙 =
𝜕𝐸

𝜕𝒖𝑙

𝜕𝒖𝑙

𝜕𝒃𝑙 = 𝜹𝑙, Δ𝒃𝑙 = −𝜂
𝜕𝐸

𝜕𝒃𝑙 , 𝒃𝑙 = 𝒃𝑙 + Δ𝒃𝑙          (5-7) 

5.2.2 Convolutional Neural Network 

MLP takes full connection strategy and treats all the inputs equally. There are 

two drawbacks for MLP: 1) ignoring local property of images, which is that nearby 

pixels are more strongly correlated than more distant pixels; 2) full connection tends 

to produce a quantity of weight parameters which are easy to result in over fitting. In 

order to address the two issues, local connection and weight sharing are taken into 

account. Convolutional neural networks (CNNs) are such network models which 

satisfy these two conditions. CNNs have been successfully applied by LeCun (Yann 

LeCun et al., 1989) for handwritten digit recognition and has attracted growing 

attention with the rapid development of deep learning and GPU computing.  

There are three principle mechanisms in CNN: 1) local receptive field, 2) weight 

sharing and 3) subsampling or pooling. Figure 5-2 illustrates part of a CNN (Bishop, 

2007).  
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Figure 5-2. The Diagram illustrating part of a convolutional neural network, showing 

a layer of convolutional units followed by a layer of subsampling units (Bishop, 

2007).  

In the convolutional layer, the units are organized into planes, each of which is 

called a feature map. As we can see, the nodes in convolutional layer do not fully 

connect all the nodes of the input layer but only connect the nodes of a local input 

patch. This is the core idea of local receptive field. Each node in convolutional layer 

only covers a sub region of the input layer, which is more effective to exploit local 

spatial correlation and extract robust local features. Another fascinating property of 

CNN is weight sharing. Unlike MLP in which the nodes in hidden layers have 

different connection weights, while in CNN, the nodes belonging to the same feature 

map in convolutional layer share the same connected weights. There are two 

advantages for weight sharing. It not only reduces the number of free parameters but 

also promotes the reuse of local features. Since local features that are useful in one 
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region of the image are likely to be useful in other regions of the image, shared 

weights are able to extract similar features from different regions. The third important 

concept of CNN is subsampling or pooling. Pooling layer often follows convolutional 

layer and performs down sampling to reduce the feature map size. It partitions the 

input image into a set of non-overlapping rectangles and gets the outputs from each 

sub region. Average pooling was widely used before, and recently, max pooling has 

become the first choice in most practical applications.  

 

 

Figure 5-3. The max pooling and average pooling from 2×2 sub region with a stride 

of 2. 

Figure 5-3 illustrates the rules of max pooling and average pooling, respectively. 

Max pooling outputs the maximum value of each sub region while average pooling 

outputs the mean value. Pooling layer plays an important role for feature extraction. 

The objective of pooling is to transform the joint feature representation into a new, 
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more usable one that preserves important information and discards irrelevant 

information. It can progressively transform the low level features to high level 

features. 

In a practical architecture, there may be several pairs of convolutional and 

pooling layers. After several pairs of convolutional and pooling layers, the final layer 

would typically be a fully connected layer to represent the output.  

In a CNN, activation functions are generally applied on the units of convolution 

layer. In the past, sigmoid function was widely used as activation function in hidden 

layers. Recently, the so-called Rectified Linear Unit (ReLU) has been proposed in 

(Nair and Hinton, 2010), which has been successfully applied in many deep learning 

models. The ReLU function is defined as 𝑓(𝑥) = max (0, 𝑥), where 𝑥 is the input to 

a neuron. ReLU has a number of advantages over sigmoid function. Figure 5-4 shows 

a comparison of the two functions with different input values. Figure 5-4 (a) shows 

the activation values and (b) shows the derivative values of the two functions. We can 

find that ReLU is easier to compute, the output of ReLU is either 0 or the input. In 

addition, ReLU can suppress negative input, which seems more biologically plausible 

(Glorot et al., 2011). ReLU is able to produce sparse representation, since the negative 

inputs become 0 after applying ReLU. Moreover, Figure 5-4 (b) illustrates that the 

derivative of ReLU is constant. It avoids the gradient vanishing problem during error 
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back propagation. This is a very useful feature for training deep networks.  

 

(a) 

 

(b) 

Figure 5-4. A comparison of the two functions with different input values. (a) the 

activation values of the two functions; (b) the derivative values of the two functions. 

5.2.3 Smile CNN 

This work developed a CNN model for smile detection in the wild. Choosing an 

appropriate CNN architecture relies heavily on experiences. Based on the input size 

(64×64) and database size (4000 samples), I found that three convolutional layers are 
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sufficient to handle our classification problem. Once the number of convolutional 

layers is determined, the suitable filter size is needed to map the input (64×64) to the 

output (1×2). In order to control the number of free parameters, it also needs to set an 

appropriate number of filters in each layer. The architecture of Smile-CNN built in 

this study is a balanced choice between the representation learning ability and 

computational complexity. The architecture of Smile-CNN model is shown in Figure 

5-5. This model maps an input 64×64 image into 2 output nodes with one node 

indicating “smiling” and the other “non-smiling”. Between the input and the output, 

there are three convolutional layers with each followed by a max-pooling layer. The 

first convolution layer (C1) filters the 64×64 input image with 16 learnable kernels 

of size 9×9. The second convolution layer (C3) filters the 16 28×28 output feature 

maps of P2 layer with 16×8 kernels of size 5×5. The third convolution layer (C5) 

filters the 8 12×12 output feature maps of P4 layer with 8×16 kernels of size 5×5.  

The role of these layers is to extract the features hierarchically. The hidden nodes 

of each layer are referred to as feature maps or output maps. The convolutional layers 

extract the features from the input by applying a number of learnable filters or kernels 

sliding across the input image. The convolution operation can be expressed as 

                x𝑗
𝑙 = 𝑓(∑ x𝑖

𝑙−1 ∗ 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙
𝑖∈Ω𝑗

)                     (5-8) 

where x𝑖
𝑙−1 and  x𝑗

𝑙 are the 𝑖-th input feature map of layer (𝑙 − 1) and 𝑗-th output 



109 

feature map of layer 𝑙, respectively. Ω𝑗 represents a set of input feature maps. 𝑘𝑖𝑗
𝑙  is 

the convolutional kernel which connects the 𝑖-th and 𝑗-th feature maps. 𝑏𝑗
𝑙 is the 

bias of the 𝑗-th output feature map. 𝑓(∙) is the activation function which performs 

the non-linear transformation. I apply the ReLU as the activation function. 

 

Figure 5-5. The Smile-CNN applied in our study. The input is a gray image with size 

64×64. The C1, C3 and C5 are the convolutional layers while P2, P4 and P6 are the 

max-pooling layers. 

Each convolutional layer is followed by a pooling layer, which is used to reduce 

the spatial size of representation and control overfitting. The pooling layer takes small 

square blocks (𝑠×𝑠) from the convolutional layer and subsamples it to produce a 

single output from each block. The most common pooling form is average pooling or 

max pooling. Here I employ the max pooling strategy, which can be formulated as 

                       𝑦𝑗,𝑘
𝑖 = max

0≤𝑚,𝑛≤𝑠
{𝑥𝑗∙𝑠+𝑚,𝑘∙𝑠+𝑛

𝑖 }𝑧             (5-9) 

where 𝑖  indicates the feature map of the previous convolutional layer. This 

expression simply takes an 𝑠×𝑠 region and outputs a single value, i.e. 𝑦𝑗,𝑘
𝑖 , which is 

the maximum value in that region. This operation reduces an 𝑁×𝑁 input map to an 
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𝑁

𝑠
×

𝑁

𝑠
 output map. In this study, I set the block size 𝑠 to 2.  

Following several convolution and max pooling layers, the final output is a 

1-by-2 vector with one node indicating “smiling” and the other “non-smiling”. Each 

neuron of the output layer fully connects to the nodes from the previous hidden layer. 

Let x denotes the output of the last hidden layer nodes, 𝐰 is the connected weights 

between the last hidden layer and output layer. The output is defined as 𝐟 = 𝐰𝑇x+b. 

The output is fed to a 2-way softmax which produces a distribution over the two class 

labels. We then have  

                          𝑝𝑘 =
exp (𝑓𝑘)

∑ exp (𝑓𝑗)2
𝑗=1

                    (5-10) 

where 𝑝𝑘 indicates the probability of the 𝑘-th class and ∑ 𝑝𝑘 = 12
𝑘=1 . In general, 

the deep convolutional network model is trained by minimizing the cross-entropy 

loss: 

                      𝐿 = − ∑ 𝑦𝑘
2
𝑘=1 log (𝑝𝑘)                   (5-11) 

Finally, the predicted class would be �̃� = 𝑎𝑟𝑔 max
𝑖

𝑝𝑖 = 𝑎𝑟𝑔 max
𝑖

𝑓𝑖. I trained the 

Smile-CNN using stochastic gradient descent with a batch size of 50 samples. I 

followed the method in (Krizhevsky et al., 2012) and adopted a momentum of 0.9 and 

a weight decay of 0.0005 to update the weights. The update rule for weight 𝑤 is 

defined as 

               𝑣𝑖+1 = 0.9 ∙ 𝑣𝑖 − 0.0005 ∙ 𝛼 ∙ 𝑤𝑖 − 𝛼
𝜕𝐿

𝜕𝑤
    (5-12) 
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                          𝑤𝑖+1 = 𝑤𝑖 + 𝑣𝑖+1                   (5-13) 

where i is the iteration index and α is the learning rate.  

Note that a deep convolutional network contains a large number of hidden nodes 

and free parameters. A serious problem is the overfitting during training, especially 

when the dataset is not large enough. In order to lessen the over-fitting problem, the 

dropout strategy which has been shown as an efficient method is adapted to handle 

this problem (Srivastava et al., 2014). Dropout is a simple but effective way to 

prevent the overfitting during training. The term “dropout” refers to dropping out 

some units in the neural network during the training process and the choice of which 

unit to drop is random. In general, we can set a fixed probability p for each unit to be 

reserved or dropped out. In my experiments, the probability p was set to 0.5. It is not 

necessary to drop out the units from all the hidden layers and therefore I just 

randomly dropped out the units of C5-layer (the last convolutional layer) with a 

probability of 0.5.  

In this work, the MatConvNet toolbox (Vedaldi and Lenc, 2015) was used to 

construct and train the Smile-CNN. MatConvNet toolbox is a MATLAB toolbox 

implementing Convolutional Neural Networks (CNNs) for computer vision 

applications. 

As mentioned above, an attractive advantage of deep learning is that it not only 
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performs the classification, but also learns some abstract representations from the raw 

data. These learned abstract representations generally lie in a low dimensional space 

and have good intra-class similarity and inter-class diversity. Some research works, 

e.g. those reported in (F. J. Huang and LeCun, 2006; Lee et al., 2009), have 

demonstrated that SVM trained from the features learned by CNN usually can 

improve the classification performance.  

In my work, the outputs of the last hidden layer, i.e., P6-layer in Figure 5-5 are 

extracted as the learned features. The input size is 64-by-64 and P6 layer contains 16 

feature maps with size 4×4. The 16 feature maps are reorganized as a 256×1 column 

vector. 

5.2.4 Classification 

In this study, I further applied the SVM to explore the discriminative power of 

the learned features. SVM is a popular machine learning method for classification. It 

has been widely used in various pattern recognition tasks. It is believed that SVM can 

achieve a near optimum separation among classes. Given a training set with labeled 

samples:(𝐱𝑛, 𝑦𝑛), n = 1,2, … N , 𝐱𝑛 ∈ ℝ𝐷 , 𝑦𝑛 ∈ {−1, +1} , SVM tries to find the 

maximum margin between data points of different classes by solving the following 

constrained optimization: 
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min
𝒘,𝑏,𝝃

1

2
𝒘𝑇 𝒘 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1   

                     s. t.    𝑦𝑖(𝒘𝑇𝐱𝑖 + 𝑏) ≥ 1 − 𝜉𝑖             (5-14) 

𝜉𝑖 ≥ 0, 𝑖 = 1, … 𝑁  

where 𝜉𝑖 are slack variables and 𝑏 is the bias. It needs to obtain the weights 𝒘 and 

bias b. Given a unseen input 𝒙, the predicted label 𝑦 is computed as 

                         y = sgn(𝒘𝑇𝐱 + 𝑏)                   (5-15) 

In addition, another widely used machine learning algorithm, i.e. Adaptive 

Boosting, short for AdaBoost (Freund and Schapire, 1997) was also applied in this 

work to evaluate the learned features. Boosting is an approach based on the idea of 

combining many relative weak learners to create a strong classifier and achieve better 

performance. The core concept lies in that instead of pursuing a learning algorithm 

that is accurate over the entire instance space, it can focus on finding weak learning 

algorithms and combining them optimally.  

Given a training set 𝐷 = (𝒙1, 𝑦1) … (𝒙𝑚, 𝑦𝑚) , where 𝒙𝑖 ∈ X , 𝑦𝑖 ∈ Y =

{−1, +1}, AdaBoost tries to maintain a distribution or a set of weights over the 

training set. The weak learning algorithm is first used to find a weak 

hypothesis ℎ𝑡: 𝑋 → (−1, +1). The final output hypothesis is weighted majority vote 

of the weak hypotheses: 
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                  H(x) = sgn(∑ 𝛼𝑡ℎ𝑡
𝑇
𝑡=1 )                     (5-16) 

where T is the number of the weak hypotheses and 𝛼𝑡 is the weight assigned to ℎ𝑡.  

5.3 Experiments and Discussions 

5.3.1 Database 

I conducted the experiments on the GENKI4K (Whitehill et al., 2009) database 

to evaluate the method. The database consists of 4000 images taken in the real world. 

Figure 5-6 shows examples of face images in the database. It can be seen that these 

images are diverse in illumination, pose and background. The pose range (yaw, pitch, 

and roll parameters of the head) of most images was within approximately ±20° of 

frontal. In addition, the images span a wide range of imaging conditions like age, 

gender, facial hair, and glasses (Whitehill et al., 2009). All the images were manually 

labeled. There are 2162 “smiling” faces and 1838 “non-smiling” faces in total. 

 

Figure 5-6. Examples of face images from GENKI4K. Top: smiling face images; 

Bottom: non-smiling face images. 

I followed the experiment setting reported in (Whitehill et al., 2009). All the face 
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images were first converted to gray images and the face detector (Z. Liu et al., 2015) 

was applied to detect the faces. The faces were normalized to reach a canonical face 

of 64×64 pixels. Figure 5-7 shows some of the normalized faces. 

 

Figure 5-7. Examples of the normalized faces. 

The dataset is randomly divided into 4 subsets with each subset having 1000 

samples. The numbers of “smiling” and “non-smiling” face images in each subset are 

shown in Table 5-1. 

Table 5-1. The distribution of “smiling” and “non-smiling” face images in each 

subset.  

Subset 1 2 3 4 

“smiling” faces 540 541 540 541 

“non-smiling” faces 460 459 460 459 

 

5.3.2 Smile Detection 

5.3.2.1 MLP versus Smile-CNN 

I first evaluated MLP and Smile-CNN on the database and made a comparison of 
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the two networks, respectively. The input for the Smile-CNN is a 64×64 image, while 

for MLP is a 1×4096 vector. The Smile-CNN has three pairs of convolutional and 

pooling layers. I also set three hidden layers in MLP. Table 5-2 illustrates the 

overview of the two networks. Note that pooling layers of Smile-CNN do not have 

trainable parameters. Both MLP and Smile-CNN apply ReLU as activation functions 

and the cross-entropy loss is computed as loss function. 

Table 5-2. The overview of Smile-CNN and MLP applied in our work. 

Smile-CNN MLP 

Input 64×64 
No. of 

parameters 
Input 1×4096 

No. of 

parameters 

Conv. 1 16@9×9 1312 
Hidden 1 750 3072750 

Pool 2 16@2×2 0 

Conv. 3 8@5×5 3208 
Hidden 2 150 112650 

Pool 4 8@2×2 0 

Conv. 5 16@5×5 3216 
Hidden 3 25 3775 

Pool 6 16@2×2 0 

Output 1×2 514 Output 1×2 52 

Table 5-2 illustrates that the number of trainable parameters in Smile-CNN is 

much less than that in MLP. Take the first hidden layer as an example. The first 

convolutional layer includes 16 9×9 filters, the number of trainable parameters of the 

first convolutional layer is 16×9×9+16=1312. However, the first hidden layer with 

750 nodes in MLP have 4096×750+750=3072750 trainable parameters, which is 

extremely high. It means that MLP is not efficient to deal with large scale images. 
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MLP tends to produce a large quantity of free parameters. 

Table 5-3. The accuracy obtained by the MLPs with different numbers of hidden 

layers and Smile-CNN (%) (MLP-1: an MLP with one hidden layer; MLP-2: an MLP 

with two hidden layers; MLP-3: an MLP with three hidden layers) 

 MLP-1 MLP-2 MLP-3 CNN 

Fold 1 86.9 85.2 85.4 91.6 

Fold 2 86.7 86.1 87.6 91.1 

Fold 3 85.8 88.4 87.1 92.5 

Fold 4 84.7 85.8 87.9 93.0 

Avg. 86.0 86.4 87.0 92.1 

 

I further compare the performance acquired by the two neural networks. Table 

5-3 shows the accuracy obtained by the MLPs with different numbers of hidden layers 

and Smile-CNN. Experimental results show that Smile-CNN achieves higher 

accuracy than an MLP at each fold. The average accuracy acquired by Smile-CNN is 

92.1%, with an improvement of about 5%, compared with an MLP with the best 

average accuracy of 87.0%. Since the two networks use the same database, activation 

function and loss objective function, it means that architecture plays an important role 

for improving recognition ability of Smile-CNN. Compared with an MLP, 

Smile-CNN includes much more hidden nodes while including much less trainable 

weights. With a local receptive field, these hidden units in convolutional layer can 

fully exploit correlations of adjacent pixels. Weight sharing promotes the reuse of 

features. Deep architectures can potentially lead to progressively more abstract 

features at higher layers of representations. 
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5.3.2.2 Learned Features versus Hand-crafted Features 

As I have discussed above, the convolutional layers can extract the features 

hierarchically. I investigated into the deep convolutional network and tried to explore 

the features learned by this model. Figure 5-8 shows some feature maps of each layer 

in the Smile-CNN model. There are 16 feature maps with size 56×56 in C1-layer and 

P2-layer consists of 16 feature maps with size 28×28. C3-layer includes 8 feature 

maps with size 24×24 and P4-layer contains 8 features maps with size 12×12. 

C5-layer contains 16 feature maps with size 8×8 and P6-layer consists of 16 feature 

maps with size 4×4. 

 

Figure 5-8. The feature maps of each layer in the smile-CNN model. 

I can see that the deeper the layer, the representation becomes more abstract and 

sparse. In C1-layer, it is easy to identify these “smile” faces. In C2-layer, although the 

feature maps become ambiguous, it can still recognize the outline of the faces. In 
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C5-layer and P6-layer, the feature maps are difficult to recognize. Since the deep 

learning model extract the features layer by layer and the deeper layer can capture 

higher level representations. The representations in P6-layer are more compact with a 

better discriminative ability. The activation outputs of the last hidden layer (P6-layer) 

were extracted as the learned features, as shown in Figure 5-9. These learned features 

were used to train an SVM classifier and an AdaBoost classifier. The average 

accuracy yielded by the SVM and AdaBoost classifiers is 92.4% and 91.8%, 

respectively. Note that when I trained SVM or AdaBoost with the raw data, the 

average accuracy achieved by SVM and AdaBoost is only 84.0% and 81.0%, which is 

much lower than the performance achieved with the learned features extracted from 

Smile-CNN. It demonstrates that Smile-CNN can learn some discriminative 

representations from the raw data. 

 

Figure 5-9. The learned features extracted from the Smile-CNN. Left column: the 

original input images; Right column: the activation outputs of the last hidden layer 

(P6-layer). There are 16 4-by-4 feature maps and I reshape them as 8×32 for the 

convenience of illustration. 
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I also compare our results with the other state of the art methods. The results are 

shown in Table 5-4. Note that all the other methods compared apply the hand-crafted 

features, such as HOG in (M. Liu et al., 2012) and (An et al., 2015)), LBP in (Shan, 

2012) and (An et al., 2015)) and pixel comparison in (Shan, 2012). Our method 

performs better than that acquired by LBP and pixel comparison. Compared with 

HOG, our performance is still competitive. Smile-CNN can not only do well in the 

smile recognition but also effectively learn some powerful representations from raw 

pixels. Consider that the hand-crafted features have a higher dimension, it is 

reasonable to conclude that the learned features are more compact and efficient to 

represent facial expressions. 

Table 5-4. A comparison of our method with the other methods on the GENKI4K 

database. 

Method Feature Dimension Classifier Accuracy (%) 

(An et al., 

2015) 

LBP 500 ELM 85.2 

HOG 500 ELM 88.2 

(Shan, 2012) 
LBP 944 SVM 87.1±0.76 

Pixel Comparison 500 AdaBoost 89.7±0.45 

(M. Liu et al., 

2012) 

HOG (labeled) 1200 SVM 91.8±0.97 

HOG (labeled + 

unlabeled) 
1200 SVM 92.3±0.81 

Our method 

Raw pixels 64×64 SVM 84.0±0.91 

Raw pixels 64×64 AdaBoost 81.0±0.76 

Learned Features 256 SVM 92.4±0.59 

Learned Features 256 AdaBoost 91.8±0.95 
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5.3.2.3 Effect of Nuisance Factors 

I further investigate the impacts of the alignment and background for this 

problem. Three different types of face images are set for a comparison. Figure 5-10 

illustrates the three different types of face images used in our work. The original face 

images are shown in the top row. The second row demonstrates the cropped aligned 

face images, which are widely used in most previous works. The third row shows the 

cropped face images without alignment, in which we can see that there are pose 

variations. The face images in the bottom row are without preprocessing and these 

images vary in poses, backgrounds and face scales. All the three types of face images 

have been resized to 64×64 and take the same 4-fold cross validation for the 

convenience of a comparison. 

Experimental results are shown in Table 5-5. It can be seen that the average 

accuracies of TypeⅠ(92.1%) and TypeⅡ(90.6%) are quite close, meaning that 

Smile-CNN is robust to deal with pose variations and face alignment is not very 

important for this problem. However, the average accuracy of Type Ⅲ has dropped 

to 78.1%, with a large decline of about 12%, illustrating that the background and scale 

variations can seriously weaken the recognition ability of the Smile-CNN. It means 

that cropping the face and eliminating the background play a vital role for this 

problem. 
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Figure 5-10. Examples of three different types of face images used in our experiments 

together with the original face images. The top row: the original faces; the second row: 

the cropped aligned faces (TypeⅠ ); the third row: the cropped faces without 

alignment (TypeⅡ); the bottom row: the face images without preprocessing (Type 

Ⅲ). All of the three types of face images have been resized to 64×64.  

Table 5-5. The accuracy acquired by Smile-CNN on three types of face images (%). 

 TypeⅠ TypeⅡ Type Ⅲ 

Fold 1 91.6 89.7 78.8 

Fold 2 91.1 90.8 77.5 

Fold 3 92.5 90.2 78.5 

Fold 4 93.0 91.7 77.6 

Avg. 92.1 90.6 78.1 

 

5.3.3 Discussion 

The experimental results reported in this chapter illustrate that a deep 

convolutional network can effectively perform smile detection in the wild by 

hierarchical representation learning. From the comparison results of MLP and 

Smile-CNN, it can be concluded that architecture is the key to enhance the 
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recognition ability of Smile-CNN. Compared with MLP, Smile-CNN consists of 

much more hidden units while including much less trainable weights. Each hidden 

unit only covers a local patch or sub region of the input feature map, which is helpful 

to fully exploit correlations of adjacent pixels. Pooling operation is able to transform 

the joint feature representation into a new, more usable one that preserves important 

information and discards irrelevant information.  

An attractive advantage of the deep learning model is to learn the representations 

from raw inputs. In general, with multiple layers, a deep convolutional network can 

learn very complex mapping functions which can transform the representation at low 

level (starting with the raw input) into a representation at a higher, more abstract level 

(Y. LeCun et al., 2015). The high level representation is generally more compact 

(from 64×64 to 256). Table 5-4 illustrates that when classifying raw pixels directly, 

the average accuracy is about 84%. However, when classifying the features learned by 

Smile-CNN from raw pixels, the performance increases to about 92%, with a 

significant improvement of about 8%. Consider that raw inputs are of size of 64×64 

and the learned features with a dimension of 256, meaning that the deep convolutional 

network can remove redundant information and keep the distinct useful information 

from raw inputs.  

In addition, from Table 5-5, I also find that face alignment is not very important, 



124 

meaning that the deep convolutional network is robust to deal with small pose 

variations. On the other hand, the background and scale variations tend to increase the 

complexity of this problem and undermine the classifying power of the Smile-CNN. A 

reasonable explanation lies in that different from the object recognition, such as face 

recognition, facial expression is more abstract and thus the features used to represent a 

facial expression are more subtle. The background would likely to cover or pollute 

subtle information and make facial expression recognition become more difficult. 

5.4 Summary 

This chapter introduces an effective approach based on deep learning to address 

the problem of smile detection in the wild. Different from some previous research 

works which performed feature extraction and classification separately, deep learning 

can effectively combine the two stages into a single trainable model. In this study, a 

deep convolutional network called Smile-CNN was developed to perform the smile 

detection. Although a deep learning model is generally developed for dealing with 

“big data”, I found that it could also effectively handle “small data” in this task with 

an appropriate model architecture and parameter setting. During the training process, 

drop out technique was adopted to lessen the overfitting problem. In addition, 

considering that a deep convolutional network can extract features hierarchically and 

higher level representations are more abstract and compact, I obtained the outputs 
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from the last hidden layer as the learned features which were used to train the SVM 

and AdaBoost classifiers for the purpose of comparison. Experimental results 

demonstrate an impressive discriminative power of these features. Smile-CNN 

achieves a promising performance on the public GENKI4K database compared with 

other methods. A broad investigation on the impacts of pose variations and 

backgrounds is also presented in this chapter. It has been observed that the 

Smile-CNN is robust to deal with pose variations while it is less effective in handling 

a complex background. 

 

  



126 

Chapter 6  Conclusion and Future Work 

6.1 Conclusion of the Thesis 

In this thesis, I present my research findings on novel hand-crafted features, 

multi-task approach, and deep learning for facial affect recognition. The thesis can be 

concluded as follows. 

In Chapter 3, an efficient approach for facial expression recognition in video 

with novel features and multiple feature fusion is proposed. Facial expressions are 

caused by facial muscle activities. These muscle activities generate facial appearance 

and configuration changes. A new feature descriptor called Histogram of Oriented 

Gradients from Three Orthogonal Planes (HOG-TOP) is proposed to extract dynamic 

textures from video sequences to characterize facial appearance changes. Compared 

with LBP-TOP, a widely used feature descriptor for modeling dynamic textures, our 

proposed HOG-TOP has several advantages. One is the feature dimensionality. The 

size of LBP-TOP coded using a uniform pattern is 59×3, while the size of HOG-TOP 

quantized into 9 bins is 9×3, which is much more compact than that of LBP-TOP. In 

addition, HOG-TOP is more effective to characterize facial appearance changes than 

LBP-TOP. Moreover, HOG-TOP is more computationally efficient than LBP-TOP. I 

also propose a new effective geometric feature derived from the warp transformation 
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of facial landmarks to capture facial configuration changes. The proposed geometric 

feature is more robust to capture facial non-rigid configuration changes than the other 

geometric features. Moreover, the role of audio modalities on recognition is also 

explored. Audio features can provide complementary information for visual features. 

Multiple feature fusion developed to tackle the video-based facial expression 

recognition problems under lab-controlled environment and in the wild are also 

presented in the chapter.  

In Chapter 4, I present my research findings on pain analysis in video. There are 

two problems to be solved: pain event detection and pain event locating. The first 

problem is to predict whether there exists any pain event in a video sequence and the 

second problem is to locate the pain events in a video sequence. I address the role of 

facial information at various time scales (frame-level, segment-level and 

sequence-level) and propose a new framework for pain event detection and locating in 

video. A multiple-feature fusion method for pain event detection and a multiple-task 

fusion method for locating pain events are introduced. Both spatial and 

spatial-temporal features were utilized in this study. In our framework, HOG of 

fiducial points (P-HOG) is used to characterize spatial features from video frames and 

a trained SVM classifier is used for frame-level detection. In order to further address 

spatial-temporal information among contiguous frames, segment-level detection is 
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proposed to assist the frame-level detection. HOG from three orthogonal planes 

(HOG-TOP) is applied to model dynamic textures of video segments. A trained SVM 

classifier is used to perform segment-level detection. I further applied the max 

pooling strategy to obtain global P-HOG and HOG-TOP to represent the whole video 

sequence and employed multiple kernel fusion to optimally combine the two types of 

global features. An SVM with multiple kernels was trained to perform the 

sequence-level (pain event) detection. At last, an effective probabilistic fusion method 

was utilized to integrate the detection results from the three different tasks 

(frame-level, segment-level and sequence-level detection) to locate pain events in 

video. By integrating three different tasks, the proposed method provides a more 

robust and precise detection of pain events in video than the other previously reported 

techniques which usually focus on one of these tasks only.  

In Chapter 5, the study for smile detection in the wild with deep convolutional 

neural networks (CNNs) is presented. Different from conventional facial expression 

recognition techniques which extracted hand-crafted features from face images and 

trained a classifier to perform smile recognition in a two-step approach, deep learning 

can effectively combine feature learning and classification into a single model. A deep 

convolutional neural network called Smile-CNN was developed to perform feature 

learning and smile detection simultaneously. By comparing Smile-CNN with MLP, I 
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found that architecture is the key for the improved recognition power of Smile-CNN. 

Compared with MLP, Smile-CNN consists of much more hidden units while 

including much less trainable parameters. Each hidden unit only covers a local patch 

or sub-region of the input feature map, which is helpful to fully exploit correlations of 

adjacent pixels. Pooling operation is able to transform the joint feature representation 

into a new, more usable one that preserves important information and discards 

irrelevant information. I further investigated into the discriminative power of the 

learned features, which were taken from the neuron activations of the last hidden layer 

of the Smile-CNN model. By using the learned features to train an SVM or AdaBoost 

classifier, I show that the learned features have impressive discriminative ability. 

Experimental results demonstrate that the proposed approach can achieve a promising 

performance in smile detection. I also present in this chapter an investigation on the 

impacts of pose variations and backgrounds. It is observed that the Smile-CNN model 

is robust in dealing with pose variations while it is still challenging to handle a 

complex background. 

6.2 Future Research Directions 

More work can be pursued along the line of our research, which is discussed 

below. 

In Chapter 3, I have demonstrated that our approach can achieve a promising 
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performance on facial expression recognition under lab-controlled environment. 

However, for affect recognition in the wild, the performance is far from satisfactory. 

How to effectively address the problem of affect recognition in the wild is one of our 

future research directions. The key to solve the problem is to explore the 

representation capability of multiple modalities. Multimodality can enrich the 

representation space and improve emotion inference. These modalities include faces, 

voice, body gestures, actions and physiological information (brain signals). The color 

and depth information can also be explored. I believe that multiple modalities can 

provide complementary cues and make different contributions to affect recognition. 

Nevertheless, how to mine useful representations from different modalities and how 

to integrate these different representations optimally need to be carefully studied.  

In Chapter 4, I present a new framework with multiple tasks for detecting and 

locating pain events in video. Although our framework achieves a promising 

performance compared with other methods, careful engineering and considerable 

domain expertise are required to design effective features. Deep learning has attracted 

growing attention recently and many deep learning models have been successfully 

applied for most computer vision applications including image classification, object 

recognition and face detection etc. Pain analysis with deep learning methods is 

another potential research direction. Convolutional neural networks have illustrated its 
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superiority to deal with 2-D images. We can explore a CNN solution to tackle the 

problem of pain detection and locating. In order to fully explore the spatial and 

spatial-temporal information, we may design two different CNNs to deal with two 

types of inputs: single frame and continuous frames (frame segment). A decision-level 

fusion method can also be developed to combine the prediction results of the two 

CNNs optimally.  

In this thesis, our research focuses on facial affect recognition, i.e. inferring an 

emotion behind a displayed facial expression. However, facial affect recognition only 

covers a small subset of emotions. At times facial muscle movements do not reveal a 

kind of specific emotion, but convey some intentions. It is necessary to analyze and 

define these subtle facial muscle actions. Facial action units provide other important 

and valuable cues to explain facial expressions and understand the emotions of human 

beings. Facial action unit detection is another fundamental research direction in 

affective computing. The goal of facial action unit detection is to measure and 

describe facial muscle activities appeared on faces. Detecting multiple action units 

simultaneously remains a very challenging task, which is another research direction 

which we may focus on. 
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