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ABSTRACT

Image restoration aims to recover the latent high quality image from its degraded observa-

tion. As one of the most classical and fundamental topics in image processing and low-level

vision, image restoration has been widely studied in the community, and a variety of ap-

proaches have been proposed, including filtering-based approaches, transformation-based

approaches and variational approaches. The image sparsity priors have been used, either

explicitly or implicitly, in many of these approaches, and have been playing a crucial role

to improve the image restoration performance. In particular, the sparse representation based

methods have achieved a great success in image restoration in the last decade.

Based on the representation scheme of a signal vector, sparse representation models

can be generally categorized into analysis sparse representation (ASR) models and synthesis

sparse representation (SSR) models. Low-rank minimization models have also been pro-

posed to exploit the sparsity (i.e., low-rankness) of a matrix of correlated vectors. Different

models will have respectively their merits and drawbacks. The ASR based methods regular-

ize the projection coefficients of a signal over an analysis dictionary, and they are able to sup-

ply robust priors for image large scale structures. However, the projective coding mechanism

of ASR based methods restrict their capacity of benefiting from highly redundant dictionar-

ies, limiting their flexibility in modeling image complex texture structures. The SSR based

methods represent a signal as the linear combination of a few atoms in an over-complete

dictionary. To model image local structures, most SSR methods partition an image into over-

lapped patches to process, which brings the inconsistency issue of over-lapped patches as

well as the heavy computation burden. The low-rank methods regularize the number of in-

dependent subspaces of a matrix. Since directly minimizing the rank of a matrix is an NP

hard problem, many recently developed low-rank methods adopt the nuclear norm (i.e., the
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`1 norm of singular values) for low-rank approximation. However, the nuclear norm shrinks

the singular values equally, ignoring the different importance of different singular values. In

this thesis, we address the above-mentioned problems of ASR, SSR and low-rank methods,

and develop new sparsity-based models for image restoration.

We first investigate the ASR models for guided image restoration, and present a

weighted ASR model learning scheme for RGB image guided depth image restoration. By

introducing a guidance weight function, we largely improve the flexibility of ASR models

and make it be able to deal with guided image enhancement tasks. Having the objective

function of weighted ASR model, we utilize a task-driven training strategy to learn stage-

wise dynamic parameters from training data. As a result, the proposed algorithm is able to

generate high quality output efficiently. Experiments on guided depth image upsampling and

noisy depth image restoration validate the effectiveness of the proposed method.

To address the inconsistency issues in previous patch-based SSR models, we pro-

pose a convolutional sparse coding (CSC) scheme for image super-resolution. By working

directly on the whole image, the proposed CSC algorithm does not need to partition the im-

age into overlapped patches, and it can exploit the image global correlation to reconstruct

more robustly image local structures. State-of-the-art super-resolution results demonstrate

the advantage of the proposed CSC method.

Instead of investigating the ASR and SSR models individually, we propose to in-

tegrate the two models to exploit their complementary representation mechanisms. In the

proposed joint convolutional analysis and synthesis (JCAS) model, a single image is adap-

tively decomposed into two layers, one is used for SSR and the other for ASR. The intrinsic

complementarity of ASR and SSR allows them cooperate to separate the input image into a

structure layer and a texture layer. We adaptively train the synthesis dictionary to learn the re-

quired texture pattern for specific tasks. The proposed JCAS method shows very competitive

performance in single image layer separation tasks, such as texture-cartoon decomposition

and rain streak removal.
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Besides vector based one dimensional sparse representation models, we also inves-

tigate matrix based two dimensional low-rank models for image restoration. Specifically,

we extend the nuclear norm minimization (NNM) to weighted nuclear norm minimization

(WNNM) by introducing a weight vector to weight different singular values of the data ma-

trix. Although the WNNM model is nonconvex, we prove that the corresponding weighted

nuclear norm proximal (WNNP) operator is equivalent to a standard quadratic programming

problem with linear constraint. Very importantly, we show that the WNNM problem has

closed-form optimal solution when the weights are of non-descending order. With WNNP,

several extensions of the WNNM problem, including robust PCA and matrix completion, can

be readily derived with the ADMM (alternating direction method of multipliers) paradigm.

The proposed WNNM methods achieve state-of-the-art performance in typical low level vi-

sion tasks, including image denoising, background subtraction and image inpainting.

In summary, in this thesis we investigate in-depth the sparse representation and low-

rank minimization based image restoration methods, and develop several new models for

different image restoration applications. Our models not only enrich the understanding of

sparsity based statistical image modeling, but also demonstrate state-of-the-art performance

in image restoration and other low level vision problems.

Keywords: Sparse models, Low-rank models, Image restoration.
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CHAPTER 1

INTRODUCTION

Due to the recent advances in hardware of imaging systems, digital cameras have become

much easier to access. Although the development of hardware has greatly improved the

quality of images in the last several decades, image degradation is unavoidable due to the

many factors in image acqusition process. Image restoration, which aims to reconstruct a

high quality image x from its degraded observation y, is a classical yet still very active topic

in the area of low-level computer vision. Among different approaches to image restoration,

sparsity-based models have achieved very competitive results. The goal of this thesis is to

investigate new sparse representation based image restoration models and algorithms. In

this chapter, we first introduce the image restoration problem in section 1.1, and then review

sparsity models for image restoration in section 1.2. Section 1.3 discusses the limitations of

previous sparsity-based methods. Section 1.4 summarizes the contributions of this thesis.

1.1 Image restoration

Image restoration aims to recover a high quality image from its degraded observation. It

is one of the most classical and fundamental problems in image processing and computer

vision. On one hand, the ubiquitous use of imaging systems makes image restoration very

important to the system performance. On the other hand, the quality of output images plays

an crucial role to user experience and the success of the following high level vision tasks

such as object detection and recognition.

Typical image restoration problems include denoising [1, 53, 109, 111, 114], de-

bluring [77, 159], super-resolution [48, 55], inpainting [5, 28] and image layer separation

[20, 95, 137]. Although each of these problems has been intensively studied for many years,
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current image restoration algorithms still can not fulfill the increasing requirements of high

quality images. The main challenge in image restoration lies in that a significant amount of

information may be lost during the degradation process, making image restoration a high-

ly ill-posed inverse problem. In order to get a good estimation of the latent image, prior

knowledge is required to provide supplementary information. Therefore, how to appropri-

ately model the prior of high quality images is the key issue in image restoration research. In

this section, we first provide a brief introduction to some commonly used corruption models,

and then briefly review some popular prior modeling methods for image restoration.

1.1.1 The image degradation model

Due to the various factors in image acquisition, there are many types of degradations which

can deterioriate the quality of images. The degradation model describes the relationship

between the degraded image and unknown high quality image, which is very important for

the success of restoration tasks. A general image degradation model is:

y = Hx + n, (1.1)

where x refers to the unknown high quality image (ground truth), y is the degraded observa-

tion, n represents the additive white Gaussian noise (AWGN), and H is a degradation-specific

operator. Depending on the operator H, typical image restoration tasks includes: denoising,

debluring, super-resolution and inpainting, which are introduced as follows.

• Image denoising [1, 53, 109, 111, 114] is one of the most fundamental image restora-

tion task. It aims to reconstruct the clean image x from its noisy observation y = x+n,

i.e., the operator H in (1.1) is an identity matrix. Denoising is not only an important

pre-processing step for many vision applications, but also an ideal test bed for evalu-

ating statistical image modeling methods.

• Image debluring [77, 159] tries to recover the latent sharp image x from a blurry ob-

servation y = k⊗ x + n, where k is the blur kernel and ⊗ is the convolution operation.
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According to the availability of the blur kernel k, debluring can be divided into blind

debluring problems and nonblind debluring problems.

• Image super-resolution [48, 55] aims to reconstruct a high resolution image from a

single low resolution image or a sequence of low resolution images. The degradation

between high resolution image and low resolution image can be modeled as y = D(k⊗

x) + n. The down-sampling operation D(·) is performed on blured image k ⊗ x. The

noise level in super-resolution applications is often assumed to be very small.

• Image inpainting refers to the problem of estimating the damaged or corrupted pixels in

an image. The degradation model of inpainting problem can be written as: y = M�x+

n, where M is a binary mask and � is the point-wise multiplication operation between

two matrices. The ones and zeros in the given mask matrix M indicate whether the

corresponding pixel values in y are available or not.

Besides these classical problems mentioned above, there are many other image restora-

tion tasks such as image layer separation [20, 95, 137], rain streak removal [24, 80, 87],

background estimation [32, 78, 94, 150] and depth image restoration [33, 46, 61, 106, 155],

etc. We will also investigate some of these restoration tasks in this thesis, and the detailed

problem definition will be provided in the corresponding chapters.

1.1.2 Natural image prior modeling for image restoration

One can easily see that image restoration is an ill-posed inverse problem. Prior knowledge is

often needed to provide extra information for estimating the latent high quality image. Based

on how the prior is exploited to generate high quality estimation, previous prior modeling

methods for image restoration can be generally divided into two categories: the explicitly

modeling methods and the implicitly modeling methods.

The implicit methods: This category of methods adopt priors of high quality images im-

plicitly, where the priors are embeded into specific restoration operations. Such an implicitly
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modeling strategy was used in most of the image restoration algorithms in the early years

[109, 125, 133]. Based on the assumptions of high quality images, different operations have

been designed to generate estimations directly from the degraded images. For example,

based on the smoothness assumption, filtering-based methods [23, 96, 125, 132] have been

widely utilized to remove noise from noisy images. Although image priors are not mod-

eled explicitly, the priors on high quality images are considered in designing the fillters to

estimate the clean images. Such implicitly modeling schemes have dominated the area of

image restoration for many years. To better model the piece-wise smooth image signal, d-

iffusion methods [109, 133] have been proposed to adaptively smooth image contents. By

assuming that the wavelet coefficients of natural image are sparse, shrinkage methods have

been developed to denoise images in wavelet domains [27, 39]. Although these hand-crafted

methods have limited capacity in producing high-quality restoration results, these studies

greatly deepen researchers’ understanding on natural image modeling. Many useful conclu-

sions and principles are still applicable to modern image restoration algorithm design.

Recently, attributed to the advances in machine learning, researchers have proposed

to learn operations for image restoration. Different methods have been developed to build

the complex mapping functions between degraded and high quality image pairs, such as

nonlinear regression [52, 69] and neural networks [11, 35]. Since the functions (such as

neural networks) learned in these methods are often very complex, the priors embedded in

these functions are very hard to analyze. As a result, the functions trained for a specific task

are often inapplicable to other restoration tasks. One may need to train different models for

different applications or even for the same application with different degradation parameters.

Albeit its limited generalization capacity, the highly competitive restoration results obtained

by these discriminative learning methods make this category of approaches an active and

attractive research topic.

The explicit methods: Besides implicitly embedding priors into restoration operations,

another category of methods explicitly characterize image priors and adopt the Bayesian

method to produce high quality reconstruction results. Having the degradation model p(y|x)
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and specific prior model p(x), different estimators can be used to estimate latent image x.

One popular approach is the maximum a posterior (MAP) estimator:

x̂ = argmaxxp(x|y) = argmaxxp(y|x)p(x), (1.2)

with which we seek for the most likely estimate of x given the corrupted observation and

prior. Compared with other estimators, the MAP estimator often leads to an easier infer-

ence algorithm, which makes it the most commonly used estimator for image restoration.

However, MAP estimation still has limitations in the case of few measurements [127]. An

alternative estimator is the Bayesian least square (BLS) estimator:

x̂ = E{x|y} =

∫
x

xp(x|y)dx. (1.3)

BLS marginalizes the posterior probability p(x|y) over all possible clean images x. Theo-

retically, it is the optimal estimate in terms of mean square error, and the estimator is also

named as minimum mean square error (MMSE) estimator [127].

A wide range of models, such as Independent Component Analysis (ICA) [4], vari-

ational models [114], sparse representation models [1] and Markov random field (MRF)

[48, 111], have been utilized to characterize priors of natural image. Early studies tend to

analyze image signals with analytical mathematical tools and manually designed functional

forms to describe natural image prior. Recent methods tend to take advantage of training

data and learn parameters to better model high quality image priors. Compared with implicit

prior modeling methods, these explicit priors often have a stronger generalization capacity

and can be applied to different image restoration applications.

In both the two categories of image restoration approaches, sparsity priors play an ex-

tremely important role. Under the Bayesian framework, most state-of-the-arts methods share

the similar idea of using sparsity priors. In this thesis, we will investigate some challenging

problems appeared in the application of sparsity priors for image restoration tasks.
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1.2 Sparse representation models for image restoration

Image sparsity priors have been widely used in many computer vision applications. In this

section, we provide a brief review of sparse representation based image restoration algo-

rithms. Generally speaking, study on this topic can be divided into analysis-based and

synthesis-based methods [41], while the recently developed low-rank models [14] for image

restoration can be viewed as a two dimensional extension of conventional sparse models.

1.2.1 Analysis sparse representation models for image restoration

The analysis representation approaches represent a signal in terms of its product with a linear

operator:

αa = Px, (1.4)

where x is the signal vector and αa is its analysis representation coefficients. Linear operator

P is often referred to as the analysis dictionary [113]. Researches on image statistics have

shown that the marginal distributions of bandpass filter responses to natural images exhibit

clearly non-Gaussianity and heavy tails [47]. Under the MAP framework, most of analysis

sparse representation models share a similar form:

x̂ = argminxΥ(x, y) + Ψ(Px), (1.5)

where Υ(x, y) is the data fidelity term which depends on the degradation model, and Ψ(Px)

is the regularization term which imposes sparsity prior on the filter responses Px.

The analysis dictionary P and the penalty function Ψ(·) play a very important role in

the analysis sparse representation model. Early studies utilize signal processing and statisti-

cal tools to analytically design dictionaries and penalty functions. One of the most notable

analysis-based methods is the Total-Variation (TV) approach [114], which uses a Laplacian

distribution to model image gradients, resulting in an `1 norm penalty on the gradients of

estimated image. In addition to TV and its extensions [17, 19, 20], researchers have also

proposed wavelet filters [13, 34, 91] for analysis sparse representation. In these method-

s, the gradient operator in TV methods is replaced by wavelet filters to model image local
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structures. Besides dictionaries, the penalty functions have also been well investigated. D-

ifferent statistical models have been introduced to model the heavy-tailed distributions of

coefficients in natural, which leads to a variety of robust penalty functions, such as `p norm

[159], normalized sparsity measure [70], etc.

Although these analytic methods have greatly deepened our understanding on image

modeling, they are considered to be over-simplistic to model the complex natural phenome-

na. With the advance of computing power, machine learning methods have been introduced

to learn better priors. From a probabilistic image modeling point of view, some early ap-

proaches actually attempt to learn potential functions for predefined filters [156]. Inspired by

the pioneer work of field-of-expert (FoE) [111], many different methods have been proposed

to learn appropriate filters (analysis dictionary) for predefined potential (penalty) functions

[113, 122]. Although these works are introduced from different point of views (for exam-

ple, MRF [122], co-sparsity [113], etc.), they can all be interpreted from the perspective of

analysis representation based regularization. Besides these unsupervised generative learning

methods, discriminative learning methods have also been utilized to train priors for specific

tasks [25, 57]. By using the image pairs as training data, these discriminative learning meth-

ods are able to deliver highly competitive restoration results. However, the learning is often

achieved by solving a bi-level optimization problem, which is time-consuming. Recently,

Schmidt et al. [116] and Chen et al. [26] proposed to unfold the optimization process of

(1.5) and got highly effective and efficient restoration models.

1.2.2 Synthesis sparse representation models for image restoration

Different from the analysis representation models, the synthesis sparse representation models

represent a signal x as the linear combination of dictionary atoms:

x = Dαs, (1.6)

where αs is the synthesis coefficient for signal vector x, and D is the synthesis dictionary.

Such a decomposition model may have different choices of αs, and regularization is required
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to provide a well-defined solution. A commonly used criterion is to find a sparse coefficient

vector αs, which reconstructs the signal by only a few atoms in D. In their seminal work

[92], Mallat and Zhang proposed a matching pursuit (MP) algorithm to find an approximated

solution of the NP-hard sparse decomposition problem. The orthogonal MP (OMP) [107]

method was later proposed to improve the performance of synthesis-based modeling. Be-

sides constraining the non-zero values (`0 norm) in the coefficients, researchers have also

proposed to utilize its convex envelop, the `1 norm, to regularize the synthesis coefficient.

Compared with `0 norm, the global solution of the convex `1 problem can be achieved. One

can solve `1 norm sparse coding problem with conventional linear programming solvers, or

modern methods, such as least angle regression [40] and proximal algorithms [105].

The application of synthesis-based sparse representation for image restoration is quite

straight forward under the MAP framework:

x̂ = argminxΥ(x, y) + Ψ(αs), s.t.Dαs = x, (1.7)

where Υ(x, y) is the fidelity term, and the regularization Ψ(·) on synthesis coefficient αs

provides prior information for estimating the clean image x. In early years, the adopted

dictionary is often designed under the umbrella of harmonic analysis [112] such as DCT,

wavelet and curvelet dictionaries. These dictionaries, however, are far from enough to model

the complex structures of natural images, limiting the image restoration performance. To bet-

ter model the local structures in images, dictionary learning methods have been introduced to

improve image restoration performance [1]. Armed with the learned dictionaries, synthesis

sparse representation framework has led to state-of-the-art denoising results. Researchers

have also made many attempts on designing strong regularization functions Ψ(·) to provide

better prior for restoration [16]. For example, Julien et al. [89] and Dong et al. [38] sug-

gested to use the group-sparsity or centralized sparsity to embed the nonlocal self-similarity

prior in the sparse representation model, respectively.

Besides modeling prior explicitly under the Bayesian framework, synthesis sparse

representation models also play an important role in many implicit prior modeling meth-

ods [55, 72, 129, 142]. These methods aim to find a complex mapping function to model

8



the relationship between corrupted and high quality images. A popular method is to learn

coupled dictionaries, which link the coefficients of the two types of data to build a simple

relationship. The idea of coupled dictionary learning has led to state-of-the-art algorithms

on different applications [55, 72].

1.2.3 Low rank models for image restoration

Apart from employing sparsity prior for signal vectors, low-rank models have also been

proposed to exploit the sparsity (i.e., low-rankness) of a matrix of correlated vectors. Low

rank matrix approximation (LRMA) aims to recover the underlying low rank matrix from its

degraded observation. It has achieved a great success in various applications of computer

vision [14, 15, 53, 115, 149]. The current development of LRMA can be categorized into

two categories: low rank matrix factorization (LRMF) [65, 124] and rank minimization [14,

53, 136]. LRMF factorizes the input matrix Y ∈ <m×n into two smaller ones A ∈ <m×k

and B ∈ <n×k. Here k < min(m,n) ensures the low-rank property of the reconstructed

matrix ABT . Rank minimization methods reconstruct the data matrix through imposing a

rank constraint upon the estimated matrix. Since directly minimizing the matrix rank is

an NP-hard problem [44], the relaxation methods are more commonly utilized. Candes et

al. developed the nuclear norm minimization (NNM) methods [14, 15] and discussed the

exact recovery property of NNM. The regularization-based NNM method and its extensions

have attracted great research interests, and they have been applied to different applications

[62, 84, 149].

The low-rank models have also been successfully applied to image restoration prob-

lems [53, 62, 104, 130]. Some early studies [62, 148] take the low-rankness as a global

prior, and treat image restoration as an LRMA problem directly. However, such an assump-

tion is too strong and can not reflect the characteristics of natural images. As a result, those

global low-rank prior based methods can only perform well on images with special contents,

and they will over-smooth details in natural images. Instead of approximating clean images

globally, recent methods [53, 130, 136] estimate a group of non-local similar patches. The
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combination of nonlocal self-similarity prior and low rank models has proved to be highly

effective, leading to state-of-the-art algorithms for different image restoration applications

[53].

1.3 Limitations of existing sparsity-based models

Although sparsity-based methods have achieved great successes in image restoration appli-

cations, they still have some limitations, as we introduced below.

1.3.1 Limitations of analysis sparse representation models

Analysis sparse representation (ASR) models characterize the complement subspace of a

signal. The zero representation coefficients indicate a orthogonal relationship between the

signal and the corresponding bases. Such an ASR prior provides a robust prior for the princi-

pal components of the signal, and performs well on approximating the major structures of an

image. However, it can not take advantages of a redundant analysis dictionary. As a result,

ASR has limited capacity in modeling textures with complex pattern, even when a large scale

training dataset with repetitive texture pattern is provided.

To improve the flexibility of ASR, task-driven learning strategy has been proposed

to train task-specific analysis priors [25]. Furthermore, some recent works [26, 116] have

been proposed to unfold the optimization procedure of the analysis-based models and learn

the model parameters from training data. Such models have achieved very good restoration

performance on tasks such as image denoising and super-resolution.

However, the discriminative learning based ASR models mentioned above can only

deliver limited results on some challenging restoration problems such as non-blind deblur-

ing and guided image restoration. In non-blind debluring, one needs to iteratively estimate

the blur kernel as well as the latent clean image, which makes discriminative learning meth-

ods hard to learn optimal parameters for the whole estimation procedure. Guided image

restoration problem is another challenging task. Although the guidance image is able to
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provide additional information about the latent image, there is a much higher expectation

on the quality of restored images. Currently, most of the guided image restoration methods

use hand-crafted parameters to generate the estimation. It is interesting to investigate if the

ASR model is flexible enough to deal with such a challenging problem. In this thesis, we

answer this question by proposing a highly effective weighted ASR model. By taking the

advantage of ASR in modeling piece-wise image, we utilize the proposed weighted ASR

model to deal with the guided depth image enhancement problem. The sate-of-the-art per-

formance on depth image upsampling, hole-filling and denoising validate the effectiveness

of the proposed method.

1.3.2 Limitations of synthesis sparse representation models

Synthesis sparse representation models (SSR) characterize the union-of-subspaces of signal-

s, which is able to take advantage of highly redundant dictionaries. Given an appropriate

dictionary of atoms (learned from training data), an image can be well reconstructed with

highly sparse coefficients. However, SSR requires solving a sparse coding problem over an

over-complete dictionary, which can be time consuming. To handle the high-dimensional

image signal, most of current SSR methods utilize a patch dividing strategy and model prior

probability on local patches. The image is first divided into over-lapped patches and each

patch is processed independently. It is commonly accepted that more overlapped pixels be-

tween neighboring patches will deliver better reconstruction results since each pixel in the

output image will be estimated for more times. However, such an overlap-averaging strat-

egy ignores an important constraint in solving the patch estimation problem, i.e., pixels in

the overlapped area of adjacent patches should be exactly the same (i.e., consistent). The

consistency constraint provides prior information on each single estimation problem. Ac-

tually, in the seminal work of example-based restoration method [48], the consistency prior

is modeled by an MRF to select HR patches in the external database. Recently, researchers

have proposed several elegant aggregation methods [66, 158] to alleviate the inconsistency

of overlapped patches, and achieved significant performance improvement in image denois-
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ing. Nonetheless, the aggregation issue is still a practical problem which may deteriorate the

performance of patch-based methods.

Apart from the aggregation issue, patch-dividing strategy may also generate shifted

observations for the same type of local structure. As a result, a large number of atoms

are required to characterize the patch samples, bringing great computation burden in the

decomposition process. To address this problem, in this thesis, we propose a convolution-

based synthesis model to decompose the image globally. The proposed algorithm achieves

state-of-the-art performance on the super-resolution task.

Furthermore, instead of using a single type of sparsity model, we propose to integrate

the ASR and SSR models for image restoration. We take advantage of the complementary

property of the two models, and utilize one ASR and one SSR components to approximate

the input image simultaneously. The two models characterize different types of image local

structures. The analysis-based priors characterize well the major background information

of the image, while the synthesis-based priors characterize the textures well. We apply the

proposed model to texture-cartoon decomposition and rain streak removal and achieve state-

of-the-art performance.

1.3.3 Limitations of low-rank minimization models

As the tightest convex envelop of the rank function, the nuclear norm minimization (NNM)

approach has been attracting significant attention due to its rapid development in both theory

and implementation. On one hand, Candes et al. [15] proved that from the noisy input, its

intrinsic low-rank reconstruction can be exactly achieved with a high probability through

solving an NNM problem. On the other hand, Cai et al. [12] proved that the nuclear norm

proximal (NNP) problem

X̂ = proxλ‖�‖∗(Y) = arg minX ‖Y − X‖2
F + λ‖X‖∗, (1.8)

can be easily solved in closed-form by imposing a soft-thresholding operation on the singular

values of the observation matrix. By utilizing NNP as the key proximal technique, many
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NNM-based models have been proposed in recent years [14, 62, 84].

Albeit its success as aforementioned, NNM still has certain limitations. In traditional

NNM, all singular values are treated equally and shrunk with the same threshold. This, how-

ever, ignores the prior knowledge we often have on singular values of a practical data matrix.

More specifically, larger singular values of an input data matrix quantify the information

of its underlying principal directions. For example, the large singular values of a matrix of

image similar patches deliver the major edge and texture information. This implies that to

recover an image from its corrupted observation, we should shrink less the larger singular

values and shrink more the smaller ones. Clearly, traditional NNM model, as well as its

corresponding soft-thresholding solvers, are not flexible enough to achieve this goal.

In this thesis, we propose the weighted nuclear norm and study its minimization

strategy. The weight vector will enhance the representation capability of the original nu-

clear norm. Rational weights specified based on the prior knowledge and understanding of

the problem will benefit the corresponding weighted nuclear norm minimization (WNNM)

model for achieving a better estimation of the latent data from the corrupted input.

1.4 Contributions and organization of the thesis

This thesis makes an in-depth study on the three major types of sparsity-based image restora-

tion methods. We correspondingly present several state-of-the-art algorithms for different

image restoration tasks.

• To improve the flexibility of analysis-based models, we present a weighted analy-

sis sparse representation model for guided image restoration. The weight generation

function is able to introduce information from a guidance image and generate a local

structure aware weight map to control the regularization on the estimation. Further-

more, task driven training strategy is utilized to learn stage-wise model parameters

from training data, which allows the proposed method to efficiently generate good

restoration results for different tasks. The proposed method demonstrates state-of-the-
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art results on guided depth image upsampling and hole filling tasks. This part of work

can be found in Chapter 2 of this thesis.

• To improve the performance of synthesis-based models, we propose to use convolution-

based method, instead of conventional patch-based method, to deal with image restora-

tion problems. Compared with conventional sparse coding methods which process

overlapped patches independently, the global decomposition strategy in convolution-

al sparse coding is more suitable for keeping patch consistency. Our experiments on

commonly used test images show that the proposed method achieves very competitive

super-resolution results with the state-of-the-art methods not only in PSNR index, but

also in visual quality. This part of work can be found in Chapter 3 of this thesis.

• To exploit the advantages of both analysis-based and synthesis-based models, we pro-

pose a joint convolutional analysis and synthesis (JCAS) model to deal with the single

image layer separation problem. The proposed model can not only achieve competi-

tive decomposition performance on the texture-cartoon decomposition and rain streak

removal applications, but also help us better understand the intrinsic characteristics of

the two models. This part of work can be found in Chapter 4 of this thesis.

• We investigate the regularization-based LRMA problem, and propose the weighted

nuclear norm minimization (WNNM) scheme. We prove that the non-convex weight-

ed nuclear norm proximal (WNNP) problem has a globally optimal solution, and we

present the algorithm and discuss its properties. The WNNP can be used to deal with

the image denoising problem in couple with the nonlocal self-similarity prior. By ex-

tending WNNP to WNNM, we further apply it to matrix completion (WNNM-MC)

and robust principal component analysis (WNNM-RPCA), and deliver state-of-the-art

image inpainting and backgroud substraction results. This part of work can be found

in Chapter 5 of this thesis.

The organization of the thesis is illustrated in Figure 1.1. We first present two im-

plicit prior modeling methods in chapter 2 and chapter 3, which improve previous ASR and
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Figure 1.1. Thesis organization.

SSR methods, respectively. We apply them to guided depth image restoration and image

super-resolution tasks, and achieve state-of-the-art results. In chapter 4, we take advantage

of the complementary property of ASR and SSR models, and utilize the ASR and SSR pri-

ors explicitly to regularize different layers. The proposed method achieves state-of-the-art

rain streak removal performance without any training data. In chapter 5, we study the low

rank model for image restoration. The weighted nuclear norm is proposed to regularize the

latent matrix explicitly. By adaptively penalizing different singular values of the data ma-

trix, the proposed method outperforms previous low rank minimization methods in different

applications.
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CHAPTER 2

WEIGHTED ANALYSIS SPARSE REPRESENTATION MODEL LEARNING FOR

GUIDED IMAGE RESTORATION

Guided depth image restoration provides a natural and powerful approach to enhance the

quality of depth image acquired by consumer-level RGB-D cameras, which has been re-

ceiving considerable research interests. One key issue in guided depth image restoration is

how to model the dependency between the RGB intensity image and depth images. Most of

the existing methods are based on hand-crafted parameters, which are not tailored for depth

enhancement and insufficient in characterizing the complex relationship between depth and

intensity images. In this chapter, we suggest a task driven model to learn a weighted analysis

representation model for guided depth image restoration. The proposed model generalizes

the representations of guided weight function and analysis representation model, and learns

them in a task driven manner to achieve the goal of guided depth image restoration. In order

to tackle the high non-convexity of the proposed model, we unfold the inference process

as an iterative algorithm, where stage-wise model parameters are learned from training da-

ta. As a consequence, the proposed framework is able to generate high quality results in a

few stages. Experimental results on RGB guided depth image upsampling and hole filling

validate the effectiveness of the proposed method.
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2.1 Introduction

2.1.1 Depth image restoration and enhancement

High quality depth image plays a fundamental role in many real world applications, such

as robotics, human-computer interaction, and augmented reality. Traditional depth sensing

is mainly based on stereo or laser measurement, which in general is of high computational

complexity or expensive cost. Recently, consumer depth sensing products, e.g., RGB-D

cameras and Time of Flight (ToF) range sensors, have became widely available and they offer

an economic alternative for dense depth measurements. However, the depth image generated

by consumer depth sensors usually is of insufficient quality, e.g., with low resolution, noise

or missing values.

Depth image restoration and enhancement have received considerable research in-

terests [33, 46, 61, 106, 155]. One category of methods utilize multiple low quality depth

images from the same scene to reconstruct a high quality depth image [61, 155]. The success

of such methods, however, relies on high accurate calibration, which may fail when applied

to dynamic environment. Another category of methods directly enhance each single depth

image [18, 33, 46, 86, 106], guided by a corresponding high quality RGB image. For most

consumer level depth sensors, high quality RGB image can be simultaneously acquired with

the depth image, making guided depth image enhancement a natural and attractive approach

to improve depth image quality.

The key issue of guided depth image enhancement is how to model and exploit the

dependency between intensity and depth images. The first category of methods use the guid-

ed filters to transfer the structure (i.e., location and sharpness of the edges) of intensity image

to the restored depth map [58]. However, inconsistent structures in the intensity image may

be introduced into the depth image. Shen et al. suggested a joint filtering method to enhance

and transfer only the consistent structures [118]. The second category of methods include

Markov Random Fields (MRF) [33] and variational models (e.g., Total Generalized Varia-

tion [46] and non-local means [106]). In these methods, certain forms of objective functions
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are adopted for modeling the interdependency. These models usually are intuitive but lim-

ited in characterizing the complex relationship between intensity image and depth image.

The third category of methods are learning-based models [73, 126], where analysis or syn-

thesis dictionary learning is exploited to model the statistical dependency between intensity

and depth images. In these methods, intensity and the associated depth images are simply

packed together to learn dictionaries in a group learning manner, which is however insuffi-

cient to characterize the complex interdependency between intensity and depth. Moreover,

even the dictionary is known, in general the resulting model remains nonconvex and is hard

to solve.

2.1.2 Motivation

As introduced in the previous section, a number of approaches have been proposed to in-

troduce the guidance information for depth image enhancement. One representative method

is to formulate the input image y, desired image x and the guidance image g into an opti-

mization model [33, 46, 106]. Several complex functions have been utilized to model the

structural dependencies between x and g and have yielded state-of-the-art performance in d-

ifferent applications. Diebel et al. [33] proposed an MRF formulation for depth upsampling,

where the guidance image is utilized to control the smoothness of depth map by the prior

potential function: ∑
i

∑
j∈N(i)

wij(g)(xi − xj)2, (2.1)

where i and j are the pixel indexes of an image, and N(i) is the set of neighboring index

of i. The weight wij(g) is an exponential function of pixel-pair difference (gi − gj)2 in the

guidance image. Sharing the similar idea that using a guidance image related weighting

function to adaptively regularize the smoothness in depth map, different methods have been

proposed to deal with the guided depth enhancement problem. Park et al. [106] proposed

a non-local mean (NLM) regularizer to control smoothness in depth map, while the weight

wij(g) is calculated by considering color, segmentation and edge cues. Recently, Ham et al.

[56] proposed a nonconvex method to handle differences in structure between guidance and
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input images. Instead of changing the weighting function, the Welsch’s function is utilized

[56] to regularize depth differences:

∑
i

∑
j∈N(i)

φµ(gi − gj)(1− φν(xi − xj))/ν, (2.2)

where φµ(z) = exp(−µz2) is the weighting method. Besides these first-order methods which

simply model pixel-pair wise differences, there are also works proposed to model high order

relationship in depth map with hand-crafted [46] or learned [67] operators.

Actually, the models in Eqns. (2.1) and (2.2) can be viewed as extensions to hand-

crafted analysis models, in which a group of inter-pixel difference operators are used as the

analysis filters, and weight functions on g are introduced for explicit guidance. Motivated

by this observation, we propose a generalized analysis representation model with weight

function, and provide a task-driven learning method to learn the weight functions, analysis

filters, and penalty functions from training data. With the training data, we can not only find

a good way to introduce the guided intensity information, but also good parameters to deal

with specific tasks. A flowchart of the proposed method can be found in Fig. 2.1.

2.2 Proposed method

In this section, we introduce the proposed model for depth map restoration. We first introduce

the detailed formulation of our model. Then, we provide a task driven training method to

learn stage-wise model parameters. With the learned stage-wise parameters, guided depth

restoration can be achieved in only a few iterations.

2.2.1 Weighted analysis sparse representation model

How to take full advantage of the information from the guided image is the key issue in

guided image restoration. Many previous optimization based methods [33, 56, 106] promote

discontinuity between intensity and depth maps by using guidance related weights to reg-

ularize pixel-pair wise differences. To better model the dependency between intensity and
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Figure 2.1. Flowchart of the proposed method.

depth images, we propose the following weighted analysis prior model:

R(x; g) =
∑

i
〈wi(g;βi),ρi(x; pi,αi)〉 , (2.3)

where 〈·, ·〉 denotes the standard inner product. The weight wi ∈ RN is a column vector

associated with each pixel in the intensity image g, which is controlled by the parameter βi.

ρi(x; pi,αi) is also a column vector by point-wisely applying the penalty function ρi to the

filter response pi ∗ x, i.e.,

ρi(x; pi,αi) = (ρi((pi ∗ x)1), · · · , ρi((pi ∗ x)N))T ∈ RN ,

where ∗ denotes the convolution operator, and the penalty function ρi is parameterized by αi.

Note that in a standard analysis prior model, the weight wi is given as a constant. However,

in our proposed model, wi is defined based on the local structure of intensity image, such

that wi → 1 at homogeneous regions, and wi → 0 at edges. As a consequence, the resulting

weighted analysis model will penalize high depth discontinuities at homogeneous regions

and allow sharp depth jumps at the corresponding edges.
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By plugging the proposed analysis prior model (2.3) into a variational framework,

we arrive at the following functional

min
x
E(x) = Υ(x, y) +

∑
i
〈wi(g;βi), ρi(Pix)〉 , (2.4)

where Pi ∈ RN×N is a highly sparse matrix, implemented as 2D convolution of the image x

with the filter kernel pi, i.e., Pix⇔ pi ∗ x.

Most penalty functions used for natural image restoration as well as guided depth

map refinement favor small filter responses, and accordingly smooth image edges [33, 46,

106, 111, 114]. While, Chen et al. [26] found that the behavior of penalty functions learned

from training data is actually very complex. Though most of the penalty functions tend

to shrink the filter response to promote smoothness, there are also some penalty functions

which will enlarge filter responses in certain ranges. Such an expansion behavior is helpful to

generate sharper image edges. In order to generate high-quality depth map with sharp edges,

we follow [26] and investigate penalty functions with flexible shapes. As in both training and

test phases (e.g., see (2.10)), the proposed model explicitly involves the first-order derivative

of the penalty function ρi, we alternatively focus on the derivative function φi = ρ′i, which is

known as the influence function [26] and can be parameterized as

φi(z) =
∑M

j
αi,jexp

(
−(z − µj)2

2γ2
j

)
. (2.5)

φi is the summation of M Gaussian RFB kernels with center µj and scaling factor γj . This

formulation is not only able to generate penalty functions, which shrink the filter response

to generate smooth results, but also able to generate functions which could enlarge the filter

response in some range to promote sharp edges.

In the proposed model, the weight generating function w(g) is introduced to guide the

regularization on depth filtering responses based on the structure information in the intensity

image. Although the intensity image and the depth map come from the same scene and

have certain structure dependencies, the values in the two images have different physical

meanings. For example, a black box in front of a white wall or a gray box in front of a

black wall may correspond to the same depth map but totally different RGB images. The
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weighting function should be able to avoid such interference of structure-unrelated intensity

information, while extracting useful structure information to help the depth map locate its

edges.

Denote by Wi the reshaped weight map, in our model, we consider the following

function to generate the weight map from g:

Wi(m,n) = exp
(
−〈βi, em,n〉2

)
, (2.6)

where Wi(m,n) is the weight value in position (m,n), and em,n = Rm,ng
||Rm,ng||2 with Rm,n an

operation to extract local patch in position (m,n) of image g. βi is the corresponding linear

filter to extract the structural features. The local normalization operation on intensity map is

utilized to avoid the effect of different intensity magnitude. The function form exp (−(·)2) in

(2.6) makes the weighting function be a step-edge-like function with respect to the filtering

response but differentiable. It helps weight map focus on local structure changes in RGB

image instead of intensity values.

Having the influence function defined in (2.5) and the weighting function defined in

(2.6), we propose a task-driven method to learn the parameters {αi,βi, pi}i=1···Nk from the

training data.

2.2.2 Training method

Task-driven training strategy aims to learn model parameters to deal with specific tasks [88].

It has been utilized in different tasks and achieved very competitive results. Given S training

samples {y(s), x
(s)
g }Ss=1, where y(s) is the observation and x(s)

g is the corresponding ground

truth, task driven training method learns model parameters as sollows [88]:

θ∗ = arg min
θ

∑S

s=1
`(x(s)

g , x
(s)
θ (θ))

s.t. x
(s)
θ (θ) = f(y(s); θ) ,

(2.7)

where the generalized function xθ = f(y, θ) represents the process of using the proposed

model to generate estimation xθ, with input data y and model parameters θ. Task specific
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loss function `(xg, xθ) w.r.t. ground truth xg and parameter related estimation xθ is utilized

to learn the best parameter θ∗ for the task.

Our proposed weighted sparse representation model in (2.4) is a highly non-convex

minimization problem with many parameters {αi,βi, pi}i=1···Nk . Finding the exact solution

of the lower-level function f(y, θ) will make the learning problem very difficult to optimize.

Actually, instead of finding the exact solution of the optimization problem in the lower-level

problem, researchers have proposed to learn iteration-wise operations to deal with different

problems. Gregor et al. [51] have shown that convolutional neural networks can be learned to

approximate the coding process of the sparse coding algorithms. Based on the half-quadric

splitting method or standard gradient descent method, Schmidt et al. [116] learned a few

iteration-wise operations to deal with natural image restoration problems with state-of-the-

art performance.

Inspired by these works, we learn stage-wise operations for our objective function

(2.4). Solving (2.4) by gradient descent method, we get the following formula in each step:

xt+1 = xt −
(
∇xΥ(xt, y) +

∑
i
PTt,idiag (wt,i)φt,i(Pt,ixt)

)
, (2.8)

where the subscript t is the stage index and i is the regularization term index. For example,

wt,i is the i-th weight generation function in the t-th stage. diag(wt,i) ∈ RN×N is a square

matrix with diagonal elements by vector wt,i. xt is the estimation of x in the t-th stage.

For both the depth upsampling and hole filling applications considered in this chapter,

the fidelity term can be written as follows:

Υ(x, y) =
τ

2
‖M

1
2 (x− y)‖2

2, (2.9)

where M is a diagonal matrix and τ is related to the strength of fidelity force. For depth up-

sampling application, the diagonal elements in M indicate the corresponding points between

high resolution estimation x and aligned low resolution input y. In the application of hole

filling, M is a binary matrix which indicates the differences in observed points.

In our work, we consider the commonly used square error to measure the loss be-

tween current estimation and ground truth. Besides, a greedy training strategy is utilized to
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Figure 2.2. Part of learned parameters. In each sub-figure, the upper part is the regressed
penalty function by αi; the lower left part is the analysis filters pi for depth map; and the
lower right part is the analysis filters βi for guided intensity image.

learn the parameters in each iteration, which is formulated as

{τt,αt,i,βt,i, pt,i} = arg min
θt

1

2

∑S

s=1
||x(s)

g − x(s)
t+1||22

s.t. x(s)
t+1 =x(s)

t −
(
τtM(x(s)

t −y(s))+
∑

i
PTt,idiag

(
w(s)
t,i

)
φt,i(Pt,ix

(s)
t )
)
.

(2.10)

The gradient of the loss function with respect to parameters {τt,αi,βi, pi} can be calculat-

ed by the chain rule. Afterwards we use the limited-memory Broyden-Fletcher-Goldfarb-

Shanno algorithm (LBFGS) method [83, 93] to learn parameters in each stage. We experi-

mentally found that we can get very good results after a few stages of process. After training,

the inference process of the proposed model is very fast.

2.2.3 Discussions

In previous optimization based guided filtering methods, hand-crafted parameters and func-

tions are usually designed based on prior knowledge of the problem. Such hand-crafted de-

sign greatly limits the choice of regularizers, and thus is insufficient to model the dependency

between intensity and depth images. The proposed weighted analysis sparse representation

method provides a more flexible model to characterize the complex relationship between

guidance and output images.

To illustrate the complex relationship between depth map and intensity image, we

show some learned parameters for noisy depth upsampling with factor 4. The detailed ex-

perimental setting can be found in section 2.4. 5 of the 24 groups of learned parameters
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Figure 2.3. The training samples used in the guided depth upsampling experiments.

{αi,βi, pi}i=1···6 are shown in Fig. 2.2 (a-e). The filters βi and pi are reshaped for better vi-

sualization, and for αi, we directly show the regressed penalty function. From Fig. 2.2, one

can see that the local relationship is modeled by very complex parameters. Different from

previous methods which use the same pixel-wise differences to model the co-discontinuities

in depth and RGB images, the kernels learned to extract local information from the two

images are different. Furthermore, the penalty functions learned by our models show very

complex behaviours. Instead of some monotonic shrinkage functions which are in favor of

small filter responses to promote smoothness in the estimation, some functions learned by

our method show clearly expansion behaviour. Such flexible penalty functions make our

model be able to generate high quality depth map with sharp edges in a few steps.

2.3 Experiments on depth map upsampling

In this section, we compare the proposed method with other depth upsampling methods.

Three commonly used datasets (Middlebury [60], NYU [102] and ToFMark [46]) are u-

tilized to evaluate the depth upsampling performance of the proposed method. Besides the

baseline bicubic and bilinear upsampling methods, we compare the proposed methods with a

variety of guided upsampling methods. The comparison methods include two filtering based
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Table 2.1. Experimental results (RMSE) on the 3 noise-free test images.

Art Books Moebius

×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16

Bicubic 2.57 3.85 5.52 8.37 1.01 1.56 2.25 3.35 0.91 1.38 2.04 2.95

Bilinear 2.83 4.15 6.00 8.93 1.12 1.67 2.39 3.53 1.02 1.50 2.20 3.18

GF [58] 2.93 3.79 4.97 7.88 1.16 1.58 2.10 3.19 1.10 1.43 1.88 2.85

MRF [33] 3.12 3.79 5.50 8.66 1.21 1.55 2.21 3.40 1.19 1.44 2.05 3.08

Yang [144] 4.07 4.06 4.71 8.27 1.61 1.70 1.95 3.32 1.07 1.39 1.82 2.49

Park [106] 2.83 3.50 4.17 6.26 1.20 1.50 1.98 2.95 1.06 1.35 1.80 2.38

TGV [46] 3.03 3.79 4.79 7.10 1.29 1.60 1.99 2.94 1.13 1.46 1.91 2.63

SDF [56] 3.31 3.73 4.60 7.33 1.51 1.67 1.98 2.92 1.56 1.54 1.85 2.57

DJF [79] 2.77 3.69 4.92 7.72 1.11 1.71 2.16 2.91 1.04 1.50 1.99 2.95

Ours 0.89 2.00 3.82 6.16 0.47 0.91 1.67 2.68 0.45 0.84 1.51 2.35

methods [58, 144], and some optimization based methods: MRF based method [33], non-

local mean regularized depth upsampling method [106], total generalized variation (TGV)

method [46], joint static and dynamic filtering(SDF) method [56]. The root mean square er-

ror (RMSE) indexes by recent proposed deep learning based method [79] are also included.

Detailed experimental setting will be introduced in the following subsections.

2.3.1 Upsampling results on the Middlebury dataset

The Art, Books and Moebius images in the Middlebury dataset [60] have been widely utilized

to evaluate depth restoration algorithms. Following the experimental setting of [46], we con-

duct upsampling experiments with both the noise-free and noisy low resolution depth maps

on four zooming factors, i.e., 2, 4, 8, 16. For the noise-free experiments, both the training

and testing samples are generated by bicubic resizing of the high quality depth maps. While,

for the noisy experiments, the testing noisy low-resolution depth maps are obtained from
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Table 2.2. Experimental results (RMSE) on the 3 noisy test images.

Art Books Moebius

×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16

Bicubic 5.32 6.07 7.27 9.59 5.00 5.15 5.45 5.97 5.34 5.51 5.68 6.11

Bilinear 4.58 5.62 7.14 9.72 3.95 4.31 4.71 5.38 4.20 4.57 4.87 5.43

GF [58] 3.55 4.41 5.72 8.49 2.37 2.74 3.42 4.53 2.48 2.83 3.57 4.58

MRF [33] 3.49 4.51 6.39 9.39 2.06 3.00 4.05 5.13 2.13 3.11 4.18 5.17

Yang [144] 3.01 4.02 4.99 7.86 1.87 2.38 2.88 4.27 1.92 2.42 2.98 4.40

Park [106] 3.76 4.56 5.93 9.32 1.95 2.61 3.31 4.85 1.96 2.51 3.22 4.48

TGV [46] 3.19 4.06 5.08 7.61 1.52 2.21 2.47 3.54 1.47 2.03 2.58 3.56

Chan [18] 3.44 4.46 6.12 8.68 2.09 2.77 3.78 5.45 2.08 2.76 3.87 5.57

SDF [56] 3.36 3.86 4.93 7.85 1.59 1.92 2.60 4.16 1.64 1.85 2.67 4.21

Ours 1.82 2.94 4.40 7.05 1.13 1.61 2.33 3.49 1.29 1.72 2.57 3.79

(a) Color image (b) Ground truth (c) GF [58] (d) MRF [33] (e) Yang et al.[144]

(f) Park et al. [106] (g) TGV [46] (h) SDF [56] (i) DJF [79] (j) Ours

Figure 2.4. Depth restoration results by different methods on noise-free data (Moebius).
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Table 2.3. Experimental results (RMSE) on the 448 NYU test image.

MRF [33] GF [58] JBU [110] TGV [46] Park [106] SDF [56] DJF [79] Ours

×4 4.29 4.04 2.31 3.83 3.00 3.04 1.97 1.56

×8 7.54 7.34 4.12 6.46 5.05 5.67 3.39 2.99

×16 12.32 12.23 6.98 13.49 9.73 9.97 5.63 5.24

[106], and we prepare training noisy low resolution depth maps by adding white Gaussian

noise with standard variation 6 to the clean low resolution depth images.

To prepare training data, we select 18 depth and intensity image pairs in the Middle-

bury data set [60] and extract 250 72×72 small images as the training dataset. The 18 images

are shown in Fig. 2.3. We can see that some images are captured for the same scene with

slight viewpoint changes. Since training data set contains limited samples, we further extend

it by flipping and rotating the original images. Finally, we get 1000 images of resolution

72×72 in the training data set. Although the extension improves the variation of the training

samples, the training data are still not diverse enough because the original 18 training images

are limited in colors. In our experiments, instead of using RGB color images, we only use

gray level intensity images to guide the restoration.

Besides the model parameters to be learned, there are also some algorithm param-

eters, e.g., the number of filters and the filter size for the depth map and intensity map, to

be fixed. Generally, larger filters are able to model the structural relationship of a larger

area. With enough training data, they will lead to better performance. However, utilizing

large filters often demands a large number of filters to model local structural prior, which

will greatly increase the computational burden in both the training and testing phases. To

make a good balance between efficiency and upsampling accuracy, we use 24 5×5 analysis

filters {kl}l=1...L} for depth image. For filters {βl}l=1...L} used to extract information from

the intensity image, we set their size as 7×7. For both the noisy and noise-free cases, we use

the results by bicubic interpolation as the initialization of x0. Our experimental results show
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that the proposed model is able to generate very good upsampling results in a few steps. For

the noise free upsampling experiemts, we set the stage numbers for zooming factors 2, 4, 8

and 16 as 4, 5, 6 and 7, respectively. While for the noisy upsampling experiments, the stage

numbers are set as 6, 8, 10 and 12. Adding extra stages will further deduce the training loss,

but surfer from higher computation burden in both the training and testing phases.

The upsampling experimental results on the 3 noise-free testing images by different

methods are shown in Table 2.1. The proposed method consistently shows its advantage

over the competing methods. It achieves the best results on all the 3 images with different

zooming factors. In Fig. 2.3, we give visual examples of the upsampling results on the

moebius image with zooming factor 16. We can see that the guided filter method [58] and

the MRF method [33] can not generate very sharp edges; while the results by [144][106] and

[46] have some artifacts in the edge area. Our method is able to generate high quality depth

map with sharper edges and less artifacts.

We further evaluate the proposed method by upsampling experiments on noisy depth

maps . The results by different methods are shown in Table 2.2. We do not provide the

results by DJF [79] because the sauce codes and results on such setting are not available.

The results by [18] are included, which is designed to handle noise in depth super-resolution.

The proposed method again achieves the best results.

2.3.2 Upsampling results on the NYU dataset

In [79], Li et al. utilized the first 1000 images of NYU dataset [102] as training data, and

evaluated their DJF method on the last 448 images of the NYU dataset. In this section, we

follow their experimental setting and compare different methods on the 448 images. The

results by the other methods are provided by the authors of [79]. To save the training time,

we train our model with only the first 100 images from the training data set of [79]. The

number and size of the filters are the same as our settings on the Middleburry [60] dataset.

The stage number for all the zooming factors 4, 8 and 16 is set as 4.

The experimental result are shown in Table 2.3. Compared with other methods, the
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proposed method achieves the best results in terms of RMSE.

2.3.3 Upsampling results on real sensor data

Besides synthetic data, we also evaluate the proposed method on real sensor dataset [46]. In

which a Time of Flight (ToF) and a CMOS camera are used to obtain low resolution depth

maps and intensity images, and the ground truth depth images are generated by a structured

light scanner. This dataset is called ToFMark [46].

We utilize the 18 images in Fig. 2.3 as the training images. The noise in the low

resolution input of ToFMark dataset is different from previous synthetic data. To generate

similar low resolution input for training, we first use a t location-scale distribution to fit

the residuals between input and groundtruth data, and then generate additive noise by the

distribution parameters. Since the missing values in the depth map are represented as zeros,

which may be termed as very sharp edge in the depth map. We use a simple masked joint

bilateral filtering [110] method to generate initialization values for the unknown points in the

depth map. Although such initialization x0 is still very noisy, our method can still generate

very good results in just several stages. In addition, we adopt larger size filters (7× 7 filters

ki for depth image and 9×9 filters βi for intensity image) to further improve the performance

of the proposed method.

The restoration results are shown in Table 2.4. We compare our method with classical

and state-of-the-art methods. Table 2.4 shows that our method produces better results in

terms of RMSE. From Fig. 2.5, it is easy to see that our method is capable of generating

clean upsampling estimation, while, the results by other methods tend to copy irrelevant

textures from the intensity image.

2.4 Experiments on incomplete depth map restoration

In this section, we provide some experimental results on other depth map restoration prob-

lems. The dataset in [86] is used to test the proposed method, in which there are not only
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Table 2.4. Experimental results (RMSE) on the 3 test images in [46]

.

Nearest Neighbor Bilinear He [58] TGV [46] Yang [144] SDF [56] Ours

Books 18.21 17.10 15.74 12.36 12.25 12.66 12.31

Shark 21.83 20.17 18.21 15.29 14.71 14.33 14.06

Devil 19.36 18.66 27.04 14.68 13.83 10.68 9.66

(a) Intensity image (b) Ground true (c) TGV [46]

(d) Yang et al. [144] (e) SDF [56] (f) Ours

Figure 2.5. Depth restoration results by different methods on real data.
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(a) Color Image (b) Input (c) Ground Truth

(d) Lu et al. [86] (e) Shen et al. [118] (f) Ours

Figure 2.6. Depth restoration results by different methods.

Table 2.5. Experimental results (RMSE) on the 3 test images in [86].

Lu et al. [86] Shen et al. [118] Ours

Art 6.77 5.65 4.96

Books 2.24 2.24 1.66

Moebius 2.18 2.27 1.76
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additive Gaussian noise but also some missing values in the depth image. In the following

subsections, we first introduce our experimental settings, including the preparation of train-

ing data, the setting of initialization and some algorithm parameters. Then, we compare our

method with other methods designed for this task, including low rank based method [86] and

recently proposed mutual-structure joint filtering method [118].

2.4.1 Experimental setting

Lu et al. [86] provided a synthetic data set to evaluate depth restoration methods. 30 depth

and RGB image pairs in the Middlebury database [60] are included in the data set. All

images are normalized to have the same height 370. Zero mean additive Gaussian noise

with stand deviation 25 and 5 are added into the RGB and depth image, respectively. The

authors manually set 13% of pixels in depth map as missing values to simulate the depth map

acquired from consumer level depth sensors.

To compare the proposed method with other methods, we take the image Art, Book-

s and Moebius as testing images, and use the remaining 27 images as the training images.

Since our proposed method does not consider the noise in the RGB image, for fair compari-

son, we pre-process the RGB image by a state-of-the-art denoising method [53] and use the

denoised image to guide the restoration of depth map. Such a method has been utilized in

the original paper [86] to compare with other depth restoration methods.

The setting of filter number and size in this noisy depth map restoration experiment

is the same as that in the Middleburry upsampling experiment. As our setting in the ToF

dataset [46], we also adopt JBF [110] to provide initial values for the missing data. Since

less training data are provided in this dataset, we only adopt 4 stages to enhance the input

depth image.
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2.4.2 Experimental results

The restoration results by different methods are shown in Tabel 2.5. The results by [86] and

[118] are downloaded from the authors’ websites. The proposed method shows significant

advantage over the competing methods in terms of RMSE. In Fig. 2.6, we show some visual

examples of the restoration results. One can clearly see that our restoration method is able

to generate sharp edges when removing noise in the input image.

2.5 Conclusions

In this chapter, we improved the flexibility of conventional analysis sparse representation

model by introducing a weighting function. The weighting function is able to extract local

structural information from the guidance image, and adaptively regularize the analysis coef-

ficients of the latent clean image. Such a formulation provides us a highly flexible framework

to model the complex relationship between the guidance and target images. To learn opti-

mal parameters for different applications, we utilized a task-driven training strategy to learn

parameters from the training data. The stage-wise dynamic parameters can generate high

quality estimations in several stages. We evaluated the proposed model on both the guid-

ed depth upsampling and hole-filling applications. Compared with previous algorithms, our

method can generate better results with lower RMSE and more pleasant visual quality.
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CHAPTER 3

CONVOLUTIONAL SPARSE CODING FOR IMAGE SUPER-RESOLUTION

Sparse coding (SC) plays an important role in versatile computer vision applications. Most

of the previous SC based image restoration methods partition the image into overlapped

patches, and process each patch separately. These methods, however, ignore the consistency

of pixels in overlapped patches, which is a strong constraint for image reconstruction. In

this chapter, we propose a convolutional sparse coding (CSC) based method to address the

consistency issue. To deal with the super-resolution (SR) application, we propose to learn

three groups of parameters: (i) a set of filters to decompose the low resolution (LR) image

into LR sparse feature maps; (ii) a mapping function to predict the high resolution (HR)

feature maps from the LR ones; and (iii) a set of filters to reconstruct the HR images from

the predicted HR feature maps via simple convolution operations. By working directly on

the whole image, the proposed CSC-SR algorithm does not need to divide the image into

overlapped patches, and can exploit the image global correlation to produce more robust

reconstruction of image local structures. Experimental results clearly validate the advantages

of CSC over patch based SC in SR application.

In this chapter, we first review some recently proposed SR algorithms and discuss the

inconsistency issue in these methods. Then, after a brief introduction of the convolutional

sparse coding (CSC) method, we present the proposed CSC-SR algorithm. The comparison

results with state-of-the-art algorithms show the effectiveness of CSC-SR algorithm. Most

of the contents of this chapter have been published in [55].
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3.1 Introduction

3.1.1 Single image super-resolution

The purpose of super-resolution (SR) is to reconstruct a high resolution (HR) image from

a single low resolution (LR) image or a sequence of LR images. SR provides a way to

overcome the inherent resolution limitations of low-cost imaging sensors, and it also offers a

solution to enhance the existing images which are generated by old type imaging equipment.

Compared with SR from a sequence of images, single image SR (SISR) is more ill-posed

because less information is provided. A key issue of SISR is how to build the relationship

between the LR image and the HR image. Since information has been lost in the down-

sampling procedure, prior knowledge is needed to provide extra information for estimating

the HR image. In the early years of studies, some simple smooth assumptions have been

utilized to estimate the missing pixels of the HR image, and different analytical interpolation

methods have been proposed to zoom up LR images. However, such kind of simple smooth

assumptions are far from enough for reconstructing complex structures in natural images.

The pioneer work in [48] uses Markov random field (MRF) to model the image pri-

ors. Inspired by [48], many methods have been developed to model prior knowledge on local

structures or patches using natural images [43, 120, 121, 142]. Methods in [43, 120, 121]

learn the gradient distribution from high quality natural images to guide the HR estimation

in the testing phase. Considering that natural images have complex local structures, instead

of modeling the prior on the entire image, most SISR methods utilize the prior knowledge on

image patches, which can be further grouped into three categories: example-based, mapping-

based, and sparse coding-based methods. For example-based methods, both the external

[22, 48, 140] dataset and internal cross-scale relationship [49] can be employed to provide

examples of the LR and HR patch pairs. For mapping-based methods, mapping function

between the LR and HR images can be directly learned using the LR/HR patch pairs to

implicitly incorporate prior knowledge [29, 36, 139]. For sparse coding-based methods, mo-

tivated by the progress of sparse coding and dictionary learning, a couple of dictionaries can

be trained from the LR and HR image patches, and several approaches have been suggest-
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ed to model the relationship between the LR and HR patches in the coding vector domain

[59, 129, 142].

3.1.2 Motivation

Although patch based methods can greatly reduce the problem size and obtain state-of-the-

art performance in SISR [138], previous studies usually process the overlapped patches inde-

pendently, and the final results are achieved by averaging the overlapped pixels between each

patch. It is commonly accepted that more overlapped pixels between neighboring patches

will deliver better reconstruction results since each pixel in the output image will be estimat-

ed for more times. However, such an “overlap-averaging” mechanism ignores an important

constraint in solving the patch estimation problem, i.e., pixels in the overlapped area of ad-

jacent patches should be exactly the same (i.e., consistent). The consistency property is a

strong constraint and can provide prior information in dealing with each single estimation

problem. Actually, in the seminal work of [48] the consistency prior is modeled by an MRF

to select HR patches in the external database. Recently, researchers [66, 158] have proposed

several elegant aggregation methods to alleviate the inconsistency of overlapped patches,

and achieved significant performance improvement in image denoising. However, for SIS-

R, more evidences and better approaches are still needed to justify the importance of the

consistency constraint.

In this chapter, we present a convolutional sparse coding (CSC) based SISR method

to demonstrate the effectiveness of consistency constraint and the advantage of global image

based CSC over conventional patch based sparse coding. CSC was first proposed by Zeiler

et al. [145]. Instead of sparsely representing a vector by the linear combination of dictionary

atoms, CSC decomposes the input image into N sparse feature maps by N filters. The con-

volutional decomposition avoids dividing the whole image into overlapped patches and can

naturally utilize the consistency prior in the decomposition procedure. CSC has already been

utilized in several works to extract features from images for object recognition [146]. How-

ever, compared with the great success of conventional patch based sparse coding in image
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reconstruction, no work has been reported that CSC can achieve state-of-the-art performance

in image reconstruction.

Previous joint dictionary learning works [59, 129, 142] encode the interpolated LR

image and use the corresponding HR dictionary to reconstruct the HR estimation. The LR

and HR dictionaries have the same number of components. The interpolation operation

before sparse coding greatly increases the computation burden because we need to encode

the interpolated image which has the same size of HR image. Furthermore, using the same

number of atoms in the LR and HR dictionaries limit the representation capacity of the HR

dictionary since HR images are much more complex than the LR images. To address these

problems, we use LR and HR filter groups which have different filter numbers and filter sizes

to decompose and reconstruct the LR and HR images. A transformation mapping function

is introduced to build the relationship between the LR and HR feature maps which are with

different sizes in both the spatial and coefficient domain. Such a mechanism not only reduces

the computation burden of CSC in the LR image decomposition step, but also improves the

representation capacity of HR filters to ensure the performance of our algorithm.

3.2 Related works

In this section, we first briefly review the conventional sparse coding method and its appli-

cation to single image super-resolution (SISR), and then introduce the convolutional sparse

coding (CSC) method.

3.2.1 Sparse coding for super resolution

Sparse representation encodes a signal vector x as the linear combination of a few atoms in a

dictionary D, i.e., x ≈ Dα, where α is the sparse coding vector. By far, sparse representation

has been widely applied in many computer vision applications and achieved state-of-the-

art results in various tasks [90, 135, 143]. As for SISR, Yang et al. proposed a sparse

coding super resolution (ScSR) method in [142]. In the training phase, given a group of low
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resolution (LR) and high resolution (HR) training patch pairs, ScSR aims to jointly learn an

HR dictionary Dh and an LR dictionary Dl to reconstruct the HR and LR patches by assuming

that each LR/HR patch pair shares the same sparse coding vector. In the testing phase, the

input LR image is divided into overlapped patches, and each patch is encoded by the LR

dictionary Dl with the sparse coefficient α. The corresponding HR patch is reconstructed by

Dh and α as Dhα. Finally, the HR image can be obtained by aggregating all the estimated

HR patches into a whole image.

Inspired by ScSR [142], many sparse coding and dictionary learning based methods

have been proposed for SISR. By relaxing the constraint that the LR/HR patch pair has

the same coding vector, Wang et al. [129] introduced a transform matrix to allow more

complex relationship between the HR and LR coding vectors, and proposed a semi-coupled

dictionary learning (SCDL) method for SISR. Subsequently, more complex models have

been proposed for better modeling the relationship between the LR and HR spaces with

coupled dictionaries. He et al. [59] utilized a non-parametric Bayesian approach to learn

dictionaries to build relationship between the LR and HR spaces. Peleg and Elad [108]

proposed a statistical model which uses restricted Boltzmann machine (RBM) to model the

relationship between the LR and HR coding vectors. Zhu et al. [157] suggested to enhance

the flexibility of the HR dictionary by permitting certain deformation in each HR patch.

3.2.2 Convolutional sparse coding

Despite its wide applications, sparse coding on an image patch has some drawbacks. First,

the scalability of the `0 or `1 optimization is poor, which limits the application of sparse

coding in large scale problems. Second, most of the previous sparse coding based meth-

ods partition the whole image into overlapped patches to reduce the burden of modeling

and computation. However, the consistency between overlapped patches is ignored and the

existing aggregation and averaging strategies can only alleviate this problem.

To take consistency into account, Zeiler et al. [145] proposed a convolutional imple-

mentation of sparse coding to sparsely encode the whole image. Instead of decomposing a
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signal vector as the multiplication of dictionary matrix and coding vector, the so-called con-

volutional sparse coding (CSC) model represents an image as the summation of convolutions

of the feature maps and the corresponding filters:

minZ‖X−
∑N

i=1
f i ⊗ Zi ‖2

F +λ
∑N

i=1
‖Zi ‖1, (3.1)

where X is anm×n input image, {f i}i=1,2,...,N is a group of s×s filters, and Zi is the feature

map corresponding to f i with size (m+ s− 1)× (n+ s− 1). In the CSC model, we do not

need to partition the input image into overlapped patches, and the inconsistency problem of

patch based implementation can be avoided.

On the other hand, the convolutional decomposition mechanism also brings some d-

ifficulties in optimization. Zeile et al. [145] adopted the continuation method to relax the

equality constraints, and employed the conjugate gradient (CG) decent to solve the convolu-

tional least square approximation problem. Bristow et al. [7] proposed a fast CSC algorithm

by considering the property of block circulant with circulant block (BCCB) matrix, which

solves the problem in the Fourier domain. Recently, Wohlberg [134] further improved the

algorithm and proposed an efficient alternating direction method of multipliers (ADMM) for

CSC.

Despite the study of fast algorithms to solve the CSC problem, little attention has

been given on validating the advantages of CSC over conventional patch based sparse coding

for image reconstruction. Can CSC benefit image reconstruction? In this chapter, we attempt

to answer this question and develop an effective CSC based SISR algorithm.

3.3 Convolutional sparse coding for super resolution

In this section, we present our convolutional sparse coding based super-resolution (CSC-SR)

method. Like most existing SISR methods, the proposed CSC-SR method also involves a

training phase and a testing phase. In the training phase, we learn three groups of parame-

ters: (i) LR filters; (ii) the mapping function between LR and HR feature maps; and (iii) HR

filters. In the testing phase, the input LR image is first decomposed into sparse LR feature
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Figure 3.1. Flowchart of the proposed algorithm.

maps by using the learned LR filters. Then, the mapping function is employed to estimate

HR feature maps from LR feature maps, and the HR image is reconstructed by simple convo-

lution operation. The flowchart of our algorithm in the training and testing phases is shown

in Fig. 3.1.

3.3.1 The training phase

In dictionary learning based SISR, a couple of dictionaries together with certain mapping

function are generally used to model the relationship between LR and HR images. The LR

and HR dictionary learning can be formulated into one objective function, and jointly learned

using the training LR/HR patch pairs. However, for the joint dictionary learning methods in

[129, 142], because the test HR image is not available, the mechanism of generating coding
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vectors in training is different from that in testing, leading to the inconsistency of the coding

vectors in the training and testing phases. Several strict joint learning models [88, 141] have

been developed to avoid coding inconsistency, but they need to solve a bi-level optimization

problem. On the other hand, recent studies [147] have also shown that promising SISR

performance can be obtained via separate training of the LR and HR dictionaries. In [147],

an LR dictionary is first learned using the LR image dataset, and then an HR dictionary

is trained to reconstruct the HR image patches based on the sparse coding vectors of the

corresponding LR patches. In this chapter, we extend the method in [147] to CSC, and learn

the LR and HR filters separately for SISR.

Suppose that we are given a group of HR images {x1, xk, ..., xK} together with the

corresponding LR images {y1, yk, ..., yK} for training. Because the image index k will not

affect the understanding of our algorithm, in the remainder of this chapter, we omit it for the

purpose of simplicity.

In our SISR scheme, each LR image is decomposed into one smooth component

and one residual component, and we apply different super-resolution prodedures to the two

components. We simply apply bi-cubic interpolation to the low frequency LR feature map

for the super-resolution of the smooth component, and propose a CSC-SR model for the

super-resolution of the residual component.

To extract the smooth component of the LR image y, we first solve the following

optimization problem:

min
Z
‖y−f s ⊗ Zsy ‖2

F +γ ‖ f dh ⊗ Zsy ‖2
F +γ ‖ f dv ⊗ Zsy ‖2

F , (3.2)

where Zsy is the low frequency feature map of LR image y, f s is a 3 × 3 low pass filter and

f dh and f dv are the horizontal and vertical differential filters [1,−1] and [1;−1]. Based on the

special property of BCCB matrix, the closed form solution of (3.2) can be efficiently solved

in the Fourier domain, and we can decompose the LR image as:

y = f s ⊗ Zsy + Y,
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where f s ⊗ Zsy denotes the smooth component of the LR image, and Y denotes the residual

component which represents the high frequency edge and texture structures in the LR image.

After the decomposition, we learn a group of LR filters to further decompose the

residual component Y into N feature maps:

minZ,f‖Y−
∑N

i=1
f li⊗Zli ‖2

F +λ
∑N

i=1
‖Zli ‖1, s.t. ‖ f li ‖2

F≤ 1, (3.3)

where {f li}i=1∼N are N LR filters, and Zli is the sparse feature map of the ith filter. The

constraint f li ‖2
F≤ 1 is introduced to avoid the trivial solution f → ∞,Z → 0, which has

been applied in many previous dictionary learning methods [1, 89].

Similar to other dictionary learning methods, we alternatively optimize the Z and f

subproblems. The Z subproblem is a standard CSC problem that can be solved using the

algorithm proposed in [134]. For the f subproblem, we need to optimize:

f l=arg min
f
‖Y−

∑N

i=1
f li⊗Zli ‖2

F , s.t.‖ f li ‖2
F≤ 1. (3.4)

The f subproblem can be solved by the ADMM algorithm in the Fourier domain [134].

However, when ADMM is employed to solve (3.4), the feature maps of all the train-

ing images are required to be loaded in the memory. If the number of training images or

the number of LR filters are large, the ADMM algorithm suffers from the problem of high

memory demand for solving (3.4). Fortunately, the marriage of the recently developed s-

tochastic average (SA) algorithms and ADMM, i.e., SA-ADMM[152], can be utilized to

optimize (3.4). Different from standard ADMM, SA-ADMM adopts the linearization tech-

nique which can be deployed to avoid the computation of matrix inversion in our case, and

utilizes the SA strategy to avoid the storage of feature maps of all the training images. More

details of the optimization procedure can be found in Appendix A.

After the LR filters learning, we further learn the mapping function and the HR filters

based on the LR feature maps and the corresponding HR images. Like the LR images, each

HR image is decomposed into one smooth component and one residual component. First,

bi-cubic interpolation is adopted to enlarge Zsy, obtaining the low frequency HR feature map
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Zsx. Then, the original HR image can be decomposed as:

x = f s ⊗ Zsx + X,

where f s⊗ Zsx denotes the smooth component, and X denotes the residual component which

conveys the high frequency edge and texture structures of HR image x. Given the training set

of LR feature maps and HR images, we are able to learn the HR filters and the corresponding

feature mapping function.

In most of the previous dictionary learning based SR methods, the LR image is first

interpolated to the same size as the HR image, and the sizes of the HR and LR dictionaries

are the same. Here we show that a small number of LR filters with small filter size can also

achieve satisfactory SISR results while saving the decomposition time in both the training

and the testing phases. Thus, we directly perform CSC on the small LR image that is much

smaller than the HR image. Furthermore, since the HR image is much more complex than

the LR image, we propose to decompose the LR image by a small number of LR filters to

reduce the computation burden, while reconstructing the HR image by a larger number of

HR filters with more flexible representation capacity.

However, one challenge of the scheme above is that a mapping function needs to be

trained to zoom the input LR feature maps to a higher resolution in terms of both spatial size

and feature map number. To this end, we propose to train a mapping function between the

LR and HR feature maps:

Zhj (kx, ky) = g(Zl1(x, y),Zl2(x, y), ...,ZlN(x, y); W), (3.5)

where k is the zooming factor, Zhj (kx, ky) is the coefficient in position (kx, ky) of fea-

ture map Zhj , Zli(x, y) is the coefficient in the corresponding point (x, y) in feature map Zli,

and W is the parameter of mapping function g(•). For Zhj (x′, y′) with mod(x′, k) 6= 0 or

mod(y′, k) 6= 0, we simply set Zhj (x′, y′) = 0.

The function g(•) should have the ability to generate sparse output from sparse input,

and we use a sparse linear transformation matrix to estimate the HR coefficient:

Zhj (kx, ky) = g(Zl:(x, y); wj) = wT
j zl:(x, y), s.t.wj � 0, |wj|1 = 1, (3.6)
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where zl:(x, y) is a vector containing all the coefficients in point (x, y) of the N LR feature

maps, and wj is the transformation vector for the HR feature map Zhj . We let wj � 0 and

|wj|1 = 1 to ensure the sparsity of W. The non-negative simplex constraint used in (3.6) is

stronger than some sparsity regularizer (e.g., `1 norm). Another thing needs to be noticed

is that both the number and size of LR feature maps are enlarged by the mapping function.

Compared with the coefficients in the LR feature map, each coefficient in the HR feature

map includes the spatial information from a larger local area. The spatial size of HR filters

should also be set larger to reconstruct the HR image.

After choosing the form of mapping function, our joint HR filter and mapping func-

tion learning model is formulated as:

{fh,W}=minf ,W‖X−
∑M

j=1
fhj ⊗ g(Zl:; wj)‖2

F ,

s.t. ‖ fhj ‖2
F≤ e; wj � 0, |wj|1 = 1,

(3.7)

where e is a scalar to constrain the energy of HR filters, and the specific number of e for

different zooming factor will be introduced in the parameter setting section of this chapter.

Since the size of HR filter is different from the size of LR filter, the energy constraint should

also be different. We optimize the objective function by alternatively updating the filter fh

and the mapping function parameter W. For fixed W, the filter updating subproblem defined

in (3.4) can be solved by the SA-ADMM algorithm. For fixed f , the subproblem on W is

more complex, and we need to solve the following optimization problem:

{W}=arg min
W
‖X−

M∑
j=1

fhj ⊗ g(Zl:; wj)‖2
F , s.t. wj � 0, |wj|1 = 1. (3.8)

We also solve (3.8) by the SA-ADMM algorithm. Please refer to the Appendix A for the

details of the optimization procedure.

With the optimization algorithms for solving the f and W subproblems, we summa-

rize the training algorithm for our CSC-SR method in Algorithm 3.1.
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Algorithm 3.1 The Training Algorithm for Convolutional Sparse Coding based Super Res-
olution (CSC-SR)
Input: Training image pairs {x, y}, LR&HR filter number N and M , LR&HR filter sizes sl

and sh, regularization parameter γ and λ;
1: Solve (3.2) to decompose LR image, get high frequency component Y of LR image;
2: Solve the CSC filter learning problem on Y, get Zl and f l;
3: Extract low frequency component of the bi-cubic interpolated LR image, get the texture

structure of HR image X;
4: Learn the HR filters and the mapping function;

Output: LR filters f l, HR filters fh and mapping function W

3.3.2 The testing phase

After training, we have the LR filters {f l}, HR filters {fh} and the mapping function g(•; W).

Given a testing LR image y, we extract its texture structure and decompose it by the LR

filters to get LR sparse feature maps {Zl}. Then, the HR feature map can be estimated by

the function {Zh} = g(Zl; W). Finally, the high frequency texture structure in the HR output

image is obtained by the summation of the convolutions of the HR feature maps and the

corresponding HR filters:

X̂ =
∑M

j=1
fhj ⊗ Zhj . (3.9)

We can then combine X̂ with the smooth component to generate the final HR estimation. To

achieve better SR performance, the back projection operation which is widely used in other

sparse coding based SR methods [59, 142, 157] can also be utilized to improve the final HR

estimation.

3.4 Experimental results

In this section, we first provide a brief convergence analysis of the proposed training al-

gorithm. Then, we present an experiment to illustrate the advantages of the convolutional

decomposition mechanism over the patch based method. After a discussion of parameter

setting, we compare our algorithm with representative SR methods.

The experimental setting is the same as [142]. LR training and testing images are

generated by resizing the HR groundtruth image by bi-cubic interpolation. Using the same

46



0 5 10 15 20
40

45

50

55

60

R
M

S
E

 o
f 

T
ra

in
in

g
 Im

ag
es

Iteration Numbers

Figure 3.2. The convergence curve in the joint HR filter and mapping function training.

91 training images provided by Yang et al. [142], we randomly crop 1,000 60×60 smaller

images from these images to train our model. Then, the corresponding LR training images

with zooming factors 2 and 3 are of size 30×30 and 20×20, respectively. To avoid boundary

effects of Fourier domain implementation, 8 pixels are padded on the image boundary.

3.4.1 Convergence analysis

In our CSC-SR training algorithm, apart from training filters to decompose the LR images,

model (3.7) is also proposed to jointly train the HR filters and mapping function. The ob-

jective function in (3.7) is a bi-convex optimization problem [50]. For fixed W, the problem

is convex to f , and for fixed f , the function is convex to W. We alternatively optimize the f

and the W sub-problems, which is actually an alternate convex search (ACS) algorithm [50].

Since our objective function has a general lower bound 0, if we can get the optimal solu-

tions of updating W and f , the joint HR filter and mapping function training is guaranteed to

converge in terms of function energy.

It is empirically found that the optimization of joint HR filter and mapping function

training converges rapidly. Fig. 3.4.1 shows the convergence curve of our algorithm in an ex-

periment with 200 training images. Because the energy of objective function is proportional

to the number of pixels in training images, in Fig. 3.4.1 the energy of objective function

is normalized by the pixel number of training images. The symbol “4” represents the root
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mean square error (RMSE) between the training images and their HR estimates after up-

dating filters f and the symbol “5” shows the RMSE after updating the mapping function

g(•; W). In most of our experiments, our algorithm will converge in 10 iterations.

3.4.2 CSC vs. sparse coding for SR

Table 3.1. SR results (PSNR, dB) by patch based sparse coding method ScSR [142] and the
proposed convolutional based sparse coding method (without mapping function learning).

Zooming Factor 2

ScSR256 ScSR512 CSC256 CSC512

Butterfly 30.43 31.10 30.97 31.56

Bird 40.02 40.44 40.20 40.51

Comic 27.75 27.98 27.90 28.10

Woman 34.48 34.89 34.62 34.99

Foreman 36.18 36.49 36.46 36.56

To validate our argument that global decomposition by convolution is more appro-

priate for SR, we compare the convolutional based CSC and a representative patch based

sparse coding (SC) method. The ScSR [142] method is a typical patch based SC method for

SR. It trains a pair of HR and LR dictionaries on the training set, and uses the sparse coding

coefficients of the LR image to reconstruct the HR image by the HR dictionary. To have a

fair comparison between CSC and SC methods, we omit the mapping function introduced in

our method, and train a pair of LR filters and HR filters to reconstruct the LR and HR images

with the same representation feature map. In the testing phase, we decompose the interpo-

lated LR image and use exactly the same feature map to reconstruct the HR estimation. The

SR resluts (PSNR) by different methods (with dictionary size 256 and 512) on 5 images are

shown in Table 3.4.2. The results on other images are similar. We see that CSC-SR is always
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Figure 3.3. (a) The RMSE values with different HR/LR filter number ratio on the training
dataset and 3 testing images. (b) The RMSE values with different LR filter number on the
training dataset and 3 testing images.

better than ScSR with the same number of dictionary atoms.

3.4.3 Parameters setting

A key parameter in all the dictionary based image reconstruction methods is the number

of dictionary atoms. With a large number of dictionary atoms, we are able to capture the

image sparsity property better, but suffer from heavier space and time complexity. Here, we

validate the effectiveness of using different filter numbers and choose an appropriate ratio

between the LR filter number N and HR filter number M . We train different models on

500 images. The number of LR filters is fixed to 200 and the ratio between HR and LR

filters is set from 1 to 2 with step length 0.1. The RMSE values on training images and 3

testing images are shown in Fig.3.4.3 (a). Compared with ratio 1, using more HR filters can

provide better HR estimation. In all of our following experiments, we set the ratio between

HR filter number and LR filter number as 3/2 to make a balance between SR performance

and algorithm complexity.

Besides the ratio between LR and HR filter numbers, another important parameter in

our algorithm is the number of LR filter number. We test a wide range of LR filter numbers
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Figure 3.4. Super resolution results on image Foreman by different algorithms (zooming
factor 3).
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Figure 3.5. Super resolution results on image Butterfly by different algorithms (zooming
factor 3).
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Figure 3.6. Super resolution results on image Lena by different algorithms (zooming factor
3).

with 500 training images, and the SR results with different LR filter numbers are shown in

Fig.3.4.3 (b). Generally, a larger LR filter number leads to better SR results. To achieve the

best performance, we train 800 LR filters in the following experiments.

Other parameters include the size of LR and HR filters, regularization parameters γ

and λ, and the HR filter energy constraint parameter e. In all our following experiments,

we set the size of LR filter as 5 and set the size of HR filter as 5×Zooming Factor. The

regularization parameters γ and λ are set as 30 and 0.02, and the energy constraint parameter

e is set as 4 and 9 for zooming factors 2 and 3, respectively.

3.4.4 Comparison with state-of-the-arts

In this section, we compare the proposed CSC-SR methods with several state-of-the-art SR

methods. The comparison methods include ScSR [142], LLE [22], the Zeyde′s method [147],

anchored neighborhood regression method (ANR) [123], the Beta process joint dictionary

learning method (BPJDL) [59], deformable patch super resolution method (DPSR) [157]

and the recently proposed convolutional neural network based method CNN-SR [36]. All

methods follow the experimental setting of [142], in which the LR images are resized from
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Table 3.2. Super resolution results (PSNR, dB) by different methods.

Zooming Factor=2

LLE ScSR Zeyde ANR BPJDL DPSR CNN CSC

Butterfly 28.99 31.33 30.91 30.65 31.43 31.28 32.20 31.97

Face 35.57 35.69 35.69 35.70 35.75 35.64 35.60 35.68

Bird 38.93 40.53 40.25 40.23 40.98 39.77 40.63 41.40

Comic 27.34 28.02 27.89 27.92 28.24 27.98 28.28 28.43

Woman 33.71 34.95 34.74 34.70 35.23 34.64 34.93 35.27

Foreman 35.43 36.89 36.27 36.44 36.49 36.84 36.19 36.59

Coast. 30.30 20.60 30.61 30.56 30.63 30.55 30.49 30.63

Flowers 31.72 32.73 32.52 32.43 32.91 32.49 33.04 33.14

Zebra 32.54 33.46 33.58 33.36 33.62 33.22 33.30 33.74

Lena 35.95 36.46 36.39 36.42 36.58 36.27 36.48 36.63

Bridge 27.43 27.67 27.70 27.62 27.77 27.58 27.70 27.83

Baby 38.31 38.41 38.46 38.55 38.54 38.29 38.41 38.43

Peppers 35.82 36.72 36.60 36.38 36.71 36.55 36.75 36.88

Man 30.14 30.70 30.60 30.57 30.80 27.56 30.82 30.96

Barbara 28.59 28.70 28.75 28.62 28.68 28.60 28.59 28.73

AVE. 32.719 32.964 33.397 33.343 33.624 33.156 33.553 33.754
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Table 3.3. Super resolution results (PSNR, dB) by different methods.

Zooming Factor=3

LLE ScSR Zeyde ANR BPJDL DPSR CNN CSC

Butterfly 24.93 26.27 26.07 25.96 26.37 26.95 27.54 27.06

Face 33.41 33.53 33.63 33.67 33.46 33.62 33.58 33.74

Bird 33.78 34.33 34.67 34.63 34.44 34.73 34.83 35.46

Comic 23.81 24.09 24.11 24.13 24.14 24.24 24.41 24.39

Woman 29.61 30.32 30.50 30.39 30.45 30.72 30.88 31.11

Foreman 31.74 32.55 32.46 32.60 31.96 33.04 32.24 33.09

Coast. 26.98 26.97 27.21 27.10 27.01 27.16 27.18 27.23

Flowers 28.10 28.56 28.62 28.60 28.65 28.83 29.01 29.00

Zebra 28.02 28.61 28.82 28.67 28.75 28.98 28.91 29.23

Lena 32.62 33.06 33.17 33.17 33.14 33.26 33.41 33.53

Bridge 24.91 25.02 25.10 25.04 24.98 25.06 25.05 25.14

Baby 34.85 34.96 35.24 35.20 35.15 35.25 35.01 35.18

Peppers 32.91 33.46 33.78 33.58 33.64 33.94 34.06 34.12

Man 26.31 26.66 26.70 26.68 26.73 24.83 26.87 26.97

Barbara 26.78 26.72 26.86 26.75 26.83 26.82 26.66 26.71

AVE. 29.249 29.674 29.796 29.744 29.713 29.829 29.976 30.131
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ground truth HR images by bi-cubic interpolation. We download the source codes from the

author′s websites, and use the recommended parameters by the authors.

We perform the SR comparison on 15 widely used test images. The PSNR values

by the competing methods are shown in Table 3.3. CSC-SR achieves better results than

patch-based joint dictionary learning methods on most of testing images. Compared with

the state-of-the-art CNN-SR method, the proposed CSC-SR methods also achieves higher

PSNR index on many testing images. Overall, CSC-SR improves the average PSNR value

of CNN-SR with 0.2 dB and 0.15 dB for zooming factors 2 and 3, respectively.

Let′s then compare the visual quality of the SR results. In Figures 3.4.3, 3.4.3 and

3.4.3, we show the SR results of images Foreman, Butterfly and Lena by the competing al-

gorithms. As highlighted in the small window, the SR results by other competing algorithms

have obvious ringing artifacts in strong edge area, while the edges reconstructed by the CSC-

SR method are more natural. In summary, the results generated by the proposed CSC-SR

method have more textures and less artifacts, producing visually more pleasant SR outputs.

More examples of SR results can be found in the supplementary file.

3.5 Conclusion

To address the inconsistency issue in previous patch-based synthesis models, we proposed

a convolutional sparse coding based super resolution (CSC-SR) method. CSC directly de-

composes the whole image by filtering, which naturally takes the consistency of pixels in

overlapped patches into consideration. We introduced a mapping function between the L-

R and HR sparse coding feature maps for SR. Different from previous patch based sparse

coding methods, the convolutional decomposition mechanism of CSC can keep the spatial

information of input signal in the feature maps, and exploit the consistency of neighboring

patches for better image reconstruction. Compared with other state-of-the-art SR methods,

our algorithm achieves not only very competitive PSNR index, but also more pleasant visual

quality of image texture and edge structures.
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CHAPTER 4

JOINT CONVOLUTIONAL ANALYSIS AND SYNTHESIS SPARSE

REPRESENTATION FOR SINGLE IMAGE LAYER SEPARATION

In the previous two chapters, we studied the analysis and synthesis models, respectively.

Generally speaking, the two models have compensate capabilites on image modeling. The

synthesis sparse representation (SSR) models represent a signal as the linear combination of

a small number of atoms chosen out of a dictionary, while the analysis sparse representation

(ASR) model imposes sparsity on the responses of the signal to analysis operators. Such

complementary representation mechanisms of SSR and ASR make them be advantageous

in characterizing large-scale structures (e.g., edges) and fine-scale textures, respectively. In

this chapter, to exploit their complementary representation mechanisms, we integrate the two

models and propose a joint convolutional analysis and synthesis (JCAS) sparse representa-

tion model for image decomposition. The convolutional implementation is adopted to more

effectively exploit the image global information. In the proposed JCAS model, a single im-

age is adaptively decomposed into two layers, one is used for SSR and the other for ASR.

In addition, the synthesis dictionary is adaptively learned from the given image to capture

the texture pattern for specific tasks. The developed JCAS model exhibits very encouraging

performance in many single image layer separation tasks.
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4.1 Introduction

4.1.1 Image layer decomposition

Image layer separation aims to decompose the input image as the summation of two or more

components for certain tasks. Based on different requirements of these tasks, a variety of

decomposition models have been suggested [74, 76, 80, 95] by assuming different priors

for the decomposition results. In this section, we provide a brief review on the tasks of

rain streak removal and texture cartoon decomposition, which are two typical image layer

decomposition tasks.

Rain streak removal aims to separate a rainy image into a rain-free background layer

and a rain streak layer. The key issue of this task is to appropriately characterize the two

layers. By assuming that rain streaks only appear in the high-frequency part of the image,

some models [24, 80, 87] were designed by first decomposing the image into low-frequency

and high-frequency parts in a classical manner, and then separating the rain streak layer from

background details in the high-frequency part. However, these methods often over-smooth

image details and generate blurry background estimation. Recent works have been proposed

to directly extract the rain streak layer from the input image, e.g., the discriminative sparse

coding method [87] and the Gaussian mixture models (GMM) [80]. These methods adopt

the same type of models to characterize the background part as well as the rain streak part,

and external data are used to train dictionaries or GMM models for the two layers. Different

from the existing models for this task, the proposed JCAS model takes benefit from the

complementary capabilities of ASR and SSR, and yields an effective rain streak removal

method without any extra training data.

Another important layer separating application is texture-cartoon decomposition. Giv-

en an input image Y, texture-cartoon decomposition aims to separate it into a cartoon (piece-

wise smooth) layer and a texture layer. Following the influential work in [95], most of current

methods design specific priors for the two layers. One commonly used formulation is shown

as follows:

minU,V‖Y − U − V‖2
F + λP1(U) + γP2(V), (4.1)
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where U and V represent the cartoon and texture components of the original image Y, re-

spectively. The first term ‖Y − U − V‖2
F maintains the fidelity between the original image

and the estimated layers. The regularization functions P1(∗) and P2(∗) encode the different

characteristics of layers U and V, respectively. The positive constants λ and γ are regular-

ization parameters. Different functional forms of P1(∗) and P2(∗) have been investigated for

the texture-cartoon decomposition task. P1(∗) imposed on the cartoon layer U is often set as

the analysis-based TV regularizer or its extensions [9]. How to properly set the forms of the

regularizers on V, however, still lacks consensus. Some works design this regularizer on the

original image [20] while other on its certain transformations [3]. Some methods do not use

any regularizers for texture representation [137].

4.1.2 Motivation

As introduced in chapter 2, the analysis-based sparse representation (ASR) methods repre-

sent a signal by modeling the distribution of its projection responses over basis (analysis

dictionary). While, the synthesis-based sparse representation (SSR) models characterize a

signal by regularizing the sparseness of synthesis coefficients, i.e., the signal should be able

to be reconstructed by only a few atoms of the dictionary. It is easy to see that though both

models aim to exploit the image sparsity, they emphasize different aspects of image charac-

teristics and have intrinsic differences.

ASR characterizes the complement subspace of a signal. The signal is projected on-

to all the bases in the analysis dictionary, and each analysis dictionary atom contributes to

modeling the signal subspace. Such a mechanism provides a robust prior for the principal

component of the signal, and performs well on approximating the major structure of the

image [41]. However, it adopts zero coefficients to indicate the orthogonality between the

signal and the corresponding basis, and thus cannot take benefit from increased redundancy

of the analysis dictionary. As a result, ASR has limited capacity in modeling textures with

complex patterns, even when textures appear repetitively across the entire image. Compara-

tively, SSR characterizes the union of signal subspaces by selecting several dictionary atoms
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(a) (b) (c)

Figure 4.1. Sparsity maps by analysis and synthesis models. (a) Input image. (b) Number of
nonzeros in analysis sparse representation map. (c) Number of nonzeros in synthesis sparse
representation map. Dark blue indicates coefficients with less nonzeros and red indicates
coefficients with more than five nonzeros.

to reconstruct the signal, and accordingly is able to take benefit from a highly redundant dic-

tionary [41]. Given an appropriate dictionary (learned from training data), repetitive signals

with specific patterns can be reconstructed with highly sparse coefficients. However, due

to the synthesis reconstruction mechanism, SSR is not as effective as ASR in characterizing

image large structures. In Fig. 4.1, we utilize an ASR and an SSR models to approximate the

same input image, and show the number of non-zeros in their respective coefficient maps.

As clearly depicted in Fig. 4.1, the analysis coefficients obtained by ASR can be very sparse

in smooth area, while the coefficients are denser in texture areas. The right image in Fig. 4.1

shows the sparsity of synthesis coefficients in each area. We train the synthesis dictionary

on the input image, and adopt convolutional sparse coding to approximate the input image.

One can see that SSR needs more nonzero coefficients to approximate the smooth area.

In this chapter, in order to take the advantage of both ASR and SSR, we propose

a joint convolutional analysis and synthesis model (JCAS) for image layer decomposition.

More specifically, we propose to use ASR and SSR to approximate the two components U

and V of image Y, respectively. Although sparsity prior has been widely utilized in previous

image decomposition methods [20, 87, 95, 137], most of these methods use the same type of

sparsity model (with different parameters) to characterize different layers. To the best of our

knowledge, this is the first work to utilize the complementary property of ASR and SSR for
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image decomposition. Furthermore, we adopt a convolutional implementation for the SSR

part. Such a convolutional sparse coding approach avoids patch-dividing and enables us to

utilize only several atoms to model the complex (but highly repetitive) textures in an image.

4.2 Our method

4.2.1 JCAS model

Single image layer separation is an ill-posed problem, and thus priors of the desired solu-

tion are required to provide supplementary information. In the proposed JCAS model, a

synthesis-based prior model and an analysis-based prior model are utilized to regularize the

two layers, respectively.

Using the MAP estimator, the separation results can be achieved by solving the fol-

lowing objective function:

minU,Z‖Y − U −
∑N

j
fS,j ⊗ Zj‖2

F + λ
M∑
i

‖fA,i ⊗ U‖1 + γ
N∑
j

‖Zj‖1, (4.2)

where ‖ ∗ ‖1 is the `1 norm, and λ and γ are regularization parameters imposed on the analy-

sis and synthesis prior terms, respectively. Here we model the layer V as V =
∑N

j fS,j ⊗Zj ,

where fS,j is the j-th atom of convolutional synthesis dictionary, Zj is its corresponding co-

efficient map, and “⊗” denotes the convolution operation. Note that we use the convolutional

sparse coding for SSR to avoid partitioning the image into patches.

The analysis prior terms {‖fA,i ⊗ U‖1}i=1,...,M are introduced to characterize the U

component by regularizing the sparseness of its filter responses over analysis filters. As

discussed in the previous sections, ASR is capable of better modeling the major structure of

an image. Thus, the U layer is corresponding to the cartoon and background layers in the

texture-cartoon decomposition and rain streak removal applications, respectively. For layer

V =
∑N

j fS,j ⊗ Zj , we regularize its synthesis coefficients {Z}j=1,...,N over convolutional

synthesis dictionary {fS,j}j=1,...,N . Compared with ASR, SSR is a highly effective model to

reconstruct complex but repetitive textures. Thus, approximating the texture and rain streak
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components with the synthesis layer V will lead to a lower energy of the objective function.

4.2.2 Choice of dictionaries

In (4.2), an analysis dictionary {fA,i}i=1,...,M and a synthesis dictionary {fS,j}j=1,...,N are

adopted to assign priors for the two image layers, respectively. In this section, we present

details on how to properly choose the two dictionaries.

The specification of dictionary in a sparse coding model plays an important role in

deducing an appropriate sparse representation of the input signal [112]. The early studies on

sparse representation often utilize mathematical tools to analyze the signal data, and directly

design and fix a class of functions as the dictionary for data representation in a hand-craft

manner. During the last decade, in order to get a finer adaption to specific instances of

the data, dictionary learning methods have been investigated from different points of view

[112]. Compared with hand-crafted dictionaries, the dictionary learned from data is often

capable of delivering better results due to its adaptability to the targeted scenario. However,

for those applications (such as texture-cartoon decomposition) where training data are hard

to collect to train the desired dictionary, hand-crafted dictionary is still more preferred due

to its simplicity and efficiency. In this chapter, we utilize different strategies to set the two

dictionaries for ASR and SSR, based on their different characteristics.

ASR utilizes the analysis dictionary to model the rareness of a signal, and each dic-

tionary atom will be compared with the signal (by the inner product). Although this limits

the employment of a highly redundant dictionary to provide flexible prior, it makes ASR

a very robust model in capturing major structures of an image. Even with an extremely

simple analysis dictionary (e.g. the gradient operators), some algorithms can achieve very

competitive results in different applications [114]. Thus, in this chapter, we directly adopt

the simple gradient operators (1st order and 2nd order) as our analysis dictionary for fast

decomposition.

Different from the ASR model, the SSR method selects dictionary atoms to recon-

struct the given signal. Having an over-complete dictionary, SSR is able to reconstruct the
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input signal with very sparse coefficients. However, hand-crafted dictionary is hard to re-

construct the complex image structures using only a few atoms, and thus dictionary learning

method is required to learn synthesis dictionary from training data [1]. In this chapter, we

learn a convolutional synthesis dictionary of the texture layer from the input image itself.

Such a strategy not only avoids the requirement of external training data with candidate tex-

ture types, but also makes JCAS be able to represent the texture layer with only several

atoms. The detailed synthesis dictionary learning method will be introduced in the following

optimization section.

4.2.3 Optimization

As introduced in the previous sections, our method learns the synthesis dictionary during

the decomposition process. Thus, for the objective function in (4.2), the synthesis dictionary

{fS,j}j=1,...,N is a variable to be optimized. We rewrite the convolution in a matrix multipli-

cation form, and add some constraints to ensure the boundness of the synthesis filters. The

new objective function for our JCAS model has the following form:

minu,fS ,z‖y−u−
∑
j

FS,jzj‖2
2+λ
∑
i

‖FA,iu‖1+γ
∑
j

‖zj‖1,

s.t. ‖fS,j‖2
F ≤ 1,

(4.3)

where y, u and zj are the vectorization of image Y, background or cartoon layer U and fea-

ture map Zj , respectively. FA,i and FS,j are the corresponding block circulant with circulant

block (BCCB) matrices of filters fA,i and fS,j , respectively. We update the three variables al-

ternatively, and the details of the optimization of each sub-problem are described as follows.

Updating u To solve the subproblem with respect to u, we fix {fS,j}j=1...N and {zj}j=1...N

and solve the following optimization problem:

minu‖y−u−
∑
j

FS,jzj‖2
2+ λ

∑
i

‖FA,iu‖1. (4.4)

By introducing a group of auxiliary variables {si = FA,iu}i=1,...,M , we solve (4.4) by the
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ADMM algorithm:
uk+1 =(µk

2

∑
i FT

A,iFA,i+I)−1(y−
∑

j FS,jzj + µk
2

∑
i FT

A,isi+ 1
µk

∑
i FA,iLi);

sk+1
i = S λ

µk

(FA,iuk+1 + 1
µk

Li);

Lk+1
i = Lki + µk(FA,iuk+1 − si);
if µk < µmax, µk+1 = µk ∗ ρ;

(4.5)

where Li is the Lagrange variable for si, and µmax and ρ are the parameters in the algorithm.

S λ
µk

(∗) denotes the soft-thresholding operator with parameter λ
µk

, which is the solution for

the `1-norm proximation problem. Thanks to the property of BCCB matrix, the closed-form

solution in the u-step in (4.5) can be efficiently obtained in the FFT domain.

Updating z Fixing u and the synthesis dictionary fS , we solve the following sub-problem to

obtain z:

minz‖y− u−
∑
j

FS,jzj‖2
2 + γ

∑
j

‖zj‖1. (4.6)

The optimization problem in (4.6) is a standard convolutional sparse coding problem. We

utilize the algorithm in [134] to solve it, which adopts the ADMM scheme and exploits the

FFT to improve computation efficiency.

Updating fS With the fixed u and coefficients z, we need to update the synthesis dictio-

nary. Let vec(fS,j ⊗ Zj) = FS,jzj = ZfS , where fS is the vectorization of all the filters

{fS,j}j=1,...,N , Z = [Z1, . . . ,Zj, . . . ,ZN ], and Zj is generated by collecting the patches in

Zj . The objective function can be re-written as the following equivalent form:

minfS‖y− u−ZfS‖2
2, s.t. ‖fS,j‖2

F ≤ 1, (4.7)

We utilize a proximal gradient descent method to solve (4.7):{
f t+0.5
S = f tS − τZT (y− u−Zf tS);

f t+1
S = Prox‖·‖≤1(f t+0.5

S ).
(4.8)

In (4.8), τ is the step length of the gradient descent step, and Prox‖·‖≤1(∗) is the `2-ball

proximal operator, which makes each filter satisfy the constraint ‖fS,j‖2
F ≤ 1:

Prox‖·‖≤1(x) =

{
x if ‖x‖2 ≤ 1;
x
‖x‖2 if ‖x‖2 > 1.

(4.9)
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Figure 4.2. Some intermediate results of JCAS for the texture-cartoon decomposition. The
synthesis dictionary is able to gradually capture the pattern of textures and remove texture
from input image.
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Algorithm 4.1 JCAS algorithm for image decomposition
Input: Input image Y, analysis filters {fA,i}i=1,...,M , regularization parameters λ, γ

1: for k=1:K do
2: Solve uk by (4.5)
3: if k == 1, initialize {fS,j}j=1,...,N as the PCA bases of the patches in (y− u1)
4: Solve zkj by (4.6)
5: Update synthesis filters {fS,j}j=1,...,N by (4.8)
6: end for

Output: Decomposition results U and V

The whole procedures of our method are summarized in Algorithm 4.1. Since all

the three sub-problems involved in our algorithm are convex, each step will not increase the

energy of the objective function (4.3). For our lower bounded objective function (4.3), the

optimization process is guaranteed to converge in terms of energy. We experimentally found

that the energy of loss function reduces rapidly. For all the experiments in this chapter, we

set the maximum number of iterations as 15.

4.2.4 Discussions

The proposed JCAS model is a non-convex model. Given the input image and the analysis

dictionary, we need to estimate not only the image layers but also the synthesis dictionary.

For such a non-convex optimization problem, the initialization and the optimization order

of the variables play an important role in our algorithm. In Algorithm 4.1, we initialize

{z0
S,j}j=1,...,N as all zero matrix and solve the u sub-problem first. The estimation u1 provide

us a coarse evaluation of the background layer, and the residual image y− u1 contains back-

ground details as well as repetitive textures. Then, we extract patches in the residual image

y−u1 and utilize the PCA dictionary to initialize the synthesis dictionary {f 1
S,j}j=1,...,N . Hav-

ing the synthesis dictionary, we are able to get an estimation of the texture layer
∑N

j F1
S,jz1

j

by solving the convolutional sparse coding problem. Due to the sparsity regularization and

the constraint on the number of synthesis dictionary atoms, the synthesis approximation∑N
j FS,jz1

j of the residual image tends to focus on the texture pattern while ignoring the de-

tails from background image. As a result, the details removed in the previous iteration are

still in the residual image y − u −
∑N

j FS,jz1
j . Such a fact helps us gradually extract the

64



texture layer without over-smoothing the background layer.

In Figure 4.2, we provide some intermediate results of JCAS for texture-cartoon de-

composition. In the first iteration, the weak analysis-prior (with the simple gradient oper-

ators as the analysis dictionary) provides a coarse estimation of the background. To avoid

over-smoothing of the background, a small regularization parameter λ is adopted, and there

are still a large amount of textures in u1. Furthermore, with the PCA initialized dictionary,

the synthesis component v1 is not able to provide a good approximation to the texture. In

the following iterations, the synthesis dictionary gradually captures the texture patterns, and∑N
j FS,jzj extracts the texture layer from the residual y − u. Since the compact synthesis

component only focuses on the textures, the image details in the first iteration of background

estimation are still in the residual image. The following iterations will not lose details but

gradually remove textures. As a result, the proposed method is able to remove the repeti-

tive textures (e.g., the brickwork joint) while keeping the illuminance of background layer

(e.g., bricks with different color) unchanged. In the next section, we provide more experi-

mental results on the texture-cartoon decomposition and rain streak removal applications to

demonstrate the superiority of the proposed JCAS model.

4.3 Experimental results

In this section, we evaluate the proposed JCAS model on the rain streak removal and texture-

cartoon decomposition tasks.

4.3.1 Experimental results on rain streak removal

Rain streak removal aims to decompose a rainy image to a rain-free background and a rain

streak layer. Due to the complex appearance of rain streaks as well as outdoor background

in images, rain streak removal is a challenging image layer decomposition problem. In the

last several years, many models [24, 64, 68, 80, 87] have been proposed to deal with the

rain streak removal problem. To validate the effectiveness of the proposed JCAS model, we
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compare JCAS with state-of-the-art rain streak removal algorithms in this section.

As introduced in the previous sections, to better capture the texture pattern, we pro-

posed to learn a synthesis dictionary from the input image during the decomposition process.

Attributed to the convolutional representation behavior in our model, we are able to use 4

convolutional dictionary atoms of size 7×7 to reconstruct the rain streak layer. Some priors

of rain images are further utilized to improve the removal performance. Specifically, we take

benefit from the directional prior as well as the non-negative prior of rain streaks. The ver-

tical orientation prior has been utilized in [68]. With this prior, we only adopt the horizonal

gradient filters [−1, 1] and [−1, 0, 1] as the analysis dictionary for rain removal application.

While, we also know the non-negativeness of the rain layer, and we incorporate it by adding

positive constraints for both the synthesis coefficients and dictionary in (4.3). This prior will

not introduce further computation burden in the optimization process. By simply changing

the proximal steps in the z and fS subproblems to their non-negative version, we can get the

non-negative estimation.

We compare the proposed method with different rain streak removal algorithms,

which include the frequency domain decomposition method [64], the low-rank appearance

model (LRA) [24], the discriminative sparse coding (DSC) method [87] and the layer-prior

method (LP) [80]. The code of the LRA algorithm [24] is written by ourselves, while the

codes of other competing methods are provided by authors of these methods. To validate

the effectiveness of joint sparse representation, we also provide the rain removal results by a

single ASR prior as the baseline.

To quantitatively compare the proposed JCAS algorithm with other methods, we per-

form rain streak removal experiments on 14 synthetic rainy images. The first two images

are from [64] and the remaining 12 images are provided by [80]. The parameters for each

algorithm are the same on all the 14 images. Specifically, we set the parameters λ and γ in

our JCAS model as 0.005 and 0.02, and the same parameter for the analysis term λ = 0.005

is utilized for the baseline method ASR. For the other competing methods, we have carefully

tuned their parameters for their best performance on the dataset.
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Table 4.1. Experimental results (SSIM) of all competing methods on 14 images.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ave.

ASR 0.53 0.65 0.81 0.88 0.79 0.94 0.91 0.93 0.94 0.82 0.89 0.83 0.85 0.82 0.83

Kang’s [64] 0.54 0.73 0.68 0.75 0.81 0.72 0.57 0.71 0.79 0.74 0.70 0.70 0.58 0.73 0.70

LRA [24] 0.57 0.75 0.79 0.84 0.76 0.82 0.86 0.88 0.91 0.80 0.86 0.79 0.82 0.78 0.80

DSC [87] 0.52 0.59 0.79 0.85 0.72 0.94 0.89 0.92 0.93 0.78 0.8867 0.77 0.84 0.77 0.76

LP [80] 0.56 0.77 0.86 0.91 0.92 0.92 0.87 0.94 0.94 0.88 0.90 0.86 0.84 0.91 0.87

JCAS 0.58 0.76 0.88 0.94 0.88 0.95 0.91 0.94 0.96 0.91 0.94 0.90 0.90 0.92 0.88

(a) Input Image (b) Groundtruth (c) ASR (d) Kang’s method [64]

(e) LR [24] (f) DSC [87] (g) LP [80] (h) JCAS

Figure 4.3. Rain streak removal results on a synthetic image by different methods.
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(a) Input Image (b) Kang’s method [64] (c) LR [24]

(d) DSC [87] (e) LP [80] (f) JCAS

Figure 4.4. Visual comparison of different rain streak removal algorithms on a real rainy
images.

We follow the experimental setting in [80] and compare different results with their

structure similarity (SSIM) indexes [131] between the ground truth image. The SSIM in-

dexes by different methods on the testing images are provided in Table 4.1, where the best

results are highlighted in bold. The proposed JCAS algorithm achieves the best results on

11 out of 14 testing images, and the second best on the others. Furthermore, the much high-

er SSIM index of JCAS over ASR validates the effectiveness of our idea of joint ASR and

SSR approximation. By extracting repetitive textures from the input image, the synthesis

model helps the analysis model to better characterize the latent background. An example

of rain removal on a synthetic image is provided in Figure 4.3. Kang’s method produces an

over-smoothed estimation which loses many details in the background. The results by other

competing methods preserve most of the details in the background but also keep some streak

residuals. Compared with these methods, the proposed JCAS provides a cleaner background

estimation which has less rain streak residuals.

In Fig. 4.4 and Fig. 4.5, we show the results on two real rainy images. The highlight

windows clearly show the advantages of the proposed algorithm. It is easy to see that JCAS

removes more rain streaks and keeps details better in the background layer.
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(a) Input Image (b) Kang’s method [64] (c) LR [24]

(d) DSC [87] (e) LP [80] (f) JCAS

Figure 4.5. Visual comparison of different rain streak removal algorithms on a real rainy
images.

4.3.2 Experimental results on texture-cartoon decomposition

Texture-cartoon decomposition aims to separate the input image into a cartoon part U, which

consists of only the image contrasted shape, and a textural part V, which consists of the os-

cillating patterns [9]. A successful texture-cartoon decomposition can lead to improvements

for subsequent image processing operations. Furthermore, as a classical image layer decom-

position problem, texture-cartoon decomposition also provides researchers a good testing

bed for image prior modeling algorithms.

In this part, we test the proposed model on the texture-cartoon decomposition appli-

cation. Since the textures in texture-cartoon decomposition problem are more complex than

rain streaks, we adopt 8 filters in the synthesis dictionary. The comparison methods include

relative total variation (RTV) [137], fast cartoon+texture filtering (FCTF) [9] and recently

proposed static and dynamic guidance filtering method (SDF) [56]. The codes of the com-

parison methods are provided by the authors of these methods. We have carefully tuned their

parameters on each of the testing images for fair comparison.
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Since there is no groundtruth for cartoon-texture decomposition, it is hard to compare

the different methods quantitatively. Therefore, in Fig. 4.6, Fig. 4.7 and Fig. 4.8, we

provide some visual examples of the cartoon estimations by different methods. In the Floor

image, RTV [137] and FCTF [9] algorithms tend to blur the edges, and thus lose some

details in the estimation. SDF [56] is able to generate cartoon estimation with sharp edges.

However, it tends to ignore the details in low-contrast areas, e.g., the white areas on the bird

wings have been removed in its result. Compared with other methods, the proposed JCAS

model contains more fine detailed structures on the bird wings and the branch areas. A

more illustrative example is provided in 4.7, where RTV [137] and SDF [56] methods fail to

remove the white grids in dark area and produce blurry background estimations in the low-

contrast areas. FCTF [9] and JCAS successfully remove the high-contrast textures, however,

the illuminance of the extremity in the pink island area has been changed in the result of

FCTF [9]. In Fig 4.8, we provide another visual example, compared with other methods, the

proposed JCAS method is able to generate better cartoon estimation with sharper edges.

4.4 Conclusion

In this chapter, we integrated the ASR and SSR models to deal with the single image layer

separation problem. An analysis-component and a synthesis-component were utilized to

approximate the input image jointly in the developed model. The complementary property

of the ASR and SSR models makes the two components compensate for each other well in

modeling different types of image structures. As a result, the proposed JCAS model is able to

finely extract textures in an input image without over-smoothing the background layer. Our

experimental results on texture-cartoon decomposition and rain streak removal validate the

effectiveness of the proposed model. The proposed JCAS model is expected to inspire more

future investigations on the behaviors of analysis-based and synthesis-based prior modeling

methods.
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Input RTV [137]

FCTF [9] SDF [56] JCAS

Figure 4.6. The texture removal results by different methods on the Floor image.
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Input RTV [137]

FCTF [9] SDF [56] JCAS

Figure 4.7. The texture removal results by different methods on the Map image.
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Input RTV [137]

FCTF [9] SDF [56] JCAS

Figure 4.8. The texture removal results by different methods on the Ground image.
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CHAPTER 5

WEIGHTED NUCLEAR NORM MINIMIZATION AND ITS APPLICATIONS TO

LOW LEVEL VISION

In the previous chapters, we studied sparse representation models for one dimensional signal

vectors. When we have a group of related vectors, simply encoding each vector individually

will not exploit the correlation among those vectors. By stacking these vectors into a matrix,

many methods have been adopted to model the low-rankness of the data matrix, which can

be viewed as a special sparsity prior that characterize the sparsity of matrix independent sub-

spaces. One representative work is the nuclear norm minimization (NNM) approach, which

minimizes the convex envelop of the rank function. NNM regularizes each singular value

equally, composing an easily calculated convex norm. However, this restricts its capability

and flexibility in dealing with many practical problems, where the singular values have clear

physical meanings and should be treated differently. In this chapter we propose the weighted

nuclear norm minimization (WNNM) problem, which adaptively assigns weights on dif-

ferent singular values. As the key step of solving general WNNM models, the theoretical

properties of the weighted nuclear norm proximal (WNNP) operator are investigated. Albeit

nonconvex, we prove that WNNP is equivalent to a standard quadratic programming prob-

lem with linear constrains, which facilitates solving the original problem with off-the-shelf

convex optimization solvers. In particular, when the weights are sorted in a non-descending

order, its optimal solution can be easily obtained in closed-form. With WNNP, the solving

strategies for multiple extensions of WNNM, including robust PCA and matrix completion,

can be readily constructed under the alternating direction method of multipliers paradigm.

Furthermore, inspired by the reweighted sparse coding scheme, we present an automatic
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weight setting method, which greatly facilitates the practical implementation of WNNM.

The proposed WNNM methods achieve state-of-the-art performance in typical low level vi-

sion tasks, including image denoising, background subtraction and image inpainting. Most

of the contents in this chapter have been published in [54] and [53].

5.1 Introduction

5.1.1 Low rank matrix approximation

Low rank matrix approximation (LRMA), which aims to recover the underlying low rank

matrix from its degraded observation, has a wide range of applications in computer vision

and machine learning. For instance, human facial images can be modeled as reflections of

a Lambertian object and approximated by a low dimensional linear subspace; this low rank

nature leads to a proper reconstruction of a face model from occluded/corrupted face im-

ages [65, 84, 151]. In recommendation systems, the LRMA approach has achieved outstand-

ing performance on the celebrated Netflix competition, whose low-rank insight is based on

the fact that the customers′ choices are mostly affected by only a few common factors [115].

In background subtraction, the video clip captured by a surveillance camera is generally

taken under a static scenario in background and with relatively small moving objects in

foreground over a period, naturally resulting in its low-rank property; this has inspired vari-

ous effective techniques on background modeling and foreground object detection in recent

years [14, 101]. In image processing, it has also been shown that the matrix formed by non-

local similar patches in a natural image is of low rank; such a prior knowledge benefits the

image restoration tasks [130]. Owing to the rapid development of convex and non-convex op-

timization techniques in past decades, there have been a flurry of studies in LRMA, and many

important models and algorithms have been reported [10, 12, 14, 15, 42, 45, 65, 82, 119].

The current development of LRMA can be categorized into two categories: the low

rank matrix factorization (LRMF) approaches and the rank minimization approaches. Giv-

en a matrix Y ∈ <m×n, LRMF aims to factorize it into two smaller ones, A ∈ <m×k and
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B ∈ <n×k, such that their product ABT can reconstruct Y under certain fidelity loss function-

s. Here k < min(m,n) ensures the low-rank property of the reconstructed matrix ABT . A

variety of LRMF methods have been proposed, including the classical singular value decom-

position (SVD) under `2-norm loss, robust LRMF methods under `1-norm loss, and many

probabilistic methods [10, 42, 65, 71, 98, 119].

Rank minimization methods represent another main branch along this line of re-

search. These methods reconstruct the data matrix through imposing an additional rank con-

straint upon the estimated matrix. Since direct rank minimization is NP hard and is difficult

to solve, the problem is generally relaxed by substitutively minimizing the nuclear norm of

the estimated matrix, which is a convex relaxation of minimizing the matrix rank [44]. This

methodology is called as nuclear norm minimization (NNM). The nuclear norm of a matrix

X, denoted by ‖X‖∗, is defined as the sum of its singular values, i.e., ‖X‖∗ =
∑

i σi(X),

where σi(X) denotes the i-th singular value of X. The NNM approach has been attracting

significant attention due to its rapid development in both theory and implementation. On one

hand, it has been proved in [14] that from the noisy input, its intrinsic low-rank reconstruc-

tion can be exactly achieved with a high probability through solving an NNM problem. On

the other hand, it has been proved in [12] that the nuclear norm proximal (NNP) problem

X̂ = proxλ‖�‖∗(Y) = arg minX ‖Y − X‖2
F + λ‖X‖∗ (5.1)

can be easily solved in closed-form by imposing a soft-thresholding operation on the singu-

lar values of the observation matrix:

X̂ = USλ
2
(Σ)VT , (5.2)

where Y = UΣVT is the SVD of Y and Sλ
2
(Σ) is the soft-thresholding function on diagonal

matrix Σ with parameter λ
2
. For each diagonal element Σii in Σ, there is

Sλ
2
(Σ)ii = max

(
Σii −

λ

2
, 0

)
. (5.3)

By utilizing NNP as the key proximal technique [100], many NNM-based models have been

proposed in recent years [12, 63, 81, 82].
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5.1.2 Motivation

Although NNM is successful, it does have limitations. In traditional NNM, all singular

values are treated equally and shrunk with the same threshold λ
2

as defined in (5.3). This,

however, ignores the prior knowledge we often have on singular values of a practical data

matrix. More specifically, larger singular values of an input data matrix quantify the informa-

tion of its underlying principal directions. For example, the large singular values of a matrix

of image similar patches deliver the major edge and texture information. This implies that

to recover an image from its corrupted observation, we should shrink less the larger singular

values while shrinking more the smaller ones. Clearly, traditional NNM model, as well as its

corresponding soft-thresholding solvers, are not flexible enough to handle such issues.

To improve the flexibility of NNM, we propose the weighted nuclear norm and study

its minimization in this chapter. The weighted nuclear norm of a matrix X is defined as

‖X‖w,∗ =
∑

iwiσi(X), (5.4)

where w = [w1, . . . , wn]T andwi ≥ 0 is a non-negative weight assigned to σi(X). The weight

vector will enhance the representation capability of the original nuclear norm. Rational

weights specified based on the prior knowledge and understanding of the problem will benefit

the corresponding weighted nuclear norm minimization (WNNM) model for achieving a

better estimation of the latent data from the corrupted input. The difficulty of solving the

WNNM model, however, lies in that it is non-convex in general cases, and the sub-gradient

method [12] used for achieving the closed-form solution of an NNP problem is no longer

applicable. In this chapter, we investigate in detail how to properly and efficiently solve such

a non-convex WNNM problem.

As the NNP operator to the NNM problem, the following weighted nulcear norm
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proximal (WNNP)1 operator determines the general solving regime of the WNNM problem:

X̂ = prox‖�‖w,∗(Y) = arg minX ‖Y − X‖2
F + ‖X‖w,∗. (5.5)

We prove that the WNNP problem can be equivalently transformed to a quadratic program-

ming (QP) problem with linear constraints. This allows us to easily reach the global opti-

mum of the original problem by using off-the-shelf convex optimization solvers. We further

show that when the weights are non-descending, the global optimum of WNNP can be eas-

ily achieved in closed-form, i.e., by a so-called weighted soft-thresholding operator. Such

an efficient solver makes it possible to utilize weighted nuclear norm in more complex ap-

plications. Particularly, we propose the WNNM-based robust principle component analysis

(WNNM-RPCA) model and WNNM-based matrix completion (WNNM-MC) model, and

solve these models by virtue of the WNNP solver. Furthermore, inspired by the previous

developments of reweighted sparse coding, we present a rational scheme to automatically

set the weights for the given data.

To validate the effectiveness of the proposed WNNM models, we test them on sever-

al typical low level vision tasks. Specifically, we first test the performance of the proposed

WNNP model on image denoising. By utilizing the nonlocal self-similarity prior of images

[8], the WNNP model achieves superior performance to state-of-the-art denoising algorithm-

s. We perform the WNNM-RPCA model on the application of background subtraction. Both

the quantitative results and visual examples demonstrate the superiority of the proposed mod-

el beyond previous low-rank learning methods. We further apply WNNM-MC to the image

inpainting task, and it also shows competitive results with state-of-the-art methods.

1A general proximal operator is defined on a convex problem to guarantee an accurate projection. Although
the problem here is nonconvex, we can strictly prove that it is equivalent to a convex quadratic programing
problem in Section 5.2. We thus also call it a proximal operator throughout the chapter for convenience.

78



5.2 Weighted Nuclear Norm Minimization for Low Rank Modeling

In this section, we first introduce the general solving scheme for the WNNP problem (5.5),

and then introduce its WNNM-RPCA and WNNM-MC extensions. Note that these WNNM

models are more difficult to optimize than conventional NNM ones due to the non-convexity

of the involved weighted nuclear norm. Furthermore, the sub-gradient method proposed in

[12] to solve NNP is not applicable to WNNP. We thus construct new solving regime for this

problem. Obviously, NNM is a special case of WNNM when all the weights wi are set the

same. Our solution thus covers that of the traditional NNP.

5.2.1 Weighted nuclear norm proximal for WNNM

To analyze the proximal operation of weighted nuclear norm, we first introduce the following

Lemma, which comes from the classical von Neumanns trace inequality [97]:

Lemma 5.2.1. (von Neumanns trace inequality [97]) For any m × n matrices A and B,

tr
(
ATB

)
≤
∑

i σi(A)σi(B), where σ1(A) ≥ σ2(A) ≥ · · · ≥ 0 and σ1(B) ≥ σ2(B) ≥

· · · ≥ 0 are the descending singular values of A and B, respectively. The case of equality

occurs if and only if it is possible to find unitaries U and V that simultaneously singular

value decompose A and B in the sense that

A = UΣAVT , and B = UΣBVT ,

where ΣA and ΣB denote the ordered eigenvalue matrices with singular value σ(A) and

σ(B) along the diagonal with the same order, respectively.

Based on the result of Lemma 5.2.1, we can deduce the following important theorem.

Theorem 5.2.1. Given Y ∈ <m×n, without loss of generality, we assume that m ≥ n,

and let Y = UΣVT be the SVD of Y, where Σ =

 diag(σ1, σ2, ..., σn)

0

 ∈ <m×n.
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The global optimum of the WNNP problem in (5) can be expressed as X̂ = UD̂VT , where

D =

 diag(d1, d2, ..., dn)

0

 is a diagonal non-negative matrix and (d1, d1, ..., dn) is the

solution to the following convex optimization problem:

min
d1,d2,...,dn

∑n

i=1
(σi − di)2 + widi,

s.t. d1≥d2≥ ...≥dn≥0.

(5.6)

The proof of Theorem 5.2.1 can be found in the Appendix B.3. Theorem 5.2.1 shows

that the WNNP problem can be transformed into a new optimization problem (5.6). It is in-

teresting that (5.6) is a quadratic optimization problem with linear constraints, and its global

optimum can be easily calculated by off-the-shelf convex optimization solvers. This means

that for the non-convex WNNP problem, we can always get its global solution through (5.6).

In the following corollary, we further show that the global solution of (5.6) can be achieved

in closed-form when the weights are sorted in a non-descending order.

Corollary 5.2.1. If σ1 ≥ . . . ≥ σn ≥ 0 and the weights satisfy 0 ≤ w1 ≤ . . . ≤ wn, then the

global optimum of (5.6) is d̂i = max
(
σ − wi

2
, 0
)
.

The proof of Corollary 5.2.1 is given in Appendix B.4. The conclusion in Corollary

5.2.1 is very useful. The singular values of a matrix are sorted in a non-ascending order, and

the larger singular values usually correspond to the subspaces of more important components

of the data matrix. We thus always expect to shrink less the larger singular values to keep the

major and faithful information of the latent data. In this sense, Corollary 5.2.1 guarantees

that we have a closed-form optimal solution for the WNNP problem by the weighted singular

value soft-thresholding operation:

proxλ‖�‖w,∗(Y) = USw
2
(Σ)VT,

where Y = UΣVT is the SVD of Y, and Sw
2
(Σ) is the generalized soft-thresholding operator

with weight vector w

Sw
2
(Σ)ii = max

(
Σii −

wi
2
, 0
)
.
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Note that when all the weights wi are set the same, the above WNNP solver exactly degen-

erates to the NNP solver for the traditional NNM problem.

A recent work by Lu et al. [85] has proved a similar conclusion to our Corollary 5.2.1.

As Lu et al. analyzed the generalized singular value regularization model with different

penalty functions for the singular values, the condition in their paper is the monotonicity

property of the proximal operator which is determined by the penalty function. While our

work attains the WNNP solver in general weighting cases rather than only in the case of

nonascendingly ordered weights. Interested readers may refer to the proof in Appendix B

and [85] for details.

Algorithm 5.1 WNNM-RPCA
Input: Observation data Y, weight vector w

1: Initialize µ0 > 0, ρ > 1, θ > 0, k = 0, X0 = Y, L0 = 0;
2: do
3: Ek+1 =arg minE ‖E‖1+ µk

2
‖Y+µ−1

k Lk−Xk−E‖2
F ;

4: Xk+1 =arg minX ‖X‖w,∗+ µk
2
‖Y+µ−1

k Lk−Ek+1−X‖2
F ;

5: Lk+1 = Lk + µk(Y − Xk+1 − Ek+1);
6: Update µk+1 = ρ ∗ µk;
7: k = k + 1;
8: while ‖Y − Xk+1 − Ek+1‖F/‖Y‖F > θ

Output: Matrix X = Xk+1 and E = Ek+1;

5.2.2 WNNM for robust PCA

In last section, we analyzed the optimal solution to the WNNP operator for the WNNM prob-

lem. Based on our definition of WNNP in (5.5), prox‖�‖w,∗(Y) is the low rank approximation

to the observation matrix Y under the F -norm data fidelity term. However, in real applica-

tions, the observation data may be corrupted by outliers or sparse noise with large magnitude.

In such cases, the large magnitude noise, even with small amount, tends to greatly affect the

F -norm data fidelity and lead to a biased low rank estimation. The recently proposed NNM-

based RPCA (NNM-RPCA) method [14] alleviates this problem by optimizing the following

problem:

minE,X ‖E‖1 + ‖X‖∗, s.t. Y = X + E. (5.7)
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Using the `1-norm to model the error E, model (5.7) guarantees a more robust matrix approx-

imation in the presence of outliers/sparse noise. In particular, it is proved in [14] that if the

low rank matrix X and the sparse component E satisfy certain conditions, the NNM-RPCA

model (5.7) can exactly recover X with a probability close to 1.

In this section, we propose to use the weighted nuclear norm to reformulate (5.7),

leading to the following WNNM-based RPCA (WNNM-RPCA) model:

min
E,X
‖E‖1 + ‖X‖w,∗, s.t. Y = X + E. (5.8)

As in NNM-RPCA, we also employ the alternating direction method of multipliers (ADMM)

to solve the WNNM-RPCA problem. Its augmented Lagrange function is

Γ(X,E,L, µ) = ‖E‖1+‖X‖w,∗+〈L,Y − X − E〉+µ

2
‖Y − X − E‖2

F , (5.9)

where L is the Lagrange multiplier and µ is a positive scaler. The optimization procedure

is described in Algorithm 5.1. Note that the convergence of this ADMM algorithm is more

difficult to analyze than the convex NNM-RPCA model due to the non-convexity of the

WNNM-RPCA model. We give the following weak convergence result to facilitate the con-

struction of a rational termination condition for Algorithm 5.1.

Theorem 5.2.2. If the weights are sorted in a non-descending order, the sequences {Ek} and

{Xk} generated by Algorithm 5.1 satisfy:

(1) lim
k→∞
‖Xk+1 − Xk‖F = 0,

(2) lim
k→∞
‖Ek+1 − Ek‖F = 0.

(3) lim
k→∞
‖Y− Ek+1 − Xk+1‖F = 0.

The proof of Theorem 5.2.2 can be found in Appendix B.4.1. Please note that the

proof of Theorem 5.2.2 relies on the unboundedness of the parameter µk. In most of previous

ADMM based methods, an upper bound of µk is needed to ensure the optimal solution for

convex objective functions [82]. However, since our WNNM-RPCA model is non-convex
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for general weight conditions, we use an unbounded µk to guarantee the convergence of

Algorithm 5.1. If µk increases too fast, the iteration may stop quickly and we might not get

a good solution. Thus in both Algorithm 5.1 and the following Algorithm 5.2, a small ρ is

adopted to prevent µk from increasing too fast. Please refer to the experiments in sections

5.4 and 5.5 for more details.

Algorithm 5.2 WNNM-MC
Input: Observation data Y, indicator matrix Ω, weight vector w,

1: Initialize µ0 > 0, ρ > 1, θ > 0, k = 0, k = 0, X0 = Y, L0 = 0;
2: do
3: Ek+1 =arg minE‖Y+µ−1

k Lk−Xk−E‖2
F

s.t.‖PΩ(E)‖2
F=0;

4: Xk+1 =arg minX ‖X‖w,∗+ µk
2
‖Y+µ−1

k Lk−Ek−X‖2
F ;

5: Lk+1 = Lk + µk(Y − Xk+1 − Ek+1);
6: Update µk+1 = ρ ∗ µk;
7: k = k + 1;
8: while ‖Y − Xk+1 − Ek+1‖F/‖Y‖F > θ

Output: X = Xk+1;

5.2.3 WNNM for matrix completion

In section 5.2.2, we introduced the WNNM-RPCA model and provided the ADMM algo-

rithm to solve it. In this section, we further use WNNM to deal with the matrix completion

problem, and propose the following WNNM-based matrix completion (WNNM-MC) model:

minX ‖X‖w,∗ s.t. PΩ(X) = PΩ(Y), (5.10)

where Ω is a binary support indicator matrix of the same size as Y, and zeros in Ω indicate

the missing entries in the observation matrix. PΩ(Y) = Ω � Y is the element-wise matrix

multiplication (Hardamard product) between the support matrix Ω and the variable Y. The

constraint implies that the estimated matrix X agrees with Y in the observed entries.

By introducing a variable E, we reformulate (5.10) as

minX ‖X‖w,∗, s.t. X + E = Y, PΩ(E) = 0. (5.11)

The ADMM algorithm for solving WNNM-MC can then be constructed in Algorithm 5.2.

For non-descending weights, both the subproblems in steps 3 and 4 of Algorithm 5.2 have
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closed-form optimal solutions. However, as the weighted nuclear norm is not convex, it is

difficult to accurately analyze the convergence of the algorithm. Like in Theorem 5.2.2, in

the following Theorem 5.2.3, we also present a weak convergence result.

Theorem 5.2.3. If the weights are sorted in a non-descending order, the sequence {Xk}

generated by Algorithm 5.2 satisfies

(1) lim
k→∞
‖Xk+1 − Xk‖F = 0,

(2) lim
k→∞
‖Y− Ek+1 − Xk+1‖F = 0.

The proof of Theorem 5.2.2 is similar to Theorem 5.2.3, and thus we omit it here.

5.2.4 The setting of weighting vector

In previous sections, we proposed to utilize the WNNM model to solve different problems.

By introducing the weight vector, the WNNM model improves the flexibility of the original

NNM model. However, the weight vector itself also brings more parameters in the model.

Appropriate setting of the weights plays a crucial role in the success of the proposed WNNM

model.

In [16], an effective reweighting mechanism is proposed to enhance the sparsity of

sparse coding solutions by adaptively tuning weights through the following formula:

w`+1
i =

C

|x`i |+ ε
, (5.12)

where x`i is the i-th sparse coding coefficient in the `-th iteration andw`+1
i is its corresponding

regularization parameter in the (`+ 1)-th iteration, ε is a small positive number to avoid

dividing by zero and C is a compromising constant. Such a reweighting procedure has

proved to be capable of getting a good resemble of the `0 norm and the model achieves

superior performance in compressive sensing.

Inspired by the success of reweighted sparse coding, we can adopt a similar reweight-

ing strategy in WNNM by replacing x`i in (5.12) with the singular value σi(X`) in the `th

84



iteration. Because (5.12) is monotonically decreasing with the singular values, the non-

descending order of weights with respect to singular values will be kept throughout the

reweighting process. Very interestingly, the following remark indicates that we can directly

get the closed-form solution of WNNP operator with such a reweighting strategy.

Remark 5.2.1. Let Y = UΣVT be the SVD of Y, where Σ =

 diag(σ1(Y), σ2(Y), ..., σn(Y))

0,

,

and σi(Y) denotes the i-th singular value of Y. If the regularization parameter C is positive

and the positive value ε is small enough to make the inequality ε < min
(√

C, C
σ1(Y)

)
hold,

by using the reweighting formula w`i = C
σi(X`)+ε

with initial estimation X0 = Y, the reweight-

ed WNNP problem {minX ‖Y−X‖2
F +‖X‖w,∗} has the closed-form solution: X∗ = UΣ̃VT ,

where

Σ̃ =

 diag(σ1(X∗), σ2(X∗), ..., σn(X∗))

0,

 ,

and

σi(X∗) =


0 if c2 < 0

c1+
√
c2

2
if c2 ≥ 0

(5.13)

where

c1 = σi(Y)− ε, c2 = (σi(Y) + ε)2 − 4C.

The proof of Remark 5.2.1 can be found in Appendix B.5. Remark 5.2.1 shows that

although a reweighting strategy w`i = C
σi(X`)+ε

is used, we do not need to iteratively perform

the thresholding and weight calculation operations. Based on the relationship between the

singular value of observation matrix X and the regularization parameter C, the convergence

of the sigular value of estimated matrix after the reweighting process can be directly obtained.

In each iteration of both the WNNM-RPCA and WNNM-MC algorithms, such a reweighting

strategy is performed on the WNNP subproblem (step 4 in Algorithms 5.1 and 5.2) to adjust
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weights based on current Xk. Thanks to Remark 1, utilizing reweighting strategy in step 4 of

Algorithm 5.1 and Algorithm 5.2 will increase little the computation burden. We are able to

use an operation to directly shrink the original singular value σi(Y) to 0 or c1+
√
c2

2
, just like

the soft-thresholding operation in the NNM method.

In implementation, we initialize X0 as the observation Y. The above weight setting

strategy greatly facilitates the WNNM calculations. Note that there remains one parameterC

in the WNNM implementation. In all of our experiments, we set it by experience for certain

tasks. Please see the following sections for details.

5.3 Image Denoising by WNNM

In this section, we validate the proposed WNNM model in application of image denoising.

Image denoising is one of the fundamental problems in low level vision, and is an ideal test

bed to investigate and evaluate the statistical image modeling techniques and optimization

methods. Image denoising aims to reconstruct the original image x from its noisy observation

y = x + n, where n is generally assumed to be additive white Gaussian noise (AWGN) with

zero mean and variance σ2
n.

The seminal work of nonlocal means [8] triggers the study of nonlocal self-similarity

(NSS) based methods for image denoising. NSS refers to the fact that there are many re-

peated local patterns across a natural image, and those nonlocal similar patches to a given

patch offer helpful remedy for its better reconstruction. The NSS-based image denoising

algorithms such as BM3D [30], LSSC [89], NCSR [38] and SAIST [37] have achieved state-

of-the-art denoising results. In this section, we utilize the NSS prior to develop the following

WNNM-based denoising algorithm.

5.3.1 Denoising algorithm

For a local patch yj in image y, we can search for its nonlocal similar patches across a rel-

atively large area around it by methods such as block matching [30]. By stacking those
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Algorithm 5.3 Image Denoising by WNNM
Input: Noisy image y

1: Initialize x̂(0) = y, y(0) = y
2: for k=1:K do
3: Iterative regularization y(k) = x̂(k−1) + δ(y− ŷ(k−1))
4: for each patch yj in y(k) do
5: Find similar patch group Yj

6: Apply the WNNP operator to Yj to estimate Xj

7: end for
8: Aggregate Xj to form the clean image x̂(k)

9: end for
Output: Denoised image x̂(K)

nonlocal similar patches into a matrix, denoted by Yj , we have Yj = Xj + Nj , where Xj

and Nj are the original clean patch matrix and the corresponding corruption matrix, respec-

tively. Intuitively, Xj should be a low rank matrix, and the LRMA methods can be used to

estimate Xj from Yj . By aggregating all the estimated patches Yj , the whole image can be

reconstructed. Indeed, the NNM method has been adopted in [62] for video denoising, and

we apply the proposed WNNP operator to each Yj to estimate Xj for image denoising. By

using the noise variance σ2
n to normalize the F-norm data fidelity term ‖Yj−Xj‖2

F , we have

the following energy function:

X̂j = arg minXj
1
σ2
n
‖Yj − Xj‖2

F + ‖Xj‖w,∗. (5.14)

Throughout our experiments, we set the parameter C as
√

2n by experience, where n is the

number of similar patches.

By applying the above procedures to each patch and aggregating all patches together,

the image x can be reconstructed. In practice, we can run several iterations of this reconstruc-

tion process across all image patches to enhance the denoising outputs. The whole denoising

algorithm is summarized in Algorithm 5.3.

87



     

     

     

     

 

Figure 5.1. The 20 test images used in image denoising experiments.

5.3.2 Experimental setting

We compare the proposed WNNM-based image denoising algorithm with several state-of-

the-art denoising methods, including BM3D2 [30], EPLL3 [158], LSSC4 [89], NCSR5 [38]

and SAIST6 [37]. The baseline NNM algorithm is also compared. All the competing meth-

ods exploit the image nonlocal redundancies.

There are several other parameters (δ, the iteration number K and the patch size) in

the proposed algorithm. For all noise levels, the iterative regularization parameter δ is fixed

to 0.1. The iteration number K and the patch size are set based on noise level. For higher

noise level, we choose bigger patches and run more times the iteration. By experience, we

set patch sizes to 6×6, 7×7, 8×8 and 9×9 for σn ≤ 20, 20 < σn ≤ 40, 40 < σn ≤ 60 and

60 < σn, respectively. The iteration number K is set to 8, 12, 14, and 14, and the number of

selected non-local similar patches is set to 70, 90, 120 and 140, respectively, on these noise

levels.

2http://www.cs.tut.fi/ foi/GCF-BM3D/BM3D.zip
3http://people.csail.mit.edu/danielzoran/noiseestimation.zip
4http://lear.inrialpes.fr/people/mairal/software.php
5http://www4.comp.polyu.edu.hk/∼cslzhang/code/NCSR.rar
6http://www.csee.wvu.edu/ xinl/demo/saist.html
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For NNM, we use the same parameters as WNNM except for the uniform weight
√
nσn. The source codes of the comparison methods are obtained directly from the o-

riginal authors, and we use the default parameters. Our code can be downloaded from

http://www4.comp.polyu.edu.hk/ ∼cslzhang/code/WNNM code.zip.

Table 5.1. The average PSNR (dB) values by competing methods on the 20 test images. The
best results are highlighted in bold.

σn=10 σn=20 σn=30 σn=40 σn=50 σn=75 σn=100

NNM 33.462 30.040 27.753 26.422 25.048 22.204 21.570

BM3D 34.326 30.840 28.905 27.360 26.406 24.560 23.247

EPLL 34.008 30.470 28.463 27.060 25.965 24.020 22.706

LSSC 34.507 30.950 28.877 27.500 26.436 24.450 23.061

NCSR 34.456 30.890 28.849 27.390 26.326 24.340 22.996

SAIST 34.555 30.970 28.980 27.590 26.521 24.620 23.296

WNNM 34.772 31.200 29.214 27.780 26.752 24.860 23.555

5.3.3 Experimental results on 20 test images

We evaluate the competing methods on 20 widely used test images, whose thumbnails are

shown in Fig. 5.1. The first 12 images are of size 256 × 256, and the other 8 images are

of size 512 × 512. AWGN with zero mean and variance σ2
n are added to those test images

to generate the noisy observations. We evaluate the proposed algorithm on a wide range

of noise levels. The average denoising results on different noise levels by all competing

methods can be found in Table 5.1.

From Table 5.1, we can see that the proposed WNNM method achieves the highest

PSNR in almost all cases. It achieves 1.3dB-2dB improvement over the NNM method on

average and outperforms the benchmark BM3D method by 0.3dB-0.45dB consistently on all

the four noise levels. Such an improvement is notable since few methods can surpass BM3D
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(a) Noisy image (PSNR:14.16dB) (b) Ground truth (c) BM3D (PSNR:26.78dB) (d) EPLL (PSNR:26.65dB) 

    
(e) LSSC (PSNR:26.77dB) (f) NCSR (PSNR:26.66dB) (g) SAIST (PSNR:26.63dB) (h) WNNM (PSNR:26.98dB) 

 

 

 

    
(a) Noisy image (PSNR:10.64dB) (b) Ground truth (c) BM3D (PSNR:23.80dB) (d) EPLL (PSNR:23.82dB) 

    
(e) LSSC (PSNR:23.52dB) (f) NCSR (PSNR:23.44dB) (g) SAIST (PSNR:23.83dB) (h) WNNM (PSNR:24.03dB) 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Denoising results on image Boats by competing methods (noise level σn = 50).
The demarcated area is enlarged in the right bottom corner for better visualization. The
figure is better seen by zooming on a computer screen.

more than 0.3dB on average [75].

In Fig. 5.2 and Fig. 5.3, we compare the visual quality of the denoised images by

the competing algorithms. Fig. 5.2 demonstrates that the proposed WNNM reconstructs

more image details from the noisy observation. Compared with WNNM, the LSSC, NCSR

and SAIST methods over-smooth more textures in the sands area of image Boats, and the

BM3D and EPLL methods generate more artifacts. More interestingly, as can be seen in

the demarcated window, the proposed WNNM is capable of well reconstructing the tiny

masts of the boat, while the masts are almost unrecognizable in the reconstructed images by

other methods. Fig. 5.3 shows an example with strong noise. It is easy to see that WNNM

generates less artifacts and preserves better the image edge structures compared with other

competing methods. In summary, WNNM shows strong denoising capability, producing

more pleasant denoising outputs in visualization and higher PSNR indices in quantity.
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(a) Noisy image (PSNR:10.6416dB) (b) Ground truth (c) BM3D (PSNR:24.22dB) (d) EPLL (PSNR:22.46dB) 

    
(e) LSSC (PSNR:24.04dB) (f) NCSR (PSNR:23.76dB) (g) SAIST (PSNR:24.26dB) (h) WNNM (PSNR:24.68dB) 

 

 

 

    
(a) Noisy image (PSNR:8.10dB) (b) Ground truth (c) BM3D (PSNR:22.52dB) (d) EPLL (PSNR:22.23dB) 

    
(e) LSSC (PSNR:22.24dB) (f) NCSR (PSNR:22.11dB) (g) SAIST (PSNR:22.61dB) (h) WNNM (PSNR:22.91dB) 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Denoising results on image Monarch by competing methods (noise level σn =
100). The demarcated area is enlarged in the left bottom corner for better visualization. The
figure is better seen by zooming on a computer screen.

5.4 WNNM-RPCA for background subtraction

SVD/PCA aims to find the principal (affine) directions along which the data variance can

be maximized. It has been widely used in the area of data modeling, compression, and

visualization. In the conventional PCA model, the error is measured by the `2-norm fidelity,

which is optimal to suppress additive Gaussian noise. However, there are occasions that

outliers or sparse noise are corrupted in data, which may disable SVD/PCA in estimating the

ground truth subspace. To address this problem, multiple RPCA models have been proposed

to robustify PCA, and have been employed in different applications such as structure from

motion, ranking and collaborative filtering, face reconstruction and background subtraction

[154].

Recently, the NNM-RPCA model has been proposed [14], which can be efficiently

solved by ADMM, and can guarantee the exact reconstruction of the original data under cer-

tain conditions. Here, we propose WNNM-RPCA to further enhance the flexibility of NNM-

RPCA. In the following, we first design synthetic simulations to comprehensively compare
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the performance between WNNM-RPCA and NNM-RPCA, and then show the superiority of

the proposed method in background subtraction by comparing with typical low-rank learning

methods designed for this task.

5.4.1 Experimental results on synthetic data

Table 5.2. Relative error of low rank matrix recovery results by NNM-RPCA and WNNM-
RPCA, with pe fixed as 0.05, and pr varying from 0.05 to 0.45 with step length 0.05.

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-RPCA 2.41e-8 3.91e-8 5.32e-8 7.91e-8 2.90e-4 1.72e-2 6.49e-2 0.13 0.21

WNNM-RPCA 1.79e-8 3.49e-8 5.83e-8 6.53e-8 9.28e-8 1.30e-7 1.68e-7 2.02e-7 2.43e-7

Table 5.3. Relative error of low rank matrix recovery results by NNM-RPCA and WNNM-
RPCA, with pe fixed as 0.1, and pr varying from 0.05 to 0.45 with step length 0.05.

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-RPCA 2.26e-8 4.58e-8 7.44e-8 2.50e-4 2.31e-2 6.16e-2 9.96e-2 0.15 0.22

WNNM-RPCA 2.34e-8 3.71e-8 6.03e-8 8.87e-8 1.37e-7 1.82e-7 2.24e-7 4.80e-3 2.41e-2

To quantitatively evaluate the performance of the proposed WNNM-RPCA model,

we generate synthetic low rank matrix recovering simulations for testing. The ground truth

low rank data matrix X ∈ <m×m is obtained by the multiplication of two low rank matrices:

X = ABT , where A and B are both of sizem×r. Here r = pr×m constrains the upper bound
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Table 5.4. Relative error of low rank matrix recovery results by NNM-RPCA and WNNM-
RPCA, with pe fixed as 0.2, and pr varying from 0.05 to 0.45 with step length 0.05.

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-RPCA 4.22e-8 6.84e-8 8.89e-3 5.80e-2 9.29e-2 0.12 0.14 0.18 0.24

WNNM-RPCA 3.68e-8 6.09e-8 1.18e-7 1.72e-7 3.76e-4 2.94e-2 5.42E-2 6.82e-2 7.53e-2
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Figure 5.4. The log-scale relative error log ‖X̂−X‖2F
‖X‖2F

of NNM-RPCA and WNNM-RPCA with
different rank and outlier rate settings {pr, pe}.
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of Rank(X). In all experiments, each element of A and B is generated from a Gaussian

distribution N (0, 1). The ground truth matrix X is corrupted by sparse noise E which has

pe ×m2 non-zero entries. The non-zero entries in E are located in random positions and the

value of each non-zero element is generated from a uniform distribution between [-5, 5]. We

set m = 400, and let both pr and pe vary from 0.01 to 0.5 with step length 0.01. For each

parameter setting {pr, pe}, we generate the synthetic low-rank matrix 10 times and the final

results are measured by the average of these 10 runs.

For the NNM-RPCA model, there is an important parameter λ. We set it as 1/
√
m

following the suggested setting of [14]. For our WNNM-RPCA model, the parameter C is

empirically set as the square root of matrix size, i.e., C =
√
m×m = m, in all experiments.

The parameters in ADMM for both methods are set as ρ = 1.05. Typical experimental results

are listed in Tables 5.2-5.4 for easy comparison.

It is easy to see that when the rank of matrix is low or the number of corrupted

entries is small, both NNM-RPCA and WNNM-RPCA models are able to deliver accurate

estimation of the ground truth matrix. However, with the rank of matrix or the number of

corrupted entries getting larger, NNM-RPCA fails to deliver an accurate estimation of the

ground truth matrix, yet the error of the results by WNNM-RPCA is much smaller than

NNM-RPCA in these cases. In Fig. 5.4, we show the log-scale relative error map of the

recovered matrices by NNM-RPCA and WNNM-RPCA with different settings of {pr, pe}.

It is clear that the success area of WNNM-RPCA is much larger than NNM-RPCA, which

means that WNNM-RPCA has much better low-rank matrix reconstruction capability in the

presence of outliers/sparse noise.

5.4.2 Experimental results on background subtraction

As an important application in video surveillance, background sbutraction refers to the prob-

lem of separating the moving objects in foreground and the stable scene in background. The

matrix Y obtained by stacking the video frames as columns forms a low-rank matrix with

stationary background corrupted by sparse moving objects in the foreground. Thus, RPCA
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model is appropriate to deal with this problem. We compare WNNM-RPCA with NNM-

RPCA and several representative low-rank learning models, including the classic iteratively

reweighted least squares (IRLS) based RPCA model7 [32], and the `2-norm and `1-norm

based matrix factorization models: singular value decomposition (SVD), Bayesian robust

matrix factorization (BRMF)8 [128] and RegL1ALM9 [151]. The results of a recently pro-

posed Mixture of Gaussian (MoG) model10 [94] [150] are also included. These comparison

methods range over state-of-the-art `2 norm, `1 norm and probabilistic subspace learning

methods, including both categories of rank minimization and LRMF based approaches. We

downloaded the codes of these algorithms from the corresponding authors’ websites and

keep their initialization and stopping criteria unchanged. The code of the proposed WNNM-

RPCA model can be downloaded at http://www4.comp.polyu.edu.hk/∼cslzhang/code/WNNM

RPCA code.zip.

Four benchmark video sequences provided by Li et al. [78] are adopted in our ex-

periments, including two outdoor scenes (Fountain and Watersurface) and two indoor scenes

(Curtain and Airport). In each sequence, 20 frames of ground truth foreground regions were

provided by Li et al. for quantitative comparison. For all the comparison methods, pa-

rameters are fixed on the four sequences. We follow the experimental setting in [150] and

constrain the maximum rank to 6 for all the factorization based methods. The regularization

parameter λ for the `1-norm sparse term in the NNM-RPCA model is set to 1

2
√
max(m,n)

, since

we empirically found that it can perform better than the recommended parameter 1√
max(m,n)

in the original paper [14] in this series of experiments. For the proposed WNNM-RPCA

model, we set C =
√

2max(m3, n3) in all experiments.

To quantitatively compare the performance of competing methods, we use S(A,B) =

A∩B
A∪B to measure the similarity between the estimated foreground regions and the ground truth

ones. To generate the binary foreground map, we applied the Markov random field (MRF)

7hhttp://www.cs.cmu.edu/ ftorre/codedata.html
8http://winsty.net/brmf.html
9https://sites.google.com/site/yinqiangzheng/

10http://www.cs.cmu.edu/ deyum/Publications.htm
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Table 5.5. Quantitative performance (S) comparison of background subtraction results ob-
tained by different methods.

Method Watersurface Fountain Airport Curtain

SVD 0.0995 0.2840 0.4022 0.1615

IRLS 0.4917 0.4894 0.4128 0.3524

BRMF 0.5786 0.5840 0.4694 0.5998

RegL1ALM 0.1346 0.4248 0.4420 0.2983

MoG 0.2782 0.4342 0.4921 0.3332

NNM-RPCA 0.7703 0.5859 0.3782 0.3191

WNNM-RPCA 0.7884 0.6043 0.5144 0.7863
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model to label the absolute value of the estimated sparse error. The MRF labeling problem

was solved by the multi-label optimization tool box [6]. The quantitative results of S by

different methods are shown in Tabel 5.5. One can see that on all the four utilized sequences,

the proposed WNNM-RPCA model outperforms all other competing methods.

The visual results of representative frames in the Watersurface and Curtain sequences

are shown in Fig. 5.5 and Fig. 5.6. From these figures, we can see that WNNM-RPCA

method is able to deliver clear background estimation even under prominently embedded

foreground moving objects. This on the other hand facilitates a more accurate foreground

estimation. Comparatively, in the results estimated by the other methods, there are some

ghost shadows in the background, leading to relatively less complete foreground detection

results.

5.5 WNNM-MC for Image Inpainting

Matrix completion refers to the problem of recovering a matrix from only partial observa-

tion of its entries. It is a well known ill-posed problem which needs prior of the ground

truth matrix as supplementary information for reconstruction. Fortunately, in many practical

instance, the matrix to be recovered has a low-rank structure. Such prior knowledge has

been utilized in many low-rank matrix completion (LRMC) methods, such as ranking and

collaborative filtering [115] and image inpainting [148]. Matrix completion can be solved

by both the matrix factorization or the rank minimization approaches. As the exact recovery

property of the NNM-based methods has been proved in [15], this methodology has received

great research interest, and many algorithms have been proposed to solve the NNM-MC

problem [12, 82]. In the following, we provide experimental results on synthetic data and

image inpainting to show the superiority of the proposed WNNM-MC model to the tradi-

tional NNM-MC technology.
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Figure 5.5. Performance comparison in visualization of competing methods on the Water-
surface sequence. First row: the original frames and annotated ground truth foregrounds.
Second row to the last row: estimated backgrounds and foregrounds by SVD, IRLS, BRMF,
RegL1ALM, MoGRPCA, NNM-RPCA and WNNM-RPCA, respectively.
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Figure 5.6. Performance comparison in visualization of competing methods on the Curtain
sequence. First row: the original frames and annotated ground truth foregrounds. Sec-
ond row to the last row: estimated backgrounds and foregrounds by SVD, IRLS, BRMF,
RegL1ALM, MoGRPCA, NNM-RPCA and WNNM-RPCA, respectively.
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Figure 5.7. The log-scale relative error log ‖X̂−X‖2F
‖X‖2F

of NNM-MC and WNNM-MC with dif-
ferent rank and outlier rate settings {pr, pe}.

Table 5.6. Relative error of low rank matrix recovery results by NNM-MC and WNNM-MC,
with pe fixed as 0.1, and pr varying from 0.05 to 0.45 with step length 0.05.

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-RPCA 5.51e-8 7.25e-8 9.51e-8 1.12e-7 1.43e-7 1.76e-7 2.10e-7 2.58e-7 9.97e-5

WNNM-RPCA 4.40e-8 7.72e-8 9.44e-8 1.18e-7 1.41e-7 1.77e-7 2.09e-7 2.53e-7 3.25e-7

Table 5.7. Relative error of low rank matrix recovery results by NNM-MC and WNNM-MC,
with pe fixed as 0.2, and pr varying from 0.05 to 0.45 with step length 0.05.

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-RPCA 7.33e-8 1.03e-7 1.22e-7 1.65e-7 2.01e-7 2.76e-7 1.91e-2 8.52e-2 0.14

WNNM-RPCA 6.35e-8 9.21e-8 1.30e-7 1.60e-7 1.94e-7 2.48e-7 3.32e-7 4.66e-7 7.21e-7
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Table 5.8. Relative error of low rank matrix recovery results by NNM-MC and WNNM-MC,
with pe fixed as 0.3, and pr varying from 0.05 to 0.45 with step length 0.05.

Rank(X) 20 40 60 80 100 120 140 160 180

NNM-RPCA 9.20e-8 1.21e-7 1.61e-7 2.06e-7 0.53e-5 8.94e-2 0.18 0.25 0.30

WNNM-RPCA 9.31e-8 1.21e-7 1.60e-7 2.13e-7 2.81e-7 4.00e-7 6.15e-7 1.71e-2 0.22

5.5.1 Experimental results on synthetic data

We first compare NNM-MC with WNNM-MC using synthetic low-rank matrices. Similar to

our experimental setting in the RPCA problem, we generate the ground truth low-rank matrix

by a multiplication of two matrices A and B of size m× r. Here r = pr ×m constrains the

upper bound of Rank(X). All of their elements are generated from the Gaussian distribution

N (0, 1). In the observed matrix Y, pe×m2 entries in the ground truth matrix X are missing.

We set m = 400, and let pr and pe vary from 0.01 to 0.5 with step length 0.01. For each

parameter setting of {pr, pe}, 10 groups of synthetic data are generated for testing and the

performance of each method is assessed by the average of the 10 runs on these groups.

In all the experiments we fix parameters λ = 1/
√
m and C = m in NNM-MC and

WNNM-MC, respectively. The parameter ρ in the ALM algorithm is set to 1.05 for both

methods. Typical experimental results are listed in Tables 5.6-5.8.

It can be easily observed that when the rank of latent ground truth matrix X is relative-

ly low, both NNM-RPCA and WNNM-RPCA can successfully recover it with high accuracy.

The advantage of WNNM-MC over NNM-MC is reflected when dealing with more challeng-

ing cases. Table 5.7 shows that when 20% of entries in the matrix are missing, NNM-MC

will not have good recovery accuracy once the rank is higher than 120, while WNNM-MC

can still have very high accuracy. Similar observations can be made in Table 5.8.
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The log-scale relative error map with different settings of {pr, pe} are shown in Fig.

5.7. From this figure, it is clear to see that WNNM-MC has a much larger success area than

NNM-MC.

5.5.2 Experimental results on image inpainting

We then test the proposed WNNM-MC model on image inpainting. In some previous work-

s, the whole image is assumed to be a low rank matrix and matrix completion is directly

performed on the image to get the inpainting result. However, a natural image is only ap-

proximately low rank, and the small singular values in the long tail distribution include many

details. Simply using the low rank prior on the whole image may fail to recover the missing

pixels or lose too much detailed information in the image. As in the image denoising experi-

ments, we utilize the NSS prior and perform WNNM-MC on each group of non-local similar

patches for this task. We initialize the inpainting by the field of experts (FOE) [111] method

to search the non-local patches, and then for each patch group we perform WNNM-MC to

get an updated low-rank reconstruction. After the first round estimation of the missing values

in all patch groups, all reconstructed patches are aggregated to get the recovered image. We

then perform a new stage of similar patch searching based on the first round estimation, and

iteratively implement the similar process to converge to a final inpainting output.

The first 12 test images11 with size 256×256 in Fig. 5.1 are used to evaluate WNNM-

MC. Random masks with 25%, 50% and 75% missing pixels and a text mask are used to

test the inpainting performance, respectively. We compare WNNM-MC with NNM-MC and

several representative and state-of-the-art inpainting methods, including the TV method [21],

FOE method12 [111], variational nonlocal example-based (VNL) method13 [2] and the beta

process dictionary learning (BPDL) method14 [153]. The setting of the TV inpainting method

11The color versions of images #3, #5, #6, #7, #9, #11 are used in this MC experiment.
12http://www.gris.informatik.tu-darmstadt.de/ sroth/research/foe
13http://gpi.upf.edu/static/vnli/interp/interp.html
14http://people.ee.duke.edu/ mz1/Softwares
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Table 5.9. Inpainting results (PSNR, dB) by different methods.

Random mask with 25% missing entries Random mask with 50% missing entries

TV FOE VNL BPDL NNM WNNM TV FOE VNL BPDL NNM WNNM

C.Man 32.20 30.23 26.98 33.39 34.12 35.21 27.41 27.42 25.71 28.59 29.42 30.58

House 39.37 41.90 33.69 42.03 42.90 44.59 34.25 36.84 32.35 37.63 37.45 38.83

Peppers 37.44 38.46 31.00 39.66 39.65 41.53 32.16 34.51 28.80 34.80 34.02 35.85

Montage 32.28 28.00 28.45 35.86 37.48 39.63 26.47 24.53 26.41 29.68 29.91 31.02

Leaves 32.10 30.52 27.57 36.77 36.27 38.95 26.07 27.22 25.32 30.35 29.87 32.32

StarFish 34.20 35.34 27.44 36.94 36.79 38.93 29.05 31.18 26.13 31.84 31.36 33.03

Monarch 34.27 32.92 28.55 36.74 36.51 38.14 28.84 29.16 26.84 31.17 31.02 32.75

Airplane 30.80 30.34 26.05 33.19 32.94 33.76 26.61 28.11 24.62 29.00 28.72 29.30

Paint 34.75 35.87 28.87 37.27 36.84 38.79 29.29 31.45 27.22 32.62 31.52 33.02

J.Bean 41.56 44.57 34.97 45.15 44.49 48.04 35.61 38.88 32.46 40.07 37.47 40.93

Fence 30.24 31.96 28.98 35.85 36.55 37.91 25.06 29.97 27.43 31.47 31.77 32.85

Parrot 32.88 30.69 27.50 33.37 33.93 35.09 27.77 28.24 25.80 28.73 29.20 30.52

AVE. 34.340 34.234 29.170 37.185 37.372 39.215 29.049 30.625 27.425 32.162 31.812 33.416

Random mask with 75% missing entries Text mask

C-Man 23.65 23.35 23.65 24.17 23.55 25.69 28.49 27.27 26.75 26.24 29.74 31.68

House 29.59 31.63 31.07 31.61 28.62 34.12 34.75 37.41 34.46 32.01 37.69 39.60

Peppers 27.16 28.86 26.72 28.97 27.22 30.04 33.90 34.82 31.72 29.57 34.55 37.04

Montage 22.47 21.92 23.62 24.89 23.35 25.65 27.20 26.06 27.54 25.62 29.77 31.47

Leaves 20.15 20.69 22.30 23.11 22.08 25.01 25.48 24.21 26.39 23.07 27.32 30.69

Starfish 24.44 26.43 24.36 26.57 25.45 27.11 29.39 30.97 27.53 27.24 31.66 33.44

Mornar. 23.97 24.10 24.77 26.08 24.84 27.45 28.35 27.51 27.56 26.10 29.89 32.85

Plane 23.16 24.20 22.03 24.87 24.05 25.47 28.70 28.79 25.95 26.61 29.66 30.57

Paint 24.05 25.81 24.73 26.71 25.02 26.93 29.54 30.50 28.47 31.86 31.32 32.96

J.Bean 29.95 32.89 29.48 32.46 28.00 33.40 34.50 37.12 32.59 32.62 35.71 38.91

Fence 21.03 23.56 25.49 26.12 25.65 28.38 25.44 27.55 29.55 27.01 32.44 34.62

Parrot 22.85 23.33 23.54 24.53 24.02 25.61 28.07 27.54 26.58 25.83 29.54 30.61

AVE. 24.372 25.564 25.146 26.674 25.155 27.905 29.484 29.979 28.757 27.814 31.606 33.702
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follows the implementation of [31]15, and the codes for other comparison methods are pro-

vided by the original authors. The source code of the proposed WNNM-MC model can be

downloaded at http://www4.comp.polyu.edu.hk/∼cslzhang/code/WNNM MC code.zip.

The PSNR results by different methods are shown in Table 5.9. It is easy to see

that WNNM-MC achieves much better results than the other methods. Visual examples on

a random mask and a text mask are shown in Figs. 5.8 and 5.9, respectively. More visual

examples can be found in the supplementary file. From the enlarged demarcated windows,

we can see that inpainting methods based on image local prior (e.g., TV, FOE and BPDL)

are able to recover the image smooth areas, while they have difficulties in extracting the

details in edge and texture areas. The VNL, NNM and WNNM methods utilized the rational

NSS prior, and thus the results are more visually plausible. However, in some challenging

cases when the percentage of missing entries is high, it can be observed that VNL and NNM

more or less generate artifacts across the recovered image. As a comparison, the proposed

WNNM-MC model has much better visual quality of the inpainting results.

5.6 Discussions

To improve the flexibility of the original nuclear norm, we proposed the weighted nuclear

norm and studied its minimization strategy in this chapter. Based on the observed data and

the specific application, different weight setting strategies can be utilized to achieve better

performance. Inspired by [16], we utilized the reweighting strategy w`i = C
|σi(X`)|+ε

to ap-

proximate the `0 norm on the singular values of the data matrix. Other than this setting,

there also exist other weight setting strategies for certain types of data and applications.

For instance, the truncated nuclear norm regularization (TNNR) [148] and the partial sum

minimization (PSM) [104] were proposed to regularize only the smallest N − r singular

values. Actually, they can be viewed as a special case of WNNM, where weight vector

[w1···r = 0, wr+1···N = λ] is used to approximate the rank function of matrix. The Schatten-p

15http://www.imm.dtu.dk/ pcha/mxTV/
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Figure 5.8. Inpainting results on image Starfish by different methods (Random mask with
75% missing values).
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Figure 5.9. Inpainting results on image Monarch by different methods (Text mask).
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Table 5.10. The average PSNR (dB) values of denoising results by competing methods on
the 20 test images. The best results are highlighted in bold.

σn=10 σn=20 σn=30 σn=40 σn=50 σn=75 σn=100

NNM 33.462 30.040 27.753 26.422 25.048 22.204 21.570

TNNM 34.125 30.558 28.627 27.250 26.256 24.284 23.109

SPNM 34.739 31.048 29.075 27.488 26.582 24.757 23.174

WNNM 34.772 31.200 29.214 27.780 26.752 24.860 23.555

norm minimization (SPNM) methods [103] [99] can also be understood as special cases of

WNNM since the `p norm proximal problem can be solved by the iteratively thresholding

method [117]. The same strategy as in our work can be used to set weights for each singular

values.

In Tables 5.10, 5.11 and 5.12, we compare the proposed WNNM with the TNNR and

SPNM methods on image denosing, background subtraction and image inpainting, respec-

tively. The results obtained by the NNM method are also shown in the tables as baseline

comparison. The experimental settings on the three applications are exactly the same as the

experiments in Sections 5.3, 5.4 and 5.5. For the TNNR method, there are two parameters

r and λ, which represent the truncation position and the regularization parameter for the re-

maining N − r singular values. For the SPNM model, we need to set the p value for the `p

norm and the regularization parameter γ. We tried our best to adjust these parameters for the

two models for different applications. The remaining parameters are the same as the WNNM

model on each task.

From the tables, we can find that regularizing more flexibly the singular values is

beneficial for low rank models. Besides, WNNM outperforms TNNR and SPNM in the test-

ing applications, which validates the superiority of the proposed method along this line of

research. Nonetheless, it is worth to note that there may exist other weighting mechanisms
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Table 5.11. The average PSNR (dB) values of inpainting results by competing methods on
the 12 test images. The best results are highlighted in bold.

25% missing entries 50% missing entries 75% missing entries Text Mask

NNM 37.372 31.812 25.155 31.606

TNNM 37.789 32.378 27.201 32.738

SPNM 39.203 33.196 27.800 33.668

WNNM 39.215 33.416 27.905 33.702

Table 5.12. Quantitative performance (S) comparison of background subtraction results ob-
tained by different methods.

Method Watersurface Fountain Airport Curtain

NNM-RPCA 0.7703 0.5859 0.3782 0.3191

TNNM-RPCA 0.7772 0.5926 0.3829 0.3310

SPNM-RPCA 0.7906 0.6033 0.3714 0.3233

WNNM-RPCA 0.7884 0.6043 0.5144 0.7863

which might achieve better performance on certain computer vision tasks. Actually, since

we have proved in Theorem 5.2.1 that the WNNP problem is equivalent to an element wise

proximal problem with order constrains, a wide range of weighting and reweighting strate-

gies can be used to regularize the singular values of a data matrix. One important research

topic of our future work is thus to investigate more sophisticated weight setting mechanisms

for different types of data and applications.
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5.7 Conclusion

In this chapter, we extended the standard nuclear norm minimization scheme to the weighted

nuclear norm minimization (WNNM) problem. We first presented the solving strategy for the

weighted nuclear norm proximal (WNNP) operator under `2-norm fidelity loss to facilitate

the solving of different WNNM paradigms. We then extended the WNNM model to robust

PCA (RPCA) and matrix completion (MC) tasks and constructed efficient algorithms to

solve them based on the derived WNNP operator. Inspired by previous results on reweighted

sparse coding, we further designed a rational scheme for automatic weight setting, which

offers closed form solutions of the WNNP operator and eases the utilization of WNNM in

different applications.

We validated the effectiveness of the proposed WNNM models on multiple low level

vision tasks. For baseline WNNM, we applied it to image denoising, and achieved state-of-

the-art performance in both quantitative PSNR measures and visual qualities. For WNNM-

RPCA, we applied it to background subtraction, and validated its superiority among up-to-

date low-rank learning methods. For WNNM-MC, we applied it to image inpainting, and

demonstrated its superior performance to state-of-the-art inpainting technologies.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

The image sparsity prior plays an important role in many image restoration algorithms. In

this thesis, we studied the analysis-based and synthesis-based sparse representation meth-

ods, as well as the low-rank minimization methods, and developed new sparsity models for

different image restoration applications.

To improve the flexibility of conventional analysis sparse representation (ASR) mod-

els, in chapter 2 we proposed a weighted ASR learning model for guided image restoration.

A weighting function was learned to introduce structural information of the guidance image

into the target image. We unfolded the sparse optimization into several stages and exploited

the task-driven training strategy to learn state-wise parameters. Our experimental results on

the guided depth image enhancement clearly demonstrated the advantages of the proposed

algorithm.

In chapter 3, we addressed the inconsistency issue in the commonly used patch-based

synthesis sparse representation (SSR) models, and proposed a convolutional sparse coding

(CSC) algorithm for super-resolution (SR). With CSC, we decomposed an input low resolu-

tion image without patch dividing, and learned a mapping function between the sparse coding

feature maps of low-resolution and high-resolution images for SR. The proposed CSC-SR

algorithm preserves the consistency of neighboring patches and delivers highly competitive

SR results with pleasant visual quality.

To integrate the advantages of ASR and SSR models in describing image major struc-

tures and repetitive textures, in chapter 4 we proposed a joint convolutional analysis and syn-

thesis (JCAS) model for single image layer separation. The superior layer separation results
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over previous methods on applications of rain streak removal and texture-cartoon decompo-

sition demonstrated the effectiveness of the proposed JCAS model.

Finally, in chapter 5 we extended the conventional matrix nuclear norm minimization

to the weighted nuclear norm minimization (WNNM). We showed that although the WNNM

model is non-convex, it still has a globally optimal solution. Particularly, when the weights

are assigned in a non-descending order, the optimal solution has a closed-form. We then

extended the WNNM model to robust PCA (RPCA) and matrix completion (MC) tasks. The

proposed WNNM models demonstrated state-of-the-art performance on multiple low level

vision tasks, including image denoising, background subtraction and image inpainting.

The proposed algorithms in this thesis not only advance much the performance of

sparsity-based image restoration methods, but also deepen the understanding of sparsity-

based statistical modeling of natural images. In our future work, we will investigate the

following problems.

First, our proposed weighted ASR model un-folds the sparse optimization problem

and adopts the task-driven training strategy to learn state-wise parameters. It can be viewed

as a special convolutional neural network (CNN) structure. It is an interesting problem to

investigate other structures for guided image restoration tasks and study their relationship

with CNN.

Second, in the proposed CSC-SR algorithm the LR and HR filters are trained sep-

arately for low-resolution image decomposition and high-resolution image reconstruction.

How to train the two groups of filters jointly in an end-to-end manner is an important direc-

tion to further improve our CSC-SR algorithm.

Third, the proposed JCAS algorithm has achieved state-of-the-art performance on

rain streak removal and texture-cartoon decomposition. We will adopt it to other image en-

hancement applications, such as high dynamic range imaging and image detail enhancement,

in which layer separation is an important pre-processing step.

At last, the proposed WNNM model has achieved state-of-the-art performance on
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several low level vision problems with the same weight setting. It is interesting to investigate

whether there is a better weight setting strategy, or how to more effectively set the weights

for a given task.
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APPENDIX A

A.1 A Brief Introduction to SA-ADMM

Here we briefly introduce the algorithm of SA-ADMM. For more details of the algorithm

and the convergence analysis, please refer to the original paper [152].

The ADMM algorithm is proposed to solve the following problem:

min
x,y

φ(x) + ψ(y) s.t.Ax+By = c. (1)

In many real applications, φ(x) in (1) can be written as

φ(x) =
1

n

n∑
i=1

`i(x) + Ω(x), (2)

where `i is the contribution from the i-th sample, and n is the number of samples. For such

a problem, the original ADMM algorithm suffers from a heavy computation burden in the

step of updating x when n is a large number.

If the function `i(x) in (2) is L-smooth1, SA-ADMM algorithm can be used to solve

the problem (1). More specifically, in our case Ω = 0. For problem (1) with φ(x) =

1
n

∑n
i=1 `i(x), the SA-ADMM algorithm updates the variable x, y and the Lagrangian vari-

able α alternatively:

xt+1 ← argminx
1

n

n∑
i=1

`i(xτi(t))+5`i(xτi(t))T (x−xτi(t))+
L

2
‖x−xτi(t)‖2+

ρ

2
‖Ax+Byt−c−αt‖2,

yt+1 ← argminy ψ(y) +
ρ

2
‖Axt+1+By − c+ αt‖2,

αt+1 ← αt + Axt+1 +Byt+1 − c,
(3)

1Let ‖ · ‖ be the Euclidean norm. For a differentiable function f , we use 5f to denote its gradient. A

function f is L-smooth if ‖ 5 f(x)−5f(y)‖ ≤ L‖x− y‖.
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where L is the scalar in the L-smooth definition, and τi(t) is defined as

τi(t) =

{
t i = k(t)

τi(t− 1) otherwise
. (4)

The updating strategy of y and α is the same as the standard ADMM algorithm. For the x

subproblem, by letting its derivative to zero, we have:

xt+1 ← (ρATA+ LI)−1[Lxt − ρAT (Byt − c+ αt)−5`t], (5)

where xt = 1
n

∑n
i=1 xτi(t), and5`t = 1

n

∑n
i=15`i(xτi(t)).

Denote by (x∗, y∗) the optimal solution of (1) , Zhong et al. have proved that

E[Φ(xT , yT )− Φ(x∗, y∗) + γ‖AxT +ByT − c‖]

≤ 1

2T
{‖x∗ − x0‖2

Hx + nL‖x∗ − x0‖2 + ‖y∗ − y0‖2
Hy + 2ρ(

γ2

ρ2
+ ‖α0‖2)},

(6)

where ‖x‖H = xTHx for a positive semi-defined matrix H , Hx = LAI − ρATA and Hy =

ρBTB. Eq. (6) shows that the {xT , yT} generated by SA-ADMM will converge with speed

O( 1
T

).

A.2 Filter training by SA-ADMM

The filter training problem in our CSC model aims to optimize the following problem:

f =arg min
f

K∑
k=1

‖ Yk −
∑N

i=1
f i ⊗ Zk,i ‖2

F , s.t.‖ f i ‖2
F≤ e. (7)

Note that here we do not omit the index k for the training image. Yk is the kth training image

and Zk,i is the feature map produced by the ith filter f i on Yk. Based on the properties of

convolution and Kronecker product, we have the following equation:

vec(f ⊗ Z) = F ∗ vec(Z) = (I � vec(Z))vec(FT ) = ZT ∗ vec(f), (8)

where � and vec(•) denote the Kronecker product and the vectorization operation, re-

spectively. I is the Identity matrix and F is the BCCB matrix corresponding to filter f .

Z = Image2Patch(Z) is the output of an Image2Patch operation on matrix Z with the size

of filter f , e.g., extracting all the patches from Z with the same size of f .
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Based on the above equations, the filter learning problem can be transformed to

f = arg min
f

K∑
k=1

‖ vec(Yk)−[ZTk,1,ZTk,2, . . . ,ZTk,N ]∗[vec(f 1)T , vec(f 2)T , . . . , vec(fN)T ]T ‖2
F ,

s.t.‖ f i ‖2
F≤ e.

(9)

For the purpose of simplicity, we denote [ZTk,1,ZTk,2, . . . ,ZTk,N ] by Z and

[vec(f 1)T , vec(f 2)T , . . . , vec(fN)T ]T by f , the filter training problem with a large number of

training images can be written as:

f = arg min
f

∑
k

‖yk − Zk ∗ f‖2 s.t.‖f i‖2 ≤ e. (10)

By introducing an augmented variable s = f , we can solve (10) by the SA-ADMM algorithm

in (3):

f t+1 = [Lf̄ t − ρ(dt − st)−
1

K

K∑
k=1

ZTk (Zkf τj(t) − Yk)]/(ρ+ L)

st+1 = argmins
ρ

2
‖f t+1 + dt − s‖2, s.t.‖si‖2 ≤ e

dt+1 = dt + f t+1 − st+1

(11)

For our square loss function in Eq. (7), a general scalar L which satisfies the L-smooth con-

dition is the upper bound on the eigenvalues of ZTZ. The s problem is a proximal problem

with `2-norm ball constraint, which has a closed-form solution. Please note that, here (ρ+L)

is a scalar, and the updating of f does not need any matrix inverse calculation.

A.2.1 Mapping Function Learning by SA-ADMM

The mapping function learning problem in our CSC model aims to optimize the following

problem:

{W}=arg min
W

K∑
k=1

‖Xk−
M∑
j=1

fhj ⊗ g(Zlk,:; wj)‖2
F , s.t. wj � 0, |wj|1 = 1. (12)

Denote by Z̃li the upsampling of LR feature map

Z̃lk,i(x
′, y′) =

{
Zlk,i(x, y) if mod(x′, factor) = 0 and mod(y′, factor) = 0

0 otherwise
, (13)
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then we have

[vec(Zhk,1), vec(Zhk,2), . . . , vec(Zhk,M)] = [vec(Z̃lk,1), vec(Z̃lk,2), . . . , vec(Z̃lk,N)] ∗W, (14)

where W = [w1,w2, . . . ,wM ] is the linear mapping function matrix, and wj = [wj,1, wj,2, . . . , wj,N ]T

is the linear transform vector used to predict the jth HR feature map. Utilizing the BCCB

matrix corresponding to the HR filters, the original problem (12) can be rewritten as

{W}=
K∑
k=1

arg min
W
‖vec(X)−[Fh

1 , . . . ,F
h
M ]∗ [vec(Z̃lk,1),. . .,vec(Z̃lk,N)]

. . .

[vec(Z̃lk,1),. . .,vec(Z̃lk,N)]

∗vec(W)‖2
F

s.t. wj � 0, |wj|1 = 1.

Let

A =
{

Fh
1 ∗ [vec(Z̃l1), vec(Z̃l2), . . . , vec(Z̃lN)], . . . ,Fh

M ∗ [vec(Z̃l1), vec(Z̃l2), . . . , vec(Z̃lN)]
}
,

(15)

and then the mapping function training problem has the form

{W}=
K∑
k=1

arg min
W
‖vec(X)− A ∗ vec(W)‖2

F s.t. wj � 0, |wj|1 = 1. (16)

We solve (16) by the SA-ADMM algorithm

vec(W)t+1 = [Lvec(W̄)t − ρ(Tt − St)−
1

K

K∑
k=1

AT
k (Akvec(Wτj(t))− Xk)]/(ρ+ L)

St+1 = argminS
ρ

2
‖Wt+1 + Tt − S‖2, s.t. sj � 0,

∑
sj = 1

Tt+1 = Tt + Wt+1 − St+1

(17)

Different from the `2-norm proximal problem in (11) which has a closed-form solution,

the second optimization problem in (17) is a proximal problem with nonnegative simplex

constraint. Although it does not has a closed-form solution, we have the following Remark

to show that each column of S can be solved very efficiently.

Remark A.2.1. Let e = (1, 1, . . . , 1)T ; problem

min
a∈Rn
‖a− b‖2

F s.t.eTa = 1,−a ≤ 0, (18)
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has a globally optimal solution

a∗ = b−
∑r

i=1 bτi − 1

r
+ [

∑r
i=1 bτi − 1

r
e− b]+, (19)

where {τ1, τ2, . . . , τn} is an index sequence which satisfies bτ1 ≥ bτ2 ≥ · · · bτn . r is an integer

which satisfies bτr >
∑r
i=1 bτi−1

r
and bτr+1 ≤

∑r
i=1 bτi−1

r
.

Proof. The Lagrange function of (18)

L(a, λ, v) = ‖a− b‖2
F + λ(eTa− 1)− vTa s.t.v ≥ 0 (20)

is a convex function. Let the partial derivative of L w.r.t. a equal to zero, we have the optimal

solution of a:

a∗ = a− λ

2
e +

1

2
v. (21)

Substitute (21) into (20), we have the dual function of (18)

g(λ, v) = ‖ − λ

2
e +

1

2
v‖2

F + λ(eT (b− λ

2
e +

1

2
v)− 1)− eT (e−−λ

2
e +

1

2
v)

=
n

4
λ2 +

1

4
‖v‖2

F −
1

2
λeT v + λeTb− n

2
λ2 +

1

2
λeT v− λ− vTb +

λ

2
vT e− 1

2
‖v‖2

F

= −n
4
λ2 − 1

4
‖v‖2

F +
1

2
λeT v + λeTb− λ− vTb

= −1

4
‖λe− v‖2

F + bT (λe− v)− λ.
(22)

Thus, the dual problem

maxλ,vg(λ, v) = maxλ,v −
1

4
‖λe− v‖2

F + bT (λe− v)− λ

= bTb +maxλ,v −
1

4
‖λe− v− 2b‖2

F − λ
(23)

is a concave function, and the optimal solution can be achieved by letting the partial deriva-

tive equal to zero. The optimal solution of v is

v∗ = [λe− 2b]+ = max(λe− 2b, 0). (24)
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We then substitute (24) into (23), and calculate its derivative w.r.t. λ:

∂{−1
4
‖λe− 2b− [λe− 2b]+‖2

F − λ}
∂λ

= −1

2
I(λe < 2b)T (λe− 2b)− 1, (25)

in which

(I(x))i =


1 xi is true

0 xi is false

, i = 1, 2, . . . , n. (26)

Let −1
2
I(λe < 2b)T (λe− 2b)− 1 be zero, we have

λ =
2(
∑r

i=1 bτi − 1)

r
, (27)

where {τ1, τ2, . . . , τn} is an index sequence which satisfies bτ1 ≥ bτ2 ≥ · · · bτn , and r is an

integer which satisfies bτr >
∑r
i=1 bτi−1

r
and bτr+1 ≤

∑r
i=1 bτi−1

r
.

Based on (21), (24) and (27), the optimal solution for problem (18) is

a∗ = b−
∑r

i=1 bτi − 1

r
+ [

∑r
i=1 bτi − 1

r
e− b]+.
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APPENDIX B

B.3 Proof of Theorem 1

Proof. For any X,Y ∈ <m×n(m > n) , denote by ŪDV̄T and UΣVT the singular value

decomposition of matrix X and Y, respectively, where Σ =

 diag(σ1, σ2, ..., σn)

0

 ∈

<m×n, and D =

 diag(d1, d2, ..., dn)

0

 are the diagonal singular value matrices. Based

on the property of Frobenius norm, the following derivations hold:

‖Y − X‖2
F + ‖X‖w,∗

=Tr
(
YTY

)
− 2Tr

(
YTX

)
+ Tr

(
XTX

)
+

n∑
i

widi

=
n∑
i

σ2
i − 2Tr

(
YTX

)
+

n∑
i

d2
i +

n∑
i

widi.

Based on the von Neumann trace inequality in Lemma 1, we know that Tr
(
YTX

)
achieves

its upper bound
∑n

i σidi if U = Ū and V = V̄. Then, we have

min
X
‖Y − X‖2

F + ‖X‖w,∗

⇔min
D

n∑
i

σ2
i − 2

n∑
i

σidi +
n∑
i

d2
i +

n∑
i

widi

s.t. d1 ≥ d2 ≥ ... ≥ dn ≥ 0

⇔min
D

∑
i

(di − σi)2 + widi

s.t. d1 ≥ d2 ≥ ... ≥ dn ≥ 0.
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From the above derivation, we can see that the optimal solution of the WNNP problem in

(5.5) is

X∗ = UDVT ,

where D is the optimum of the constrained quadratic optimization problem in (5.6).

End of proof.

B.4 Proof of Corollary 1

Proof. Without considering the constraint, the optimization problem (5.6) degenerates to the

following unconstrained formula:

min
di≥0

(di − σi)2 + widi

⇔min
di≥0

(
di − (σi −

wi
2

)
)2

.

It is not difficult to derive its global optimum as:

d̄i = max
(
σi −

wi
2
, 0
)
, i = 1, 2, ..., n. (28)

Since we have σ1 ≥ σ2 ≥ ... ≥ σn and the weight vector has a non-descending order

w1 ≤ w2 ≤ ... ≤ wn, it is easy to see that d̄1 ≥ d̄2 ≥ ... ≥ d̄n. Thus, d̄i=1,2,...,n satisfy

the constraint of (5.6), and the solution in (28) is then the globally optimal solution of the

original constrained problem in (5.6).

End of proof.
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B.4.1 Proof of Theorem 2

Proof. Denote by UkΛkVT
k the SVD of the matrix {Y + µ−1

k Lk − Ek+1} in the (k + 1)-th

iteration, where Λk = {diag(σ1
k, σ

2
k, ..., σ

n
k )} is the diagonal singular value matrix. Based on

the conclusion of Corollary 1, we have

Xk+1 = UkΣkVT
k , (29)

where Σk = Sw/µk(Λk) is the singular value matrix after weighted shrinkage. Based on the

Lagrange multiplier updating method in step 5 of Algorithm 5.1, we have

‖Lk+1‖F = ‖Lk + µk(Y − Xk+1 − Ek+1)‖F

= µk‖µ−1
k Lk + Y − Xk+1 − Ek+1‖F

= µk‖UkΛkVT
k − UkΣkVT

k ‖F

= µk‖Λk −Σk‖F

= µk‖Λk − Sw/µk(Λk)‖F

≤ µk

√√√√∑
i

(
wi
µk

)2

=

√∑
i

w2
i .

(30)

Thus, {Lk} is bounded.

To analyze the boundedness of Γ(Xk+1,Ek+1,Lk, µk), first we can see the following

inequality holds because in step 3 and step 4 we have achieved the globally optimal solutions

of the X and E subproblems:

Γ(Xk+1,Ek+1,Lk, µk) ≤ Γ(Xk,Ek,Lk, µk).

Then, based on the way we update L:

Lk+1 = Lk + µk(Y − Xk+1 − Ek+1),
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there is

Γ(Xk, Ek, Lk, µk)

=Γ(Xk, Ek, Lk−1, µk−1) +
µk − µk−1

2
‖Y −Xk − Ek‖2

F

+ 〈Lk − Lk−1, Y −Xk − Ek〉

=Γ(Xk, Ek, Lk−1, µk−1) +
µk−µk−1

2

∥∥µ−1
k−1(Lk−Lk−1)

∥∥2

F

+
〈
Lk − Lk−1, µ

−1
k−1 (Lk − Lk−1)

〉
=Γ(Xk, Ek, Lk−1, µk−1) +

µk + µk−1

2µ2
k−1

‖Lk − Lk−1‖2
F .

Denote by Θ the upper bound of ‖Lk − Lk−1‖2
F for all {k = 1, . . . ,∞}. We have

Γ(Xk+1,Ek+1,Lk, µk) ≤Γ(X1,E1,L0, µ0)

+ Θ
∞∑
k=1

µk + µk−1

2µ2
k−1

.

Since the penalty parameter {µk} satisfies
∑∞

k=1 µ
−2
k µk+1 < +∞, we have

∞∑
k=1

µk + µk−1

2µ2
k−1

≤
∞∑
k=1

µ−2
k−1µk < +∞.

Thus, we know that Γ(Xk+1,Ek+1,Lk, µk) is also upper bounded.

The boundedness of {Xk} and {Ek} can be easily deduced as follows:

‖Ek‖1 + ‖Xk‖w,∗

=Γ(Xk,Ek,Lk−1, µk−1) +
µk−1

2
(

1

µ2
k−1

‖Lk−1‖2
F

− ‖Y−Xk−Ek+
1

µk−1

Lk−1‖2
F )

=Γ(Xk,Ek,Lk−1, µk−1)− 1

2µk−1

(‖Lk‖2
F − ‖Lk−1‖2

F ).

Thus, {Xk}, {Ek} and {Lk} generated by the proposed algorithm are all bounded.
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There exists at least one accumulation point for {Xk,Ek,Lk}. Specifically, we have

lim
k→∞
‖Y − Xk+1 − Ek+1‖F = lim

k→∞

1

µk
‖Lk+1 − Lk‖F = 0,

and the accumulation point is a feasible solution to the objective function.

We then prove that the change of the variables in adjacent iterations tends to be zero.

For the E subproblem in step 3, we have

lim
k→∞
‖Ek+1 − Ek‖F

= lim
k→∞
‖S 1

µk

(
Y + µ−1

k Lk − Xk

)
−
(
Y + µ−1

k Lk − Xk

)
− 2µ−1

k Lk − µ−1
k−1Lk−1‖F

≤ lim
k→∞

mn

µk
+ ‖2µ−1

k Lk + µ−1
k−1Lk−1‖F = 0,

in which S 1
µk

(·) is the soft-thresholding operation with parameter 1
µk

, and m and n are the

size of matrix Y.

To prove limk→∞ ‖Xk+1 −Xk‖F = 0, we recall the updating strategy in Algorithm 1

which makes the following inequalities hold:

Xk = Uk−1Sw/µk−1
(Λk−1)VT

k−1,

Xk+1 = Y + µ−1
k Lk − Ek+1 − µ−1

k Lk+1,

where Uk−1Λk−1VT
k−1 is the SVD of the matrix {Y + µ−1

k−1Lk−1 − Ek} in the k-th iteration.
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We then have

lim
k→∞
‖Xk+1 − Xk‖F

= lim
k→∞
‖(Y + µ−1

k Lk − Ek+1 − µ−1
k Lk+1)− Xk‖F

= lim
k→∞
‖(Y + µ−1

k Lk − Ek+1 − µ−1
k Lk+1)− Xk

+ (Ek + µ−1
k−1Lk−1)− (Ek + µ−1

k−1Lk−1)‖F

≤ lim
k→∞
‖Y+µ−1

k−1Lk−1−Ek−Xk‖F +‖Ek−Ek+1+ µ−1
k Lk

−µ−1
k Lk+1 − µ−1

k−1Lk−1‖F

≤ lim
k→∞
‖Λk−1 − Sw/µk−1

(Λk−1)‖F + ‖Ek − Ek+1‖F

+ ‖µ−1
k Lk − µ−1

k Lk+1 − µ−1
k−1Lk−1‖F

= 0.

End of proof.

B.5 Proof of Remark 1

Proof. Based on the conclusion of Theorem 5.2.1, the WNNM problem can be equivalently

transformed to a constrained singular value optimization problem. Furthermore, when utiliz-

ing the reweighting strategy w`+1
i = C

σ`i (X)+ε
, the singular values of X are consistently sorted

in a non-ascending order. The weight vector thus follows the non-descending order. It is then

easy to deduce that the sorted orders of the sequences {σi(Y), σi(X`), w
`
i ; i = 1, 2, · · · , n}

keep unchanged during the iteration. Thus, the optimization for each singular value σi(X)

can be analyzed independently. For the purpose of simplicity, in the following development

we omit the subscript i and denote by y a singular value of matrix Y, and denote by x and w

the corresponding singular value of X and its weight.
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For the weighting strategy w` = C
x`−1+ε

, we have

x` = max

(
y − C

x`−1 + ε
, 0

)
.

Since we initialize x0 as the singular value of matrix X0 = Y, and each x` is a result of

soft-thresholding operation on positive value y = σi(Y), {x`} is a non-negative sequence.

The convergence value lim`→∞ x
` for different conditions are analyzed as follows.

(1) c2 < 0

From the definition of c1 and c2, we have (y+ ε)2− 4C < 0. In such case, the quadratic

system x2 + (ε− y)x + C − yε = 0 does not have a real solution and function f(x) =

x2 + (ε− y)x+ C − yε gets its positive minimum value C − yε− (y−ε)2
4

at x = y−ε
2

.

∀x̃ ≥ 0, the following inequalities hold

f(x̃) ≥ f

(
y − ε

2

)
x̃2 + (ε− y)x̃ ≥ −(y − ε)2

4

x̃−
C − yε− (y−ε)2

4

x̃+ ε
≥ y − C

x̃+ ε
.

The sequence x`+1 = max
(
y − C

x`+ε
, 0
)

with initialization x0 = y is a monotonically

decreasing sequence for any x` ≥ 0. We have x` < y, and

x` −
(
y − C

x` + ε

)
>
C − yε− (y−ε)2

4

y + ε
.

If x` ≤ C−yε
y

, we have y − C
x`+ε
≤ 0 and x`+1 = max

(
y − C

x`+ε
, 0
)

= 0. If x` > C−yε
y

,

∃N ∈ N makes x`+N < x` − N · C−yε−
(y−ε)2

4

y+ε
less than C−yε

y
. The sequence {x`} will

shrink to 0 monotonically.

(2) c2 ≥ 0

In such case, we can know that y > 0, because if y = 0, we will have c2 = (y + ε)2 −
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4C = ε2 − 4C < 0. For positive C and sufficiently small value ε, we can know that c1

is also non-negative:

c2 = (y + ε)2 − 4C ≥ 0

(y + ε)2 ≥ 4C

y − ε ≥ 2(
√
C − ε)

c1 = y − ε ≥ 0.

Having c2 ≥ 0, c1 ≥ 0, we have

x̄2 =
y − ε+

√
(y − ε)2 − 4(C − εy)

2
> 0.

For any x > x̄2 > 0, the following inequalities hold:

f(x) = x2 + (ε− y)x+ C − yε > 0[
x−

(
y − C

x+ ε

)]
(x+ ε) > 0

x > y − C

x+ ε
.

Furthermore, we have

x > y − C

x+ ε
> y − C

x̄2 + ε
= x̄2.

Thus, for x0 = y > x̄2, we always have x` > x`+1 > x̄2, the sequence is monotonically

decreasing and has lower bound x̄2. The sequence will converge to x̄2, as we prove

below.

We propose a proof by contradiction. If x` converges to x̂ 6= x̄2, then we have x̂ > x̄2

and f(x̂) > 0. By the definition of convergence, we can obtain that ∀ε > 0, ∃N ∈ N s.t.

∀` ≥ N , the following inequality must be satisfied

|x` − x̂| < ε. (31)
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We can also have the following inequalies

f(xN) ≥ f(x̂)[
xN −

(
y − C

xN + ε

)]
(xN + ε) ≥ f(x̂)[

xN −
(
y − C

xN + ε

)]
(y + ε) ≥ f(x̂)

xN −
(
y − C

xN + ε

)
≥ f(x̂)

y + ε

xN − xN+1 >
f(x̂)

y + ε

If we take ε = f(x̂)
2(y+ε)

, then xN − xN+1 > 2ε, and we can thus obtain

|xN+1 − x̂|

=|xN+1 − xN + xN − x̂|

≥
∣∣|xN+1 − xN | − |xN − x̂|

∣∣
>|2ε− ε| = ε

This is however a contradiction to (31), and thus x` converges to x̄2.

End of proof.
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