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Abstract 

Fault detection and localization techniques are among the prominent technical 

processes involved in ensuring reliability. This is particularly true with regard to 

safety related processes or systems such as trains, power plants, and aircrafts which 

may also be characterized by limited datasets compiled through real measurements 

(e.g. pre-launching testing). Sensor-network based fault diagnosis in complex 

structures with limited prior knowledge is an interesting but difficult topic in 

structure health monitoring.  

In this study, a novel method for the fault diagnosis of sensor networked complex 

structures based on a novel optimized virtual beam-like structure (VBLS) approach 

is developed to fault diagnosis of the pre-launching systems. The statistical methods 

together with adaptive threshold technique are presented for fault detection to 

overcome the challenge of obtaining an appropriate threshold value with only 

limited experimental data. A complex structure is regarded as a combination of 

numerous virtual beam-like structures considering the vibration transmission paths 

from vibration sources to each sensor. The “virtual beam” consisting of a sensor 

chain automatically represents a candidate vibration transmission path, which can 

be obtained automatically by an improved optimization algorithm. The dynamic 

response of the structures in this vibration transmission path can demonstrate 

obvious fault features if there is a fault (e.g., cracks in connecting rods or around 
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bolts, and bolt-loosening etc.). These fault features can be effectively characterized 

and efficiently captured and utilized for fault localization using the optimization 

method based on the virtual beam-like structure concept. This novel virtual beam-

like-structure approach is applicable to fault diagnosis of complex structures 

without too much prior knowledge of the faults, and with only limited prior 

knowledge of normal operational conditions. Neither does it require stationary 

response data, nor is it confined to a specific structure design. It is easy to implement 

within a sensor network attached to the monitored structure. 

The effectiveness of the proposed virtual beam-like structure approach is well 

validated in experiments for both single-fault and multi-fault diagnosis including 

loosening bolts or cracks around bolts of complex structures such as bolted-base 

hanging structures in satellites. Compared with the classical subtract on negative 

add on positive (SNAP) localization methods, the proposed virtual beam-like 

structure (VBLS) approach has proved to be more accurate for fault localization. 

The computational complexity of the virtual beam-like structure approach has been 

evaluated, which indicates that the proposed method provides a promising solution 

to on-line fault diagnosis of the sensor networked complex structures with limited 

prior knowledge. 
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Chapter 1.  Introduction 

1.1. Background  

In the field of mechanical engineering, fault diagnosis plays an essential role in 

monitoring the operational condition of pre-launching machines/structures and 

locating the faults in machines/structures to keep the operational sustainability and 

safety. The information used for detecting the health condition of mechanical 

systems includes those signals related to position, pressure, temperature, current, 

voltage and so on. Some of them can be directly obtained from records, while for 

most cases, data cannot be that easy to acquire, but can be measured in indirect ways 

by vibration sensors [1]. Those data, originally, are time series of measurement 

signals which represent the result of the observation on physical response 

phenomena and are sensitive to small changes (temporal variability) of the structure 

systems.  

Generally, the techniques for fault diagnosis can be simply divided as model-

based fault diagnosis and model-free fault diagnosis [2]. Model-based approaches 

would be more accurate when the structure is stationary and the physical 

information is easy to be described by models, but it would may confront the 

dilemma when the physical parameters as well as the fault modes are changing under 

different operation conditions. In time-varying system dynamics, it is not 

appropriate to apply the model-based approaches for fault diagnosis since the 



 2 

system is rather complex with internal state variables which are inaccessible to be 

measured by common sensors [3]. Instead, model-free approaches focus on the 

study of the residuals rather than the construction of the observed and estimated 

models, which are much more flexible and applicable for monitoring the health 

condition of the complex dynamic systems. Therefore, the need for fault diagnosis 

in complex dynamic structure systems has led to the research impetus on time series 

data analysis.  

The studies of time series data for fault diagnosis begin with extracting the 

informative features to represent the time series signals. Feature means an essential 

distinguishing characteristic, representing the physical properties of uniqueness and 

cardinality [4], or describing the attributes of the object that are most representative 

[5]. In feature-based analysis, features might be expressed as shape features [6, 7], 

texture features [8-10], power spectral density features [11], intensity features [12], 

structural features [13], etc. Taking fault detection in gearboxes as an example, 34 

statistical features in function forms have been shown in [14] including the 

commonly used features like root mean square (RMS), kurtosis, skewness, standard 

deviation, variance, average absolute value, peak to peak, etc. Even more 

comprehensive feature description in such a research area can be seen in [15], in 

which 213 features have been identified as the potential for fault detection in 

planetary gearboxes. There are numerous types of feature definitions, while the 

challenge is the selection of features for fault detection since the features that are 
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effective in one system may not be valid in other systems.  

Diagnosis techniques for machinery/structural health monitoring based on 

vibration signals are generally divided into three groups: time domain features, 

frequency domain features, and time-frequency features [16]. Being simple and 

interpretable, time domain features have been frequently used for health monitoring 

in mechanical engineering [17-21], which are calculated from raw signals without 

any transformation such as root mean square (RMS), kurtosis. The main advantage 

of this group of features is that time domain features are easy and quick in 

preprocessing without the tasks like filtering, windowing, framing, Fourier 

transformation, etc. [22]. The drawback of these group of features may lie in that it 

could be less robust in high noise environment. Frequency domain features like Fast 

Fourier Transformation (FFT), are transformed from the raw signals in the 

frequency domain [23, 24]. The advantage of frequency domain features is that it 

may be easier to isolate the faults at certain frequency components [16, 25]. 

However, Fourier related Transforms (FTs) have to rely on the fixed-time window. 

Though they are very useful tool for stationary cases, it is not suitable for non-

stationary situations [16]. For that, time frequency analysis techniques like wavelets 

have been developed for dealing with the non-stationary signals [26]. Even so, the 

expensive cost to handle these group features is that they usually need much capital 

expense and computational complexity in signal processing [25], especially in 

dealing with high dimensional time series data. In such circumstances, time domain 
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features are considered to extract the characteristic features of time series using 

certain segments in my study. 

 Another challenge is that only a few approaches are applicable if available prior 

knowledge of the system is limited with regard to both the normal operational 

conditions and the abnormal conditions. Concerning the unavailability of prior 

knowledge of faults, it is often for signal-based methods to detect the health 

condition of the system by matching the fault or unknown features to the basis 

functions (or known signal pattern) [27, 28]. Among the data-driven based fault 

diagnosis, it is prevailing to adopt the unsupervised methods like PCA and ICA for 

fault detection since the amount of data from the health conditions could be used 

for training and establishing a knowledge basis [29, 30], while they have to confront 

the challenge of information missing, especially for the data in high dimensionality. 

Clustering methods are another reasonable choices for addressing the harsh 

conditions of no or less prior knowledge of faults [31, 32], but the reliability would 

be decreased when the samples are small in size and the knowledge basis is 

incomplete (i.e. limited prior knowledge of the normal conditions). Statistical 

methods and statistic-based indicators like Kolmogorov-Smirnov test (K-S test) [33-

35], analysis of variance (ANOVA) [36, 37], rank-sum testing [38, 39], Bayesian 

hypothesis testing [40, 41], and likelihood-ratio test [42-44] have been widely used 

for fault or damage diagnosis since they are standardized and easy to implement 

though the available data might be limited. The thresholds associated with a 
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statistical test are obtained from p-values listed in statistical tables. They are used 

to measure the underlying probability distribution differences between two groups 

of data, which has been successfully applied to fault detection. However, a statistical 

test is effective as the reference data are highly representative and satisfy the 

assumptions related. The degree of correlation between two datasets does not prove 

the evidence of causation, and the results of a statistical test cannot reveal a definite 

event. 

 Therefore, there is a demand for the techniques that can detect the health 

condition of the system without overcomplicating the model and with less 

dependence on prior knowledge.  

1.2. Objectives and Methodology 

This study focuses on the development of an effective method for fault diagnosis 

of complex structures in which available data are extremely limited. Therefore, the 

objectives of this study mainly include:  

1) An effective fault diagnosis technique should be investigated for both single 

and multiple fault detection and localization of the complex structures though 

there is no or less prior knowledge of the faults or/and limited historic data 

measured from the normal operational conditions involved;  

2) The fault diagnosis method is practical and easy to implement in real 

structures with less parameter assumptions and no limitation on stationary 

data; 
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3) The fault diagnosis system consumes less computational cost, and can be done 

in a reasonable offline time or on line. 

To accomplish the objectives above, a fault diagnosis method, named as virtual 

beam-like structure (VBLS) approach, is proposed. Figure 1-1 shows the overall 

flowchart of the methodology exploited in this study. Generally, the proposed 

methodology comprises a series of steps: data acquisition, signal preprocessing 

(feature characterization and fault indicators definition), fault detection, the 

optimal virtual beam construction, and fault localization based on virtual beams. 

 
Figure 1-1 The overall framework of the proposed methodology 

Considering the computational effort as well as the feature capability, in the signal 
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preprocessing stage, the appropriate time domain features are adopted to transform 

the high-dimensional raw time series signals into the feature-based statistical 

vectors with lower-dimensionality for fault diagnosis. To address the harsh 

conditions with unavailability of prior knowledge of faults and limited initial data 

from the normal conditions involved, statistical approaches towards fault detection, 

together with adaptive threshold techniques, are utilized in the method. A virtual 

beam based approach is developed for fault localization by taking into consideration 

of the damage information which could be captured by sensor networks with regard 

to the changes of vibration transmission. The vibration transmission path 

represented by the sensor chain is regarded as the virtual beam and is constructed 

automatically using an evolutionary optimization method. 

Therefore, the main contributions of this study lie in that: 

 A systematic virtual beam-like structure approach is proposed for the 

multiple-fault localization of complex structures without using prior 

knowledge of the faults, and using only limited prior knowledge of normal 

operational conditions. 

 The proposed fault diagnosis method also employs a modified optimization 

methodology (i.e., an evolutionary optimization method) to automatically 

select the most discriminative sensor chains from the sensor networks for 

fault localization, which makes the proposed method more practical and easy 

to implement in real-world sensor-networked structures with less parameter 
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assumptions and no limitation on stationary data. 

 To address the multiple fault localization problem, a new strategy named 

biased running is developed in the optimization methodology by constructing 

the multiple biased virtual beams so as to isolate the potential faults in a 

faulty component. Moreover, a statistical method together with adaptive 

threshold techniques are also presented for multi-fault detection to overcome 

the challenge of obtaining an appropriate threshold value with only limited 

experimental data.  

 Sensor networks mounted on the structure are separated according to their 

regions of coverage and influence associated with the events, and the high-

dimensional signals are characterized in forms of low-dimensional time 

domain features, which can help minimize the computational complexity and 

maximize the diagnosis accuracy. 

Generally, with less or limited requirement of priori, a comprehensive fault 

detection and fault localization system based on an evolutionary optimization 

method is developed in this study for fault diagnosis of complex structures with 

single or multiple faults in various mechanical engineering systems using sensor 

network attached.  

1.3. Outline of the Thesis  

This thesis describes a sensor network based virtual beam-like structure method 

and its application in monitoring the health condition of complex structures with 
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limited or less prior knowledge. Figure 1-2 shows the overall structure of the thesis. 

Specifically, the rest of the thesis is organized as follows. 

 
Figure 1-2 The overall structure of the thesis 

Chapter 2 presents a literature review on the existing non-model based fault 

diagnosis methods according to their feature represented forms. This chapter 

consists of three subsections: typical features frequently used in engineering, feature 

extraction methods, and feature selection methods. This Chapter studies the 

advantages as well as the disadvantages of these methods and pointes out the 

research gaps of existing studies to provide the potential techniques for fault 

diagnosis.  

Chapter 3 introduces a bacterial based feature selection method which will be 

served as the optimization method to select the appropriate sensors from the network 

to construct the “virtual beam”. The optimal ‘virtual beam’ consisting of sensor 

chain is essentially important for fault localization, which will be generated 

automatically using the optimization method proposed in this chapter. Meanwhile, 
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the effectiveness of the proposed optimization feature selection will be tested using 

several frequently used benchmark datasets.  

In Chapter 4, the fault indicators and time domain features used for fault diagnosis 

are presented. An unsupervised fuzzy clustering method is developed to select the 

most informative features from the available feature representatives. The statistical 

tests and fault indicator-based threshold method are combined for fault detection to 

overcome the challenge of obtaining an appropriate threshold value with only 

limited experimental data.  

Chapter 5 presents the new proposed vibration beam-like structure approach. 

Virtual beam plays the important role for fault localization. The construction of 

optimal “virtual beam” is realized by the optimization method proposed in Chapter 

3, including the selection of sensor networks on complex structures, objective 

function and the constraints used by optimization methodology for virtual beams 

construction, and summarization of the general rules for fault localization based on 

the optimal virtual beams.  

Chapter 6 demonstrates the effectiveness of the proposed virtual beam-like 

structure method by applying it to detecting and isolating the loosening screw (only 

one fault in the system) of a satellite-like structure. The typical complex 

substructures on the satellite-like model to be detected include solar panel, main 

structure body (or body unit), and band antenna.  

In Chapter 7, the virtual beam-like structure approach is applied to the fault 
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diagnosis of the satellite-like structure with multiple loosening screws occurring on 

the various components without using prior knowledge of faults and using limited 

prior knowledge of normal conditions. The classical sensor network based multiple 

fault localization method is adopted for comparison. 

Chapter 8 gives the detailed procedures of virtual beam-like structure approach, 

discusses the applicability of the proposed method for more complex structures, and 

studies the computational complexity of the proposed fault diagnosis system to 

provide a promising method for on-line application.  

Chapter 9 summarizes the importance and significance of the proposed virtual 

beam-like structure approach. Meanwhile, the potential improvements in the future 

studies are discussed in this chapter.  
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Chapter 2.  Literature Review 

As noted previously, the need for fault diagnosis in a complex dynamic structure 

system has led to the research impetus on time series data analysis. Studies using 

time series data for fault diagnosis usually begin with the extraction of informative 

features while representing the time series signals. Any kind of time series can be 

represented by features irrespective of whether they work directly with raw data, or 

indirectly using raw derived models or extracted features; in short, almost all 

representations can be expressed in feature-based forms. A rising number of 

researchers have been investigating different features of the associated extraction 

algorithms for signal analysis.  

This section reviews related topics involving feature based methods for fault 

diagnosis. In addition, the evolutionary optimization methods for feature selection 

are also discussed since they will be applied to selecting efficient sensors 

(represented by time domain features) while determining the optimal virtual beams 

(this problem is formulated as an optimization problem of feature selection). Finally, 

the existing fault diagnosis approaches with limited requirements of the prior 

knowledge are reviewed. 

2.1. Typical Features for Pattern Recognition 

The features described for pattern recognition can be classified as statistical, 

structural, and hybrid techniques [5]. They will be introduced separately. 
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2.2.1. Features in Statistical Techniques 

Features in statistical techniques are commonly described in quantitative forms 

and the data are discriminated among different groups according to certain 

quantitative features such as root mean square, kurtosis, skewness, variance, crest 

factor and correlation coefficient. Statistical decision theories like T-statistics or p-

value are usually used to determine the similarities or differences among two or 

multiple groups of data.  

Statistical methods and statistic-based indicators based on the above theories have 

been widely used for fault detection [45-48]. The thresholds in statistical tests are 

obtained empirically in accordance with statistical tables (or p-values). The T-test 

and related non-parametric tests can be used for fault detection by comparing two 

datasets or two distributions (obtained from repeated measurements conducted on 

the same system). The T-test is a classical statistical method capable of comparing 

the differences in means and variance. Among the most frequently used T-tests, two 

sample (unpaired or independent) T-test and paired (or repeated measures) T-test are 

employed to compare the differences between two populations under the assumption 

that the samples are from the same distribution with equal variance. Such methods 

are more likely to be used as an effective tool while seeking to specify the threshold 

value for fault detection [47, 49-51].  

If the samples are not from a Gaussian (or Normal) distribution, nonparametric 

tests are more applicable since they do not depend on the above assumption. 
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Commonly used non-parametric tests include the Wilcoxon signed rank test (or the 

Wilcoxon matched pairs test), Wilcoxon rank-sum test, Kolgmogorov-Smirnov (K-

S) test, Kruskal-Wallis test, and Friedman's test. The last two tests are not suitable 

for two-group data since Kruskal-Wallis test compares three or more unmatched 

groups and Friedman’s test compares three or more matched or paired groups. 

Wilcoxon rank sum test detects the differences between median values and has been 

applied wildly to fault detection [38, 52-56]. Kolmogorov-Smirnov test (K-S test) 

[57] measures the underlying probability distribution differences between two group 

data. It has been successfully applied to the fault detection for gears [35, 58].  

Even so, a limitation of statistical methods is that the interrelationships embedded 

within the data might not be able to manifest in statistical features, which makes it 

difficult to discriminate among data drawn from different groups. 

2.2.2. Features in Structural Techniques 

In structural techniques, the objects are distinguished according to certain shape-

based or structure-based features. Referred to as the primitives, structure features 

are used to represent the inherent relationships embedded within the data. Structural 

pattern recognition is applicable, in most cases, for discrimination among the groups 

based on inherent and identifiable natures of objects such as image data and time 

series data. Image data are recognized according to their visual rendering. In the 

example discussed in [59], a 1-D histogram contains certain structural and spatial 

information of the image, and the histogram is the image feature used for further 
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study. In image matching issues, points of interests (POIs) are extracted as features 

to enhance the image measure in question, so they are referred to as point-based 

features [60]. For high level geometrical subjects extraction, the contourlet 

transform has also been investigated to transform the given texture image into 

contourlet coefficients which are the data-based features to be evaluated [61]. Time 

series data, organized by time, are constructed using structural pattern recognition 

system [5].  

But the implementation of the structural pattern recognition system is limited 

mainly by the extraction of the structural features. In addition, the structural features 

can be used to represent a particular object only if the structural information of the 

primitives (like interrelationships) have all been identified. As there is no general 

method for structural features, this study focuses on the statistical features and 

relevant feature extraction methods. 

2.2.3. Features in Hybrid Techniques 

Hybrid techniques combine the characteristics of both statistical and structural 

approaches so as to compensate for the drawbacks of statistical and structural 

methods, and to take advantage of the two groups. For example, both statistical 

features (e.g., kurtosis, skewness, etc.) and structural features (i.e., histogram 

features) have been extracted from the time domain vibration signals for diagnosis 

of bearing faults [62]. As the classification of the structural pattern recognition 

system is a challenging task [5], it has become popular to apply statistical 
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classification methods to distinguish objects according to their structural or shape-

based features. In biological systems, structural properties relevant to gene 

regulatory networks have been defined and explored for observation and controlling 

using statistical or quantitative methods in [63]. In [64], time series data are 

represented by structural patterns, and problems embedded within the time series 

are classified by applying statistical classification algorithms (e.g., structural 

generative descriptions).  

Though hybrid methods seek to preserve the merits of the two approaches, it is 

not a general method applicable to all pattern recognition systems in view of 

considerations pertaining to time-consumption, feature extraction, 

interrelationships, etc. There is no obvious guideline for choosing one test that is 

suitable for all applications. Considering the computational complexity and 

implementation, in this thesis, the available statistical features are adopted as 

representations of signals to facilitate the pattern recognition.  

2.2. Feature Extraction Methods  

Originally, the data measured by vibration sensors are time series data. The 

increasing need for fault diagnosis of complex structures has led to research on time 

series analysis. The noise as well as the wide spectrum of defective signals has 

contributed to the difficulty in fault diagnosis using time domain vibration signals 

directly [21]. Therefore, features are extracted from observed time series.  

Definition: Feature Extraction. Given a feature set 𝑋 = {𝑥𝑖|𝑖 = 1, … 𝑁} ∈ 𝑅𝑁 , 
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find a mapping 𝑌 = 𝑓(𝑋): 𝑅𝑁 → 𝑅𝑀, with 𝑀 < 𝑁 such that the resulting feature 

vectors 𝑌 = {𝑦1, … , 𝑦𝑚} ∈ 𝑅𝑀  characters the most information that the original 

series possesses.  

Feature extraction is used to transform high-dimensional raw signals into a 

different space with lower dimensionality, and a new subset is created after 

completing the process of feature extraction. Actually, the purpose of feature 

extraction algorithms is to describe the most representative attributes of objects. 

Many approaches have been developed by researchers to achieve this. Some have 

simply divided features into time domain features, frequency domain features, and 

time-frequency domain features [65-68]. In this section, methods based on different 

feature characteristics are studied and analyzed.  

2.2.1. Time Domain Features based Techniques  

Since they are simple and interpretable without need of laborious tasks like 

framing, windowing, filtering, one of the main advantages of time domain-features 

(e.g., RMS, variance, kurtosis, crest factor, correlation coefficient) is to avoid 

complexity of preprocessing, which has led to their wide application.  

To identify faults, time domain vibration signal segments have been represented 

by time domain features (e.g., RMS, variance, skewness, kurtosis) for on-line 

condition monitoring of machines [21]. The time domain features (chosen in that 

study) of signals identified from the fault and fault-free systems associated were 

employed for training, while the features of signals collected from the diagnosis 



 18 

system were classified using an ANN-based diagnosis approach. In [18], the 

disturbance impact factors were studied by employing the individual or/and 

combined time domain features for electromyographic (EMG) pattern recognition. 

The results indicate that an approach with combined EMG features has the 

advantage of improving the classification performance. To analyze non-stationary 

and nonlinear characteristics of vibration signals, time domain features like peak-

to-peak were applied in [69], for fault diagnosis of fans using an improved k-means 

clustering method. Elsewhere [19], twelve time domain features were employed for 

identifying the gear defects SVM as a classifier.  

The common characteristics of the above methods are that they are easily 

implemented, lower in terms of computational cost, and are applicable for on-line 

condition monitoring. It is normal to apply an effective classifier for classification 

tasks. However, one of the main limitations associated with these methods is the 

necessity for prior knowledge concerning the system, including normal and 

defective states with different fault types and extents.  

2.2.2. Frequency Domain Features based Techniques 

Frequency domain features (e.g., Fast Fourier Transform) are transformed from 

time domain data to isolate the fault at certain frequency components [16], which 

enable their wide application to fault diagnosis [24, 70, 71].  

Fourier Transforms (FTs) are among the most traditional techniques used for 

feature extraction, which convert the sources into the time-frequency domain. Many 
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variations of the approach have already been developed. Fast Fourier Transform 

(FFT) is an FT method that speeds up the operational process. It is generally applied 

to extract the features embedded in a vibration signal using FFT and then applies 

classifiers such as KNN and SVM to assess the condition of machine conditions [23, 

72, 73].  

Despite their common application, FTs have to rely on a fixed-time window. As 

commented in [74] this type of technique has to "make a trade-off between 

frequency and temporal resolution". Though FTs are very useful tools for isolating 

faults at certain frequency components in stationary cases, it is not suitable for non-

stationary situations. Subsequently, time-frequency domain features like wavelets 

have been developed for dealing with non-stationary signals.  

2.2.3. Time-Frequency Domain Features based Techniques 

Time-frequency domain methods were developed as the potential techniques for 

fault detection and diagnosis of machinery structures by analyzing both the time and 

frequency contents of signals. These methods include Short-time Fourier Transform 

(STFT), Wigner-Ville distribution (WVD), and Wavelet Transforms (WTs) [75].  

Short-time Fourier Transform (STFT) is a time-frequency analysis used to 

overcome the disadvantage of FFT and provide both the time and frequency contents 

of given vibration signals. In [76], the time-frequency domain signals consisting of 

multi-frequency components were analyzed using STFT to identify the faults of a 

voltage source inverter at the early stage. However, a major drawback of STFT is 
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that the resolution obtained is provided for all frequency components. To address 

this disadvantage, STFT has been combined with wavelets [77, 78]. As a result, 

variable windowed STFT was developed to enable an examination of multi-

resolution associated with the frequency components.  

WVD is a quadratic-form of analysis offering resolution in both time and 

frequency domains. It has been widely applied to fault diagnosis through an analysis 

of given vibration signals. The main advantages associated with the technique are 

simplicity and low computational cost, whereas the main limitation associated with 

the classical WVD is the challenge of interpretation because of the interference 

terms [79]. A parameter called NP4 was developed to enhance the capability of 

WVD and improve the interpretation in gear fault detection in [80]. In [81], a weight 

factor was introduced to WVD so as to alleviate the influence of linear frequency 

modulation.  

Wavelets are capable of treating non-stationary signals [82-85]. A key point is 

that temporal resolution enables a family of wavelets to outperform the FT method. 

Unlike STFT, wavelets allow different window sizes to analyze the varying 

frequency components embedded in vibration signals (e.g., a long window size for 

low frequencies and a short window size for high frequencies). Two classical forms 

of wavelet transforms for machinery fault diagnosis are continuous wavelet 

transform (CWT) [86] and discrete wavelet transform (DWT) [87, 88]. The main 

difference between the two wavelets lies in the handling of the subset scale for 
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translation values. The former seeks to represent the signal with all possible subset 

scales while the latter aims to translate using a specific subset scale (without 

redundant information). Apart from the above two methods, the wavelet family 

consists of a series of variant wavelets, such as Wavelet Package Transform (WPT) 

[89], and Morlet Wavelet Transform [90].  

In addition to the above mentioned time-frequency domain features, it is popular 

to apply EMD decomposition to handle the non-stationary signals arising in fault 

diagnosis. To decrease the mode-mixing problem in EMD, an ensemble of EMD 

(EEMD) was utilized in [91] to realize the continuity of signals over varying scales. 

Compared to those from STFT, WVD, and DWT, experimental results have 

demonstrated the superiority of EEMD in revealing hidden knock signatures. As one 

of time series energy representation, Hilbert-Huang Transform (HHM) combines 

EMD and Hilbert spectral analysis (HSA) to analyze non-stationary and non-linear 

time series signals. However, in performing HHT, it becomes necessary to overcome 

the drawbacks associated with EMD. In [92], HHM was improved by adopting a 

specific strategy of decomposition of narrowband signals. In [93], translation-

invariant denoising (TID) was used as the preprocessing technique to alleviate the 

interference of noise and enhance the quality of decomposition of HHT. A 

comparative discussion study has been presented in [94], which indicates that HHT 

is more appropriate for analyzing the signals of larger size than using wavelets.  

However, the effectiveness of time-frequency domain features is offset by the 



 22 

high computational cost, especially in dealing with high dimensional time series 

data, which makes it difficult to apply them to online health monitoring.  

2.3. Feature Selection Methods 

Except for feature extraction, another effective method to address the high 

dimensional feature characterization problem relies on feature selection (FS) which 

is to select a relatively small but potentially useful feature subsets from available 

features [95]. Since there is no specific feature selection technique that is applicable 

in all situations, numerous feature selection methods have been proposed for a 

variety of applications.  

This section provides the background for feature selection methods and presents 

certain related works seeking for effective feature selection methods adopted in 

further studies.  

2.3.1. Traditional Feature Selection Algorithms 

From the perspective of the evaluation criteria, feature selection techniques can 

be divided simply into filter, wrapper, hybrids and embedded methods [96].  

The filtering approaches select the subset of features, firstly, according to their 

own discriminant attributes evaluated by numerous metrics before using learning 

machines. The metrics include hypothesis tests on the coefficients of features by 

means of t-statistics and p-values [97], relief algorithms (RF) [98], information gain 

(IG) [99], consistency-based feature selection [100], minimum redundancy 
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maximum relevance (MRMR) [101], interaction feature selection [102], 

dependency margin [103], etc. Filter approaches are easy to implement and expected 

to be faster than other types of feature selection algorithms since the learning 

machines are used only in the final stage of performance assessment, i.e., after 

filtering undesirable features [104]. Even so, the filter methods do not need any 

feedback from the learning machine in feature selection. Further, more often than 

not, the features with the highest-ranked values are selected on the basis of statistical 

criteria such as p-values but without scoring the power of combined features [105]. 

As a result, they might not be able to obtain the best subset of features in the total 

feature space because the highest-ranked features may have redundancy among 

them [106]. In practice, it is more common that filters are embedded or cooperate 

with wrapper feature selection algorithms, called hybrid methods [106-112].  

Wrappers seek to find the best subset from the feature space according to 

predetermined performance assessments conducted via classification algorithms 

such as the K-Nearest Neighbor algorithm (KNN) and Naive Bayes (NB). Greedy 

search based sequential forward selection (SFS) and sequential backward selection 

(SBS) are two attractive classical wrappers used in computation. However, their 

main drawback is that the features cannot be selected (or removed) again once they 

have been removed (or selected) [113]. Besides, to select the optimal feature sets, 

all possible subsets of features will need to be measured by the wrappers—which is 

impossible while classifying high dimensional microarray gene expression cancer 
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problems because of high computational cost. To address this problem, wrappers 

based on evolutionary algorithms are applied without the necessity of evaluating all 

possible subsets [114] [115]. Compared to filters, wrapper-based feature selection 

methods are generally more accurate since the quality of the selected feature subsets 

is assessed using a predefined learning technique. 

Hybrid techniques are often developed with the combination of the filters and 

wrappers, or/and combination of the wrappers and wrappers to enhance the 

performance. The main trend related to the combination of filters and wrappers is 

to integrate the filters (such as the T-test and the 𝟀2-test) with the evolutionary 

algorithms [106, 108, 110-112], in which the filters are served as the preprocessing 

step to decrease the redundant and unimportant features in huge dimensionality 

while wrappers are used to evaluate the relevance of the remaining feature subsets 

according to a given learning machine or classifier (with a view to reducing the 

computational problems associated with the wrappers and enhancing the 

effectiveness of feature selection). The problem is that the features seem to be less 

responsive to the labels but are useful in the feature sets for classification that might 

have been removed during the preprocessing stage, which cannot guarantee the 

optimal feature sets in this situation. Among the combination of wrappers and 

wrappers, hybrid evolutionary algorithms have become particularly popular [107, 

109, 116-118] by taking advantages of certain brilliant mechanisms associated with 

each wrapper or looking for the complements among other wrappers to improve the 
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robustness and stability of the final solution. It is a good strategy to improve the 

performance of wrappers if the hybrid strategies could enhance the complement.  

Embedded approaches search for features in the process of training and are 

usually specific to a given learning model using a limited number of features [119]. 

For instance, the regularizations or shrinkage methods like least absolute shrinkage 

and selection operator (lasso) [120], ridge regression [121]  and elastic net 

[122]that have been incorporated into the development of a classification or 

regularization model [123]. The feature weightings are used to record the 

importance of features in classification. Thus, in comparison to wrappers, embedded 

methods usually need less intensive computation and become less prone to over-

fitting. However, typical embedded methods generally use quite strict model 

structure assumptions. Sometimes, the classification performances of embedded 

methods might turn out to be inferior in comparison to the filters and wrappers [124].  

2.3.2. Evolutionary Feature Selection Algorithms 

Among different feature selection techniques, evolutionary feature selection 

algorithms such as Genetic Algorithm (GA) [125, 126], Differential Evolution (DE) 

[127], Particle Swarm Optimization (PSO) [113], Ant Colony Optimization (ACO) 

[109] have become particularly popular search techniques over the past few years. 

Inspired by natural as well as artificial ideas related to evolution, Evolutionary 

Computation (EC), as a sub-field of artificial intelligence, is generally considered 

as an effective technique capable of addressing expensive optimization problems. 
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There is little doubt that feature selection problems with numerous redundant and 

repeated features belong to some of the most expensive problems. In most 

evolutionary algorithms, each unit represents a potential solution which can be 

updated continuously according to the machine utilized. The advantages associated 

with such evolutionary algorithms are that the methods are available for 

optimization by specializing certain agents suitable for the specific problem, and 

that the results are generally creative and qualified [128]. 

Inspired by bird flocking or fish schooling and known for its high convergence 

capabilities, PSO is a highly common evolutionary algorithm in the domain of 

feature selection [113, 129, 130]. Even so, a disadvantage associated with it is that 

it gets easily trapped into local minima and therefore cannot guarantee a globally 

optimal solution.  

Apart from PSO, other swarm algorithms, such as ACO [131], Artificial Bee 

Colony (ABC) [132], Artificial immune systems [133], have also been used for 

feature selection. The search for the optimal feature subsets in ACO is implemented 

via a group of ants traveling through the graph to minimize the number of 

informative nodes. The main advantage of this method is that the best solution can 

be obtained by a global sharing strategy. The drawback is that the optimal feature 

subset may not always be arrived at, when the feature space being searched is large.  

Further, genetic or evolutionary based algorithms such as Differential Evolution 

(DE) [108, 134, 135], GA [126, 136, 137], Genetic programming (GP) [114, 138] 



27 

which have been frequently shown to be effective in solving problems under 

complex conditions are presented for FS. Most of these are binary description 

algorithms, where each bit represents a feature, e.g., “1” represents a selected 

feature while “0” means a feature that has not been. However, the parameters used 

in genetic or evolutionary based algorithms need to be properly defined to attain 

acceptable performance.  

Since swarm algorithms such as PSO and ACO are good at local research and 

evolutionary algorithms such as GA have superior global searching abilities, several 

researchers have come up with combinations of swarm algorithms and evolutionary 

algorithms: e.g., Hybrid GA-ACO [139] and Hybrid GA-ACO-PSO [140]. Even so, 

the effectiveness of feature selection is decreased when the size of search space 

increases.  

Most of such feature selection methods have been found to suffer from 

computational complexity or local optima. In addressing high dimensionality 

feature selection problems, there is a clear need for an effective feature selection 

method with global search ability. 

2.3.3. Bacterial based Feature Selection Algorithms 

The bacterial foraging optimization (BFO) method proposed by Passino [141] and 

the bacteria chemotaxis (BC) approach developed by Müller [142] are perhaps the 

two earliest bacteria based algorithms used in addressing optimization problems. A 

common feature of the two algorithms is that they were initially inspired by the 
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chemotactic (foraging) behavior of E. coli. As a group of EC techniques, due to their 

global searching capabilities during control and optimization, BAs have recently 

gained attention for feature selection. 

Often, bacteria-based FS methods cooperate with other methods. Cho [143] 

combined the BFO with the notion of mutual information for feature selection for 

the purpose of classification. In [144], an agent genetic algorithm based on a bacteria 

foraging strategy (BFOA-L) was integrated with a neural network while 

implementing fuzzy logic reasoning for feature selection. Also, BFO working with 

particle swarm optimization (PSO) named bacterial foraging-particle swarm 

optimization (BFPSO) was developed for the feature selection associated ECG 

signals [145]. Almost all such bacteria-based FS algorithms, generally, have tried to 

mend the defects of the original BAs in computational cost as well as improve 

convergence speed by combining with other techniques.  

Though BAs have been developed for feature selection they still have several 

limitations. Firstly, the random orientation strategy utilized in BAs has indeed 

increased the amount of search conducted globally although it has been found to 

consume larger time while searching randomly for the optimum. The resulting 

excessive computation time has limited the application of feature selection in high 

dimensional datasets. Besides, the circulation machines embedded in original BAs 

could not guarantee acceptable convergence speeds. Therefore, those BAs were still 

almost universally immature. In this thesis, strategies for improving capability and 
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efficiency of bacteria-based algorithms for feature selection will be developed and 

further employed for sensor subsets selection to isolate the potential faults occurring 

in a complex structure.  

2.4. Fault Diagnosis Techniques using Limited Prior 

Knowledge 

Prior knowledge of the system involving the normal operational states and 

abnormal conditions is very important for fault detection and fault diagnosis. 

However, in real applications, the prior knowledge of the system is not always 

available. Therefore, in the section, the fault diagnosis techniques using limited 

prior knowledge are reviewed from two aspects: model-based fault diagnosis 

methods and model-free fault diagnosis methods.  

2.4.1. Model-based Fault Diagnosis Methods 

The models of the processes or systems, in the model-based methods, could be 

built according to observers in the normal operation states with no prior knowledge 

of faults, and fault detection procedures normally depend on the residuals. Generally, 

hardware redundancy and software redundancy (or analytical redundancy) concepts 

have been presented for fault diagnosis. The main principle of the hardware 

redundancy concept is to compare the duplicated output signals using the same input 

[146]. Though the hardware redundancy methods are reliable, they are costly and 

consume more space for storage, which impetuses the development of analytical 
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redundancy methods since 1980s. For the analytical redundancy methods, there are 

two main trends for fault diagnosis: parameter estimations and residual generations.  

Parameter estimations have attracted increasing interests for fault detection, in 

which faults are detected by comparing the actual parameters with the reference 

parameters obtained from the healthy conditions. This group of methods is brilliant 

for fault diagnosis if the physical features could be mapped to the explicit model 

parameters. In [147], the system was modeled as the interconnection of subsystems 

which were separately modeled as the transfer functions. The linear function of 

parameters named as diagnostic parameters was applied to fault detection by 

comparing the average residual energy with the threshold value. Without any 

requirement of prior fault information, a fault parameter tracking law was designed 

in [148] for detection of a submarine with the potential bow and stern plane faults. 

To estimate the model parameters, a recursive subspace identification algorithm was 

proposed for online fault diagnosis of dam-gallery open channel system [149]. Other 

similar studies were also made using the subspace-based method to estimate the 

parameters for fault detection [150-153]. 

Except for the parameter estimations, residual generations were developed for 

both linear and nonlinear systems with unknown inputs. A well-known model-based 

fault diagnosis method is Kalman Filter (KF). Developed by R. E. Kalman [154], 

the KF is proposed for fault detection by keeping track of estimates. The occurrence 

of faults was detected by KF-based residuals using hypothesis tests [155-157]. Since 
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The original application of KF is to the linear systems, recent studies have been 

made on the modified KF approaches like extended KFs [38], adaptive unscented 

KFs [158, 159], and augmented state KFs [160] for the nonlinear states of the 

studied systems. Moreover, Bond Graph (BG) has been widely applied to the fault 

detection because of its capability of modeling the complex structure uniformly and 

analysis of the redundancy using causality concept to avoid the initial unknown 

condition [161]. In [162], a hybrid bond graph (HBG) model-based method was 

presented for multiple faults diagnosis using fault discrimination vector to 

distinguish the fault types after the abnormal state was detected according to the 

residual. To implement the easy-handling for fault detection, a quantitative approach 

based on the signed bond graph (SBG) was developed in [161] for multiple faults 

diagnosis. To ensure the online adaptation and self-optimization of the online system, 

the combination of the discrete-time Lyapunov stability theory and computational 

intelligence method was adopted in [163]. Though the bank of observer-based 

residuals is generally needed for fault isolation [146], a small number of studies 

were developed for fault isolation with unknown inputs observer using the fuzzy 

systems [164, 165], in which the domain knowledge can be obtained from the 

experts (obtaining the knowledge from the assembly process) rather than the historic 

failing data. 

Generally, model-based fault diagnosis methods are capable of on-line fault 

diagnosis without prior knowledge of fault conditions, but the known model based 
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on normal states should be well built initially. For analytical redundancy methods, 

the effectiveness greatly depends on the accuracy of an initially known model. If 

the physical information of the structure is well-defined, the fault diagnosis can be 

reliable for the model-based fault diagnosis methods. Since the initial model is not 

that easy to acquire, especially in complex dynamic systems, there has been growing 

interest in model-free based fault diagnosis methods.  

2.4.2. Model-free based Fault Diagnosis Techniques  

Being simple and flexible for fault diagnosis without dependence on specific 

structures, model-free based methods have been widely applied to fault diagnosis. 

Generally, model-free based fault diagnosis methods can be divided as signal-based 

approaches and data-driven approaches (or knowledge-based approaches) [166]. 

The former group prefers to adopt the similarity comparison between the references 

and the estimates, while the latter focuses on the explorations of the underlying 

information based on available data.  

As illustrated previously, signal-based approaches are more likely to detect the 

health condition of the system by comparing the reference signals measured from 

the normal conditions with the estimate signals collected from the diagnosis system. 

In existing methods, it is prevailing to explore the feature extraction methods in 

cooperation with classification and identification processes. Concerning the 

unavailability of prior knowledge of faults, it is often for signal-based methods to 

detect the health condition of the system by matching the fault or unknown features 
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to the basis functions (or known signal pattern) [27]. For multiple fault conditions, 

in [28], both the valve spring faults and valve clearance faults were studied on a 

diesel engine using only one accelerometer. The novelty of this method has been 

confirmed in detection and classification of the multiple faults occurring in the 

multiple elements without prior knowledge of the relation between the faults, but 

various historic data are needed for training in classification. The strategy of 

separating the signals into fault-related bandwidths was developed in [167] for 

multiple fault diagnosis, and the presence of single or combined faults was identified 

using a spectral analysis based on the MUSIC algorithm.  

Data-driven approaches are to explore the underlying knowledge from a large 

amount of historic data, which could be grouped as supervised and unsupervised 

approaches. In supervised methods, classifiers are trained using the historic data 

containing both the normal condition and abnormal conditions. Different from the 

supervised methods, the data from the health conditions are applied to training and 

establishing a knowledge basis. Both algorithms have their advantages and 

disadvantages, but only the unsupervised methods could be applicable of the system 

with no prior knowledge of faults. A cold start fault detection framework was 

proposed in [168] using the historic data only measured in the normal system. The 

data-drive methods PCA, SVM, and PCA-SVM were studied for fault detection, 

indicating that PCA-SVM method had the advantages in comparison to two other 

methods. PCA and ICA are two most popular unsupervised fault detection methods 
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[29, 30]. Additionally, the clustering methods are another reasonable choice for 

addressing the harsh conditions of no or less prior knowledge of faults.  In [31], 

clustering method combined with feature extraction and nearest neighbor based-

outlier removal was proposed for health monitoring of bridges with limited 

knowledge of structural faults. The combination of the multiple unsupervised 

classifiers and fuzzy-C clustering was developed in [32] to measure the wear status 

of slurry pumps when available historic data were extremely limited. To address the 

one-class classification, in [169], support vector data description was considered as 

the promising idea for the extreme condition that only data from normal operation 

condition were available. 

Generally, there is no distinct difference between the signal based methods and 

data-driven based methods for fault diagnosis when the prior knowledge is limited. 

Fault detection mainly relies on the similarity comparison between the unknown 

states with the known basis obtained from the initially healthy conditions. Even so, 

there is a challenge for above methods to obtain an appropriate threshold value for 

fault detection. Statistical methods and statistic-based indicators like Kolmogorov-

Smirnov test (K-S test) [33-35], analysis of variance (ANOVA) [36, 37], rank-sum 

testing [38, 39], Bayesian hypothesis testing [40, 41], and likelihood-ratio test [42-

44] have been widely used for fault or damage diagnosis since they are standardized 

and easy to implement though the available data might be limited. The thresholds 

associated with a statistical test are obtained from p-values listed in statistical tables. 
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The measures the underlying probability distribution differences between two group 

data, which has been successfully applied to fault detection of gears. 

After the fault detection, the next step is to isolate the potential faults occurring 

in the structure. Among the model-free localization methods without a requirement 

of prior knowledge of faults, a series of binary estimators are proposed for fault 

localization because of simple, low-cost and fault-tolerant. In [170], a method 

named as subtract on negative add on positive (SNAP) was proposed for fault 

localization using the sensor networks. A likelihood matrix was created to record 

the (negative or positive) contribution of each sensor node based on their 

observations. The potential fault is isolated at the event with the maximum value in 

that matrix. To address the multiple fault localization, the method named as 

decentralized subtract on negative add on positive (DSNAP) [171] was developed, 

in which all the alarm sensor nodes were the fusion center and tracking the response 

of their neighbors. In [172], the frequently used binary estimators like fault tolerant 

maximum likelihood (FTML), Centroid Estimator (CE), Maximum Likelihood 

(ML), and SNAP were compared, indicating that the SNAP was superior to other 

three methods for fault localization in terms of accuracy and computational 

complexity. To decrease the negative influence of faulty sensors for localization 

accuracy, the strategy of trust index was adopted in SNAP, abbreviated as TISNAP 

[173], to assign the weights to the nodes from the sensor network based on their 

historic records in failing alarm. Generally, the localization based on sensor 
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networks is effective and easy to implement for monitoring the large space 

structures. 

2.5. Conclusion 

In this Chapter, existing feature-based methods have been summarized in order to 

seek the potential application in fault diagnosis of the dynamic signal in machinery 

engineering. Considering the simple, interpretable properties in signal 

preprocessing, time domain features are adopted as the signal representatives for 

further signal analysis. In addition, for optimization of sensor network distribution 

and sensors selection for fault diagnosis, numerous feature selection methods have 

been studied. As a result, bacteria-based feature selection algorithms were chosen 

as the candidates because of the global search ability and computational efficiency.  

Since the prior knowledge is not always available in the real applications, the fault 

diagnosis methods considering the harsh conditions are reviewed. Model-based 

methods are excluded since their effectiveness greatly relies on the accuracy of the 

initial models which are rather complex to build. Compared to model-based fault 

diagnosis, model-free techniques are more flexible for fault diagnosis without 

dependence on specific structures. To over the challenge to obtain an appropriate 

threshold value for fault detection, statistical methods are considered for fault 

detection since they are standardized and easy to implement though the available 

data are limited. Additionally, with the continuous advances in sensor technology 

and senor placement methods, the sensor network can be implemented for fault 
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diagnosis of large space structures with low-cost and high-efficiency. Therefore, in 

this study, a systematic sensor network-based model-free approach is proposed for 

fault diagnosis of complex structures without using prior knowledge of the faults, 

and using only limited prior knowledge of normal operational conditions. 
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Chapter 3.  Bacterial Optimization Algorithm for 

Feature Selection 

The optimal ‘virtual beam’ consisting of sensors is essentially important for fault 

diagnosis in our study. In this Chapter, an improved bacterial based optimization 

method is developed to select the most sensitive sensors (represented by features) 

for the optimal virtual beam. 

3.1. Definition of Feature Selection 

In engineering application, feature reduction methods are frequently developed 

to convert the high dimensional space into lower dimension space. To eliminate the 

redundant and irrelevant features, feature selection techniques are wildly developed 

to reduce the feature number, decrease the store space and computational time, as 

well as improve the classification performance. 
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(3-1) 

  

As shown in Eq.(3-1), the outcome of the feature selection is the subset of the 

features by selecting the most informative and relevant feature subset to represent all 

features, Main advantages of feature selection methods lie in the minimizing the data 

missing and avoiding the difficulty in creating the new features. 
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3.2. Bacterial Algorithms 

In the following, the bacterial based algorithms will be introduced and discussed 

firstly before presenting the proposed improvement. 

3.2.1. Typical Bacterial Algorithms 

Inspired by the foraging or chemotaxis processes of E. coli bacteria, Bacterial 

Foraging Optimization (BFO) [141] and Bacterial Chemotaxis (BC) [142] are two 

earliest bacterial based algorithms for optimization problems. These two algorithms 

are credited with starting a new heuristic family in computational intelligence and 

provide a global searching capability for control and optimization. Since their 

advent, several Bacterial Algorithms (BAs) and extensions to them have been 

applied to the research areas such as fault detection [145, 174], signal processing 

[175-177], and pattern recognition [178, 179].  

 

Figure 3-1 The overall framework of BFO 

 

Figure 3-1 shows the overall framework of BFO. From the figure, one of main 

disadvantages associated with BFO or its extended Bacterial Algorithms (BAs) is 
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the expensive computational time needed for conducting the global search for the 

best solutions. The embedded interior circulation renders it impossible to solve the 

high dimensional problems arising while analyzing on-line systems. Many 

strategies have been applied to overcome this drawback. Among these, Bacterial 

Colony Optimization (BCO) [180] is the only method (to the best of our knowledge) 

capable of improving the search capability, fundamentally on the basis of the 

bacterial life-cycle, by adopting the conditional behavior modes. This method has 

been demonstrated to yield faster convergence and be more effective for search. 

However, BCO was originally proposed for solving continuous optimization 

problems; it has not been applied to discrete optimization problems (all variables 

are integers). By contrast, the optimization method proposed in this thesis is suitable 

for solving the discrete combinatorial problem of feature selection arising while 

selecting the most sensitive sensors (represented by time domain features) from the 

sensor networks. The motivation is to select the best subsets to achieve high 

performance. However, it results in a significant increase in the difficulties 

associated with the optimization method used during variable selection, an 

improved BCO will be developed in this thesis.  

3.2.2. Bacterial Colony Optimization 

Bacterial Colony Optimization (BCO) [180] has been derived from the two 

original bacterial behavior-based algorithms: Bacterial Foraging Optimization 

(BFO) [141] and Bacterial Chemotaxis (BC) [142]. Compared to bacterial 
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algorithms like BFO or BC, BCO designs the LCM and employs rule-based 

conditions to avoid excessive search for the best solutions. The learning mechanisms 

used by bacteria adopt multiple communication topology structures—such as 

dynamic neighbor oriented studies (or random oriented studies) and group oriented 

study—so as to attain the significant reductions in the computational cost associated 

with efforts to randomly search and increase the convergence speed.  

 Chemotaxis As shown in Figure 3-2, chemotaxis process consists of two 

alternate strategies: running (or swarming) and tumbling. More specifically, the 

current position during the running process—see in Eq.(3-2)—is decided by the 

previous position and the learning experiences are oriented by the global or the 

individual exchanges. In comparison to running, tumbling includes an exceptional 

randomness to avoid the local optimal and pursue the diversity of the population—

see in Eq.(3-3). 

Running process:  
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Tumbling process:  
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where 𝑃𝑖(𝑇)  is the position of the ith bacterium during Tth iteration, which is 

determined by the previous position 𝑃𝑖(𝑇 − 1), the best position of the population 

Gbest (recorded as the global best), and the exchanged best position of an individual 

recorded as local best Pbest. The method used for arriving at the exchanged best 

position Pbest is given using the pseudo-code shown in Figure 3-2. ∆(𝑖)  is the 
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direction angle of the 𝑖𝑡ℎ bacterium randomly generated in [−1, 1], and C(i) is the 

chemotaxis step size. The larger values of C(i) contribute to more randomness of 

the population for global search, while smaller values make it necessary to conduct 

more local search. R = [𝑅1, … , 𝑅𝑁𝑃] is a randomly generated vector consisting of 

0 and 1. 𝑁𝑃 is the population size. More details can be referred to [180]. 

 

Figure 3-2 The main principle of BCO 

 Reproduction. After a predefined chemotactic step size, a reproduction mode will 

be employed. The reproduction process relies on the health condition of bacteria 

over the past chemotactic process. The first half ranking bacteria with the better 

performance will be kept in population and the second half bacteria with poor search 

capability will be replaced by the first half bacteria. The health index used to 

evaluate the searching capability of the ith bacterium could be calculated as:  
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and the population would be updated as: 

𝜃𝑖+𝑆𝑟(𝑗, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) (3-5)  

where J(i, j, k, l) is the fitness value of the ith bacterium at the jth  chemotaxis, the 

kth reproduction, the lth dispersal, and Sr = S/2. If the optimization problem is to 
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minimize the objective fitness function, then the smaller values of 𝐽𝑖(ℎ𝑒𝑎𝑙𝑡ℎ) 

means the better health condition of the bacterium. 

 Elimination and dispersal. Following the predefined chemotactic steps and 

reproduction time, elimination-dispersal is taken to move the bacteria to the 

dynamic position.  

𝜃𝑖(𝑗, 𝑘, 𝑙) = 𝑥𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑 (3-6) 

where 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛  are the maximum and the minimum of the variables, and 

rand is a randomly generated constant ranging from 0 to 1. 

The reproduction in bacteria based algorithms is used to multiple the high-quality 

bacteria and remove the poor ones from the population, while the merit of the 

elimination operation is that it helps realize diversity through random dispersal or 

migration. More details can be referred to [180].  

3.3. The Proposed Bacterial Algorithm based Feature 

Selection (BAFS) 

Having described the proposed BCO approach for solving the continuous 

optimization problems, we turn now to the improvement—bacterial algorithm based 

feature selection (BAFS)—made with a view to addressing the combinatorial 

problem arising during the feature selection phase while trying to obtain the feature 

subsets from datasets. 
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Figure 3-3 The overall framework of the Bacterial Algorithm based Feature Selection 

 

The overall framework of the proposed feature selection method is given in 

Figure 3-3. The chemotaxis, reproduction and elimination process are the same as 

those in the original BCO, which can be referred to [180]. It is important to note 

here that, since the number of sensors for the optimal is predefined, the expected 

number of features in BAFS is known. Further, other researchers [106, 129, 181] 

have found that, among the thousands of features under consideration, only a few 

(numbering in tens) are usually of interest during the optimal solution of the feature 
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selection problems. A further reason is that the constrained feature selection method 

is useful in comparing the performances of different algorithms 

Several strategies are proposed to enhance the effectiveness of BAFS including 

weighting mechanism & ‘Archive’ strategy, discriminatory variables selection, and 

premature termination. The main ones will be described in the following sections.  

3.3.1. Weighting Mechanism and ‘Archive’ Strategy 

To evaluate the candidate variables (all variables listed as the candidates for 

selection), a weighting mechanism and archiving strategy are proposed to record the 

variable performances and store the occurrences of candidate variables, respectively. 

In BAFS, the number of features to be selected are given in each run, and the 

repeated features in the same vector are removed according to two matrices ‘Weight 

(W)’ and ‘Archive (A)’. The performance of candidate variables is evaluated by a 

predefined fitness function. To simplify the problem, it is assumed that a larger value 

of the fitness function indicates better performance of the variable subset.  

Assume that the number of candidate variables is H, the dimension of variable 

vector for evaluating the fitness function is D, and the bacterial population is N. The 

performance scores used to record the performance of features associated with each 

particle are stored as a 𝐻 × 𝑁 matrix W. The initial weight values in W are zeros. 

If the attendance of a variable yields to the higher fitness function value, the variable 

is deemed to be more effective than the replaced one provided that the new adding 

variable is assigned with higher weight in comparison to that of the replaced variable. 
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Finally, the weights representing the performance of variables in each individual are 

updated.  
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The replacement of variable 𝑋𝑗 with  𝑋𝑖 contributes to the increase (or decrease) 

of fitness. The related weights are updated using Eq.(3-7) (or Eq.(3-8)) for the 

individual (i.e. 𝑚𝑡ℎ  bacterium). If the selection of variable 𝑋𝑖  is to replace the 

variable 𝑋𝑗  in the 𝑚𝑡ℎ  bacterium, and the current fitness values 𝐹𝑖𝑡(𝑋𝑖,𝑚)  is 

larger than previous fitness value 𝐹𝑖𝑡(𝑋𝑗,𝑚) , then the weight of 𝑋𝑖  in 𝑚𝑡ℎ 

bacterium—W(i, m)—will be larger than the weight of 𝑋𝑗 in a same bacterium, i.e. 

W(j, m). Otherwise, the weight of 𝑋𝑖 would be smaller than the weight of 𝑋𝑗. 

In the BAFS, the occurrence of variable across the optimization is stored in a 

NH  matrix A, and the matrix is initialized as: 
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A  . If the 𝑖𝑡ℎ feature 

appeares in 𝑚𝑡ℎ bacterium, the related element is updated as: 𝐴(𝑖, 𝑚) = 1. The 

main contribution of matrix ‘A’ is to record the appearance of variables and ensure 

that the unseen variables from candidate variables have the chance appearing in the 

optimization process. Therefore, recording the occurrence of variables in a vector 
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could avoid the situation that certain variables are frequently selected while others 

never appear during subset assessment.  

3.3.2. Discriminatory Variables Selection 

To enhance the quality of the selected variable subsets, the variable is deemed to 

be of value, if it has appeared frequently at subsets exhibiting above average 

performance. The parameter 𝐹 is used to indicate the distribution of the features. 

The weight (W) is then updated according to Eq.(3-9) and Eq. (3-10). 
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where 𝐺𝑖 is the number of times that the 𝑖𝑡ℎ feature has been used in the subsets 

whose classification accuracies have been found to be higher than the average 

fitness value. Similarly, 𝐵𝑖 is the number of times that the 𝑖𝑡ℎ feature has been 

employed in the subsets whose classification accuracies are lower than the average.  

3.3.3. Randomness Control Mechanisms   

To avoid the redundant searching for the optimal and qualify the population for 

feature selection, the randomness control mechanisms are investigated in the 

proposed bacterial feature selection method. Considering the computational cost, 

the proposed bacterial method adopts the life-cycle mechanisms in BCO using the 

predefined processing rules to operate the reproduction and elimination process. 

These predefined rules in the proposed method are re-designed for improving the 
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optimization capability and avoiding the randomness searching in typical bacterial 

based algorithms. 

Three parameters are used for randomness control mechanisms. More specially, 

the parameter Pte is used to control the over-searching for the optimal, and 

parameters Pre and Pel are exploited for controlling the frequency of reproduction 

and elimination-dispersal strategies, respectively (see Pseudo-code 3-1).  

Pseudo-code 3-1: Randomness Control 

If global best is unchanged 

    Record=Record+1; 
else  

Record=0; 
End if 
If Record=Pte 

    Success=1; Stop the searching process //  termination to avoid the redundant searching 
End if 
If Record=Pre 
    Do: Reproduction process 

 End 
If Record>Pel 

     Do: Elimination-Dispersal process 
End 

The larger value of parameter Pte indicates the longer iterations waiting for the 

best solution. However, this parameter cannot be too large to bring the 

computational burden, while the value cannot be too small to obtain the local 

optimal rather than the best solution. Parameters Pre and Pel are developed to decide 

the process of reproduction and elimination. Reproduction is used to replace the 

poorer bacteria from the population and improve the quality of the partial population 

rather than the global best. To enrich the population, elimination-dispersal process 

is adopted to improve the diversity of the individuals and strength the capability for 

the global optimization. Smaller value of Pel brings more randomness to the 

population, while larger value indicates the less diversity. Therefore, the 
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randomness of the individuals relies on two parameters Pre and Pel, while the 

termination parameter Pte is applied to control the redundant searching.  

3.3.4. Modified Reproduction and Elimination Strategies   

The reproduction strategy in BCO is originally investigated for the continuous 

problems according to the historic performance of individuals. However, it seems 

to be less effective in solving the discrete combinatorial problems, e.g. feature 

selection. Therefore, the reproduction strategy in typical bacterial based algorithms 

is modified in the proposed method for feature selection.  

1). Reproduction To improve the quality of the population, the individuals 

achieving the lower classification accuracy rate are updated through the 

reproduction process. In BAFS, the bacteria achieving the better performance than 

the average (i.e., mean fitness of the population Avg_Fit referring to Eq. (3-12)) are 

used to replace the bacteria achieving the poorer performance (worse than the 

average).  
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The fitness of the optimization method is the classification error rate, where TS and 

FS represent the number of testing samples that have been classified into true and 

false groups, respectively. 
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It is assumed that the objective of the optimization is to minimize the fitness 

function. The bacteria with the fitness value larger than Avg_Fit are replaced by 

bacteria with the fitness smaller than Avg_Fit. The fitness values are sorted in 

ascending order, and the bacteria locating at the front are more effective than the 

ones locating at the back. If the fitness of (Popsize-i+1)th bacterium are smaller than 

Avg_Fit, then reproduction process is operated as follows: 

𝜃(𝑃𝑜𝑝𝑠𝑖𝑧𝑒 − 𝑖 + 1) = 𝜃(𝑖) (3-13) 

where 𝜃(𝑖) represents the position of ith bacterium. Popsize is the total number of 

bacteria.  

2). Elimination-Dispersal It is used to guarantee the diversity and global 

optimization of the proposed method. As the variables in feature selection is not 

continuous and the problem is a combinatorial problem to select the best subsets of 

features from the dataset, the elimination and dispersal process for the randomness 

should be modified to make the method suitable for the float optimization. The 

matrix A is initialized with all elements zeros. If the ith feature used in jth bacterium, 

then element A(i, j) equals to 1. According to Eqs. (3-7) and (3-8), the features are 

ranked according to their contributions to the feature subsets. The features with 

lower weighting indexes are replaced with unseen features (never used for 

evaluation, e.g., A(i, j)=0) according to matrix A. Assumed that the ith bacterium is 

 𝜃(𝑖) = [𝑓𝑖1, … , 𝑓𝑖𝐷] . The features are sorted in descending order according to 

weighting vector (see Eqs. (3-7) and (3-8)), then the last feature 𝑓𝑖𝐷 has the lowest 

weighting index in W. Therefore, the feature 𝑓𝑖𝐷  in the ith bacterium will be 
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replaced by a new feature that has never been appeared in that bacterium, and the 

bacterium will be updated as follows: 

𝜃(𝑖) = [𝑓𝑖1, … , 𝑓𝑖𝐷,𝑓𝑁]. (3-14) 

where 𝑓𝑁 is the feature that is not appeared in the ith bacterium with the occurrence 

record A(N, i)=0. 

3.3.5. Bacterial Algorithm based Feature Selection Method 

The pseudo-code of the proposed method, abbreviated as BAFS, is given in 

Algorithm 3-1. 
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Algorithm 3-1: Pseudo-Code of BAFS for feature selection on datasets 

01 Input: dataset for training and testing: Tr and Te; number of features to be selected: D 

02 Initialization: T1, T2, T3, C, Max_iteration; 

03 Fitness function: develop the fitness function     //classification error rate achieved 

by KNN 

04 Calculate the fitness of all bacteria, and define Current_iteration=0 

05 Optimization process: 

06 If Current_iteration < Max_iteration 

07 Current_iteration= Current_iteration+1; 

08 Obtain the Pbest and Gbest      //Pbest is calculated according to the pseudo-code in 

Figure 3-1, and Gbest  is the best position of the group 

09 For each bacterium 

10 Running: Adapt the position of bacteria using Eq.(3-2)  

11 Obtain the fitness f and compare with the original fitness Fit 

12 If Fit<f (assume that the objective is to minimize) 

13    Tumbling: Adapt the position of bacteria using Eq.(3-3).  

14 end if  

15 Adapt the W using Eqs. (3-7)and (3-8) 

16 End for  //end for each bacterium 

17 For all bacteria 

18 Adapt the weight using Eqs. (3-9) and (3-10) and global best 𝐺𝑏𝑒𝑠𝑡  

19 If global best is unchanged, i.e. 𝐺𝑏𝑒𝑠𝑡
𝑖𝑡𝑒𝑟 = 𝐺𝑏𝑒𝑠𝑡

𝑖𝑡𝑒𝑟−1 

20 Record=Record+1; 

21 else  

22 Record=0; 

23 end if 

24 If Current_iteration >Max_iteration/2 and Record=Pte 

25     Success=1; //  termination to avoid the redundant searching 

26 end if 

27 If Current_iteration >Max_iteration/2 and Record=Pre 

28     Do: Reproduction (refer to Eqs. (3-11) to (3-13)) 

29 end if 

30 If Current_iteration >Max_iteration/2 and Record>Pel 

31     Do: Elimination-Dispersal (refer to Eq. (3-14)) 

32 end if 

33 End for //end for all bacteria 

34 end If 

35 Output: selected feature subsets 
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3.4. Parameters Estimation and Decision 

In this section, three parameters (Pte, Pre, and Pel.) used for randomness control 

are studied and discussed.  

3.4.1. Parameter Settings and Benchmarks 

To choose the appropriate parameters for randomness control, the dataset 

‘9_tumors’ is used for evaluation. All attribute values in the database have been 

entered as numeric values. The dataset includes 60 instances with 5726 features 

belonging to 9 classes, which is available online http://www.gems-system.org/. 

Since the motivation of the experiments described below is to study the choosing of 

parameters, the number of features expected to be selected is defined as 30 (from 

5726 features). The instances are divided randomly into two sets: 75% for training 

and 25% for testing.  

The fitness function is the classification error rate achieved by a classifier. In this 

study, K-Nearest Neighbor (KNN) with K=5 is considered as the classifier to 

evaluate the performance of the feature selection method. The population size of the 

BAFS is 50, the maximum iteration for the optimal is 300. The parameter Pt used 

to avoid the redundant searing is studied ranging between 20 and 120, and two 

other parameters for reproduction Pre and elimination Pel are varied between 5 

and Pte. 

http://www.gems-system.org/
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3.4.2. Experimental Results on Parameters Pte, Pre, and Pel 

As is illustrated previously, the smaller values of parameters Pre (and/or Pel) 

indicate the more frequent reproduction (and /or elimination) to update the 

population by replacing the poorer individuals (and/or renewing the population by 

adding the randomness). Results are given in the following tables using different 

values of three controlling parameters. All results are obtained over 30 runs. ‘Accu’ 

in Tables represents the average classification accuracy, and ‘Iter’ indicates the real 

iteration times used by BAFS. 

Table 3-1 shows minimum, maximum, average and standard variance of iterations 

by BAFS to achieve the associated classification accuracy (%) with various values 

of control parameters. Table 3-2 to Table 3-5 give the detailed results in Table 3-1. 

Figure 3-4 shows the results given in Table 3-2 to Table 3-5. The values of average 

classification accuracy rate higher than 95% are highlighted and the highest value 

of accuracy rate among all points is texted. 

Table 3-1 The range of classification accuracy rate and iterations using varying values of 

termination parameter Pte 

Parameters Maximum Minimum Average  Std. Var 

Pte =20 Accu 97.7800% 71.1100% 86.6598% 4.7054% 

Iter 42.6000 30.6000 36.1612 3.0192 

Pte =40 Accu 97.7800% 72.2200% 88.2306% 1.3857% 

Iter 76.7667 61.9333 68.3844 3.3058 

Pte =80 Accu 97.7800% 75.5600% 88.8343% 2.4382% 

Iter 170.8000 95.2000 125.5906 17.4291 

Pte =120 Accu 98.8900% 72.2200% 89.7919% 5.6077% 

Iter 242.8000 138.0000 175.3129 18.3019 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-4 Average classification accuracy achieved with varying Pte, Pre, and Pel 

According to Figure 3-4, the larger value of Pte contributes to the higher 

probabilities (with more points are highlighted) for obtaining the good feature 

subsets to achieve the higher classification accuracy rate. Even so, we cannot ignore 

the computational complexity associated with large Pte. As shown in Table 3-1, 

longer computation time (i.e. represented by iteration times) is needed to search for 

the best solutions though higher average classification accuracy rate is obtained with 

the larger value of termination parameter Pte. Among four cases in consideration, 

the highest classification accuracy rate and average classification accuracy rates are 

achieved when the termination parameter Pte is 120, but the computational cost for 
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the best is also the highest. Additionally, larger iterations cannot guarantee the best 

solution. Though the average and the maximum of classification accuracy rate are 

achieved when parameter Pte=120, the computational cost consumed by searching 

process is rather expensive and over twice of the case with the termination parameter 

Pte = 40. Actually, the minor priority in classification accuracy rate is realized at the 

expense of expensive computational cost.  

The effectiveness of optimization method relies not only on termination 

parameter Pte, the parameters Pre and Pel are also playing the essential roles for 

updating the population. Since the strategies like reproduction, elimination are 

eligible for improving the quality of the population, these two parameters (e.g. Pre 

and Pel) are employed to control the frequency of reproduction and elimination 

process. The classification accuracy rate achieved exceeding 95% are highlighted 

in bold.  

Table 3-2 The range of classification accuracy rate and iterations using varying values of 

termination parameter Pre 

  Pel=3 Pel =5 Pel =8 Pel =10 Pel =13 Pel =15 Pel =18 

Pre =3 Acc

u 

91.11

% 

92.22

% 

88.89

% 

87.22

% 

80.00

% 

94.44

% 

83.33

% Iter 34.30 34.30 41.8 34.5 35.1 34.3 37.1 

Pre =5 Acc

u 

91.67

% 

81.11

% 

88.89

% 

85.00

% 

77.78

% 

87.78

% 

91.11

% Iter 42.6 40.0 39.3 38.5 37.5 34.3 39.4 

Pre =8 Acc

u 

88.89

% 

81.67

% 

90.00

% 

88.78

% 

93.33

% 

85.00

% 

71.11

% Iter 34.2 33.7 31.2 37.9 37.1 39.4 33.7 

Pre=10 Acc

u 

92.56

% 

94.44

% 

87.22

% 

93.33

% 

94.44

% 

96.33

% 

87.22

% Iter 33.2 31.1 35.6 31.7 33.4 36.8 38.8 

Pre=13 Acc

u 

75.56

% 

91.11

% 

88.89

% 

92.22

% 

92.22

% 

90.00

% 

94. 

44% Iter 37.1 31.2 32.0 35.7 36.5 33.4 38.8 

Pre=15 Acc

u 

88.89

% 

88.89

% 

84.44

% 

90.00

% 

91.67

% 

91.11

% 

95.78

% Iter 37.1 34.0 33.6 38.1 37.1 36.3 41.8 

Pre=18 Acc

u 

94.44

% 

92.22

% 

93.33

% 

92.22

% 

97.78

% 

94.44

% 

86.67

% Iter 37.8 35.9 30.6 35.7 38.8 41.4 38.2 
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Table 3-3 Average classification accuracy rate and iterations for the optimal when Pte=40 

  Pel=5 Pel=10 Pel=15 Pel=20 Pel=25 Pel=30 Pel=35 

Pre =5 Acc

u 

81.11

% 

84.44

%  

77.78

% 

80.00

% 

92.22

% 

94.44

%  

86.67

%  Iter 69.67 63.83 72.47 65.40 67.23 65.23 61.93 

Pre=10 Acc

u 

94.44

% 

82.22

% 

92.22

% 

90.00

% 

85.56

% 

91.11

% 

77.78

% Iter 70.97 67.07 71.87 67.03 65.37 71.43 72.47 

Pre=15 Acc

u 

87.78

% 

94.44

% 

90.00

% 

92.22

% 

91.11

% 

94.44

% 

83.33

% Iter 72.60 66.63 70.20 66.67 67.10 65.53 70.03 

Pre=20 Acc

u 

72.22

% 

88.89

% 

82.22

% 

95.56

% 

93.33

% 

91.11

% 

81.11

% Iter 63.93 62.53 74.73 63.93 64.67 66.80 68.97 

Pre=25 Acc

u 

84.44

% 

90.00

% 

84.44

% 

95.56

% 

97.78

% 

87.78

% 

88.89

% Iter 68.37 76.77 66.50 70.37 65.60 69.10 67.87 

Pre=30 Acc

u 

91.11

% 

92.22

% 

92.22

% 

83.33

% 

88.89

% 

86.67

% 

78.89

% Iter 68.47 68.87 65.63 67.80 67.20 69.53 74.37 

Pre=35 Acc

u 

94.44

% 

82.22

% 

97.78

% 

95.56

% 

87.78

% 

94.44

% 

91.11

% Iter 67.47 68.43 69.40 66.86 75.63 70.23 70.07 

Table 3-4 Average classification accuracy rate and iterations for the optimal when Pte=80 

  Pel=5 Pel=15 Pel=25 Pel=35 Pel=45 Pel=55 Pel=65 

Pre=5 Acc

u 

75.56

% 

93.33

% 

85.56

% 

83.33

% 

91.11

% 

94.44

% 

97.78

% Iter 114.2 113.2 112.2 134.6 115.2 115.6 143.6 

Pre=15 Acc

u 

85.56

% 

88.89

% 

80.00

% 

87.78

% 

93.33

% 

86.67

% 

96.67

% Iter 130.6 127.4 118.2 107.4 112.2 132.6 121.8 

Pre=25 Acc

u 

91.11

% 

88.89

% 

95.56

% 

88.89

% 

75.56

% 

81.11

% 

95.56

% Iter 115.2 167.4 160.8 106.2 101.4 127.6 132.6 

Pre=35 Acc

u 

82.22

% 

94.44

% 

85.56

% 

94.44

% 

87.78

% 

87.78

% 

86.67

% Iter 113.6 154.8 124.0 162.0 148.2 116.8 127.8 

Pre=45 Acc

u 

87.78

% 

90.00

% 

94.44

% 

95.56

% 

90.00

% 

90.00

% 

93.33

% Iter 115.0 120.0 107.6 123.0 104.8 106.0 117.6 

Pre=55 Acc

u 

88.89

% 

91.11

% 

95.56

% 

85.56

% 

93.33

% 

83.33

% 

90.00

% Iter 132.4 123.4 124.4 105.8 121.6 124.8 114.4 

Pre=65 Acc

u 

88.89

% 

93.33

% 

91.11

% 

83.33

% 

84.44

% 

88.89

% 

78.89

% Iter 134.0 170.8 119.2 152.2 104.6 105.4 129.8 

Pre=75 Acc

u 

87.78

% 

95.56

% 

88.89

% 

94.44

% 

85.56

% 

86.67

% 

86.67

% Iter 144.2 120.4 148.4 117.2 167.2 151.4 145.0 

Table 3-2 shows that the proposed BAFS could select the considerable subsets to 

achieve the average classification accuracy rate reaching to 97.78% within 

comparative small iterations (no more than 40 iteration time) when the two 

parameters are: Pre=18 and Pel =13. However, smaller parameters Pel (e.g. Pel <10) 

associated with frequently utilizing the elimination for diversity seem to be less 

effective for improving the searching capability. As parameter Pel increases to 
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around 15 and parameter Pre increases to around 10, the average classification 

accuracy rate is achieved mostly around or over the average level.  

Table 3-5 Average classification accuracy rate and iterations for the optimal when Pte=120 

  Pel=5 Pel=15 Pel=25 Pel=35 Pel=45 Pel=55 Pel=65 

Pre=5 Acc

u 

92.22

% 

92.22

% 

94.44

% 

92.22

% 

91.11

% 

82.22 88.89

% Iter 221.0 177.4 176.6 162.4 184.6 157.2 139.6 

Pre=15 Acc

u 

88.89

% 

84.44

% 

87.78

% 

86.67

% 

86.67

% 

84.44 88.89

% Iter 145.4 164.8 194.8 204.6 184.0 183.4 159.4 

Pre=25 Acc

u 

96.67

% 

88.89

% 

97.78

% 

81.11

% 

95.56

% 

93.33 97.78

% Iter 202.6 169.8 156.6 212.2 161.0 176.2 172.4 

Pre=35 Acc

u 

94.44

% 

88.89

% 

88.89

% 

94.44

% 

88.89

% 

90.00 87.78

% Iter 191.4 149.0 145.8 154.4 189.4 160.4 166.0 

Pre=45 Acc

u 

86.67

% 

82.22

% 

77.78

% 

96.67

% 

86.67

% 

91.11 88.89

% Iter 186.2 207.8 174.8 177.8 182.8 166.4 185.2 

Pre=55 Acc

u 

83.33

% 

95.56

% 

88.89

% 

84.44

% 

96.67

% 

84.44 90.00

% Iter 197.8 156.0 186.4 180.4 166.4 138.0 212.4 

Pre=65 Acc

u 

91.11

% 

83.33

% 

92.22

% 

98.89

% 

92.22

% 

90.00 91.11

% Iter 200.8 202.4 161.0 183.6 191.6 176.2 150.4 

Pre=75 Acc

u 

87.78

% 

87.78

% 

84.44

% 

97.78

% 

90.00

% 

86.67 86.67

% Iter 193.4 198.6 151.8 170.6 184.2 172.2 162.2 

Pre=95 Acc

u 

91.11

% 

81.11

% 

90.00

% 

92.22

% 

95.56

% 

95.56 92.22

% Iter 161.0 172.0 168.2 159.0 167.2 148.8 189.2 

Pre=105 Acc

u 

97.78

% 

95.56

% 

92.22

% 

96.67

% 

92.22

% 

87.78 96.67

% Iter 188.8 152.8 172.2 179.0 164.0 193.0 182.2 

Similarly, from Table 3-4 and Table 3-5, we can find that the smaller parameters 

(e.g. Pre <10, Pel < 10) associated with the earlier process of reproduction and/or 

frequent randomness from elimination for diversity might contribute to poorer 

performance for feature selection. But the value of parameter Pel cannot be too large. 

When termination parameter Pte is ranging between 80 and 120, the accuracy rate is 

decreasing when the parameter Pel is larger than 65, so the cases with parameter Pel 

larger than 65 are not considered in the study. 

Therefore, the iterations for the optimal by BAFS do not need to be too large. 

Even though the predefined maximum iterations for the optimal is large, the 
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termination parameter Pte could be used to avoid the redundant searching for the 

best solution. It is appropriate to assign the termination parameter Pte around 40, 

employ the reproduction control parameter Pre larger than 20 and smaller than Pte, 

and apply the elimination control parameter Pre larger than 15 but smaller than 65 

and Pte. 

3.5. Benchmark Experiments 

To test the performance of the proposed feature selection method, typical 

bacterial based algorithms are employed and compared for feature selection on 

several frequently used datasets.  

3.5.1. Comparison Techniques and Datasets 

In this section, the effectiveness of the proposed BAFS will be tested on datasets 

in comparison with four other bacterial algorithms: BFO [141], BFO with linear 

chemotaxis step size (BFOLDC) [182], BFO with nonlinear chemotaxis step size 

(BFONDC) [182], and BCO [183].  

Features used in the currently available mechanical analysis datasets are small in 

scale and easy to implement. In our study, the proposed optimization method is to 

select the sensor chains from the networks with more than 100 sensors (or even 

more than 1000 in real application). Therefore, the datasets—frequently used for 

feature selection with high dimensional variables (more than 2000 features) — are 

provided together with mechanical analysis dataset to test the effectiveness of the 
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proposed bacterial based method. The first dataset is available online from: 

http://cilab.ujn.edu.cn/datasets.htm. The last nine datasets are from: 

http://www.gems-system.org/. Table 3-6 gives the detailed information of datasets.  

Table 3-6 Datasets for feature selection 

Dataset Features class instances 

Colon 2000 2 62 

11_Tumors 12,533 11 174 

14_Tumors 15,009 26 308 

Brain_Tumor1 5920 5 90 

Brain_Tumor2 10367 4 50 

SRBCT 2309 4 83 

Leukemia1 5328 3 72 

Leukemia2 11225 3 72 

Prostate_Tumor 10509 2 102 

DLBCL 5470 2 77 

The population size in all feature selection methods are defined as NP = 50. 

The iteration time for BCO and BAFS is 200. For remaining three bacterial based 

algorithms, the parameters are defined as: chemotaxis iteration Nc=50, 

reproduction iteration Nre=5, and elimination iteration Nel=2. The parameters for 

chemotaxis step strategies in BFOLDC and BFONDC are assigned as: Cmin = 1 

and Cmax = 5. According to the study on the three randomness control parameters 

in BABOAFS, they are defined as: Pt=40, Pre=25, and Pel=20. For each dataset, 

the instance are divided randomly two sets: 70% for training and 30% for testing. 

The fitness for all the optimization method is the classification error rate 

evaluated by KNN with K=5. The number of features expected to selection cannot 

exceed 10 for Colon and 50 for remaining high dimensional datasets.   

http://cilab.ujn.edu.cn/datasets.htm
http://www.gems-system.org/
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3.5.2. Experimental Results and Analysis 

Figure 3-5 shows the average classification accuracies across 30 repeated runs 

for varying subset size on datasets. The experimental results show that the proposed 

BAFS outperforms all other bacterial based methods to select the feature subsets for 

achieving higher classification accuracy rate, and BCO performs better than BFO, 

BFO-LDC and BFO-NDC. Meanwhile, BFO-NDC shows the minor superior to 

BFO-LDC in some cases like SRBCT, Leukemia 2, and DLBCL. Though, the 

improvement of chemotaxis step strategies on BFO have improved the effectiveness 

of the original BFO, the exchange strategies in BCO seems to be more eligible in 

comparison to chemotaxis strategies based algorithms (i.e. BFO-LDC and BFO-

NDC).  

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

Figure 3-5 Average classification accuracy across 30 repeated runs for varying subset size on 

datasets 

Among all bacterial based algorithms, BFO, BFO-LDC and BFO-NDC have the 

largest iteration time for the best solutions, i.e. 500 iterations. The iteration time 

used in BCO for searching is 200. While BAFS has the smallest iteration, i.e. no 

more than the maximum iterations (i.e. around 100 and no more than 200). Thus, 

the computational cost consumed by BAFS is even smaller than BCO, while BFO 
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and BFO based algorithms spend larger computational time for the best solution. 

Figure 3-6 shows that BAFS and BCO spend less computational time, and BFO, 

BFO-LDC, BFO-NDC consume more than twice of computational time for 

searching the best solutions.  

Though randomness mechanism is employed in BCO, the randomness embedded 

in BCO is realized only by tumbling process. In the proposed BAFS, the randomness 

is not only manifested in tumbling strategy, but also applied by elimination to 

replace the poorer features with unseen features from recording matrix. The 

importance of features are evaluated by the probability of their contribution to the 

subsets achieving higher classification performance. As a result, the capability of 

BAFS is obviously superior to BCO in most cases with lower computational time.  

 

(a) 

 

(b) 

 

(c) 

 
(d) 

Figure 3-6 Computational time spent by feature selection methods across the 30 runs  
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3.6. Discussion and Conclusion 

The proposed bacterial algorithm based on randomness control mechanisms was 

investigated for feature selection in classification. A premature parameter is defined 

to avoid the redundant searching for the best results and proved to be effective in 

reducing the computational time for selecting the feature subsets from datasets. 

Meanwhile, two additional parameters are applied to decision the process of 

reproduction and elimination. Experimental studies on choosing the parameters 

indicate that the frequency of elimination for diversity cannot be too high (waiting 

for over 15 times), and it is appropriate to apply the reproduction mechanism when 

the best position of the population is unchangeable over 15-20 times. The learning 

mechanism in BCO is more effective in comparison to chemotaxis step strategies 

for feature selection in classification.  

This higher capability of the proposed method for feature selection indicates that 

the proposed method BAFS makes it more suitable for the selecting the most 

appropriate sensor chains while constructing virtual beams for fault localization. 

Therefore, in the further study, the proposed BAFS will be applied to the sensors 

selection to construct the virtual beams for fault diagnosis of complex structures.  



 

65 

Chapter 4.   Feature Characterization and Fault 

Detection 

In this Chapter, signal preprocessing and fault detection methods are presented. 

Signal preprocessing consists of feature characterization and feature selection. To 

obtain the most informative features from the available feature representatives, an 

unsupervised clustering method is developed for feature selection. The combination 

of statistical tests and fault indicator-based adaptive threshold is presented for fault 

detection. In what follows, they will be presented in details. 

4.1. Signal Preprocessing  

Since the data are firstly transformed into the form of features based on 

segmentation of the time series. Signal preprocessing in this stage mainly consists 

of feature characterization and feature selection.  

4.1.1. Data Acquisition 

In this thesis, a beam-like structure, served as the benchmark structure, is studied 

for fault diagnosis. Thus, the data measured from this system is provided for feature 

selection.  

The beam-like structure shown in Figure 4-1 consists of the two layers bolted 

steel panels of square size (length 40cm* wide 5cm*high 1cm). Breathing-like 

cracks or loosening-bolt can be easily created in one layer at any known positions 
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for benchmark studying (see Figure 4-1 (b)). As shown in Figure 4-1 (c), faults (e.g. 

cracks) at different positions can be denoted by R1, R2, and R3, and referred to as 

root crack, middle crack, and top crack, respectively. Three accelerators are placed 

regularly on the beam at shown positions denoted by A1, A2, and A3.  

 

(a). Beam-like structure system 

 

(b). Crack on beam-like structure 

 

(c) Illustration for the beam-like structure 

Figure 4-1 The designed beam-like structure 

The system is firstly measured without any cracks or loosening bolts as a 

reference signal and then is excited with known faults by using the same input. The 

first measured time series data acts as the reference signal which can usually be 

taken in the health monitoring record of a structural system. The second 

L

Lc

A1 A2 A3

R1 R2 R3 R4

L1

L2
L3
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measurement time series data under fault situations is used for fault feature 

characterization and diagnosis. The input excitation used in the experimental testing 

is not necessarily any specific signal. As a benchmark study, different inputs have 

been tested. Actually, the study focuses on the changes of vibration transmission, 

and thus the excitation magnitude of the input has no effect on the feature 

characterization and fault diagnosis. As an example, in this thesis, the input is a 

sweeping-frequency excitation from 20 Hz to 200 Hz with the exciting intensity 2g, 

the sample frequency 8192Hz, and velocity 4 oct/min.  

4.1.2. Feature Characterization 

In the process of feature construction, the raw time series data of long time 

dimension will be converted into features of a lower time dimension. Considering 

that the frequency domain features may not be suitable for non-stationary signals, 

and time-frequency domain features have more computational complexity, in our 

study, time domain features are adopted in this thesis. Those 16 features are: 

maximum value(f1), Minimum value (f2), Average absolute value (f3), Peak to peak 

(f4), Variance(f5), Standard deviation (f6), Skewness (f7), Kurtosis (f8), Root mean 

square frequency (f9), Crest factor (f10), Clearance factor (f11), Impulse factor 

(f12), Peak to peak (f13), Peak-magnitude-to-RMS ratio (f14), Energy Ratio (f15), 

energy operator (f16). The detail formation can refer to [184]. Time domain features 

are presented in Table 4-1.  
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Table 4-1 Typical time domain statistical features 

(1) Maximum value:𝑀𝑎𝑥{𝑥(𝑖)} (2) Minimum value: 𝑀𝑖𝑛{𝑥(𝑖)} 

(3) Average absolute value: 


n

i

ix
n 1

|)(|
1

 (4) Peak to peak: 𝑀𝑎𝑥{𝑥(𝑖)} − 𝑀𝑖𝑛{𝑥(𝑖)} 

(5) Variance: 
1

𝑛
∑ (𝑥(𝑖) − 𝑥̅)2𝑛

𝑖=1  (6) Standard deviation: √
1

𝑛
∑ (𝑥(𝑖) − 𝑥̅)2𝑛

𝑖=1  

(7) Skewness: 

1

𝑛
∑(𝑥(𝑖) − 𝑥̅)3/(

1

𝑛 − 1
∑(𝑥(𝑖) − 𝑥̅)2

𝑛

𝑖=1

)3/2

𝑛

𝑖=1

 

(8) Kurtosis 

  
1

𝑛
∑ (𝑥(𝑖) − 𝑥̅)4/(

1

𝑛
∑ (𝑥(𝑖) − 𝑥̅)2𝑛

𝑖=1 )2𝑛
𝑖=1  

(9) Root mean square frequency: 

√∑ 𝑓(𝑘)2 × 𝑋(𝑘)

𝐾

𝑖=1

/ ∑ 𝑋(𝑘)

𝐾

𝑖=1

 

(10) Crest Factor (or Crest RMS) 

𝑀𝑎𝑥{𝑥(𝑖)}/√
1

𝑛
∑ 𝑥(𝑖)2

𝑛

𝑖=1

 

(11) Clearance factor: 𝑀𝑎𝑥{𝑥(𝑖)}/
1

𝑛
∑ 𝑥(𝑖)2𝑛

𝑖=1  (12) Impulse factor: 𝑀𝑎𝑥(|𝑥(𝑖)|)/
1

𝑛
∑ |𝑥(𝑖)|𝑛

𝑖=1   

(13) Peak to peak: 

 √
1

𝑛
∑ 𝑥(𝑖)2𝑛

𝑖=1 /
1

𝑛
∑ |𝑥(𝑖)|𝑛

𝑖=1  

(14) Peak-magnitude to RMS ratio: 

 ‖𝑋‖∞/√
1

𝑛
∑ |𝑋𝑖|

2

𝑛

𝑖=1

 

(15) Energy Ratio 

√
1

𝑛
∑ (𝑑(𝑖) − 𝑑̅)2𝑛

𝑖=1 / √
1

𝑛
∑ (𝑥(𝑖) − 𝑥̅)2𝑛

𝑖=1  

(16) Energy Operator 

1

𝑛
∑(∆𝑥(𝑖) − ∆𝑥̅)4

𝑛

𝑖=1

/(
1

𝑛
∑(∆𝑥(𝑖) − ∆𝑥̅)2

𝑛

𝑖=1

)2 

where 𝑋  is the frequency spectrum of 𝑥(𝑖) , while 𝑋(𝑘)  is the kth measure of the frequency 

spectrum of 𝑥(𝑖) , 𝑓(𝑘)  is the frequency value of the kth spectrum line, k=1,…, K. ∆𝑥(𝑖)  is the 

obtained piecewise. 𝑛  is the total number of data points in time record. 𝑥̅  represents the mean 

of 𝑥(𝑖). 𝑑(𝑖) indicates the “diff” function which calculates differences between adjacent elements 

of x(i), and dm(i)is the mth time record. 𝑑̅ is the mean of 𝑑(𝑖). More exactly, diff(𝑥) returns a vector, 

one element shorter than x  of differences between adjacent elements: [𝑥(2) − 𝑥(1), 𝑥(3) −

𝑥(2), … , 𝑥(n) − 𝑥(n − 1)] 

4.1.3. Selection of Features for Signal Analysis 

Sixteen predefined time domain features for each sensor are the candidates for 



 

69 

feature representatives. Therefore, 48 features in total for three sensors are provided 

for feature selection. Each feature is regarded as an independent individual for fault 

clustering and feature subsets are used for fault classification. The time interval for 

segmentation is 1 second. 40 groups of signals with each ten groups of signal under 

the condition of normal, root crack, middle crack, and top crack are provided for 

clustering:  

 Normal condition: ten group of signals measured from fault free system; 

 Root crack (R1 region): ten group of signals measured when crack is near closed 

to fixed boundary (Lc/L=0.0625);  

 Middle crack (R2 region): ten group of signals measured when the crack is in 

the middle of the beam (Lc/L=0.35);  

 Top crack (R3 region): ten group of signals measured when the crack locates at 

the top of the beam (Lc/L=0.65). 

The clustering methods are capable of identifying the underlying features of the 

data, which provide useful algorithms for data mining, computer vision, pattern 

recognition, document clustering, etc. Among various clustering techniques, 

unsupervised fuzzy clustering methods have been widely developed since the results 

obtained include the association degree between the objective and clusters rather 

than the complete belonging of the objective to one group in hard clustering methods 

like K-means clustering. The fuzzy clustering techniques favor contiguous clusters 

in time and enable to detect changes in the hidden structure of multivariate time-
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series, which is very useful in fault diagnosis with time series data analysis. Even 

so, most fuzzy clustering methods are great dependent on the initialization and less 

robust to the global optimum. Particle Swarm Optimization (PSO) [185] is a widely 

used stochastic global optimization method. In our study, an improved version of 

fuzzy c-means clustering, i.e. combined Particle Swarm Optimization (PSO) and 

fuzzy c-means clustering method (FCM), is proposed and applied to feature 

selection. In the combined fuzzy clustering method, the random characteristic in the 

PSO will be integrated with the FCM to avoid to be trapped into the local minima. 

In what follows, the main principle of the relevant methods will be illustrated. 

Fuzzy C-means clustering (FCM). The clustering method is to classify the data from 

the observations into groups depending on the underlying structure. Assume that the 

single observed data vector consists of 𝑛  variables: ],...,,[ 21 iniii xxxx   , n

i Rx   . 

Therefore, when there are N observations, it could be represented as: 





















NnNN

n

n

i

xxx

xxx

xxx

xX

,...,,

                 

,...,,

,...,,

N}1,2,...,i|{

21

22221

11211


 (4-1) 

For supervised clustering techniques, clustering number is predefined and 

denoted as 𝑐 . For fuzzy clustering methods, the partition matrix consists of the 

probabilities of belonging to predefined number of group, which could be 

represented as: 



 

71 




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(4-2) 

N, 1,2,...i  ,1
1




c

j

iju   

where the membership levels are ranging from 0 to 1, i.e. ]1,0[iju  . For hard 

clustering methods, the membership level is either 0 or 1, i.e. }1,0{iju . The fuzzy 

C-means clustering method is a well-known fuzzy clustering technique, and it can 

be formulated as [186]: 


 
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ij ijA
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ij uu , }1,0{iju  (4-6) 

In the FCM, the matrix A is nn  diagonal matrix and could be formulated as 

the common form, i.e. IA  or consists of variances of X, i.e. 
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
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





2

2

2

)/1(           0          0

                               

0        )/1(       0 

0              0  )/1(








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



A . The membership level is either 0 or 1, i.e. }1,0{iju . 

The membership degree
iju  is ranging from 0 to 1, i.e. ]1,0[iju . It is rather common 

that m=1 or 2.  

Particle Swarm Optimization (PSO). Inspired by bird flock or fish school, the 

Particle Swarm Optimization (PSO) [185] is known for its simplicity and 
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considerable performance on optimization problems. In the PSO, the variables in an 

optimization problem are represented by particle position. For each particle, it can 

be represented as: ],...,,[
21 iDiii xxxx    in the D-dimensional space. In N-

observations fuzzy clustering optimization, each particle is represented as 𝑁 ×

𝑐 matrix with the assumption that the number of cluster is 𝑛. Here, the column of 

matrix is
T

ikNiiki xxxx
k

],...,,[
21k

  . The position of each particle in next moment is 

determined by its velocity, the local best (the best fitness value of that particle in 

history) as well as the global best (the best fitness value of all the particles). 

In each time step t, the particles are updated according to the following equations 

[185]: 

)()()1( tvtxtx iii   (4-7) 

))((

))(()()1(

2

1

txgbestc

txpbestctvWtv

i

iiiinerti





 
(4-8) 

where inertW   is an inertia weight, which employs the linear strategy in the 

optimization process, i.e. 𝑊𝑖𝑛𝑒𝑟𝑡 = 𝑊𝑒𝑛𝑑 + (𝑊𝑠𝑡𝑎𝑟𝑡 − 𝑊𝑒𝑛𝑑) × (𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟)/

𝑖𝑡𝑒𝑟𝑚𝑎𝑥. Parameters 1c and 2c are acceleration constants to control the step distance 

of particles.  

Combination of PSO and FCM (PSO-FCM).  To overcome the defects of the FCM, 

the improved method PSO has been combined with the FCM (called PSO-FCM) for 

feature selection. The main idea is to take advantage of the random and population-

based initialization and learning mechanisms of PSO to overcome the disadvantages 

of FCM (i.e., less robust for the global optimum). Moreover, the combination 
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method could also keep the priority of the fuzzy clustering methods such that the 

objects are not ‘forced’ to assign to the predefined clusters, which is very important 

to our further application where the prior knowledge of the system is unknown.   

The pseudo-code of PSO-FCM has been given in Algorithm 4-1. 

Algorithm 4-1: Pseudo-Code of PSO-FCM 

01 Input: extracted features transformed by vibration signals measured when the system is 

in varying health conditions. 

02 Initialization: Population size Pop, the parameters 𝑐1  and 𝑐2 , Max_iteration, the 

inertia weight of velocity 𝑤0  

03 Population initialization: 

04 Particles in group 1: Randomly generate a matrix like Eq (4-1) and satisfy the 

constraints defined in Eq. (4-6) as the initial position of the particle. 

05 Particles in group 2: The position of particle is initialized using the U partition matrix 

obtained by FCM. 

06 Evaluation: Compute the fitness value using Eqs (4-3)-(4-5), and find the local best (the 

best fitness value of that particle in history) as well as global best (the best fitness value 

of all the particles) of the particles by fitness comparison.  

07 Updating: Adapt the position matrix of the particles 

08 Optimization process 

09 While Max_iteration is not met 

10 Update the position using Eq. (4-7) and satisfy the constraints defined in Eq. (4-6); 

E If the current iteration = Max_iteration/2  

12 Do: Half poorer particles would be optimized by FCM;  

13 end 

14 Evaluation: Compute the fitness value using Eqs (4-3) to (4-5), and obtain the local best 

(pbest) as well as global best (gbest) of the particles by fitness comparison 

15 end while 

16 Output: the possibility of features to be selected and corresponding accuracy rate 

achieved by each feature. 

To select the most informative features, the PSO-FCM is applied to clustering the 

four different healthy conditions of the beam-like structure. The results are shown 

in Figure 4-2. 
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(d) 

Figure 4-2 Accuracy rate achieved by clustering method using the data provided by three 

sensors with individual time feature as signal representative 

 

 

Figure 4-3 Classification accuracy achieved by three sensors (i.e. A1, A2 and A3)  

 

From Figure 4-2 (a), the energy ratio (f15) is the most sensitive feature for fault 

classification of four health condition in terms of sensor A2, while maximum value 

(f1) and peak to peak (f4) are most effective features in terms of sensor A3, and peak 

to peak (f4) is also the most informative features for sensor A1. Except above-

mentioned features, crest factor (f10) and peak-magnitude-to-RMS ratio (f14) also 

show better the performance for fault classification according to three other 
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classification cases in Figure 4-2 (b) to (c). However, the maximum value (f1), peak 

to peak (f4) and the peak-magnitude-to-RMS ratio (f14) are similar in feature 

characterization. 

According to Figure 4-2 (d), the peak to peak (f4) is the most informative feature 

for sensor A1, the energy ratio (f15) is the most sensitive feature for fault 

classification of four conditions in terms of sensor A2, while the maximum value 

(f1) and peak to peak (f4) are most effective features for sensor A3. Considering 

that the feature characterization of the maximum value (f1) and peak to peak (f4) 

are similar, one of them will be selected to avoid the feature redundancy. Combined 

with the results from sensor A1, the peak to peak (f4) is selected.  

Even so, Figure 4-3 shows the classification accuracy achieved by the KNN (K=4) 

[127] using the optimization method, indicating that the number of features should 

be 3 to balance the best performance of the fault classification as well as the 

computational complexity. The feature crest factor (f10) seems to be more sensitive 

than the remaining features according to Figure 4-2 (d).  

Therefore, three features are selected for fault diagnosis: peak to peak (f4), crest 

factor (f10), and energy ratio (f15) are finally employed for fault diagnosis.   

4.2. Feature Based Fault Indicators 

Euclidean Distance (ED) is a commonly used approach for similarity 

measurement, but is susceptible to small distortions. Thus, the notion of deviation 

ratio is proposed as the feature indicator for fault diagnosis, which is to evaluate the 
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overall relative difference of two signals, defined as follows: 

𝐷𝑒𝑣(𝑋𝑛𝑖
, 𝑋𝑑𝑖𝑎𝑔) = ∑(𝑋𝑛𝑖

𝑘 − 𝑋𝑑𝑖𝑎𝑔
𝑘 )2

𝑘

/ ∑(𝑋𝑛𝑖

𝑘 − 𝑋𝑛
̅̅̅̅ 𝑘

)2

𝑘

 (4-9) 

where 𝑋𝑛𝑖
= [𝑋𝑛𝑖

1 , … , 𝑋𝑛𝑖

𝑁 ] (𝑛𝑖 = 1, … , 𝑀 ) represents the time domain features of 

𝑛𝑖
𝑡ℎ time series data measured from the previous fault-free or normal system, and 

the element 𝑋𝑛𝑖

𝑘  in 𝑋𝑛𝑖
 indicates the feature of 𝑘𝑡ℎ time interval data. 𝑁 is the 

feature dimensionality. 𝑋𝑑𝑖𝑎𝑔 = [𝑋𝑑𝑖𝑎𝑔
1 , … , 𝑋𝑑𝑖𝑎𝑔

𝑁 ] denote the time domain features 

of diagnosis signal. 𝑋𝑛
̅̅̅̅ = [ 𝑋𝑛

̅̅̅̅ 1
, … , 𝑋𝑛

̅̅̅̅ 𝑁
] are the mean values of the time domain 

features in the fault-free system, namely 𝑋𝑛
̅̅̅̅ 𝑘

=
1

𝑀
 ∑ 𝑋𝑛𝑖

𝑘𝑀
𝑛𝑖=1 .  𝑀 is the number of 

signals measured from the fault-free system. If there is only one dataset measured 

from healthy system, the deviation ratio is calculated as: 

𝐷𝑒𝑣(𝑋𝑛1
, 𝑋𝑑𝑖𝑎𝑔) = ∑(𝑋𝑛1

𝑘 − 𝑋𝑑𝑖𝑎𝑔
𝑘 )2

𝑘

 (4-10) 

In principle, the deviation rate should be close to zero if there is no fault and noise. 

However, input magnitudes at different measurements may not be identical (or 

sometimes very inconsistent), which would largely contribute to the variance of 

measurement data and decrease the accuracy of fault detection. To address the 

problem of this distance measure, the time series data are normalized with respect 

to the measured input magnitude. An improved deviation ratio ( 𝐼𝐷𝑒𝑣 ) is thus 

proposed as the feature indicator for fault diagnosis, which is to evaluate the overall 

relative difference of two signals, defined as follows: 

𝐼𝐷𝑒𝑣(𝑋𝑛𝑖
, 𝑋𝑑𝑖𝑎𝑔) =

∑ (𝑆𝑛𝑖

𝑘 − 𝑆𝑑𝑖𝑎𝑔
𝑘 )2

𝑘

∑ (𝑆𝑛𝑖

𝑘 − 𝑆𝑛
̅̅ ̅𝑘

)2
𝑘
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𝑆𝑛𝑖

𝑘 =
𝑋𝑛𝑖

𝑘

𝐵𝑛𝑖

𝑘 , 𝑆𝑑𝑖𝑎𝑔
𝑘 =

𝑋𝑑𝑖𝑎𝑔
𝑘

𝐵𝑑𝑖𝑎𝑔
𝑘 , 𝑆𝑛

̅̅ ̅𝑘
=

𝑋𝑛
̅̅̅̅ 𝑘

𝐵𝑛
̅̅ ̅𝑘 

(4-11) 

where 𝐵𝑛𝑖
= [𝐵𝑛𝑖

1 , 𝐵𝑛𝑖

2 , … , 𝐵𝑛𝑖

𝑁] is the real input magnitude of 𝑛𝑖
𝑡ℎ time series data 

measured from fault-free system, and 𝑆𝑛
̅̅ ̅  = [  𝑆𝑛

̅̅ ̅1
, 𝑆𝑛

̅̅ ̅2
, … , 𝑆𝑛

̅̅ ̅𝑁
 ] is the mean 

values of the real input magnitudes. To evaluate the change of the deviation ratio, 

the following relative index is adopted: 

𝑅𝑒_𝐷𝑒𝑣(𝑋𝑛, 𝑋𝑑𝑖𝑎𝑔) =
1

𝑀
∑

𝐼𝐷𝑒𝑣(𝑋𝑛𝑖
, 𝑋𝑑𝑖𝑎𝑔)

∑ 𝐼𝐷𝑒𝑣 (𝑋𝑛𝑖
, 𝑋𝑛𝑗

)𝑀
𝑛𝑗=1 /𝑀

𝑀

𝑛𝑖=1
 (4-12) 

where 𝑋𝑑𝑖𝑎𝑔 represents the signal to be detected, and 𝑋𝑛𝑖
 is the 𝑛𝑖

𝑡ℎ reference 

signal measured from the normal/healthy condition. M is the number of signals from 

normal/healthy system.  

4.3. Fault Detection 

It is a rather challenging task for fault detection when the prior knowledge of the 

normal operation system is limited and the prior knowledge of faulty states are 

unavailable. In our study, the adaptive threshold and statistical methods are 

combined for fault detection.  

4.3.1. Fault Indicator based Adaptive Threshold 

With limited prior knowledge of normal conditions, the threshold value is 

difficult to define. Above that, the applicable of threshold for fault detection might 

be even impacted by the number of samples from the normal state for knowledge 

basis. Since there is no standard guideline to the appropriate sample size for 
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threshold, in this study, an adaptive threshold is adopted and combined with 

statistical tests for fault detection when there are more than six groups of signals 

(except the outliers) measured from the normal conditions involved. 

It is assumed that there is no noise signals and outliers among the available data 

from the normal operational system. Otherwise, to decrease the disturbance, the k-

nearest neighbors (KNN) is applied to remove the outliers and noisy signals through 

an iterative process [31]. Similarity, a threshold is presented based on that concept 

for fault detection as shown in Eq. (4-13). 

𝑚𝑖𝑛𝑛𝑖
{𝐼𝐷𝑒𝑣 (𝑋

𝐴𝑠
𝑛𝑖 , 𝑋

𝐴𝑠
𝑑𝑖𝑎𝑔)} > 𝑇 

𝑢𝐴𝑠
𝑛 =

1

𝑀(𝑀−1)
∑ 𝐼𝐷𝑒𝑣 (𝑋

𝐴𝑠
𝑛𝑖 , 𝑋

𝐴𝑠

𝑛𝑗)𝑀
𝑖,𝑗=1 , 𝑇 = 𝑢𝐴𝑠

𝑛 + 𝑘𝜎(𝐴𝑠
𝑛) 

(4-13) 

where 𝑘 is a scale factor. The 𝑢𝐴𝑠
𝑛 represents the mean of the 𝐼𝐷𝑒𝑣, and  𝜎(𝐴𝑠

𝑛) 

is the standard deviation of such fault indicator. Thus, 𝑢𝐴𝑠
𝑛 + 𝑘𝜎(𝐴𝑠

𝑛) is the basis 

threshold for fault detection. The 𝑘 value should be tuned to ensure the accuracy 

of classification. Too large of a value might lead to the fail of fault detection. For 

the application in this thesis, the tune value is ranging from 0.5 to 2, i.e., 𝑘 = 0.5 +

1.5𝑒−𝑀/100. When monitoring the system, observations are probably collected in a 

consistent way. The data collected from the repeated measurement are kept, and the 

threshold values should be adaptive over the times. 

4.3.2. Statistical Methods 

When encountering with the system with limited knowledge of priori, especially 

the data measured from the normal operational system are limited and small in scale 



 80 

(e.g., two or three groups), the threshold is so difficult to obtain. To address this 

harsh conditions, statistical tests like T-test and related non-parametric tests are 

capable of fault detection by similarity comparison between the two datasets or two 

distributions (which are obtained from the repeated measurements on the same 

system).  

In a typical experiment, it is more practical to detect the system using two datasets 

with one dataset collected from the healthy system (for control) and another dataset 

collected from the diagnosis system (for measurement). Those disadvantage factors 

have greatly increased the challenge of fault diagnosis. Statistical methods and 

statistic-based indicators have been widely used for fault detection [45-48]. The 

threshold associated with a statistical test is obtained from p-value listed in a 

statistical table, and they are standardized and easy to implement. It is assumed that 

the signals measured from the healthy system are representative with lower noise 

disturbance.  

Although there is no obvious guidelines for choosing tests suitable for our 

application, we can say that it would not be advisable to use paired algorithms where 

there are any extreme outliers. In this thesis, three statistical methods (i.e. 

independent T-test, Kolmogorov-Smirnov test, and Wilcoxon rank-sum) frequently 

used for fault detection are adopted to measure the similarity of the two datasets 

with one reference dataset measured from the healthy system and another one 

diagnosis dataset measured from the diagnosis system.  
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(1) Unpaired or independent t test  Two-sample t test is used to test whether the 

means of two samples are different, i.e. the null hypothesis: the means of two 

samples are equal.  

  t =
𝑋1̅̅̅̅ − 𝑋2̅̅̅̅

𝑆𝑋1𝑋2√ 1
𝑛1 +

1
𝑛2

 

𝑆𝑋1𝑋2 = √
(𝑛1 − 1)𝑆𝑋1

2 + (𝑛2 − 1)𝑆𝑋2
2

𝑛1 + 𝑛2 − 2
 

where 𝑋1̅̅̅̅   and 𝑋2̅̅̅̅   are the means of two samples, 𝑆𝑋1  and 𝑆𝑋2  are the 

standard variance of two samples, and 𝑛1  and 𝑛2  are the corresponding 

capacity. It can be used only when samples are from Gaussian distribution or 

approximate shape of Gaussian distribution.  

(2) Kolmogorov-Smirnov test  As a nonparametric hypothesis test ( which do not 

depend on the assumption that values were sampled from Gaussian 

distributions), Kolmogorov-Smirnov test (K-S test) [57] is a popular statistical 

method to measure the probability that two datasets are from the same 

distribution (using two-sample K-S test) or a chosen univariate dataset is drawn 

from a given model (using one- sample K-S test). Two datasets do not need to 

be in same size. Though Chi-square goodness of fit test is one of most popular 

method to test the goodness-of-fit tests, this method is applied with large 

samples (> 30). K-S test has no constrict on sample size and is applicable for 

testing with small sample size. To measure the time series data, theoretical 

cumulative density function (CDF) will be obtained to compare data with the 
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reference distribution [35]: 

   𝑃(𝑥) = 𝑃(𝑋𝑖 ≤ 𝑥) = 𝑖/𝑁 

where 𝑋𝑖 is the value at 𝑖𝑡ℎ point when the data series 𝑋 is re-arranged in 

ascending order. 𝑁 is the total number of the data series. The distance D is 

defined as the maximum absolute distance between two CDFs. Mathematically, 

the KS test statistic is represented by: 

  D = max
𝑥1≤𝑥≤𝑥𝑛

(|𝐹1(𝑥) − 𝐹2(𝑥)|) 

The similarity probability of two series data using K-S test could be defined 

using mathematical formulation as follows [35]: 

   P(D) = 2 ∑ (−1)𝑖−1𝑒−2𝑖2𝜇2∞
𝑖=1 , 𝜇 = D(√

𝑁1𝑁2

𝑁1+𝑁2
+ 0.12 +

0.11

√𝑁1𝑁2/ (𝑁1+𝑁2)
) 

If the two vibration signals are similar in distribution, then the probability P(D) 

is approaching to 1. Otherwise, the similar probability P(D) is approaching to 

0 if two the distribution of two signals are different.  

(3) Wilcoxon rank-sum test [54] 

    W = ∑ ∑ ℎ𝑖,𝑗 +
𝑁1(𝑁1+1)

2

𝑁2
𝑗=1

𝑁1
𝑖=1 , ℎ𝑖,𝑗 = {

1,        𝑥𝑖 < 𝑥𝑗 ,

0.5,     𝑥𝑖 = 𝑥𝑗 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where N1 and N2 are the sizes of two samples. The main advantage of Wilcoxon 

test is that it is valid for the data from any distribution and less sensitive to 

outliers in comparison to two sample T-test. However, Wilcoxon test cannot 

reflect the location of differences.  

In statistical tests, 𝐹1(𝑥) is assumed to be a target distribution and 𝐹2(𝑥) is a 

reference distribution. The null hypothesis (H0) is that two samples are from the 
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same distribution, otherwise, the null hypothesis is no accepted. This can be 

formulated as follows. 

H0: 𝐹1(𝑥) = 𝐹2(𝑥),  H1: 𝐹1(𝑥) ≠ 𝐹2(𝑥).  

Since p-value is usually used to measure the probability that the distribution of 

reference signal is different from the diagnosis signal, it is widely accepted that the 

null hypothesis (H0) is to be rejected when p ≤ 5%. Otherwise, the null hypothesis 

fail to be rejected.  

 

Figure 4-4 The flowwork of the combined fault detection method 

4.3.3. Combined Method for Fault Detection 

Fault indicator based threshold method is combined with statistical tests for fault 

decision making. Figure 4-4 shows the overall framework of the combined method. 

If the number of signals collected from the normal operational system does not 

exceed the expected (more than six groups in this study), both the fault indicator 
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based threshold method and statistical tests are provided for fault detection. The 

abnormal system is suspected if a fault is detected by any of these two methods. 

4.4. Conclusion 

Signal preprocessing including feature computation and selection is provided 

before the fault detection and fault localization. Two methods with different 

requirements of priori are studied for fault detection. Specifically, the threshold 

method is suggested for fault detection if there are considerable signals measured 

from the healthy conditions containing the representative features of the system, 

while statistical tests are adopted when the prior knowledge of the system are limited. 

Since the main objective of this thesis is to present a comprehensive fault diagnosis 

method with the limited prior knowledge, those two methods are combined for fault 

detection.  
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Chapter 5.  Virtual Beam-like Structure Approach 

In this Chapter, a virtual beam-like structure (VBLS) approach is proposed for 

both single and multiple faults localization. The concept of virtual beam, the 

optimization methodology to construct the optimal virtual beam, and virtual beams 

for fault localization are all included.  

5.1. Concept of Virtual Beam-like Structure  

The concept ‘virtual beam’ stems from the inspiration that beam-like structures 

are basic structural components in various complex structural systems [187]. When 

the structure is excited with an appropriate input, the vibration transmission paths 

from the vibration source to other aspects of structure could be regarded as the 

“virtual beams” which could be applied to fault detection and localization since the 

energy intensity as well as the vibration transmission paths at some components are 

influenced by the occurrence of faults.  

In [188], it has been formulated that the signal contains the information content 

of energy received by corresponding sensor. The significant differences in signals 

are caused by the energy changes which could be captured by sensor nodes, and the 

information like damage localization and orientation can be obtained according to 

sensor distribution in the node. Still, this study focused on the development of a set 

of energy correlated damage indices based on transmission and reflection, it ignored 

the limitation of the priori. Based on this general knowledge, virtual beam-like 
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structure approach is proposed for fault diagnosis, and the fault diagnosis of 

complex structure can be transformed into a problem of optimal selection and fault 

diagnosis of virtual beams.  

Crack
A1 A2 A3

Vibration transmission path

Energy 

 

(a). Vibration transmission path along beam-like structure 

 

(b). Examples of virtual beams on a satellite-like structure  

Figure 5-1 Two typical examples of vibration transmission path along the structures  

To be clearer, a beam-like structure and satellite-like structure are applied as 

examples for formulation. A complex structure is regarded as a combination of 

numerous virtual beam-like structures considering the vibration transmission path 

from vibration sources to each sensor. From Figure 5-1 (a), energy transmission path 

is from the left bottom (i.e. vibration source) to the right of the beam, while entire 
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beam-like structure can be regarded as a vibration transmission path from the root 

to the top end represented by the sensor chain: A1-A2-A3. To apply this method to 

complex structures, virtual beams along vibration transmission paths in the complex 

structure can always be found by optimally selecting a chain of sensors from sensor 

networks distributed in the complex structures. Figure 5-1 (b) shows two typical 

virtual beams consisting of two sensor chains assigned on satellite-like structure 

from the bottom to other component along vibration transmission path (since the 

structure is excited from the bottom). The connection joint shown in Figure 5-1 (b) 

locates at the middle of those two sensor chains. That means the occurrence of the 

fault like loosening bolt on this connection joint, the signals measured by sensor 

chains can reflect the vibration transmission changes, especially the sensor located 

at the closer and after the damage, e.g. A20, A12. To be convenient, sensor on the 

virtual beam closer to the vibration source is named as root sensor (e.g., A11), while 

the one far away from the vibration source is regarded as top sensor (e.g., A15 and 

A31).  

Thus, it is rather important to select the appropriate sensors to construct optimal 

virtual beam for damage localization and orientation. 

5.2. Sensor Networks Distribution and Selection 

In large space structures (LSS), it is practical to apply the sensor network to fault 

diagnosis, but it was not effective to use all of them in terms of computational 

complexity and efficiency [189]. Thus, the methods for sensor placement have been 
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developed to obtain the fewer sensors for fault diagnosis [189-192]. With the 

continuous advances in sensor technology and senor placement methods, the sensor 

networks can be implemented for fault diagnosis of LSS with low-cost and high-

efficiency. In this study, the sensor are mounted on the complex structure as a 

network for fault diagnosis.  

Since the complex structure composes of various components, accordingly, 

sensors are grouped into numerous sub-networks. The separation of the sensor 

networks is studied based on components and search space to come up with optimal 

solutions and improve the fault localization accuracy. The concepts of region of 

influence (ROI) and region of coverage (ROC) in [170] are adopted for sensor 

network separation. ROI is the area around an event, while the sensors within that 

region are capable of fault detection in high probability (over 50%). ROC is the area 

around a sensor node where the occurrence of fault could be detected in high 

probability (over 50%). The distance between two sensors cannot too large 

considering the coverage of sensor network. While this distance also cannot too 

small in term of computational complexity and efficiency (The increase of the 

sensors would also bring the possibility of the negative influences of false 

information from the environment noise and other unexpected factors). For that 

consideration, the distance between two sensors is suggested to be as follows: 

𝑅𝑐/2 ≤ dis(𝐴1, 𝐴2) ≤ 2𝑅𝑐, where 𝑅𝑐 is the radius of the “region of coverage”. 

Take the small satellite-like structure as example. A satellite-like structure is 
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hanged from the top with a spring and a shaker is attached at the bottom. Potential 

faults can be fatigue cracks, bolt-loosening or fractures etc. This study focuses on 

bolt-loosening fault since it is easy to create in an experimental setup. Bolt-

loosening can happen in various hanging structures with a bolted-base connected 

with the main satellite-like structure, referred to as bolted-base hanging structures. 

The complex structure is probably divided as various components. Figure 5-2 shows 

some typical bolted-base hanging structures in a satellite-like model such as band 

antenna, solar panel, connectors.  

 

Figure 5-2 Typical bolted-base hanging structures in a statellite-like model 

As shown in Figure 5-3, accelerometers are evenly distributed on the 

substructures, named as sensor-networked structures. For the convenience of 

description, the sensor located on the ith row and jth column of the tth component is 

named StAji. Four connectors are named as P1, P2, P3, and P4, and the sensor on the 
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bottom of the connector Pi is named as ABi, and the sensor located on the top of the 

connect Pi is named ATi. The sensor networks are grouped on basis of the sub-

structures. Sensors on each solar panel are grouped as a network, and the sensors on 

the body are grouped as another network. Since sensors on the overlapping span of 

two or more sub-structures are capable of fault detection in neighbor regions, they 

could belong to any of the sub-structures in the process of virtual beam construction. 

For example, sensors AB4 and AT4 could be used for virtual beam construction in 

both solar panel and main body.  
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Figure 5-3 Sensor networks on the satellite-like structure 

Once a component is detected for the abnormal condition, the sensor network 

related to that component is adopted and applied to virtual beam construction for 

fault localization. The candidate sensors used for virtual beams construction for a 

single solar panel include the sensors on that solar panel and the sensors on the four 

adjacent connectors, while the sensors used at the left plane of the main body in 
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Figure 5-3 are assigned to both that direction of the main body and on the associated 

adjacent connectors. Based on sensors response of sensor networks, the potential 

faults could be isolated with respect to certain components, which could greatly 

decrease the computational complexity for analysis of all sensors and improve the 

efficiency for fault diagnosis. To further narrow the potential faults in a given 

component with fewer sensors, virtual beams are constructed using the optimization 

methodology formulated in the next section. 

5.3. Optimization Methodology for Virtual Beams  

To apply the virtual beam-like structure method for fault diagnosis, the proposed 

BAFS method is adopted for the construction of the optimal virtual beams by 

selecting sensor based chains from appropriate sensor networks. Specifically, the 

optimization methodology involving the fitness and constraints is presented in 

Section 5.3.1, and application of BAFS for sensor selection is given in Section 5.3.2. 

5.3.1. Objective Function and Methodology 

A larger value of the relative deviation ratio indicates a larger difference in the 

signals measured from the diagnosis system and the fault-free system. The different 

continuous sensor chains in the sensor network are potential candidates for the 

optimal virtual beam. The length of this path cannot be too long while selecting the 

most informative sensors that are sensitive to dynamic changes of feature within a 

small region. The objective of the optimal virtual beam construction considers two 
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parts: the maximum of the relative deviation ratio and the minimum of sensor 

routing.  

It is assumed that the sensor chain [𝐴1, 𝐴2, … 𝐴𝐷] is selected in the optimization 

process. The dimensionality D indicates the number of sensors for virtual beam. 

This resulting objective to be maximized is： 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =

∑
𝛼𝐴𝑠

𝑀
∑ 𝑅𝑒_𝐷𝑒𝑣 (𝑋

𝐴𝑠
𝑛𝑖 , 𝑋

𝐴𝑠
𝑑𝑖𝑎𝑔)𝑀

𝑛𝑖=1
𝑁
𝑠=1 ∑ 𝛼𝐴𝑠

𝛼𝐴𝑠+1
𝛽𝑠𝐷𝑖𝑠(𝐴𝑠, 𝐴𝑠+1)𝑁−1

𝑠=1⁄     

with 𝛼𝐴𝑠
= {

1, if sensor 𝐴𝑠  is used
0, otherwise                   

 

(5-1) 

Subject to:  

 ∑ 𝛼𝐴𝑠

𝑁

𝑠=1

≤ D (5-2) 

∑ 𝛼𝐴𝑟𝑗

𝑅

𝑗=1
≤ 𝑚𝑎𝑥𝑟𝑜𝑤 (5-3) 

|𝛼𝐴𝑟𝑘𝑐𝑣
× 𝑣 − 𝛼𝐴𝑟𝑘𝑐𝑗

× 𝑗| ≤ 1, 𝑘 = 1, … 𝑅, 𝑣 = 1, … 𝐶, 𝑗 = 1, … , 𝐶 (5-4) 

∑ ∑ 𝑟𝑗𝑐𝑘

𝐶

𝑘=1

𝑅

𝑗=1
= 𝑁 (5-5) 

∑ 𝛾𝐴𝑆
𝑀
𝑠=1 ≥ 𝐸𝑟𝑟𝑛𝑢𝑚,   𝛾𝐴𝑆= {

1, if 𝑚𝑖𝑛𝑛𝑖
{𝑅𝑒_𝐷𝑒𝑣 (𝑋

𝐴𝑠
𝑛𝑖 , 𝑋

𝐴𝑠
𝑑𝑖𝑎𝑔)} > 𝑇 

0, if 𝑚𝑖𝑛𝑛𝑖
{𝑅𝑒_𝐷𝑒𝑣 (𝑋

𝐴𝑠
𝑛𝑖 , 𝑋

𝐴𝑠
𝑑𝑖𝑎𝑔)} ≤ 𝑇

 (5-6) 

where N is the total number of sensors in a complex structure for fault detection—

see Eq. (5-5) and M is the number of signals measured from the fault-free system. 

𝑋
𝐴𝑠

𝑛𝑖   represents the time domain features of 𝑛𝑖
𝑡ℎ  signal measured by sensor 𝐴𝑠 

when the system is in a healthy state. Similarly, 𝑋
𝐴𝑠

𝑑𝑖𝑎𝑔 denotes the time domain 

feature of diagnosis signal measured by the same sensor. The number of sensors to 

construct a virtual beam is D—see Constraint (5-2)—which cannot be too large or 
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too small. Selecting a large number of sensors could contribute to larger regions for 

potential occurrence, while a smaller number could decrease the accuracy of fault 

localization. In our experience, it is appropriate to construct the virtual beam using 

three to five sensors.  

The virtual beam defined in the thesis represents one of vibration transmission 

path on the way from vibration sources to each sensor, and the most essential ones 

for the fault localization are aligned with the direction of vibration source. For 

convenience, we assume that the vibration source is in the direction of the 

corresponding column. The sensor network is denoted by row R and column C, and 

𝐴𝑟𝑣𝑐𝑘
  represents the sensor located at 𝑣𝑡ℎ  row and 𝑘𝑡ℎ  column of the sensor 

network. For each row, the number of sensors cannot exceed  𝑚𝑎𝑥𝑟𝑜𝑤 , as 

formulated using Constraint (5-3). Since the virtual beam is constructed with the 

sensors from varying rows, at least one sensor should be selected from each row 

(𝑚𝑎𝑥𝑟𝑜𝑤 < 𝐷). The sensors belonging to a sensor chain should be located as the 

neighbors if they are in the same row from the network, otherwise the selected 

sensor chain becomes invalid (see Constraint (5-4)). 

Constraint (5-6) illustrates that a fault might occur in the system if at least 

𝐸𝑟𝑟𝑛𝑢𝑚 sensors from the network indicate the abnormal. Larger number of alarm 

sensor means the system has a higher probability of being abnormal. However, if 

there is only one alarm sensor in a network, it is difficult to decide whether the 

system is healthy since the signal measured by the only alarm sensor might be 
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influenced by noise or other factors. The optimization process is terminated if 

Constraint (5-6) is not satisfied. This means that the system is detected in the normal 

state. The requirement of alarm sensor arises from the need to ensure that the system 

is in an abnormal condition. However, if the knowledge of priori is limited for 

threshold value (i.e. 𝑇), statistical methods are used for fault detection according to 

similarity measurement of two datasets. 

The distance between two adjacent sensors from sensor chain are represented by 

𝐷𝑖𝑠(𝐴𝑠, 𝐴𝑠+1). The minimum of the length of a virtual beam (i.e. the shortest route 

that visit every selected sensor exactly once) is adopted to select the most sensitive 

sensors and refine the region for fault isolation. β𝑚 is the weight vector for the 

relative distance (i.e., 𝐷𝑖𝑠) of the selected sensors, 𝐴𝑠 and 𝐴𝑠+1. The denominator 

illustration of the fitness function in optimization problem, i.e., 

 {∑ 𝛼𝐴𝑚
𝛼𝐴𝑚+1

𝛽𝑚𝐷𝑖𝑠(𝐴𝑚, 𝐴𝑚+1)𝑀
𝑚=1 }  in Eq. (5-1), is solved as a ‘shortest route 

problem’ using Genetic Algorithm (GA) in Matlab toolbox [193]. After 

implementing the optimization process, the optimal shortest route can be obtained.  

5.3.2. BAFS for Optimal Selection of Sensors 

The improved bacterial algorithm based feature selection (BAFS) is used for 

optimal selection of sensors to construct the effective virtual beams for fault 

diagnosis. The pseudo-Code for virtual beam construction is given in Pseudo-Code 

5-1.  
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Pseudo-Code 5-1 BAFS for virtual beam construction 

01 Input: The values of Re_Dev and IDev from sensor networks using a specific feature; 

𝑚𝑎𝑥𝑟𝑜𝑤; the least requirement of abnormal sensor number 𝐸𝑟𝑟𝑛𝑢𝑚; maximum number of 

sensors to be used to construct the virtual beam: D 

02 Initialization: Pop,  T1, T2, T3, C,  Max_iteration 

03 If Constraint (5-6) is satisfied or abnormal state is detected by statistical tests 

04 Do   

05 Fitness function: develop the fitness function according to Eq. (5-1); 

06 Calculate the fitness of all bacteria, and define Current_iteration=0 

07 Optimization process: 

08 If Current_iteration<Max_iteration 

09 Current_iteration= Current_iteration+1; 

10 Obtain the Pbest and Gbest      //Pbest is calculated according to the pseudo-code in Fig. 

1, and Gbest is the best position of the group 

11 For each bacterium 

12 Running: Adapt the position of bacteria using Eq. (3-2) 

13 Obtain the fitness f and compare with the original fitness Fit 

14 If Fit<f (assume that the objective is to minimize) 

15        Tumbling: Adapt the position of bacteria using Eq. (3-3) 

16 end if  

17 Adapt the W and A using Eqs. (3-7) and (3-8) 

18 End for 

19 For all bacteria 

20 Adapt the W using Eqs. (3-9) and (3-10) 

21 If Current_iteration >Max_iteration/2 and the Gbest is unchangeable for T1 times 

22      Reproduction: refer to BFO reproduction 

23 end 

24 If Current_iteration >Max_iteration/2 and the Gbest is unchangeable for T2 times 

25      Elimination: refer to BFO elimination 

26 end 

27 If Current_iteration >Max_iteration/2 and the Gbest is unchangeable for T3 times 

28     Premature termination    // end the optimization process 

29 end 

30 End for 

31 End If // the optimization process 

32 Output: The best position for the optimal represents the selected sensors (i.e. sensor chain 

or virtual beam)  

 

5.3.3. “Biased Running” based Optimization Methodology 

The main challenge for multiple-fault localization is that the occurrence of one 
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fault (or main event) probably brings about the abnormal reflection on numerous 

sensors, and sensors suffering from this main event (i.e., the kernel fault with the 

most serious influence on the system) might only reflect this fault and ignore the 

other potential faults. Though some sensors may be pointing to the potential faults, 

the extent of response cannot exceed those from sensors distributed close to the 

main events, which contributes to diminished detection capability of side faults. 

Such factors will exacerbate the difficulties associated with multi-fault isolation 

since other potential faults cannot be correctly isolated.  

 

Figure 5-4 Subnetwork separation based on region of influence 

(ROC is the area around a sensor node, in which the occurrence of fault could be detected in 

high probability (over 50%); ROI is the area around an event, while the sensors within that 

region are capable of fault detection in high probability (over 50%)) 

As shown in Figure 5-4, sensors on a component can be divided into several 

subsets according to the ROI (i.e., the area around an event, while the sensors within 

that region are capable of fault detection in high probability, over 50%) with some 

overlapping regions between two adjacent areas for fault detection. The loosening 

bolts of L1 or/and L3 located on the left of the solar panel structure are more likely 
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detected by the sensors in subnetwork 1, the sensors on the right region of 

subnetwork 2 are less effective in health monitoring these two bolts, and vice versa. 

Since the virtual beam consists of four to five sensors, the occurrence of the 

loosening bolt in L1 might be masked by loosening bolt of L4. 

In this thesis, a strategy, named ‘biased running’, is presented and embedded 

within the optimization process for obtaining multiple virtual beams to isolate the 

potential faults so as to decrease the possibility that the presence of some faults are 

masked by others. The “biased running” indicates that multiple independent runs of 

the optimization process by BAFS consists of more than one virtual beams 

consisting of different sensor chains. In the first run, the first virtual beam consisting 

of sensors is selected from the networks according to the values of feature indicator 

(i.e., Re_Dev) associated with the sensors from the networks. The solution in the 

first run consists of a sensor chain regarded as the kernel virtual beam used to isolate 

the fault with the most significant abnormal indication. If the sensor network related 

to the faulty component contains more than one subnetworks, in the second or/and 

later runs, more than one virtual beam are constructed. To eliminate the disturbances 

arising from the main event (i.e., main fault), the sensors selected in the former runs 

with the largest value of fault indicator are ignored during the latter runs. If there 

are N subnetworks in a component, N virtual beams consisting of N different sensor 

chains (at least one sensor is different) are obtained after the “biased running” 

process. The strategy of two biased running is descripted in Pseudo-code 5-2. 
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Pseudo-code 5-2: Biased running 

01 Input: Re_Dev of sensors from networks using a specific feature  

02 Calculation the number of subnetworks N according to Eq (5-7) 

03 For i=1:N 

04 If i=1 

05 Dataset: fault indicator values Re_Dev of sensors from the sensor network 

responsible for with the alarm component; 

06 else 

07 Dataset: fault indicator values Re_Dev of sensors from the sensor network 

responsible for with the alarm component, ignoring the most sensitive sensors 

(with the largest Re_Dev) already selected in the previous virtual beams; 

08 End if 

09 Sensor selection process by BAFS, referred to Pseudo-Code 5-1 

10 Solution: selected sensor chain (i.e. the virtual beam obtained in ith run) 

11 End for 

12 Output: Multiple virtual beams consisting of various sensor chains  

Generally, the iteration times of optimization process for the multiple virtual 

beams rely on the number of subnetworks in a component. It is assumed that there 

are 𝐶 × 𝑅 sensors mounted on a component. The number of iteration times 𝑁 is 

defined as: 

𝑁 = 𝑐𝑒𝑖𝑙 (
𝐶 × 𝑅

𝐷 × 𝐷
) (5-7) 

where 𝐷 is the length of sensor chain for virtual beam. If (
𝐶×𝑅

𝐷×𝐷
) is not an integer, 

then 𝑁 equals to the closest neighbor integer of the element 
𝐶×𝑅

𝐷×𝐷
. For example, if 

𝐶×𝑅

𝐷×𝐷
= 1.5 , then 𝑁 = 2 . However, if 𝐶 × 𝑅  is smaller than 𝐷 × 𝐷 , the iteration 

time is 𝑁 = 1. It means that there is only one virtual beam will be optimized for the 

fault localization. 

In a large space structure, multiple virtual beams are obtained, it is possible that 

the same fault is isolated by more than one virtual beams. In addition, a single virtual 

beam consisting of a chain of sensors might be imposed by multiple faults. Thus, 
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the fault localization based on the optimal virtual beams will be studied according 

to a beam-like structure in the next section. 

5.4. Validation of the “Virtual” Beam Method in a “Real” 

Beam-like Structure 

In this section, a “real” beam-like structure with cracks at different positions is 

studied to preliminarily validate the effectiveness of the proposed “virtual” beam 

method.  

5.4.1. The Beam-Like Structure 

The beam-like structure shown in Figure 4-1 consists of two layer bolted steel 

panels of square size (40cm*5cm*0.4cm). Breathing-like cracks (around 0.3cm) or 

loosening-bolt can be easily created in one layer at any known positions for 

benchmark studying (see Figure 4-1 (b)). The faults (e.g. cracks) at different 

positions can be denoted by R1, R2, and R3, and referred to as root crack, middle 

crack and top crack, respectively. Three accelerators are placed regularly on the 

beam at shown positions denoted by A1, A2 and A3. The beam-like structure is free 

at the top end and attached to a shaker stringer at the root end, and then the “virtual” 

beam is represented by the sensor chain A1-A2-A3 as shown.  

The system is firstly measured without any cracks or loosening bolts as reference 

signals and then is excited with known faults by using the same input. The 

measurement data under fault situations are used for fault feature characterization 
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and diagnosis. The input excitation used in our experimental testing is not 

necessarily any specific signal. For benchmark study, different inputs have been 

tested. Actually, our studies focus on the changes of vibration transmission, and thus 

the excitation magnitude of the input has no effect on the feature characterization 

and fault diagnosis. As an example, in this thesis, the input is a sweeping-frequency 

excitation from 20 Hz to 200 Hz with the exciting intensity 2g, the sample frequency 

8192Hz, and velocity 4 oct/min.  

5.4.2. Benchmark Testing on the Beam-Like Structure 

As given in Section 4.1, three features are selected for fault diagnosis: crest factor, 

energy ratio, and peak to peak are finally employed for fault diagnosis. Based on 

those three time domain features, the mean value and the standard variance of fault 

indicators in four different fault cases are shown in Table 5-1 and Figure 5-5.  

 

Figure 5-5 The mean and variance IDev of three sensors in different conditions  

From Figure 5-5, the deviation ratios from normal states of signal features are 
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always the smallest, and as the deviation ratio exceeds the normal acceptable level 

(e.g., threshold method: value of relative deviation ratio exceeds the upper 

boundary of the normal), a fault might exist in the system. The mean values and 

variances of the deviation ratio (IDev) given in Table 5-1 are shown in Figure 5-5. 

The main results as revealed by the sensor chain for fault diagnosis are 

summarized as:    

1) The occurrence of a root crack leads to the largest deviation ratios (Re_Dev) 

in all features from all three sensors in comparison to the deviation ratios 

(Re_Dev) obtained when the system is in the three other health conditions;  

2) When a crack located at the middle between sensor A1 and A2, the features 

from sensor A2 and A3 give the larger deviation ratios, especially for the 

second feature (energy ratio) and the third feature (peak to peak);  

3) The top crack located between A2 and A3 leads to larger feature deviation 

ratios in data from sensor A3, while the feature deviation ratios from sensor 

A1 and A2 have no significantly difference from the normal cases.  

b). The above insights provide a very useful basis for fault diagnosis including the 

fault occurrence and positions. As for the beam-like structure, the vibration 

energy is transmitted from the root (or left) to the top end (or right), along which 

the three sensors A1, A2 and A3 are located. 
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Table 5-1 The results of fault indicators based on features 

(* F1: Crest factor; F2: Energy Ratio, F3: Peak to peak)  

Sensors 
Normal (N) Root (R) Middle (M) Top (T) 

IDev (N) IDev (R) Re_Dev  IDev (M) Re_Dev  IDev (T) Re_Dev  

A1 

F1 0.34±0.26 1.74±0.19 5.12 1.57±0.09 4.63 1.04±0.53 3.07 

F2 0.24±0.19 2.72±0.21 11.23 2.21±0.36 9.15 1.52±0.41 6.29 

F3 0.09±0.08 2.74±0.17 27.57 1.34±0.06 13.49 0.39±0.17 3.92 

A2 

F1 0.11±0.06 4.14±0.36 38.33 3.26±0.36 30.46 2.19±0.67 20.44 

F2 0.04±0.03 5.04±0.22 126.88 3.09±0.23 77.83 1.01±0.25 25.23 

F3 0.05±0.05 1.69±0.05 31.07 1.46±0.13 26.69 0.24±0.16 4.49 

A3 

F1 0.39±0.22 11.36±1.41 29.15 2.76±0.63 7.08 4.83±3.59 12.41 

F2 0.14±0.13 60.37±19.16 436.54 8.01±5.14 57.90 22.36±26.2 161.67 

F3 0.05±0.04 1.44±0.04 29.27 1.54±0.19 31.29 0.32±0.21 6.54 

The finding that the occurrence of a crack along the way of vibration transmission 

path is manifested in the responses from sensors located on that path has been 

explained via energy based analysis in literatures [188, 194]. Generally, if the crack 

is located closer to the root of the vibration transmission path, the feature deviation  

ratios would be larger in more sensors along the vibration transmission path. If the 

fault position is far away from the root of the vibration transmission path, fewer 

sensors can detect the fault features.  

5.5. Fault Localization based on Virtual Beams  

In this section, the method for fault localization is presented using virtual beams. 

Since one or more virtual beams might be obtained after the optimization process, 

fault localization based on single virtual beam and multiple virtual beams are 

formulated, separately. 
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5.5.1. Fault Localization based on Single Virtual Beam 

The virtual beam can be automatically constructed by the proposed bacteria 

based optimization method and labeled by a corresponding chain of sensors placed 

in the structures along the vibration transmission path. The next stage is to decide 

the fault location according to beam-like structure. A summary of this beam-like 

structure approach for fault isolation is given as follows.  

1) Occurrence of fault close to vibration source found more alarm sensors from 

the network with a large deviation ratio in almost all features of sensors on 

beam-like structure;  

2) Occurrence of fault away from the vibration source may bring smaller alarm 

sensors with smaller deviation ratio in comparison to a fault close to the 

vibration source if the fault extent is the same;  

3) A fault results in a larger relative deviation ratio in the sensors that are close 

to the fault or at the afterward of the transmission path;  

4) The sensors locate closer to the vibration source are less capable of being 

detected if the fault is located far away from the vibration source.  
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(c) (d) 
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Figure 5-6 Typical examples of fault isolation according to the Re_Dev of the ‘virtual beam’  

(* Vibration transmission path is A1-A2-A3-A4 through A1 to A4, and every two neighbor 

sensors on that path located as neighbors on the structure)  

  

Accordingly, the summary from beam-like structure is presented above as a rule 

of generality for the virtual beam-like structure approach for fault localization. To 

be clear, some typical examples for fault isolation using ‘virtual beam’ have been 

shown in Figure 5-6. Four sensors (i.e., A1 to A4) from the sensor network are 

selected to construct a ‘virtual beam’. Here, for convenience, all four sensors are 

assumed to indicate the abnormal condition of the system though it is not a 

requirement for the optimal virtual beam (referred to Section 4.3). The vibration 

transmission path is from sensor A1 to sensor A4 and two neighboring sensors on 

that path are also the neighbors on the structure.  

The first sensor A1 is closer to the vibration source, the occurrence of fault around 

sensor A1 would bring larger Re_Dev to the sensors afterward of transmission path, 

e.g., in Figure 5-6 (a), Figure 5-6 (b) and Figure 5-6 (g). Even so, the signals might 

be influenced by the noise or other unexpected factors which might bring rather 
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large or small Re_Dev of some sensor like Figure 5-6 (f), the multiple positions are 

to study for a potential fault. An event is suspected for the potential fault if it is 

localized inside the region of convergence (ROC) [170] of a sensor node highlighted 

in Figure 5-6. 

In our study, three features are provided as the representatives for signals 

provided by sensors, so there might be more than one virtual beam for fault 

diagnosis. Thus, the rules for fault localization based on multiple virtual beams will 

be presented in the next section.  

5.5.2. Fault Localization based on Multiple Virtual Beams 

After the optimization process, more than one virtual beams might be obtained 

using time domain features. Though various virtual beams consisting of different 

sensor chains are available for fault localization, they might indicate a same 

potential fault position, which means that the system is probably suffering from only 

one fault rather than multiple case. However, if virtual beams reflect different fault 

position, we cannot conclude the system is definitely suffering from the multi-fault 

since the non-kernel virtual beam might be obtained because of the main event.  

To be clear, virtual beams obtained from a component with two subnetworks are 

taken as an example to illustrate. If there are two subnetworks in a component, two 

virtual beams would be constructed on the basis of each feature. A summary of fault 

localization based on virtual beams from different features is provided and shown 

in Figure 5-7. For each feature, if two virtual beams indicate at least two different 
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potential positions of fault, then more than one regions are suspected for fault 

examination. Otherwise, there is only one potential fault being isolated if two virtual 

beams indicate the same potential fault. Based on multiple features, a fault is 

considered in the system if it has been detected by at least two virtual beams based 

on features. While a component is suspected for multiple faults if more than one 

faults are detected simultaneously by multiple features.  

 

Figure 5-7 Virtual beams for fault localization based on time domain features 

Even so, the sensor chain obtained after the first run is considered as the kernel 

virtual beam which would be given the first priority of fault localization in 

comparison to the virtual beam created at the second run. When there is a conflict 

of decision between kernel virtual beam in one feature and second virtual beam 

based on another feature, the second virtual beam would conform to the potential 

fault position localized by the kernel virtual beam. 

5.6. Conclusion 

A novel virtual beam-like structure method capable of optimizing the fault 

diagnosis process for complex structures using sensor network with limited or  less 
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prior knowledge of faults has been developed and described in this section. The 

optimization algorithm presented in Chapter 3 is applied to construction of the 

optimal virtual beams using vibration sensors to enable automatic fault diagnosis. 

The beam-like structure is served as the benchmark system to provide some general 

rules to narrow the regions for the potential faults based on a given virtual beam. 

The validation of this optimization method based virtual beam-like structure 

approach for fault diagnosis will be conducted in the next section. 
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Chapter 6.  Fault Diagnosis of Complex Structures 

with Single Fault 

In this section, the VBLS approach is demonstrated by applying to detecting and 

isolating of a satellite-like structure with only one loosening screw. Figure 6-1 

shows the overall framework of the proposed method for fault diagnosis of complex 

structure with only single fault. To distinguish with multiple fault diagnosis, the 

strategy of biased running is not adopted since there is only one fault, and the 

threshold based method is applied to fault detection with the assumption that the 

prior knowledge of the normal conditions are available. 

 

Figure 6-1The overall framework of virtual beam-like structure approach (VBLS) for single-

fault diagnosis 

6.1. Experimental Platform   

As shown in Figure 6-2, a satellite-like structure is hanged from the top with a 

spring and a shaker is attached at the bottom. Potential faults can be fatigue cracks, 
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bolt-loosening or fractures etc. This study focuses on bolt-loosening fault since it is 

easy to create in an experimental setup. Bolt-loosening can happen in various 

hanging structures with a bolted-base connected with the main satellite-like 

structure, referred as bolted-base hanging structures (BBHSs) like solar panel.  

Feature dynamics without faults are available and the data with bolt-loosening 

faults can be obtained subject to a similar excitation by a shaker. Similar to beam-

like structure, accelerometers (PCB Model 356M131 with sensitivity 10mv/g) are 

placed as the network (e.g., 25 accelerometers evenly distributed on solar panel 

structure in Figure 5-3) for monitoring the fault condition of the BBHS. There is no 

restriction on the stationary of the process, but all samples are collected at the same 

time instant (spatial correlation). The input is adopted here as a sweeping-frequency 

excitation from 20 Hz to 200 Hz with the exciting intensity 0.4g, the sample 

frequency 8192Hz, and velocity 4 oct/min.  
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Figure 6-2 Satellite-like structure and testing platform 
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6.2. Experimental Testing and Results 

Varying bolt-loosening faults on the satellite-like model are considered. The 

typical complex substructures on the satellite-like model to be detected include solar 

panel, main structure body (or body unit), and band antenna.  

Though sensor location or placement approaches for optimal detection have been 

studied in the literature for modeling the system, few results have been obtained 

from the non-model methods. In existing studies, sensors are mostly placed at 

positions where faults occur frequently [184, 195], or installed along vertical, 

horizontal and axial directions to pick up the vibration signals [196, 197], or 

installed at positions determined by considering both the aspects [198]. The most 

popular method of isolating potential faults is to distinguish the fault according to 

faulty segments [184, 199], which is not applicable in our study since the unknown 

or limited priori. In our study, accelerometers were networked on structures to 

monitor the health condition of the system (e.g. the sensor networks in Figure 5-3).  

Currently, many algorithms have been proposed for sensor network localization. 

Among the model-free localization methods without requirements of prior 

knowledge of faults, a series of binary estimators are proposed for fault localization 

because of simple, low-cost and fault-tolerant. The frequently used binary 

estimators like fault tolerant maximum likelihood (FTML), Centroid Estimator (CE), 

Maximum Likelihood (ML), and subtract on negative add on positive (SNAP) were 

compared in [172], indicating that the SNAP was superior to other three methods 
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for fault localization in terms of accuracy and computational complexity.  The SNAP 

[170] was proposed for fault localization using a likelihood matrix to record the 

(negative or positive) contribution of each sensor node based on their observations. 

The potential fault is isolated at the event with the maximum value in that matrix.  

In this section, the proposed VBLS approach is compared with the SNAP for single 

fault localization. The studied component like solar panel is divided into a grid 

𝑔 with 100 × 100 cells and grid resolution is 𝑔 = 1. The radius of ROC is the 

length of 35 cells, i.e., 𝑅𝑐 = 35 (e.g. the distance between the sensor S1A15 and 

screw L1 in Figure 5-3), and 𝑅𝑐 = 𝑅𝐼. 

The sensor chain in our study is regarded as ‘virtual beam’ consisting of four 

sensors (D=4) used for initialization of the dimensionality (D) in BAFS. The 

minimum number of sensors with the abnormal signal are defined as 2 

(i. e. 𝐸𝑟𝑟𝑛𝑢𝑚 = 2) in two complex structures (i.e. solar panel and body unit) and 1 in 

the simple structure (i.e. band antenna). Since the maximum sensor for each row 

𝑚𝑎𝑥𝑟𝑜𝑤 should be smaller than D, we set 𝑚𝑎𝑥𝑟𝑜𝑤 = 3. The remaining parameters 

in the optimization method are initialized the same way as in the feature selection 

process. The threshold for each sensor for fault detection is determined by  𝑇 (Eq. 

(4-13)) on the basis of prior information in normal conditions. P-value for statistical 

tests is 0.05 (i.e. 95% confidential range). The dataset for the fault indicator is 

obtained through six independent measurements taken on the normal system and 
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two measurements from the diagnosis system. The weight vectors for the relative 

distance of sensors in this study are the same (i.e., equal to 1 for all elements).  

 

(a) Sensor network for fault diagnosis 

 

(b) Loosening screw state for detection 

Figure 6-3 Sensor networked structure of band antenna 

6.2.1. Fault Diagnosis on Band Antenna Structure 

The band antenna structure located at the top of satellite model was fixed on the 

bus unit with four screws along each direction. As shown in Figure 6-3, sensors were 

assigned on the band antenna along the vibration transmission path. Sensor A1 was 

located at the adjacent region of the band antenna and bus body could be used for 

construction of virtual beams in both two structures. Since the band antenna studied 

was a relatively simple structure with smaller sensors from the sub-network (A1, 

A2, A3, A4 and A5), optimization method was not necessary for determining 

optimal virtual beam and the virtual beam was constructed using all sensors if a fault 

was detected by any sensor. The vibration source was excited from bottom of the 

satellite, and transmission path was from sensor A1 to sensor A5. The diagnosis 

signals were measured from the system with one loosening screw (close to A1 and 

A2) shown in Figure 6-3 (b). 
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Table 6-1 shows the deviation ratio (IDev) and the relative deviation ratio (Re_Dev) 

for each sensor based on three feature representatives. The sensors that reflect the 

abnormal state of the system are highlighted in bold. The boxplots in Figure 6-4 

indicate similar conclusions using the feature presentative ‘peak to peak’ (with 

almost all alarm sensors). The changes of Re_Dev for the diagnosis signals 

(associated with sensors) are presented in Figure 6-5. Constraint (5-7) is not 

considered (since the number of sensors consisting of the sub-network is 5 without 

exceeding 10 required in BAFS). Since at least one of sensors from the virtual beam 

reflects the abnormal system, all features are appropriate during fault diagnosis.  

 

Figure 6-4 Comparison between the normal system and fault system according to IDev of 
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Figure 6-5 The changes of Re_Dev along the transmission path when the signals are from the 

diagnosis system (*sensors indicating the faulty system are highlighted in square shaped mark) 

 

Table 6-1 Deviation ratio (IDev) and relative deviation ratio (Re_Dev) based on feature 

representatives from sensor chain 

Features Sensor IDev (Normal) IDev (Diagnosis) Re_Dev (Disgnosis) 

Crest factor A1 2.3406±0.6023 7.5746±3.4380 3.2362 

A2 2.7046±0.8873 3.1256±1.0588 1.1557 

A3 3.5576±2.0509 5.6332±3.7526 1.5834 

A4 3.1285±1.7800 3.9444±2.4153 1.2608 

A5 3.0806±1.7391 4.7882±3.1536 1.5543 

Peak2peak A1 2.3098±1.4929 11.6090±9.0385 5.0261 

A2 1.7033±0.6558 15.2666±5.2243 8.9628 

A3 1.7497±0.8806 16.0499±8.1051 9.1729 

A4 1.7267±0.8479 15.6056±6.6677 9.0378 

A5 1.7385±0.8683 15.6677±6.9258 9.0121 

Energy ratio A1 2.2155±1.2793 7.3485±2.8031 3.3168 

A2 4.3239±3.2043 23.4715±16.2854 5.4283 

A3 8.8846±13.9156 8.7803±8.5731 0.9883 

A4 6.2454±5.3925 37.3870±35.2760 5.9863 

A5 22.7528±21.4871 166.4417±165.1747 7.3152 

According to the crest factor, only sensor A1 reflects the abnormal state. We 

cannot decide whether the fault locates in the body unit or band antenna. While the 

feature based on peak to peak shows the obvious fault state, Re_Dev of sensors A2-
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A3-A4-A5 are increasing. The potential fault is probably located around A2, A3 and 

A4 referring to Figure 5-6(a). Based on energy ratio, the potential fault is around 

sensors A1 and A2. Therefore, the potential fault is localized around sensor A2 and 

at the bottom of band antenna according to the proposed virtual beam based method. 

In this case, the potential fault is likely to be around sensor A2, which is also the 

situation found by SNAP method.  
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Figure 6-6 Sensor networked structure of solar panel 

6.2.2. Fault Diagnosis on Solar Panel Structure 

Solar panels are typical BBHSs in the satellite-like model. In this section, one of 

the solar panels was studied for the diagnosis of the loosening screw on that 

substructure. As shown in Figure 6-6, sensors distributed on the solar panel are 

mainly studied to monitor the health condition of this substructure. The signals for 

diagnosis are measured from the fault system with one loosening screw: loosening 

screw L2 or loosening screw L4.  

Table 6-2 gives the IDev and Re_Dev of the sensors from the virtual beams 
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obtained by the BAFS method. Two features (i.e. peak to peak and energy ratio) 

satisfying Constraint (5-6) are provided as representatives of the signals. The virtual 

beams obtained by optimization method are highlighted in Figure 6-7(b) and Figure 

6-8(b), and the potential faults based on virtual beam-like structure method are 

pointed in Figure 6-7(d) and Figure 6-8 (d).  

  

(a) Alarm sensors among the network 

  

(b). Virtual beams 

  

(c). Fault isolation based on SNAP 

  

(d). Fault isolation based on VBLS 

Figure 6-7 VBLS method and SNAP method for fault isolation when the diagnosis system is 

suffering from a loosening screw L2.  

In the first diagnosis system, the virtual beams obtained using two features were 

the same: A45-A55-A54-A53. The trend of Re_Dev in Figure 6-7 (d) was similar to 

the case in Figure 5-6(c), so the potential fault was around sensors A55 and A53. 

Thus, the potential fault was localized in L2 screw, which was identical to the actual 

condition of the diagnosis system. Similarly, virtual beams were constructed using 
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BAFS in second diagnosis system. The trend of Re_Dev based on the second virtual 

beam in Figure 6-8 (d) had indicated that the potential fault was in L4 screw (around 

sensor A23 and A24) or L2 screw (around sensor A43) — see Figure 5-6(f). The 

trend of Re_Dev based on the first virtual beam in Figure 6-8 (d) shows that the 

potential fault is L4 screw (around sensor A14 and A24) referring to Figure 5-6 

(f).Therefore, the loosening screw L4 was isolated using the proposed virtual beam 

method. 

Table 6-2 Results of feature-represented sensors based on optimal virtual beams (L2 and L4 

fault) 

Feature L2 Fault 

Virtual Beam IDev (Normal) IDev (Diagnosis) Re_Dev 

(Diagnosis) 

Peak2peak A45 0.1750±0.1297 3.6026±2.4374 20.5870 

A55 0.0733±0.0604 7.7350±2.8478 29.4732 

A54 0.1378±0.1046 1.0908±0.5258 7.9151 

A53 0.2010±0.1393 5.4318±1.8984 27.0194 

Energy ratio A45 0.0910±0.0743 5.6291±1.8934 61.8600 

A55 0.0733±0.0604 7.7350±2.8478 105.5254 

A54 0.0579±0.0346 1.0333±0.8878 17.8584 

A53 0.0659±0.0524 8.3404±2.4909 126.5724 

Feature L4 Fault 

Virtual Beam IDev (Normal) IDev (Diagnosis) Re_Dev 

(Diagnosis) 

Peak2peak A35 0.0877±0.0691 5.4717±2.1814 62.4085 

A25 0.0801±0.0664 4.3116±1.7888 53.8325 

A24 0.0607+0.0382 3.9737±1.9708 65.4589 

A14 0.0649±0.0383 4.6388±2.0632 71.4539 

Energy ratio A24 0.0806±0.0549 10.9196±6.7638 135.4077 

A23 0.0920±0.0641 9.9495±3.9524 108.0746 

A33 0.0563±0.0285 2.9290±0.8344 52.0444 

A43 0.0965±0.0961 23.1811±23.1811 240.1040 
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(a) Alarm sensors among the network 

 

(b). Virtual beams 

  

(c). Fault isolation based on SNAP 

  

(d). Fault isolation based on VBLS 

Figure 6-8 VBLS method and SNAP method for fault isolation when the diagnosis system is 

suffering from loosening screw of L4. 

The distribution of alarm sensors are shown in Figure 6-7 (a) and Figure 6-8 (a) 

when the diagnosis system is suffering from the loosening screw of L2 and L4, 

respectively. Based on the distribution of alarm sensors, the potential fault positions 

detected by SNAP approach are isolated and highlighted in Figure 6-7 (c) and Figure 

6-8 (c). According to the SNAP approach, the sensors indicating the abnormal state 

were mainly located at the right of solar panel. As shown in Figure 6-7 (c), the 

system was determined to have been beset by L4 fault according to peak to peak, 

but L2 fault was detected in terms of energy ratio. Thus, it could be difficult to 

distinguish between faults located in L2 screw and L4 screw, which provided larger 

potential fault region for further carefully study. In the second diagnosis system, 
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(see Figure 6-8 (c)) the L4 fault was isolated by both the feature representatives 

since the alarm sensors were mainly located nearby. Therefore, the fault decision 

for the second diagnosis system was considered to have been located at the 

loosening screw L4 using SNAP. 

In comparison to SNAP approach, the proposed virtual beam-like structure 

method is more effective in isolating the loosening screw on solar panel by 

providing more accurate indications for fault localization and narrowing the 

potential fault region for further immediate remedies. 

 

Figure 6-9 Sensors are networked on main body of satellite-like structure for 

virtual beam construction. *Four regions (i.e. P1, P2, P3 and P4) are frequently 

suffering from the loosening screw fault. 

6.2.3. Fault Diagnosis on Body Structure 

As shown in Figure 6-9, the main body of the satellite-like model is more complex 

in comparison to solar panel. The screws at the bottom of four cone shaped 

connectors are the only tools connecting the solar panel to the main body. Therefore, 
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loosening of those screws lead to rather serious safety problems and need to be 

detected and isolated at the very beginning.  

Table 6-3 Results of feature-represented sensors based on optimal virtual beams (P1-P4 fault) 

Feature P1 Fault 

Virtual Beam IDev (Normal) IDev (Diagnosis) Re_Dev  

Peak2peak A22 0.0171±0.0153 0.0699±0.0365 2.1744  

A32 0.1084±0.1304 0.2356±0.1937 4.0928  

A42 0.0088±0.0073 0.0755±0.0229 8.5735  

A52 0.0310±0.0269 0.3838±0.0834 12.3835 

Energy ratio A41 0.0211±0.0157 0.2008±0.0567 9.5137  

A51 0.0237±0.0158 0.2397±0.1191 13.2868 

A52 0.0060±0.0030 0.2427±0.0549 40.3969 

A42 0.0620±0.0614 0.8238±0.2653 10.1163 

Feature P2 Fault 

Virtual Beam IDev (Normal) IDev (Diagnosis) Re_Dev  

Energy ratio A24 0.0581±0.0434 0.4232±0.1662 7.2870  

A34 0.0967±0.0665 0.5952±0.0903 6.1519 

A44 0.0919±0.0796 1.1293±0.1430 12.2862 

A54 0.1140±0.0834 1.6128±0.2069 14.1411 

Feature P3 Fault 

Virtual Beam IDev (Normal) IDev (Diagnosis) Re_Dev  

Crest factor A12 0.1378±0.1307 0.7181±0.3769 5.2118 

A22 0.0731±0.0695 0.7341±0.3300 10.0403 

A32 0.1633±0.1250 0.5403±0.2106 3.3096 

A42 0.0897±0.0774 0.8181±0.4341 9.1219 

Peak2peak A22 0.0666±0.0399 0.6482±0.2195 9.7384 

A32 0.1579±0.1310 1.1124±0.6299 7.0446 

A42 0.0673±0.0440 0.6619±0.2356 9.8287 

A52 0.2250±0.1828 1.7278±0.7503 7.6788 

Energy ratio A22 0.0862±0.1289 1.0500±0.5418 12.1821 

A32 0.3204±0.2403 2.3689±1.7827 7.3931 

A42 0.0807±0.0983 1.1618±0.6217 14.3971 

A52 0.0987±0.0710 1.5787±1.1465 15.9921 

Feature P4 Fault 

Virtual Beam IDev (Normal) IDev (Diagnosis) Re_Dev  

Energy ratio A24 0.0581±0.0434 0.6518±0.1090 11.2240 

A25 0.0468±0.0374 0.1695±0.0943 3.6236  

A35 0.0343±0.0284 0.2895±0.1099 8.4406  

A45 0.0283±0.0156 0.1030±0.0549 3.6396 

Accelerometers used for fault diagnosis of main body were from multiple 

subnetworks since there were several adjacent substructures. As shown in Figure 
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6-9, sensors A22, A24, A42 and A44 assigned to the four cone shaped connectors 

were on the band of adjacent substructures (body unit and cone shaped connectors), 

which could be used for the construction of the optimal virtual beams using BAFS. 

The sensors were distributed evenly over the main body (5 × 5). Four positions, i.e., 

P1, P2, P3 and P4, were frequently suffering from the screw-loosening. Therefore, 

the diagnosis signals were measured when each of them was caused by a loosening 

screw, e.g., one loosening screw on P1 (or P2, P3, P4).   

Table 6-3 gives the Dev and Re_Dev values of the sensors from the optimal virtual 

beams obtained by the BAFS. Only one feature (energy ratio) was used for fault 

diagnosis when the diagnosis system was suffering from P2 and P4 faults with 

respect to Constraint (5-7), while two features (energy ratio and peak to peak) and 

all the three features were used for fault diagnosis when the main body was suffering 

from P1 and P3 faults. The results of Re_Dev values are listed in Table 6-3 

graphically presented in Figure 6-10 to Figure 6-13. 

According to Figure 6-10, two virtual beams were obtained using two feature 

representatives: A22-A32-A42-A52, and A41-A42-A52-A51. As there were only 

two alarm sensors on the first virtual beam (sensors A42 and A52), the potential 

fault based on the first virtual beam was around sensors A42 and A52, i.e., fault P1. 

According to Figure 5-6(b), the potential fault was around sensor A41, A42 and A52 

according to the trend of fault indicator based on the second virtual beam. Therefore, 

the fault decision based on virtual beam-like structure was fault P1. According to 
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the response of alarm sensors, the potential fault position isolated by SNAP was 

highlighted in Figure 6-10 (c), indicating that the potential fault was located at P1. 

The diagnosis signals measured from the P1 fault system could be detected correctly 

by both methods. 

 

 

(a) Alarm sensors among the network 

 

 

(b). Virtual beams 

 

(c). Fault isolation based on SNAP 

 

(d). Fault isolation based on VBLS 

Figure 6-10 VBLS method and SNAP method for isolation of P1 fault. 

Clearly, the diagnosis signals measured from the system with P2 fault could be 

detected correctly by virtual beam-like structures. As shown in Figure 6-11, only 

one virtual beam was obtained after conducting the optimization process by BAFS. 

According to Figure 5-6(e), P2 fault was detected and isolated by this virtual beam 

consisting of sensor chain: A24-A34-A44-A54. However, it was confusing to find 

different fault localizations when the SNAP method was used. Also, alarm sensors 
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were mainly located at the forth column except for sensor A22. The location of P2 

could not be identified by SNAP directly because of the distribution of sensor A22. 

It was obvious that the VBLS method was more effective while locating fault P2 

since the construction of virtual beam had considered not only the sensors indicating 

the faulty system with large fault indicators but also the relative positions of the 

sensors on the structure.  

 

(a) Alarm sensors among the network 

 

(b). Virtual beams 

  

(c). Fault isolation based on SNAP 

  

(d). Fault isolation based on virtual beam 

method 

Figure 6-11 VBLS method and SNAP method for isolation of P2 fault. 

Figure 6-12(a) shows that the alarm sensors were located mainly at the second 

column of the sensor network when the main body is suffering from P3 fault, which 

is a typical case found in beam-like structures. According to the first virtual beam 

(i.e. A12-A22-A32-A42), the trend of fault indicator based on the sensor chain 

indicate the around sensors A12 and A22, i.e., P3 fault, in Figure 5-6(c). However, 
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the SNAP method based on the location of alarm sensors could not distinguish the 

faults of P1 and P3. The alarm sensors distributed in varying positions made it 

difficult for SNAP method to decide the accurate localization of potential fault.  

 

(a) Alarm sensors among the network 

 

(b). Virtual beams 

 

(c). Fault isolation based on SNAP 

 

(d). Fault isolation based on virtual beam 

method 

Figure 6-12 VBLS method and SNAP method for isolation of P3 fault. 

When the diagnosis signals were measured from the system suffering from P4 

fault, a virtual beam was obtained using BAFS: A24-A25-A35-A45. According to 

Figure 6-13(d), the potential fault was positioned around sensors A24 and A35 

according to the fault localization methods given in Figure 5-6(d). Considering that 
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the sensors located in the fourth row and fifth rows were not alarm sensors, the 

potential fault could not be P2. Thus, the fault was isolated around P4 using the 

proposed method. However, it was difficult for SNAP to isolate fault P4. As shown 

in Figure 6-13(a), five alarm sensors were available but distributed in varying 

positions. As a result, the potential fault position was localized at the region between 

P2 and P4. Not considering the vibration transmission path and relative positions of 

sensors had rendered the SNAP method less effective for fault localization. 

 

(a) Alarm sensors among the network 

 

(b). Virtual beam  

  

(c). Fault isolation based on SNAP 

  

(d). Fault isolation based on virtual beam 

method 

Figure 6-13 VBLS method and SNAP method for isolation of P4 fault. 

6.3. Discussion and Conclusion 

A virtual beam-like structure method has been investigated above. It is based on 

the finding that occurrence of the fault on the way of vibration transmission path 
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will be manifested in the response of sensors on that path. Though vibration 

transmission in complex structures is quite complicated, the vibration transmission 

paths consisting of vibration sensors can be found in a straightforward manner by 

BAFS from networks according to the response of sensors and relative positions 

between them.  

Extensive experimental studies have indicated that this VBLS approach quite well 

for the considered complex satellite-like structures (e.g., solar panel, bonds, body 

module, band antenna), and has shown the advantages for fault diagnosis in 

comparison to the SNAP method, e.g. providing more accurate fault localization 

when the diagnosis system is detected in abnormal state. The vibration signals can 

be characterized as time domain features susceptible to uncertain environment noise. 

Sensors keeping a distance on vibration energy path could also reflect the abnormal 

condition of the system. Consequently, wrong or ambiguous diagnosis might be 

obtained using SNAP method.  

In virtual beam-like structure method, the vibration transmission path, regarded 

as ‘virtual beam’, consisting of a chain of sensors (from sensor networks) can be 

obtained automatically by optimization algorithm, which makes it easier for fault 

localization by narrowing the region where the potential fault might be located. It 

may therefore be conclude that, in comparison to SNAP method, the proposed VBLS 

method is more reliable for fault localization.  
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Chapter 7.   Fault Diagnosis of Complex 

Structures with Multiple Faults 

Though VBLS approach for single-fault diagnosis is studied in Chapter 6, the 

threshold based fault detection method is adopted with the assumption that prior 

knowledge of the normal system is available. In this Chapter, the statistical 

approaches are combined with the adaptive threshold for fault detection, and the 

VBLS approach is validated for fault localization of both single and multiple fault 

localization without using the prior knowledge of faults and using the limited prior 

knowledge of normal operational conditions.  

7.1. Problem Formulation  

Occurrence of multiple faults indicates the presence of a set of single faults, 

simultaneously. The number of faults and faulty sites are unknown. The extent of 

faults is probably different so that the presence of some faults might be masked by 

others [200]. The occurrence of one fault (or main event) probably brings about the 

abnormal reflection on numerous sensors, and those sensors suffering from this 

main event (i.e. kernel fault with most serious influence on the system) might only 

reflect this fault and ignore the other potential faults. Though some sensors may 

indicate the potential faults, the response extent of those sensors cannot exceed the 

sensors distributed near closed to that main events, which contributes to the less 

detection capability of side faults. Those factors will increase the difficulties for 
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multi-fault isolation since other potential faults cannot be correctly isolated. 

   

(a) Multiple faults on body (b) Multiple faults on solar 

panel 

(c) Multiple faults on both 

body and solar panel 

Figure 7-1 Examples of multiple faults on satellite-like structure 

Our study focuses on the fault diagnosis of complex structure with one or multiple 

faults on various components. Take a satellite-like structure as an example. As 

shown in Figure 7-1(a), the first case is the fault occurring on the bottom where the 

screws are working for the connection of a cone shaped-joint with the structure body. 

The second case is the fault located on the top of joint where there is only one screw 

for each joint to fix the solar panel on the hard, conic-like joint and to further 

connect to the structure body, which has been shown in Figure 7-1 (b). For multiple-

fault cases, the faults might locate at varying substructures. For example, one fault 

occurs on the main body and one locates on the solar panel, as shown in Figure 7-1 

(c). In this thesis, above mentioned three cases will be studied, and an effective and 

easy handling method based on virtual elements and feature characterization will be 

presented for fault diagnosis of structures with one fault or multiple faults. 
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Figure 7-2 Correlation of time and frequency under sweeping-frequency excitation 

 

At the very beginning, the reference signal is measured from the studied system 

which is in the normal state without any cracks or loosening bolts. Under the same 

input, another group of vibration signal referred as diagnosis signal is measured 

when the system is excited at the different moment. For benchmark study, bolt-

loosening on the adjacent substructures is studied since it frequently occurs in 

various hanging structures with bolted-based connected sub-component and can 

easily implement for experimental study. As shown in Figure 7-2, the input is 

adopted here as a sweeping-frequency excitation from 20 Hz to 200 Hz with the 

exciting intensity 0.4g, the sampling frequency 8192 Hz, and velocity 4 oct/min.  
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Figure 7-3 The overall framework of virtual beam-like structure approach (VBLS) for multi-

fault diagnosis 

7.2. Experimental Testing and Results 

Different from the experimental tests in Chapter 6, in this section, the VBLS 

approach is applied to fault diagnosis of complex structures which might be 

suffering from more than one faults. Figure 7-3 shows the overall framework of the 

proposed method for multiple fault diagnosis. Biased running strategy is embedded 

in the optimization process to create multiple different virtual beams for a specific 

component with abnormal indicating sensors.  

Based on SNAP, the decentralized SNAP (i.e. DSNAP) [171] was developed for 

multiple fault localization, in which all the alarm sensor nodes were the fusion 

center and tracking the response of their neighbors. Even so, the accuracy of fault 

localization is frequently decreased because of faulty sensors. To address the 

negative influence of faulty sensors, the recent Trust Index based Subtract on 

Negative Add on Positive (TI-SNAP) approach was developed and shown the 

superior for multiple fault localization in comparison to the DSNAP. In this section, 
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the proposed VBLS approach is compared with the TI-SNAP [173] to localize one 

or more faults using sensor network. The studied component like solar panel is 

divided into a grid 𝑔  with 100 × 100  cells and grid resolution is 𝑔 = 1 . The 

radius of ROC is the length of 32 cells, i.e., 𝑅𝑐 = 32 and 𝑅𝑐 = 𝑅𝐼. More detail can 

be referred to [173]. 

7.3.1. Experimental Platform 

To validate the effectiveness of the virtual beam-like structure approach for fault 

diagnosis of the complex structure which might be suffering from one or multiple 

faults, the satellite-like structure is adopted. Considering the bolt-loosening fault 

frequently occurs in BBHSs, the satellite-like structure with one or more loosening 

bolts is studied in this Chapter.  

The same satellite-like structure adopted in previous Chapter (shown in Figure 

6-2) is also studied for multi-fault diagnosis. The bolted-base connected structures 

like solar panel, main body on the satellite-like system are studied, and varying bolt-

loosening faults on the satellite-like model are considered and intend to be isolated 

using the proposed virtual beam-like structure approach. Sensors are evenly (e.g., 

5 × 5) distributed on the structure as shown in Figure 5-3. The sweeping-frequency 

excitation from 20 Hz to 200 Hz is adopted with the exciting intensity 0.5 g, sample 

frequency 8192 Hz, and velocity 0.4 oct/min.  
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7.3.2. Multi-Fault Diagnosis on Solar Panel 

The solar panel is connected to the main body by four bolts, namely, L1, L2, L3 

and L4. Referring to Figure 5-3, the sensor networks for the virtual beams include 

the sensors on the solar panel (25 sensors) and sensors on the adjacent connectors 

(8 sensors). Considering that the solar panel is connected to the main body by four 

cone-shaped connectors, we can say that the presence of a single loose bolt should 

have a negative impact on the functioning of the solar panel. Hence only two bolts 

are studied for early potential fault diagnosis. In the following, experiments on solar 

panel with one or two loosening bolts (see Figure 7-1(b)): L1 fault, L1&L2 faults, 

and L1&L3 faults  

1). L1 fault condition 

Figure 7-4 shows the responses from the sensors on the solar panel and the virtual 

beams as constructed by the optimization method while the diagnosis signals are 

measured from the system suffering from loosening bolt at L1. The point figures 

represent the sensors distributed in the solar panel. The sensors pointing to a faulty 

system are highlighted in Figure 7-4 (a)-(c). In Figure 7-4 (d)-(f), the sensor chain 

highlighted using circled marks represents the virtual beam in the first run and 

another sensor chain highlighted with squared marks in the second run (of the 

optimization process). The trends of fault indicator associated with the sensors on 

the virtual beams are also given in the figure below. 
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 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

 

 

 

 

(d) Crest factor (VBLS) 

 

(e) Peak to peak (VBLS) 

 

(f) Energy ratio (VBLS) 

Figure 7-4 Response of sensors from the solar panel and virtual beams constructed by 

optimization method when diagnosis signals are measured from system suffering from 

loosening bolt at L1 

Based on VBLS, two virtual beams with two sensor chains: A24-A14-A15-A25 

and A13-A14-A15-A25 are obtained on the basis of crest factor. The first virtual 

beam indicates that the fault is around sensor A24 since the largest fault indicator 

value manifests in sensor A24 and it contributes to the construction of the kernel 

virtual beam in the first run. According to the second sensor chain (A13-A14-A15-

A25), the fault is probably located around sensor A25. Thus, based on two virtual 

beams, fault L1 located on the top left of the structure is isolated by considering the 

crest factor.  

Similarly, in Figure 7-4 (e), two virtual beams are constructed based on the peak 

to peak. The first virtual beam consisting of sensor chain A34-A35-A25-A15 

indicates that the fault is likely to be located on the top left. Referring to Figure 5-6 
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where the trend of the second virtual beam is represented by the sensor chain A22-

A23-A33-A43, the fault is around sensors A22 and A23. This implies that the fault 

is probably in L1 or L3 according to the corresponding ROCs. The virtual beams 

based on the energy ratio show that the fault is most likely located at the top left of 

the structure. According to the fault isolation rules described in Section 5.5.2, a fault 

is considered only if it is isolated by at least two virtual beams. As such, only L1 is 

isolated by the VBLS approach.  

   

 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

Figure 7-5 Fault localization using TI-SNAP when diagnosis signals are measured from system 

suffering from loosening bolt at L1 

Figure 7-5 shows the potential fault events localized by TI-SNAP. The event L1 

at the top left is isolated on the basis of all three features, but event L4 at the bottom 

right of the component is also identified by crest factor (see Figure 7-5 (a)) and peak 

to peak (see Figure 7-5 (b)). Thus, according to TI-SNAP, at least two events (L1 

and L4) are isolated simultaneously by more than one features, which provides 

larger regions for potential fault isolation. 

In the case of loose screw L1, the VBLS approach shows the advantage to isolate 

the single fault and provides the more accurate information for fault localization of 

the potential fault. 

2). L1&L2 faults condition 
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In Figure 7-6, since all the three features have detected a faulty system, they are 

all considered to be valid and applicable for the purpose of virtual beam construction 

using the optimization method. The virtual beams obtained using the two biased 

optimization processes are shown in Figure 7-7. 

 

 

 

 (a) Crest factor  (b) Peak to peak (c) Energy ratio 

Figure 7-6 Response of sensors on solar panel when it is suffering from loosening bolts at 

L1&L2 

According to in Figure 7-7 (a), two virtual beams A34-A35-A25-A15 and A35-

A34-A44-A45, are obtained using the crest factor. According to the first sensor 

chain, a fault is probably located at the top left of the solar panel, i.e., L1, while the 

second sensor chain indicates that a fault is present at the top right of the structure, 

i.e., at L2. Thus, L1 and L2 are both isolated using the crest factor. However, based 

on the virtual beams on the basis of peak to peak, only L1 is localized as shown in 

Figure 7-7 while the virtual beams obtained according to the third feature (energy 

ratio) imply the possibility of multiple faults (L1 and L2). Specifically, the trend of 

the fault indicated by the first virtual beam (sensor chain A43-A33-A34-A35) 

indicates that the fault is around sensors A43, A34 and A35, so L2 is most likely to 

be isolated. Meanwhile, the second virtual beam consisting of the sensor chain A34-

A24-A14-A15 indicates that the fault is located at L1. Since both L1 fault and L2 

fault are isolated by crest factor and energy ratio simultaneously, it may be 
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concluded that the system contains two faulty sites, L1 and L2. 

In contrast to the VBLS approach, the TI-SNAP approach focuses on the positions 

of alarm sensors which have been highlighted in Figure 7-8. Based on the regions 

containing the leader sensors reflecting the faulty system, the faulty sites are 

localized at L3 and L4 using crest factor, L1 using peak to peak, and L3 using energy 

ratio. Though the trust index is adopted to assign the weights for the sensor nodes 

based on their historic records in failing alarm, the harsh condition with limited 

available prior knowledge makes the poorer performance of TI-SNAP approach for 

fault localization.  

 

 

 

 

(a) Crest factor 

 

(b) Peak to peak 

 

(c) Energy ratio 

Figure 7-7 Virtual beams constructed using optimization method when the system is 

suffering from loosening bolts at L1&L2 

 

   

 (a) Crest factor  (b) Peak to peak  (c) Energy ratio  

Figure 7-8 Fault localization using TI-SNAP when diagnosis signals are measured from system 

suffering from loosening bolt at L1&L2 
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3). L1&L3 faults condition 

When the diagnostic signals are measured from the solar panel (owing to 

loosening of bolts at both L1 and L3), all the three features are capable of fault 

detection and the sensors indicating the faulty system are highlighted in Figure 7-9. 

While virtual beams constructed using the optimization method are shown in Figure 

7-10. Based on the alarm sensors in Figure 7-9, the potential fault positions are 

highlighted in Figure 7-11 using TI-SNAP approach. 

 
 

 

 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

Figure 7-9 Response of sensors on solar panel when it is suffering from loosening bolts at L1&L3  

 

 

 

 

(a) Crest factor 

 

(b) Peak to peak 

 

(c) Energy ratio 

Figure 7-10 Virtual beams constructed using optimization method when the system is 

suffering from loosening bolts at L1&L3 

Obviously, as shown in Figure 7-10, the virtual beams created according to the 

crest factor indicate that the potential fault of the system is on the left side of the 

panel, and the virtual beams obtained on the basis of peak-to-peak further lend 

support to the conclusion from the first feature, i.e., the fault is at L1 and/or L3. The 
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virtual beams based on energy ratio clearly indicate that there are two faults in the 

system and that they are L1 and L3. Thus, both L1 and L3 are correctly isolated by 

the proposed VBLS approach. 

  

 

 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

Figure 7-11 Fault localization using TI-SNAP when diagnosis signals are measured from 

system suffering from loosening bolt at L1&L3 

According to the sensors responses based on fault indicator illustrated in Figure 

7-9, Figure 7-11 gives the potential faulty events isolated by the TI-SNAP approach. 

Generally, the fault L3 is isolated by all three features, L1 is localized by the peak 

to peak and energy ratio. However, the loosen screws of L1 and L3 have brought 

almost all the sensors on the solar panel indicating the abnormal condition. As a 

result, all four screws have been isolated by TI-SNAP approach on the basis of the 

energy ratio.  

7.3.3. Multi-Fault Diagnosis on Main Body 

In this section, the main body in Figure 7-12 is studied for fault detection and 

fault localization. This study focuses on the health monitoring of the bolts located 

on the connection of main body and four connectors. To be convenient, as shown in 
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one loosening bolt of four on the connector. For multi-fault cases, loosening bolts 

are created at two different connectors, e.g. P1&P2, P1&P3.  
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Figure 7-12 Distribution of sensor networks when main body is studied for health 

condition 

Sensors on the main body and on the adjacent substructures (i.e., four connectors) 

are used for virtual beam construction. Eight sensors are assigned on the four 

connectors with one on the bottom and one on the top. Sensor on the bottom of the 

connector Pi is named as ABi, and the sensor located on the top of the connect Pi is 

named as ATi. The sensors on the main body for optimal virtual beams are reduced 

and distributed with three sensors evenly assigned in each column. In the first 

column, sensors A11, A13 and A15 are kept for the virtual beam construction, but 

sensors A14 and A12 are removed since they are closed to sensors AB1 and AB3. For 

the same reason, the sensors on the third column (i.e. N3) are removed except A33, 

and sensors A54 and A52 are removed. As a result. There are 21 sensors in total for 

the construction of the virtual beams.   

1). P1 faults condition 
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In Figure 7-13, the sensors that can detect the abnormal system are highlighted. 

Since no alarm sensors have been detected by the methods when the signals are 

characterized by crest factor, this feature will not be applied to virtual beam 

construction.  

According to the peak-to-peak results illustrated in Figure 7-14 (a), two virtual 

beams are created consisting of sensor chains A23-AB1-A25-A15 and A13-A23-

AB1-A25. Though the two virtual beams are different, both indicate that the fault is 

probably located at P1. From Figure 7-13 (b), the sensors detecting the abnormal 

state include A11, AB3 (in Figure 7-12), AB1 (in Figure 7-12), and AT3 (i.e. the 

sensor on the top of connector P3). The two virtual beams based on energy ratio do 

not contain any alarm sensors. A virtual beam is regarded as valid for fault 

localization only if at least one sensor on the chain has been detected to be faulty 

according to statistical approaches. Thus, the virtual beams based on the energy ratio 

are inapplicable for fault localization. Since two further features cannot be used for 

fault localization, the virtual beams obtained from the peak-to-peak values are 

employed next. According to the potential fault position from this method, 

connector P1 is shortlisted for an examination of bolt loosening using VBLS.  
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(a) Crest factor 

  

(b) Peak to peak  

  

(c) Energy ratio 

Figure 7-13 Alarm sensors among the sensor networks on solar panel when it is suffering 

from loosening bolt at connector P1 

  

 

(a) Peak to peak 

 

(b) Energy ratio 

Figure 7-14 Virtual beams constructed using features when the system is suffering from 

loosening bolt at connector P1 
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 (a) Peak to peak  (b) Energy ratio 

Figure 7-15 Fault localization using TI-SNAP when the system is suffering from multiple 

loosening bolts at connectors P1 

Based on TI-SNAP method, the potential faults are probably located at regions 

with more sensors indicating faulty system. According to the distribution of alarm 

sensors highlighted in Figure 7-13, the potential fault regions shown in Figure 7-15 

suggest that P3 fault is more obvious than P1. Therefore, P3 is the potential faults 

to be detected for abnormality examination using TI-SNAP method. Compared to 

VBLS, the regions for the potential faults by TI-SNAP method are more confusing. 

It is more likely that we need to check a larger region for the potential faults. Instead, 

the fault localization by VBLS focuses on the regions with the most sensitive 

sensors while narrowing faulty sites by controlling the length of the sensor chain 

route. 

2). P1&P2 faults condition 

The sensors that can detect the abnormal system are highlighted in Figure 7-16 

(a)-(c). Accordingly, the virtual beams obtained by “two biased running” are shown 

in Figure 7-16 (d)-(f). The first virtual beam, highlighted by square marks, are the 

same for the three features, which indicates the potential fault position of P1 because 
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the sensor A25 contains the largest value of fault indicator on this chain. Therefore, 

only P1 is isolated without the strategy of ‘two biased running’ embedded in the 

original VBLS approach. Based on the crest factor and energy ratio values, the 

second virtual beam (highlighted by circle marks) indicates that the potential fault 

is positioned at P2. Meanwhile, the second virtual beam based on the peak-to-peak 

values in Figure 7-16 (e) implies that the potential fault position is P3. According 

to the fault localization rules based on multiple features, connector P3 will not be 

considered as the potential fault. Thus, two connectors, P1 and P2, are isolated and 

shortlisted for further examination using VBLS. 

  
 

 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

   

 

(d) Crest factor (VBLS) 

 

(e) Peak to peak (VBLS) 

 

(f) Energy ratio (VBLS) 

Figure 7-16 Response of sensors and virtual beams constructed using optimization method when 

the system is suffering from multiple loosening bolts at connectors P1&P2 
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 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

Figure 7-17 Fault localization using TI-SNAP when the system is suffering from multiple 

loosening bolts at connectors P1&P2 

However, it is a challenge to isolate the potential faults using TI-SNAP approach 

on the basis of the distribution of alarm sensors. According to the alarm sensors in 

Figure 7-16 (a), connectors P2 and P4 are suspected as potentially faulty sites on 

the basis of crest factor (see Figure 7-17 (a)). Similarly, based on peak to peak, the 

region contains the bottom of connector P4 is isolated using TI-SNAP approach. 

The region isolated using energy ratio in Figure 7-17 (c) is valid. As a result, the 

potential faults located by TI-SNAP approach are at two regions (i.e., P2 and P4), 

which are completely identified with the real implement. 

3) P1&P3 faults condition 

Figure 7-18 show the virtual beams constructed by the candidate sensors from the 

sensors networks distributed both on the main body and adjacent substructures (the 

four connectors). Based on the crest factor and energy ratio values, there are two 

virtual beams: A23-AB1-A25-A15 and A23-AB3-A33-A43. The first sensor chain 

clearly indicates a faulty site at P1 while the second sensor chain points to a fault 

site at P3 in view of the significant response from sensor A22. Similarly, based on 

peak-to-peak value, we can create two virtual beams: AB3-A23-A25-A15 and A23-
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AB1-A25-A15, which indicate that the potential fault might be located in connectors 

P1 and/or P3 

  

 

 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

   

 

(d) Crest factor (VBLS) 

 

(e) Peak to peak (VBLS) 

 

(f) Energy ratio (VBLS) 

Figure 7-18 Response of sensors and virtual beams constructed by optimization method when 

the system is suffering from multiple loosening bolts at connectors P1&P3 

 

  

 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

Figure 7-19 Fault localization using TI-SNAP when the system is suffering from multiple 

loosening bolts at connectors P1&P3 

According to the main event virtual beam constructed during the first run (i.e., 

the original version of VBLS for single fault localization), only P1 is isolated. 

However, combined with three features and six two virtual beams (with two of them 

being obtained by each feature after the two biased running of optimization) , 
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connectors P1 and P3 can both be isolated to examine potential faults by VBLS. 

According to the distribution of sensors indicating the faulty system, the regions 

of containing the connectors P1 and P3 are isolated by TI-SNAP. Specifically, the 

event P3 is localized on the basis of crest factor and both P1 and P3 are localized 

using peak to peak, but the fusion regions are isolated using energy ratio. Thus, a 

system with multiple faults at P1 and P3 has also been correctly isolated by the TI-

SNAP approach. 

7.3.4. Multi-Fault Diagnosis on both Solar Panel and Main Body 

To study the effectiveness of the proposed method for localizing multiple faults 

distributed over different substructures, the system suffering from the two faults 

located at L1 (one the solar panel) and P3 (on the main body) in Figure 7-1(c) is 

studied as an example. Similar to the previous two cases, sensors assigned on the 

connectors could be used for virtual beam construction in both solar panel and main 

body. Figure 7-20 show the virtual beams constructed on the basis of the sensors 

located on the main body and the adjacent substructures (connectors), while Figure 

7-22 gives the virtual beams using the sensor networks on the solar panel since 

sensors from adjacent connectors have not been selected by the optimization method. 

All virtual beams based on the three features are valid and capable of fault 

localization. Using these virtual beams, it is easy to isolate the potential faulty sites 

at connectors P1 and/or P3.  
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(a) Crest factor 

 

(b) Peak to peak 

 

(c) Energy ratio 

   

 

(d) Crest factor (VBLS) 

 

(e) Peak to peak (VBLS) 

 

(f) Energy ratio (VBLS) 

Figure 7-20 Response of sensors and virtual beams constructed using the sensors located 

on the main body and adjacent connectors 

 

 

 

 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

Figure 7-21 Fault localization using TI-SNAP when the system is suffering from L1&P3 faults  

Since the alarm sensors are appeared on the solar panel, the sensors responsible 

for solar panel are employed for fault isolation using optimal virtual beams. Based 

on the crest factor (see Figure 7-22 (d)) and peak-to-peak (Figure 7-22 (f)), the fault 

is isolated around sensors A24, A14 and A23. According to the ROC, the event L1 

is isolated. Each of the two virtual beams obtained on the basis of energy ratio has 

indicated a different fault region. Specifically, the kernel virtual beam consisting of 
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sensor chain A21-A22-A23-A24 reveals that the potential fault position is at L1 

(since sensor A24 reflects large value of fault indicator), and the second virtual 

beam suggests that the potential fault position is L2. Since the detection of L2 is 

based on a minor virtual beam and no other virtual beam has given a similar fault 

indication of L2, it is not considered to be a potential fault. Therefore, only L1 are 

detected by the VBLS approach for the potential fault position using the sensors 

assigned on the solar panel.  
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(b) Peak to peak 

 

(c) Energy ratio 

 

  

 

(d) Crest factor (VBLS) 

 

(e) Peak to peak (VBLS) 

 

(f) Energy ratio (VBLS) 

Figure 7-22 Response of sensors and virtual beams constructed using the sensors located on the 

solar panel 

Combined with the information provided from solar panel and main body, the 

bolt L1 on the solar panel, and connectors P1 and P3 on the adjacent regions of 

connectors and main body are isolated using the proposed VBLS approach. 

Considering that bolt L1 is used to fix the solar panel with main body using 
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connector P1, bolt L1 and connector P1 could be considered to be the same element 

for the purpose of determining the potential fault position. In other words, the loose 

screws on the connector P3 and L1 have been correctly isolated by the proposed 

VBLS approach. 

   

 (a) Crest factor  (b) Peak to peak  (c) Energy ratio 

Figure 7-23 Fault localization using TI-SNAP when the system is suffering from L1&P3 faults  

Similarly, according to the distribution of alarm sensors on main body shown in 

Figure 7-21, faulty events are localized at P3 by TI-SNAP approach in Figure 7-21. 

In addition, Figure 7-23 shows the potential faulty regions on the solar panel. 

Specifically, loose screw L3 is isolated using crest factor (see Figure 7-23 (a)), and 

loose screws L1, L2 and L3 are all isolated using energy ratio (Figure 7-23 (c)). As 

a result, the faults located at P3, L1 and L2 are all isolated by TI-SNAP approach 

providing wider regions for the potential fault examination. 

In comparison to the bolt-loosening fault occurring in the main body, the fault on 

the solar panel is easier to be detected since bolt-loosening on the solar panel is a 

rather severe case. Whereas bolt-loosening at L1 can be detected by sensors located 

on the main body, the loosening screw (i.e., one of four screws) at the bottom of the 

connector closer to the main body cannot be detected by the sensors on the solar 

panel. This might be the reason why the loosening screw on connector P3 has not 
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been detected and isolated by the sensors on the solar panel. 

7.3. Discussion 

 In comparison to the classical TI-SNAP approach for fault localization. Though 

SNAP shows superior to other fault localization in sensor networks using binary 

data (e.g. CE, ML, FTML) for its computational efficiency and fewer parameter 

assumptions [170], it only focuses on the distribution of alarm sensors. The TI-

SNAP approach introduces the strategy of trust index to decrease the negative 

influence of faulty sensors in a network and provides the more accurate 

localization of potential faults than SNAP using similar computational time 

[173]. However, it can be reliable for fault localization on the conditions that 

the prior knowledge or continuous signals from the system are available and the 

distance between two neighbor events should be far enough to avoid the 

interference with each other. The proposed VBLS approach considers the 

vibration transmission paths in a real implement structure and adopts the 

concept of ‘virtual beam’ to represent this transmission path. The occurrence of 

the faults could be manifested in the changes of the vibration energy on some 

transmission paths, which can be captured by some sensor chains. This vibration 

transmission paths represented by sensor chain are regarded as virtual beams 

could be automatically optimized by a heuristic algorithm. As a result, the 

proposed VBLS is easy to implement and computationally inexpensive for fault 

localization without requirement of prior knowledge of faults. The numerous 
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experimental results confirm that the VBLS approach is more reliable and 

effective for localization of potential faults in comparison to the TI-SNAP 

approach. 

 The effectiveness of sensor network separation. The increased complexity of 

signal analysis brought by sensor numbers and sensor information (including 

the related feature characteristics, the knowledge of positions, and relative 

distances, etc.) will increase the computational complexity and decrease the 

accuracy of fault localization. In such a case, the occurrence of a fault in one 

substructure has little influence on another, the sensors on associated 

substructures need to be separated. Certain sensors assigned on the adjacent 

substructures, considered as overlap sensors, can be supplied for the optimal 

virtual beams construction since they might be capable of detecting nearby 

faults and then composed into potential vibration transmission paths. Generally, 

the factors for sensor network separation include: the underlying vibration 

transmission paths, the influence regions of events, and the response of sensors 

for the potential faults. Each component is related to only one sensor network, 

but a sensor might belong to more than one sensor networks. Once a faulty 

component is detected, the sensors responsible of corresponding component are 

separated and used as the candidates to construct the optimal virtual beams for 

the fault localization. The selection of sensor networks based on components 

could greatly decrease the computational complexity and improve the accuracy 
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of fault localization, which imposes the proposed fault diagnosis method could 

be done for online detection (within 30 seconds) and fault localization in a 

reasonable offline time (no more than 3 minutes in localization for the satellite-

like system).  

 The integrated fault detection. Considering the unavailability of prior 

knowledge of faults and limited prior knowledge of normal operational 

conditions, the statistical tests are combined with the adaptive threshold for 

fault detection. With limited prior knowledge of normal operational condition, 

the threshold value is difficult to obtain. To increase the reliability, the threshold 

value is to be updating with the coming of the new data. Additionally, statistical 

tests are adopted for fault detection by similarity comparison of two datasets to 

address the harsh condition that only small datasets (e.g. only two or three 

datasets) are available initially. Therefore, an integrated method is presented in 

this thesis to take advantage of threshold based method and statistical based 

methods for fault detection when the prior knowledge of the system is limited. 

 The assumptions of the proposed VBLS approach. The proposed sensor network 

based method is applicable to more complex structures if the following 

assumptions are satisfied. (1) Sensors are distributed on the structure surface 

ideally with a tree-like topology rooted from the excitation source, and over 80% 

of them work stably for health monitoring; (2) The topologic information of the 

sensor networks is available such as the relative positions of each sensor with 
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respect to others; (3) The assembling information from the experts are roughly 

known such as the region of influence (of event), region of coverage (of sensors), 

region of neighbors, and the position of vibration source to identify some basis 

of vibration transmission paths; (4) At least one reference signal from the 

healthy operational condition is available working as benchmark representative 

for fault detection. 

7.4. Conclusion 

In this Chapter, the VBLS approach was validated for multi-fault diagnosis in the 

absence of prior knowledge concerning the faults in the system. The fault detection 

algorithm used in this Chapter adopted the statistical methods (T-test, rank-sum, and 

K-S) and adaptive threshold to address the small sample (i.e. historic data) limitation. 

Based on time domain statistical features, the combined fault detection method is 

computationally inexpensive, which can be implemented for on-line condition 

monitoring. Different from the classical localization methods concentrating on the 

distribution of alarm sensors, the proposed VBLS approach utilizes the changes of 

energy caused by the occurrence of faults for fault localization. Through validation 

in the contexts of three different abnormal cases, it shown that the proposed 

approach is more accurate than the classical TI-SNAP approach. It has been 

demonstrated to be a promising and easy to implement model-free method for multi-

fault detection and localization of complex structures with limited or little prior 

knowledge. 
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Chapter 8.  Procedures and Computational 

Complexity Evaluation for Fault Diagnosis System  

In this Chapter, a detailed procedure for applying the proposed virtual beam-like 

structure approach to a hierarchic diagnostic system is presented. To establish a 

comprehensive on-line fault diagnosis system, the computational complexity, 

knowledge requirements, as well as the applications of the proposed fault diagnosis 

method are also studied and discussed.  

 

Figure 8-1 Procedures of the proposed fault diagnosis system 
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8.1. Procedures for Fault Diagnosis 

Since the main objective of this study is to develop a novel fault diagnosis with 

less or little prior knowledge, the data for references are not complete. For that, the 

method for fault diagnosis of the harshest case using only two datasets (one 

measured from normal system and one measured from diagnosis system) is 

presented with the assumption that the reference dataset is reliable and 

representative for online monitoring. Figure 8-1 shows the overall flow chart of the 

technical procedures. To apply virtual beam approach to fault diagnosis, the detailed 

illustration of these technical procedures is provided as follows step by step:  

Step 1. Layout the vibration sensors networks.  

1.(a). If the structure is relatively small in size with no more than 5 sensors: 

develop potential effective vibration transmission path (from the vibration 

source) and assign the sensors along that path for fault diagnosis of 

structure;  

1.(b). Otherwise, the sensors are evenly assigned (as networks) in the complex 

structure (referred to Section 5.2).  

Step 2. Measure a group of signals (recorded as reference dataset) when the system 

is in the normal state.  

Step 3. Measure another group of signals (recorded as diagnosis dataset) from the 

same system with the unknown condition. 
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Step 4. Feature characterization (referred to Table 4-1) and feature selection (using 

PSO-FCM, Section 4.1.3). 

4.(a). Feature characterization: Signals measured in Step 2 and Step 3 are 

represented by features (i.e. time domain statistical functions in Table 4-

1. The features used for feature characterization could be in the time 

domain, frequency domain, or time-frequency domain). 

4.(b). Feature selection: unsupervised clustering method PSO-FCM is adopted to 

select the most informative features to represent the time series data.  It is 

assumed that the maximum number of features to be selected is M. Let 

parameter j = 0.  

4.(c). Represented by the jth selected statistical feature, both reference and 

diagnosis datasets are provided for data analysis. Let j=j+1. 

4.(d). If all the statistical features have been used for data analysis (i.e. j > M), 

then data analysis is terminated; otherwise, turn to Step 5. 

Step 5. Calculate the fault indicator.  

5.(a). If there are only two datasets, deviation ratio (Dev) is calculated using Eq. 

(4-10) 

5.(b). Otherwise, deviation ratio is calculated according to Eq. (4-11), and relative 

deviation ratio is calculated using Eq. (4-12) 

Step 6. Fault detection using combined statistical methods. (It is assumed that the 

reference dataset is reliable and representative. *if the knowledge of the 



 

157 

system is available, the combination of threshold method and statistical tests 

is applicable to fault detection)   

6.(a). The faulty state is considered if the abnormal system is decided by any one 

of statistical tests or threshold method; 

6.(b). If the faulty state is detected, then turn to Step 7; otherwise, the system is 

considered to be in normal condition by jth feature, turn back to Step 4.(c) 

and make a record in ‘Archive’. 

Step 7. Sensor networks selection.  

7.(a). Fault localization focuses on the components containing the sensors 

indicating the abnormal state. It is assumed that there are N components 

in the system containing the faulty information. Let i=1. 

7.(b). Select the appropriate sensor networks for the ith components (referred to 

Section 5.2).  

7.(c). If N > 1, more than one components are applied and considered for virtual 

beam construction. Otherwise, fault localization focuses on one 

component. 

7.(d). Based on a faulty component, the number of subnetworks is calculated 

using Eq. (5-7) to determine the iteration times embedded in the ‘biased 

running’(referring to Pseudo-code 5-2) for virtual beams. 

Step 8. Construct the optimal virtual beams using appropriate sensor networks in 

Step 7.(b). 
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8.(a). Based on the ith failing component, optimal virtual beams (consisting of 

sensor-based paths) are created using optimization method (referred to 

Section 5.3). *If the structure is relatively small in size with no more than 

5 sensors: develop potential effective vibration transmission path (from 

the vibration source) and assign the sensors along that path for fault 

diagnosis of the structure. 

Step 9. Fault localization using virtual beams (referred to Section 5.5).  

9.(a). Based on the jth feature, the potential faulty sites are isolated according to 

the two virtual beams obtained on the basis of that feature. The faulty sites 

associated with the specific feature and component are kept into ‘Archive’. 

9.(b). Let: i=i+1. 

9.(b). If i > N, then turn back to Step 4.(c), otherwise, go to Step 7.(b). 

Step 10. Fault diagnosis based on an outlier ‘Archive’ (which is used to record the 

health condition of the system based on feature representatives and associated 

potential faulty sites).  

10.(a). Fault decision: Based on M selected statistical features, any one of the 

feature indicates the faulty system, the system is suspected for the potential 

fault(s). If a faulty system is suspected, then go to Step 10.(b); otherwise, the fault 

diagnosis process is terminated since no faulty elements is detected. 
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10.(b). Fault localization (referred to Section 5.5). Based on a specific component: 

compare the fault positions localized using different features. The faulty sites are 

considered for a further examination if they meet any one of following cases: 

(i). A fault is isolated by at least two valid virtual beams, simultaneously;  

(ii). A fault is isolated by only one feature, but it is localized by kernel virtual 

beam (i.e., obtained from the first run of the optimization process). 

 

Figure 8-2 The fault diagnosis system 

To make the diagnosis system easy to implement in real-world sensor-

networked structures, as shown in Figure 8-2, an interface is designed in 

MATLAB program with GUI front. At the first stage, two parameters related to 

the information of the studied sensor-networked structures are initialized, i.e. 

number of columns in a sensor network, and the number of sensors in a column. 

The second stage is to load the signals measured by the sensors from the network. 

The original raw time series data are loaded by pressing the buttons: ‘Load 
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Reference’ (the data used as the benchmarks and measured from the healthy 

system), and ‘Load Diagnosis’ (the data to be measured), where N represents the 

column of the sensor network. For example, N1 is the first column. At the third 

stage, the health condition of the system is to be detected by pressing the button 

‘Fault detection’. The results of fault detection are shown in the first column of 

the right region using three figures. The sensors indicating the abnormal state are 

highlighted in red. Once the system is suspected in the abnormal state, the last 

stage is to isolate the potential fault by pressing the button ‘Fault localization’. 

The results of fault localization are shown in the remaining columns of the right 

areas. If the number of columns is more than one column, the virtual beams are 

constructed and the response of sensors from the virtual beams are shown in the 

last column of the interface.  

Two examples are provided and shown in Figure 8-3. Figure 8-3 (a) shows the 

results of fault detection and fault localization when the sensor network consists 

of sensors assigned only in one column. The abnormal condition is detected by 

both three features since the abnormal state is reflected by most sensors which 

are highlighted in red. According to the sensors from that column, the potential 

fault is finally isolated around the fourth sensor according to the rules predefined 

in Section 5.5. Similarly, Figure 8-3(b) shows the results of fault diagnosis when 

the sensors are evenly assigned in five columns (i.e. 5 × 5 matrix). According 
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to the trends of fault indicators related to the sensors from the virtual beams, the 

potential faults could be isolated at the right side of the studied structure. 

 

(a) An example of fault diagnosis with only one column 

 

(b) an example of fault diagnosis with multiple columns 

Figure 8-3 Examples of fault diagnosis using the proposed fault diagnosis 

system 
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Gnenerally, the interface makes the convenience of fault diagnosis avoiding 

the complexity of implementation, preventing the error oprations, and reducing 

the captial or time cost for executions to train the special experts to understand 

the nature of the actions.  

8.2. Evaluation of Computational Complexity  

Based on the procedures for fault diagnosis of sensor networked-structures, the 

computational complexity of each step is evaluated according to the CPU record of 

the PC utilized. In this study, the input consisted of a sweeping-frequency excitation 

(20 to 200Hz) with an exciting intensity of 0.4g. The sample frequency was 8192Hz 

and the velocity 4 oct/min. To eliminate noise disturbance at the beginning of 

measurement, the first 40% series were removed and the remaining 60% (ranging 

approximately between 80Hz and 200Hz) were used for data analysis. Thus, the 

length of the time series was around 401472 and the length of data used for analysis 

about 240883. If the time interval window used for feature characterization was 1 

second, the dimensionality of features based on each time domain feature function 

was around 20, which greatly decreased the computational complexity for data 

analysis.  

It is assumed that the number of feature points is S, a complex structure consists 

of N components, and there are H accelerometers mounted on each component. Thus, 

in the worst case, the asymptotic complexity is O(𝐻𝑀𝑁𝑆) using the classical sensor 

network based localization methods (e.g., SNAP). However, the upper bound is 
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improved to O(𝐻𝑀𝑆) in the proposed VBLS approach since the fault localization 

in the proposed method is fulfilled using virtual beams in a faulty component rather 

than all the sensors.  

Table 8-1 Time complexity of the proposed fault diagnosis system 

No. Procedures 
Computer run 

time (second) 

Accumulated 

time (second) 
Notes 

1 Data acquisition 0 0 
80Hz-200Hz; Length 

of raw data is 240883 

2 Feature characterization 2.5663 2.5663 
three features, 25 

sensors 

3 Fault detection 0.2411 2.8074 Statistical methods 

4 Optimal virtual beams 48.3418 51.1492 The first feature 

5 
Faulty sites based on the 

first feature 
0.0001 51.1493 The first feature 

6 Optimal virtual beams 48.5011 99.6504 The second feature 

7 
Faulty sites based on the 

second feature 
0.0001 99.6505 The second feature 

8 Optimal virtual beams 48.4487 148.0992 The third feature 

9 
Faulty sites based on the 

third feature 
0.0001 148.0993 The third feature 

10 
Output the potential faulty 

sites 
0.0010 148.1003 

Considering the 

combined features 

Take the satellite-like structure as an example. There are 25 sensors evenly 

distributed on the structure for health monitoring, and three time domain features 

are employed to represent the high-dimensional raw data. Only one substructure 

(i.e., solar panel) contains one or more faults. The tests were carried out under a 64-

bit MATLAB 2012b environment with a computer of 3.4-GHz CPU and 8-G RAM. 

Table 8-1 gives the average time needed for each stage of the proposed fault 

diagnosis system over 30 independent runs. Since an advantage of time domain 

features is its simplicity and interpretability (these avoid the complexity of the 
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preprocessing), the method is inexpensive in terms of time despite the complexity 

of feature characterization. As a result, the time used for fault detection is no more 

than 3 seconds; most of time is spent on feature characterization. Thus, the proposed 

method can be used for on-line fault detection in sensor networks. 

If no fault is found by the combined statistical methods and threshold, then system 

is considered in the normal state and it is not necessary to use the virtual beams for 

fault localization (after Stage 3). Once the abnormal condition is detected by sensor 

network, the potential faults are localized using virtual beams obtained by applying 

the optimization method described earlier. Though the availability of information 

on more features could greatly enhance the accuracy of fault detection, the 

computational complexity is increased at the same time. From the data on No. 4, 

No.6 and No.8 procedures, we can see that the entry of one single feature leads to 

additional time consumption (around 48seconds) for the optimal virtual beams. To 

isolate the potential faults within 3 minutes, no more than three features are 

suggested to represent the time domain signals.  

8.3. Application of the VBLS Approach 

The virtual beam-like structure (VBLS) approach currently focuses on the fault 

diagnosis of the bolted-base hanging structures with one or more bolt-loosening 

faults since they frequently occur in various hanging structures with bolt-base 

connected with the other structures.  

The proposed VBLS approach is applicable to fault diagnosis of complex 
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structures (e.g. bridge or concrete structures) provided that the following are 

available: 

1). Sensors are evenly distributed on the structure, and over 90% of them work 

stably for health monitoring.  

2). The topologic information of the substructures and sensor network on each sub-

structure needs to be available, for example, the rough geometric position 

between two sensors on that sub-structure. 

3). The assembling information from the experts is roughly known such as the 

region of influence (of event), region of coverage (of sensors), region of 

neighbors, and the position of vibration source to identify some basis of 

vibration transmission path. 

4). At least one reference signal from the healthy operational condition is available 

and representative for fault detection.  

The performance of the proposed method for fault detection greatly relies on the 

reliability information contained in signals measured before and after. Thus, smaller 

collection gap between the two measurements can help on-line detection or fault 

diagnosis with limited priori.  

8.4. Advantages of the Proposed Fault Diagnosis 

Method 

The virtual beam-like structure approach (VBLS) has been validated for multi-fault 

detection and localization of bolt-based hanging structures (BBHSs) while 
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demanding limited or no prior knowledge concerning the faults present. The 

advantages of the proposed VBLS approach are summarized below.  

1) In comparison to model-based methods: As demonstrated earlier, the reliability 

of model-based methods for fault diagnosis is determined by multiple physical 

parameters or mode shapes arising under different operation conditions. However, 

since the system is rather complex with internal state variables that are inaccessible 

to measurement by sensors commonly used in time-varying dynamic systems, it is 

not appropriate to apply model-based approaches to fault diagnosis [3]. However, 

as a model-free method, the method proposed in this thesis has no such limitation; 

it is also applicable to the fault diagnosis of structures without prior knowledge of 

faulty system.  

2) In comparison to sensor network-based fault diagnosis methods: Sensor 

networks have been used widely to detect the abnormal vibrations and thus prevent 

structural damage. The methods developed using sensor networks have been used 

mostly for estimating the parameters associated with the modeling of structures for 

fault diagnosis [201-204]. The major limitations of these methods include high 

computational cost and requirement of system off-line during fault diagnosis. 

Though the binary methods like CE, ML, FTML, and SNAP have shown the 

superiority in terms of computational efficiency and parameter assumptions [170], 

they only focus on the distribution of alarm sensors. As a result, the accuracy of 

fault localization would greatly depend on the reliability of sensors mounted on the 
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studied structures. Instead of modeling the structures or monitoring the alarm 

sensors, the method proposed in this thesis selects sensors with large fault indicator 

values to capture the most sensitive changes on the vibration transmission using the 

optimization methodology. The machine learning based optimization method 

embedded is robust and capable of selecting sensor nodes with limited human 

intervention, which leads to rather low computational cost, and it is more reliable 

and effective for localization of potential faults.  

3) In comparison to feature based methods: Since the advantages of time domain 

features have already been discussed in Chapter 2, further discussions of frequency 

domain as well as time-frequency domain feature based methods will not be 

engaged. Regardless of frequency range, time domain features selected need to be 

sensitive to damage. A typical example of fault diagnosis using time domain features 

has been presented in [19], in which a multi-sensor system based on feature-level 

fusion method is proposed for fault diagnosis rotating machinery. Though [19] had 

adopted multiple sensors, the sensors were analyzed independently using a support 

vector machine (SVM). Compared to the multi-sensor feature-level fusion method, 

the method proposed in this thesis is more capable of fault diagnosis by utilizing 

comprehensive knowledge of virtual beam consisting of sensors along the vibration 

transmission path. Further, fault localization is also realized by analyzing the virtual 

beams selected. Literature contains many more studies based on time domain 

features fault diagnosis [14, 18, 20, 21]. However, a common issue in these methods 
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concerns the need for classification while classification methods such as SVM 

require training samples which are not always available in real application. By 

contrast, the method proposed in this thesis requires no prior knowledge of the fault 

system, and the object to fault diagnosis is the general structure rather than a specific 

one, which opens the door to extensive application of the proposed method. 
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Chapter 9.  Conclusion and Prospect 

9.1. Conclusion 

In this study, a novel method for the fault diagnosis of complex structures based 

on an optimized virtual beam-like structure approach has been presented for 

situations in which the system is suffering from one or more faults. This approach 

provides a new idea of fault detection and fault isolation by constructing the virtual 

beam-like structures utilizing vibration sensors placed on the complex structure 

along the vibration transmission path.  

In the preprocessing stage, fault indicator-based adaptive threshold method and 

statistical tests are combined for fault detection. Threshold method is applicable to 

fault detection when the prior knowledge of the healthy system is available. 

Meanwhile, to address the issue of limited knowledge of the normal operational 

conditions, statistical tests (T-test K-S, and rank-sum) have been adopted for fault 

detection by similarity comparison of two datasets (i.e., the reference dataset and 

the estimated dataset) since these are sensitive to minor changes in the data series . 

The time series signals are segmented and the interval features are characterized by 

time domain statistical features, which enable more exact fault information to be 

obtained for on-line fault detection. 

Once the abnormal condition is detected in a component, a bacterial based 

intelligent algorithms is provided for the construction of the effective virtual beams 
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automatically. To address multi-fault diagnosis, biased running is developed in the 

optimization methodology by constructing the multiple biased virtual beams so as 

to isolate the potential faults in a faulty component. Further, separation of sensor 

networks based on components and search space has been considered to arrive at 

optimal solutions, minimize the computational complexity and maximize the fault 

localization accuracy. 

The rules of fault localization are based on virtual beam stemmed from the 

findings about beam-like structures: (1). Cracks located closer to the vibration 

source brings about larger relative deviation ratio of all sensors. (2). Cracks located 

far away from the vibration source result in large relative deviation ratios of sensors 

close to the crack or on the transmission path. (3). Sensors located close to the 

vibration source are less capable of detecting cracks located far away from the 

vibration source. These findings related to the response of the sensors on the 

associated virtual beam are taken to represent general rules for fault localization. 

Following validation using a satellite-like structure with both single fault and 

multiple faults (Typical faults occurring more frequently in complex structures, i.e., 

bolt loosening around the connecting rods), the proposed method has been 

confirmed to be effective for multi-fault localization through the selection of the 

most sensitive sensor chains and narrowing regions for potential faults. The findings 

in the beam-like structure are also applicable to virtual beams embedded in complex 

structures. Compared with classical sensor network based fault localization method, 
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the proposed virtual beam-like structure method has proved to be more reliable for 

fault localization. It has been demonstrated to be a promising and easily 

implemented data-driven method for multiple-fault detection and localization of 

complex structures with less prior knowledge requirement. 

The main advantages of the proposed methods are: (1) it is capable of both single 

fault and multiple-fault diagnosis of complex structures without using prior 

knowledge of the faults, and using only limited prior knowledge of normal 

operational conditions; (2) it presents an optimal fault localization method based on 

the concept of the virtual beam, which is computationally inexpensive and 

applicable to on-line condition monitoring using sensor network; (3) it is more 

practical and easy to implement in real-world sensor-networked structures with less 

parameter assumptions and no limitation on stationary data.  

9.2. Prospect 

This study focuses on the fault diagnosis of multiple loosening bolts in a complex 

system with numerous bolt-based hanging structures. Though it has been shown to 

be capable of fault diagnosis of bolt-based hanging structures with one or more 

loosening bolts (no more than two loosening bolts in a component), there are still 

several issues worthy of further explorations as follows.  

 Studies on different natures of faults.  

This study focuses on the fault diagnosis of multiple loosening bolts in a 

complex system, future work will focus on the development of the method 
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for fault diagnosis of complex structures with different natures of faults like 

fatigue cracks [34, 205], fractures [1, 41], and hybrid faults (e.g. both cracks 

and loosening bolts) [166, 174].  

 Explorations on the nonlinear features in frequency domain. 

The time domain features only are considered in this study for fault diagnosis 

because of computational inexpensive. In the further studies, nonlinear 

features in the frequency domain [206, 207] can also be adopted and 

cooperate with time domain features to capture the fault information in terms 

of frequency bands.  

 Health monitoring of faulty sensors.  

The sensors in this thesis are mounted on the studied structures evenly 

according to the factors like the region of coverage (ROC) associated with 

the sensors and the region of influence (ROI) associated with the events. The 

accuracy of fault localization might be decreased with the occurrence of 

faulty sensors. Thus, the strategies considering the stability of sensors should 

be developed in further studies. 

 Automatic fault diagnosis system without human intervention. 

Though the machine learning based optimization method embedded is 

capable of selecting sensor nodes with limited human intervention, in the 

further, an advanced control interface without human involved is to be 

designed to realize the operational convenience.  
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