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ABSTRACT 

The advancement of Mobile Mapping Systems (MMS) has accelerated both 

commercial activities and academic research by efficient and flexible data 

acquisition. The Position and Orientation System (POS), which is a core component 

supporting direct georeferencing of mapping data, usually provides superior 

navigation performance by integrating the Inertial Navigation System (INS) and the 

Global Navigation Satellite System (GNSS). Its navigation accuracy, however, is 

primarily dependent on sensor quality and GNSS conditions, which leads to the 

necessity for additional data inspection and post-processing. Accordingly, the MMS 

are currently restricted to finite applications where GNSS is reliably available. 

In railway environments, mobile mapping technology has considerable potential for 

supporting railway safety and management in real-time, but the conventional POS 

encounters a challenge of accuracy loss in GNSS-denied areas, especially in 

underground railways. To minimise the impact of this problem, an alternative 

configuration is presented to replace the GNSS component of a POS, with that of the 

railway track alignment to ensure navigation and geo-referencing accuracy is 

constantly maintained. 

The concept of Rail-bound Navigation (RBN) is introduced in this thesis that directly 

substitutes the GNSS with the track constraints. Since a train is always bounded by 

the physical track under normal conditions, its relatively position and orientation are 

fundamentally constrained by the track alignment. With a valid rail-bound condition, 

the nominal position and orientation of train can be continuously determined, which 

provide alternative error control for a typical POS. 
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In this thesis, a generalised Track Alignment Positioning (TAP) method is 

established to realise the concept of track constraints, while the RBN solution is 

formulated with the integration of INS and TAP and the discussion for corresponding 

practical issues. To validate the RBN concept, a prototype RBN system has been 

built with consumer grade Inertial Measurement Units (IMU) for conducting a 

number of model-based and real world experiments. Despite the absolute position 

errors caused by poor sensor quality, results have demonstrated a significant 

improvement in attitude and velocity in that the error accumulation has been greatly 

constrained without additional measurements and external control data. Through the 

analysis of repeated measurements, the potential performance of RBN have been 

illustrated. 
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Chapter 1:  Introduction 

Rail transport, especially underground rapid transit, has an irreplaceable role in 

modern society with complex railway networks forming the public transportation 

backbone of cities such as Hong Kong, London, Moscow, New York, Shanghai and 

Tokyo. The railway systems generally aim at meeting the great demand of passenger 

transport, service safety and reliability. In Hong Kong, the Mass Transit Railway 

(MTR), operated by the Mass Transit Railway Corporation (MTRC), is a heavily 

patronized railway network carrying on average 4.71 million passengers per day 

(“Hong Kong: The Facts”, 2015), thus any service disruption will cause 

unpredictable social and financial impacts, especially during rush hours. Despite the 

use of highly automated train control systems, mishaps such as train malfunctions, 

signal failure, derailment and even train collision (“Island Line Closed …”, 2012; 

Ngo, 2013; Lau, 2014) are difficult to prevent. 

With respect to such operational failures a considerable amount of research has been 

conducted for obstacle detection and collision avoidance (Kruse et al., 2002; Oh et 

al., 2008; Passarella et al., 2011; Uribe et al., 2012), all of which consider local train 

safety and do not include spatial data management. In contrast, land-based Mobile 

Mapping Systems (MMS) may be a more valuable and comprehensive alternative to 

localised solutions, while potential real-time applications including train control and 

automation, obstacle detection, and infrastructure condition monitoring would be 

beneficial to the development of next generation underground railway systems. 

However, the current MMS georeferencing solution, a Position and Orientation 

System (POS), has an underlying problem: that of Global Navigation Satellite 

System (GNSS) outage, which is ubiquitous in underground railway tunnels. 
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While some generic measures have been developed to mitigate the GNSS outage 

problem, POS performance still depends greatly on sensor quality and at least partial 

access to GNSS, the outage problem remains intrinsically unsolved. 

To enhance the feasibility of MMS in underground railway environments, a GNSS-

free georeferencing solution is required. One solution which can be applied to all 

designed railway systems, not only those underground, is the Rail-bound Navigation 

(RBN). A RBN solution augments the conventional POS with the Track Alignment 

Position (TAP), train control data, and operation patterns, which contributes towards 

a universal georeferencing and navigation solution that will allow unconstrained 

development of railway mapping systems. 

1.1. Role of Mobile Mapping in Railways 

Despite the GNSS outage problem, mobile mapping technology is being embraced in 

railway engineering. A number of MMS which incorporate laser scanning 

components, known as Mobile Laser Scanning (MLS) systems, have been 

customized for railway applications, including rail track and infrastructure surveys, 

clearance measurement, and tunnel mapping (Morgan, 2009; Leslar et al., 2010; 

Kremer and Grimm, 2012; Zhu and Hyyppä, 2014). 

Post-processing techniques, such as smoothing or indirect spatial-referencing 

methods, are essential to maintain the overall accuracy. MLS are therefore restricted 

to railway applications with limited GNSS outages. In cases where the GNSS 

outages are diminished to a feasible level and MLS is operable in real-time, the 

technology can be integrated with other railway systems for enhancing railway safety, 

train operation and management. 
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1.2. Current Situations for Railway Safety 

For railway safety, tunnels and rail tracks are regularly monitored through 

geotechnical or geodetic methods, including tunnel profile surveys, convergence 

measurements, settlement monitoring and Automatic Deformation Monitoring 

Systems (ADMS). Although these methods are relatively reliable and precise, they 

are only sensitive to changes at specific locations regarding the structural health of 

tunnels. Accordingly, numerous measurement systems are generally employed for 

different monitoring tasks. Any unusual change beyond the ambit of measurements 

cannot be detected. 

In general, the structural health of a tunnel is the main concern of typical monitoring 

works, but minor accidents can also cause serious consequences. Non-structural 

failures, such as signal failure, train control malfunction, undetected falling objects 

or obstacles, usually occur more frequently than structural failures but are equally 

likely to cause service delay, equipment damage or even train collision and 

derailment (“Island Line Closed …”, 2012; Ngo, 2013; Lau, 2014). 

1.3. Potential of MLS in Underground Railways 

In view of that, MLS provides a dynamic solution to extend the monitoring systems 

to the entire tunnel sections, which includes measurements to trackside equipment, 

rail tracks and overhead power cables with high-density spatial details. Through real-

time or near real-time processing, tunnel condition monitoring as well as obstacle 

detection are potential applications supporting train control and safety. If MLS were 

installed on some, or all of the trains, the spatial database of a tunnel system would 

be constantly updated in the course of normal train services. Accordingly, periodic 

comparison of acquired data provides a measure to indicate any unusual condition, 
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which would facilitate risk management and minimize the potential of accidents or 

service interruptions. 

Regarding the nature of system failure, some problems such as signal failure and 

train control malfunction are seldom avoidable. Under such circumstances, a MLS 

system can provide an alternative train localization solution, which is self-contained 

and independent of the train signalling system. In case of signal failure, it may 

maintain the train service by aiding manual train operation through train-borne 

localisation and collision avoidance. 

1.4. Research Direction: Rail-bound Navigation 

An increasing volume of research is being devoted to point cloud (the raw product of 

MLS and other imaging technologies) processing and segmentation, track detection, 

and relevant analysis, which has encouraged the use of MLS systems in railway-

related tasks (Yang and Fang, 2014; Soni et al., 2014; Elberink and Khoshelham, 

2015; Jwa and Sonh, 2015; Soni et al., 2015). However, few studies have been 

conducted to evaluate the use of MLS in underground railway systems (Boavida et 

al., 2012; Gonçalves et al., 2012). In addition, the integration of MLS and railway 

systems has received little attention. 

Hung et al. (2015) have introduced the concept of Underground Railway Laser 

Scanning (URLS) which integrates MLS and railways and is aimed at supporting 

real-time train operation and safety via tunnel condition monitoring, hazard detection, 

train localisation and control automation. To achieve a viable URLS, a number of 

subsystems require further research in order to narrow the gap between system 

conceptualisation and implementation. 
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One of the primary subsystems, TAP, utilises the engineered track alignment data to 

support nominal train localisation. The combination of TAP and Inertial Navigation 

System (INS) replaces the typical POS in a GNSS-free environment thus allowing 

for a full-time, real-time implementation of an URLS. The integration of INS and 

TAP forms the concept of RBN which is the research direction of this thesis. 

1.5. Research Objectives 

The following objectives are established to encapsulate the research directions of this 

thesis. 

1.5.1. Formulating the RBN Solution 

Despite recent advancements in GNSS-related technologies, there are still limitations 

to conventional GNSS-free operation of POS-based (INS/GNSS) navigation and 

positioning. For underground railway applications, a GNSS-free solution is required. 

Accordingly, the primary objective of this thesis is to formulate a RBN solution by 

integrating an INS with TAP. The necessary components of RBN and practical 

considerations relating to such a solution are presented and discussed. 

1.5.2. Validating the RBN Solution 

Following on from the RBN formulation, the secondary objectives of this thesis is to 

validate a prototype RBN system through a series of model-based and real world 

experiments. The performance and stability of the RBN system are examined 

through a cycle of repeated data collection and system optimisation. Through the 

validation, RBN can be further developed into a working prototype and introduced as 

an alternative train navigation system and, finally, used to the further development of 

the URLS concept. 
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1.6. Thesis Outline 

This thesis is organised in sequence for the formation of RBN solution and the 

evaluation of system performance. To enhance the overall clarity, the structural 

outline of the thesis is summarised here. 

Chapter 1: Introduction – the advancement and deficiencies of conventional MMS 

are introduced. The research motivation in developing MLS systems towards an 

URLS solution originated from the potential benefits after solving georeferencing 

problems, which formulates the research direction of this thesis: RBN formulation. 

Chapter 2: Literature Review – the history of mobile mapping development is 

concisely summarised in terms of the fundamentals and limitations of direct 

georeferencing (DG). The current DG solutions and their deficiencies are then 

reviewed and discussed, followed by the conceptualisation of RBN. 

Chapter 3: Track Alignment Positioning – introduces the required concepts and 

mathematical models that replace the GNSS component in a traditional POS. TAP is 

generalised and summarised in this chapter, which is considered with necessary 

assumptions for TAP implementation. 

Chapter 4: Rail-bound Navigation – the INS/TAP integration is elaborated with 

relevant components and considerations, which formulates the core of RBN solution 

for the system development and implementation. 

Chapter 5: System Design and Implementation – the research approach and 

experimental design, as well as the preliminary navigation results, are explained in 

this chapter. The important findings are also summarised for further discussion. 
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Chapter 6: Result Analysis and Discussion – this chapter interprets and explains 

the results and findings with necessary considerations. Several potential applications 

are suggested with respect to the evaluated findings and capability of solution. 

Chapter 7: Conclusions and Recommendations – the analysing results and major 

findings are summarised relative to the research objectives in this chapter. In addition, 

the limitations and contributions of the research are concisely reviewed, followed by 

several recommendations for future research. 

Appendix 1: Inertial Navigation Basis – provides supplementary knowledge of 

inertial navigation system design which is required for the development of RBN 

solution. It consists of an overview of inertial sensors, followed by a summary of 

INS mechanisation, system initialisation and system error control. 

Appendix 2: INS Error Models – regarding the inertial navigation basis in 

Appendix, the kinematic equations and error models of INS are explained and 

summarised for the system error control process. 

Appendix 3: Kalman Filter Basis – the fundamental principles of Kalman filtering 

and relevant filtering techniques are introduced, which support the establishment of 

INS/TAP and its error control process. 

1.7. Preliminary Research Restrictions 

Throughout the four-year research, the research direction and content had been 

continually realigned to reflect several critical changes in project conditions. To 

refine the research focus, the preliminary research limitations are summarised in this 

following sections before moving to next chapter. 
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1.7.1. Instrumental Restrictions 

At the initial research stage, a commercial MMS was available for experiment, which 

would minimise the time and cost required for a comprehensive URLS 

implementation and analysis. This is important for investigating the actual 

performance and necessary optimisation through data collection in railway systems. 

Unfortunately, the MMS became unavailable at the validation stage of the research. 

Accordingly, the research direction was revised to focus on the core URLS system 

component: RBN. The MMS was replaced by a low-cost Inertial Measurement Unit 

(IMU) for data collection and analysis, while the spatial data acquisition such as laser 

scanning or photogrammetric measurement was dropped from this research. 

1.7.2. Formal Access to Underground Railway and Train Control Data 

At the initial stages of this research, access to Hong Kong's MTR facilities was 

available. Later, following the change of person-in-charge, that access was 

withdrawn. As a result, the experimental component was performed with minimal 

installation (carrying the IMU and control unit as luggage) for data collection and 

without train control data − a less than optimum scenario. The limitations of the data 

acquisition will be presented in Chapters 5 and 6. 
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Chapter 2:  Direct Georeferencing 

In this chapter, the history of mobile mapping development is concisely reviewed 

and is followed by the fundamentals and limitations of the DG solution – the 

INS/GNSS integration. The research gaps are then identified through a review and 

discussion of current solutions to the innate DG problems in underground railway 

environment, which lead to the formulation of research direction for this thesis – the 

RBN solution. 

2.1. History of Mobile Mapping Technology 

The principal configuration of mobile mapping is formulated by a direct 

georeferencing solution and spatial measurement systems, which originated from 

Airborne Laser Scanning (ALS) systems during the mid-1970s. The first system was 

developed by the National Aeronautics and Space Administration (NASA) for 

hydrographical, military, bathymetry and forestry applications (Hyyppä et al., 2009; 

Hyyppä, 2011), and consisted of a Global Positioning System (GPS) device, an IMU 

and a Light Detection And Ranging (LiDAR) device. The first commercial ALS 

became available in 1994 for topographic mapping (Hyyppä et al., 2009; Hyyppä, 

2011). The development and principles of ALS are comprehensively reviewed by 

Bufton (1989), Baltsavias (1999a), Baltsavias (1999b), Baltsavias (1999c), Wehr and 

Lohr (1999), Wever and Lindenberger (1999), and Friess (2006). 

The DG concept was extended to land-based solutions called MMS during early the 

1990s. The first operational MMS, GPSVanTM, was developed at Ohio State 

University in 1991 (Goad, 1991; Novak, 1991; He and Novak, 1992; He et al., 1994; 

Novak and Bossler, 1995; Bossler and Toth, 1996), and employed digital cameras 

and video cameras for data acquisition and a code-only GPS receiver, two 
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gyroscopes and an odometer for DG. At the meanwhile, the University of Calgary 

was involved in the development of the VISAT system for highway mapping 

applications (Schwarz et al., 1993; El-Sheimy et al., 1995; El-Sheimy, 1996; El-

Sheimy and Schwarz, 1999; Grejner-Brzezinska et al., 2004). 

The advent of compact LiDAR devices lead to MLS systems which became available 

in the late-1990s. Since then an increasing number of MMS were developed 

worldwide and have been extensively reviewed (Tao, 2000; Grejner-Brzezinska, 

2001; Ellum and El-Sheimy, 2002; Barber et al., 2008; Petrie and Toth, 2008; Toth, 

2009; Ussyshkin, 2009; Petrie, 2010; Puente et al., 2011; Puente et al., 2013). 

The design of MMS have been generalised into several components corresponding to 

a collection of navigation systems, mapping sensors and relevant mathematical 

models including INS mechanisation, INS/GNSS integration, and data 

georeferencing (Grejner-Brzezinska et al., 2002; Schwarz and El-Sheimy, 2004; El-

Sheimy, 2005). 

2.2. Concept of Direct Georeferencing 

The concept of DG is the backbone of mobile mapping technology as it provides 

direct measurements of position and attitude of the system sensors, including 

cameras and LiDAR devices, without the use of ground controls. This concept is 

fundamentally developed from an aided INS solution providing a time-tagged 

navigation trajectory with high-rate three-dimensional position and attitude updates. 

Most MMS rely on the integration of INS and GNSS subsystems into a POS for their 

DG solution. The INS is capable of high accuracy short-term position and orientation, 

while GNSS provides long-term error control through a filtering process. 
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2.2.1. Inertial Navigation System 

In general, an INS determines its position and attitude through the integration of 

measurements from one or more IMUs which usually consist of a group of 

accelerometers and gyroscopes to sense the inertial linear acceleration and angular 

velocity in three mutually perpendicular directions. The position difference between 

two observation epochs can be derived from the double integration of linear 

acceleration as following: 

∆� = � ����	� + � � ����	� 	� (2.1) 

 

where ∆� is the position difference; ���� and ���� are the velocity and acceleration 

of the system. 

The design of an IMU platform can be fundamentally classified into two categories: 

gimballed gyro-stabilised systems and strap-down systems. The former design 

compensates the physical rotations of the carrier vehicle relative to the inner platform 

(where the accelerometers attached) through the gimbal, while latter design 

maintains the system attitude by high-rate numerical integration. These days, the 

former design is seldom applied to current systems on account of manufacture and 

maintenance difficulties. The change of platform attitude for a strap-down system is 

maintained by the integration of angular velocity as following: 

∆� = � ���	� (2.2) 

 

where ∆� is the angular difference; ��� is the angular velocity of the system. 

Although an INS generally provides high update rates (e.g. 100 Hz to 1000 Hz) and 

precise changes of position and attitude, its use for dead reckoning navigation suffers 
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from the problems of integration drifts and reduce the long-term navigation accuracy. 

Consequently, an INS usually requires high accuracy sensors such as Ring Laser 

Gyroscopes (RLG) for pure inertial navigation, which was generally impractical in 

the early stages of development on account of their size and cost (Mostafa, 2001). 

The advancement of inertial sensing technology has widened the range of 

performance and compactness such that IMUs are recently classified into different 

grades, including navigation grade, tactical grade, industrial grade and consumer 

grade, with different ranges of performance, size, weight and cost. The fundamentals 

of IMU hardware and data processing have been broadly reviewed in many 

publications such as Lawrence (1998), Titterton and Weston (2004), Grewal et al. 

(2007), Groves (2008) and Aggarwal et al. (2010). 

2.2.2. Global Navigation Satellite System 

The GNSS is an integrated satellite positioning system, including the United States' 

GPS, the Russian GLObal NAvigation Satellite System (GLONASS), the European 

Galileo and the Chinese BeiDou (Farrell and Barth, 1999; Grewal et al., 2007; Farrell, 

2008; Groves, 2008), which provides position and velocity measurements at 

relatively lower rates (e.g. 1��  to 10�� ) and less precise than a typical INS. 

However, unlike INS, the long-term navigation accuracy of GNSS can be maintained 

without error accumulation. 

2.2.3. Position and Orientation System 

Because of the complementary characteristics of INS and GNSS, integrated solution 

have been developed using a Kalman filter to provide a smooth and bounded 

navigation solution. Figure 2.1 and Figure 2.2 show the configurations of Linearised 

Kalman Filter (LKF) and Extended Kalman Filter (EKF), which are the fundamental 
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approaches employed for INS/GNSS integration. The aiding sources, such as GNSS 

and speed measurement data, are applied for navigation correction. 

 

Figure 2.1: Block diagram of Linearised Kalman Filter (Noureldin et al., 2013) 

 

Figure 2.2: Block diagram of Extended Kalman Filter (Noureldin et al., 2013) 

Through the integration of INS and GNSS, the DG system can be implemented by 

configuring with relatively inexpensive inertial sensors, such as Fibre-Optic 

Gyroscopes (FOG) and recently the Micro-Electro-Mechanical System (MEMS) 

sensors, which are more practicable for commercial applications. 

Finally, integrated INS/GNSS systems were developed into a comprehensive 

solution for supporting global navigation, a POS, and supports DG for many mobile 

mapping technologies (Farrell and Barth, 1999; Bekir, 2007; Grewal et al., 2007; 

Farrell, 2008; Groves, 2008; Aggarwal et al., 2010). 
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2.3. Deficiencies of Typical POS 

The navigation and mapping data collected by a MMS are time synchronised for DG 

which is performed by a series of coordinate frame transformations. The mapping 

data, such as images and/or LiDAR points or profiles, is recorded in the sensor frame 

(a localised coordinate frame for quantifying the spatial measurements) and then 

transformed into the body frame (a localised coordinate frame for a collection of 

measurements) with pre-calibrated sensor offsets and rotations. Then comes the 

transformation between the body frame and the reference mapping frame (a global 

coordinate frame for representing the data) which is defined and maintained by the 

POS. Consequently, the mapping data is directly georeferenced from the sensor 

frame to the mapping frame through a series of transformations (Schwarz and El-

Sheimy, 2004; El-Sheimy, 2005; El-Sheimy, 2008) of the form shown in eqn. 2.3. 

��� = ������ + ������������� + ���� (2.3) 

 

where ���  is the measurement vector expressed in the mapping frame; ������ and 

������  are the time-varying translation and rotation for transforming the 

measurement from the body frame to the mapping frame respectively, which are 

maintained by the POS; ��� is the rotation transforming the measurement vector ��� 

from the sensor frame to the body frame; ��� is the offset of sensor with respect to the 

body frame. 

2.3.1. Edge of Data Accuracy 

According to the DG equation (eqn. 2.3), the mapping data is transformed into the 

mapping frame through the position and attitude estimated from the POS. The 
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absolute data accuracy is therefore constrained by the mapping accuracy and 

georeferencing accuracy. 

Photogrammetric measurement is a primary mapping data source for land-based 

MMS, which has been recently improved by image processing techniques and digital 

imaging technology in terms of sensor size, resolution and sensitivity. In addition, 

the overall mapping accuracy is further enhanced by LiDAR devices which provide 

direct point measurements with precision of millimetre to centimetre levels 

(Kaartinen et al., 2012). 

Numerous studies of georeferencing accuracy have indicated that MMS, in general, 

can achieve an accuracy of centimetre level under good GNSS conditions (Haala et 

al., 2008; Hyyppä, 2011; Kaartinen et al., 2012; Puente et al., 2013; Toschi et al., 

2015). However, under degraded GNSS conditions the georeferencing errors can 

accumulate and reach metre level (Haala et al., 2008). Accordingly, the overall 

accuracy of MMS is typically dominated by the performance of the navigation 

solution (Hassan et al., 2006a; Ussyshkin and Boba, 2008; Ussyshkin, 2009; Puente 

et al., 2011). 

2.3.2. GNSS Dependence 

During GNSS outage, the POS is maintained by pure inertial navigation with a 

minimum of external controls such as velocity measurement updates. When frequent 

or extended GNSS outages are expected, navigation-grade or tactical-grade IMUs 

may be required for configuring the POS. Such IMUs provide a short-term 

navigation accuracy of millimetre to centimetre levels within a period of a few 

minutes, but the long-term accuracy would rapidly degrade by the accumulated 

integration of sensor and navigation errors (Boavida et al., 2012). 
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Several integration techniques, including uncoupled, loosely coupled, tightly coupled 

and deeply or ultra-tightly coupled, which have been discussed by Farrell and Barth 

(1999), Titterton and Weston (2004), Grewal et al. (2007) and Groves (2008), are 

employed by various POS for improving the navigation accuracy under degraded 

GNSS conditions. The level of integration architecture, however, has no effect to the 

overall accuracy for total GNSS outage (Chu and Chiang, 2012). 

The accuracy of a POS depends greatly on the GNSS condition which causes 

uncertainty to the POS performance. In an underground or other GNSS-denied 

environment, a POS is actually an incomplete navigation solution. Alternative 

measures are required for controlling the growth of navigation errors, which are 

necessary for a POS to be developed into a GNSS-free solution. 

2.4. General Solutions to GNSS-denied Environment 

The loss of data accuracy due to GNSS outage is critical to the operation of a typical 

POS. Several solutions have been introduced to overcome the problems and are 

concisely summarised by Hung et al. (2015). In the case of a GNSS-denied 

environment, some of the measures which may be employed are reviewed and 

discussed for formulating the strategies of a GNSS-free navigation and 

georeferencing solution. Six of them are outlined in the following sections. 

2.4.1. Optimal Smoothing Algorithm 

An optimal smoothing algorithm, such as backward smoothing, two-filter smoothing 

and Rauch-Tung-Striebel smoothing (Nassar and Schwarz, 2002; Nassar et al., 2005; 

Liu et al., 2010) is a post-mission technique widely used to estimate INS errors by 

combining and smoothing the forward and backward Kalman filter (Mostafa et al., 

2001; Thies, 2011; Chu and Chiang, 2012). 
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The smoothing is usually applied for bridging the gap of GNSS outage, which can 

halve the period of INS drift during the outage and reduce the position error by a 

factor of four (Groves, 2008). The data accuracy can be maintained at the sub-

decimetre level by combining with other methods for long periods of GNSS outage 

(Boavida et al., 2012). Figure 2.3 illustrates the effect of optimal smoothing with 

forward and backward Kalman filtering. 

 

Figure 2.3: Combined forward and backward Kalman Filter (Thies, 2011) 

The smoothing technique requires appropriate initialisation and finalisation which 

are typically realised by GNSS. In a GNSS-denied environment, this technique can 

bridge the gap between intermittent Coordinate Updates (CUPT) and improve the 

overall data accuracy. Since optimal smoothing is a post-processing technique, it 

cannot be applied for formulating a real-time navigation and georeferencing solution. 

2.4.2. Independent Velocity Updates 

For pure inertial navigation, position errors are accumulated from the double 

integration of acceleration errors, the integration of velocity errors, and the current 

position errors. To reduce the error accumulation, external sources of speed 

measurements are usually employed for Velocity Updates (VUPT). 
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For land-based applications, a POS is usually equipped with wheel-mounted 

odometers or Distance Measuring Indicators (DMI) to provide absolute speed 

measurement for VUPT and Zero Velocity Updates (ZUPT) (Schwarz and El-

Sheimy, 2004; El-Sheimy, 2005; Groves, 2008; Petrie, 2010; Hyyppä, 2011; Puente 

et al., 2011). An odometer or DMI is sufficient to reduce the accumulation of 

position and velocity errors and is irreplaceable for supporting the inertial navigation. 

Although the odometers and DMI can significantly control the velocity errors and 

vastly improve the growth of position errors through VUPT, the absolute position 

and attitude errors are still accumulated. 

2.4.3. Landmark Updates 

The Landmark Update (LMU) is an indirect spatial-referencing solution for 

correcting vehicle position via measurements to landmarks (Imanishi et al., 2011; 

Klein and Filin, 2011) extracted, identified and matched with control features from 

photogrammetric or LiDAR measurements. The quality of this solution depends on 

the control coordinate accuracy, the spatial measurements, and the LMU intervals. 

LMUs are widely employed for maintaining the overall data accuracy during GNSS 

outage, which is an implementation of CUPT for bounding the navigation errors 

through mapping data. The LMU approach is a potential georeferencing solution for 

GNSS-denied environment, however a significant investment in time and cost is 

usually required for control installation and/or independent survey. 

2.4.4. Photogrammetric Bridging 

Photogrammetric measurement is a conventional technique for reconstructing three-

dimensional data from two-dimensional images, which can be applied to bridge the 

spatial gap of GNSS outage through relative orientation (Bayoud et al., 2004; 
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Roncella et al., 2005; Hassan et al., 2006a; Hassan et al., 2006b). After system 

initialisation, the POS maintains the camera exterior orientation parameters (EOP) 

for direct georeferencing without ground controls via photogrammetric block 

triangulation (Tao, 2000; Grejner-Brzezinska, 2001; Ellum and El-Sheimy, 2002). 

Conversely, in the absence of a complete POS solution, photogrammetric bridging is 

capable of providing independent EOPs for INS error estimation during GNSS 

outage. 

As photogrammetric bridging is a vision-based solution which does not require 

additional survey to control features, it can be employed for bridging the gap 

between intermittent CUPTs. The overall georeferencing accuracy can be improved 

but is still diminished with time on account of its dead reckoning nature. Since this 

solution requires photographic measurement, the performance is further restricted by 

environmental conditions, including lighting (which is invariably very poor in 

tunnels) and vehicle speed. 

2.4.5. Localised Tunnel Projection 

Since an INS is usually capable of high precision within certain duration of time 

depending on the IMU quality, the relative precision within a segment of point cloud 

data is sufficiently high for describing the mapping object. In tunnel surveys, the 

tunnel geometry can serve as a nominal constraint for adjusting the navigation 

trajectory and localising the mapping data (Gonçalves et. al., 2012). Point cloud 

segmentation is done for independent trajectory adjustment with tunnel geometry, 

while the entire tunnel is divided into different sections for storage and analysis. 

The tunnel projection can facilitate the representation of relative measurement results, 

which is capable of operation in GNSS-denied railways. In accordance, this solution 
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provides a localised spatial-referencing such that the absolute data accuracy is not 

considered. The absolute position and accuracy, however, may be necessary for some 

applications. 

2.4.6. Simultaneous Localisation and Mapping 

The technique of Simultaneous Localisation and Mapping (SLAM) was firstly 

introduced in the 1980s and is currently adopted for real-time robotic and 

autonomous vehicle applications through simultaneously mapping the environment 

and refining the system's location from the mapping data (Bailey and Durrant-Whyte, 

2006; Durrant-Whyte and Bailey, 2006). 

The system localisation is usually maintained by a dead reckoning solution and 

supports the DG of mapping data, while any identifiable landmark would be 

extracted and matched with previous mapping data record for improving localisation. 

The performance of SLAM, however, depends greatly on the geometry of the 

mapping environment and the ability to form closed loops within the environment. 

An increasing amount of research has been applied to the development of MMS with 

SLAM processing for indoor or outdoor applications, with the performance of such 

systems demonstrated by Zhao et al. (2008), Suzuki et al. (2010), Elseberg et al. 

(2012), Elseberg et al. (2013), Zlot and Bosse (2014), Nüchter et al. (2015) and Tsai 

et al. (2015). However, the overall performance is restricted by various factors, such 

as the accuracy of localisation, the availability of landmarks, the landmark 

identification and matching algorithms. 

2.5. Direct Georeferencing in Underground Railways 

For railway applications, while the POS is usually configured with high performance 

inertial sensors to overcome the problems of intermittent GNSS signal degradation or 
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outage, the loss of data accuracy cannot be prevented from long-term GNSS outage. 

This is particularly significant for underground railways. Alternative control methods, 

such as system initialisation and alignment, GNSS-free close-loop adjustment, on-

site misalignment calibration, back-up solution for INS, GNSS replacement and 

navigation error control, are crucial considerations for a DG solution to underground 

railway environment. 

In view of that, mobile mapping technologies are seldom applied for daily and real-

time underground railway applications due to the need to post-process solutions thus 

hampering the potential development of MMS in railway systems. Whereas a 

number of commercial systems with high performance inertial sensor and specific 

processing software are designed for railways, a complete GNSS-free direct 

georeferencing solution for railways is currently not available. Formulating a 

solution to this problem will be extremely valuable to the management of 

underground railway systems and the provision of safe, reliable and efficient 

transportation services. 

2.6. Concept of Rail-bound Navigation 

The concept of RBN was introduced in Hung et al. (2015) as a DG and navigation 

solution for underground railway systems and forms the backbone of the URLS 

solution. 

In railway systems, train motion is normally bounded and constrained by the physical 

track, while train localisation is conventionally reduced to and maintained by one-

dimensional distance relative to the track alignment. Through a generalised TAP 

solution, the attitude as well as the position of the train can be retrieved, while their 

errors are generally bounded. Accordingly, the TAP solution is considered to be an 
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alternative to the use of GNSS, and when integrated with an INS forms the primary 

architecture of RBN. 

Hung et al. (2015) present a generic architecture for and outlines several issues 

related to the development of an URLS system. Figure 2.4 illustrates the architecture 

and the core components of the URLS and identifies five key research directions: (1) 

speed data fusion; (2) RBN; (3) indirect trajectory refinement; (4) position updates 

through trackside landmark correlation; and (5) precise stationary positioning. 

 

Figure 2.4: Underground Railway Laser Scanning (Hung et al., 2015) 

While the RBN is primarily considered for establishing the DG solution of a URLS 

system, it can also operate as an independent and self-contained system for train 

navigation. In addition, other potential railway applications such as precise train 

speed measurement, train control and motion monitoring, and train operation record, 

are valuable for aiding the development of advanced train control systems. 

Consequently, the development and analysis of RBN solution constitute the research 

direction of this thesis, which will be elaborated in Chapter 3 (track alignment 

positioning) and Chapter 4 (rail-bound navigation). 



 

23 

Chapter 3:  Track Alignment Positioning 

In the previous chapter, the fundamentals and deficiencies of general DG solution 

were reviewed, and an alternative DG solution in railway environment, rail-bound 

navigation, was introduced. Prior to the establishment of solution, the basis of TAP is 

presented and discussed in this chapter. 

To facilitate the RBN development, an overview of TAP is firstly presented. This is 

then followed by the formulation of essential components, including horizontal and 

vertical alignment models, after which the necessary assumptions and considerations 

are discussed and summarised for further implementation. 

3.1. Overview of Track Alignment Positioning 

In railway environments, train localisation is conventionally reduced to one-

dimensional navigation with the rail track alignment and denoted by chainage. The 

chainage, or station, is the horizontal distance referenced to a specific point along a 

continuous alignment. Through the track geometry, the three-dimensional position of 

the point can be retrieved from the chainage and the track alignment data. 

The TAP process is a generalised computation introduced to facilitate the extraction 

of three-dimensional position from the engineering track alignment data for 

positioning purposes. Figure 3.1 illustrates the overall structure of a TAP process. 

The chainage is externally determined to extract the sectional alignment parameters. 

The parameters and relevant errors are defined for TAP implementation with 

generalised horizontal and vertical alignment functions. Consequently, the relevant 

position, attitude and standard errors are estimated from the TAP solution, which are 

utilised for the system initialisation and the error control of RBN. 
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Figure 3.1: Structure of track alignment positioning 

3.1.1. Track Alignment Geometry 

The track alignment geometry is a primary engineering component for track design, 

which is the centre line defined for the construction and maintenance of rail track 

position. In general, the track geometry is described by the horizontal and vertical 

alignments. 

A horizontal alignment is the continuous definition of the horizontal position of a 

railway line. It comprises interconnected sections of horizontal curves and straight 

lines. The curves are primarily defined by the radii of curvature and the transition 

lengths. The curve design parameters are usually considered with respect to the 

topography, train speed and safety criteria. The horizontal track geometry, including 

straights, circular curves and transition curves, is usually described by corresponding 

mathematical models and parameters. Consequently, the horizontal position of any 

point along the alignment can be retrieved. 

A vertical alignment is defined by the level and gradient which indicate the vertical 

position and the longitudinal slope of the track respectively. It can be parameterised 
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in several ways, such as parabolic function and vertical circular curve, to describe the 

level and gradient of any point along the track alignment. 

3.1.2. Track-level Frame 

A localised track-level frame (t-frame) is established to facilitate the TAP 

computation, which is a resolving frame centring at a point along the track alignment 

and oriented with the tangential heading of the track. Consequently, the 

transformation from the n-frame to the t-frame can be described by eqn. 3.1. 

���  = � cos #� sin #� 0− sin #� cos #� 00 0 1' (3.1) 

 

where #� is the track heading derived from TAP. 

This frame is primarily defined for resolving and georeferencing the local section of 

track geometry, which is also employed for resolving the navigation results relative 

to the track, including the train velocity and lateral train vibration. 

3.1.3. Track-body Alignment Frame 

In addition, a track-body alignment frame (a-frame) is introduced to describe the 

physical track body attitude with respect to the t-frame. This frame is established 

from the TAP derived attitude including the roll and pitch angles, which provides 

additional track attitude control from the t-frame. The transformation from the t-

frame to the a-frame is shown in eqn. 3.2. 

��( = �1 0 00 cos )� sin )�0 − sin )� cos )�' �cos �� 0 − sin ��0 1 0sin �� 0 cos �� ' (3.2) 

 

where )� and �� are the track roll and pitch angles derived from TAP. 
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An elementary condition for the INS/TAP integration is defined by the 

transformation between the sensor b-frame and the a-frame is expressed by a 

misalignment (eqn. 3.3), which will be further elaborated in chapter 5. 

��� = ����(� ��( (3.3) 

 

where ��( is the misalignment between the b-frame and the a-frame, which comprises 

constant and dynamic components. 

3.2. Chainage Estimation 

The horizontal chainage is a primary parameter required to retrieve the track 

geometry and position of a point, which is externally determined for acquiring the 

positioning results with TAP process. In a railway system, train localisation can be 

maintained by integrating speed measurements from tachometer and periodically 

initialised for position error control. 

The chainage can be determined from an initial value and one-dimensional 

displacement which is primarily integrated from the train speed measurement over 

time (eqn. 3.4). 

*��+� = *��,� + �- ∆� (3.4) 

 

where *��+� and *��,� are the horizontal chainages at time �+  and �,  respectively; 

∆� = �+ − �, is the sampling time interval; �- is the train speed measurement. 

For measurement data fusion, a Kalman filter can be applied to model the train 

motion, while the external measurements, such as chainage re-initialisation and 

speed data, can be utilised for measurement updates. The corresponding continuous-

time system model for one-dimensional train motion is presented in eqn. 3.5. 
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��/�/�/ ' = �0 1 00 0 10 0 0' 0���1 + �001' 2( (3.5) 

 

where � , �  and �  are the position or chainage * , velocity, and acceleration 

respectively; 2(is a zero-mean white noise random process. 

This system model assumes that the train acceleration is approximately constant and 

is governed by a random process. The change in acceleration is not modelled but 

estimated from periodic measurement updates, such as train speed measurement 

updates. The relevant issues and estimation errors are further discussed in section 

3.5.1. 

3.3. Horizontal Track Geometry 

The horizontal alignment mainly comprises straight and curve sections. Each section 

is defined by a reference station, described by its horizontal position and forward 

direction. The position of a point can be generalised into a function of chainage for 

the local position computation (eqn. 3.6), followed by a transformation of local 

position (eqn. 3.7). The position for the horizontal alignment is defined in grid 

coordinates which are usually expressed in a localised frame through map projection. 

�3,, 5,, #,, 6� , 7� , )�� = 8�*�� (3.6) 

 

where 8�∙�  is a function of horizontal alignment geometry; *�  is the chainage 

difference from the reference station to point :; 3,, 5, and #, are the grid northing, 

easting and tangential track heading at the reference station respectively; 6�, 7� and 

)� are the local coordinates and the intersection angle at point : (the angular change 

of heading at point i relative to the heading of reference station). 
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�3�5�#�' = �3,5,#,' + �cos #, − sin #, 0sin #, cos #, 00 0 1' �6�7�)�' (3.7) 

 

The horizontal grid coordinates (3�  and 5� ) are acquired from a two-dimensional 

transformation of local coordinates (6� and 7�) in the coordinate system defined with 

respect to the sectional reference station, while the tangential heading, #� , is 

propagated with the intersection angle, )�. 
Figure 3.2 shows the definition of point : in the alignment section with respect to the 

track-level coordinate system, which describes the transformation in eqn. 3.7. The 

parameters for the local track geometry, the transformed coordinates and the 

reference station coordinates are coloured in red, blue and green respectively. 

 

Figure 3.2: Definition of a point's horizontal position in a track alignment 

The local coordinates and intersection angle at a point is derived from the horizontal 

track geometry, including spiral and circular sections. For straight lines, 6� refers to 

the horizontal length which is the chainage difference from the reference station, 

while 7�  and )�  are assumed to be zero values. The partial derivatives of the 

functional model given in eqn. 3.7 are derived for error propagation, which are 

expressed in eqn. 3.8. 
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�;3�;5�;#�' = �1 0 −7� cos #, − 6� sin #,0 1 −7� sin #, + 6� cos #,0 0 1 ' �;3,;5,;#,' + �cos #, − sin #, 0sin #, cos #, 00 0 1' �;6�;7�;)�' (3.8) 

 

For railway track alignment, horizontal curves can be grouped into four types 

(Ponnuswamy, 2012): circular curve; compound curve; reverse curve; and transition 

curve. The last three are grouped into a class known as transition curves. The 

geometries of these two classes are outlined in the following sections. 

3.3.1. Circular Curve 

For the design of a track alignment, a circular curve (or simple curve) constitutes the 

fundamental horizontal curve, which is defined by a constant radius of curvature. To 

maximise a train’s operational safety, circular curves are designed with relatively 

large radii according to the design speed of the alignment. 

A circular curve converges at a centre defined by a radius along the 7 axis of the 

track-level frame which is established at the sectional reference station. Figure 3.3 

shows the definition of a point on a circular curve with respect to the various 

coordinate systems. The corresponding parameters are coloured with the same 

convention described in Figure 3.2. 
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Figure 3.3: Definition of a point's horizontal position on a circular curve 

The local coordinates and the intersection angle at point : are derived from the radius 

of curvature and the arc length which is the chainage difference from the reference 

station. The functional model for a circular curve is described by eqn. 3.9, while the 

sign of radius (positive or negative) determines the side of the curve (right or left). 

�6�7�)�' =
<=
==
=>2 @A, sin )�2 B @sin )�2 B
2 @A, sin )�2 B @sin )�2 B*�A, CD

DD
DE
  

 =
<==
===
> A, sin *�A,A, − A, cos *�A,*�A, CDD

DDD
E
 (3.9) 

 

where A, is the radius of curvature defined at the sectional reference station. 
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Eqn. 3.9 indicates the functional model to determine the local coordinates and 

intersection angle which are linearised with respect to the chainage and track 

parameters in eqn. 3.10. 

�;6�;7�;)�' =
<==
===
>cos *�A, sin *�A, − *�A, cos *�A, 0
sin *�A, 1 − cos *�A, − *�A, sin *�A, 01A, − *�A,F 0CDD

DDD
E

�;*�;A,;*,' (3.10) 

 

where *, is the horizontal length of the sectional reference station. 

The linearised functional relationship between horizontal position and tangential 

track heading at point : and the principal parameters for the circular curve definition 

can be derived by substituting eqn. 3.10 into eqn. 3.8. 

3.3.2. Transition Curve 

In addition to circular curve, a transition curve is introduced to the track alignment 

with the consideration of train safety and passenger comfort in railway. A train is 

subjected to a centrifugal force when moving over a curve track section. The 

centrifugal force is directly proportional to the weight and square of velocity and is 

inversely proportional to the radius of curvature, which is shown in eqn. 3.11. The 

train motion would cause discomfort to occupants and increase the load of train axles 

and rail track when entering into or leaving from sections with different radii or 

between straight and curve sections. 

GH = I�FA  (3.11) 

 

where GJ is the centrifugal force, I is the mass of train, � is the train velocity, A is 

the radius of curvature. 
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The purpose of the transition curve is to provide a consistent change of centrifugal 

acceleration as the train enters or leaves sections with different radii of curvature. In 

general, a transition curve can be defined by a spiral curve, a cubic parabola, or 

Bernoulli's lemniscate (Ponnuswamy, 2012) with the spiral curve commonly adopted 

for transition curve design. It is fundamentally defined as a linear change of 

curvature from infinite to definite radii with the condition stated in eqn. 3.12.  

K = A�*�  

 = A,*, (3.12) 

 

where K is a constant for curve design. 

The clothoid spiral has its curvature increasing with distance from the origin. A point 

on the defined curve can be expressed in Cartesian coordinates through Fresnel 

integrals (Kiencke and Nielsen, 2000) which can be approximated by the power 

series expansion of cosine and sine integration. The coordinates and spiral 

intersection angle are defined in eqn. 3.13. Since the first order expansion is 

sufficiently accurate for the approximation, the higher order terms are removed for 

simplicity. The functional model is linearised into eqn. 3.14. 

�6�7�)�' =
<==
===
=> L�−1�� *�M�N+�2O�! �4O + 1��2A,*,�F�

R
�S,L�−1�� *�M�NT�2O + 1�! �4O + 3��2A,*,�F�N+

R
�S, *�F2A,*, CDD

DDD
DE
  

 ≈
<==
===
> *� − *�W40�A,*,�F*�T6A,*, − *�Y336�A,*,�T*�F2A,*, CDD

DDD
E
 (3.13) 
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�;6�;7�;)�' =
<=
==
==
> 1 − *�M8 A,F*,F

*�W20 A,T*,F
*�W20 A,F*,T*�F2 A,*, − *�[48 A,T*,T − *�T6 A,F*, + *�Y112 A,M*,T − *�T6 A,*,F + *�Y112 A,T*,M*�A,*, − *�F2 A,F*, − *�F2 A,*,F CD

DD
DD
E

�;*�;A,;*,' (3.14) 

 

The linearised functional relationship between horizontal position and tangential 

heading at point :  and the principal parameters for the spiral curve definition is 

derived by substituting eqn. 3.14 into eqn. 3.8. 

3.3.3. Rail Cant: Roll Angle 

For a curve section, the centrifugal force of a train, which has been quantified in eqn. 

3.11, is inversely proportional to the radius of curvature. Therefore, the inner wheels 

of the train would experience a greater magnitude of centrifugal force than that of the 

outer wheels. To maintain the railway safety, cant, or superelevation, is a vital 

element of a track alignment and characterised by a height difference between the 

inner and outer rails. It introduces an additional overturning force to compensate for 

the excessive centrifugal force, which minimises the risk of derailment or train 

overturn on a curved section as illustrated in Figure 3.4. 

 

Figure 3.4: The rail cant and centrifugal force (Cant deficiency, n.d.) 
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Through the rail cant, an excessive centrifugal force is resolved from the weight of 

train, which compensates the difference of forces against the inner and outer rails. In 

general, the cant value is designed with the average train speed and radius of 

curvature. However, this is not the purpose of RBN implementation such that the 

cant values obtained from the track alignment data is accepted for TAP computation. 

From the track alignment, a constant cant is derived for a circular section and a zero 

cant is assigned to a straight section or curve with large radius at low train speed. 

Since the spiral curve maintains a consistent change of centrifugal acceleration, the 

cant within a spiral section can be linearly interpolated from the neighbouring 

sections. The interpolation of cant and its error equation are derived in eqn. 3.15 and 

eqn. 3.16 respectively. 

J� = J0 + �J1 − J0� *:*0 (3.15) 

 

where J� is the height difference between inner and outer rails at point :, J, and J+ 

are the cants of previous and next sections respectively. 

;J�  = 0�J+ − J,�*,
−*��J+ − J,�*,F

*, − *�*,
*�*,1 \;*�;*,;J,;J+

] (3.16) 

 

While the rail cant is typically defined as a height difference between rail tracks, it 

can be alternatively expressed as an angular value as shown in eqn. 3.17. 

�H = sin^+ J�2 (3.17) 

 

where �H is the angular value of rail cant, which represents the roll angle of the rail 

track (and must be taken into account in RBN); 2 is the standard width of the rail 

track. The error equation of the roll angle is derived in eqn. 3.18. 
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;�H = 1_2F − J�F 0�J+ − J,�*,
−*��J+ − J,�*,F

*, − *�*,
*�*,1 \;*�;*,;J,;J+

] + −J�2_2F − J�F  ;2 (3.18) 

 

3.4. Vertical Track Geometry 

Whereas the horizontal alignment is defined by the sections of straights, spirals, and 

circular curves on account of safety and comfort, the vertical alignment is relatively 

less complicated. Vertical alignment is primarily defined by the reference stations 

with height and gradient, which are connected by vertical curves with constant rate 

of gradient change. Therefore, vertical alignment can be defined by a series of 

circular curves with constant radii of curvature, which can be simplified into a 

parabolic function. 

3.4.1. Parabolic Function 

The vertical curves can be expressed by parabolic functions or second-order 

polynomial, which are applied for generalising the vertical curve modelling through 

eqn. 3.19. 

7 = �F6F + �+6 + �, (3.19) 

 

where 6 refers to the horizontal chainage difference; 7 is the height at a point given 

by 6. Regarding eqn. 3.19, the coefficients of the parabolic function can be directly 

derived from its derivatives and the vertical curve parameters through eqn. 3.20. 

`7|bS,c7 c6⁄ |bS,cF7 c6F⁄ e = � �,�+2�F'  

 = � ℎ,g,�g+ − g,� *,⁄ ' (3.20) 
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where ℎ, is the height defined at the reference station; g, and g+ are the gradients 

defined at the neighbouring reference stations. The constant vertical offset �, is the 

height at the reference station 6 = 0; The rate �+ is defined by the gradient at the 

reference station 6 = 0. In addition, the second derivative of 7  with respect to 6 

corresponds to the rate of gradient which is expressed by the change of gradients 

over horizontal length. 

3.4.2. Height and Gradient 

From the parabolic definition, the height and gradient at a given chainage are 

generalised into eqn. 3.21 with the corresponding error equations expressed in eqn. 

3.22. 

hℎ�g�i = \@g+ − g,2*, B *�F + g,*� + ℎ,
@g+ − g,*, B *� + g, ] (3.21) 

 

where ℎ� and g� are the height and gradient derived at point :. 
h;ℎ�;g�i =

<==
=>@g+ − g,*, B *� + g, jg, − g+2*,F k *�F 2*,*� − *�F2*,

*�F2*, 1g+ − g,*, jg, − g+*,F k *� *, − *�*,
*�*, 0CDD

DE
<==
=>;*�;*,;g,;g+;ℎ,CDD

DE
 (3.22) 

 

3.4.3. Rail Gradient: Pitch Angle 

A typical track alignment generally characterises the gradient by the height 

difference over a unit distance. Alternatively, the gradient can be expressed in 

angular units through eqn. 3.23. 

�l = tan^+ g� (3.23) 
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where �l is the angular gradient, which represents the pitch angle of the rail track. 

The linear error equation of the angular gradient is illustrated in eqn. 3.24. 

;�l = 11 + g�F 0g+ − g,*, jg, − g+*,F k *� *, − *�*,
*�*, 01

<==
=>;*�;*,;g,;g+;ℎ,CDD

DE
 (3.24) 

 

3.5. Summary and Preliminary Discussion 

The horizontal and vertical alignments constitute the basis of TAP which comprises a 

series of functions of chainage and alignment parameters. The grid position 

�5� 3� ℎ�� and attitude ��H �l #�� at any point along the track centre line can 

be retrieved for RBN implementation. Although the TAP solution is theoretically 

available for supporting the nominal position and attitude of a train, several practical 

issues are considered prior to implementation and integration with INS. 

3.5.1. Deficiency of Chainage Estimation 

Accurate chainage estimation is fundamental to extract accurate TAP results. In 

section 3.2, a Kalman filter approach is introduced to model the one-dimensional 

train motion, which is periodically updated by chainage re-initialisation or speed 

measurement. 

Typical speed data obtained from a tachometer corresponds to three-dimensional 

train motion, which is integrated into overestimated chainage on account of 

unresolved vertical motion. The definition of a-frame provides an alternative solution 

to resolve the speed into horizontal and vertical components. From an integrated 

INS/TAP solution, the velocity is primarily resolved into horizontal and vertical 

components through the mechanisation in the navigation frame. Therefore, the 
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chainage can be integrated directly from the horizontal displacement from the 

navigation results. The chainage update methods for RBN implementation and 

relevant problems are discussed in Chapter 4. 

3.5.2. Longitudinal Uncertainty 

Through the pre-defined track alignment data, the TAP results provide a lateral 

constraint to the RBN solution, while the longitudinal errors require additional 

awareness. Through interacting with the train control system, alternative speed and 

position data are advocated to retain a direct longitudinal error control. 

According to the preliminary RBN results of Hung et. al. (2016), the longitudinal 

position errors would introduce further impacts, such as attitude errors, to the overall 

navigation performance since the TAP results are determined from the chainage. 

Regarding a highly dynamic environment, the track attitudes change rapidly at small 

curves implying that a small chainage error would introduce considerable track 

attitude errors. Therefore, the additional impacts of longitudinal errors are directly 

proportional to the dynamics of track. In railway environment, the variation of track 

attitude is relatively small to maintain the train safety. The attitude error control is 

therefore presumed to be accurate to some extent. The actual impacts of chainage 

errors regarding the track attitudes would be further analysed in Chapter 5. 

3.5.3. Track Data Uncertainty 

The track geometry is defined by track parameters from engineering design or as-

built record, which do not exactly describe the physical track conditions on account 

of track defects and periodic track maintenance. In addition, a train would not 

completely follow the physical track due to the effects of vibrations, centrifugal 

forces, and suspension systems. The reduced track data solely provides a nominal 
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reference for train positioning. The physical track defect and train motion remain 

doubtful. 

Hung et al. (2015) has introduced a dual-IMU architecture for handling the physical 

track defect and train motion by separate IMUs. The reference IMU maintains the 

position and attitude of the reference train axle, which is integrated with TAP and 

improves the physical track measurement from the track data. The physical track 

defect and train motion are therefore decomposed for improving the error control. 

In this thesis, the role of reference IMU is alternative replaced by appropriate 

stochastic control, which simplifies the hardware requirements and sensor error 

control. Further details are discussed in Chapter 4 for RBN system design and 

implementation. 
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Chapter 4:  Rail-bound Navigation 

In Chapters 3, the fundamentals of TAP was introduced and its role in the design of a 

RBN solution was outlined. 

In this chapter, the definitions of coordinate frames and mathematical preliminaries 

are firstly summarised to facilitate the mathematical representation in later sections. 

The structure of RBN is then introduced and followed by the essential components 

such as system initialisation, chainage updates, constant and dynamic misalignment 

control, and the navigation error control. Prior to the system implementation, 

preliminary assumptions and practical issues are discussed. 

4.1. General Coordinate Frames 

The RBN solution quantifies the physical motion (position and attitude) through the 

maintenance of coordinate frames and their relationships. In general, several 

coordinate frames, including the body frame, the Earth frame and the navigation 

frame, are involved in the mechanisation of an INS for RBN implementation. 

4.1.1. Body Frame 

The body frame (b-frame), or the vehicle frame, is an orthogonal coordinate frame 

fixed to the body of carrier vehicle and aligned with its roll, pitch and yaw (or 

heading) axes. For simplicity, the x, y and z axes are usually established by and 

coincident with the IMU sensor axes, thus the inertial motion, such as linear 

accelerations and angular velocities, are measured in this frame. In addition, the body 

frame is an essential representation for an INS that the position and attitude of the 

reference object is described through the transformation between the body frame and 

another reference coordinate frame. 
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4.1.2. Inertial Frame 

The inertial frame (i-frame) or the Earth-Centred Inertial (ECI) frame is a stationary 

coordinate frame fixed to the stars, which is centred to Earth and has its z axis 

coincident with Earth’s polar axis. The i-frame is a reference frame in which 

Newton’s Laws of Motion are valid, so it is essential to an INS that the inertial 

motions are defined and sensed relative to this frame. 

4.1.3. Earth Frame 

The Earth frame (e-frame), or the Earth-centred Earth-fixed (ECEF) frame, is a 

global coordinate frame centred to Earth and employed for near-Earth applications. 

Figure 4.1 illustrates the axis definition of the e-frame relative to the Earth model. 

The z axis (Ze) is coincident with the polar axis and is positive in the direction of the 

North Pole; the x axis (Xe) intersects at the Greenwich meridian and the equatorial 

plane; and the y axis (Ye) is defined in the equatorial plane and orthogonal to the x-z 

plane. 

 

Figure 4.1: ECEF and local-level NED coordinate systems (Cai et al., 2011) 
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4.1.4. Navigation Frame 

The navigation frame (n-frame), or the local-level frame, is a local geographic 

coordinate frame centred to the body position relative to Earth's surface. For north-

east-down (NED) axes implementation, the x-y plane is tangent to the ellipsoidal 

surface of the Earth model with the x axis (o�) and y axis (p�) pointing to the north 

and east directions respectively, while the z axis (Zn) is normal to the ellipsoidal 

surface and points downward as shown in Figure 4.1. In this frame, the position is 

usually expressed in curvilinear coordinates (latitude, longitude and height) relative 

to an Earth model. 

4.1.5. Relationships between Coordinate Frames 

An INS usually represents the navigation results relative to the e-frame or the n-

frame for land-based applications. The navigation results, such as position, velocity 

and attitude, describe the transformation of the body frame relative to a reference 

frame at a given epoch. The relationship between the b-frame and the reference 

frame is established through initialisation process and is maintained by the inertial 

motion sensed in the b-frame relative to the stationary i-frame that constituting the 

foundation of inertial navigation. 

The e-frame is a non-stationary frame describing the physical Earth, which rotates at 

a constant rotation rate about the z axis relative to the inertial frame. The relationship 

between the e-frame and the i-frame can be described by a transformation given in 

eqn. 4.1 (Noureldin et al., 2013). Accordingly, the mechanisation equations of INS in 

the e-frame involves a compensation of Earth rotation rate between the e-frame and 

the i-frame. 
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��q = � cos �q∆r sin �q∆r 0− sin �q∆r cos �q∆r 00 0 1' (4.1) 

 

where ��q  is the transformation from the i-frame to the e-frame; �q  is the Earth 

rotation rate; ∆r is the time difference from the initial epoch when the e-frame aligns 

with the i-frame. 

Since the n-frame is locally defined by the global position which is referenced to the 

e-frame, the transformation between the e-frame and the n-frame (eqn. 4.2) can be 

established by a series of transformation with latitude and longitude through the 

relationship illustrated in Figure 4.1. 

�q� = �− sin s 0 cos s0 1 0− cos s 0 − sin s' � cos t sin t 0− sin t cos t 00 0 1'  

 = �− sin s cos t − sin s sin t cos s− sin t cos t 0− cos s cos t − cos s sin t − sin s' (4.2) 

 

where �q�  is the transformation from the e-frame to the n-frame; s  and t  are the 

latitude and longitude respectively. 

The mechanisation of INS in the n-frame therefore involves a further compensation 

of a turn rate (or transport rate) of the n-frame relative to the e-frame. The turn rate is 

governed by the change in global position as derived in eqn. 4.3. 

uq��  = h �qvw + ℎ − ��vx + ℎ − �q�vw + ℎ� cos s sin si  

 = yt/ cos s −s/ −t/ sin sz (4.3) 

 

where uq��  is the turn rate of the n-frame relative to the e-frame, which is represented 

in the n-frame; �� and �q are the Earth-relative velocity in north and east directions 

respectively; vx and vw are the radii of curvature in the direction of meridian and 
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prime vertical respectively Grewal et al. (2007); ℎ  is the height; s/ = {|}~N�  and 

t/ = {��}�N�� ��� � are the rate of changes in latitude and longitude respectively. 

An INS is usually mechanised in the n-frame because this coordinate frame provides 

resolving axes in horizontal and vertical for more convenient representation and 

interaction. However, it is well-known that a singularity problem exists for near-pole 

navigation. An alternative coordinate frame, the Wander-Azimuth frame, is broadly 

suggested for resolving the heading from the navigation frame with an additional 

Wander angle to maintain the computation stability (Titterton and Weston, 2004; 

Bekir, 2007; Groves, 2008). 

4.2. Mathematical Preliminaries 

The convention of mathematical equations and symbols involved throughout this 

thesis are summarised in this section, which aims at enhancing the readability and 

understanding of corresponding mathematical representations. 

4.2.1. General Transformation and its Representation 

In this thesis, the angular relationship between two coordinate frames is represented 

by a rotation matrix ��� which indicates a transformation from the p-frame to the q-

frame. For three-dimensional space, the rotation matrix comprises three rotations 

with respect to the three orthogonal axes (x, y and z axes) which can be multiplied in 

different sequences. 

The convention of Euler rotation sequence x-y-z is accepted for the computation in 

this thesis. The formulation of a transformation matrix from the b-frame to the n-

frame is illustrated in eqn. 4.4 which is derived for the n-frame n-e-d axes 

corresponding to the b-frame x-y-z axes (or r-p-h axes). 
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��� = �cos # − sin # 0sin # cos # 00 0 1' � cos � 0 sin �0 1 0− sin � 0 cos �' �1 0 00 cos ) − sin )0 sin ) cos ) '  

 = �cos � cos # − cos ) sin # + sin ) sin � cos # sin ) sin # + cos ) sin � coscos � sin # cos ) cos # + sin ) sin � sin # − sin ) cos # + cos ) sin � sin− sin � sin ) cos � cos ) cos � (4.4) 

 

where ��� is a direction cosine matrix (DCM) regarding the transformation from the 

b-frame to the n-frame; ) , �  and #  are the Euler rotation angles roll, pitch and 

heading respectively. For small rotation angles, the DCM can be reduced to the form 

of eqn. 4.5 through the approximations of sine and cosine functions. 

��� ≈ � 1 −# �# 1 −)−� ) 1 '  

 = �1 0 00 1 00 0 1' − � 0 # −�−# 0 )� −) 0 '  

 = � − � (4.5) 

 

where � is the skew-symmetric matrix for small Euler angles −), −� and −#. In 

addition, it indicates that the order of rotation can be neglected for small angle 

approximation, which is a valid assumption for the implementation of inertial 

navigation due to high update rates. 

The rotation matrix can be parameterised by different methods, including DCM, 

quaternion, rotation vector and Euler angles which involves corresponding problems 

(Titterton and Weston, 2004; Bekir, 2007; Grewal et al., 2007; Farrell, 2008; 

Noureldin et al., 2013). Although the quaternion method is generally considered as 

the most effective way for parameterisation and integration of rotation matrices, the 

attitude representation and relevant equations are expressed with the form of DCM to 

maintain the overall readability. 
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4.2.2. Curvilinear Transformation 

The n-frame mechanisation of an INS usually represents the position in curvilinear 

coordinates (latitude, longitude and height), while the changes in position, velocity 

and attitude are expressed with respect to, for example, n-e-d axes. Accordingly, a 

transformation, which is illustrated in eqn. 4.6, is required to convert linear values, 

such as displacement and velocity, into a curvilinear coordinate system for position 

integration. 

� =
<==
=> 1vx + ℎ 0 0

0 1�vw + ℎ� cos s 00 0 −1CDD
DE
 (4.6) 

 

where � is the transformation of the linear magnitude from n-e-d resolving axes to 

the curvilinear magnitude. 

4.2.3. Gravity Model 

The navigation solution of an INS is primarily maintained by the linear displacement 

and angular rotation integrated from the inertial acceleration and angular velocity 

respectively. The accelerometers, however, also sense Earth’s gravity acceleration, 

which requires appropriate gravity compensation. In this thesis, a World Geodetic 

System (WGS) 84 ellipsoidal gravity model, which is known as the Somigliana 

model (Groves, 2013), is applied to estimate the normal gravity acceleration at given 

latitude and height (eqn. 4.7). 

g, = gq 0 1 + K sinF s_1 − �F sinF s1 (4.7) 
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where g,  is the normal gravity acceleration; gq = 9.7803253359 ms^F  is the 

normal gravity constant; K = 0.001931853  is a formula constant; �  is the 

eccentricity of the Earth model. The normal gravity acceleration, which is modelled 

at the ellipsoidal surface, is further corrected with the height through eqn. 4.8 

(Groves, 2013): 

g = g, �1 − 2v, 01 + 8�1 − 2 sinF s� + �qF v,Fv+� 1 ℎ + 3v,F ℎF� (4.8) 

 

where g is the magnitude of gravity acceleration; v, and v+ are the semi-major and 

semi-minor axes of the Earth model; � = 3.98604418 × 10+MIT�^F  is Earth's 

gravitational constant. 

4.2.4. Specific Notations 

For the mechanisation of an INS, the relationships, such as acceleration and rotation, 

of one frame relative to another frame require appropriate representation. For 

example, the angular velocity u��q , describes the rate of rotation of the b-frame 

relative to the i-frame, which is expressed in the e-frame. In addition, the skew-

symmetric representation of u��q  is given by ���q . 

The vector of angular velocity can be transformed from one frame to another frame 

by multiplying a corresponding rotation matrix to the vector. Eqn. 4.9 illustrated a 

transformation of u��q  from the Earth frame to the navigation frame, while the 

transformation for the skew-symmetric form of the vector is given in Eqn. 4.10. 

u���  = �q�u��q  (4.9) 

 

����  = �q����q ��q  (4.10) 
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The convention of notation (subscript and superscript) is also applied to the 

representation of accelerometer measurement ����  that describes the acceleration of 

the b-frame relative to the i-frame which expressed in the b-frame. 

4.2.5. General Notations for Vectors and Matrices 

In this thesis, a vector, such as position, velocity and gravity, is generally depicted in 

bold lowercase letter, while a matrix is represented by bold uppercase letter. Any 

superscript indicates the coordinate frame in which the vector is given. 

For simplicity, specific meanings are represented by assigning relevant accents or 

symbols to the vectors or matrices. For examples, �/ , ;�, �� , and ��  are generally 

referred to the time derivative, error, measurement, and estimate of � respectively, 

while other accents or symbols are involved if necessary. In addition, the subscript of 

a symbol is retained for specific purposes with individual explanations. 

4.3. Overview of Rail-bound Navigation 

In railway environment, TAP is suggested in this thesis to directly replace the role of 

GNSS with the track constraints. Through the INS/TAP integration, the RBN 

solution is established to measure the train dynamics and overcome the problems of 

navigation uncertainties by alternative measures. To facilitate RBN development, the 

measures to potential error control problems are firstly summarised in this section. 

4.3.1. INS/TAP Integration 

To retain the system generality, the typical navigation system and error models are 

adopted for the mechanisation of INS in this thesis (refers to Appendix 1). The 

INS/TAP integration is initially established by an EKF through a loosely coupled 

configuration. Figure 4.2 illustrates the structure of INS/TAP integration that the INS 
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and TAP are processed in series through the chainage updates. Both the INS and 

TAP navigation results are passed to the filter to estimate the navigation and sensor 

errors which then feedback to the INS. 

 

Figure 4.2: INS/TAP integration through an extended Kalman filter 

The loosely coupled configuration is suggested to simplify the relationship between 

INS and TAP processes, which provides a practical solution to analyse the overall 

performance and discover any potential problem. In addition, the loosely coupled 

configuration also facilitate further development by maintaining the individual 

integrity of both the INS and TAP components. Tightly coupled configuration is 

therefore not recommended in this thesis. 

4.3.2. Rail-bound Navigation Structure 

The RBN solution is the implementation of a navigation system established from the 

fundamental INS/TAP integration, which consists of a series of error control in 

addition to the INS/TAP integration. This solution is primarily designed for 

maximising the ability of an INS with loosened hardware requirements. Additional 

measures are involved to resolve the practical issues and develop towards a 

comprehensive solution. 
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For a typical POS, the inertial sensors and GNSS receivers are installed at a rigid 

body that the lever-arm is considered constant. In contrast, the train body where the 

inertial sensors are attached at undergoes independent motion with the track 

reference through the flexible bogies. Consequently, the lever-arm and boresight 

misalignment between the INS and TAP results are not defined as constant. 

Alternative measures are necessary to further compensate and control the excessive 

discrepancies. In addition, the RBN solution requires further integration with the 

railway system. The relevant issues, including system initialisation and its transition, 

chainage maintenance, navigation error control and feedback, and system 

misalignment control, are individually discussed in later sections. 

Figure 4.3 illustrates an overview of RBN structure, which is modified from the 

preliminary configuration introduced by Hung et al. (2016). The system is initialised 

by an external chainage or position of reference. While the nominal position and 

attitude are determined through the TAP solution, the system roll and pitch are 

estimated by inertial measurements. The position, velocity, attitude and 

misalignment between the system body and track reference, are then initialised. 

 

Figure 4.3: An overview of rail-bound navigation structure 
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While the navigation system is maintained by high rate INS process, the chainage is 

propagated at a lower rate through direct or indirect methods which are discussed in 

section 4.5. In the meanwhile, the system is undergoing a transition phase, which 

requires a post-initialisation (fine alignment) for the refinement of constant 

misalignment. 

The RBN solution is basically a self-contained navigation solution that the 

navigation errors are continuously constrained by the TAP results. In addition, it is 

capable of utilising available sources of data, such as train control data, mapping data 

or interactive operational records for future development. 

4.4. Rail-bound Navigation Initialisation 

Through the TAP results, the initial position, velocity of navigation system can be 

directly determined from the chainage of reference, while the system alignment is 

performed by the accelerometer measurements. The constant misalignment between 

the TAP derived train attitudes and the INS derived system attitudes are also 

determined during the initialisation phase. 

4.4.1. Position and Velocity Initialisation 

The initial position of the system body can be estimated by the linear displacement 

relative to the track alignment reference, which is expressed in eqn. 4.11. 

��� = �(� + ��(��(�(  (4.11) 

 

where ��� is the position of the b-frame origin expressed in the n-frame; �(�  is the 

TAP derived position of track reference in the n-frame; �(�  is the TAP derived 

transformation from the a-frame to the n-frame, which is determined with the 
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reference chainage; �(�(  is the constant displacement of the b-frame relative to the a-

frame origin (the front bogie). 

For stationary initialisation, the initial velocity is simply zero in all axes. In case that 

the stationary initialisation period is insufficient, the system velocity errors, as well 

as position errors, would grow rapidly because of the poor system alignment. 

Regarding the rail-bound nature, any external speed data measured in the track 

direction can be applied for non-stationary velocity initialisation (eqn. 4.12). 

�-q��  = �(��-q�(  (4.12) 

 

where �-q�( = y�-b 0 0z� is the Earth-relative velocity defined in the a-frame; �-b is 

the one-dimensional velocity measured in the direction of track body. 

4.4.2. Track-to-Train Transition 

For the system alignment process, the roll and pitch angles are estimated through the 

self-levelling method, while the heading is approximated from the TAP derived track 

heading. However, the track heading and the train heading are slightly different on 

account of the track curvature and the rigidity of train car, which is simplified and 

illustrated in Figure 4.4. 

 

Figure 4.4: Heading difference between train body and track 
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The train heading, and also the roll and pitch angles, are generally bounded by the 

track attitudes derived at the front and rear bogies, which introduce additional 

transition effects to the train attitudes. Regarding the rail track linearity, the nominal 

train attitudes can be simply estimated from the average of the front and rear TAP 

results with negligible effect. From the reference chainage of the front bogies, the 

chainage at rear bogies can be approximated through eqn. 4.13. 

*� ≈ *� − 12 j2v� sin^+ ∆�2v� + 2v� sin^+ ∆�2v�k  

 = *� − v� sin^+ ∆�2v� − v� sin^+ ∆�2v� (4.13) 

 

where *� and *� are the chainage at rear and front bogies respectively; v� and v� are 

the radii of curvature estimated at rear and front bogies; and ∆�  is the constant 

separation between front and rear reference bogies. 

In eqn. 4.13, the chainage difference is approximated by the nature of circular curve. 

As the distance between bogies is sufficiently short with respect to the radii of the 

curve, the difference between spiral curve and circular curve is assumed negligible. 

Therefore, the chainage difference can be computed on a circular curve, which is 

estimated by the average with the radii at the front and rear bogies. In railway 

environment, the general curve radius exceeds 300I for safety issues such that the 

estimated correction to bogie separation is only millimetre-level at a bogie separation 

of 15I. As a result, the approximation of rear bogie chainage is sufficiently accurate. 

4.4.3. Train-to-Body Misalignment 

Through the estimated chainages at the front and rear reference bogies, the train 

attitudes can be determined from the TAP results. The attitude differences between 

the estimated train body (without dynamic motion) and the system body are 
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described by a misalignment term. Additional error terms are introduced to the 

transformation as illustrated in eqn. 4.14. 

��� = ����(� ��(  ;�������� = �(����(;���� (4.14) 

 

where ;���� is the attitude errors associating with ���� which is estimated from an INS; 

;���� is the misalignment matrix (or the dynamic misalignment matrix) associating 

with ���(  which is estimated from INS/TAP integration. To determine the constant 

misalignment, eqn. 4.14 is rearranged into eqn. 4.15, while the dynamic 

misalignment term is dropped for the stationary initialisation. 

���( ≈ ��(��� ;��������  

 = ��(;�������� (4.15) 

 

It presumes that the b-frame heading is aligned with the t-frame or a-frame heading. 

An additional heading misalignment is introduced and remains unsolved in the term 

;����  which is dropped in the stationary initialisation process. The heading 

misalignment is further estimated and compensated by further processes. 

4.5. RBN Chainage Updates 

Through the stationary initialisation, the train localisation is maintained by relevant 

chainage updating methods. In Chapter 3, a Kalman filter solution is suggested to 

model the one-dimensional train motion, which requires external data such as 

chainage or speed for navigation updates. For RBN, the chainage can be internally 

maintained by the INS, which are generalised into direct and indirect methods. 
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4.5.1. Direct Chainage Integration 

Since the navigation system is mechanised in the n-frame, the horizontal 

displacement is resolved from the navigation results at high-rate. Therefore, the 

chainage can be directly integrated from the INS navigation results (eqn. 4.16). 

*��+� = *��,� + _∆3 F + ∆5�F (4.16) 

 

where *��+� and *��,� are the horizontal chainages at time �+  and �,  respectively; 

∆3   and ∆5�  are the estimated horizontal displacement in northing and easting 

directions, which are estimated by the INS. The relevant error equation is linearised 

and represented in eqn. 4.17, which provides a measure for chainage error 

propagation through the INS process noise. 

;*��+� = 0 ∆3 _∆3 F + ∆5�F ∆5�_∆3 F + ∆5�F 11 ` ;∆3 ;∆5�;*��,�e (4.17) 

 

The direct chainage integration is derived from the INS process such that the 

covariance of ∆3  and ∆5� can be determined and transformed from the process noise 

covariance of the INS. For the implementation at lower rates, such as 10�� or lower, 

the chainage increment can be estimated from the summation of displacement over a 

period of time as illustrated in eqn. 4.18. 

*��¡� = *��,� + ¢�L ∆3 ��£�¡
£S+ 'F + �L ∆5���£�¡

£S+ 'F
  

 = *��,� + _∆3¤F + ∆5¥F (4.18) 
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where ∆3 ��£� and ∆5���£� are the horizontal displacement in northing and easting 

directions at time �£; ∆3¤ and ∆5¥  are the summation of horizontal displacement in 

north and east directions. 

4.5.2. Indirect Chainage Estimation 

An alternative chainage estimation is indirectly acquired through the TAP solution, 

which can be performed at a relatively lower rate (e.g. 2��). By neglecting the 

change of heading at the chainage update rate, the current TAP results, including the 

chainage, position and attitude, are initially employed to resolve the position 

difference into chainage difference at the track direction (eqn. 4.19). 

*��+� = *, + ycos #, sin #,z 03  − 3,5� − 5, 1 (4.19) 

 

where 3, , 5,  and #,  are the initial horizontal grid coordinates and track heading 

derived from TAP solution with initial chainage *,; 3  and 5� are the horizontal grid 

coordinates estimated from the INS. Regarding the misalignment error, the term #, 

is alternatively replaced by the INS derived heading #�  through the condition 

��� = �����(���(�� , which involves the covariance of the misalignment error. The 

corresponding error equation for indirect chainage estimation is derived and 

summarised in eqn. 4.20. 

;*� = ycos #� sin #� ∆5 cos #� − ∆3 sin #�z `;3 ;5�;#�e (4.20) 

 

where ∆3 = 3  − 3, and ∆5 = 5� − 5, are the grid coordinate differences. 
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The current chainage is updated for computing the track position and heading 

through the TAP solution. To minimise the approximation errors, an iterative process 

can be performed for low rate implementation as illustrated in Figure 4.5. 

 

Figure 4.5: Indirect chainage estimation procedures 

4.5.3. Potential Chainage Errors 

Since the TAP results are determined from the chainage, accurate chainage 

estimation is important to the RBN error control process. The direct and indirect 

chainage estimation methods, however, introduce relevant problems to their practical 

performance. 

The direct method is independent of the track alignment, which is applicable to large 

heading errors. The integrated chainage, however, is generally overestimated on 

account of the uncompensated lateral train motion. In contrast, the indirect method 

resolves the train displacement into longitudinal and lateral components with respect 

to the track alignment. The chainage is theoretically accurate for small heading 

misalignment, which would be underestimated regarding an inaccurate projection of 

horizontal displacement onto the track alignment for large heading error. 
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Since the direct and indirect methods are considered to be complementary, they can 

be integrated with the Kalman filter solution for chainage updates through 

appropriate weight control. The practical accuracy of chainage estimation, however, 

requires further optimisation such as relative weight control and heading 

misalignment correction. 

4.6. Fine Alignment for Rail-bound Navigation 

Following the stationary initialisation, the misalignment between TAP derived train 

heading and system heading is neglected, such that the integrated INS/TAP 

relationship is not completely established. Consequently, the fine alignment process 

is required to update the constant misalignment and accomplish full system 

initialisation. 

4.6.1. Constant Misalignment Approximation 

Since an extended Kalman filter is employed for the data fusion of the RBN 

implementation, the navigation errors are estimated from the differences between 

INS and TAP results through the correlation established from the system and 

stochastic model. The impact of undetermined heading error can be minimised by an 

additional heading uncertainty through the initial system and measurement 

covariance. 

Through the filtering process, the attitude correction is estimated from the integrated 

INS/TAP solution. The heading correction to the b-frame is resolved into the 

constant misalignment term by eqn. 4.5, while the dynamic misalignment is 

neglected until the fine alignment process is terminated. 
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4.6.2. Chainage Error Control 

During the fine alignment phase, the heading error is progressively compensated 

through the filtering process, which is primarily determined from the correlation 

established in the system model. The accuracy of chainage is therefore essential to 

sustain the correctness of navigation updates. 

In section 4.5, the direct and indirect methods are suggested for the chainage 

maintenance, which are considered to be complementary in nature. Accordingly, 

both methods can be integrated through the Kalman filter solution and compensated 

for their corresponding problems. Eqn. 4.21 illustrates a measurement model for 

chainage updates with multiple sources of chainage data. 

¦§ = �−1 0 0⋮ ⋮ ⋮−1 0 0' 0���1 + �§ (4.21) 

 

where ¦§ = `*�+ − �⋮*�� − �e  is the innovation of chainage measurement;  *��  is the input 

corresponding to the estimated chainage for source : = 1,2, … , O; �§ is a O × 1 vector 

of residuals with respect to *� ; �§ = �ª+F ⋯ 0⋮ ⋱ ⋮0 ⋯ ª�F'  is the covariance matrix 

describing the measurement noises. 

For the purposes of concept validation, it is assumed that the direct method is 

sufficiently accurate during the fine alignment phase. In contrast, the indirect method 

is not beneficial to the chainage estimation when the heading error is unknown. 

Therefore, the indirect method is removed during the fine alignment phase. 
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4.6.3. Adaptive Covariance Estimation 

The measurement updates of filtering process require appropriate estimation of 

process and measurement covariance. While the TAP derived results are partially 

dependent on the navigation system, the covariance estimation for position is invalid 

before finalising the heading misalignment estimation. The Innovation-based 

Adaptive Estimation (IAE) can be applied for alternative noise estimation through 

the innovation statistics (Groves, 2008). The innovation covariance can be estimated 

from the moving average of innovation of residual sequence (Almagbile et al., 2010) 

shown in eqn. 4.22. The TAP noise can then be derived from eqn. 4.23 with the 

estimated innovation covariance. 

�¦ = 1O L ;¦¡;¦¡�
�

¡S+  (4.22) 

 

where �¦  is the innovation covariance; O  is the number of data; ;¦¡  is the 

innovation at given epoch K. 

® = �¦ − ¯°b¯� (4.23) 

 

where ®  is the TAP estimated covariance; ¯  is the design matrix; °b  is the 

propagated state covariance. 

4.6.4. Transition of Fine Alignment Phase 

The transition of the fine alignment phase is determined by the condition of INS/TAP 

convergence with bounded navigation errors. Prior to the convergence, the INS and 

TAP are incorrectly integrated on account of the heading and chainage errors. 

Therefore, the transition of the fine alignment phase can be denoted by passing a 

hypothesis test with Student’s t distribution at a given confidence level ± . The 
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observed testing value is computed from eqn. 4.24. Given the conditions, �,: the 

navigation parameter is consistent with the TAP estimated precision, against �+: the 

navigation parameter is not consistent with the TAP estimated precision. 

r = ;¦¥ª √O⁄  (4.24) 

 

where r is the observed value for Student's t test; ;¦¥ = +� ∑ ;¦¡�¡S+  is the sampling 

innovation/residual; ª is the TAP derived standard deviation. 

In case of poorly initialised INS/TAP condition, the sampling innovation/residual 

would be significantly larger than the expected standard deviation, which rejects the 

null hypothesis in favour of the alternative. If the sampling innovation/residual is 

consistent with the TAP-estimated precision, the observed testing value would fall 

out the critical region defined by the relevant test statistic value. Consequently, the 

initialisation process is considered to be completed. 

It is expected that the sampling residuals would converge to a certain level after a 

period of time, while the TAP estimated covariance would progressively increase as 

shown in Figure 4.6. 

 

Figure 4.6: Expected characteristics of initial residual and covariance 
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While a large initial sampling residual is expected, the TAP estimated precision 

should be high enough to fail the null hypothesis. However, the actual results may 

not follow the expected outcome if the misalignment is not sufficiently large. In 

addition, the changes of position and attitude, as well as the magnitude of sampling 

residuals, would be small at low speed. It is highly possible that the fine alignment 

phase is immediately terminated at the beginning of the fine alignment phase. In 

addition, the actual curve of initial residuals may differ from the expectation, such 

that the hypothesis test is not always feasible. Alternatively, the transition of the fine 

alignment phase can be determined by a threshold of time, which is more practicable 

and reliable. 

4.7. Navigation Error Control 

After the system initialisation, the system navigation is primarily maintained by the 

INS process. To constrain the growth of navigation errors, the navigation error 

control is performed at a low rate (e.g. 2�� ), which is implemented by the 

measurement updates of Kalman filtering process. The measurement updates, 

including the coordinate updates, velocity updates and attitude updates, can be 

merely executed with the TAP results. 

4.7.1. Coordinate Updates 

The CUPT method is the fundamental solution to integrate the INS and TAP results. 

The relevant equation of position error is summarised in eqn. 4.25, which represents 

the innovation of the corresponding measurement model. The corresponding 

covariance of TAP estimated position is elaborated in eqn. 4.26 by assuming the 

error sources are independent. 

;´µ = �(� + ��(��(�( − �-��  
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 ≈ �(� + ��������(;�������(�( − �-��  

 = �(� + ����;�������(��(�( − �-�� (4.25) 

 

where ;´µ  is the innovation of position error; �-(�(  and ;�-(�(  are the estimated 

positional offset of the b-frame relative to the a-frame and its errors respectively. 

�¶·¸ = �(� + ����;�������(��(�(   ;�¶·¸ = �;�(� + ����¹��(��(�( º×;∆�� + ����;�������(�;�(��   

 ≈ �;�(� + ����¹�(�� º×;∆�� + ��(�;�(�(   °��¶·¸� = � h°��(�� + ���¹�(�� º×°�∆��� »���¹�(�� º×¼� + �(�°��(�( ��(��i ��  

 = � ½°��(�� + ���¹�(�� º×°�∆���¹��(� º×��� + �(�°��(�( ���(¾ � (4.26) 

 

where �¶·¸ is the TAP estimated system position; ¹��(��(�( º× = ¹�(�� º× is the skew-

symmetric matrix of �(�� ; ∆¿¿  is the vector of dynamic misalignment; °�∙�  is the 

covariance of corresponding elements. 

4.7.2. Velocity Updates 

In case that external speed, such as tachometer or train control data, is available for 

data fusion, VUPT can also be applied for measurement updates. The innovation of 

velocity error and the corresponding covariance are shown in eqn. 4.27 and eqn. 4.28 

respectively. 

;´À = �(� ��-b00 ' − �-Á� (4.27) 

 

where ;´À is the innovation of velocity error; �-b is the speed data; �-Á� is the Earth-

relative velocity predicted from the INS. 

�ÂÃÄ = �(� ��-b00 '  
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 ≈ ���;�������(��q�(   ;�ÂÃÄ = ���¹��(��q�( º×;∆�� + ���;�������(�;�q�(   

 ≈ ���¹�q�� º×;∆�� + �(�;�q�(   

°��ÂÃÄ� = ���¹�q�� º×°�∆��� »���¹�q�� º×¼� + �(�°��q�( ��(��
  

 = ���¹�q�� º×°�∆���¹��q� º×��� + �(�°��q�( ���( (4.28) 

 

where �ÂÃÄ is the estimated train velocity from reference data; �q�( = y�-b 0 0z� is 

the Earth-relative velocity defined in the a-frame; ¹��(��q�( º× = ¹�q�� º× is the skew-

symmetric matrix of �q�� . 

The RBN solution can perform an internal VUPT from the INS estimated velocity. 

The norm of velocity vector �-b = ‖�-Á�‖  represents the train speed in three-

dimensional space, while the TAP derived attitudes �(� provide a nominal constraint 

of rail-bound motion. It is noted that the performance of internal VUPT depends on 

the accuracy of roll and pitch angles so this approach may not provide sufficient 

improvement if the system is poorly levelled. 

4.7.3. Attitude Error Control 

One of the characteristics of RBN solution is that a direct attitude error control is 

available from the TAP results. The rail-bound nature would provide an additional 

constraint to the system attitude errors, as well as the accumulation of velocity and 

position errors, which is particularly critical to the navigation systems established by 

low-cost inertial sensors. The attitude errors which are elaborated in eqn. 4.14 can be 

rearranged as follows: 

;���� = ����(� ��(;�������� ≈  � − Ψ�  ¹;´Çº× = Ψ�  

 = � − ;����  

 ≈ � − �(����(;��������  (4.29) 
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where ¹;´Çº× is the skew matrix of attitude innovation; Ψ�  is the skew matrix of 

attitude errors È. The corresponding covariance of TAP estimated system attitudes is 

elaborated in eqn. 4.30. 

;∆�ÉÊ ≈ ;∆(� + �(����(;∆��  °�∆�ÉÊ� = °�∆(�� + �(����(°�∆�����(����(��
  

 ≈ °�∆(�� + ����°�∆������� (4.30) 

 

where ∆�ÉÊ is the vector of TAP estimated attitude errors.  

4.7.4. Measurement Error Models 

According to Groves (2008), the coupling of attitude errors and gyroscopic biases 

with the measurements through the lever arm are negligible. The measurement error 

model of position, velocity and attitude updates is therefore simplified as in eqn. 4.31. 

`;´µ;´{;´Çe = �−� Ë Ë Ë ËË −� Ë Ë ËË Ë −� Ë Ë'
<==
=> ;�;�È;��;u��� CDD

DE + `ÌµÌ{ÌÇe (4.31) 

 

where Ì� , Ì{  and ÌÇ  are the estimated uncertainties of position, velocity, and 

attitude errors respectively. 

The uncertainties of position, velocity and attitude errors are represented by the 

measurement covariance matrices elaborated in eqn. 4.26, eqn. 4.28, and eqn. 4.30 

respectively. The process of measurement updates can be found in Appendix 3. 

To minimise the attitude difference, the navigation system is configured with a 

closed-loop EKF solution where the navigation and sensor errors would feedback to 

the system state. The dynamic motion, however, may introduce excessive impacts to 
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the estimation of the sensor biases, as well as the navigation results, which require 

further modelling or compensation of dynamic misalignment. 

4.8. Dynamic Motion Control 

After the system initialisation and fine alignment, the navigation system is 

theoretically aligned with the track reference through the constant displacement and 

misalignment. The train motion, however, introduces dynamic displacement and 

misalignment that the overall performance may be diminished. 

The dynamic displacement is defined as the position errors between INS and TAP 

results resolved in the a-frame, while the dynamic misalignment is defined as the 

additional rotation of the b-frame relative to the a-frame. The dynamic displacement 

and misalignment are rearranged in the form of eqn. 4.32. 

0;�(�(;���� 1 = 0��(�������� − �(�� − �(�(��(���(���� 1 (4.32) 

 

The dynamic errors in addition to the constant displacement and misalignment are 

mainly caused by the physical train motion and vibrations, physical track defects and 

uncertainties, which are generally time-correlated throughout the train motion. The 

displacement is assumed to be zero-mean, which is primarily caused by the dynamic 

misalignment. To provide a position constraint, the dynamic displacement has been 

dropped from the position innovation as shown in eqn. 4.25, while the dynamic 

misalignment ;���� is retained for the motion dynamics. 

The dynamic misalignment control is important to minimise the attitude 

discrepancies between the actual motion sensed by INS and the nominal motion 

predicted by TAP. An over constrained solution may be resulted by ignoring the 
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dynamic misalignment. In contrast, the attitude error control would be ineffective if 

the dynamic misalignment is not compensated. 

4.8.1. Moving Average/ Complementary Filter 

The dynamic misalignment is assumed to gradually change with time, while the 

nominal magnitude can be estimated by moving average or complementary filter 

techniques. However, the dynamic misalignment and the attitude errors are 

correlated such that an additional zero-mean assumption is required for the error 

control. 

The moving average and complementary filtering approaches are easily implemented 

without considering and modelling the error characteristics. The smoothened 

dynamic misalignment can be applied to compute the position innovation, which is 

removed from the attitude innovation regarding the zero-mean assumption. 

4.8.2. Harmonic Oscillation Model 

Since the train motion is rail-bound and smoothened by the train bogies, the dynamic 

motion conceptually follows a damped harmonic motion. The damped harmonic 

motion assumes that the change of amplitude, angular frequency, phase shift and 

offset are constant. 

In reality, the train motion does not follow a damped harmonic motion, because 

external forces are continuously acting on the train. Consequently, the harmonic 

oscillating patterns can be described by a simple harmonic motion (SHM) within a 

short period of time (eqn. 4.33). 

6- = Í sin�� + ∆� + Î (4.33) 
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where 6- is the estimated magnitude; Í is the amplitude;  is the angular frequency; � 

is the time reference; ∆ is a constant phase shift; Î is a constant offset. 

Through the characteristics of SHM, the dynamic misalignment can be estimated and 

modelled into parameters over time. Regarding the zero-mean assumption, the non-

zero offset indicates the existence of biases which can be removed if necessary. The 

estimated dynamic misalignment can be used to compute the position and attitude 

innovation because the non-zero offset is removed. 

4.9. Practical Issues for Implementation 

In this chapter, several major issues regarding the implementation of RBN solution 

have been discussed on the basis of INS/TAP integration and relevant mathematical 

models, which are primarily developed with the theoretical considerations. In this 

section, the major components are reviewed and optimised with practical 

considerations. 

4.9.1. Initial Alignment and Sensor Turn-on Biases 

During the stationary initialisation, the accelerometer and gyroscope outputs are 

assumed constant. To enhance the long-term navigation performance, the initial roll 

and pitch angles, and the sensor turn-on biases should be accurately determined. In 

general, it can be done by averaging the inertial measurements with a larger number 

of sample, such that the measurement random noises can be diminished. In practice, 

the inertial measurements are not absolutely constant due to physical train vibrations 

and time-correlated sensor bias drifts. 

To maintain the validity of initial estimation, a moving average or complementary 

filter can be applied to update the nominal inertial measurements within a time 

threshold or number of sample. Therefore, the time-correlated effects can be 
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sufficiently reduced, while the precision of estimation can be retained at a reasonable 

level. 

Alternatively, the system initialisation can be performed with the EKF solution. The 

inertial measurements are directly employed for the measurement updates. The 

measurement error model for initialisation can be established by the functional 

relationships between the inertial measurements and the system error states as 

derived in Farrell (2008). 

The direct initialisation and EKF measurement update method are examined and 

compared before the implementation of navigation system. The experimental results 

will be discussed in next chapter. 

4.9.2. Initial Covariance Definition 

For general navigation systems, it is common to assume large values for the initial 

system covariance to emphasise the state uncertainty. The navigation results then 

progressively converge and are bounded at a certain level of precision through 

measurement updates. This practice is reasonable because the aiding sources, such as 

GNSS and odometer, are independent to the navigation system and the propagation 

of system covariance. 

The INS and TAP results, however, are fundamentally correlated regarding the 

chainage updating methods. Providing large values for the initial system covariance, 

the position uncertainty would propagate to the chainage covariance and the TAP 

results. Accordingly, the system covariance would not converge to a reasonable level. 

One possible practice is employing a more realistic initial covariance to indicate the 

actual navigation uncertainty. Since the train position is bounded by the physical 



 

70 

track and the chainage accuracy is considered better than decimetre-level, it is 

feasible to acquire an accurate position and covariance for initialisation. 

Alternatively, the problem can also be handled by adopting a reasonable value for the 

initial chainage covariance. During the fine alignment phase, the direct method is 

suggested for chainage maintenance, which requires the INS process noises for the 

chainage covariance propagation. The covariance of chainage, as well as that of TAP 

results, are therefore independent to the initial covariance of INS navigation results. 

4.9.3. Chainage Propagation and Uncertainty 

In section 4.5, the direct and indirect methods are suggested for chainage and 

covariance propagation. Nevertheless, the covariance propagation for the indirect 

method is fundamentally dependent on the position uncertainties of the navigation 

system. A mutual relationship is therefore established between the INS and TAP 

results, such that the relevant error equation becomes invalid. 

For the direct method, chainage is integrated from the INS estimated displacement. 

Since the accumulated displacement is retrieved from the INS results, the covariance 

of chainage can be integrated from the INS process noise over the sampling time 

period. Although the INS and TAP results are still correlated, this method provides a 

covariance propagation which is independent to the absolute position uncertainties of 

the navigation system. 

To remove the mutual relationship, the direct method is recommended for chainage 

maintenance. However, it is noted that the actual performance and the theoretical 

performance of an INS can be different, which may cause additional problems for 

implementation. By employing low-cost MEMS sensors for navigation, the position 

uncertainties usually increase rapidly and become invalid for indicating the actual 



 

71 

system performance. Consequently, a simplified covariance propagation model is 

alternatively established to de-correlate the chainage from the INS process. 

Regarding the rail-bound nature, a constant rate of error accumulation is assumed 

and determined from empirical study. The error model shown in eqn. 4.31 is 

sufficiently accurate for the propagation of chainage covariance under a constrained 

motion. 

;*��+� = y∆� 1z h ;*/;*��,�i (4.34) 

 

where ;*/  is a constant error rate defined for chainage integration. 

While the INS results are progressively corrected through the filtering process, 

additional chainage error would accumulate with time as shown in Figure 4.7. 

 

Figure 4.7: Integrated Displacement Error 
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The chainage is integrated through an individual filter, which is independent to the 

main navigation system filtering process. As illustrated in Figure 4.7, the 

compensation of navigation errors may introduce a correction for longitudinal 

position. A feedback mechanism is therefore required to retrieve the chainage 

following the correction, such that the propagated position and the chainage would 

not diverge. The indirect method is suitable for the implementation of the feedback 

mechanism. Since no additional measurement is provided for longitudinal error 

control, the chainage covariance remains unchanged for the feedback measure. 

4.9.4. Dynamic Motion Uncertainty 

It is mentioned in section 4.8 that the dynamic displacement and misalignment are 

assumed to be zero-mean and characterised by harmonic oscillation. In practice, the 

dynamic motion is constituted by different sources of forces, such as compensated 

vibrations and overturning forces at curves. Therefore, it is a resultant motion of 

harmonic oscillations with multiple frequencies. In addition, the elemental forces are 

not constant and change with time. It is not practicable to decompose and model all 

the harmonic oscillations during motion. 

The moving average or complementary filter provides an alternative measure to 

minimise the short-term oscillations caused by train vibrations. The zero-mean 

assumption, however, is invalid at certain conditions. For example, the train would 

experience a continuous overturning force when travelling at a curve, such that the 

dynamic misalignment is not zero-mean and should not be removed. 

In section 4.7, the covariance matrices for TAP estimated position, velocity and 

attitude are derived. The terms °�∆���  and °��(�( �  are required for covariance 

propagation, which can be approximated from the sampling sequence of estimated 
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dynamic displacement and misalignment (eqn. 4.32) by eqn. 4.22. Therefore, the 

dynamic motion is retained through the navigation error control with the introduction 

of appropriate uncertainties. The modelling or estimation of dynamic motion is not 

necessary. 

4.9.5. Inertial Navigation Uncertainty 

Although the system model and stochastic model have been established for the 

propagation of INS errors and covariance, the practical performance may vary with 

the choice of sensors, especially the MEMS IMUs. 

In this thesis, the INS is implemented by two consumer-grade MEMS IMUs. By 

employing the sensor specification, the navigation covariance may not be consistent 

with the actual performance, such that the relative weight between INS and TAP 

results cannot be correctly maintained. As a result, an optimal navigation solution 

would be unachievable. 

In general, a MEMS IMU requires additional error analysis for the stochastic 

modelling, since the actual performance is relatively unstable and different from 

system specification. For simplicity, the stochastic parameters are empirically 

defined from the post-process navigation results in this thesis. To verify the 

feasibility of mentioned solutions, the implementation results of the navigation 

system and the RBN solution are discussed in Chapter 5. 
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Chapter 5:  System Design and Implementation 

In this Chapter, the design of a prototype navigation system including the 

components, sensor calibration and data processing are presented. The results of 

testing on a small-scale experiment employing a simple model train are presented 

along with a concise discussion of the practical restrictions, the potential problems, 

and the relevant remedial measures are then concisely discussed. Higher level 

validation of the RBN solution was conducted from sampling data collected in MTR 

trains. The results of TAP estimation, navigation and RBN solution are enumerated 

and discussed regarding the eligibility of the solution. 

5.1. Prototype System Design and Development 

To facilitate the implementation of the RBN solution, a prototype system has been 

built for data collection. In this section, the navigation system design, relevant 

components and experimental conditions are presented. 

5.1.1. Navigation System Components 

As a comprehensive MMS or high performance navigation system (such as 

navigation or tactical grade sensors) was ultimately not available, a lower grade IMU 

was used for examining and validating the developed RBN solution. Accordingly, 

the FreeIMU (Varesano, 2013), a consumer-grade MEMS IMU, has been employed 

for inertial data collection. 

The FreeIMU is configured with a 6-axis gyroscope and accelerometer (MPU6050) 

and a 3-axis magnetometer (HMC5883L), which is primarily designed for motion 

sensing and low-cost Attitude and Heading Reference System (AHRS). Although the 

performance of the FreeIMU may be insufficient to support an inertial navigation 



 

75 

solution, the results can be enhanced by an aided navigation structure, such as the 

RBN solution. 

Figure 5.1 illustrates the structure of the prototype system version 1.0 which was 

used for a preliminary study (Hung et al., 2016). The FreeIMU is connected to and 

controlled by an Arduino UNO REV3 processing device for data collection. Both the 

devices are mounted on a platform constructed by building blocks, which can be 

attached to a host train for data collection. 

 

Figure 5.1: The prototype navigation system - version 1.0 (Hung et al., 2016) 

5.1.2. Self-calibration Process 

The FreeIMU is programmed through an open-source Arduino Software (Ardiuno, 

2016) and the corresponding libraries (FreeIMU-Updates, 2016), which governs the 

sampling of accelerometer, gyroscope and magnetometer outputs. In addition, a self-

calibration process (FreeIMU Calibration, 2014) is employed to estimate and 

compensate the sensor biases and scale errors of accelerometers and magnetometers. 

The Graphical User Interface (GUI) of the FreeIMU calibration application is shown 
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in Figure 5.2. The calibrated parameters are uploaded to the FreeIMU through the 

Arduino processing software. 

 

Figure 5.2: The GUI of FreeIMU calibration (FreeIMU Calibration, 2014) 

5.1.3. Data Sampling and Processing 

Following the sensor calibration, the measurement data are sampled at a frequency of 

125�� and collected by a freeware Processing (Processing, n.d.). Since the FreeIMU 

is the only source of measurement device, additional time synchronisation is not 

considered in this prototype system. 

The prototype navigation system is developed in a Matrix Laboratory (MATLAB) 

environment with an INS toolkit ("The Toolkit", 2010) for the INS mechanisation. 

The track alignment data, time references, and IMU sampling data are imported and 
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processed after data collection. In this thesis, the validation of solution is the primary 

objective for system implementation. The practical problems relating to real-time 

processing are not considered. 

5.2. Preliminary Experiment with Simulated Motion 

A preliminary experiment with a small-scale railway model and motorised model 

train was conducted to implement the RBN solution and examine its performance 

(Hung et al., 2016). The results and findings are concisely reviewed and summarised 

in this section. 

5.2.1. Track Design and Settings 

A small-scale track model which has dimensions of around 1000II by 700II 

with a gauge width of 42II was employed to simulate the rail-bound motion of a 

train. The track model was set on a levelled surface such that the track alignment was 

compiled without longitudinal gradient or cant. The track was an enclosed loop 

comprising straight and circular sections as shown in Figure 5.3. 

 

Figure 5.3: The physical track model (straight and circular sections) 
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The motorised model train shown in Figure 5.4 was used to simulate the train motion 

for the prototype system. The model train consisted of a battery, a motor unit, and a 

rigid train body connected to front and rear rotatable bogies. The FreeIMU device 

was directly attached to the upper train body. 

 

Figure 5.4: The motorised model train 

Rail-bound train motion data was collected for two loops of the track over a period of 

about 15�. The train was stationary for around 3� for initialisation and finalisation. 

The power of the train was manually controlled. 

The navigation system was mechanised in an arbitrary grid coordinate frame and the 

global effects to inertial measurements are assumed negligible. In addition, the RBN 

solution was implemented by a complementary filter for direct navigation error 

control (eqn. 5.1) which was simplified to facilitate the study. 

�̅ = Ð����̂ÒÓÔ + y1 − Ð���z�̂¶·¸ (5.1) 

 

where �̅ is the compensated result; �̂ÒÓÔ and �̂¶·¸ are the navigation results estimated 

from INS and TAP respectively; Ð��� and y1 − Ð���z are the low-pass and high-pass 

filters respectively. 
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5.2.2. Preliminary Results and Finding 

The motion data captured by the FreeIMU device are shown in Figure 5.5 (Hung et 

al., 2016). The acceleration (from about 18� to 22�) and deceleration (from about 

30� to 34�) of the train’s motion cannot be clearly identified. In contrast, the linear 

and circular motion are clearly indicated by the gyroscope outputs. The periodic 

chainage at the front bogie can be determined to compile a speed profile and estimate 

the accuracy of position and attitude. 

 

Figure 5.5: Accelerometer (Up) and gyroscope (Down) data in the b-frame 
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Through the recognised chainage reference, the position and attitude errors have 

been estimated by TAP solution. The position and attitude errors for the pure inertial 

navigation and the RBN solution from Hung et al. (2016) are presented in summary 

form in Figure 5.6. The INS and RBN errors are coloured in red and green 

respectively and are plotted with respect to the sectional boundaries in series. 

 

Figure 5.6: Position (Up) and attitude (Down) errors at sectional boundaries 
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The horizontal and vertical position errors of INS are rapidly accumulated and reach 

metre-level and decimetre-level respectively, which are too large to describe the 

nominal train motion to the extent that the navigation results are completely 

unacceptable. It was found that the excessive position errors are mainly integrated 

from the velocity errors caused by poor system alignment. 

Through the RBN solution, the position errors were reduced significantly to 

centimetre-level in both horizontal and vertical directions. The improvement is 

mainly caused by the enhanced attitude and velocity, while the longitudinal position 

accuracy is especially important to retrieve correct TAP results for error control. In 

this experiment, the longitudinal position error is mainly constrained by the nominal 

speed data. The attitude control further diminished the growth of velocity errors 

caused by incorrectly resolved gravity acceleration. 

The dynamic misalignment is not considered in this experiment such that the 

differences between the navigation results and TAP estimated results are uncertain. 

As a result, the loss of dynamic motion can be observed after applying the RBN 

solution. 

5.2.3. Summary of Preliminary Experimental Results 

From the results of simulated rail-bound motion, the simplified RBN solution 

produced a considerable improvement over the standalone INS result. Because of the 

following experimental restrictions, the experimental results are insufficient to 

demonstrate the performance of RBN in real world conditions: 

− Nature of motion: the acceleration and braking of the model train were poorly 

controlled such that the signal-to-noise ratio (SNR) has been masked by the 
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uncompensated high-rate vibrations. Therefore, the actual motion cannot be 

accurately captured by the inertial sensors. 

− Track design: the small radius of curvature has introduced additional 

uncertainties to the solution, which may invalidate the assumption of track-to-

train correction. As a result, the real world performance cannot be fully 

demonstrated through this oversimplified track design. 

− Scale of railway model: the size of the railway model is too small to represent 

the reality of railway environment, while the period of motion simulation is 

insufficient to analyse the long-term improvement. From the experimental study, 

the actual performance of RBN solution remains uncertain. 

− Simplified implementation: the RBN solution was implemented by a 

complementary filter. The navigation error control was directly weighed and 

applied, while the recalibration of sensor biases and dynamic motion were not 

considered. The results indicated a loss of motion dynamics which is probably 

caused by the simplified implementation. 

Further experiments were conducted to collect real data in MTR trains during normal 

service hours, which are designed to overcome the restrictions of preliminary study. 

The results presented in Section 5.4 sufficiently represent the actual train motion and 

railway conditions. 

5.3. Expected Conditions and Restrictions 

In previous chapters, the theoretical models and practical considerations have been 

discussed for the establishment of RBN solution. Through the simulated rail-bound 

motion, the performance of proposed solution has illustrated under several 

experimental restrictions. Prior to further experiments, the expected conditions and 

restrictions for experimental design are discussed in this section. 
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5.3.1. Absence of Precise Gravity Information 

Although the gravity acceleration has been globally modelled to support near-Earth 

navigation, the local gravity anomaly would introduce considerable errors in the 

vertical direction. The gravity anomaly is generally estimated and compensated 

through a local geoid model. The loss of navigation accuracy in the vertical direction, 

however, cannot be avoided regarding the excessive gravity errors. 

For the prototype navigation system, a local geoid model is absent hence precise 

gravity compensation is not available. Alternatively, the accelerometer outputs are 

assumed accurate enough to represent the actual gravity acceleration, such that the 

gravity anomaly can be empirically determined from the differences between 

accelerometer outputs and normal gravity acceleration during stationary initialisation. 

In a real railway environment, the vertical train motion is considerably smoother and 

better bound by the track alignment than that of the model. While gravity changes 

slightly with global position, the gravity anomaly can be continuously calibrated by 

accelerometer outputs through moving average or filtering processes. 

5.3.2. Absence of External Reference 

It is mentioned in Chapter 1 that the train control data or external reference data, 

such as position and speed, are not accessible for continuous analysis to the system 

performance. Therefore, the navigation results are fundamentally analysed during 

stationary phases. 

The chainage error corresponding to the station platform is the primary indicator for 

examining the reliability of a solution. In addition, the velocity and attitude errors 

can also be determined from the misclosures at the end of train motion. During the 

stationary phase, the train speed should be zero in all axes, while the attitudes 
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estimated from the navigation system should be consistent with the accelerometer 

derived attitudes. To validate the performance, sufficient time is required to collect 

data for system initialisation and finalisation. 

5.4. Experimental Design for Real Train System 

With regard to the expected restrictions, another experiment was organised and 

performed by a series of data collections in a real world railway environment, which 

aims to provide more useful conditions for a comprehensive analysis. In this section, 

the background information of the real world data collection and relevant 

considerations are presented. 

5.4.1. Reference Track Alignment Data 

The MTRC is the only corporation that operates railway networks in Hong Kong. To 

implement the navigation solution, relevant track data are necessary to execute the 

TAP solution. Thus, a sample dataset was requested to validate the TAP 

mathematical models in the early stage of research. Due to a confidentiality 

agreement the data cannot be reproduced here. 

The track alignment data of section between Hang Hau (HAH) station and Po Lam 

(POL) station were provided, which is an extension of Tseung Kwan O (TKO) line. 

The location of track section is illustrated on the Google Map which is captured and 

shown in Figure 5.7. 

The alignment data have been retrieved from an as-built survey in 2002, while the 

physical track is maintained relative to the local position. 
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Figure 5.7: Location of HAH to POL track section 

The reference chainage of the track alignment is locally defined at the centre of the 

station platform. The available section of alignment includes the eastbound (from 

HAH to POL) and westbound (from POL to HAH) track data, which are 

parameterised into horizontal and vertical alignments of the track centreline 

according to the models presented in Chapter 4. Both the eastbound and westbound 

tracks have a horizontal length of 1000I and a height difference of 10I. The tracks 

overlap near the end of POL station. 

The horizontal and vertical alignment are referenced to the HK1980 grid coordinate 

system and Hong Kong Principal Datum (HKPD) respectively. The relevant datum 

transformation and projection are defined and explained by the Survey and Mapping 

Office (SMO) of the Lands Department (“Explanatory Notes…”, 1995). 

5.4.2. Railway and Train System 

In general, the Grade of Automation (GOA) is defined by the International 

Association of Public Transport (UITP) to classify the automation and the nature of 
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train operation (“Press Kit Metro…”, n.d.). The current train control system for the 

TKO line can be classified into GOA3 which supports driverless train operation. 

Although a train operator is retained for supervising the train, the train acceleration 

and braking are computer controlled. Consequently, the train motion is relatively 

smooth and favours the inertial measurements. 

For the TKO line, the standard track gauge has a width of 1432II. Each trainset is 

formatted with eight cars, which are configured with three car types: A car, B car and 

C car. The maximum train speed is around 80 KI ℎ⁄  or 22.2 I �F⁄ . The maximum 

acceleration, service braking and emergency braking are limited to approximately 

1.3 I �F⁄ , 1.35 I �F⁄  and 1.4 I �F⁄  respectively for safety concerns. The 

operational restrictions for train speed, acceleration and braking can be compared to 

the navigation results if necessary. 

5.4.3. Data Sampling and Arrangement 

To facilitate the data collection procedures, the original devices have been mounted 

to the platform constructed by building blocks and fixed in a portable box. A second 

FreeIMU and processing device was attached to the navigation system as shown in 

Figure 5.8. The additional sensor was configured to collect redundant and 

independent data for performance analysis in Chapter 6. 
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Figure 5.8: The prototype navigation system - version 2.0 

The FreeIMU devices were connected to a portable computer through universal serial 

bus for data collation. During the experiment, the box was temporarily attached on 

the floor of the first train car by blu-tack. To minimise the uncertainties of periodic 

data collection, the devices have been located at the same position relative to the 

train (near the first train door on the right head side), as well as the physical track. 

The relative position between the track reference and the sensor origin was estimated 

by direct linear measurements of centimetre-level precision. 

In general, the experimental data was collected in the night-time to minimise the 

interference of passengers. The details of experiments are presented in corresponding 

sections. 

5.4.4. Estimation of Reference Chainage 

The absolute position of the sensor is retrieved from the initial chainage of track 

reference and the relative position. The relative displacement between the sensor 

origin and the reference platform screen door was measured in the track direction, 

while the chainage of the platform screen door was determined from the 
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neighbouring chainage plate installed on the tunnel wall at a 10 m interval. The 

propagation of chainage reference is elaborated in eqn. 5.2. 

*� = *, + ∆*, + ∆*�  δ*� = δ*, + δ∆*, + δ∆*�  ª§ÖF  = ª§×F + ª∆§×F + ª∆§ÖF  (5.2) 

 

where *� is the chainage of sensor; *, is the reference chainage at the chainage plate; 

∆*, is the relative distance between chainage plate and reference platform screen 

door; ∆*� is the relative distance between the reference platform screen door to the 

sensor. 

Through the propagation of linear measurements, the initial chainage covariance can 

be approximately determined. The absolute accuracy of chainage of sensor, however, 

has been reduced to around few centimetres to a decimetre. To estimate the effects of 

absolute chainage error, the possible navigation errors of TAP solution would be 

investigated in section 5.5 before further implementation. 

5.5. Examination of Track Alignment Positioning 

The eastbound track section from HAH station to POL station is selected for the 

examination of TAP solution, which would be further employed for the 

implementation of navigation system and RBN solution. 

5.5.1. Characteristics of Track Alignment 

The TAP position and attitude of track alignment have been estimated against 

chainage as shown in Figure 5.9 and Figure 5.10 respectively. The gradual changes 

in northing and easting grid coordinates indicate the linearity of track alignment, 

while the track level is progressively increased by nearly 10I along the track. 
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Figure 5.9: The estimated grid coordinates of track against chainage 

 

Figure 5.10: The estimated attitudes of track against chainage 
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According to Figure 5.10, the roll and pitch are bounded by 5° and 2° respectively. 

The primary attitudes defined at the front bogie are coloured in green, while the train 

attitudes coloured in red are revised with the track-to-train correction. The rigidity of 

train and bogies would introduce a transition effect to the train attitudes which would 

be slightly smoothened from the original track attitudes. 

The rate of roll is caused by the linear interpolation of cant within the transition 

curve sections, which is fundamentally correlated to the heading. For the pitch 

profile, the rate of pitch is generated by the constant change of gradient such that a 

correlation between the pitch and the level can be found. 

For the heading profile, a constant angular rate indicates a circular curve section. The 

changes of heading between slopes are generally smoothened by the transition curves, 

while the track-to-train correction has introduced an excessive transition over the 

smoothened track heading. 

It is found that no transition curve is applied at around chainage of 800I, which is 

probably simplified for track alignment design. The removal of transition curve is 

acceptable because the designed train speed is reduced at the point and crossing area. 

In addition, the trains have to decelerate when approaching to the station platform. 

Regarding the reduced train speed, the resultant centrifugal force would be 

diminished. The cant is therefore removed from the curve section. 

5.5.2. Navigation Errors from Chainage Error 

In railway system, the chainage is the fundamental variable for train positioning such 

that the chainage error is a primary consideration for the correctness of TAP results. 

Through the TAP solution, additional position and attitude errors would be resulted 
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from the chainage error, while the impacts of chainage error are generally determined 

by the magnitude of chainage error and the linearity of track alignment. 

To investigate the impact of chainage, a constant chainage error is simulated to 

generate the position and attitude errors which are acquired from the differences 

between nominal results and biased results. The Root Mean Squared (RMS) position 

and attitude errors are summarised in Table 5.1 against different magnitudes of 

chainage error. 

Table 5.1: RMS of TAP position and attitude errors 

chainage 
error (m) 

RMSE of position (m) RMSE of attitude (°) 

x y z r p h 

0.1 0.100 0.000 0.001 0.0042 0.0013 0.0066 

0.5 0.500 0.000 0.007 0.0209 0.0066 0.0332 

1.0 1.000 0.001 0.014 0.0417 0.0131 0.0664 

10.0 10.000 0.058 0.140 0.4020 0.1235 0.6610 

 

From the results, the RMS position and attitude errors are directly proportional to the 

chainage error, because the changes of track geometry are generally constant, such as 

the radius of curvature, cant and gradient. Apart from the chainage, the overall TAP 

results are generally acceptable when the chainage error reaches 0.5I . For a 

chainage error exceeding 1.0I , the RMS of vertical position errors reach a 

centimetre-level. The results may not be sufficient to certain applications which 

require an accurate georeferencing solution. On the other hand, the impacts of 

attitude errors cannot be directly examined, which would be illustrated from the 

navigation results in later section. To conclude, a metre-level chainage error would 

cause a direct impact to the overall performance of navigation system. 
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5.5.3. Precision of TAP Estimate 

In Chapter 4, the mathematical models of TAP have been developed to retrieve the 

position and attitude from the track alignment data, while the corresponding 

covariance can be estimated from the chainage uncertainty. To validate the error 

models, the precision of TAP solution is estimated and compared with the simulated 

position and attitude errors. Figure 5.11 and Figure 5.12 illustrate the uncertainties of 

TAP position and attitude respectively, which are expressed in absolute errors and 

standard deviations. The errors are simulated by a chainage error of 0.1I, which is 

also employed to define the standard deviation of chainage for the propagation of 

TAP position and attitude precision. 

 

Figure 5.11: The estimated position errors and precision at 0.1 m chainage error 
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Figure 5.12: The estimated attitude errors and precision at 0.1 m chainage error 

The position errors are resolved into the t-frame to investigate the lateral impacts. 

The 0.1I longitudinal position error is recovered from the chainage error, which is 

approximately overlapped with the estimated standard deviation. The lateral position 

errors are theoretically less than 1II  which is negligible. The vertical position 

errors are relatively larger and bounded at 4II. The unusual variations found at the 

section boundaries are caused by the uncompensated transformation of lateral errors. 

The estimated roll, pitch and heading errors are bounded by 0.01°, 0.005° and 0.02° 

respectively. Therefore, the initial chainage error of 0.1I is sufficiently accurate for 

the attitude error control to a navigation system. 

The estimated standard deviations of position and attitude are propagated from the 

chainage uncertainty, while the additional uncertainties are constantly defined and 

introduced to the position and attitude of reference. The track geometry parameters 



 

94 

are assumed to be constant in the solution such that the chainage uncertainty is the 

only variable for estimation. 

The results indicate that the position and attitude errors are bounded by the estimated 

standard deviations. The estimated precision and the simulated errors are consistent, 

which imply that the TAP error models are correctly established for the propagation 

of TAP uncertainties from the reference chainage. 

5.5.4. Physical Track Uncertainties 

The TAP solution provides constraints to the growth of navigation errors in form of 

track position and attitude. In case of track deformation, the navigation results would 

be incorrectly constrained by the track data. To maintain the correctness of track 

constraint, both the chainage uncertainty and physical track uncertainty are involved 

in the estimation of reference track covariance. 

It is noted that the magnitudes of physical track uncertainty are rather critical to the 

navigation accuracy when the compensation of absolute track deformation is not 

available. The actual impacts would be investigated through the implementation of 

navigation system in Chapter 6. 

5.6. Implementation of the Navigation System 

In this section, the navigation system is established with inertial data collected by the 

primary sensor. The TAP solution is employed for the system initialisation, while the 

navigation is merely maintained by the INS solution for standalone results. In 

addition, the TAP error control is applied to compute the RBN navigation results for 

comparison. 
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5.6.1. Data Collection for Inertial Experiment 

The inertial measurement data used in this section was collected on 13/08/2015, 

which captured the motion of a train operated from HAH station to POL station, 

including the stationary phases. The train motion was sustained for about 95� with a 

horizontal distance of 1007I, with the initial and final stationary phases lasting for 

about 9� each. The motion is considered sufficient to indicate the reality and general 

characteristics of train navigation. The measurement data presented in this section 

are sampled at a frequency of 10��. 

5.6.2. Inertial Measurement Data 

For the implementation of the navigation system, the accelerometer and gyroscope 

biases were estimated and compensated during system initialisation, while the 

position, velocity and attitude were maintained through the system mechanisation. 

The standalone INS and RBN results are coloured in red and green respectively. The 

accelerometer outputs are compensated for sensor biases and gravity acceleration, 

which have been levelled as shown in Figure 5.13. The horizontal acceleration 

should be zero-mean during stationary or non-accelerating motion. The gyroscope 

outputs are compensated for sensor biases and shown in Figure 5.14, which should 

be zero-mean during the stationary phases. 
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Figure 5.13: Compensated and levelled accelerometer outputs 

 

Figure 5.14: Compensated gyroscope outputs 
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The train acceleration and braking have been well captured by the acceleration in the 

x axis, while the beginning and the termination of train motion are clearly identified. 

The acceleration in the longitudinal track direction is bounded by the operational 

restrictions as summarised in section 5.4.2. Through the average of measurements, 

the acceleration in all axes converged to zero during the initialisation. 

The y axis is approximately aligned in the lateral track direction. The changes in 

acceleration are mainly caused by the track-to-train misalignment, such that the train 

motion is resolved into lateral direction when passing through at curve sections. As a 

result, a significant correlation between the y axis acceleration and h axis angular 

velocity can be observed. 

In both the x and y axes of the INS results, sudden changes can be found at around 

104�, which indicate the misclosures caused by the pitch and roll errors propagated 

through the navigation system. From the results of RBN solution, the attitude 

accuracy is considerably enhanced such that the misclosures for the levelled 

acceleration in x and y axes are greatly reduced. For the acceleration in the z axis, the 

motion is not clearly captured because the gradient rate is generally small. 

From Figure 5.14, the angular velocities are generally bounded by 3° �⁄  in all axes, 

which are much smaller and smoother than that in the preliminary experiment. The 

angular velocities relative to the r axis are mainly caused by the changes of cant in 

the transition curve sections, while the high-rate variations are caused by the 

harmonic train oscillations. The oscillations are clearly observable in the r axis 

because the train vibrates in the lateral direction regarding the centrifugal forces. In 

contrast, the base of train bogies in the longitudinal track direction is sufficiently 

large to constrain the oscillations in the p axis, while the oscillations in the h axis are 

restricted by the track through the train bogies. 
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In summary, the results indicate that the train motion and its characteristics has been 

well captured by the inertial measurements. The sensor biases have been 

approximately compensated during the initialisation, while the transformation is 

established and maintained to resolve the acceleration into a levelled frame relative 

to the b-frame. Since the time for system initialisation is relatively short, the 

estimated sensor biases may not be accurate. Through the RBN solution, the impacts 

of sensor biases have been diminished by continuous navigation error control. 

5.6.3. Train Navigation Results 

In this section, the attitudes and velocities estimated from the standalone INS and 

RBN solution are summarised and concisely discussed. The characteristics of train 

motion and physical rail track which may be significant to the performance of 

navigation system are preliminarily inspected. Finally, the position errors are 

illustrated with the reference track position. 

The profiles of system roll, pitch and heading are illustrated in Figure 5.15, while the 

system velocities are summarised in Figure 5.16 to realise the impacts of attitude 

errors. The INS and RBN results are coloured in red and green respectively. 
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Figure 5.15: INS and RBN derived system attitudes 

 

Figure 5.16: INS and RBN derived system velocities 
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From Figure 5.15, the INS estimated attitudes follow the similar patterns when 

correlating with that in Figure 5.10. It indicates that the measured train motion is 

primarily consistent with the theoretical attitudes estimated from the TAP solution. 

The compensated train vibrations are indicated by the harmonic oscillations in roll 

and pitch profiles. The magnitude of vibration in the r axis is generally larger than 

that in the p axis. 

After the train stopped at the POL station platform, the train attitudes are re-

initialised from the accelerometers, while the accumulated attitude errors indicate the 

end of train motion. It is noted that the errors in the p axis are considerably larger 

than that in other axes, which introduce additional velocity and position errors in the 

longitudinal track direction. 

At the end of train motion as shown in Figure 5.16, the INS velocity errors in the y 

and z axes exceed 10 I �⁄  and 1 I �⁄  respectively, while that in x-axis reaches 

5 I �⁄ . The sensed gravity acceleration is incorrectly resolved and compensated 

regarding the excessive roll and pitch errors, which is integrated into velocity errors. 

In general, the attitude errors may be caused by poor system alignment, 

uncompensated sensor biases and drifts, unmodelled systematic errors or fault 

outputs. 

Through the RBN solution, the attitude misclosures in all axes have been greatly 

reduced, while the harmonic oscillations are generally maintained and sufficiently 

represent the actual train motion. The correctness of system attitudes can be 

alternatively supported by the greatly reduced velocity errors shown in Figure 5.16. 

It can be predicted from the velocity profiles that the horizontal position of INS 

solution should be considerably large. In contrast, the RBN solution should provide 
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relatively accurate positioning results in all axes. Figure 5.17 illustrates the 

horizontal system position and the reference track. 

 

Figure 5.17: The horizontal system position and reference track 

The initial reference chainage is around 85.50I which was determined from the 

centre of platform at HAH station. Since the train doors have to be aligned with the 

corresponding platform screen doors, the relative position of the train with reference 

to the platform at POL station is the same as that at HAH station. Through the track 

alignment definition, the corresponding reference chainage at POL station should be 

1092.80I after the train stopped. 

The standalone INS solution has captured the train motion at the first quarter of 

entire section, while the position errors have been rapidly increased and drifted away 

from the reference track. According to Figure 5.17, the accumulated horizontal 

distance reaches 100I, while the lateral position has drifted for more than 300I. 

The position errors are extremely large and cannot be applied to any railway 
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application. For the RBN results, the chainage error has been greatly reduced from 

over 100  metre-level to around −4.6I . The lateral position is bounded by the 

reference track. The remaining errors in longitudinal position are still remarkable. 

From the navigation results, the patterns of pitch profile have a remarkable distortion, 

which is probably caused by the physical track defects or nature of train motion. As a 

result, the pitch errors are not accurately controlled which lead to additional 

longitudinal position errors. 

5.6.4. Summary of Potential and Limitations 

Following the comparison, the attitude, velocity and position errors are noticeably 

reduced by employing the RBN solution, which have initially validated the 

correctness of the proposed solution. In addition, the implementation in a real world 

railway system has proved the preliminary discussions regarding the potential and 

actual performance. 

Although the navigation errors are greatly constrained, the position errors are still too 

large for many railway applications. It is noted that the system simplifications and 

assumptions may diminish the actual performance. The potential accuracy can be 

probably improved by further investigation and optimisation, such as physical 

models for track-to-train transition, dynamic train motion and external train control 

data. Irrespective of the poor sensor quality and lack of additional control data, the 

navigation results have nevertheless illustrated the potential of RBN solution. 

To further improve and validate the solution, several measures are applied to tackle 

the potential problems, while the repeatability of result is analysed by redundant 

measurements, including secondary measurements on the same run and independent 

runs on the same track section. In addition, the nature of train motion, track 
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conditions and train operational characteristics are also investigated. The navigation 

solution is also employed in other track section to examine the consistence of 

performance. 

The possible sources and characteristics of errors should be indicated and verified to 

examine the actual performance of RBN solution, which are further discussed in 

Chapter 6. 
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Chapter 6:  Result Analysis and Discussion 

In Chapter 5, the TAP solution and the navigation system are briefly examined, while 

the RBN solution was implemented with the primary sensor outputs. The navigation 

results of standalone INS and RBN solution were presented. Although a remarkable 

improvement was shown by employing the RBN solution, the position errors were 

still notably large. 

In this chapter, the possible sources of errors and the characteristics of solution are 

investigated and verified. The primary and secondary sensors are then employed for 

the system implementation, such that the navigation results can be compared under 

the same external conditions, including train motion and track defects. The 

repeatability of navigation solution is examined through redundant measurements, 

while the possible systematic errors such as the physical track correction are 

determined. The proposed navigation solution is then validated by operating the 

navigation system in independent railway sections. 

6.1. Optimisation for Rail-bound Navigation 

Although a considerable improvement has been illustrated by the navigation results, 

the RBN solution requires further optimisation to improve the position accuracy. In 

this section, the system initialisation, sensor bias recalibration, the track uncertainties 

and dynamic train motion are analysed and discussed regarding the navigation results 

for the same track section. 

6.1.1. System Initialisation 

To investigate the impacts of sampling size to the initialisation results, another set of 

data was collected on 30/10/2015 with the both stationary phases sustained for about 
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35�. Several methods such as simple average, moving average and EKF have been 

discussed in Chapter 4 for handling the sensor outputs. Table 6.1 summarises the 

initial sensor biases and attitudes determined from these different approaches. The 

moving average method was applied to average the sensor outputs within defined 

time intervals. To analyse the impacts of different time intervals, the initialisation 

results computed from the intervals of 0.5�, 1�, 5�, 10� and 20�, are also included. 

The inconsistent results are coloured in red for comparison. 

Table 6.1: Summarised results for different approaches of initialisation 

  
moving average simple 

average 
EKF 

0.5s 1s 5s 10s 20s 

accel. bias 

(Ù/ÛÜ) 

x 0.000 0.000 0.000 0.000 0.000 0.000 0.026 

y 0.000 0.000 0.000 0.000 0.000 0.000 -0.018 

z 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

gyro. bias 

(°/Û) 

r 0.146 0.141 0.146 0.146 0.144 0.139 0.143 

p -0.028 -0.030 -0.028 -0.029 -0.029 -0.030 -0.037 

h -0.057 -0.059 -0.059 -0.060 -0.059 -0.060 -0.058 

initial att. 

(°) 

r 1.302 1.289 1.301 1.301 1.300 1.290 1.121 

p -0.097 -0.095 -0.087 -0.088 -0.084 -0.265 -0.169 

h 324.980 324.980 324.980 324.980 324.980 324.980 324.954 
 

The initialisation results of moving average at the intervals of 5�, 10� and 20� are 

relatively consistent. In contrast, the initial attitudes, especially the pitch angles, 

resulted from the moving average at the intervals of 0.5� and 1� are slightly different 

from the majority. For the simple average, all the measurements are averaged with 

equal weight. The initial roll and pitch angles are noticeably different from the 

majority, while the estimated gyroscope bias in r-axis is slightly smaller. 

Through the averaging method, more precise accelerometer outputs are provided for 

direct attitude estimation. According to eqn. A1.11, the accelerometer biases can 

only be determined from the differences between the norm of accelerometer outputs 

and the reference gravity acceleration. In this thesis, the accelerometer outputs are 
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assumed accurate such that the difference is resolved into the estimation of gravity 

anomaly. The accelerometer biases therefore cannot be determined, which are 

theoretically undetermined and should be all zeros. However, the EKF results do not 

agree with the assumption. On the contrary, the estimated magnitudes of 

accelerometer biases are considerably large. 

In practice, the measurement error model has introduced an additional correlation 

with the attitudes such that the attitude errors are resolved into the accelerometer 

biases. In addition, the initial attitudes are optimised from the previous measurements, 

while the additional inertial measurements are redundant. The measurement errors 

and noises are therefore contributed to the estimation of accelerometer biases. Since 

the random noises are accumulated in the accelerometer biases in different axes, the 

compensated measurements are no longer consistent with the actual attitudes, 

especially for low-cost inertial sensors. Consequently, the excessive attitude errors, 

as well as the accelerometer biases, are progressively accumulated. 

To conclude, the moving average at around 5�  to 10�  interval can sufficiently 

improve the precision of inertial measurements and provide reliable initialisation 

results. Since the measurement error models are established from the mathematical 

models for initialisation, the initial covariance of navigation system can be 

propagated and updated by the EKF to establish the correlation between the system 

states. 

6.1.2. Sensor Bias Recalibration 

The estimation of sensor bias is one of the major factors for the performance of a 

navigation system. After the system initialisation, the sensor turn-on biases are 

estimated and compensated. For low-cost sensors, the growth of sensor uncertainties 
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and the bias drifts are relatively larger, which would introduce additional variability 

for the implementation. 

For a typical INS/GNSS solution, the GNSS measurement noises are generally 

random and large, which would not cause significant impact to the sensor 

recalibration. In contrast, the reference trajectory is estimated by the TAP solution 

that any track defect may cause bias to the nominal trajectory. In addition, the train 

oscillations would further contribute to the discrepancies between INS and TAP 

navigation results. 

In general, the measurements are considered zero-mean and randomly distributed. 

Any systematic discrepancy between the measurements and the predicted navigation 

results indicates the system navigation biases which are caused by the inertial sensors. 

The systematic discrepancies for RBN solution, however, are also impacted by the 

train oscillations. 

To examine the actual impacts, the profiles of accelerometer and gyroscope biases 

are estimated and shown in Figure 6.1 and Figure 6.2 respectively. The original 

sensor biases are coloured in red, while the revised results are coloured in green. 
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Figure 6.1: RBN derived accelerometer biases 

 

Figure 6.2: RBN derived gyroscope biases 
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The sensor biases have generally drifted at the rate specified by the manufacturer. 

According to the results, the changes of sensor biases are relatively rapid and 

abnormal through the recalibration with the constrained train motion. Although the 

navigation solution is continuously constrained, the incorrect sensor biases would 

introduce excessive navigation errors. Consequently, the adaptive measurement 

covariance would be increased, while the TAP constraint would be loosened. 

From the estimation results, the sensor biases at the initialisation and finalisation 

phases are coherent, such that the drifts of sensor biases are small. To minimise the 

impacts of incorrect sensor biases, the dynamic displacement and misalignment 

terms can be added to the navigation system error state and propagated with the 

filtering process, such that the systematic errors can be alternatively resolved into the 

corresponding terms. However, the navigation system remains unchanged in this 

thesis to maintain the simplicity and independence of the components. Alternatively, 

an individual complementary filter could be applied to remove the short-term 

impacts and excessive errors from the sensor biases. 

For the accelerometer, the measurements in y and z axes are constrained by the track, 

while the measurement in x axis contributes to train motion and is not controlled. The 

accelerometer bias in x axis is therefore nearly unobservable. Although the track 

constraints provide redundancies to calibrate the accelerometer biases in y and z axes, 

the bias are greatly correlated to the attitude errors which are biased by the train 

oscillations. As a result, accelerometer biases are neglected unless the dynamic train 

motion is precisely modelled and compensated. 
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6.1.3. Additional Track Uncertainties 

From the navigation results, the angular discrepancy in the p axis indicated that a 

track defect may exist in the experimental section such that the pitch errors are over-

constrained by the inaccurate TAP solution. To retain the physical motion, additional 

track uncertainties regarding the position and attitude are introduced to the 

measurement error models. The recomputed velocity and attitude profiles are 

illustrated in Figure 6.3 and Figure 6.4 respectively The previous results are coloured 

in red and the recomputed results with additional track uncertainties are coloured in 

green. 

 

Figure 6.3: RBN derived attitudes with additional track uncertainties 
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Figure 6.4: RBN derived velocities with additional track uncertainties 

From Figure 6.3, the estimated attitudes, especially the pitch, are less constrained, 

such that the recovery of actual track geometry is more accurate. According to Figure 

6.4, the velocity profiles in the t-frame y and z axes are slightly smoothened, which 

are considered closer to the actual motion because of the loosened constraints. The 

resultant chainage, however, has changed from 1088.2I  to 1083.4I  so the 

longitudinal position error is slightly larger. A possible reason to this outcome is that 

the track uncertainties are not correctly optimised. To validate the performance of 

RBN solution, further investigation and analysis will be conducted in later sections. 

6.1.4. Dynamic Motion for Train Oscillation 

Although the RBN solution employs TAP results for error control, the train 

oscillations would introduce biases to the error control process. The dynamic 

misalignment and displacement are estimated from the discrepancies between TAP 

and navigation results as shown in Figure 6.5 and Figure 6.6 respectively.  
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Figure 6.5: Dynamic misalignment of a-frame relative to the b-frame 

 

Figure 6.6: Dynamic displacement resolved into the a-frame 
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According to Figure 6.5, the frequency and magnitude of train oscillations in the roll 

axis are relatively higher than that in other axes, which conforms with previous 

predictions. Although the non-zero values may indicate the attitude errors or 

inaccurate constant misalignment, the biased misalignment may be caused by 

uncompensated physical track defects. 

During the period from around 40� to 70�, a noticeable heading misalignment can 

be found at curved sections with a magnitude near ±0.2°. The heading misalignment 

is possibly caused by the inaccuracy of track-to-train transition correction or 

chainage-originated TAP attitude errors. 

A low-rate oscillation can be observed from the dynamic misalignment in the p axis. 

The rate of pitch misalignment changes with time, which does not correspond to the 

characteristics of high-frequency train oscillation or long-term sensor bias drift. As a 

result, the dynamic misalignment indicates the existence of track defect. 

In Figure 6.6, the longitudinal dynamic displacement should be theoretically zero. 

The non-zero errors are mainly caused by transformation errors, such that the non-

zero offsets are resolved into the x axis of the a-frame. In contrast, the lateral 

dynamic displacement is relatively large (generally bounded by 0.02I), which is 

possibly caused by uncompensated track-to-train transition errors, transformation of 

offsets or uncompensated train vibrations. 

The high-frequency train oscillations are fundamentally compensated through the 

estimated dynamic misalignment. From the profile of vertical dynamic displacement, 

a constant rate of drift is discovered, which may indicate the existence of 

uncompensated sensor biases or physical track defects. 
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6.2. Multi-IMU Navigation Results 

In section 6.1, abnormal patterns have been identified from the navigation results, 

which may be caused by sensor errors or physical train motion. To clarify the source 

of errors, the navigation results are recomputed by employing both the primary and 

secondary sensors in this section. Through the comparison of individual navigation 

results, the discrepancies are independent of train motion and track defects, which 

are primarily caused by sensor errors. 

The primary and secondary IMUs are separately processed by individual processing 

units, which are time tagged with internal sensor clock and are not synchronised. As 

a result, a constant time difference can be found between the two sets of 

measurement data. To facilitate the analysis, the results are stored and shown with 

respect to chainage. 

6.2.1. Discrepancies between Navigation Results 

After the initial study of navigation results, the overall accuracy is yet to be 

maximised. For further investigation, the navigation results are individually 

estimated from the primary and secondary solutions, which are coloured in red and 

green respectively. The attitude profiles and discrepancies (primary – secondary) are 

summarised in Figure 6.7 and Figure 6.8 respectively. 

The attitude, velocity and position errors of both sets of navigation results are 

tabulated in Table 6.2. 

Table 6.2: The attitude, velocity and position errors from the two sensors 

IMU 
Attitude Error (°) Velocity Error (m/s) Position Error (m) 

r p h x y z x y z 

1 0.023 -0.012 0.023 -0.012 0.023 -0.012 -9.444 -0.001 -0.005 

2 0.030 -0.011 0.030 -0.011 0.030 -0.011 8.934 -0.003 -0.004 
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Figure 6.7: System attitudes estimated from the two sensors 

 

Figure 6.8: Attitude discrepancies between the two sensors 
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According to Figure 6.7, the attitude patterns are consistent with each other in all 

axes. The angular discrepancies are estimated by subtracting the secondary results 

from the primary results as shown in Figure 6.8, while a constant angular offset of 

around 1.1°  is found in the p axis. The small angular discrepancies indicate the 

consistence of the results, which are progressively increased after chainage 450I. 

The standard deviations of angular discrepancies in the roll, pitch and heading axes 

are 0.09°, 0.06° and 0.13°  respectively, which represent the angular uncertainties 

caused by sensor and chainage errors. Although the sensors are well aligned in roll 

and heading axes, abnormal patterns can be identified after chainage 450I . To 

investigate the causes of discrepancies, the velocity profiles and discrepancies are 

summarised in Figure 6.9 and Figure 6.10 respectively. 

 

Figure 6.9: System velocities estimated from the two sensors 
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Figure 6.10: Velocity discrepancies between the two sensors 

According to Figure 6.9, both sets of the results are generally consistent in the first 

half of the motion, which denote that the train motion has been correctly captured 

and represented. However, the velocity profiles of the secondary solution have 

shifted away from that of the primary solution at about 18.4I at the end of train 

motion (shown in Table 6.2). In Figure 6.10, the velocity discrepancies in the y and z 

axes oscillate at around zero and are bounded by 0.2 I �⁄  and 0.05 I �⁄  respectively, 

while discrepancies in all axes have been progressively accumulated after chainage 

450I. 

From the results, a noticeable heading error can be seen at around chainage 450I, 

such that the velocity is incorrectly resolved into the lateral direction. Consequently, 

the velocity error in the longitudinal track direction are gradually integrated into 

chainage error. In the meanwhile, the roll errors are caused by the chainage error as 
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shown in the Figure 5.12, which are accumulated at a rate and rebounded at around 

550I where the train has entered into curve section with opposite radius. 

Since both of the navigation solutions are theoretically identical under the same train 

motion and track conditions, the discrepancies of navigation results are primarily 

resulted from the sensor measurement errors. 

6.2.2. Uncompensated Dynamic Motion 

Since the RBN solution is implemented with several assumptions for train dynamics, 

the actual motion such as track-to-train transition, train vibration nature, or relative 

motion between train car and bogies may not be accurately compensated. The 

differences between partially compensated motion (from TAP) and estimated motion 

(from navigation solution) are represented by the dynamic misalignment and 

displacement as illustrated in Figure 6.11 and Figure 6.12 respectively. 

 

Figure 6.11: Dynamic misalignment estimated from the two sensors 
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Figure 6.12: Dynamic displacement estimated from the two sensors 

The dynamic misalignment and displacement between both solutions are generally 

coherent but slightly different at around 500I  to 800I , especially the roll and 

heading. Since the discrepancies are probably caused by the uncompensated 

misalignment errors, an empirically determined correction profile can be estimated to 

minimise the error of reference track results by removing high rate vibrations. 

It is noted that the dynamic displacement is more localised when compared to the 

misalignment. This is resulted from an additional attitude compensation for CUPT 

that the part of the train motion has been removed from the dynamic displacement. In 

contrast, the dynamic misalignment is estimated without additional corrections with 

respect to the train motion. 

According to the measurement error models, the covariance matrices regarding the 

dynamic motion are determined by the adaptive method. The attitude differences 

between the TAP solution and the navigation results, as well as the relevant 
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covariance, would be reduced. However, the attitude correction profile retrieved 

from the navigation results may be biased by uncompensated chainage error and low 

rate train oscillations, which is not appropriate for direct physical track correction 

until a more comprehensive solution has been established. In addition, the dynamic 

misalignment and displacement may be caused by the train motion which may be not 

be consistent for each run. 

6.2.3. Combine Navigation Solution 

As illustrated in these results, the sensor errors have introduced noticeable 

discrepancies into the navigation results. To minimise the impacts of sensor errors, 

both the primary and secondary measurement data are applied to a combined 

navigation solution. 

It is noted that the angular misalignment between the primary and secondary sensors 

are relatively stable as both are attached at a rigid platform. The discrepancies 

between two sets of accelerometer measurement data are therefore approximately 

constant. To simplify the implementation, the primary navigation system is retained, 

while the secondary sensor measurement data are only applied for smoothing the 

primary inertial measurements by a complementary filter. 

After implementing the combined navigation solution, the system attitudes, velocities, 

dynamic misalignment and displacement are closely aligned with previous results, 

but the chainage error has been reduced from −9.4I to −5.2I by the same set of 

system parameters. 

6.3. Repeated Navigation Results 

To examine the performance and repeatability of the RBN solution, three sets of 

experimental data (including the previous set of data) were individually collected 
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along the same section of track. The corresponding information including the date, 

time and period of motion, are summarised in Table 6.3. 

Table 6.3: Summary of data collection 

Set 
Date of 

collection 
Time 

Period of time (second) Track section 

Initial Motion Final From To 

A 13/08/2015 18:06 8.5 95.0 8.5 HAH POL 

B 13/10/2015 21:24 18.1 90.0 18.1 HAH POL 

C 30/10/2015 20:27 29.4 88.0 26.7 HAH POL 

 

6.3.1. Physical Track Conditions 

The accuracy of track reference, especially the attitudes, is a primary concern for the 

performance of RBN solution. To investigate the physical track conditions, the 

navigation solutions are optimised such that the chainage errors are bounded within 

sub-metre-level, which can be implemented by slightly adjusting the uncertainties of 

track reference attitude regarding the physical track conditions. Figure 6.13 shows 

the attitude profiles of solution A, B and C which are coloured in red, green and blue 

respectively. 
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Figure 6.13: System attitudes estimated from the three sets of data 

As shown in Figure 6.13, the curves of three solutions are rather consistent. The 

constant angular offsets are caused by the constant misalignment of the system as it 

was placed on the floor of the carriage relative to the track reference. Since the 

chainage errors are not compensated, the curve patterns are slightly offset along the 

chainage axis. The results show that the major train oscillations in the r and p axes 

are rather coherent. The relative distortions between the curves are most likely 

caused by the over-constraint problems mentioned previously. The physical train 

attitudes are retrieved by subtracting the TAP attitudes from the system attitudes, 

which are expressed in form of dynamic misalignment as shown in Figure 6.14. 
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Figure 6.14: Dynamic misalignment estimated from the three sets of data 

The relative discrepancies may be caused by the chainage-originated track errors, 

independent train motion or inappropriate weights for navigation error control. To 

remove the high-rate train oscillations and the discrepancies of train motion, the 

results are smoothened and averaged. As illustrated in Figure 6.14, the curves which 

are coloured in black represent the general dynamic misalignment within the 

experimental section after compensating the run-to-run variations. The low-rate train 

motion and track attitude errors are remained in the resultant misalignment. 

6.3.2. Train Motion and Velocity 

In addition to the track conditions, the train velocities have been resolved into the t-

frame and represented in Figure 6.15 for further investigation. 
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Figure 6.15: System velocities estimated from the three sets of data 

Since the train acceleration and braking are computer controlled with feedback of 

velocity data, the run-to-run velocity profiles should be slightly different with 

varying operational conditions. The run-to-run variations for the velocity in the x axis 

are rather small during the train accelerating phase, while the braking curves are 

similar at a train speed under 5 I �⁄ . 

The velocity profiles in y and z axes are closely aligned. The discrepancies in y axis 

can be found at around 450I to 800I, which are probably resolved from the run-

to-run variations of train velocity. It is noted that the high-rate velocity oscillations in 

the y axis are sometimes consistent, which conform to the findings in attitude results. 

The position differences between the TAP estimates and the navigation results are 

represented by the dynamic displacement as illustrated in Figure 6.16. 
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Figure 6.16: Dynamic displacement estimated from the three sets of data 

Similar patterns can be found in the dynamic displacement profiles, while the run-to-

run variations are directly proportional to estimated velocities in the corresponding 

axes. However, it is found that the dynamic displacement and velocity, as well as the 

dynamic misalignment, for solution C are slightly different from the averaged results, 

which may be caused by inappropriate weight control. 

In summary, the train motion is generally consistent within the same track section 

even travelling at different train speeds. 

6.3.3. Repeatability of Navigation Results 

In this section, the navigation results are computed from the three independent sets of 

experimental data such that the run-to-run sensor errors and train motion are 

independent. In general, the resultant dynamic misalignment and displacement are 

zero-mean, which indicate the correctness of additional compensation to the TAP 
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estimates. The RMS of smoothened dynamic misalignment and displacement (high 

rate train motion removed) are computed from the averaged results, which are shown 

in Table 6.4. 

Table 6.4: RMS of dynamic misalignment and displacement from averages 

Solution 
RMS of misalignment (°) RMS of displacement (I) 

r p h x y z 

A 0.097 0.035 0.062 0.001 0.004 0.003 

B 0.087 0.041 0.091 0.000 0.005 0.003 

C 0.108 0.049 0.141 0.000 0.007 0.003 

 

Although the run-to-run variations are expected, similarity can be found from the 

profiles of navigation results. Table 6.4 shows that the RMS of dynamic 

misalignment for solution C is slightly larger than others, while the RMS of dynamic 

displacement for all the three solutions are small (millimetre-level). 

The long-term variations from zero-mean are primarily caused by the track defects. 

In contrast, the low-rate variations (period of 100-metre-level) are mainly caused by 

any systematic nature of train motion or uncompensated errors from the TAP 

estimates, while the high-rate variations (period of 10-metre-level) indicate the 

resultant train motion compensated by the bogies. 

According to the optimised results, the high rate train motions can be measured by 

and recovered from the RBN solution. In addition, the long-term variations and low 

rate temporary variations can be retrieved from the three sets of navigation results, 

which are rather consistent over repeated runs as shown in Table 6.4. Apart from the 

accuracy, the RBN solution can be an alternative method to continuously monitor the 

train motion, while the variations of entire track geometry can be repeatedly 

measured. 
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6.4. Validation with Alternative Track Section 

To confirm  the RBN solution a set of data was collected on 13/10/2015 for another 

section of track. The section is the eastbound track connected from TKO station to 

HAH station. The navigation results illustrated in this section were computed based 

on the knowledge gained from the initial study, while several system parameters 

were empirically reweighed. 

6.4.1. General Navigation Results 

The profiles of attitude are shown in Figure 6.17. The estimated velocities are 

resolved in the t-frame and shown in Figure 6.18. The results of the standalone INS 

and the RBN solution are plotted in the figures relative to time, which are coloured in 

red and green respectively. 

 

Figure 6.17: INS and RBN derived system attitudes 
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Figure 6.18: INS and RBN derived system velocities 

According to the navigation results, the drifts in attitude and velocity errors are 

greatly controlled by the RBN solution. However, an abnormal roll error can be 

detected at around 155�, which lead to an additional velocity error in both the y and 

z axes. The abnormal error is mainly caused by chainage-originated track attitude 

errors. However, the navigation results are optimised such that the chainage error 

should be insignificant to that magnitude of attitude error. 

6.4.2. Incorrectness of Track Data 

To verify the source of error, the navigation results are compared with the TAP 

estimated system attitudes. Figure 6.19 shows the system attitudes which are derived 

from the TAP solution and the standalone INS. 
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Figure 6.19: INS and TAP derived system attitudes 

It is found that the pitch and heading profiles are generally coherent by ignoring the 

drifts of attitude caused by uncompensated sensor biases. In contrast, the roll profiles 

are shifted in the chainage direction by few metres. 

In addition, abnormal patterns can be identified from the INS derived pitch angles 

from around 200I to 400I , and from around 1050I to 1150I, which indicate 

that the track alignment data is not absolutely consistent with the physical track. 

Investigation revealed that the track alignment data for the TKO to HAH section is 

the design data and not compiled from as-built survey records. The actual track 

alignment is probably modified from the original track alignment design. As a result, 

the discrepancies between the incorrectly defined track data and the physical track 

geometry are estimated by the RBN solution and are illustrated in Figure 6.20. 
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Figure 6.20: Dynamic misalignment estimated from RBN 

6.5. Performance and Deficiencies of RBN 

Through the system implementation, different sets of navigation results are 

represented and analysed in previous sections, while the impacts of sensor errors, 

train motion and track data correctness have been illustrated and discussed. In this 

section, the results are summarised for the performance and deficiencies of RBN. 

6.5.1. Practical Accuracy of RBN 

In the rail-bound environment, the chainage is a primary factor for train localisation, 

which is a one-dimensional horizontal distance defined with the track alignment. For 

RBN solution, the chainage error is a primary indicator for the accuracy of 

navigation results, while the lateral and vertical position are constrained by the 

physical track through the TAP estimates. In general, results illustrated that the 

longitudinal position accuracy varies from few decimetres to over ten metres, which 
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slightly depends on the weighting of track uncertainties. The redundant navigation 

results explicitly indicated a 10-metre discrepancy under the identical track 

conditions and train motion. It implies that the excessive position errors are 

potentially resulted from the impacts of sensor errors. 

6.5.2. Correctness of Attitude and Velocity 

Apart from the absolute position errors, the system attitude and velocity profiles are 

represented and analysed. The RBN results demonstrated a great improvement for 

the accumulation of attitude errors, while the physical train motion, as well as track 

defects, can be accurately retrieved. 

It is noted that the VUPT is suggested but not applied in this thesis. The attitude error 

control has provided an alternative measure to diminish the growth of velocity errors. 

Although the navigation results are not examined with external control data, the 

velocity accuracy can be validated by the misclosures at the end of train motion. 

In addition, the repeatability of solution has been illustrated by three independent sets 

of navigation results. The nominal discrepancies between the TAP results and the 

RBN results can be determined from the navigation records, which are represented in 

dynamic misalignment and displacement. After the removal of high rate oscillations, 

the additional train motion and track defects are generalised in form of dynamic 

misalignment and displacement record. 

6.5.3. Dynamic Weight Control 

Although the train motion and track defects can be generalised into a record of 

dynamic misalignment and displacement, the direct error compensation was not 

applied in this thesis. It is mentioned that the adaptive method is employed to 

estimate the uncertainties of train motion, which is a dynamic weight control process. 
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After the error compensation, the discrepancies between TAP estimates and system 

results, as well as the resultant adaptive noises, would be notably reduced, such that 

the relative weight for navigation error control would increase. As a result, the error 

compensation would be counteracted by the increased weight and is not beneficial to 

the error control process. 

The error compensation has been reserved as a potential measure for accuracy 

improvement. An alternative weight control and optimisation method is required to 

tackle the encountered problem, which is a research direction beyond this thesis. 

6.5.4. Track Alignment Errors 

The performance of RBN solution is verified and examined on the basis of correct 

track alignment data. In section 6.4, the impacts of incorrect track alignment data 

have been illustrated. Although an accurate navigation solution cannot be achieved, 

the attitude and velocity errors can be identified from the results through appropriate 

weight control. The resultant misalignment and displacement represented part of the 

track alignment errors, which require further study to recover the actual differences 

between the track data and physical geometry.  
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Chapter 7:  Conclusion and Recommendations 

Problems related to GNSS outages, which are currently unsolved for general inertial 

navigation applications, have greatly hampered the potential development of mobile 

mapping into other fields. In railway environments, mobile mapping technology is 

usually employed for engineering applications, such as track survey, tunnel mapping 

and clearance measurement, while its potential application in other areas such as 

real-time train control and infrastructure monitoring (particularly in tunnels) are yet 

to be exploited. 

To enhance the potential of MMS in underground railway systems, a GNSS-free 

solution for train navigation and georeferencing has been developed. This thesis 

presents and validates the concept of the Rail-bound Navigation (RBN) solution by 

replacing the GNSS component of a POS with track constraints. The result is 

georeferencing technique that can be applied in all railway systems and in 

underground railways in particular. RBN forms the basis of a wide range of 

applications such as Underground Railway Laser Scanning (URLS), real time train 

control, and full time infrastructure monitoring. 

7.1. Summary for Rail-bound Navigation 

In a railway environment, the train motion is fundamentally bounded by the rail track 

meaning that the track alignment data can be utilised to constrain the train motion 

sensed by an INS. In general, the navigation system is aligned with the nominal track 

alignment at constant angular and linear differences, while the dynamic train motion 

introduces additional uncertainties to the discrepancies between the track alignment 

data and the navigation results. Both of these aspects have been considered and 

incorporated into the formation and validation of the RBN solution. 
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7.1.1. Formulation of RBN Structure 

The RBN solution is primarily maintained by inertial navigation results, which 

provides alternative error control regarding typical INS/GNSS configuration. The 

fundamentals of INS, such as the inertial sensor errors, INS mechanisation, system 

initialisation and relevant error models, are summarised in Appendix 1. 

To quantify the track constraints, a TAP solution is established to retrieve the track 

position and attitude from alignment parameters for the error control process. In 

Chapter 3, the generalised functional models, error models and essential 

considerations have been presented for the development of a TAP solution. Through 

the appropriate chainage updating methods, the TAP can provide an alternative 

navigation reference with three-dimensional position and attitude. 

Regarding the train dynamics, the fusion of INS and TAP is more complicated than a 

typical INS/GNSS integration. In Chapter 4, the structure of the RBN solution has 

been introduced and discussed in detail. The INS/TAP integration is implemented 

through an EKF process and the measurement error models are developed to estimate 

the navigation errors and their uncertainties. In addition, several assumptions were 

made for the train motion behaviour such that the track-to-train transition and train-

to-body misalignment are introduced to compensate for the systematic discrepancies 

between the actual train motion and the TAP estimates. As a result, a valid 

relationship between the inertial navigation and the track constraints has been 

established. 
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7.1.2. Validation of RBN Performance 

Following the formulation of the RBN solution, a prototype navigation system was 

designed and implemented in Chapter 5 for the validation of the hypotheses. A 

preliminary experiment was carried out with a simulated rail-bound motion to obtain 

initial knowledge for the potentials and deficiencies of the RBN solution. To verify 

the theoretical accuracy of TAP estimation, a set of track alignment sample data from 

Hong Kong’s MTRC was used. The chainage errors were simulated to estimate the 

impacts to TAP navigation errors, which are consistent with the propagated 

uncertainties. 

Through the implementation of the RBN, the coherent attitude patterns between TAP 

estimates and INS results have illustrated the correctness of the TAP solution. 

Although the longitudinal position error is not minimised, a significant improvement 

in attitude and velocity was produced by the RBN solution. 

In Chapter 6, the performance of RBN solution is further optimised and analysed 

through redundant measurements and independent experiments. Through analysis of 

the data, it is seen that the general accuracy of the RBN solution mainly depends on 

the sensor quality and the weight for error control. By comparing the navigation 

results from redundant sensor measurements, the impacts of sensor errors were 

clearly identified as they were found to cause 10-metre level position discrepancies. 

The impacts of sensor errors can be diminished by data smoothing and increasing the 

weight of TAP estimates, especially for the pitch angle. 

In addition, three independent sets of experimental data were collected for the same 

section of track. The dynamic misalignment and displacement are generally coherent, 

while the run-to-run variations are mainly caused by the uncompensated train motion. 
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After filtering the high rate oscillations, the averaged misalignment and displacement 

indicated the physical track defects and the uncompensated low rate train motion, 

which can be further employed to monitor the track geometry. Through the analysis 

of the RBN results, the incorrectness of track data can be indicated from any 

abnormal dynamic misalignment. 

7.2. Significance and Implications of the RBN Solution 

Through the formulation and validation of the RBN solution, the research objectives 

have been accomplished with satisfactory results. Despite the poor inertial sensor 

quality, the accuracy of attitude and velocity can be vastly improved with RBN in a 

GNSS-free environment without additional control data and post-processing. The 

significance and potential of the RBN solution is illustrated. 

7.2.1. Originality of RBN Concept 

The formulation of the RBN concept originated from the demands of railway 

systems. In highly urbanised cities, underground rapid transit is generally the 

backbone of public transformation, which requires highly automated train control, 

accurate train localisation and safety enforcement. Mobile mapping technology, 

which can provide individual navigation results and spatial measurements, is 

particularly valuable for multi-purposes applications, such as alternative train 

localisation, precise speed monitoring, continuous track deformation monitoring, 

tunnel condition monitoring and train detection. In general, typical MMS are 

designed for above-ground applications, which are usually built with high 

performance sensors to minimise the impacts of GNSS outages. As a result, the 

system cost and the necessity of post-process have hampered the feasibility of 

continuous railway applications. 
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In principle, the train motion is fundamentally bounded by the physical track and is 

predefined by the track alignment, indicating that the GNSS component can be 

alternatively replaced by the track constraints. The sensor requirements, as well as 

the necessity of post-process, are therefore reduced on account of the continuous 

error control process. 

Despite the potential benefits, the integration of mobile mapping technology and 

railway systems has received little attention. A GNSS-free train navigation solution, 

RBN, was thus formulated to establish a basis and research direction for the 

integration of mobile mapping technology and railway systems. 

7.2.2. Realisation of Track Constraints 

Through the formulation of the RBN concept, a comprehensive method is required to 

realise the track constraints. Consequently, the concept of TAP solution was 

developed from the typical curve approximations from engineering surveying, which 

has been generalised into a series of functional models and the georeferencing of 

track geometry. The three-dimensional position, as well as the track attitudes, can be 

determined to utilise the track alignment data and completely realise the track 

constraints. 

The TAP solution forms the backbone of the RBN solution. It provides a way to 

realise a GNSS-free inertial navigation solution with loosened requirements of post-

process, external control data and measurements, which facilitates the development 

of mobile mapping technology towards real-time applications. 

7.2.3. Notable Performance 

Following the realisation of track constraints, the INS/TAP integration was 

implemented on the basis of further optimisation, including chainage updates, track-
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to-train transition, train-to-body constant and dynamic misalignment, and the 

transition of fine alignment process, which aims at modelling and compensating for 

the discrepancies between the nominal track constraints and the actual train motion. 

The experimental results have illustrated a great improvement by using a prototype 

system with consumer grade MEMS IMUs. Despite the longitudinal position errors 

caused by sensor quality, the attitude and velocity profiles have demonstrated that the 

train motion can be precisely retained by the RBN solution, while the accumulation 

of navigation errors has been greatly constrained without external data and 

measurements. 

Furthermore, the results of repeated experiments have indicated the potential of track 

monitoring and track error compensation, while the nature of train vibrations and 

motion, or track defects can be examined from the navigation results. 

7.3. Summary of RBN Errors 

In this thesis, a series of error control processes were involved in addition to the 

fundamental INS/TAP integration, which formulated the backbone of the RBN 

solution. The navigation performance, however, is constrained by the relevant error 

sources with different impacts. Through the discussion and analysis, major error 

sources and their correlations are identified, classified and summarised in this section. 



 

139 

 

Figure 7.1: RBN error sources and their correlations 

The error sources for RBN solution can be defined and classified into primary, 

secondary and tertiary levels regarding their impacts and characteristics. The major 

errors identified in this thesis are represented in Figure 7.1 with corresponding 

colours and descriptions, which are concisely summarised in sections 7.3.1, 7.3.2 and 

0. 

7.3.1. Primary RBN Errors 

The primary error sources for RBN solution are the inertial sensor errors and track 

errors. They are the major constraints which directly restrict the navigation 

performance. In addition, the growth of these errors would constitute alternative 

sources of error such that their impacts would be further enlarged. 

The inertial sensor errors (or quality) are the primary factors to indicate the accuracy 

and precision of an INS. For less precise inertial sensors such as consumer-grade 

sensors, the stochastic relationships for INS/TAP may not be valid under the rapid 
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growth of navigation uncertainties. The navigation system would be over-constrained 

by the track and introduces biases by propagating to the recalibrated sensor errors. 

At the meanwhile, the track errors resulted from track defects, inaccurate or incorrect 

track data, would have great impact to the navigation results and diverge the solution. 

7.3.2. Secondary RBN Errors 

Through the RBN structure, secondary error sources, such as calibration errors, 

chainage errors, and dynamic errors, are resulted from the growth of primary error 

sources, which are directly or indirectly correlated to the navigation results. 

The calibration approach for sensors is mainly constrained by the quality of sensors, 

such as physical and stochastic characteristics, which would introduce different 

levels of calibration errors (or remaining errors after calibration). These errors would 

propagate and be integrated to the navigation results through the INS mechanisation. 

In addition, it may diverge the solution by inappropriate stochastic definition. 

In this thesis, the chainage is maintained by an INS and indirectly constrained by 

RBN solution such as the attitude error control. The magnitude of chainage error is 

therefore proportional to the growth of inertial sensor errors and introduce track 

errors by inaccurate chainage. 

The train motion, which is defined as the discrepancies between INS and TAP 

estimates, has to be extracted and modelled in term of dynamic errors. The dynamic 

errors are directly affected by the INS estimates and the track errors, which constitute 

the relationships between the track reference and the moving train. The growth of 

primary errors may lead to invalid RBN conditions and loss of train motion. 
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7.3.3. Tertiary RBN Errors 

In the development of RBN solution, several error sources, such as the lever-arm 

offset, initialisation errors, train motion modelling errors and train-to-train errors, are 

directly correlated to several errors sources and less significant to the navigation 

solution. They are classified into tertiary level of errors and are controlled under 

assumptions in this thesis. 

7.4. Research Restrictions and Limitations 

Throughout the study, the research direction and content were repeatedly modified 

regarding the changes of project conditions. The actual performance of the RBN 

solution cannot be demonstrated in absolute terms, while a comprehensive analysis 

of accuracy is not available. Furthermore, several assumptions have been made to 

facilitate the formulation of solution, which have also limited the research scope. 

7.4.1. Absence of High-grade Inertial Sensor 

Since a survey-grade MMS or INS was not available, a prototype system was built 

with consumer grade MEMS IMUs. A large proportion of time was spent on the 

preparation of hardware, and establishing data processing methods and sensor 

characteristics. Through the implementation, results indicated that the sensor errors 

have caused a significant impact to the absolute position accuracy. Thus, the present 

study has only explored the relative performance of attitude and velocity. In addition, 

the practical performance of the RBN solution would be significantly enhanced by 

employing higher grade sensors, such as industrial-grade IMUs, but the potential 

improvement is currently unknown. 
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7.4.2. Lack of Access to Railway and Train Control Data 

The research access to the MTR facilities has been withdrawn because of a change of 

staff. Therefore, the experiments were merely performed with minimum installation 

by carrying the devices as luggage. The inertial measurements are the only available 

data for the implementation of the RBN solution, while the train control data is not 

accessible for further optimisation. Consequently, the potential improvement by 

integrating the RBN with train control data remains uncertain. 

Although the track alignment design data was provided from the MTRC for research 

purposes, the HAH to POL section is the only available track alignment data for 

implementing the RBN solution. The access to as-built survey record is denied 

regarding the change of personnel, while the track alignment has been modified from 

the design data. As a result, only a single set of track alignment data is available to 

examine the general performance that restrict the generalisation of the RBN results. 

7.4.3. Simplifications Resulted from Assumptions 

A fundamental assumption has been made for the interaction between the train body 

and the bogies that a bogie is rotatable and constantly fixed with the train at a point. 

In practice, the bogie has a much more complicated structure for compensating the 

train motion, while the behaviours for various types of bogie are very different. This 

simplification may introduce excessive position and attitude errors to the system. 

Although the sensor biases and scale errors were calibrated, an accurate gravity 

acceleration is not employed throughout the calibration. This may lead to a scale 

error and propagated into absolute velocity and position errors. In addition, the 

stochastic model for the propagation of sensor error uncertainties has been 
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established with manufacturer’s specification which may not be accurate or may 

cause uncertainties to the practical accuracy. 

In this thesis, a typical INS system model has been employed and maintained for 

future optimisation, while the TAP position and attitude are independently estimated. 

The estimated navigation errors are assumed as zero-mean and characterised by the 

innovation covariance. However, the uncompensated train motion has biased the 

solution, which has been incorrectly resolved into the drifts of sensor biases. 

Although the impacts were reduced by a complementary filter, a more rigorous 

method is necessary. 

7.5. Recommendations and Future Improvements 

Despite the encountered restrictions and limitations, the concept of the RBN solution 

has been realised and validated through the experiments. This study has illustrated 

the potential performance of RBN solution rather than its actual performance. 

Consequently, a number of possible improvements are recommended for future 

research. 

7.5.1. A Comprehensive Performance Analysis 

Since the prototype navigation system cannot provide satisfactory measurement 

accuracy, a comprehensive performance analysis is not applied to the RBN solution. 

Regarding the improvement demonstrated in this study, the actual performance of 

RBN solution should be remarkable if a higher grade INS was applied. It is 

recommended to implement the RBN solution to a more advanced INS for further 

investigation, such that a comprehensive performance analysis would be meaningful 

to indicate the absolute improvement by comparing the RBN solution to alternative 

error control methods. 
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7.5.2. Train Control Data Fusion 

In this study, the navigation results are exclusively constrained by the TAP estimates, 

which have already illustrated a significant improvement in attitude and velocity. To 

maximise the long-term position accuracy, train control data fusion, such as train 

speed and position, is strongly recommended, such that the characteristics of train 

control and railway systems can be utilised. In the meanwhile, the RBN solution may 

provide precise information for train motion by interacted with train control system. 

7.5.3. Error Modelling for Train Motion 

Since a number of assumptions have been made to simplify the compensation of train 

motion, the navigation results are slightly biased by the compensation errors. To 

achieve a more rigorous solution, the track-to-train transition, the nature of bogie 

compensation and the lateral overturning effects are some of the recommended 

research directions to establish the error models for train motion dynamics and 

replace the adaptive measurement noise method. 

7.5.4. Track Deformation Record 

The physical track defects, which have been identified from the navigation results, 

are retrieved as dynamic misalignment and displacement. This study demonstrates 

the feasibility of continuous track monitoring through a misalignment record relative 

to the alignment chainage. Through the use of more advanced sensors and rigorous 

train motion dynamics, possible track deformation can be indicated by compared to 

the up-to-date record, which facilitate the track maintenance. In the meanwhile, the 

track error compensation can be applied to improve the RBN error control with 

advanced error models for train dynamics. A more thoughtful study is recommended 

to handle the spatial errors and the detection of track defects. 
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7.5.5. Rail-bound Mobile Mapping 

Since the primary originality of the RBN solution is to facilitate the integration of 

mobile mapping technology and railway systems, it is highly recommended to 

investigate the performance of the RBN solution through the acquisition mobile 

mapping data. Thus, the feasibility of tunnel condition and structural monitoring can 

be examined through the analysis of mapping data accuracy. Additionally, the 

potential of intermittent chainage correction through the identified landmarks 

provides another potential research direction. 

7.5.6. Further Integration with Railway System 

In general, this study presents a potential train navigation and georeferencing 

solution for railway systems and demonstrates the implications of improvement by 

employing the RBN solution. In addition, RBN may provide several potential 

development directions for the integration of mobile mapping technology and 

railway and train control systems as shown in Figure 7.2, including the URLS, train 

signalling and timetable management, railway system maintenance and Automatic 

Train Operation (ATO). 

 

Figure 7.2: Potential development aspects for comprehensive integration 
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Through the interaction with train control data, a more precise train localisation can 

be determined from RBN, which provides an alternative solution for dynamic 

headway calculation and updates. The train separation can be potentially reduced for 

maximising the route capacity while the train safety is maintained by URLS. 

Additionally, the RBN solution provides a full time measurement such that a track 

deformation record can be established for facilitating the track maintenance, while 

the track record can be applied to improve the RBN accuracy. 

By compensating for the track defects, the train motion can be retrieved from the 

navigation results from the RBN solution, which establish an indicator to the train 

health status (e.g. train vibrations). In addition, the RBN and URLS provide 

alternative sources of train-borne measurements (e.g. precise train speed and 

localisation, acceleration and braking measurement, train and obstacle detection) 

supporting the ATO. 

In conclusion, RBN deserves further studies to discover its potential, which can 

facilitate the development in both the mobile mapping and railway system. 
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Appendix 1 - Inertial Navigation Basis 

To facilitate the development of RBN solution, the fundamentals of inertial 

navigation are reviewed for navigation system design and implementation. An 

overview of inertial sensors and relevant models, including the essential navigation 

equations for system mechanisation and initialisation, are summarised prior to the 

design of an INS. 

A1.1. Overview of Inertial Sensors 

For the minimal necessary configuration, an INS maintains the navigation solution 

from inertial measurements which are collected by inertial sensors such as 

accelerometers and gyroscopes. Therefore, the quality of the inertial sensors or the 

IMU has a considerable contribution to the overall navigation performance that the 

sensor errors should be properly handled prior to the implementation of a navigation 

system. 

In general, sensor errors comprise systematic errors and zero-mean random errors. 

The systematic errors are usually deterministic, which can be compensated through 

appropriate calibration. The random errors are considered to be non-deterministic 

and cannot be compensated. However, they are usually handled by a stochastic 

model for capturing the statistical properties after accounting for systematic errors. 

A1.1.1. Systematic Errors 

The characteristics of systematic errors of accelerometers and gyroscopes can be 

indicated by the effects of differences between signal input and output, which have 

been discussed by Titterton and Weston (2004); Grewal et al. (2007); Farrell (2008); 
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Groves (2008). The error characteristics are generally classified by the patterns 

regarding the physical features as shown in Figure A1.1. 

With respect to performance requirements, physical and mathematical models have 

been developed to compensate for the fixed errors through a calibration process. The 

physical models are derived with respect to the principles of physics for the 

correction of recognisable errors such as zero-constant and scale error. In addition, 

mathematical models are empirically defined to remove systematic errors with 

specific patterns. 

 

Figure A1.1: Typical sensor error characteristics (Grewal et al., 2007) 

By considering the general error sources, the physical error models for accelerometer 

and gyroscope can be described by eqn. 3.11 and eqn. 3.12 respectively, which are 

summarised from Farrell (2008). 

����  = �� − ;Þ(���ß��� − ;à( − ;á( − â(� (A1.1) 

 

where ����  and �ß���  are the actual and raw accelerometer measurements respectively; 

;Þ( is a diagonal matrix of accelerometer scale factor error; ;à( is the accelerometer 



 

149 

bias; ;á( is the accelerometer non-linear scale factor; and â(  is the accelerometer 

random noise. 

u���  = �� − ;Þl��u� ��� − ;àl − ;ãl − âl� (A1.2) 

 

where u���  and u� ���  are the actual and raw gyroscope measurements respectively; 

;Þl is a diagonal matrix of gyroscope scale factor error; ;àl is the gyroscope bias; 

;ãl is the gyroscope g-sensitivity; and âl is the gyroscope random noise. 

It is noted that the choice of error terms depends on the sensor characteristics and the 

performance requirements. For low cost sensors such as consumer grade IMUs, the 

sensor noises ( �(  and �l ) may be too large that the systematic errors are not 

observable. 

A1.1.2. Random Errors 

Through the compensation of systematic errors, a variety of random errors are 

resulted from uncontrollable conditions such as temperature, pressure and electronic 

noise. The random errors are considered to be zero-mean, which are usually 

described as a lump-sum of uncompensated error sources such as white noise, 

exponentially correlated noise, random-walk errors, harmonic noise and "1 8⁄ " noise 

(Grewal et al., 2007). 

Appropriate stochastic models are usually applied to define the random processes 

and capture the sensor noise characteristics. For a typical aided INS solution, a 

stochastic model is required to characterise the time-correlated measurement errors 

and determine the optimal weighting for integrating the INS and aiding data sources 

through a Kalman filter. 
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Prior to the implementation of navigation system, the stochastic model parameters 

can be estimated through methods such as auto-correlation function, power spectral 

density and auto-regressive moving average through laboratory calibration. 

Regarding the research objectives, the stochastic modelling and sensor calibration 

process are not further explained. 

A1.2. Mechanisation of Inertial Navigation Systems 

Since the experiments conducted in this research are located in a low-latitude region 

(Hong Kong, 22.4°N), the INS is mechanised in the n-frame without the singularity 

problem that occurs in polar regions. In this section, the elemental INS 

mechanisation equations are summarised for a n-e-d implementation, which are 

defined for an EKF implementation. The mechanisation equations basically follow 

the convention of Farrell (2008) and Groves (2008) with minimal modifications, 

which are elaborated in Appendix 2. 

A1.2.1. Inertial Navigation Equations 

An INS maintains its navigation solution by the changes of position, velocity and 

attitude relative to a coordinate frame, which involves the computation with a series 

of transformation, integration and compensation of inertial motion. The navigation 

equations for the rates of position, velocity and attitude are mechanised in the n-

frame, which are summarised in eqn. A1.3, eqn. A1.4 and eqn. A1. 5 respectively. 

�/ � =
<==
=> 1vx + ℎ 0 0

0 1�vw + ℎ� cos s 00 0 −1CDD
DE �q��  (A1.3)  
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where �/ � is the rate of changes in curvilinear coordinates; �q�� = y�w �å �æz� are 

the Earth-relative velocities expressed in the n-frame. 

�/q��  = −��q�� + 2��q� ��q�� + ���� + ç� (A1.4) 

 

where ���� = �������  is the acceleration sensed in the b-frame and transformed into 

then-frame; ç� = y0 0 gz� is the normal gravity acceleration represented in the 

n-frame; �q��  is the skew matrix of the turn rate of then-frame relative to the e-frame; 

��q�  is the skew matrix of the rotation rate of thee-frame relative to the i-frame. 

�/�� = ������� − ���q� + �q�� ���� (A1.5) 

 

where ����  is the skew matrix of angular velocity (u��� ) sensed in the b-frame relative 

to the i-frame. 

A1.2.2. Inertial Navigation Updates 

The rates of changes in position, velocity and attitude are described by the 

continuous-time navigation equations. To implement an INS, a discrete time solution 

is required regarding the discrete-time measurement samples, while the integration 

and compensation of inertial measurements are performed in sequence. 

The attitude is usually updated prior to velocity and position, which can be integrated 

through several methods, including DCM, quaternion, rotation vector and Euler 

angles. An approximation of direct attitude updates is shown in eqn. A1.6 in the form 

of DCM. 

�����+� ≈ �����,��� + ���� ∆�� − ���q� + �q�� ������,�∆� (A1.6) 
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where �����+� and �����,� are the current and previous transformation matrices; �+ 

and �, are the time epochs where �+ è �,; ∆� = �+ − �, is the sampling time interval. 

Following the attitude integration, the velocity and position integration are relatively 

straight forward, which are shown in eqn. A1.7 and eqn. A1.8 respectively. 

�q�� ��+� = �q�� ��,� + ∆� h12 ������+� + �����,������ − ��q�� + 2��q� ��q�� ��,� + ç�i (A1.7) 

 

where �q�� ��+� and �q�� ��,� are the current and previous Earth-relative velocities. 

����+� = ����,� + ∆�2 �y�q�� ��+� + �q�� ��,�z (A1.8) 

 

where ����+�and ����,� are the current and previous position in the n-frame. 

The computation flow of inertial navigation updates is simplified and illustrated in 

Figure A1.2. The inertial measurements are transformed into the n-frame, which are 

integrated and compensated for navigation updates from initial position, velocity and 

attitude without external sources of information. 

 

Figure A1.2: Computation flow diagram for an INS 
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A1.3. System Initialisation and Alignment 

Since an INS is a dead reckoning solution by maintaining the position and attitude 

changes through the sensed motion and rotation, the initial position, velocity and 

attitude are required to solve the ambiguity problems of system. 

A1.3.1. Position and Velocity Initialisation 

In general, an INS requires external sources for initialising position, such as GNSS 

position or manual input, while the earth-relative velocity can be initialised by zero-

input through stationary initialisation or by external velocity reference. Some 

systems may employ low-grade IMUs and are mechanised in a localised reference 

frame for small-area navigation or indoor positioning, which require only the 

arbitrary position by disregarding the global effects, such as Earth's rotation and the 

rotation of the n-frame relative to the e-frame. 

For railway environments, the navigation area is sufficiently large (over kilometres) 

that the global positional changes would introduce significant impacts to the 

navigation solution. The INS is therefore implemented in the n-frame and requires 

georeferenced position. Through the TAP, the chainage of reference is required to 

determine the reference position and support the position initialisation. The 

stationary initialisation can be merely implemented when the train temporarily stops 

at a station. Providing position and speed data through the train control system, 

dynamic initialisation is achievable for more flexible operation. 

A1.3.2. Initial Sensor Alignment 

For a strap-down INS, the sensor alignment is performed to determine the initial 

values of transformation between the b-frame and the reference frame, which is 

conventionally achieved through one of four methods (Grewal et al., 2007): 
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− Optical alignment: it can be performed by optical line-of-sight measurements to 

ground-based directions for near-Earth applications, or by star tracking in space 

or near-space. 

− Gyrocompass alignment: it employs the sensed acceleration to determine the 

local vertical and the sensed Earth rotation to determine the direction of north. In 

addition, latitude can be determined from the angle between the Earth rotation 

vector and the horizontal. This method requires stationary initialisation and is 

time-consuming, which is only applicable to land-based vehicles. 

− Transferred alignment: it can be done in a moving host vehicle by velocity 

matching with another aligned INS. 

− GNSS-aided alignment: the alignment variables are estimated by position 

matching with GNSS through the integrated INS/GNSS implementation. This 

does not require stationary vehicle during alignment process, which needs a 

period of time to settle the navigation errors to acceptable levels. 

The proposed RBN solution is capable of direct GNSS replacement with TAP for 

position matching for dynamic initialisation process. However, it depends on the 

availability and accuracy of the reference chainage. Dynamic TAP-aided alignment 

is recommended only if an alternative train localisation method is applicable. 

Alternatively, gyrocompass alignment is preliminarily considered to be more suitable 

in railway systems as the host train would repeatedly stop at station platforms with 

pre-defined chainage. The relevant gyrocompass alignment equations for the 

formation of rotation matrix have been derived and broadly reviewed by Titterton 

and Weston (2004), Bekir (2007) and Grewal et al. (2007), and utilises the 

measurements of accelerometers and gyroscopes. The gyrocompass alignment, 

however, requires highly accurate and precise sensors and a certain period of time, 
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which introduces additional restrictions to system implementation. For low cost 

MEMS IMUs, the sensor biases and measurement noises are considerably large that 

which are be suitable for conventional navigation and gyrocompass alignment. 

The self-alignment process can be generalised and decomposed into sensor levelling 

and heading processes. The sensor b-frame is firstly levelled by matching the sensed 

acceleration with the local vertical to determine the roll and pitch angles, then 

followed by a heading process. The accelerometer levelling is described by eqn. 3.19, 

which is summarised from Bekir (2007) and Groves (2008). 

h)���i = \ tan^+�− 8é −8ê⁄ �tan^+ j8b ë8éF + 8êFì k] (A1.9) 

 

where )� and �� are the estimated roll and pitch angles respectively; 8b, 8é and 8ê are 

the accelerometer outputs in x, y and z axes respectively. 

The roll and pitch estimation shown in eqn. A1.9 merely utilises the accelerometer 

outputs. The error equations of roll and pitch are linearised and shown in eqn. A1.10. 

While the errors are propagated from the accelerometer outputs, the errors of 

accelerometer outputs are considered to be independent. 

h;)�;��i =
<==
===
> 0 8ê8êF + 8éF − 8é8êF + 8éF
− ë8éF + 8êF‖8‖F 8b8é‖8‖Fë8éF + 8êF

8b8ê‖8‖Fë8éF + 8êFCDD
DDD
E

`;8b;8é;8ê e (A1.10) 

 

where ‖8‖ = _8bF + 8éF + 8êF is the magnitude of accelerometer outputs. 

Regarding the error equation shown in eqn. A1.10, the angular errors are inversely 

proportional to the magnitude of accelerometer outputs. For land-based applications, 
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the ratio of gravity acceleration (about 1g) and accelerometer noise (about 0.1Ig to 

10Ig) is considerably large, which is applicable to a wide range of sensors. For low 

cost IMUs, the angular precision can be improved by averaging the accelerometer 

outputs over time when the host train is stationary. 

A1.3.3. Sensor Error Compensation 

In addition to the calibrated and compensated errors, the sensor instability, such as 

turn-on biases and time-correlated biases, should also be handled through the INS 

implementation. During the system initialisation and alignment processes, the 

uncompensated gyroscope and accelerometer biases can be estimated as shown in 

eqn. A1.11 which is summarised from Bekir (2007). 

0;u� ���;�í��� 1 =
<==
==>u� ��� − �q���� � cos s-0− sin s-'

�ß��� − ���� �00g' CDD
DDE (A1.11) 

 

When stationary, the gyroscope and accelerometer outputs are assumed to be zero 

values after the compensation of Earth's rotation rate and gravity acceleration 

respectively. The sensor biases are therefore estimated from the sensor outputs, 

which are maintained and continuously calibrated through a Kalman filter process. 

A1.4. System Error Control 

Since an INS is updated with relative measurements, navigation and sensor errors are 

propagated with time that the long-term accuracy of standalone navigation solution 

depends greatly on the IMU quality, the system initialisation accuracy, and the nature 

of motion. In accordance with such deficiency, the aided inertial navigation solution 

is usually implemented through a filtering process such as a Kalman filter, 
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complementary filter, and particle filter. The filtering process aims to model and 

propagate the system state and noises, which regulates the error control process 

through external measurement updates. 

A1.4.1. Navigation Error Models 

Since the EKF operates with a linearised dynamics model, the navigation equations 

of the rate of position (eqn. A1.3), velocity (eqn. A1.4) and attitude (eqn. A1.5) are 

linearised with respect to the system error state. The continuous-time dynamics 

model is summarised and presented in eqn. A1.12 with the derivatives elaborated in 

Appendix 2. 

�;�/;�/È/ ' = `î�� î�{ î�Çî{� î{{ î{ÇîÇ� îÇ{ îÇÇe �;�;�È ' + ` Ë Ë���� ËË −����e 0 ;����;u��� 1 (A1.12) 

 

where ;� are the position errors; ;� are the velocity errors; È = yï� ïq ïðz� are 

the attitude errors; Ë is a 3 × 3 zero matrix; the subcomponents of î matrix are the 

corresponding derivatives. 

The sensor errors are involved in the propagation of navigation errors, which are 

time correlated and change slowly with time. The sensor errors are therefore 

integrated with the system error state and controlled through an appropriate 

stochastic model. 

A1.4.2. Sensor Error Models 

The deterministic errors of accelerometers and gyroscopes, such as biases, scale 

factors, and orthogonality misalignments, are generally modelled and compensated 

through pre-calibration, while the time correlated sensor noises are handled by 
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stochastic models and characterised by random processes, such as random walk, 

Gauss-Markov and Auto-Regressive (AR) processes (Noureldin et al., 2013). 

For an aided INS process, the inertial sensor bias drifts are primarily modelled with a 

Kalman filtering process, while the additional errors terms are introduced for further 

performance requirements. The error models, however, are also considered on 

account of sensor quality, numerical stability and observability. 

To implement the prototype system, a first order Gauss-Markov process is employed 

to model the random noises associating with the accelerometer and gyroscope biases 

(Noureldin et al., 2013). Accordingly, a general system model for an INS is 

summarised in eqn. A1.13, while only the drifts of sensor bias are involved in the 

system. 

<==
==>

;�/;�/È/;�/���;u/ ��� CDD
DDE =

<==
==>
î�� î�{ î�Ç Ë Ëî{� î{{ î{Ç −���� ËîÇ� îÇ{ îÇÇ Ë ����Ë Ë Ë −ñ�̂ + ËË Ë Ë Ë −ñò̂+CDD

DDE
<==
==>

;�;�È;����;u��� CDD
DDE +

<==
=> Ë Ë Ë Ë−���� Ë Ë ËË ���� Ë ËË Ë � ËË Ë Ë � CDD

DE \ ���òó�óò
] (A1.13) 

 

where ñ�̂ + and ñò̂+ are the diagonal matrices of reciprocals of the correlation time 

associated with accelerometer biases and gyroscope biases respectively; ��  and �ò 

are the measurement noises of accelerometers and gyroscopes; ó� and óò are the 

spectral densities of accelerometers and gyroscopes specified by the manufacturer. 

The sensor error models are applied for sensor noise propagation, which regulate the 

growth of navigation noises. Through an EKF process, the stochastic modelling is 

important for optimal weight estimation of measurement updates and continuous 

calibration of sensor biases. The general Kalman filtering process can be found in 

Appendix 3. 
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Appendix 2 - INS Error Models 

In Appendix 1, the INS mechanisation equations and error models are summarised 

for the establishment of the navigation system, which are further elaborated in the 

following sections. The mechanisation equations and error models are derived on the 

basis of Farrell (2008) and Groves (2008) with minimal modifications. 

A2.1. Kinematic Equations for Position 

For the implementation in the n-frame, the geodetic position is represented by 

�� = ys t ℎz�. The derivatives of geodetic position can be determined from the 

Earth-relative velocity �q� = y�� �q �ðz� through a curvilinear transformation as 

shown in eqn. A2.1. 

�/ � = ��q�  

�s/t/ℎ/ ' =
<==
=> 1vx + ℎ 0 0

0 1�vw + ℎ� cos s 00 0 −1CDD
DE ����q�ð' (A2.1) 

 

where � is the transformation of the linear magnitude from n-e-d resolving axes to 

the curvilinear magnitude; vx and vw are the radii of curvature in the meridian and 

prime vertical. 

A2.2. Kinematic Equations for Velocity 

For a strapdown inertial navigation, the time rate of change of velocity is derived 

from the accelerometer measurements sensed in the b-frame relative to the i-frame, 

which is progressively transformed to the n-frame with the compensation of frame 

rotations as elaborated in the following section. 
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A2.2.1. Inertial Position and Earth-relative Velocity 

The position vector of a point relative to centre of the Earth can be transformed from 

i-frame to the e-frame through ��q. The rate of change for position measured in the e-

frame, the earth-relative velocity, can be expressed in eqn. A2.2. 

�q = �/ q (A2.14) 

 

where �q  is the Earth-relative velocity vector; �/ q = ��q�/ �  is the first differential of 

position vector in the e-frame. By representing the velocity vector in the i-frame, the 

rotation of the e-frame with respect to the i-frame can be derived with the derivative 

of position through the theorem of Coriolis: 

�q� + ��q� �� = 		� ��  	F	�F �� = 		� �q� + 		� ���q� ���  

 = 		� �q� + ��q� ��q� + ��q� ��� (A2.15) 

 

where �q�  is the Earth-relative velocity vector in the i-frame; �� is the position vector 

in the i-frame; ��q�  is the skew-symmetric matrix of Earth rotation rate in the i-frame. 

By rearranging the terms in eqn. A2.3, the Earth-relative acceleration in the i-frame 

can be described as eqn. A2.4. 

		� �q�  = 	F	�F �� − ��q� ��q� + ��q� ���  

 = 	F	�F �� − ��q� ��q� �� − ��q� �q�  (A2.16) 

 

where 
ðð� �q�  is the acceleration relative to the Earth in the i-frame; 

ðôð�ô ®�  is the 

inertial acceleration; ��q� ��q� ®� is the term of local centripetal acceleration; ��q� �q�  is 

the term of Coriolis acceleration. With the substitution of specific force and local 
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gravity acceleration, the equation can be finalised for the time derivative of earth’s 

relative velocity in the i-frame as shown in eqn. A2.5. 

		� �q�  = �� + ç� − ��q� �q�  (A2.17) 

 

where �� is the specific force in the i-frame; ç� is the local gravity vector in the i-

frame. 

A2.2.2. Velocity Derivative in the Earth Frame 

After deriving the basis of the dynamic equations and related terms in the i-frame, 

the Earth-relative velocity vector (�q� ) in the i-frame can be transformed into the e-

frame with the consideration of the Earth’s rotation rate. The time rate of change of 

Earth-relative velocity in the e-frame is defined with the rotation of the e-frame 

relative to the i-frame as shown in eqn. A2.6. 

�qq = ��q�q�   �/qq = ��q��/q� − ��q� �q� �  

 = ��q��� + ç� − ��q� �q� − ��q� �q� �  

 = �q + çq − 2��qq �qq (A2.18) 

 

where ��q is the rotation matrix for the transformation from the i-frame to the e-frame; 

�qq is the Earth-relative velocity vector in the e-frame; �q = ��q�� is the specific force 

in the e-frame, which is transformed from the b-frame; çq  is the local gravity 

acceleration vector in the e-frame. 

A2.2.3. Velocity Derivative in the Navigation Frame 

The Earth-relative velocity vector (�q� ) in the i-frame can be transformed to the 

navigation frame with the consideration of the Earth’s rotation rate and the transport 
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rate. The time rate of change of earth-relative velocity in the n-frame is elaborated in 

eqn. A2.7. 

�q� = ����q�   �/q� = �����/q� − ���� �q� �  

 = ������ + ç� − ��q� �q� − ��q� �q� �  

 = �� + ç� − ��q�� + 2��q� ��q� (A2.19) 

 

where ���� = �q�� + ��q�  is the sum of transport rate and the Earth’s rotation rate; 

�q��  is the transport rate for the n-frame relative to the e-frame; ��q�  is the Earth’s 

rotation rate in the n-frame; �� = ����� is the specific force in the n-frame, which can 

be transformed from the b-frame; ç� = yõl −öl gz� is the local gravity vector in 

the n-frame. The term � �q�� + 2��q� � can be expressed into eqn. A2.8. 

�q�� + 2��q�  = ` 0 t/ sin s −s/−t/ sin s 0 −t/ cos ss/ t/ cos s 0 e + 2�q ` 0 sin s 0− sin s 0 − cos s0/ cos s 0 e  

 = \ 0 �t/ + 2�q� sin s −s/−�t/ + 2�q� sin s 0 −�t/ + 2�q� cos ss/ �t/ + 2�q� cos s 0 ] 
(A2.2

0) 

 

where uq�� = yt/ cos s −s/ −t/ sin sz� is the transport rate vector due to position 

change; u�q� = �qycos s 0 − sin sz� is the Earth's rotation rate vector. 

A2.3. Kinematic Equations for Attitude 

Since the angular velocities are sensed by the gyroscope in the b-frame relative to the 

i-frame, the time rate of change of the direction cosine matrix in the n-frame can be 

determined through transformation and compensation of angular velocity between 

the frames as shown in eqn. A2.9. 

�/�� = �������   

 = �������� − ���� �  
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 = ������� − ������ ���q� + �q�� ����  

 = ������� − ���q� + �q�� ���� (A2.21) 

 

where ����  is the skew matrix of angular velocity (u��� ) sensed in the b-frame relative 

to the i-frame. 

A2.4. Error State Dynamic Model 

Through the linearization of kinematic navigation equations, the dynamic model can 

be derived with respect to the error state, which is employed for the extended 

Kalman filtering process. The navigation errors and sensor bias errors for a basic INS 

can be defined with an error state model as illustrated in eqn. A2.10. 

;÷� = y;s ;t ;ℎ ;�� ;�q ;�ð ï� ïq ïðz�  ;÷� = y;8b ;8é ;8ê ;b ;é ;êz� (A2.22) 

 

where ÷� and ÷� are the navigation error state vector and the sensor error state vector 

respectively; ;� = y;s ;t ;ℎz� are the position errors; ;� = y;�� ;�q ;�ðz� 

are the Earth-relative velocity errors; È = yï� ïq ïðz�  are the attitude errors; 

;�� = y;8b ;8é ;8êz� are the accelerometer errors; ;u��� = y;b ;é ;êz� 

are the gyroscope errors. 

A2.4.1. Linearised Position Error Equation 

The kinematic equation for position as illustrated in eqn. B.1 can be linearised in the 

form of eqn. A2.11, while î��, î�{  and î�Ç are the derivatives with respect to the 

error states. 

�/  = ����-, �-� + î��;� + î�{;� + î�Ç È  ;�/  = î��;� + î�{;� + î�Ç È (A2.23) 
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î�� =
<==
==> 0 0 −�-��vx + ℎ��F�-q sin s-cosF s- �vw + ℎ�� 0 −�-qcos s- �vw + ℎ��F0 0 0 CDD

DDE (A2.24) 

 

î�{ =
<==
==>

1vx + ℎ� 0 0
0 1cos s �vw + ℎ�� 00 0 −1CDD

DDE (A2.25) 

 

î�Ç = �0 0 00 0 00 0 0' (A2.26) 

 

A2.4.2. Linearised Velocity Error Equation 

The kinematic equation for velocity as illustrated in eqn. B.7 can be rearranged and 

linearised in the form of eqn. B.15, while î{�, î{{ and î{Ç are the derivatives with 

respect to the error states. 

�-/  = �í� + ç- � − �� q�� + 2�  �q� ��-�  

 = ������ß� − Δ�í�� + ç- � − �� q�� + 2�  �q� ��-�  

 = �� − �Ç������ + �����Δ�� − Δ�í�� + ç- � − �� q�� + 2�  �q� ��-�  �/  = �� + ç� − �� q�� + 2�  �q� ��-� − �Ç�� + ����δ�� − ;ç�  ;�/  = −�� q�� + 2�  �q� �;� − �;� q�� + 2;�  �q� ��-� + �Ç�� − ����δ�� + ;ç�  

 = î{�;� + î{{;� + î{Ç È − ���;�� (A2.27) 

 

where �Ç is the skew symmetric matrix of attitude errors. 
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î{�  =
<==
===
=> −2�q�-q − �-qFcos s- �vw + ℎ�� 0 −�-��-ð�vx + ℎ��F + �-qF tan s-�vw + ℎ��F
2�q�cos s- �-� − sin s- �-ð� + �-q�-�cosF )� �vw + ℎ�� 0 − �-��-q tan s- + �-ð�-q�vw + ℎ��F

2�q sin s- �-q 0 �-�F�vx + ℎ��F + �-qF�vw + ℎ��FCDD
DDD
DE
 (A2.28) 

 

î{{ =
<=
==
==
> �-ðvx + ℎ� −2 j�q sin s- + �-q tan s-vw + ℎ� k �-�vw + ℎ�2�q sin s- + �-q tan s-vw + ℎ� �-ð + �-� tan )�vx + ℎ� 2�q cos s- + �-qvw + ℎ�− 2�-�vx + ℎ� −2 j�q cos s- + �-qvw + ℎ�k 0 CD

DD
DD
E
 (A2.29) 

 

î{Ç = ` 0 8ð −8q−8ð 0 8�8q −8� 0 e (A2.30) 

 

A2.4.3. Linearised Attitude Error Equation 

The kinematic equation for attitude as illustrated in eqn. A2.9 can be written in the 

form of vector as shown in eqn. A2.19, while the term ;u���  can be determined by 

eqn. A2.20. 

È/  = �����;u��� − ;u��� � (A2.31) 

 

u���  = ��� u���   u� ��� + ;u���  = ���� �� − �Ç��u� ��� + ;u��� �  ;u���  = ���� �;u��� − �Çu� ��� � (A2.32) 

 

By substituting eqn. A2.20 into eqn. A2.19, the attitude equation can be linearised 

into eqn. A2.21, while îÇ�, îÇ{ and îÇÇ are the derivatives with respect to the error 

states. 

È/  = ����;u��� − ���������;u��� − �Çu� ��� �  
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 = ����;u��� − ;u��� − ���� È  

 = îÇ�;� + îÇ{;� + îÇÇ È + ����;u���  (A2.33) 

 

îÇ� = − ;u���;�-   

 =
<==
===
=> �q sin s- 0 �-q�vw + ℎ��F

0 0 −�-��vx + ℎ��F
�q cos s- + �-q�vw + ℎ�� cosF s- 0 −�-q tan s-�vw + ℎ��F CDD

DDD
DE
 (A2.34) 

 

îÇ{ = − ;u���;�-   

 =
<==
===
> 0 −1vw + ℎ� 01vx + ℎ� 0 0

0 tan s-vw + ℎ� 0CDD
DDD
E
 (A2.35) 

 

îÇÇ = −����   

 =
<==
===
> 0 − �-q tan s-vw + ℎ� − �q sin s- �-�vx + ℎ��-q tan s-vw + ℎ� + �q sin s- 0 �-qvw + ℎ� + �q cos s-

− �-�vx + ℎ� − �-qvw + ℎ� − �q cos s- 0 CDD
DDD
E
 (A2.36) 
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Appendix 3 - Kalman Filter Basis 

For typical inertial navigation solution, the Kalman filter is usually employed to 

integrate the navigation results with other sensors and data. To facilitate the 

development, the RBN solution is established on the basis of the typical INS 

mechanisation and Kalman filtering solution, while the fundamentals of Kalman 

filter are reviewed and summarised here. 

A3.1. Fundamental Principles of Kalman Filter 

The Kalman filter is an algorithm which utilise a bundle of measurements with 

respect to time for estimating unknown variables by compensating measurement 

errors and processing errors. It is an estimator for the state of a linear dynamic system 

perturbed by the Gaussian white noise, while the measurements are used and processed 

with linear functions of system state with additive Gaussian white noise (Grewal and 

Andrews, 2008). In general, the Kalman filter has the following properties (Farrell, 

2008): 

‒ The estimate is unbiased; 

‒ The estimate is minimum mean-squared error estimate with Gaussian 

distribution; 

‒ The estimate is the minimum of positive definite quadratic cost function and 

non-decreasing function of estimation error; 

‒ The Kalman filter is an optimal state estimation algorithm for linear system; 

‒ The residual state error is orthogonal to all previous measurements; 

‒ The measurement residual is white; 

‒ The effects of initial conditions decay with time. 
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A3.2. Models for Kalman Filter 

The Kalman filter algorithm generally involves a two-step process: the prediction 

updates and measurement updates, while the process model and measurement model 

are formulated in a linear form. For the state transition, the process model is 

formulated as a dynamic model with physical properties, which is employed for 

prediction updates from previous state as shown in eqn. A3.1. 

÷� = î�÷�^+ + ù�ú�^+ + ó� (A3.1) 

 

where ÷ is the system state vector; ú is the control vector; î� is the state transition 

model; ù�  is the control-input model; and ó�  is the process noise assumed to be 

zero-mean multivariate normal distribution with covariance û�. The system state is 

defined for variables of interest while the dynamic model is derived for prediction 

updates. The relationship between the physical measurements and the variables is 

defined by a measurement model. 

¦� = ¯�÷� + �� (A3.2) 

 

where ¦� is the measurements; ¯� is the measurement model relating the state and 

measurements; �� is the measurement noise assumed to be zero-mean multivariate 

normal distribution with covariance ®�. 

A3.3. Kalman Filter Processes 

Following the established process model, the prediction of state estimate can be 

performed by the dynamic model as shown in eqn. A3.3, while the covariance of 

state estimate is propagated through eqn. A3.4. 

÷-�|�^+ = î�÷-�^+|�^+ + ù�ú�^+ (A3.3) 
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°�|�^+ = î�°�^+|�^+î�� + û� (A3.4) 

 

Since the dynamic model involves processing noise, the state estimate requires 

further adjustment by external measurements to constrain the growth of process 

uncertainties. For measurement updates, the difference between measurements and 

estimated measurements from the state estimate is defined as the measurement 

residual or innovation (eqn. A3.5), while the corresponding covariance is propagated 

through eqn. A3.6.  

üý� = ¦ý� − ¯�÷-�|�^+ (A3.5) 

 

Þ� = ¯�°�|�^+¯�� + ®� (A3.6) 

 

The Kalman gain is a weighing factor determined by the covariance of state estimate 

and the covariance of innovation, which is summarised in eqn. A3.7. Consequently, 

the Kalman gain is employed to weigh the state correction (eqn. A3.8) and update the 

state covariance (eqn. A3.9). 

þ� = °�|�^+¯��Þ�̂ + (A3.7) 

 

÷-�|� = ÷-�|�^+ + þ�üý� (A3.8) 

 

°�|� = �� − þ�¯��°�|�^+ (A3.9) 

 

Since the prediction updates and measurement updates are individually performed, 

they can be processed at different rates. For an aided navigation system, the 

prediction process is operated to provide navigation results and uncertainties at a 

given rate. The measurement updating process is then performed at the sample rate 

of measurements for error control. 
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A3.4. Kalman Filter for Non-linear System 

For navigation applications such as inertial navigation, the system dynamic equations 

and the measurement equations are non-linearly defined. Since the Kalman filter 

algorithm is a linear quadratic estimation, it cannot be directly applied to a non-linear 

system. The general approaches for non-linear filtering are linearised Kalman filter 

and extended Kalman filter. For a non-linear system, the dynamic model and the 

measurement model can be derived by eqn. A3.10 and eqn. A3.11 respectively. 

÷/ ��� = ÷¥/��� + ;÷/���  

 = ��÷���, ú���, �� + ó���  

 = ��÷¥��� + ;÷���, ú���, �� + ó���  

 = ��÷¥���, ú���, �� + c�c÷����÷S÷¥ ;÷��� + ó���  

;÷/ ��� = î�÷¥, ú, ��;÷��� + ó��� (A3.10) 

 

where ÷��� = ÷¥��� + ;÷���  is linearized by approximation with error state; 

î�÷¥���, ú���, �� = ��
�÷����÷S÷¥ is the derivative of dynamic model relative to error state. 

ü��� = ��÷���, �� + ����  

 = ��÷¥��� + ;÷���, �� + ����  

 = ��÷¥���, �� + c�c÷����÷S÷¥  ;÷��� + ����  

´��� = ü��� − ü¥���  

 = ¯�÷¥���, �� ;÷��� + ���� (A3.11) 

 

where ¯�÷¥���, �� = ��
�÷����÷S÷¥ is the derivative of measurement model relative to error 

state. 

The linearised error dynamics is defined for using the linear Kalman filter to estimate 

the approximation of a non-linear system through the first-order linearisation. The 

error state is estimated from the Kalman filter process, while the state estimate can be 
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obtained by correction to state with the estimated error state. The implementation of 

non-linear filtering can be performed by linearised Kalman filter or extended Kalman 

filter. 

A3.4.1. Linearised Kalman filter 

The linearised Kalman filter is employed in some applications with predetermined 

trajectory, such as orbiting satellites (Farrell, 2008). In case that the nominal 

trajectory is available, parts of the calculation can be done off-line as the 

measurements do not affect the calculation of system parameters, such as state 

transition model, measurement model, the weight matrices, or Kalman gain. The 

remaining measurement updates are left for on-line computation.  

Through the linearised Kalman filter, real-time operation is more feasible since the 

data processing can be simplified. The computation is similar to the fundamental 

approach with the error state definition and its linearised measurement model. 

A3.4.2. Extended Kalman Filter 

For general applications, the navigation trajectory cannot be accurately pre-

determined with the design of navigation system. Extended Kalman Filter (EKF) can 

be used to serve for non-linear filtering in INS process, the nominal trajectory is 

defined to be equal to the estimated trajectory with inertial sensor measurements, 

such that the state estimation computation is dependent on measurements. If the state 

is observable from the measurements and the measurements are accurate enough 

(Farrell, 2008): 

- The state estimate should be near to the actual state; 

- The linearisation should be accurate; and 

- The performance should be sufficiently good. 
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However, it is possible that the linearisation would be inaccurate and the estimate 

may rapidly diverge if the initial estimate is of poor accuracy or the process is 

incorrectly modelled. Regarding the first-order EKF, more terms can be retained for 

higher-order linearisation, which reduce the errors in choosing the first order Taylor 

series approximation as a linearising process (Al-Shabi, 2011). The use of higher 

order terms of Taylor series approximation can reduce the truncation error due to the 

neglected terms, especially for highly non-linear systems. The implementation of 

higher-order system model, however, may not be feasible for fast computation due to 

increased system non-linearity. 

Since the EKF works on first-order approximation, iteration can be performed to 

improve the accuracy. The iterative EKF repeats the computation at current time step 

by refining the nominal state estimate and re-linearising the measurement equations. 

The iterative solution can provide better performance than basic EKF, especially for 

high system non-linearity (Wan and Merwe, 2001). Through iterations, the 

computation load would be much higher and more processing time is required. 

A3.4.3. Unscented Kalman Filter 

The Unscented Kalman Filter (UKF) is considered a sigma-point Kalman filter, 

which is a derivative-free alternative to EKF and provides superior performance at an 

equivalent computational complexity (Wan and Merwe, 2001). 

For typical EKF, the state distribution is propagated through the first-order 

linearisation of non-linear system, while the posterior mean and covariance could be 

corrupted (Terejanu, 2009). The use of UKF overcomes the problem by using a 

deterministic sampling approach known as unscented transform (UT) to select a 

minimal set of sample point called sigma points for propagating mean and 
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covariance estimates through non-linear transformations, which avoids linearization 

by taking explicit derivatives as in general EKF. 

Each sigma point is propagated through the non-linearity yielding in the end a cloud 

of transformed points, while the newly estimated mean and covariance are then 

computed based on the statistics (Terejanu, 2009). UKF can be implemented by 

different available methods of unscented transform, such as general UKF, simplex 

UKF, or spherical UKF (Al-Shabi, 2011). 

A3.4.4. Particle Filter 

The Particle Filter (PF) is a Sequential Importance Sampling (SIS) algorithm relies 

on handling the multi-dimensional integrals numerically, which is an alternative 

method for non-linear processing avoiding the linearization of the models. It is a 

sequential Monte Carlo method based on particle representations of probability 

densities, which can be applied to any state-space model and generalize the 

traditional Kalman filtering methods (Arulampalam et al., 2002). 

Similar to UKF, the particle filter uses dynamic simulation of sample points as 

entrained "particles" carried forward in time through non-linear dynamics, then 

reconstruct the propagated mean and covariance matrix from the propagated samples 

(Grewal and Andrews, 2008). The sampling statistics are used for implementing the 

Kalman measurement update. Particle filter can be more accurate than UKF with 

enough particles (Grewal and Andrews, 2008). 

The particle filters are also being used or enhanced for implementing aided inertial 

navigation for sensor integration (Gustafsson et al., 2002; Georgy et al., 2011), which 

can accommodate for arbitrary inertial sensor characteristics and motion dynamics. 
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