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Abstract

Faced with increasingly fierce market competition, textile and apparel en-

terprises need to control cost and improve the quality of their products

in the manufacturing stage. Fabric quality inspection plays an important

role in this stage because locating possible fabric defects before cutting

is beneficial for reducing raw material waste and ensuring textile product

quality. Traditionally, in most textile and apparel companies, fabric quality

inspection is performed through a human visual system, which suffers from

high labor cost and low effectiveness. Automatic inspection techniques,

which can provide intelligent solutions for defect detection without human

intervention, are beneficial for improving detection accuracy and efficiency.

Over the past several decades, many computer vision-based defect detection

models have been proposed to address the fabric inspection problem. Most

existing approaches, such as statistical and structural approaches, rely on

feature extractions of fabric defects and normal texture to distinguish possible

defects. The difficulty in selecting the appropriate features that can be adapted

to different types of fabric texture significantly influenced the effectiveness of

these approaches. The primary purpose of this research is to develop effective

computer vision-based defect detection models that aims at different types

of fabric, such as plain fabric, twill fabric, and striped fabric. Woven fabric

with uniform texture is one of the most basic types of fabric, which can be

classified as plain fabric and twill fabric according to the fabric weaving

structure. On the basis of the analysis of the characteristic of defects in

plain and twill fabrics, two distinctive detection models were developed in

this research. In addition, another hybrid detection model was proposed for

striped fabric, which represents the most basic type of patterned fabric with a

single element and is widely used in our daily lives, such as shirts and pants.

Defects on plain fabric can be regarded as uneven edges on a very smooth

surface. Thus, an optimal Gabor filter-based detection model was developed

for plain fabric inspection. On the basis of a feature analysis of defects, only
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two Gabor filters optimized by differential evolutionary algorithm were used

to significantly reduce the computational complexity.

With defects regarded as random noise in the image, a defect detection

model based on non-local sparse representation was proposed for twill fabric

inspection. Through the restoration of non-defective fabric texture on the

basis of dictionaries learnt from reference images, defects were successfully

segmented from the original inspection fabric images.

To detect the common fabric defects (errors in weaving structure) and pattern

defects (repeated pattern variants), a hybrid defect detection model was

developed to solve the inspection problem for fabric with a striped pattern.

Gabor filters were initially used to detect variants of the repeated pattern

and reduce the disturbance caused by the edge of repeated pattern. Sparse

representation was adopted to segment the remnant defects in the resultant

feature images in the second step.

On the basis of a textile texture database (TILDA) and the amount of real

fabric samples acquired from real apparel companies, extensive experiments

were conducted to evaluate the performance of the proposed methodologies.

Experimental results show that the proposed detection models are effective

in detecting various types of fabric defects and are superior to several

representative and popular defect detection models.

The results of this research demonstrate that computer vision and artificial

intelligence can offer satisfactory performance for the automatic defect

detection problems of various types of fabric in the textile and apparel

industries. They also reveal that considering the characteristics of different

types of fabric texture is of paramount significance to the establishment of

a practical fabric inspection model, which is highly sensitive, robust, and

efficient.
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Chapter 1

Introduction

1.1 Background

1.1.1 Fabric Inspection in the Textile and Apparel Indus-

tries

In the textile and apparel industries, many issues must be considered in the

manufacturing stage of production, and fabric quality inspection is one of

them. Fabric quality inspection plays an indispensable role in maintaining

companies competitive edge in the global market. In weaving mills, fabric

quality directly determines the value of the products, and the main and costly

raw material of garments influences the cost control of apparel companies.

The various types of fabric defects can result in an income loss of 45%−65%

[1]. The objective of fabric inspection is to locate existing defects and confirm

whether the fabric has reached the quality standard.

Fabric quality is affected by yarn quality and loom defects, that is, poor yarns

and mechanical faults cause fabric defects. Woven fabric defects can exhibit a

variety of forms because of differences in the weaving structures of fabric. At
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present, the textile industry has defined more than 70 types of fabric defects

[1]. In plain weaving, each weft thread crosses the warp threads by going over

one to form a simple flat and smooth criss-cross pattern [2]. Thus, defects

on plain fabric are relatively prominent compared with the non-defective

fabric structure. Twill weave is regarded as a pattern of diagonal parallel

ribs (in contrast with plain weave) formed by floating each weft or filling yarn

across the warp yarns in a progression of inter-lacings to the right or left.

Therefore, by contrast, defects on twill fabric are normally smaller and less

noticeable because of the slightly complicated weaving method. The case of

patterned fabrics (e.g., print fabric) is usually significantly more complicated.

In addition to the common defects that are likely to be confused with the

patterns, defects may occur on the pattern primitive itself or its arrangement.

Overall, the diversity of fabric defects makes the fabric quality inspection task

greatly difficult and important.

Traditionally, in most apparel companies, fabric inspection still relies on

visual checking by trained and experienced operators. However, manual

inspection has many limitations, such as low detection accuracy and effi-

ciency. Small defects are difficult to notice, and human errors may occur

because of fatigue and inattentiveness, thereby resulting in low success rate of

detection. According to some studies [1, 3], the accuracy of human inspection

in the textile industry is only approximately 60% − 75%. Moreover, human

inspectors usually need to identify the defects on a roll of fabric, which is

1.5 m to 2 m wide and driven with speeds that range from 10 m/min to 50

m/min. Even in the best cases, an expert almost cannot deal with fabrics wider

than 1.5 m and moving faster than 20 m/min [4]. Inefficiencies in industrial

processes are costly in terms of time, money, and consumer satisfaction. As a

result, automatic fabric defect detection techniques are in increasing demand.

In automation, fabric defect detection is a quality control process that aims

to identify and locate defects. Without manual intervention, the automatic
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inspection of an industrial product, which is a prompt, real-time, and accurate

modern technology, has gradually become one of the trends of digitizing

production to improve product quality and reduce labor cost.

1.1.2 Computer Vision-based Automatic Fabric Inspection

With the advantages of computers and imaging devices, computer vision

seeks to develop algorithms that simulate the human visual system and

achieve human visual functions. The development of a flexible, efficient,

reliable, and integrated real-time vision system for industrial applications

is an essential issue in current and future research. Computer vision-based

systems have already been proven effective in quality inspections of film,

paper, steel roll, and others [5–7]. These objects are classified as uniform

materials whose surfaces are even and glossy. The product inspections are

usually fulfilled through the contrast between the test object and the reference

object owing to the obvious differences between defects and the background.

In the textile industry, woven fabric defects refer to any inhomogeneities that

appear different from the normal fabric background structure. However, the

surface structure of fabric classified as textured material is quite complex

because of the diversity of fabric weaving methods. Thus, developing specific

defect detection approaches is essentially necessary to effectively address the

inspection problem of fabric with different weaving structures.

From the view of computer vision, fabric defect detection is considered a

texture analysis problem because fabric surface can be recognized as a two-

dimensional (2D) texture that exhibits a high periodicity of sub-patterns.

Defects can be considered anomalous arrayed pixels in the image unlike non-

defective areas. The aim of an automatic inspection system is to identify the

shapes and locations of any possible fabric defect without human intervention.

Over the past several decades, with the use of computer vision and pattern
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recognition techniques, numerous approaches have been proposed for fabric

defect detection.

A majority of studies focused on developing defect detection methods for

uniform texture fabric (plain and twill fabric). Gray-level co-occurrence

matrix (GLCM) [8], one of the most typical statistical methods, was able

to identify fabric defects through an analysis of the gray-level relationship

among image pixels. With the advantage of the fact that textile texture

is essentially repeated by sub-patterns, template matching approaches [9,

10] provide simple solutions that are easily implemented for fabric defect

detection. Fourier transformation [3], wavelet transform coefficients [11],

and Gabor filters [12, 13] addressed the fabric defect detection problem in

the spectral domain, which can significantly reduce the computational cost.

Neural networks (NN) were introduced in fabric inspection as a classifier that

could distinguish defects from normal texture [14, 15]. The use of multiple

features in defect classification was helpful in increasing detection accuracy.

Sparse representation, which was widely used in image denoising, has gained

increasing attention in defect detection [16–18]. Defects can be segmented

by comparing the original image with its non-defective version, which is

estimated through sparse representation.

Most studies only focused on the analysis of the features of fabric defects

but not on the structural differences between fabric types. Therefore, the

detection models did not show a stable performance on the various types

of fabric defect detection problems. For example, GLCM was useful in

detecting defects on simple textured materials, such as plain fabric, because

the disturbance of the gray-level distribution of such fabric is large enough to

be identified. However, the computational cost made the efficiency of this

method unsuitable for real-time application in the industrial environment.

Although template matching approaches were suited to the inspection of

fabric with a regular texture, the detection accuracy was not significantly
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increased because of the strict alignment requirements of the methods.

In other words, the detection efficiency was also influenced in real-time

application in the textile and apparel industries. In the textile and apparel

industries, the requirements of the inspection of plain and twill fabric

are distinguished. The speed requirement of the plain fabric inspection

is high because the appearance probability of defects on plain fabric is

significantly lower than that on other types of fabric because of the simple

weaving structure. Without considering the advantages of the simple weaving

orientation characteristic, the computational cost of most existing detection

approaches was large while improving the detection accuracy. By contrast,

the blurriness of the boundaries of some defects on twill fabric with diagonal

ribs-like weaving structure causes difficulty in accurately locating the defects

barely through the feature extractions of defects in either the spatial or spectral

domain. Therefore, the primary goal of twill fabric inspection is to ensure

detection accuracy. Although NN-based approaches were superior to others

in detecting defect classification, the detection accuracy largely depended on

the amount of training data (defective fabric samples). However, detection

was nearly impossible because of the excessive types of fabric defects, and

new ones always emerged. Currently, even for uniform texture fabric, the

fabric defect detection problem is still a research difficulty because of the

diversity of fabric textures and fabric defects.

In patterned fabric inspection, with fabric printed pattern regarded as the

underlying lattice, some motif-based defect detection approaches employed

the characteristics of the smallest repeated unit in the fabric image [19, 20].

Learning the distribution of the statistical features of the image motif, which

constitutes the underlying lattice of the patterned texture, could amplify the

defect information of the defective motif. In theory, motif-based approaches

can address the detection of common fabric defects and pattern defects

simultaneously. However, the efficiency of these methods in defect detection
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of the basic type of patterned fabric with a single element, such as striped

fabric, is low because considerable computational work would be wasted in

the motif extraction. In fabrics with complex patterns, such as floral patterns,

small defects may be missed because of their insignificant influence on the

overall lattice of the patterned texture. Therefore, specific analysis of different

designed patterns in the inspection of patterned fabric is necessary.

To effectively address the automatic fabric defect detection problem in the

textile and apparel industries, the most feasible solution is to develop different

detection approaches for different fabric types, according to the specific

fabric texture. Therefore, for the first time in this research, the automatic

fabric inspection problem will be investigated on the basis of the specific

analysis of fabric weaving structure. Three different defect detection models

will be developed for plain fabric, twill fabric, and striped fabric. The

proposed detection models are expected to achieve high detection accuracy

and efficiency.

1.2 Problem Statement

Without effective automatic fabric defect detection, the product quality

and productivity of garment manufacturing is significantly influenced. So

far, the existing detection models have not obtained satisfactory results in

the real environment of the textile and apparel industries despite many

studies conducted in the related research area. As discussed in Section

1.1, the existing studies related to fabric defect detection did not consider

the difference between the weaving structure of types of fabric, sacrificing

detection accuracy (sensitivity) or robustness in attempting to adapt to

most fabric types. With the use of computer vision and image processing

techniques, this research investigates the automatic fabric defect detection
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problem on the basis of specific analysis of fabric weaving structure for the

first time, and the analysis is implemented by developing different inspection

models for three types of fabric: plain fabric, twill fabric, and striped fabric.

(1) Plain fabric inspection - Owing to the merits of basic criss-cross weaving

structure, defects on plain fabric are relatively prominent with respect to the

smooth surface texture of background in the image. Moreover, the detection

speed requirement is high because the appearance probability of plain fabric

defects is significantly lower under the mature weaving technology in today’s

industry. The problem is that the computational cost of the existing methods

is usually excessive, thereby making real-time applications unsuitable in the

environment of the industry.

(2) Twill fabric inspection - With the complex structure of twill weaving,

defects on twill fabric are normally significantly small and subtle, thereby

making the accurate feature extraction of defects difficult. The diagonal rib

weaving pattern may also introduce some noise interference in the images,

which causes high false alarm rates and influences the robustness of the

detection through the use of the existing detection approaches. Therefore,

the most challenging problem in this research is simultaneously increasing

the detection accuracy and robustness.

(3) Striped fabric inspection - Until now, no existing method has been

proposed especially for striped fabric inspection. Unlike uniform texture

fabric, in addition to common fabric defects, pattern variants, which refer

to the arrangement errors of the primitive unit (stripe), are also important

concerns in fabric inspection. Therefore, for striped fabric, investigating a

specific detection method that can effectively detect not only common fabric

defects but also pattern variants is significant.
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1.3 Objectives

This research aims to develop automatic defect detection approaches for

plain and twill fabrics and strip patterned woven fabric, which are widely

used in our daily lives. On the basis of the specific analysis of each fabric

weaving structure, computer vision-based automated defect detection models

are proposed for each fabric type. All the proposed detection models are

expected to achieve a high detection rate with little false alarm in the specific

fabric inspection. The detailed objectives are listed as follows:

(1) This research aims to develop a framework for the defect detection model

for plain fabric on the basis of shape and orientation analysis of common

defects. With the use of direct feature extraction of plain fabric defects,

the proposed detection model is expected to address the detection speed

acceleration problem on the premise of high detection accuracy, which means

reducing the computational cost of the detection model.

(2) Furthermore, this study aims to investigate and develop a robust defect

detection model for twill fabric inspection, which is immune to the distur-

bance introduced by the special twill weaving texture. The proposed detection

model is expected to effectively identify small and subtle fabric defects and

to achieve low false alarm rate.

(3) Lastly, this study aims to investigate and develop a hybrid defect detection

model for striped fabric on the basis of feature analysis of stripe pattern. The

proposed detection model is expected to effectively detect common fabric

defects and pattern defects.
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1.4 Methodology

This research improves the product quality control of apparel factories by

solving automatic fabric inspection problems. According to the distinctive

types of fabric structure texture, three different methodologies are developed

and described as follows:

(1) Differential evolution-based optimal Gabor filters, which could achieve

joint defect localizations in the spatial and spatial frequency domains,

were proposed to solve the defect detection of plain fabric. On the basis

of the analysis of the particular shape and orientation characteristics of

fabric defects, the features of defects were extracted by two Gabor filters

(in the horizontal and vertical directions), which could greatly reduce the

computational cost. The parameters of the Gabor filters were optimized by

differential evolution algorithms to achieve the best discrimination between

defects and normal fabric texture.

(2) A defect detection model that consists of image preprocessing, image

restoration, and thresholding operation was developed to address the twill

fabric inspection problem. The image was initially preprocessed by gray-

level transformation to improve the image contrast and make the details of

the defects more salient. Defects were labeled by comparing the input image

with its estimation, which was restored through sparse representation model

based on a learned dictionary. To increase the detection accuracy, the non-

local similarities of the fabric structural information were introduced in the

sparse coding.

(3) A hybrid defect detection model, which could address the detection of

common fabric defects and pattern defects in two steps, was proposed for

striped fabric. First, a Gabor filter was optimized to reduce the response

of stripe patterns and the corresponding disturbance caused by edge of
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stripe patterns. In the following, image restoration-based defect detection

techniques were applied in the filtered feature image, which can be treated as

uniform texture fabric with remnant defects.

1.5 Significance of this Research

With the use of computer vision-based techniques for fabric inspection, the

significance of this research can be summarized in the following four aspects:

(1) A few of the existing detection approaches carefully analyzed the

specific characteristics of different fabric types and therefore cannot achieve

satisfactory detection results in practical applications. In this research, the

fabric inspection problem was addressed based on the analysis of fabric

weaving structure for the first time. For plain fabric, twill fabric, and stripe

patterned woven fabric, three distinctive automatic detection models were

developed, and they effectively improved the overall performance of fabric

inspection in the textile and apparel industries.

(2) The three newly proposed distinctive defect detection models solved the

problem where a few of the existing approaches can be universally applied

to most types of fabric textures and defects. For each specific fabric type,

different objectives have been achieved, such as improving the detection

efficiency of plain fabric inspection, enhancing detection effectiveness on

small twill defects, and solving the detection of two groups of defects on

striped fabric.

(3) The optimal Gabor filter-based detection model proposed for plain

fabric inspection addressed the computational complexity problem on the

premise of high detection accuracy, which makes it applicable for practical

application. The sparse representation-based detection model proposed

for twill fabric inspection successfully improved detection accuracy and
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robustness, especially for the small and blurry defects. Moreover, in this

research, a hybrid detection model was specially investigated for striped fabric

inspection for the first time, addressing the detection problem of common

fabric defects and pattern defects.

(4) In the development of the inspection model for plain fabric, only two opti-

mal Gabor filters were used to extract the features of defects, which improved

the feature extraction accuracy and reduced the overall computational cost and

the disturbance caused by multi-channel filtering, compared with previous

research. In the development of a sparse representation-based detection model

for twill fabric, the introduction of non-local similarities of fabric structure

information greatly enhanced the detection effect on small defects, and it is

superior to the conventional regression representation used in existing studies.

The hybrid detection model has taken full advantage of the orientation and

frequency features of the stripe pattern, which makes it significantly more

effective than motif-based models in industrial applications.

1.6 Structure of this Thesis

The structure of this research can be summarized as follows:

Chapter 2 provides a comprehensive literature review related to automatic

fabric defect detection. The existing methods are classified into several

categories: statistical, structural, model-based, spectral, learning-based,

motif-based, and hybrid detection approaches.

Chapter 3 demonstrates the research methodology in detail, including the

concepts and principles of Gabor filters, differential evolution, sparse rep-

resentation and dictionary learning.

Chapters 4, 5, and 6 investigate the three distinctive defect detection models
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for plain fabric, twill fabric, and striped fabric, respectively. The framework

of these three models are elaborated in detail. With the use of TILDA

database and real fabric samples collected from apparel companies, extensive

experiments are conducted to show the effectiveness of the proposed detection

models. Moreover, the performance of the proposed models is compared with

some representative models.

Chapter 7 summarizes the contributions and limitations of this research.

Suggestions for future studies are also provided.
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Chapter 2

Literature Review

With the increasing competition in the fashion market, all textile and apparel

companies must enhance their competitiveness to maintain their competitive

edge in the global market. As a result, automatic fabric inspection techniques

used to ensure high-quality products are desperately expected in the textile

and apparel industries. They are also beneficial for improving manufacturing

productivity and reducing labor cost. Fabric defect detection has been a

widely considered research topic for many years. In the past several decades,

to achieve better performance, many intelligent detection approaches have

been proposed for fabric inspection. On the basis of the analysis of previous

surveys on fabric defect detection [1, 21], in this research, the existing defect

detection approaches are classified into six categories: statistical, spectral,

structural, model-based, learning-based, and hybrid approaches. For the rest

of this chapter, each class of approaches is reviewed in detail.

2.1 Statistical Approaches

In the statistical approaches, first-order statistics (e.g., mean and variance)

and second-order statistics (e.g., autocorrelation function and co-occurrence
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matrices) are used to represent the textural features in texture discrimination.

The statistics of non-defective regions are assumed to be stationary, and

these regions cover the greatest portion of the images as the background.

The defective area is identified as the region that has a distinct statistical

behavior from the image background. For example, bi-level thresholding,

morphological filters, and gray-level intensity-based approaches distinguish

these two areas by detecting the boundaries of image intensity change,

whereas fractals and co-occurrence matrices label the pixels that break a

specific relationship as defects.

2.1.1 Defect Detection based on Bi-level Thresholding

Bi-level thresholding, which segments high-contrast defects directly through

the analysis of gray-level discrimination in an image, is the simplest statistical

method for fabric inspection. A high-contrast defect is assumed to cause

a significant intensity change in the image, thereby allowing the resultant

intensity mount or valley to be identified by thresholding operations.

In [22], two adaptive point-to-point threshold limits, which were determined

by first-order statistical parameters of the non-defective fabric images, were

adopted to obtain the binary feature image. Thereafter, local averaging was

applied to remove the noise caused by non-uniform illumination. In this study,

the detection of four basic types of defects, such as horizontal and vertical

defects, spots, and wrinkles, was solved.

[4] also adopted bi-level thresholding to address the fabric defect detection

problem. To overcome the uneven illumination problem, thresholding limits

were computed within a small window of the local area and applied variably

to the entire image. However, the proposed methods were applied to some

representative defects only, such as the warp float, broken pick, and hole,
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which are composed of more than 16 pixels in the image.

The main advantages of bi-level thresholding-based defect detection are

low computational cost and easy implementation. However, the detection

accuracy of such techniques largely depends on the contrast between the

defects and the normal fabric texture. Normally, bi-level thresholding would

fail to detect defects that did not alter the average intensity of the image.

2.1.2 Defect Detection based on Mathematical Morphology

Mathematical morphology (MM) is a technique for extracting image compo-

nents, such as boundaries, skeletons, and convex hulls, by using geometrical

structural elements. Basic morphological operators include erosion, dilation,

opening, and closing. The geometric representation and description of

defects could be well extracted by MM-based detection approaches, which

are beneficial for fabric defect classification.

In [23], Fourier transform operations followed by morphological operations

were applied for fabric defect detection. Filtered by spatial filters in

the optical domain, only the aperiodic image structure was processed by

morphological operations, which were conducive to reducing information loss

caused by frequency transformation.

In [24], on the basis of the non-defective fabric texture extracted by a trained

Gabor wavelet network, the linear structure element was designed for several

morphological operations. After processing by an opening and two closing

operations, only defective areas remained in the detection results. Defective

samples scanned from a defect handbook [25] were used as subjects of the

experiments, the results of which revealed that morphological operations

were useful for the robustness of the detection model in terms of low false

alarm rate. Morphological processing could also be used to adjust the uneven
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illumination of images [26]. Erosion and dilation operations were applied on

top-hat and bottom-hat filtered images, respectively.

In [27], for denim fabric inspection, morphological operation was adopted to

remove the noise in the linear filtered images to reduce the false alarm rate

of the detection model. In this study, the effectiveness of the proposed model

was evaluated through the detection of five types of defects.

MM was originally developed for binary images. Therefore, [28] applied mor-

phological operations on the bit plane of the images, in which the boundary of

the object is more prominent. A series of weighted morphological operations

was applied on the lower-order bit planes, which carry more subtle image

details.

The main features of the morphological operation-based detection model are

its simplicity and effectiveness in reducing false alarm rate by eliminating

small discrete points in the results. However, the detection accuracy of tiny

defects is also significantly influenced. Moreover, in the binary feature image,

distinguishing between the defects and noise is difficult, thereby making the

selection of structural element size a challenging task.

2.1.3 Defect Detection based on Gray-level Intensity

Bollinger bands, which were originally proposed for financial technical

analysis [29], could enhance the pattern of a trend for a certain period.

The principle of Bollinger bands is that periodic upper and lower bands

are generated by rows (columns) of the patterned fabric image. Therefore,

a defective region causes a prompt and a large variation in the standard

deviation of Bollinger bands. In [30], for each row and column in the image,

the upper and lower Bollinger bands were calculated based on the mean and

variance of the gray-level intensities of the corresponding row and column in
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the image. The optimal thresholding limits were obtained from the average of

the Bollinger bands of all non-defective reference images. The performance

of the proposed method was evaluated through the detection of some obvious

defects on dot-patterned, star-patterned and check-patterned fabric samples.

For plain and twill fabric inspection, a directional Bollinger bands method

was proposed in [31]. Instead of global statistic features, moving average and

standard deviation were used to extract the features of defects. Nevertheless,

the Bollinger bands computation was applied in four directions for each

testing image, significantly increasing the computational cost of the detection

model.

Sum and difference histograms (SDH) were developed as an alternative to

the usual GLCM, which has a high computational cost [32]. SDH, which

is defined as the probabilities of the intensity sum and difference of two

pixels, could achieve classification results that are nearly as accurate as those

of GLCM. In addition, it could reduce the overall computation time and

memory storage requirement. In [33], seven features (e.g., energy, contrast,

and entropy) were first extracted from SDH and then processed by a gradient-

based searching strategy to detect possible fabric defects.

For the density inspection of yarn-dyed fabric, a mathematical statistics-

based two-step detection model was proposed in [34]. In the approximate

measurement, yarn density was estimated by counting the peak of the

projection curve of the whole image into HSV (Hue, Saturation, Value) mode.

Thereafter, the precise measurement was based on the projection curve of

the sub-images obtained based on the estimated yarn density. The fabric

yarn density was precisely calculated from the probability distribution map

of peaks generated from the projection curve of all sub-images.

However, through the aforementioned approaches, the identification of a

defective area largely depends on the variation of gray-level value distribution.
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In addition, more than one statistical feature is usually needed to achieve

better detection results. Therefore, these approaches could not be universally

applied to most fabric types and defects.

2.1.4 Defect Detection based on Fractals

Fractals introduced in [35] are capable of characterizing the geometric

structures such as coastal lines, mountains, and trees in natural images. In

texture analysis applications, fractals are highly useful in representing not

only the roughness but also the affine self-similarity of the texture, which can

be used to distinguish between smooth and rough regions.

[36] applied estimated fractal dimension (FD) features in fabric inspection.

The defect decision depends on the variation of FD. Moreover, the differential

box counting method was adopted to reduce computational complexity and

enhance the efficiency of the detection model. However, only limited types of

defects were involved in the experiments, and the false alarm rate was as high

as 28%.

In [37], a Fourier-domain maximum likelihood estimator was derived to

estimate the fractal parameter, which could be used in subsequent defect

segmentation. Thereafter, the flexibility of the proposed detection method

was validated through geometric transformation tests such as rotation, size

rescaling, and gray-level shift. However, only three classic types of obvious

defects (i.e., stain spot, hole, and warp drop) were detected.

Later, [38] compared the four fractal features-based defect detection method

with the single fractal-based method in [37]. It claimed that even different

textures may have similar fractal features that are difficult to discriminate.

Under different measuring scales, four fractal features were extracted and

combined with support vector data description (SVDD) for defect classifi-

18



cation. In addition to fractal dimension, topothesy, known as an additional

fractal feature, was also useful in fabric inspection [39]. However, only four

types of defects were subject to the fabric inspection experiments.

The ability to characterize roughness and self-similarity makes fractals

effective in detecting the most common defects on smooth surfaces such as

plain fabric. However, to improve the detection rate, a certain computational

cost is required by extracting additional fractal features, which are unsuitable

to applications in the environment of industries.

2.1.5 Defect Detection based on Co-occurrence Matrix

Co-occurrence matrix, which describes the 2D spatial relationship of co-

occurring values, is usually applied to measure the texture of fabric images.

Various metrics of the matrix can be taken to obtain a useful set of

features, such as energy, mean, and variance, which can represent specific

characteristics of fabric texture. GLCM has been widely used for texture

analysis of wood and fabric [40].

In [8], after decomposition into several sub-bands, the image was divided into

non-overlapping patches. Co-occurrence features were extracted from each

of the image patches and then used to classify the image patch as defective or

non-defective. In [41], under different combinations of the distance between

the pixel pair d and the angular relation θ, several GLCM were computed to

represent the fabric texture. Therefore, four features (energy, homogeneity,

contrast, and correlation) of every GLCM were applied to label the testing

image as defective or non-defective according to the dissimilarity between

its GLCM features and that of non-defective samples. The performance of

the proposed method was evaluated offline through samples collected from

websites.
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For yarn-dyed fabric defect detection, GLCM, together with autocorrelation

function, which is able to extract the minimum repeat unit of the fabric texture

pattern, was used to increase the accurate defect detection rate [42]. First, the

input image was divided into several non-overlapping patches according to

the pattern unit size calculated through autocorrelation function. Second, the

Euclidean distance between the GLCM of each patch and that of the template

pattern unit was computed to distinguish the defective image patch.

Although second-order statistics are invariant to intensity transformation and

are capable of providing more accurate texture information of the image, they

require high computational cost, which significantly influences the efficiency

of the detection model in industry applications. Furthermore, detection

models based on co-occurrence are mainly used to classify the input image

as defective or non-defective according to the second-order statistical feature.

Therefore, these detection models were unable to correctly detect the accurate

location and shape of the defects.

2.2 Structural Approaches

In structural approaches, with the advantage of replicated fabric structure by

texture primitives, texture analysis is performed by extracting the texture ele-

ments and inferring their replacement rules [43]. Normally, the defects can be

distinguished by comparing the inspection image with a template image that

represents the non-defective fabric texture. Only a few structural approaches

have been proposed because strict standards of the image alignment problem

and texture consistency are required in image comparison.

In [44], a texture blob-based detection method was developed for fabric

inspection. Texture blobs in different sizes and orientations could uniquely

characterize the basic structural elements of the inspection fabric texture.
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With the occurrence of local intensity changes caused by fabric defects,

the attributes of the blobs would vary. Therefore, defective areas could be

distinguished through a comparison of the features of blobs extracted from

the non-defective fabric texture and the inspection fabric samples.

[45] first proposed a traditional image subtraction method for defect detection

on lace, which comprises a fine and complex pattern of threads. The prototype

image, which represents the reference pattern, was extracted from a binary

image through correlation function. Closed-loop feedback correction was

applied to distinguish real defects from false alarms in the second step because

inherent distortions in the lace result in false alarms in direct comparison.

In [10], patterned jacquard fabric defect detection was accomplished by

comparing the inspection image with a Golden image, which is subtracted

from the non-defective reference image and refers to its pattern unit. The

Golden image subtraction is performed from the first pixel of the first row to

the end of the last row, similar to a convolution filter. However, the validation

of this method is limited only to the fabric defects of holes and thick bars.

Image decomposition, which was optimized through the largest correlation

between a non-defective reference image and the inspection image, was

applied in patterned fabric defect detection [46]. A fabric image was

decomposed into a cartoon structure, which represents the defective object,

and a texture structure, which represents the repeat pattern of the fabric. The

performance of the proposed method was evaluated on dot-, star-, and box-

patterned fabric samples.

Although structural approaches were generally effective in the inspection of

fabric with a regular patterned texture, the detection accuracy largely depends

on the choice of matching template and alignment render. Moreover, because

of the weaving process, many stochastic variations appear in the real fabric

samples, and they lead to a high false alarm rate and low efficiency of real-
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time applications.

2.3 Model-based Approaches

As a real texture, fabric is regarded as a mixture of stochastic and deter-

ministic components. Texture analysis can be addressed by exploiting the

relationships among pixels in the image. Several probabilistic models of the

textures have been used for fabric inspection. Autoregressive (AR) model

and Markov random field (MRF) are the two common techniques applied

in exploiting the relationships among pixels in a textural image. The linear

dependence among different pixels in a textural image can be exploited by

the AR model. MRF stresses that pixel intensity in an image depends on

the neighboring pixels only, and it can combine statistical and structural

information in pattern recognition.

A one-dimensional (1D) AR-based detection method was proposed in [47].

Regarded as a 1D series of gray-level fluctuations, the acquired image was

treated as a 1D stochastic process. According to the extracted AR coefficients,

the pixels, whose gray-level values were predicted to be different from the

originals, would be classified as defective. In [48], an unsupervised textured

image segmentation algorithm was proposed by using a 2D quarter plane

autoregressive model, the parameters of which were first estimated with a

probabilistic criterion. Thereafter, the label of distinctive texture was obtained

from a maximum a posteriori estimation by using a simulated annealing

method.

MRF, which depicts the intensity dependence between neighboring pixels,

was able to capture the local contextual information in an image. The

proposed detection approach in [49] attempted to model the normal fabric

texture by determining the parameters of a predefined MRF model. A
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Gaussian MRF (GMRF) was first trained to fit small image patches obtained

from non-defective fabric samples. Thereafter, the statistical features were

extracted from GMRF and were used as the inputs of the defects classifier.

[50] addressed the fabric defect detection problem by using the wavelet-

domain hidden Markov tree (HMT) model. The HMT for the wavelet-

transformed defect-free template image is modeled using the expectation-

maximization (EM) algorithm. Thereafter, the log-likelihood map (LLM)

derived from the coefficients of HMT was constructed and used as the

measurement of defective samples.

The abovementioned detection approaches are sensitive to small defects

owing to their ability to characterize micro-textures according to the local

dependence among different pixels in the image. However, they are

insensitive to the translation of patterns of the fabric texture because of the

lack of depiction and estimation of the global trend of fabric texture and

pattern.

2.4 Spectral Approaches

A woven fabric texture is composed of the repetition of some basic texture

primitives, which are determined by the specific weaving pattern. With a

deterministic rule of displacement of the texture primitives, the fabric surface

texture exhibits a high periodicity of sub-patterns, which permits the use

of spectral features for the detection of defects. Psychophysical research

has also indicated that human visual system analyzes textured images in the

spatial frequency domain [21]. Spectral techniques have been the most widely

used approaches in fabric defect detection [51–55] because textural features

extracted in the frequency domain are less sensitive to noise and intensity

variation than in the spatial domain. In general, the techniques involved
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in spectral approaches are Fourier transform (FT), wavelet transform (WT),

and Gabor transform (GT), which are described in detail in the following

subsections.

2.4.1 Defect Detection based on FT

Owing to the high periodicity of weaving patterns, the spatial periodicity of

a woven fabric image can be transferred to spatial frequency by fast FT. The

spatial domain is usually noise sensitive and arduous in locating defects, while

FT uses the frequency domain to characterize the defects. Texture pattern can

be extracted by analyzing the frequency spectrum of fabric sample images,

although the occurrence of defects changes the corresponding intensity of the

frequency spectrum.

In [56], a combination of discrete Fourier transform (DFT) and Hough

transform [57] was used for fabric and machined surface inspection. The

high-energy frequency components shown in the DFT of the original image

were detected by 1D Hough transform and removed to reconstruct a uniform

texture image through inverse DFT. The normal fabric texture could be

eliminated, and only defects remain in the resultant image.

Later, in [3], on the basis of the 3D frequency spectrum, fabric defects were

extracted by detecting the abnormal values in two central spatial frequency

spectrums. Subsequently, the classification of defects was based on seven

characteristic parameters extracted from the Fourier spectrum. In practice, the

defect classification is helpful in determining the problem in the production.

However, the DFT-based approaches are not effective for those fabric images

in which the frequency components associated with the homogenous and

defective images are highly mixed together in the spectral domain. This inef-

fectiveness is due to the difficulty in manipulating the frequency components
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associated with homogenous regions without affecting the corresponding

components associated with the defective regions.

The power spectrum generated from FT provides rich structural information

on fabric texture, which was applied in fabric inspection [58]. Warp and

weft yarn periodicities are associated with the power spectrum peaks on

the principal horizontal and vertical lines, respectively. The Fourier power

at the origin reflects the average brightness (DC) of the image. Therefore,

DC-suppressed Fourier power spectrum (DCSFPS) was computed to obtain

the boundaries of fabric texture, which represent the weave pattern. In this

studies, 27 statistical features obtained from DCSFPS along with fabric cover

factor, which represents fabric performance features (e.g., wear resistance,

permeability, and flexural rigidity), were used as the inputs to an NN for

defect classification. The effectiveness of the proposed method was evaluated

on two types of fabric inspection.

The application of Fourier analysis in fabric defect detection is invariant to

rotation, translation, and rescaling, and is able to measure the coarseness of

fabric texture. However, it is unsuitable for detecting local defects because

of the difficulty in quantifying the contribution of each spectral component

of the infinite Fourier basis. Furthermore, without the support in the spatial

domain, the location of defects cannot be effectively confirmed.

2.4.2 Defect Detection based on WT

In the recent past, multi-resolution analysis has received considerable at-

tention as a textural feature extractor. WT is a multi-resolution analysis

method that can decompose the inspection image into a hierarchy of sub-

images with varying spatial resolutions. Unlike FT, WT is a time-frequency

function that consists of small waves of varying frequencies and limited
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duration. WT provides conjoint analysis of textured images in the spatial

and spectral domains. Multi-channel modeling is capable of extracting the

intrinsic characteristics of a textural image at different scales, which makes

it well suited to the texture analysis problem. Wavelet-based defect detection

can be achieved by examining the significant features of these decomposed

images at every scale.

With the inspection image decomposed with a family of real orthogonal

wavelet bases, wavelet packets were used to detect surface defects in [59].

Shift-invariant features were computed from the wavelet packet coefficients

of a set of dominant frequency channels, which depict the significant textural

information of the image. Thereafter, the defects were identified by an NN

classifier on the basis of the computed features.

In [52], a multi-resolution approach based on wavelet transform and an

image restoration technique was proposed for textural surface inspection. At

each level of standard wavelet decomposition, a smooth sub-image and three

detailed sub-images, which contain fine structures with horizontal, vertical,

and diagonal orientations, were obtained to represent the reference textural

structure. Therefore, in the reconstructed image, the normal fabric texture was

removed, and only local anomalies were enhanced. Later, through the analysis

of the energy distribution of wavelet coefficients, an automatic wavelet band

selection procedure was developed to obtain the optimal image reconstruction

parameters, in order to improve the detection accuracy [60].

Discriminative detection models based on adaptive wavelet bases could be

designed for specific fabric inspection problems. In [61], the performance

of six WT-based defect detection methods was evaluated on the classification

of 466 defective and 434 non-defective samples. Results revealed that the

wavelet designed by the discriminative feature extraction (DFE) method

obtains the most accurate defect classification. Instead of empirically
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selecting a wavelet from the standard wavelets, the adaptive wavelets were

designed to discriminate between defective and non-defective samples.

In [62], to achieve the adaptive wavelet bases for fabric defect detection, the

wavelet coefficients were optimized according to a cost function to represent

the texture of normal fabric. Therefore, processed by the adaptive WT, a

simple thresholding operation would be able to discriminate the difference

between the wavelet filtered responses of defective and non-defective areas in

the image.

[63] applied the visual attention mechanism of the wavelet domain to address

the dynamic detection of fabric defects. According to the theories of visual

attention mechanism [64], human attention is likely to be attracted by a salient

object, and a combination of feature maps extracted from a specific location

can form a better representation of the inspection object. In [63], feature

images extracted from the reference images were first decomposed into a

set of feature sub-maps by wavelet decomposition. Thereafter, the center-

surround operator was adopted to enhance the difference among sub-maps to

form a feature saliency map used to reflect the features of possible defects.

The experiments revealed that the concept of visual saliency is useful in

distributing computing resources reasonably and improving the effectiveness

of the fabric defect detection.

WT provides multi-resolution analysis of images, which allows it to detect

fabric defects of any size, especially some local defects. In addition,

the optimal wavelet bands are adaptive to the fabric texture of different

coarseness. However, when the detection model is highly accurate, more

wavelet bands must be optimized, thereby increasing the computational cost

significantly.
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2.4.3 Defect Detection based on GT

GT is a special case of short-term FT. With its merits of optimal joint

localization in the spatial and frequency domains [65], 2D GT has become

a popular technique for various applications, such as boundary detection [66,

67], texture analysis [68], and palm vein recognition [69, 70]. Consequently,

owing to its small bandwidth in the spatial and frequency domains, GT is

regarded as a promising method for fabric defect detection. The parameters

of a Gabor filter can be selectively tuned to discriminate a known category

of defects. In general, the existing defect detection models based on GT can

be classified into two categories: models based on a Gabor filter bank and on

optimized Gabor filters.

Some researchers have proposed fabric inspection models based on a Gabor

filter bank, which consists of more than ten filters that essentially cover the

frequency domain. In [12], a set of twenty-four Gabor filters was generated

at four scales and six orientations to detect the possible defects that may

appear on the fabric. This method was based on the idea of multi-resolution

analysis, in which the detection of defects in any orientation and size can

be ensured by multiple Gabor filters. Features of defects were represented

by combining the outputs of all Gabor filters, the parameters of which were

predefined empirically. Although the implementation of this detection model

is quite easy, filtering by a Gabor filter bank can generate a large amount of

data, which might cause a disturbance to the texture discrimination problem

[71].

Thereafter, [72] applied feature selection on a predefined Gabor filter bank to

build a more compact filter bank that was able to produce low dimensional

feature representation with improved sample-to-feature ratio. However, the

performance of this approach primarily depends on the parameter settings of

the original Gabor filter bank. In [73], principal component analysis (PCA)
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has been performed on the outputs of a Gabor filter bank, to reduce the

dimension of feature vectors. Thereafter, the Euclidean norm of the local

features was calculated to distinguish defective areas. The performance of

the proposed detection model was evaluated on two types of fabric textures,

which were selected from TILDA [74].

Some detection approaches based on optimized Gabor filters have also been

developed in recent years. These approaches usually employed only one or

several Gabor filters, the parameters of which were optimized toward specific

objectives. In [13], fabric defect detection was considered the problem

of segmenting a known non-defective texture from an unknown defective

texture. Along four directions, Gabor filters were optimized in a semi-

supervised mode to generate high response to non-defective fabric areas.

In the experiments, 35 different flawed homogeneous textures were used to

evaluate the effectiveness of the proposed method.

To alleviate the computational cost and the limitation of the rotation sen-

sitivity of 2D Gabor filters, [75] proposed processing 1D ring-projection

transformed image signal with a 1D Gabor filter. The average value of the

pixels covered by the ring projection was used to substitute the original image

intensities, which might possibly cause the loss of defect features. The 1D

Gabor filter was optimized to have the minimum responding energy toward

normal fabric texture through the use of an exhaustive searching algorithm.

However, insufficient experiments have been conducted to evaluate the

effectiveness of the proposed method.

For slub extraction in woven fabric, the parameters of a Gabor filter were

obtained in the frequency domain according to the frequency characteristics

of slubs. The central frequency of the Gabor filter was designed by comparing

the frequency spectra of slub yarn with a slub-free image in the frequency

feature space. The orientation of the Gabor filter was set perpendicular to the
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slubs. However, only obvious defects would change the distribution of the

peaks in the frequency spectrum of the images, such that the effectiveness of

the proposed method is limited.

[76] proposed a defect detection system based on a non-linear network called

Gabor wavelet network (GWN) because the transfer function is a Gabor

wavelet function. Non-defective images were employed as the template

images of GWN. Characteristic parameters of the non-defective texture were

acquired by training the GWN to minimize an error function, and then they

were used to design the optimal parameters of the Gabor filters for fabric

inspection.

Similar to the previous studies, [77] used a non-defective fabric sample as the

template image to optimize Gabor filters at seven scales through the genetic

algorithm with the similar optimization objective in [76]. Thus, a set of

optimal Gabor filters were tuned to match the desired features under different

resolutions.

Two-step detection was once proposed for fabric stain release [78]. After

filtering by a Gabor filter bank initially, the histogram of the input image was

analyzed to predict the presence of possible defects. The most suitable Gabor

filter, whose parameters best matched the features of possible defects, was

selected in the coarse segmentation stage and iteratively refined in the fine

segmentation stage. However, only global defects, such as stain a that covers

the main area, could be detected by the proposed detection model because

local (small) defects would be neglected through histogram analysis.

In [79], defect detection was addressed by adopting an elliptical-ring Gabor

filter, the parameters of which, such as aspect ratio, center, and support of the

filter, were optimized by a simulated annealing algorithm. Ring Gabor filter is

the modification of a classical Gabor filter, fulfilling the texture discrimination

task in terms of higher accuracy with the ring-like filter pass field.
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In general, fabric defect detection approaches based on a Gabor filter bank

have two main drawbacks: (1) They usually have high computational cost,

which is vital to the real-time inspection system; and (2) Without automatic

parameter adjustment, the empirical parameters cannot efficiently handle the

different situations of the defect detection problems.

Moreover, in the abovementioned studies, Gabor filters were optimized

in accordance with the features of non-defective fabrics. These optimal

Gabor filters would be good at determining the features of normal fabric

textures. However, without any prior knowledge about the common defects,

these filters may not perform well in detecting subtle defects that have not

significantly altered the spectral features of normal fabric. Therefore, building

the optimization model for Gabor filters is crucial for the defect detection

results.

Finally, in [80], the optimal parameters of the Gabor filter were acquired

by exhaustive searching in the theoretical region. This method was time

consuming, and it is not suitable for real-time operation. In [13], the Gabor

filters were optimized by sequential quadratic programming (SQP). SQP is a

gradient-based optimization method, the optimization results of which mainly

depend on the initial values of the variables. In [76], the training process

of GWN was conducted through the Levenberg-Marquardt algorithm, which

is also a gradient-based optimization algorithm. [79] adopted simulated

annealing (SA) algorithm, which is a stochastic optimization algorithm,

for Gabor filter optimization. Compared with gradient-based optimization

algorithm, SA has increased the probability of achieving the global optimal

solution by accepting some worse solutions with an adaptive probability in

the optimization. However, because only a single individual is employed in

the optimization, the performance of this algorithm is not stable. Moreover, it

requires a high computational time.
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2.5 Learning-based Approaches

2.5.1 Defect Detection based on NN

NNs are among the best classifiers used for defect identification because of

their ability in analyzing the relationships among multiple features and to

describe complex decision regions.

In [81], fuzzification technique (fuzzy logic) and a back-propagation NN

were combined to achieve the classification of eight types of fabric defects

and some non-defective samples. Four input features (the ratio of projection

lengths in the horizontal and vertical directions, the gray-level mean and

standard deviation of the image, and the neighboring gray level dependence

matrix) were selected as the inputs to the NN. The fuzzification process was

useful in increasing the separability of classes in the feature space, thereby

improving classification accuracy.

[22] proposed a three-layer back-propagation artificial NN for fabric defect

classification. Only five hidden nodes were used to control the overall

computational cost. The outputs of the third layer indicated the general

classes of the possible defect types. Similarly, a low-cost solution using feed-

forward NN for fabric inspection was detailed in [15, 82]. PCA by singular

value decomposition was applied to reduce the dimension of feature vectors

which were generated from the gray-level arrangement of neighboring pixels

of every pixels in the image. Twill and plain fabric samples with commonly

occurring defects gathered from the loom were used in the experiments. In

[83], neighborhood-preserving cross-correlation feature vectors together with

probabilistic NN were used for the inspection of textile fabrics.

The main advantages of NN-based detection approaches are that they can

analyze and generalize multiple features of the inspection fabric samples
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to improve the defect classification results. However, the robustness of

the network largely depends on the amount of training data (defective

fabric samples). The large number of training samples brings excessive

computational cost to the detection system, influencing detection efficiency.

Moreover, the new type of fabric defect constantly appears in the industry,

making the collection of all types of training samples impossible.

2.5.2 Defect Detection based on Sparse Representation

The fabric defects that appear as anomalous areas can also be regarded as

noise in the image. Therefore, with the use of image denoising techniques,

some defect detection models have been presented [16–18, 84, 85]. Through

sparse representation with a dictionary, the corresponding normal fabric

texture could be estimated according to the input defective samples. Hence,

the defective areas could be enhanced in the residual image, which is the result

of subtracting the estimated image from the input image.

In [16], on the basis of sparse coding, an over-complete dictionary was trained

from the inspection image itself, considering the fabric defect was small.

For a specific fabric type, each column of the image was considered the

training data of dictionary learning, which is beneficial for defect detection by

finding abnormal pixels in a 1D signal. However, to adapt to linear defects,

the algorithm was not only implemented on the original image but also on

its rotated version, thereby increasing the computation cost of the system

significantly. Moreover, the sparse representation was based on the basic

regression model, which is unsuitable for eliminating scattered noise (e.g.,

spot defects).

Later, in [17], after image restoration was performed by the regression model,

Euclidean distance and correlation coefficient between the original image and
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its approximation were selected as the features in training an SVDD classifier,

which was adopted for discriminating novelty from normal samples. Similar

to NN-based approaches, a defect classifier could significantly improve the

robustness of fabric inspection. However, on the one hand, the problem also

lies in the difficulty in collecting enough defective fabric samples. On the

other hand, only two statistical features were used as the classification norm,

which cannot ensure the detection of small defects.

To overcome the computation problem, the projections of a fabric image on

all vectors of a small-scale dictionary, which was trained from non-defective

samples, could be considered the features in defect detection [18, 85]. A

Gabor filter, whose parameters were trained according to the features of

normal fabric texture, was introduced as preprocessing in the detection model.

Although the complexity of the input image signal and the influence of noise

could be greatly reduced after preprocessing, this method is not ideal for

improving detection accuracy. When defects are small and mixed with noise,

the contrast between defects and fabric texture background is reduced after

Gabor filtering as well. Consequently, the defect detection rate is greatly

influenced.

Overall, sparse representation-based approaches were more universally ap-

plicable to most types of fabric defects because they did not rely on the

feature extraction of defects. As long as the dictionary and sparse coding

model are reasonably chosen, even small defects are likely to be identified

through image restoration. However, the computational cost of sparse coding

is usually high. Thus, these approaches are more suitable for fabrics with

complex textures in the industry.
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2.6 Motif-based Approaches

Patterned fabric surface can be regarded as a 2D patterned texture, which is

composed of underlying repeated units (lattice). The lattice can be further

decomposed into a lower level of elements called motifs. Usually, the lattice

is generated by a motif with at least one of the symmetry rules including

translational, rotational, reflectional, and glide-reflectional symmetry [86,

87].

In [19], the underlying lattice of fabric texture was first extracted to i-

dentify the representative motif of the non-defective patterned texture by

a crystallography-based pattern extraction model [88]. An energy-variance

(E-V) space was designed based on the energies of moving subtraction

and variance between any two motifs to illustrate the distribution of their

statistical behaviors. Therefore, the decision boundaries for defective and

non-defective motifs were determined by the subsequent feature classification

based on a max-min decision region (MMDR). The performance of the

proposed detection model was evaluated on a pattern texture that consists of

parallelogram, rectangle, and triangle motifs. Later, the effect of the shape

transform of irregular motifs on defect detection accuracy was studied in [89].

Before the E-V space of the motif feature was computed, all motifs were

transformed to rectangular shapes.

To improve the detection accuracy through MMDR in the E-V space, [20]

applied ellipsoidal decision region (EDR). The E-V values of non-defective

fabric samples were assumed to obey a 2D Gaussian mixture model (GMM),

on the basis of which the E-V values could be clustered into several

classes by K-means clustering. Thereafter, the boundaries of the ellipsoid

decision region were determined by finding the convex hull of each cluster.

Finally, the ellipsoid region with constant eccentricity could enhance the

detection performance on the ambiguous points, which were originally on
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the boundaries of MMDR.

With the use of lattice and motif, these approaches provided solutions for the

simultaneous detection of two types of defects: common fabric defects and

pattern variants. However, because the detection decision boundaries were

all determined according to the features of motifs, the performances of these

approaches in detecting common defects are unsatisfactory. The influences of

small common defects on the features of motifs are not large enough.

2.7 Hybrid Approaches

A majority of the aforementioned approaches focus on analyzing the defect

detection problem from only one aspect, such as the statistical behavior in

the spatial domain, structural information of the texture, or the corresponding

frequency component. Thus, to improve the detection performance and avoid

the drawback of adopting a single method, some hybrid approaches have

also been proposed for fabric inspection, especially for some complex texture

discrimination, such as jacquard and patterned fabric.

In [90], wavelet preprocessed Golden image subtraction (GWIS) was pro-

posed for pattern fabric defect detection. WT was used as an image denosing

tool [91] because white Gaussian noise caused by the dirt in the real fabric

yarns was enhanced through histogram equalization, which was applied to

highlight the detail of the fabric texture. Thereafter, Golden image subtraction

was applied in representing the repeated pattern unit in the non-defective

fabric image and in detecting the possible defects that might distort the

extracted reference unit.

A method that combines the optimal Gabor filter and local binary patterns

(LBP) was developed for multi-texture segmentation [92]. LBP was selected

as a complementary tool for feature extraction from the image filtered by a
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single Gabor filter, which was optimized by the immune genetic algorithm.

Finally, K-nearest neighbor was adopted to determine the boundaries between

different textures.

To address the problem of defect detection and defect classification, a fabric

inspection system, which consists of Gabor filters, LBP, and Tamura method,

was developed in [93]. A Gabor filter bank was generated to segment defects

from the regular fabric texture in the feature space. Thereafter, Tamura, which

could measure the regularity and roughness of texture, was adopted in defect

classification together with LBP.

Hybrid approaches normally contain two or more techniques that address

different problems in the system. Each technique has its own merits, and thus,

the system generally has high accuracy and robustness. However, a complex

system structure can also lead to a large computation amount. Thus, hybrid

approaches are usually applied to composite problems.

2.8 Summary

On the basis of the abovementioned literature review, the following conclu-

sions can be made:

(1) Although many studies have been conducted to address the fabric

defect detection problem, few of the existing approaches considered the

characteristics of specific weaving textures, which makes them inapplicable

for implementation in the real environment of the industry.

(2) In the inspection of plain fabric, because of the lack of analysis of

the specific characteristics of plain weaving and plain fabric defects, the

efficiency (computational complexity) of the existing approaches in practical

application has not been solved well. Effective methodologies are desired to
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cope with the fabric inspection problem in a manner closer to reality.

(3) The case where some twill fabric defects are small and of low contrast has

not been investigated in existing studies, which do not satisfy the detection

accuracy of twill fabric inspection. Corresponding methodologies are desired

to improve the performance of twill fabric defect detection in the industry.

(4) None of the existing defect detection approaches are proposed for striped

fabric. Through the idea of hybrid detection approaches, common fabric

defects and pattern defects on striped fabric are expected to be identified in

two steps.

In summary, the performances of the existing approaches on plain fabric

inspection, twill fabric inspection, and striped fabric inspection are not satis-

fied, leaving much room for further research explorations. The current study

investigates the fabric inspection problem closer to reality, in which three

different defect detection approaches are proposed, taking the advantages of

specific characteristics of fabric weaving texture and defects. The detection

accuracy, robustness, and efficiency are significantly improved.
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Chapter 3

Research Methodology

A detailed review of the up-to-date achievements in the field of automatic

fabric inspection was given in Chapter 2. Most studies focused on the feature

extraction of fabric defects, neglecting the structure differences among the

weaving textures of different types of fabric. However, so far, the existing

detection methods have had a limited effect on industrial applications despite

the widely accepted fact that effective automatic fabric defect detection is

helpful in improving the performances of production cost control.

In this chapter, first, the methodologies in investigating the automatic fabric

inspection models are clearly stated. Then, the Gabor filters and sparse

representation, which are adopted as the basis of the methodologies for

automatic fabric inspection, are presented.

3.1 Solution Mechanisms

According to the discussions in the previous chapters, the inspection of most

types of fabric through using only one detection approach is difficult because

the characteristics of fabric texture and defects vary with different weaving
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methods. Therefore, in this research, three distinctive fabric defect detection

models are developed for the inspection of plain, twill, and striped fabrics.

(1) Plain fabric is the most basic fabric type. The smooth surface of

plain fabric means that plain fabric defects are more prominent than others

compared with non-defective fabric areas. Moreover, the orientation of most

plain fabric defects (e.g., slub, broken yarn, and missing yarn) are usually

limited in either the horizontal or vertical direction because of the simple

crisscross weaving pattern.

(2) Twill fabric texture is slightly more complex than that of plain fabric. The

surface of twill fabric is associated with diagonal parallel ribs, which cause

twill defects to mix easily with the weaving pattern, and the features of defects

are blurry in the image.

(3) Stripe is the one of the most basic elements in patterned fabric, which

is widely used in fashion apparel (e.g., business shirts and pants). Spectral

features (e.g., central frequency and frequency spectrum) are the dominant

characteristics of striped fabric. The greatest challenge is that common fabric

defects are usually confused with pattern defects.

On the basis of the abovementioned description, the inspection model for

woven fabric is proposed and shown in Fig. 3.1. As shown in this

figure, the inspection of each fabric type involves two stages, namely, the

offline training stage, which aims to obtain the optimal parameters for the

subsequent inspection, and the real-time inspection stage, in which the

inspection images are labeled as defective or non-defective. To achieve the

research objectives stated in Chapter 2, digital imaging, pattern recognition,

and optimization techniques are applied in this research. The details of the

research methodology are described in the remainder of this section.
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Figure 3.1: Inspection model for woven fabric: 1© offline training stage; 2©
real-time inspection stage.

3.1.1 Research Methodology for Plain Fabric Inspection

Gabor filters, one of the most popular techniques, are suitable for object

extraction from a smooth background (e.g., plain fabric). A Gabor filter is

also known as a good edge detector because of its joint localization in the

spatial and spatial frequency domains. The prominent characteristics of plain

fabric defects are their linear shape and fixed orientations. Therefore, Gabor

filters are selected as the core technique in developing the defect detection

model for plain fabric.

(1) Phase I - Parameter optimization of Gabor filters

A number of parameters of a Gabor filter provide enough freedom to

design filters with various shapes, orientations, and frequency characteristics.

Therefore, to achieve the best feature extraction of fabric defects, the

optimization of Gabor filter parameters is the critical issue in the training

stage of the Gabor filter-based detection model. Through the use of some

typical defective samples as reference images, a fitness function is designed

to achieve the best discrimination between defects and normal fabric texture.

(2) Phase II - Fabric defect detection based on optimal Gabor filters

Plain fabric defects normally lie in only two directions: weft and warp. Thus,

only horizontal and vertical optimal Gabor filters obtained in phase I are
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used to extract the features of defects. Combined with the thresholding and

feature fusion operations, the optimal Gabor filters can successfully segment

the possible defects from the original image background.

3.1.2 Research Methodology for Twill Fabric Inspection

Owing to their sensitivity to small aberrations in the image, denoising

techniques have shown their potential in addressing the detection of small

and blurry defects, such as defects on twill fabric. Considered stochastically

distributed noise, fabric defects can be detected by reconstructing the non-

defective fabric texture. Sparse representation, which can estimate the input

signal based on related dictionaries, is adopted to address the inspection

problem of twill fabric defects.

(1) Phase I - Adaptive dictionary learning

The selection of dictionary influences the accuracy of normal fabric texture

restoration, which in turn will affects the false alarm rate of the detection

model. In the training stage, non-defective fabric samples are used to learn

several sub-dictionaries, which can be adaptively selected in the subsequent

image estimation and provide related structural information for sparse coding.

(2) Phase II - Fabric defect detection based on sparse representation

With the adaptive dictionary learned in phase I, sparse representation should

estimate the non-defective version of the inspection images. Therefore,

possible defects can be eliminated. To increase estimation accuracy, non-

local similarities of the fabric structural information are considered in sparse

coding.
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3.1.3 Research Methodology for Striped Fabric Inspection

Unlike in fabric of solid color, two groups of defects exist in striped fabric:

common fabric defects and repeat pattern variation. In addition, the edges of

stripe patterns usually cause disturbance in the extraction of common defects.

Therefore, a hybrid detection model, which can solve the disturbance problem

and address the detection of these two groups of defects in two steps, is

necessary.

(1) Step I - Reduction of disturbance caused by stripe patterns

The frequency of the stripe pattern is the most prominent component in the

frequency spectrum of striped fabric image. Thus, a Gabor filter in the

perpendicular direction to the stripe optimized according to the filter response

of non-defective fabric samples can successfully eliminate the stripe pattern,

while remaining pattern variations and common defects. Preprocessing with

pattern removal can significantly reduce such disturbance.

(2) Step II - Detection of common fabric defects

Common fabric defects are usually mixed with the repeat pattern on the

patterned fabric. After the repeat pattern removal is performed, inspection

procedures for fabric in solid color are useful for detecting remaining defects

in the filtered images. Although the optimal Gabor filters suppress only the

frequency response of the repeat patter, filtered by Gabor filters, part of the

detailed information of the rest of the fabric texture may have a slight degree

of loss. Therefore, an image restoration-based detection model is suitable for

the inspection of the feature image of striped fabric.

The details of the abovementioned defect detection models will be introduced

in Chapters 4, 5 ,and 6.
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3.2 Gabor Transform

GT, which is a special case of windowed FT, was proposed for extracting the

local information of the input signal [94]. A 2D GT function consists of an

oriented complex sinusoidal wave modulated by a Gaussian envelope [65]. A

complete but non-orthogonal basis can be formed by a set of Gabor wavelets.

The impulse response formulation in the spatial domain is shown as follows:

f(x, y) =
1

2σxσy

exp[−1

2
(
x′2

σ′2
x

+
y′2

σ′2
y

)] · exp(2πjf0x′), (3.1)

where f0 represents the central frequency of the span-limited sinusoidal

grating. σx and σy, which are the standard deviations of the Gaussian function,

are the smoothing parameters of Gabor transform. These two variables are

regarded as the shape factors of the Gaussian surface, which determine the

coverage size of Gabor transform in the spatial domain. When σx equals σy,

the Gaussian surface is a circle. Usually, parameter σy is represented as λσx

such that the shape of the Gaussian surface could be adjusted by changing

coefficient λ. Here, (x′, y′) is (x, y) rotated by θ:
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In the spatial frequency domain, the Gabor transform acts as a bandpass filter

and its Fourier transform is given by

F (u, v) = exp[−1

2
(
(u− f0)

′2

σ′2
u

+
v′2

σ′2
v

)], (3.3)

where

σu =
1

2πσx

and σv =
1

2πσy

.

The half-peak bandwidth B is another important term that is used in
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specifying the Gabor filter

B = log2
σxf0π +

√
ln2
2

σxf0π −
√

ln2
2

. (3.4)

According to [65], the half-peak bandwidth is approximately 1-1.5 octaves

along the preferred orientation. The bandwidth determines the value of σx

whose value should not be specified directly but changed through frequency

bandwidth B. In this context, a small bandwidth corresponds to a large

σx. Owing to the small bandwidth of a Gabor filter in both spatial and

spatial frequency domains, this filter is widely used in texture analysis as

the bandpass filter. From the aforementioned definition of Gabor parameters,

the properties of a Gabor filter are mainly governed by parameter set

{f0, σx, σy, θ, B}. GT could provide a good description of local structural

information with the various selections of spatial frequency and orientation.

From Eq. (3.1) we know that the Gabor filter f forms a complex-valued

function that consists of real and imaginary parts, as shown in Eqs. (3.5) and

(3.6), respectively. The real part of the Gabor filter that acts as a proven blob

detector is even symmetric, while the imaginary part of Gabor filter acting as

a proven edge detector is odd symmetric [66, 95]. For convenience, in the rest

of this research, the real part of the Gabor filter is expressed as the real Gabor

filter, and the imaginary part of Gabor filter is expressed as the imaginary

Gabor filter.
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1
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)] · cos(2πjf0x′), (3.5)
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1

2σxσy

exp[−1
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σ′2
y

)] · sin(2πjf0x′). (3.6)
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For a given image i(x, y) and a k × k Gabor filter mask, the Gabor-filtered

output is obtained by convolution operation. Feature image G(x, y) that

represents the local energy measures of the filtered image is obtained by

computing the square nonlinear operator ‖ · ‖2, as shown in Eq. (3.7). Feature

image G(x, y) strongly depends on the choice of parameters f0 along with σx,

σy, and θ, which provide enough freedom to design filters of various shapes,

orientations, and frequency characteristics.

G(x, y) =
√

Ge(x, y|f0, σx, σy, θ)2 +Go(x, y|f0, σx, σy, θ)2, (3.7)

where

Ge(x, y|f0, σx, σy, θ) =
k∑

m=−k

k∑
n=−k

i(x+m, y + n)fe(m,n|f0, σx, σy, θ),

(3.8)

Go(x, y|f0, σx, σy, θ) =
k∑

m=−k

k∑
n=−k

i(x+m, y + n)fo(m,n|f0, σx, σy, θ).

(3.9)

In [96], taking Eq. (3.1) as the mother Gabor wavelet, a class of self-similar

Gabor wavelets was generated by appropriate dilation and rotation for texture

analysis

fpq(x, y) = α−pf(x′, y′), (3.10)

where

x′ = α−p(x cos θq + y sin θq),

y′ = α−p(−x sin θq + y cos θq),

α > 1; p = 1, 2, ..., S; q = 1, 2, ..., L.

Integer subscripts p and q represent the index of scale (dilation) and

orientation (rotation), respectively. S is the total number of scales and L is the
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total number of orientations in the self-similar Gabor filters bank. The angle

for each orientation is given by

θq =
π(q − 1)

L
, q = 1, 2, ..., L. (3.11)

Therefore, a Gabor filter bank, which essentially covers the spatial frequency

domain, could be constructed for unsupervised fabric defect detection by

defining the number of scales and orientations.

By contrast, if the best combination of Gabor filter parameters could be

defined to represent the features of the object to be detected, then only one

or a small number of Gabor filters could be effectively used to solve detection

problems. For example, in [13, 76], Gabor filters were optimized according to

the filtering response of non-defective fabric texture. This step distinguished

defects from the background in the filtered images.

3.3 Sparse representation

According to the sparsity of the observed object, sparse representation was

proposed for describing nature images from their primary feature elements

[97]. The set of basic elements is known as the “dictionary”, most coefficients

of which are required to be zero in sparse coding. Sparse representation

has been widely applied in image restoration, face recognition, and image

classification [98–100].

Mathematically, the sparse representation model assumes that for an input

image y ∈ RN , we can have its corresponding estimation x ≈ Φαy, where

Φ ∈ RN×M(N < M) denotes an over-complete dictionary, and most of the

coefficients in α are close to zero. With the sparsity prior, an approximation

of x from a given image y with respect to dictionary Φ could be solved by the
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most commonly used solution model [101]:

αy = argmin{‖ y −Φ ◦α ‖22 +λ ‖ α ‖0}, (3.12)

where λ denotes the regularization parameter that controls the balance

between sparse approximation of x and sparsity of α. The l2-norm ‖
· ‖2 is computed to ensure that the error between the original image and

its estimation is as small as possible, which represents image restoration

accuracy. The l0-norm ‖ · ‖0 is a pseudo-norm that counts the number of

non-zero entries in α, which is known as sparse regulation term. However,

the regulation is usually relaxed to the convex l1-minimization, because l0-

minimization is an NP-hard optimization problem.

Dictionary learning and sparse coding are two key issues in solving the

image sparse representation. Sparse coding aims to find sparse representation

coefficients based on the input signal and a known dictionary. In the past

decade, several algorithms were proposed to solve the sparse representation

problem stated in Eq. (3.12). Matching pursuit (MP) [102] and the orthogonal

matching pursuit (OMP) [103] are the simplest algorithms. However, their

searching strategies are greedy and time consuming. Basis pursuit (BP) [104]

is another well-known pursuit approach, which replaces the non-convex l0

norm with convex l1 norm to achieve more sparse solutions.

Generally, the dictionary selected can be an over-complete and unspecified

set of functions, such as steerable wavelets, contourlets, and short-term

Fourier transforms. The main advantage of such dictionaries is that it leads

to simple and fast algorithms for sparse coding. However, the success

of such dictionaries in the application depends on how related they are to

the image local structure and how suitable they are to describe sparsely

input images. Recently, learning dictionaries from referencing images have

attracted attention in image sparse representation research, as these methods
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could better characterize image structures [98, 105, 106]. Method of optimal

directions (MOD) [107] and K-SVD [105] are the two representativesof

over-complete dictionary learning algorithms. K-SVD, which alternatively

updates the dictionary and coefficients, has been more widely used in various

applications. Moreover, according to specific situation, PCA could perform

well in learning a complete dictionary.

3.4 Summary

This chapter presents the basic solution framework of the automatic fabric

inspection problem investigated in this research. Analysis was conducted on

the characteristics of fabric defect detection cases for three different types of

fabrics. Moreover, corresponding research methodologies are clearly stated.

Finally, on the basis of core techniques in the research methodologies, the

basic knowledge of Gabor transform and sparse representation are briefly

introduced.
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Chapter 4

Differential Evolution-based

Optimal Gabor Filters Model for

Plain Fabric Inspection

Following the solution mechanism presented in Chapter 3, three automatic

defect detection models for three types of woven fabric are investigated. As

uniform texture fabrics are divided into plain and twill fabric according to

the weaving structure, this chapter will first investigate the defect detection

problem for plain fabric.

4.1 Framework of Plain Fabric Inspection Model

Fabric defects could be viewed as abnormal structures on fabric surface. Fig.

4.1 shows several typical defective samples of plain fabric. In the gray-level

image, compared with defects, the gray-level variation of non-defective area

is low such that it could be recognized as a continuous and homogeneous area.

By contrast, defects on the fabric surface (appearing as the discontinuous area)

could be identified as edges in the image. Hence, Gabor filters, which are
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effective edge detectors, can efficiently solve the defect detection problem.

As an imaginary Gabor filter proved useful in detecting edges that are in the

perpendicular direction to the Gabor filter parameter, the real Gabor filter,

which acts as a good blob detector, proved useful in fabric defect detection

[66], especially for defects that appear as knots [108]. Therefore, in the defect

detection model for plain fabric, the combination of real and imaginary Gabor

filters is used to detect defects, which guarantees the best detection results.

(a) slub (b) slub with knot (c) missing yarn (d) oil stain

(e) chapped pick (f) chapped pick (g) dyed yarn (h) broken pick

Figure 4.1: Gray-level images of defective fabric samples.

As a result of the criss-cross weaving structure of plain fabric, common

defects, such as slub, double pick, chapped weft, and thick yarn [109],

appeared as vertical and horizontal lines. Even the defects of knot and spot are

regarded as abnormal structures constructed by lines. Consequently, Gabor

filters optimized only in the horizontal and vertical directions were applied in

the proposed defect detection model. These filters are effective and efficient

for segmenting fabric defects from a non-defective fabric background. On

the one hand, instead of employing a Gabor filter bank, this method can

dramatically reduce computational cost. On the other hand, Gabor filters

in these two orientations are more pertinent to fabric defects, which avoid

any false alarm. Moreover, [110] stated that increasing the number of

orientations and central frequencies has no significant effect on texture
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analysis. The proposed horizontal and vertical optimal Gabor filters could

then directly accentuate the response of defective texture, while attenuating

other areas. Consequently, defective and non-defective areas are mapped into

two distinctive feature spaces.

On the basis of the above discussion, a defect detection model based

on CoDE-optimized Gabor filters is developed to handle the plain fabric

inspection problem. Defects can be featured first in the filtered image by

only two optimal Gabor filters and then segmented by solving a simple

thresholding problem. Fig. 4.2 shows the flowchart of the proposed defect

detection model. The real-time detection model consists of three operations,

namely, optimal Gabor filtering, thresholding, and image fusion. The details

of each operation are discussed in the next two sections.

Figure 4.2: Flowchart of the plain fabric inspection process: 1© detection

model; 2© Gabor filter optimization process.

4.2 CoDE-based Optimal Gabor Filters

Gabor filter optimization is conducted offline before fabric inspection. In

optimization, several typical defective samples together with non-defective
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fabric samples are utilized as training images. Unlike the unsupervised

system in [12] and semi-supervised system in [13], with a priori knowledge

of the orientation and size of a most common defect sample, the Gabor filter

optimization could be regarded as a supervised process. It is a good practice

to define the optimization objective by adopting supervised models. The best

texture discrimination is easier to obtain when both features of defective and

non-defective samples are utilized in the objective function. The complicated

texture analysis problem could be converted into a simple binary thresholding

problem when features of the two texture exhibit small intra-class scatter and

large inter-class separation.

4.2.1 Optimization Objective Function Design

In Gabor filter optimization, for every type of plain fabric, a non-defective

fabric image if (x, y) and a defective image id(x, y) are needed. The feature

images obtained by using Eq. (3.7) are represented by If (x, y) and Id(x, y).

Each of these two feature images is divided into P non-overlapping patches

of l× l pixels. Then the average value and variance of each patch are obtained

by

μp =
1

l × l

l∑
i=1

l∑
j=1

Ip(x, y), (4.1)

σp =

√√√√ 1

l × l

l∑
i=1

l∑
j=1

(Ip(x, y)− μp). (4.2)

Among all patches of each feature image, the maximum average value μmax

and the minimum average value μmin are determined. As described in

Section 4.1, the response of the defective texture will be accentuated in the

feature image when the input image is filtered by an optimal Gabor filter.
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Consequently, among all patches of Id(x, y), the patch with the maximum

average value μmax should be a defective one, while the patch with the

minimum average value μmin should be a non-defective one. Therefore, to

realize the best discrimination between defective and non-defective area, the

fitness function is defined as

S1 =
μdmax − μdmin

μdmin

, (4.3)

where μdmax and μdmin
represent the maximum and minimum average values

of patches derived from the defective sample image. S1 is derived from Fisher

distance, the largest value of which produces the best texture segmentation

result [78]. To ensure that as few pixels in non-defective areas as possible

are classified as defective pixels, on average, the response of this area should

be as low as possible. Furthermore, to improve the robustness of the defect

detection model, the variance of the filtered image should be as low as

possible. As a result, the final objective function adopted is

maximize J =
S1

μfσf

=
μdmax − μdmin

μdmin
μfσf

, (4.4)

where μf and σf are the average value and variance, respectively, of the

filtered non-defective sample. The performance of Gabor filters could

be evaluated according to energy response of defective and non-defective

textures. Compared with the works in [12], aside from maximizing the

difference between defects and normal fabric texture, the response of non-

defective texture could be limited in the feature image by minimizing μf

and σf . Consequently, the possibility of false alarm is greatly reduced.

Moreover, unlike the semi-supervised detection models in [77] and [79], the

proposed model could achieve a relatively high detection rate by employing

non-defective and defective fabric samples as reference images.
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In Eq. (4.4), the difference value between μdmax and μdmin
controls the

discrimination degree between defective and non-defective areas. Meanwhile,

this method is effective in improving the robustness and reducing the

false alarm of the proposed defect detection model by applying the first-

order statistics of filtered non-defective image in the definition of the final

optimization fitness.

4.2.2 Gabor Filter Optimization by CoDE

Given that the proposed optimization objective function contains many local

optimal solutions, obtaining the optimal Gabor filter through adjusting the

filter responses of reference images is a complicated optimization problem.

The sequential quadratic programming (SQP) and the Levenberg-Marquardt

algorithm used in [13] and [76] are gradient-based optimization methods,

optimization results of which mainly depend on the initial values of vari-

ables. In [79], simulated annealing (SA) algorithm, which is a stochastic

optimization algorithm, employs only a single individual. This feature makes

the optimization result unstable. The evolutionary algorithm CoDE, which

has shown superior performance in solving multi-modal problems [111], is

selected as the optimization algorithm in this research. In the following, the

optimization process is illustrated in detail.

As described in Chapter 3, a Gabor transform function has five parameters,

which are f0, σx, σy, B, and θ, three of these need to be optimized, namely

f0, σx, and σy, because of the following reasons: (1) As the Gabor filter

optimization largely depends on the features of fabric defects, f0 denoting

the scale of defect is selected as the first variable in the optimization. (2)

Smoothing parameters σx and σy play significant roles in the performance

of Gabor filters [110]. These parameters determine the shape of a Gabor

filter that is related to the arrangement of texels in a specific fabric texture.
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Accordingly, frequency bandwidth B, which determines the value of σx, is

selected as the second variable in the optimization as well. (3) Shape factor

λ is selected as the third variable because the value of σy is determined by

λ together with σx. In real fabric samples, the widths of the warp and weft

yarns are not always the same. Therefore, the shape of optimal Gabor filters

has to be adjusted adaptively by optimizing smoothing parameters σx and

σy, respectively, instead of predefining the ratio. The last parameter θ is set

as 0◦ and 90◦, because only two optimal Gabor filters are designed along

the orientation of fabric defects in the proposed defect detection model. To

sum up, central frequency f0, frequency bandwidth B, and shape factor λ

constitute the decision vector during optimization. The optimal Gabor filter

is composed of parameters that maximize objective function J . In the model,

J is used to optimize Gabor filters horizontally and vertically.

The specific optimization process is described below:

(1) Representation: The first step of the optimization process is to encode

solutions into decision vectors. For the fabric defect detection problem, the

decision vector has three dimensions, which are f0, B, and λ. The target is

to find the optimal combination of f0, B, and λ according to the objective

function.

(2) Population initialization: For the initialization of the population, we

randomly assign the real number in the specific range to each dimension of

the chromosomes. Two of the variables (B and λ) are continuous, while the

remaining f0 is discrete. To apply CoDE, which is a continuous evolutionary

algorithm, in our problem, we initialize the chromosome with real numbers at

first, while rounding down the dimension representing f0 when we evaluate

the population based on the objective function.

(3) Mutation, crossover and selection: After the initialization process, the

population needs to undergo mutation and crossover operations. CoDE is
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employed as the optimization algorithm in our problem, which has three

selected trial vector generation strategies and three parameter settings to

generate the trial vector. The three trail vector generation strategies are

“rand/1/bin”, “rand/2/bin”, and “current-to-rand/1”. While the three control

parameter settings are [F = 1.0, Cr = 0.1], [F = 1.0, Cr = 0.9] and

[F = 0.8, Cr = 0.2]. At every generation, for individual Xi in the current

population, three candidate trial vectors Ui1, Ui2, and Ui3 are obtained by

using three trial vector generation strategies. Each strategy has a control

parameter setting that is randomly chosen from the three parameter settings

(see Eqs. (4.5) - (4.7)). We evaluate these three trial vectors according to the

objective function, and choose the best trial vector (denoted as Ui) from Ui1,

Ui2, and Ui3. Ui will enter the next generation if it is better than Xi. The

evolution process will not stop until predefined criteria are met.

“rand/1/bin”

ui,j,G =

⎧⎪⎨
⎪⎩

xr1,j,G + F · (xr2,j,G − xr3,j,G), if rand < Cr or j = jrand,

xi,j,G, otherwise.

(4.5)

“rand/2/bin”

ui,j,G =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xr1,j,G + F · (xr2,j,G − xr3,j,G)

+F · (xr4,j,G − xr5,j,G), if rand < Cr or j = jrand,

xi,j,G, otherwise.

(4.6)

“current-to-rand/1”

−→u i,G = −→x i,G + rand · (−→x r1,G −−→x i,G) + F · (−→x r2,G −−→x r3,G). (4.7)
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4.3 Defect Detection based on Optimal Gabor

Filters

During real-time defect detection, inspection fabric images are filtered by

the optimal Gabor filters horizontally and vertically. As shown in Fig. 4.3,

it is impossible to segment the defects barely from the original gray-level

information. However, filtered by the horizontal and vertical Gabor filter

obtained by the previous procedure in last section, defects can be efficiently

highlighted from the gray value of the output feature images shown in Figs.

4.3(c) and 4.3(d).

(a) original inspection image

0

50

100

150 0

50

100

150

0

50

100

150

200

(b) 3D visualized gray-level intensi-

ties of original image

0
50

100
150

0
50

100
150

0

50

100

150

200

250

300

(c) 3D visualized gray-level intensi-

ties of horizontally filtered image
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(d) 3D visualized gray-level intensi-

ties of vertically filtered image

Figure 4.3: Example of optimal Gabor filtering effect.

4.3.1 Adaptive Thresholding

According to the objective function introduced in Section 4.2.1 and the

filtering results shown in Fig. 4.3, the local energy of feature image will

58



be at the minimum when the optimal Gabor filter covers a homogeneous area

and, conversely, at the maximum for an inhomogeneous area. As a result, a

simple statistic technique that follows the spectral filtering could distinguish

defective pixels from homogeneous pixels in the feature image. Thresholding

technique is applied to the filtered image that resultes from the optimal Gabor

filter. Before thresholding operation, all filtered images are first normalized

by using:

fs(x, y) =
f(x, y)− min(f(x, y))

max(f(x, y))− min(f(x, y))
. (4.8)

In the normalization of the filtered image, the maximum and minimum

gray-level intensities max(f(x, y)) and min(f(x, y)), respectively, should be

selected from the whole range of gray-level intensities of the filtered defective

and non-defective images. Otherwise, the comparability between two images

will be lost.

Thresholding limits are derived from the feature image of a non-defective

reference sample, which is filtered by the optimal Gabor filters. The gray-

level intensity of the feature image is denoted as R(x, y). The upper and

lower thresholding limits are

ψupper = maxx,y∈W |R(x, y)|, (4.9)

ψlower = minx,y∈W |R(x, y)|, (4.10)

where W is a window centered at the feature image. Then, the two

thresholding limits ψupper and ψlower are obtained within window “W ” from

the feature image of a non-defective sample. The window size is obtained by

removing 10 pixels from each side of the image R(x, y) to avoid the distortion
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effects caused by the borders of image [12].

It is assumed that the response of defective texture drops out the range which

is determined by thresholdings obtained from non-defective samples. Hence,

the binary image B(x, y) which represents the features of defects could be

obtained by

B(x, y) =

⎧⎪⎨
⎪⎩

1, if G(x, y) > ψupper or G(x, y) < ψlower,

0, otherwise.
(4.11)

4.3.2 Binary Image Fusion

After threshold processing, two binary feature images are obtained, which

represent the feature of defects horizontally and vertically, respectively. Given

that these two feature images are the filtered results in a pair of perpendicular

directions, they are not cross-correlated with each other. Thereafter, the final

step of the proposed detection model is to fuse these two binary feature images

to illustrate the whole defect detected by the optimal Gabor filters, as shown in

Fig. 4.2. The final detection result is obtained by combining the binary feature

outputs of the horizontal and vertical optimal filters with “OR” operation

B = Bh ∨ Bv, (4.12)

where B is a binary image that denotes the final detection result. Bh and Bv

are the binary feature outputs of horizontal and vertical optimal Gabor filters,

respectively. Symbol “∨” denotes logical operator “OR”.
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4.4 Experiment Results and Discussion

In this section, the performance of the proposed plain fabric defect detection

model is evaluated by using a database that comprises 91 non-defective and 91

defective fabric samples acquired from an apparel factory in Mainland China

and scanned from the fabric defect handbook [25]. These fabric samples

contained common types of defects that always appear in the textile industry.

First, the experimental setup is introduced in detail. Second, the experiments

are conducted from two aspects, namely, (1) the proposed detection model is

applied for defect detection of the fabric database and (2) with the same fabric

samples, the performance of the proposed defect detection model is compared

with the other four popular models.

4.4.1 Experimental Setup

Images used in the experiments are acquired in two ways. Images of real

defect fabric samples were captured with a digital camera under day light

and flashlight. All images are of 256 × 256 pixels. Images from the fabric

defects handbook were scanned with 300 × 300 dpi. The defective plain

fabric samples mainly consist of slub, burl mark, broken end and broken pick.

Table 4.1 gives specific information related to images used in the experiments.

All detection models used in the experiments are realized under the image

processing toolbox of MATLAB prototyping environment. Experiments are

conducted on a personal computer with a Win8 operating system and an

Intel core i7 processor. The performance of the defect detection model is

visually assessed with binary feature images. In this research, the following

four measurements (expressed as percentages) are employed to evaluate the

performance of defect detection models:
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Precision =
TA

TA+FA
, (4.13)

Sensitivity =
TA

TA+FN
, (4.14)

Specificity =
TN

TN+FA
, (4.15)

Accuracy =
TA+TN

TA+TN+FA+TN
, (4.16)

where correct detection with good localization is recoded as true alarm (TA).

Hence white pixels in the detection result cover only the defective area from

the original image. False alarm (FA) means that white pixels appear in the

detection result of a non-defective sample. True normal (TN) is recorded

if no white pixels appear in the detection result of a non-defective sample.

Conversely, false normal (FN) is recorded when no white pixels appear in the

detection result of a defective sample.

Table 4.1: Properties of testing images

Real fabric samples Defects handbook samples
Device Canon 600D Scanner

Light camera flashlight –

Resolution 256× 256 256× 256
dpi 72 300× 300

The selected Gabor filters will slide over the entire image on a pixel-by-pixel

basis such that the corresponding energy of every pixel in the image could be

determined. To compromise between detection rate and computational cost,

the size of the Gabor filter mask was set as 7 × 7 [12]. The population size

of CoDE is 50. Theoretically, the value range of parameter f0 should be 0 to

1 Hz. However, according to the specific optimization problem in this paper,
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the value range of f0 is constrained to [ 1
N
, 0.5], where N is the size of the

reference image. The constraint is not mandatory, but it helps increase search

efficiency of the optimization algorithm. The value ranges of other parameters

in the Gabor filter optimization are listed below.

Table 4.2: Value ranges of parameters

f0 B λ
Value range [0, N

10
] [0.5, 1.5] [0.5, 2]

4.4.2 Performance Evaluation of the Proposed Defect De-

tection Model

The inspection of plain fabric was performed in accordance with the flowchart

shown in Fig. 4.2. Typical detection results are shown in Figs. 4.4, 4.6,

and 4.8. The images in the first column are the original defective images.

The images in the second and third columns are the filtered outputs of the

horizontal and vertical optimal Gabor filters, respectively. The images in

the fourth column show the final binary detection results after thresholding

and the image fusion in the second and third columns. The proposed

detection model could successfully segment the defects of various shapes,

sizes, and positions. Table 4.3 summarizes the overall testing results by using

the proposed defect detection model on plain fabric inspection. The four

measurements provide the evaluation of the detection model from different

aspects. Precision indicates the percentage of correct alarms during detection.

Sensitivity indicates the percentage of defective samples that are correctly

detected. Specificity is the percentage of non-defective samples that are

correctly classified as normal. Accuracy indicates the percentage of correct

classification of all testing samples.

Fig. 4.4 shows the detection results of four defect samples on a piece of light

blue plain fabric. These defects are snags, oil stain, and spot. Fig. 4.4(a) is
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Table 4.3: Performance evaluations of the proposed defect detection model

Precision Sensitivity Specificity Accuracy
Performance 93.5% 95.6% 93.3% 94.4%

selected as the reference image in the Gabor filters optimization of the defect

detection model. The horizontal and vertical optimal Gabor filters obtained

by CoDE are shown in Fig. 4.5. For the sake of clear illustration, the size

of filter mask is set as 19 × 19 in Figs. 4.5 and 4.7. The last column of

binary feature images shows detection results. It is noticed that all defects

are correctly detected and located, though there is a tiny false detection in the

first fabric sample, which can be eliminated if learning schemes are included

in the detection model later. Moreover, even though the defect sample used

in the Gabor filter optimization process is a broken yarn with snag, defects

of oil stain and spot in the third and fourth fabric samples, respectively, are

well detected. These results indicate that the proposed defect detection model

is effective for structural fabric defects, which alter the textural property of

an image, and for tonal fabric defects, which change the tonal property rather

than the fabric structure.

In Fig. 4.6, the two defect samples were obtained from a piece of white

plain fabric. The images taken by a digital camera are underexposed

because the white background of the fabric is too bright. These two defects

are different shapes of color stain. However, by applying the proposed

defect detection model, both defects were segmented from the fabric texture

background by the same optimal Gabor filters, as shown in Fig. 4.7. These

experimental results further verify the effectiveness of the proposed model

for detecting various types of fabric defects. In addition, the optimal Gabor

filtering operation in the proposed detection model is even robust to various

illumination conditions as long as the contrast between defective and non-

defective area is satisfied. Fig. 4.8 presents more detection results on plain

fabric. Given that the weaving structure of plain fabric leads to a smooth
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.4: Detection results for a piece of light blue plain fabric.

(a) (b) (c) (d)

Figure 4.5: Optimal Gabor filters for the inspection of fabric samples in Fig.

4.4.
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and even surface, the contrast between defects and background texture is

normally high. Therefore, utilizing optimal Gabor filters as edge detectors,

the proposed detection model could achieve outstanding performance in the

inspection of plain fabric.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Detection results for a piece of white plain fabric.

(a) (b) (c) (d)

Figure 4.7: Optimal Gabor filters for the detection of fabric samples in Fig.

4.6.

4.4.3 Comparison of Proposed Model and Other Four Pop-

ular Models

To further verify the effectiveness of the proposed model for plain fabric

inspection, the detection performance of the model is compared with that of

the other four popular detection approaches. The evaluations are under the

same environment and based on the initial set of 91 defective and 91 non-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.8: Detection results of plain fabric.
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defective fabric samples. Among the four selected models, the first one is

based on a Gabor filters bank, which consists of 18 Gabor filters [12]. This

method is widely considered a classic fabric defect detection model. The

second and the third models are based on optimized Gabor filters [77, 79]. The

main difference is in their optimization algorithms. The last model selected

for comparison utilizes wavelet shrinkage after Fourier analysis of test images

to accentuate the features of defects [11]. This process is considered one of

the latest spectral methods for fabric defect detection. Therefore, these four

models are used in comparison experiments. Source codes of the approaches

in [11, 79] are obtained from the author of these two references. The

approaches in [12, 77] are programmed by the author in this research.

Table 4.4 shows that the detection model proposed in this research outper-

forms the other four popular models in all four aspects. The comparison

results of time performance are summarized in Table 4.5 in terms of average

operation time (AOT) consumed in processing each fabric image sample. The

AOT further proves that the proposed model is the most effective and efficient

for detecting plain fabric defects.

Table 4.4: Performance comparison of defect detection models

Precision Sensitivity Specificity Accuracy
Model in [12] 81.3% 82.2% 81.1% 81.7%

Model in [77] 84.6% 80% 85.5% 82.8%

Model in [79] 88.7% 84.9% 89.2% 87.7%

Model in [11] 78.5% 88.9% 75.4% 81.7%

Proposed model 93.5% 95.6% 93.5% 94.4%

Table 4.5: Time cost comparison of defect detection models

AOT(s)
Model in [12] 0.24

Model in [77] 0.12

Model in [79] 0.16

Model in [11] 0.42

Proposed model 0.07

In Figs. 4.9 and 4.10, the second to the fifth rows are the detection results
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obtained by the models in [12], [77], [79], and [11], respectively. The figures

in the last row are the detection results obtained by the proposed model. The

proposed detection model distinguished all defect samples and is the best one

among all models in the following ways: First, the detection results in the

second column are relatively close to those of the proposed model. However,

the computational time is longer than that of the proposed model, because 17

more Gabor filters are utilized in [12]. Second, compared with the models in

[77] and [79], the proposed model achieved better results even in detecting

defects with subtle intensity changes because non-defective and defective

samples are employed in the Gabor filter optimization. Moreover, as the

stability of the SA optimization algorithm utilized in [79] is not high, the

solutions of Gabor filter optimization usually fall in local optima. Therefore,

the shapes of the detection results are usually incomplete. Finally, many false

detections emerged in the results obtained by the detection model in [11].

Becasue Fourier analysis was unable to accurately distinguish the frequency

components between normal fabric texture and defective texture, which

resulted in poor defect segmentation and misclassification of the normal area.

In all, according to the statistical results stated in Tables 4.4 and 4.5, with the

utilization of optimal Gabor filters, a relatively high defect detection rate has

been ensured by the proposed detection model, which performs well in feature

extraction of plain fabric defects. Moreover, comparing with the existing

approaches, the detection efficiency has been significantly improved.

4.5 Summary

This chapter presents the automated and efficient defect detection model

proposed for plain fabric inspection. This model has two modules, namely,

Gabor filters optimization (offline) and defect detection (real-time). First,
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 4.9: Results of comparison experiments on real fabric samples.
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(d) (e) (f)

(g) (h) (i)
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(m) (n) (o)

(p) (q) (r)

Figure 4.10: Results of comparison experiments on scanned fabric samples.
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Gabor filter optimization problem is designed according to the features of

defects and standard fabric texture, such that the best texture discrimination

is easier to achieve. With the use of CoDE, global optimal Gabor filters,

which best segment the defects from the fabric texture background, are

obtained. Second, on the basis of the analysis of the orientation features of

fabric defects, the real-time defect detection module, which employs only

two optimal Gabor filters together with thresholding and fusion operations, is

capable of successfully locating fabric defects. Therefore, the computational

cost of the whole model is greatly reduced.

Extensive experiments were conducted. The performance of the proposed

defect detection model is evaluated based on real fabric samples. A

series of results demonstrates its effectiveness on the detection of defects

of various shapes, sizes, and locations. The proposed defect detection

model achieves a high successful detection rate and low false alarm rate.

Comparative experiments were conducted based on four popular detection

models. Detection results illustrate that the proposed defect detection model

performs the best in terms of detection accuracy and efficiency.
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Chapter 5

Nonlocal Sparse

Representation-based Defect

Detection Model for Twill Fabric

Inspection

Compared with plain fabric, the weaving structure of twill fabric is more

complicated. Hence, detection of twill fabric defects is more challenging. The

twill fabric inspection problem will be investigated from the view of image

denoising, instead of feature extraction. A novel defect detection model will

be developed for twill fabric in this chapter.

5.1 Framework of Twill Fabric Inspection Model

On the basis of an observation of several defective samples of twill fabric

shown in Fig. 5.1, twill fabric is associated with a texture of diagonally

parallel ribs, whose orientation is variable with different weaving methods.

Therefore twill defects are usually not as sharp as plain fabric defects. On
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the one hand, when filtered by Gabor filters, the filtering response of rib

weaving texture will cause a significant disturbance to the detection results.

On the other hand, extracting the features of defects which are mixed with

the weaving texture by using the existing approaches, such as statistical

methods and spectral methods, is greatly difficult. Fabric defects that appear

as anomalous arrayed pixels could be regarded as noise in the image. Thus,

no matter structural or tonal fabric defects, defects can be treated as singular

points that do not belong to the normal fabric texture. Similar to image

denoising, image restoration-based model first tends to estimate non-defective

versions of input images through sparse coding on the basis of a selected

dictionary. Possible defects could be segmented from residual images of the

inputs and their estimations.

(a) (b) (c) (d)

Figure 5.1: Defective samples of twill fabric.

The selection of dictionary influences accuracy of normal fabric texture

restoration, which in turn will affect the false alarm rate of the detection

model. An over-complete dictionary is able to provide sufficient basic in-

formation for image restoration. Meanwhile compact sub-dictionaries reduce

the instability caused by sparse coding over an over-complete dictionary and

are more efficient because of high periodicity and refined structure of fabric

texture. Therefore, K-means clustering and PCA are adopted to generate

compact sub-dictionaries from non-defective fabric images.

Moreover, conventional sparse coding models, such as the regression model,

do not perform well in eliminating local noise, and thereby detection accuracy

on small defects is affected. By exploiting the rich amount of non-local
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feature redundancies of images, the detection accuracy of defects that appear

as small outliers in the image will be significantly improved.

On the basis of the above discussion, a defect detection model based on

non-locally centralized sparse representation is developed to address the twill

fabric inspection problem. First, all images are preprocessed through gray-

level transformation to enhance image contrast. Then, the approximation

images of the input images are constructed based on adaptive compact

sub-dictionaries, which are obtained from non-defective samples. Finally,

possible defects in the residual image of the input image and its approximation

are segmented by solving the simple thresholding problem. A flowchart of

the proposed defect detection model is given in Fig. 5.2. The entire model

consists of two main modules, namely, dictionary learning, which is an offline

process, and defect detection, which can be executed in real time. The details

of each operation will be introduced in the following sections.

Figure 5.2: Flowchart of the twill defects detection process: 1© dictionary

learning; 2© detection model.
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5.2 Preprocessing via Gray-level Transformation

Generally, fabric texture is synthetic and quite refined because of the fine raw

materials and precise weaving structure. The contrast between small defect

and the background will be influenced when the detail of the fabric texture

is not well presented in the digital image. As a result, the discrimination of

defects and normal fabric texture is a difficult task. Moreover, as the textile

material usually absorbs dust in the air, noise is hard to avoid in the image

and is sometimes mixed with the defects, which could increase the omission

ratio or the false alarm rate. To increase the contrast of the input images

and highlight the possible fabric defects, preprocessing is introduced into the

system before detection operation.

Among all contrast enhancement operations, such as log, gamma, and

contrast-stretching transformation, gray-level transformation is the simplest

and most straightforward one. Log transformation maps a narrow range

of low gray-level intensities into a wider range output, which is useful for

highlighting dark but important details. However, the method comprises

the dynamic range of the images and therefore the contrast of the image

as well. Gamma transformation is more versatile than log transformation,

because different transformation curves could be obtained through varying its

parameters. However, in a real fabric inspection environment, adjusting the

Gamma transformation parameter online to adapt to different colors of fabric

images is impractical. The preprocessing operation adopted in this research

is contrast-stretching transformation whose function is as follows:

s = T (r) =
1

1 + (mr )
ε
, (5.1)

where r denotes the intensities of the input image; s is the corresponding

intensity of the output; ε and m control the slope and the center of gravity
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of the transformation function respectively. The gray-level range under

m will be compressed. By contrast, the gray-level range under m will

expand. Therefore, the result of the transformation function is an image of

higher contrast. Normally, the value of m is set as the median value of the

input gray-level intensities. In other words, the value could be adaptively

selected according to different image samples, which increases the degree of

freedom of preprocessing. The value of ε depends on desired gray-level range

[LL,HL] of the output image

ε1 = log m
min(r)

(
1

LL− 1

)
, (5.2)

ε2 = log m
max(r)

(
1

HL− 1
), (5.3)

ε = 	min(ε1, ε2)
 . (5.4)

Fig. 5.3 shows several examples of the preprocessing results. Defects in the

original images are too subtle to notice. However, after preprocessing, the

dynamic range of the image is obviously expanded. The contrast between

defects and texture background is thus greatly enhanced.

5.3 Image Restoration based on Sparse Repre-

sentation

The involvement of normal fabric texture information in sub-dictionaries,

according to fabric structural information, requires dividing patches of non-

defective fabric images into several classes by K-means clustering. The sub-

dictionary learnt from each cluster is adaptively selected to provide the most

relevant basis in the sparse representation of fabric texture. With the learned

dictionary, non-locally centralized sparse representation model is adopted to
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Figure 5.3: Examples of preprocessing results. (a) and (c) are the original

images. (b) and (d) are the images preprocessed by contrast-stretching

transformation. (e) - (h) are the corresponding histograms of the images in

the first row.

find a sparse vector α = [α1;α2; ...;αm], such that x̂ = Φα. Exploiting

non-local redundancies in an image ensures that possible fabric defects could

be successfully eliminated in the restored non-defective version of the input

image. In the rest of this section, sparse representation of fabric texture based

on learnt dictionaries is illustrated in detail.

5.3.1 Adaptive Sub-Dictionary Learning

Nowadays, the appearance of textiles changes because of the development

of fabric design. Even for uniform texture fabric, texture structure could

vary significantly across images, as shown in Fig. 5.4. With different

weaving method, the fabric textures exhibit slight differences in their structure

elements. Therefore, non-defective fabric images are divided into small

patches, which could be clustered according to their structural features. Each

cluster of patches represents a kind of fabric texture element. The objective

of sparse representation is to find a linear combination of a small number of

basic atoms to restore the signal with minimal approximation error. Thus,

effective representations of testing patches are easily to obtain over sub-
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dictionaries learned from each cluster of fabric image patches. Suppose that

xi = Rix, i = 1, 2..., N , is the ith patch vector of image x, where Ri is a

matrix extracting patch xi from x. The estimation of x could be denoted as the

average of all restored patches x̂i, which can be formulated as the following

function [112]:

x̂ = Φ ◦α =

(
N∑
i=1

RT
i Ri

)−1 N∑
i=1

(RT
i Φkiαi), (5.5)

where operation “◦” is defined for convenience of expression; Φki represents

the kth sub-dictionary, which is selected to restore the ith image patch, and αi

denotes the coefficient of the sparse representation of the ith image patch.

(a) (b) (c) (d)

Figure 5.4: Gray-level examples of different patterns of white woven

fabric.(a) is plain weaving pattern; (b) is twill weaving pattern; (c) and (d)

are jacquard weaving patterns.

To better suppress noise and block artifacts [113, 114], N overlapping image

patches, denoted by S = [s1, s2, ..., sN ], are cropped from non-defective fabric

samples that are selected as reference images. Suppose that K distinctive

fabric texture elements are involved in all image patches. Hence, dataset S

can be clustered into K clusters, from each of which a sub-dictionary could

be learned. Subsequently, for a given image patch, the most suitable structure

basis could be selected from Φk. To obtain clusters that are associated with

fabric structure texture, image clustering is conducted in the feature space. As

shown in Fig. 5.4, most of the semantic information of the fabric texture is

conveyed by the edges in the image. High-pass filtering is able to enhance

the edges and structures in the image, as well as reduce the disturbance of
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pixel intensity variations between different image samples. Therefore, the

outputs of high-pass filtering are utilized as the features for the classification

of non-defective image patches. Given the low computational cost and easy

implementation, K-means algorithm is adopted to divide Sh, which denotes

the high-pass filtered patch set, into K sub-sets. The centroid of each cluster

Sh
k , k = 1, 2, ..., K is denoted by μk. Consequently, the clustering result of

the original image patches is denoted by Sk, k = 1, 2, ..., K.

The next step of dictionary learning is to obtain a sub-dictionary Φk from a

cluster Sk such that Ŝk = Φkαk. As the representation coefficient is required

to be as sparse as possible, the solution of Φk is usually solved by iteratively

minimizing Φk and αk in the following function [101]:

(Φ̂k, α̂k) = argmin{‖ Sk −Φkαk ‖2F +λ ‖ αk ‖1}. (5.6)

where ‖ · ‖F is the Frobenius norm.

However, the joint optimization problem of Eq. (5.6) is time consuming.

Moreover, the solution of this function is normally an over-complete dictio-

nary, which is unsuitable for the problem of fabric image representation. On

the one hand, when representing a specific type of fabric structure element,

only limited elements are involved in each sub-set Sk. On the other hand,

elements in one sub-set are highly correlated with each other, such that an

over-complete dictionary may cause data redundancy in sparse coding. In

[115], PCA was found to be suitable for learning sub-dictionaries. PCA

can extract the principal components of a set of possibly correlated data,

which reveals the internal structure of the data. With regard to fabric image

patches, the differences of weaving structure among a cluster are not large.

Therefore, in the proposed model, PCA is applied on each cluster of image

patches Sk to achieve a set of values of linearly uncorrelated variables that

compose a compact dictionary Φk. A compact dictionary is sufficient for
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sparse representation of an image patch and reduces the computational cost of

the model. Fig. 5.5 shows examples of sub-dictionary learnt from the training

dataset. The centroids of two clusters are shown in the first column. The other

columns show the first several atoms in the corresponding sub-dictionaries.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q) (r)

Figure 5.5: Examples of sub-dictionaries. (a) and (j) demonstrate the

centroids of two sub-dictionaries after K-means clustering. (b) - (i) show

the nearest eight atoms to the centroid of the first cluster. (k) - (r) show the

nearest eight atoms to the centroid of the second cluster.

All sub-dictionaries together could be deemed as an over-complete dictionary

that characterizes all the local fabric structures. Thus, instead of a universal

and over-complete dictionary, a sub-dictionary is beneficial for avoiding the

visual artifacts and the considerable calculation generated by sparse coding

over a redundant dictionary.

The sub-dictionaries learned from clustered image patches adaptively ex-

ploited the local structure information of images. Thus, for a given local

image patch, the assignment of appropriate sub-dictionary could be adaptively

accomplished in the real-time model. Owing to the characteristic of fine

structure of fabric texture, the average noise level of fabric images is relatively

low. Therefore, the cluster attribute of a given image patch yi is directly

decided by the distance between its high-pass filtering output yh
i and the

centroid μk of every cluster. The dictionary for image patch xi is selected

by the following function:

ki = argmin
k

‖ yh
i − μk ‖2, (5.7)
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where ki represents the sequence number of sub-dictionary for the ith image

patch.

5.3.2 Sparse Representation Model based on Nonlocal Sim-

ilarities

Unlike uniform distributed and Gaussian distributed noise, the distribution

of fabric defects in the image does not follow any specific rules or patterns.

Fabric defects usually occupy only a small proportion of area in the image,

which could be treated as outliers in the image. Moreover, the conventional

regression model only performs well in removing Gaussian distributed

noise. This feature makes such singular point noise removal is difficult by

approximating the high quality image x from the observed image y barely

on the basis of the l1 norm constraint. As discussed in [116], over a fixed

dictionary, errors may occur between sparse codes of x and y, which are

defined as sparse coding noise (SCN) vα = αy − αx, where αx = argmin
α

‖
α ‖0, s.t. ‖ x−Φα ‖2≤ ε. Obviously, restoration result could be significantly

improved if suppressing the SCN is introduced into the sparse representation

model. Therefore, the image restoration will be based on the non-locally

centralized sparse representation model [116]:

αy = argmin
α

{‖ y −Φ ◦α ‖22 +λ
∑
i

‖ αi ‖1

+γ
∑
i

‖ αi − βi ‖1},
(5.8)

where λ denotes the regularization parameter that controls the balance

between the sparse approximation of x and the sparsity of α; and βi is an

estimation of αxi ; γ is the regularization parameter.
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Generally, parameter β could be obtained from the sparse coding coefficients

of images that are similar to the input image. Repetitive structures found in

the fabric image for any local texture feature lead to deriving β from the input

testing image itself. Moreover, it is found in [116] that the sparse coding

coefficients are correlated, instead of random distribution. Owing to the

high structural periodicity of fabric texture, local and non-local redundancies

appear in the images, which mean that the spatially separated patches are still

likely to have similar patterns. Thus, for a given ith patch, the nonlocal similar

patches could be searched in a large widow centered at pixel i. Then, βi is

computed as the weighted average of the sparse coefficients associated with

nonlocal similar patches to the ith patch:

βi =
∑
q∈Ωi

ωi,qαi,q, (5.9)

where Ωi denotes a set of image patches that are similar to the ith patch; and

αi,q represents the sparse coefficients of the qth patch within set Ωi; ωi,q is the

corresponding weight, which is inversely proportional to the distance between

xi and xi,q.

For eliminating fabric defects, which are regarded as outliers in the image,

the non-locally centralized sparse representation model outperforms the

conventional regression model. The former brings the structure information

of non-defective areas in the testing image in the restoration of the estimated

image. That is to say, the estimation of the normal structure features of the

testing image is not only based on the adaptively selected sub-dictionary but

also on non-local feature redundancies in the testing image itself to increase

image restoration accuracy and the defect detection rate.

As discussed in Section 5.3.1, for the entire training dataset, the set of

K compact sub-dictionaries could still be regarded as an over-complete

dictionary. When one sub-dictionary is adaptively chosen in the sparse
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coding, only a small number of atoms in the over-complete dictionary are

selected. As a result, regularization constraint ‖ αi ‖1 is satisfied. Hence, the

non-locally centralized sparse representation model is adjusted as follows:

αy = argmin
α

{
‖ y −Φ ◦α ‖22 +γ

∑
i

‖ αi − βi ‖1
}
. (5.10)

The surrogate algorithm, which is an iterative algorithm, is adopted to solve

objective function in Eq. (5.10). β is first initialized as β(−1) = 0, in order

to obtain the initial sparse coefficients α
(0)
y . Thus, the initial estimation of

x is solved by x(0) = Φ ◦ α
(0)
y . Thereafter, by searching similar patches

from x(0), the non-local estimation β(0) can be updated through Eq. (5.9),

which improved the accuracy of sparse representation coefficients in turn.

This procedure is iterated until the convergence constraint is satisfied. With

optimal sparse representation coefficients αy, the estimation of the non-

defective fabric image x could be represented as x̂ = Φ ◦ αy, because only

normal fabric structure information is admitted in the sub-dictionaries learned

previously. Noise is greatly reduced in the restored image, and the defective

areas would not be well presented.

5.4 Defect Segmentation

Similar to template matching, defect detection based on image denoising

tends to segment possible defects through comparing the inspection image

with a reference image. However, instead of a fixed template fabric image,

the reference image used in this research is the non-defective image which is

restored according to the most relevant basis.

Ideally, the possible fabric defects regarded as noise in the inspection image

could be removed in the estimated version of the input image. In the residual
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image of the inspection image and its estimation, the gray-level intensity of

the defective area will be greater than that of the background area. Thus,

a simple thresholding operation would distinguish defective pixels from the

background in the residual image after image restoration.

The thresholding limits are derived from the reference residual image of a

standard non-defective sample and its estimation which is restored by the

procedures in Section 5.3. Instead of setting a fixed parameter, thresholding

limits could be adaptively selected for each fabric type to achieve good

detection results as much as possible. Meanwhile, the adaptively selected

parameter is beneficial to reduce false alarm rate because the noise and blurry

effects caused by dust will weaken in the restored image. Suppose that the

gray-level intensity of the reference residual image is denoted as R(x, y).

Then upper and lower thresholding limits are:

ψupper = max
x,y∈W

|R(x, y)|, (5.11)

ψlower = min
x,y∈W

|R(x, y)|, (5.12)

where W is a window obtained by removing 10 pixels from each side of the

image R(x, y) to avoid distortion effects caused by the borders of the image.

Hence, the binary feature image B(x, y) could be obtained by:

B(x, y) =

⎧⎪⎨
⎪⎩

1, if G(x, y) > ψupper or G(x, y) < ψlower,

0, otherwise,
(5.13)

where G(x, y) denotes the gray-level intensities of the testing residual image.
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5.5 Experiment Results and Discussion

The performance of the proposed fabric inspection model is validated through

two databases. The first one is TILDA, which is created by a workshop

on texture analysis of Deutsche Forschungsgemeinschaft Germany [74].

Samples in this database are gray-level images. Both structural and tonal

defects are included, such as holes, chafed yarn, flying yarn and dye streak.

The second one is a database created by the author, which consists of 102

non-defective and 102 defective fabric samples acquired from an apparel

factory in Mainland China and scanned from the fabric defect handbook

[25]. The most common types of defects that always appear in the textile

and apparel industries are all involved in these fabric samples, such as thick

yarn, missing yarn and rope mark. First, the proposed detection model is

applied on fabric databases to demonstrate its effectiveness. Then, with the

same fabric samples, the performance of the proposed defect detection model

is compared with the other three representative detection models, namely,

detection model based on Gabor filter bank [12], Fourier and wavelet-based

model [11], and adaptive sparse representation-based model [16]. Source

codes of these approaches are obtained from the authors and programmed

in this research.

5.5.1 Experimental Setup

Four kinds of woven fabric with a relatively coarse texture are included in

the TILDA database. Within each fabric type, four classes of defect were

defined. For each of the above classes, 50 images (768 × 512 pixels) were

acquired through relocation and rotation of the textile samples. In our own

database, images of the real fabric samples were captured at 1050 × 1050

pixels by a digital camera Canon 600D. In the experiments, the image
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processing toolbox of MATLAB prototyping environment was adopted to

program all the detection models. Similar to the experiments in Chapter 4,

the binary feature images, which denote the detection results, were visually

assessed by experienced operators. Furthermore, the performance of defect

detection models was evaluated according to precision, sensitivity, specificity

and accuracy, which are clearly defined in Section 4.4.1. The rate of correct

detection alarm is indicated by precision. Sensitivity indicates the detection

rate of all defective samples. The rate of correct classification of non-defective

samples is given in terms of specificity. Accuracy manifests the rate of overall

correct classification of all testing samples.

5.5.2 Performance Evaluation of the Proposed Defect De-

tection Model

The inspection of twill fabric was conducted in accordance with the proce-

dures shown in Fig. 5.2. Several representative detection results are shown

in Figs. 5.6 - 5.9. For each fabric type, a set of non-defective image samples

were collected as the training data in the dictionary learning. The binary result

images revealed that defects of various shapes, sizes, and positions could

be successfully identified by the proposed detection model. Tables 5.1 and

5.2 summarize the overall experimental results by using the proposed defect

detection model on TILDA and our own database, respectively.

Table 5.1: Performance of the proposed detection model on TILDA

Precision Sensitivity Specificity Accuracy
Performance 92.0% 97.8% 91.5% 94.6%

Table 5.2: Performance of the proposed detection model on our own database

Precision Sensitivity Specificity Accuracy
Performance 92.5% 96.1% 92.2% 94.1%

Fig. 5.6 shows the detection results of four types of fabric in TILDA. For
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each type of defect, one representative sample was selected as demonstration.

These defects are holes, stain, missing yarn, and spot. From the detection

results, it is noticed that most of the defects were well detected. For the

first three types of fabric, the proposed detection model accurately located

the defects and outlined their shapes. However, two defects on the fourth

fabric type were not well detected because the coarse fabric texture greatly

influenced image restoration accuracy and thresholding selection. In all, the

proposed detection model still achieved a rather high successful detection

rate on TILDA. Moreover, as shown in Fig. 5.6, nearly no false detection

appeared in the detection results, which revealed that the detection model has

high sensitivity and robustness.

As remarked in the database, an image with resolution of 768×512 in TILDA

covers only an area of 37.5 sq cm, in which the defects occupied a large

proportion. Given that most of the fabric defects found in a real case might

be smaller than the samples in TILDA, more real samples collected from an

apparel company and scanned from the fabric defects handbook were used

in the second step of experiments to further validate the effectiveness of

the proposed detection model for the apparel industry. The image samples

collected from the real apparel factory are of 1050 × 1050 and cover an A4

size area. The smallest defects on the fabric surface occupy only an area of

one or two pixels approximately. Larger coverage of a testing image could

result in a more efficient detection model. In accordance with the type of

fabric defects, the defective samples are classified into three groups. First,

defects are caused by yarn arrangement such as missing yarn, thick-yarn, and

knots. Second, tonal defects include color marks and oil stains. Third, subtle

defects are very small and of low contrast with respect to the background. The

detection results are presented in Figs. 5.7 - 5.9.

Fig. 5.7 shows several examples of the detection results of defects related to

yarn arrangement. Defects on the fabric whose weft and wrap yarns are of
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Figure 5.6: Detection results of TILDA database.
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different colors are more conspicuous than others, e.g., Figs. 5.7(a) - 5.7(c).

The proposed detection model successfully located the defect and outlined

their accurate shape. Their fabric texture structure is slightly more complex

than others; thus, false alarms appeared in their detection results, e.g., Figs.

5.7(e) and 5.7(f). Given the high density of yarn arrangement of twill fabric,

the defects on such fabric are usually of low contrast, such as Figs. 5.7(i) and

5.7(j). However, the proposed detection model successfully segmented the

two problems, as shown in Figs. 5.7(m) and 5.7(n).

5.5.3 Comparison of the proposed model and two represen-

tative models

To further validate the effectiveness of the proposed model in fabric defect

detection, detection performance is compared with the other three represen-

tative defect detection approaches, namely, detection model based on Gabor

filters bank [12], Fourier and wavelet-based model [11], and adaptive sparse

representation-based model [16]. The first two are the representatives in the

feature extraction-based detection approaches, which are popular in fabric

defect detection applications. The last one represents the newly emerged non-

feature extraction-based detection approaches, which have attracted much

attention in the recent defect detection research. Source code of the approach

in [11] is provided by the author of this reference, while those of the other

two comparative approaches are programmed by the author in this research.

The evaluations were conducted under the same environment on the basis of

the real fabric sample database.

Figs. 5.10 - 5.12 present the comparison of the detection results on the

database of real fabric samples . The images of defective fabric samples are

shown in the first row. The detection results obtained by using Gabor filters

bank [12], Fourier and wavelet-based model [11], regression-based model
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 5.7: Detection results of missing yarn, thick yarn, and knots.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Detection results of stain defects.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.9: Detection results of tiny defects.
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[16], and the proposed detection model are shown in the second, third, fourth

and last rows, respectively. It is worth mentioning that the proposed detection

model distinguished all defect samples, and generally outperformed the other

three methods.

The detection model proposed in [12] and [11] mainly depends on the feature

extraction of defects. Hence, the sensitivity of the detection model would

not be satisfied when the boundaries of defects are blurry or the defects are

confused with normal fabric texture. For example, in Figs. 5.10(d) and

5.11(a), although the stain defects were successfully detected by all detection

models, structural defects were well located only by the proposed model.

Compared with the conventional regression-based model in [16], non-local

similarities of the fabric structure information were utilized to reduce noise

in the restored image in the proposed model, which in turn increased the

detection rate. Therefore, even for small and subtle defects, the proposed

detection model could achieve good performance, as shown in Figs. 5.10(q),

5.11(s), and 5.11(t).

The comparative detection results on several tiny defects are demonstrated in

Fig. 5.12. It is noticed that the three representative detection models failed to

detect most of the defects when the defects were hard to visually distinguish.

Moreover, uneven illumination in Figs. 5.12(b) and 5.12(c) resulted in lots

of false alarms in the detection results with the use of the detection model in

[16]. However, the utilization of features of non-local image patches makes

the proposed defect detection model immune to uneven illumination. Table

5.3 summarizes the performance comparison of the four detection models,

which revealed that the detection rate of the proposed detection model is high

than that of the other three models, and that a good balance between defect

detection rate and false alarm rate is ensured.
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Figure 5.10: Results of comparison experiments on real fabric samples.

Table 5.3: Performance comparison of defect detection models

Precision Sensitivity Specificity Accuracy
Model in [12] 79.3% 81.2% 83.1% 82.2%

Model in [11] 82.7% 88.2% 79.1% 83.5%

Model in [16] 93.3% 82.3% 94.1% 88.2%

Proposed model 92.5% 96.1% 92.2% 94.1%
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Figure 5.11: Results of comparison experiments on scanned fabric samples.
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Figure 5.12: Results of comparison experiments on tiny defects.
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5.6 Summary

In this chapter, a non-locally centralized sparse representation-based detection

model was developed to solve the intelligent inspection problem of twill

fabric. The proposed model is mainly based on two modules, which are

dictionary learning (offline) and defect detection through image restoration

(real-time). First, the compact sub-dictionaries learned from non-defective

samples could be adaptively selected in sparse coding to provide the most

relaxant fabric structure information for image restoration. Then, by adopting

the non-locally centralized sparse representation model, non-local similarities

of the fabric structure information are exploited to improve the image

restoration effect, thereby increasing the defect detection rate. This method

is more effective in detecting small defects because image restoration is a

pixel-based operation, which is sensitive to small aberrations.

Extensive experiments were conducted to validate the performance of the

proposed model. The TILDA database and real fabric samples were used to

evaluate the performance of the proposed detection model. The effectiveness

of the proposed model on various types of defects was verified by observations

of the amount of detection results. Further experiments that compared the

proposed model with three representative detection models manifest that the

proposed detection model had a higher successful detection rate and lower

false alarm rate than the other models.
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Chapter 6

A Hybrid Defect Detection Model

for Striped Fabric Inspection

Different from plain and twill fabric in solid color, the image of striped fabric

consists of basic repeat unit and weaving texture, in which there lies two

groups of defects: pattern variants and common fabric defects. Therefore,

a hybrid defect detection model is developed to detect both types of defects

successfully.

6.1 The Framework of Twill Fabric Inspection

Model

Fig. 6.1 shows a few image samples of non-defective and defective striped

fabric. As discussed in Chapter 1, besides the common fabric defects,

variations of repeat pattern, which are regarded as pattern defects, greatly

impair fabric quality as well. For example, Fig. 6.1(c) shows a skewed stripe

pattern that is a typical type of pattern defect normally caused by restarting

a weaving machine. The variance of striped fabric is significantly larger
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than a fabric in solid color; thus, small variations of weaving texture do not

cause perceivable changes to the statistical features of the entire image. For

example, part of the common fabric defect in Fig. 6.1(d) is covered by a stripe

pattern, which makes it considerably difficult to detect the defects directly

by approaches based on feature extraction, such as statistical, model-based

and spectral methods. Moreover, instead of the weaving texture, the repeated

stripe pattern is the principal component in the images of a striped fabric.

Approaches based on sparse representation are also incompatible in pattern

fabric inspection, because the detail loss of repeated pattern in the restored

image causes numerous false alarms in defect detection. Therefore, reducing

the interference brought by stripe patterns in detecting defects is a key issue

in the design of striped fabric inspection model.

(a) (b) (c) (d)

Figure 6.1: Several image samples of a striped fabric.

Direct Gabor filtering fails to extract the features of defects, because the edge

of stripe pattern will have a relative large response in the filtered image,

which will increase the false alarm rate of the defect detection. However,

the freedom in the selection of orientation and frequency of a Gabor filter

provides the possibility to remain the response of object that we are interested

in the filtered image. A Gabor filter which is designed to enhance the response

of horizontal lines, will accordingly restrain the response of vertical lines.

Therefore, a Gabor filter can be optimized to eliminate the normal stripe

pattern in the first step of striped fabric inspection, so that the features of

pattern variants and common defects can be kept. Thereafter, the filtered

image can be regarded as uniform fabric, and the remaining defects can be
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considered as noise, because the filtered boundaries of the defects are not as

sharp as the original. Therefore, image restoration techniques can be utilized

to detect the defects in the second step of inspection. Due to the filtering

effect, the non-defective texture will simultaneously be slightly changed

when eliminating stripe pattern. Dictionary learnt from referencing images

will influence the image restoration accuracy. Therefore, non-local self-

similarities of the inspection image are utilized to restore the non-defective

filtering response and then highlight the defects.

On the basis of the above discussion, a hybrid defect detection model,

consisting of optimal Gabor filtering and sparse representation, is developed

to solve the issues in striped fabric inspection. Before the commencement of

real-time inspection, evolutionary algorithm-based Gabor filter optimization

is carried out offline to obtain the optimal solution that could significantly

eliminate the filtering response of stripe patterns. After optimal Gabor

filtering in the first step of inspection, the output feature images of inspection

fabric and non-defective reference fabric are transmitted to the second step of

inspection which is based on image restoration. The filtering response of non-

defective texture is restored by the non-local self-similarities of the inspection

filtered image. Finally, pattern defects and common defects are segmented by

simple thresholding operation from the residual image of the restored and the

original feature images. A flowchart of the proposed hybrid defect detection

model is shown in Fig. 6.2. The details of each operation is introduced in the

following sections.
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Figure 6.2: Flowchart of the striped fabric inspection process.
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6.2 Step One: Optimal Gabor Filtering based on

CoDE

Fig. 6.3 shows the corresponding feature images of a defective striped

fabric sample filtered respectively by two optimal Gabor filters formulated

by sinusoidal function in different orientations. As mentioned in Chapter

3, imaginary part of Gabor filters which are formulated with sinusoidal

function perform well in detecting edges that are in the same direction as

them [66]. The response of objects in perpendicular direction are reduced

simultaneously; thus, a Gabor filter bank that essentially covers the frequency

domain is effective in detecting defects on a smooth surface (for example,

plain fabric) [12]. Therefore, the Gabor filter (formulated as Eq. (3.6)) is

optimized perpendicularly to the stripe to eliminate the structure of repeated

pattern. Only the samples of non-defective striped fabric are utilized as the

reference images in the Gabor filter optimization.

Fig. 6.3 shows that the prominent feature of the original striped fabric image

is its salient gradient. Based on Figs. 6.3(b) and 6.3(e), the edge structure of

stripe is enhanced in the feature image by a synclastic Gabor filter, and most of

the structural information of defects are lost. Conversely, the edge structure

is significantly eliminated in the feature image filtered by a perpendicular

Gabor filter, and the defects become considerable clearer (See Figs. 6.3(c)

and 6.3(f)). The corresponding histograms suggest that an image has more

pixels under high gray-level intensities when the stripe pattern is more salient.

Thus, minimizing the mathematical expectation of the histogram of the edge

image extracted from the filtered feature image by Sobel mask should be the

primary objective in the Gabor filter optimization to reduce the disturbance

caused by the stripe pattern. Suppose that the feature image F is of M × N

pixels with 8-bit gray levels. The objective S can be formulated as
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Figure 6.3: Comparison of Gabor filtering result: 6.3(a) is the original

defective image; 6.3(b) is the filtering result through a synclastic Gabor filter;

6.3(c) is the filtering result through a perpendicular Gabor filter; 6.3(d) - 6.3(f)

are the gradient maps of the figures in the first row extracted by Sobel; 6.3(g)

- 6.3(i) are the corresponding histograms of the gradient maps.

103



S =
255∑
i=0

i
qi

M ×N
, (6.1)

where i denotes the value of gray levels, and qi is the number of pixels under

ith gray level in the edge image extracted from F. This objective ensures that

the abrupt intensity changes at the edge of the stripe pattern is significantly

eliminated. Furthermore, the variance of the filtered feature image denoted

by σ should be as small as possible to ensure that the texture of the original

fabric sample is as uniform as possible after Gabor filtering. This condition is

beneficial for the robustness of defect detection. Therefore, the final objective

function adopted in the Gabor optimization is

maximize J = σ ×
255∑
i=0

i
qi

M ×N
. (6.2)

Based on the analysis of optimization method in Section 4.2, CoDE, one of

the powerful evolutionary algorithm, is adopted as the optimization algorithm

in obtaining the optimal set of parameters of Gabor filter. As stated in Section

6.1, only one Gabor filter can eliminate the filtering response of edges in

the striped fabric; the orientation parameter θ is designed perpendicularly to

the stripe pattern. Hence, three Gabor parameters should be optimized: the

central frequency of Gabor filter f0; and the frequency bandwidth B and shape

factor of Gabor filter λ, which jointly determine the smoothing parameters σx

and σy.

The specific optimization process is described as follows:

(1) Representation: The first step of the optimization process is to encode

solutions into decision vectors which are of three dimensions: f0, B, and λ.

(2) Population initialization: The initial chromosomes are assigned with real

numbers at the beginning while rounding down to discrete in evaluating
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the objective function to apply CoDE, which is a continuous evolutionary

algorithm.

(3) Mutation, crossover, and selection: Optimization proceeds into mutation

and crossover after the initialization process. CoDE has three selected

strategies of trial vector generation and three parameter settings. Three

candidate trial vectors Ui1, Ui2 and Ui3 are obtained using the three trial vector

generation strategies “rand/1/bin”, “rand/2/bin”, and “current-to-rand/1” for

the current individual Xi in every generation. The control parameter setting

is randomly chosen (See Eqs. (4.5) - (4.7)).

The evolution process does not stop until predefined criteria are met. Fig. 6.4

shows several striped fabric samples and the corresponding filtered results

of Gabor filters that are optimized through the previous procedures. The

stripe patterns are successfully eliminated while keeping the response of basic

weaving texture and defects. The pattern defects deviate from the orientation

of the original stripe pattern; thus, they are also retained in the feature image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4: Filtering results of striped fabric by optimal Gabor filters

perpendicular to the stripe pattern.

105



6.3 Step Two: Image Restoration-Based Defect

Detection

The interference of stripe edge structure is significantly reduced after the

Gabor filtering in the first step of inspection to make the inspection approaches

for basic weaving texture detect the remaining defects effectively. Fig. 6.4

demonstrates that the filtering response of the basic weaving texture in the

background is not as uniform as that of the plain fabric. Therefore, approach

based on optimal Gabor filter cannot be applied in this step. Moreover,

defect boundaries are slightly weakened. Therefore, image restoration-based

detection approach, which does not rely on feature extraction, is adopted to

find the defects from the Gabor-filtered images.

6.3.1 Image Restoration Based on Non-local Self-similarities

The structural information of the basic weaving texture in the filtered image is

changed compared with the original fabric images. The comparison of Figs.

6.4(e) and 6.4(f) shows that the regularity of background texture between

similar types of fabric is significantly smaller. Therefore, it is difficult to

learn an effective dictionary for texture representation of the filtered image.

However, for a given image patch, its estimation can be obtained based on

its non-local self-similarities [117]; thus, regarded as random noise, fabric

defects in the filtered feature image can be successfully removed.

Suppose that the feature image F is divided into K overlapping patches, Fi =

RiF, i = 1, 2..., K, is the ith patch vector of image F, where Ri is a matrix

extracting patch Fi from F. The fused image F through all image patches can

be formulated as
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F̂ =

(
N∑
i=1

RT
i Ri

)−1 N∑
i=1

(RT
i Fi). (6.3)

A set of patches that are of similar intensity distribution in a certain range can

be searched for each patch Fi. Patch Fq
i is selected as a similar patch to Fi

if the Euclidean distance between them is less than the predefined threshold.

The weighted average of the first L closest patches can be used to restore

patch Fi:

F′
i =

L∑
q=1

bqiF
q
i , (6.4)

where F′
i is the new estimated image patch of Fi; the weight bqi is set to be

inversely proportional to the distance between patches Fi and Fq
i :

bqi = exp(− ‖ Fi − Fq
i ‖22 /h)/ω, (6.5)

where h is a preset scalar and ω is a normalization factor.

Each image patch can still be restored from the local and non-local redun-

dancies of the inspection image itself without a standard texture dictionary,

which is beneficial for increasing the detection sensitivity on small defects.

Compared with the conventional regression model [16] and non-locally

centralized sparse coding model applied in Chapter 5, the image restoration

based non-local self-similarities outperforms in terms of computational cost.

Thereafter, the new image F′
can be synthesized by Eq. 6.3. The non-

defective pixels are similar to the pixels of the original feature image in the

newly restored image, whereas the restoration error in estimating the defective

pixels is quite larger.
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6.3.2 Defect Segmentation

The defective pixels, which are regarded as noise, are replaced by non-

defective texture in the newly restored image. Thus, the defective area can

be highlighted in the residual image by comparing the restored image with

the original filtered image. A simple thresholding operation following image

subtraction can segment the defects from the background of the residual

image.

The threshold limits are derived from the reference residual image of a non-

defective sample and its estimation that is restored by the the non-local self-

similarities in the image, for each specific type of striped fabric. Suppose that

the gray-level intensity of the reference residual image is denoted as Fr(x, y).

Subsequently, the upper and lower threshold limits are

ψupper = max
x,y∈W

|Fr(x, y)|, (6.6)

ψlower = min
x,y∈W

|Fr(x, y)|, (6.7)

where W is a window centered at the feature image obtained by removing 10

pixels from each side of the image Fr(x, y). Hence, the binary feature image

B(x, y) can be obtained by

B(x, y) =

⎧⎪⎨
⎪⎩

1, if R(x, y) > ψupper or R(x, y) < ψlower,

0, otherwise,
(6.8)

where R(x, y) denotes the gray-level of the testing residual image.
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6.4 Experiment Results and Discussion

The experiments are conducted on the samples of striped fabric selected

from TILDA database, in which 50 non-defective samples and 300 defective

samples are included, to validate the effectiveness of the proposed defect

detection model. In the database, pattern defects include compactor crease

and pattern variants caused by mechanical fault; and common defects include

chafed yarn, flying yarn and color mark. The detection results of both pattern

defects and common fabric defects are demonstrated and analyzed.

The experiment setup is the same with those in Chapters 4 and 5. Image

samples in TILDA are of 768× 512 pixels. The image processing toolbox of

MATLAB prototyping environment is adopted to program all the detection

models. The performance of defect detection models is evaluated by

precision, sensitivity, specificity and accuracy, which are clearly defined in

Section 4.4.1.

6.4.1 Performance Evaluation of the Proposed Defect De-

tection Model

The inspection of striped fabric is conducted according to the procedures

shown in Fig. 6.2. Figs. 6.5 - 6.6 demonstrate several representative detection

results using the proposed defect detection model. A non-defective sample is

selected as the reference to optimize the Gabor filter at the beginning of the

inspection of each type of fabric. Images in the second column, which well be

restored in the second step of inspection, show the optimal filtering response

in the first step of inspection. The binary image in the third column shows

the final detection results. Table 6.1 summarizes overall experimental results

using the proposed defect detection model.
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Table 6.1: Performance of the proposed detection model on striped fabric

samples of TILDA

Precision Sensitivity Specificity Accuracy
Performance 94.7% 90.0% 70.0% 87.1%

Fig. 6.5 demonstrates the detection results of pattern defects. The first three

samples are the variations of repeated stripe pattern usually caused by restart

of the weaving machine or a malfunction in the weaving tensor. The last

three samples are caused by fabric crease. All these defects are successfully

detected. The edges of the incorrectly arranged stripe are not eliminated in the

filtered images in the first step, because these misarranged stripes deviate from

the standard orientation of repeated patterns. Subsequently, the defects were

are segmented from the background based on the restored filtering response

of the non-defective fabric texture.

The detection results of several common defects on the striped fabric are

shown in Fig. 6.6. The first three are structural defects related to weaving

texture. Part of the first defect is of considerable low contrast, which is almost

drowned in the texture of image background. The defect can be highlighted

using the proposed detection model with the Gabor filter optimized through

the procedures stated in Section 6.2 while suppressing the stripe pattern.

Moreover, the second defect is on the side of the edge of the stripe pattern

and is enhanced in the filtered feature image. The least two are tonal defects

that only alter the local intensity value of the fabric but not the weaving

structure. Particularly, the proposed detection model has detected the defect

in the upper-right corner of the last image that overlaps the stripe pattern,

which further verifies that the proposed detection model is sensitive to most

types of fabric defects.
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Figure 6.5: Detection results of pattern defects on striped fabric.
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Figure 6.6: Detection results of common fabric defects on striped fabric.
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6.5 Summary

In this chapter, with the use of Gabor filtering and image restoration

techniques, a hybrid defect detection model is developed for the inspection

of striped fabric. The proposed model can detect both pattern defects and

common fabric defects in two steps. First, a Gabor filter was optimized

to minimize the image gradient for each type of fabric, eliminating the

repeated stripe pattern in the filtered feature image. The feature image with

remaining defects are subject to image restoration, which is the second step

of the inspection. Only non-local self-similarities are utilized to estimate the

filtering response of non-defective texture in the image restoration, which

is beneficial in increasing restoration accuracy. Finally, the defects are

segmented from the residual image of the restored and original filtered

images.

The performance of the hybrid defect detection model is evaluated by

extensive experiments with the samples of striped fabric in TILDA database.

The experimental results on misarranged and crease defects indicate that

the proposed detection model is effective on any directional pattern defects

because of the selective orientation of Gabor filters. Accurate detection results

on common fabric defects also prove that the proposed model performs well

in detecting most types of fabric defects while reducing the interference of

stripe pattern.
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Chapter 7

Conclusions and Future Work

This chapter starts with the conclusion of this research followed by its

contributions and limitations as well as suggestions for future work.

7.1 Conclusions

This research addresses the problem in automatic fabric inspection in the

textile and apparel industry, using computer vision techniques. The specific

fabric inspection model was designed for different types of fabric according to

their weaving structure characteristics for the first time. For plain, twill, and

striped fabrics, three defect detection models were developed to solve most

types of the common fabric defects and pattern defects, improving the overall

performance of fabric inspection in the textile and apparel industry.

A defect detection model based on optimal Gabor filters has been proposed

for plain fabric inspection in Chapter 4. The basic criss-cross plain weaving

structure leads to a smooth surface of plain fabric; thus, only two Gabor filters

were optimized by CoDE to extract the features of plain defects in horizontal

and vertical, respectively. Both non-defective and typical defect samples
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were involved in the optimization of Gabor filters in this research. The

mathematical function of optimization objective was designed to maximize

the difference between the filtering response of non-defective and defective

fabric textures. Plain defects could be easily segmented from the normal

fabric texture filtered by the optimal Gabor filters by simple thresholding

operation. Extensive experiments demonstrated that the proposed detection

model perform well in terms of high detection sensitivity and efficiency.

In Chapter 5, a detection model based on sparse representation has been

developed to address the inspection. Approaches based on feature extraction

failed to achieve high detection accuracy because of the complex twill

weaving structure and the blurry boundaries of twill defects. Therefore,

image restoration techniques are utilized to detect twill defects as randomly

distributed noise in this research. Owing to the sparsity of fabric defects,

non-defective texture of the inspection image is estimated through non-locally

sparse representation; thus, the defect can be labeled in the residual image of

the inspection image and its estimation. Adaptive sub-dictionaries, which

could provide non-defective texture information, are learnt from reference

images by K-means algorithms and PCA in the offline stage. The experiment

results revealed that the proposed detection model is particularly sensitive to

small-sized defects.

A hybrid fabric inspection model has been developed in Chapter 6 to detect

defects on striped fabric. The proposed hybrid detection model provides

a two-step solution to detect pattern defects and common fabric defects.

The performance of detection approaches for fabric in solid color were not

satisfied in the inspection of striped fabric because of the complex texture

of stripe pattern. Therefore, a Gabor filter is optimized to suppress the

filtering response of the stripe pattern in the first step of the proposed

model. The mathematical function of optimization objective was designed

to minimize the gradient intensity and the variance of the filtered image;
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thus, the feature image of the striped fabric could be treated as a fabric in

solid color after optimal Gabor filtering. Image restoration based on non-

local self-similarities and thresholding operation were applied to segment the

remaining defects, thereby increasing detection accuracy. The experiment

results indicated that the proposed detection model detected any directional

pattern defects effectively because of the selective orientation of Gabor filters;

the proposed model also identified most types of fabric defects while reducing

the interference of stripe pattern.

7.2 Contributions of this Research

This research enriches our understanding of automatic fabric defect detection

from both academic and industrial perspectives.

7.2.1 Contributions to Woven Fabric Inspection for the

Textile and Apparel Industries

In this research, an intelligent defect detection solution is proposed to address

the inspection problem of plain, twill, and striped fabrics in the textile and

apparel industries. In the proposed solution, computer vision techniques are

used to fulfill the fabric defect detection automatically, which could overcome

the limitations of the current human inspection system. The labor cost is

significantly reduced by integrating the proposed defect detection solution

into the traditional fabric inspection machine. Meanwhile, without the human

intervention, detection accuracy and efficiency are enhanced as well.

Given that the requirements of automatic fabric inspections vary with the

different types of fabric in the textile and apparel industries, the woven

fabric inspection problem is investigated on the basis of specific analysis
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of different fabric weaving structures for the first time. The three proposed

defect detection models for plain, twill, and striped fabrics are proven to be

generally superior to several representatives of the existing models, in terms

of detection accuracy, robustness, and efficiency.

7.2.2 Contributions to Automatic Plain Fabric Defect De-

tection

Owing to the smooth characteristic of plain fabric surface, defects in plain

fabric are easy to notice, and therefore, the requirements of detection accuracy

and efficiency are high in the industrial applications. The proposed detection

model for plain fabric, which is based on optimal Gabor filters, has greatly

reduced the computational cost and increased the successful detection rate by

directly extracting the features of plain fabric defects.

Considering the shape and orientation characteristics of plain fabric defects,

the only two Gabor filters optimized by CoDE could avoid data redundancies

caused by Gabor filter bank in the feature extraction of defects. In addition,

the proposed model could obtain the best extraction of defects because of the

capacity of global optimization of CoDE, and thereby increasing the detection

accuracy. In all, the high detection accuracy and efficiency of the proposed

detection make it satisfied in the real-time industrial applications.

7.2.3 Contributions to Automatic Twill Fabric Defect De-

tection

The weaving structure of twill fabric is considerably more complex than plain

fabric, which makes the defects smaller and more inconspicuous. Moreover,

the interference caused by ribs-like twill texture influences the stability of
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fabric inspection. With defects regarded as random distributed noise on the

surface of twill fabric, the detection model presented in this research has

improved detection robustness and sensitivity, especially on small and blurry

defects in complex texture.

By exploiting the cross-correlation of fabric structures, compact sub-dictionaries

learnt from non-defective reference images are beneficial for increasing

detection efficiency and reducing the false alarm rate. In addition, compared

with feature extraction-based approaches, image restoration based on non-

locally centralized sparse representation has greatly improved the detection

performance on tiny defects.

7.2.4 Contributions to Automatic Striped Fabric Defect

Detection

Striped fabric is one of the typical patterned fabrics, which is widely used

in our daily lives, such as business shirt and pants. However, specific defect

detection approaches have not yet been proposed for striped fabric. Most

of the existing approaches failed in striped fabric inspection because of the

salient intensity changes of the image and the similarities between the stripe

pattern and fabric defects. In this research, the newly proposed hybrid striped

inspection model could detect not only common fabric defects but also pattern

defects in two steps.

Owing to the frequency selectivity of Gabor filters, an optimal Gabor filter

has first obtained to reduce the response of stripe patterns, while remaining

the features of defects. Hence, detection robustness has been significantly

improved by eliminating interferences caused by stripe patterns. Considering

the filtered image as a fabric in solid color, image restoration based on

nonlocal self-similarities in the second step could enhance the detection rate
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of the remaining defects.

7.3 Limitations and Future Work

This research can facilitate the development of automatic fabric inspection

for textile and apparel industry. However, this research still has limitations,

which can be an avenue for future research.

In this research, the three proposed defect detection models partly depend on

the abrupt intensity changes on the edge of defects, and the contrast between

defects and fabric image background with the samples of 2D fabric image.

This limitation results in difficulties in outlining defect shapes accurately.

The Gabor filters are good edge detector; however, they are insensitive to

color mark defects in the proposed plain fabric inspection model, because

tonality at the edge of a defect gradually changes. In the proposed twill fabric

inspection model, non-local similarities are utilized in image restoration to

increase restoration accuracy. However, this model also relies on the intensity

changes in labeling defects as noise. The features of defective texture are

likely to remain in the restored image if the original intensities are similar

with its surrounding pixels, thus influencing the accuracy of the following

defect segmentation. The structure of fabric texture is significantly fine that

any fabric defects will cause disturbances to the arrangement of yarns at that

location. The defect should be easily found by examining yarn arrangement

if the image of a fabric sample is acquired at a large resolution. Therefore,

the solution for fabric inspection based on yarn arrangement should be

investigated in the future.

As shown in the experiments in this research, the defective fabric samples are

limited. TILDA is the only public fabric texture database that is utilized as

testing data in most of the current studies. However, only four types of fabric
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are included in this database, and the size of defects are comparatively large

that it does not conform to the actual situation in factories. Therefore, more

defective samples were acquired from an apparel factory in Mainland China.

However, the samples only consist of the most frequently encountered types

of defects, such as slub, broken end, thick yarn, flying yarn and holes. The

effectiveness of the proposed detection model on some types of defect, such

as color smear, dragging end and dye streak, cannot be verified. Therefore,

collecting more defective samples and constructing a more comprehensive

fabric defect database should be accomplished in the future work. It is very

necessary to expand the application of the proposed detection model on more

types of fabric, especially fabric with complex texture.

7.4 Related Publications

The author demonstrated the originality of this research through the following

publications:

[1] L. Tong, W. K. Wong, and C. K. Kwong. Fabric defect detection for

apparel industry: A nonlocal sparse representation approach. IEEE Access,

vol. 5, no. 1, pp. 5947-5964, Dec. 2017.

[2] L. Tong, W. K. Wong, and C. K. Kwong. Differential evolution-based

optimal Gabor filter model for fabric inspection. Neurocomputing, vol. 173,

no. 3, pp. 1386-1401, Jan. 2016.
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