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I 

Abstract 

In order to increase the utilization of renewable energy sources and to reduce 

the need of generator-provided ancillary services and inefficient peaking 

generation, electricity consumers are progressively transforming into active 

participants in power system operations via various demand side management 

programs. Flexible load response is expected to be utilized to achieve lower grid 

operating costs, increased system reliability and improved energy efficiency, by 

modulating power consumption in response to various supply conditions, such as 

high market price, peak demand, overloading, regulation signal, etc. 

However, the effects of changing the load profiles on the system 

performances need to be identified and assessed before implementation, so as to 

determine the optimal control strategy to maximize the network benefits. Besides, 

although some demand responsive loads can participate in demand side 

management schemes by simple connection and disconnection, some require 

more sophisticated control algorithms because physical constraints of load 

devices and consumer behavior need to be taken into account.  

This thesis firstly proposes a novel hourly electric load of a building based on 

radial basis function neural network and validate the high accuracy using real 

building data under various weather conditions. 

Next, the most updated statistic information on load composition in 

residential and commercial load sectors in UK is used to develop the aggregate 

load models with time-varying model coefficients using a component-based load 

aggregation methodology, which is able to represent the temporal variations due 

to the time-varying load composition caused by normal consumer behavior or 

demand side management actions. Then a general methodology is presented to 

model DSM scenarios to assess the corresponding impacts on the network 
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performances, using the wet load in residential sector as an example. In addition, 

a conservation voltage reduction optimization problem based on the developed 

time-varying exponential load models is formulated to demonstrate the 

importance of accurate load modelling in the VVO analysis. Furthermore, the 

problem of the optimal locations for demand side management deployment is 

studied by formulating a Optimal Power Flow problem to minimize the amount 

of load needed (i.e. minimize the number of affected customers) to participate in 

DSM scheme to relieve an upstream network contingency. 

There are various demand manageable loads which require more advanced 

control algorithms in order to play a significant role in demand side management, 

such as thermostatically controlled loads. In order to allow more heating, 

ventilation and air-conditioning (HVAC) system loads to participate in supply-

demand balancing and ancillary service market, this thesis introduces a 

mathematical R-C thermodynamic model of building that can accurately capture 

the temperature dynamics which is strongly related to the power consumption of 

HVAC systems. Economic model predictive controllers are then proposed to 

effectively and optimally modify the power consumption of HVAC systems to 

reduce the peak load and increase energy efficiency by minimizing the electricity 

costs while maintaining the temperature within satisfactory levels. Lastly, this 

work proposes a novel contract framework between buildings, building 

aggregator and utility that can maximize and reward the flexible power reserve 

provided by aggregate HVAC loads, and under this developed contract 

framework, an optimal building aggregator that can aggregate the HVAC loads 

to declare the power flexibility to the utility for providing fast regulating power 

is proposed, and dispatch the load according to the power regulation signal from 

utility in the real-time scheduling stage. 
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Chapter 1 

Introduction 

1.1 Background of Research 

The proliferation of variable renewable energy sources (RES) together with 

increased flexible demand and advanced energy storage technology has 

significant impacts on the methods of operation and planning in distribution 

networks. Due to the recent progress of information and communication 

technologies (ICT), a great amount of advanced applications involving these 

resources are expected to be enabled, which has raised great attentions from 

various stakeholders, e.g. regulatory bodies, research institutions, distribution 

companies, consultants, equipment manufacturers, etc. 

There are many potential changes in generation, demand and network 

infrastructure due to the transition from conventional power system to smart grid, 

as depicted in Fig. 1.1. For example, electricity will progressively be generated 

closer to consumers that are characterized by higher levels of responsiveness. 

Besides, bi-directional power flows will be resulted from the connection of 

considerable volumes of renewable distribution generations (DG) to the 

distribution networks. In addition, because of the need of greater observability 

for end-users, advanced metering infrastructures (AMI) are adopted to allow the 

responsive loads from single or aggregated customers to help managing 

transmission and distribution systems. Although it is widely recognized that 

these modernization of existing networks will be critical to enable the low-

carbon and energy-efficient power system worldwide, huge challenges will be 
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created for the system operation and the delivery of cost-effective, reliable and 

high-quality power supply [1]. 

Variable RES imposes extra requirements for network operators to efficiently 

manage network congestions and preserve adequate capacities and reserves. It is 

acknowledged in [2, 3] that the system flexibility provided by the demand side 

will be crucial to effectively mitigate the RES variation and operate the future 

power networks with high penetration of RES. In fact, the increased penetration 

of renewable-based DGs and system-wide deployment of demand side 

management (DSM) are identified as two key features of future power networks 

[4-6]. 

 

 

Fig. 1.1 Transitions from conventional power system to future smart grid 

1.2 Motivations and Objectives 

Active distribution network can be defined as a distribution network where a 

combination of distributed energy resources (DERs) including generators, energy 

storage systems and loads, each having some degree of responsibility for system 

support, can be controlled by distribution system operators in a coordinated way 

to manage electricity flows using a flexible network topology. 
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Recently, the authors in [7]  has done a survey to investigate the state-of-the-

art and identify which improvements are required for the active distribution 

network, it revealed that, 90% of the utilities which participated in the survey, 

still use the traditional network planning methods, besides, little or no 

consideration is given to DG or demand side integration in the development of 

load forecast algorithms. While active distribution network and demand-side 

integration of interest to many power utilities, they fail to be given serious 

consideration by power utilities as feasible alternatives in the process of system 

planning. 

Load is traditionally forecasted at a particular bus location in medium-voltage 

(MV) network, and substantial literature using various techniques on load 

forecasting can be found in [8]. However, when the highly distributed DG or 

demand side integration in distribution network is taken into account in load 

forecasting, forecasting of the aggregate load could be very challenging. One 

possible solution is to isolate the effects of DG by forecasting the load of a single 

building, since there are considerable amount of literature on the modelling and 

forecasting of DG output. This motivates the author to develop an hourly electric 

load forecasting model for a single building. 

Additionally, although many studies in literature have identified the 

significant potential of residential and commercial loads in DSM deployment [9], 

identifying the exact portion of each type of demand manageable loads in a 

particular location is extremely challenging, since loads are highly distributed 

across a large network. Therefore, the load needs to be modelled in the way that 

the deferrable/manageable part of the load can be accurately identified and the 

changes to electrical characteristics of load due to the applied DSM action can be 

modelled. Better understanding of the composition of various load types/devices 

at any time in any location is critical to develop a comprehensive methodology 

that can realistically assess and quantify the potential of a particular devised 

DSM scheme to offer system flexibility and beneficial network services, and 
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evaluate the corresponding effects on the network performance. It should also be 

noted that the implementation of DSM will give rise to the temporal variations 

not only in the magnitude of load demand, but also in the load composition and 

the corresponding electrical characteristics of loads, this will be discussed in 

more details in Section 5.1. 

Furthermore, similar to the problem of optimal placement of DGs installation, 

after the deferrable/manageable portion of loads in different locations is 

identified, there must be an optimal location or an optimal group of locations for 

DSM implementation which can offer maximum benefits to the power grid, 

when DSM action is needed. An optimization problem can be formulated to 

determine such an optimal location or a group of locations with the objective of 

calculating the minimum amount of loads needed to be disconnected (i.e. 

minimizing the number of affected customers) to maintain the system within 

various operational constraints during system contingency or sudden shortage of 

variable RES. 

Although the control of active power is the main focus of most DSM 

schemes, this inevitably changes the reactive power demand as well because it 

modifies the load composition, which may have significant impacts on the 

control strategies of voltage var optimization (VVO). Nevertheless, the majority 

of literature use constant power load model in the VVO analysis [10-18], which 

ignores the fact that load demand is predominantly voltage dependent. Recently, 

[19] has applied voltage dependent load models to VVO analysis, and the 

necessary and superiority of the more realistic voltage dependent load model has 

been demonstrated, but they assume the load coefficients are the same for all 

buses with the same type of loads and fixed throughout the day. This further 

motivates the author to investigate the effects of geographical and temporal 

variations of the coefficients in load model (due to DSM actions) on VVO 

dispatches. 
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In this thesis, demand manageable loads (DMLs) are divided into two 

categories, depending on their operating status during DSM implementation. One 

category refers to the DMLs that their operating status can only be either ON or 

OFF when DSM action is applied, e.g. the ‘wet’ load. In order words, the DSM 

action will only affect the corresponding power consumption simply by 

connecting or disconnecting these DMLs. The other category refers to the DMLs 

that their operating status is ON but the corresponding power consumption can 

be continuously varied when DSM action is applied, e.g. thermostatically 

controlled loads (TCLs). Instead of simply disconnecting, it is more difficult to 

control the power consumption of these DMLs during DSM implementation 

period as the physical operating principle needs to be considered to avoid 

violation of comfort constraints. 

According to [99], the building sector is accountable for about 70% of 

electricity consumption in United States, and space heating, cooling and 

ventilation is responsible for around 50% of the energy consumed in buildings. 

Besides, with the initiation of ICT and AMI, the author is motivated to develop 

smart control methods to optimally operate the Heating, Ventilation, and Air-

conditioning (HVAC) systems to reduce building electricity consumption and to 

enhance the role of buildings as important electricity consumers in the active 

distribution system operation for offering regulation services. 

A physical-based thermodynamic model that is appropriate for optimal 

control design is required to develop an optimal controller which is able to 

balance energy usage of HVAC systems and comfort level. However, the 

shortage of such model in power engineering is the biggest obstacle to allow 

HVAC loads to participate in providing network services. Hence, this motivates 

the author to look for such model from other engineering communities such as 

building climate control and building construction industry. 
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1.3 Primary Contributions 

This thesis addresses the broad area of load modelling and some of the 

applications in DSM within the context of the smart grid. And this research 

mainly focuses on various novel problem formulations related to DSM in the 

planning and operation of active distribution systems, rather than proposing 

innovative solution methodologies to solve existing problems. The primary 

contributions of this thesis are summarized as the following: 

First of all, a novel hourly electric load forecasting model for a single 

building based on radial basis function neural network (RBFNN) using time, date, 

outdoor weather and historical load data as inputs is developed to mitigate the 

effects of variable and intermittent DGs on traditional load forecasting methods, 

especially in the high penetration level of RES situations. 

Secondly, this thesis introduces an improved and comprehensive load 

aggregation methodology building on the work in [20-24] to develop the 

aggregate residential and commercial load models using the most updated load-

use statistics publicly available. Compared with the majority of steady-state load 

models currently applied in the power system analysis in the literature, the most 

significant improvement is that the resulting models include short-term temporal 

variations in load characteristics due to the consideration of time-varying load 

mixes, which is particularly important for the analysis of various DSM scenarios 

as it enables the accurate identification of the portion of DMLs in the aggregate 

load at any time at various locations, as long as the information of load 

composition is available, which can be easily obtained from the modern smart 

meters. The developed load models can then be aggregated with the 

interconnecting medium-voltage (MV) and low-voltage (LV) networks for a 

wide range of applications in power system analysis. Based on the developed 

aggregate load models, another contribution of this research is a general 

methodology to model, quantify and assess the impacts of various devised DSM 
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schemes on the aggregate load models, power flow and network performance, 

which will be of interest to utility companies and policy makers. Moreover, the 

developed aggregate load model with time-varying model coefficients is suitable 

for the analysis of VVO problems in modern distribution system, particularly for 

the Conservation Voltage Reduction (CVR), one of the most recent advanced 

energy saving techniques proven by the industry to reduce power consumption 

and network losses, thus, a more accurate framework for CVR optimization in 

modern distribution system is formulated using the developed load models to 

investigate the effects of time-varying model coefficients of load models (due to 

naturally occurrence and DSM actions) on the VVO dispatches and the 

corresponding network performances. Furthermore, a DSM-based OPF problem 

is formulated to assess the ability of various type of DMLs to alleviate network 

contingencies (e.g. overloading, sudden shortage of RES) at different locations 

within a given distribution system. 

Last but not least, due to the lack of accurate models describing thermal 

behavior of buildings in power engineering community, substantial literature in 

the area of building climate control and building construction has been reviewed 

by the author, and a mathematical R-C thermodynamic model of building based 

on fundamental laws of Heat Transfer and Thermodynamic that is suitable for 

control design with acceptable computational burden is chosen from thousands of 

models to serve as a bridge linking the areas of power engineering and building 

climate control together to provide more flexible demand and facilitate more 

advanced DSM programs in smart grid. Specifically, one contribution of this part 

is that an economic Model Predictive Control (MPC) algorithm based on the 

introduced thermodynamic model of buildings is proposed to effectively and 

optimally modulate the power consumption of commercial building HVAC 

system in response to varying electricity price and ambient weather to minimize 

the electricity costs, significantly reduce the peak demand and increase energy 

saving and efficiency, while respecting the comfort level. Another contribution 
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of this part is that an optimal building aggregator that can aggregate the HVAC 

loads to declare the power flexibility to the utility for providing fast and large-

scale regulating power to the smart grid is developed under a novel contract 

framework between buildings, building aggregator and utility developed in this 

thesis, which can maximize and reward the flexible power reserve provided by 

buildings. The innovative characteristics of the proposed building aggregator lie 

in the ability of predicting the potential total reserve amount of HVAC loads in 

the target building group in a defined contract time and the ability of allocating 

the high frequency regulation power received from the utility to each 

participating building while maintaining comfort levels. 

1.4 Thesis Layout 

The rest of this thesis is arranged as the following: 

Chapter 2 provides the literature review for all the relevant topics in this 

thesis. First, previous studies on DSM and various types of DSM are reviewed in 

details. Then a detailed literature review of load modelling, which is the most 

critical part of modelling DSM, is provided. In addition, the recent applications 

of OPF in power system, especially those related to demand side resources (e.g. 

DGs, energy storage systems, load control) are outlined. Furthermore, the 

concepts and recent applications of distribution system automation (DSA), 

Distribution Management System (DMS), Voltage Var optimization (VVO) and 

Conservation Voltage Reduction (CVR) are reviewed. Finally, this chapter 

concludes with an overview of the optimal control of various thermostatically 

controlled loads (TCLs) together with physical-based thermodynamic models in 

energy-efficient buildings. 

Chapter 3 presents the fundamental theory of RBFNN and the detailed design 

of the hourly electric load forecasting model for a single building based on 

RBFNN, followed by a case study using the real measurement of load data from 
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a large high-rise commercial office building in Shenzhen China to validate the 

accuracy of proposed load forecasting method. 

Chapter 4 outlines the aggregation methodology for developing the time-

varying LV load models and representing them at the MV network, considering 

the temporal variations in load mixes. Both residential and commercial loads at 

maximum, minimum and average loading conditions are used as illustration 

examples.  

Chapter 5 demonstrates some important applications of the aggregate load 

models developed in Chapter 4. Firstly, the methodology of developing the 

aggregate load models (both ZIP/polynomial and exponential load models) 

incorporating devised DSM scenarios is presented, and the corresponding 

impacts on the power flows and network performances are demonstrated and 

discussed. Next, the CVR problems using various types of load models are 

formulated to investigate the impacts of load model coefficients on the CVR 

dispatches and the corresponding resulting voltage profiles and power flows. 

Finally, the DSM-based OPF problem is formulated to assess the ability of 

various type of DMLs to alleviate network contingencies (e.g. overloading, 

sudden shortage of RES) at different locations within a given distribution system. 

Chapter 6 starts from introducing the fundamental laws of Heat Transfer and 

Thermodynamics (e.g. heat conduction, convection and radiation) which 

dominates the temperature dynamics inside a building. Then an R-C model 

consisting of a series of heat transfer equations is presented to describe the 

temperature dynamics in a room and is extended to create a large R-C model 

which represents the whole building. The introduced model is then linearized and 

calibrated using historical data from a real existing building and the accuracy of 

the proposed thermodynamic model is validated by the comparison between the 

simulated results and the real measurements.  

Based on the introduced thermodynamic model of buildings and the power 

consumption models of HVAC system, sophisticated control algorithms are 
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developed in Chapter 7 to pave the way for commercial buildings to participate 

in more advanced DSM schemes. Firstly, an economic model predictive 

controller is proposed to effectively and optimally control the HVAC system to 

utilize the time-varying electricity prices and the future disturbances to minimize 

the electricity costs, significantly reduce the peak demand and increase energy 

saving and efficiency, while respecting the comfort level. Furthermore, the role 

of energy-efficient buildings in the operation of future active distribution system 

is addressed in this thesis by proposing a building-aggregator-grid contract 

framework and formulating a robust MPC algorithm which both maximizes the 

profit of building aggregator and minimizes the payment of each participating 

building to optimally declare the power flexibility of HVAC systems to the grid 

as fast-response regulating power. 

Chapter 8 concludes this thesis with the key contributions of this research and 

the discussion of the result implications. The possible directions and 

recommendations for future work are also discussed. 
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Chapter 2 

Literature Review 

2.1 Overview of Demand Side Management 

DSM can be regarded as the measures that modulate consumers’ electrical 

energy demand from the normal pattern and help to benefit the system in 

response to various supply conditions, including long-term actions intending to 

reduce system peak load or improve energy efficiency and short-term direct load 

control mechanisms under the system contingency. There are a few more terms 

often being used in the literature, such as demand response, demand side 

response, load response, load management, etc. In this work, they are all 

regarded as the same and the term DSM will be used throughout, unless specified. 

Conventionally, the ancillary services including spinning, non-spinning 

reserve and other emergency reserves needed for supply-demand balancing and 

maintaining security margins in power supply are mostly provided by the 

conventional generators. With the increasing penetration of intermittent RES, the 

portion of traditional generators in the overall generation capacity will gradually 

drop, as a result of which, there is a need to exploit the flexible demand side 

resources to offer this system flexibility [2-3, 25]. 

Various DSM programs have been applied by system operators to improve 

supply and demand balancing by the modification of load profile for several 

decades. The study in [26] provides an overview of the key DSM concepts and 

methodologies that can enhance the performance and security of power system. 

Most of mature DSM programs carried out to date mainly focus on large 
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industrial consumers, e.g. [27-28], due to their sufficient size of load capacity to 

contribute to network ancillary services. 

Nevertheless, with advanced development of ICT technologies, more and 

more DSM actions are expected to be implemented amongst residential and 

commercial sectors. Various approaches of aggregating and coordinating DSM 

measures from numerous highly distributed customers have been proposed, e.g. 

Virtual Power Plant or Aggregator concepts [29-30], with the intention of 

achieving the sufficient demand capacity to participate in Balancing Mechanism 

and providing beneficial ancillary services. Apart from the enabling ICT 

technologies, new electricity market mechanism are also required to remove the 

economic barriers, so as to allow DSM to be prevalent in residential and 

commercial load sectors [31-32]. 

According to the types of network services provided, the DSM schemes can 

be classified into several categories [26, 33-34]. It should be noted that some 

overlap could exist between the categories presented below, since a DSM 

program may have multiple objectives. 

1. Load shaping 

This is the most common DSM scheme which aims at modify the shape 

of the system demand to obtain a flat daily load curve, generally by 

reducing demand at peak-load hours and shifting the reduced demand to 

off-peak hours, in such a way that, a greater amount of the load can be 

served by the more efficient base-load generation, while reducing the 

reliance on the costly and inefficient peaking generation. The flattening 

of load curves can help to reduce the generator ramping requirements 

and the required number of corrective actions, which in turn improves 

the system security and reliability [35]. The most common example of 

load shaping is the lower electricity tariffs offered at off-peak hours. This 

type of DSM will be discussed in depth in Section 7.1. 

2. Maximizing asset utilization to defer investment 



14 

The cost of investment in upgrading and replacing network asset could 

be extremely high, and in certain scenarios, DSM can be applied to help 

maximize the utilization of network assets so as to defer the investment 

[36-37]. For instance, if a transmission line is overloaded on merely a 

small number of occasions throughout the year, it may be more cost-

effective for the system operators to provide a DSM contract with 

financial incentives for the customers served by this transmission line to 

encourage them to reduce energy consumption when the overload is 

occurred, which can defer the immediate need of updating or replacing 

transmission line. 

3. Direct load control 

Direct load control means that consumers allow their energy 

consumption to be directly controlled by network operator in response to 

supply conditions. It can offer more predictable and faster responses, 

compared with other DSM actions that rely on the customers’ response 

to incentives, such as price signals. Real-time direct load control has 

been discussed in [38-39], which propose a similar approach to 

generation dispatch to dispatch the system loads, so as to mitigate the 

intermittent and variable renewable energy sources. 

4. Providing operational reserves 

Recently, more and more studies believe that there is a great potential to 

provide various types of operating reserves through DSM schemes in 

power system. Reference [40] has summarized the advantages of 

providing reserve through DSM over through conventional generators, 

and it even claims that it is more reliable to utilize a great amount of 

individual DMLs than using a few large conventional generators to 

provide reserves, since the instantaneous response of DMLs is much 

faster than adjusting and re-dispatching conventional generators [41].  
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2.2 Overview of Load Modelling 

Load modelling is to develop a mathematical or analytical expression of the 

variations in power flows (including both active and reactive power) to the 

connected load, with respect to voltage or/and frequency. There are two main 

types of load models, i.e. static and dynamic. Static load models are the 

expression of the active and reactive power demand at a specific time instant, 

while the active and reactive power demand in dynamic load models is expressed 

as a function of time using differential equations. Since this research concentrates 

on the steady-state analysis in power systems, only the steady-state load models 

will be discussed in details in this thesis. Static load models are generally 

classified into the following three types [42]: 1) Constant Power Load (CPL): the 

load draws constant active and reactive power, regardless of the magnitude of 

supply voltage; 2) Constant Current Load (CCL): active and reactive power is a 

linear function of the magnitude of supply voltage; 3) Constant Impedance Load 

(CIL): the power change proportionally to the square of the magnitude of supply 

voltage. 

2.2.1 ZIP/Polynomial Load model 

Generally, the loads in power system consist of different portion of CPL, 

CCL and CIL, depending on the exact load mix at that network location. 

Substantial studies have emphasized the importance of correctly modelling this 

load-to-voltage sensitivity in various applications of power system analysis [43-

44]. The “ZIP” or polynomial model is one of the most common models in 

power system analysis. 

The “ZIP” or polynomial load model (2.1)-(2.2) is a static load model that 

uses the sum of CPL, CCL and CIL to represent the demand characteristics. 
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where P0 and P is the demand of nominal and actual real power of load, Q0 

and Q is the demand of nominal and actual reactive power of load, V0 and V is 

the magnitude of nominal and actual supply voltage at the considered load bus, 

and Zp, Ip, Pp, Zq, Iq, Pq are the model parameters, where subscript “p” indicates 

active power and subscript “q” represents reactive power. 

2.2.2 Exponential Load model 

Another commonly used static load model is exponential load model which 

expresses the relationship between the demand of active and reactive power and 

supply voltage magnitude using two exponents, as shown in (2.3)-(2.4). It is a 

constant power load if np = nq = 0, a constant current load if np = nq = 1, a constant 

impedance load if np = nq = 2. Other arbitrary values can be used for the 

exponents to characterize the modelled demand. 
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where P0 and P is the demand of nominal and actual active power of load, Q0 

and Q is the demand of nominal and actual reactive power of load, V0 and V is 

the magnitude of nominal and actual supply voltage at the considered load bus, 

and np and nq are the model parameters for active and reactive demand, 

respectively. 

2.2.3 Identification of Load Model Coefficients 

The coefficients of load model need to be identified, once the load model 

form is determined. There are two widely adopted approaches to determine the 



17 

coefficient values in (2.1)-(2.4), i.e. measurement-based method and component-

based method. 

Measurement-based method obtains the voltage changes and the resulting 

variations in load characteristics to staged disturbances from the measurement 

and data acquisition devices at the location of interest, which are then fitted to 

the determined load model form [45-47]. The advantage of this approach is high 

accuracy since it is based on actual physical measurement data. However, this 

approach is inflexible because obtaining such measurement is time-consuming 

and costly, in addition, collecting those data for a wide range of voltage 

conditions and seasonal variations is usually unfeasible. The identification of 

load composition is also not possible, but this is an important requirement to 

analyze the effects of devised load changes through DSM schemes on the power 

system operation. 

Component-based approach determines the coefficients of the desired bus 

load model using a “bottom-up” approach which aggregates physical and circuit 

based models of individual load devices. Unlike the measurement-based 

approach which is a “top-down” approach, no measurement from power system 

is needed. It is more flexible since the changes in load composition can be easily 

incorporated to build a new aggregate load model by simply adjusting the 

contribution proportion of each load type to the total demand. Although finding 

the accurate statistical information on the daily, weekly, and seasonal variation of 

load mix to implement this approach is difficult, the resulting models are 

particularly suitable for DSM modelling. A substantial amount of studies on 

developing component-based load models can be found in [20-24, 48]. 

The component-based approach allows the aggregate load to be decomposed, 

which enables the identification of the portion of load that are potentially 

available for DSM at any time during the day. As a result of DSM 

implementation, the variations in the load composition, and thus, the changes in 
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the electrical characteristics of loads, can be effectively and accurately modelled, 

which will be discussed in Chapter 5.1 of this thesis 

2.3 Optimal Power Flow 

Optimal power flow (OPF) has been applied to optimize a variety of power 

system planning and operation problems [49]. With the increasing penetration of 

DGs, OPF problems have been formulated to determine the maximum amount of 

DGs that can be integrated into the distribution network while respecting various 

operation constraints [50-53]. Reference [54-56] proposes to use OPF combined 

with linear programming techniques to improve asset utilization in distribution 

networks. OPF has also been utilized to minimize the load shedding required to 

allow the system to securely operate and avoid system collapse in system 

contingencies [59-64]. The control of DMLs and energy storage systems in 

response to real time electricity tariffs can also be optimized using OPF based 

approach [65-67]. 

2.4 Voltage Var Optimization 

In the recent decades, distribution system automation (DSA) has received 

great attention from many power utilities worldwide with the intention of 

improving energy efficiency, system reliability and power quality. Similar to the 

role of Energy Management System tools in the transmission system operation, 

Distribution Management System (DMS) tools are critical components in DSA. 

Various appealing functionalities including VVO, fault location, service 

restoration and state estimation can be provided by DMS. 

The VVO refers to the optimal control of capacitor banks, OLTCs and 

voltage regulators with the objective of minimizing the power losses, improving 

voltage profiles, etc. Several power utilities including American Electric Power 

[68], Northern State Power Company [69], B.C. Hydro [70], have deployed 



19 

many VVO applications and obtained promising results. Apart from voltage 

profile improvement and power loss reduction, Conservation Voltage Reduction 

(CVR) is another useful capability provided by VVO. The CVR aims at reducing 

the voltage to the minimum acceptable level with the purpose of reducing the 

total and peak demand, since loads are voltage-dependent and the voltage 

reduction results in a decrease in both active and reactive demands. Reference 

[71] has shown that 1% to 6% of the total demand can be reduced through proper 

CVR implementation. 

A number of methodologies have been proposed for solving VVO problem in 

distribution system. For example, [72] develops a supervisory control scheme 

which exploits the data measured at the substation to optimally dispatch the 

capacitor banks and voltage regulators. Reference [73] decomposes the VVO 

problem into two sub-problems, at feeder levels and at substation, respectively, 

then solves these sub-problems by dynamic programming and a fuzzy logic 

control algorithm. In [74], the VVO problem is solved by a multi-objectives 

Genetic Algorithm combined with fuzzy logic and expert knowledge is applied 

to reduce the size of search space. An adaptive system is applied to solve the 

VVO problem in [75]. The optimal placement of capacitor for CVR problem is 

solved by a Genetic Algorithm in [76]. Many other work in the literature have 

studied the VVO problems in distribution systems [10-13], and the effects of 

DGs on VVO dispatches [14-18]. However, all of them use the constant-power 

load models in the analysis and have ignored the relationship between voltages 

and loads, which is inaccurate in reality. 

Although a limited number of academic publications about CVR can be 

found in the literature, the power utilities are gradually and increasingly 

implementing CVR. The study in [70] has demonstrated that the demands of both 

active and reactive power are significantly related to the voltage magnitude. In 

addition, the report published by US Department of Energy [77] also 

acknowledges that the voltage dependence of loads has a considerable impact on 
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the efficiency and performance of VVO and CVR implementation. This will be 

discussed in details in Chapter 5.2. 

2.5 Energy-Efficient Buildings 

Smart energy-efficient buildings are expected to play an increasingly 

significant role in the emerging smart grid. It has been shown in [78] that the 

power flexibility provided by aggregate thermostatically controlled loads (TCLs) 

is similar to the characteristic of stochastic batteries, which makes them good 

candidates for providing fast regulating services for power system. TCLs are 

suitable for demand response and direct load control programs, since their 

thermal energy storage ability is similar to the way that chemical energy is stored 

in battery, which allows their power consumption to be increased and decreased.  

There are various types of TCLs that have been proven to be able to provide 

ancillary services [79-80], such as water heaters [81], refrigerators, heat pumps 

[82] and Heating Ventilation Air Conditioning (HVAC) systems. Promising 

results have been obtained in [83-85], which use model-based control techniques 

to improve energy efficiency of HVAC systems. For example, an MPC 

framework based on a nonlinear model of cooling system is proposed in [83] to 

minimize the energy consumption in a large commercial building, and the 

authors in [85] applied sequential quadratic programming to solve a similar 

nonlinear problem by iteratively linearizing the constraints around the present 

solution, until the convergence condition is satisfied. 

Reliable and accurate dynamic models are critical to model-based control 

techniques, and the most difficult and time-consuming task in building climate 

and energy control is the parameters identification in modelling process. Since an 

accurate thermodynamics-based building model is needed to capture temperature 

dynamics to ensure temperature constraints are satisfied when the control 

strategies are implemented, a number of thermal dynamics building models have 
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been proposed in the literature. The building models reported in literature can be 

mainly categorized into data driven models, high fidelity physical models, and 

simplified physical models based on R-C analogy.  

Data driven models developed by fitting historical behaviors of the system 

cannot guarantee prediction accuracy for operating points outside the range 

covered by training data, and thus extensive training data with widely varying 

conditions is needed. TRNSYS [86], DOE-2 [87], EnergyPlus [88], etc., are 

typical high fidelity physical models, which emerged in 1980s and are still being 

used for simulation purpose currently. However, they are not suitable for online 

implementations because the complexity and size of models usually results in a 

computationally intractable optimization problem, besides, the model 

identification and validation process also requires excessive data collection, 

parameters tuning and simulation. 

The issues related to data driven models and high fidelity physical models 

can be mitigated by using simplified physical models based on R-C analogy, 

which was first proposed in 1980s and showed good performance in predicting 

building temperature dynamics [89-91]. They represent the building mass by one 

or more representative lumped capacitances so that analytical solutions from the 

models can be easily calculated resulting in reduced computational requirements 

for estimating heating/cooling loads. Later, numerous studies have been 

concentrated mainly on: 1) what part of the building should be lumped into one 

capacitance [92-94]; 2) the required order of building model [95-97]. 
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Chapter 3 

Electrical Load Forecasting for Buildings Based on 
Radial Basis Function Neural Network 

3.1 Introduction 

In China, according to [98], 24.1% of total national energy use was 

accounted for by buildings in 1996. This increased to 27.5% in 2001 and it is 

predicted that buildings will account for approximately 35% of total national 

energy usage in 2020. Besides, 75% of total electricity consumption in United 

States is consumed by buildings [99]. The building sector will globally remain an 

important electricity end-user in the coming future due to the increasing need for 

better indoor environment. Therefore, building energy conservation and 

efficiency are of great significance both environmentally and economically. 

The smart grid revolution has enabled a lot of innovative initiatives that 

focus on increasing building energy efficiency. For example, smart metering 

allows many novel services, including real time pricing, bi-directional 

communication and load forecasting. Specially, the prediction of future power 

consumption over a time-span ranging from minutes to days is essential for some 

smart grid applications [100], such as DSM, which is implemented by utility 

companies to directly control or encourage consumers to modify the amount and 

pattern of energy demand on the customer side, so that the available energy can 

be used with higher efficiency without the need of installing new generation and 

transmission infrastructure [101]. Therefore, building electric load forecasting is 

necessary because changes in load need to be known beforehand, and it is also 

the prerequisite for energy saving operations and optimal control of building 
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systems. For instance, according to [102], HVAC systems account for about 65% 

of the energy usage of commercial buildings and accurate load forecasting can be 

greatly helpful in determining the number of sets of chillers or pumps needed, the 

appropriate starting or ending time of pre-cooling/pre-heating and the way to 

adjust the running modes of the chillers [103]. Besides, the model predictive 

control based energy management system is increasingly becoming prevalent due 

to its ability of considering both the expected dynamic system behavior and the 

forecasts of weathers, variable RES and load demands, thus accurate load 

forecast of a single build is essential for the successful performance of and MPC-

based energy management system. 

Load is traditionally forecasted at a particular bus location in medium-

voltage (MV) network, and substantial literature using various techniques on 

load forecasting can be found in [8]. However, when the highly distributed DG 

or demand side integration in distribution network is taken into account in load 

forecasting, forecasting of the aggregate load could be very challenging. One 

possible solution is to isolate the effects of DG by forecasting the load of a single 

building, since there are considerable amount of literature on the modelling and 

forecasting of DG output. This motivates the author to develop an hourly electric 

load forecasting model for a single commercial office building. 

In major cities in China (e.g. Hong Kong, Shenzhen, Shanghai), electricity 

usage in large commercial buildings with full air-conditioning is 70-300 kWh/m2, 

which is 10-20 times residential buildings [104-105]. Therefore, this paper 

focuses on electric load forecasting of commercial office buildings since they 

have much larger electricity consumption and thermal inertia, which can offer a 

greater amount of demand response, energy saving and power regulation 

opportunity if they operate efficiently. 

Although a large amount of literature about load forecasting exists and a 

comprehensive review can be found in [106-109], not much has been applied to 

commercial office buildings for the purpose of increasing building energy 
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efficiency. In [110], a Gray Model was developed to estimate the cooling load 

which can be related to power consumption via chiller system coefficient of 

performance, but it involved tedious parameters identification procedure and 

required a lot of data that is hardly obtained. Statistical time series models are 

used for modelling the load according to historical load data, such as regression 

analysis [111-113], Kalman filtering [114] and multiplicative autoregressive 

models [115]. Another method is causal model which models the load as a 

function of exogenous variables such as weather data; examples include 

autoregressive integrated moving average model [116] and fuzzy autoregressive 

moving average model [117]. Recently researchers have focused on intelligent 

computational techniques for load forecasting, including support-vector 

machines [118-119], expert systems [120] and fuzzy logic [121-123]. In 

particular, [124-128] demonstrated that artificial neural network (ANN) is one of 

the most successful methods in forecasting area. Therefore, RBFNN is adopted 

in this work. Very little of extant literature on building electric load forecasting 

has modeled the load as a non-linear function of both historical load data and 

weather data based on RBFNN, as proposed in the next section. 

3.2 Proposed Load Forecasting Model 

3.2.1 Justification of Choosing RBFNN 

The statistical time series and causal model methods mentioned above mainly 

work for linear prediction and they are often disadvantageous because building’s 

loads are normally a non-linear function of exogenous factors [129]. Several 

computational intelligent techniques can deal with non-linearity in load 

prediction, but neural network is used here because it has the advantage of 

modeling the multivariable problem with complex non-linear relationships 

between variables, as these implicit relationships can be extracted via learning 
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with training data. Among various neural network architectures, RBF neural 

network is chosen for this work mainly because of its fast online learning ability, 

strong tolerance to noisy input data as well as good generalization and easy 

design implementation. The performance of RBF neural network for building 

load forecasting will be compared with that of traditional multi-layer perceptron 

(MLP) neural network in Section 3.3. 

3.2.2 Theory of RBFNN 

ANN has the ability of non-linear modeling and adaptation (through self-

learning) to address the complex relationship between inputs and outputs by 

means of a highly connected array of neurons. RBF neural network is a feed-

forward network characterized by the transfer function in the hidden layer which 

is symmetrical about the center. 

 

 

Fig. 3.1 General structure RBF neural network 

RBF neural network generally consists of an input layer, a hidden layer and 

an output layer as shown in Fig. 3.1. Neurons of input layer function as buffers to 

pass each input signal x1, x2, …, xm to all neurons in the hidden layer. The 
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neurons in the hidden layer are all connected directly to all nodes in the output 

layer. Gaussian exponential function is normally used as the basis function for 

the hidden nodes: 

 2
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( ) exp ,      =1,2,...,n

2
j j

j
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
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x x x                  (3.1) 

where x is the input vector and xj denotes the center of the RBF unit. The output 

of the nodes in the hidden layer decreases when the distance between the input 

pattern and the center increases and, conversely, the output is greater if the input 

pattern is near the center. The network output is produced by a linear 

combination of the hidden layer outputs: 
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k jk j
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where fk (x) is the output of kth neuron in the output layer, w jk denotes the weight 

from jth neuron in the hidden layer to the kth neuron in the output layer. The 

associated weight of the connection between neurons acquires knowledge and 

distinguishes the network. Training RBF neural network is to determine the 

number of neurons in the hidden layer, the radius of each RBF function, the 

corresponding center and the optimal weights of connections between the hidden 

and the output layer. The details of the training algorithm can be found in [130-

132]. The outputs can then be easily calculated for any input vectors after the 

network is well trained. 

3.2.3 Hourly Electric Load Forecasting Model based on RBFNN 

The hourly electric load forecasting model for commercial office buildings is 

depicted in Fig. 3.2. The output layer has only one neuron which yields the 

estimated hourly electric load. There are many factors that can affect the electric 

load of commercial office buildings, such as the day type, time, weather and 

historical load, which are used as model inputs. 
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Fig. 3.2 Proposed hourly electric load forecasting model based on RBFNN 

1) Time inputs: It is necessary to add an index in the input signals to specify 

the day of the week (d = 1 for Monday, d = 2 for Tuesday and d = 7 for 

Sunday and other holidays) and the hour of the day (h = 0, 1,…, 23), 

because the load pattern of commercial office buildings is greatly 

influenced by the schedule of work; less energy is consumed during 

nights, weekends and holidays. Four neurons are needed for day type and 

time inputs since they are to be coded as their sine and cosine values, 

shown as follows, before being input into the model [132-133]: 
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2) Weather inputs: The weather has a tremendous impact on power 

consumption of buildings on weekdays because most of the power is 

consumed by building HVAC system, especially for large high-rise 
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buildings. For example, power consumption in buildings is much higher 

on a hot day due to the increased energy needed for cooling. Hence, 

ambient temperature is a significant input for predicting electric load. 

However, unlike previous studies, this paper uses the daily ambient 

maximum (Tmax) and daily ambient minimum (Tmin) ambient 

temperatures instead of hourly ambient temperature as model inputs for 

two reasons, one is the accurate hourly ambient temperature data is not 

available in our case and the other reason is that the thermal dynamics of 

large commercial office buildings is very slow due to the large thermal 

inertia. So we believe the outdoor temperature at a given hour k does not 

have much influence on power consumption, i.e. it takes a few hours for 

the effect to be material. Apart from temperature, the daily total solar 

radiant intensity (MJ/m2) and outdoor average relative air humidity are 

two other inputs for the model. Solar radiation greatly contributes to 

sensible heat load of buildings, while relative air humidity is related to 

latent heat load. Both sensible and latent heat load require energy for 

cooling to maintain the comfort level. Normalization of data before 

feeding the input data to the model is crucial because input variables 

have different magnitudes and the learning algorithm may not be able to 

figure out the importance of every variable without normalization. The 

weather data is normalized between -0.9 and 0.9, as in [125]: 

 
min

max min
1.8 0.9n

x x
x

x x

     
                          (3.7) 

3) Historical load input: To predict the load at hour k, the most important 

input for the model might be the load at hour (k-1), which is readily 

available from the electric meters. A lot of factors (e.g., occupancy and 

building structure details, etc.) related to power consumption have not 

been considered; it is impossible to consider all factors. By introducing 

the previous load to the model, the effects brought by other unconsidered 
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factors until hour (k-1) are also introduced into the model and thus a 

higher level of acquired knowledge is obtained. Normalization of 

historical load data should also be carried out, using (3.7). 

3.2.4 Performance Evaluation of Forecasting Model 

With the objective of quantitatively examining the performance of the 

developed RBFNN hourly load forecasting model, statistical analysis including 

mean bias error (MBE), root mean square error (RMSE), mean absolute 

percentage error (MAPE) and coefficient of determination (R2) needs to be 

conducted as follows [132-133]: 
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where Pi is the measured load at time i, Pp,i denotes the load predicted by the 

proposed model at time i, P  is the mean of the measured load and n denotes the 

number of data points. R2 takes values between 0 and 1, the higher the R2, the 

more accurate the model. MAPE is regarded as a standard for evaluating 

accuracy of the load prediction model since it has been adopted repeatedly in 

literature, such as [132-133]. MBE is used to evaluate the model’s long-term 

performance as it is a measure of the average error between predicted values and 

the measured values, while RMSE is an indication of the variation of predicted 

values around the measured values which can provide information on the 
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model’s short-term performance. The forecasting model is more accurate with a 

lower RMSE. 

3.3 Case Study and Discussion 

A 39 stories real commercial office building in Shenzhen, China with floor 

area of about 103786 m2 and height of 192 m was chosen for a case study for the 

proposed RBFNN load forecasting model. The building is used purely for office 

purposes and is a typical representative of the large high-rise office buildings 

which are very common in Hong Kong and Shenzhen. Power is mainly 

consumed by the air-conditioning, lighting, elevator and electronic devices. The 

hourly load data recorded by the electric meters from 01/08/2012 to 24/08/2013 

was retrieved, provided by China Southern Power Grid for research purposes. 

The weather data mentioned in Figure 2 for the period from 01/08/2012 to 

24/08/2013 was collected from the Meteorological Bureau of Shenzhen [134]. 

This data was coded and normalized as discussed in Section 3.2.3, each set with 

9 input parameters and 1 output parameter, and they were divided into two 

groups, one for training the network and the other for validation. 

In order to develop a load forecasting model with good adaptability, the 

training data should cover a wide range of situations, so 4776 data sets from 

01/08/2012 to 15/02/2013 (24 sets each day) which include hot, cool and cold 

weather were used for training. The training algorithm adopted in this study is 

explained in [135], which finds the optimal radius and center for each neuron in 

the hidden layer, using an evolutionary approach. The predicted leave-one-out 

(LOO) error is supervised to determine the optimal number of neurons in the 

hidden layer; it stops increasing the number of neurons if the LOO error starts to 

increase because of over-fitting.  

The well-trained model is validated under three different scenarios, hot, cool 

and cold weather. Scenario A was used to evaluate the model by 792 hourly data 
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sets (cold weather) from 26/02/2013 to 30/03/2013, during which the Tmin was 

between 11C and 16C. For Scenario B there were 912 hourly data sets (cool 

weather), from 15/05/2013 to 21/06/2013, during which the average Tmax and 

Tmin are 28C and 24C, respectively. Scenario C tested the model by 912 hourly 

data sets (hot weather) from 22/06/2013 to 29/07/2013, during which the average 

Tmax and Tmin are 32C and 26C, respectively. The predicted hourly load of this 

large office building is derived by passing these data sets into the well-trained 

RBFNN load forecasting model and comparing the results with the actual hourly 

load to evaluate the model performance by statistical error analysis. 
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Fig. 3.3 (a) Actual hourly load vs. Predicted hourly load (by RBFNN) 

(Validation - Scenario A 04/03/2013 – 10/03/2013); (b) Comparison between 

actual and model predicted hourly load (by RBFNN) for Scenario A 
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Fig. 3.4 (a) Actual hourly load vs. Predicted hourly load (by RBFNN) 

(Validation - Scenario B 18/05/2013 – 26/05/2013); (b) Comparison between 

actual and model predicted hourly load (by RBFNN) for Scenario B 
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Fig. 3.5 (a) Actual hourly load vs. Predicted hourly load (by RBFNN) 

(Validation - Scenario C 30/06/2013 – 07/07/2013), (b) Comparison between 

actual and model predicted hourly load (by RBFNN) for Scenario C 

For the sake of comparison, a traditional multilayer perceptron neural 

network (MLPNN) is implemented; it has the same input and output structure as 
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the proposed RFBNN with 19 neurons in the hidden layer (Rule of thumb: 

2Ninput+1), and is trained by the same training data and tested by the data sets of 

Scenario A as described above. As shown in Fig. 3.6, the MLP network could not 

accurately predict the load and large errors are found, especially during the peak 

load periods on 07/03/2013 and 08/03/2013 because over-fitting occurs and the 

network may have tried to model random noise in the data. Optimal numbers of 

hidden layers and neurons in each hidden layer in MLP network must be decided 

to have good performance, but it involves tedious trial-and-error procedures, 

which is computationally expensive, thus not implemented here. 
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Fig. 3.6 (a) Actual hourly load vs. Predicted hourly load (by MLPNN) 

(Validation - Scenario A 04/03/2013 – 10/03/2013), (b) Comparison between 

actual and model predicted hourly load (by MLPNN) for Scenario A 

Statistical analysis results presented in Table 3.1 also prove the promising 

performance with very low values of MAPE, RMSE and MBE, which guarantees 

both short-term and long-term performance. The value of R2 is 0.97 in all the 

three scenarios, which means the developed model explains 97% of variability in 

hourly electric load of this building. As shown in Fig. 3.3(b), Fig. 3.4(b) and Fig. 
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3.5(b), in these three scenarios, about 95% of the hourly predicted load values 

have relative errors in the range of [-15%, 15%] and the linear fitting lines (color 

black) almost match the perfect prediction line (color green), both observations 

indicating good accuracy of the proposed model. It is also found that the 

prediction errors are slightly larger during night times and weekends when the 

load is smaller, but this is acceptable because non-peak period is not a big 

concern and the main goal is often to predict and reduce the peak load. In Fig. 

3(a), Fig. 4(a) and Fig. 5(a), the model predicted load precisely follows the trend 

of the actual load pattern; even the small load drop at noon time on a weekday 

can be identified by the model, which corresponds to the lunch break when 

occupation level decreases. Fig. 3.4(a) shows the proposed forecasting model 

still does not suffer even though the load dropped quite a lot on Wednesday 

22/05/2013 because of the dramatic decrease of outdoor temperature. The 

weekday power consumption in Scenario C (peak load about 2200 kW) is much 

larger than that of Scenario A (peak load about 1500 kW) as the building 

required more energy for cooling in Scenario C due to the hot weather. This 

successful prediction also proves that weather inputs play a significant role. 

Table 3.1 Statistical Analysis Results of Proposed Load Forecasting Model 

 MAPE RMSE MBE R2 
Scenario A 0.0578 0.1643 -0.0094 0.973 
Scenario B 0.0729 0.1578 -0.0192 0.975 
Scenario C 0.0572 0.1511 -0.0162 0.977 

 

3.4 Chapter Summary 

In this chapter, a model for forecasting hourly electric load of commercial 

office buildings based on RBF neural network has been proposed and high 

accuracy has been demonstrated in the model validation using real building data 

under various weather conditions. Another benefit of the proposed method is that 
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it is simple to implement, without tedious trial-and-error parameterizing 

procedures. It only needs weather and electric power consumption data which is 

easy to obtain. Such prediction method could be useful in demand estimation by 

utilities and the intelligent optimal control of building systems for demand side 

management and providing ancillary service. 

The future work includes testing the proposed model by using data of more 

real commercial office buildings in different locations to prove its adaptability 

and exploring the possibility of combining other computational intelligent 

techniques for the improvement of forecasting performance. Besides, 

modifications are also needed to develop a more generalized load forecasting 

architecture for different types of buildings. For example, hourly ambient 

temperature or the change of consecutive hourly ambient temperature should be 

used as the model inputs for load forecasting of small residential buildings 

because their thermal inertia are much smaller than that of large commercial 

buildings, thus the thermal dynamic of small residential buildings is faster. 

Maybe the speed and direction of wind should not be ignored in some cases as 

well. 
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Chapter 4 

Aggregate Load Models with Time-varying Model 
Coefficients based on Component-based Load 
Aggregation Methodology 

4.1 Introduction 

The decisions for power system planning and operation highly relies on the 

simulation results of power flow analysis and system stability studies for various 

operating conditions, which requires accurate models of all network components 

in order to obtain accurate and useful results [43]. Several power system 

collapses in the history, for example, the 1987 Tokyo network collapse [136] and 

the 1983 Swedish black out [137], were attributed to the inaccurate load 

modeling. Consequently, substantial effort has been dedicated to improve the 

representation and models of load characteristics for diverse power system 

studies these years, for instance [136, 138-139], which confirms the significance 

of accurate load modeling. However, the electrical characteristics of loads as 

well as the power system operation have significantly changed since 1990s, it is 

necessary to improve the existing practice of load modeling and even develop 

models for the new emerging loads, so as to fulfill the requirements for modern 

power system analysis, and this is widely accepted and recognized in the 

research area of load modeling [140]. 

Traditionally, aggregate load models representing a great number of 

individual loads and other power system components in distribution network are 

used for the analysis in medium voltage networks. The behavior of aggregated 

load is comparatively insensitive to individual load variations at higher voltage 
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level network, so the impacts of individual load components is mitigated, which 

allows for the use of relatively simple load models in medium voltage network. 

However, there are a few important reasons why a more comprehensive 

representation of the connected load with the supply network in distribution 

network is required for modern power systems. Firstly, the network performance 

and the aggregate load models are more sensitive to individual load variations at 

the distribution level due to the much smaller sized aggregates. In addition, the 

number of DGs in distribution network is substantially increased, for example, 

[141] demonstrates the influences of using different load models in distribution 

system analysis on the optimal placement and sizing of distribution generation 

units. Besides, the number of non-linear loads (e.g. inverter-interfaced DG units, 

consumer electronic devices etc.) is considerably increased within power system, 

and this will lead to various operation issues such as voltage rise, power quality 

(e.g. complex interactions at harmonic frequencies) and unbalance conditions. 

Finally, demand side management, a feasible approach to defer the investment in 

upgrading system infrastructure, is attracting more and more attentions, and due 

to the advanced development in communication technologies, distributed smaller 

customers, such as residential and commercial loads, which are progressively 

transforming into smarter electricity consumers and active participants in power 

system operations through DSM programs to provide network support. Therefore, 

there is a need of more advanced and detailed load models to help better 

understand the loads in low voltage network and their interactions with nearby 

power system components and users, which is crucial to exploit possible 

operational advantages in future smart grid. 

This chapter introduces a component-based load aggregation methodology 

that combines several validated generic models of important load categories to 

produce the aggregate load models for residential and commercial sectors that 

are able to retain long-term and short-term temporal variations in load 

characteristics, which is particularly important to improve planning decisions and 
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operation strategies in the future active distribution system with a wide range of 

DSM programs and an growing penetration levels of time-varying, stochastic, 

distributed generation. This methodology is based on the method outlined in [20-

24], and a considerable amount of research has been carried out by Collin [48] to 

update, develop and validate this component-based load model using some 

public load data and statistical information on load mix and load devices 

connected. Later, this model has been applied in [142] by Collin. However, the 

aggregate models developed in the above literature are out-of-date due to the 

increased demand and the changes of load compositions. In this chapter, this 

component-based load aggregation methodology is briefly reproduced, using the 

most updated load data and statistical information, to serve as a foundation for 

better understanding the following chapters which frequently utilize the produced 

aggregate load models for power system analysis. 

4.2 Overview of Aggregate Load Modeling Approach 

The advantages of the introduced load modeling approach over the traditional 

existing load modelling methods can be summarized as follows: 

1. It can accurately represent time-varying demands using time-varying load 

model coefficients which vary with the change of load mix. The existing 

load models (e.g. [43, 143-144]) only present one set of load model 

coefficients for each loading condition (e.g. average, maximum and 

minimum loading). There are long-term (emerging or updates in load 

technologies), medium-term (e.g. seasonal) and short-term variations (e.g. 

half-hourly, hourly, daily) in the connected load. However, most of 

traditional existing load models do not capture the short-term variations. 

But the short-term variation in load composition also alters the electrical 

characteristics of the loads, the impacts of which really depend on the 

applications and the voltage levels for use in analysis. For example, using 
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a single lumped generic load model with fixed model coefficients and 

ignoring the short-term load variations is a rational approximation at 

medium or high voltage levels, but the aggregate load models will be 

more sensitive to load variation at low voltage levels, and the impacts of 

short-term load variations should not be ignored, especially when low 

voltage micro-generation that also exhibits long, medium and short-term 

variations is connected in the future electricity network. 

2. It can be easily updated and modified to integrate and analyze expected 

future changes in technological modifications and load mixes. For 

example, the penetration of EV battery chargers and inverter-interfaced 

distribution generation units is expected to significantly increase. 

3. Although the aggregate load model is developed from low voltage levels, 

it allows for aggregation to a range of voltage levels (i.e. high voltage 

levels in transmission network). Even though more and more engineering 

challenges emerge in the distribution networks, changes in load and 

operation in the low voltage network will still influence the transmission 

systems through DSM actions, DGs connection and energy storage 

systems etc., it allows for tracing, evaluating and quantifying these 

impacts. 

 

Fig. 4.1 illustrates an overview of the component-based load aggregation 

methodology that applied in the following chapters. Several sets of input are 

needed to model the aggregate load: 

1. Load demand curves: It can be measured or simulated, which should 

detail the variations in the demand of both active and reactive power over 

the considered period, including both short-term (e.g. hourly) and long-

term (e.g. monthly) variations. 

2. Statistical information on the proportion of various load categories in 

each main load type and the proportion of various load types in the 
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overall demand: Based on these information, the contribution of various 

load categories to the total demand can be obtained, thus, the load mixes 

is transformed into various main load categories, according to the 

electrical characteristics of the load devices. 

3. Generic models for main load categories: These are combined to create 

the LV aggregate load model, according to the corresponding 

contribution to the overall active power demand of the modelled sector. 

4. Network models: Including network configuration and component model 

with typical values, which will be combined with the low-voltage 

aggregate model to develop the medium-voltage aggregate load model. 

 

 

Fig. 4.1 Overview of the component-based load aggregation methodology 

4.3 Example: Aggregate Residential Load Model 

This section demonstrates the aggregation approach using residential load 

sector in UK as an illustration example, this approach can certainly be applied to 

other countries/areas using similar datasets as well. 
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4.3.1 Load Demand Curves 

A considerable amount of information about load demand in residential load 

sector is available from existing literature [145-147] and government reports 

[148]. Typical residential load demand curves in UK shown in Fig. 4.2 are used 

to illustrate the aggregation approach, which will also be applied into various 

power system analysis in the following chapters. Three loading conditions which 

show hourly (i.e. short-term) and seasonal (i.e. long-term) load demand 

variations have similar profiles since the behavior of customers will not 

considerably change throughout the year. The seasonal variations can be 

attributed to the changes of load mixes that responses to the ambient conditions, 

for example, the demand of space heating and water heating will be different 

between summer and winter. 
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Fig. 4.2 Minimum, average and maximum loading conditions of typical 

aggregate daily active power demand curves for residential load. 

4.3.2 Load Composition 

There is substantial statistical information on load composition from various 

sources [145, 146-148]. Reference [144, 149-150] also attempted to decompose 
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the aggregate load by measuring the active and reactive power response to a 

staged voltage drop initiated by OLTC transformer. In this thesis, the statistical 

data on load composition in [148] is used to decompose the load curve into 

various load types, as shown in Fig. 4.3, Fig. 4.4 and Fig. 4.5. The most widely 

found load types in residential load include: 

1. Lighting load 

2. Storage, direct and top-up heating load 

3. Direct domestic hot water (DHW) load and storage DHW load 

4. Cold load 

5. Wet load 

6. Cooking load 

7. Consumer electronics (CEs) 

8. ICT equipment 

It is obvious that most of the storage heating loads and domestic hot water 

loads are mainly responsible for the electricity demand at night and morning 

hours due to the off-peak tariffs. Cooking loads greatly increases in the early 

evening, while lighting, CEs and ICTs dominates in the later evening. The main 

difference between winter (maximum loading, Fig. 4.3) and summer (minimum 

loading, Fig. 4.4) is the contribution of heating load, where heating load 

contributes less in the summer but dominates in the winter. 
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Fig. 4.3 Residential load decomposition into load types for maximum loading 

condition [148]. 

 

Fig. 4.4 Residential load decomposition into load types for minimum loading 

condition [148]. 
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Fig. 4.5 Residential load decomposition into load types for average loading 

condition [148]. 

4.3.3 Converting Load Types into Load Categories 

According to [48], an intermediate step which converts a large number of 

load types into a smaller number of general load categories is needed. The load 

types found in the residential and commercial load sectors can practically be 

classified into the following general load categories: 

1. Power electronics load, it is also called switch-mode power supply load 

2. Resistive load 

3. Energy efficient lighting load 

4. Directly connected motor load 

5. Drive-controlled motor load 

As shown in Fig. 4.6, due to technology topology variations and harmonic 

legislation, the above load categories can be further divided into several sub-

categories with generic models that will be discussed in next section. 
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Fig. 4.6 Classification of load categories [48] 

 

Fig. 4.7 Converting lighting load type demand into load categories with generic 

models 

1. Lighting load 

According to the statistics in [48,151-152], compact fluorescent lamps (CFL) 

and general incandescent lamps (GIL) are the most commonly used lighting 
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categories in UK domestic lighting demand, with the contribution of 67% and 

33%, respectively, as shown in Fig. 4.7. 

2. Storage, direct and top-up heating load 

The main operation principle of space heating load is a resistive heating 

element which heats the surrounding air. This entire load type demand can be 

represented by the resistive load category. 

3. Direct domestic hot water (DHW) load and storage DHW load 

The main operation principle of water heating load is also a resistive heating 

element which heats the water. This entire load type demand can also be 

represented by the resistive load category. 

4. Cold load 

Cold load refers to all types of freezers and refrigerators, they typically 

function by changing the state of refrigerant (i.e. between liquid and gas) via 

heat exchange, which is accomplished by a compressor and an expansion 

valve. Driving the compressor consumes electrical power, and it is reasonable 

to assume that the entire cold load uses single-phase induction motor (SPIM) 

with resistor start - inductor run (RSIR) and constant torque (CT), since the 

compressors used in these devices do not need high starting or running torque. 

A detailed review of motor load models can be found in [48]. 

5. Wet load 

According to the statistics in [151], wet load consists of tumble-dryers (TD) 

(31%), washing machines (WM) (30%), dish-washers (DW) (22%) and 

washer-dryers (WD) (16%). These devices consist of a resistive heating (R) 

element, a motor and a pump (except the tumble-dryers). Because of the need 

of high running torque for drum rotation, TD, WD and WM need to use 

SPIM with capacitor start - capacitor run (CSR), while DW utilizes SPIM 

with RSIR. Besides, based on the analysis of operating cycle in [48], the 

motor loads will operate with constant torque, while the pump will 

commonly present a quadratic torque (QT) load [153]. The load categories 
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under the wet load include resistive, SPIM RSIR QT, SPIM CSR CT and 

SPIM CSR QT, and the contribution of each load category to the total wet 

load demand is depicted in Fig. 4.8. 

 

 

Fig. 4.8 Converting wet load type demand into load categories with generic 

models 

 

Fig. 4.9 Converting cooking load type demand into load categories with generic 

models 

6. Cooking load 

There are generally four types of cooking loads, including kettles (35%), 

electric oven (24%), electric hob (24%) and microwave (19%), among which, 
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gas accounts for 57% of cooking energy, while 43% of that is consumed by 

high rated power electric cooking appliances [48]. They can all be modeled 

as a resistive heating element, except that microwave should be modeled as 

power electronics loads with passive power factor correction (PE p-PFC) due 

to the need of rectification of the supply voltage. The contribution of each 

load category to the total cooking load demand is depicted in Fig. 4.9 

7. Consumer electronics (CEs) 

Consumer electronics loads consist of TVs (41%), set-top boxes (19%), 

VCR/DVD players (9%) and other variants of power supplies (31%). 

According to the percentage contribution analysis in [48], and based on the 

harmonic legislation requirements, CEs can be divided into three sub-

categories depending on the corresponding rated power, these include power 

electronics loads with active power factor correction (PE a-PFC), power 

electronics loads with no power factor correction (PE no-PFC) and power 

electronics loads with passive power factor correction (PE p-PFC), the 

percentage contribution of each category to the CEs load demand is presented 

in Fig. 4.10. 

 

Fig. 4.10 Converting CE load type demand into load categories with generic 

models 
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8. ICT equipment 

Desktops (52%), monitors (25%), laptops (18%), printers (2%) and 

multifunction devices (3%) are classified as ICT equipment. Depending on 

the level of rated power and the circuit topology used for power factor 

correction, the ICT equipment load types can also be decomposed into the 

appropriate load categories of power electronics, according to the statistical 

information from field measurements discussed in [48], which is shown in 

Fig. 4.11. 

 

Fig. 4.11 Converting ICT load type demand into load categories with generic 

models 

With the above analysis, the load curves for maximum, minimum and 

average loading conditions from Fig. 4.2 can then be further decomposed into the 

main load categories mentioned above, as demonstrated in Fig. 4.12, Fig. 4.13 

and Fig. 4.14, respectively. It can be observed that the resistive load accounts for 

a large portion, as it greatly contributes to the storage space and water heaters 

during 0:00 – 04:00, morning cooking and electric shower during 06:00 – 09:00 

and evening cooking during 16:00 – 20:00. The resistive load accounts for an 

even larger portion in the maximum loading in winter due to the heating need in 

the cold weather condition. Besides, the use of entertainment appliances 

significantly increase the power electronics loads in the evening. 
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Fig. 4.12 Residential load decomposition into load categories for maximum 

loading condition 

 

Fig. 4.13 Residential load decomposition into load categories for minimum 

loading condition 
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Fig. 4.14 Residential load decomposition into load categories for average loading 

condition 

 

Fig. 4.15 General equivalent-circuit model of nonlinear loads 

4.3.4 Generic Models 

After the load profile and load types is decomposed into the corresponding 

main load categories discussed above, generic models of these load categories 

are needed to build the LV aggregate load models using component-based 

method. The nonlinear loads including lighting loads and power electronics loads 
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can be accurately represented by the circuit-based generic load models 

introduced in [154-155]. The rest of load categories discussed in Section 4.3.3 

are connected to the power system directly, without the interface of power 

electronics, thus drawing continuous input current, which can be modelled using 

exponential or ZIP analytical models. The generic models of load categories used 

in this thesis will be presented below, and these are taken from previous research 

in load modelling [154-158]. 

Table 4.1. Generic values for equivalent circuit model of CFL [48] 

Parameter Generic value (pu) Distribution Range 
XCdc 0.25 Normal б=3.75 

R 2.16e-3 Uniform 
min = 1.87e-3, 
max = 2.38e-3

req 6 2

0.0033 0.0386

2.96 0.0015 0.183

dicharging dc

charging dcdc

r v

r e v v

 

  
- - 

Table 4.2. Generic values for equivalent circuit model of PE no-PFC [48] 

Parameter Generic value (pu) Distribution Range 
XCdc 0.036 Normal б =0.54 
XL 6e-6 Uniform Min = 3e-6, max = 9e-6 
R 0.0017 Uniform Min = 0.0015, max = 0.0019 

req 
2
dc

eq
rated

v
r

P
  - - 

Table 4.3. Generic values for equivalent circuit model of PE p-PFC [48] 

Parameter Generic value (pu) Distribution Range 
XCdc 0.036 Normal б = 0.54 
XL 0.037 Normal б = 0.00186 
R 0.0085 Uniform Min = 0.0077, max = 0.0094 

req 
2
dc

eq
rated

v
r

P
  - - 

 

Nonlinear loads 

The nonlinear load including CFL lighting loads and power electronics loads 

can be precisely represented by the general equivalent circuit model which 

includes an input impedance (R and L), an uncontrolled front-end diode bridge 

rectifier, an equivalent resistance req and a dc link capacitor Cdc, as shown in Fig. 
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4.15. Different load categories will have different values for these components. 

The typical range of parameters and generic values for nonlinear loads are 

presented in Table 4.1- Table 4.3, and these values have been validated in field 

measurements in [21, 48]. Note that the values for PE no-PFC and PE p-PFC are 

normalized to a base power of 50W and 250W, respectively. 

 

Linear loads 

The remaining load categories identified in Section 4.3.3 draw continuous 

input current and can be modelled using the standard ZIP or exponential form for 

steady-state analysis. Their load model coefficients are summarized in Table 4.4 

as follows: 

Table 4.4. Load model coefficients of linear loads at residential sector [138] 

Ref. Load PF1 
Exponential 

Model 
Polynomial/ZIP Model 

np nq Zp Ip Pp Zq Iq Pq 

[4] GIL 1 1.55 - 0.43 0.69 -0.12 - - - 

[18] RSIR SPIMCT 0.62 0.06 1.92 0.63 -1.2 1.57 1.4 -0.91 0.5 

[18] RSIR SPIMQT 0.62 0.3 1.92 0.1 0.1 0.8 1.4 -0.91 0.5 

[18] CSR SPIMCT 0.9 0.38 1.68 0.5 -0.62 1.11 1.54 -1.4 0.89 

[18] CSR SPIMQT 0.9 0.53 1.68 0.22 0.08 0.69 1.54 -1.4 0.89 

 Resistive 1 2 - 1 0 0 - - - 

[48] PE a-PFC 1 0 - - 1 - - - - 

4.3.5 Aggregating Generic Models to Form LV Aggregate Load Model 

The above component-based generic models can be applied directly to form 

the aggregate load model as they have been validated to be able to reproduce the 

aggregate load characteristics of the individual load categories with an acceptable 

accuracy in [48]. With a given system voltage, the current drawn by each load 

category can be obtained using the generic models, according to the proportion 

of each load category in the overall demand, and then the current waveforms of 

the individual load categories are summed to calculate the aggregate current 

waveform. Next, by performing a voltage sweep, the active and reactive power 
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demand can be calculated for each voltage step, and the exponential and 

ZIP/polynomial load model coefficients as well as the electrical characteristics 

can be extracted, thus, the voltage dependent aggregate load model can be 

obtained in the form of exponential and ZIP/polynomial model. The above 

aggregation process is described by Fig. 4.16, and the time-varying exponential 

load model coefficients are presented in Fig. 4.17 and Fig. 4.18. Three loading 

conditions generally have similar variation trends of load model coefficients. For 

the purpose of analysis, the day can be divided into four periods by defining 

0:00-6:00 as night time, 6:00-10:00 as morning time, 10:00-16:00 as daytime and 

16:00-0:00 as evening time.  

 

 

Fig. 4.16 Load Aggregation Process based on component-based method 

Because of the storage space heating and water heating load during night 

time, i.e. off-peak electricity tariffs, the active power coefficient np is expected to 

be large due to the dominant resistive heating load. Although more heating is 

needed during winter months (i.e. maximum loading), the increased contribution 

of lighting load due to the longer dark time actually decreases the value of np. 

Another peak value of np can be observed, which can be attributed to the resistive 

cooking electric shower and cooking loads. It can also be seen that np is higher 

for maximum and average loading conditions as a result of increased resistive 

space heating load. Besides, np declines with the decrease of occupants during 

daytime. During evening period, np first rises due to the dominated resistive 
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cooking loads, and then reduces owing to the increase use of lighting and power 

electronics loads. 
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Fig. 4.17 Variation of model coefficient in aggregate exponential LV residential 

load model for active power 

The main difference among different loading conditions is the contribution 

of space and water heating loads, which have negligible impacts on the reactive 

power characteristics of load, i.e. nq, therefore, the variation of nq among 

different loading conditions is insignificant. It can be seen that nq gradually 

increase as a result of the decreasing contribution of lighting and power 

electronics loads during the night time. The motor load accounts for the main 

reactive power demand in residential load sector, which leads the maximum 

value of nq for the aggregate load to lying between the reactive power 

characteristics of motor loads (i.e. nq = 1.68 ~ 1.92). During evening, the increase 

of lighting and power electronic loads substantially reduces nq, which is 

attributed to the fact that the reactive power characteristic of PE p-PFC and CFL 

is more linear than that of SPIM.  
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Fig. 4.18 Variation of model coefficient in aggregate exponential LV residential 

load model for reactive power 

4.4 Network Aggregation 

In order to allow for power system analysis, the low voltage aggregate load 

model needs to be connected to the supply network to represent the medium 

voltage aggregate load model, hence, the low voltage network up to and 

including secondary distribution transformer need to be accurately modelled and 

represented. Since the configuration of low voltage network is very complicated, 

the method proposed in [159] is used to model this as a single equivalent 

impedance to simplify the transformation of LV load model to the MV load 

model. The simplified method can be implemented in two steps: 1) Determine 

the equivalent impedance at each load location in the network by summing up all 

impedances up to the network location, and it can have multiple customers at the 

same bus, as shown in (4.1); 2) Calculate the overall network impedance by 

summing up all equivalent impedances obtained in Step 1. 

 

location customer

1

( ) ( )
N

n

Z i Z n


                                      (4.1) 

eq location

1

( )
I

i

Z Z i


                                        (4.2) 
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where Zcustomer(n) represents the network impedance up to customer n at 

location i, Zlocation(i) represents the sum of all customer impedances at 

location i, I indicates the number of network locations and N represents the 

number of customers. 

The approach utilized to obtain aggregate exponential or polynomial/ZIP 

load model coefficients is similar to that used in [21], and the key steps can be 

summarized as follows: 

1. Obtain the low voltage load model according to the proportion of 

residential and commercial load sector, the contribution of each load type 

and load category to the overall demand and the generic models of load 

categories, using the method described in Session 4.3. 

2. The low voltage load model and the equivalent impedances representing 

the low voltage network up to and including secondary distribution 

transformer are connected at the secondary substations. 

3. Perform a voltage sweep at the grid supply point (GSP) and calculate the 

active and reactive power flows at the GSP for each voltage increment. 

4. Find the exponential or polynomial/ZIP coefficients using least squares 

estimation fitting of power flow results. 

The final result is a single aggregate exponential or polynomial/ZIP 

representation at the GSP for each time step. 

4.5 Example: Aggregate Commercial Load Model 

Commercial load sector accounts for about 35% of the total electricity 

demand [151], and because of the substantially different load mixes and peak 

demand period, the characteristics of commercial load sector are considerably 

different compared with those of residential load sector, for example, the 

contribution of lighting load and three-phase motors in commercial load sector is 

much larger, and the majority of demand occurs within the working hours (8:00-



58 

18:00). The same aggregation methodology which is presented in Session 4.3 

will be used to develop the aggregate commercial load model, based on the 

analysis in [48] and the most updated statistics obtained from [151]. The 

developed aggregate model for commercial load sector could play an important 

role for power system analysis and improving system reliability performance.  

The aggregation process for commercial load sector is the same as the one for 

residential load sector in Session 4.3, except using different demand curves and 

different proportions of individual load categories in the overall demand. 
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Fig. 4.19 Minimum, average and maximum loading conditions of typical 

aggregate daily active power demand curves for commercial load. 
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Fig. 4.20 Commercial load decomposition into load types for maximum loading 

condition 

It starts by considering the commercial load curves for different loading 

conditions including maximum, year average and minimum loading conditions, 

which are depicted in Fig. 4.19. 

Next, the daily and seasonal proportion of different load types in the overall 

demand for different loading conditions obtained from [148] and [151, 160-161] 

is shown in Fig. 4.20, Fig. 4.21 and Fig. 4.22. Clearly, the lighting load is mainly 

responsible for both the overall demand and the peak demand that occurs at the 

noon during working hours. With respect to the seasonal variations, the heating 

load greatly contributes to the maximum loading conditions at winter, while the 

cooling load forms a considerable proportion of the total demand at minimum 

loading conditions at summer, especially during daytime hours. 
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Fig. 4.21 Commercial load decomposition into load types for minimum loading 

condition 

 

Fig. 4.22 Commercial load decomposition into load types for average loading 

condition 
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Then, based on the analysis and assumptions made in [48], this can be 

further transformed into the various load categories, as presented in Fig. 4.23, Fig. 

4.24 and Fig. 4.25, this step will not be reproduced here, but more details can be 

found in [48]. 

Finally, the generic models of various load categories are then combined to 

form the LV aggregate load model for commercial sector, based on the 

corresponding proportions in the overall demand. The generic models that have 

not been previously introduced are presented in Table 4.5.  

Again, using the same method outlined in Fig. 4.16, the instantaneous 

current waveform drawn by the LV aggregate commercial load can be obtained 

by summing the input current waveform of each load categories, based on their 

corresponding contribution to the total demand. And then, the corresponding 

exponential and polynomial/ZIP load model coefficients can be obtained by 

performing a voltage sweep of the supply voltage magnitude. The daily and 

seasonal variations of exponential load model coefficients are displayed in Fig. 

4.26 and Fig. 4.27. 

 

Fig. 4.23 Commercial load decomposition into load categories for maximum 

loading condition 
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Fig. 4.24 Commercial load decomposition into load categories for minimum 

loading condition 

 

Fig. 4.25 Commercial load decomposition into load categories for average 

loading condition 
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Table 4.5 Load model coefficients of linear loads at commercial sector [48] 

Ref. Load PF1 
Exponential 

Model 
Polynomial/ZIP Model 

np nq Zp Ip Pp Zq Iq Pq 

[39] HID 0.96 NA NA 0.28 0.38 0.34 2.52 -6.51 4.99 

[39] LFL 0.96 NA NA 0.63 -1.2 1.57 8.16 -12.26 5.14 

[18] 3PIM ASD 0.984 0 -0.5 0 0 1 1.22 0.45 -0.67 

[18] 3PIM RSIRCT 0.83 -0.1 1.44 0.27 -0.63 1.36 1.55 -1.7 1.15 

 

Regarding the characteristics of active power in Fig. 4.27, the exponential 

coefficients of active power np for three different loading conditions are not 

significantly different during the working hours (8:00-18:00). The seasonal 

variations of np during non-working hours observed between winter (maximum 

loading) and summer (minimum loading) cases can be attributed to different 

electrical characteristics due to the changes of load mixes, i.e. heating and 

cooling loads. The values of np are smaller at minimum loading condition 

because of the larger contribution of motor loads. The increased contribution of 

heating load at maximum load condition only substantially increases np during 

non-working hours, the reason why np is not increased during working hours is 

that it is offset by the higher demand of Linear fluorescent lamp (LFL) lighting 

loads, which tend towards to constant power and constant current loads. 
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Fig. 4.26 Variation of model coefficient in aggregate exponential LV commercial 

load model for active power 
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With respect to the characteristics of reactive power in Fig. 4.28, the 

exponential coefficients of reactive power nq is expected to be high, due to the 

LFL and motor loads. It can be observed that the largest value of nq occurs at 

about 6a.m. for all loading conditions, because the lighting loads suddenly surge 

at a faster rate than the other reactive power loads around this period. Then the 

use of the other loads gradually reduces the variations of nq. During the evening, 

the lighting load becomes dominant within the load mix as the use of other loads 

reduces, therefore, nq gradually increase again. 
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Fig. 4.27 Variation of model coefficient in aggregate exponential LV commercial 

load model for reactive power 

4.6 Chapter Summary 

This chapter outlines the aggregation methodology for developing the time-

varying LV load models and representing them at the MV network, considering 

the temporal variations in load mixes. Both residential and commercial loads at 

maximum, minimum and average loading conditions are used as illustration 

examples. Compared with the majority of steady-state load models currently 

applied in the power system analysis in the literature, the most significant 

improvement is that the resulting models include short-term temporal variations 
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in load characteristics due to the consideration of time-varying load mixes, which 

is particularly important for the analysis of various DSM scenarios as it enables 

the accurate identification of the portion of DMLs in the aggregate load at any 

time at various locations, as long as the information of load composition is 

available, which can be easily obtained from the modern smart meters. The 

developed load models can then be aggregated with the interconnecting medium-

voltage (MV) and low-voltage (LV) networks for a wide range of applications in 

power system analysis. 
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Chapter 5 

Applications of Time-varying Aggregate Load 
Models in Active Distribution Systems 

5.1 Modelling of Demand Side Management 

Demand side management programs have been implemented in power 

system for several decades, mainly in large industrial customers. Recently, more 

and more electrical storage heating units used in residential customers are shifted 

to operate at off-peak tariffs. As the power system operates closer and closer to 

the operational limits, more advanced DSM is expected to be implemented to 

assist in improving supply-demand balancing and managing network 

contingencies, which is an important feature of future “smart grid”.  

The general term ‘DSM’ refers to various techniques that actively control the 

electricity demand via particular direct interventions or indirect incentives 

aiming at adjusting customers’ behavior and electricity demand curves, in order 

to improve network performance and defer the investments in the transmission 

and distribution systems. 

The advances in information and communication technologies could be 

exploited to increase the participation of residential and commercial customers in 

offering network support through DSM programs. Nevertheless, most of 

residential and commercial loads are deeply embedded and highly distributed 

within the LV distribution networks, large groups of customers need to be 

aggregated and coordinated to achieve a certain volume of demand in order to 

significantly contribute to network support. For this purpose, the bottom-up load 

modelling approach introduced in Chapter 4 can be valuable in building precise 

load models for various DSM programs, thus, the influences of any devised DSM 
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programs on system performance can be simulated for assessment before the 

DSM programs are implemented onto the real power systems. 

5.1.1 Description of Devised DSM Scenarios 

The potential and availability of loads for DSM load deferral/shifting is 

related to the operating characteristics of individual loads and customers’ 

behaviors. For example, for residential loads, some are not suitable for DSM, 

even for a very short term, because of their function and role, such as TVs, PCs, 

cooking appliances, lighting, etc. The rest of loads in residential sector that are 

normally appropriate for load deferral/shifting include heating load (already 

shifted to off-peak tariffs), cold load (only short-term deferral) and wet load. As 

mentioned in Section 4.3.3, wet loads mainly include washing machine, tumble 

dryer, dishwasher and washer-dryer, and they normally complete the operating 

cycle within 1-3 hours, so consumers generally do not want to use them instantly 

or have immediate access. Besides, most of wet loads have a timer that allows 

the customers to choose the start or finish time of the operation. Therefore, wet 

load is regarded as one of the perfect candidates in residential sector to 

participate in DSM. By controlling wet load, this section illustrates the potential 

effects of DSM actions related to wet load on the load models and the power grid. 

The methodology used in the analysis certainly applies to other load types. 

To demonstrate how the devised DSM scenarios can be accurately modelled 

and integrated into the aggregate load model, two DSM scenarios involving wet 

loads, namely DSM1 and DSM2, are considered. The impacts of DSM and the 

corresponding changes in the aggregate demand will also be analyzed using the 

following three cases: 

1. The yearly average loading condition presented in Fig. 5.1 will be 

considered as the base case for comparison purpose, which is actually the 

same as the Fig. 4.5 of Section 4.3.2. The peak demand occurs at about 

20:30, and the CE, ICT, cooking and lighting contribute the biggest 
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proportion, but these load types are not suitable for DSM because of 

consumer behavior. 

2. DSM1: 50% of wet load is deferred from the period 17:00-21:00 (peak 

loading period) to the period of 21:00-1:00, the corresponding load 

decomposition for this scenario is shown in Fig. 5.2, and the changes of 

wet load labeled as ‘brown’ color is obvious compared with base case 

scenario in Fig. 5.1. Note that the DSM portion of the load is just delayed 

by a four-hour block.  

3. DSM2: 50% of wet load is shifted from the period 17:00-21:00 (peak 

loading period) to late night hours (2:00-6:00), as shown in Fig. 5.3. 

 

 

Fig. 5.1 Load type decomposition for base case scenario 
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Fig. 5.2 Load type decomposition for DSM1 scenario 

 

Fig. 5.3 Load type decomposition for DSM2 scenario 
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Fig. 5.4 Impacts of considered DSM schemes on active power load curves 
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Fig. 5.5 Impacts of considered DSM schemes on reactive power load curves 

5.1.2 Impacts of DSM on LV Aggregation Load Model 

As depicted in Fig. 5.4, the implementation of two DSM scenarios results in 

a substantial reduction in active power demand during the period from 17:00 to 

21:00. And a significant increase is observed when the wet loads are reconnected 

at 21:00 for DSM1 and 2:00 for DSM2, respectively. The peak demand, however, 

is not reduced by DSM1 scenario (it actually increases slightly), it is only shifted 
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to about 21:30 for the reason that the peak demand is spread over several hours 

and the demand has not significantly declined when the disconnected wet load in 

DSM1 is reconnected. On the contrary, DSM2 successfully cuts the peak demand 

by shifting a portion to late night. 

Wet load contains a directly-connected single-phase induction motor for the 

mechanical rotation process, which consumes reactive power during operation. 

The displacement power factor (DPF) of wet load depends on the motor type. 

According to [20], about 80% of wet loads use “capacitor run” single-phase 

induction motor with high DPF (about 0.9). Nevertheless, the rest of 20% 

without run capacitors have considerably lower DPF (about 0.62), which 

significantly contributes to the reactive power demand of the aggregate load. It is 

acknowledged in the power industry that modelling the aggregate demand of 

reactive power is difficult, but it becomes increasingly important in the low-

voltage distribution network, due to the increased number of DGs and DSM 

programs. As the aggregate load model introduced in Chapter 4 is able to retain 

all relevant electrical characteristics since the aggregate current waveform is 

available during the load aggregation process, the fundamental reactive power 

demand can be calculated for these three cases, as presented in Fig. 5.5. A 

substantial drop in reactive power demand can be observed when DSM is 

implemented with a subsequent rise in reactive power demand when the 

disconnected wet load is reconnected at 21:00 and 2:00, respectively. 
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Fig. 5.6 Effects of considered DSM scenarios on ZQ of aggregate load model 
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Fig. 5.7 Effects of considered DSM scenarios on np of aggregate load model 
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Fig. 5.8 Effects of considered DSM scenarios on nq of aggregate load model 

Fig. 5.6, Fig. 5.7 and Fig. 5.8 further shows that, the changes of load mix due 

to implementation of DSM scenarios will also affect the model coefficients of 

aggregate load model, which is often ignored for simplicity in the literature, 

which is, however, unacceptable for low voltage system analysis. The 

polynomial/ZIP model coefficients ZQ for these three cases are depicted in Fig. 

5.6. It can be observed that ZQ decreases as soon as the DSM is initiated at 17:00, 

which is attributed to the fact that the percentage contribution of other load 

categories (with lower values of ZQ than the motor load) increases, while ZQ rises 

when the disconnected wet load is reconnected at 21:00 and 2:00, respectively. 

Note that the large drop of ZQ at 18:00 is not caused by the devised DSM 

scenarios, but results from the increased percentage contribution from SMPS 

load which has a very low value of ZQ. The above observations and justifications 

are further confirmed by the variations of exponential load model coefficients np 

and nq which are presented in Fig. 5.7 and Fig. 5.8. 

5.1.3 Impacts of Devised DSM Scenarios on Power Flow 

In Section 5.1.2, the variations of the coefficients for polynomial and 

exponential load models due to DSM implementation are presented and 
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discussed, because polynomial and exponential load models are still the most 

prevalent representation in power system analysis. However, polynomial and 

exponential load models may offer only limited information, so it is also 

important to fully assess the effects of a specific DSM intervention on network 

performance, which will be illustrated using the modified IEEE-33 nodes 

network [162] in this session, and the network diagram is displayed in Fig. 5.9. 

Detailed data of this system can be found in [162]. There are three capacitor 

banks located at Bus 3, 13 and 28, as labeled in Fig. 5.9, each constantly 

outputting 1.0 MVar for improving the voltage profiles, especially for the end 

nodes in the radial system. The transformer with OLTC (ratio is between 0.9 and 

1.1, step size is 0.025) is able to regulate the voltages at the secondary side and 

plays an important role in active voltage control, but in this study, the OLTC 

setting is just fixed at 1.025 to demonstrate the impacts of DSM implementation 

on voltage profiles, the coordinated interaction between OLTC and capacitor 

banks will be analyzed in Section 5.2 in details. The system is modified to 

include only residential and commercial load, as the focus of this thesis is on the 

potential for DSM in these two load sectors with the developed load models. It is 

much harder to develop a general model for the industrial load, since it differs 

significantly depending on the industry type, therefore the industrial load is 

ignored in this analysis. 

 

 

Fig. 5.9 Modified IEEE-33 nodes network 
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Table 5.1 Node Types for Modified IEEE-33 Nodes network 

Load sector Bus number 

Residential load 2,3,4,5,6,7,8,9,12,13,14,15,23,24,25,29,30,31 

Commercial load 10,11,16,17,18,19,20,21,22,26,27,28,32,33 

 

The 24-hours injected active power from the main grid to this network, i.e. 

the aggregate active power demand at Bus 1, is obtained from power flow 

analysis and displayed in Fig. 5.10, which equals to the total load demand plus 

the network losses. A 4.3% decline of peak active power demand is observed 

when DSM1 is applied, while a 5.7% decrease of peak active power demand is 

recorded when DSM2 is implemented. It is also visible in both DSM scenarios 

that reconnecting the DSM load leads to an increase in active power demand. 
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Fig. 5.10 Injected active power from the main grid 



76 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Time (hour)

V
o

lt
ag

e 
(p

.u
.)

 

 

Base case scenario (average loading)
DSM1 scenario
DSM2 scenario

 

Fig. 5.11 Voltage Profile at Bus 18 

The daily change of voltage profile for Bus 18 is obtained from power flow 

analysis and is presented in Fig. 5.11. Bus 18 is the furthest node in the network, 

and is expected to have the lowest voltage profile among the network. The 

function of voltage control in the network is basically disable since the OLTC 

setting and outputs of capacitor banks are constant, which is not realistic in real 

situation, but the purpose here is only to clearly observe the effects of 

implementation of DSM on the voltage profile. It can be observed that, for the 

base case scenario with the OLTC and capacitor bank setting defined above, the 

voltage profile actually violates the acceptable voltage ranges for a short time if 

the constraints is +/- 6%. Disconnecting half of the wet load from 17:00 to 21:00 

improves the voltage profile without any violation throughout the day. 

Reconnecting the DSM portion of wet load at both 21:00 and 2:00 reduces the 

voltage levels for Bus 18, but the degree of reduction is different due to different 

load mixes in the aggregate load. 
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5.2 Conservation Voltage Reduction With Time-varying 

Exponential Load Models 

Voltage var optimization (VVO) is regarded as a secondary control scheme to 

improve the power quality and voltage profiles in daily operation of distribution 

system, which is achieved by coordinating the schedules of the statuses/output of 

switched capacitors and the tap positions of on-load tap changers (OLTCs). 

Due to the emergence of the smart distribution system, enhancing energy 

efficiency by reducing voltage on MV distribution system, which is referred as 

conservation voltage reduction (CVR), has gained great attention and been 

proved to be beneficial to the system operation. CVR is implemented to lower 

the customer’s peak/total demand to conserve more energy by maintain the 

voltages at a lower level in the acceptable range, and it can be regarded as a form 

of demand side management that is always available. CVR can be considered as 

one of the VVO techniques as they utilize the same devices for volt var control, 

but the difference between CVR and conventional VVO is that they have 

different objectives. The objectives of VVO generally consist of the 

minimization of power loss and voltage deviation across the network, while CVR 

mainly aims at minimizing the energy demand. 

However, as mentioned in Section 2.4, the majority of literature use constant 

power load model in the VVO analysis, which ignores the fact that load demand 

is predominantly voltage dependent. Load models play a significant role in 

power system operation and analysis. It is not realistic to assume the load is 

insensitive to voltage, and the accuracy of load model, especially the parameters 

of load model, have significant impacts on the VVO dispatches. In distribution 

systems, the load-to-voltage sensitivities, which considerably affect the 

effectiveness of VVO, could differ between different nodes because of the 

complicated load compositions. Recently, [19] has applied voltage dependent 

load models to VVO analysis, and the necessary and superiority of the more 
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realistic, accurate and voltage dependent load model has been demonstrated, but 

they assume the load coefficients are the same for all bus locations and fixed 

throughout the day. In addition, the growing penetration of DGs has enforced 

extra uncertainties and constraints into voltage var control, this has been 

addressed in the literature [14-18]. 

Nevertheless, to the best of my knowledge, the effects of geographical and 

temporal variations of the coefficients in load model and the impacts of DSM on 

VVO dispatches have never been discussed in the literature. The coefficients of 

load model are assumed to be time-invariant in [19], but in practice, they should 

be time-varying as the load composition is varying all the time, especially when 

DSM is implemented to change the load profiles in order to reduce the peak 

demand or relieve possible overloading of network components. Although the 

control of active power is the main focus of most DSM schemes, this inevitably 

changes the reactive power demand as well because it modifies the load 

composition. Therefore, the coefficients of load model change as the load 

compositions vary, the active/reactive demand in turn changes as the model 

coefficients vary, it is reasonable to predict the time-varying coefficients in load 

model may affect the dispatch strategies of VVO. 

5.2.1 Problem Formulation for CVR 

Considering the implementation of CVR in a distribution system, the 

objective function is to minimize the real power injected into the distribution 

system from the main grid, which equals to the total active power demand by all 

loads within the system plus the active power losses on lines and can be 

expresses as 

, 
min  

i Ci
injected

OLTC Q
P                                               (5.1) 

Where 

injected demand lossP P P                                       (5.2) 

( )i

B

demand d i

i

P P V


 
�

                                         (5.3) 
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                                      (5.4) 

Some equality and inequality constraints are required to ensure the proper 

operations of all components within the system. The power flow constraints can 

be represented by the following two equalities: 

                   ( , , ) 0i ii g dP tap V P P                                      (5.5) 

( , , ) 0i i ii C g dQ tap V Q Q Q                                 (5.6) 

Most of loads in residential and commercial sectors present voltage-

dependent behavior. In order to investigate the impacts of geographical and 

temporal variations of the load model coefficients on VVO dispatches, the 

exponential load model introduced in Section 2.2 is used. It should be noted that 

the load model coefficients are time-varying, and the active and reactive demand 

at each time step can be expressed as: 
,

0,
0

i

np i
i

d i
V

P P
V
   
 

                                           (5.7) 

,

0,
0

i

nq i
i

d i
V

Q Q
V
   
 

                                           (5.8) 

The inequalities include voltage limits, thermal loading constraints of branch 

lines and power factor limit at the substation, as presented in (5.9), (5.10) and 

(5.11), respectively. 
min max

ii iV V V                                              (5.9) 
max

b bS S                                               (5.10) 

min maxsysPF PF PF                                     (5.11) 

Transformers with voltage regulators and on-load tap changers are able to 

control the output voltage to vary in steps, depending on the tap positions. 

1i i iOLTC TP tap                                     (5.12) 

min max{ ,...,0,..., }i i iTP TP TP                               (5.13) 

The switched capacitor banks consist of several modules, and each individual 

module has a capacity ofΔCi. Depending on the adjustment position which lies 
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between zero and the maximum number of CB module, the reactive power 

injected into the distribution system is represented by 

iC i iQ NCap C                                        (5.14) 

max{0,1,2,..., }i iNCap NCap                              (5.15) 

TABLE 5.2 Nomenclature for CVR problem formulation 

Symbol         Definition 
Pinjected       total injected active power into the distribution system 
Pdemand       total active power demand by the loads 
Ploss           total active power losses on lines 
Pdi             total active power demand at bus i 
Qdi             total reactive power demand at bus i 
Vi               voltage magnitude at bus i 

B�             Set of buses 

ijV            Voltage difference between bus i and bus j 

rij               line resistance between bus i and bus j 
Zij               line impedance between bus i and bus j 

( , , )iP tap V       active power injected into bus i 
( , , )iQ tap V       reactive power injected into bus i 
Pgi             active power generation at bus i 

Qgi               reactive power generation at bus i 
QCi              reactive power injected by capacitors at bus i 
P0,i              active power demand at nominal voltage and frequency at bus i 
Q0,i              reactive power demand at nominal voltage and frequency at bus i 
V0               nominal system voltage 
np,i            voltage exponents of active power demand at bus i 
nq,i            voltage exponents of reactive power demand at bus i 

min
iV           minimum acceptable voltages at each network bus n 
max

iV           maximum acceptable voltages at each network bus n 

bS             apparent power flow through network branch b 
max
bS         maximum apparent power flow through network branch b 

PFmax             maximum system power factor 

PFmin         minimum system power factor 

PFsys          system power factor 

OLTCi        output voltage of OLTC at bus i 

TPi             tap position at bus i 

   itap             voltage step controlled by OLTC at bus i 
min

iTP          minimum tap position at bus i 
max

iTP        maximum tap position at bus i 
NCapi         number of modules of capacitor at bus i 

iC             step of reactive power output of capacitor at bus i 
max
iNCap        maximum number of modules of capacitor at bus i 

5.2.2 Solution Methodology 

Particle swarm optimization (PSO) algorithm [163] is utilized to optimize the 

proposed CVR problem in this work. PSO is known to be efficient in solving 

complex optimization problems and has been adopted in various applications in 
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power system. A swarm of particles that are randomly set with initial positions 

within a feasible range is simulated to fly through the entire problem space to 

find the global optimal solution. 

In this work, the position information of particles consists of the output 

voltage of OLTC and reactive output of capacitor banks. The fitness value can be 

calculated by the objective functions in (5.1). The constraints described in (5.2)-

(5.15) will be handled by the penalty function in PSO algorithm. Since there are 

plenty of literature on PSO, the details of PSO will not be reproduced in this 

thesis. More details about PSO can be found in [164] and our previous work 

[163], which has also applied PSO in optimal energy dispatch within a micro-

grid. 

5.2.3 Test System Setting for Case Study 

The proposed CVR that minimizes the injected active power from the grid 

supply system is examined on the modified IEEE 33-bus radial distribution 

system as shown in Fig. 5.9 with detailed data of this system in [163], which is 

the same as the system being used in Section 5.1.3. Switched capacitor banks are 

installed at Bus 3, Bus 13 and Bus 28 as labeled, each location with three 

modules of capacitors, each individual module with 0.5 MVar, i.e. the maximum 

injection of reactive power at each of these three buses is 1.5 MVar with a step 

size of 0.5 MVar. And it is assumed that power electronic switches are used to 

control the switching operations of capacitor banks, therefore, the maximum 

limit of the number of switching is not considered, but this constraint can be 

easily added in the formulated problem. The tap range and step size of 

transformer are:Δtapi = 0.025, iTP {-4, -3, …,0, …, 3, 4}, i.e. the output 

voltage is between 0.9 and 1.1, according to (5.12). The other operational 

constraints include: PFmax = 0.99 lag; PFmin = 0.96; Vmax = 1.05 p.u.; and Vmin 

= 0.95 p.u. 
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The type of load buses is defined according to Table 5.1. The nominal active 

and reactive power demand, P0 and Q0 in (5.7) and (5.8), for residential and 

commercial load, are presented in Fig. 5.12 and Fig. 5.13, which is the average 

loading conditions shown in Chapter 4. 
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Fig. 5.12 P0 and Q0 for residential loads 
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Fig. 5.13 P0 and Q0 for commercial loads 
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5.2.4 Impacts of Time-varying Coefficients on CVR Dispatch 

Four types of load model are applied to the above CVR problem to 

investigate the effects of different load models on the dispatch strategies of CVR, 

including: 

 Load Model 1: Constant power load model, i.e. np = nq = 0; 

 Load Model 2: Voltage dependent (VD) exponential load model, with np 

= 1, nq = 2, time-invariant, fixed for both residential and commercial 

loads.  

 Load Model 3: VD exponential load model introduced in Chapter 4, and 

the values of np and nq are time-varying and vary with the load mixes, as 

shown in Fig. 5.14. 

 Load Model 4: VD exponential load model, the values of np and nq for 

residential and commercial loads are the corresponding 24-hours average 

values calculated from the Model 3 above, i.e. np =1.1881, nq =1.2574 

for residential load and np =0.9334, nq =2.065 for commercial load. Both 

np and nq are time-invariant. 
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Fig. 5.14 Time-varying exponential coefficients for load models 
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The CVR problem defined in (5.1)-(5.15) is solved using the four load 

models as described above. And Fig. 5.15 – Fig. 5.18 show the daily optimal 

dispatch of OLTC and switch capacitors. It can be observed that the optimized 

values of these decision variables in CVR dispatch vary quite significantly with 

different adopted load models.  
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Fig. 5.15 CVR Dispatch results of using Load Model 1 
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Fig. 5.16 CVR Dispatch results of using Load Model 2 
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Fig. 5.17 CVR Dispatch results of using Load Model 3 
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Fig. 5.18 CVR Dispatch results of using Load Model 4 

Because Bus 18 and Bus 33 are located at the end of the radial feeders, their 

voltage profiles with different load models are shown in Fig. 5.19 and Fig. 5.20, 

respectively. The voltage levels with Load Model 1 (constant power load model) 

are obviously higher than those with VD load model, this is because power losses 

are linear to the square of the current, while the current flow into the constant 

power load is inversely proportional to the supply voltage. Therefore, when using 
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Load Model 1, the feeder will be operated by the OLTC in the upper bound of 

acceptable voltage, which is confirmed by Fig. 5.15(a). In comparison, the 

voltage profiles of other VD models (Load Model 2, 3, 4) are controlled to 

operate in the lower bound of acceptable voltage, in order to reduce the energy 

demand. However, although the differences among these voltage profiles exist, 

they are not very significant except in the period of 1:00-4:00 and 22:00-24:00. 
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Fig. 5.19 Voltage profiles at Bus 18 when using different load models 
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Fig. 5.20 Voltage profile at Bus 33 when using different load models 
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In addition, the active power demand by loads, power losses and total 

injected real power into the distribution system for different load models are 

presented in Fig. 5.21, Fig. 5.22 and Fig. 5.23, respectively, this further 

demonstrates the effects of different coefficients in the load models on VVO 

dispatches, which in turn have impacts on the energy dispatches within the 

system. To quantify the difference, the total injected real power for 24 hours 

when using Load Model 2, Load Model 3 and Load Model 4 are 112.07 MW, 

109.5 MW and 111.9 MW, respectively. The percentage difference can be up to 

2.3%, which is a significant number considering the only difference among 

various cases is the exponential coefficients in load model throughout 24 hours. 

Since the vast majority of loads in residential and commercial loads are sensitive 

to voltage in practice, and different types of loads, different load mix at different 

time will have various load-to-voltage sensitivities, the proposed CVR 

considering VD load models with time-varying coefficients are more effective 

and realistic. 
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Fig. 5.21 Total active power demand when using different load models 
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Fig. 5.22 Total active power loss when using different load models 
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Fig. 5.23 Total active power injected from main power grid when using different 

load models 

5.2.5 Effectiveness of Proposed CVR 

In this section, in order to demonstrate the effectiveness of CVR, four 

scenarios with and without CVR will be simulated and compared using the same 

distribution system as in Section 5.2.4. The voltage dependent load model with 

time-varying coefficients, i.e. Load Model 3, introduced in Chapter 4 will be 
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used in all scenarios. The descriptions of scenarios are presented in Table 5.3 as 

follows. 

Table 5.3 Description of four different scenarios 

 OLTC Cap 3 Cap 13 Cap 28 
Scenario A 1.0 0 MVar 0 MVar 0 MVar 
Scenario B 1.025 1 MVar 1 MVar 1 MVar 
Scenario C VVO with Loss Minimization (LM) 
Scenario D CVR Optimization 

 Scenario A: No control, no reactive power support from capacitor banks; 

 Scenario B: No control, but with fixed reactive power support; 

 Scenario C: VVO with the objective of minimizing power losses; 

 Scenario D: CVR optimization formulated in Section 5.2.1, with the 

objective of minimizing the sum of real power demand and power losses. 
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Fig. 5.24 Voltage profiles at Bus 18 for different scenarios 
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Fig. 5.25 Voltage profiles at Bus 33 for different scenarios 

The voltage profiles of Bus 18 and Bus 33 are shown in Fig. 5.24 and Fig. 

5.25, respectively. Due to the lack of voltage control provided by VVO, the 

voltage constraint is violated in Scenario A and Scenario B. It can be seen that, 

the voltage level of Scenario A is always less than 0.95 at Bus 18 and Bus 33, 

while it is violated at Bus 18 at the peak load period (17:00-21:00) in Scenario B. 

Since the demand is sensitive to the voltage, the proposed CVR will try to reduce 

the voltage level as much as possible and maintain it at the lower acceptable 

bound, in order to decrease the demand. 
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Fig. 5.26 Total active power demand for different scenarios 
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Fig. 5.27 Active power loss for different scenarios 
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Fig. 5.28 Injected active power from main power grid for different scenarios 

Since the voltage levels in Scenario A are unacceptable for most of the time, 

the power flow analysis for Scenario A will be ignored in the following analysis, 

as it is meaningless. For the purpose of comparison, the total active power 

demand by loads, power losses and injected active power from GSP to 

distribution network for Scenario B, VVO LM case, and CVR case are displayed 

in Fig. 5.26, Fig. 5.27 and Fig. 5.28, respectively. As shown in Fig. 5.26, the 
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intentional reduction in bus voltages within the acceptable range throughout the 

network in CVR case, achieves the minimum active power demand by loads. 

Although VVO LM performs the best in loss reduction compared with CVR as 

presented in Fig. 5.27, the demand reduction in CVR is greater than the loss 

reduction that can be achieved by VVO LM, therefore, the active power injection 

from GSP obtained from CVR is the minimum among all scenarios, as depicted 

in Fig. 5.28.  

It is noted that the CVR is able to reduce more load demand and injected 

power from GSP during the light load conditions (1:00-6:00), i.e. it is more 

effective during these periods, which is attributed to the fact that light loading 

conditions result in higher voltages, which in turn leads to an unnecessary rise in 

load demand. The load demand can be deliberately decreased by optimal 

adjustment of OLTC and capacitor banks in the system. On the contrary, the 

voltage levels are already dropped to the lower bound at the peak load period, 

which limits the room for further reducing the voltage for load reduction, since 

the key criteria in practicing CVR is to make sure all bus voltage constraints are 

not violated. 

5.3 Evaluation of the ability of DMLs at Various Locations to 

Benefit Power Network by OPF Analysis 

DSM actions are generally implemented to maintain the energy balance 

within the power system. In the future smart grid, with the improved ICT and 

system infrastructures, demand manageable loads (DMLs) in some locations 

could be reduced to avoid the need of disconnecting an entire section of the 

network, in real-time response to contingencies (e.g. faults) within a power 

system. With the increasing penetration of distributed generation, more 

flexibility from DMLs is required within the distribution network. However, as 

discussed before, the DMLs of residential and commercial loads are deeply 
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embedded and highly distributed within the LV distribution networks, the 

implementation locations of DSM is an important issue, which has not been 

considered much in the literature. 

Reference [165] applies reverse loadability method to determine the optimal 

location and capacity for DGs installation within distribution network using 

Optimal Power Flow (OPF), which maximizes the added capacity of DG by 

iteratively adding negative load at every bus, until the system constraints (e.g. 

voltage drops, line transfer limits) are violated. In addition, it is also proved that 

the adding DG at some buses provides more benefits to the network operation 

than the other buses. 

Similarly, it is reasonable to expect there must be optimal locations for DSM 

implementation which can offer maximum benefits to the power grid. Therefore, 

this section will formulate an OPF problem to determine the optimal location and 

the minimum amount of DMLs required to be disconnected within the network 

that maintain all network constraints within the limits under a particular network 

contingency. 

5.3.1 Problem Formulation of DSM-based OPF 

When network contingencies (e.g. fault, line outage, overload, sudden 

shortage of RES etc.) occur, especially when the contingencies cause supply-

demand imbalance and emergency generation may not be able to solve the 

problem, disconnecting a portion of the DMLs is an effective way to allow the 

power system to operate securely until the contingencies is cleared. The location 

and amount of DMLs that needed to be disconnected in order to keep the system 

within operational constraints depends on the severity and location of 

contingency. An OPF problem is formulated to calculate the minimum amount of 

disconnected DMLs that are needed to maintain secure system operation during 

contingency as follow: 
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TABLE 5.4 Nomenclature for DSM-based OPF 

Symbol       Definition 
  Ndsm           the number of load buses with DMLs for DSM implementation 
  Cn             the cost of adjusting/deferring one unit of load at bus n 
  P0,n           the original active power demand at bus n 
  n          the adjustment factor, i.e. remaining percentage of original demand after DSM 
Pn             the total injected active power at bus n 
Qn             the total injected reactive power at bus n 
N               the total number of buses 
Gnm           the real parts of admittance matrix 
Bnm            the reactive parts of admittance matrix 

min
nV          the min. acceptable voltages at each network bus n 
max

nV          the max. acceptable voltages at each network bus n 

bS             the apparent power in branch b 
max
bS         the max. apparent power in branch b 

min
n          the min. adjustment factor 
max
n          the max. adjustment factor 

5.3.2 Case Study 1 

The above formulated problem is analyzed using a section of a typical 

distribution network in U.K., presented in Fig. 5.29, the network details can be 

found in [166]. The load sector mix is given in Table 5.5. This distribution 

system is populated with medium-voltage aggregate load models introduced in 

Chapter 4, using the equivalent impedance that transforms the low-voltage model 

to medium-voltage model. Since Chapter 4 only introduces residential and 

commercial load model, the light industrial load model taken from [144] is used 

in this analysis, and it is assumed to be constant throughout the day.  
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Fig. 5.29 Radial distribution network for case study 

Table 5.5 Load sectors mix at each bus 

 Bus 1 Bus 2 Bus 3 Bus 4

Residential 0% 75% 30% 100%

Commercial 100% 15% 35% 0% 

Industrial  0% 10% 35% 0% 

 

One of the upstream grid supply transformers (T1 in Fig. 5.29) is simulated 

to be faulted during the peak period at maximum loading conditions which 

represents the worst case fault condition, and since each transformer is rated at 

about 70% of peak load, another upstream transformer (T2) will be overloaded. It 

is assumed that there are DMLs at these four buses, the OPF formulated in 

(5.16)-(5.21) is applied at each locations with DMLs to calculate the minimum 

amount of DMLs which need to be curtailed for the purpose of relieving the 

transformer overloading, while keeping all system constraints (e.g. bus voltages, 

power flows etc.) within satisfactory limits throughout the distribution network. 

This static OPF is simulated in ETAP software, and the required amount of load 



96 

at each bus to be curtailed to clear the upstream contingency is determined and 

shown in Table 5.6. 

Table 5.6 The required amount of load to be curtailed to clear the upstream 

contingency at each bus using different load models 

Unit: MW Bus 1 Bus 2 Bus 3 Bus 4

Constant power load model -1.77 -1.72 -1.63 -1.37

Detailed load model introduced in Chapter 4 -1.78 -1.75 -1.68 -1.52

 

From the presented results, the contribution and ability of each downstream 

load bus with DMLs to keep the constraints under control during overload 

contingency can be assessed and quantified. Compared with the other buses, Bus 

4 requires the least amount of DMLs (1.52 MW) to be disconnected to resolve 

the overload occurs at the upstream transformer, while Bus 1 needs to curtail 

1.78 MW DMLs to alleviate the same contingency, which can be attributed to the 

higher system impedance (due to the larger physical and electrical distance) 

between Bus 4 and GSP. Hence, reducing the load via DSM implementation at 

Bus 4 results in greater decline in total power losses than implementation at the 

other locations, which also helps to unload the overloaded transformer. Therefore, 

it can be concluded that DSM implemented at Bus 4 is more beneficial to the 

system than at the other locations. 

The differences between the obtained results using constant power load 

model (1.37 MW) and the detailed aggregate load model introduced in Chapter 4 

(1.52 MW) is about 11%, which is quite a significant difference, because it 

corresponds to about 150 kW in absolute value and about 50 households 

assuming each with peak demand of 3 kW. This emphasizes the value of detailed 

load modeling with time-varying coefficients in the power system analysis under 

the consideration of DSM scenarios. Using constant power load models seems to 

tend to produce excessively optimistic results, while using the detailed time-



97 

varying and voltage-dependent load model requires more load to be disconnected, 

this can be justified as follows. The power demand is constant and equals to 

nominal power for the voltage-independent load model, i.e. constant power load 

model, regardless of the supply voltage. If the load is voltage dependent, the load 

demand will be reduced and deviated from the nominal value due to the inherent 

voltage drop in the distribution network. Since the above formulated OPF 

problem is attempting to optimize the required amount of load that needed to be 

curtailed to resolve the system contingency, the load will be iteratively 

disconnected to re-calculate the new loading conditions. Then, as the load is 

disconnected, the voltage gradient across the distribution system will improve, 

and the demand of connected load will in turn increase. Consequently, more 

DMLs need to be disconnected by the network operator in the case of using 

voltage dependent load models.  

5.3.3 Case Study 2 

The DSM implementation not only changes the magnitude of load demand at 

the implemented location, but also alters the load composition, thus the electrical 

characteristics of the aggregate load. The results in Section 5.1 show that the 

changes of load composition due to DSM will change the model coefficients of 

aggregate load models, which in turn affects the bus voltages and the actual real 

and reactive demand drawn at the grid supply point. 

In order to compare and evaluate the potential of different types of DMLs to 

alleviate upstream contingencies, a time sequential OPF is utilized in this section, 

which is a similar variation of the OPF outlined in (5.16)-(5.21). The new 

objective function is  

 
,

, , ,min 1 for 1,...,24
l n

l t l t l tC P t


                           (5.22) 

where the definition of variables are similar as defined in (5.16), except that 

subscript l indicates load type l, and subscript t represents time interval t. The 
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system constraints are the same as outlined in (5.17)-(5.21). The time sequential 

OPF means that the static OPF problem is solved at every time step.  

The same distribution network is used in this case study. And a transformer 

(T1 in Fig. 5.29) overloading is again simulated to increase the overload level 

incrementally until either one of the system constraints in (5.17)-(5.21) is 

violated or the amount of DMLs available is exceeded. The effective reserve Sr at 

the grid supply point offered by a particular load type can be calculated as the 

MVA flow reduction across the grid supply point, i.e. initial MVA flow Si,gsp 

minus final MVA flow Sf,gsp after time sequential OPF is carried out. 

, ,r i gsp f gspS S S                                             (5.23) 
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Fig. 5.30 Effective reserve offered by residential wet load at GSP 

Taking into consideration the thermal and voltage constraints, the potential 

effective reserve provided by the wet load in residential sector at Bus 2 and Bus 

4 (due to the larger portion of residential load) is calculated using the time 

sequential OPF, by assuming the wet load is 100% controllable (i.e. can be 

disconnected at any time instant), and the result is depicted in Fig. 5.30. The 

actual amount of deferrable wet load and the corresponding available time highly 

depends on the load aggregation and coordination among multiple customers in a 

specific DSM scheme. The reconnection of the DMLs is not considered here 
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because it depends on how the DMLs are controlled, for example, by a frequency 

control signal to the smart appliances of customers or by a price incentive signal. 

The focus here is to determine the amount effective reserve provided by a 

particular type of DMLs in the downstream at each bus at any time throughout 

the day that can help to resolve upstream contingency. 

From the above discussion, it is illustrated that both the load composition at 

each bus and system location has a considerable influence on the efficiency and 

benefit of a devised DSM program. Precisely modelling the aggregate load will 

be beneficial to alleviate contingencies and maintain service to the system while 

minimizing the number of affected customers. As this approach can be used to 

assess the value, contribution and ability of each type of DMLs at any locations 

in the system to resolve network contingencies, it may potentially be utilized by 

system operators to greatly promote and improve the deployment of DSM 

programs at the optimal load buses throughout the network by providing 

customers with appropriate and attractive incentives. 

5.4 Chapter Summary 

Based on the aggregate time-varying load models developed in Chapter 4, a 

general methodology of modelling, quantifying and assessing the impacts of 

various devised DSM schemes on the aggregate load models, power flow and 

network performance is proposed, which will be of interest to utility companies 

and policy makers, as the impacts of any devised DSM schemes should be 

evaluated before actual implementation. Moreover, a more accurate framework 

for CVR optimization in modern distribution system is formulated using the 

developed load models to investigate the effects of time-varying model 

coefficients of load models (due to naturally occurrence and DSM actions) on the 

VVO dispatches and the corresponding network performances. To the best of my 

knowledge, the effects of geographical and temporal variations of the 
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coefficients in load model and the impacts of DSM on VVO dispatches have 

never been discussed in the literature. Simulation results demonstrate the 

importance of using the comprehensive time-varying load models in VVO 

analysis, as significant difference can be noticed under different scenarios with 

different load models. Finally, a DSM-based OPF problem is formulated to 

assess the ability of various type of DMLs to alleviate network contingencies (e.g. 

overloading, sudden shortage of RES) at different locations within a given 

distribution system, it has been shown that there is an optimal location in 

distribution network to deploy DSM when network contingencies occur, and the 

DSM-based OPF formulation can be effectively used to solve the question of 

“where, how much and which type of DMLs should be controlled to alleviate a 

network contingency”. 
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Chapter 6 

Mathematical R-C Thermodynamic Model of 
Smart Commercial Buildings 

6.1 Introduction 

Due to the relative shortage of such knowledge in power engineering, this 

chapter introduces the fundamental physical knowledge that from [167] for 

developing the thermodynamic model of buildings. The modeling techniques and 

methodologies that are currently and widely adopted by the researchers in the 

area of building climate control and building construction industry will also be 

discussed, as the thermodynamics in building are strongly related to the power 

consumption of heating ventilation air conditioning (HVAC) system in large 

commercial buildings, and these should be properly and accurately modelled for 

use in the demand side management/demand response area in smart grid. 

6.2 Fundamental Principles of Thermodynamic Model for 

Building 

Building elements include the air, walls, floors and ceilings, two fundamental 

thermal properties of these elements are heat transmissibility and heat storage 

capacity. Heat can be transferred through these elements via three different 

means including heat conduction, heat convection and heat radiation. Heat can 

also be stored in these elements and the heat storage capacity is related to the 

specific heat capacity and the mass of the corresponding element. 

Thermodynamics in building is normally modelled using a thermal network, 
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which is analogy to the electrical network where resistors represent heat 

transmission and capacitors represent heat storage. Lumped-capacitance method 

is used in this thesis to develop an accurate and simple thermodynamic model for 

large commercial building. 

6.2.1 Heat Transfer 

Heat conduction, convection and radiation are three main mechanisms of heat 

transfer. 

6.2.1.1 Heat Conduction 

 

Fig. 6.1 Illustration of heat conduction [167] 

Heat conduction refers to the heat transmission that takes place through the 

stationary medium/object/substance when a temperature gradient exists. It can be 

quantified using the rate equation called Fourier’s Law, for example, as shown in 

Fig. 6.1, for the plane wall with a temperature distribution T(x), the transfer rate 

of thermal energy qx(W) in the direction x is computed as 

x
dT

q kA
dx

                                                (6.1) 

Where dT/dx is the temperature gradient, k (unit: W/m.K) is a characteristic of the 

wall material called the thermal conductivity and the minus sign means that 

thermal energy is conducted to the direction of declining temperature. The 

temperature gradient can be expressed as a linear equation as in (6.2) under 

steady state conditions with linear temperature distribution. 
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1 0x xdT T T

dx L

 
                                           (6.2) 

Then the heat transfer can also be linearly expressed as 
0 1( )x xkA T T

q
L

 
                                        (6.3) 

6.2.1.2 Heat Convection 

 

Fig. 6.2 Illustration of heat convection [167] 

As shown in Fig. 6.2, the convection heat transfer can be referred as the 

energy transfer taking place due to bulk fluid motion and random molecular 

motion [167]. Using Newton’s Law of cooling, the convective heat transfer q (W) 

can be expressed as 

( )sq hA T T                                                 (6.4) 

where sT is the surface temperature,T is the fluid temperature, A is the area of 

wall, and h (unit: W/m2.K) is called the convection heat transfer coefficient. 

According to the (6.4), the convection heat is transferred from the surface when q 

is positive ( sT T  ), and the convection heat is transferred to the surface when 

q is negative ( sT T  ). 

6.2.1.3 Heat Radiation 

While the heat transfer through conduction or convection needs a material 

medium, heat radiation does not. Heat radiation is the thermal energy radiated by 
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a substance with a finite temperature [167]. Fig. 6.3 illustrates the radiation 

transfer process.  

 

Fig. 6.3 Illustration of heat radiation [167] 

Heat radiation involves some complicated physics laws and equations, more 

details can be found in [167]. In the context of thermodynamic analysis in 

building, the heat radiation through the internal walls in the building will be 

ignored owing to the relative small temperature range inside the building, in 

order to simplify the building thermal network. Two types of heat radiation will 

be considered in developing the differential equations representing the 

temperature dynamics inside the building in this thesis: 1) the irradiation from 

sun absorbed through the windows and the external walls into the rooms; 2) the 

heat emitted from the occupants and electrical devices. 

6.2.2 Heat Storage 

Specific heat capacity cp is a basic property of materials, which is the 

quantifiable thermal energy needed to alter one unit of temperature of one unit 

quantity of a matter [167]. Increasing the temperature of a matter with higher cp 

requires more heat, and vice versa. The capacity in storing energy (denoted by Q) 

of an object with specific heat capacity cp and mass m is shown in (6.5), where 

T is the rate of change of temperature. 

pQ mc T                                                      (6.5) 
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6.3 Configuration and Operating Principle of HVAC System 

 

 

Fig. 6.4 Commercial building HVAC system schematic [168] 

In a modern commercial building, the HVAC system shown in Fig. 6.4 

typically consists of an air handing unit (AHU) and SF serving multiple variable 

air volume (VAV) boxes which together control the airflow and air temperature 

into a network of zones. The AHU mixes the fresh outside air with the return air, 

and then this mixed air is driven and distributed by the SF to the corresponding 

VAV box of each zone [169]. The cooling coil will cool and dehumidify the 

mixed air in hot and wet climates, whereas the heating coil will reheat and 

humidify the mixed air in cold and dry climates. The zone damper position in the 

VAV box determines the mass flow rate of cooled/heated air entering a zone. 

The differential pressure across the SF will change once the damper position is 

varied. To maintain the pre-specified differential pressure set-point, VFD can be 

commanded to change the input voltage and frequency of motor, thus SF speed 

can be varied to change the airflow [168]. Therefore, the combined and 

coordinated functions of cooling coil, heating coil and supply fan in HVAC 

system play a significant role in the temperature dynamics inside the buildings. 
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6.4 Equivalent Circuit of Thermal Network 

6.4.1 Thermal Resistance and Thermal Potential 

 

Fig. 6.5 Illustration of heat transfer though a plane wall and schematic of its 

corresponding equivalent thermal circuit [167] 

Similar to the fact that the resistance in electrical circuit is related to the 

electricity conduction, the resistance in thermal network is regarded as being 

relevant to the heat transfer. It is acknowledged that resistance equals to the 

driving potential divided by the corresponding transfer rate. Similarly, the 

thermal resistance equals to the thermal potential divided by the heat transfer rate. 

Thermal potential (i.e. temperature difference) in thermal circuits is similar to the 

electrical potential in electric circuits. For example, Fig. 6.5 shows the 

temperature distribution and heat transfer (including conduction and convection) 

through the plane wall, as well as the corresponding equivalent thermal circuit. 

The equivalent thermal circuit offers an advantageous and convenient approach 

to conceptualize, analyze and quantify the behaviors and problems of heat 

transfer [167]. 
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Following Equation (6.3), it can be derived that the heat conduction thermal 

resistance for Rt, conduction for a wall is 
,1 , 2

, =
s s

t conduction
x

T T L
R

q kA


                                      (6.6) 

Following the Equation (6.4), it can also be derived that the thermal 

resistance for heat convection Rt, convection at the surface of a plane wall is 

,
1

=
s

t convection
T T

R
q hA


                                         (6.7) 

Notice that qx remains constant through the thermal network, Equation (6.8) 

can be easily derived from the equivalent thermal circuit. 
,1 ,1 ,1 , 2 , 2 , 2

1 2
1 1

s s s s
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                              (6.8) 

Analogy to the series connection of electrical resistance in electrical circuit, 

the heat transfer rate qx can also be computed using the temperature difference 

between two sides of the wall and the total thermal resistance Rtotal (series 

connection of conduction and convection resistances) as follows. 
,1 , 2

x
total

T T
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R
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1 1+ +

T T
L

h A kA h A

 
                            (6.9) 

6.4.2 Thermal Capacitance 

Regarding building thermal analysis, the thermal flywheel effect refers to the 

thermal energy storage ability of thermal elements, to be more specific, the 

thermal mass provides “inertia” against temperature fluctuations. For instance, 

the huge building body can serve to smooth the fluctuations of indoor 

temperatures against the outside temperature which are always fluctuating and 

varying with time, because the thermal mass of building will absorb thermal 

energy if the ambient temperature is higher than that of the building thermal 

mass, and discharge thermal energy back if the ambient temperature is lower. 

This ability enables more advanced building climate control and has a great 

potential in providing more fast-responsive and flexible power reserve for smart 
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grid development, which is one of the motivations of this thesis mentioned in 

Chapter 1. 

The concept of thermal capacitance is introduced into the thermodynamic 

building model to help analyze the transient thermal behavior inside the building. 

The temperature of the materials vary with time during transient heat transfer, 

and thermal capacitance (unit: J/°C or J/K, depending on the unit of temperature) 

can be regarded as the capacity of an element to store thermal energy. The 

thermal mass is just the specific heat capacity of the material multiplies the mass 

of that material. In addition, thermal capacitance C = mcp will be assigned to 

each node (i.e. walls and rooms of building) in thermal network to accurately 

capture the temperature dynamics. 

6.4.3 Illustration Example 

 

Fig. 6.6 Thermal circuit network representing a peripheral wall with a window 

[167] 

As presented in Fig. 6.6, consider a peripheral wall with only one side 

exposed to the sun and the outside air as an illustration example. There are three 

nodes in this equivalent circuit model, namely, the outside air node with potential 
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T1, the inside air node with potential T2 and the wall node with potential Tw. And 

these nodes are all connected to ground via corresponding thermal capacitor to 

represent the thermal storage capacity. 

Heat flows through both wall and window from the outside to the inside. The 

branch through the wall is represented by two convection thermal resistances 

(R1’ and R2’) and one conductive thermal resistance R3’. The branch through the 

window is represented by a thermal resistance R4’. A variable current source is 

used to represent the radiative heat gain from the sun. 

Table 6.1 Nomenclature for illustration example 

Symbol         Definition 
       Awin            Area of window 
         t               Thickness of window 
        kw              Conductive heat transfer 
       Awall            Area of wall, not including window 

C1              Thermal capacitance of the outside air, C1 = ma1ca 

C2              Thermal capacitance of the air inside the room, C2 = ma2ca 

C3              Thermal capacitance of wall, C3 = mwcw 

ma1, ma2, mw         The masses of outside air, inside air and wall, respectively 
ca, cw                 Specific heat capacitance of the material of air and wall, respectively 
Qrad                    Radiative heat gain from the sun 
R1

’                   Convective thermal resistance between outside air and wall, R1
’=1/(h1Awall) 

R2
’            Convective thermal resistance between inside air and wall, R2

’=1/(h2Awall) 
R3

’            Conductive thermal resistance of the wall, R3
’=L/(kAwall) 

R4
’            Total thermal resistance representing the window.  

R4
’=1/(h1Awin)+ t/(kwAwin)+ 1/(h2Awin) 

6.5 Thermodynamic Model for the Whole Building 

Section 6.2 review the fundamental heat transfer equations that are required 

for composing the plant model to represent the whole building. This section will 

demonstrate the process of deriving the governing hear transfer equations for 

temperature dynamics in all rooms and walls of the whole building and extending 

the single-building model to multiple-buildings model. 

6.5.1 Assumptions for the Model Development 

Some assumptions were made to simplify the thermal model as follows: 
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1) The specific heat of air cp is constantly set to be 1.007 in this thesis. 

Although cp is 1.007 when temperature is 300 K and 1.006 when 

temperature is 250 K, the range of temperature dynamics occurring 

inside a building is small enough to keep the error of this assumption 

within 0.1%. 

2) All rooms in the building are assumed to have the same pressure as in the 

cooling and heating ducts of HVAC system, which means the total mass 

of air within the room will remain the same in the process. 

3) Since lumped-capacitance method is used in this thesis, the air in a room 

is assumed to have only one temperature across its volume because the 

developed thermodynamic building model should be simple enough to 

facilitate the development of control methodology and reduce the 

computation time. 

4) Since the temperature difference between inner walls of building is small, 

the interior radiative coupling between inner walls is ignored in this 

thesis as the corresponding effects on temperature dynamics should be 

trivial. 

 

Fig. 6.7 Schematic of three-zones building [170] 
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Fig. 6.8 Thermal network for Zone 1 and its surrounding walls [170]. 

TABLE 6.2 Nomenclature for R-C Thermodynamic Model of Building 

Symbol          Definition 

ZiC , WiC           Thermal capacitance of zone i & wall i. 

     ac , wc              Specific heat capacity of air and wall, respectively. 

   aim , wim           Air mass in zone i and mass of wall i, respectively. 

ZiT , W iT , jT          Temperature of zone i, wall i, node j, respectively. 

      S iT              HVAC supply air temperature entering zone I through the ducts. 

      outT              Outside ambient temperature. 

      Zim              The flow rate of the mass of air entering zone i (airflow). 

      ,i jR             Total thermal resistance between node i and node j. 

      i
intQ              Internal heat gain (from electrical devices, humans, lighting etc.) in zone i.

      i
radQ              Solar radiative heat flux density that radiates into node i. 

 i
winA , i

WA           Total window area in zone i and area of wall i, respectively. 

     i
win               Glass transmissivity of window in zone i. 

     i
W               Solar radiation absorption coefficient of wall i surface. 

     i
winn               Equals 1 if zone i has a window, 0 if zone i has no window. 

   i
W               Equals 1 if wall i is a peripheral wall, 0 if wall i is an internal wall. 

 ZiN , WiN           The set of all neighboring nodes to zone i node and wall i node. 
wall
valueR , glass

valueR          R-value of wall and glass window, respectively. 
in
valueR , out

valueR          R-value of internal surface film and external surface film. 

     WiR                Thermal resistance of wall i for conduction heat transfer. 

     in iR                Thermal resistance of wall i for internal convective heat transfer. 

     out iR                Thermal resistance of wall i for external convective heat transfer. 

     win iR              Thermal resistance of window i. 
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6.5.2 Model for a Single Building 

Considering a three-zones building as shown in Fig. 6.7 as an example to 

formulate the thermodynamic model for a single building, the equivalent thermal 

network for zone 1 is presented in Fig. 6.8.  

CZi and CWi represents the thermal mass or thermal capacity of zone i and 

wall i, respectively. And they are equal to the specific heat capacity multiplies 

the mass, i.e. 

a ZiZi a ai aC c m c V                                        (6.10) 

w WiWi w wi wC c m c V                                      (6.11) 

where a and w are the density of air and wall material at room temperature, 

respectively, VZi is the volume of air at zone i, VWi is the volume of wall i 

equaling to the wall thickness times the wall area. 

As discussed, the thermal dynamic of the building climate is modeled as an 

R-C thermal network where heat transfer is represented by thermal resistance and 

heat storage by thermal capacitance. Every wall or zone affecting the thermal 

behavior inside the building is represented by a node with a thermal potential (i.e. 

temperature).  

Note that the temperature at each node in thermal circuit is analogous to the 

voltage at corresponding node in electrical circuit. Similarly, heat flow in thermal 

circuit is analogous to the current in electrical circuit. Therefore, the changes of 

temperatureΔT in the zones or walls caused by the changes of heat flowΔQ 

through the zones or walls with thermal capacity Cthermal have the relationshipΔ

T=ΔQ/Cthermal, this is similar to the changes of voltage potentialΔV caused by 

the electrical chargeΔq on the capacitors with Celectrical capacity at that node in 

electrical circuit have the relationshipΔV=Δq/Celectrical. 

These nodes (i.e. zones or walls) are linked via thermal capacitors (CZi and 

CWi) to the ground and via thermal resistors to the adjacent nodes. Each internal 

wall node is interconnected with a zone node using two series resistors with 



113 

resistances RWi/2 and Rin i, while the peripheral wall node is interconnected with 

outside air node via two series resistances RWi/2 and Rout i. It means that wall i is 

separated into two sides, and by assuming the temperature of the centerline of the 

wall i is the wall temperature, the thermal resistance for conduction for these two 

sides is RWi/2, where RWi is defined in Equation (6.6). Besides, for simplicity, 

both sides of the internal walls and the internal sides of the peripheral walls are 

assumed to have the same transfer coefficient hi of convection heat, while ho is 

the transfer coefficient of convection heat for the exterior sides of the peripheral 

walls, therefore, following the Equation (6.7), Rin i and Rout i, the internal and 

external convective thermal resistance, respectively, are defined as 

 
1

in i
i i

R
h A

                                              (6.12) 

 
1

out i
o i

R
h A

                                             (6.13) 

In addition, the window i is just modeled as a pure resistance Rwin i parallel 

with the thermal resistance of its wall by ignoring its thermal capacitance due to 

its negligible mass compared to wall mass. 

With the thermal capacitances and resistances defined above, the governing 

equation of energy balance and temperature dynamics in zones and walls of the 

building can be derived by performing nodal analysis. For Zone 1 in Fig. 6.7, we 

have: 

W1 Z1 W2 Z1 W3 Z1Z1
Z1 a Z1 S1 Z1

W1 W2 W3
in1 in2 in3

1 1 1 1W4 Z1 out Z1
win win rad int

W4 win1
in4

T -T T -T T -TdT
C = c m (T -T )+ + +

R R Rdt + R + R + R
2 2 2

T -T T -T
                + + + A Q +Q

R R+ R
2







        (6.14) 

For Wall 1 in Fig. 6.7, we have: 
1 1 1W1 Z1 W1 out W1

W1 W W rad
W1 W1

in1 out1

dT T - T T - T
C = + + a A Q

R Rdt + R + R
2 2

              (6.15) 

The left hand side of Equation (6.14) and (6.15) are the heat flow into the 

node of Zone 1 and Wall 1, respectively. On the right hand side of Equation 
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(6.14), the first term denotes the heat transfer from the HVAC system to Zone 1, 

which is positive if Ts1 > Tz1 for heating mode and negative if Ts1 < Tz1 for 

cooling mode; the second to fifth terms account for the heat transfer from Zone 

1’s surrounding walls to zone 1; the sixth term represents the heat transfer from 

outside air into Zone 1 via window; the seventh term stands for the portion of sun 

radiation heat that transmitted into Zone 1 via window (i.e. Qtrans in Fig. 6.8). 

Similarly, on the right hand side of Equation (6.15), the first term accounts for 

the heat transfer from the air in Zone 1 to Wall 1, the second term represents the 

heat transfer from outside air to Wall 1 and the third term denotes the fraction of 

sun radiation heat that absorbed by Wall 1 (i.e. Qabs in Fig. 6.8). 

In fact, the above governing equation can be expressed in a general form as 

follows: 

The energy balance equation for the Zone I is: 

,

( )
Zi

j Zi i i i i iZi
Zi a Zi Si Zi int win win win rad

j i j

T TdT
C c m T T Q n A Q

dt R





    

N

          (6.16) 

The temperature governing equation for Wall i is: 

,Wi

j Wi i i i iWi
Wi W W W rad

j i j

T TdT
C A Q

dt R
 




 

N

                          (6.17) 

The heat flux radiated into the peripheral walls and into the rooms with 

windows is very difficult to accurately predict, it need to consider date, time, sky 

condition, the location of the considered building and orientation of the walls and 

windows, which requires lots of data for tedious parameter identification. 

Besides, internal heat generation involves the heat emitted from electrical 

devices and occupants with great uncertainty. For simplicity in this paper, they 

are approximated to be the affine function of the outsider air temperature and 

current CO2 concentration in the room, respectively, as shown in Equation (6.18) 

and (6.19). 

( ) ( )
ir a d o u tQ t T t                                            (6.18) 

( ) ( )
ii n tQ t t                                               (6.19) 
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where Tout(t) is the outside air temperature,Ψ(t) is the CO2 concentration inside 

the modelled zone, andλ,γ,μ,νare the parameters that need to be identified 

by nonlinear regression. 

Now, the whole building model can be obtained by writing the heat transfer 

equation for every zone and wall and converting these equations into a state 

space form as follows. 

( ) ( ) ( )x t Ax t f x(t),u(t),d(t)                                        (6.20) 

( ) ( )y t Cx t                                                           (6.21) 

Where x(t) is the vector of states denoting the node temperatures in thermal 

circuit at time t, u(t) represents the vector of control inputs at time t (i.e. the flow 

rate of the mass of the cooled/heated air and supply temperature of the 

cooled/heated air entering each zone), d(t) is the disturbance vector to the system 

at time t including the outside air temperature, sun radiation and internal heat 

generation, and y(t) is the output vector of system including all zone 

temperatures at time t. 

6.5.3 Linearization of Nonlinear Thermodynamic Model 

It can be obviously seen from the above developed model that the dynamics 

of the system are nonlinear since the states x(t) (i.e. ZiT ) are multiplied by the 

control input u(t) (i.e. Zim ). There are several techniques that can be utilized to 

handle system nonlinearity, for example, feedback linearization, however, the 

high order of the model could result in substantial computational burden and 

messy calculations. Instead, in this thesis, the conventional Jacobian 

Linearization method is used to convert the nonlinear dynamics into the standard 

linear state space form, it linearizes the nonlinear system around a specific 

equilibrium point and is accurate enough for the HVAC control purposes since 

the temperature range inside the building is small enough. The review and 

detailed concept of Jacobian linearization can be found in [167]. 
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There are infinite equilibrium operating points in this thermodynamic 

building model since these points can be obtained using different equilibrium 

inputs. Nevertheless, there is a specified equilibrium operating point where the 

system is working most of the time, which can be obtained by maintaining the 

zones’ temperature identical to the user-defined set-point temperature and then 

solving for the inputs and the temperature of walls at the equilibrium point [170]. 

In order to reduce the computational effort, the nonlinear building model is 

linearized around an equilibrium point which is searched by a sequential 

quadratic programming algorithm until it locates the nearest equilibrium point to 

a specified operating point in which the system is working most of the time. This 

linearization does not introduce significant errors because of the small 

temperature range in building, which will be shown in next session. Then the 

linear building model in state space form is discretized to get the following: 

1k k k kx Ax Bu Ed                                            (6.22) 

k ky Cx                                                          (6.23) 

where kx  is the state vector denoting the temperature of the nodes in the 

thermal network at time k, ky is the output vector of system including all zone 

temperatures, ku represents the vector of controllable input at time k and kd stores 

the uncontrollable inputs and system disturbance at time k. 

6.5.4 Parameters Identification and Model Validation 

From the above developed thermodynamic model for building, it is obvious 

that there are a great amount of independent parameters (e.g. Rwi, Rin i, Rout i, etc.) 

need to be identified, which significantly increase the computational efforts. 

However, it should be noted that the thermal properties of the material of wall 

and window are reasonably assumed to be the same throughout the building, and 

the same also applies to the thickness of internal walls and peripheral walls. 

Therefore, the R-values of inside air film, outside air film, wall and window are 

assumed to remain constant across the building. Hence, the number of 
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independent parameters in the model can be greatly reduced. R-value being 

discussed in building and construction industry is the unit thermal resistance, and 

it is a widely adopted quantity in the area of building design. With this 

assumption, the parameter identification process only needs to identify the R-

value of the building instead of identifying all the thermal resistances for all 

zones and all walls. In order to get the thermal resistance of an entire section of 

material for the purpose of the thermodynamic model, the R-value should be 

divided by the area of the material, in other words, 

i

i
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                                                        (6.24) 
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 
                                          (6.27) 

Therefore, the model parameters that need to be estimated include the 

thermal capacitances of zones and walls, R-value of wall, glass, insider air film 

and outside air film of the building.  

Table 6.3 Results of parameter identification for Example Zone 1 

Parameter Value (Unit) 

Cr1 1.673103 (kJ/K)

Cw1 2.707104 (kJ/K) 

Cw2 2.73104 (kJ/K) 

Cw3 1.895104 (kJ/K) 

Cw4 3.898104 (kJ/K) 
wall
valueR  1.659 (m.K/W) 
glass
valueR  0.124 (m.K/W) 
in
valueR  0.062 (m.K/W) 
out
valueR  2.149 (m.K/W) 
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The historical data (e.g. measured zone temperature, outside air temperature, 

supply air temperature, airflow etc.) collected from a real commercial building at 

University of California at Berkeley, was used to simulate the behavior of 

thermal dynamic in that building. Using the representative R-values from 

ASHRAE handbook [171] as initial values, the fmincon function in MATLAB 

was used to solve for the optimal parameters by an optimization problem which 

minimizes the difference between the simulated temperature obtained from the 

thermodynamic building model and the measured temperature of the zone, taking 

into account the constraints on the parameters. The results of parameter 

identification for Example Zone 1 are shown in Table 6.3. Then using the HVAC 

input and disturbance data from another day, the zone temperature is simulated 

by the building model with identified parameters and compared with the 

measured temperature. 
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Fig. 6.9 Outside air temperature [170] 
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Fig. 6.10 Measured supply air temperature of HVAC system [170] 
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Fig. 6.11 Measured air mass flow of HVAC system [170] 

The accuracy is quantified by the mean absolute percentage error (MAPE) 

and the mean absolute error (MAE) as follows: 

, ,

1 ,

1
MAPE = 100%

n
i m i s

i i m

T T

n T


                           (6.28) 

, ,
1

1
MAE = 

n

i m i s
i

T T
n 

                                     (6.29) 
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where Ti,m and Ti,s are the measured temperature and simulated temperature by 

the building model, respectively. As depicted in Fig. 6.12, in 24 hours simulation, 

the identified building model can accurately predict the temperature dynamics in 

the building with a maximum absolute error of 0.46°C which is hardly noticeable 

by occupants. Besides, the fact that MAPE is 0.58% and MAE is 0.12 also 

validates the accuracy of building model. Given the variation range of HVAC 

inputs as presented in Fig. 6.10 and Fig. 6.11, the range of indoor temperature of 

building is about 19-22 °C as depicted in Fig. 6.12, which is not very wide, thus 

the linearization does not cause significant errors. 
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Fig. 6.12 Comparison between measured and simulated zone temperature [170]  
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Fig. 6.13 Absolute error (simulated zone temperature minus measured zone 

temperature) [170] 
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6.5.5 Aggregation of thermodynamic building model 

The model in Equation (6.22)-(6.23) can be generalized to represent a group 

of buildings, each with a label number i, in other words, the thermodynamic 

model for building i is as follows: 

1
i i i i
k i k i k i kx A x B u E d                                           (6.30) 

i i
k i ky C x                                                       (6.31) 

where superscript i refers to the label number of a building. 

The above thermodynamic single building model can be aggregated by a 

building aggregator in order to aggregate adequate capacities to participate in the 

balancing market to provide ancillary service via demand response program, 

which will be discussed later in this thesis. The building aggregator would 

essentially merge the dynamic models and constraints of all concerned buildings 

into a large system to do the centralized optimization. The aggregated matrices 

are block diagonal because the dynamics of individual building are independent 

with each other by assuming no communication exists between buildings, the 

buildings are coupled through the cost function as will be discussed in Chapter 7. 

The aggregator building model with total number L buildings would be 

1
agg agg agg agg
k agg k agg k agg kx A x B u E d                                (6.32) 

agg agg
k agg ky C x                                                     (6.32) 
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6.6 Chapter Summary 

Due to the lack of accurate models describing thermal behavior of buildings 

in power engineering community, substantial literature in the area of building 

climate control and building construction has been reviewed, and this chapter 

introduces a mathematical R-C thermodynamic model of building based on 

fundamental laws of Heat Transfer and Thermodynamic that is suitable for 

control design with acceptable computational burden. This model serves as a 

bridge linking the areas of power engineering and building climate control 

together to provide more flexible demand and facilitate more advanced DSM 

programs in smart grid. The fundamental laws of Heat Transfer and 

Thermodynamics (e.g. heat conduction, convection and radiation) which 

dominates the temperature dynamics inside a building are first introduced. Then 

the R-C model consisting of a series of heat transfer equations is presented to 

describe the temperature dynamics in a room and is extended to create a large R-

C model which represents the whole building. The introduced model is then 

linearized and calibrated using historical data from a real existing building and 

the accuracy of the proposed thermodynamic model is lastly validated by the 

comparison between the simulated results and the real measurements. This 

chapter is the foundation for Chapter 7, and the MPC controller designed in the 

Chapter 7 is implemented based on this thermodynamic model. 
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Chapter 7 

Design of Model Predictive Controller Based on 
Thermodynamic Building Model for Demand Side 
Management in Smart Grid 

7.1 MPC for Energy Efficiency Improvement and Peak Load 

Reduction 

The growing penetration of intermittent renewable energy sources (e.g. solar, 

wind power) will increase the need for inefficient peaking generation and 

generator-provided ancillary services, which greatly stresses existing power grid. 

Traditionally, generators are responsible for stabilizing the system frequency 

in the presence of power imbalances due to errors in predictions of generation or 

demand. However, it is a new trend in the power industry to also exploit the 

demand side resources, known as demand response (DR). The key idea of DR is 

to manage local power consumption of flexible load in response to supply 

conditions, e.g. high market price, peak demand or regulation signal. Intelligent 

and flexible demand resource with new technologies and control algorithms will 

allow pro-active rather than reactive participation in demand events to provide 

substantial demand elasticity, which will increase utilization of renewable 

generation sources. It can be expected that, in the future, loads will no longer 

dictate demand, rather become participants in eliminating supply-demand 

imbalances. 

Buildings are responsible for more than 70% of total U.S. electricity 

consumption [99], and they are increasingly becoming more smart energy 

consumers and active participants in electric grid operations, such as pre-
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cooling/discharging heuristics [172], model predictive control in day-ahead/real-

time energy markets [173], non-spinning reserves [174], spinning reserves [175], 

frequency regulation [176-177]. In particular, commercial buildings have much 

larger thermal mass and heating ventilation air conditioning system (HVAC), 

besides, HVAC system consumes up to 50% power consumption of a 

commercial building to guarantee the air supply while keep the indoor 

temperature within comfort range [169] and the widely adopted Building 

Automation System enables easy local control, commercial buildings have a 

great potential to provide operating reserve by loosening the desired temperature 

range or adjusting the operating power. 

Therefore, the thermodynamic building model introduced in Chapter 6 that 

can accurately capture indoor temperature dynamics inside the building will 

increase predictability and enable advanced control, thus, play a significant role 

in demand side management by representing the buildings in aggregate as a large 

dispatchable resource when the operation of HVAC system is coordinated with 

power grid needs. 

In this chapter, an economic model predictive controller based on the 

presented thermodynamic building model is designed to modulate the power 

consumption of commercial building HVAC system in response to varying 

electricity price, simulation results demonstrate that peak load can be effectively 

and substantially curtailed and shifted to non-peak hours, besides, energy saving 

and energy efficiency can also be significantly improved. 

7.1.1 Classical Control Methodologies for HVAC 

On-off control and Proportional-Integrator-Derivative (PID) control are two 

classical control techniques for HVAC system, both of which have low costs and 

simple structure. On one hand, On-off control works only on two operating 

conditions, i.e. “on” or “off”, representing maximum and zero power 
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consumption, and this limited functionality makes on-off control method 

inaccurate and of low quality. On the other hand, the PID controllers have been 

widely adopted in many HVAC systems due to the advantages such as zero 

steady state offset and disturbance rejection [167], however, it is very difficult 

and time-consuming to tuning nested PID loops controller with multiple inputs 

and outputs, especially for large-scale coupled buildings [167]. In addition, these 

classical controllers usually set HVAC systems to work at a particular designed 

thermal loading [178], but the thermal loading in reality should be varying with 

time, occupancy levels and outside weather conditions. 

7.1.2 Overview of Model Predictive Control 

Model predictive control (MPC) can systematically deal with large-scale 

dynamically coupled systems with multiple inputs and outputs subject to the 

system operating constraints (e.g. state and input constraints) with performance 

guarantees, taking into account future predictions. The main idea of MPC is to 

utilize the plant model to predict the future system evolution. An open-loop 

optimization problem is solved at each sampling time over a finite horizon, and 

the optimized control signal is applied to the plant model to update the system 

states only during the next sampling interval. A new optimization problem based 

on new measurements of state and new prediction of future disturbance is solved 

over a shifted horizon [167].  

MPC is advantageous over the conventional control techniques due to its 1) 

prediction capability; 2) reduced number of parameters for tuning; 3) capability 

of optimizing at a system level; 4) capability to maintain satisfactory 

performance at all operating conditions. 

For control problems with multiple variables and complex constraints, MPC 

has successfully become the accepted standard in the process industries because 

of its unique ability to deal with hard constraints on states and control inputs in a 
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simple and effective manner. Consider the following model based optimal 

control problem to minimize the overall energy consumption 
1

| | |
0

min  ( , , )
k N

t k t t k t t k tu
k

E x u d
 

  

                               (7.1) 

1| | | |( , , ), 0,1,..., 1t k t t k t t k t t k tx f x u d k N                         (7.2) 

| | | |( , , ), 0,1,...,t k t t k t t k t t k ty g x u d k N                            (7.3) 

| , 0,1,..., 1t k tu k N                      (7.4) 

| , 0,1,...,t k ty k N                          (7.5) 

Where f(x,u,d) allows to predict the future system states based on the current 

control inputs, states and disturbance. E(x,u,d) represents the relationship 

between the energy consumption and system states, inputs and disturbances. The 

variables with subscript t+k|t can be read as the variable at time t+k predicted at 

time t, x is the system states, y is the system outputs, N is the prediction horizon, 

u represents the control inputs of system, d stores uncontrollable inputs and 

system disturbances (exogenous signals). 

In buildings, load shifting incorporating MPC can be used to reduce energy 

consumption and improve efficiency performance for HVAC system by shaping 

the building load profile using the inherent thermal storage of building to store 

thermal energy for later use. 

7.1.3 HVAC Power Consumption Models 

As shown in Fig. 6.4, HVAC supply fans are the main driver that distributes 

the conditioned air that heated or cooled by the heating coils or cooling coils to 

the rooms inside the building. Hence, the power consumption of HVAC system 

mainly consists of fan power f
tP , heating coil power h

tP , and cooling coil 

power c
tP at time t. There are many types of model for the HVAC system in the 

literature of building climate control area, one of the most popular models is 

adopted in this thesis. According to [167], the fan power can be approximated as 



127 

a polynomial function of the total mass flow rate of supply air ,f tm  (sum of 

airflow to each zone) driven by the fan to n number of zones. 

 3 2
1 , 2 , 3 , 4

f
t f t f t f tP c m c m c m c                                 (7.6) 
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1
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f t Zi t
i

m m


                                               (7.7) 

where c1, c2, c3, c4 are parameters that identified by fitting the recorded data 

(including the power consumption of supply fan and the air volume flow rate) 

from a real commercial building at California as validated in Fig. 7.1. The data 

was collected from Jan. 2013 to Aug. 2013 to identify these four parameters, 

which also shows that the power consumption of the supply fan with rated power 

134 kW accounts for about 15% of electricity consumption in that building. 

 

 

Fig. 7.1 Relationship between fan power consumption and air volume flow rate 

[167] 

Assuming there is no air recirculation, according to [179], the heating power 

and cooling power at time t are: 
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where COPh and COPc are the coefficients of performance for the heating system 

and cooling system, respectively. 

7.1.4 Economic MPC for Flexible HVAC Power Consumption 

In the context of optimal control of buildings, MPC offers a powerful tool 

for model-based control of HVAC system, it has been widely adopted in the area 

of building climate control, but their objectives mainly aim at minimizing the 

HVAC power consumption, while the researchers in the area of power 

engineering prefer to modulating the load profiles of HVAC system in a more 

flexible manner, which enables the buildings to participate into the balancing 

market to play an important role in power system operation. In this part, we 

propose an economic MPC controller based on the thermodynamic building 

model introduced in Chapter 6 of this thesis, to utilize the time-varying 

electricity prices and the future disturbances to minimize the electricity costs, 

significantly reduce the peak demand and increase energy saving and efficiency, 

while respecting the comfort level. 

Due to the fact that the temperature dynamics in commercial building are 

fairly slow, while the power consumption of HVAC system can be varied rapidly, 

with provided time-varying electricity prices, the building thermal capacity can 

be exploited to shift the power consumption to the period with low electricity 

prices in order to minimize the electricity cost, while maintaining the indoor 

temperatures within certain limits. The economic MPC has the ability to choose 

the optimal heating/cooling strategy in response to the time-varying energy price 

and the prediction of the disturbances. Consider the following optimization 

problem for a single building: 
1

0

min
p
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T
hvac
t k

u
k
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


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                                           (7.10) 
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       ,                                         1,...,  t k t k py Cx k T                    (7.13) 

          ,                                  0,..., 1 t k t k t k pu u u k T                  (7.14) 

     ,                                   1,...,t k t k t k pT y T k T                       (7.15) 

where e
t is the time-varying electricity prices at time t, ,hne and ,cne are the 

fixed non-electric energy price (e.g. natural gas) for heating and cooling, 

respectively. t kT  and t kT  are the upper lower limits on the temperatures in each 

room, respectively. t ku  and t ku  are the upper and lower bounds on the air mass 

flow rate into each zone, respectively. Minimum non-zero airflow is essential for 

ventilation purpose. In this study, we only investigate the potential of providing 

flexible electrical power consumption via the control of supply fan in HVAC 

system. Although we assume the heating/cooling coils are using non-electric 

energy, their costs still need to be considered since their power consumptions are 

related to the controllable airflow rate. 

 

 

Fig. 7.2 Flowchart of proposed economic model predictive controller 

As shown in Fig. 7.2, using the measurement of current states (e.g. indoor 

temperature, illumination) of the building as the initial states, and based on 

dynamic model, physical limits, design constraints and predicted disturbance, the 

economic MPC controller is implemented in a receding horizon manner, in 
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which the above optimization problem over a prediction horizon pT (24 hours in 

this work) is solved at each time step to calculate the optimal input sequence 
* * *

1[ ,..., ]
pt t t Tu u u  


for the entire horizon, only the first element *

tu  of the optimal 

input vector will be applied. At the following time step, the prediction horizon of 

MPC is then receded by one time step, a updated MPC problem is formulated for 

the next pT time steps with new states and new prediction of disturbances, and 

solved for the new optimal input sequence * * *
1 1[ ,..., ]

pt t t Tu u u  


, out of which 

again only the first element will be applied and the horizon is receded to repeat 

the whole process until the interested period is covered. 

7.1.5 Case Studies and Simulation Results 

Due to the weather condition at the location of the considered building, only 

heating mode of HVAC system is needed. However, the proposed method also 

applies to cooling mode. Fig. 7.3 and Fig. 7.4 shows the supply air temperature 

of air handling unit and the outdoor air temperature over the simulation period, 

respectively, these are assumed to be the same for all case studies. 
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Fig. 7.3 (a) Supply air temperature of air handling unit; (b) Outdoor air 

temperature 
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Fig. 7.4 (a) Measured indoor temperature using the original controller; (b) 

HVAC fan power consumption using the original controller 

7.1.5.1 Original Existing Controller 

The way the original controller works on the existing building is as follows: 

the controller releases the valves of conditioned air at 5:00 a.m. and maintains 

fully opened until 5:00 p.m., which unwisely lets the HVAC fan run at nearly 

rated power, driving the conditioned air flow to the thermal zones, and closes for 

the rest of the day. The discharge air temperature of HVAC system is kept 

constant at about 47°C during that time period as shown in Fig. 7.3(a). Fig. 7.4 (a) 

and (b) shows the measured indoor temperature and the HVAC fan power 

consumption, respectively, using the original control method. This case is 

regarded as the base case and will be compared with the performance of MPC 

controller to demonstrate the effectiveness of MPC controller. 

The comfort level is defined to be between 19°C and 23°C at night and 

between 20°C and 22°C during working hours (8a.m. - 5p.m.). If maintaining the 

comfort level during working hours is enough for the HVAC system, obviously 

substantial energy is wasted as the temperature keeps approaching the upper 

bound of temperature. Due to the wide acceptable range of indoor temperature, 

particularly during unoccupied periods, the temperature limits can be loosened. 
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Consequently, model predictive controller is proposed to leverage this flexibility 

to reduce the peak load while achieve more savings. 
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Fig. 7.5 Time-of-Use electricity price for Case 1 and Case 2 

7.1.5.2 Model Predictive Controller 

Economic MPC formulated in (7.10)-(7.15) is implemented on the presented 

building model, with a sampling time of 1 hour, a prediction horizon of 24 hours 

and a simulation length to 24 hours. The validated model parameters (e.g. 

thermal capacitances, constants in power consumption equations etc.) are taken 

from [84]. Yalmip toolbox is used to set up the MPC control problem in Matlab, 

the optimization problem in the formulated MPC problem is solved by Ipopt 

solver on a laptop with an Intel Core i7-4600U CPU 2.69 GHz processor and 8 

GB random access memory. 

For Case 1 and Case 2, the time-of-use (TOU) electricity pricing structure is 

set as $150/MWh for 9a.m.-5p.m. and $30/MWh for the rest of time, as depicted 

in Fig. 6. For Case 3, the day-ahead (DA) price data shown in Fig. 9 on a winter 

day retrieved from PJM [180] is used. In addition, we assume that we can only 

control the valve of air flow (i.e. control the air flow rate), and that the supply 

temperature of conditioned air remains unchanged as in Fig. 7.3(a). 



133 

1) Case 1 – TOU pricing and restricted open time of air flow valve: The 

valve of conditioned air flow is open from 5 a.m. to 7p.m. and closed for 

the rest of time. 

Compared with the results from original controller in Fig. 7.4, the peak 

load is substantially curtailed and shifted to the period with lower 

electricity price as presented in Fig. 7.6, moreover, the energy saving is 

huge because the proposed economic MPC strives to minimize the 

energy cost while respecting the comfort constraints by consuming more 

power to preheat the building to a higher temperature when the energy 

price is low (5a.m.-9a.m.), while using just enough energy to satisfy the 

comfort constraints when electricity price is high, so that less energy is 

needed during the peak load period with much higher energy price. 

Besides, it can be noticed that power consumption drops at 3p.m. 

because of the increase of the outdoor temperature and solar radiation, 

which helps to heat up the building. However, if multiple buildings 

happen to shift their partial peak load to the period between 5a.m. and 

9a.m. at the same time, another undesirable peak load may be created in 

that period, one possible solution is to utilize the whole night time to 

preheat the buildings instead of using just a few hours before working 

hours, this leads to Case 2 as follows. 

2) Case 2 – TOU pricing and relaxed open time of air flow valve: The valve 

of conditioned air flow is always open. 

Due to the relaxed open time of air flow valve, the building now can 

preheat or discharge thermal energy anytime during the day. Compared 

with Case 1, the load profile of Case 2 in Fig. 7.7 is even smoother since 

the peak load has been distributed to the whole night time. A coordinated 

optimal heating strategy among multiple buildings can be developed to 

avoid creating another undesirable peak load. However, it should be 

mentioned that, although sometimes this may increase a little overall 
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power consumption, it certainly helps to relief the peak load situation in 

power network. 
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Fig. 7.6 Results of Case 1 using the proposed MPC controller: (a) Simulated 

indoor temperature; (b) HVAC fan power consumption 
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Fig. 7.7 Results of Case 2 using the proposed MPC controller: (a) Simulated 

indoor temperature; (b) HVAC fan power consumption 

3) Case 3 - DA pricing and relaxed open time of air flow valve: DA pricing 

and relaxed open time of air flow valve: The valve of conditioned air 

flow is always open. 
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What we observe and discuss in Case 1 and Case 2 also applies to Case 3, 

as presented in Fig. 7.9, even though the real day-ahead price data is 

applied. For example, the period 7a.m.-9a.m. is the preheat period in 

both Case 1 and Case 2, however, because of the much high electricity 

price during this period in Case 3, the controller decides to preheat the 

building from 3a.m. to 6a.m., so that less energy is needed during the 

period with high electricity price. 

Compared with the original control, about 50% of cost saving has been 

observed in the MPC simulation. From the results demonstrated in Fig. 

7.6, Fig. 7.7 and Fig. 7.9, it can be concluded that the proposed economic 

MPC controller can effectively and optimally control the HVAC system 

to utilize the time-varying electricity prices and the future disturbances to 

minimize the electricity costs and significantly reduce the peak demand. 
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Fig. 7.8 Day-ahead electricity price for Case 3 
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Fig. 7.9 Results of Case 3 using the proposed MPC controller: (a) Simulated 

indoor temperature; (b) HVAC fan power consumption 

7.2 MPC of Aggregating Commercial Buildings for Providing 

Flexible Power Reserve 

Smart grid will be subject to greater volatility and uncertainty due to the 

increasing reliance on the intermittent renewable energy sources (RES) [181-

182]. An identified critical operational issue of significantly increasing the 

penetration level of RES is that both the capacity and ramp-rate of the regulation 

reserve are required to increase substantially for the continuous balance of supply 

and demand. However, in order to operate efficiently and reduce the wear and 

tear costs, the conventional regulating generators are limited by ramp-rate 

constraints, and they often fail to accurately track the area control error signal. 

Hence, a new trend is to exploit the flexible demand side resources that could 

provide more regulation reserve and the desired fast-response ancillary services 

(AS), known as demand response (DR). 

The idea of DR is that end-use customers can actively participate in changing 

their electric use from the normal pattern and help to stabilize the system in 

response to supply conditions. Plug-in electric vehicle (EV) has been regarded as 
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a flexible energy option for AS provision [183-185], besides, buildings are also 

natural candidates because they account for 74% of total U.S. electricity 

consumption in 2013, 38% for residential buildings (RB) and 36% for 

commercial buildings (CB) [99]. Smart CBs should play a more important role in 

power system operation because, firstly, thanks to the much larger thermal mass 

and heating ventilation air conditioning system (HVAC) in a CB, it could offer a 

greater amount of DR than a RB could. Secondly, Building Energy Management 

System (BEMS) has been widely adopted in CBs, which enables direct 

communication with the building aggregator or the grid operator. AS provided by 

CBs can thus be obtained at low costs, without additional infrastructures such as 

smart meters. Lastly, variable frequency drives (VFD) are installed in most CBs 

to operate the HVAC supply fan (SF). Fan speed can be changed by BEMS 

continuously and frequently (in order of seconds), thus modulate fan power to 

track regulation signal [167, 169]. Reference [169] estimates that about 70% of 

the currently needed total regulation capacity in U.S. are potentially available 

from HVAC fan equipped with VFD in all CBs. 

Existing literature on DR is mostly related to demand control in low 

frequency (i.e. peak load shaving/shifting). For example, a dynamic DR 

controller was proposed in [186] to reduce peak load of RBs by controlling 

HVAC set-points; the effectiveness of model predictive control (MPC) in 

reducing the energy costs for CBs is validated in [187-189], the peak load is 

effectively shifted away by precooling with time-of-use pricing; an electricity 

market with different DR penetration level from various CBs was simulated 

using agent-based modeling and simulation techniques in [190], showing that 

price-responsive demand has noticeable impacts on the electricity market. 

However, in order to provide AS to the grid, demand control in higher frequency 

(seconds to minutes) is needed. Aggregating thermostatically controlled loads in 

RBs for providing frequency regulation and load balancing services has attracted 

a lot of attention [81-82, 191-193], including the water heaters [81], heat pumps 
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[82], and small HVAC units [17]. Nonetheless, the literature on controlling CBs 

to provide AS is inadequate, to the best of our knowledge, [169] and [194] are 

two representative examples. A feasibility study of providing frequency 

regulation and non-spinning reserves by controlling dimmable lighting system in 

CBs is conducted in [194], and [169] showed the fan power of central HVAC in 

CBs can be manipulated up and down extremely fast to track the regulation 

signal without noticeable impacts on the indoor environment. However, the 

regulation signal is passively tracked by the controller designed in [169], which 

implies the provided flexibility may not be maximized and the building operator 

may be unwilling to participate without any incentives in real situation. 

Reference [167] proposed a MPC control algorithm for a single commercial 

building to declare the power flexibility to the utility for direct load control in 

high frequency, nevertheless, the data transmission burden could be 

overwhelmed for the utility to aggregate the flexible power on large-scale since 

the power capacity of a single building is rather small. A feasible solution for this 

is to use distributed building aggregators to aggregate the flexible power of 

different groups of buildings in different areas, so that the utility only needs to 

communicate with the building aggregators. Therefore, in order to encourage 

more CBs to participate in AS market, we propose a contract framework between 

CBs, building aggregator and utility that can maximize and reward the flexible 

power reserve provided by CBs; we also design an optimal building aggregator 

that can aggregate the HVAC loads in CBs to declare the power flexibility to the 

utility for providing fast and large-scale regulating power to the smart grid. 

These are the main contributions of this work. In addition, the innovative 

characteristics of the proposed building aggregator lie in, 1) the ability of 

predicting the potential total reserve amount of HVAC loads in the target 

building group in a defined contract time; 2) the ability of allocating the high 

frequency regulation power received from the utility to each participating 

building while maintaining comfort levels. As compared to [167], we not only 
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investigate the feasibility of providing flexible power reserve by multiple 

commercial buildings instead of a single building, but also validate our proposed 

approach by incorporating real day-ahead price data and different temperature 

bounds for different buildings. 

By storing excess renewable energy as thermal energy in the envelope of 

buildings, the flexible central HVAC loads in CBs can be utilized to absorb the 

variability associated with RES and increase the penetration level of RES. But an 

accurate thermodynamic building model is needed to capture temperature 

dynamics to ensure temperature constraints are satisfied. Therefore, another 

contribution of this work is that we review the building modeling techniques 

comprehensively and present a well-suited building model in details for 

providing flexible and fast-response power reserve. 

7.2.1 Feasibility 

As discussed before, the power consumption of HVAC system mainly 

consists of three components, including heating system, cooling system and 

supply fan. In Section 7.1, we have proposed a MPC controller to determine the 

optimal heating/cooling strategy to minimize the energy payment of the building 

without violating temperature constraints, where these three components are 

coordinated as a whole in order to reduce the peak demand and increase energy 

saving and efficiency. It demonstrates that smart buildings can become critical 

components in smart grid and play an important role in power system operation 

by some appropriate demand response programs, especially in eliminating the 

imbalance between supply and demand. However, this response is still not fast 

enough. In this chapter, we aim at investigating the much faster flexibility in 

power consumption HVAC systems, in particular, the power consumption of 

supply fan. We only investigate the potential of providing flexible and fast-

response electrical power consumption via the control of supply fan of HVAC 
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systems, which accounts for approximately 15% of the total electric consumption 

in a large commercial building. 

To the best of our knowledge, the feasibility of providing flexible and fast-

response (in order of minutes or seconds) power reserve by the supply fan in 

HVAC system has only been studied in [167] and [169], which both showed that 

the fan power can be manipulated up and down extremely fast to track the 

regulation signal without noticeable impacts on the indoor temperature. 

 

 

Fig. 7.10 Manipulation of the power consumption of supply fan [167] 

In [167], an about 14000 square-foot commercial building installed with 

Siemens Building Management System named Apogee was used to conduct this 

feasibility experiment, this building has two sets of 9 supply fans with a total 

capacity of 134 kW. The Supply Duct Static Pressure (SDSP) set-point is used to 

keep the pressure inside the ducts of HVAC system (Fig. 6.4) around the pre-

defined set-point and can be controlled by the Building Management System. 

The speed of supply fan can be varied via the control of the SDSP set-point. The 

speed of two sets of fans will increase to raise the pressure to the set-point if the 
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pressure drops below the set-point, and vice versa. Two experiments were 

conducted on 17 May, 2013, and the SDSP set-point was manipulated frequently 

and quickly within 1.2 and 1.9 inch Water Column during these two experiments, 

which should normally be maintained at 1.75 inch Water Column. Experiment 1 

was conducted to randomly vary the SDSP set-point every minute at the period 

of about 12:00pm-14:00pm, while experiment 2 was conducted in the same 

procedure but every three minutes at the period of about 5:30pm-6:15pm. As 

depicted in Fig. 7.10, the power consumption of supply fan can be controlled by 

the SDSP set-point to change up to 25% around the nominal power within 

several seconds. Besides, Fig. 7.11 shows the indoor temperature of fifteen 

rooms randomly chosen was maintained with the user-defined comfort levels to 

demonstrate these experiments had no noticeable and sensible impacts on the 

indoor temperature inside the building. Hence, it is indeed feasible to use the 

existing BEMS software to control the power consumption of supply fan to track 

the high-frequency power regulation signals from utility. 

 

 

Fig. 7.11 Temperatures of 15 randomly selected rooms in the experiments [167] 
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Table 7.1 Nomenclature for BAG contractual framework 

Symbol              Definition 
e
t , up

t , down
t           Time-varying electricity price, upward flexibility reward rate, downward 

flexibility reward rate, respectively. 
           Tp                                 Prediction horizon. 
           Tc                                 Contract length. 

*u


, lbu


, ubu


       Baseline, low bound, and upper bound of input vector sequence of 
aggregated building model, respectively. 

* ,f i
tP , ,

 
f i

tP , ,f i
tP           Baseline, low bound, upper bound of HVAC fan power consumption for 

building i at time t, respectively. 
* ,agf

tP , ,ag
 

f
tP , ,agf

tP     Baseline, low bound, upper bound of aggregated HVAC fan power 

consumption at time t, respectively. 
   ,up

 
f

tP , ,
 

f down
tP             Total upward and downward flexibility of aggregated HVAC fan power 

at time t, respectively. 
    ,upi

t , ,i down
t           Proportion of total upward and downward flexibility provided by 

building i at time t, respectively. 
          reg

tP                   Power regulation signal sent by utility at time t. 
,i reg

tP                 Power allocated to building i according to the regulation signal received 

at time t. 
down
t , up

t             Downward and upward flexibility of airflow at time t, respectively, i.e. 
*lb downu u  

  , *ub upu u  
   

,hvac ag
tC                Total cost charged by utility for the baseline HVAC 

power consumption of the building group at time t. 
* ,h i

tP , * ,c i
tP              Baseline heating power, and cooling power of HVAC system in building 

i at time t, respectively. 
ag
tR                    Total reward to the buildings for flexible power at time t. 

,hne , ,cne               Fixed non-electric energy price (e.g. natural gas) for 
heating and cooling, respectively. 

 tT , tT                  Lower and upper limits on building temperature at time t, respectively. 

 tu , tu            Lower and upper limits on the airflow into each zone at time t, respectively.

7.2.2 Building-Aggregator-Grid (BAG) Contract Framework 

A certain amount of reserve from a CB can be provided as the AS via DR by 

increasing or decreasing HVAC fan power in response to the regulation signal 

from utility, without violating the specified comfort range [167, 169]. A single 

building cannot place bids on the balancing market due to the inadequate 

capacities, but an aggregation of CBs can be a viable solution. 

According to a similar concept about EV aggregator proposed in [185], a 

building aggregator will strive to maximize its profit, which is a fixed percentage 

of the reward offered by utility for providing the power capacity for regulation. 

The regulation service is rewarded based on the available power capacity rather 
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than the actual dispatched energy because the regulation signal dispatched by 

grid operator fluctuating above and below zero generally averages out to 

approximately be zero over time. As the power capacity of aggregator is actually 

the sum of that of each building, consequently, the profits of the aggregator could 

be maximized by performing an optimal control such that each building offers as 

much power flexibility as possible whenever the regulation reward is high. Since 

the payment of each building is the cost for purchasing electricity minus the 

reward from the utility for providing flexibility, optimal HVAC control to 

minimize the payment of each building logically results in the maximum 

aggregator profits. 

 

Fig. 7.12 The proposed architecture for BAG contractual framework schematic 

By extending the work in [167, 169], we focus on two key functions that 

should be fulfilled by the building aggregator. Firstly, in the reserve 

determination stage, the aggregator needs to seek reward rate offers from utility, 

and then predicts the potential total reserve amount of the target building group 
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with the given incentives, along with the proportion that each building can 

provide. Secondly, in real-time reserve scheduling stage, the aggregator receives 

the high frequency regulation signal from utility and allocates the target amount 

to each building based on the proportion determined in previous stage. 

Suppose the models of N number of buildings are aggregated into a system in 

the form of (6.30)-(6.31), the BAG contract is implemented by the following 

steps as shown in Fig. 7.12: 

1) The utility or independent system operator (ISO) declares the time-

varying electricity price e
t , upward flexibility reward rate up

t , and 

downward flexibility reward rate down
t for the next Tp time steps to the 

building aggregator, or they can be the aggregator bidding prices. Each 

involved building should also inform the aggregator of their 

corresponding measured or predicted disturbances (e.g. outside weather 

conditions and internal heat gains), state constraints (e.g. desired 

temperature ranges), and input constraints for the next Tp time steps, as 

well as the current states of building groups (i.e. zone temperatures). 

2) By solving optimization problem (7.22)-(7.31), which will be discussed 

in Section 7.2.3, for the next time Tp steps, the building aggregator 

computes the baseline * * *
0 1[ ,..., ]

pTu u u 


, lower bound
0 1[ ,..., ]

p

lb lb lb
Tu u u 


, 

and the upper bound 0 1[ ,..., ]
p

ub ub ub
Tu u u 


of input vector sequence of the 

aggregated building model, such that for any airflow 

profiles 0 1[ ,..., ]
pt Tu u u 


, for all {0,1,..., 1}pt T  , lb ub

t t tu u u  is 

feasible, meaning no constraints are violated. Then the corresponding 

baseline * ,f i
tP , lower bound ,f i

tP , and upper bound ,f i
tP of HVAC fan 

power consumption for building i at time t can be obtained using 

Equation (7.6). Therefore, at time t, the total baseline * ,agf
tP , lower bound 

,ag
 

f
tP , and upper bound ,agf

tP of aggregated HVAC fan power 

consumption is just the sum of * ,f i
tP , ,f i

tP , ,f i
tP , respectively, 

for {1,..., }i N . At time t, the total upward flexibility (UF) ,up
 

f
tP and 



145 

total downward flexibility (DF) ,
 

f down
tP that the aggregator can provide 

are 
,up , * ,

  
f f ag f ag

t t tP P P                                      (7.16) 

, * , ,
  

f down f ag f ag
t t tP P P                                      (7.17) 

And the proportion of UF and DF provided by building i is 
,up , * , ,up

   ( ) /i f i f i f
t t t tP P P                                    (7.18) 

, * , , ,down
   ( ) /i down f i f i f

t t t tP P P                                 (7.19) 

3) The building aggregator and the utility agree upon a contract length Tc, 

which should be much smaller than Tp. Then the building aggregator only 

declares the first Tc elements of the baseline * ,agf
tP , lower bound ,ag

 
f

tP , 

and upper bound ,agf
tP of aggregated HVAC fan power consumption 

profiles obtained from the previous step. The reason for only declaring a 

subset of computed power profiles is to reduce the negative effects of 

imperfect predictions of disturbance during the process. 

4) In the next Tc time steps, the utility is allowed to send any power 

signal reg
tP to building aggregator as long as ,ag ,ag

  
f reg f

t t tP P P  , this 

signal may be sent as frequently as every few minutes or seconds. 

5) The building aggregator has to obey the signal by scheduling the received 

power regulating signal to each building according to the proportions 

calculated in step 2. The power allocated to building i at time t will be 
, ,up * , * ,= ( ),  if i reg i reg f ag reg f ag

t t t t t tP P P P P                   (7.20) 

, , * , * ,= ( ),  if i reg i down f ag reg reg f ag
t t t t t tP P P P P                   (7.21) 

Tracking the power regulation signal by HVAC fan may lead the buildings to 

a worse state or consuming more power after Tc time steps. The utility has to 

offer proper incentives that can directly influence the reserve amount if it values 

the flexibility provided by buildings. Under the BAG contract, the buildings will 

be charged by the utility for their corresponding baseline power consumption 

at e
t , regardless of the actual allocated power that differs from the baseline. 

Then the utility rewards the aggregator and building group for the offered 
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flexibility at rate up
t and down

t , a fraction of the reward will be the profits of 

aggregator, and the rest of it will be divided for each building according to each 

own proportion of the provided aggregated flexibility. Therefore, the buildings, 

aggregator, and utility are all aware of how much each needs to pay or can earn 

from the beginning of the contract. 

7.2.3 Robust Optimal MPC Control for Flexibility Determination 

The key of the contract is to compute the baseline *u


, lower bound lbu


, and 

upper bound ubu


of input vector sequence of the aggregated system in step 2 

mentioned before. At time t, the following robust optimal control problem is 

solved. 
1

,

, , 0

min max    ( )
p

up down
tt t t

T
hvac ag ag
t k t k

wu k

C R
 



 


                               (7.22) 

, * , ,h * , , * ,

1

( ), 0,..., 1
N

hvac ag e f i ne h i ne c c i
t k t k t k t k t k p

i

C P P P k T      


           (7.23) 

, , , 0,..., 1ag down f down up f up
t k t k t k t k t k pR P P k T                                          (7.24) 

 1 ( ) , 0,..., 1t k t k t k t k t k px Ax B u w Ed k T                                   (7.25) 

, 1,...,t k t k py Cx k T                                                                           (7.26) 

 s.t. : , 0,..., 1down up
t k t k t k t k pw w k T                                            (7.27) 

0, 0,..., 1down
t k pk T                                                                            (7.28) 

0, 0,..., 1up
t k pk T                                                                            (7.29) 

 , 0,..., 1t k t k t k pu u u k T                                                               (7.30) 

 , 1,...,  t k t k t k pT y T k T                                                                   (7.31) 

In this study, we only investigate the potential of providing flexible electrical 

power consumption via the control of HVAC supply fan (about 15% of 

electricity consumption in a large CB). Although we assume the heating/cooling 

coils are using non-electric energy, their costs still need to be considered since 

the control variable (airflow) affects their consumption.  
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Problem (7.22)-(7.31) is implemented in a receding horizon manner; it is 

firstly robustified by the inner maximization problem which finds the cost and 

constraints for the worst scenario. Then by incorporating future energy prices, 

reward rates, outside weather condition, comfort temperature ranges etc., 
*
t ku 


, down
t k 


, up

t k 


, 0,..., 1pk T   are obtained by solving the outer minimization 

for a prediction horizon (Tp time steps) while no constraints are violated for any 

values of uncertainty variable w  satisfying (7.27). With the obtained solutions, 

the aggregator computes the baseline * ,f i
t kP , lower bound ,

 
f ag

t kP  , and upper bound 

,f ag
t kP of aggregated HVAC fan power for Tp time 

steps (i.e. 0,..., 1)pk T  using (7.6)-(7.9), but only declares the first Tc 

elements (i.e. 0,..., 1)ck T  to the utility. After Tc time steps, the aggregator 

receives the new building states caused by the power regulation signal sent by 

the utility and the new predictions of disturbances from buildings, then sets up 

and solves a new MPC problem for the time steps , 1,..., 1c c c pk T T T T    , 

again declares the first Tc elements, i.e. , 1,...,2 1c c ck T T T   , and the horizon 

is receded to repeat this process until the interested time period is covered. In 

essence, the utility can control the HVAC supply fan power of a group of 

buildings for the next Tc time steps by sending flexibility signals to trigger this 

control algorithm. 

7.2.4 Simulation and Results Discussion 

7.2.4.1 Simulation Set-up and Base Case 

The BAG contract framework and control algorithm proposed in Section 

7.2.2 and Section 7.2.3 are implemented on the building model introduced in 

Chapter 6, with a sampling time of 1 hour, a prediction horizon of 24 hours and a 

simulation length to 24 hours. Yalmip toolbox [195] is used to set up the MPC 

control problem in Matlab, the non-linear optimization problem in the formulated 
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MPC problem is solved by Ipopt solver [196] on a laptop with an Intel Core i7-

4600U CPU 2.69 GHz processor and 8 GB random access memory. 

Owing to the weather condition at the location of the considered building, 

only the heating mode of HVAC is needed. However, the proposed method also 

applies to cooling mode. Due to space limitation, only three buildings are 

simulated to interact with a building aggregator and the utility under the BAG 

contract, but the proposed method certainly applies to the cases of more than 

three buildings. We take the building model parameters (e.g. thermal 

capacitances and R-values) from [167] for real Building 1 (BD1), and these 

parameters are increased and decreased by 20% to represent the hypothetical 

Building 2 (BD2) and Building 3 (BD3), respectively. For comparison purpose, 

Fig. 7.14 depicts the temperature and HVAC fan power of BD1 using original 

control method, which simply opens the airflow valve and unwisely lets SF run 

at nearly rated power driving the heated air to enter the building from 5:00 to 

18:00. The measured supply air temperature and outdoor air temperature are 

shown in Fig. 7.13, assuming they are all the same for three buildings. The day-

ahead price data on a winter day retrieved from PJM [180] is used as the 

electricity price, the regulation market clearing price data on the same day 

retrieved from PJM [180] is used to construct the downward flexibility reward 

rate (DFR) and upward flexibility reward rate (UFR), as shown in Fig. 7.15. The 

comfort temperature ranges for working hours (8:00-18:00) for BD1, BD2, and 

BD3 are [20°C, 22°C], [21°C, 21.5°C], and [21°C, 22°C], respectively, whereas 

the acceptable temperature ranges for non-working hours for BD1, BD2, and 

BD3 are [19°C, 23°C], [20.5°C, 22°C], and [21°C, 22°C], respectively. These 

temperature bounds are plotted as dash lines. 
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Fig. 7.13 (a) Supply air temperature of air handling unit; (b) Outdoor air 
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Fig. 7.14 (a) measured indoor temperature using the original controller; (b) 

HVAC fan power consumption using the original controller 
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Fig. 7.15 Electricity price and flexibility reward rates for simulation 

7.2.4.2 Simulation of Reserve Determination Stage 

By solving problem (7.22)-(7.31), the results of implementation of step 1 and 

step 2 of BAG contract are presented in Fig. 7.16. Up to this stage, the utility has 

not played any role yet and the temperature plots in Fig. 7.16(a), Fig. 7.16(c), and 

Fig. 7.16(e) are caused by their corresponding baseline power consumption of 

HVAC fan. Whenever the DFR is much higher than UFR, such as the time 

interval of 0:00-1:00, 3:00-4:00, 5:00-6:00, 13:00-14:00, 16:00-17:00 etc. shown 

in Fig. 7.15(b), the proposed algorithm will try to maximize the reward for 

providing DF by setting the baseline power to (or near) the feasible upper limit as 

indicated in Fig. 7.16(b), Fig. 7.16(d), and Fig. 7.16(f), provided that the 

electricity rate is not too high in these period. Whenever the UFR is much higher 

than DFR such as 12:00-13:00 in Fig. 7.15(b), the baseline power will be set to 

(or near) the feasible lower limit as indicated in Fig. 7.16(b), Fig. 7.16(d), and 

Fig. 7.16(f). When both DFR and UFR are low (e.g. 6:00-12:00), the aggregator 

will set the baseline power to (or near) the feasible lower limits to reduce 

electricity costs, without caring the flexibility too much. 
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It should be noticed that, although the DFR is about twice higher than UFR at 

19:00-21:00 from Fig. 7.15(b), the baseline power of BD1 and BD2 are not set at 

the upper limit in Fig. 7.16(b) and Fig. 7.16(d) because of the high electricity rate 

in these periods. The DFR is not high enough and it is not worthy to pay more for 

baseline power in order to increase the reward for providing DF, instead, the 

baseline power is set to an optimal point where BD1 and BD2 can still be 

rewarded for providing some amount of DF, while not paying too much for 

baseline power. Unlike BD1 and BD2, Fig. 7.16(f) shows that the baseline power 

of BD3 is set near the feasible upper limit at 19:00-21:00 to maximize the DF 

reward of BD3 because BD3’s temperature bounds at these periods are much 

narrower than those of BD1 and BD2 and the reward can compensate the 

increase of payment due to the increase of baseline power. Besides, due to the 

smaller values of thermal resistances in BD3, heat flow from BD3 to ambient is 

easier, so it consumes more HVAC power than BD1 and BD2 to maintain its 

comfort level. 
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Fig. 7.16 Results of Reserve Determination Stage 
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7.2.4.3 Simulation of Real-time Scheduling Stage 

We set the BAG contract period Tc to 1 hour in this section, which means, at 

each time step, the aggregator only declares the first entry of the calculated 

baseline, upper bound, and lower bound of aggregated HVAC fan power to the 

utility and allows the utility to send back the ancillary signal to control the 

aggregated power during the contract period. Minutely and hourly ancillary 

signal is randomly generated to represent the intermittent RESs or sudden loss of 

generation. What we observe and discuss in Fig. 7.16 also applies to Fig. 7.17 

and Fig. 7.18. The temperature plots in Fig. 7.17 and Fig. 7.18 are caused by the 

regulation signal from the utility. The temperature variation in Fig. 7.17 is quite 

small because the random minutely ancillary signal fluctuates up and down very 

quickly, while the temperature variation in Fig. 7.18 is more obvious because the 

random ancillary signal lasts for a longer time (1 hour). It can be observed that 

higher flexibility (flexibility = upper bound power ‒ lower bound power) is 

offered when the building temperature is far from the temperature limits, whereas 

the flexibility drops as the building temperature approaches the temperature 

limits or the reward rates are not high enough. These results show that, by means 

of proper incentives, it is feasible to provide upward and downward flexibility of 

HVAC power consumption to the grid by the aggregator when most needed, 

without violating any system constraints, provided that the ancillary signal is 

within the feasible bounds computed by the proposed algorithm. 

The total computational time spent in the Ipopt solver is 10.735 seconds for 

reserve determination stage in Section 7.2.3.1, 11.182 seconds for the case with 

minutely ancillary signal and 10.994 seconds for the case with hourly ancillary 

signal, respectively. The reason why the computational time is similar for three 

cases is that each case has solved the min-max optimization problem for 24 times, 

and this means each min-max optimization problem only requires an average of 

about 0.46 seconds computational time. By ignoring the time spent in data 
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collection and data transmission, receiving regulation signals in different 

frequency only leads to different states of the aggregated building system for the 

optimization problem at next time step, consequently a slightly different 

computational time. 
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Fig. 7.17 Results of Reserve Scheduling Stage with minutely ancillary signal 
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Fig. 7.18 Results of Reserve Scheduling Stage with hourly ancillary signal 



156 

0 2 4 6 8 10 12 14 16 18 20 22 24

19

20

21

22

23

D
eg

re
e 

C

(a) BD1 Temperature

0 2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

80

100

%
 o

f 
n

o
m

in
al

(b) BD1 HVAC Fan Power

 

0 2 4 6 8 10 12 14 16 18 20 22 24

19

20

21

22

23

D
eg

re
e 

C

(c) BD2 Temperature

0 2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

80

100

%
 o

f 
n

o
m

in
al

(d) BD2 HVAC Fan Power

 

 

 

0 2 4 6 8 10 12 14 16 18 20 22 24
20.5

21

21.5

22

22.5

D
eg

re
eC

(e) BD3 Temperature

0 2 4 6 8 10 12 14 16 18 20 22 24
20

40

60

80

100

Time (hour)

%
 o

f 
n

o
m

in
al

(f) BD3 HVAC Power

 

 

BaseLine Power Upper Bound Power Lower Bound Power  

Fig. 7.19 Results of Reserve Determination Stage without reward rates. 
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7.2.4.4 Simulation with No Reward Incentives 

To demonstrate the importance of reward incentives, we set UFR and DFR to 

zero while the electricity price remains the same as in Fig. 7.15(a), then problem 

(7.22)-(7.31) is solved. The results are shown in Fig. 7.19, which is simply the 

load shifting DR using thermal capacitance of buildings as mentioned in 

literature [186]-[188]. As expected, there is no DF because the algorithm merely 

minimizes the energy cost of the buildings by consuming more at low price 

periods (e.g. preheating effects at 3:00-6:00), while using just enough energy to 

satisfy the comfort constraints when electricity price is high. Fig. 7.20(b) depicts 

the declared flexibility of aggregator in simulation of Section 7.2.3.1, which 

obviously provides much more flexibility than the case with no reward incentives 

as shown in Fig. 7.20(a).  

 

 

 

Fig. 7.20 Comparison of declared flexibility with and without reward incentives. 
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The provided UF and DF using our proposed approach is expected to able to 

reduce the variability of intermittent RES and play an important role in enabling 

deep penetration of RES by storing the excessive RES as thermal energy in 

building mass and releasing it during the shortage of RES. 

7.3 Chapter Summary 

This chapter proposes an economic MPC algorithm based on the 

thermodynamic model of buildings introduced in Chapter 6 to effectively and 

optimally modulate the power consumption of commercial building HVAC 

system in response to varying electricity price and ambient weather to minimize 

the electricity costs, significantly reduce the peak demand and increase energy 

saving and efficiency, while respecting the comfort level. Then an optimal 

building aggregator that can aggregate the HVAC loads to declare the power 

flexibility to the utility for providing fast and large-scale regulating power to the 

smart grid is developed under a novel contract framework between buildings, 

building aggregator and utility, which can maximize and reward the flexible 

power reserve provided by buildings. The innovative characteristics of the 

proposed building aggregator lie in the ability of predicting the potential total 

reserve amount of HVAC loads in the target building group in a defined contract 

time and the ability of allocating the high frequency regulation power received 

from the utility to each participating building while maintaining comfort levels. 

This chapter paves the way for commercial buildings to participate in more 

advanced DSM schemes. 
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Chapter 8 

Conclusion 

8.1 Summary 

In order to increase the utilization of renewable energy sources and to reduce 

the need of generator-provided ancillary services and inefficient peaking 

generation, electricity consumers are progressively transforming into active 

participants in power system operations. This thesis focuses on applying 

appropriate load models to utilize flexible load response to manage power 

consumption in response to various supply conditions, such as high market price, 

peak demand, overloading, regulation signal, etc. Thus, lower grid operating 

costs, increased system reliability and improved energy efficiency can be 

achieved. 

An hourly electric load of a building based on radial basis function neural 

network is proposed and high accuracy is demonstrated in the model validation 

using real building data under various weather conditions in Chapter 3. 

Compared with the other methods in the literature, it is simple to implement, 

without tedious trial-and-error parameterizing procedures. And it only needs 

ambient weather data and historical demand data which is easy to obtain. 

A load modelling aggregation methodology is introduced in Chapter 4 to 

develop an aggregate load model that is able to represent the temporal variations 

due to the time-varying load composition caused by consumer behavior or DSM 

actions, as a comparison to the existing load models which typical are 

represented by only one set of coefficients in the load model for each loading 

condition, i.e. time-invariant load model coefficients. Although the residential 

and commercial load sectors in UK are used as examples to illustrate the 
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aggregation process, the method can certainly be applied to other regions as long 

as similar statistics on load decomposition are available. 

Chapter 5 then demonstrates the importance of applying the developed 

aggregate load models with time-varying model coefficients to some applications 

in distribution system analysis. As the proportions of various load types in the 

aggregate load profiles are available, a general methodology is presented to 

model the devised DSM scenarios to assess the corresponding impacts on the 

network performances. An example of simple DSM scenario which 

disconnects/re-connects the ‘wet’ load is used for demonstration. Next, a CVR 

optimization problem based on the time-varying exponential load models is 

formulated to investigate the effects of varying model coefficients in load models 

on the CVR dispatches. The significantly different CVR dispatches and power 

flow results obtained from different load models further demonstrate the 

importance of accurate load modelling in the VVO analysis. Besides, a DSM-

based OPF problem is formulated to determine the optimal location for DSM 

deployment and the corresponding minimum amount of load required to 

participate in this DSM scheme to relieve an upstream network contingency. The 

effective reserves provided by various types of DMLs can also be calculated 

using the time sequential version of this OPF problem based on the developed 

load models. 

The loads considered in Chapter 4 participate in DSM actions by simply 

being disconnected, however, some other loads require more consideration 

during the control process of DSM implementation, such as the TCLs. Chapter 6 

in this thesis focuses on leveraging the inherent flexibility of the power 

consumption of HVAC systems and encouraging more HVAC loads to 

participate in AS market. A mathematical R-C thermodynamic model of building 

is introduced to accurately capture the temperature dynamics inside the building 

to maintain the temperature within the limits. 
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Then in Chapter 7, an economic MPC controller is proposed to effectively 

and optimally modify the power consumption of commercial building HVAC 

system to reduce the peak load and increase energy efficiency by minimizing the 

electricity costs. Finally, a novel contract framework between buildings, building 

aggregator and utility that can maximize and reward the flexible power reserve 

provided by aggregate HVAC loads is proposed together with an optimal 

building aggregator that can aggregate the HVAC loads to declare the power 

flexibility to the utility for providing fast and large-scale regulating power, and it 

is then able to dispatch the load according to the power regulation signal from 

utility in the real-time scheduling stage. 

8.2 Future Work 

This section summaries some important areas that can be improved in the 

future. 

The battery chargers of electric vehicles are expected to become a prevalent 

and significant load within the LV network in the future. Due to the large rated 

power, even a modest EVs penetration level will contribute a considerable 

portion to the aggregate demand, so an accurate generic model of the EV 

chargers should be developed and aggregated into the aggregate load model for 

use in power system analysis. 

The DSM-based OPF formulation in Section 5.3 is used to disconnect the 

‘wet’ load to relieve an upstream overloading contingency, more DSM actions 

can be devised for simulations and it can also be extended to accommodate the 

variable and intermittent output of DGs. Probabilistic simulations by examining 

the combined impacts of various DSM actions with different types of DGs can be 

carried out in detail to evaluate and quantify the potential values of DSM 

implementation at various locations within the system. 
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In the mathematical R-C thermodynamic model of building, a perfect 

disturbance prediction (e.g. weather conditions, internal heat gains etc.) is 

assumed, but the uncertainty in model parameters and disturbance predictions 

needs to be handled in real situations. 

The economic MPC controllers in Section 7.1 and Section 7.2 are designed in 

response to the time-varying electricity prices, in the future, they can be extended 

to consider the time-varying intermittent renewable energy and investigate the 

potential of using this flexibility to increase the penetration and utilization of 

renewable energy. 

In Section 7.2, the flexibility declared by the building aggregator is 

significant only if the reward rate is attractive, but higher reward rate results in 

less utility profits, so a proper reward structure that is financially and 

operationally beneficial to both the grid and the participating building needs to be 

developed in the future. 
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