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Abstract

Fault detection and localization techniques are among the prominent technical
processes involved in ensuring reliability. This is particularly true with regard to
safety related processes or systems such as trains, power plants, and aircrafts which
may also be characterized by limited datasets compiled through real measurements
(e.g. pre-launching testing). Sensor-network based fault diagnosis in complex
structures with limited prior knowledge is an interesting but difficult topic in
structure health monitoring.

In this study, a novel method for the fault diagnosis of sensor networked complex
structures based on a novel optimized virtual beam-like structure (VBLS) approach
is developed to fault diagnosis of the pre-launching systems. The statistical methods
together with adaptive threshold technique are presented for fault detection to
overcome the challenge of obtaining an appropriate threshold value with only
limited experimental data. A complex structure is regarded as a combination of
numerous virtual beam-like structures considering the vibration transmission paths
from vibration sources to each sensor. The “virtual beam” consisting of a sensor
chain automatically represents a candidate vibration transmission path, which can
be obtained automatically by an improved optimization algorithm. The dynamic
response of the structures in this vibration transmission path can demonstrate

obvious fault features if there is a fault (e.g., cracks in connecting rods or around
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bolts, and bolt-loosening etc.). These fault features can be effectively characterized
and efficiently captured and utilized for fault localization using the optimization
method based on the virtual beam-like structure concept. This novel virtual beam-
like-structure approach is applicable to fault diagnosis of complex structures
without too much prior knowledge of the faults, and with only limited prior
knowledge of normal operational conditions. Neither does it require stationary
response data, nor is it confined to a specific structure design. It is easy to implement
within a sensor network attached to the monitored structure.

The effectiveness of the proposed virtual beam-like structure approach is well
validated in experiments for both single-fault and multi-fault diagnosis including
loosening bolts or cracks around bolts of complex structures such as bolted-base
hanging structures in satellites. Compared with the classical subtract on negative
add on positive (SNAP) localization methods, the proposed virtual beam-like
structure (VBLS) approach has proved to be more accurate for fault localization.
The computational complexity of the virtual beam-like structure approach has been
evaluated, which indicates that the proposed method provides a promising solution
to on-line fault diagnosis of the sensor networked complex structures with limited

prior knowledge.
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Chapter 1. Introduction

1.1. Background

In the field of mechanical engineering, fault diagnosis plays an essential role in
monitoring the operational condition of pre-launching machines/structures and
locating the faults in machines/structures to keep the operational sustainability and
safety. The information used for detecting the health condition of mechanical
systems includes those signals related to position, pressure, temperature, current,
voltage and so on. Some of them can be directly obtained from records, while for
most cases, data cannot be that easy to acquire, but can be measured in indirect ways
by vibration sensors [1]. Those data, originally, are time series of measurement
signals which represent the result of the observation on physical response
phenomena and are sensitive to small changes (temporal variability) of the structure
systems.

Generally, the techniques for fault diagnosis can be simply divided as model-
based fault diagnosis and model-free fault diagnosis [2]. Model-based approaches
would be more accurate when the structure is stationary and the physical
information is easy to be described by models, but it would may confront the
dilemma when the physical parameters as well as the fault modes are changing under
different operation conditions. In time-varying system dynamics, it is not

appropriate to apply the model-based approaches for fault diagnosis since the
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system is rather complex with internal state variables which are inaccessible to be
measured by common sensors [3]. Instead, model-free approaches focus on the
study of the residuals rather than the construction of the observed and estimated
models, which are much more flexible and applicable for monitoring the health
condition of the complex dynamic systems. Therefore, the need for fault diagnosis
in complex dynamic structure systems has led to the research impetus on time series
data analysis.

The studies of time series data for fault diagnosis begin with extracting the
informative features to represent the time series signals. Feature means an essential
distinguishing characteristic, representing the physical properties of uniqueness and
cardinality [4], or describing the attributes of the object that are most representative
[5]. In feature-based analysis, features might be expressed as shape features [6, 7],
texture features [8-10], power spectral density features [11], intensity features [12],
structural features [13], etc. Taking fault detection in gearboxes as an example, 34
statistical features in function forms have been shown in [14] including the
commonly used features like root mean square (RMS), kurtosis, skewness, standard
deviation, variance, average absolute value, peak to peak, etc. Even more
comprehensive feature description in such a research area can be seen in [15], in
which 213 features have been identified as the potential for fault detection in
planetary gearboxes. There are numerous types of feature definitions, while the

challenge is the selection of features for fault detection since the features that are



effective in one system may not be valid in other systems.

Diagnosis techniques for machinery/structural health monitoring based on
vibration signals are generally divided into three groups: time domain features,
frequency domain features, and time-frequency features [16]. Being simple and
interpretable, time domain features have been frequently used for health monitoring
in mechanical engineering [17-21], which are calculated from raw signals without
any transformation such as root mean square (RMS), kurtosis. The main advantage
of this group of features is that time domain features are easy and quick in
preprocessing without the tasks like filtering, windowing, framing, Fourier
transformation, etc. [22]. The drawback of these group of features may lie in that it
could be less robust in high noise environment. Frequency domain features like Fast
Fourier Transformation (FFT), are transformed from the raw signals in the
frequency domain [23, 24]. The advantage of frequency domain features is that it
may be easier to isolate the faults at certain frequency components [16, 25].
However, Fourier related Transforms (FTs) have to rely on the fixed-time window.
Though they are very useful tool for stationary cases, it is not suitable for non-
stationary situations [16]. For that, time frequency analysis techniques like wavelets
have been developed for dealing with the non-stationary signals [26]. Even so, the
expensive cost to handle these group features is that they usually need much capital
expense and computational complexity in signal processing [25], especially in

dealing with high dimensional time series data. In such circumstances, time domain



features are considered to extract the characteristic features of time series using
certain segments in my study.

Another challenge is that only a few approaches are applicable if available prior
knowledge of the system is limited with regard to both the normal operational
conditions and the abnormal conditions. Concerning the unavailability of prior
knowledge of faults, it is often for signal-based methods to detect the health
condition of the system by matching the fault or unknown features to the basis
functions (or known signal pattern) [27, 28]. Among the data-driven based fault
diagnosis, it is prevailing to adopt the unsupervised methods like PCA and ICA for
fault detection since the amount of data from the health conditions could be used
for training and establishing a knowledge basis [29, 30], while they have to confront
the challenge of information missing, especially for the data in high dimensionality.
Clustering methods are another reasonable choices for addressing the harsh
conditions of no or less prior knowledge of faults [31, 32], but the reliability would
be decreased when the samples are small in size and the knowledge basis is
incomplete (i.e. limited prior knowledge of the normal conditions). Statistical
methods and statistic-based indicators like Kolmogorov-Smirnov test (K-S test) [33-
35], analysis of variance (ANOVA) [36, 37], rank-sum testing [38, 39], Bayesian
hypothesis testing [40, 41], and likelihood-ratio test [42-44] have been widely used
for fault or damage diagnosis since they are standardized and easy to implement

though the available data might be limited. The thresholds associated with a



statistical test are obtained from p-values listed in statistical tables. They are used
to measure the underlying probability distribution differences between two groups
of data, which has been successfully applied to fault detection. However, a statistical
test is effective as the reference data are highly representative and satisfy the
assumptions related. The degree of correlation between two datasets does not prove
the evidence of causation, and the results of a statistical test cannot reveal a definite
event.

Therefore, there is a demand for the techniques that can detect the health
condition of the system without overcomplicating the model and with less

dependence on prior knowledge.

1.2.  Objectives and Methodology

This study focuses on the development of an effective method for fault diagnosis
of complex structures in which available data are extremely limited. Therefore, the
objectives of this study mainly include:

1) An effective fault diagnosis technique should be investigated for both single
and multiple fault detection and localization of the complex structures though
there is no or less prior knowledge of the faults or/and limited historic data
measured from the normal operational conditions involved;

2) The fault diagnosis method is practical and easy to implement in real
structures with less parameter assumptions and no limitation on stationary

data;



3) The fault diagnosis system consumes less computational cost, and can be done

in a reasonable offline time or on line.

To accomplish the objectives above, a fault diagnosis method, named as virtual
beam-like structure (VBLS) approach, is proposed. Figure 1-1 shows the overall
flowchart of the methodology exploited in this study. Generally, the proposed
methodology comprises a series of steps: data acquisition, signal preprocessing
(feature characterization and fault indicators definition), fault detection, the

optimal virtual beam construction, and fault localization based on virtual beams.
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Figure 1-1 The overall framework of the proposed methodology

Considering the computational effort as well as the feature capability, in the signal



preprocessing stage, the appropriate time domain features are adopted to transform
the high-dimensional raw time series signals into the feature-based statistical
vectors with lower-dimensionality for fault diagnosis. To address the harsh
conditions with unavailability of prior knowledge of faults and limited initial data
from the normal conditions involved, statistical approaches towards fault detection,
together with adaptive threshold techniques, are utilized in the method. A virtual
beam based approach is developed for fault localization by taking into consideration
of the damage information which could be captured by sensor networks with regard
to the changes of vibration transmission. The vibration transmission path
represented by the sensor chain is regarded as the virtual beam and is constructed
automatically using an evolutionary optimization method.
Therefore, the main contributions of this study lie in that:
® A systematic virtual beam-like structure approach is proposed for the
multiple-fault localization of complex structures without using prior
knowledge of the faults, and using only limited prior knowledge of normal
operational conditions.
® The proposed fault diagnosis method also employs a modified optimization
methodology (i.e., an evolutionary optimization method) to automatically
select the most discriminative sensor chains from the sensor networks for
fault localization, which makes the proposed method more practical and easy

to implement in real-world sensor-networked structures with less parameter



assumptions and no limitation on stationary data.

To address the multiple fault localization problem, a new strategy named
biased running is developed in the optimization methodology by constructing
the multiple biased virtual beams so as to isolate the potential faults in a
faulty component. Moreover, a statistical method together with adaptive
threshold techniques are also presented for multi-fault detection to overcome
the challenge of obtaining an appropriate threshold value with only limited
experimental data.

Sensor networks mounted on the structure are separated according to their
regions of coverage and influence associated with the events, and the high-
dimensional signals are characterized in forms of low-dimensional time
domain features, which can help minimize the computational complexity and

maximize the diagnosis accuracy.

Generally, with less or limited requirement of priori, a comprehensive fault

detection and fault localization system based on an evolutionary optimization

method is developed in this study for fault diagnosis of complex structures with

single or multiple faults in various mechanical engineering systems using sensor

network attached.

1.3.

Outline of the Thesis

This thesis describes a sensor network based virtual beam-like structure method

and its application in monitoring the health condition of complex structures with

8



limited or less prior knowledge. Figure 1-2 shows the overall structure of the thesis.

Specifically, the rest of the thesis is organized as follows.
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Figure 1-2 The overall structure of the thesis

Chapter 2 presents a literature review on the existing non-model based fault

diagnosis methods according to their feature represented forms. This chapter

consists of three subsections: typical features frequently used in engineering, feature

extraction methods, and feature selection methods.

This Chapter studies the

advantages as well as the disadvantages of these methods and pointes out the

research gaps of existing studies to provide the potential techniques for fault

diagnosis.

Chapter 3 introduces a bacterial based feature selection method which will be

served as the optimization method to select the appropriate sensors from the network

to construct the “virtual beam”. The optimal ‘virtual beam’ consisting of sensor

chain is essentially important for fault localization, which will be generated

automatically using the optimization method proposed in this chapter. Meanwhile,



the effectiveness of the proposed optimization feature selection will be tested using
several frequently used benchmark datasets.

In Chapter 4, the fault indicators and time domain features used for fault diagnosis
are presented. An unsupervised fuzzy clustering method is developed to select the
most informative features from the available feature representatives. The statistical
tests and fault indicator-based threshold method are combined for fault detection to
overcome the challenge of obtaining an appropriate threshold value with only
limited experimental data.

Chapter 5 presents the new proposed vibration beam-like structure approach.
Virtual beam plays the important role for fault localization. The construction of
optimal “virtual beam” is realized by the optimization method proposed in Chapter
3, including the selection of sensor networks on complex structures, objective
function and the constraints used by optimization methodology for virtual beams
construction, and summarization of the general rules for fault localization based on
the optimal virtual beams.

Chapter 6 demonstrates the effectiveness of the proposed virtual beam-like
structure method by applying it to detecting and isolating the loosening screw (only
one fault in the system) of a satellite-like structure. The typical complex
substructures on the satellite-like model to be detected include solar panel, main
structure body (or body unit), and band antenna.

In Chapter 7, the virtual beam-like structure approach is applied to the fault

10



diagnosis of the satellite-like structure with multiple loosening screws occurring on
the various components without using prior knowledge of faults and using limited
prior knowledge of normal conditions. The classical sensor network based multiple
fault localization method is adopted for comparison.

Chapter 8 gives the detailed procedures of virtual beam-like structure approach,
discusses the applicability of the proposed method for more complex structures, and
studies the computational complexity of the proposed fault diagnosis system to
provide a promising method for on-line application.

Chapter 9 summarizes the importance and significance of the proposed virtual
beam-like structure approach. Meanwhile, the potential improvements in the future

studies are discussed in this chapter.
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Chapter 2. Literature Review

As noted previously, the need for fault diagnosis in a complex dynamic structure
system has led to the research impetus on time series data analysis. Studies using
time series data for fault diagnosis usually begin with the extraction of informative
features while representing the time series signals. Any kind of time series can be
represented by features irrespective of whether they work directly with raw data, or
indirectly using raw derived models or extracted features; in short, almost all
representations can be expressed in feature-based forms. A rising number of
researchers have been investigating different features of the associated extraction
algorithms for signal analysis.

This section reviews related topics involving feature based methods for fault
diagnosis. In addition, the evolutionary optimization methods for feature selection
are also discussed since they will be applied to selecting efficient sensors
(represented by time domain features) while determining the optimal virtual beams
(this problem is formulated as an optimization problem of feature selection). Finally,
the existing fault diagnosis approaches with limited requirements of the prior

knowledge are reviewed.

2.1. Typical Features for Pattern Recognition

The features described for pattern recognition can be classified as statistical,

structural, and hybrid techniques [5]. They will be introduced separately.
12



2.2.1. Features in Statistical Techniques

Features in statistical techniques are commonly described in quantitative forms
and the data are discriminated among different groups according to certain
quantitative features such as root mean square, kurtosis, skewness, variance, crest
factor and correlation coefficient. Statistical decision theories like T-statistics or p-
value are usually used to determine the similarities or differences among two or
multiple groups of data.

Statistical methods and statistic-based indicators based on the above theories have
been widely used for fault detection [45-48]. The thresholds in statistical tests are
obtained empirically in accordance with statistical tables (or p-values). The T-test
and related non-parametric tests can be used for fault detection by comparing two
datasets or two distributions (obtained from repeated measurements conducted on
the same system). The T-test is a classical statistical method capable of comparing
the differences in means and variance. Among the most frequently used T-tests, two
sample (unpaired or independent) T-test and paired (or repeated measures) T-test are
employed to compare the differences between two populations under the assumption
that the samples are from the same distribution with equal variance. Such methods
are more likely to be used as an effective tool while seeking to specify the threshold
value for fault detection [47, 49-51].

If the samples are not from a Gaussian (or Normal) distribution, nonparametric

tests are more applicable since they do not depend on the above assumption.
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Commonly used non-parametric tests include the Wilcoxon signed rank test (or the
Wilcoxon matched pairs test), Wilcoxon rank-sum test, Kolgmogorov-Smirnov (K-
S) test, Kruskal-Wallis test, and Friedman's test. The last two tests are not suitable
for two-group data since Kruskal-Wallis test compares three or more unmatched
groups and Friedman’s test compares three or more matched or paired groups.
Wilcoxon rank sum test detects the differences between median values and has been
applied wildly to fault detection [38, 52-56]. Kolmogorov-Smirnov test (K-S test)
[57] measures the underlying probability distribution differences between two group
data. It has been successfully applied to the fault detection for gears [35, 58].

Even so, a limitation of statistical methods is that the interrelationships embedded
within the data might not be able to manifest in statistical features, which makes it

difficult to discriminate among data drawn from different groups.

2.2.2. Features in Structural Techniques

In structural techniques, the objects are distinguished according to certain shape-
based or structure-based features. Referred to as the primitives, structure features
are used to represent the inherent relationships embedded within the data. Structural
pattern recognition is applicable, in most cases, for discrimination among the groups
based on inherent and identifiable natures of objects such as image data and time
series data. Image data are recognized according to their visual rendering. In the
example discussed in [59], a 1-D histogram contains certain structural and spatial

information of the image, and the histogram is the image feature used for further
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study. In image matching issues, points of interests (POIs) are extracted as features
to enhance the image measure in question, so they are referred to as point-based
features [60]. For high level geometrical subjects extraction, the contourlet
transform has also been investigated to transform the given texture image into
contourlet coefficients which are the data-based features to be evaluated [61]. Time
series data, organized by time, are constructed using structural pattern recognition
system [5].

But the implementation of the structural pattern recognition system is limited
mainly by the extraction of the structural features. In addition, the structural features
can be used to represent a particular object only if the structural information of the
primitives (like interrelationships) have all been identified. As there is no general
method for structural features, this study focuses on the statistical features and

relevant feature extraction methods.

2.2.3. Features in Hybrid Techniques

Hybrid techniques combine the characteristics of both statistical and structural
approaches so as to compensate for the drawbacks of statistical and structural
methods, and to take advantage of the two groups. For example, both statistical
features (e.g., kurtosis, skewness, etc.) and structural features (i.e., histogram
features) have been extracted from the time domain vibration signals for diagnosis
of bearing faults [62]. As the classification of the structural pattern recognition

system is a challenging task [5], it has become popular to apply statistical
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classification methods to distinguish objects according to their structural or shape-
based features. In biological systems, structural properties relevant to gene
regulatory networks have been defined and explored for observation and controlling
using statistical or quantitative methods in [63]. In [64], time series data are
represented by structural patterns, and problems embedded within the time series
are classified by applying statistical classification algorithms (e.g., structural
generative descriptions).

Though hybrid methods seek to preserve the merits of the two approaches, it is
not a general method applicable to all pattern recognition systems in view of
considerations  pertaining to  time-consumption, feature  extraction,
interrelationships, etc. There is no obvious guideline for choosing one test that is
suitable for all applications. Considering the computational complexity and
implementation, in this thesis, the available statistical features are adopted as

representations of signals to facilitate the pattern recognition.

2.2. Feature Extraction Methods

Originally, the data measured by vibration sensors are time series data. The
increasing need for fault diagnosis of complex structures has led to research on time
series analysis. The noise as well as the wide spectrum of defective signals has
contributed to the difficulty in fault diagnosis using time domain vibration signals
directly [21]. Therefore, features are extracted from observed time series.

Definition: Feature Extraction. Given a feature set X = {x;|i = 1,..N} € RV,
16



find a mapping Y = f(X): RN —» RM, with M < N such that the resulting feature
vectors Y = {y4, ..., ¥m} € RM characters the most information that the original
series possesses.

Feature extraction is used to transform high-dimensional raw signals into a
different space with lower dimensionality, and a new subset is created after
completing the process of feature extraction. Actually, the purpose of feature
extraction algorithms is to describe the most representative attributes of objects.
Many approaches have been developed by researchers to achieve this. Some have
simply divided features into time domain features, frequency domain features, and
time-frequency domain features [65-68]. In this section, methods based on different

feature characteristics are studied and analyzed.

2.2.1. Time Domain Features based Techniques

Since they are simple and interpretable without need of laborious tasks like
framing, windowing, filtering, one of the main advantages of time domain-features
(e.g., RMS, variance, kurtosis, crest factor, correlation coefficient) is to avoid
complexity of preprocessing, which has led to their wide application.

To identify faults, time domain vibration signal segments have been represented
by time domain features (e.g., RMS, variance, skewness, kurtosis) for on-line
condition monitoring of machines [21]. The time domain features (chosen in that
study) of signals identified from the fault and fault-free systems associated were

employed for training, while the features of signals collected from the diagnosis
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system were classified using an ANN-based diagnosis approach. In [18], the
disturbance impact factors were studied by employing the individual or/and
combined time domain features for electromyographic (EMG) pattern recognition.
The results indicate that an approach with combined EMG features has the
advantage of improving the classification performance. To analyze non-stationary
and nonlinear characteristics of vibration signals, time domain features like peak-
to-peak were applied in [69], for fault diagnosis of fans using an improved k-means
clustering method. Elsewhere [19], twelve time domain features were employed for
identifying the gear defects SVM as a classifier.

The common characteristics of the above methods are that they are easily
implemented, lower in terms of computational cost, and are applicable for on-line
condition monitoring. It is normal to apply an effective classifier for classification
tasks. However, one of the main limitations associated with these methods is the
necessity for prior knowledge concerning the system, including normal and

defective states with different fault types and extents.

2.2.2. Frequency Domain Features based Techniques

Frequency domain features (e.g., Fast Fourier Transform) are transformed from
time domain data to isolate the fault at certain frequency components [16], which
enable their wide application to fault diagnosis [24, 70, 71].

Fourier Transforms (FTs) are among the most traditional techniques used for

feature extraction, which convert the sources into the time-frequency domain. Many
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variations of the approach have already been developed. Fast Fourier Transform
(FFT) is an FT method that speeds up the operational process. It is generally applied
to extract the features embedded in a vibration signal using FFT and then applies
classifiers such as KNN and SVM to assess the condition of machine conditions [23,
72, 73].

Despite their common application, FTs have to rely on a fixed-time window. As
commented in [74] this type of technique has to "make a trade-off between
frequency and temporal resolution". Though FTs are very useful tools for isolating
faults at certain frequency components in stationary cases, it is not suitable for non-
stationary situations. Subsequently, time-frequency domain features like wavelets

have been developed for dealing with non-stationary signals.

2.2.3. Time-Frequency Domain Features based Techniques

Time-frequency domain methods were developed as the potential techniques for
fault detection and diagnosis of machinery structures by analyzing both the time and
frequency contents of signals. These methods include Short-time Fourier Transform
(STFT), Wigner-Ville distribution (WVD), and Wavelet Transforms (WTs) [75].

Short-time Fourier Transform (STFT) is a time-frequency analysis used to
overcome the disadvantage of FFT and provide both the time and frequency contents
of given vibration signals. In [76], the time-frequency domain signals consisting of
multi-frequency components were analyzed using STFT to identify the faults of a

voltage source inverter at the early stage. However, a major drawback of STFT is
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that the resolution obtained is provided for all frequency components. To address
this disadvantage, STFT has been combined with wavelets [77, 78]. As a result,
variable windowed STFT was developed to enable an examination of multi-
resolution associated with the frequency components.

WVD is a quadratic-form of analysis offering resolution in both time and
frequency domains. It has been widely applied to fault diagnosis through an analysis
of given vibration signals. The main advantages associated with the technique are
simplicity and low computational cost, whereas the main limitation associated with
the classical WVD is the challenge of interpretation because of the interference
terms [79]. A parameter called NP4 was developed to enhance the capability of
WVD and improve the interpretation in gear fault detection in [80]. In [81], a weight
factor was introduced to WVD so as to alleviate the influence of linear frequency
modulation.

Wavelets are capable of treating non-stationary signals [82-85]. A key point is
that temporal resolution enables a family of wavelets to outperform the FT method.
Unlike STFT, wavelets allow different window sizes to analyze the varying
frequency components embedded in vibration signals (e.g., a long window size for
low frequencies and a short window size for high frequencies). Two classical forms
of wavelet transforms for machinery fault diagnosis are continuous wavelet
transform (CWT) [86] and discrete wavelet transform (DWT) [87, 88]. The main

difference between the two wavelets lies in the handling of the subset scale for
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translation values. The former seeks to represent the signal with all possible subset
scales while the latter aims to translate using a specific subset scale (without
redundant information). Apart from the above two methods, the wavelet family
consists of a series of variant wavelets, such as Wavelet Package Transform (WPT)
[89], and Morlet Wavelet Transform [90].

In addition to the above mentioned time-frequency domain features, it is popular
to apply EMD decomposition to handle the non-stationary signals arising in fault
diagnosis. To decrease the mode-mixing problem in EMD, an ensemble of EMD
(EEMD) was utilized in [91] to realize the continuity of signals over varying scales.
Compared to those from STFT, WVD, and DWT, experimental results have
demonstrated the superiority of EEMD in revealing hidden knock signatures. As one
of time series energy representation, Hilbert-Huang Transform (HHM) combines
EMD and Hilbert spectral analysis (HSA) to analyze non-stationary and non-linear
time series signals. However, in performing HHT, it becomes necessary to overcome
the drawbacks associated with EMD. In [92], HHM was improved by adopting a
specific strategy of decomposition of narrowband signals. In [93], translation-
invariant denoising (TID) was used as the preprocessing technique to alleviate the
interference of noise and enhance the quality of decomposition of HHT. A
comparative discussion study has been presented in [94], which indicates that HHT
is more appropriate for analyzing the signals of larger size than using wavelets.

However, the effectiveness of time-frequency domain features is offset by the
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high computational cost, especially in dealing with high dimensional time series

data, which makes it difficult to apply them to online health monitoring.

2.3. Feature Selection Methods

Except for feature extraction, another effective method to address the high
dimensional feature characterization problem relies on feature selection (FS) which
is to select a relatively small but potentially useful feature subsets from available
features [95]. Since there is no specific feature selection technique that is applicable
in all situations, numerous feature selection methods have been proposed for a
variety of applications.

This section provides the background for feature selection methods and presents
certain related works seeking for effective feature selection methods adopted in

further studies.

2.3.1. Traditional Feature Selection Algorithms

From the perspective of the evaluation criteria, feature selection techniques can
be divided simply into filter, wrapper, hybrids and embedded methods [96].

The filtering approaches select the subset of features, firstly, according to their
own discriminant attributes evaluated by numerous metrics before using learning
machines. The metrics include hypothesis tests on the coefficients of features by
means of t-statistics and p-values [97], relief algorithms (RF) [98], information gain

(IG) [99], consistency-based feature selection [100], minimum redundancy
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maximum relevance (MRMR) [101], interaction feature selection [102],
dependency margin [103], etc. Filter approaches are easy to implement and expected
to be faster than other types of feature selection algorithms since the learning
machines are used only in the final stage of performance assessment, i.e., after
filtering undesirable features [104]. Even so, the filter methods do not need any
feedback from the learning machine in feature selection. Further, more often than
not, the features with the highest-ranked values are selected on the basis of statistical
criteria such as p-values but without scoring the power of combined features [105].
As a result, they might not be able to obtain the best subset of features in the total
feature space because the highest-ranked features may have redundancy among
them [106]. In practice, it is more common that filters are embedded or cooperate
with wrapper feature selection algorithms, called hybrid methods [106-112].
Wrappers seek to find the best subset from the feature space according to
predetermined performance assessments conducted via classification algorithms
such as the K-Nearest Neighbor algorithm (KNN) and Naive Bayes (NB). Greedy
search based sequential forward selection (SFS) and sequential backward selection
(SBS) are two attractive classical wrappers used in computation. However, their
main drawback is that the features cannot be selected (or removed) again once they
have been removed (or selected) [113]. Besides, to select the optimal feature sets,
all possible subsets of features will need to be measured by the wrappers—which is

impossible while classifying high dimensional microarray gene expression cancer
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problems because of high computational cost. To address this problem, wrappers
based on evolutionary algorithms are applied without the necessity of evaluating all
possible subsets [114] [115]. Compared to filters, wrapper-based feature selection
methods are generally more accurate since the quality of the selected feature subsets
is assessed using a predefined learning technique.

Hybrid techniques are often developed with the combination of the filters and
wrappers, or/and combination of the wrappers and wrappers to enhance the
performance. The main trend related to the combination of filters and wrappers is
to integrate the filters (such as the T-test and the y>-test) with the evolutionary
algorithms [106, 108, 110-112], in which the filters are served as the preprocessing
step to decrease the redundant and unimportant features in huge dimensionality
while wrappers are used to evaluate the relevance of the remaining feature subsets
according to a given learning machine or classifier (with a view to reducing the
computational problems associated with the wrappers and enhancing the
effectiveness of feature selection). The problem is that the features seem to be less
responsive to the labels but are useful in the feature sets for classification that might
have been removed during the preprocessing stage, which cannot guarantee the
optimal feature sets in this situation. Among the combination of wrappers and
wrappers, hybrid evolutionary algorithms have become particularly popular [107,
109, 116-118] by taking advantages of certain brilliant mechanisms associated with

each wrapper or looking for the complements among other wrappers to improve the
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robustness and stability of the final solution. It is a good strategy to improve the
performance of wrappers if the hybrid strategies could enhance the complement.
Embedded approaches search for features in the process of training and are
usually specific to a given learning model using a limited number of features [119].
For instance, the regularizations or shrinkage methods like least absolute shrinkage
and selection operator (lasso) [120], ridge regression [121] and elastic net
[122]that have been incorporated into the development of a classification or
regularization model [123]. The feature weightings are used to record the
importance of features in classification. Thus, in comparison to wrappers, embedded
methods usually need less intensive computation and become less prone to over-
fitting. However, typical embedded methods generally use quite strict model
structure assumptions. Sometimes, the classification performances of embedded

methods might turn out to be inferior in comparison to the filters and wrappers [124].

2.3.2. Evolutionary Feature Selection Algorithms

Among different feature selection techniques, evolutionary feature selection
algorithms such as Genetic Algorithm (GA) [125, 126], Differential Evolution (DE)
[127], Particle Swarm Optimization (PSO) [113], Ant Colony Optimization (ACO)
[109] have become particularly popular search techniques over the past few years.
Inspired by natural as well as artificial ideas related to evolution, Evolutionary
Computation (EC), as a sub-field of artificial intelligence, is generally considered

as an effective technique capable of addressing expensive optimization problems.
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There is little doubt that feature selection problems with numerous redundant and
repeated features belong to some of the most expensive problems. In most
evolutionary algorithms, each unit represents a potential solution which can be
updated continuously according to the machine utilized. The advantages associated
with such evolutionary algorithms are that the methods are available for
optimization by specializing certain agents suitable for the specific problem, and
that the results are generally creative and qualified [128].

Inspired by bird flocking or fish schooling and known for its high convergence
capabilities, PSO is a highly common evolutionary algorithm in the domain of
feature selection [113, 129, 130]. Even so, a disadvantage associated with it is that
it gets easily trapped into local minima and therefore cannot guarantee a globally
optimal solution.

Apart from PSO, other swarm algorithms, such as ACO [131], Artificial Bee
Colony (ABC) [132], Artificial immune systems [133], have also been used for
feature selection. The search for the optimal feature subsets in ACO is implemented
via a group of ants traveling through the graph to minimize the number of
informative nodes. The main advantage of this method is that the best solution can
be obtained by a global sharing strategy. The drawback is that the optimal feature
subset may not always be arrived at, when the feature space being searched is large.

Further, genetic or evolutionary based algorithms such as Differential Evolution

(DE) [108, 134, 135], GA [126, 136, 137], Genetic programming (GP) [114, 138]
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which have been frequently shown to be effective in solving problems under
complex conditions are presented for FS. Most of these are binary description
algorithms, where each bit represents a feature, e.g., “1” represents a selected
feature while “0” means a feature that has not been. However, the parameters used
in genetic or evolutionary based algorithms need to be properly defined to attain
acceptable performance.

Since swarm algorithms such as PSO and ACO are good at local research and
evolutionary algorithms such as GA have superior global searching abilities, several
researchers have come up with combinations of swarm algorithms and evolutionary
algorithms: e.g., Hybrid GA-ACO [139] and Hybrid GA-ACO-PSO [140]. Even so,
the effectiveness of feature selection is decreased when the size of search space
increases.

Most of such feature selection methods have been found to suffer from
computational complexity or local optima. In addressing high dimensionality
feature selection problems, there is a clear need for an effective feature selection

method with global search ability.

2.3.3. Bacterial based Feature Selection Algorithms

The bacterial foraging optimization (BFO) method proposed by Passino [141] and
the bacteria chemotaxis (BC) approach developed by Miiller [142] are perhaps the
two earliest bacteria based algorithms used in addressing optimization problems. A

common feature of the two algorithms is that they were initially inspired by the
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chemotactic (foraging) behavior of E. coli. As a group of EC techniques, due to their
global searching capabilities during control and optimization, BAs have recently
gained attention for feature selection.

Often, bacteria-based FS methods cooperate with other methods. Cho [143]
combined the BFO with the notion of mutual information for feature selection for
the purpose of classification. In [144], an agent genetic algorithm based on a bacteria
foraging strategy (BFOA-L) was integrated with a neural network while
implementing fuzzy logic reasoning for feature selection. Also, BFO working with
particle swarm optimization (PSO) named bacterial foraging-particle swarm
optimization (BFPSO) was developed for the feature selection associated ECG
signals [145]. Almost all such bacteria-based FS algorithms, generally, have tried to
mend the defects of the original BAs in computational cost as well as improve
convergence speed by combining with other techniques.

Though BAs have been developed for feature selection they still have several
limitations. Firstly, the random orientation strategy utilized in BAs has indeed
increased the amount of search conducted globally although it has been found to
consume larger time while searching randomly for the optimum. The resulting
excessive computation time has limited the application of feature selection in high
dimensional datasets. Besides, the circulation machines embedded in original BAs
could not guarantee acceptable convergence speeds. Therefore, those BAs were still

almost universally immature. In this thesis, strategies for improving capability and
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efficiency of bacteria-based algorithms for feature selection will be developed and
further employed for sensor subsets selection to isolate the potential faults occurring

in a complex structure.

2.4. Fault Diagnosis Techniques using Limited Prior

Knowledge

Prior knowledge of the system involving the normal operational states and
abnormal conditions is very important for fault detection and fault diagnosis.
However, in real applications, the prior knowledge of the system is not always
available. Therefore, in the section, the fault diagnosis techniques using limited
prior knowledge are reviewed from two aspects: model-based fault diagnosis

methods and model-free fault diagnosis methods.

2.4.1. Model-based Fault Diagnosis Methods

The models of the processes or systems, in the model-based methods, could be
built according to observers in the normal operation states with no prior knowledge
of faults, and fault detection procedures normally depend on the residuals. Generally,
hardware redundancy and software redundancy (or analytical redundancy) concepts
have been presented for fault diagnosis. The main principle of the hardware
redundancy concept is to compare the duplicated output signals using the same input
[146]. Though the hardware redundancy methods are reliable, they are costly and

consume more space for storage, which impetuses the development of analytical
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redundancy methods since 1980s. For the analytical redundancy methods, there are
two main trends for fault diagnosis: parameter estimations and residual generations.

Parameter estimations have attracted increasing interests for fault detection, in
which faults are detected by comparing the actual parameters with the reference
parameters obtained from the healthy conditions. This group of methods is brilliant
for fault diagnosis if the physical features could be mapped to the explicit model
parameters. In [147], the system was modeled as the interconnection of subsystems
which were separately modeled as the transfer functions. The linear function of
parameters named as diagnostic parameters was applied to fault detection by
comparing the average residual energy with the threshold value. Without any
requirement of prior fault information, a fault parameter tracking law was designed
in [148] for detection of a submarine with the potential bow and stern plane faults.
To estimate the model parameters, a recursive subspace identification algorithm was
proposed for online fault diagnosis of dam-gallery open channel system [149]. Other
similar studies were also made using the subspace-based method to estimate the
parameters for fault detection [150-153].

Except for the parameter estimations, residual generations were developed for
both linear and nonlinear systems with unknown inputs. A well-known model-based
fault diagnosis method is Kalman Filter (KF). Developed by R. E. Kalman [154],
the KF is proposed for fault detection by keeping track of estimates. The occurrence

of faults was detected by KF-based residuals using hypothesis tests [ 155-157]. Since
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The original application of KF is to the linear systems, recent studies have been
made on the modified KF approaches like extended KFs [38], adaptive unscented
KFs [158, 159], and augmented state KFs [160] for the nonlinear states of the
studied systems. Moreover, Bond Graph (BG) has been widely applied to the fault
detection because of its capability of modeling the complex structure uniformly and
analysis of the redundancy using causality concept to avoid the initial unknown
condition [161]. In [162], a hybrid bond graph (HBG) model-based method was
presented for multiple faults diagnosis using fault discrimination vector to
distinguish the fault types after the abnormal state was detected according to the
residual. To implement the easy-handling for fault detection, a quantitative approach
based on the signed bond graph (SBG) was developed in [161] for multiple faults
diagnosis. To ensure the online adaptation and self-optimization of the online system,
the combination of the discrete-time Lyapunov stability theory and computational
intelligence method was adopted in [163]. Though the bank of observer-based
residuals is generally needed for fault isolation [146], a small number of studies
were developed for fault isolation with unknown inputs observer using the fuzzy
systems [164, 165], in which the domain knowledge can be obtained from the
experts (obtaining the knowledge from the assembly process) rather than the historic
failing data.

Generally, model-based fault diagnosis methods are capable of on-line fault

diagnosis without prior knowledge of fault conditions, but the known model based
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on normal states should be well built initially. For analytical redundancy methods,
the effectiveness greatly depends on the accuracy of an initially known model. If
the physical information of the structure is well-defined, the fault diagnosis can be
reliable for the model-based fault diagnosis methods. Since the initial model is not
that easy to acquire, especially in complex dynamic systems, there has been growing

interest in model-free based fault diagnosis methods.

2.4.2. Model-free based Fault Diagnosis Techniques

Being simple and flexible for fault diagnosis without dependence on specific
structures, model-free based methods have been widely applied to fault diagnosis.
Generally, model-free based fault diagnosis methods can be divided as signal-based
approaches and data-driven approaches (or knowledge-based approaches) [166].
The former group prefers to adopt the similarity comparison between the references
and the estimates, while the latter focuses on the explorations of the underlying
information based on available data.

As illustrated previously, signal-based approaches are more likely to detect the
health condition of the system by comparing the reference signals measured from
the normal conditions with the estimate signals collected from the diagnosis system.
In existing methods, it is prevailing to explore the feature extraction methods in
cooperation with classification and identification processes. Concerning the
unavailability of prior knowledge of faults, it is often for signal-based methods to

detect the health condition of the system by matching the fault or unknown features
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to the basis functions (or known signal pattern) [27]. For multiple fault conditions,
in [28], both the valve spring faults and valve clearance faults were studied on a
diesel engine using only one accelerometer. The novelty of this method has been
confirmed in detection and classification of the multiple faults occurring in the
multiple elements without prior knowledge of the relation between the faults, but
various historic data are needed for training in classification. The strategy of
separating the signals into fault-related bandwidths was developed in [167] for
multiple fault diagnosis, and the presence of single or combined faults was identified
using a spectral analysis based on the MUSIC algorithm.

Data-driven approaches are to explore the underlying knowledge from a large
amount of historic data, which could be grouped as supervised and unsupervised
approaches. In supervised methods, classifiers are trained using the historic data
containing both the normal condition and abnormal conditions. Different from the
supervised methods, the data from the health conditions are applied to training and
establishing a knowledge basis. Both algorithms have their advantages and
disadvantages, but only the unsupervised methods could be applicable of the system
with no prior knowledge of faults. A cold start fault detection framework was
proposed in [168] using the historic data only measured in the normal system. The
data-drive methods PCA, SVM, and PCA-SVM were studied for fault detection,
indicating that PCA-SVM method had the advantages in comparison to two other

methods. PCA and ICA are two most popular unsupervised fault detection methods
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[29, 30]. Additionally, the clustering methods are another reasonable choice for
addressing the harsh conditions of no or less prior knowledge of faults. In [31],
clustering method combined with feature extraction and nearest neighbor based-
outlier removal was proposed for health monitoring of bridges with limited
knowledge of structural faults. The combination of the multiple unsupervised
classifiers and fuzzy-C clustering was developed in [32] to measure the wear status
of slurry pumps when available historic data were extremely limited. To address the
one-class classification, in [169], support vector data description was considered as
the promising idea for the extreme condition that only data from normal operation
condition were available.

Generally, there is no distinct difference between the signal based methods and
data-driven based methods for fault diagnosis when the prior knowledge is limited.
Fault detection mainly relies on the similarity comparison between the unknown
states with the known basis obtained from the initially healthy conditions. Even so,
there is a challenge for above methods to obtain an appropriate threshold value for
fault detection. Statistical methods and statistic-based indicators like Kolmogorov-
Smirnov test (K-S test) [33-35], analysis of variance (ANOVA) [36, 37], rank-sum
testing [38, 39], Bayesian hypothesis testing [40, 41], and likelihood-ratio test [42-
44] have been widely used for fault or damage diagnosis since they are standardized
and easy to implement though the available data might be limited. The thresholds

associated with a statistical test are obtained from p-values listed in statistical tables.
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The measures the underlying probability distribution differences between two group
data, which has been successfully applied to fault detection of gears.

After the fault detection, the next step is to isolate the potential faults occurring
in the structure. Among the model-free localization methods without a requirement
of prior knowledge of faults, a series of binary estimators are proposed for fault
localization because of simple, low-cost and fault-tolerant. In [170], a method
named as subtract on negative add on positive (SNAP) was proposed for fault
localization using the sensor networks. A likelihood matrix was created to record
the (negative or positive) contribution of each sensor node based on their
observations. The potential fault is isolated at the event with the maximum value in
that matrix. To address the multiple fault localization, the method named as
decentralized subtract on negative add on positive (DSNAP) [171] was developed,
in which all the alarm sensor nodes were the fusion center and tracking the response
of their neighbors. In [172], the frequently used binary estimators like fault tolerant
maximum likelihood (FTML), Centroid Estimator (CE), Maximum Likelihood
(ML), and SNAP were compared, indicating that the SNAP was superior to other
three methods for fault localization in terms of accuracy and computational
complexity. To decrease the negative influence of faulty sensors for localization
accuracy, the strategy of trust index was adopted in SNAP, abbreviated as TISNAP
[173], to assign the weights to the nodes from the sensor network based on their

historic records in failing alarm. Generally, the localization based on sensor
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networks is effective and easy to implement for monitoring the large space

structures.

2.5. Conclusion

In this Chapter, existing feature-based methods have been summarized in order to
seek the potential application in fault diagnosis of the dynamic signal in machinery
engineering. Considering the simple, interpretable properties in signal
preprocessing, time domain features are adopted as the signal representatives for
further signal analysis. In addition, for optimization of sensor network distribution
and sensors selection for fault diagnosis, numerous feature selection methods have
been studied. As a result, bacteria-based feature selection algorithms were chosen
as the candidates because of the global search ability and computational efficiency.

Since the prior knowledge is not always available in the real applications, the fault
diagnosis methods considering the harsh conditions are reviewed. Model-based
methods are excluded since their effectiveness greatly relies on the accuracy of the
initial models which are rather complex to build. Compared to model-based fault
diagnosis, model-free techniques are more flexible for fault diagnosis without
dependence on specific structures. To over the challenge to obtain an appropriate
threshold value for fault detection, statistical methods are considered for fault
detection since they are standardized and easy to implement though the available
data are limited. Additionally, with the continuous advances in sensor technology

and senor placement methods, the sensor network can be implemented for fault
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diagnosis of large space structures with low-cost and high-efficiency. Therefore, in
this study, a systematic sensor network-based model-free approach is proposed for
fault diagnosis of complex structures without using prior knowledge of the faults,

and using only limited prior knowledge of normal operational conditions.

37



Chapter 3. Bacterial Optimization Algorithm for

Feature Selection

The optimal ‘virtual beam’ consisting of sensors is essentially important for fault
diagnosis in our study. In this Chapter, an improved bacterial based optimization
method is developed to select the most sensitive sensors (represented by features)

for the optimal virtual beam.

3.1. Definition of Feature Selection

In engineering application, feature reduction methods are frequently developed
to convert the high dimensional space into lower dimension space. To eliminate the
redundant and irrelevant features, feature selection techniques are wildly developed
to reduce the feature number, decrease the store space and computational time, as

well as improve the classification performance.

X, _Xi1

X2 feature selection xiz {1 2 m} Z){I | | } (3'1)
. 7 . b 1&gy ' ERLVEEEES]

X X,

As shown in Eq.(3-1), the outcome of the feature selection is the subset of the
features by selecting the most informative and relevant feature subset to represent all
features, Main advantages of feature selection methods lie in the minimizing the data

missing and avoiding the difficulty in creating the new features.
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3.2. Bacterial Algorithms

In the following, the bacterial based algorithms will be introduced and discussed

firstly before presenting the proposed improvement.

3.2.1. Typical Bacterial Algorithms

Inspired by the foraging or chemotaxis processes of E. coli bacteria, Bacterial
Foraging Optimization (BFO) [141] and Bacterial Chemotaxis (BC) [142] are two
earliest bacterial based algorithms for optimization problems. These two algorithms
are credited with starting a new heuristic family in computational intelligence and
provide a global searching capability for control and optimization. Since their
advent, several Bacterial Algorithms (BAs) and extensions to them have been
applied to the research areas such as fault detection [145, 174], signal processing

[175-177], and pattern recognition [178, 179].

Algorithm: Bacterial Foraging Optimization (BFO)
Begin

Random direction ¢(7)

Chemotactic step ,”
size (i) s
/

6Lkl

6'(j.k.I) Previous direction E(j, k.D)

Chemotaxis process:
0'(j+L.k, 1) =0'(j.k,I) +c(i)g(i)
$() = =L

JAT (DA®G)

Initialization: Dim, initialization of population, fitness
calculation, chemotaxis step, etc.
For Nc=1: Maximum elimination step
For Nre=1: maximum reproduction step
For Nel= 1: maximum chemotaxis step
For Each bacterium
Do: Chemotaxis process; end
End //population
End // chemotaxis iteration
Do: Reproduction
End // reproduction iteration
Do: Elimination
End // elimination iteration
Output: Optimal position according to fitness function

Figure 3-1 The overall framework of BFO

Figure 3-1 shows the overall framework of BFO. From the figure, one of main

disadvantages associated with BFO or its extended Bacterial Algorithms (BAs) is
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the expensive computational time needed for conducting the global search for the
best solutions. The embedded interior circulation renders it impossible to solve the
high dimensional problems arising while analyzing on-line systems. Many
strategies have been applied to overcome this drawback. Among these, Bacterial
Colony Optimization (BCO) [180] is the only method (to the best of our knowledge)
capable of improving the search capability, fundamentally on the basis of the
bacterial life-cycle, by adopting the conditional behavior modes. This method has
been demonstrated to yield faster convergence and be more effective for search.
However, BCO was originally proposed for solving continuous optimization
problems; it has not been applied to discrete optimization problems (all variables
are integers). By contrast, the optimization method proposed in this thesis is suitable
for solving the discrete combinatorial problem of feature selection arising while
selecting the most sensitive sensors (represented by time domain features) from the
sensor networks. The motivation is to select the best subsets to achieve high
performance. However, it results in a significant increase in the difficulties
associated with the optimization method used during variable selection, an

improved BCO will be developed in this thesis.

3.2.2. Bacterial Colony Optimization

Bacterial Colony Optimization (BCO) [180] has been derived from the two
original bacterial behavior-based algorithms: Bacterial Foraging Optimization

(BFO) [141] and Bacterial Chemotaxis (BC) [142]. Compared to bacterial

40



algorithms like BFO or BC, BCO designs the LCM and employs rule-based
conditions to avoid excessive search for the best solutions. The learning mechanisms
used by bacteria adopt multiple communication topology structures—such as
dynamic neighbor oriented studies (or random oriented studies) and group oriented
study—so as to attain the significant reductions in the computational cost associated
with efforts to randomly search and increase the convergence speed.

® Chemotaxis As shown in Figure 3-2, chemotaxis process consists of two
alternate strategies: running (or swarming) and tumbling. More specifically, the
current position during the running process—see in Eq.(3-2)—is decided by the
previous position and the learning experiences are oriented by the global or the
individual exchanges. In comparison to running, tumbling includes an exceptional
randomness to avoid the local optimal and pursue the diversity of the population—
see in Eq.(3-3).

Running process:

P(T)=P (T -1 +R; *(Goest— P (T —=1)) + L~ R, ) * (Pes;; — P, (T —1)) (3-2)
Tumbling process:

P(T)=PR(T -1)+R; *(Goest = B (T —1)) + (1= R;) *(Poest; = B, (T - 1)) +
C(i)* AGi)/ /AT ()AG)

where P;(T) is the position of the i’ bacterium during 7" iteration, which is

(3-3)

determined by the previous position P;(T — 1), the best position of the population
Grest (recorded as the global best), and the exchanged best position of an individual
recorded as local best Ppes. The method used for arriving at the exchanged best

position Pres is given using the pseudo-code shown in Figure 3-2. A(i) is the
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direction angle of the i*" bacterium randomly generated in [—1, 1], and C(i) is the
chemotaxis step size. The larger values of C(i) contribute to more randomness of
the population for global search, while smaller values make it necessary to conduct
more local search. R = [Ry, ..., Ryp] is a randomly generated vector consisting of

0 and 1. NP is the population size. More details can be referred to [180].

‘ Running process: I
PAT)=P(T~=1)+R (G , =PI =1))

Individual exchange to obtain P,

Begin
+(@—R)* (Pbe;:: -P(T-1) If Given probability > random constant
I Tumbling process: | Share the information with two bacteria next to it

PA(.T) — P‘(T R 1) +R ; x (G;‘e:! _ P‘(T _ 1)) (neighbor Orienled exchange)

else
= x — 3 -_ i) * .
bR )P R = (R ) =H G ) Ky Choose two random bacteria
] Chemotaxis process: I Share the information with two random bacteria
Factor 1: Oriented study, e.g. Gpegs Pres (random oriented exchange)

. | End if
"~/ | Output: Py,
Py Py = pos with the best fitness value over three
bacteria (individual bacterium and two other

bacteria)

P Factor 3: Random Tumbling A

(Alternative process)

Figure 3-2 The main principle of BCO

Reproduction. After a predefined chemotactic step size, a reproduction mode will
be employed. The reproduction process relies on the health condition of bacteria
over the past chemotactic process. The first half ranking bacteria with the better
performance will be kept in population and the second half bacteria with poor search
capability will be replaced by the first half bacteria. The health index used to

evaluate the searching capability of the i’ bacterium could be calculated as:

Ji(health)zi\](i, ik, 1) (3-4)

j=1
and the population would be updated as:
05 (j,k, 1) = 0'(j, k, 1) (3-5)

where J(i, j, k, [) is the fitness value of the i bacterium at the j chemotaxis, the

k™ reproduction, the I dispersal, and S, = S/2. If the optimization problem is to
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minimize the objective fitness function, then the smaller values of J;(health)

means the better health condition of the bacterium.

+ Elimination and dispersal. Following the predefined chemotactic steps and
reproduction time, elimination-dispersal is taken to move the bacteria to the

dynamic position.
Hi(jr k1) = Xmin + (Xmax — Xmin) X rand (3'6)

where Xx,,4, and x,,;, are the maximum and the minimum of the variables, and
rand is a randomly generated constant ranging from 0 to 1.
The reproduction in bacteria based algorithms is used to multiple the high-quality
bacteria and remove the poor ones from the population, while the merit of the
elimination operation is that it helps realize diversity through random dispersal or

migration. More details can be referred to [180].

3.3. The Proposed Bacterial Algorithm based Feature

Selection (BAFS)

Having described the proposed BCO approach for solving the continuous
optimization problems, we turn now to the improvement—bacterial algorithm based
feature selection (BAFS)—made with a view to addressing the combinatorial
problem arising during the feature selection phase while trying to obtain the feature

subsets from datasets.
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Figure 3-3 The overall framework of the Bacterial Algorithm based Feature Selection

The overall framework of the proposed feature selection method is given in

Figure 3-3. The chemotaxis, reproduction and elimination process are the same as

those in the original BCO, which can be referred to [180]. It is important to note

here that, since the number of sensors for the optimal is predefined, the expected

number of features in BAFS is known. Further, other researchers [106, 129, 181]

have found that, among the thousands of features under consideration, only a few

(numbering in tens) are usually of interest during the optimal solution of the feature
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selection problems. A further reason is that the constrained feature selection method
is useful in comparing the performances of different algorithms

Several strategies are proposed to enhance the effectiveness of BAFS including
weighting mechanism & ‘Archive’ strategy, discriminatory variables selection, and

premature termination. The main ones will be described in the following sections.

3.3.1. Weighting Mechanism and ‘Archive’ Strategy

To evaluate the candidate variables (all variables listed as the candidates for
selection), a weighting mechanism and archiving strategy are proposed to record the
variable performances and store the occurrences of candidate variables, respectively.
In BAFS, the number of features to be selected are given in each run, and the
repeated features in the same vector are removed according to two matrices ‘Weight
(W)> and ‘Archive (4)’. The performance of candidate variables is evaluated by a
predefined fitness function. To simplify the problem, it is assumed that a larger value
of the fitness function indicates better performance of the variable subset.

Assume that the number of candidate variables is H, the dimension of variable
vector for evaluating the fitness function is D, and the bacterial population is N. The
performance scores used to record the performance of features associated with each
particle are stored as a H X N matrix W. The initial weight values in W are zeros.
If the attendance of a variable yields to the higher fitness function value, the variable
is deemed to be more effective than the replaced one provided that the new adding

variable is assigned with higher weight in comparison to that of the replaced variable.
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Finally, the weights representing the performance of variables in each individual are
updated.
If Fit (y m > Fit(x ), then

| Fitix, m - Fit(xj’m) |

WG m) =W () + S — (3-7)
Otherwise

) ] | Fit x. m - Fitix m |
W (i,m)=W(j,m)- oG o4 m (3-8)

Fito m
The replacement of variable X; with X; contributes to the increase (or decrease)
of fitness. The related weights are updated using Eq.(3-7) (or Eq.(3-8)) for the
individual (i.e. m*" bacterium). If the selection of variable X; is to replace the
variable X; in the m* bacterium, and the current fitness values F itox,m) 18
larger than previous fitness value Fit(Xj,m), then the weight of X; in m'
bacterium—W(i, m)—will be larger than the weight of X; in a same bacterium, i.e.

W(j, m). Otherwise, the weight of X; would be smaller than the weight of X;.

In the BAFS, the occurrence of variable across the optimization is stored in a

0,..,0
H x N matrix 4, and the matrix is initialized as: A=< :,...: . If the i*" feature
0,..,0

appeares in m!" bacterium, the related element is updated as: A(i,m) = 1. The
main contribution of matrix ‘4’ is to record the appearance of variables and ensure
that the unseen variables from candidate variables have the chance appearing in the

optimization process. Therefore, recording the occurrence of variables in a vector

46



could avoid the situation that certain variables are frequently selected while others

never appear during subset assessment.

3.3.2. Discriminatory Variables Selection

To enhance the quality of the selected variable subsets, the variable is deemed to
be of value, if it has appeared frequently at subsets exhibiting above average
performance. The parameter F is used to indicate the distribution of the features.
The weight (W) is then updated according to Eq.(3-9) and Eq. (3-10).

G. G.
F=(— )/ max(—
G, +B i G.+B.

1 I J ]

) (3-9)

W (i,m) =W (i,m) + F (3-10)
where G; is the number of times that the i*" feature has been used in the subsets
whose classification accuracies have been found to be higher than the average
fitness value. Similarly, B; is the number of times that the i*" feature has been

employed in the subsets whose classification accuracies are lower than the average.

3.3.3. Randomness Control Mechanisms

To avoid the redundant searching for the optimal and qualify the population for
feature selection, the randomness control mechanisms are investigated in the
proposed bacterial feature selection method. Considering the computational cost,
the proposed bacterial method adopts the life-cycle mechanisms in BCO using the
predefined processing rules to operate the reproduction and elimination process.

These predefined rules in the proposed method are re-designed for improving the
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optimization capability and avoiding the randomness searching in typical bacterial
based algorithms.

Three parameters are used for randomness control mechanisms. More specially,
the parameter P is used to control the over-searching for the optimal, and
parameters P and Pe; are exploited for controlling the frequency of reproduction

and elimination-dispersal strategies, respectively (see Pseudo-code 3-1).

Pseudo-code 3-1: Randomness Control

If global best is unchanged

Record=Record+1;

else
Record=0;

End if
If Record=P,,

Success=1; Stop the searching process / termination to avoid the redundant searching
End if
If Record=~P,.

Do: Reproduction process
End
If Record>P,;

Do: Elimination-Dispersal process

End

The larger value of parameter P indicates the longer iterations waiting for the
best solution. However, this parameter cannot be too large to bring the
computational burden, while the value cannot be too small to obtain the local
optimal rather than the best solution. Parameters P, and P.; are developed to decide
the process of reproduction and elimination. Reproduction is used to replace the
poorer bacteria from the population and improve the quality of the partial population
rather than the global best. To enrich the population, elimination-dispersal process
is adopted to improve the diversity of the individuals and strength the capability for
the global optimization. Smaller value of P, brings more randomness to the

population, while larger value indicates the less diversity. Therefore, the
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randomness of the individuals relies on two parameters P, and P., while the

termination parameter P is applied to control the redundant searching.

3.3.4. Modified Reproduction and Elimination Strategies

The reproduction strategy in BCO is originally investigated for the continuous
problems according to the historic performance of individuals. However, it seems
to be less effective in solving the discrete combinatorial problems, e.g. feature
selection. Therefore, the reproduction strategy in typical bacterial based algorithms
is modified in the proposed method for feature selection.

1). Reproduction To improve the quality of the population, the individuals
achieving the lower classification accuracy rate are updated through the
reproduction process. In BAFS, the bacteria achieving the better performance than
the average (i.e., mean fitness of the population Avg Fit referring to Eq. (3-12)) are

used to replace the bacteria achieving the poorer performance (worse than the

average).
Popsize
Avg Fit= Fitness, -
9 Popsize ; ' (3-11)
) FS.
Fitness, = ——— -
'TTS 1 Fs (3-12)

The fitness of the optimization method is the classification error rate, where TS and

FS represent the number of testing samples that have been classified into true and

false groups, respectively.
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It is assumed that the objective of the optimization is to minimize the fitness
function. The bacteria with the fitness value larger than Avg Fit are replaced by
bacteria with the fitness smaller than Avg Fit. The fitness values are sorted in
ascending order, and the bacteria locating at the front are more effective than the
ones locating at the back. If the fitness of (Popsize-i+1)" bacterium are smaller than

Avg_ Fit, then reproduction process is operated as follows:
O(Popsize — i+ 1) = 0(i) (3-13)

where 6(i) represents the position of i bacterium. Popsize is the total number of
bacteria.
2). Elimination-Dispersal 1t is used to guarantee the diversity and global
optimization of the proposed method. As the variables in feature selection is not
continuous and the problem is a combinatorial problem to select the best subsets of
features from the dataset, the elimination and dispersal process for the randomness
should be modified to make the method suitable for the float optimization. The
matrix 4 is initialized with all elements zeros. If the i feature used in ;™ bacterium,
then element A(i, j) equals to 1. According to Egs. (3-7) and (3-8), the features are
ranked according to their contributions to the feature subsets. The features with
lower weighting indexes are replaced with unseen features (never used for
evaluation, e.g., A(i, /))=0) according to matrix 4. Assumed that the i bacterium is
0(i) = [fi1, -, fip] . The features are sorted in descending order according to
weighting vector (see Egs. (3-7) and (3-8)), then the last feature f;p has the lowest

weighting index in W. Therefore, the feature f;, in the i bacterium will be
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replaced by a new feature that has never been appeared in that bacterium, and the

bacterium will be updated as follows:
6@ = [fu, - fin, ] (3-14)

where fy is the feature that is not appeared in the i bacterium with the occurrence

record A(N, i)=0.

3.3.5. Bacterial Algorithm based Feature Selection Method

The pseudo-code of the proposed method, abbreviated as BAFS, is given in

Algorithm 3-1.
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Algorithm 3-1: Pseudo-Code of BAFS for feature selection on datasets

01
02
03

04
05
06
07
08

09
10
11
12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35

Input: dataset for training and testing: 7 and 7e; number of features to be selected: D
Initialization: 71, 72, T3, C, Max_iteration;
Fitness function: develop the fitness function //classification error rate achieved
by KNN
Calculate the fitness of all bacteria, and define Current iteration=0
Optimization process:
If Current_iteration < Max_iteration
Current iteration= Current iteration+1;
Obtain the Ppey and Gpes //Ppesi 1s calculated according to the pseudo-code in
Figure 3-1, and Gy is the best position of the group
For each bacterium
Running: Adapt the position of bacteria using Eq.(3-2)
Obtain the fitness f'and compare with the original fitness Fit
If Fit<f(assume that the objective is to minimize)
Tumbling: Adapt the position of bacteria using Eq.(3-3).
end if
Adapt the W using Eqgs. (3-7)and (3-8)
End for //end for each bacterium

For all bacteria

Adapt the weight using Eqgs. (3-9) and (3-10) and global best G,
If global best is unchanged, i.e. GL, = GiLen?
Record=Record+1;
else
Record=0;
end if
If Current_iteration >Max_iteration/2 and Record=P,,
Success=1; // termination to avoid the redundant searching
end if
If Current iteration >Max_iteration/2 and Record=P.
Do: Reproduction (refer to Egs. (3-11) to (3-13))
end if
If Current iteration >Max_iteration/2 and Record>P,;
Do: Elimination-Dispersal (refer to Eq. (3-14))
end if
End for //end for all bacteria
end If

Output: selected feature subsets
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3.4. Parameters Estimation and Decision

In this section, three parameters (Pre, Pre, and Pe;.) used for randomness control

are studied and discussed.

3.4.1. Parameter Settings and Benchmarks

To choose the appropriate parameters for randomness control, the dataset
‘9 tumors’ is used for evaluation. All attribute values in the database have been
entered as numeric values. The dataset includes 60 instances with 5726 features

belonging to 9 classes, which is available online http://www.gems-system.org/.

Since the motivation of the experiments described below is to study the choosing of
parameters, the number of features expected to be selected is defined as 30 (from
5726 features). The instances are divided randomly into two sets: 75% for training
and 25% for testing.

The fitness function is the classification error rate achieved by a classifier. In this
study, K-Nearest Neighbor (KNN) with K=5 is considered as the classifier to
evaluate the performance of the feature selection method. The population size of the
BAFS is 50, the maximum iteration for the optimal is 300. The parameter P; used
to avoid the redundant searing is studied ranging between 20 and 120, and two
other parameters for reproduction Pre and elimination Pe are varied between 5

and Pee.
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3.4.2. Experimental Results on Parameters Py, Pre, and Py

As 1is illustrated previously, the smaller values of parameters P,. (and/or Pe)
indicate the more frequent reproduction (and /or elimination) to update the
population by replacing the poorer individuals (and/or renewing the population by
adding the randomness). Results are given in the following tables using different
values of three controlling parameters. All results are obtained over 30 runs. ‘Accu’
in Tables represents the average classification accuracy, and ‘/ter’ indicates the real
iteration times used by BAFS.

Table 3-1 shows minimum, maximum, average and standard variance of iterations
by BAFS to achieve the associated classification accuracy (%) with various values
of control parameters. Table 3-2 to Table 3-5 give the detailed results in Table 3-1.
Figure 3-4 shows the results given in Table 3-2 to Table 3-5. The values of average
classification accuracy rate higher than 95% are highlighted and the highest value

of accuracy rate among all points is texted.

Table 3-1 The range of classification accuracy rate and iterations using varying values of

termination parameter P

Parameters Maximum Minimum  Average Std. Var
Pe =20 Accu  97.7800% 71.1100% 86.6598% 4.7054%
Iter 42.6000 30.6000 36.1612 3.0192
P =40 Accu  97.7800% 72.2200% 88.2306% 1.3857%
Iter 76.7667 61.9333 68.3844 3.3058
P =80 Accu  97.7800% 75.5600% 88.8343% 2.4382%
Iter 170.8000  95.2000 1255906  17.4291
Peo=120 Accu  98.8900% 72.2200% 89.7919% 5.6077%
Iter 242.8000  138.0000  175.3129  18.3019
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Figure 3-4 Average classification accuracy achieved with varying Py, P, and P,

According to Figure 3-4, the larger value of P. contributes to the higher
probabilities (with more points are highlighted) for obtaining the good feature
subsets to achieve the higher classification accuracy rate. Even so, we cannot ignore
the computational complexity associated with large P. As shown in Table 3-1,
longer computation time (i.e. represented by iteration times) is needed to search for
the best solutions though higher average classification accuracy rate is obtained with
the larger value of termination parameter P.. Among four cases in consideration,
the highest classification accuracy rate and average classification accuracy rates are

achieved when the termination parameter P is 120, but the computational cost for
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the best is also the highest. Additionally, larger iterations cannot guarantee the best
solution. Though the average and the maximum of classification accuracy rate are
achieved when parameter P;,=120, the computational cost consumed by searching
process is rather expensive and over twice of the case with the termination parameter
Pi.=40. Actually, the minor priority in classification accuracy rate is realized at the
expense of expensive computational cost.

The effectiveness of optimization method relies not only on termination
parameter P, the parameters P, and P. are also playing the essential roles for
updating the population. Since the strategies like reproduction, elimination are
eligible for improving the quality of the population, these two parameters (e.g. Pre
and P.;) are employed to control the frequency of reproduction and elimination
process. The classification accuracy rate achieved exceeding 95% are highlighted

in bold.

Table 3-2 The range of classification accuracy rate and iterations using varying values of

termination parameter P

Pe=3 Po =5 Pe =8 Pe =10 Pg =13 Pg =15 Py =18
P.=3 Acc 9111 92.22 88.89 87.22 80.00 94.44 83.33
Iter  34.30 34.30 41.8 345 35.1 34.3 37.1
P.=5 Acc 9167 81.11 88.89 85.00 77.78 87.78 91.11
Iter 42.6 40.0 39.3 38.5 37.5 34.3 39.4
P.=8 Acc 88.89 81.67 90.00 88.78 93.33 85.00 71.11
Iter 34.2 33.7 31.2 37.9 37.1 39.4 33.7
P.=10 Acc  92.56 94.44 87.22 93.33 94.44 96.33 87.22
Iter 33.2 311 35.6 31.7 33.4 36.8 38.8
P.=13 Acc  75.56 91.11 88.89 92.22 92.22 90.00 94,
Iter 37.1 31.2 32.0 35.7 36.5 33.4 38.8
P.=15 Acc  88.89 88.89 84.44 90.00 91.67 91.11 95.78
Iter 37.1 34.0 33.6 38.1 37.1 36.3 41.8
P.=18 Acc 9444 92.22 93.33 92.22 97.78 94.44 86.67
Iter 378 35.9 30.6 35.7 38.8 41.4 38.2
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Table 3-3 Average classification accuracy rate and iterations for the optimal when P,~=40

Pu=5  Pa=10  Pg=15  Pg=20 P=25 P.=30 P.=35
p.=5 Acc 8111 8444 7778 8000 9222 9444  86.67
lter 69.67 63.83 7247 6540 67.23 6523 6193
p.=10 Acc 9444 8222 9222 9000 8556 9L11  77.78
lter 70.97 67.07 7187 67.03 6537 7143 7247
p.=15 Acc 8778 9444 90.00 9222 9111 9444 8333
lter 7260 6663 7020 66.67 67.10 6553  70.03
p.=20 Acc 7222 8889 8222 9556 9333 9111  8L.11
lter 6393 6253 7473 6393 64.67 6680 68.97
p.=25 Acc 8444 9000 8444 9556 97.78  87.78  88.89
lter 6837 7677 6650 70.37 6560 69.10  67.87
p.=30 Acc 9L11 9222 9222 8333 8389 8667 7889
lter 6847 6887 6563 67.80 67.20 6953  74.37
p.=35 Acc 9444 8222 9778 9556 87.78 9444 9111
lter 6747 6843  69.40  66.86  75.63  70.23  70.07

Table 3-4 Average classification accuracy rate and iterations for the optimal when P,=80

Py=5  Py=15 Pg=25 Pg=35 P.=45 Pg=55 P.=65
p.=5 Acc 7556 9333 8556 83.33 9111 9444  97.78
lter 1142 1132 1122 1346 1152 1156  143.6
p.=15 Acc 8556 8889 80.00 87.78 9333 86.67  96.67
lter 130.6 127.4 1182 1074 1122 1326 1218
p.=25 Acc 9L11 8889 9556 88.89 7556 8L1l1 9556
lter 1152  167.4 1608 1062 1014 1276  132.6
p.=35 Acc 8222 9444 8556 9444 8778 8778  86.67
lter 1136 1548 1240 1620 1482 1168  127.8
p.=45 Acc 8778  90.00 9444 9556  90.00 90.00  93.33
lter 1150 1200 1076 1230 1048 1060 117.6
p.=55 Acc 8889 9111 9556 8556 9333 8333  90.00
lter 1324 1234 1244 1058 1216 1248 1144
p.=65 Acc 8889 9333 9L11 8333 8444 8389  78.89
lter 1340 170.8 1192 1522 1046 1054  129.8
p.=75 Acc 8778 9556 88.89 9444 8556 86.67  86.67
lter 1442 1204 1484 1172 1672 1514 1450

Table 3-2 shows that the proposed BAFS could select the considerable subsets to
achieve the average classification accuracy rate reaching to 97.78% within
comparative small iterations (no more than 40 iteration time) when the two
parameters are: P.=18 and P, =13. However, smaller parameters Pe; (e.g. Pe; <10)
associated with frequently utilizing the elimination for diversity seem to be less

effective for improving the searching capability. As parameter P.; increases to
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around 15 and parameter P, increases to around 10, the average classification
accuracy rate is achieved mostly around or over the average level.

Table 3-5 Average classification accuracy rate and iterations for the optimal when P,=120

Po=5  Po=15 Pg=25 P.=35 P.=45 Pg=55 Pg=65
P.=5  Acc 9222 9222 9444 9222 9111 8222  88.89
lter 221.0 177.4 1766 1624 1846 1572 139.6
p.=15 Acc 88.89 8444 8778 8667 86.67 8444  88.89
lter 1454 1648 1948 2046 1840 1834 1594
p.=25 Acc 9667 8889 9778 8111 9556 9333  97.78
lter 2026 169.8 156.6 2122 1610 1762 172.4
p.=35 Acc 9444 8889 88.89 9444 8889 90.00 87.78
lter 191.4  149.0 1458 1544 1894  160.4  166.0
p.=45 Acc 8667 8222 7778 9667 8667 9111  88.89
lter 1862 207.8 1748 1778 1828 1664  185.2
p.=55 Acc 83.33 9556 88.89 8444 9667 84.44  90.00
lter 197.8 156.0 1864 1804 1664 138.0 212.4
p.=65 Acc 9111 8333 9222 9889 9222 90.00 9111
lter 200.8 202.4 161.0 1836 1916 1762  150.4
p.=75 Acc 87.78 8778 8444 9778 90.00 86.67  86.67
lter 1934 198.6 1518 1706 1842 1722  162.2
p.=95 Acc 9L11 8111 9000 9222 9556 9556 9222
lter 161.0 172.0 168.2 159.0 167.2 1488  189.2
p.=105 Acc 97.78 9556 9222 9667 9222 87.78  96.67
lter 188.8 152.8 172.2 179.0 1640 193.0  182.2

Similarly, from Table 3-4 and Table 3-5, we can find that the smaller parameters
(e.g. P <10, P < 10) associated with the earlier process of reproduction and/or
frequent randomness from elimination for diversity might contribute to poorer
performance for feature selection. But the value of parameter P.; cannot be too large.
When termination parameter P is ranging between 80 and 120, the accuracy rate is
decreasing when the parameter P.;is larger than 65, so the cases with parameter P,
larger than 65 are not considered in the study.

Therefore, the iterations for the optimal by BAFS do not need to be too large.

Even though the predefined maximum iterations for the optimal is large, the
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termination parameter P, could be used to avoid the redundant searching for the
best solution. It is appropriate to assign the termination parameter Py around 40,
employ the reproduction control parameter P, larger than 20 and smaller than Py,
and apply the elimination control parameter P, larger than 15 but smaller than 65

and Pre.

3.5. Benchmark Experiments

To test the performance of the proposed feature selection method, typical
bacterial based algorithms are employed and compared for feature selection on

several frequently used datasets.

3.5.1. Comparison Techniques and Datasets

In this section, the effectiveness of the proposed BAFS will be tested on datasets
in comparison with four other bacterial algorithms: BFO [141], BFO with linear
chemotaxis step size (BFOLDC) [182], BFO with nonlinear chemotaxis step size
(BFONDC) [182], and BCO [183].

Features used in the currently available mechanical analysis datasets are small in
scale and easy to implement. In our study, the proposed optimization method is to
select the sensor chains from the networks with more than 100 sensors (or even
more than 1000 in real application). Therefore, the datasets—frequently used for
feature selection with high dimensional variables (more than 2000 features) — are

provided together with mechanical analysis dataset to test the effectiveness of the
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proposed bacterial based method. The first dataset is available online from:

http://cilab.ujn.edu.cn/datasets.htm. The last nine datasets are from:

http://www.gems-system.org/. Table 3-6 gives the detailed information of datasets.

Table 3-6 Datasets for feature selection

Dataset Features class instances
Colon 2000 2 62
11_Tumors 12,533 11 174
14 Tumors 15,009 26 308
Brain_Tumorl 5920 5 90
Brain_Tumor2 10367 4 50
SRBCT 2309 4 83
Leukemial 5328 3 72
Leukemia2 11225 3 72
Prostate Tumor 10509 2 102
DLBCL 5470 2 77

The population size in all feature selection methods are defined as NP = 50.
The iteration time for BCO and BAFS is 200. For remaining three bacterial based
algorithms, the parameters are defined as: chemotaxis iteration N¢=50,
reproduction iteration Nre=5, and elimination iteration Nei=2. The parameters for
chemotaxis step strategies in BFOLDC and BFONDC are assigned as: Cmin=1
and Cmax = 5. According to the study on the three randomness control parameters
in BABOAFS, they are defined as: Pt=40, Pr.=25, and Pe=20. For each dataset,
the instance are divided randomly two sets: 70% for training and 30% for testing.
The fitness for all the optimization method is the classification error rate
evaluated by KNN with K=5. The number of features expected to selection cannot

exceed 10 for Colon and 50 for remaining high dimensional datasets.
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3.5.2. Experimental Results and Analysis

Figure 3-5 shows the average classification accuracies across 30 repeated runs
for varying subset size on datasets. The experimental results show that the proposed
BAFS outperforms all other bacterial based methods to select the feature subsets for
achieving higher classification accuracy rate, and BCO performs better than BFO,
BFO-LDC and BFO-NDC. Meanwhile, BFO-NDC shows the minor superior to
BFO-LDC in some cases like SRBCT, Leukemia 2, and DLBCL. Though, the
improvement of chemotaxis step strategies on BFO have improved the effectiveness
of the original BFO, the exchange strategies in BCO seems to be more eligible in

comparison to chemotaxis strategies based algorithms (i.e. BFO-LDC and BFO-

NDC).
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Figure 3-5 Average classification accuracy across 30 repeated runs for varying subset size on

datasets
Among all bacterial based algorithms, BFO, BFO-LDC and BFO-NDC have the
largest iteration time for the best solutions, i.e. 500 iterations. The iteration time
used in BCO for searching is 200. While BAFS has the smallest iteration, i.e. no
more than the maximum iterations (i.e. around 100 and no more than 200). Thus,

the computational cost consumed by BAFS is even smaller than BCO, while BFO
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and BFO based algorithms spend larger computational time for the best solution.
Figure 3-6 shows that BAFS and BCO spend less computational time, and BFO,
BFO-LDC, BFO-NDC consume more than twice of computational time for
searching the best solutions.

Though randomness mechanism is employed in BCO, the randomness embedded
in BCO is realized only by tumbling process. In the proposed BAFS, the randomness
is not only manifested in tumbling strategy, but also applied by elimination to
replace the poorer features with unseen features from recording matrix. The
importance of features are evaluated by the probability of their contribution to the
subsets achieving higher classification performance. As a result, the capability of

BAFS is obviously superior to BCO in most cases with lower computational time.
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Figure 3-6 Computational time spent by feature selection methods across the 30 runs
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3.6. Discussion and Conclusion

The proposed bacterial algorithm based on randomness control mechanisms was
investigated for feature selection in classification. A premature parameter is defined
to avoid the redundant searching for the best results and proved to be effective in
reducing the computational time for selecting the feature subsets from datasets.
Meanwhile, two additional parameters are applied to decision the process of
reproduction and elimination. Experimental studies on choosing the parameters
indicate that the frequency of elimination for diversity cannot be too high (waiting
for over 15 times), and it is appropriate to apply the reproduction mechanism when
the best position of the population is unchangeable over 15-20 times. The learning
mechanism in BCO is more effective in comparison to chemotaxis step strategies
for feature selection in classification.

This higher capability of the proposed method for feature selection indicates that
the proposed method BAFS makes it more suitable for the selecting the most
appropriate sensor chains while constructing virtual beams for fault localization.
Therefore, in the further study, the proposed BAFS will be applied to the sensors

selection to construct the virtual beams for fault diagnosis of complex structures.
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Chapter 4.  Feature Characterization and Fault

Detection

In this Chapter, signal preprocessing and fault detection methods are presented.
Signal preprocessing consists of feature characterization and feature selection. To
obtain the most informative features from the available feature representatives, an
unsupervised clustering method is developed for feature selection. The combination
of statistical tests and fault indicator-based adaptive threshold is presented for fault

detection. In what follows, they will be presented in details.

4.1. Signal Preprocessing

Since the data are firstly transformed into the form of features based on
segmentation of the time series. Signal preprocessing in this stage mainly consists

of feature characterization and feature selection.

4.1.1. Data Acquisition

In this thesis, a beam-like structure, served as the benchmark structure, is studied
for fault diagnosis. Thus, the data measured from this system is provided for feature
selection.

The beam-like structure shown in Figure 4-1 consists of the two layers bolted
steel panels of square size (length 40cm* wide Scm*high lcm). Breathing-like

cracks or loosening-bolt can be easily created in one layer at any known positions
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for benchmark studying (see Figure 4-1 (b)). As shown in Figure 4-1 (¢), faults (e.g.
cracks) at different positions can be denoted by R/, R2, and R3, and referred to as
root crack, middle crack, and top crack, respectively. Three accelerators are placed

regularly on the beam at shown positions denoted by A1, A2, and A3.

(b). Crack on beam-like structure
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(c) Illustration for the beam-like structure

Figure 4-1 The designed beam-like structure

The system is firstly measured without any cracks or loosening bolts as a
reference signal and then is excited with known faults by using the same input. The
first measured time series data acts as the reference signal which can usually be

taken in the health monitoring record of a structural system. The second
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measurement time series data under fault situations is used for fault feature
characterization and diagnosis. The input excitation used in the experimental testing
is not necessarily any specific signal. As a benchmark study, different inputs have
been tested. Actually, the study focuses on the changes of vibration transmission,
and thus the excitation magnitude of the input has no effect on the feature
characterization and fault diagnosis. As an example, in this thesis, the input is a
sweeping-frequency excitation from 20 Hz to 200 Hz with the exciting intensity 2g,

the sample frequency 8192Hz, and velocity 4 oct/min.

4.1.2. Feature Characterization

In the process of feature construction, the raw time series data of long time
dimension will be converted into features of a lower time dimension. Considering
that the frequency domain features may not be suitable for non-stationary signals,
and time-frequency domain features have more computational complexity, in our
study, time domain features are adopted in this thesis. Those 16 features are:
maximum value(fl), Minimum value (f2), Average absolute value (f3), Peak to peak
(f4), Variance(f5), Standard deviation (f6), Skewness (f7), Kurtosis (f8), Root mean
square frequency (f9), Crest factor (f10), Clearance factor (f11), Impulse factor
(f12), Peak to peak (f13), Peak-magnitude-to-RMS ratio (f14), Energy Ratio (f15),
energy operator (f16). The detail formation can refer to [184]. Time domain features

are presented in Table 4-1.
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Table 4-1 Typical time domain statistical features

(1) Maximum value:Max{x (i)}

(2) Minimum value: Min{x(i)}

n

(3) Average absolute value: £Z| x(@i) |

i=1

(4) Peak to peak: Max{x(i)} — Min{x(i)}

(5) Variance: % = (x (@ — %)

(6) Standard deviation: \/% Y (x(i) — %)?

(7) Skewness:

1\ 1\
ACOR N o SRCORLPRS

(8) Kurtosis

SR () — B/ G, (x () - £)7)?

(9) Root mean square frequency:

if(k)z x X(k)/imc)
i=1 i=1

(10) Crest Factor (or Crest RMS)

n

1
Max(x(DY/ |~ ) x(i)?

i=1

(11) Clearance factor: Max{x(i)}/%Z?zlJc(i)2

(12) Impulse factor: Max(|x(D))/ Xy [x(D)]

(13) Peak to peak:

/— mx()? /S50, x (@)

(14) Peak-magnitude to RMS ratio:

1’".
Xllo/ |= ) 1X:I2
IXlle/ |7 ) 1
=1

(15) Energy Ratio

LELE© - DY [FELGO - o2

(16) Energy Operator

1% 1%
7 2 (K0 =AD" /) (8x() — 40

where X is the frequency spectrum of x(i), while X(k) is the k” measure of the frequency

spectrum of x(i), f(k) is the frequency value of the k" spectrum line, k=1,..., K. Ax(i) is the

obtained piecewise. n is the total number of data points in time record. X represents the mean

of x(i). d(i) indicates the “diff” function which calculates differences between adjacent elements

of x(i), and d,.(i)is the m" time record. d is the mean of d(i). More exactly, diff(x) returns a vector,

one element shorter than X of differences between adjacent elements: [x(2) — x(1),x(3) —

x(2), .., x(n) —x(n—1)]

4.1.3. Selection of Features for Signal Analysis

Sixteen predefined time domain features for each sensor are the candidates for
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feature representatives. Therefore, 48 features in total for three sensors are provided

for feature selection. Each feature is regarded as an independent individual for fault

clustering and feature subsets are used for fault classification. The time interval for

segmentation is 1 second. 40 groups of signals with each ten groups of signal under

the condition of normal, root crack, middle crack, and top crack are provided for

clustering:

¢ Normal condition: ten group of signals measured from fault free system;

¢ Root crack (R1 region): ten group of signals measured when crack is near closed
to fixed boundary (Lc/L=0.0625);

¢ Middle crack (R2 region): ten group of signals measured when the crack is in
the middle of the beam (Lc/L=0.35);

¢ Top crack (R3 region): ten group of signals measured when the crack locates at
the top of the beam (Lc/L=0.65).

The clustering methods are capable of identifying the underlying features of the
data, which provide useful algorithms for data mining, computer vision, pattern
recognition, document clustering, etc. Among various clustering techniques,
unsupervised fuzzy clustering methods have been widely developed since the results
obtained include the association degree between the objective and clusters rather
than the complete belonging of the objective to one group in hard clustering methods
like K-means clustering. The fuzzy clustering techniques favor contiguous clusters

in time and enable to detect changes in the hidden structure of multivariate time-
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series, which is very useful in fault diagnosis with time series data analysis. Even
so, most fuzzy clustering methods are great dependent on the initialization and less
robust to the global optimum. Particle Swarm Optimization (PSO) [185] is a widely
used stochastic global optimization method. In our study, an improved version of
fuzzy c-means clustering, i.e. combined Particle Swarm Optimization (PSO) and
fuzzy c-means clustering method (FCM), is proposed and applied to feature
selection. In the combined fuzzy clustering method, the random characteristic in the
PSO will be integrated with the FCM to avoid to be trapped into the local minima.

In what follows, the main principle of the relevant methods will be illustrated.

Fuzzy C-means clustering (FCM). The clustering method is to classify the data from
the observations into groups depending on the underlying structure. Assume that the
single observed data vector consists of n variables: X; =[Xy, X5, Xin] » % €R".

Therefore, when there are N observations, it could be represented as:

Xipr Xgp5eemy Xgpy
X1y Xogyeees Xon
X ={x |i=1,2,..,N}=| 2" 2"""2 (4-1)

Xngr Xnz e Xnn
For supervised clustering techniques, clustering number is predefined and
denoted as c. For fuzzy clustering methods, the partition matrix consists of the
probabilities of belonging to predefined number of group, which could be

represented as:

70



U ={u, li =1, N, j=1,.c}=| 202 (4-2)

Un1rUnzyes Une

U, =1 i=12,..,N

j=1
where the membership levels are ranging from 0 to 1, i.e. u; €[0,1]. For hard
clustering methods, the membership level is either 0 or 1, i.e.u; e{01}. The fuzzy

C-means clustering method is a well-known fuzzy clustering technique, and it can

be formulated as [186]:

c N
min ZZuiij”A (4-3)
i=L j-1
N
Zu‘i X;
v =2 i=12,..c (4-4)

Di?A = X; =V ”i: (Xj -V )T A(Xj -V;) (4-5)

Su, =1 u, €0}, i=1.2,..,N> Uy {013 (4-6)

=

In the FCM, the matrix Ais NXN diagonal matrix and could be formulated as

the common form, ie. A=I| or consists of variances of X, i.e.

‘W/o)?0 - 0

0 (1/(7)2 -0 ) . .
. . . . The membership level is either 0 or 1, i.e. u; {0.3}.

0 0 - (Uo)

The membership degreey; is ranging from 0 to 1, i.e. u; €[0,1]. It is rather common

that m=1 or 2.

Particle Swarm Optimization (PSO). Inspired by bird flock or fish school, the
Particle Swarm Optimization (PSO) [185] is known for its simplicity and
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considerable performance on optimization problems. In the PSO, the variables in an
optimization problem are represented by particle position. For each particle, it can
be represented as: x =[x ,%_ ,..,Xp] In the D-dimensional space. In N-
observations fuzzy clustering optimization, each particle is represented as N X
¢ matrix with the assumption that the number of cluster is n. Here, the column of
matrix is X =[Xik1,Xik2,..., Xien ]T. The position of each particle in next moment is
determined by its velocity, the local best (the best fitness value of that particle in

history) as well as the global best (the best fitness value of all the particles).

In each time step ¢, the particles are updated according to the following equations

[185]:
K1) = %, 0+, () 47
Vi (t+1) =W, ..V, (t) + ¢, (pbest; — x; (1)) +

¢, (gbest — %, (1) 9

where W, is an inertia weight, which employs the linear strategy in the
optimization process, i.6. Winert = Wena + Wstart — Wena) X (itetq, — iter)/
iteTyqy- Parameters C,and C, are acceleration constants to control the step distance

of particles.

Combination of PSO and FCM (PSO-FCM). To overcome the defects of the FCM,
the improved method PSO has been combined with the FCM (called PSO-FCM) for
feature selection. The main idea is to take advantage of the random and population-
based initialization and learning mechanisms of PSO to overcome the disadvantages

of FCM (i.e., less robust for the global optimum). Moreover, the combination
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method could also keep the priority of the fuzzy clustering methods such that the

objects are not ‘forced’ to assign to the predefined clusters, which is very important

to our further application where the prior knowledge of the system is unknown.

The pseudo-code of PSO-FCM has been given in Algorithm 4-1.

Algorithm 4-1: Pseudo-Code of PSO-FCM

01

02

03
04

05

06

07
08
09
10

12
13
14

15
16

Input: extracted features transformed by vibration signals measured when the system is
in varying health conditions.
Initialization: Population size Pop, the parameters c¢; and c,, Max iteration, the
inertia weight of velocity w,
Population initialization:
Particles in group I: Randomly generate a matrix like Eq (4-1) and satisfy the
constraints defined in Eq. (4-6) as the initial position of the particle.
Particles in group 2: The position of particle is initialized using the U partition matrix
obtained by FCM.
Evaluation: Compute the fitness value using Eqs (4-3)-(4-5), and find the local best (the
best fitness value of that particle in history) as well as global best (the best fitness value
of all the particles) of the particles by fitness comparison.
Updating: Adapt the position matrix of the particles
Optimization process
While Max_iteration is not met
Update the position using Eq. (4-7) and satisfy the constraints defined in Eq. (4-6);
If the current iteration = Max_iteration/2
Do: Half poorer particles would be optimized by FCM;
end
Evaluation: Compute the fitness value using Eqgs (4-3) to (4-5), and obtain the local best
(pbest) as well as global best (gbest) of the particles by fitness comparison
end while
Output: the possibility of features to be selected and corresponding accuracy rate

achieved by each feature.

To select the most informative features, the PSO-FCM is applied to clustering the

four different healthy conditions of the beam-like structure. The results are shown

in Figure 4-2.
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Figure 4-2 Accuracy rate achieved by clustering method using the data provided by three

sensors with individual time feature as signal representative
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Figure 4-3 Classification accuracy achieved by three sensors (i.e. Al, A2 and A3)

From Figure 4-2 (a), the energy ratio (f15) is the most sensitive feature for fault
classification of four health condition in terms of sensor A2, while maximum value
(f1) and peak to peak (f4) are most effective features in terms of sensor A3, and peak
to peak (f4) is also the most informative features for sensor Al. Except above-
mentioned features, crest factor (f10) and peak-magnitude-to-RMS ratio (f14) also

show better the performance for fault classification according to three other
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classification cases in Figure 4-2 (b) to (c). However, the maximum value (f1), peak
to peak (f4) and the peak-magnitude-to-RMS ratio (f14) are similar in feature
characterization.

According to Figure 4-2 (d), the peak to peak (f4) is the most informative feature
for sensor Al, the energy ratio (f15) is the most sensitive feature for fault
classification of four conditions in terms of sensor A2, while the maximum value
(f1) and peak to peak (f4) are most effective features for sensor A3. Considering
that the feature characterization of the maximum value (f1) and peak to peak (f4)
are similar, one of them will be selected to avoid the feature redundancy. Combined
with the results from sensor A1, the peak to peak (f4) is selected.

Even so, Figure 4-3 shows the classification accuracy achieved by the KNN (K=4)
[127] using the optimization method, indicating that the number of features should
be 3 to balance the best performance of the fault classification as well as the
computational complexity. The feature crest factor (f10) seems to be more sensitive
than the remaining features according to Figure 4-2 (d).

Therefore, three features are selected for fault diagnosis: peak to peak (f4), crest

factor (f10), and energy ratio (f15) are finally employed for fault diagnosis.

4.2. Feature Based Fault Indicators

Euclidean Distance (ED) is a commonly used approach for similarity
measurement, but is susceptible to small distortions. Thus, the notion of deviation

ratio is proposed as the feature indicator for fault diagnosis, which is to evaluate the
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overall relative difference of two signals, defined as follows:
Dev(Xn, Xaiag) = ) (XK~ Xhiag) / ) Xk = %)’ (4-9)
K K

where X, = [X4,..,Xn| (n; =1,..,M ) represents the time domain features of

n;*™ time series data measured from the previous fault-free or normal system, and

the element X,’fi in X, indicates the feature of k" time interval data. N is the

feature dimensionality. Xgiqq = [X éiag, ¢ gl-ag] denote the time domain features

of diagnosis signal. X,, = [ X_nl, - X_nN] are the mean values of the time domain

features in the fault-free system, namely X" = % Yn=1X. M isthe number of

signals measured from the fault-free system. If there is only one dataset measured

from healthy system, the deviation ratio is calculated as:

Dev(Xn,, Xaiag) = Z(Xr’fl — Xfiag)® (4-10)
k

In principle, the deviation rate should be close to zero if there is no fault and noise.
However, input magnitudes at different measurements may not be identical (or

sometimes very inconsistent), which would largely contribute to the variance of

measurement data and decrease the accuracy of fault detection. To address the

problem of this distance measure, the time series data are normalized with respect

to the measured input magnitude. An improved deviation ratio (I/Dev) is thus

proposed as the feature indicator for fault diagnosis, which is to evaluate the overall

relative difference of two signals, defined as follows:

Zk(S]Q(i - Sgiag)z
=k
Yk(SK, — Sn )2

IDev(Xy, Xaiag) =
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k k vk
S,rlf :X—nki,SZi‘iag =X(Iiciag’—nk =)(__nk (4-11)
' Bni Bdiag Bn

where By, = [By,, Bi,, ..., Br] is the real input magnitude of n;™* time series data

- =1 —=—2 =N, .
measured from fault-free system, and S, =[ S, , S, ,..,S, ] is the mean

values of the real input magnitudes. To evaluate the change of the deviation ratio,

the following relative index is adopted:

1M IDev(Xn, Xaiag)
Re_Dev(Xy, Xqiag) = MZ " l (4-12)
n;=1 an

_, IDev (Xni,an) /M
where Xgiq4 represents the signal to be detected, and X, is the n;*" reference
signal measured from the normal/healthy condition. M is the number of signals from

normal/healthy system.

4.3. Fault Detection

It is a rather challenging task for fault detection when the prior knowledge of the
normal operation system is limited and the prior knowledge of faulty states are
unavailable. In our study, the adaptive threshold and statistical methods are

combined for fault detection.

4.3.1. Fault Indicator based Adaptive Threshold

With limited prior knowledge of normal conditions, the threshold value is
difficult to define. Above that, the applicable of threshold for fault detection might
be even impacted by the number of samples from the normal state for knowledge

basis. Since there is no standard guideline to the appropriate sample size for
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threshold, in this study, an adaptive threshold is adopted and combined with
statistical tests for fault detection when there are more than six groups of signals
(except the outliers) measured from the normal conditions involved.

It is assumed that there is no noise signals and outliers among the available data
from the normal operational system. Otherwise, to decrease the disturbance, the k-
nearest neighbors (KNN) is applied to remove the outliers and noisy signals through
an iterative process [31]. Similarity, a threshold is presented based on that concept
for fault detection as shown in Eq. (4-13).

min,,, {IDev (XA?i,XAgiag)} >T (4-13)

Ugp = — (1;_1) M._,IDev (XA?i,XA:j), T = ugn + ko (AD)

where k is a scale factor. The uyn represents the mean of the IDev, and o (AY)
is the standard deviation of such fault indicator. Thus, usn + ko(Ag) is the basis
threshold for fault detection. The k value should be tuned to ensure the accuracy
of classification. Too large of a value might lead to the fail of fault detection. For
the application in this thesis, the tune value is ranging from 0.5 to 2, i.e., k = 0.5 +
1.5e~M/100 When monitoring the system, observations are probably collected in a

consistent way. The data collected from the repeated measurement are kept, and the

threshold values should be adaptive over the times.

4.3.2. Statistical Methods
When encountering with the system with limited knowledge of priori, especially
the data measured from the normal operational system are limited and small in scale

79



(e.g., two or three groups), the threshold is so difficult to obtain. To address this
harsh conditions, statistical tests like T-test and related non-parametric tests are
capable of fault detection by similarity comparison between the two datasets or two
distributions (which are obtained from the repeated measurements on the same
system).

In a typical experiment, it is more practical to detect the system using two datasets
with one dataset collected from the healthy system (for control) and another dataset
collected from the diagnosis system (for measurement). Those disadvantage factors
have greatly increased the challenge of fault diagnosis. Statistical methods and
statistic-based indicators have been widely used for fault detection [45-48]. The
threshold associated with a statistical test is obtained from p-value listed in a
statistical table, and they are standardized and easy to implement. It is assumed that
the signals measured from the healthy system are representative with lower noise
disturbance.

Although there is no obvious guidelines for choosing tests suitable for our
application, we can say that it would not be advisable to use paired algorithms where
there are any extreme outliers. In this thesis, three statistical methods (i.e.
independent T-test, Kolmogorov-Smirnov test, and Wilcoxon rank-sum) frequently
used for fault detection are adopted to measure the similarity of the two datasets
with one reference dataset measured from the healthy system and another one

diagnosis dataset measured from the diagnosis system.
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(1) Unpaired or independent t test Two-sample t test is used to test whether the
means of two samples are different, i.e. the null hypothesis: the means of two

samples are equal.
X1-X2

1 1
5X1X2,/ﬁ T

(n1 —1)S%, + (n2 — 1)S%,
Sxix2 =

t =

nl+n2-—2

where X1 and X2 are the means of two samples, Sy; and Sy, are the
standard variance of two samples, and nl and n2 are the corresponding
capacity. It can be used only when samples are from Gaussian distribution or
approximate shape of Gaussian distribution.

(2) Kolmogorov-Smirnov test As a nonparametric hypothesis test ( which do not
depend on the assumption that values were sampled from Gaussian
distributions), Kolmogorov-Smirnov test (K-S test) [57] is a popular statistical
method to measure the probability that two datasets are from the same
distribution (using two-sample K-S test) or a chosen univariate dataset is drawn
from a given model (using one- sample K-S test). Two datasets do not need to
be in same size. Though Chi-square goodness of fit test is one of most popular
method to test the goodness-of-fit tests, this method is applied with large
samples (> 30). K-S test has no constrict on sample size and is applicable for
testing with small sample size. To measure the time series data, theoretical

cumulative density function (CDF) will be obtained to compare data with the

81



reference distribution [35]:

P(x) =P(X; <x)=i/N
where X; is the value at i®" point when the data series X is re-arranged in
ascending order. N is the total number of the data series. The distance D is
defined as the maximum absolute distance between two CDFs. Mathematically,

the KS test statistic is represented by:
D= max (IF,() = F;())
The similarity probability of two series data using K-S test could be defined
using mathematical formulation as follows [35]:
P(D) = 232, (1)t 2% | = D(\/%+ 0.12 + W)

If the two vibration signals are similar in distribution, then the probability P(D)

is approaching to 1. Otherwise, the similar probability P(D) is approaching to
0 if two the distribution of two signals are different.

(3) Wilcoxon rank-sum test [54]
1, X < Xj,
, hi,j = 05, X; = Xj,
0, otherwise

N1(N1+1)
2

W=y Z?’=21 h;; +
where N; and N: are the sizes of two samples. The main advantage of Wilcoxon
test is that it is valid for the data from any distribution and less sensitive to
outliers in comparison to two sample T-test. However, Wilcoxon test cannot
reflect the location of differences.

In statistical tests, F;(x) is assumed to be a target distribution and F,(x) is a

reference distribution. The null hypothesis (Ho) is that two samples are from the
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same distribution, otherwise, the null hypothesis is no accepted. This can be
formulated as follows.

Ho: F;(x) = F,(x), Hi: F;(x) # F,(x).
Since p-value is usually used to measure the probability that the distribution of
reference signal is different from the diagnosis signal, it is widely accepted that the
null hypothesis (Ho) is to be rejected when p < 5%. Otherwise, the null hypothesis

fail to be rejected.

Feature represented signals Feature represented signal
measured from the normal measured from the diagnosis
system system

A

umber of fmh\ Yes
xceeds the W

\ 4

Y Y
Fault indicator based
threshold method

Statistical tests

Y Y

Output: The health condition of the system

Figure 4-4 The flowwork of the combined fault detection method
4.3.3. Combined Method for Fault Detection
Fault indicator based threshold method is combined with statistical tests for fault
decision making. Figure 4-4 shows the overall framework of the combined method.
If the number of signals collected from the normal operational system does not
exceed the expected (more than six groups in this study), both the fault indicator
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based threshold method and statistical tests are provided for fault detection. The

abnormal system is suspected if a fault is detected by any of these two methods.

4.4. Conclusion

Signal preprocessing including feature computation and selection is provided
before the fault detection and fault localization. Two methods with different
requirements of priori are studied for fault detection. Specifically, the threshold
method is suggested for fault detection if there are considerable signals measured
from the healthy conditions containing the representative features of the system,
while statistical tests are adopted when the prior knowledge of the system are limited.
Since the main objective of this thesis is to present a comprehensive fault diagnosis
method with the limited prior knowledge, those two methods are combined for fault

detection.
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Chapter 5.  Virtual Beam-like Structure Approach

In this Chapter, a virtual beam-like structure (VBLS) approach is proposed for
both single and multiple faults localization. The concept of virtual beam, the
optimization methodology to construct the optimal virtual beam, and virtual beams

for fault localization are all included.

5.1. Concept of Virtual Beam-like Structure

The concept ‘virtual beam’ stems from the inspiration that beam-like structures
are basic structural components in various complex structural systems [187]. When
the structure is excited with an appropriate input, the vibration transmission paths
from the vibration source to other aspects of structure could be regarded as the
“virtual beams” which could be applied to fault detection and localization since the
energy intensity as well as the vibration transmission paths at some components are
influenced by the occurrence of faults.

In [188], it has been formulated that the signal contains the information content
of energy received by corresponding sensor. The significant differences in signals
are caused by the energy changes which could be captured by sensor nodes, and the
information like damage localization and orientation can be obtained according to
sensor distribution in the node. Still, this study focused on the development of a set
of energy correlated damage indices based on transmission and reflection, it ignored

the limitation of the priori. Based on this general knowledge, virtual beam-like
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structure approach is proposed for fault diagnosis, and the fault diagnosis of
complex structure can be transformed into a problem of optimal selection and fault

diagnosis of virtual beams.

1 ibration transmission path

(a). Vibration transmission path along beam-like structure

7z Z

C 1[# % kl By unit |

M5 virtual beam
(Al1-Al12-A13
A 14 Al4-Al5)

Sensor

Connection joint

Z

(b). Examples of virtual beams on a satellite-like structure

Figure 5-1 Two typical examples of vibration transmission path along the structures

To be clearer, a beam-like structure and satellite-like structure are applied as
examples for formulation. A complex structure is regarded as a combination of
numerous virtual beam-like structures considering the vibration transmission path
from vibration sources to each sensor. From Figure 5-1 (a), energy transmission path

is from the left bottom (i.e. vibration source) to the right of the beam, while entire
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beam-like structure can be regarded as a vibration transmission path from the root
to the top end represented by the sensor chain: A1-A2-A3. To apply this method to
complex structures, virtual beams along vibration transmission paths in the complex
structure can always be found by optimally selecting a chain of sensors from sensor
networks distributed in the complex structures. Figure 5-1 (b) shows two typical
virtual beams consisting of two sensor chains assigned on satellite-like structure
from the bottom to other component along vibration transmission path (since the
structure is excited from the bottom). The connection joint shown in Figure 5-1 (b)
locates at the middle of those two sensor chains. That means the occurrence of the
fault like loosening bolt on this connection joint, the signals measured by sensor
chains can reflect the vibration transmission changes, especially the sensor located
at the closer and after the damage, e.g. A20, A12. To be convenient, sensor on the
virtual beam closer to the vibration source is named as root sensor (e.g., A11), while
the one far away from the vibration source is regarded as top sensor (e.g., A15 and
A31).

Thus, it is rather important to select the appropriate sensors to construct optimal

virtual beam for damage localization and orientation.

5.2. Sensor Networks Distribution and Selection

In large space structures (LSS), it is practical to apply the sensor network to fault
diagnosis, but it was not effective to use all of them in terms of computational

complexity and efficiency [189]. Thus, the methods for sensor placement have been
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developed to obtain the fewer sensors for fault diagnosis [189-192]. With the
continuous advances in sensor technology and senor placement methods, the sensor
networks can be implemented for fault diagnosis of LSS with low-cost and high-
efficiency. In this study, the sensor are mounted on the complex structure as a
network for fault diagnosis.

Since the complex structure composes of various components, accordingly,
sensors are grouped into numerous sub-networks. The separation of the sensor
networks is studied based on components and search space to come up with optimal
solutions and improve the fault localization accuracy. The concepts of region of
influence (ROI) and region of coverage (ROC) in [170] are adopted for sensor
network separation. ROI is the area around an event, while the sensors within that
region are capable of fault detection in high probability (over 50%). ROC is the area
around a sensor node where the occurrence of fault could be detected in high
probability (over 50%). The distance between two sensors cannot too large
considering the coverage of sensor network. While this distance also cannot too
small in term of computational complexity and efficiency (The increase of the
sensors would also bring the possibility of the negative influences of false
information from the environment noise and other unexpected factors). For that
consideration, the distance between two sensors is suggested to be as follows:
R./2 < dis(44,A,) < 2R., where R, is the radius of the “region of coverage”.

Take the small satellite-like structure as example. A satellite-like structure is

88



hanged from the top with a spring and a shaker is attached at the bottom. Potential
faults can be fatigue cracks, bolt-loosening or fractures etc. This study focuses on
bolt-loosening fault since it is easy to create in an experimental setup. Bolt-
loosening can happen in various hanging structures with a bolted-base connected
with the main satellite-like structure, referred to as bolted-base hanging structures.
The complex structure is probably divided as various components. Figure 5-2 shows
some typical bolted-base hanging structures in a satellite-like model such as band

antenna, solar panel, connectors.

S-band antenna Other antenna

Solar panel

Figure 5-2 Typical bolted-base hanging structures in a statellite-like model
As shown in Figure 5-3, accelerometers are evenly distributed on the
substructures, named as sensor-networked structures. For the convenience of
description, the sensor located on the i row and j” column of the #* component is

named S:4;;. Four connectors are named as P;, P>, P3, and P4, and the sensor on the
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bottom of the connector P; is named as 4B;, and the sensor located on the top of the
connect P; is named A7;. The sensor networks are grouped on basis of the sub-
structures. Sensors on each solar panel are grouped as a network, and the sensors on
the body are grouped as another network. Since sensors on the overlapping span of
two or more sub-structures are capable of fault detection in neighbor regions, they
could belong to any of the sub-structures in the process of virtual beam construction.
For example, sensors AB4 and AT, could be used for virtual beam construction in

both solar panel and main body.

Vibration
transmi}ign path

<> |
Sensor networks for Sensor networks for

solar panel SHAKER main body
7

Figure 5-3 Sensor networks on the satellite-like structure
Once a component is detected for the abnormal condition, the sensor network
related to that component is adopted and applied to virtual beam construction for
fault localization. The candidate sensors used for virtual beams construction for a
single solar panel include the sensors on that solar panel and the sensors on the four

adjacent connectors, while the sensors used at the left plane of the main body in
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Figure 5-3 are assigned to both that direction of the main body and on the associated
adjacent connectors. Based on sensors response of sensor networks, the potential
faults could be isolated with respect to certain components, which could greatly
decrease the computational complexity for analysis of all sensors and improve the
efficiency for fault diagnosis. To further narrow the potential faults in a given
component with fewer sensors, virtual beams are constructed using the optimization

methodology formulated in the next section.

5.3. Optimization Methodology for Virtual Beams

To apply the virtual beam-like structure method for fault diagnosis, the proposed
BAFS method is adopted for the construction of the optimal virtual beams by
selecting sensor based chains from appropriate sensor networks. Specifically, the
optimization methodology involving the fitness and constraints is presented in

Section 5.3.1, and application of BAFS for sensor selection is given in Section 5.3.2.

5.3.1. Objective Function and Methodology

A larger value of the relative deviation ratio indicates a larger difference in the
signals measured from the diagnosis system and the fault-free system. The different
continuous sensor chains in the sensor network are potential candidates for the
optimal virtual beam. The length of this path cannot be too long while selecting the
most informative sensors that are sensitive to dynamic changes of feature within a

small region. The objective of the optimal virtual beam construction considers two
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parts: the maximum of the relative deviation ratio and the minimum of sensor
routing.

It is assumed that the sensor chain [A4, 45, ... Ap] is selected in the optimization
process. The dimensionality D indicates the number of sensors for virtual beam.

This resulting objective to be maximized is:

Fitness =
aag _ .
L1~ X0 -1 Re_Dev (XAgi, XAgiag)/Zétf Ap s, BsDis(Ag, Agir) (5-1)
with _{ 1,if sensor A is used
4s 7 10, otherwise
Subject to:

NeE

Ay <D (5_2)
s=1
R
Z aa,. < MAXrow (5'3)
j=1
(@, XV = e XJ| SLh =1 RV =10 = 1,,C (5-4)

R C
Z 1Zk Jiee=N (5-5)
]: =

1, ifminni {Re_Dev (XAZi,XA;iiag)} >T

le\/l:l YAS = Errnuml VAS= (5'6)

0,if min, {Re_Dev (XA?i,XAgiag)} <T
where N is the total number of sensors in a complex structure for fault detection—

see Eq. (5-5) and M is the number of signals measured from the fault-free system.

X ,n represents the time domain features of n;*" signal measured by sensor Ag
S

when the system is in a healthy state. Similarly, X aiag denotes the time domain
S

feature of diagnosis signal measured by the same sensor. The number of sensors to

construct a virtual beam is D—see Constraint (5-2)—which cannot be too large or
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too small. Selecting a large number of sensors could contribute to larger regions for
potential occurrence, while a smaller number could decrease the accuracy of fault
localization. In our experience, it is appropriate to construct the virtual beam using
three to five sensors.

The virtual beam defined in the thesis represents one of vibration transmission
path on the way from vibration sources to each sensor, and the most essential ones
for the fault localization are aligned with the direction of vibration source. For
convenience, we assume that the vibration source is in the direction of the
corresponding column. The sensor network is denoted by row R and column C, and
Ay, ¢, represents the sensor located at v row and k" column of the sensor
network. For each row, the number of sensors cannot exceed max,,, , as
formulated using Constraint (5-3). Since the virtual beam is constructed with the
sensors from varying rows, at least one sensor should be selected from each row
(max,,, < D). The sensors belonging to a sensor chain should be located as the
neighbors if they are in the same row from the network, otherwise the selected
sensor chain becomes invalid (see Constraint (5-4)).

Constraint (5-6) illustrates that a fault might occur in the system if at least
Erty,m sensors from the network indicate the abnormal. Larger number of alarm
sensor means the system has a higher probability of being abnormal. However, if
there is only one alarm sensor in a network, it is difficult to decide whether the

system is healthy since the signal measured by the only alarm sensor might be

93



influenced by noise or other factors. The optimization process is terminated if
Constraint (5-6) is not satisfied. This means that the system is detected in the normal
state. The requirement of alarm sensor arises from the need to ensure that the system
is in an abnormal condition. However, if the knowledge of priori is limited for
threshold value (i.e. T), statistical methods are used for fault detection according to
similarity measurement of two datasets.

The distance between two adjacent sensors from sensor chain are represented by
Dis(As, Agy1). The minimum of the length of a virtual beam (i.e. the shortest route
that visit every selected sensor exactly once) is adopted to select the most sensitive
sensors and refine the region for fault isolation. [3,, is the weight vector for the
relative distance (i.e., Dis) of the selected sensors, A; and A, ;. The denominator
illustration of the fitness function in optimization problem, i.e.,
{Xm=12a,, 2, BmDis(Apm, Amy1)} in Eq. (5-1), is solved as a ‘shortest route
problem’ using Genetic Algorithm (GA) in Matlab toolbox [193]. After

implementing the optimization process, the optimal shortest route can be obtained.

5.3.2. BAFS for Optimal Selection of Sensors

The improved bacterial algorithm based feature selection (BAFS) is used for
optimal selection of sensors to construct the effective virtual beams for fault
diagnosis. The pseudo-Code for virtual beam construction is given in Pseudo-Code

5-1.
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Pseudo-Code 5-1 BAFS for virtual beam construction

01

02
03
04
05
06
07
08
09
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Input: The values of Re Dev and IDev from sensor networks using a specific feature;
max,,,; the least requirement of abnormal sensor number E77,,,,; maximum number of
sensors to be used to construct the virtual beam: D
Initialization: Pop, TI, T2, T3, C, Max iteration
If Constraint (5-6) is satisfied or abnormal state is detected by statistical tests
Do
Fitness function: develop the fitness function according to Eq. (5-1);
Calculate the fitness of all bacteria, and define Current_iteration=0
Optimization process:
If Current_iteration<Max_iteration
Current_iteration= Current_iteration+1;
Obtain the Ppesand Gpes //Ppest 1s calculated according to the pseudo-code in Fig.
1, and Ghes is the best position of the group
For each bacterium
Running: Adapt the position of bacteria using Eq. (3-2)
Obtain the fitness f'and compare with the original fitness Fit
If Fit<f (assume that the objective is to minimize)
Tumbling: Adapt the position of bacteria using Eq. (3-3)
end if
Adapt the W and 4 using Egs. (3-7) and (3-8)
End for
For all bacteria
Adapt the W using Egs. (3-9) and (3-10)
If Current_iteration >Max_iteration/2 and the Gy is unchangeable for T1 times
Reproduction: refer to BFO reproduction
end
If Current_iteration >Max _iteration/2 and the Gpey is unchangeable for T2 times
Elimination: refer to BFO elimination
end
If Current iteration >Max_iteration/2 and the Gy is unchangeable for T3 times
Premature termination // end the optimization process
end
End for
End If // the optimization process
Output: The best position for the optimal represents the selected sensors (i.e. sensor chain

or virtual beam)

3.3. “Biased Running” based Optimization Methodology

The main challenge for multiple-fault localization is that the occurrence of one
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fault (or main event) probably brings about the abnormal reflection on numerous
sensors, and sensors suffering from this main event (i.e., the kernel fault with the
most serious influence on the system) might only reflect this fault and ignore the
other potential faults. Though some sensors may be pointing to the potential faults,
the extent of response cannot exceed those from sensors distributed close to the
main events, which contributes to diminished detection capability of side faults.
Such factors will exacerbate the difficulties associated with multi-fault isolation

since other potential faults cannot be correctly isolated.
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Figure 5-4 Subnetwork separation based on region of influence
(ROC is the area around a sensor node, in which the occurrence of fault could be detected in
high probability (over 50%); ROI is the area around an event, while the sensors within that

region are capable of fault detection in high probability (over 50%))

As shown in Figure 5-4, sensors on a component can be divided into several
subsets according to the ROI (i.e., the area around an event, while the sensors within
that region are capable of fault detection in high probability, over 50%) with some
overlapping regions between two adjacent areas for fault detection. The loosening

bolts of L1 or/and L3 located on the left of the solar panel structure are more likely
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detected by the sensors in subnetwork 1, the sensors on the right region of
subnetwork 2 are less effective in health monitoring these two bolts, and vice versa.
Since the virtual beam consists of four to five sensors, the occurrence of the
loosening bolt in L1 might be masked by loosening bolt of L4.

In this thesis, a strategy, named ‘biased running’, is presented and embedded
within the optimization process for obtaining multiple virtual beams to isolate the
potential faults so as to decrease the possibility that the presence of some faults are
masked by others. The “biased running” indicates that multiple independent runs of
the optimization process by BAFS consists of more than one virtual beams
consisting of different sensor chains. In the first run, the first virtual beam consisting
of sensors is selected from the networks according to the values of feature indicator
(i.e., Re_Dev) associated with the sensors from the networks. The solution in the
first run consists of a sensor chain regarded as the kernel virtual beam used to isolate
the fault with the most significant abnormal indication. If the sensor network related
to the faulty component contains more than one subnetworks, in the second or/and
later runs, more than one virtual beam are constructed. To eliminate the disturbances
arising from the main event (i.e., main fault), the sensors selected in the former runs
with the largest value of fault indicator are ignored during the latter runs. If there
are N subnetworks in a component, N virtual beams consisting of N different sensor
chains (at least one sensor is different) are obtained after the “biased running”

process. The strategy of two biased running is descripted in Pseudo-code 5-2.
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Pseudo-code 5-2: Biased running

01  Input: Re Dev of sensors from networks using a specific feature

02  Calculation the number of subnetworks N according to Eq (5-7)

03  Fori=I:N

04 If i=1

05 Dataset: fault indicator values Re Dev of sensors from the sensor network
responsible for with the alarm component;

06 else

07 Dataset: fault indicator values Re Dev of sensors from the sensor network
responsible for with the alarm component, ignoring the most sensitive sensors
(with the largest Re_Dev) already selected in the previous virtual beams;

08 End if

09 Sensor selection process by BAFS, referred to Pseudo-Code 5-1

10 Solution: selected sensor chain (i.e. the virtual beam obtained in izk run)

11 End for

12 Output: Multiple virtual beams consisting of various sensor chains

Generally, the iteration times of optimization process for the multiple virtual
beams rely on the number of subnetworks in a component. It is assumed that there
are C X R sensors mounted on a component. The number of iteration times N is

defined as:

CXR
D XD

N = ceil ( ) (5-7)
where D is the length of sensor chain for virtual beam. If (%) 1s not an integer,
then N equals to the closest neighbor integer of the element %. For example, if

xR 1.5, then N = 2. However, if C X R is smaller than D X D, the iteration

DXD
time is N = 1. It means that there is only one virtual beam will be optimized for the
fault localization.

In a large space structure, multiple virtual beams are obtained, it is possible that

the same fault is isolated by more than one virtual beams. In addition, a single virtual

beam consisting of a chain of sensors might be imposed by multiple faults. Thus,
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the fault localization based on the optimal virtual beams will be studied according

to a beam-like structure in the next section.

5.4. Validation of the “Virtual” Beam Method in a “Real”

Beam-like Structure

In this section, a “real” beam-like structure with cracks at different positions is
studied to preliminarily validate the effectiveness of the proposed “virtual” beam

method.

5.4.1. The Beam-Like Structure

The beam-like structure shown in Figure 4-1 consists of two layer bolted steel
panels of square size (40cm*5cm*0.4cm). Breathing-like cracks (around 0.3cm) or
loosening-bolt can be easily created in one layer at any known positions for
benchmark studying (see Figure 4-1 (b)). The faults (e.g. cracks) at different
positions can be denoted by R/, R2, and R3, and referred to as root crack, middle
crack and top crack, respectively. Three accelerators are placed regularly on the
beam at shown positions denoted by A1, A2 and A3. The beam-like structure is free
at the top end and attached to a shaker stringer at the root end, and then the “virtual”
beam is represented by the sensor chain A1-A2-A3 as shown.

The system is firstly measured without any cracks or loosening bolts as reference
signals and then is excited with known faults by using the same input. The

measurement data under fault situations are used for fault feature characterization
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and diagnosis. The input excitation used in our experimental testing is not
necessarily any specific signal. For benchmark study, different inputs have been
tested. Actually, our studies focus on the changes of vibration transmission, and thus
the excitation magnitude of the input has no effect on the feature characterization
and fault diagnosis. As an example, in this thesis, the input is a sweeping-frequency
excitation from 20 Hz to 200 Hz with the exciting intensity 2g, the sample frequency

8192Hz, and velocity 4 oct/min.

5.4.2. Benchmark Testing on the Beam-Like Structure

As given in Section 4.1, three features are selected for fault diagnosis: crest factor,
energy ratio, and peak to peak are finally employed for fault diagnosis. Based on
those three time domain features, the mean value and the standard variance of fault
indicators in four different fault cases are shown in Table 5-1 and Figure 5-5.
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Figure 5-5 The mean and variance IDev of three sensors in different conditions

From Figure 5-5, the deviation ratios from normal states of signal features are
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always the smallest, and as the deviation ratio exceeds the normal acceptable level

(e.g., threshold method: value of relative deviation ratio exceeds the upper

boundary of the normal), a fault might exist in the system. The mean values and

variances of the deviation ratio (/Dev) given in Table 5-1 are shown in Figure 5-5.

The main results as revealed by the sensor chain for fault diagnosis are

summarized as:

1)

2)

3)

b).

The occurrence of a root crack leads to the largest deviation ratios (Re_Dev)
in all features from all three sensors in comparison to the deviation ratios
(Re_Dev) obtained when the system is in the three other health conditions;
When a crack located at the middle between sensor Al and A2, the features
from sensor A2 and A3 give the larger deviation ratios, especially for the
second feature (energy ratio) and the third feature (peak to peak);

The top crack located between A2 and A3 leads to larger feature deviation
ratios in data from sensor A3, while the feature deviation ratios from sensor
Al and A2 have no significantly difference from the normal cases.

The above insights provide a very useful basis for fault diagnosis including the
fault occurrence and positions. As for the beam-like structure, the vibration
energy is transmitted from the root (or left) to the top end (or right), along which

the three sensors A1, A2 and A3 are located.
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Table 5-1 The results of fault indicators based on features

(* F1: Crest factor; F2: Energy Ratio, F3: Peak to peak)

Normal (N) Root (R) Middle (M) Top (T)

Sensors
IDev (N) IDev (R)  Re Dev  IDev (M) Re Dev  IDev(T) Re Dev

F1 0.34+0.26 1.74+0.19  5.12 1.574£0.09  4.63 1.04+0.53  3.07
Al F2 0.24+0.19 2.72+0.21 11.23 2.21+£0.36  9.15 1.52+0.41  6.29
F3 0.09+0.08 2.74+0.17  27.57 1.34+0.06 13.49 0.39+0.17 3.92

F1 0.11+0.06 4.14+0.36  38.33 3.26+£0.36  30.46 2.19+0.67  20.44
A2 F2 0.04+0.03 5.04+0.22 126.88 3.09+0.23  77.83 1.01+£0.25  25.23
F3 0.05+0.05 1.69+£0.05 31.07 1.46+£0.13  26.69 0.24+£0.16  4.49

F1 0.39+0.22 11.36+1.41 29.15 2.76+0.63  7.08 4.83+£3.59  12.41
A3  F2 0.14+0.13 60.37£19.16 436.54 8.01+£5.14 57.90 22.36+26.2 161.67
F3 0.05+0.04 1.44+0.04  29.27 1.54+0.19  31.29 0.32+0.21 6.54

The finding that the occurrence of a crack along the way of vibration transmission
path is manifested in the responses from sensors located on that path has been
explained via energy based analysis in literatures [188, 194]. Generally, if the crack
is located closer to the root of the vibration transmission path, the feature deviation
ratios would be larger in more sensors along the vibration transmission path. If the
fault position is far away from the root of the vibration transmission path, fewer

sensors can detect the fault features.

5.5. Fault Localization based on Virtual Beams

In this section, the method for fault localization is presented using virtual beams.
Since one or more virtual beams might be obtained after the optimization process,
fault localization based on single virtual beam and multiple virtual beams are

formulated, separately.
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5.5.1.  Fault Localization based on Single Virtual Beam

The virtual beam can be automatically constructed by the proposed bacteria
based optimization method and labeled by a corresponding chain of sensors placed
in the structures along the vibration transmission path. The next stage is to decide
the fault location according to beam-like structure. A summary of this beam-like
structure approach for fault isolation is given as follows.

1) Occurrence of fault close to vibration source found more alarm sensors from
the network with a large deviation ratio in almost all features of sensors on
beam-like structure;

2) Occurrence of fault away from the vibration source may bring smaller alarm
sensors with smaller deviation ratio in comparison to a fault close to the
vibration source if the fault extent is the same;

3) A fault results in a larger relative deviation ratio in the sensors that are close
to the fault or at the afterward of the transmission path;

4) The sensors locate closer to the vibration source are less capable of being

detected if the fault is located far away from the vibration source.
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Figure 5-6 Typical examples of fault isolation according to the Re Dev of the ‘virtual beam’
(* Vibration transmission path is A1-A2-A3-A4 through Al to A4, and every two neighbor

sensors on that path located as neighbors on the structure)

Accordingly, the summary from beam-like structure is presented above as a rule
of generality for the virtual beam-like structure approach for fault localization. To
be clear, some typical examples for fault isolation using ‘virtual beam’ have been
shown in Figure 5-6. Four sensors (i.e., Al to A4) from the sensor network are
selected to construct a ‘virtual beam’. Here, for convenience, all four sensors are
assumed to indicate the abnormal condition of the system though it is not a
requirement for the optimal virtual beam (referred to Section 4.3). The vibration
transmission path is from sensor Al to sensor A4 and two neighboring sensors on
that path are also the neighbors on the structure.

The first sensor A1 is closer to the vibration source, the occurrence of fault around
sensor A1 would bring larger Re_Dev to the sensors afterward of transmission path,
e.g., in Figure 5-6 (a), Figure 5-6 (b) and Figure 5-6 (g). Even so, the signals might

be influenced by the noise or other unexpected factors which might bring rather
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large or small Re_Dev of some sensor like Figure 5-6 (f), the multiple positions are
to study for a potential fault. An event is suspected for the potential fault if it is
localized inside the region of convergence (ROC) [170] of a sensor node highlighted
in Figure 5-6.

In our study, three features are provided as the representatives for signals
provided by sensors, so there might be more than one virtual beam for fault
diagnosis. Thus, the rules for fault localization based on multiple virtual beams will

be presented in the next section.

5.5.2.  Fault Localization based on Multiple Virtual Beams

After the optimization process, more than one virtual beams might be obtained
using time domain features. Though various virtual beams consisting of different
sensor chains are available for fault localization, they might indicate a same
potential fault position, which means that the system is probably suffering from only
one fault rather than multiple case. However, if virtual beams reflect different fault
position, we cannot conclude the system is definitely suffering from the multi-fault
since the non-kernel virtual beam might be obtained because of the main event.

To be clear, virtual beams obtained from a component with two subnetworks are
taken as an example to illustrate. If there are two subnetworks in a component, two
virtual beams would be constructed on the basis of each feature. A summary of fault
localization based on virtual beams from different features is provided and shown
in Figure 5-7. For each feature, if two virtual beams indicate at least two different
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potential positions of fault, then more than one regions are suspected for fault
examination. Otherwise, there is only one potential fault being isolated if two virtual
beams indicate the same potential fault. Based on multiple features, a fault is
considered in the system if it has been detected by at least two virtual beams based
on features. While a component is suspected for multiple faults if more than one

faults are detected simultaneously by multiple features.
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Figure 5-7 Virtual beams for fault localization based on time domain features

Crest factor !
1N Virtual beam 2 }—»( Fault position )—

Shape factor i"'ui Virtual beam 1 (" Faullposilionp.‘),lh_rib
‘ l Virtual beam 2 }—b( Fault position )—

/| Virtual beam 1 }~(" Fault position_ )}—
1Py

| Virtual beam 2 }—»( Fault position )—

Energy ratio

Even so, the sensor chain obtained after the first run is considered as the kernel
virtual beam which would be given the first priority of fault localization in
comparison to the virtual beam created at the second run. When there is a conflict
of decision between kernel virtual beam in one feature and second virtual beam
based on another feature, the second virtual beam would conform to the potential

fault position localized by the kernel virtual beam.

5.6. Conclusion

A novel virtual beam-like structure method capable of optimizing the fault
diagnosis process for complex structures using sensor network with limited or less
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prior knowledge of faults has been developed and described in this section. The
optimization algorithm presented in Chapter 3 is applied to construction of the
optimal virtual beams using vibration sensors to enable automatic fault diagnosis.
The beam-like structure is served as the benchmark system to provide some general
rules to narrow the regions for the potential faults based on a given virtual beam.
The validation of this optimization method based virtual beam-like structure

approach for fault diagnosis will be conducted in the next section.
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Chapter 6. Fault Diagnosis of Complex Structures

with Single Fault

In this section, the VBLS approach is demonstrated by applying to detecting and
isolating of a satellite-like structure with only one loosening screw. Figure 6-1
shows the overall framework of the proposed method for fault diagnosis of complex
structure with only single fault. To distinguish with multiple fault diagnosis, the
strategy of biased running is not adopted since there is only one fault, and the
threshold based method is applied to fault detection with the assumption that the

prior knowledge of the normal conditions are available.
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Figure 6-1The overall framework of virtual beam-like structure approach (VBLS) for single-
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fault diagnosis

6.1. Experimental Platform

As shown in Figure 6-2, a satellite-like structure is hanged from the top with a

spring and a shaker is attached at the bottom. Potential faults can be fatigue cracks,
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bolt-loosening or fractures etc. This study focuses on bolt-loosening fault since it is
easy to create in an experimental setup. Bolt-loosening can happen in various
hanging structures with a bolted-base connected with the main satellite-like
structure, referred as bolted-base hanging structures (BBHSs) like solar panel.
Feature dynamics without faults are available and the data with bolt-loosening
faults can be obtained subject to a similar excitation by a shaker. Similar to beam-
like structure, accelerometers (PCB Model 356M131 with sensitivity 10mv/g) are
placed as the network (e.g., 25 accelerometers evenly distributed on solar panel
structure in Figure 5-3) for monitoring the fault condition of the BBHS. There is no
restriction on the stationary of the process, but all samples are collected at the same
time instant (spatial correlation). The input is adopted here as a sweeping-frequency
excitation from 20 Hz to 200 Hz with the exciting intensity 0.4g, the sample

frequency 8192Hz, and velocity 4 oct/min.

Figure 6-2 Satellite-like structure and testing platform
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6.2. Experimental Testing and Results

Varying bolt-loosening faults on the satellite-like model are considered. The
typical complex substructures on the satellite-like model to be detected include solar
panel, main structure body (or body unit), and band antenna.

Though sensor location or placement approaches for optimal detection have been
studied in the literature for modeling the system, few results have been obtained
from the non-model methods. In existing studies, sensors are mostly placed at
positions where faults occur frequently [184, 195], or installed along vertical,
horizontal and axial directions to pick up the vibration signals [196, 197], or
installed at positions determined by considering both the aspects [198]. The most
popular method of isolating potential faults is to distinguish the fault according to
faulty segments [184, 199], which is not applicable in our study since the unknown
or limited priori. In our study, accelerometers were networked on structures to
monitor the health condition of the system (e.g. the sensor networks in Figure 5-3).

Currently, many algorithms have been proposed for sensor network localization.
Among the model-free localization methods without requirements of prior
knowledge of faults, a series of binary estimators are proposed for fault localization
because of simple, low-cost and fault-tolerant. The frequently used binary
estimators like fault tolerant maximum likelihood (FTML), Centroid Estimator (CE),
Maximum Likelihood (ML), and subtract on negative add on positive (SNAP) were

compared in [172], indicating that the SNAP was superior to other three methods
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for fault localization in terms of accuracy and computational complexity. The SNAP
[170] was proposed for fault localization using a likelihood matrix to record the
(negative or positive) contribution of each sensor node based on their observations.
The potential fault is isolated at the event with the maximum value in that matrix.
In this section, the proposed VBLS approach is compared with the SNAP for single
fault localization. The studied component like solar panel is divided into a grid
g with 100 X 100 cells and grid resolution is g = 1. The radius of ROC is the
length of 35 cells, i.e., R, = 35 (e.g. the distance between the sensor SIA15 and
screw L1 in Figure 5-3), and R. = R;.

The sensor chain in our study is regarded as ‘virtual beam’ consisting of four
sensors (D=4) used for initialization of the dimensionality (D) in BAFS. The
minimum number of sensors with the abnormal signal are defined as 2
(i.e. Erryym = 2) in two complex structures (i.e. solar panel and body unit) and 1 in
the simple structure (i.e. band antenna). Since the maximum sensor for each row
max,,, should be smaller than D, we set max,,,, = 3. The remaining parameters
in the optimization method are initialized the same way as in the feature selection
process. The threshold for each sensor for fault detection is determined by T (Eq.
(4-13)) on the basis of prior information in normal conditions. P-value for statistical
tests is 0.05 (i.e. 95% confidential range). The dataset for the fault indicator is

obtained through six independent measurements taken on the normal system and
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two measurements from the diagnosis system. The weight vectors for the relative

distance of sensors in this study are the same (i.e., equal to 1 for all elements).

(a) Sensor network for fault diagnosis (b) Loosening screw state for detection

Figure 6-3 Sensor networked structure of band antenna

6.2.1. Fault Diagnosis on Band Antenna Structure

The band antenna structure located at the top of satellite model was fixed on the
bus unit with four screws along each direction. As shown in Figure 6-3, sensors were
assigned on the band antenna along the vibration transmission path. Sensor A1 was
located at the adjacent region of the band antenna and bus body could be used for
construction of virtual beams in both two structures. Since the band antenna studied
was a relatively simple structure with smaller sensors from the sub-network (A1,
A2, A3, A4 and AS), optimization method was not necessary for determining
optimal virtual beam and the virtual beam was constructed using all sensors if a fault
was detected by any sensor. The vibration source was excited from bottom of the
satellite, and transmission path was from sensor Al to sensor AS5. The diagnosis
signals were measured from the system with one loosening screw (close to A1 and

A2) shown in Figure 6-3 (b).
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Table 6-1 shows the deviation ratio (/Dev) and the relative deviation ratio (Re_Dev)
for each sensor based on three feature representatives. The sensors that reflect the
abnormal state of the system are highlighted in bold. The boxplots in Figure 6-4
indicate similar conclusions using the feature presentative ‘peak to peak’ (with
almost all alarm sensors). The changes of Re Dev for the diagnosis signals
(associated with sensors) are presented in Figure 6-5. Constraint (5-7) is not
considered (since the number of sensors consisting of the sub-network is 5 without
exceeding 10 required in BAFS). Since at least one of sensors from the virtual beam

reflects the abnormal system, all features are appropriate during fault diagnosis.
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Figure 6-5 The changes of Re_Dev along the transmission path when the signals are from the

diagnosis system (*sensors indicating the faulty system are highlighted in square shaped mark)

Table 6-1 Deviation ratio (IDev) and relative deviation ratio (Re_Dev) based on feature

representatives from sensor chain

Features Sensor  IDev (Normal) IDev (Diagnosis) Re_Dev (Disgnosis)
Crest factor Al 2.3406+0.6023 7.5746%3.4380 3.2362
A2 2.7046+0.8873 3.1256+1.0588 1.1557
A3 3.5576+2.0509 5.6332+3.7526 1.5834
A4 3.1285+1.7800 3.9444+2.4153 1.2608
AS 3.0806+1.7391 4.7882+3.1536 1.5543
Peak2peak Al 2.3098+1.4929 11.6090+9.0385 5.0261
A2 1.7033+0.6558 15.2666+5.2243 8.9628
A3 1.7497+0.8806 16.0499+8.1051 9.1729
A4 1.7267+0.8479 15.6056+6.6677 9.0378
A5 1.7385+0.8683 15.6677+6.9258 9.0121
Energy ratio Al 2.2155+1.2793 7.3485+2.8031 3.3168
A2 4.3239+3.2043 23.4715+16.2854 5.4283
A3 8.8846+13.9156 8.7803+8.5731 0.9883
A4 6.2454+5.3925 37.3870+35.2760 5.9863
A5 22.7528+21.4871 166.4417+165.1747  7.3152

According to the crest factor, only sensor Al reflects the abnormal state. We
cannot decide whether the fault locates in the body unit or band antenna. While the
feature based on peak to peak shows the obvious fault state, Re Dev of sensors A2-
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A3-A4-AS are increasing. The potential fault is probably located around A2, A3 and
A4 referring to Figure 5-6(a). Based on energy ratio, the potential fault is around
sensors Al and A2. Therefore, the potential fault is localized around sensor A2 and
at the bottom of band antenna according to the proposed virtual beam based method.
In this case, the potential fault is likely to be around sensor A2, which is also the

situation found by SNAP method.
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Figure 6-6 Sensor networked structure of solar panel

6.2.2. Fault Diagnosis on Solar Panel Structure

Solar panels are typical BBHSs in the satellite-like model. In this section, one of
the solar panels was studied for the diagnosis of the loosening screw on that
substructure. As shown in Figure 6-6, sensors distributed on the solar panel are
mainly studied to monitor the health condition of this substructure. The signals for
diagnosis are measured from the fault system with one loosening screw: loosening
screw L2 or loosening screw L4.

Table 6-2 gives the IDev and Re Dev of the sensors from the virtual beams
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obtained by the BAFS method. Two features (i.e. peak to peak and energy ratio)
satisfying Constraint (5-6) are provided as representatives of the signals. The virtual
beams obtained by optimization method are highlighted in Figure 6-7(b) and Figure
6-8(b), and the potential faults based on virtual beam-like structure method are

pointed in Figure 6-7(d) and Figure 6-8 (d).
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Figure 6-7 VBLS method and SNAP method for fault isolation when the diagnosis system is

suffering from a loosening screw L2.

In the first diagnosis system, the virtual beams obtained using two features were
the same: A45-A55-A54-A53. The trend of Re_Dev in Figure 6-7 (d) was similar to
the case in Figure 5-6(c), so the potential fault was around sensors AS55 and AS53.
Thus, the potential fault was localized in L2 screw, which was identical to the actual

condition of the diagnosis system. Similarly, virtual beams were constructed using
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BAFS in second diagnosis system. The trend of Re_Dev based on the second virtual
beam in Figure 6-8 (d) had indicated that the potential fault was in L4 screw (around
sensor A23 and A24) or L2 screw (around sensor A43) — see Figure 5-6(f). The
trend of Re Dev based on the first virtual beam in Figure 6-8 (d) shows that the
potential fault is L4 screw (around sensor Al4 and A24) referring to Figure 5-6
(f).Therefore, the loosening screw L4 was isolated using the proposed virtual beam
method.

Table 6-2 Results of feature-represented sensors based on optimal virtual beams (L2 and L4

fault)
Feature L2 Fault
Virtual Beam IDev (Normal) IDev (Diagnosis)  Re_Dev
(Diagnosis)
Peak2peak A45 0.1750+0.1297 3.6026+2.4374 20.5870
ASS5 0.0733+0.0604 7.7350+2.8478 29.4732
A54 0.1378+0.1046 1.0908+0.5258 7.9151
AS3 0.2010+0.1393 5.4318+1.8984 27.0194
Energy ratio  A45 0.0910+0.0743 5.6291+1.8934 61.8600
A55 0.0733+0.0604 7.7350+2.8478 105.5254
A54 0.0579+0.0346 1.0333+0.8878 17.8584
AS3 0.0659+0.0524 8.3404+2.4909 126.5724
Feature L4 Fault
Virtual Beam IDev (Normal) IDev (Diagnosis)  Re_Dev
(Diagnosis)
Peak2peak A35 0.0877+0.0691 5.4717+£2.1814 62.4085
A25 0.0801+0.0664 4.3116+1.7888 53.8325
A24 0.0607+0.0382 3.9737£1.9708 65.4589
Al4 0.0649+0.0383 4.6388+2.0632 71.4539
Energy ratio  A24 0.0806+0.0549 10.9196+6.7638 135.4077
A23 0.0920+0.0641 9.9495+3.9524 108.0746
A33 0.0563+0.0285 2.9290+0.8344 52.0444
A43 0.0965+0.0961 23.1811+23.1811  240.1040
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Figure 6-8 VBLS method and SNAP method for fault isolation when the diagnosis system is

suffering from loosening screw of L4.

The distribution of alarm sensors are shown in Figure 6-7 (a) and Figure 6-8 (a)
when the diagnosis system is suffering from the loosening screw of L2 and L4,
respectively. Based on the distribution of alarm sensors, the potential fault positions
detected by SNAP approach are isolated and highlighted in Figure 6-7 (c) and Figure
6-8 (c). According to the SNAP approach, the sensors indicating the abnormal state
were mainly located at the right of solar panel. As shown in Figure 6-7 (c), the
system was determined to have been beset by L4 fault according to peak to peak,
but L2 fault was detected in terms of energy ratio. Thus, it could be difficult to
distinguish between faults located in L2 screw and L4 screw, which provided larger

potential fault region for further carefully study. In the second diagnosis system,
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(see Figure 6-8 (c)) the L4 fault was isolated by both the feature representatives
since the alarm sensors were mainly located nearby. Therefore, the fault decision
for the second diagnosis system was considered to have been located at the
loosening screw L4 using SNAP.

In comparison to SNAP approach, the proposed virtual beam-like structure
method is more effective in isolating the loosening screw on solar panel by
providing more accurate indications for fault localization and narrowing the

potential fault region for further immediate remedies.

|

Normal screw Loosening screw

e 9
All A12 Al3 Al4 Al5

X 7

Figure 6-9 Sensors are networked on main body of satellite-like structure for

virtual beam construction. *Four regions (i.e. P1, P2, P3 and P4) are frequently
suffering from the loosening screw fault.

6.2.3. Fault Diagnosis on Body Structure

As shown in Figure 6-9, the main body of the satellite-like model is more complex
in comparison to solar panel. The screws at the bottom of four cone shaped

connectors are the only tools connecting the solar panel to the main body. Therefore,
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loosening of those screws lead to rather serious safety problems and need to be

detected and isolated at the very beginning.

Table 6-3 Results of feature-represented sensors based on optimal virtual beams (P1-P4 fault)

Feature P1 Fault
Virtual Beam IDev (Normal) IDev (Diagnosis)  Re Dev
Peak2peak A22 0.0171+0.0153 0.0699+0.0365 2.1744
A32 0.1084+0.1304 0.2356+0.1937 4.0928
A42 0.0088+0.0073 0.0755+0.0229 8.5735
AS2 0.0310+0.0269 0.3838+0.0834 12.3835
Energy ratio A41 0.0211+0.0157 0.2008+0.0567 9.5137
A51 0.0237+0.0158 0.2397+0.1191 13.2868
A52 0.0060+0.0030 0.2427+0.0549 40.3969
A42 0.0620+0.0614 0.8238+0.2653 10.1163
Feature P2 Fault
Virtual Beam IDev (Normal) IDev (Diagnosis) Re Dev
Energy ratio A24 0.0581+0.0434 0.4232+0.1662 7.2870
A34 0.0967+0.0665 0.5952+0.0903 6.1519
Ad4 0.0919+0.0796 1.1293+0.1430 12.2862
A54 0.1140+0.0834 1.6128+0.2069 14.1411
Feature P3 Fault
Virtual Beam IDev (Normal) IDev (Diagnosis)  Re_Dev
Crest factor Al12 0.1378+0.1307 0.7181+0.3769 5.2118
A22 0.0731+0.0695 0.7341+£0.3300 10.0403
A32 0.1633+0.1250 0.5403+0.2106 3.3096
A42 0.0897+0.0774 0.8181+0.4341 9.1219
Peak2peak A22 0.0666+0.0399 0.6482+0.2195 9.7384
A32 0.1579+0.1310 1.1124+0.6299 7.0446
A42 0.0673+0.0440 0.6619+0.2356 9.8287
AS2 0.2250+0.1828 1.7278+0.7503 7.6788
Energy ratio A22 0.0862+0.1289 1.0500+0.5418 12.1821
A32 0.3204+0.2403 2.3689+1.7827 7.3931
A42 0.0807+0.0983 1.1618+0.6217 14.3971
A52 0.0987+0.0710 1.5787+1.1465 15.9921
Feature P4 Fault
Virtual Beam IDev (Normal) IDev (Diagnosis)  Re_Dev
Energy ratio A24 0.0581+0.0434 0.6518+0.1090 11.2240
A25 0.0468+0.0374 0.1695+0.0943 3.6236
A35 0.0343+0.0284 0.2895+0.1099 8.4406
A45 0.0283+0.0156 0.1030+0.0549 3.6396

Accelerometers used for fault diagnosis of main body were from multiple

subnetworks since there were several adjacent substructures. As shown in Figure
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6-9, sensors A22, A24, A42 and A44 assigned to the four cone shaped connectors
were on the band of adjacent substructures (body unit and cone shaped connectors),
which could be used for the construction of the optimal virtual beams using BAFS.
The sensors were distributed evenly over the main body (5 X 5). Four positions, i.e.,
P1, P2, P3 and P4, were frequently suffering from the screw-loosening. Therefore,
the diagnosis signals were measured when each of them was caused by a loosening
screw, e.g., one loosening screw on P1 (or P2, P3, P4).

Table 6-3 gives the Dev and Re Dev values of the sensors from the optimal virtual
beams obtained by the BAFS. Only one feature (energy ratio) was used for fault
diagnosis when the diagnosis system was suffering from P2 and P4 faults with
respect to Constraint (5-7), while two features (energy ratio and peak to peak) and
all the three features were used for fault diagnosis when the main body was suffering
from P1 and P3 faults. The results of Re Dev values are listed in Table 6-3
graphically presented in Figure 6-10 to Figure 6-13.

According to Figure 6-10, two virtual beams were obtained using two feature
representatives: A22-A32-A42-A52, and A41-A42-A52-A51. As there were only
two alarm sensors on the first virtual beam (sensors A42 and AS52), the potential
fault based on the first virtual beam was around sensors A42 and A52, i.e., fault P1.
According to Figure 5-6(b), the potential fault was around sensor A41, A42 and A52
according to the trend of fault indicator based on the second virtual beam. Therefore,

the fault decision based on virtual beam-like structure was fault P1. According to
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the response of alarm sensors, the potential fault position isolated by SNAP was
highlighted in Figure 6-10 (c), indicating that the potential fault was located at P1.

The diagnosis signals measured from the P1 fault system could be detected correctly

by both methods.
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Figure 6-10 VBLS method and SNAP method for isolation of P1 fault.

Clearly, the diagnosis signals measured from the system with P2 fault could be
detected correctly by virtual beam-like structures. As shown in Figure 6-11, only
one virtual beam was obtained after conducting the optimization process by BAFS.
According to Figure 5-6(e), P2 fault was detected and isolated by this virtual beam
consisting of sensor chain: A24-A34-A44-A54. However, it was confusing to find

different fault localizations when the SNAP method was used. Also, alarm sensors
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were mainly located at the forth column except for sensor A22. The location of P2

could not be identified by SNAP directly because of the distribution of sensor A22.

It was obvious that the VBLS method was more effective while locating fault P2

since the construction of virtual beam had considered not only the sensors indicating

the faulty system with large fault indicators but also the relative positions of the

sensors on the structure.
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Figure 6-11 VBLS method and SNAP method for isolation of P2 fault.

Figure 6-12(a) shows that the alarm sensors were located mainly at the second

column of the sensor network when the main body is suffering from P3 fault, which

is a typical case found in beam-like structures. According to the first virtual beam

(i.e. A12-A22-A32-A42), the trend of fault indicator based on the sensor chain

indicate the around sensors A12 and A22, i.e., P3 fault, in Figure 5-6(c). However,



the SNAP method based on the location of alarm sensors could not distinguish the
faults of P1 and P3. The alarm sensors distributed in varying positions made it

difficult for SNAP method to decide the accurate localization of potential fault.
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Figure 6-12 VBLS method and SNAP method for isolation of P3 fault.

When the diagnosis signals were measured from the system suffering from P4
fault, a virtual beam was obtained using BAFS: A24-A25-A35-A45. According to
Figure 6-13(d), the potential fault was positioned around sensors A24 and A35

according to the fault localization methods given in Figure 5-6(d). Considering that
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the sensors located in the fourth row and fifth rows were not alarm sensors, the
potential fault could not be P2. Thus, the fault was isolated around P4 using the
proposed method. However, it was difficult for SNAP to isolate fault P4. As shown
in Figure 6-13(a), five alarm sensors were available but distributed in varying
positions. As a result, the potential fault position was localized at the region between
P2 and P4. Not considering the vibration transmission path and relative positions of

sensors had rendered the SNAP method less effective for fault localization.
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Figure 6-13 VBLS method and SNAP method for isolation of P4 fault.

6.3. Discussion and Conclusion

A virtual beam-like structure method has been investigated above. It is based on
the finding that occurrence of the fault on the way of vibration transmission path
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will be manifested in the response of sensors on that path. Though vibration
transmission in complex structures is quite complicated, the vibration transmission
paths consisting of vibration sensors can be found in a straightforward manner by
BAFS from networks according to the response of sensors and relative positions
between them.

Extensive experimental studies have indicated that this VBLS approach quite well
for the considered complex satellite-like structures (e.g., solar panel, bonds, body
module, band antenna), and has shown the advantages for fault diagnosis in
comparison to the SNAP method, e.g. providing more accurate fault localization
when the diagnosis system is detected in abnormal state. The vibration signals can
be characterized as time domain features susceptible to uncertain environment noise.
Sensors keeping a distance on vibration energy path could also reflect the abnormal
condition of the system. Consequently, wrong or ambiguous diagnosis might be
obtained using SNAP method.

In virtual beam-like structure method, the vibration transmission path, regarded
as ‘virtual beam’, consisting of a chain of sensors (from sensor networks) can be
obtained automatically by optimization algorithm, which makes it easier for fault
localization by narrowing the region where the potential fault might be located. It
may therefore be conclude that, in comparison to SNAP method, the proposed VBLS

method is more reliable for fault localization.
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Chapter 7. Fault  Diagnosis of  Complex

Structures with Multiple Faults

Though VBLS approach for single-fault diagnosis is studied in Chapter 6, the
threshold based fault detection method is adopted with the assumption that prior
knowledge of the normal system is available. In this Chapter, the statistical
approaches are combined with the adaptive threshold for fault detection, and the
VBLS approach is validated for fault localization of both single and multiple fault
localization without using the prior knowledge of faults and using the limited prior

knowledge of normal operational conditions.

7.1. Problem Formulation

Occurrence of multiple faults indicates the presence of a set of single faults,
simultaneously. The number of faults and faulty sites are unknown. The extent of
faults is probably different so that the presence of some faults might be masked by
others [200]. The occurrence of one fault (or main event) probably brings about the
abnormal reflection on numerous sensors, and those sensors suffering from this
main event (i.e. kernel fault with most serious influence on the system) might only
reflect this fault and ignore the other potential faults. Though some sensors may
indicate the potential faults, the response extent of those sensors cannot exceed the
sensors distributed near closed to that main events, which contributes to the less

detection capability of side faults. Those factors will increase the difficulties for
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multi-fault isolation since other potential faults cannot be correctly isolated.

(a) Multiple faults on body (b) Multiple faults on solar (c) Multiple faults on both
panel body and solar panel

Figure 7-1 Examples of multiple faults on satellite-like structure

Our study focuses on the fault diagnosis of complex structure with one or multiple
faults on various components. Take a satellite-like structure as an example. As
shown in Figure 7-1(a), the first case is the fault occurring on the bottom where the
screws are working for the connection of a cone shaped-joint with the structure body.
The second case is the fault located on the top of joint where there is only one screw
for each joint to fix the solar panel on the hard, conic-like joint and to further
connect to the structure body, which has been shown in Figure 7-1 (b). For multiple-
fault cases, the faults might locate at varying substructures. For example, one fault
occurs on the main body and one locates on the solar panel, as shown in Figure 7-1
(c). In this thesis, above mentioned three cases will be studied, and an effective and
easy handling method based on virtual elements and feature characterization will be

presented for fault diagnosis of structures with one fault or multiple faults.
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Figure 7-2 Correlation of time and frequency under sweeping-frequency excitation

At the very beginning, the reference signal is measured from the studied system
which is in the normal state without any cracks or loosening bolts. Under the same
input, another group of vibration signal referred as diagnosis signal is measured
when the system is excited at the different moment. For benchmark study, bolt-
loosening on the adjacent substructures is studied since it frequently occurs in
various hanging structures with bolted-based connected sub-component and can
easily implement for experimental study. As shown in Figure 7-2, the input is
adopted here as a sweeping-frequency excitation from 20 Hz to 200 Hz with the

exciting intensity 0.4g, the sampling frequency 8192 Hz, and velocity 4 oct/min.
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Figure 7-3 The overall framework of virtual beam-like structure approach (VBLS) for multi-

fault diagnosis

7.2. Experimental Testing and Results

Different from the experimental tests in Chapter 6, in this section, the VBLS
approach is applied to fault diagnosis of complex structures which might be
suffering from more than one faults. Figure 7-3 shows the overall framework of the
proposed method for multiple fault diagnosis. Biased running strategy is embedded
in the optimization process to create multiple different virtual beams for a specific
component with abnormal indicating sensors.

Based on SNAP, the decentralized SNAP (i.e. DSNAP) [171] was developed for
multiple fault localization, in which all the alarm sensor nodes were the fusion
center and tracking the response of their neighbors. Even so, the accuracy of fault
localization is frequently decreased because of faulty sensors. To address the
negative influence of faulty sensors, the recent Trust Index based Subtract on
Negative Add on Positive (TI-SNAP) approach was developed and shown the

superior for multiple fault localization in comparison to the DSNAP. In this section,
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the proposed VBLS approach is compared with the TI-SNAP [173] to localize one
or more faults using sensor network. The studied component like solar panel is
divided into a grid g with 100 X 100 cells and grid resolution is g = 1. The
radius of ROC is the length of 32 cells, i.e., R, = 32 and R, = R;. More detail can

be referred to [173].

7.3.1. Experimental Platform

To validate the effectiveness of the virtual beam-like structure approach for fault
diagnosis of the complex structure which might be suffering from one or multiple
faults, the satellite-like structure is adopted. Considering the bolt-loosening fault
frequently occurs in BBHSs, the satellite-like structure with one or more loosening
bolts is studied in this Chapter.

The same satellite-like structure adopted in previous Chapter (shown in Figure
6-2) is also studied for multi-fault diagnosis. The bolted-base connected structures
like solar panel, main body on the satellite-like system are studied, and varying bolt-
loosening faults on the satellite-like model are considered and intend to be isolated
using the proposed virtual beam-like structure approach. Sensors are evenly (e.g.,
5 x 5) distributed on the structure as shown in Figure 5-3. The sweeping-frequency
excitation from 20 Hz to 200 Hz is adopted with the exciting intensity 0.5 g, sample

frequency 8192 Hz, and velocity 0.4 oct/min.
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7.3.2. Multi-Fault Diagnosis on Solar Panel

The solar panel is connected to the main body by four bolts, namely, L1, L2, L3
and L4. Referring to Figure 5-3, the sensor networks for the virtual beams include
the sensors on the solar panel (25 sensors) and sensors on the adjacent connectors
(8 sensors). Considering that the solar panel is connected to the main body by four
cone-shaped connectors, we can say that the presence of a single loose bolt should
have a negative impact on the functioning of the solar panel. Hence only two bolts
are studied for early potential fault diagnosis. In the following, experiments on solar
panel with one or two loosening bolts (see Figure 7-1(b)): L1 fault, L1&L2 faults,
and L1&L3 faults
1). L1 fault condition

Figure 7-4 shows the responses from the sensors on the solar panel and the virtual
beams as constructed by the optimization method while the diagnosis signals are
measured from the system suffering from loosening bolt at L1. The point figures
represent the sensors distributed in the solar panel. The sensors pointing to a faulty
system are highlighted in Figure 7-4 (a)-(c). In Figure 7-4 (d)-(f), the sensor chain
highlighted using circled marks represents the virtual beam in the first run and
another sensor chain highlighted with squared marks in the second run (of the
optimization process). The trends of fault indicator associated with the sensors on

the virtual beams are also given in the figure below.
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optimization method when diagnosis signals are measured from system suffering from

loosening bolt at L1

Based on VBLS, two virtual beams with two sensor chains: A24-A14-A15-A25

crest factor.

and A13-A14-A15-A25 are obtained on the basis of crest factor. The first virtual
beam indicates that the fault is around sensor A24 since the largest fault indicator
value manifests in sensor A24 and it contributes to the construction of the kernel
virtual beam in the first run. According to the second sensor chain (A13-A14-A15-
A25), the fault is probably located around sensor A25. Thus, based on two virtual

beams, fault L1 located on the top left of the structure is isolated by considering the

Similarly, in Figure 7-4 (e), two virtual beams are constructed based on the peak
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to peak. The first virtual beam consisting of sensor chain A34-A35-A25-Al15

indicates that the fault is likely to be located on the top left. Referring to Figure 5-6



where the trend of the second virtual beam is represented by the sensor chain A22-
A23-A33-A43, the fault is around sensors A22 and A23. This implies that the fault
is probably in L1 or L3 according to the corresponding ROCs. The virtual beams
based on the energy ratio show that the fault is most likely located at the top left of
the structure. According to the fault isolation rules described in Section 5.5.2, a fault
is considered only if it is isolated by at least two virtual beams. As such, only L1 is

isolated by the VBLS approach.
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Figure 7-5 Fault localization using TI-SNAP when diagnosis signals are measured from system

suffering from loosening bolt at L1

Figure 7-5 shows the potential fault events localized by TI-SNAP. The event L1
at the top left is isolated on the basis of all three features, but event L4 at the bottom
right of the component is also identified by crest factor (see Figure 7-5 (a)) and peak
to peak (see Figure 7-5 (b)). Thus, according to TI-SNAP, at least two events (L1
and L4) are isolated simultaneously by more than one features, which provides
larger regions for potential fault isolation.

In the case of loose screw L1, the VBLS approach shows the advantage to isolate
the single fault and provides the more accurate information for fault localization of
the potential fault.

2). LI&L?2 faults condition
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In Figure 7-6, since all the three features have detected a faulty system, they are
all considered to be valid and applicable for the purpose of virtual beam construction
using the optimization method. The virtual beams obtained using the two biased

optimization processes are shown in Figure 7-7.
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Figure 7-6 Response of sensors on solar panel when it is suffering from loosening bolts at
L1&L2

According to in Figure 7-7 (a), two virtual beams A34-A35-A25-A15 and A35-
A34-A44-A45, are obtained using the crest factor. According to the first sensor
chain, a fault is probably located at the top left of the solar panel, i.e., L1, while the
second sensor chain indicates that a fault is present at the top right of the structure,
i.e., at L2. Thus, L1 and L2 are both isolated using the crest factor. However, based
on the virtual beams on the basis of peak to peak, only L1 is localized as shown in
Figure 7-7 while the virtual beams obtained according to the third feature (energy
ratio) imply the possibility of multiple faults (L1 and L2). Specifically, the trend of
the fault indicated by the first virtual beam (sensor chain A43-A33-A34-A35)
indicates that the fault is around sensors A43, A34 and A35, so L2 is most likely to
be isolated. Meanwhile, the second virtual beam consisting of the sensor chain A34-
A24-A14-A15 indicates that the fault is located at L1. Since both L1 fault and L2

fault are isolated by crest factor and energy ratio simultaneously, it may be
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concluded that the system contains two faulty sites, L1 and L2.

In contrast to the VBLS approach, the TI-SNAP approach focuses on the positions

of alarm sensors which have been highlighted in Figure 7-8. Based on the regions

containing the leader sensors reflecting the faulty system, the faulty sites are

localized at L3 and L4 using crest factor, L1 using peak to peak, and L3 using energy

ratio. Though the trust index is adopted to assign the weights for the sensor nodes

based on their historic records in failing alarm, the harsh condition with limited

available prior knowledge makes the poorer performance of TI-SNAP approach for

fault localization.
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suffering from loosening bolt at L1&L2
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3). L1&L3 faults condition

When the diagnostic signals are measured from the solar panel (owing to
loosening of bolts at both L1 and L3), all the three features are capable of fault
detection and the sensors indicating the faulty system are highlighted in Figure 7-9.
While virtual beams constructed using the optimization method are shown in Figure
7-10. Based on the alarm sensors in Figure 7-9, the potential fault positions are

highlighted in Figure 7-11 using TI-SNAP approach.
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Figure 7-9 Response of sensors on solar panel when it is suffering from loosening bolts at L1&L3

Crest factor Peak2peak Energy ratio
5 © @

el [e] o q
2 2 2
5 <] S g
g §I> o o [ 28
X o o [

® & 8 ? ?

network

network network
The first run, Crest factor The second run, Crest factor The first run, Peak2peak The second run, Peak2peak The first run, Energy ratio The second run, Energy ratio
80 - 60 150, 0 8 L00 1500
Potential fault Potential faul Potential fault Potential fadl a N Potential faul AL Potentigl faull
60 48 2a 10 6002 ol 1008}
AL A22 A25 500
40 ALS 20 A13 504 24 0 A3 A
12 A2 A23 A4 12 AL3 n
20 Al4 0 0 A23 20 0 14
1A13 2 3 AZ5 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
(a) Crest factor (b) Peak to peak (c) Energy ratio

Figure 7-10 Virtual beams constructed using optimization method when the system is
suffering from loosening bolts at L1&L3

Obviously, as shown in Figure 7-10, the virtual beams created according to the
crest factor indicate that the potential fault of the system is on the left side of the
panel, and the virtual beams obtained on the basis of peak-to-peak further lend

support to the conclusion from the first feature, i.e., the fault is at L1 and/or L3. The
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virtual beams based on energy ratio clearly indicate that there are two faults in the
system and that they are L1 and L3. Thus, both L1 and L3 are correctly isolated by

the proposed VBLS approach.
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Figure 7-11 Fault localization using TI-SNAP when diagnosis signals are measured from

system suffering from loosening bolt at L1&L3

According to the sensors responses based on fault indicator illustrated in Figure
7-9, Figure 7-11 gives the potential faulty events isolated by the TI-SNAP approach.
Generally, the fault L3 is isolated by all three features, L1 is localized by the peak
to peak and energy ratio. However, the loosen screws of L1 and L3 have brought
almost all the sensors on the solar panel indicating the abnormal condition. As a
result, all four screws have been isolated by TI-SNAP approach on the basis of the

energy ratio.

7.3.3. Multi-Fault Diagnosis on Main Body

In this section, the main body in Figure 7-12 is studied for fault detection and
fault localization. This study focuses on the health monitoring of the bolts located
on the connection of main body and four connectors. To be convenient, as shown in
Figure 7-12, four connectors are named as P1, P2, P3, and P4. Since each connector
is fixed using four bolts, our study focuses on early fault detection, i.e., through the
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one loosening bolt of four on the connector. For multi-fault cases, loosening bolts

are created at two different connectors, e.g. P1&P2, P1&P3.

=

Normal screw Loosening screw

7z

Figure 7-12 Distribution of sensor networks when main body is studied for health

condition

Sensors on the main body and on the adjacent substructures (i.e., four connectors)
are used for virtual beam construction. Eight sensors are assigned on the four
connectors with one on the bottom and one on the top. Sensor on the bottom of the
connector P; is named as AB;, and the sensor located on the top of the connect P; is
named as 4A7:. The sensors on the main body for optimal virtual beams are reduced
and distributed with three sensors evenly assigned in each column. In the first
column, sensors Al1, A13 and A15 are kept for the virtual beam construction, but
sensors A14 and A12 are removed since they are closed to sensors 4B;and AB;. For
the same reason, the sensors on the third column (i.e. N3) are removed except A33,
and sensors A54 and A52 are removed. As a result. There are 21 sensors in total for
the construction of the virtual beams.

1). P1 faults condition

139



In Figure 7-13, the sensors that can detect the abnormal system are highlighted.
Since no alarm sensors have been detected by the methods when the signals are
characterized by crest factor, this feature will not be applied to virtual beam
construction.

According to the peak-to-peak results illustrated in Figure 7-14 (a), two virtual
beams are created consisting of sensor chains A23-AB1-A25-A15 and A13-A23-
AB1-A25. Though the two virtual beams are different, both indicate that the fault is
probably located at P1. From Figure 7-13 (b), the sensors detecting the abnormal
state include A11, AB;3 (in Figure 7-12), AB; (in Figure 7-12), and AT3 (i.e. the
sensor on the top of connector P3). The two virtual beams based on energy ratio do
not contain any alarm sensors. A virtual beam is regarded as valid for fault
localization only if at least one sensor on the chain has been detected to be faulty
according to statistical approaches. Thus, the virtual beams based on the energy ratio
are inapplicable for fault localization. Since two further features cannot be used for
fault localization, the virtual beams obtained from the peak-to-peak values are
employed next. According to the potential fault position from this method,

connector P1 is shortlisted for an examination of bolt loosening using VBLS.
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Figure 7-14 Virtual beams constructed using features when the system is suffering from

loosening bolt at connector P1
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Figure 7-15 Fault localization using TI-SNAP when the system is suffering from multiple
loosening bolts at connectors P1

Based on TI-SNAP method, the potential faults are probably located at regions
with more sensors indicating faulty system. According to the distribution of alarm
sensors highlighted in Figure 7-13, the potential fault regions shown in Figure 7-15
suggest that P3 fault is more obvious than P1. Therefore, P3 is the potential faults
to be detected for abnormality examination using TI-SNAP method. Compared to
VBLS, the regions for the potential faults by TI-SNAP method are more confusing.
It is more likely that we need to check a larger region for the potential faults. Instead,
the fault localization by VBLS focuses on the regions with the most sensitive
sensors while narrowing faulty sites by controlling the length of the sensor chain
route.

2). PI&P?2 faults condition

The sensors that can detect the abnormal system are highlighted in Figure 7-16
(a)-(c). Accordingly, the virtual beams obtained by “two biased running” are shown
in Figure 7-16 (d)-(f). The first virtual beam, highlighted by square marks, are the

same for the three features, which indicates the potential fault position of P1 because
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the sensor A25 contains the largest value of fault indicator on this chain. Therefore,

only P1 is isolated without the strategy of ‘two biased running’ embedded in the

original VBLS approach. Based on the crest factor and energy ratio values, the

second virtual beam (highlighted by circle marks) indicates that the potential fault

IS positioned at P2. Meanwhile, the second virtual beam based on the peak-to-peak

values in Figure 7-16 (e) implies that the potential fault position is P3. According

to the fault localization rules based on multiple features, connector P3 will not be

considered as the potential fault. Thus, two connectors, P1 and P2, are isolated and

shortlisted for further examination using VBLS.
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Figure 7-16 Response of sensors and virtual beams constructed using optimization method when

the system is suffering from multiple loosening bolts at connectors P1&P2
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Figure 7-17 Fault localization using TI-SNAP when the system is suffering from multiple
loosening bolts at connectors P1&P2

However, it is a challenge to isolate the potential faults using TI-SNAP approach
on the basis of the distribution of alarm sensors. According to the alarm sensors in
Figure 7-16 (a), connectors P2 and P4 are suspected as potentially faulty sites on
the basis of crest factor (see Figure 7-17 (a)). Similarly, based on peak to peak, the
region contains the bottom of connector P4 is isolated using TI-SNAP approach.
The region isolated using energy ratio in Figure 7-17 (c) is valid. As a result, the
potential faults located by TI-SNAP approach are at two regions (i.e., P2 and P4),
which are completely identified with the real implement.

3) P1&P3 faults condition

Figure 7-18 show the virtual beams constructed by the candidate sensors from the
sensors networks distributed both on the main body and adjacent substructures (the
four connectors). Based on the crest factor and energy ratio values, there are two
virtual beams: A23-AB1-A25-A15 and A23-AB3-A33-A43. The first sensor chain
clearly indicates a faulty site at P1 while the second sensor chain points to a fault
site at P3 in view of the significant response from sensor A22. Similarly, based on

peak-to-peak value, we can create two virtual beams: AB3-A23-A25-A15 and A23-
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AB1-A25-A15, which indicate that the potential fault might be located in connectors

P1 and/or P3
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Figure 7-18 Response of sensors and virtual beams constructed by optimization method when

the system is suffering from multiple loosening bolts at connectors P1&P3
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Figure 7-19 Fault localization using TI-SNAP when the system is suffering from multiple

loosening bolts at connectors P1&P3

According to the main event virtual beam constructed during the first run (i.e.,
the original version of VBLS for single fault localization), only P1 is isolated.
However, combined with three features and six two virtual beams (with two of them

being obtained by each feature after the two biased running of optimization),
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connectors P1 and P3 can both be isolated to examine potential faults by VBLS.
According to the distribution of sensors indicating the faulty system, the regions
of containing the connectors P1 and P3 are isolated by TI-SNAP. Specifically, the
event P3 is localized on the basis of crest factor and both P1 and P3 are localized
using peak to peak, but the fusion regions are isolated using energy ratio. Thus, a
system with multiple faults at P1 and P3 has also been correctly isolated by the TlI-

SNAP approach.

7.3.4. Multi-Fault Diagnosis on both Solar Panel and Main Body

To study the effectiveness of the proposed method for localizing multiple faults
distributed over different substructures, the system suffering from the two faults
located at L1 (one the solar panel) and P3 (on the main body) in Figure 7-1(c) is
studied as an example. Similar to the previous two cases, sensors assigned on the
connectors could be used for virtual beam construction in both solar panel and main
body. Figure 7-20 show the virtual beams constructed on the basis of the sensors
located on the main body and the adjacent substructures (connectors), while Figure
7-22 gives the virtual beams using the sensor networks on the solar panel since
sensors from adjacent connectors have not been selected by the optimization method.
All virtual beams based on the three features are valid and capable of fault
localization. Using these virtual beams, it is easy to isolate the potential faulty sites

at connectors P1 and/or P3.
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Figure 7-21 Fault localization using TI-SNAP when the system is suffering from L1&P3 faults

(c) Energy ratio

Since the alarm sensors are appeared on the solar panel, the sensors responsible
for solar panel are employed for fault isolation using optimal virtual beams. Based
on the crest factor (see Figure 7-22 (d)) and peak-to-peak (Figure 7-22 (f)), the fault
is isolated around sensors A24, Al4 and A23. According to the ROC, the event L1
is isolated. Each of the two virtual beams obtained on the basis of energy ratio has

indicated a different fault region. Specifically, the kernel virtual beam consisting of
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sensor chain A21-A22-A23-A24 reveals that the potential fault position is at L1
(since sensor A24 reflects large value of fault indicator), and the second virtual
beam suggests that the potential fault position is L2. Since the detection of L2 is
based on a minor virtual beam and no other virtual beam has given a similar fault
indication of L2, it is not considered to be a potential fault. Therefore, only L1 are
detected by the VBLS approach for the potential fault position using the sensors

assigned on the solar panel.
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Figure 7-22 Response of sensors and virtual beams constructed using the sensors located on the

solar panel

Combined with the information provided from solar panel and main body, the
bolt L1 on the solar panel, and connectors P1 and P3 on the adjacent regions of
connectors and main body are isolated using the proposed VBLS approach.

Considering that bolt L1 is used to fix the solar panel with main body using
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connector P1, bolt L1 and connector P1 could be considered to be the same element
for the purpose of determining the potential fault position. In other words, the loose
screws on the connector P3 and L1 have been correctly isolated by the proposed

VBLS approach.
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Figure 7-23 Fault localization using TI-SNAP when the system is suffering from L1&P3 faults

Similarly, according to the distribution of alarm sensors on main body shown in
Figure 7-21, faulty events are localized at P3 by TI-SNAP approach in Figure 7-21.
In addition, Figure 7-23 shows the potential faulty regions on the solar panel.
Specifically, loose screw L3 is isolated using crest factor (see Figure 7-23 (a)), and
loose screws L1, L2 and L3 are all isolated using energy ratio (Figure 7-23 (c)). As
a result, the faults located at P3, L1 and L2 are all isolated by TI-SNAP approach
providing wider regions for the potential fault examination.

In comparison to the bolt-loosening fault occurring in the main body, the fault on
the solar panel is easier to be detected since bolt-loosening on the solar panel is a
rather severe case. Whereas bolt-loosening at L1 can be detected by sensors located
on the main body, the loosening screw (i.e., one of four screws) at the bottom of the
connector closer to the main body cannot be detected by the sensors on the solar

panel. This might be the reason why the loosening screw on connector P3 has not
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been detected and isolated by the sensors on the solar panel.

7.3.

Discussion

® [n comparison to the classical TI-SNAP approach for fault localization. Though

SNAP shows superior to other fault localization in sensor networks using binary
data (e.g. CE, ML, FTML) for its computational efficiency and fewer parameter
assumptions [170], it only focuses on the distribution of alarm sensors. The TI-
SNAP approach introduces the strategy of trust index to decrease the negative
influence of faulty sensors in a network and provides the more accurate
localization of potential faults than SNAP using similar computational time
[173]. However, it can be reliable for fault localization on the conditions that
the prior knowledge or continuous signals from the system are available and the
distance between two neighbor events should be far enough to avoid the
interference with each other. The proposed VBLS approach considers the
vibration transmission paths in a real implement structure and adopts the
concept of ‘virtual beam’ to represent this transmission path. The occurrence of
the faults could be manifested in the changes of the vibration energy on some
transmission paths, which can be captured by some sensor chains. This vibration
transmission paths represented by sensor chain are regarded as virtual beams
could be automatically optimized by a heuristic algorithm. As a result, the
proposed VBLS is easy to implement and computationally inexpensive for fault

localization without requirement of prior knowledge of faults. The numerous
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experimental results confirm that the VBLS approach is more reliable and
effective for localization of potential faults in comparison to the TI-SNAP
approach.

The effectiveness of sensor network separation. The increased complexity of
signal analysis brought by sensor numbers and sensor information (including
the related feature characteristics, the knowledge of positions, and relative
distances, etc.) will increase the computational complexity and decrease the
accuracy of fault localization. In such a case, the occurrence of a fault in one
substructure has little influence on another, the sensors on associated
substructures need to be separated. Certain sensors assigned on the adjacent
substructures, considered as overlap sensors, can be supplied for the optimal
virtual beams construction since they might be capable of detecting nearby
faults and then composed into potential vibration transmission paths. Generally,
the factors for sensor network separation include: the underlying vibration
transmission paths, the influence regions of events, and the response of sensors
for the potential faults. Each component is related to only one sensor network,
but a sensor might belong to more than one sensor networks. Once a faulty
component is detected, the sensors responsible of corresponding component are
separated and used as the candidates to construct the optimal virtual beams for
the fault localization. The selection of sensor networks based on components

could greatly decrease the computational complexity and improve the accuracy
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of fault localization, which imposes the proposed fault diagnosis method could
be done for online detection (within 30 seconds) and fault localization in a
reasonable offline time (no more than 3 minutes in localization for the satellite-
like system).

The integrated fault detection. Considering the unavailability of prior
knowledge of faults and limited prior knowledge of normal operational
conditions, the statistical tests are combined with the adaptive threshold for
fault detection. With limited prior knowledge of normal operational condition,
the threshold value is difficult to obtain. To increase the reliability, the threshold
value is to be updating with the coming of the new data. Additionally, statistical
tests are adopted for fault detection by similarity comparison of two datasets to
address the harsh condition that only small datasets (e.g. only two or three
datasets) are available initially. Therefore, an integrated method is presented in
this thesis to take advantage of threshold based method and statistical based
methods for fault detection when the prior knowledge of the system is limited.
The assumptions of the proposed VBLS approach. The proposed sensor network
based method is applicable to more complex structures if the following
assumptions are satisfied. (1) Sensors are distributed on the structure surface
ideally with a tree-like topology rooted from the excitation source, and over 80%
of them work stably for health monitoring; (2) The topologic information of the

sensor networks is available such as the relative positions of each sensor with
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respect to others; (3) The assembling information from the experts are roughly
known such as the region of influence (of event), region of coverage (of sensors),
region of neighbors, and the position of vibration source to identify some basis
of vibration transmission paths; (4) At least one reference signal from the
healthy operational condition is available working as benchmark representative

for fault detection.

7.4. Conclusion

In this Chapter, the VBLS approach was validated for multi-fault diagnosis in the
absence of prior knowledge concerning the faults in the system. The fault detection
algorithm used in this Chapter adopted the statistical methods (T-test, rank-sum, and
K-S) and adaptive threshold to address the small sample (i.e. historic data) limitation.
Based on time domain statistical features, the combined fault detection method is
computationally inexpensive, which can be implemented for on-line condition
monitoring. Different from the classical localization methods concentrating on the
distribution of alarm sensors, the proposed VBLS approach utilizes the changes of
energy caused by the occurrence of faults for fault localization. Through validation
in the contexts of three different abnormal cases, it shown that the proposed
approach is more accurate than the classical TI-SNAP approach. It has been
demonstrated to be a promising and easy to implement model-free method for multi-
fault detection and localization of complex structures with limited or little prior

knowledge.
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Chapter 8.

Procedures

and

Computational

Complexity Evaluation for Fault Diagnosis System

In this Chapter, a detailed procedure for applying the proposed virtual beam-like

structure approach to a hierarchic diagnostic system is presented. To establish a

comprehensive on-line fault diagnosis system, the computational complexity,

knowledge requirements, as well as the applications of the proposed fault diagnosis

method are also studied and discussed.
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Figure 8-1 Procedures of the proposed fault diagnosis system
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8.1. Procedures for Fault Diagnosis

Since the main objective of this study is to develop a novel fault diagnosis with
less or little prior knowledge, the data for references are not complete. For that, the
method for fault diagnosis of the harshest case using only two datasets (one
measured from normal system and one measured from diagnosis system) is
presented with the assumption that the reference dataset is reliable and
representative for online monitoring. Figure 8-1 shows the overall flow chart of the
technical procedures. To apply virtual beam approach to fault diagnosis, the detailed
illustration of these technical procedures is provided as follows step by step:

Step 1. Layout the vibration sensors networks.

1.(a). If the structure is relatively small in size with no more than 5 sensors:
develop potential effective vibration transmission path (from the vibration
source) and assign the sensors along that path for fault diagnosis of
structure;

1.(b). Otherwise, the sensors are evenly assigned (as networks) in the complex
structure (referred to Section 5.2).

Step 2. Measure a group of signals (recorded as reference dataset) when the system
is in the normal state.
Step 3. Measure another group of signals (recorded as diagnosis dataset) from the

same system with the unknown condition.
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Step 4. Feature characterization (referred to Table 4-1) and feature selection (using
PSO-FCM, Section 4.1.3).

4.(a). Feature characterization: Signals measured in Step 2 and Step 3 are
represented by features (i.e. time domain statistical functions in Table 4-
1. The features used for feature characterization could be in the time
domain, frequency domain, or time-frequency domain).

4.(b). Feature selection: unsupervised clustering method PSO-FCM is adopted to
select the most informative features to represent the time series data. It is
assumed that the maximum number of features to be selected is M. Let
parameter j = 0.

4.(c). Represented by the ;j” selected statistical feature, both reference and
diagnosis datasets are provided for data analysis. Let j=j+1.

4.(d). If all the statistical features have been used for data analysis (i.e. j > M),
then data analysis is terminated; otherwise, turn to Step 5.

Step 5. Calculate the fault indicator.

5.(a). If there are only two datasets, deviation ratio (Dev) is calculated using Eq.
(4-10)

5.(b). Otherwise, deviation ratio is calculated according to Eq. (4-11), and relative
deviation ratio is calculated using Eq. (4-12)

Step 6. Fault detection using combined statistical methods. (It is assumed that the

reference dataset is reliable and representative. *if the knowledge of the
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system is available, the combination of threshold method and statistical tests
is applicable to fault detection)

6.(a). The faulty state is considered if the abnormal system is decided by any one
of statistical tests or threshold method;

6.(b). If the faulty state is detected, then turn to Step 7; otherwise, the system is
considered to be in normal condition by j feature, turn back to Step 4.(c)
and make a record in ‘Archive’.

Step 7. Sensor networks selection.

7.(a). Fault localization focuses on the components containing the sensors
indicating the abnormal state. It is assumed that there are N components
in the system containing the faulty information. Let i=1.

7.(b). Select the appropriate sensor networks for the i components (referred to
Section 5.2).

7.(c). If N> 1, more than one components are applied and considered for virtual
beam construction. Otherwise, fault localization focuses on one
component.

7.(d). Based on a faulty component, the number of subnetworks is calculated
using Eq. (5-7) to determine the iteration times embedded in the ‘biased
running’(referring to Pseudo-code 5-2) for virtual beams.

Step 8. Construct the optimal virtual beams using appropriate sensor networks in

Step 7.(b).
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8.(a). Based on the i failing component, optimal virtual beams (consisting of
sensor-based paths) are created using optimization method (referred to
Section 5.3). *If the structure is relatively small in size with no more than
5 sensors: develop potential effective vibration transmission path (from
the vibration source) and assign the sensors along that path for fault
diagnosis of the structure.
Step 9. Fault localization using virtual beams (referred to Section 5.5).

9.(a). Based on the j” feature, the potential faulty sites are isolated according to
the two virtual beams obtained on the basis of that feature. The faulty sites
associated with the specific feature and component are kept into ‘Archive’.

9.(b). Let: i=i+1.

9.(b). If i > N, then turn back to Step 4.(c), otherwise, go to Step 7.(b).

Step 10. Fault diagnosis based on an outlier ‘Archive’ (which is used to record the
health condition of the system based on feature representatives and associated
potential faulty sites).

10.(a). Fault decision: Based on M selected statistical features, any one of the

feature indicates the faulty system, the system is suspected for the potential

fault(s). If a faulty system is suspected, then go to Step 10.(b); otherwise, the fault

diagnosis process is terminated since no faulty elements is detected.

158



10.(b). Fault localization (referred to Section 5.5). Based on a specific component:
compare the fault positions localized using different features. The faulty sites are
considered for a further examination if they meet any one of following cases:

(i). A fault is isolated by at least two valid virtual beams, simultaneously;

(ii). A fault is isolated by only one feature, but it is localized by kernel virtual

beam (i.e., obtained from the first run of the optimization process).
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Figure 8-2 The fault diagnosis system

To make the diagnosis system easy to implement in real-world sensor-
networked structures, as shown in Figure 8-2, an interface is designed in
MATLAB program with GUI front. At the first stage, two parameters related to
the information of the studied sensor-networked structures are initialized, i.e.
number of columns in a sensor network, and the number of sensors in a column.
The second stage is to load the signals measured by the sensors from the network.

The original raw time series data are loaded by pressing the buttons: ‘Load
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Reference’ (the data used as the benchmarks and measured from the healthy
system), and ‘Load Diagnosis’ (the data to be measured), where N represents the
column of the sensor network. For example, N1 is the first column. At the third
stage, the health condition of the system is to be detected by pressing the button
‘Fault detection’. The results of fault detection are shown in the first column of
the right region using three figures. The sensors indicating the abnormal state are
highlighted in red. Once the system is suspected in the abnormal state, the last
stage is to isolate the potential fault by pressing the button ‘Fault localization’.
The results of fault localization are shown in the remaining columns of the right
areas. If the number of columns is more than one column, the virtual beams are
constructed and the response of sensors from the virtual beams are shown in the
last column of the interface.

Two examples are provided and shown in Figure 8-3. Figure 8-3 (a) shows the
results of fault detection and fault localization when the sensor network consists
of sensors assigned only in one column. The abnormal condition is detected by
both three features since the abnormal state is reflected by most sensors which
are highlighted in red. According to the sensors from that column, the potential
fault is finally isolated around the fourth sensor according to the rules predefined
in Section 5.5. Similarly, Figure 8-3(b) shows the results of fault diagnosis when

the sensors are evenly assigned in five columns (i.e. 5 X 5 matrix). According
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to the trends of fault indicators related to the sensors from the virtual beams, the

potential faults could be isolated at the right side of the studied structure.
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Figure 8-3 Examples of fault diagnosis using the proposed fault diagnosis

system
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Gnenerally, the interface makes the convenience of fault diagnosis avoiding
the complexity of implementation, preventing the error oprations, and reducing
the captial or time cost for executions to train the special experts to understand

the nature of the actions.

8.2. Evaluation of Computational Complexity

Based on the procedures for fault diagnosis of sensor networked-structures, the
computational complexity of each step is evaluated according to the CPU record of
the PC utilized. In this study, the input consisted of a sweeping-frequency excitation
(20 to 200Hz) with an exciting intensity of 0.4g. The sample frequency was 8192Hz
and the velocity 4 oct/min. To eliminate noise disturbance at the beginning of
measurement, the first 40% series were removed and the remaining 60% (ranging
approximately between 80Hz and 200Hz) were used for data analysis. Thus, the
length of the time series was around 401472 and the length of data used for analysis
about 240883. If the time interval window used for feature characterization was 1
second, the dimensionality of features based on each time domain feature function
was around 20, which greatly decreased the computational complexity for data
analysis.

It is assumed that the number of feature points is S, a complex structure consists
of N components, and there are H accelerometers mounted on each component. Thus,
in the worst case, the asymptotic complexity is O(HMNS) using the classical sensor

network based localization methods (e.g., SNAP). However, the upper bound is
162



improved to O(HMS) in the proposed VBLS approach since the fault localization

in the proposed method is fulfilled using virtual beams in a faulty component rather

than all the sensors.

Table 8-1 Time complexity of the proposed fault diagnosis system

Computer run | Accumulated
No. | Procedures Notes
time (second) time (second)
o 80Hz-200Hz; Length
1 Data acquisition 0 0 )
of raw data is 240883
o three features, 25
2 Feature characterization 2.5663 2.5663
sensors
3 Fault detection 0.2411 2.8074 Statistical methods
4 Optimal virtual beams 48.3418 51.1492 The first feature
Faulty sites based on the
5 0.0001 51.1493 The first feature
first feature
6 Optimal virtual beams 48.5011 99.6504 The second feature
Faulty sites based on the
7 0.0001 99.6505 The second feature
second feature
8 Optimal virtual beams 48.4487 148.0992 The third feature
Faulty sites based on the .
9 ) 0.0001 148.0993 The third feature
third feature
Output the potential fault Considering the
10 P P Jaulty 0.0010 148.1003 ) £
sites combined features

Take the satellite-like structure as an example. There are 25 sensors evenly

distributed on the structure for health monitoring, and three time domain features

are employed to represent the high-dimensional raw data. Only one substructure

(i.e., solar panel) contains one or more faults. The tests were carried out under a 64-

bit MATLAB 2012b environment with a computer of 3.4-GHz CPU and 8-G RAM.

Table 8-1 gives the average time needed for each stage of the proposed fault

diagnosis system over 30 independent runs. Since an advantage of time domain

features is its simplicity and interpretability (these avoid the complexity of the
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preprocessing), the method is inexpensive in terms of time despite the complexity
of feature characterization. As a result, the time used for fault detection is no more
than 3 seconds; most of time is spent on feature characterization. Thus, the proposed
method can be used for on-line fault detection in sensor networks.

If no fault is found by the combined statistical methods and threshold, then system
is considered in the normal state and it is not necessary to use the virtual beams for
fault localization (after Stage 3). Once the abnormal condition is detected by sensor
network, the potential faults are localized using virtual beams obtained by applying
the optimization method described earlier. Though the availability of information
on more features could greatly enhance the accuracy of fault detection, the
computational complexity is increased at the same time. From the data on No. 4,
No.6 and No.8 procedures, we can see that the entry of one single feature leads to
additional time consumption (around 48seconds) for the optimal virtual beams. To
isolate the potential faults within 3 minutes, no more than three features are

suggested to represent the time domain signals.

8.3. Application of the VBLS Approach

The virtual beam-like structure (VBLS) approach currently focuses on the fault
diagnosis of the bolted-base hanging structures with one or more bolt-loosening
faults since they frequently occur in various hanging structures with bolt-base
connected with the other structures.

The proposed VBLS approach is applicable to fault diagnosis of complex
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structures (e.g. bridge or concrete structures) provided that the following are

available:

1). Sensors are evenly distributed on the structure, and over 90% of them work
stably for health monitoring.

2). The topologic information of the substructures and sensor network on each sub-
structure needs to be available, for example, the rough geometric position
between two sensors on that sub-structure.

3). The assembling information from the experts is roughly known such as the
region of influence (of event), region of coverage (of sensors), region of
neighbors, and the position of vibration source to identify some basis of
vibration transmission path.

4). Atleast one reference signal from the healthy operational condition is available
and representative for fault detection.

The performance of the proposed method for fault detection greatly relies on the
reliability information contained in signals measured before and after. Thus, smaller
collection gap between the two measurements can help on-line detection or fault

diagnosis with limited priori.

8.4. Advantages of the Proposed Fault Diagnosis
Method

The virtual beam-like structure approach (VBLS) has been validated for multi-fault

detection and localization of bolt-based hanging structures (BBHSs) while
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demanding limited or no prior knowledge concerning the faults present. The
advantages of the proposed VBLS approach are summarized below.

1) In comparison to model-based methods: As demonstrated earlier, the reliability
of model-based methods for fault diagnosis is determined by multiple physical
parameters or mode shapes arising under different operation conditions. However,
since the system is rather complex with internal state variables that are inaccessible
to measurement by sensors commonly used in time-varying dynamic systems, it is
not appropriate to apply model-based approaches to fault diagnosis [3]. However,
as a model-free method, the method proposed in this thesis has no such limitation;
it is also applicable to the fault diagnosis of structures without prior knowledge of
faulty system.

2) In comparison to sensor network-based fault diagnosis methods: Sensor
networks have been used widely to detect the abnormal vibrations and thus prevent
structural damage. The methods developed using sensor networks have been used
mostly for estimating the parameters associated with the modeling of structures for
fault diagnosis [201-204]. The major limitations of these methods include high
computational cost and requirement of system off-line during fault diagnosis.
Though the binary methods like CE, ML, FTML, and SNAP have shown the
superiority in terms of computational efficiency and parameter assumptions [170],
they only focus on the distribution of alarm sensors. As a result, the accuracy of

fault localization would greatly depend on the reliability of sensors mounted on the
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studied structures. Instead of modeling the structures or monitoring the alarm
sensors, the method proposed in this thesis selects sensors with large fault indicator
values to capture the most sensitive changes on the vibration transmission using the
optimization methodology. The machine learning based optimization method
embedded is robust and capable of selecting sensor nodes with limited human
intervention, which leads to rather low computational cost, and it is more reliable
and effective for localization of potential faults.

3) In comparison to feature based methods: Since the advantages of time domain
features have already been discussed in Chapter 2, further discussions of frequency
domain as well as time-frequency domain feature based methods will not be
engaged. Regardless of frequency range, time domain features selected need to be
sensitive to damage. A typical example of fault diagnosis using time domain features
has been presented in [19], in which a multi-sensor system based on feature-level
fusion method is proposed for fault diagnosis rotating machinery. Though [19] had
adopted multiple sensors, the sensors were analyzed independently using a support
vector machine (SVM). Compared to the multi-sensor feature-level fusion method,
the method proposed in this thesis is more capable of fault diagnosis by utilizing
comprehensive knowledge of virtual beam consisting of sensors along the vibration
transmission path. Further, fault localization is also realized by analyzing the virtual
beams selected. Literature contains many more studies based on time domain

features fault diagnosis [14, 18, 20, 21]. However, a common issue in these methods
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concerns the need for classification while classification methods such as SVM
require training samples which are not always available in real application. By
contrast, the method proposed in this thesis requires no prior knowledge of the fault
system, and the object to fault diagnosis is the general structure rather than a specific

one, which opens the door to extensive application of the proposed method.
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Chapter 9. Conclusion and Prospect

9.1. Conclusion

In this study, a novel method for the fault diagnosis of complex structures based
on an optimized virtual beam-like structure approach has been presented for
situations in which the system is suffering from one or more faults. This approach
provides a new idea of fault detection and fault isolation by constructing the virtual
beam-like structures utilizing vibration sensors placed on the complex structure
along the vibration transmission path.

In the preprocessing stage, fault indicator-based adaptive threshold method and
statistical tests are combined for fault detection. Threshold method is applicable to
fault detection when the prior knowledge of the healthy system is available.
Meanwhile, to address the issue of limited knowledge of the normal operational
conditions, statistical tests (T-test K-S, and rank-sum) have been adopted for fault
detection by similarity comparison of two datasets (i.e., the reference dataset and
the estimated dataset) since these are sensitive to minor changes in the data series.
The time series signals are segmented and the interval features are characterized by
time domain statistical features, which enable more exact fault information to be
obtained for on-line fault detection.

Once the abnormal condition is detected in a component, a bacterial based

intelligent algorithms is provided for the construction of the effective virtual beams
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automatically. To address multi-fault diagnosis, biased running is developed in the
optimization methodology by constructing the multiple biased virtual beams so as
to isolate the potential faults in a faulty component. Further, separation of sensor
networks based on components and search space has been considered to arrive at
optimal solutions, minimize the computational complexity and maximize the fault
localization accuracy.

The rules of fault localization are based on virtual beam stemmed from the
findings about beam-like structures: (1). Cracks located closer to the vibration
source brings about larger relative deviation ratio of all sensors. (2). Cracks located
far away from the vibration source result in large relative deviation ratios of sensors
close to the crack or on the transmission path. (3). Sensors located close to the
vibration source are less capable of detecting cracks located far away from the
vibration source. These findings related to the response of the sensors on the
associated virtual beam are taken to represent general rules for fault localization.

Following validation using a satellite-like structure with both single fault and
multiple faults (Typical faults occurring more frequently in complex structures, i.e.,
bolt loosening around the connecting rods), the proposed method has been
confirmed to be effective for multi-fault localization through the selection of the
most sensitive sensor chains and narrowing regions for potential faults. The findings
in the beam-like structure are also applicable to virtual beams embedded in complex

structures. Compared with classical sensor network based fault localization method,
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the proposed virtual beam-like structure method has proved to be more reliable for
fault localization. It has been demonstrated to be a promising and easily
implemented data-driven method for multiple-fault detection and localization of
complex structures with less prior knowledge requirement.

The main advantages of the proposed methods are: (1) it is capable of both single
fault and multiple-fault diagnosis of complex structures without using prior
knowledge of the faults, and using only limited prior knowledge of normal
operational conditions; (2) it presents an optimal fault localization method based on
the concept of the virtual beam, which is computationally inexpensive and
applicable to on-line condition monitoring using sensor network; (3) it is more
practical and easy to implement in real-world sensor-networked structures with less

parameter assumptions and no limitation on stationary data.

9.2. Prospect

This study focuses on the fault diagnosis of multiple loosening bolts in a complex
system with numerous bolt-based hanging structures. Though it has been shown to
be capable of fault diagnosis of bolt-based hanging structures with one or more
loosening bolts (no more than two loosening bolts in a component), there are still
several issues worthy of further explorations as follows.

® Studies on different natures of faults.

This study focuses on the fault diagnosis of multiple loosening bolts in a

complex system, future work will focus on the development of the method
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for fault diagnosis of complex structures with different natures of faults like
fatigue cracks [34, 205], fractures [1, 41], and hybrid faults (e.g. both cracks
and loosening bolts) [166, 174].

Explorations on the nonlinear features in frequency domain.

The time domain features only are considered in this study for fault diagnosis
because of computational inexpensive. In the further studies, nonlinear
features in the frequency domain [206, 207] can also be adopted and
cooperate with time domain features to capture the fault information in terms
of frequency bands.

Health monitoring of faulty sensors.

The sensors in this thesis are mounted on the studied structures evenly
according to the factors like the region of coverage (ROC) associated with
the sensors and the region of influence (ROI) associated with the events. The
accuracy of fault localization might be decreased with the occurrence of
faulty sensors. Thus, the strategies considering the stability of sensors should
be developed in further studies.

Automatic fault diagnosis system without human intervention.

Though the machine learning based optimization method embedded is
capable of selecting sensor nodes with limited human intervention, in the
further, an advanced control interface without human involved is to be

designed to realize the operational convenience.
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