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Abstract 

Spatial association rule mining (SARM) is the discovery of implicit ‘antecedent

consequence’ rules from spatial databases. SARM is an emerging topic in 

geographical information science (GISc) and a powerful tool in research and practice. 

The key to usefulness of SARM results is their reliability: the abundance of authentic 

rules, control over the risk of spurious rules, and goodness of rule interestingness 

measure (RIM) values. Such reliability, however, faces great challenges from 

uncertainties of various types and sources. 

 

Uncertainty-based SARM, proposed in this thesis, aims at enhancing the reliability of 

SARM results on all three aforesaid aspects via novel and improved uncertainty 

handling methods. In response to three critical uncertainty issues in SARM: data error, 

gradual/vague spatial concept, and uncertain concept modelling, this thesis realises 

the following three interrelated objectives: 

 

Mining significant spatial association rules from uncertain data: a new statistical test 

on the rules is developed to correct existing statistically sound test, which is 

indispensable for strict control over spurious rules, for distortions due to data error. 

The new test combines original data error propagation modelling as well as simulative 

processes. The new method can averagely compensate 50% loss of true rules due to 

data error, thus markedly enrich authentic results. Such efficacy is also largely robust 

to inaccurate data error information and dependent error probabilities in practical 

imperfect data. 

 

Gaussian-curve-based fuzzy data discretization and crisp-fuzzy SARM: a Gaussian-

curve-based model is presented to strengthen spatial semantics in fuzzy data 

discretization. Also, crisp-fuzzy SARM is originated to synthesise statistically sound 

testing based on ordinary (crisp) SARM, and RIM evaluation based on fuzzy rules. 

The techniques can discover at least twice as many authentic rules as conventional 

fuzzy SARM; avoid large overestimations of RIM values, usually by more than 50%, 

in ordinary SARM; and keep minimal risk of spurious rules. 

 

Genetic algorithm (GA) for crisp-fuzzy SARM: the new GA integrates the merits of 

statistical evaluation, new Gaussian-curve-based data discretization and crisp-fuzzy 

SARM. Experimentwise and generationwise adjusted statistical tests are innovated for 

the GA to satisfy different user needs. The proposed GA can produce several times as 
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many rules, and as high RIM values as non-GA SARM. The risk of spurious rules is 

below low user specified levels for both testing approaches.  

 

The developments for the three objectives are proven effective and robust, through 

synthetic and real-world data experiments of various experimental settings and data 

conditions. Case studies for these developments on urbanization-socioeconomic 

changes, wildfire risks, and hotel room price determinants inject new findings in 

corresponding research topics.  

 

In sum, methods developed in this thesis can alleviate manifold uncertainty issues in 

SARM, thereby significantly improving the reliability of SARM results in all its three 

aforesaid aspects. 

 

As a systematic study on uncertainty handling in SARM, this thesis would enrich GISc 

theories and methodologies. Particularly, it answers the increasingly pressing need for 

quality and reliability studies in GISc. The thesis work is also practically useful in 

improving decision making and user services in various domains involving spatial 

data, as exemplified by the case studies.  

 

 

Keywords: spatial association rule, uncertainty, quality issues, uncertain data, fuzzy 

sets and logic, genetic algorithm, statistical evaluation, pattern discovery, spatial data 

mining 
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Table 3.2  Conditional probabilities of att3 values in synthetic data 3-42 

Table 3.3  Numbers of true rules from ‘ideal’ data and remarks 3-44 

Table 3.4  Numerical synthetic data experiment results for E and R treatments 3-49 

Table 3.5  Summary of synthetic data experiment results 3-50 

Table 3.6  True rule increases and recovery rates by error level 3-52 

Table 3.7  Synthetic data experiment results with inaccurate error specifications or 

dependent data error 3-55 

Table 3.8  Land use classes of study area 3-58 

Table 4.1  RIM value exaggerations due to crisp data discretization in a miniature 

database of four records 4-74 

Table 4.2  Dependence of  1 outcome on other attributes 4-77 

Table 4.3  Various experiment settings in synthetic data experiment 4-79 

Table 4.4  Data attributes in real data experiment 4-85 

Table 4.5  Real data experiment result on number of significant rules and RIM 

accuracy 4-87 

Table 4.6  Real data experiment result on single wildfire risk factors 4-88 

Table 4.7  Numbers of rule pairs like X Y and  \X x Y  4-90 

Table 5.1  Accessibility attributes in Hotel experiment 5-105 

Table 5.2  Specifications for Hotel and Fire experiments 5-109 

Table 5.3  Result on control over spurious rules: Hotel experiment 5-112 

Table 5.4  Result on control over spurious rules: Fire experiment 5-115 

Table 5.5  Result in discovering true rules: Fire experiment  5-117 

Table 5.6  Past hedonic hotel room price modelling studies that involved hotel 

accessibilities 5-124 

Table 5.7  Interpreted resultant rules of Hotel experiment 5-126 

Table 5.8  Hotel room price distribution by star rating 5-130 

 

 

  



ix 
 

List of Abbreviations 

 

ARM   Association rule mining 

FWER   Familywise error rate 

GA   Genetic algorithm 

GISc   Geographical information science 

RIM   Rule interestingness measure 

SAR(M)  Spatial association rule (mining) 

SDM   Spatial data mining 

  



x 
 

 

 



1-1 
 

Chapter 1  Introduction 

1.1  Research background 

Spatial data mining (SDM) is the process of discovering implicit patterns from spatial 

data, with the ultimate goal of gaining knowledge from the patterns for research and 

practice, particularly for decision support. Contemporary geographical information 

science (GISc) has been experiencing explosive growth in spatial data volume and 

complexity. Resultantly, it has been increasingly difficult to look beyond and find 

interesting patterns and knowledge from explicitly stored spatial data by human 

observations and labours. Computer-aided SDM methods have been of rising 

popularity and essentiality under such circumstances. 

 

As an important type of targeted pattern in SDM, spatial association rule (SAR) is an 

implicit ‘antecedent  consequence’ pattern, or if-then rule, that involve spatial 

element(s). For example, the SAR ‘(house) near river   expensive’ can be 

linguistically represented as ‘if a house is near river, then it is expensive’. Spatial 

association rule mining (SARM) seeks for SARs that meet constraints on certain rule 

interestingness measures (RIMs). With the superiority in revealing and prioritizing 

enormous numbers of multiway interactions between numerous spatial entities, 

SARM has become powerful and valuable for investigating interactions in complex 

data and supporting user decisions. This has been proven in its wide applications in, 

for example, environment and socioeconomic condition relations (Mennis and Liu 

2005, Rodman et al. 2006), vegetation-climate change (Shu et al. 2008), soil 

contamination (Sun et al.), transportation demands (Lisi and Malerba 2004), urban 

accessibility (Appice et al. 2003) and related profitability analysis (Feng et al. 2010), 

object mobility pattern extraction (Verhein and Chawla 2008), mobile navigation 

(Baralis et al. 2012), image database learning (Lee et al. 2007) and tourist attraction 

visit principles (Versichele et al. 2014). 
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The usefulness of SARM results highly depends on their reliability, which is a balance 

between:  

• Abundance of authentic rules: this is the base on which adequate knowledge 

can be derived and presented to users.  

• Control over the risk of spurious rules: spurious rules are rules that convey 

non-existent associations and mislead users into poor decisions. Since SARM 

must explore enormous number of potential rules for high dimensional data, it 

faces a very high risk of falsely ‘discovering’ numerous spurious rules. As 

modern voluminous data sources and SARM methods produce ever greater 

numbers of rules, this problem becomes a critical barrier for reliability of 

SARM results. 

• Goodness of RIM values for resultant rules: this includes their accuracy and 

fitness. Accuracy measures the degree to which RIM values deviates from their 

true values, or most probable values if true values are unknown in reality. 

Fitness refers to if the RIM values are favourable for specific user needs and 

data mining tasks. For example, in SARM for store site selection, target RIM 

values indicating the profit gains by selecting appropriate sites are desired to 

be large. 

The reliability of SARM results, like that of SDM results in general, has been seriously 

challenged by uncertainties. Uncertainties for SDM and SARM are in various types, 

including but not limited to positional uncertainty, attribute uncertainty, topological 

uncertainty, temporal uncertainty, inconsistency, incompleteness and knowledge 

uncertainty (Shi et al. 2003). Uncertainties can occur in source data, as well as each 

stage of SARM: data pre-processing, rule mining and knowledge representation, and 

will propagate to all subsequent stages once being generated. Uncertainties may lead 

to defective SARM results, questionable quality of knowledge discovered, and 

ultimately misuses of and poor decisions based on the knowledge.  
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Theories and methods for uncertainty modelling and reliability enhancement of spatial 

data and spatial analyses have been developed and systematically summarized by Shi 

(2010). This line of research has also been extended to SDM. Shi et al. (2003) 

proposed uncertainty-based SDM and pointed out that SDM researches then lacked 

integrations with uncertainty handling. They also pointed out that relevant studies 

mostly focused on uncertainties in source spatial data, instead of those rising from 

particular SDM methods or uncertainty propagations in SDM process. These gaps still 

exist to a considerable degree over 10 years after the proposal of uncertainty-based 

SDM. 

 

Specific in SARM, three of the various uncertainty issues stand out regarding the 

severity of influences on reliability of SARM results and pending research needs: 

(1) Data error: this largely refers to random error in surveying discipline (as is 

tied with systematic error and blunders) or noise in computer science. The 

error is inevitably generated by numerous unknown factors in data acquisition. 

While the error can influence the reliability of SARM results on all three 

aforesaid aspects, it most directly impacts the abundance of true rules. The 

error adds to a random component into data that has no associations with the 

rest of data, thus it is expected to weaken associations between data elements, 

thereby causing true rules lost from resultant rules. Random error can hardly 

be reduced once data is acquired, as its value and distribution are unpredictable 

for individual spatial entities. A more feasible approach would be statistically 

modelling the error propagation in SARM and developing corresponding 

methods to alleviate its impact on SARM results. However, current association 

rule mining (ARM) with uncertain data (Chui et al. 2007) mostly focuses on 

probabilistic data structures rather than behaviours of random error, let alone 

SARM. 
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(2) Gradual/vague spatial concepts: ARM/SARM calls for data discretization 

which generate concepts as sets of raw numerical data values, so that the 

concepts can be used in rule mining, and rules in linguistic forms can be 

presented to users. Gradual or vague concepts are prevalent in spatial data, 

which can be mathematically interpreted as fuzziness (Shi et al. 2003). Hard 

divisions for such concepts incur bias, inaccurate semantic representations and 

finally unreliability in SARM results (Hüllermeier 2009, Farzanyar and 

Kangavari 2012). Fuzzy SARM (Ladner et al. 2003) can largely relieve this 

problem by modelling fuzzy spatial concepts as fuzzy sets, or intervals of raw 

numerical data values with fuzzy boundaries. Fuzzy data discretization models 

have been proposed specifically for spatial relations such as proximity (Ladner 

et al. 2003, Laube et al. 2008). However, the common belief that fuzzy SARM 

results are more reliable than that of ordinary (crisp) SARM, which is rooted 

in higher RIM accuracy of fuzzy rules, has seldom been examined by 

quantitative studies. Also, using fuzzy sets might make rules less significant 

and incur the risk of reducing authentic rules.  

(3) Uncertain concept modelling: this primarily concerns the data discretization 

stage of SARM. Experts often do not have adequate knowledge for providing 

proper discretization schemes, which include the number of concepts for each 

attribute, and raw data intervals (crisp or fuzzy) corresponding to each concept. 

Moreover, the appropriateness of a data discretization scheme is subject to 

specific user need and SARM task (Kaya 2006). Good discretization schemes 

for individual attributes may be achieved by existing classification or 

clustering methods, but they are not equivalent to, and usually quite different 

from, a combination of all concepts in data that leads to good resultant rules. 

Genetic algorithms (GAs) are promising to address this problem. By 

progressively optimizing given objective(s) in an evolutionary approach, GA-

based SARM can find near-optimal data discretization schemes for specific 

user demands (Fazzolari et al. 2013). This can markedly enhance the fitness 



1-5 
 

of RIM values, and also mostly increase the number of authentic rules with 

user specified characteristics. 

 

Besides, a key approach for reducing spurious rules in ARM is the statistical 

hypothesis testing (Megiddo and Srikant 1998, Liu et al. 1999, Bay and Pazzani 2001, 

Zhang et al. 2004). Both sampled and population data are finite representations of 

associations between studied objectives which can potentially repeat for infinite times 

in the real world. Rules might fulfil specified RIM constraints in data by chance rather 

than due to real associations of the objectives. Such spurious rules can account for a 

high percentage or even the majority of resultant rules (Webb 2007, Zhang et al. 2016), 

thereby making the results unusable. Statistical tests are designed to filter out spurious 

rules, and only significant rules accepted by the tests will enter final SARM results. 

 

Statistically sound evaluation (Webb 2007) is a particularly effective statistical testing 

technique and can control the familywise error rate (FWER), the chance that entire 

result includes any spurious rule, upon a low user specified level, for example 5%. 

Albeit highly effective, this technique has not been systematically integrated with data 

error treatment, fuzzy techniques or GA-based method for ARM/SARM. Without 

integrating these techniques to address multiple uncertainties which are typically 

concurrent in SARM, the efficacy of each individual technique for producing reliable 

SARM results can be considerably impaired. Furthermore, statistically sound tests are 

conservative and also reject many authentic rules. In conventional ARM, the tests may 

reserve thousands of rules for medium sized data, which is adequate for practical use 

(Webb 2007). However, when the tests are applied with uncertainties in data or SARM 

methods, or in conjunction with other uncertainty handling techniques, SARM results 

may suffer from severe loss of authentic rules. This has been proven true for all three 

above mentioned uncertainty issues in Chapters 3 to 5 of this thesis.  
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1.2  Objective, methodology and scope 

This thesis presents uncertainty-based SARM which develops new techniques, and 

enhances existing techniques for handling uncertainties in SARM, with the ultimate 

goak of improving the reliability of SARM results regarding abundance of authentic 

rules, risk of spurious rules, and goodness of RIM values. 

 

In response to the three key uncertainty issues for SARM stated in Section 1.2, the 

study takes the following approaches (also as subgoals) for enhancing the reliability 

of SARM results: 

(1) To mathematically model (random) data error propagation through statistically 

sound tests on SARs; based on the error model, to design a method for 

alleviating impacts of data error on results of mining significant SARs (those 

accepted by statistical tests), particularly the loss of authentic rules. 

(2) To present a fuzzy data discretization model for SARM with enhanced spatial 

semantics; to conduct comparative studies on reliability of fuzzy and ordinary 

SARM results; and to originate a method for mining significant SARs that 

combines advantages of fuzzy and ordinary SARM, thereby obtaining both 

higher RIM accuracy and abundant authentic rules. 

(3) To investigate a feasible solution for statistically sound tests during 

evolutionary process in GAs, and then to develop a GA for mining significant 

SARs. The new GA-based method is for obtaining near-optimal data 

discretization schemes, abundant rules and high RIM fitness for specific user 

requirements. 

 

These approaches of the thesis adopt statistically sound tests for strict control over 

spurious rules, which has been successful in conventional ARM (Webb 2007). In 

presence of uncertain SARM data and methods and integrated uncertainty handling 

techniques, the work revalidates the efficacy of statistically sound tests, and makes 
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efforts on overcoming increased scarification of abundant authentic rules and RIM 

goodness due to the tests.  

 

The above new developments are evaluated with both synthetic and real-world data. 

Synthetic data experiments possess predesigned rules and RIM values, thus the 

reliability of SARM results can be confidently and quantitatively measured. Such 

experiments were rare in prior SARM studies, and largely resolve the difficulty of past 

research in evaluating the reliability of SARM results due to unknown true results. 

Real-world case studies on geographical and socioeconomic topics are also conducted 

to examine the practical value of the thesis work. 

 

It is notable that the three aforementioned reliability issues present for both spatial 

(geometrical) and non-spatial attributes in SARM data. If methods exclusively for 

spatial attributes are first applied for handling these issues, their efficacies will likely 

to be hindered by reliability deficiencies caused by non-spatial attributes and hence 

difficult to evaluate. Therefore, this thesis attempts at methods that are also applicable 

for non-spatial data, while it emphasizes GISc theories and spatial data characteristics 

in method development and evaluation. For this purpose, the thesis focuses on the 

SARM stage where raw numerical values of spatial attributes have been computed 

from the geographic objects and tabulated in attribute-value data tables. As for spatial 

relations, the thesis concentrates on nearness instead of directional or topological 

relations, as the former is more readily transformed to numerical values. The case 

studies show that the new developments are particularly effective on spatial data and 

inspire new insights into GISc research topics. 

 

1.3  Main contributions 

The main contributions of this thesis are: 
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(1) Mining significant SARs from uncertain data: an original mathematical 

model is established for data error propagation in statistically sound tests on 

SARs. Based on the error model, a method combining analytic and simulative 

processes is designed to correct the statistical test for distortions caused by 

data error. Experiments show that this corrected test method significantly 

recovers the loss in authentic rules due to data error, averagely by 50%. The 

corrected test basically maintains superior control over the FWER of original 

statistically sound tests. The corrected test is robust against inaccurate data 

error probability information and dependent error probabilities, which 

increases its usefulness in practical SARM with imperfect data. 

(2) Gaussian-curve-based fuzzy data discretization and crisp-fuzzy SARM: first, 

a fuzzy data discretization model based on Gaussian curves is presented. This 

model extended past works by strengthening spatial semantics and multi-

concept relations. Second, the crisp-fuzzy SARM is originated. Crisp-fuzzy 

SARM explores crisp rules and prunes dubious ones using statistically sound 

tests, and then evaluates RIMs of accepted rules using fuzzy measures. The 

combination of this two techniques can at least double the number of resultant 

true rules, compared with using pure fuzzy SARM; and avoid large positive 

errors in RIM values committed by crisp SARM, which typically exceeded 50% 

for representative RIMs. The use of statistically sound evaluation guarantees 

minimal risk of spurious rules.  

(3) GA for mining significant crisp-fuzzy SARs: the newly developed GA 

produces near-optimal SARM results for user specifications, including more 

abundant rules and RIM values of higher fitness than conventional SARM 

results, while strictly controlling spurious rules by integrating statistically 

sound tests. Two statistical testing approaches exclusively for the GA, the 

experimentwise and generationwise adjustment approach, are developed to 

control the FWER and percentage of spurious rules, respectively. The new GA 

adopts and thus combined the advantages of an efficient and flexible approach 
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for encoding candidate resultant rules, the newly proposed Gaussian-curve-

based data discretization model and crisp-fuzzy SARM. The proposed GA is 

experimentally proven to produce several times as many rules as using data 

discretization based on standard classifications, and effectively keeps the 

FWER or percentage of spurious rules under user specified level (5% in 

experiment). 

(4) Practical usefulness of the above three contributions is demonstrated in 

multiple case studies, the topics of which include associations between land 

use and socioeconomic changes, wildfire risk factors, and accessibilities as 

hotel room price determinants. Improved insights of each topic are obtained 

due to merits of the newly developed methods. 

The framework of the thesis work and its relation to research backgrounds are 

illustrated in Figure 1.1. 
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Figure 1.1  Research framework 

 

1.4  Outline of Thesis 

The subsequent chapters of this thesis are organized as follows: 

 

Chapter 2 briefly introduces prior works for ARM/SARM with uncertainties, as well 

as relevant existing techniques as the bases of the thesis work, including essentials of 

SARM and RIMs; statistical tests on rules; ARM/SARM with uncertain data, fuzzy 

concepts and GAs; and other uncertainty handling techniques for SARM. 
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Chapter 3 constructs the error model and corrected test for mining significant SARs 

with uncertain data, with a synthetic data experiment and a real data experiment on 

land use and socioeconomic changes. 

Chapter 4 presents the Gaussian-curve-based fuzzy data discretization model and 

crisp-fuzzy SARM, and evaluated them by a second synthetic data experiment and the 

wildfire risk factor case study. 

Chapter 5 is dedicated to GA for mining significant crisp-fuzzy SARs. The proposed 

GA are comparatively examined by two case studies, one again for wildfire risk 

factors, and the other in depth for hotel room price determinants. 

Chapter 6 concludes the thesis and suggests further researches for uncertainty-based 

SARM. 
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Chapter 2  Prior works on ARM/SARM with uncertainties 

* Sections 2.1–2.3 in this chapter is partially based on the published research article 

of the thesis author entitled “Mining significant association rules from uncertain data”. 

 

2.1  SARM and RIMs 

The thesis work hereafter describes the preprocessed data ready for rule mining in 

terms of attribute-value data, one of the two most used data types in ARM/SARM. 

For an attribute-value dataset D, each record R D  is a set of items in the form 

‘attribute = value’. A representative type of attribute-value data is the categorical data, 

where each value is a class label. Transactional data, the other most used data types, 

may be handled as binary valued data, where values 0 and 1 represent nonexistence 

and existence of an entry in the record. Numerical data is typically transformed into 

attribute-value one via data discretization before being explored for rules. Geometrical 

information of spatial entities can generally be first computed into numerical data. 

 

An association rule is a pattern X Y , where the antecedent  1 pX x x  and 

consequent  1 qY y y  are itemsets consisting of items in D, X Y contains at 

most one item for each attribute. X Y is a SAR (spatial association rule) if it 

includes item(s) for spatial attribute(s). This thesis limits Y to single-item consequent 

y, which is common for SARM tasks, and most of its developments can be extended 

straightforwardly to multi-item consequents.  

 

SARM was introduced by Koperski and Han (1995) as the spatial extension of general 

ARM (Agrawal et al. 1993). SARM aims at finding all spatial association rules that 

meet designated criteria, mostly being above specified minimum values of certain 

RIMs. It generally includes two tasks: first, to compute necessary spatial attributes 

from geometries of spatial entities, either before or during rule exploration via spatial 

query; second, to explore rules from data including the computed spatial attributes, 
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using algorithms similar to those for general association rule mining, such as the 

popular Apriori (Agrawal and Srikant 1994) and its improved versions. Numerous 

RIMs have been proposed for general association rules, most of which are applicable 

to SARM. Tew et al. (2014) reviewed and analysed 61 well-known RIMs using 

clustering technique, and revealed that many RIMs actually have very similar rule-

ranking behaviours. That is, when rules are ranked by their RIM values, many RIMs 

result in very similar ranks. Some of the commonest RIMs are: 

• support (Agrawal et al. 1993): 

      supp X y supp X y freq X y D    ; 

• confidence (Agrawal et al. 1993):  

     conf X y supp X y supp X   ; 

• improvement (Bayardo et al. 2000): 

( ) ( ) max( ( ))
Z X

imp X y conf X y conf Z y


     ; 

• leverage (Piatetsky-Shapiro 1991):  

       lev X y supp X y supp X supp y D    ; 

• lift (International Business Machines 1996): 

       lift X y supp X y supp X supp y   ; 

• interestingness weighting dependency (Gray and Orlowska 1998): 

           1

To be neutral, set 1,  1 (Tew  . 2013)

l m
IWD X y supp X y supp X supp y supp X y

l m et al

    

 

 , 

Where  freq S  is the number of records in D containing all items in the set of items 

S. X y is productive if ( ) 0imp X y  , that is, every item in X improves the 

confidence of the rule (Webb 2007). Unproductive rules include redundant items in X 

that are irrelevant to y, and are generally regarded as uninteresting and removed from 

final result. 
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RIMs exclusively for SARM have also been proposed. Laube et al. (2008) advised 

spatial support and spatial confidence which are quantified by various proximity 

measures other than Euclidean distance between geographic objects. The proximity 

measures included point-to-point, point-to-polyline, point-to-polygon, polygon-to-

multipoint, polygon-to-polygon and more possible cases. 

 

2.2  Avoidance of spurious rules and statistical test approach 

As this thesis augments statistical tests in ARM for controlling false rules, the 

discussion of this section is largely based on general ARM, and equally applies to 

SARM.  

 

RIMs are the most direct measures to avoid spurious rules; rules with RIM values 

unsatisfying specified thresholds are considered uninteresting and removed from the 

result. While this can be very useful, empirically generic solutions to setting RIM 

thresholds for interesting rules are often unavailable. The thresholds are usually up to 

subjective user specifications and bear high risk of being inappropriate and leading to 

questionable reliability of selected rules.  

 

There have been also quantitative criteria for pruning uninteresting rules, which are 

often operations on RIMs. For instance, the productive rule criterion in Section 2.1 is 

equivalent to ( ) 0imp X y  . The non-redundant rule criterion (Zaki 2000) rejects 

rules whose antecedents contain items that are implied by other items in the 

antecedents, such as ‘ type waterbody type river elevation low    ”, where 

waterbody is implied by river. As the implied items cannot improve rule confidences, 

this criterion is entailed by improvement > 0. The actionable rule criterion (Liu et al. 

2001) accepts rules with improvement > 0 and higher confidences than y even 

if the data records conforming to their specializations are removed. Specializations 
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refer to rules containing all items of the studied rules and also extra items in the 

antecedents.  

 

Although these criteria appear more objective, many spurious rules can still fulfil these 

criteria in data by chance instead of due to real associations, thereby threatening the 

reliability of rule mining results. Thus statistical hypothesis tests have been used to 

avoid such spurious rules. The test result is the probability p that a rule X y has 

observed RIM value even if X y association is nonexistent in reality. This equates 

to the risk that X y is spurious. Only rules with p values below designated 

significance level α, say 0.05, are significant and accepted, while others are rejected 

and removed. Techniques in this line include correlation rules (Brin et al. 1997), 

association pruning (Liu et al. 1999), significant statistical quantitative rules (Zhang 

et al. 2004) and so on.  

 

Hereafter the statistical tests are exemplified by the test for productive rules, a typical 

test for pruning redundant rules. The same approach can be right applied to other tests. 

According to the formulation of improvement in Section 2.1, the productivity of a rule

X y , or whether ( ) 0imp X y  , can be tested by:  

    |, P |r Pr \Z X y X y X Z  , (2.1) 

where ‘\’ denotes set difference. This thesis follows accepted practice (Webb 2007) to 

conduct a more computationally economic test, the result of which is quite similar to 

that of testing Equation (2.1), on 

     1. . . , Pr | \|Pr mm p y X y X x  .  (2.2) 

The null hypothesis for the test is     1. . . , Pr | \|Pr mm p y X y X x  , suggesting 

that X y  has a higher confidence in data by chance rather than due to real 

association between mx  and the remaining items.  
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Chi-square is commonly used for testing conditions like Equation (2.2), yet it is 

criticized as inaccurate for small data of sizes up to hundreds (McDonald 2014), due 

to the approximation of integral supports by continuous 2 distribution. Also, the chi-

square test is two-tailed, while Equation (2.2) is a one-tailed condition. Thus, for 

ordinary ARM/SARM with integral crisp support of patterns, the Fisher exact test 

(Agresti 1992) is more appropriate for Equation (2.2). This test is reliable for any 

sample size, and can be one-tailed or two-tailed. Let a, b, c, d be numbers of records 

in data D containing the following patterns: 

 

  
  

       
       

\

\

m m

m m

a

x

supp X y

b supp X

x

y

c supp X y

d supp X yx x



 

 

  

, (2.3) 

where ¬ refers to that the record must not contain the item. The p value of the test with 

respect to mx  is 

 
min( , )

0

( )!( )!( )!( )!

( )!( )!( )!( )!( )!

b c

m

i

a b c d a c b d
p

a b c d a i b i c i d i

   


      
  . (2.4) 

The final result of the test is equal to  max mp , and is equivalent to the risk that

X Y is spurious. X Y is accepted and included in resultant rules only if p is 

below the significance level. 

 

In fuzzy ARM/SARM, as patterns evaluated have fuzzy fractional supports, the Fisher 

exact test is inapplicable, as it can only handle integral supports. In this case, chi-

square test should still be used, and actually its inaccuracy for integral supports in 

small datasets no longer holds for the continuous fuzzy supports. The testing statistic 

is  

 
  

    
2 ad bc a b c d

a b c d a c b d


   


   
,  (2.5) 
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and pm is looked up from the 2 table for the computed 2 value with one degree of 

freedom. 

 

The multiple testing problem occurs when statistical tests on rules are applied many 

times. If a test is applied with a significance level α, say 0.05, then there is no more 

than 0.05 probability that the null hypothesis will be rejected even though it is true. In 

the association rule context this means a rule is accepted even though there is no 

association. If many potential rules are tested, then the statistical test should pass 5% 

of the ones that should be rejected. When large numbers of potential rules are explored, 

this can even mean that more of the accepted rules are spurious than true. This problem 

may be resolved with a Bonferroni correction to the significance level (Shaffer 1995). 

A previous solution to control the familywise error rate (FWER) below   is to set the 

significance level n  , where n is the number of rules tested. Yet this does not 

really work, as the tested rules usually have passed other interestingness measures 

such as the minimum confidence, and tend more to pass the test than arbitrary rules. 

 

Webb (2007) suggests an approach which is statistically sound, meaning that it can 

place a strict upper limit on the FWER. The approach sets s  , where s is the 

total number of potential rules as combinations of all data items. Suppose the data 

constitutes i attributes att1… atti, and the numbers of values in corresponding attributes 

are n1… ni. Denote the number of different combinations of up to j items coming from 

att1…attk, k ≤ i as catt,j,k; catt,j,k can include at most one value from each attribute. Then 

 , ,

,1, 1

, , 1 , 1, 1

,                                  1,  1

0,                                   1,  1

,                   1,  1

,  otherw e

=

is   

k

att j k

att k k

att j k k att j k

n j k

j k
c

c n j k

c n c



  

 

 

  















. (2.6) 

The number of potential rules with attm as the consequent and up to maxL items in the 

antecedents from all other attributes is equal to 
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, ,

1

maxL

m att m j i

j

n c 



 ,   (2.7) 

where att-m,i means the set of attributes {att1…atti} excluding attm. Finally,  

 , ,

1 1

i maxL

m att m j i

m j

s n c 

 

 
  

 
     (2.8) 

if all attributes can be in the rule antecedents and consequents. The s value when only 

specified attributes are in the rule antecedents and consequents can be similarly 

derived. With only a modest number of items, s can reach tens of thousands or even 

billions. While the κ value is then extremely small, experiments show that such κ value 

usually allows a substantial percentage of true rules to past the test and thus be 

discovered.  

 

The statistically sound approach can achieve an FWER below 1% with α = 0.05. Such 

high efficacy, however, also suggests that it is more conservative than users need. 

Although this is not problematic with accurate data and ordinary rule mining, it can 

lead to major loss of true rules with noisy data or fuzzy SARM, and will be shown in 

Chapter 3 and 4. 

 

2.3  ARM/SARM with uncertain data 

Frequent itemset mining (similar to ARM except for not arranging antecedents and 

consequents) and ARM with uncertain data has also attract much research effort. The 

studies mostly employed a probabilistic data structure, where a probability value is 

associated with each record or attribute value to present the degree of uncertainty. 

Chui et al. (2007) found that mining frequent itemsets in uncertain probabilistic 

transactional data was either inapplicable or very inefficient by simple extensions of 

traditional algorithms, and presented a data trimming framework to improve the 

efficiency. Chui and Kao (2008) developed a decremental pruning technique for 
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itemset mining in uncertain data that was more efficient and robust than data trimming. 

Aggarwal et al. (2009) examined a wider variety of conventional itemset mining 

algorithms, and pointed out that they have very different performances and degrees of 

suitability for being extended to uncertain probabilistic data. Zhu et al. (2010) 

presented the data sampling technique for ARM with uncertain data, which was much 

faster and maintained relatively high accuracy as compared with mining from all data. 

Gonzales and Zettsu (2012) developed an ARM method using genetic network 

programming for uncertain data that was efficient for large databases.  

 

The studies are of great value, yet hard to be used for resolving data error impact in 

statistical tests on association rules. Even these studies commonly list data error as a 

major source of uncertainty, they have yet addressed random error behaviours which 

are far from single probabilities associated with data entries. According to an 

exhaustive review by Carvalho and Ruiz (2013), all past research articles in several 

major indexing databases about uncertain ARM algorithms employed the probabilistic 

data structure, and none was for random data error. 

 

SARM studies usually focus on specific uncertainties in geographic objects, and 

handle such uncertainties using fuzzy sets or other soft computing models, as will be 

detailed in Sections 2.4 and 2.6, instead of probabilistic data structure. But if SARM 

adopts the probabilistic structure after spatial attributes are computed and tabulated, it 

will share the above problem of ARM in random error handling. 

 

2.4  Fuzzy ARM/SARM 

As said in Section 1.1, a key data preprocessing procedure in ARM/SARM is to 

discretize, or transform, raw numerical data into attribute-value ones, where the values 

are linguistic concepts, so that the data are ready for generating linguistic rules. In 

ordinary rule mining, each concept corresponds to a crisp raw data value interval, 



2-20 
 

which can cause bias and inaccurate representations of gradual or vague concepts. 

Fuzzy rule mining may relieve this problem, thereby improving the reliability of 

resultant rules, by modelling each concept as a fuzzy set of raw data values.  

 

Consider a numerical attribute x with a generic value indiscriminate with the attribute 

name. A fuzzy data discretization model defines a membership function, l : domain 

of x → [0,1], for each concept l. The membership degree of x in l ,  l x , represents 

the degree to which x belongs to l. The core and support of l is respectively 

    1l lcore x U x     and     0l lsupp x U x     (Bosc et al. 2007). 

Table 2.1 lists common types of previously proposed membership functions.  

 

Table 2.1  Common forms of membership functions for fuzzy data discretization 

Form Graph Reference(s) 

Triangular 

 

a. Bilaterally symmetry:         

Herrera and Martinez (2000), 

Chen et al. (2008),                        

Carmona et al. (2010) 

b. Bilaterally asymmetry:    

Alhajj and Kaya (2008) 

Trapezoidal 

 

Ladner et al. (2003),           

Patrick et al. (2007) 

Gaussian-

curve 

 

a. Core for a single x value:  

Bordogna and Pasi (1993) 

b. Core for an x value range: 

Burda et al. (2014) 

 

Conjunctions of multiple membership degrees are evaluated by t-norm, an associative, 

commutative and monotone function      :  0,  1 0,  1 0,  1   , 1   and

0 0   for each  0,  1 . SARM mostly adopts minimum t-norm: min  

0

1

 x

x

a.                         b.

0

1

 x

x

0

1

 x

x

a.                       b.
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 min ,     and product t-norm: prod    (Laube et al. 2008). The fuzzy 

support of an itemset  1 1' ' ' 'm mV x v x v    is     

      
1 1 mv v m

R D

supp V r r 


   .  (2.9) 

Fuzzy rule mining can then be conducted by using fuzzy instead of crisp supports in 

all patterns involved in RIMs. Replacing all membership degrees in fuzzy rules with 

binary memberships 0/1 reduces the task to ordinary rule mining.  

 

Fuzzy SARM is of particularly value, as spatial data is rich of fuzzy concepts. Some 

obvious examples are nearness between spatial entities, and land covers with gradual 

transitions between land parcels of different covers. Fuzzy SARM was first formally 

presented by Ladner et al. (2003), and aforementioned spatial support and spatial 

confidence (Laube et al. 2008) are also based on fuzzy rules. Shu et al. (2008) 

explored association rules from vegetation and climate change data, where they used 

fuzzy c-means clustering to discretize numerical weather measurements and NDVI 

into vegetation and climate concepts. Fuzzy SARM has also been employed to find 

weights of risk degrees in site selection of emergency response centres (Fan 2014), 

and for investigating impact of air pollutant distributions on allergic asthma 

occurrences (Sadat et al. 2015). 

 

These useful researches takes the premise that fuzzy SARM results are more reliable 

than the ordinary one, due to improved RIM accuracy for gradual or vague concepts 

in the former. However, it has rarely been empirically evaluated how much crisp RIM 

values actually deviate from fuzzy ones. The risk that fuzzy memberships reduce 

significance of rules and hence the number of true rules also need to be assessed, as 

said in Section 1.1. Besides, existing data discretization models for fuzzy SARM calls 

for more comprehensive mathematical justifications, for example, whether it is more 

reasonable to assign linear or curved membership functions for transitions of the fuzzy 
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sets, even existing spatial semantic studies have relevant outcomes to be extended to 

and examined in SARM. 

 

2.5  GAs for ARM/SARM 

As stated in Section 1.1, GAs may be used to find appropriate data discretization 

schemes for ARM/SARM, which addresses the prevalent inadequacy of expert 

knowledge to do so and variant user preferences on the schemes. GAs are 

metaheuristics that mimic natural selection and usually used to solve optimization and 

search problems (Mitchell 1996). The basic unit of evolution in a GA is a chromosome, 

or individual, which is a candidate of the entire or part of solution to an optimization 

problem. The GA starts with an initial population of individuals. In each successive 

generation, three genetic operators are applied to evolve the population toward better 

solutions: 

• Selection: to distribute chances of surviving to the next generation or giving 

offspring among individuals. Individuals with better fitness values, computed 

according to one or more objective functions, have larger chances. Individuals 

with the best fitness values may become elites and have 100% chance to 

survive. 

• Crossover: to recombine two chromosomes into offspring ones. A common 

approach is to select one or more crossover points on the parent chromosomes, 

and to swap parent genes between adjacent crossover points to produce two 

children. One or both of the children may be passed to the next generation. 

• Mutation: to diversify the population genes by altering one chromosome. 

Locations where the values mutate are often randomly selected from the 

chromosome with a certain probability. 

In GAs for ARM, individuals can be candidate rules or data discretization schemes. If 

candidate rules are encoded, membership functions for items in the rules may either 
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be predefined or encoded and optimized together. In any case, membership functions 

may have predefined shapes and other constraints. The objective functions are 

measures on goodness of the rules, including but not limited to RIMs.  

 

Table 2.2 lists some representative GA-based ARM studies. The entire data 

discretization scheme includes the number of concepts for each attribute and 

membership functions of each concept. A main rule is a collection of candidate rules 

with the same attributes in the antecedents and same attributes in the consequents (to 

be detailed in Section 5.1.1). A DNF-type fuzzy rule is another collection with the 

same attributes in the antecedents and same item as the consequent. 

 

Table 2.2  Representative GA-based ARM studies. ↑ and ↓ respectively indicates to 

maximize and minimize 

Reference Objective(s) Chromosome 
Membership 

functions (MFs) 

Kaya (2006) ↑support, ↑confidence, 

↓No. of attributes 

Main rule + MFs                              Fuzzy, 

triangular 

Salleb-

Aouissi et al. 

(2007) 

↑gain-based measurea  Itemset + MFs                               Ordinary 

Chen et al. 

(2008) 

↑No. of large itemsb, 

↑suitabilityc 

Entire discretization    

scheme     

Fuzzy, 

triangular 

Alcalá-Fdez 

et al. (2009) 
 large items

suitability

support
 

Entire discretization 

scheme, with fixed No. of 

concepts and shape of   

MFs; displacements of MF 

centres evolve in GA     

Fuzzy, 

symmetrical 

triangular 

Casillas and 

Martínez-

López 

(2009) 

↓approximation error, 

↓No. of DNF-type fuzzy 

rules/equivalent 

Mamdani fuzzy rulesd 

DNF-type fuzzy rule;    

MFs are predefined 

Fuzzy, 

triangular 

a this measure favours high-support rules with low-support antecedent items 
b large items: items with support > predefined min support 
c this measure favours MFs with small mutual overlaps and covering larger ranges 
d these measures favour more concise and interpretable rules 
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In the SARM context, after spatial attribute values are computed and tabulated 

together with non-spatial data, it is straightforward to employ GA for optimizing data 

discretization schemes and candidate rules. For example, Barb and Kilicay-Ergin 

(2013) utilized GA to explore association rules for more accurate semantic ranking of 

satellite images according to using low level features such as colours and shapes.  

 

A pending issue for GA-based ARM/SARM is that the resultant rules are optimal 

takes the premise that these rules are authentic, or with minimal risk of being spurious. 

However, as said in Section 1.1 and will be reconfirmed in Chapter 3–5, spurious rules 

can take a large portion in the result. The issue may be resolved by integrating 

statistically sound tests on SARs. This calls for new methods to adjust significant 

levels of the tests, as the total number of potential rules in GA-based rule mining 

methods is different from that in conventional ones. Besides, not all chromosome 

encoding approaches for GA are suitable for the integration with statistical tests; in 

particular, integrating the encoding of entire data discretization schemes can be 

infeasible in terms of time consumption, as will be elaborated in Chapter 5.  

 

2.6  Other uncertainty handling techniques in SARM 

While this thesis focuses on nearness spatial relations, this section also presents 

exemplary SARM studies mainly for uncertain topologies, for a more wholesome 

overview on uncertainty handling in SARM. 

(1) Pruning rules by known geographic dependencies (Bogorny et al. 2008) 

This approach aims at pruning uninteresting SARs containing known geographic 

dependencies that are explicit in spatial database schemas, such as ‘gas stations must 

be on roadsides’. Such rules may not be spurious, but indeed downgrade the quality 

of SARM results and adds to the difficulty for users to interpret the results and make 

good decisions. The study utilized a two-step pruning strategy, the first step in data 
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preprocessing and the second in generation of itemsets, to prevent occurrences of well-

known geographic dependencies in resultant rules before these rules are generated. 

This proved much more efficient than filtering out rules containing such dependences 

after all rules were generated indiscriminately. As this strategy can work after the 

computation and tabulation of spatial attributes, it may be readily incorporated into 

the methods for enhancing reliability of SARM results developed in this thesis.  

(2) Spatial objects with broad boundaries 

Studies have proposed models like the RCC-8 (Randell et al. 1992) and egg-yolk 

model (Cohn and Gotts 1996) for representing vague regions around areal spatial 

objects without crisp boundaries. Clementini et al. (2000) extended vague region 

modelling to multi-level SARM by proposing ‘composite regions with broad 

boundaries’. Such a composite region includes an inner certain region 1 2A A  and an 

outer region A2 including its certain and uncertain parts. A1 and A2 need not to be single 

polygons, which allows for more general cases of uncertain regions. The broad 

boundary of the region is 1 2\A A A  (Figure 2.2). Two areas with broad boundaries 

may constitute 56 topological relations. The study took these relations as bottom-level 

ones, and grouped them into 14 mid-level clusters and further to 4 top-level ones. The 

study also developed an efficient method for determining the topology between two 

regions across and within each of the taxonomical levels during SARM process.  

 

 

Figure 2.1  A composite region with a broad boundary (Clementini et al. 2000, p254) 
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(3) Rough set approach 

Rough set theory is another extension to traditional set theory which can handles 

spatial data uncertainties. A rough set represents a set X by its lower approximation: 

    R
R X x U x X   and upper approximation:     R

R X x U x X   ,  

where U is the universe of all data; R is the equivalence relation defining the property 

held by X; and  
R

x is the set of x with the designated property. In SARM,  R X  and 

 R X can model the uncertain inner and outer boundary of an area, or raw data value 

intervals that fully or at least partially support concept X in the data discretization for 

X. Each record may have weight 1 in relevant pattern supports if its raw numerical 

coordinates or value are in  R X , 0 if beyond  R X , and a, 0<a<1 if in the boundary 

   R X R X (Beaubouef et al. 2004).  

 

While the weight is somehow like membership degrees in fuzzy SARM, fuzzy and 

rough sets depict different types of uncertainties in spatial data. Fuzzy sets are for 

vague or gradual concepts, such as ‘high’ with respect to elevation. In contrast, rough 

sets approximate concepts that are not vague, but cannot be precisely defined due to 

inadequate information available (Bai et al. 2014).  

 

Taking highness as an example, if elevations over 2000m are definitely high while 

those below 1500m are definitely not, then elevations from 1500m to 2000m have 

increasing fuzzy membership degrees for ‘high’ in the fuzzy set approach, while they 

all have the same weight a for ‘high’ in the rough set one. Obviously the former is 

more reasonable. A case where the rough set is suitable is about a lake with clear 

boundary. In a low-resolution satellite image, all pixels the boundary falls in, and 

probably some nearby pixels, are uncertain to be in or out of the lake. As the exact 

location of the boundary is unknown, all areas in these pixels have equal probability 

to be in the lake. It is appropriate to represent these pixels as a rough boundary with 

equal weight a for ‘in the lake’. 
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Chapter 3  Mining significant SARs from uncertain data 

* This chapter is primarily based on the published research article of the thesis author 

entitled “Mining significant association rules from uncertain data”.  

 

The chapter presents a new ARM/SARM method for uncertain, or erroneous data. 

This method concerns the statistical testing stage in rule mining, and is based on the 

existing statistically sound test on rules reviewed in Section 2.2. Compared with 

existing statistical tests, the new method can discover more true rules, by making 

original mathematical corrections for impacts of random data error, and recovering 

rules lost due to the error. The method can also limit the risk of spurious rules upon a 

low user specified level. Hence, the new method will be referred to as the corrected 

test, and the existing statistically sound test will be called the original test. 

 

While the corrected test is applicable for both spatial and non-spatial attributes, the 

case study in Section 3.3 demonstrates its particular usefulness for spatial data and 

mining spatio-temporal associations. 

 

In this chapter, Section 3.1 presents the methodologies of the corrected test. More 

detailed outline of the methodologies is presented in Section 3.1.1. Sections 3.2 and 

3.3 respectively illustrate methods and results of, and discuss about the synthetic and 

real-world data experiments on the new test. The real-world case study was for mining 

spatio-temporal associations between land uses and socioeconomics. Section 3.4 

discusses the accuracy of data error information in practice and its implication to the 

practical value of the corrected test. Section 3.5 is a summary of this chapter.   

 

3.1  Statistical test for association rules with uncertain data  

3.1.1  Overview of corrected test 

As said in Section 1.1 and will be confirmed by experiment results in Sections 3.2 and 
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3.3, data error mostly causes reduction of true rules in ARM/SARM results, since the 

error is of random nature and irrelevant to real associations in data. Data error can 

distort computational parameter values in statistical tests on the rules. The parameters 

are variables in the tests that involve supports of relevant itemsets, for example, a–d 

for the Fisher’s exact test in Equation (2.5). Distorted parameter values then result in 

distorted p values of the tests, mostly larger than their true values, as the rules are 

weakened. Finally, true rules may be rejected by the tests if the true p values resulted 

from the test on them are below the significant level, but the distorted p values go 

beyond. 

 

In response of this problem, the corrected test models and corrects the distortions of 

the test parameter values due to data error. The corrected parameter values become 

more accurate, or closer to their true values, which in turn lead to more accurate p 

values, recovery of true rules lost due to the error, and finally the discovery of more 

true rules.  

 

To correct the distortions in the test parameter values, the distortions must be 

quantified first. For this purpose, the coming Section 3.1.2 is devoted to a 

mathematical model describing the error propagation from source data to distortions 

of the test parameters. The model is originated in this thesis, as past uncertain ARM 

studies did not provide a model exclusively for random data error behaviours (see 

Section 2.3). Once the parameter value distortions are quantified by the error 

propagation model, the amount of correction to be made on the distorted parameters 

can be derived, and then the corrected test can be formally formulated. Such work is 

done in Section 3.1.3. 

 

The corrected test can strictly control the risk of spurious rules since it makes the 

corrections based on the statistically sound evaluation. As explained in Section 2.2, 

existing statistically sound tests can limit the FWER to below a low user specified 
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level, for example 5%, and an even much lower percentage of spurious rules. Still, the 

corrections need to be carefully moderated to ensure that the corrected test can inherit 

the distinct advantage in spurious rule control from statistically sound tests. Section 

3.1.4 discusses the technique to do such moderation.  

 

This thesis exemplifies the original test by the statistically sound Fisher’s exact test 

for productive rules (reviewed in Section 2.2). The method of modelling and 

correcting the data error is applicable to other statistical tests.  

 

It is worth noticing that the losses of true rules due to data error cannot be alleviated 

by simply increasing the significance level of the original test: doing so can result in 

substantial increases of spurious rules, as only a small to moderate percentage of 

potential rules are authentic, according to Webb (2007) and experiment results in this 

chapter. It may be acceptable to increase true rules at the price of slightly more 

spurious ones. Yet since spurious rules can be very harmful, increase in true rules 

needs to be many times of that in spurious ones. This calls for targeted corrections to 

the original test for reducing impacts of data errors according to their statistical 

behaviours, as is done by the corrected test.   

 

3.1.2  Modelling error propagation 

To model errors in the test parameters, we start from the error on a single item in data. 

Consider an attribute a with values 1,…, k and any data record containing a. For

 , =1i j k , denote by pij the probability that the value of a in the record is i on 

condition that the true value of a is j. That is,

 Pr value in data true va| lue .ijp i j   Then there is 
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11 12 1

21 22 2

1 2

... ... ...

...

k

k

k k kk

p p p

P p p

p p p

 
 
 
 
 
 






P . 

Probabilities on the principal diagonal of P corresponds to cases where i = j, or that 

the attribute values are correctly recorded. Other elements all represent the 

probabilities of error between different true and recorded value pairs. 

 

This study adopts a common simplifying assumption in past researches on mining 

association rules from uncertain data: the independence between uncertain probability 

behaviors of different data items (Aggarwal et al. 2009). Under this assumption, the 

probability of each case that the error occurs in a, as recorded by each pij in P, is 

invariant regardless of any other attribute values in each record. Thus, P can provide 

all information about chance of error occurrence in the entire data that is needed for 

modeling propagation of error in a during the statistical test. We call P the 

proportional error matrix of a. P can be seen as a standardized form of the population 

error matrix, or confusion matrix (Ting 2011), where the standardization makes 

1ij
i

p   for  =1j k .  

 

Let ci be the item representing value i in a. The observed support of ci, s(ci), is the 

number of records containing ci. Due to the data error, s(ci) is typically different from 

the unknown true support of ci, s0(ci). For j[1, k], there are s0(cj) records where the 

true value of a is j. In each of these records, recording the value of a as i can be seen 

as a Bernoulli experiment with the probability of success equal to pij. Then the number 

of records with true value j and recorded value i, ( )ijs c c , is the number of 

successes in s0(cj) such independent Bernoulli experiments, and follows a binomial 

distribution:     0~ ,i j ijjs c s cB pc  . In ARM/SARM, normally 0( ) 30jcs  , 

( ) 5j ijc ps   and  1( ) 5j ijcs p  , so the distribution of ( )ijs c c can be 

approximated by a normal distribution:  j is c c   0 0~ ( ) , ( ) 1j ij j ij ijs pN c p s c p . 
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s(ci) is the number of records with any true values and recorded value i of a, that is, 

1

( ) ( )
k

i j i

j

s c s c c


  . As 
1( )is c c  … ( )iks c c  are mutually independent,  

 0 0

1 1

( ) ~ ( ( ), (1 ) ( ))
k k

ij j ij iji j

j j

N p s c p p s cs c
 

  . (3.1) 

The expectation and variance of s(ci) are 

 0

1

( ( )) ( )
k

i ij j

j

E s c p s c


 ,  (3.2) 

 2

0

1

( ( )) (1 ) ( )
k

i ij ij j

j

s c p p s c


  . (3.3) 

Distributions for observed supports of all classes 1,…, k can be written in a matrix 

form: 

 

0 11 11 1

1 0

( )( ( ))

( ( )) ( )

k

k k kk k

s cE s c p p

E s c p p s c

a a

    
    

     
    
    

 0E(S( )) PS ( )
, (3.4) 

      

      

1/2

11 11 0 1 1 1 01

1/2

1 1 0 1 0

(1 ) ( ) (1 ) ( )( ( ))

( ( )) (1 ) ( ) (1 ) ( )

k k k

k
k k kk kk k

p p s c p p s cs c

a

s c p p s c p p s c





       
        

       

Σ(S( )) . 

   (3.5) 

 

3.1.3  Recovering test parameters 

Equation (3.4) is equivalent to 
1a a0S ( ) P E(S( )) . E(S(a)) is determined by P and 

S0(a), the latter being a vector of true supports and unknown in reality, thus E(S(a)) 

is also unknown and needs to be estimated. Once an estimation of E(S(a)), denoted 

by ˆ aE(S( )) , is determined, the estimation of S0(a), ˆ a0S ( ) , can then be solved: 

 
1ˆ ˆa a

0
S ( ) P E(S( )) . (3.6) 
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When expanded, Equation (3.6) is a matrix of k equations, each for one value in a. 

The ith row of the matrix form shows the estimated true support for value i: 

  1

1

0
ˆ( ) ( )ˆ

k

ij j

j

i p E s cs c 



 , (3.7) 

where 
1

ijp
 is the element at position (i, j) of P-1. 

 

As  ˆ ( )jE s c  is the most probable value of the observed support s(cj), it is 

straightforward to take  ˆ ( )jE s c = s(cj). The probabilities that s(cj) > E(s(cj)) and s(cj) 

< E(s(cj)), or that E(s(cj)) is overestimated and underestimated, are both 0.5. This 

“neutral” estimation is not always best with respect to the purpose of estimating s0(ci); 

a more generic solution should be controlling the probability that    ˆ ( ) ( )jj Es sE cc  , 

or that  ( )jE s c is overestimated, at any user specified value between (0,1). This can 

be achieved by incorporating the variance of s(cj) and a constant z. By perceiving s(cj) 

as    ( ) ( )j jE s c z s c , we take    ( ) ( ) ( )ˆ
j jjE s c s c z s c  . The probability that 

 ( ) ( ( )) ( )j j js c E s c z s c   is 1 ( )z , where   is the cumulative distribution 

function of the standard normal distribution. The probability that    ˆ ( ) ( )jj Es sE cc  , 

equivalent to  ( ) ( ( )) ( )j j js c E s c z s c   by this estimation, is also 1 ( )z  (Figure 

3.1).  

 

 

Figure 3.1  Using  ( )js c and z to control probability of overestimating E(s(cj)) at 

arbitrary user specified value 
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For Equation (3.7), substitute  ˆ ( )jE s c  by  ( ) ( )jjs c z s c , and  ( )js c  by its 

expression in Equation (3.3): 

 1

0

1 1

1/2

0( ) ( ) (1 ) ( )ˆ
k k

ij j jl jl

j

i l

l

p p p s cs c s c z

 

   
   

  
  

  
 

  .  (3.8) 

0( )ls c is an unknown true support, so it should also take the estimated value 0
ˆ ( )ls c : 

 1

0

1 1

1/2

0
ˆ( ) ( ) (1 ) ( )ˆ

k k

ij j jl ji l l

j l

p p p s cs c s c z

 

   
   

  
  

  
 

  .  (3.9) 

List all equations like Equation (3.9) for 0 0 1 0
ˆ ˆ ˆ( ) ( ) ( )l ks c s c s c  and combine them 

into a matrix:  

 

      

      

1/2

11 11 0 1 1 1 00 1 1

1

1/2
0

1 1 0 1 0

ˆ ˆ(1 ) ( ) (1 ) ( )ˆ ( ) ( )

ˆ ( ) ( ) ˆ ˆ(1 ) ( ) (1 ) ( )

k k k

k k
k k kk kk k

p p s c p p s cs c s c

z

s c s c p p s c p p s c



          
             

          

P

.  

 (3.10) 

Equation (3.10) includes k equations and should have a unique solution for its k 

unknowns 0 1 0
ˆ ˆ( ) ( )ks c s c . However, an exact solution of Equation (3.10) is 

complicated and computationally uneconomic. When only one 0
ˆ ( )is c is needed, all 

equations in Equation (3.10) have to be solved, and all of 0 1 0
ˆ ˆ( ) ( )ks c s c  will be 

obtained. In the real operation, 0
ˆ ( )ls c  on the right side of Equation (3.9) can be 

approximated by the observed support s(cl):   

 1

1

1 2

0

1

/

( ) ( ) (1 ) ( )ˆ
k k

ij j jl jl l

j l

is c s cp p p s cz

 

  
   

  
 

 
  

  
  . (3.11) 

An analytic evaluation of the discrepancy between the 0
ˆ ( )ls c  values solved from 

Equations (3.11) and (3.10) is provided in Appendix 1. Also shown is that such 

discrepancy has minimal effect on the corrected test. 
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Let I be a set of items other than ic . We first consider I as error free; if not, other 

erroneous items can in turn take the place of ic  and have their errors addressed. The 

“true” support of { }iI c without the impact of error in ic  is  0 { }is I c , and the 

observed support is  { }is I c . Under the assumption in Section 3.1.2 that items are 

independent in their chances of error occurrence, Equation (3.11) still holds if ic is 

substituted by { }iI c . Denote the estimated true value of  is I c  with respect to P 

and z by , ,,ˆ
i IE c z( P ) : 

1/2

0

1

1 1

ˆ , ( { }) ( { }) (1 ) ( { }, , )ˆ
k k

i ij j jl jl l

j l

iE c z I p I p pI s c s s Ic cz

 

  
    

  
 

 
 




 
 ( P ) . 

 (3.12) 

Equations (3.6)–(3.12) are applicable as long as P is nonsingular, which is always the 

case when P is diagonal dominant (Taussky 1949). This is equal to that 0.5iip   for 

all 1i k , as 1 1k
j jip   (see Section 3.1.2). According to Section 3.1.2, if 

0.5iip  , then the accuracy of value i is no more than 50%, and s(ci) will be distorted 

by at least 50%. In this case, any rules containing ci would be so unreliable that it is 

recommended to remove i from P and discard the rules containing ci, instead of 

repairing s(ci) by the corrected test. Yet if one would like to anyway preserve ci in 

resultant rules, , ,,ˆ
i IE c z( P )  can still be solved by replacing P-1 in Equations (3.6)–

(3.12) by the Moore-Penrose inverse (Penrose 1955) of P. The Moore-Penrose inverse 

is existent for any matrix and can be computed by well-established methods such as 

the one presented by Ben-Israel and Greville (2003). The resultant , ,,ˆ
i IE c z( P )  is 

actually a minimum norm least squares solution, which is proven a minimum bias one 

(Rao and Mitra 1972).  

 

Consider the Fisher’s exact test for productivity of a rule X y  (Equation 2.5) on 

one of its items mx X . Parameters a, b, c and d for the test, as defined in Equation 

(2.3), can be rewritten as 
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( { })
( ) ( { })
(( { }) { }) ( { })
( { }) ( ) (( { }) { }) ( { })

m

m m

a s X y
b s X s X y
c s X x y s X y
d s X x s X s X x y s X y


 
  
     

 , (3.13) 

Where s denotes observed support for the itemset with data error impact. Let a0, b0, c0 

and d0 be unknown true values of a–d. Applying Equation (3.12) to a–d by altering 

contents of I and ic  will produce
0â , 0b̂ , 

0ĉ  and 0d̂ , the estimations of a0, b0, c0 and 

d0. Values of 
0â – 0d̂  should be less distorted than a–d. Therefore, when conducting a 

statistically sound Fisher’s exact test following Equation (2.5) and using the 

significance level determined by Equation (2.6) – (2.8), replacing a–d with 
0â – 0d̂ in 

may lead to more accurate p value, recover true rules lost due to data error, and finally 

increase the number of true rules discovered.  

 

According to Equation (2.4), increasing a and d values and decreasing b and c values 

will reduce the p value, which makes both true and false rules more likely to pass the 

test. To guarantee that using the parameter z does not add to the risk of spurious rules, 

the z value should neither make a or d values increase nor b or c values decrease. Thus 

a non-negative z value should be used with , ,,ˆ
i IE c z( P )  for correcting a and d, and 

, ,,ˆ
i IE c z( P )  for b and c.  

 

In a rule X y , the erroneous item ci may be xm, y, or an item ex X other than xm. 

The three conditions result in three different formulations of 0â – 0d̂  values, as listed 

in Table 3.1. Values of 0â – 0d̂  need to be rounded to the closest integers for the use in 

the Fisher exact test.  
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Table 3.1  Estimated true values of test parameters 
0â – 0d̂ with derivations 

(a) Case 1:
i mc x  

Derivation ( { })
(( { }) { } { })
(( { }) { } { })

m m

m i

a s X y
s X x x y
s X x y c


 
 

 

( ) ( { })
(( { }) { }) (( { }) { }) { })
(( { }) { }) (( { }) { } { })

m m m m

m i m i

b s X s X y
s X x x s X x x y
s X x c s X x y c

 
   
   

 

(( { }) { })ma c s X x y    

( ) ( )
( { }) (( { }) { })m m

b d a b c d a c
s X x s X x y

      
   

 

0â – 0d̂   0
ˆˆ ( { }, ,) { } ,i ma E c X x y z  P  

   0
ˆ ˆ ˆ, , , ,{ } , ( { }) { } ,i m i mb E c X x z E c X x y z     P P  

0 0
ˆ ˆc a c a    

0 0
ˆ ˆd b d b    

  

 

(b) Case 2: 
ic y  

Derivation
 ( { })

( { })i

a s X y
s X c


  

( )a b s X   

(( { }) { }) ( { })
(( { }) { }) ( { })

m

m i i

c s X x y s X y
s X x c s X c

  
    

( ) ( )
( { }) ( )m

c d a b c d a b
s X x s X

      
  

 

0â – 0d̂
 

 0
ˆ ,,ˆ ,ia E c X z P

 

0 0
ˆ ˆb a b a  

 

   0 , ,ˆ ˆˆ { } , ,, ,i m ic E c X x z E c zX    P P
 

0 0
ˆ ˆd c d c  

 

 

(c) Case 3: { }i e mc x X x    

Derivation
 

( { })
(( { }) { } { })
(( { }) { } { })

e e

e i

a s X y
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As has been stated, the corrected test applies to other statistical tests than the 

exemplified Fisher’s exact test. For this purpose, users need to derive the estimated 

true values of each parameter involving supports of relevant itemsets in corresponding 

tests based on Equation (3.12). Given z ≥ 0, , ,,ˆ
i IE c z( P )  should be used for 

parameters whose increase in values will reduce the p value of the test, and 

, ,,ˆ
i IE c z( P )  be used for parameters whose increase in values will enlarge the p value. 

The estimated true values should be derived considering the three conditions for the 

location of erroneous items in the rules, as has been done in Table 3.1. 

 

3.1.4  Controlling spurious rules  

For the method in Section 3.1.3, the z value is the key to the increase of true rules as 

well as the risk of spurious rules. A smaller z value leads to larger corrections to the 

Fisher exact test parameters, higher potential to recover true rules lost due to data error, 

yet also higher risk of overcorrecting these parameters and eventually spurious rules. 

 



3-38 
 

Ideally, a quantitative relation shall be established between the z value and the risk of 

spurious rules, particularly the FWER, thus z can be determined for a user specified 

maximum FWER. However, such an analytical solution is very difficult to achieve. 

As explained in Section 3.1.3, the z value only directly relates to the probability of 

overcorrecting each Fisher exact test parameter. This probability then links to the 

probability of overcorrecting p value of the test, the risk of individual spurious rules, 

and finally the FWER. There are numerous uncertain factors in this multi-step relation, 

for example, the value of each element in P, original p value of the test before the 

correction for error impact, the significance level   and the data size. It appears 

impossible to clearly quantify all the impacts of these uncertainties on the relation 

between z value and the FWER. If any factor is modelled very inaccurately, the entire 

quantitative relation will not work. 

 

An alternative solution takes a simulation approach. The simulation skips the links in 

the above multi-step relation and directly identifies the z value that are expected to 

result in an FWER of up to a user specified maximum, denoted by maxr . The 

simulation includes three steps

(1) For each column in the data table representing a certain attribute, reorder all 

values in the column in random sequence;  

(2) Generate association rules from the above randomized data, and apply the 

corrected test on generated rules. Starting from z = 0, increase the z value until 

all rules are rejected by the test. Record this smallest z value that makes all 

rules rejected; 

(3) Repeat steps 1 and 2 for n times. Find the largest z value recorded in n loops.  

The largest z value recorded is then used in the statistical test on actually mining the 

erroneous data. The randomization in step 1 creates a new dataset where the support 

of each item is equal to that in the erroneous data, but all items are independent from 

each other. Any rules discovered from such randomized data must be spurious rules. 
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The randomized data maintains all features of the erroneous data except for the 

associations, thus it may simulate the numerous affecting factors to the relation 

between the z value and FWER.  

 

There is a factor to this relation beyond the simulation, due to the fact that the p value 

of the Fisher exact test is more sensitive to a certain amount of change in a test 

parameter a, b, c, or d if the parameter is smaller. In the simulation with randomized 

data, items are expected to be independent, and even spurious productive rules occur, 

the rules are mostly weaker and thus have smaller supports than rules in actual data to 

be explored. As a is equal to the rule support, there are more large a values when the 

test is conducted on the actual data than in the simulation. Similarly, rules in the actual 

data have more small b and c values and large d values, as inferred by definitions of 

these parameters in Equation (2.3). Corrections in similar magnitudes using the same 

z value to rules in actual and randomized data can then lead to different influences on 

the resultant p value. On a small number of rules with very small b and c values, the 

influence of the correction may exceed the maximum influence encountered in the 

simulation. This may cause higher risk of over-correction and more spurious rules.  

 

To address this issue, the simulation also recorded a correctable range for each test 

parameter, defined as the range of percentage changes, which can be positive or 

negative, in the parameter due to the correction in the simulation. When exploring the 

actual data, the four parameters in one test are corrected only if the correction to every 

parameter is within its correctable range. Otherwise, the correction is discarded, 

leaving the parameter values the same as in the original test. The correctable range 

limit is not posed when the simulation generates no false rules even at z = 0. In that 

situation, there will be false rules only if z < 0, which leads to larger corrections to the 

test parameters than z = 0. Still, the zero instead of negative z value is used, as z is for 

controlling the FWER and should not cause larger corrections than not using z or 

making it zero. Thus the potential of increasing true rules by the corrected test is 
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underutilized, and the range of corrections in the simulation is not the widest range 

that can control the FWER under maxr . 

 

The number of necessary loops n is determined by maxr . Each loop is like a random 

sample from an infinite number of data randomizations that could be realized. If each 

time the randomized data has a chance of maxr  to accept any false rules, then the 

probability of obtaining up to one false discovery in each loop is 
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
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   

. (3.14) 

As reducing z value by a minimum enumeration step will lead to spurious rules, to be 

on the safe side,  Pr 1K   should be included. The n value is the smallest one 

making  Pr 1 0.5K   . That is, when the data error shows average effect on the test 

in the simulation, the FWER cannot exceed maxr . When maxr = 0.05, the number of 

necessary loops is n = 34.  

 

It needs to be noticed that through the simulation, the maximum FWER depends on 

maxr  rather than the significance level   of the statistical test. Yet optimally the 

statistically sound test also takes s  , where s is the total number of potential 

rules and  = maxr . This is because both the simulation and the statistically sound test 

control the FWER instead of individual spurious rules. Also, the two techniques 

should aim at achieving the same user specified maximum FWER ( or maxr ).  

 

3.2  Synthetic data experiment 

The corrected statistical test on association rules was experimented with both synthetic 

and real data. Potential rules to be evaluated were generated by the test using the K-

Optimal Rule Discovery (KORD) algorithm (Webb and Zhang 2005). For unbiased 

comparison between results of the original and corrected test, the rules should undergo 
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minimal filtering by minimum support and confidence prior to the test. In this case, 

KORD is much more efficient than the popular Apriori typed algorithms in both Webb 

and Zhang (2005) and pilot experiments of this study. The experiments and all 

experiments in subsequent chapters were mainly implemented in MATLAB® R2012a 

for Microsoft Windows operating system. 

 

The synthetic data experiment firstly examined the impact of data error on the 

statistical test, especially the loss of true rules, hence confirming the need for the 

corrected test; and secondly evaluated the corrected test in terms of recovering true 

rules and controlling spurious rules. The corrected test was also examined for its 

robustness against inaccurate error probability specifications and dependence between 

error probabilities of different data items. The synthetic data was generated with 

predesigned true rules, so true and spurious rules can be correctly judged when 

evaluating rules accepted by the statistical tests. Thus the synthetic data experiment 

serves a strong support to the later real data experiment: the latter can show practical 

value of the corrected test, but has less confidence in evaluating the correctness of 

resultant rules, as true rules behind real data are rarely known. 

 

3.2.1  Data and methods 

The data was generated as a set of records, each containing 8 attributes: att0, att1, att2, 

att3, x0, x1, x2 and x3. att0 included five values from 0 to 4. The other seven were binary 

attributes. In every record, the value of each attribute was assigned at random 

following a predesigned probability distribution. Thus the support of each value 

followed a binomial distribution: in n records with attribute att, if the probability of 

att = 0 is equal to p in each record, then s(att = 0) ~ B(n, p). Following likewise 

distributions, the supports of all patterns have fluctuations. This is exactly the cause 

of spurious rules.  
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Value assignments of all attributes were equiprobable and independent, except that 

the probabilities of att3 values depended on att0, att1 and att2 values, and such 

dependences are summarized in Table 3.2. Consider att0 = 0 as the basic case. Then 

conditions att0 = 1 or att0 = 2 alone increased the probability that att3 = 1, while 

conditions att0 = 3 or att0 = 4 increased the probability that att3 = 1 only if att1 = 1 and 

att2 = 1. This was to simulate real-world data associations: sometimes a factor alone 

is associated to other factors, while sometimes only the concurrence of several factors 

establishes a new association with other factors. x0–x3 were not in any predesigned 

associations, and they simulated the numerous ‘noise’ attributes irrelevant to 

interested associations in practical rule mining. 

 

Table 3.2  Conditional probabilities of att3 values in synthetic data 

att0 att1 att2 
Probability of att3 values 

att3 = 0 att3 = 1 

0  Any values 0.5 0.5 

1  Any values 0.1 0.9 

2  Any values 0.3 0.7 

3 
1 1 0.1 0.9 

Otherwise 0.5 0.5 

4 
1 1 0.3 0.7 

Otherwise 0.5 0.5 

The predesigned associations led to 61 productive rules: 

• att0 = 1 or att0 = 2 → att3 = 1 (2 rules); 

• zero or more of att1 = 1 or att2 = 1, with or without att0 = 3 → att3 = 1 (6 rules); 

• att0 = 0 → att3 = 0 (1 rule); 

• zero or one of att1 = 0 and att2 = 0, and zero or one of att0 = 3 and att0 = 4 → 

att3 = 0 (8 rules); 

• zero or one of att0 = 3 and att0 = 4, and att3 = 1, with or without att2 = 1 → att1 

= 1 (6 rules); 
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• zero or one of att0 = 3 and att0 = 4, and att3 = 1, with or without att1 = 1 → att2 

= 1 (6 rules); 

• zero or one of a0 = 3 and att0 = 4, and att3 = 0, with or without att2 = 0 → att1 

= 0 (6 rules); 

• zero or one of att0 = 3 and att0 = 4, and att3 = 0, with or without att1 = 0 → att2 

= 0 (6 rules); 

• zero or one of att1 = 0 and att2 = 0, and att3 = 0 → att0 = 3 or att0 = 4 (6 rules); 

• zero or one of att1 = 0 and att2 = 0, and att3 = 1 → att0 = 1 or att0 = 2 (6 rules); 

• zero or one of att1 = 1 and att2 = 1, and att3 = 0 → att0 = 0 (3 rules); 

• one or more of att1 = 1 and att2 = 1, and att3 = 1 → att0 = 3 (3 rules); 

• att1 = 1, att2 = 1 and att3 = 1 → att0 = 0 or att0 = 2 (2 rules). 

These rules varied a lot in their strength, or productivity. Rules with lower strength 

are more sensitive and likely to be lost when the data has error.  

 

The predesigned productive rules included up to 3 items in their antecedents. In 

practice, the number of items involved in associations is usually unknown. Thus the 

experiment used variable largest number of items allowed in the antecedent, denoted 

by maxL. Each dataset was explored using maxL = 3 and maxL = 4. When maxL = 3, 

the total number of potential rules was s = 10248, and the statistically sound 

significance level was κ = 4.88×10-6. When maxL = 4, s = 27608 and κ = 1.81×10-6.  

For each dataset, data of five sizes comprising 4000, 8000, 16,000, 32,000 and 64,000 

records were generated. The experimented statistical tests were not expected to 

discover all predesigned rules; the larger the data size, the more likely the rules would 

pass the test. For statistical hypothesis tests in general, increasing amount of data can 

provide more evidences to the hypotheses, thus making the hypotheses more 

statistically significant. For SARM this translates to that more rules become 

significant and pass the test. An example is given in Table 3.3a for a Fisher Exact test 

on the rule “(house) near river → expensive”. In both the small and large datasets, 60% 
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houses near river and 40% houses not near river are expensive, and exactly half of the 

houses are near river. However, the test produces much smaller p value for the large 

dataset, showing that with more data, nearness to river is more certain to contribute to 

house price premiums. The rules are then more likely to have p values lower than the 

significance level and thus pass the test. 

 

Table 3.3 Numbers of true rules from ‘ideal’ data and remarks 

(a) Example of higher statistical significance of rules with increasing datasize; a, b, c 

and d are Fisher’s exact test parameters in Equation (2.4) 

No. of records 
Small dataset  Large dataset 

Near river Not near river  Near river Not near river 

Expensive a = 6 c = 4  a = 60 c = 40 

Not expensive b = 4 d = 6  b = 40 d = 60 

Test result  p = 0.3281   p = 0.0035 

 

(b) Numbers of true rules from ‘ideal’ data 

 maxL 
Data size 

4000 8000 16,000 32,000 64,000 

 No. of true rules  
3 12 32 40 42 49 

4 12 30 38 42 49 

 

For each data size, such ‘ideal’ data was generated that all items and itemsets in data 

had their expected supports. For instance, in the example earlier in this subsection, 

s(att = 0) would be equal to np. The predesigned rules were examined using the ‘ideal’ 

data with the statistically sound test. The numbers of rules accepted for each data size 

were listed in Table 3.3b.  

 

The original and corrected tests were also applied to data with artificial errors added 

into the original error-free data. The erroneous attributes were set to att0 and att3, 

which were keys to the predesigned rules. For each attribute, a designated percentage 

of records containing each possible value were randomly selected to include the error 

and have the attribute value changed. For att0 the value was assigned with 
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equiprobability to one of the remaining values, and for att3 the value was swapped to 

the other of the two possible values. Records of all the attribute values were 

equiprobable to include the error. Denote the total error by e, then the error matrices 

for att0 and att3 are 

0

1 / 4 / 4 / 4 / 4

/ 4 1 / 4 / 4 / 4

( ) / 4 / 4 1 / 4 / 4

/ 4 / 4 / 4 1 / 4

/ 4 / 4 / 4 / 4 1

e e e e e

e e e e e
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Data in four error levels were generated, and made nine experiment groups together 

with the original data: 

• Original: the error-free data and original test was used;  

• E20, E10, E05 and E02: for each of att0 and att3, 20%, 10%, 5% and 2% of the 

records contained error. The selection of erroneous records was in random and 

independent. The original test was used; 

• R20, R10, R05 and R02: the same data as their ‘E’ counterparts but the 

corrected test was used. 

In E and R groups, elements in 
0( )attP  and 

3( )attP were equal to actual error 

probabilities between corresponding attribute value pairs. That is, the error probability 

information was completely accurate. In practice, however, the error probability is 

also subject to inaccuracy (see details in Section 3.4).  To evaluate the robustness of 

the corrected test to inaccurate error probability specifications, four more experiment 

groups using the corrected test were added: 

• R20–/–: the data in E20/R20 with 20% actual error level for both att0 and att3 

was used, while the perceived error level for the corrected test (the total e in 

P) was 10% for both attributes; 

• R10+/+: the data in E10/R10 with 10% actual error level was used, while the 

perceived error level was 20% for both attributes; 
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• R20+/–: the data in E20/R20 was used, while the perceived error level was 30% 

for att0 and 10% for att3;  

• R10+/–: the data in E10/R10 was used, while the perceived error level was 15% 

for att0 and 5% for att3.  

‘+’ and ‘–’ refer to overestimation and underestimation of data error in the corrected 

test, respectively. These groups contained large inaccuracies in error specifications 

and focused on the highest two error levels, which pose the highest risk in affecting 

the corrected test. If the corrected test is robust then, so should it be with smaller data 

error or inaccuracy in error specification. 

 

For reinforced practical value, the corrected test was further examined for its 

robustness against the breakage of the widely accepted assumption on independent 

error probability behaviours between data items (see Section 3.1.2). Four groups were 

designed to include two types of dependence between error probabilities: 

• E10_ErrDep, R10_ErrDep: the data was the same as that in E10/R10, except 

that the error level of att3 depended on that of att0: the error level of att3 was 

25% and 8.33% for records with erroneous and true att0 values, respectively; 

• E10_ValDep, R10_ValDep: the data was the same as that in E10/R10, except 

that the error level of att3 depended on the value of att0: the error level of att3 

was 6% and 16% for records with att0 = 0–2 and att0 = 3–4, respectively. 

In these four groups, att3 had an aggregate error level of 10%, and both attributes had 

perceived error levels of 10%. Groups began with ‘E’ and ‘R’ respectively employed 

the original and corrected test. 

 

The above 17 experiment groups, five data sizes and two maxL values made up 170 

combinations, each called a treatment. 50 datasets were generated for each treatment. 

The application of each treatment to a dataset is a run. There were 8500 runs in total. 
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For each dataset, the Original treatments produced a set of reference rules for each 

data size. In the corrected test, the simulation looped 34 times as required by a 5% 

maximum FWER.  

 

3.2.2  Results 

Among resultant rules accepted by the statistical tests, a rule was true if it was also in 

the 61 predesigned productive rules, and was false if not. Figure 3.2 plotted true rules, 

spurious rules and FWER for the E and R treatments. The corresponding numerical 

results are listed in Table 3.4. Each point in the figure and number in the table are the 

aggregation for 50 datasets. Results for treatments with inaccurate error probability 

specifications or dependent error probabilities will be listed later. In the results, the 

number of rules counted only rules containing att0 and/or att3. The numbers of other 

rules being discovered were irrelevant to data error or the evaluation to the tests.  

 

As described in Section 3.2.1, the Original treatments produced a reference rule set 

for each data size in every dataset. The numbers of true rules containing att0 and/or 

att3 in each reference rule set, also reported in the ‘Original’ rows in Table 3.4, were 

taken as 100% for computing percentages of rules in Figure 3.2 and hereafter for 

corresponding E and R treatments. This was because the error-free data and original 

test for Original treatments were control conditions against the erroneous data and 

corrected test. 

 

As shown in Table 3.4, results for maxL=3 and maxL=4 were similar and shown 

almost identical trend of variation in relation to various conditions. This suggests the 

robustness of the statistical tests against variable maxL values, which is desirable, as 

in practice the numbers of associated data items are usually unclear. Starting from 

Figure 3.2, all results refer to averages for the two maxL values. In Figure 3.2, 

percentages of true rules varied significantly with data sizes and thus are plotted for 
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each data size; the spurious rules in different data sizes were relatively stable and thus 

aggregated. The essential numerical results are also summarized in Table 3.5. 

    

  

 
(a)  

           
       (b)                                                                   (c) 

 
Figure 3.2  Synthetic data experiment results. (a) True rules (b) Spurious rules       

(c) FWER with respect to total number of runs 
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Table 3.4  Numerical synthetic data experiment results for E and R treatments 

(a) True rules 

Data size 4000  8000  16,000  32,000  64,000 

maxL 3 4  3 4  3 4  3 4  3 4 

Original 15.62 14.20  29.36 27.32  39.44 38.66  44.04 43.38  49.90 49.18 

E20 3.40 3.16  6.96 5.98  15.32 13.84  28.54 27.24  38.40 37.70 

E10 7.20 6.38  17.36 15.74  29.96 28.32  39.72 39.08  43.72 42.96 

E05 11.42 10.06  22.74 21.32  36.10 34.90  41.94 41.40  46.86 46.00 

E02 13.94 12.68  26.90 24.80  38.50 37.76  43.38 42.64  48.58 47.70 

R20 6.38 5.98  13.80 12.78  24.98 23.14  35.12 34.04  41.52 40.94 

R10 12.88 11.52  24.06 22.56  36.24 34.94  42.22 41.60  45.14 44.32 

R05 15.90 14.32  27.98 25.96  39.26 38.42  43.96 43.08  49.48 48.40 

R02 16.30 14.28  29.08 27.12  39.52 38.82  44.30 43.78  49.92 49.04 

 

(b) Serendipitous discoveries 

Data size 4000  8000  16,000  32,000  64,000 

maxL 3 4  3 4  3 4  3 4  3 4 

E20 0 0  0.04 0.04  0.02 0.02  0 0  0 0 

E10 0 0  0.08 0.12  0.02 0.06  0.02 0  0.04 0.04 

E05 0.06 0.14  0.12 0.20  0.02 0.06  0.10 0.02  0.20 0.18 

E02 0.18 0.30  0.26 0.42  0.12 0.16  0.24 0.14  0.14 0.16 

R20 0.50 0.42  0.28 0.28  0.14 0.14  0.08 0.06  0.18 0.08 

R10 1.54 1.20  1.02 1.28  0.56 0.64  0.50 0.46  0.38 0.38 

R05 1.66 1.60  1.38 1.50  0.78 0.76  0.78 0.66  0.82 0.78 

R02 1.24 0.84  1.00 1.28  0.52 0.52  0.60 0.72  0.56 0.54 

 

 (c) Spurious rules 

Data size 4000  8000  16,000  32,000  64,000 

maxL 3 4  3 4  3 4  3 4  3 4 

Original 0 0  0 0  0 0  0 0  0 0 

E20 0 0  0 0  0 0  0 0  0.02 0.02 

E10 0 0  0 0  0 0  0 0  0 0 

E05 0 0  0 0  0 0  0 0  0 0 

E02 0 0  0 0  0 0  0 0  0 0 

R20 0.08 0.08  0 0.02  0.02 0.02  0.06 0.02  0.06 0.02 

R10 0.02 0  0.04 0.04  0.08 0.24  0.08 0.06  0.02 0.02 

R05 0 0  0 0.02  0.08 0.02  0.04 0.04  0.06 0.06 

R02 0.06 0.02  0 0  0 0  0 0  0.04 0.02 
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Table 3.5  Summary of synthetic data experiment results 

 Original dataa 
Original test            

(E treatments) 

Corrected test         

(R treatments) 

No. of true rules 1404.2 1100.6 1253.1 

No. of spurious rules 0 0.04 1.44 

% of spurious rules 0% 0.01% 0.10% 

FWER 0% 0.10% 2.50% 
a Values are (result in Original treatments)×4, corresponding to E and R treatments 

of 4 error levels. 

(1) Original test  

When the statistical test was applied to the original data with a significance level of 

0.05, averagely over 140 rules were accepted. Most of these rules must be false since 

there were only 61 predesigned true rules. With the statistically sound significance 

levels, the test generated zero false rules, though a very small number of false rules 

could be generated provided more runs in the experiment (Webb 2007). The numerous 

spurious rules in absence of, and the minimal spurious rules in presence of the 

statistically sound test, were consistent with the previous study of Webb (2007). This 

confirmed the necessity and effectiveness of the statistically sound test as the basis of 

this chapter. 

 

When applied to erroneous data, the original test maintained strict control on spurious 

rules. With the maximum FWER set at 5%, the actual FWER was only 0.1%, and the 

percentage of spurious rules was 0.01% (Table 3.5). That is, in terms of controlling 

spurious rules, the statistically sound test was robust to distortions posed by the data 

error to all patterns containing att0 and att3. Apparently, RIM values computed from 

distorted pattern supports should also distort and cause the spurious rules to increase. 

However, under the assumption that the probability of error occurrence on each 

attribute was independent from values of other attributes (see Section 3.1.2), such 

error mostly distorts in proportion the support of a rule and its sub-patterns containing 

erroneous attributes. The proportional distortions largely cancel out each other when 
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these support values are used together to compute RIM values. For a rule X y , 

data error in an attribute value x X  occurs by a constant probability, whether the 

record contains y or not. Thus ( )support X y  and ( )support X  tend to distort in 

proportion, and their distortions largely cancel out in  confidence X y

   support X y support X . Also, error in y changes  confidence X y  

and   \confiden e Xc x y , x X in rough proportion, while maintaining their 

differences. In both cases, the productivity of X y with respect to its 

generalization  \X x y would not be much affected, nor would relevant spurious 

rules be generated. 

 

However, the data error did cause marked loss of true rules. The loss worsened with 

higher error levels and smaller data sizes. In E20 with data sizes 4000 and 8000, 

almost 80% true rules lost and only 3–6 rules were preserved (Figure 3.2a, Table 3.4a). 

Such few true rules hardly made up a meaningful resultant rule set. While 90% data 

accuracy is satisfactory for many applications, the true rule loss was still prominent in 

E10 and up to 50% with small data sizes. Thus the original test may not obtain enough 

true rules for practical uses. This poses the need for the corrected test. 

 

(2) Corrected test with accurate error specifications 

The corrected test in R treatments obtained more true rules than the original test in E 

treatments for all error levels and data sizes (Figure 3.2a). The true rule increase was 

more significant when the true rule loss in the original test was severer. For medium 

error levels and data sizes, true rule rates raise from 60%~70% with the original test 

to 80%~90% with the corrected test.  

 

The increase of true rules can be standardized by their loss in the original test into: 

No. of SR/DR true rules No. of SE/DE true rules
100%

No. of reference rules No. of SE/DE true les
 

ru
recovery rate





 .  (3.15) 
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The true rule increases and recovery rates for various error levels are listed in Table 

3.6. With smaller data error, the true rule increase dropped due to decreased room of 

improvement, yet the recovery rate became significantly higher. The average recovery 

rate for all error levels was 50.2%, suggesting that the corrected test made up around 

half of the loss in true rules, or the loss in value of resultant rules. 

 

Table 3.6  True rule increases and recovery rates by error level 

 R20 R10 R05 R02 

z 0.78 0.27 0.06 0.01 

True rule increase 16.6% 12.8% 9.7% 4.4% 

Serendipitous discovery increase 0.6% 2.1% 2.7% 1.6% 

Recovery rate 34.1% 55.8% 88.7% 107.5% 

Average recovery rate 50.2%    

 

While the data error mostly led to loss of true rules, productive rules that were not 

discovered in Original treatments were in fact occasionally discovered in E and R 

treatments. We call such true rules ‘gained’ from erroneous data serendipitous 

discoveries. These rules are favourable but contrary to the expectation that random 

data error should cause loss of true rules. Still, serendipitous discoveries do result from 

the random nature of data error. As explained in Section 3.1.2, the observed support 

of a pattern S in erroneous data, ( )s S , roughly follows a normal distribution with 

expectation ( ( ))E s S  and variance 2( ( ))s S . When S contains associated items, the 

error tends to make ( ( ))E s S  smaller than the true support 0( )s S . Thus, usually

0( ) ( )S ss S , and rules like   ,X y X y S   become less significant. 

However, there is a small probability equal to   0( ( )) ( ) / ( ( ))E s S s S s S   that

0( ) ( )S ss S , or that X y  might become more significant. Thus some rules 

originally rejected by the statistical test may now past the test and become 

serendipitous discoveries. 
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To reassure that serendipitous discoveries happened purely by chance, and were not 

artefacts resulted from specific predesigned rules, an auxiliary experiment was 

conducted. Data error was added to the ‘ideal’ data used in Section 3.2.1 where all 

data patterns had their expected supports, and uniformly distributed among all 

attribute value combinations. Then the 61 predesigned rules were evaluated by the 

Fisher exact test using this ‘ideal erroneous’ data. This was similar to setting ( )s S =

( ( ))E s S  for each pattern S tested. All rules turned out to have larger p values and 

become less significant. 

 

Serendipitous discoveries were small in numbers, and their increases from E to R 

treatments took small percentages relative to numbers of reference rules (Table 3.6). 

However, the increases were actually sharp and around 2–10 times of the number in 

E treatments (Table 3.4b). This was because serendipitous discoveries often have 

borderline p values barely exceeding the significance level but still lowest among all 

rejected rules. Such borderline rules were much more likely to get p values decreased 

below the significance level and accepted by the corrected test than arbitrary rules. 

 

As shown in Table 3.6, serendipitous discovery increase was largely stable, with some 

decrease at the highest and lowest error levels (R20 and R02). The number of 

serendipitous discoveries in the corrected test itself changed likewise, as the corrected 

test had several times more serendipitous discoveries then the original test. At low 

data error levels, the increase of true rules dropped due to reduced room of 

improvement, thus serendipitous discoveries became more important, and took as 

many as 50% of the increase of true rules in R02. This is also the reason that the 

recovery rate rise at low data error levels. In R02, the recovery rate exceeded 100%, 

suggesting that the corrected test discovered even more true rules than the original test 

with error-free data. This was reasonable as serendipitous discoveries were not 

recovered from the lost true rules.  
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The number of serendipitous discoveries was relatively stable because their space of 

improvement included all productive rules that were rejected with the original data. 

This space did not change with variable error levels. Serendipitous discoveries 

decreased at very high and low error levels due to the z values determined by the 

simulation process. Recall that larger z values meant smaller correction to the test 

parameters. At very high error level, the same z value would lead to larger corrections 

and higher risk of spurious rules. Then z value had to be larger to control the FWER, 

as can be seen in Table 3.6. The large z value also limited the true rules, especially the 

serendipitous discoveries with borderline significances. In R02, the average z value 

were only 0.01, and z values in most runs were actually zero.  As explained in Section 

3.1.4, when z = 0 the potential of the corrected test in increasing true rules was not 

fully utilized, and the ability to recover serendipitous discoveries with borderline 

significances again became the most affected.  

 

At all error levels, the corrected test controlled the FWER below 5% and spurious 

rules below 0.2% (Figure 3.2b, c). The much higher error rates in the corrected test 

than those in the original test seems inevitable, since the former must bear some risk 

of overcorrection. However, the FWER in the corrected test was still quite low. The 

average FWER was 2.5% (Table 3.5), indicating that on 97.5% occasions there were 

not any spurious rules. Computed from Table 3.5, the ratio between true and false 

discovery increases was about 109:1. Users would obtain 109 more true rules at the 

risk of one more false discovery. As shown in Webb (2007) and result part (1) of this 

section, statistically unsound tests on the rules usually had 100% FWER and high 

percentages of spurious rules. Thus the corrected test can be regarded to have 

essentially equal advantage in spurious rule control to the original statistically sound 

test. 
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(3) Corrected test with inaccurate error specifications or dependent data error 

Experiment results with inaccurate error specifications or dependent data error were 

summarized in Table 3.7a. Results of R20 and R10 treatments with accurate error 

matrices and independent data error are also listed for direct comparison. The 

corrected test turned out largely maintained its efficacy for increasing true rules, 

compared with corresponding R20 or R10 treatments. The recovery rates were 

sometimes lower than that in R20 or R10, yet sometimes even higher. The largest 

recovery rate reduction occurred in R20+/– where the recovery rate was 20.3%, or 60% 

of that in R20. Considering the major loss of true rules in E20, the 20.3% increase of 

true rules was still significant. 

 

Table 3.7  Synthetic data experiment results with inaccurate error specifications or 

dependent data error 

(a) Results of corrected test 

  R20 
R20   

–/– 

R20 

+/– 
R10 

R10 

+/+ 

R10  

+/– 

R10_ 

ErrDep 

R10_ 

ValDep 

Recovery rate 34.1% 26.5% 20.3% 55.8% 70.4% 42.8% 65.3% 38.3% 

% of spurious rules 0.11% 0.07% 0.09% 0.17% 0.10% 0.17% 0.23% 0.25% 

FWER 3.4% 2.6% 2.4% 3.2% 2.8% 3.8% 3.4% 3.0% 

z 0.78 0.24 0.77 0.27 0.83 0.23 0.27 0.27 

 

(b) True rules in original test 
 E20 E10 E10_ErrDep E10_ValDep 

True rule rate 51.4% 77.0% 79.3% 70.5% 

 

R20–/– shows less decrease in the recovery rate than R20+/–, thanks to the dynamic 

determination of the z value by the simulation. While the underestimation of error 

levels reduced the corrections to the Fisher exact test parameters and consequently the 

chance of recovering true rules, it also decreased the chance that the simulation 

accepted any false rules at a certain z value. Then the z value determined was much 

smaller, only 0.24 for R20–/–, compared with 0.78 for R20 (Table 3.5a). This again 

enlarged the corrections to the parameters, as explained in 3.3. R20+/– lost more 
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recovery rate than R20–/– as its z value had no obvious reduce compared to R20 

(Table 3.5a). It seemed that the possibility of accepting false rules in the simulation, 

and thus the limitation on z values, mainly depended on the most overestimated error. 

R10+/+ exhibited an even higher recovery rate than R10, but it is not recommended 

to intentionally overestimate the error in order to obtain a higher recovery rate. As the 

true error probabilities are usually unknown, such practice may result in mixed 

overestimations and underestimations on error levels and decrease in the recovery rate, 

as with the case of R20+/–. 

 

As specified in Section 3.2.1, in R10_ErrDep the error levels in att0 and att3 were 

positively correlated. Although contracting to the assumption of independent 

uncertain probability behaviours, this hardly disturbed the corrections to the test 

parameters according to error matrices of the attributes. Thus the recovery rate in 

R10_ErrDep was expected to be unaffected, and it actually increased to 65.3% as 

compared with 55.8% in R10. Yet this was unlikely to suggest that the corrected test 

worked better with correlated error probabilities. Rather, the positive correlation 

between error probabilities in att0 and att3 made the error concentrate on a smaller 

number of erroneous records than when the error probabilities were independent. Thus 

E10_ErrDep actually used less noisy data and also preserved more true rules than E10 

(Table 3.7b). R10_ErrDep seemed to simply follow the previous revealed trend of 

higher recovery rates at lower data error levels.  

 

On the other hand, the dependence of error probabilities in att3 on att0 values in 

R10_ValDep indeed disturbed the corrected test. The dependence actually made the 

error probabilities of att3 beyond the representation of a single error matrix. Hence the 

recovery rate decrease in R10_ValDep should be due to the limit of the mathematical 

model for the corrected test, but only partially. Another reason should be the noisier 

data in R10_ValDep than that in R10. This can be inferred from the lower true rule 

rate in the original test (E10_ValDep) than E10 (Table 3.7b). According to Table 3.3, 
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att0 values of 3 and 4 were more involved in data associations than other values. In 

R10_ValDep, att3 had a higher error probability when att0 = 3–4, making more 

information lost compared with the data in R10. 

 

For all the treatments, the FWER was similar to that of the corresponding R treatments 

using accurate data error specifications, though there seemed a slight increase of 

spurious rules in R10_ErrDep and R10_ValDep. The robustness of the corrected test 

in controlling spurious rules is also expected, as the FWER was controlled by the 

simulation which worked regardless of the efficacy in increasing true rules. 

 

3.3  Real-world data experiment: Mining spatio-temporal associations 

between land uses and socioeconomics 

This experiment investigates how the corrected statistical test improves the value of 

real-world SARM results. The case study targeted at spatio-temporal association rules 

between land use and socioeconomic changes in Massachusetts, the US, in 1985 to 

1999, using data in a geographical information system (GIS). Previous data analyses, 

including some SARM studies, drew some inconsistent conclusions on relations 

between land use and socioeconomic developments. It is difficult to convincingly 

judge whether the land use transformations were authentically, or significantly, 

relevant to socioeconomic developments. For example, in the representative SARM 

study on this topic of Mennis and Liu (2005), relevancy of land use changes was 

judged only with human perception, by whether confidences of rules with land use 

changes were significantly higher than those without. The statistical test appears a 

promising solution to this longstanding research difficulty.  

 

3.3.1  Data and methods 

Raw data was mainly collected from Office of Geographic Information (MassGIS), 



3-58 
 

Commonwealth of Massachusetts (2012) through online open access. The data was in 

ESRI® vector shapefile format, and primarily preprocessed with ESRI® ArcGIS 

Desktop. The data format and preprocessing platform combination was a popular 

mainstream in GISc studies and projects. 

 

The land use data consisted of about 263,000 land parcel polygons, each having a land 

use attribute value in 1985 and another for 1999. The land uses included 21 classes, 

as defined by MassGIS and listed in Table 3.8. Figure 3.3 shows an overview of the 

study area and land uses in 1985 and 1999 of a small locality within it. Clearly, the 

locality experienced land use transformations towards urban ones. Such a geographic 

region is suitable for investigating associations between urbanization and 

socioeconomic changes. 

 

Table 3.8  Land use classes of study area 

Urban (12 classes)  Non-urban (9 classes) 

Participation recreation Urban open area  Forest 

Spectator recreation Transportation  Cropland 

Water based recreation Waste disposal  Pasture 

Residential, multi-family   Wetland 

Residential, < 1/4 acre lots   Mining 

Residential, 1/4–1/2 acre lots   Rural open area 

Residential, >1/2 acre lots   Salt wetland 

Commercial   Water 

Industrial   Woody perennial 
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(a) 

   
(b) 

Figure 3.3  (a) Overview of Massachusetts with town boundaries. (b) Land uses of a 

small locality. The locality is marked by rectangular box in (a) 

 

The socioeconomic data came from 1990 and 2000 census showing statistics in 1989 

and 1999, respectively. It was the available GIS data closest in time to the land use 

data used. The socioeconomic data provided one record for each of the about 6000 

building block groups in the study area. Four key socioeconomic measures were 

selected and computed into percent changes in 1990~2000: 

• population,  

• percentage of non-whites out of total population,  

• house value median, and  

• family income median.  
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Each of the four percent change attributes was discretized into five ordinal classes to 

be used as items of association rules. The five classes, labelled as Class 0–4, 

represented the lowest to highest percent increment (or decrement as negative 

increment) of a socioeconomic measure. The classification took the natural breaks 

scheme. The scheme could well reflect natural socioeconomic groupings across 

different areas, and it produced more reasonable results than quantile and equal 

interval schemes in both this experiment and representative past study on similar topic 

(Mennis and Liu 2005).  

 

Land uses and socioeconomic data were collected using different geographic units, 

thus the two datasets were overlaid into a new layer of land parcel polygons. Each 

polygon was homogenous in all attribute values. For adding artificial data error in later 

process, each land parcel of area polygon within [a×10000–5000, a×10000+5000) m2 

was further divided into a smaller ones. The land parcels were averagely divided into 

around 8 small polygons. Thus, most small polygons were around 10000 m2, and none 

had more than 5000 m2 discrepancy from that. Given the large number of polygons, 

discrepancies of individual polygon areas from 10000 m2 were mostly cancelled out 

in later addition of artificial land use errors, and made the errors cover almost exactly 

the designed percentages of land areas. 

 

The final data consisted of around 2,044,000 split land polygons, each linked to a 

record with six attributes, namely land uses in the two years and the four 

socioeconomic changes. This was the ‘original’ data regarded as error-free in this 

experiment.  

 

To reconfirm the need for statistically sound control on spurious rules, an Original 

treatment was first applied to rules extracted from the original data with the original 

statistically sound test. To maintain feasible computation time and number of rules, a 

minimum support that generated only 10000 productive rules with at most four items 
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in the antecedents in the Original treatment was determined. The value was 7.06 × 

106m2, or 0.035% of study area, and applied to all subsequent treatments.  

 

Unlike the synthetic data, there were no predesigned rules behind real data for 

evaluating the efficacy of the statistical test in preventing spurious rules. An 

alternative evaluation was made by adding two artificial attributes to the data. Each 

artificial attribute contained five classes like the socioeconomic attributes, but the 

class values were randomly generated, equiprobable, and independent from values of 

other attributes. These two attributes then had no association with the rest of data, and 

any rules involving them must be false. Five datasets with artificial attributes were 

generated and experimented with the original test.  

 

For evaluating the corrected test, 20%, 10% and 5% artificial error was added to each 

land use attribute in original data. The error levels simulated the quality of real-world 

data: land use data from automatic satellite image classification typically contain 10–

15% error, and 20% error was a common threshold for acceptance (Olson 2008). This 

produced six treatments:  

• E20, E10 and E05: used data with 20%, 10% and 5% error, respectively, and 

the original statistical test; 

• R20, R10 and R05: used the above data and the corrected test. 

Among all the land uses, the dominant Forest class covered 60% of the study area. 

This class tends to have much higher classification accuracy than terrestrial non-Forest 

classes, according to studies on primarily Massachusetts (Hollister et al. 2004) and 

eastern United States which covers Massachusetts (Yang et al. 2001). In the study 

area, Forest is in larger patches, or continuous areas of single land uses, than non-

Forest classes. Land uses in large patches can be more accurately classified than those 

in small, fragmental patches (Smith et al. 2003). In order to include this essential 

realistic condition in the experiment while maintaining its simplicity, the error was 
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assigned equiprobable for non-Forest classes, but decreased for Forest to such a degree 

that the area of Forest remained unchanged after the error was added. The aggregated 

error for all classes was 5–20% as designated. The resultant error probability for 

Forest was about 2/3 of that for non-Forest classes. At each error level, five erroneous 

datasets were generated and experimented. 

 

The six attributes in data made up 988,360 potential rules with up to four items in the 

antecedents. The statistically sound significance level  was 5.06 × 10-8 with respect 

to a 5% maximum FWER. For the experiment with two artificial attributes, there were 

5,619,990 potential rules, and  was equal to 8.90 × 10-9. The corrected test used the 

same increment step for z value and number of loops as the synthetic data experiment. 

 

3.3.2  Results 

From each dataset with the two artificial attributes, about 50,000 productive rules 

containing artificial attributes were generated besides the 10,000 rules involving only 

the six original attributes. None of the rules containing artificial attributes were 

accepted by the statistically sound test. The result from only five datasets was not 

enough for computing an FWER, yet it should demonstrate the effectiveness of the 

test in pruning spurious rules, and imply that rules accepted by the test were indeed 

likely to be true. 

 

Out of the 10,000 productive rules from original data, about 3800 rules were rejected 

by the test. The large number of rules with dubious reliability coincided with the study 

by Webb (2007), and reconfirmed the essentiality of the statistical sound test to protect 

users against harmful spurious rules. Below is an example of rejected rules: 

            Land use changed from Forest to Residential, >1/2 acre lots →  

            Percentage of non-whites increase = 4 (highest)   

            support = 0.289%, confidence = 0.164, p = 0.0220 
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‘Residential, >1/2 acre lots’ is the dominating residential category. Without the 

statistically sound test, this rule would be presented to users and deliver likely fake 

information that large increase in non-whites was related to development of residential 

area. Policy makers might be misled to concentrate facilities for ethnic minorities on 

new residential areas in former woodlands. This could waste resources and hinder 

allocation of the facilities to actual needy places. 

 

As commonly in practical data mining, besides the statistical test, more RIMs were 

needed to trim resultant rules to the amount that human users could consider. Here the 

leverage measure as listed in Section 2.1 was used. Leverage is very suitable for 

evaluating productivity of rules, as it directly measures the number of additional 

records containing the association between the antecedent and consequent of a rule 

more than that if the antecedent and consequent are unrelated (Webb and Zhang 2005). 

Another filtering measure was to only include ‘non-Forest’ rules which contained at 

least one non-Forest land uses. Rules involving only the dominant Forest and 

socioeconomic changes were of dubious value, as they were often artefacts due to 

associations between other land uses and opposite socioeconomic changes. For 

instance, rules for associations between several urban land uses and high population 

increase were likely to result in another rule between Forest and low population 

increase.  

 

1000, 500 and 200 significant ‘non-Forest’ rules with the highest leverages from 

original data were used as reference results. Rules accepted in E and R treatments 

were regarded as true rules if they were also among the reference results. According 

to Section 3.2.2, some rules in E and R treatments but not in reference results could 

be serendipitous discoveries and still true, but this could not be evaluated, as the real 

data held no predesigned true rules. Yet Section 3.2.2 also suggests that serendipitous 

discoveries take small fractions of true rules, and their absence should only cause 

slight underestimation on the merit of the corrected test, rather than overestimation.  
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Figure 3.4 shows true rules in different treatments, in terms of percentages relative to 

sizes of reference results (1000, 500 or 200). With all error levels and sizes of 

reference results, the corrected test improved the numbers of true rules, and recovered 

20–50% of true rule loss in the original test. Compared with the synthetic data 

experiment, the real data experiment had less significant true rule loss and less 

improvement of the corrected test. This seemed mainly attributable to the much larger 

volume of the real data than synthetic data. As suggested by Webb (2007) and the 

synthetic data experiment in Section 3.2.2, more sufficient data leads to more true 

rules in the test. Recovery rate of the corrected test might also be underestimated due 

to the exclusion of serendipitous discoveries. 

 

 

Figure 3.4  Recovery of true rules by corrected test in real-world data experiment  

 

It may be argued that over 85% true rules discovered by the original test (Figure 3.4) 

are already informative for users, thus the corrected test is unnecessary. However, the 

situation became very different for rules that included land use changes. Such rules 

are of the highest interest among resultant rules, as they reveal relations between land 

use transformations, mostly towards urbanisation, and socioeconomic developments. 

Out of over 6000 significant rules from original data, only 99 contained different land 

uses in 1985 and 1999. At the scale of the entire state, even significant land use 

changes usually involved only small parts of total land area, while most places 
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maintained their land uses. Thus these valuable land use change rules typically had 

small supports and leverages, and were rare in the result.  

 

The same reason made the land use change rules highly sensitive to data error. The 

true rules involving land use changes are plotted in Figure 3.5. What were taken as 

100% in the figure were not the 99 significant rules as said above, but parts of them 

that were at least productive in corresponding treatments. The land use change rules 

were so sensitive that some significant rules in original data became even 

unproductive in erroneous data. Those rules were excluded because they were lost 

before the statistical test and beyond the study scope. The original test lost half of true 

rules at even 5% error level, and preserved few true rules at 20% error level. 

Meanwhile, the corrected test resulted in 2–4 times as many true rules as the original 

test.  

 

 

Figure 3.5  Recovery of true rules involving land use changes in real data experiment 

 

The following is an example of recovered land use change rules: 

            Land use changed from Forest to Residential, >1/2 acre lots    

            House value increase = 4 (highest)  

            → Income increase = 4 (highest)  

            support=0.188%, confidence = 0.410, p=1.00 × 10-55 
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This rule suggests that the Forest to residential land use change and large house value 

increase had an additive association with large income increase, compared with their 

individual relations to the latter. 

 

While the most meaningful rules suffered from severe loss in the statistical test, the 

corrected test exhibited remarkable ability in recovering the loss and improving user 

knowledge to associations between urban and socioeconomic developments. Cases in 

practice are usually similar: rules with large supports and leverages and robust to data 

error are usually trivial or do not contain attributes of high interest. This provides great 

potential of the corrected test in adding value to SARM results. 

 

The corrected test is also promising in saving time and cost of practical data mining, 

by allowing for the use of cheaper or faster collected data of slightly lower quality, 

while obtaining a result as good as mining more accurate data with the original test. 

In this experiment, the corrected test achieved over 80% true rules at 10% error level, 

far above the 54% true rules of the original test at 5% error level. While land use data 

with 5% error generally requires manual interpretation, data with 10% error could be 

achieved by automatic computerized classification which consumes only a small 

fraction of time and cost taken by the manual process. 

 

3.4  Accuracy of error probability information and its practical implication 

to corrected test 

With explosive accumulation of data in the contemporary world, increasing efforts 

have also been invested to the data quality assessment by scientific and industrial 

communities. For categorical data, quality measurement based on the confusion 

matrix (Ting 2011) is very popular and very often a standard approach. The 

assessment requires a set of reference data covering a sample of instances in the data 

under the quality assessment. Usually the reference data is from a more accurate 
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source and perceived as error-free. The confusion matrix can be obtained by counting 

the number of records with each pair of “true” value in the reference data and the value 

in the assessed data, and then standardized into the error matrix P used in the corrected 

test. Sometimes the reference data is not regarded as error-free but provides strong 

clues for estimating the element values in P.  

 

When assessing the quality of remote sensing image classification, the reference data 

is usually the true classification through field surveys, or from a more accurate remote 

sensing data source, for example, human interpreted aerial photos as the reference for 

assessing automatically classified satellite images (Foody 2002, Stehman et al. 2008). 

For evaluating the quality of business and social statistics, quality surveys are 

conducted for producing the reference data with higher accuracy, such as face-to-face 

interviews for assessing statistics from self-completion questionnaires (Office for 

National Statistics 2014), and re-interviews by experienced staff for assessing 

statistics from interviews (Jones and Lewis 2003). Reference data initially collected 

for other proposes have also been used, such as detailed demographic registration data 

(Fosu 2001) and Census Dress Rehearsal data (Bishop 2009) for assessing census data. 

 

Albeit widely available, the error matrix is seldom completely accurate. As the data 

quality assessment evaluates only a sample of the assessed data, the resultant P is 

subject to sampling error (Office for National Statistics 2014). Moreover, the bias in 

sampling the assessed data may sometimes be inevitable. For example, field surveys 

for accessing remote sensing image classification accuracy are limited to human 

accessible places. Different collection times of the assessed data and reference data 

can also add to the discrepancy between them (Hollister et al. 2004). Such discrepancy 

would be attributed to the error in the assessed data and lead to overestimation of the 

error probability. One of the rare cases of obtaining perfect P is when the data is 

deliberately perturbed with error, for purposes like privacy protection. Therefore, the 
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robustness of the corrected test to inaccurate error probability specifications, as 

demonstrated in Section 3.2.2, is crucial and advantageous for its practical usefulness. 

 

Appropriate reference data may be unavailable for assessing the quality of, for 

example, historical data or data for rapidly changing phenomena. In this case, 

machining learning methods like the one presented by Zhu et al. (2004) can be used 

to detect the data error solely using the assessed data. These methods usually work by 

identifying the instances that most disturb inherent characteristics in data as erroneous, 

so they construct minimum estimations of the error probabilities instead of accurate 

error matrices. The corrected test would be still effective using error matrices filled 

with such minimum estimations, as it largely maintains the ability of increasing true 

rules with underestimated error probabilities (see Section 3.2.2). Using error-aware 

data mining methods like the corrected test is usually preferable to removing or trying 

to correct the erroneous records, as the latter can incur information loss or introduce 

new errors (Zhu and Wu 2006).  

 

3.5  Summary 

This chapter presents a novel method for ARM/SARM with uncertain data. The 

method improves the reliability of rule mining results by recovering true resultant 

rules lost due to random error in data, while controlling the risk of spurious rules at a 

low user specified level. A mathematical model was originated to describe the 

propagation of data error in the statistical test computations. Based on this model, 

techniques were developed to recover true rules via correcting the test for impacts of 

data error, as well as to control the risk of spurious rules.  

 

When assessed with synthetic data, the new method recovered averagely 50% true 

rules lost due to data error with accurate error probability information. Its ability for 

recovering true rules is also robust against inaccurate error information and 
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dependences among the error and attribute values. The new method maintained 

superior control on spurious rules by existing statistically sound technique, and 

achieved a spurious rule rate below 0.2% and a FWER below 5%. In the case study 

on spatio-temporal rule mining from land use and socioeconomic data, the new 

method discovered several times as many those most practically useful but sensitive 

rules containing land use changes as by the existing technique.  
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Chapter 4  Mining significant crisp-fuzzy SARs 

This chapter presents new techniques for improving reliability of fuzzy SARM results. 

The first technique, presented in Section 4.1.1, is a Gaussian-curve-based fuzzy data 

discretization model. While studies have proposed fuzzy data discretization based on 

Gaussian curves for individual concepts (Table 2.1), the newly proposed model more 

comprehensively integrates spatial semantics and multi-concept relations. The second 

technique, presented in Section 4.1.2, is crisp-fuzzy SARM that integrates statistically 

sound tests on crisp rules and evaluation of RIMs based on fuzzy supports. This 

method is designed to combine more abundant true rules in crisp SARM, higher RIM 

accuracy of fuzzy SARM and minimal spurious rules attained by statistically sound 

tests. 

 

The techniques are experimented with synthetic data in Section 4.2 and real-world 

wildfire factor data in Section 4.3. The synthetic data experiment also seeks to prove 

the superior RIM accuracy of fuzzy SARM to the ordinary one, which was previously 

widely believed by rarely experimentally examined. Finally, a summary is presented 

in Section 4.4. 

 

4.1  Proposed techniques 

4.1.1  Gaussian-curve-based fuzzy data discretization 

The proposed model transforms a numerical spatial attribute x to ordinal concepts

1 kl l  that are gradual or vague in nature. For instance, x is distance and

   1 2 3 near, medi,  um,  far ,l l l  . By saying ordinal concepts, we mean that the 

concepts cannot fully or partially imply one another, though their corresponding x 

value ranges can overlap. Therefore,    1 2 3 near, medium, medium,  ,  to a  f rl l l  is 

invalid. For concepts with well-defined boundaries (not gradual or vague), such as 

‘above/below sea level’ for numerical attribute ‘elevation’, the model shall be 
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specialized to place crisp boundaries between the concepts. 

 

The model has the following characteristics: 

(1) For each membership function 
jl ,1 j k  , the sections with  0 1

jl x  , 

named transitions after ‘transitions between concepts’, are Gaussian curves 

and can be symmetric or not.  
jlcore   is non-empty and in arbitrary size. 

Gaussian curves have been widely used for characterizing degrees to which numerical 

spatial attribute values belong to linguistic concepts, especially for proximity 

measures. Gaussian weighting function is most commonly used in fixed-kernel 

geographically weighted regression (Wu et al. 2014). The weight represents the 

impact factor due to nearness between spatial objects, and is equivalent to near  in 

fuzzy SARM. Robinson (2000) used Gaussian functions to learn fuzzy spatial 

relations via human-machine interaction. Worboys (2001) proved by empirical study 

that the degrees people perceive two places as ‘near’ or ‘not near’, translating to near  

and far  in fuzzy SARM, exhibit S-curve trend against Euclidean distances. The S-

curve (sigmoid function) trend was visually interpreted and thus indistinguishable 

from a Gaussian-curve trend. Actually, the precise curve form is not that essential; the 

essence is, in contrast to triangular or trapezoidal membership functions, transition 

curves shall have larger slopes in the middle and smaller towards the endpoints. This 

reflects the fact that for x values in the middle of transitions, people have more 

uncertainty (modelled by curved slopes) in judging to which concept x should belong. 

Gaussian-curve transitions are also robust to uncertain and usually non-ideal value 

intervals of , since the curves smoothly connect to core endpoints with 

reducing slopes towards zero (Bordogna et al. 1991). 

 

Asymmetric transitions are critical for spatial concepts, as geographical data 

prevalently have rank-size relations in heavy-tailed distributions. That is, the data 

includes a ‘head’ containing a minority of extra-large sized objects, and a ‘tail’ 

 
jlcore 
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containing the majority of small-sized objects; ‘size’ may be city population, road 

connectivity, or other impact measures (Jiang 2013). The heavy-tailed distribution 

recursively happens within the ‘head’ of data, thus raw numerical data value intervals 

for low-impact to high-impact concepts should increase exponentially instead of 

linearly. For example, populations of small, medium and large towns are more likely 

1:5:25 than 1:5:9. Then the left transition of ‘medium town’ concept towards ‘small 

town’ shall be much narrower than the right one towards ‘large town’. 

(2) For relations between 1 kl l , each  
1jlsupp 


 touches   ,1
jlcore j k   , 

neither overlap nor disjoint. 

This characteristic follows a common approach in past studies (Herrera and Martinez 

2000, Alhajj and Kaya 2008, Carmona et al. 2010). Then    1 0
jl i jx x     , 

or each x value completely belongs to jl if and only if it does not at all belong to any 

other concepts. The proposed 
1 kl l  are as below and illustrated in Figure 4.1:  

     

 

1

1_ R

2
2

1_ R 1_ R 1_ R 2 _ L

2 _ L

1,                                                
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j

l

l

x cr

x x c cr x cr

x cr

x

 




         





   

   
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                  or  
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j j
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x cr x cr

x c cr x cr

cr x cr

x c cr x cr





 





 


        


 

    
  

     

( 1) _R

2
2

_ L _ L ( 1) _ R _ L

_L

 

0,                                               

exp 2 ,    
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1
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j

x cr

x x c cr x cr

x cr

k

 










         










， ,  

(4.1) 

where   _ L _ R,  
jl j jcore cr cr      , and _Lj  and _Rj are standard deviations of left 

and right transitions in 
jl .  
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Figure 4.1  Illustration of proposed fuzzy data discretization model 

(3) Given no further pre-knowledge, there is an intuitively unbiased suggestion to 

set _Lj  and _Rj  as such that the cumulative  
jl x  is half the size of 

transition ranges, or takes half of full memberships of jl  in the transitions.  

Under this condition,     ( 1) _R _L _L _L ( 1) _R0.5 0.5j j j j jcr cr cr cr      , where 

is the cumulative standard normal distribution function. Resultantly, 

 _L _L ( 1) _R 2.473j j jcr cr   and similarly  _R ( 1) _L _R 2.473j j jcr cr   . 

Following Bordogna and Pasi (1993), who left out low-value tails of Gaussian-curve 

membership functions, it is set that   0
jl x   for  1 _ Rj

x cr



 
and  1 _ Lj

x cr


 . 

 

4.1.2  Crisp-fuzzy SARM for mining authentic and accurate rules 

Effective control over spurious rules by statistically sound tests has been 

experimentally proven using predesigned associations between already categorized 

numerical attributes by Webb (2007) and Chapter 3 of this thesis. Section 4.2.1 in this 

chapter synthetizes more realistic data which contains associations of variant strength 

directly depending on raw numerical attribute values in a gradual manner, and some 

data disturbances. The statistically sound evaluation turns out to maintain very low 

FWER. 

 

Meanwhile, artificial crisp representations of gradual or vague concepts are expected 

to distort, mostly exaggerate, RIM values. As exemplified in Table 4.1, supports of 

individual items like  supp A  may not be exaggerated. More undesirably, positive 

0

1
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 
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associations between data items are overstated via t-norm operations. Thus

 supp A B  is more exaggerated than  supp A , and finally  imp A B  and 

 lev A B  become exaggerated. This holds for both product and minimum t-norms, 

and worsens when rules contain more items and thus RIM evaluations include more 

t-norm operations. 

 

Table 4.1  RIM value exaggerations due to crisp data discretization in a miniature 

database of four records. Numerical attributes a and b are discretized into ordinal 

concepts respectively including Al and Bl . Item A is Al a  and B is Bl b  

Record# 

Fuzzy  Crisp 

 
Al

a   
Bl

b  
 
 

prodA

B

l

l

a

b






 

 
 

minA

B

l

l

a

b






   

Al
a   

Bl
b  

 
 

A

B

l

l

a

b






 

1    1   1      1    1  1 1 1 

2 0.6 0.8 0.48 0.6  1 1 1 

3 0.4 0.2 0.08 0.2  0 0 0 

4    0   0      0    0  0 0 0 

      
Al

supp A a   2     2    2 

      
Bl

supp B b   2 2    2 

        
A Bl lsupp A B a b     1.56 1.8    2 

 
   
     

  

4

imp A B

conf A B conf B

supp A B supp A supp B



   

  
 

0.28 0.4    0.5 

 
     

   

4

lev A B

supp A B supp A supp B



  
 

0.56 0.8    1 

 

Compared with support and confidence, RIMs for evaluating how different the 

associations between items in rules are from independence among the items, such as 

improvement and leverage, appear to be exaggerated more severely. These RIMs are 

‘margins’ of itemset supports, thus small overestimations in supports can be much 

amplified in them. In Table 4.1, the crisp rule has 28% exaggeration on  supp A B  

but 79% on  imp A B and  lev A B  with respect to fuzzy product t-norm 

results. For experiments in Sections 4.2–4.3, improvement and leverage are typically 

exaggerated by over 50%. Unfortunately, support (and sometimes confidence) mainly 
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serve as mechanisms for controlling the number of rules considered, while other RIMs 

that are more severely exaggerated are usually of higher interest for users. 

 

While fuzzy rules have more accurate RIM values, they are also more moderate and 

less significant in the statistically sound evaluation. This significantly reduces the true 

rules accepted as SARM results compared with crisp SARM, typically by at least 50%, 

as experimentally shown in Sections 4.2–4.3. To combine the abundance of true rules 

using crisp supports and higher accuracy of fuzzy RIM values, the crisp-fuzzy SARM 

method is proposed:  

• Firstly, perform statistically sound tests on rules, using crisp supports of 

itemsets involved; 

• Then evaluate RIM values of the significant rules accepted by the tests using 

fuzzy supports.  

As will be elaborated in Section 4.2.2, statistically sound tests are still indispensable 

to keep the FWER under control for fuzzy SARM. Thus the crisp-fuzzy SARM indeed 

achieves the greatest number of true rules without sacrificing strong control over the 

risk of spurious rules. The statistical test stage shall use a crisp discretization model 

matching the fuzzy one for RIM evaluation:  

  
   ( 1) _ R _ L _ R ( 1) _ L1,           2 2  

0,           otherwise
j

j j j j

l

c c x c c
x  

    
 


.      (4.2) 

Equation (4.2) ensures that each x value has the same concept of maximum 

membership degrees as in the fuzzy model.  

 

4.2  Experiment with synthetic data 

4.2.1  Methods 

The experiment data included three spatial point sets: objective, resource1 and 
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resource2. Each point had two-dimensional coordinates (x, y). Each objective linked 

to a record containing nine attributes: near1, near2, other1, other2, noise1–noise 4, 

and outcome.  

 

near1 and near2 were respectively fuzzy attributes representing nearness, or 

accessibility of objective to resource1 and resource2. They each had two values 1 

(near) and 0 (far). Following the proposed data discretization model in Section 4.1.1, 

 1 near1 and  0 near1  were computed from Euclidean distance near1 (same as 

attribute name, see 3.1) between each objective and the nearest resource1: 

   
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,  

(4.3) 

where 0.01d  and 0.99d are the first and 99th percentiles of near1 values in data. Without 

pre-knowledge for more proper membership functions, partial membership degrees 

were assigned to nearly full range of near1 to better differentiate accessibilities of 

different objectives to resources. Cutting data at 0.01d  and 0.99d was for lessening 

sensitivities of 1_ Rc and 2 _ Lc to extreme distances. This mimicked real-world SARM 

practice in handling extreme data. All above equally applied for near2. 

 

other1, other2 and noise1 to noise4 were categorical attributes; other2 had 10 possible 

values (0–9) and the others had four (0–3). Values of these attributes were generated 

randomly, independently and equiprobably for every possible value.  
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outcome was also fuzzy, with values 0 (bad) and 1 (good). It was the only attribute 

with dependences on other attributes. The dependences were listed in Table 4.2: 

higher  1 near1 , or accessibility to resource1, unconditionally improved outcome, 

while higher other2 values improved outcome only when other1 = 0 or 2, and higher 

 1 near2  did so only when other1 = 0 or 1. Such unconditional and conditional 

associations are both common in practical SARM. Noise1–noise4 had no association 

with outcome and were for examining the proposed techniques for tolerance to 

irrelevant data. As there were no raw numerical values for computing  0 outcome , 

it was set that    0 11outcome outcome   . Factors fac1 and fac2 were to adjust 

expectations of     1 1 1near1 near2 fac  and  1 2near1 fac  to 0.5, so as to 

cancel out data variations due to capping negative  1 outcome  to 0 and 

 1 outcome  above 1 to 1. These two adjustments were unlikely to affect the 

comparative evaluation of experiment results, since they proportionally changed RIM 

values for all experiment groups. 

 

Table 4.2  Dependence of  1 outcome on other attributes 

other1 other2 Expectation of  1 outcome  (Standard deviation = 0.15) 

0 
0, 1, 2, 3, 4     

    

a

1 1 1

1 1 1

0.35, 0.3, 0.25, 0.2, 0.15

0.15, 0.2, 0.25, 0.3, 0.35

near1 near2

near1 near2

fac

fac

 

 

     

     
 

5, 6, 7, 8, 9 

1 Any     1 1 1near1 near2 fac   

2 
0, 1, 2, 3, 4  

 

1 2

1 2

0.35, 0.3, 0.25, 0.2, 0.15

0.15, 0.2, 0.25, 0.3, 0.35

near1

near fac1

fac



    

    
 

5, 6, 7, 8, 9 

3 Any  1 2near1 fac  

a fac1: mean value of all  near1 near2 ,  fac2: mean value of all near1 

 

The predesigned data associations generated 118 productive rules with outcome 

values as the consequents: 
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• near1 = 1  zero or one of other1 = 2 or 3 → outcome = 1 (3 rules); 

• near1 = 0  zero or one of other1 = 2 or 3 → outcome = 0 (3 rules); 

• Zero or one of near1 = 1  near2 = 1  zero or one of other1 = 0 or 1 → 

outcome = 1 (6 rules); 

• Zero or one of near1 = 0  near2 = 0  zero or one of other1 = 0 or 1 → 

outcome = 0 (6 rules); 

• Zero or one of near1 = 1  other1 = 2  other2 = 5–9 → outcome = 1 (10 

rules); 

• Zero or one of near1 = 0  other1 = 2  other2 = 0–4 → outcome = 0 (10 

rules); 

• Zero or more of near1 = 1, near2 = 1 and other1 = 0  other2 = 5–9 → outcome 

= 1 (40 rules); 

• Zero to three of near1 = 0, near2 = 0 and other1 = 0  other2 = 0–4 → outcome 

= 1 (40 rules). 

To evaluate the robustness of the proposed techniques, experiment groups were 

constructed by various alternations, as summarized in Table 4.3. The extraneous 

factors simulated numerous affecting factors to real-world imperfect distance data, 

including but not limited to measurement errors. For instance, actual distance between 

two places for all citizens could be longer than recorded shortest path, if barrier-free 

paths between the places are long detours. As stated in Section 4.1.1, previous work 

has suggested that Gaussian-curve relations between concept memberships and raw 

numerical data are more usual. Still, groups using ‘true’ and ‘perceived’ memberships 

with linear transitions were generated, for a more comprehensive comparison of the 

proposed data discretization model with triangular/trapezoidal ones. 
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Table 4.3  Various experiment settings in synthetic data experiment 

Item Variations Remarks 

1. Data size (No. 

of records) 

5000, 20,000, 

80,000 

 

2. Spatial patterns 

of objectives and 

resources 

Clustered, 

random, 

dispersed 

Point sets must pass nearest neighbour index 

test (Mitchell 2005) for designated spatial 

patterns with threshold p = 0.05 

3. Extraneous 

factors 

σ = 0, 10%, 

20% 

Added to data by multiplying raw near1 or 

near2 a random variable following normal 

distribution  21,N   

4. ‘True’ 

membership 

functions for 

near1/near2 

w.r.t. their raw 

values 

Linear, 

Gaussian-

curve 

Linear: membership functions with linear 

transitions and endpoints coincided with 

Equation (4.3), e.g.  

 

.01

.99
1 .01 .99

.01 .99

.99

1,                     

,   

0,                    

d

d
d

near1

near1
near1 ne d

d d
ar1

near1 d



 



  


 

 

   

5. Memberships 

used in statistical 

tests 

Crisp, linear, 

Gaussian-

curve 

Crisp functions matching Equation (4.3) were 

defined according to Equation (4.2). Both 

linear and Gaussian-curve groups used 

original  0 outcome  and  1 outcome

computed from Table 4.2 

8. ‘Perceived’ 

memberships for 

evaluating RIMs  

Crisp, linear, 

Gaussian-

curve 

For simulating how people perceive unknown 

‘true’ relations 

 

All these alternations multiplied into 486 unique experiment groups, or treatments as 

defined in Chapter 3. Each treatment was applied for 10 runs to 10 independently 

generated datasets to produce stable average results. In each run, association rules 

were first extracted from data using the KORD algorithm, and tested against both 

unadjusted (without Bonferroni correction) and statistically sound chi-square tests for 

productive rules at 0.05  . The statistically sound test adopted the direct 

adjustment approach, with the number of potential rules s = 44,796 and significance 

level 
60.05 / 1.12 10s    computed according to Webb (2007). Pilot runs revealed 

that direct adjustment and holdout approaches discovered similar number of true rules 
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from experimented datasets. Then the direct adjustment was favourable, since the 

holdout results might be affected by random selection of holdout data from the dataset. 

 

4.2.2  Results: true and spurious rules 

Figure 4.2 illustrates the numbers of true rules, numbers of spurious rules, and FWER 

against variations in data sizes, statistical soundness of tests and perceived 

memberships for fuzzy attributes. True and spurious rules were those accepted by 

statistical tests that were within and beyond predesigned productive rules, respectively. 

True rules only counted for 88 out of 118 predesigned rules containing near1 or near2, 

as the others were irrelevant to fuzzy nearness. Each plotted point was an aggregation 

for all spatial patterns of objectives and resources, true  1 outcome  and extraneous 

factors, as the plots had quite similar patterns when these settings varied. 

 

      
           (a)                                            (b)                   (c) 

 
Figure 4.2  Synthetic data experiment results on abundance of true rules and avoidance 

of spurious rules 

 

Statistically sound tests are proven indispensable for both crisp and fuzzy rules in 

order to strictly control spurious rules (Figure 4.2b, c). In crisp rule treatments, 

unadjusted tests resulted in dozens of spurious rules per run and 100% FWER, which 

were too large to be plotted. Such extreme risk of spurious rules in absence of 
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statistically sound tests agrees with Webb (2007) and Section 3.2.2. While this risk 

largely reduced in fuzzy rule treatments (both Gaussian-curve and linear), after 

unadjusted tests the FWER was still 10–15%, far above 5% as user specified by setting

0.05  . Moreover, though not shown in the figure, more than half of the runs 

produced rules with p values between 0.05 and 1. Thus, unadjusted tests with 0.1   

will produce over 50% FWER, while 10% was what user expected. This is likely to 

be unacceptable in practice, as users never know the maximum risk of spurious rules 

under the significance level they set. Meanwhile, statistically sound tests did not 

accept any spurious rules, and thus their plots are absent from Figure 4.2b and c. Webb 

(2007) and Section 3.2.2 reported higher 0.01–0.1% spurious rules and 0.1–1% FWER 

for statistically sound tests on crisp rules when 0.05  , which are still only several 

tenths of those for unadjusted tests with fuzzy memberships, and well fulfil user 

specified 5% maximum FWER. In this study, this approach produced even fewer 

spurious rules, actually zero rules in 1620 runs, probably due to the limitation of rule 

consequents to outcome which was most related to other attributes. 

 

On the condition that statistically sound tests are necessary, using crisp memberships 

exhibited great superiority in discovering more true rules. Averaging results of all data 

sizes, statistically sound tests using crisp memberships discovered at least 2–4 times 

as many true rules as using fuzzy ones, and comparable number of true rules as 

unadjusted tests using fuzzy memberships (Figure 4.2a).  

 

Overall, the results support the suggestion to conduct statistically sound tests with 

crisp memberships in SARM, as this is the best for finding abundant true rules while 

maintaining strict control over spurious rules. 

 

4.2.3  Results: RIM accuracy  

Figure 4.3 shows the accuracy of RIM values against the variation of extraneous 
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factors. Variations in other experiment settings made little difference in the changing 

trend of RIM accuracy. The plotted values are percentage errors of RIM values to their 

true values computed using ‘true’ memberships of fuzzy attributes (see Section 4.2.1) 

and 0% extraneous factors.  

 

       
                         (a)                                          (b)                                          (c) 

 

Figure 4.3  Synthetic data experiment results on RIM accuracy 

 

Crisp rules committed more than 100% positive errors on improvements and leverages, 

while only 15–20% error on supports (Figure 4.3). This confirms the inference in 3.2 

about large exaggerations on RIMs by the crisp membership, and that the 

exaggerations are worse on RIMs other than support which are usually more useful 

for decision support. A further investigation revealed that crisp outcome in rule 

consequents contributed about 2/3 of the RIM exaggerations. This is because itemset 

supports containing rule consequents dominate the computation of improvement and 

leverage (equations in Section 2.1). 

 

As extraneous factors grew, RIM values generally decreased, except for minimal 

increases in fuzzy supports that had little effect on SARM results (Figure 4.3). This 
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conforms to the expectation that extraneous factors blur data associations and weaken 

rules.  

 

Gaussian-curve and linear perceived memberships caused positive and negative RIM 

errors, respectively, when true memberships were the opposite. Yet such errors were 

only 10–20% of those in counterpart crisp treatments. Thus in RIM evaluation, by 

replacing crisp membership for gradual or vague concepts with fuzzy ones, there can 

be a major improvement in RIM accuracy, even if true fuzzy memberships might not 

be accurately defined due to inadequacy of expert knowledge.  

 

When the true membership is unknown, the proposed Gaussian-curve model is still 

recommended for RIM evaluation, after identifying true rules using crisp membership 

and statistically sound tests. First, as suggested in Section 4.1.1, Gaussian-curve 

memberships are widely regarded better illustrating linguistic concepts. Second, 

Gaussian-curve memberships produced larger RIM values than linear ones (Figure 

4.3), since linear membership degrees change more constantly (with constant slopes) 

across transitions between concepts. Then the reduction in RIM values, due to 

practically inevitable extraneous factors, may partially offset positive errors in RIM 

values caused by the Gaussian-curve model while enlarging negative errors 

committed by the linear model. 

 

4.3  Experiment with real-world data 

4.3.1  Data and methods 

This case study investigated how the proposed techniques help improved practical 

SARM results and decision support, through an association analysis between wildfire 

risks and fire-inducing environmental factors. The raw data was the Covertype dataset 

(Blackard 1998) from the UCI Machine Learning Repository. The data covered 

around 52,000 hectares of land in the Colorado Front Range, US, a longstanding 
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wildfire-prone region (Calkin et al. 2014, Sherriff et al. 2014). The data was based on 

a 30-m resolution raster of 581,012 cells. Each cell linked to a record of mixed 

numerical and categorical attributes, including distance to nearest past fire ignition 

point which indicated past wildfire risks and was highly weighted for predicting future 

risks (The Virginia Department of Forestry 2003, Lein and Stump 2009), and various 

environmental conditions serving as wildfire risk factors. 

 

Numerical attributes in raw data were discretized into concepts, the result of which 

and the categorical attributes are listed in Table 4.4. Three treatments with different 

data discretization models were applied: 

• AllFuzzy: all numerical attributes adopted fuzzy discretization models 

proposed in Section 4.1.1; 

• FuzzyDist: distance attributes in Table 4.4 adopted the fuzzy discretization 

models. Other numerical attributes adopted matching crisp models specified 

following Equation (4.2); 

• AllCrisp: all numerical attributes adopted matching crisp models. 

The FuzzyDist treatment was for examining if the advantage of proposed techniques 

revealed with synthetic data were generalizable to non-distance and even non-spatial 

concepts. 
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Table 4.4  Data attributes in real data experiment 

Type Name Description 
No. of categories/ 

concepts 

In rule antecedents: wildfire risk factors 

Numerical, 

distance 

  

  

1. horz_dist_to_water Horizontal distance to 

nearest water 

2 (near, far) 

2. above_water 

3. below_water 

Absolute distance 

above/below nearest 

water; empty if cell is 

below/above nearest 

water, respectively 

1 (far) 

1 (far) 

4. horz_dist_to_road Horizontal distance to 

nearest road 

2 (near, far) 

Numerical, 

non-

distance 

5. elevation - 2 (low, high) 

6. aspect  - 8 (N to NW 

clockwise) 

7. slope - 2 (low, high) 

8. hillshade_9am Summer hillshade index 

at 9am/noon/3pm 

2 (low, high) 

9. hillshade_12nn 

10. hillshade_3pm 
 

Categorical 11. soil Soil type 40 

12. cover Forest cover type 7 

In rule consequents: past wildfire risk 

Numerical, 

distance 

13 horz_dist_to_fire Horizontal distance to 

nearest past wildfire 

ignition point 

1(near) 

 

For AllFuzzy, numerical attributes other than aspect adopted Gaussian-curve-based 

fuzzy discretization following Equation (4.1). ‘Low’ and ‘high’ for non-distance 

attributes were defined like ‘near’ and ‘far’. Most attributes had 1–5% cells of the 

same or indistinguishable lowest values. For example, 4% of cells had 0m distance to, 

or were dominated by water, while still partially forested and might be burnt. Also, 2% 

of cells had 2% slopes or below. Considering that the slopes were computed from 30-

m DEM cells, detailed terrains within these cells were hardly discernible. To 

reasonably assign full membership of ‘near/low’ to all these cells, the lowest and 

highest 5% values had µ = 1 or 0 for corresponding concepts, instead of 1% as in 
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Section 4.2.1. Aspect in degrees was discretized into eight common directions. 

  1
idir aspect   only when 45aspect i , where idir , i = 0 to 7 was for direction N 

to NW clockwise. Transitions of idir  had suggested standard deviations in 3.1 and 45 ̊ 

widths in both clockwise and counterclockwise directions. 

 

In each treatment, rules like “ fire risk factor value(s) horz_dist_to_fire near  ” 

with up to four items in antecedents were extracted. Extracted rules were passed to 

statistically sound test for productivity using the direct adjustment approach with к = 

3.202410-7 computed according to Webb (2007). 

 

4.3.2  Results 

Experiment results reconfirmed advantages of the proposed crisp-fuzzy SARM in 

obtaining abundant true rules and accurate RIM values (Table 4.5). AllCrisp resulted 

in more than twice as many significant rules as AllFuzzy. Synthetic data experiments 

in 4.2 and previous studies have revealed that statistically sound tests yield extremely 

few spurious rules. Thus, AllCrisp more than doubled the number of true rules. 

However, similar to Section 4.2.3, AllCrisp and AllFuzzy had large discrepancies in 

RIM values, especially improvements and leverages, which should be largely errors 

of AllCrisp due to crisp discretization for gradual concepts. The RIM errors and 

analyses hereafter are based on 1225 significant rules (p< к) in AllCrisp which also 

had p<0.05 in AllFuzzy. These rules generally had much larger leverages and thus 

should be more important than the remaining rules. FuzzyDist also caused RIM 

exaggerations, though only by 10–25% of those in AllCrisp. This suggests that the 

advantage in RIM accuracy of fuzzy data discretization also applies to gradual non-

distance concepts, and it is recommended to evaluate RIMs using fuzzy memberships 

on all applicable attributes in SARM.  
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Table 4.5  Real data experiment result on number of significant rules and RIM 

accuracy 
 

AllCrisp FuzzyDist AllFuzzy 

No. of significant rules 1952 1004 803 

Among 1225 rules with p < к in AllCrisp and p < 0.05 in AllFuzzy 

 Exaggeration w.r.t. 

AllFuzzy 

Support 11% 1% - 

Improvement 67% 18% - 

Leverage 37% 7% - 

 

Table 4.6a lists the effects of single fire risk factors suggested by significant rules with 

single-item antecedents, like ‘ horz_dist_to_water near horz_dist_to_fire near   ’, 

and compared them with those in empirical fire risk models. The results generally 

cohere with empirical models, except for the aspect effect. South slopes in northern 

hemisphere are often the riskiest, as they receive more direct sunlight and 

consequently have higher temperature and drier fuels. Yet direct sunlight should be 

less influential in the study area with relatively homogeneous dryness and cool 

summer afternoon of no more than 20 ̊C (Colorado Climate Center 2016). Instead, 

north slopes can be riskier than south slopes due to considerably higher vegetation 

density on the former (Kaufmann et al. 2006, Chambers et al. 2016), as fuel mass is 

usually the most highly weighed fire-inducing factor (Noble et al. 1980, The Virginia 

Department of Forestry 2003, US Forest Service 2010). Riskier west slopes than east 

ones are likely due to the prevalent dry west wind (Colorado Climate Center 2016). 

Low morning/high afternoon hillshade seems also represent riskier west slopes, as 

hillshade and aspect in raw data was computed from the same DEM.  

 

 

 

 

 

 



4-88 
 

Table 4.6  Real data experiment result on single wildfire risk factors 

(a) Fire-inducing effects and comparison with empirical fire risk models 

Factor 
Values suggesting high wildfire risk 

In empirical models In this study 

1. horz_dist_to_water - a Horizontal proximity to 

water  

2. above_water, 

    below_water 

-  Vertical farness to water, 

both above and below 

3. horz_dist_to_road Proximity to roads [1–4] b Proximity to roads 

4. elevation Low elevation, for areas with 

elevation > 1600m - case of 

study area [1, 4, 5] 

Low elevation 

5. aspect  Depend on study area; south 

slopes in northern hemisphere 

are usually riskiest [1–7], but 

high risk on north slopes is 

also reported [7]  

Northwest, west and 

southwest slopes 

6. slope Steep slopes [2, 3, 5, 6, 8] Steep slopes 

7. hillshade 

 

- Low value at 9am and 

high value at 3pm 

8. forest type Conifer/evergreen forest [3, 8] Not meaningful, as study 

area is dominated by 

evergreen forest 

a: Factors are not common empirical model inputs. 
b: [1] Anchor Point Group (2010), [2] Gerdzheva (2014), [3] The Virginia Department 

of Forestry (2003), [4] Thompson et al. (2000), [5] Ghobadi et al. (2012) [6] US Forest 

Service (2010) [7] Yang et al. (2013) [8] Bradshaw et al. (1984). 

 

(b) Sensitivity of RIM values to change in class boundaries (transition midpoints for 

AllFuzzy) by 4% of 5–95th percentile attribute value ranges 

 Class boundary of 

attribute in antecedent 
AllCrisp AllFuzzy 




elevation low

       horz_dist_to_fire near

imp  


 
Original 0.0337 0.0383 

Increase by 4% 0.0288 0.0303 

Decrease by 4% 0.0536 0.0468 




below_water far

       horz_dist_to_fire near

imp  


 
Original 0.0574 0.0262 

Increase by 4% 0.0499 0.0239 

Decrease by 4% 0.0557 0.0279 
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Albeit seemingly unusual, the SARM result suggests increased fire risks in places near 

waters. The overall cool and dry locality could weaken the moistening, cooling, and 

thus fire-mitigating effect of waters. Moreover, proximity to streams is the most 

powerful predictor of forest density in the study area due to water stress (Krasnow et 

al. 2009), and can be thereby linked to higher fire risk.  

 

In AllCrisp and AllFuzzy, elevation and below_water exhibited the most inconsistent 

ranks of rule improvements, or relative importance to fire risks. As shown in  

Table 4.6b, rule improvements in AllCrisp are more sensitive to slight variations in 

class boundaries. If the class boundaries lowered by 4% for elevation and raise by 4% 

for below_water, elevation would be more important than below_water, which 

contradicted to the current result. Meanwhile, AllFuzzy results consistently suggests 

higher importance of elevation. This suggests that the proposed crisp-fuzzy SARM 

are more robust against uncertainties in expert classifications for data discretization, 

and often more reliable than crisp SARM. 

 

The following paragraphs will shift from single fire risk factors to interactions 

between multiple factors, the study on which is the distinctive advantage of SARM. 

Empirical models typically evaluate fire risks by equations of risk factors, with 

constantly valued coefficient for each factor. Actually, fire-inducing effects of many 

factors vary according to presences or values of other factors. Conditionally variable 

coefficients have been employed to improve model accuracy (Nobel et al. 1980, The 

Virginia Department of Forestry 2003), but only on occasion and not systematically. 

This is probability because mainstream fire risk modelling techniques, such as 

regression and laboratory test, are unsuitable for studying interactions between 

multiple risk factors. Meanwhile, SARM has strong ability to reveal such interactions 

from rules with multiple risk factors in the antecedents. 

 

Define semi-improvement of a rule X Y : 
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        -  . .  1 \semi imp X Y w r t x X X conf X Y conf X x Y      ， . (4.4) 

 -  . .  semi imp X Y w r t x  and  imp x Y  are respectively conditional impacts of 

x in presence and absence of other items in X. For fire risk modelling, all x X are 

risk factors. If    -  . .  semi imp X Y w r t x imp x Y   significantly deviates from 1, 

the effect of x may highly depend on other factors and worth the consideration of 

conditional coefficients.  

 

Table 4.7 lists the numbers of rule pairs like X Y and  \X x Y where

   -  . .  semi imp X Y w r t x imp x Y  exceeds different thresholds. ‘Omissions’ 

and ‘commissions’ refer to omitted and extra eligible rule pairs in AllCrisp with 

respect to AllFuzzy, since they should be mainly attributed to RIM errors of AllCrisp, 

as explained earlier. AllCrisp did not have many omissions, but suffered from severe 

commissions, sometimes over 50%. This reconfirms the inference in Section 4.1.2 

that crisp data discretization exaggerates RIMs more severely for rules containing 

more items, here X Y compared with x Y .  

 

Table 4.7  Numbers of rule pairs like X Y and  \X x Y , where

   -  . .  semi imp X Y w r t x imp x Y   exceeds specified thresholds. Rule pairs 

with   0.01imp x Y  are excluded, as resultant ratios were sensitive to small 

divisors 

  Criteria for    -  . .  semi imp X Y w r t x imp x Y   
 

 >1.2 >1.5 >1.8 

AllFuzzy  546 393 281 

AllCrisp  621 504 421 

Omission   41 22 24 

Commission  116 133 164 

 

The numerous commissions in AllCrisp appear to misrepresent the needs for 

conditional coefficients. This makes crisp RIMs unusable, or only fuzzy RIMs 

accurate enough, for investigating conditional fire risk factors. The point is further 
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exemplified as below. Let item1 be ‘ horz_dist_to_water near ’, consider two 

resultant rules: 

   
: above_water far horz_dist_to_fire near

-  . . . horz_dist_to_fire near

    2.88 -AllFuzzy  5.46 -AllCrisp

rule1 item1

semi imp rule1 w r t item1 imp item1

   

 

 ，

   
: below_water far horz_dist_to_fire near

-  . . . horz_dist_to_fire near

    0.85 -AllFuzzy, 1.74 -AllCrisp

rule2 item1

semi imp rule2 w r t item1 imp item1

   

 

  

In AllFuzzy, the fire-inducing effect of item1 was boosted by 1.88 times in rule1, yet 

suppressed by 15% in rule2. No risk factors in  

Table 4.6a were likely reasons for such inconsistent behaviours of item1. Areas above 

and below the nearest waters had quite similar values on all factors other than slope. 

Also, if slope had influenced the effect of item1, the influence should have been 

consistently boosting or suppressing in rule1 and rule2, since slope and item1 values 

exhibited significant positive correlation in all areas.  

 

An alternative explanation may be that waters can weaken fire-inducing hot and dry 

airflows which typically go upslope (The Virginia Department of Forestry 2003). This 

reduces the risk immediately above waters, yet has little effect on upwind below-water 

areas (Wang and Fu 1991, Saaroni and Ziv 2003). In rule1, the antecedent implies 

steeper slopes and associated higher wildfire risks, thus the water barrier effect looks 

more prominent where above_water = near. This is equivalently represented as 

boosted fire-inducing effect of item1 where above_water = far. In rule2, below_water 

= far may suppress the effect of item1, as it implies nearness to waters at even lower 

elevations and associated fire risk reduction.  

 

If this explanation can be validated by additional weather observation data, it will be 

recommended to assign conditional coefficients to item1, and also to strengthen the 

conservation of montane waters for wildfire mitigation. Such discovery is impossible 
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using AllCrisp results, where item1 enhanced fire-inducing effect in both rule1 and 

rule2. 

 

4.4  Summary 

This chapter presents two techniques for improving the reliability of fuzzy SARM 

results. First, it presents a Gaussian-curve-based fuzzy data discretization model for 

SARM. Compared with existing models, this model summarizes spatial semantics of 

Gaussian curves and their advantages for SARM, and is more complete by covering 

multi-concept relations. Second, it originates a crisp-fuzzy SARM method: first to 

conduct statistically sound tests on crisp SARs, and then to evaluate RIMs of accepted 

rules using matching fuzzy data discretization schemes. This method can relieve the 

conservativeness of statistically sound tests and reduce their rejection of true rules 

particularly for fuzzy SARM, thereby increasing authentic rules; and avoid large 

overestimations in RIM values caused by crisp data discretization for gradual or vague 

concepts, hence improving the RIM accuracy. 

 

Experiments show that the proposed techniques can significantly increase authentic 

resultant rules, typically by at least 100% compared with conventional fuzzy SARM. 

The techniques also largely avoid large positive errors in RIM values incurring in 

ordinary SARM, which is usually more than 50% for representative RIMs. The FWER 

was below 1%. A case study on wildfire risk factors demonstrates the practical value 

of the proposed techniques, especially the higher robustness against data discretization 

scheme changes and discoveries of sensible rules due to more accurate RIM values.  
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Chapter 5  Genetic algorithm for mining significant crisp-fuzzy SARs 

This chapter develops the GA-based method for mining significant crisp-fuzzy SARs. 

This method aims at achieving genetically optimized SARM which produces more 

abundant rules and RIM values of higher fitness, compared with existing methods for 

mining significant SARs of minimal risk to be spurious. Section 5.1.1 presents the 

chromosome encoding for the new GA. Section 5.1.2 illustrates the core for this 

method: two original statistical testing approaches, the experimentwise and 

generationwise adjustment approach, for strictly limiting spurious rules; as well as the 

integration of the GA with the Gaussian-curve-based model and crisp-fuzzy SARM 

proposed in Chapter 4, for further improving numbers of true rules and RIM goodness. 

Section 5.1.3 overviews the algorithm procedures, and details the design for genetic 

operators and specific operators for the proposed GA.  

 

Section 5.2 presents two experiments for the proposed GA: Hotel experiment on 

smaller-sized data for investigating Hong Kong hotel accessibilities to tourism 

resources as determinants of hotel room prices, and Fire experiment revisiting larger-

sized Colorado wildfire risk factor data used in Chapter 4. Sections 5.2.1 and 5.2.2 

illustrates experiment data collection and preprocessing, and GA computational 

specifications. Sections 5.2.3 and 5.2.4 evaluates the capability of the GA in 

controlling spurious rules and discovering true rules, respectively, as compared with 

conventional SARM. Section 5.2.5 elaborates new insights into hotel room price 

determinant studies contributed by the more reliable Hotel experiment results using 

the proposed GA. Section 5.3 summarizes this chapter. 

 

5.1  Methods 

5.1.1  Chromosome encoding 

Referring to Section 2.5, in GA-based SARM, each chromosome, or individual, can 
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be used to encode either the entire data discretization scheme or part of the solutions 

like a main rule (Kaya 2006). This chapter adopts the main rule encoding approach 

and adapts it for the Gaussian-curve-based fuzzy data discretization model presented 

in Chapter 4. Recall that a main rule is a collection of rules with the same attributes in 

the antecedents and the same in the consequents. That is, all rules like 

1 11 q qa i q a i bja l a l b l       is under the main rule M: 1 qa a b   , where 

a1 … apb are attributes with corresponding concepts 
1 1 q qa i a i bjl l l . For each attribute a, 

three groups of variables are encoded to define a main rule:  

• ak : the number of concepts for a. The concepts are 1 aa akl l and maxak k , 

maxk is the predefined maximum number of concepts for any attribute; 

• _ Laicr , _ Raicr : left and right endpoints of  
aitcore  , max1i k . These 

variables are specific to the new Gaussian-curve-based data discretization 

model. If other models are applied, other variables that can fully define 

1 aa akl l  should be used instead; 

• aloc : the location of items involving a in rules; 1,2,0aloc   if the items are in 

the rule antecedent, rule consequent, and neither, respectively. 

The encoding of a is 

    
    maxmax max

 1_ R 2_ L 2_ R _ L 1 _ L 1 _ R a a a a ak aa k a k
k cr cr cr cr cr cr loc

 
,           (5.1) 

max_ R _ Laak akcr cr are assigned empty values. Membership functions of the concepts 

defined by Equation (5.1) are illustrated in Figure 5.1. The entire chromosome for all 

n attributes in data, with a length of  max 2n k  , is 

  
max max1 11_ R 12_ L 12_ R 1 _ L 1  1_ R 2_ L 2_ R _ L k n n n n nk nk cr cr cr cr loc k cr cr cr cr loc .    (5.2) 
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Figure 5.1  Encoding of attribute a using proposed chromosome encoding scheme 
 

For the proposed GA, there are two main benefits for encoding a single main rule 

instead of the entire data discretization scheme in each chromosome. First, this enables 

resultant rules of higher flexibilities but still reasonable interpretability. Each main 

rule presents a group of associations between a unique combination of attributes and 

their presences in rule antecedents and consequents. In different groups of associations, 

an attribute may have different optimal raw value intervals for each concept that leads 

to rules of the highest user interest. Consider rules: 

hotel near attractions ( 800m) price( ) high     

hotel near attractions ( 150 )( ) 0m  near subway stations price high   

The optimal intervals in parentheses refer to those with the largest membership 

degrees for the concepts among all concepts in corresponding attributes. These above 

two rules can suggest that hotels near subway stations are required to achieve only a 

looser degree of ‘near’ to attractions in order to obtain room price premium, compared 

with general hotels near attractions. 

 

On the other hand, concepts for the same group of associations (main rule) should 

have consistent value intervals, otherwise the rules will be confusing. Consider rules:  

( ) mid-fahotel r to attractions (300 600m) price high    

  hotel r to at( ) mid- tracnea tions price low   

Looking into the numerical distance intervals, nearness to attractions are linked to 

higher hotel room prices. However, the semantic rules with inconsistent definitions 

0

1

cra1_R cra2_L...cra(j-1)_R craj_L     craj_R cra(j+1)_L...

la1 la2 ...  la(j-1) laj la(j+1)  ...  

0.047

 1      aa
aka k
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
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
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for nearness to attractions misleadingly suggest that nearness to attractions are linked 

to lower prices. 

 

Second, encoding individual main rules is much more efficient when statistical tests 

are fully integrated, that is, rules are statistically tested in every generation of the GA. 

As seen in Chapters 3 and 4, even modest datasets typically have tens of thousands to 

billions of potential rules. The number of rules under a main rule of up to 4 items in 

the antecedent is 22–25 = 4–32 when every attribute has two values, and 52–55 = 25–

3125 when every attribute has five. In the two experiments to be presented in this 

chapter, a main rule typically contained dozens to 300 rules. Encoding entire data 

discretization schemes would then require hundreds to tens of thousands times as 

many rules evaluated in each individual as encoding main rules. As the GA time 

consumption is roughly proportional to the number of rules evaluated, encoding entire 

data discretization schemes may even be infeasible in terms of time cost. 

 

5.1.2  Fitness assignment with statistically sound tests 

Subjects to user needs, the proposed method can use various RIMs as the objectives 

to be optimized, and conduct different statistical tests on the rules. For more abundant 

true rules, the statistical tests should follow the crisp-fuzzy approach: a fuzzy rule is 

accepted if its corresponding crisp rule passes the statistical test, and then its RIM 

value is evaluated using fuzzy membership. ‘Corresponding crisp rule’ refers to the 

rule with the same semantics as the fuzzy rule considered which follows the matching 

crisp data discretization scheme to that for the fuzzy rule, as defined in Equation (4.2). 

 

The objective function fval for computing the fitness value for each main rule M 

depends on the objective RIMs: 
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• For RIMs evaluating extra support of a rule or its subsets, compared with that 

if the items in the rule are unrelated, such as leverage (defined in Section 2.1):

 fval M is equal to summed RIM value of all rules under M that meets 

constraint φ and have their corresponding crisp rules passing the statistical test. 

Such rules are hereafter called eligible rules; 

• For RIMs evaluating higher occurrence probabilities of a rule or its subsets, 

compared with that if the items in the rule are unrelated, such as confidence 

and improvement:  fval M  is equal to the average RIM value of all eligible 

rules. Other averaging measures than arithmetic mean may also be used.  

φ is typically being more than a certain minimum value for the objective RIM. A loose 

and unbiased constraint is being more than the RIM value suggesting that not all items 

in the rule are associated, for example, leverage > 0 and improvement > 0. Users may 

also set a stricter constraint like leverage > 0.1 under the consideration of specific 

SARM tasks. Other constraints such as minimum support can be jointly applied. 

 

According to Section 5.1.1, all rules under a certain main rule should have consistent 

data discretization scheme, that is, they should come from the same individual. 

Therefore, if multiple individuals have the same 1 nk k  and 1 nloc loc  and thus 

encode the same main rule, only the one with the highest fval remains unchanged. 

Other individuals are reset fval = 0, so that rules under them will not enter final SARM 

result, and they have the lowest chance to survive or produce offspring population. 

 

To answer different user needs for balancing the abundance of true rules and risk of 

spurious rules, two approaches for rules in GA-based fuzzy SARM based on 

statistically sound tests are proposed. Let G be the number of generations in the GA, 

N be the population size, or the number of chromosomes evaluated in each generation, 

and rules under main rule M: 1 qa a b    with the number of concepts 

1  qa a bk k k  are tested. 
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(1) Under the experimentwise adjustment approach, the raw significance level α, 

say 0.05, is corrected for the number of potential rules throughout the GA, with 

the purpose of limiting the FWER in entire GA to no more than α. The 

significance level is adjusted to 

 
1

q

ai b
i

G N k k 


     
 

. (5.3) 

Equation (5.3) applies three-level Bonferroni corrections to α: first to limit the risk of 

having any spurious rules in each generation to at most G , then to limit such risk 

in each individual of a generation to no more than  G N  , and finally share the 

risk in each individual among all rules under it. Alternatively, slightly more rules may 

be discovered by using Holm procedure (Holm 1979) to replace the last Bonferroni 

correction. That is, to rank p values of the tests on all eligible rules ascendingly from 

p1, and accept such rules corresponding to p1… pi that  

 
1

1 , 1
q

a b
i

j iG N kj ki p j


      
 

  


 


 . (5.4) 

Equations (5.3) and (5.4) are multi-level extensions to the direct adjustment approach 

(Webb 2007) of correcting for the multiple test problem. As shown in Chapter 4, the 

direct adjustment approach can effectively control the FWER in fuzzy SARM. Thus, 

Equations (5.3) and (5.4) should also be able to strictly control the FWER to no more 

than α. 

(2) Under the generationwise adjustment approach, a correction to α is applied for 

the number of potential rules in each generation of the GA, with the aim of 

limiting the percentage of spurious rules among all resultant rules to no more 

than α. Using purely Bonferroni corrections, the adjusted significance level is 

 
1

q

ai b
i

N k k 


    
 

.  (5.5) 
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If the Holm procedure is adopted, j eligible rules with the smallest p values p1 ≤ …≤ 

pi in the tests will be accepted, if 

 
1

1 , 1
q

ai b
i

j Nj jk ki p 


        
 

 


 . (5.6) 

Equation (5.5) or (5.6) restricts the probability of accepting any spurious rules in each 

generation to at most α, or makes that at most α × 100% generations generates spurious 

rules. As spurious rules are generated due to random data fluctuation, whether any 

spurious rule is produced in a generation should be independent from the total number 

of new rules discovered in this generation. That is, even all newly discovered rules in 

a generation are spurious if any of them are spurious, the expected percentage of 

spurious rules in final SARM results is still no more than α.  

 

The generationwise adjusted test has a much higher significance level, about G times 

of that of the experimentwise approach. Thus, the former approach does not maintain 

a minimum FWER like the latter, but also enables considerably more rules than the 

latter. Experiments in Sections 5.2 will confirm this point, and also suggest that the 

percentage of spurious rules under the generationwise approach is often actually 

below 2% when α = 0.05. Thus the generationwise approach still includes necessary 

correction to α. As has been experimentally proven in Webb (2007) and Section 3.2, 

when rules are tested at raw significance level of α, the resultant percentage of 

spurious rules is typically much higher than α. Users may choose the appropriate 

approach according to the benefit of extra rules discovered using the generationwise 

approach and the acceptable hazard of possible spurious rules, the balance between 

which are specific to each SARM task. 

 

Similar to previous chapters, this chapter hereafter exemplifies the proposed technique 

using leverage as the RIM, φ = ‘leverage > 0’ and chi-square test for productive rules.  
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5.1.3  Evolutionary model 

The proposed GA for crisp-fuzzy SARM is overviewed in Figure 5.2. Main 

considerations of the algorithm are detailed as follows.  

 

 

Figure 5.2  Overall procedures of proposed GA for crisp-fuzzy SARM 

 

 

 

Input:   population size N, No. of generations G, No. of elites el, 

 crossover fraction pc, mutation scale and rates mSD , mp  

Output: eligible rules from optimized individuals 

 

Generate initial population P0 

for t = 0, 1, …, G − 1  

    for i = 0, 1, …, N 

           ifval M leverage r   of all eligible rules r in individual Mi 

    end for 

    for i = 0, 1, …, N 

        if  1j NM M M   has same 1 nk k  and 1 nloc loc with iM , 

          j ifval M fval M  

              ifval M  0 

        end if 

    end for 

    Sort all individuals in descending order by fval 

    Add elites M1, M2, …, Mel into offspring population Pt+1 

    for i = 1, 2, …,   c 2N el p  

        Select individuals Mc1, Mc2 from Pt, with probability w.r.t. fval 

        Remove Mc1, Mc2 from Pt  

        Crossover Mc1 and Mc2, and add two offspring into Pt+1 

    end for 

    for i = 1, 2, …,    c1N el p   

        Select individual Mc from Pt, with probability w.r.t. fval, and remove it from 

Pt  

        Mutate Mc with mSD  and mp , and add offspring into Pt+1 

    end for 

end for 

Return eligible rules in all individuals with fval > 0  
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(1) Generating initial population 

For each attribute a in individual M (undistinguished with the main rule it encodes), 

the number of concepts ak , max2 ak k   and number of items in antecedents of rules 

under M, LM, are randomly generated. Then LM attributes and one attribute are 

randomly selected for rule antecedents ( aloc = 1) and consequents ( aloc = 2), 

respectively. Concept core endpoints 1_ R 2_ L 2_ R _ L aa a a akcr cr cr cr can also be 

generated in random. Alternatively, midpoints of each _ Raicr and  1 _ La i
cr

 , 1 ai k  , 

can be decided by standard classification methods such as equisize classification plus 

random numbers. Then all core endpoints can be computed accordingly.  

 

(2) Genetic operators 

• Selection: under the main rule encoding approach, each individual stores only 

part of optimized data discretizing scheme. To avoid the loss of good data 

discretization genes in the evolution, a relatively large number of elite 

individuals with the highest fval values need to survive to the next generation. 

The number of elites should be close to the number of main rules having 

eligible rules under them at the end of the GA. This number is specific to data 

and targeted rules of each SARM task and should be estimated in pilot studies. 

In crossover and mutation operations, each individual has a probability to be 

selected as the parent, with higher probabilities for individuals having higher 

fitness values. 

• Crossover: one, two, or more crossover points are randomly selected from 

locations after _ Raicr , 1 ai k   and before aloc of all attributes a. To produce 

a crossover child, chromosome segment of one parent M1 are broken at each 

crossover point, and the segment of the other parent M2 starting from _ Lajcr  

will join after _ Raicr of M1.  j is the smallest such value that _ Lajcr in M2 

_ Raicr in M1, or the smallest value that makes maxak k , whichever is larger. 
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• Mutation: for producing a mutation child, core endpoint values of the parent 

individual are mutated by adding a random number following normal 

distribution with mean 0 and standard deviation mSD  times the attribute range. 

aloc  is mutated to some alternative value with probability mp .  

 

(3) Examining and manipulating fuzziness of concepts 

As has been revealed in Chapter 4, crisp discretization for gradual/vague concepts 

generally causes overestimations of RIM values representing positive data 

associations. The evolutionary process in GA continuously searches for core and 

transition intervals of the fuzzy concepts that lead to larger RIM values. As a result, 

the search is likely to end up with near-crisp concepts with very narrow transitions 

(defined in Section 4.1.1), which suffers from the RIM overestimation problem like 

crisp SARM. To avoid this situation, the fraction of transition, ft is defined to evaluate 

the fuzziness of concepts with core [crL, crR] and base [a, b]:  

    R L1ft cr cr b a    . (5.7) 

All crossover and mutation children are then required to have all concepts fulfilling a 

user specified minimum ft, minft . 

 

ft is in line with the classical and widely applied fuzziness measure of fuzzy sets 

proposed by Yager (1979): for a fuzzy set with base [a, b] and continuous membership 

function µ,  

 
 

 
1

1

1
1 2 1

p
pb

p a
fuzziness x dx

b a
   

 
.  (5.8) 

As illustrated in Figure 5.3a,  2 1
b

a
x dx   is equal to the area under  2 1x 

curve. The left and right transitions have standard deviations  L 2.473cr a  and 
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 R 2.473b cr , as suggested in Section 4.1.1. Computed based on cumulative 

normal distribution function for Gaussian curves,  

      curve R L L R0.5905S cr cr cr a b cr        .  (5.9) 

Substituting Equation (5.9) into the simplest form of Equation (5.8) which takes p=1, 

fuzziness = 0.4095ft. For fuzzy concepts with linear transitions, which will be used in 

control experiment groups to compare with the proposed Gaussian-curve-based data 

discretization model in Sections 5.2 and 5.3, it can be similarly derived that

     curve R L L R0.5S cr cr cr a b cr         and fuzziness = 0.5ft (Figure 5.3b). The 

proposed GA uses the simpler ft instead of fuzziness, as ft is easier for users to interpret 

and set a reasonable minimum threshold for. 

 

  
  (a)            (b) 

 

Figure 5.3  Relation between membership function and fuzziness for (a) linear and (b) 

Gaussian-curve-based discretization model 
 

The GA does not directly reject crossover or mutation children that does not fulfilling 

minft , as this will discard favourable data discretization scheme changes in these 

children towards larger RIMs, and thus considerably slows down the evolution. 

Instead, the GA first tries to manipulate the transition intervals of these children. For, 

say, the left transition, a and crL are respectively decreased and increased by equal 

magnitude to make ft = minft . This does not change the concept of maximum 

membership degrees for any raw data value. A manipulation succeeds if it does not 

make core endpoint values conflict other concept cores or fall outside the attribute 

range. In pilot studies for experiments in Section 5.2, rejecting children with any 
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concepts not fulfilling 
minft reduced the evolution speed by at least one half, that is, 

twice as many as generations were needed for discovering the same number of rules. 

Meanwhile, the concept manipulation succeeded in 95% of the cases, thereby making 

the evolution speed nearly unaffected by adding ft constraint. 

 

(4) Computational considerations 

The time complexity of the GA is G∙N∙R, where R is the number of rules in all 

chromosomes in each generation. As explained in Section 5.1.1, the currently used 

chromosome encoding based on main rules dramatically reduces R and thus saves the 

computation time. In the experiments later in this chapter, the proposed statistical tests 

took about 10% of the computation time and added to no computational burden 

compared with existing unadjusted test. Most computation time was spent in 

computing RIM values, as required by SARM in general.  

 

5.2  Experiments: Hotel room price determinants and wildfire risk factors 

5.2.1  Data collection and preprocessing 

(1) Hotel experiment 

The study area of Hotel experiment is metropolis Hong Kong, a special administrative 

region in southern China, and a world’s leading financial centre and tourism 

destination. The city is centred around both sides of Victoria Harbour, where landmark 

scenic spots and luxury hotels are also the most concentrated.  

 

Hotel room prices in Hong Kong Dollars were acquired from the online hotel agency 

Agoda, which included the largest number of Hong Kong hotels among popular online 

hotel platforms at the data collection time. With all-year large tourist flow in the city, 

the prices do not exhibit prominent seasonal change. However, some hotels sell rooms 
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at discounted rates 1–2 months ahead of, and significantly raise the prices towards 

check-in date, while other hotels do the contrary. To accurately measure room prices 

under these two pricing strategies, prices 3 and 7 weeks before check-in date were 

collected and averaged for the use of SARM. Midweek prices of the cheapest double 

rooms were collected following common practices in past studies. All prices were 

obtained within two hours on 1 April 2015, thereby minimizing possible price changes 

during data collection. 

 

Accessibilities to various types of resources from hotels, represented by walkable road 

network distances in metres, are summarized in Table 5.1. A self-developed 

JavaScript program was used to search for the nearest resources to each hotel and 

measure corresponding distances on Google Maps data, with close human 

interventions to remove invalid resources and correct measured routes to walkable 

paths. Types of attractions, including shopping places, were defined according to and 

included most attraction types highlighted by the Hong Kong Tourism Board (HKTB).  

 

Table 5.1  Accessibility attributes in Hotel experiment 
 

Name Description 

1–5 dist_top_spot1– 

dist_top_spot5  

Distance to 1st–5th nearest ‘top 10 attractions’ receiving 

most visitors according to HKTB (2015), mostly 

landmarks or cultural spots; and major city parks and 

theme parks 

6 dist_museum Distance to nearest museumsa 

7 dist_worship Distance to nearest temple/church/other worship placesa 

8 dist_beach  Distance to nearest beacha 

9–13 dist_shop1–

dist_shop5 

Distance to 1st–5th nearest shopping centres/multi-

storey specialty stores e.g. IT malls 

14 dist_subway Distance to nearest subway (Mass Transit Railway) 

stations 

15–19 dist_bus1–

dist_bus5 

Distance to 1st–5th nearest bus stops; clustered stop 

boards for multiple bus routes were regarded as 1 stop 

a Only most significant 30 museums, 30 worship places and 10 beaches highlighted 

by HKTB 
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In densely populated Hong Kong, multiple 1 to 2-star cheap hotels are often located 

in the same multi-storey building. Such hotels are of identical resource accessibilities, 

similar room conditions and room prices highly dependent on each other, and some 

are actually operated as one by the same owner. However, statistical tests on variable 

associations, including those used in SARM, mostly assume mutual independence 

between tested subjects. Records for such hotels in the same building were thus 

merged into one new record, whose price was the average of these hotels weighted by 

numbers of rooms.  

 

After removing hotels without available rooms and merging cheap hotels in the same 

buildings, the data contained 290 records covering around 68,000 rooms, among 

which 230 were 3-or-more-star hotels. This which respectively made up 83% and 94% 

the total number in Hong Kong by the end of 2014 (Census and Statistics Department, 

HKSAR 2015). The hotels and selected resources are mapped in Figure 5.4. 
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Figure 5.4  Hong Kong map with experimented hotel locations and selective resources 
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(2) Fire experiment 

This experiment revisited Covertype dataset used in Chapter 4 for investigating 

Colorado Front Range wildfire risks, and focused on all numerical attributes listed in 

Table 4.4 but aspect. Attributes above_water and below_water were handled as a 

single attribute verti_dist_to_water for representing vertical distances (positive or 

negative) from land cells to nearest water. The data then contained nine attributes in 

total.  

 

The experiment used the data for Rawah, one of the four wilderness areas covered by 

the entire dataset, which contained 260,796 records. As will be shown in Section 5.2.4, 

when applied to Rawah data, the proposed GA already exhibited specific behaviours 

on large-sized data that were different from those on small-sized Hotel data. Thus, 

Rawah data alone was sufficient as a representative large-sized dataset for 

comprehensive evaluation of the proposed GA. Two randomly sampled datasets from 

the Rawah data, containing 2500 and 20,000 records, respectively, were also 

experimented for further investigation into behavioural changes of the GA against 

datasize variations. 

 

5.2.2  Experiment specifications 

The proposed GA was implemented and run on data for both experiments to find rules 

in specific forms. Targeted rule forms and other specifications for the experiments are 

listed in Table 5.2. A pilot was conducted to find the GA specifications. The el value 

was determined according to the requirement in Section 5.1.3; for Hotel data, the 

thereby determined el was equal to 40, and an extra setting of el = 75 was 

experimented in Section 5.2.2 for examining the robustness of spurious rule control 

by the statistical tests. The numbers of generations G were enough for the increase in 

numbers of significant rules nearly stall; in Hotel experiment, no more than 0.5 
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rules/run in the last 300 generations was discovered. In Fire experiment, the increase 

in the number of rules stopped before 500 generations. The maxk value was set at 5, as 

more concepts in an attribute were found to produce very small rule supports relative 

to data size, and corresponding main rules hardly had sufficiently large total leverages 

to survive early generations of the GA. 

 

Table 5.2  Specifications for Hotel and Fire experiments 
 

Hotel experiment Fire experiment 

For targeted rules   

Form of rules resource accessibility(ies) 

room price  

fire risk factor(s)   

horz_dist_to_fire 

Max No. of items in 

antecedent 
4 4 

For GA   

Population size N,           

No. of elites el 

120, 40 & 150, 75 - Sect. 5.2.2; 

120, 40 - Sect. 5.2.3 
300, 150 

No. of generations G  3000 500 

Crossover fraction cp  0.8 0.8 

Mutation scale mSD  0.03 0.03 

Mutation rate mp  0.025 0.025 

Max No. of concepts 

in an attribute maxk  
5 5 

Population 

initialization 
Based on equisize classification (see Sect. 5.1.3) 

 

Values of pc, SDm and pm were generally uninfluential on the final result of the GA 

given enough generations, with their reasonable value ranges: 0.7–0.95 for pc (in 

common practice its value is around 0.8) and 0.01–0.04 for SDm and pm. When SDm, 

pm ≥ 0.05, the mutations were too large and often failed due to breaking the 

mathematical form of the data discretization model. The pc, SDm, pm values did affect 

the evolution speed, that is, how many generations were needed for the evolution to 

stall. Also, the population size N should be at least 2el, or the evolution would be slow, 

as more than 50% chromosomes are elites and survive without evolution. The selected 
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parameter settings in Table 5.2 were relatively good combinations for speeding up the 

evolution. 

 

5.2.3  Accessing control over spurious rules 

The proposed technique was firstly experimented for its ability in controlling spurious 

rules. The conventional statistical test without adjustment for the multiple testing 

problem was also assessed to see whether it actually fails to control spurious rules, 

and thus the proposed adjusted tests are indispensable. To tackle the difficulty of 

accurately identifying true and spurious rules in real data, as has been stated in 

previous chapters, this chapter again referred to the approach of Webb (2007) and 

Chapter 3 of introducing random irrelevant data. Six out of the 19 accessibility 

attributes in Hotel experiment, and three out of the eight fire risk factor attributes in 

Fire experiment were randomly selected in each run. Data columns for the selected 

attributes were replaced by randomly and independently generated values. The 

replaced attributes were then referred to as ‘irrelevant’. Irrelevant attributes had no 

association with the rest of data, thus any rules involving them must be spurious.  

 

For Hotel experiment, the proposed GA, in both generationwise and experimentwise 

adjustment approaches, was experimented with minft = 0.3, 0.5 and 0.7. Apart from 

the newly developed Gaussian-curve-based fuzzy data discretization model, models 

with triangular and trapezoidal fuzzy sets were also evaluated. Significance levels in 

the statistical tests were adjusted using Equations (5.4) and (5.6) which incorporated 

Holm procedure. Control experiment groups, or treatments, were set for the GA with 

unadjusted statistical tests (κ = 0.05) on rules using all three fuzzy data discretization 

models and three minft values. Treatments with unadjusted tests took both crisp-fuzzy 

and conventional fuzzy approaches, the latter meant that p values of the tests were 

computed based on fuzzy pattern supports. Each treatment was repeated for 5 runs to 

produce average results. 
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Table 5.3 lists the results of treatments with statistically sound tests in generationwise 

approach, and those with unadjusted tests in conventional fuzzy approach. The 

‘significant’ and ‘irrelevant’ columns respectively refer to numbers of all significant 

rules discovered and rules involving irrelevant attributes, the latter being the rules that 

must be spurious. Treatments with unadjusted tests in crisp-fuzzy approach resulted 

in at least dozens of irrelevant rules in every run, and thus obviously failed to control 

spurious rules. This was expected, since in Chapter 3 and 4, crisp unadjusted statistical 

tests already accepted dozens of spurious rules with even fixed, non-optimized data 

discretization schemes. Treatments with statistically sound tests in experimentwise 

adjustment approach produced zero irrelevant rules in all 45 runs, thus the FWER was 

likely below 5% as this approach was designed for.  
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Table 5.3  Result on control over spurious rules: Hotel experiment 

Data 

discretization 

model 
minft  

Generationwise adjusted κ, 

crisp-fuzzy SARM 

 Unadjusted κ, conventional 

fuzzy SARM 

Significant Irrelevant  Significant Irrelevant 

(a) el = 40, N = 120 

Tri. a 0.3 24.6 0.4  107.6 0.0 

 0.5 23.4 0.2  108.6 2.2 

 
0.7 26.0 0.6  110.2 0.8 

Trapez. 0.3 30.0 0.2  144.6 11.4 

 0.5 23.6 0.0  121.2 3.6 

 
0.7 30.4 1.0  117.0 0.4 

Gaus. 0.3 30.2 0.6  155.8 4.6 

0.5 26.8 0.6  136.8 13.8 

0.7 27.6 0.2  125.4 0.0 

Average 
 

27.0 0.4  125.2 4.1 

% of irrelevant rules  1.6%   3.3% 

Minimum FWER b   24.4%   28.9% 

(b) el = 75, N = 150 

Tri. 0.3 21.8 0.2  168.8 4.6 

 0.5 27.4 0.8  153.4 11.2 

 
0.7 23 0.4  155.2 5 

Trapez. 0.3 23.8 0  254 12.4 

 0.5 24.6 1.8  214.8 18.4 

 
0.7 19.8 0  173.8 14.6 

Gaus. 0.3 22.4 0.2  238.6 17.2 

0.5 21.4 0  215.2 9.6 

0.7 19.8 0  186 6.8 

Average 
 

22.7 0.4  195.5 11.1 

% of irrelevant rules  1.7%   5.7% 

Minimum FWER   22.2%   75.6% 
a Tri. = triangular, trapez. = trapezoidal, Gaus. = Gaussian-curve-based; same in Table 

5.4 and 5.5 
b = No. of runs containing irrelevant rules/total No. of runs (= 9 groups × 5runs = 45) 
 

The generationwise approach also appeared to well control the risk of spurious rules 

below 5% as designed, and such efficacy was robust against variant el values (Table 

5.3). With the minimum FWER values below 25%, only 1–2 runs on average in the 5 

runs of each treatment contained irrelevant rules. Thus, the variations in numbers of 

irrelevant rules in different treatments seemed not mainly attributed to data 



5-113 
 

discretization models or 
minft values, but rather how many runs in each treatment 

happened to produce irrelevant rules. Regarding only the irrelevant rules as spurious 

ones, the generationwise adjusted test resulted in highly similar 1.6% and 1.7% 

spurious rules at el = 40 and 75, respectively. 

 

Alternatively, users may want to estimate the percentage of spurious rules raising from 

original data without irrelevant attributes. As spurious rules rise purely by chance, the 

possibility of accepting spurious rules among all rules evaluated should be 

independent from whether the rules involve irrelevant attributes. Hence, the number 

of spurious rules that involved no irrelevant attributes could be estimated: computed 

using the method of Webb (2007), around 80% of all potential rules involved at least 

one irrelevant attributes when maxk = 5. For example, when every attribute had five 

values, 19 attributes for the antecedent of up to four items and constituted 1.27×107 

potential rules, out of which 1.03×107 rules contained items in the 6 irrelevant 

attributes. When every attribute had 2 values, there were totally 1.41×105 potential 

rules, 1.13×105 of which involved irrelevant attributes. As will be shown in 5.2.4, 

when el = 40, averagely 43.4 rules were discovered from original data using the 

generationwise adjusted test. Thus, the approximate percentage of spurious rules 

discovered from original data is  0.4 80% 43.4 1.2% . Based on either evaluation 

method, the risk of spurious rules was far below 5%.  

 

Meanwhile, unadjusted tests, even when applied on conventional fuzzy rules, were 

unable to control the spurious rules at 5% level. While the result contained 3.3% 

irrelevant rules at el = 40, the percentage quickly increased to 5.7% at a larger el value 

of 75. When el = 40, actually 31 out of the 45 runs contained irrelevant rules at the 

50th generation, while most irrelevant rules were gradually phased out later, leaving 

only 12 runs with irrelevant rules at the end of GA. The el value of 40 was set to 

preserve main rules that contained any eligible rules using the proposed adjusted test. 

Unadjusted tests with a much higher significant level resulted in more than 40 main 
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rules with eligible rules, and those for irrelevant rules, typically of small summed 

leverages as they arose by chance from random data, tended to be phased out. With a 

higher el value, main rules for irrelevant rules would then have larger chance to 

survive, thereby increasing the risk of spurious rules. This was exactly the condition 

with el = 75 in this experiment.  

 

According to Hotel experiment, the efficacy of the proposed GA in controlling 

spurious rules are not quite relevant to 
minft values. Thus, Fire data were only 

experimented for three treatments (15 runs), namely those with all three data 

discretization models and 
minft = 0.5. The result was listed in Table 5.4. Clearly, the 

generationwise adjusted test produced much smaller percentages of irrelevant rules 

than in Hotel experiment, averagely only 0.1–0.2% for all treatments with the three 

data discretization models in each datasize. The treatments with full data produced 

three irrelevant rules, which counted for  3 15 227.4 226.2 216.6 0.09%       of 

all rules discovered. 90% of all potential rules involved the three irrelevant attributes, 

and the generationwise adjusted test accepted 788 significant rules on average from 

original data. The estimated percentage of spurious rules when exploring original data 

was then    3 90% 15 788 0.03%  . The lower risk of spurious rules in Fire 

experiment, compared with Hotel experiment, should be attributed to the richer data 

and more significant rules discovered in the former. With more rules discovered, 

spurious rules were likely a smaller portion of all rules newly discovered in each 

generation, while the generationwise adjusted test is designed to always cap the 

fraction of spurious rules at α even when all newly discovered rules in a generation 

are spurious if any of them are spurious. Also, p values of all irrelevant rules under 

the generationwise approach were much higher than the experimentwise adjusted 

significance levels for corresponding rules, in all generations since they were firstly 

discovered. Thus the experimentwise adjusted test should result in zero irrelevant 

rules and 0% FWER if applied to the data for evaluating the generationwise approach. 

 



5-115 
 

Table 5.4  Result on control over spurious rules: Fire experiment 

Data 

size 

Data 

discretization 

model 

Generationwise adjusted 

κ, crisp-fuzzy SARM 

 Unadjusted κ, 

conventional fuzzy SARM 

Significant Irrelevant  Significant Irrelevant 

 Tri. 31.2 0.2 (0.6%)  108.2 16.2 (15.0%) 

2500 Trapez. 33.2 0  144.6 50.8 (35.1%) 

 Gaus. 40.8 0  150.2 56.4 (37.6%) 

20,000 

Tri. 103.2 0  178.2 18.4 (10.3%) 

Trapez. 108.8 0.2 (0.2%)  207.2 47.6 (23.0%) 

Gaus. 96.2 0  242.2 55.8 (23.0%) 

Full data 

(260,796) 

Tri. 227.4 0  - a - 

Trapez. 226.2 0.6 (0.3%)  - - 

Gaus. 216.6 0  - - 
a Pilot runs produced >>5% false rules, as similar to other datasizes; experiment then 

discontinued, as the test obviously failed to control spurious rules 

 

Unadjusted tests, in contrast, accepted far above 10% irrelevant rules. This result was 

even much worse than that for Hotel experiment, and obviously suggests the failure 

of unadjusted tests in controlling spurious rules. With up to four items for the eight 

fire risk factors in the antecedent and horz_dist_to_fire as the consequent, there were 

1 2 3 4

8 8 8 8 162C C C C     possible main rules, and due to the rich data, most main rules 

contained eligible rules. Thus the GA was configured to keep 150 elites. As a result, 

irrelevant rules had little chance to be phased out during the evolution, and 

accumulated to a large amount by the end of the GA.  

 

To sum up, experiments on both small (Hotel) and large (Fire) data show that the 

proposed statistically sound GA is capable and necessary for controlling spurious rules 

in SARM. Both approaches for adjusted statistical tests on the rules can control 

spurious rules below their respective aimed levels: α × 100% spurious rules in 

resultant rules for generationwise approach, and α × 100% FWER for experimentwise 

approach, while conventional unadjusted test cannot keep spurious rules under control. 

The proposed GA is more effective as the data enriches and more rules can be 

discovered, which is also the trend of modern SARM tasks.  
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5.2.4  Evaluating ability of discovering true rules 

The second parts of the experiments evaluated the ability of the proposed GA in 

discovering true rules. GA was conducted on original data without introducing 

irrelevant attributes, and other specifications were the same as in 5.2.3. Hotel 

experiment also included corresponding treatments with conventional fuzzy SARM, 

for reconfirming the advantage of crisp-fuzzy SARM in discovering more rules, which 

was first revealed in Chapter 4.  

 

Data for both experiments were also explored using predefined standard data 

discretization schemes for comparison with the proposed GA. Data were classified 

using both equisize and Jenks natural breaks schemes into 2–5 classes for all attributes. 

KORD algorithm and statistically sound test in direct adjustment approach (Webb 

2007) were applied to the crisp discretized data to find significant rules. This was 

equivalent to the proposed GA in the experimentwise approach for crisp-fuzzy SARM, 

as the latter is also based on crisp pattern supports in the stage of finding true rules.  

 

Figure 5.5 and Table 5.5 show the GA results of Hotel and Fire experiment, 

respectively. For Hotel experiment, only generationwise treatment results were 

plotted. The experimentwise approach, even with crisp-fuzzy SARM, produced only 

around 10 significant rule in each run, which indicates that this approach was too strict 

for the small Hotel data to accept sufficient rules for elaborated analysis. For Fire data, 

however, the over-conservativeness of the experimentwise approach quickly 

diminished with increasing sampled datasize. With the modest datasize of 20,000, the 

experimentwise approach already produced more than 3/4 the number of rules 

accepted with the generationwise approach. Thus the experimentwise approach is still 

useful when strict control over the FWER is desirable, unless with very small data. 
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Figure 5.5  Result in discovering true rules: Hotel experiment, generationwise 

approach, α = 0.05 

 

Table 5.5  Result in discovering true rules: Fire experiment, α = 0.05, minft = 0.5 

Data size 

Data 

discretization 

model 

Generationwise approach  Experimentwise approach 

No. of rules Total leverage   No. of rules Total leverage 

2000 

Tri. 87.0 5.59   43.2 3.25  

Trapez. 81.3 5.86  ×103  34.0 2.91  ×103 

Gaus. 82.0 6.06   45.4 3.56  

20,000 

Tri. 349.2 1.43   271.6 1.20  

Trapez. 355.0 1.39  ×105  256.0 1.20  ×105 

Gaus. 347.0 1.49   261.0 1.20  

Full data 

(260,796) 

Tri. 

Trapez. 

Gaus. 

793.8 2.58   730.2 2.50  

797.5 2.78  ×106  738.8 2.58  ×106 

771.4 2.94   740.8 2.64  

 

With standard data discretization, the best result for Hotel data was obtained when all 

attributes had 3 classes in equisize schemes, and included 6 significant rules with 

summed leverage equal to 88.0. The best result for Fire data, obtained when all 

attributes had 3 classes in natural breaks schemes, included 306 rules with summed 

leverage equal to 9.09 × 105. Compared with standard discretization results, GA with 

generationwise adjusted test discovered 2.5–8 times as many rules, and 3–9 times as 

high leverages. According to Section 5.2.3, only 1.2–1.6% of these discovered rules 
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were expected to be spurious. As Chapter 4 has shown that crisp rules generally 

exaggerate leverage, the standard discretization approach should obtain even lower 

summed leverages if it employed any fuzzy membership instead of the current crisp 

one. With the stricter experimentwise adjusted test, GA still discovered more rules 

than the standard discretization approach in Hotel experiment, and twice as many rules 

in Fire experiment. This clearly suggests the advantage of the GA in enriching 

resultant rules and optimizing RIM values.  

 

Admittedly, the more abundant true rules discovered by the proposed GA than the 

predefined data discretization approach attributed to not only generational 

optimizations of concept intervals, but also higher flexibilities of the concept 

definitions that might be different for one attribute in different main rules. Also, the 

generationwise approach result took advantage of the looser statistical test that 

allowed for higher percentage of spurious rules than the experimentwise one. The 

direct adjustment approach for SARM with standard data discretization was 

equivalent to the experimentwise approach for GA, as they both control the FWER at 

α. However, this does not reduce merits of the proposed GA, as SARM with standard 

data discretization could achieve neither flexible concept definitions nor control over 

the percentage of spurious rules at α.  

 

It was infeasible to find even optimal combination of numbers of concepts for 

individual attributes, let alone optimal intervals for these concepts: in order to find 

such an optimal combination, data with n attributes and four options of including 2–5 

concepts for each attribute needs to be explored for rules 4n times to try out all concept 

number combinations. Thus Hotel data needs to be explored using KORD for 

420=1.10×1012 times, and Fire data needs to be explored 49 = 2.62×105 times. Webb 

(2007) and Chapter 3 of this thesis have proven that unadjusted statistical tests for 

SARM with predefined data discretization cannot cap the percentage of spurious rules 

at the raw significance level α, and to the best knowledge of the author, this has not 
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been attained by other adjusted statistical test either, except for the statistically sound 

evaluation which directly controls the FWER at α. 

 

In Hotel experiment, crisp-fuzzy treatments resulted in at least twice as many rules 

and as large summed leverages as corresponding conventional fuzzy treatments 

(Figure 5.5). This reconfirms the merit of crisp-fuzzy SARM over conventional fuzzy 

SARM in finding abundant true rules, and that the proposed GA should incorporate 

the crisp-fuzzy approach. Conventional fuzzy treatments were not applied in Fire 

experiment, but Chapter 4 has shown that crisp-fuzzy SARM doubled the number of 

resultant true rules compared with conventional fuzzy approach.  

 

In both experiments, three forms of membership functions did not make large 

difference in number of rules discovered by the GA. Crisp-fuzzy SARM is expected 

to have such robustness against variations in membership function forms, as its 

statistical test stage is not based on the three fuzzy data discretization models, but 

instead based on the same crisp model matching the fuzzy ones. Although Gaussian-

curve-based treatments resulted in more rules than trapezoidal ones at all minft values 

(Figure 5.5), such difference might appear by chance, since chi-square tests for 

differences between mean numbers of resultant rules in the five runs of the two 

membership function forms resulted in p>0.2 at all minft values. Differences between 

Gaussian-curve-based and triangular treatments were larger, and chi-square tests 

suggested that the differences were significant at 0.1 significance level when minft  

equalled to 0.3 or 0.5. The difference decreased to minimal at minft = 0.7, when fuzzy 

sets in Gaussian-curve-based and trapezoidal data discretization models could include 

only narrow cores and became close to triangular ones. This indicates that for the 

proposed GA, cores in the discretization model is necessary for more flexible search 

for and more abundant resultant rules. Meanwhile, experiment results provided no 

evidence for comparing relative goodness of Gaussian-curve-based and trapezoidal 

models. The larger summed leverages in Gaussian-curve-based treatments (Figure 5.5, 
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Table 5.5) might simply reflect lower fuzziness degrees of Gaussian-curve-based 

fuzzy sets, which equal to 0.41ft, while fuzziness degrees of trapezoidal sets are 0.5ft. 

As suggested Section 4.2.3, given no expert knowledge indicating the membership 

function forms, the Gaussian-curve-based model is recommended in general, due to 

its widely recognized capability in representing linguistic concepts, especially 

geographical ones, and its higher tolerance to extraneous factors in imperfect data than 

trapezoidal models. 

 

With increasing
minft values, Gaussian-curve-based and trapezoidal treatments in 

Hotel experiment resulted in fewer rules and smaller summed leverages. For crisp-

fuzzy treatments, even rules were tested using crisp pattern supports that were 

irrelevant to 
minft , larger 

minft values could still slow down the evolutionary process 

in GA, as it caused more failures in fuzzy set manipulations for fulfilling 
minft  (see 

Section 5.1.3). Triangular treatments were largely unaffected, as triangular data 

discretization held ft = 1 for all concepts except for those with the smallest and largest 

value intervals in an attribute. Decreases in summed leverages should be due to dual 

effects of the slowed evolutions and fuzzier concepts under larger minft values. The 

changing trend in number of rules did not appear in Fire experiment, where the GA 

focused on optimizing RIM values of resultant rules rather than numbers of rules due 

to data richness, as will be explained immediately below. 

 

Figure 5.6 illustrates the generational changes in numbers of rules and total leverages 

of the GA in both experiments. In Hotel experiment, both numbers of rules and total 

leverages consistently increased during the evolution. In Fire experiment, however, 

numbers of rules stalled in early generations, and even decreased latter when minft = 

0.3 and minft = 0.5; at minft = 0.5, numbers of rules in 350th, 400–450th and 500th 

generation were 773, 782 and 771, respectively. At minft = 0.7, main rules evoluted 

slower than in treatments with smaller minft values, thus the stage of decrease in 

numbers of rules might yet to be reached by the end of GA. With eight attributes in 
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the antecedent of up to four items and fixed attribute in the consequent, Fire data could 

constitute 
1 2 3 4

8 8 8 8 162C C C C    main rules. As implied by the experiment setting 

of el = 150, around 150 main rules contained eligible rules by the end of pilot GA, and 

most of them were actually discovered in the first dozens of generations. The data was 

so rich that eligible rules were discovered under most possible attribute combinations, 

or main rules, and even subtle rules could be captured instead of rejected simply due 

to inadequate data and resultantly inadequate statistical significance. Thus, a large 

number of significant rules quickly saturated most possible main rules. Then the 

proposed GA shifted the focus of RIM optimization from discovering more rules to 

optimizing the fuzzy sets for concepts in existing main rules. The decrease in number 

of rules in later generations, with the proposed GA keeping effective in increasing 

total leverages of these rules (Figure 5.6d), was likely a streamlining process which 

resulted in more concise resultant rule set that tends to be easier for users to interpret 

and make decisions.   
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(a)                                              (b) 

 
                                   (c)              (d) 

    

Figure 5.6  Evolutions in numbers of rules and total leverages in GA for (a) (b) Hotel 

and (c) (d) Fire experiments 

 

5.2.5  Analysing practical implications for Hotel experiment 

As the fire risk analysis with the Fire data has been conducted in Chapter 4, this section 

focused on practical implications of the Hotel experiment result. According to Section 

5.2.4, statistically sound SARM with standard data discretization resulted in six rules 

at best. This is mainly due to limited data size in city-level hotel pricing studies, which 

also restricts the achievements of prior studies on this topic, as will be detailed in next 

paragraph. Thus, most analysis outcomes in this section are exclusively contributed 

by the proposed GA with much richer resultant rules, among which more than 98% 

are expected to be authentic, according to Section 5.2.3.  
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The current mainstream approach of hotel room pricing studies is hedonic price 

modelling. This approach evaluates impacts of various hotel attributes on room price, 

such as room conditions, services and accessibilities, by regressions with the price as 

dependent variable and hotel attributes as independent variables. Table 5.6 reviews 

some representative studies in this line that involved hotel accessibilities. Although 

room price usually shown positive correlation with accessibilities, sometimes 

insignificant or even negative correlations were also found, for accessibilities to both 

city centre/scenic spots and transport facilities. These inconsistent conclusions may 

be attributed to heterogonous impacts on room price of accessibilities of hotels in 

different levels (star ratings) or geographic locations, as indicated by results of Zhang 

H. et al. (2011) and Zhang Z. et al. (2011) (Table 5.6). This, however, is difficult to 

be confirmed by regressions. City-level hedonic hotel room price studies typically 

involve only dozens to hundreds hotels. Subdividing these hotels into groups by star 

ratings or locations will reduce statistical significance of regression models for each 

group, thus the models may lose the ability in identifying significant impacts of many 

hotel attributes. Besides, prior studies have seldom differentially investigated the 

impacts of accessibilities for detailed resource subtypes, such as landmarks and 

cultural relics under the type ‘attractions’.  
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Table 5.6  Past hedonic hotel room price modelling studies that involved hotel 

accessibilities 

Research Study area 
No. of hotels 

studied 
Modela  

Accessibility 

measure(s) 

Correlation(s) 

with room 

pricesb 

Bull (1994) Ballina, 

Australia 

35 hotels/ 

motels 

Linear/ 

quadratic/ 

semilog/ 

loglinear 

Nearness to city 

centre 

+ 

Thrane 

(2007) 

Oslo, 

Norway 

74 Semilog Nearness to 

central railway 

station 

+ (double 

room) 

I (single room) 

Andersson 

(2010) 

Singapore 69 Linear 1) Nearness to 

CBD 

2) Beside 

Orchard Road 

(major shopping/ 

entertainment 

district) or not 

1) + 

2) +                      

                        

Zhang, H. 

et al. 

(2011) 

Beijing, 

China 

228, 3-star 

or above 

Linear/semi-

log/loglinear 

with geogra-

phically 

weighted 

regression 

(GWR) 

Nearness to         

1) closest scenic 

spots                    

2) transport hubs  

Global average: 

1) I                     

2) +                

Local GWR:      

– for some 

locations, + for 

others 

Zhang, Z. 

et al. 

(2011) 

New York, 

US 

243, 1- to 5-

star 

Linear Tourists’ rating 

of location 

convenience 

1- to 2.5-star 

hotels: I             

3- to 5-star 

hotels: +  

Lee and 

Jiang 

(2012) 

Chicago, 

US 

81, mid- to 

high-level 

Linear, 

nonspatial 

/spatial lag 

models 

Nearness to city 

centre 

+ 

Park and 

Kim (2012) 

Seoul, 

Koera 

17, 5-star Linear Accessibility to 

road network 

+ 

Balaguer 

and Pernías 

(2013)  

Madrid, 

Spain 

219, 2-star 

or above 

Linear Nearness to       

1) city centre     

2) airport 

1) I (In most 

days of a week)                

2) +  

Napierala 

and 

Lesniewska 

(2014) 

Lodz, 

Poland 

155, all 

levels 

 Nearness to       

1) city centre     

2) nearest 

transport node 

1) I  

2) + 

a non-spatial models unless specified 
b +: significantly positive (p<0.05), –: significantly negative, I: insignificant 
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The improved SARM result of the proposed GA helps address the two issues in prior 

hedonic analysis, and originally reveals the scale difference issue in analysing hotels 

of different price levels, as elaborated below. 

 

Among all runs employing the proposed GA in generationwise approach, the result of 

the run producing the largest number of rules, with
minft = 0.5 and 53 resultant rules, 

was used for analysis. Table 5.7 listed all resultant rules, with each item like 

attribute concept  No. of concepts in 

                    raw data interval of maximum membership
                   degree for  among all concepts i

| 

n 
(

) 

a c a

c a



. 

The rules were grouped by and repeated under each resource subtype involved, with 

recurrences marked ‘*’. Concepts for accessibility attributes were assigned as below 

for attributes containing 

• 2 concepts: near, far; 

• 3 concepts: near, mid, far; 

• 4 concepts: near, mid-near, mid-far, far; 

• 5 concepts: near, mid-near, mid, mid-far, far; 

Concepts in hotel room price were assigned similarly by replacing ‘near/far’ with 

‘low/high’. 
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Table 5.7  Interpreted resultant rules of Hotel experiment  

 
 Antecedent (metre) Consequent (HK$) 

room_price = 

Leve-

rage 
p 

(a) Top attractions 

1 dist_top_spot1 = near|3  

                           (<288) 

low|3 

(<566) 

14.76 1.55×10-6 

2 dist_top_spot1 = near|3 dist_worship = near|3  

                           (<546)                         (<672) 

low|3 

(<942) 

15.71 3.15×10-7 

3 dist_top_spot1 = near|3 dist_shop5 = near|2 

                           (<434)                         (<560) 

low|3 

(<566) 

19.65 1.91×10-5 

4 dist_top_spot1 = near|2 dist_subway = near|2 

                           (<527)                         (<225) 

low|3 

(<701) 

20.50 4.76×10-6 

5 dist_top_spot2 = near|2 

                           (<1617) 

high|3 

(>1261) 

13.79 3.95×10-6 

6 dist_top_spot2 = near|3 dist_worship = near|3  

                           (<949)                         (<672) 

low|3 

(<782) 

12.88 1.33×10-5 

7 dist_top_spot2 = near|3 dist_worship = mid|3  

                           (<949)                         (649–1533) 

high|3 

(>1193) 

15.54 1.11×10-5 

8 dist_top_spot3 = near|2 

                           (<1808) 

high|3 

(>1244) 

15.87 5.54×10-8 

9 dist_top_spot3 = near|2 dist_top_spot2 = mid|3 

                           (<1793)                       (763–1734) 

high|2 

(>940) 

16.98 1.87×10-5 

10 dist_top_spot3 = near|2 dist_worship = mid|3 

                           (<1801)                       (622–1781) 

high|3 

(>1128) 

20.96 7.88×10-6 

11 dist_top_spot3 = mid-near|4 dist_bus4 = far|2 

                           (896-1695)                  (>248) 

high|5 

(>1417) 

11.98 5.02×10-6 

12 dist_top_spot4 = near|2 

                           (<1951) 

high|3 

(>1222) 

17.80 1.74×10-7 

13 dist_top_spot4 = near|2 dist_top_spot2 = mid|3 

                           (<2082)                       (766–1866)   

high|2 

(>980) 

16.94 1.41×10-6 

14 dist_top_spot4 = near|3 dist_museum = near|3 

                           (<1861)                       (<915) 

 dist_subway = mid|3 

                           (208–591) 

high|3 

(>1077) 

20.27 1.49×10-6 

15 dist_top_spot4 = near|2 dist_worship = mid|3 

                           (<2410)                       (622–1781) 

high|3 

(>1160) 

20.99 2.28×10-6 

16 dist_top_spot4 = near|2 dist_shop1 = near|3 

                           (<2410)                       (<68) 

high|3 

(>1210) 

13.43 1.54×10-5 

17 dist_top_spot4 = near|3 dist_subway = mid|3 

                           (<1808)                       (223-598) 

high|3 

(>1022) 

18.33 1.56×10-6 

18 dist_top_spot5 = near|2 

                           (<3011) 

high|3 

(>1254) 

15.02 1.44×10-6 

19 dist_top_spot5 = near|3 dist_worship = near|3 

                           (<1810)                       (<628) 

low|3 

(<565) 

11.39 1.36×10-5 

20 dist_top_spot5 = near|3 dist_worship = mid|3 

                           (<1810)                       (628–1704) 

high|3 

(>1022) 

14.40 1.23×10-5 
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Table 5.7 (cont.) 

 
Antecedent (metre) 

Consequent (HK$) 

room_price = 

Leve-

rage 
p 

21 dist_top_spot3 = mid|3 dist_shop1 = near|3 

                           (1598–2602)               (<83) 

low|3 

(<511) 

  7.69 2.98×10-7 

22 dist_top_spot3 = mid|3 dist_shop2 = near|3 

                           (1563–2577)               (<195) 

low|3 

(<511) 

  7.51 4.75×10-6 

23 dist_top_spot1 = far|3  

                           (>819) 

mid|3 

(566–1312) 

14.32 2.52×10-5 

24 dist_top_spot2 = far|2 

                           (>1617) 

mid|3 

(538–1261) 

18.58 1.11×10-7 

25 dist_top_spot3 = far|2 

                           (>1808) 

mid|3 

(424–1244) 

18.38 7.03×10-9 

26 dist_top_spot4 = far|2 

                           (>1951) 

mid|3 

(516–1222) 

20.27 9.11×10-8 

27 dist_top_spot5 = far|2 

                           (>3011) 

mid|3 

(498–1254) 

16.68 1.20×10-6 

(b) Museum and worship places 

28 dist_museum = near|3 

                         (<1075)   

high|2 

(>1072) 

15.40 5.89×10-5 

29 dist_museum = near|4 dist_worship = mid-far|4 

                         (<473)                           (693–1416) 

high|3 

(>1038) 

13.18 7.74×10-6 

30 dist_museum = near|3 dist_shop1 = near|3 

                         (<922)                           (<67)   

high|3 

(>1222) 

13.15 1.35×10-5 

12* dist_museum = near|3 dist_top_spot4 = near|3                                                          

                         (<915)                           (<1861) 
 dist_subway = mid|3 

                         (208–591) 

high|3 

(>1077) 

20.27 1.49×10-6 

31 dist_museum = mid|3 

                         (1076–1927)   

low|2 

(<1072) 

14.02 2.34×10-5 

32 dist_museum = far|3 dist_shop1 = near|3 

                         (>1307)                         (<67)   

low|3 

(<552) 

  5.94 1.99×10-6 

33 dist_museum = far|3 dist_shop2 = near|3 

                         (>1242)                         (<144)   

low|3 

(<552) 

  5.70 8.60×10-6 

2* dist_worship = near|3 dist_top_spot1 = near|3 

                         (<672)                           (<546)                             

low|3 

(<942) 

15.71 3.15×10-7 

6* dist_worship = near|3 dist_top_spot2 = near|3  

                         (<672)                           (<949)    

low|3 

(<782) 

12.88 1.33×10-5 

17* dist_worship = near|3 dist_top_spot5 = near|3 

                         (<628)                           (<1810)    

low|3 

(<565) 

11.39 1.36×10-5 

34 dist_worship = mid|3 

                         (628–1371) 

high|3 

(>1213) 

13.62 2.41×10-5 

7* dist_worship = mid|3 dist_top_spot2 = near|3 

                         (649–1533)                   (<949) 

high|3 

(>1193) 

15.54 1.11×10-5 
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Table 5.7 (cont.) 

 
Antecedent (metre) 

Consequent (HK$) 

room_price = 

Leve-

rage 
p 

9* dist_worship = mid|3 dist_top_spot3 = near|2 

                         (622–1781)                   (<1801)            

high|3 

(>1128) 

20.96 7.88×10-6 

13* dist_worship = mid|3 dist_top_spot4 = near|2  

                         (622–1781)                   (<2410)   

high|3 

(>1160) 

20.99 2.28×10-6 

18* dist_worship = mid|3 dist_top_spot5 = near|3 

                         (628–1704)                   (<1810)                          

high|3 

(>1022) 

14.40 1.23×10-5 

35 dist_worship = mid|3 dist_shop1 = near|5 

                         (672–1403)                   (<40) 

high|3 

(>1316) 

11.44 8.22×10-6 

36 dist_worship = far|3 

                         (>1371) 

mid|3 

(>1213) 

12.56 4.81×10-5 

(c) Shopping places 

37 dist_shop1 = near|3 

                      (<35) 

high|3 

(>1312) 

11.29 8.63×10-9 

38 dist_shop1 = mid|3 

                      (35–178) 

low|3 

(<566) 

12.87 9.38×10-6 

26* dist_shop1 = near|3 dist_top_spot3 = mid|3 

                      (<83)                             (1598–2602)  

low|3 

(<511) 

  7.69 2.98×10-7 

30* dist_shop1 = near|3 dist_museum = near|3 

                      (<67)                             (<922)  

high|3 

(>1222) 

13.15 1.35×10-5 

32* dist_shop1 = near|3 dist_museum = far|3 

                      (<67)                             (>1307)                     

low|3 

(<552) 

  5.94 1.99×10-6 

39 dist_shop1 = near|3 dist_bus4 = near|3 

                      (<125)                           (<229) 

low|3 

(<566) 

12.13 1.11×10-5 

40 dist_shop2 = near|3 

                      (<190) 

low|3 

(<561) 

12.10 4.51×10-5 

27* dist_shop2 = near|3 dist_top_spot3 = mid|3 

                      (<195)                           (1563–2577)      

low|3 

(<511) 

  7.51 4.75×10-6 

33* dist_shop2 = near|3 dist_museum = far|3 

                      (<144)                           (>1242)                     

low|3 

(<552) 

  5.70 8.60×10-6 

41 dist_shop3 = near|2 

                      (<354) 

low|3 

(<561) 

12.81 9.02×10-6 

42 dist_shop4 = near|3 

                      (<278) 

low|3 

(<565) 

14.98 1.24×10-7 

43 dist_shop4 = near|3 dist_subway = near|3 

                      (<277)                          (<201) 

low|3 

(<569) 

16.39 7.87×10-6 

44 dist_shop5 = near|3 

                      (<307) 

low|3 

(<561) 

12.36 7.82×10-6 

3* dist_shop5 = near|2 dist_top_spot1 = near|3 

                      (<560)                          (<434)      

low|3 

(<566) 

19.65 1.91×10-5 

45 dist_shop5 = near|2 dist_subway = near|4 

                      (<552)                          (<219) 

low|3 

(<569) 

21.67 6.61×10-6 
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Table 5.7 (cont.) 

 
Antecedent (metre) 

Consequent (HK$) 

room_price = 

Leve-

rage 
p 

46 dist_shop1 = far|3 

                      (>178) 

mid|3 

(566–1312) 

17.41 2.11×10-5 

47 dist_shop2 = far|3 

                      (>332) 

mid|3 

(561–1208) 

21.15 2.79×10-8 

48 dist_shop3 = far|2 

                      (>354) 

mid|3 

(561–1208) 

19.02 3.21×10-7 

49 dist_shop4 = far|3 

                      (>468) 

mid|3 

(565–1222) 

17.60 1.28×10-6 

50 dist_shop5 = far|3 

                      (>516) 

mid|3 

(561–1208) 

17.49 9.79×10-6 

(d) Transports 

51 dist_subway = near|3 

                        (<212) 

low|3 

(<562) 

17.77 8.97×10-9 

4* dist_subway = near|2 dist_top_spot1 = near|2 

                        (<225)                        (<527)                             

low|3 

(<701) 

20.50 4.76×10-6 

43* dist_subway = near|3 dist_shop4 = near|3 

                        (<201)                        (<277)         

low|3 

(<569) 

16.39 7.87×10-6 

45* dist_subway = near|4 dist_shop5 = near|2 

                        (<219)                        (<552)    

low|3 

(<569) 

21.67 6.61×10-6 

52 dist_subway = mid|3 

                        (212–591) 

high|3 

(>890) 

13.73 3.00×10-5 

15* dist_subway = mid|3 dist_top_spot4 = near|3 

                        (223-598)                   (<1808) 

high|3 

(>1022) 

18.33 1.56×10-6 

12* dist_subway = mid|3 dist_top_spot4 = near|3                                                          

                        (208–591)                  (<1861)     
 dist_museum = near|3 

                        (<915)    

high|3 

(>1077) 

20.27 1.49×10-6 

53 dist_subway = far|3 

                        (>591) 

mid|3 

(562–890) 

  7.18 5.75×10-5 

39* dist_bus4 = near|3 dist_shop1 = near|3 

                   (<229)                            (<125)      

low|3 

(<566) 

12.13 1.11×10-5 

10* dist_bus4 = far|2 dist_top_spot3= mid-near|4 

                   (>248)                            (896-1695)                        

high|5 

(>1417) 

11.98 5.02×10-6 

 

For most rules in Table 5.7, the price was divided into three concepts, at around 

HK$500–600 between ‘low’ and ‘mid’ and HK$1200–1300 between ‘mid’ and ‘high’. 

Table 5.8 examines the three concepts against hotel room price distribution by star 

rating, and shows that the former is not equivalent to the latter, though star rating has 

been widely suggested the strongest determinant on room prices (Andersson 2010, 

Zhang, H. et al. 2011, Zhang, Z. et al. 2011, Balaguer and Pernías 2013). Particularly, 
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rules for ‘mid’ and ‘high’ prices may indicate accessibility characteristics of mid- to 

high-level hotels (3-stars or above) that are underpriced and sell good prices, 

respectively, and also link to profitability of these hotels. 

 

Table 5.8  Hotel room price distribution by star rating 

Hotel star 

rating 

No. of hotels by price range (HK$) 

<500 500–600 600–1200 1200–1300 >1300 Total 

5 0 0 5 2 31 38 

4–4.5 0 6 69 8 30 114 

3–3.5 4 14 52 1 4 75 

2–2.5 3 1 1 0 0 5 

1–1.5 36 12 13 0 0 58 

 

(a) Top attractions 

Hotels near top attractions, with distances from <1.6km for the second to <3km for 

the fifth nearest attractions, were generally associated with high room prices (rule 5, 

8–18, Table 5.7). The associations are reconfirmed in rule 23–27, which indicate that 

farther hotels tend to sell medium instead of high prices. This supports the strategy of 

HKTB to focus on these attractions in local tourism promotion. In particular, rule 9 

and 13 suggest that relative nearness to both the second and the third/fourth nearest 

attractions were associated with relatively high room prices, and since the rules have 

passed the productivity test, contributions of the second and the third/fourth nearest 

attractions to the price premium cannot replace mutually. Thus, for large tourism cities 

like Hong Kong, it is recommended to consider accessibilities of hotels to the 

nearest/second nearest scenic spots as well as existences of multiple spots in their 

wider surroundings, for more accurate evaluation of hotel locations in terms of price 

premium.  

 

Meanwhile, hotels very close (<300m) to the nearest attractions were associated with 

low prices (rule 1). This, however, seems not to reflect any adverse effect of high 
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accessibility to attractions on room price, but rather because scales of distances and 

resultantly nearness perceptions for high-level hotels are often larger than that for low-

level ones. High-level hotels tend to locate in upscale commercial areas with large and 

relatively widely spaced buildings. Also, network distances in data were measured 

between entrances of hotels and spots, and might include up to hundreds of metres’ 

walk around them for accessing their entrances. Thus, high-level hotels are unlikely 

within 300m to the nearest attractions, if not on immediate sides of them. Meanwhile, 

economic hotels in Hong Kong concentrate in crowded old districts with dense and 

relatively small buildings, where much larger numbers of buildings may locate within 

300m to attractions. In West Kowloon area, for example, dozens of cheap hotel 

buildings are within 300m to Ladies’ Market or Temple Street, two night market 

streets listed in ‘top 10 attractions’ (Figure 5.4). According to rule 23, hotels with far 

distances (>800m) from the nearest attractions typically sell medium prices. This 

implies that expensive hotels concentrate in 300–800m to the nearest spots. For most 

tourists, this distance range is of little difference from being within 300m. 

 

Another evidence suggesting that rule 1 is due to scale effect is that when hotels had 

other features implying small scales of low-end hotel areas, as shown in other items 

of rule 3–4 and will be explained in (c)–(d), distance ranges to attractions indicating 

low prices were relaxed to be within around 500m. Rule 2, 6–7 and 19–20 are linked 

to worship places and will be elaborated in (b).  

(b) Museums and worship places 

Proximity to museums proved favourable for room price premium and were associated 

with high prices (rule 28–30,12*), and areas of medium or far distances from museums 

were associated with low prices (rule 31–33). Proximity to worship places, by contrast, 

seems unfavourable. Hotels with near distances (<650m) to worship places were 

associated with low prices (rule 2*, 6*, 17*), while hotels with medium distances were 

connected to high prices (rule 34), especially those close to other favourable resources 
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(rule 7*, 9*, 13*, 18* and 35*). It should be noted that worship places in data were 

those featured by HKTB and of actual tourism value. As 81% of 3- to 5-star hotels in 

data are within 600m to their nearest attractions involved in (a) or (b), distance 

intervals for ‘near’ and ‘medium’ concepts for worship places are unlikely to suggest 

scale effect like in (a), but the real accessibility. A detailed view of the data revealed 

that many museums locate around downtown beside Victoria Harbour, while religious 

spots, except several churches in commercial areas, tend to locate in either near old 

districts with clustered cheap hotels as said in (a), or remote places with few nearby 

hotels, such as the famous Big Buddha on Lantau Island (Figure 5.4). Rule 36 

associating farness to worship places and medium room prices seems to represent 

suburban mid- to high-star-rating hotels that are far from resources in general.  

(c) Shopping places 

Hotels from within 100m for the nearest shops to within 300m for the fifth nearest 

shops were associated with low room prices (rule 38–44, 26*, 30*, 32*, 27*, 33* and 

3*). This seems to reflect a stronger effect of scale difference in nearness for high- 

and low-level hotels on evaluating their accessibilities for shopping places than for 

attractions. In high-class commercial districts, a hotel can achieve a network distance 

of about 300m to its fifth nearest shopping malls, if its adjacent buildings are mostly 

malls. Such condition is actually common in downtown of Hong Kong, which has 

very high shop density and attracts exceptional buying passion of visitors even among 

worlds’ popular tourism cities. Hotels with smaller distances, however, are less likely 

to be those in upscale districts. Another evidence that the above rules reflect the scale 

effect, similar to (a), is that additional conditions implying low-level areas, like being 

very close to spots (rule 3*) and subway stations (rule 45, to be explained in (d)), 

relaxed distance ranges to the fifth nearest shopping centres suggesting low prices to 

within around 550m. The exceptional rule 37 which associates hotels within 35m to 

shopping centres with high room prices should reflect luxury hotels built immediately 
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over a mall, which were assigned nominal distance of 20m from their lobbies to 

downstairs shops. 

Beyond the scale of low-level districts, high accessibility to shopping places still 

contribute to room price premium, as implied by rule 46–50 associating hotels in even 

farther distances and medium prices. 

(d) Transport facilities  

Rules involving subways again exhibited the scale difference of high- and low-level 

hotels. The distance of within about 200m, associated with low room prices in rule 51, 

4* 43* and 45*, appears too short and more likely to suggest blocks of dense middle-

sized buildings typically for economic hotels. Another proof is that other conditions 

implying small distance scales for crowded old districts, such as being very near to 

attractions or shops, further strengthen rule 4*, 43* and 45*. The ‘medium’ concept 

corresponding to about 200–600m, associated to high room prices in rule 52, 15* and 

12*, still indicates convenient walking access and should reflect the degree of 

closeness in upscale areas. Hotels farther to subways appear less favourable and were 

associated with medium room prices (rule 53).  

 

Meanwhile, accessibility to buses may not benefit room price premium. Rule 39* and 

10* even suggest that hotels within 200–250m to the fourth nearest bus stops have 

relatively low room prices. Although the two rules might also partially be attributed 

to the previously stated scale effect, there are also no rules suggesting that hotels in 

any distance range to bus stops beyond 200–250m have price advantage over farther 

hotels.  

 

The contrasting effects on room prices of accessibilities to subways and buses may be 

explained by that in Hong Kong, the former is a better indicator than the latter for 

convenience of transportation. Subways often lie along traffic arteries, with 

comparable fares but higher speed than buses, and thus are more preferable for visitors. 
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Buses have merits of denser networks and larger coverages, which, however, also 

indicates that proximities to bus stops are unnecessarily busy areas popular among 

visitors.  

(e) Summary and recommendations 

In Hong Kong, among various tourism resources investigated, high accessibilities to 

top attractions, museums, shopping centres and subways are significantly associated 

with hotel room price premium, while those to worship places and bus stops do not 

seem beneficial. In above analysis, rules containing accessibilities to multiple resource 

types prove to be helpful for reasoning the price determining effect of each resource 

type involved. Decision makers may refer to individual rules for distance ranges of 

particular resources for advantageous hotel locations, and estimate total room sale 

premium by selecting favourable or avoiding unfavourable hotel locations according 

to optimized leverages of corresponding rules. 

 

The case study evokes two further recommendations for future studies on 

accessibilities to resources as hotel price determinates. First, in measuring 

accessibilities to a certain type of resources, the subtypes of resources to be included 

needs to be selective. It is suggested to firstly identify main subtypes of resources that 

actually contribute to price premium via SARM like that in this study or other 

techniques, and include only those subtypes in the accessibility measure. Otherwise, 

useless resource subtypes can hide real influences of other subtypes on room prices in 

subsequent hedonic price modelling. In the Hong Kong case, including worship places 

in the accessibility to attractions will not improve the price modelling. This might 

actually be one reason that some studies in Table 5.6 were unable to find significant 

correlations between nearness to attractions and hotel room price. Second, attentions 

need to be drawn to possible discrepant distance scales among hotels in different areas 

in the city. Regression models in prior hedonic analyses, linear or nonlinear, are 

mostly monotonic with respect to distances (Table 5.6). In this case, data for low-level 
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districts, which was found to have smaller distance scales in this study, can exhibit 

opposite accessibility-price relations to the rest data and worsen the regression results. 

It would be beneficial to identify possible different scales across the city districts, for 

which the proposed GA for SARM have been proven useful, and make differential 

analysis on hotels in districts of different scales. 

 

5.3  Summary 

This chapter develops a GA-based method for mining significant crisp-fuzzy SARs. 

With genetic optimizations, the proposed GA can significantly increase authentic 

resultant rules and fitness of RIM values. Meanwhile, the GA utilizes experimentwise 

and generationwise adjusted statistical tests on the rules, two tests newly developed 

for the GA, for strict control over the risk of spurious rules. The proposed GA also 

integrates and thus holds advantages of the Gaussian-curve-based data discretization 

and crisp-fuzzy SARM presented in Chapter 4. 

 

Experiments show that the proposed GA can obtain 2.5–8 times as many rules, and 3–

9 times as high RIM values as using statistically sound SARM with standard data 

discretization schemes. The GA can also effectively keep the FWER and percentage 

of spurious rules well below 5% user specified level, for both small and relatively 

large data. In the case study on hotel accessibilities to resources as room price 

determinants, the proposed GA revealed effects on room prices of resources in more 

detailed types than prior hotel pricing studies, helped resolve inconsistent outcomes 

about effects of resources in previous studies, and put new insight into the scale 

variation issue in analysing hotels in different districts and price levels.  
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Chapter 6  Conclusions and future work 

SARM has become an important topic in GISc and a powerful tool for research, 

application, and user decision support relevant to spatial data. The usefulness of 

SARM results highly depends on their reliability, including abundance of authentic 

rules, risk of spurious rules, and goodness (accuracy and fitness for user needs) of 

RIM values. Meanwhile, such reliability can be greatly jeopardized by various types 

of uncertainties that can rise both in source data and each stage of SARM. Three 

pending uncertainty issues with particularly severe influences on reliability of SARM 

results are (random) data error, gradual/vague spatial concept, and uncertain concept 

modelling. 

 

This thesis brings forward uncertainty-based SARM, which includes the development 

of new techniques, and improvement of existing techniques for handling uncertainties 

in SARM, and finally enhancing the reliability of SARM results on all three above 

aspects. Contributions and conclusions of the thesis are summarized in Section 6.1, 

and further studies are suggested in Section 6.2. 

 

6.1  Research summary and significance 

(1) Mining significant SARs from uncertain data 

A method for SARM with uncertain erroneous data is innovated, for enrichment of 

authentic rules in the rule mining result, in the premise of strict control over spurious 

rules. The control of spurious rules employs statistically sound tests on rules, which 

has been proven effective for this purpose with determinate data. A statistical model 

is created to describe random data error propagation in computation procedures of the 

tests and measure resultant distortion to the test result. Based on this model, the 

corrected test for rules are designed. The corrected test combines both analytical and 

simulative techniques for correcting distortions of the test result and recovering loss 
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of true rules due to data error, while controlling the FWER at a low user specified 

level.  

 

Assessed with data in various sizes and error levels, the corrected test could 

consistently compensate rules lost due to data error and discover more true rules than 

the existing statistically sound test. Around 50% of the lost rules were recovered on 

average, given accurate error probability information. The efficacy of the corrected 

test is also largely robust against inaccurate error probability specifications and 

dependences among the error and attribute values, which makes this method 

practically useful with real-world imperfect data and error metadata. With the spurious 

rule rate below 0.2% and a FWER below 5%, the correct test basically reserved the 

distinctive advantage of existing statistically sound test on controlling spurious rules. 

 

(2) Mining significant crisp-fuzzy SARs 

Two techniques are developed in the context of fuzzy SARM. The first technique, a 

Gaussian-curve-based fuzzy data discretization model for SARM, improves previous 

models in terms of spatial semantics and relations between multiple spatial concepts. 

The thesis also conducts a systematic comparative study on RIM accuracy of ordinary 

SARM and fuzzy SARM with different data discretization models, which has rarely, 

if ever, been examined by empirical quantitative studies. The second technique, the 

crisp-fuzzy SARM, includes a statistically sound test stage based on crisp SARs, and 

an RIM evaluation stage based on fuzzy membership degrees. This method can 

overcome the difficulty of fuzzy rules to pass statistical tests, thus increasing authentic 

resultant rules, while integrating the more accurate RIM evaluation of fuzzy SARM 

for gradual or vague spatial concepts. 

 

The two proposed techniques are experimented with data of various sizes, 

disturbances and spatial distributions of geographical objects. The techniques prove 
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to at least double the number of authentic rules, compared with conventional fuzzy 

SARM. The techniques also maintain the high accuracy of RIM values in fuzzy 

SARM, and avoid large overestimations of RIMs involving fuzzy concepts caused by 

ordinary SARM, typically by more than 50%. Rigorous control over spurious rules is 

realized by the statistically sound evaluation adopted into the techniques, with the 

FWER of below 1%.  

 

(3) GA for mining significant crisp-fuzzy SARs 

GA-based crisp-fuzzy SARM is established. This new algorithm has the merit of 

genetic optimizations for more authentic resultant rules and higher fitness of RIM 

values; low risk of spurious rules controlled by statistical testing; and further 

enrichment of true rules and more accurate RIM evaluation achieved by crisp-fuzzy 

SARM. Two approaches for statistical testing in the GA, experimentwise and 

generationwise adjustments, are designed based on statistically sound evaluation 

technique. The procedures for integrating the GA, crisp-fuzzy method and newly 

proposed Gaussian-curve-based data discretization are also presented.  

 

The proposed GA can markedly improve the abundance of true rules and RIM 

goodness. Experimented with both small-size and large-size data, the proposed GA 

achieved 2.5–8 times as many rules, and 3–9 times as high RIM values as the SARM 

result without genetic optimization. The FWER and percentage of spurious rules are 

proven controlled below 5% user specified level, by the experimentwise and 

generationwise approach, respectively, as they are designed for.  

 

(4) Practical implications of thesis work 

New developments of this thesis are applied to and evaluated against a number of 

GISc case studies. The developments exhibit robustness to real-world imperfect 
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spatial data, and contribute improved SARM results as well as some insights to the 

case study topics. 

 

In the spatio-temporal ARM with land use and socioeconomic change data, the 

corrected test discovered 2–4 times as many rules containing land use changes as by 

existing statistically sound test. Such improvement is more significant than the 

synthetic experiment result, suggesting that the corrected test has higher efficacy for 

more practically meaningful rules which are usually more also more sensitive to data 

error.  

 

In the wildfire risk factor investigation, the Gaussian-curve-based fuzzy data 

discretization and crisp-fuzzy SARM doubled authentic rules as compared with 

conventional fuzzy SARM. Also, the resultant RIM values were more accurate than 

ordinary SARM, thereby making resultant rules more robust against variations in data 

discretization scheme, and discovering sensible fire risk factor interactions, such as 

unbalanced relief of risks above and below water areas.  

 

In the study on hotel accessibilities to resources as room price determinates, non-GA 

SARM hardly found enough rules for a meaningful result, due to prevalent small 

sample sizes in hotel pricing studies. GA-based crisp-fuzzy SARM produced dozens 

of rules with low risk of being spurious. Based on this improved result, influences on 

room prices of resources in more detailed types than prior studies are analysed, some 

inconsistent findings on such influences in prior studies can be explained, and spatial 

variations in the scale of hotel accessibilities are revealed. 
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6.2  Future work 

(1) Mathematical and computational improvement of corrected test  

Existing statistically sound test for determinate data (Webb 2007) can strictly cap the 

FWER of resultant rules at arbitrary user specified upper limit. Among new 

developments of this thesis, the corrected test for SARM with uncertain data (Chapter 

3) maintains statistical soundness at all stages except for the final simulation to 

determine the z value. The simulation seeks for a z value that has 50% probability to 

make at most one spurious rule accepted if the FWER is below the user specified level 

(see Section 3.1.4). Thus the z value is determined by average instead of maximum 

risk. The corrected test successfully controlled the FWER and percentage of spurious 

rules below the user specified maximum, in experiments with various treatments, thus 

its efficacy should be of genericity. However, they are still not theoretically 

guaranteed to always control spurious rules below arbitrary user specified levels, and 

might not achieve that given particularly unfavourable data. This calls for further 

improvement in statistical models of these techniques, even making them totally 

statistically sound, so as to confidently fulfil user requirement on spurious rule control, 

while keeping their current advantages in reliability on other aspects. 

 

In the synthetic data experiment of SARM with uncertain data, when all data error 

probabilities were overestimated (in group R10+/+), the corrected test obtained even 

more true rules than when the error probabilities were accurate. The underlying reason 

is unclear, but may be some unrevealed mathematical characteristics in the corrected 

test that could be utilized to further improve its efficacy. This will be investigated for 

possible refinement of the mathematical model for the test. 

 

The KORD algorithm used with the corrected test for searching for rules is efficient, 

and has linear time complexity with respect to datasize. By employing fast searching 

techniques, the actual time complexity of the experiments in Chapter 3 was less than 



6-141 
 

linear: as the datasize increased to 10 times as before, the time cost generally increased 

to 3–4 times. The simulation procedure, however, includes mining randomized data 

for 34 times (with α = 0.05), and thus its time cost is over 30 times of mining the data 

once. The simulation based on sampled data is planned be investigated and should 

have significantly smaller computational overhead. 

 

(2) Corrected test for GA 

At the moment, the proposed GA does not employ the corrected test for further 

improving the abundance of true resultant rules, as these two methods are 

incompatible, for two reasons. First, the GA focuses on optimizing data discretization 

schemes for numerical data. There seems not an existing method to evaluate the error 

level of discretized data ready for rule mining based on the error level of raw 

numerical data. Second, the z value in the corrected test (Equation 3.12) is subject to 

the values of discretized data. In the GA, the data discretization scheme is variant in 

each individual and changes in each generation. If applied to the GA, the corrected 

test should run a simulation to recompute the z value for each individual and each 

generation, which is computationally unacceptable. 

 

When mining numerical data, the data discretization schemes appear to be more 

influential than raw data noise on SARM results, given acceptable data quality. Also, 

as shown in Chapter 3, not adopting the corrected test will not increase the risk of 

spurious rules in the GA. Yet it is still necessary to develop a corrected test for the 

GA that overcomes the above two difficulties for the integration of the two techniques. 

 

(3) Extension of new developments to other spatial pattern discovery problems 

The developments in this thesis may be generalizable to the problems of mining other 

spatial patterns that require statistical tests for avoiding spurious patterns, especially 
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mining sequences and graphs. Like in SARM, the new methods may help these 

problems find more abundant and better patterns, while keeping low risk of spurious 

patterns. More reliable sequence and graph mining methods would be very useful for 

studying urban dynamics and human motilities. 

 

An important challenge for generalizing these new methods lies in mining data 

streams, which is increasingly demanded in modern big data applications. The new 

methods must be upgraded to learning changing patterns from data streams of non-

stationary distributions. A starting point to tackle this challenge may be the recently 

realized statistically sound test in data stream mining (Webb and Petitjean 2016). 

 

(4) Extension to handling uncertainties exclusively for spatial data 

As stated in Chapter 1, the thesis work focuses on spatial data that can be transformed 

into attribute-value data, including the nearness relation between spatial entities. The 

new methods are based on geographical theories and spatial data characteristics, and 

applied to GISc case studies, but they take data structures under which non-spatial 

attributes in spatial databases can be processed together. As uncertainty handling 

research is immature in SDM and even general data mining, SARM still face key 

uncertainty and reliability issues that hold for both spatial and non-spatial attributes. 

Uncertainty handling techniques exclusively for spatial (geometrical) data may not 

work well, or their efficacies may be hindered, unless such more general reliability 

issues are under control. Therefore, the current somehow ‘general’ solution in this 

thesis seems an inevitable first step in uncertainty-based SARM.  

 

Exclusive spatial data uncertainty handling and reliability enhancement need to be the 

close next step. Forthcoming research would include, for example, fuzzy data 

discretization for directional relations, and statistical tests on rules involving uncertain 

topological relations. 
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A key challenge in the future research is that precise modelling of uncertain topology 

and concise rules are not yet concurrently achievable. As reviewed in Section 2.6, 

state-of-art uncertain topology studies basically divide spatial entities into certain and 

uncertain regions, and define more complex topology accordingly. For example, 

Clementini et al. (2000) extended the common nine topological relations between two 

areas into 56 uncertain ones. The increased numbers of topological relations and 

resultant rules can add to the difficulty for users to interpret and utilize the rules. Using 

upper-level topology in a taxonomy of uncertain topology can streamline the rules 

(Clementini et al. 2000), but also turns the rules back to a kind of certain form. It 

might be more desirable to develop a method that delivers the same number of rules 

as using certain topology but modifies rule interestingness measures to represent the 

degree of topological uncertainty. 

 

Another challenge concerns how to recognize the places. Places often do not have 

precise boundaries, thus all spatial relations - distance, direction and topology between 

places are uncertain. The hotel room price case study in Chapter 5 involves only urban 

hotels, attractions and facilities, and distances between their entrances can be precisely 

measured for the use of the study. Yet the uncertainty issue will occur in studying 

prices of hotels serving countryside natural scenic spots, or the link between property 

price premiums and locations inside or near business areas, as natural spots and 

business areas are vaguely defined places. This uncertainty lies in all kinds of spatial 

analysis and spatial data mining problems and is linked to the recent proposal of 

“place-based GIS”.   
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Appendix  Evaluating discrepancy between exact and approximate 0
ˆ ( )ls c  values 

Let 
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then the discrepancy between the exact solution to 0
ˆ ( )is c  from Equation (3.10) and 
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and 
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Let    0̂l l ls c s c   , then Equation (A2) may be estimated by the first degree 

Taylor polynomial of  1 1( ), , ( )f s c s c : 
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The error of estimating Equation (A2) by Equation (A4) is the Lagrange form of the 

remainder of the first degree Taylor polynomial: 
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where 0 1  . Each item in Equation (A5) with the same  ,  j l  value pair is equal 

to    
1 2 3 2

0 0
ˆ ˆ( ) 4 ( )+l l l ls c s c      

      times the corresponding item in Equation 
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(A4). Typically,  0
ˆ

ls c  is much larger than
l , thus Equation (A4) is much larger than 

Equation (A5) and should be a reasonable estimator of Equation (A2). 

 

For each specific attribute in data, the elements of P and P-1 and 0 1 0
ˆ ˆ( ) ( )ks c s c  values 

can be substituted into Equation (A4) for evaluating the discrepancy. An exemplary 

evaluation was made with the item “ 3 1att  ” in the synthetic experiment (see Section 

3.2.1), one of the most affected items by the discrepancy. The computation used the 

“ideal” data defined in Section 3.2.1 as the original data, and the average z value 

actually used in the experiment at each error level in Table 3.6. At the highest error 

level with 20% records contained erroneous 3att values, the relative discrepancy with 

respect to the correction to 3( 1)s att  was only -0.19% and -0.06% for the data size 

of 4000 and 64,000, respectively. At lower data error levels, the relative discrepancy 

was even smaller as the z value decreased. 
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