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Abstract

In thesis, we establish and prove the existence of traveling wave solutions of a hyper-

bolic system. This system has various applications in many fields, in particular, bio-

logical science, such as chemotactic movement of bacteria, aggregation of microglia in

Alzheimer’s disease, tumor angiogenesis and reinforced random walkers, etc.. One of

prominent phenomena is the propagating of traveling waves. Numerical simulations

will be represented to illustrate the process of forming steadily wave propagation in

those applications. In addition, open problems are proposed for further study.
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Chapter 1

Introduction

1.1 Background

In numerous phenomena, the interesting and fascinating part of a developmental pro-

cess is the appearance of traveling waves. Traveling wave is a kind of wave, where the

shape and speed of propagation of wave are unchanged. For example, after vibrating

a stretched rope, it is easy to see that the shape of the wave pulse that travels along

the rope is approximately unchanged. Moreover, traveling wave phenomena widely

exists in biological systems. Species in this complex environment maintain their own

various activities by responding to the internal and external signals and propagat-

ing waveforms of various chemical concentrations plays a crucial role in transporting

chemical information. There are many examples demonstrating the existence of wave

phenomena. For example, the transmission of advantageous genes in a population

[7]; branching pattern formation of colonies of the bacteria, Paenibacillus dendriti-

formis [4, 24]; the propagating of calcium waves on the surface of fish eggs during

fertilization, like Medaka eggs [8], Sand Dollar eggs [43], Zebrafish eggs [17], etc.;

the development of atherosclerosis [5, 18]; the spreading of an epidemic, like Rabies

([25],Chpater 13), and so on. In the past several decades, mathematical modeling

is an important tool for theoretical analysis of those processes. In 1937, the famous

Fisher equation in one dimensional space was developed as a reaction-diffusion mod-
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el in [7] to describe the “motion” of advantageous genes and it is a fundamental

model from which many variations were developed to analyze the migration of single

species.

In addition to simple combination of reaction and diffusion mechanism, chemotaxis is

also a key factor needs to be considered in the formation of traveling wave pattern-

s. Chemotaxis represents an oriented movement of bacteria or cellular organisms

influenced by the concentration gradient of the chemical, such as the aggregation

of cellular slime molds Dictyosteilum discoideum into a number of centers which is

stimulated by a chemical substance, cyclic AMP [12, 39]. Another well-known ex-

ample is the migration of Escherichia coli (E.coli) towards oxygen. J. Adler (1965)

[1, 2] conducted experiments to illustrate how bacteria react to the chemotactic at-

tractants and repellents. In the experiments, there is a closed capillary tube filled

with oxygen and energy source, and a sharp traveling band of bacteria was observed

shortly after E.coli was placed at one end of the tube. Later, in 1970s, Keller and

Segel formulated a well-known chemotaxis model [13, 14] whose general form is,

{
ut = ∇ · (dux − χu∇φ(h)),
ht = ε∆h+ f(u, h).

(1.1)

where u(x, t) and h(x, t) denote the density of bacteria and the concentration of

chemical substrate respectively. d > 0 is the diffusion coefficient of bacteria which

measures cellular motility. ε ≥ 0 is the diffusion rate of the chemical substrate. The

attractive strength of the chemical signal is represented by chemotactic coefficient,

χ, with χ > 0 which means the chemical is a kind of chemotactic attractant. f(u, h)

is a function describing the chemical production and degradation induced by the

consumption effect of cells. The chemosensitivity function, φ(h), demonstrates how

level of chemical concentration influence cellular sensitivity. The original Keller-

Segel model considers the logarithmic sensitivity which is φ(h) = lnh. Also, there
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are other typical forms of function, such as, φ(h) = kh (linear law) [10, 3] and

φ(h) = khm/(1 + hm) (receptor law) with k > 0 and m ∈ N, see [32, 34, 38].

Here we review the existence of traveling wave solutions of Keller-Segel model in one

dimensional space with logarithmic law, φ(h) = lnh and f(u, h) = βh−ug(h), where

β is the growth rate if β > 0 or the degradation rate if β < 0.

ut = (dux − χuh−1hx)x,
ht = εhxx + βh− ug(h).

(1.2)

In addition, g(h) is the consumption rate of the chemical per cell with the following

different forms represented in [41].

g(h) = hm =


constant rate m = 0,
sublinear rate 0 < m < 1,
linear rate m = 1,
superlinear rate m > 1.

There are many other properties of Keller-Segel model, such as, linear and nonlinear

stability, global existence and asymptotic decay rates, etc., please refer to [9, 10, 41]

and references therein. When β < 0, non-existence of traveling wave solution was

proved in [41]. Moreover, when β ≥ 0, results referring to the existence of traveling

wave solutions will be sketched below.

Substituting the traveling wave ansatz (u, h)(x, t) = (U,H)(z) with z = x − ct into

the system (1.2) and integrating it gives

{
dU ′ + cU − χH−1H ′U = C0,
εH ′′ + cH ′ − UHm + βH = 0

where c is the wave speed, c ≥ 0, and C0 is an integration constant.

For the case of zero integration constant (C0 = 0), under the condition ε = 0, when

0 ≤ m < 1 and β = 0, system (1.2) is the original Keller-Segel model and traveling

wave solutions were explicitly found in [14, 27, 11, 31, 30, 15, 28]; when 0 ≤ m < 1
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and β > 0, the existence of traveling wave solutions was established in [41]; when

m = 1, the existence of traveling wave solutions were derived in [42, 19, 40]; On the

other hand, under the condition ε > 0, wonderful results concerning traveling wave

solutions were established by a change of independent variable in [26] for m = 0,

β = 0 and d > χ. With regard to other numerous results and rigorous proofs of

existence of traveling wave solutions, please refer to [23, 41].

For the case of non-zero integration constant (C0 6= 0), there are many open problems

remain to be solved. Nevertheless, when m = 1, ε ≥ 0, there are rigorous results

showed in [42, 19, 20, 21]. Considering the singularity caused by H−1 as H → 0

and the difficulty for solving ODE system by introducing a new variable to replace

H ′′ when ε > 0, the following Hopf-Cole type transformation was applied to system

(1.2) in [42].

v = −hx
h

= −(lnh)x

The transformation yields the following system of conservation laws

{
ut − χ(uv)x = duxx,
vt + (εv2 − u)x = εvxx

(1.3)

In this thesis, we study the existence of traveling wave solutions of the following

system {
ut − χ(uv)x = duxx,
vt − (σv2 + u)x = εvxx

(1.4)

with ε, d ≥ 0 and σ ∈ R. System (1.3) is the special case of our model with σ = −ε

and α = 1. By assigning different values to those parameters, it has many other

variations and applications which will be introduced in next section.
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1.2 The model variations and applications

Attraction-repulsion chemotaxis model

As d > 0, ε > 0, σ = 0, the system (1.4) becomes a particular case of the following

attraction-repulsion chemotaxis model:


ut = d∆u−∇ · (χu∇s) +∇ · (ξu∇w),
st = ε∆s+ αu− βs,
wt = ε∆w + γu− δw.

(1.5)

This model was proposed in [22] to describe the process of aggregation of Microglia

(denoted by u) due to the interaction with chemical substances, chemoattractant,

β-amyloid (denoted by s) and chemorepellent, Tumor necrosis factor (TNF-α) (de-

noted by w). It is a chemotaxis system where the distribution of diffusible signaling

chemicals (β-amyloid and TNF-α) affects the spacing of cells while the production of

chemicals are induced by motile cells. In [22], χ, ξ, β, δ > 0, α, γ > 0 are parameters.

When β = δ = 0, our model (1.4) with σ = 0 can be derived from the system (1.5)

by setting v = ξ∇w − χ∇s and θ = ξγ − αχ.

Initation of capillary formation in tumor angiogenesis

As σ = −ε and d > 0, then the system (1.4) is a system transformed from a chemo-

taxis system proposed in [18], which is

{
ut = d∆u−∇ · (χu∇ lnw),
wt = ε∆w − uw. (1.6)

with χ > 0. This model is intended to describe the formation of new blood vessels,

capillaries, during the growth of tumor. Moreover, the smallness of ε is emphasized

in [18] which means the diffusivity of chemicals could be negligible (i.e. 0 6 ε� 1)

because the interactions between molecules are far more important after the onset

of tumor angiogenesis. The system (1.6) becomes our model (1.4) with σ = −ε by
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the following Cole-Hopf type transformation.

v = −∇ lnw = −∇w
w

Repulsive chemotaxis system with logarithmic sensitivity

As σ = ε and d > 0, the following system is a repulsive chemotaxis system with

logarithmic sensitivity which is

{
ut = d∆u−∇ · (χu∇ lnw),
wt = ε∆w + uw − µw. (1.7)

In many theoretical analysis of chemotaxis, the signal is transported by diffusion and

convection. However, this system derived in [35, 36] is modeled by reinforced random

walkers (denoted by u), such as myxobacteria. The signals (denoted by w) released

by cells can modify the local environment in a strictly local manner for succeeding

passages χ > 0 and there is little or no transport (i.e. 0 6 ε � 1 is small) of the

modifying substance (denoted by w). Similarly, under the situation σ = ε = 0, our

model can be derived from (1.7) by Cole-Hopf type transformation v = ∇ lnw = ∇w
w

.

Except aforementioned applications in chemotaxis, the model (1.4) has applications

in fluid dynamics. For example, when d = ε = 0 and σ = −1, the system (1.4) is

the LeRoux system of conservation law, see [33]. Hence (1.4) can be regarded as

the viscous LeRoux system. Another application in fluid dynamics is the following

Boussineq-Burger system.

Boussineq-Burger system without dispersion

As σ = 1
2
, w = −v, the following Boussineq-Burger system without dispersion term

model describes the bore formation in shall water propagation considered in [29].

Furthermore, in [29], the author studied the existence of traveling wave solutions of
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system (1.8). 
ut + (uw)x = duxx,

wt + (u+
w2

2
)x = εwxx + δwxxt.

(1.8)

However, our theoretical analysis and numerical simulations are mainly focus on the

applications in biological systems.

1.3 Organization of the Thesis

In Chapter 2, we introduce some definitions and theorems which will be used in the

following chapters. Then we state the main result and show the existence of traveling

wave solutions of the model (1.4) in Chapter 3. Also, numerical simulation results

are represented in Chapter 4. Finally, Chapter 5 concludes the whole thesis and open

problems in related fields.
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Chapter 2

Preliminary

In this chapter, we will review some concepts and present the theorem which will be

used in the following chapters.

Considering the following system of conservation laws in one space dimension.

ut + F(u)x = 0 in R× (0,∞) (2.1)

where F : Rm → Rm and u : R × [0,∞) → Rm is the unknown, u = u(x, t). And

the nondivergence form of (2.1) is

ut + B(u)ux = 0 in R× (0,∞) (2.2)

where B : Rm →Mm×m and B = DF.

In the section 3.1, we will use the following definitions introduced in [6] to check the

hyperbolicity of system (1.4) and make sure (λk,γk) is genuinely nonlinear for the

purpose of finding traveling wave solutions.

Definition 2.1. If for each w ∈ Rm the eigenvalues of B(w) are real and distinct,

then the system (2.2) is strictly hyperbolic.

Definition 2.2. The pair (λk(w),γk(w)) is called genuinely nonlinear provided

Dλk(w) · γk(w) 6= 0 for all w ∈ Rm.
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where λk(w) (k = 1, . . .m) denote the real and distinct eigenvalues of B(w) and

γk(w) (k = 1, . . .m) denote a corresponding nonzero eigenvector.

Then under the condition that (λk,γk) is genuinely nonlinear, we use the following

Lax’s entropy condition [37] as the entropy criteria for admissible shock waves.

λk(ur) < c(ur, ul) < λk(ul).

where ul and ur are the left and right initial states.

Furthermore, we use the following Poincaré Bendixson theorem [37] for the proof of

the existence of traveling wave solutions.

Theorem 2.1 (Generalized Poincaré Bendixson theorem). Let M be an open subset

of R2 and f ∈ C1(M,R2). Fix x ∈M , σ ∈ {±}, and suppose ωσ(x) 6= ∅ is compact,

connected, and contains only finitely many fixed points. Then one of the following

cases holds:

(i) ωσ(x) is a fixed orbit.,

(ii) ωσ(x) is a regular periodic orbit.

(iii) ωσ(x) consists of (finitely many) fixed points {xj} and non-closed orbits γ(y)

such that ω±(y) ∈ {xj}.
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Chapter 3

Existence of traveling wave

solutions

In this chapter, we discuss the existence of the traveling wave solutions of the fol-

lowing system (1.4), {
ut − χ(uv)x = duxx,
vt − (σv2 + u)x = εvxx.

3.1 Existence of the traveling wave solutions

First, we substitute the following scalings into (1.4)

ṽ =
√
χv, x̃ =

√
1

χ
x, d̃ =

d

χ
, ε̃ =

ε

χ
, σ̃ =

σ

χ
.

and drop the tildes for simplification, then we obtain the following system

{
ut − (uv)x = duxx,
vt − (σv2 + u)x = εvxx.

(3.1)

In the absence of viscosity and under some conditions for σ, we shall show that the

system (3.1) is a genuinely nonlinear hyperbolic system.

Without the viscous term, the system (3.1) becomes

{
ut − (uv)x = 0,
vt − (σv2 + u)x = 0.

(3.2)
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The Jacobian matrix of system (3.2) is

J(u, v) =

[
−v −u
−1 −2σv

]
and its eigenvalues satisfy

λ2 + (2σ + 1)vλ+ 2σv2 − u = 0 (3.3)

which has two real roots

λ1(u, v) = −(2σ + 1)v

2
−
√

(2σ − 1)2v2 + 4u

2

λ2(u, v) = −(2σ + 1)v

2
+

√
(2σ − 1)2v2 + 4u

2

(3.4)

with respective eigenvectors

Φ1(u, v) =

[
−λ1 − 2σv

1

]
, Φ2(u, v) =

[
λ2 + 2σv
−1

]

Because u ≥ 0, then λ1 and λ2 are two real and distinct eigenvalues with λ1 < λ2.

Hence, system (3.2) is hyperbolic.

Furthermore, we have from straightforward calculations that

∇λ1(u, v) · Φ1(u, v) = −1− v√
(2σ − 1)2v2 + 4u

− σ − σ(2σ − 3)v√
(2σ − 1)2v2 + 4u

= −1− σ − (2σ − 1)(σ − 1)v√
(2σ − 1)2v2 + 4u

∇λ1(u, v) · Φ2(u, v) = 1− v√
(2σ − 1)2v2 + 4u

+ σ − σ(2σ − 3)v√
(2σ − 1)2v2 + 4u

= 1 + σ − (2σ − 1)(σ − 1)v√
(2σ − 1)2v2 + 4u
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We consider ∇λ1(u, v) · Φ1(u, v) < 0 and ∇λ2(u, v) · Φ2(u, v) > 0 to ensure that the

hyperbolic system (3.2) is genuinely nonlinear.

∇λ1(u, v) · Φ1(u, v) < 0 and ∇λ2(u, v) · Φ2(u, v) > 0 show that


−(1 + σ) <

(2σ − 1)(σ − 1)v√
(2σ − 1)2v2 + 4u

(1 + σ) >
(2σ − 1)(σ − 1)v√
(2σ − 1)2v2 + 4u

(3.5)

We can see from (3.5) that 1 + σ > 0 which means σ > −1. Then we divide it into

four cases to discuss the conditions for σ.

Case i. When v > 0 and (2σ − 1)(σ − 1) < 0 which is 1
2
< σ < 1, we only need to

consider

−(1 + σ) <
(2σ − 1)(σ − 1)v√
(2σ − 1)2v2 + 4u

⇐⇒ (1 + σ)2 >
(2σ − 1)2(σ − 1)2v2

(2σ − 1)2v2 + 4u

⇐⇒ 4u(σ + 1)2 > v2(2σ − 1)2(−4σ)

Because 1
2
< σ < 1 and u > 0, then it always holds.

Case ii. When σ > −1, v > 0 and (2σ − 1)(σ − 1) > 0 which is −1 < σ < 1
2

or

σ > 1, we only need to consider

(1 + σ) >
(2σ − 1)(σ − 1)v√
(2σ − 1)2v2 + 4u
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If 0 < σ < 1
2

or σ > 1, it is easy to see that it always holds.

If −1 < σ < 0, we consider

1− v√
(2σ − 1)2v2 + 4u

> −σ +
σ(2σ − 3)v√

(2σ − 1)2v2 + 4u

⇐⇒ 1− v√
(2σ − 1)2v2 + 4u

> −σ(1− (2σ − 3)v√
(2σ − 1)2v2 + 4u

)

⇐⇒ −σ <
1− v√

(2σ−1)2v2+4u

1− (2σ−3)v√
(2σ−1)2v2+4u

⇐⇒ σ > −
1− v√

(2σ−1)2v2+4u

1− (2σ−3)v√
(2σ−1)2v2+4u

> −1

Then for v > 0, we require

σ > −
1− v√

(2σ−1)2v2+4u

1− (2σ−3)v√
(2σ−1)2v2+4u

, with 0 <
1− v√

(2σ−1)2v2+4u

1− (2σ−3)v√
(2σ−1)2v2+4u

< 1

Case iii, when v < 0 and (2σ − 1)(σ − 1) < 0 which is 1
2
< σ < 1, we only need to

consider

(1 + σ) >
(2σ − 1)(σ − 1)v√
(2σ − 1)2v2 + 4u

We know it always holds when 1
2
< σ < 1.

Case iv, when σ > −1, v < 0 and (2σ − 1)(σ − 1) > 0 which is −1 < σ < 1
2

or

σ > 1, we only need to consider

−(1 + σ) <
(2σ − 1)(σ − 1)v√
(2σ − 1)2v2 + 4u

14



It is easy to see that it always holds for 0 < σ < 1
2

or σ > 1.

If −1 < σ < 0, we consider

−1− v√
(2σ − 1)2v2 + 4u

< σ +
σ(2σ − 3)v√

(2σ − 1)2v2 + 4u

⇐⇒ −(1 +
v√

(2σ − 1)2v2 + 4u
) < σ(1 +

(2σ − 3)v√
(2σ − 1)2v2 + 4u

)

⇐⇒ σ > −
1 + v√

(2σ−1)2v2+4u

1 + (2σ−3)v√
(2σ−1)2v2+4u

> −1

Then for v < 0, we require

σ > −
1 + v√

(2σ−1)2v2+4u

1 + (2σ−3)v√
(2σ−1)2v2+4u

, with 0 <
1 + v√

(2σ−1)2v2+4u

1 + (2σ−3)v√
(2σ−1)2v2+4u

< 1

In summary, we show that if

σ > σ0 = −
1− |v|√

(2σ−1)2v2+4u

1− (2σ−3)|v|√
(2σ−1)2v2+4u

, with 0 < σ0 < 1 (3.6)

the hyperbolic system (3.2) is genuinely nonlinear.

Moreover, according to the definition of hyperbolicity in Chapter 2, we also consider

other three different cases, and the results are listed in table 3.1.

Next we define the following traveling wave ansatz

(u, v)(x, t) = (U, V )(z), z = x− ct

where z denotes the traveling wave variable and c represents the wave speed.
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Table 3.1: Other three different cases

v > 0 v < 0

∇λ1(u, v) · Φ1(u, v) > 0
and

∇λ2(u, v) · Φ2(u, v) < 0

If 1− u
2v2

> −1,
then it is not true.
If 1− u

2v2
< −1, then

1− u
2v2

< σ < −
1+ v√

(2σ−1)2v2+4u

1+
(2σ−3)v√

(2σ−1)2v2+4u

If 1− u
2v2

> −1,
then it is not true.
If 1− u

2v2
< −1, then

1− u
2v2

< σ < −
1− v√

(2σ−1)2v2+4u

1− (2σ−3)v√
(2σ−1)2v2+4u

∇λ1(u, v) · Φ1(u, v) > 0
and

∇λ2(u, v) · Φ2(u, v) > 0
It is not true.

If 1− u
2v2

> −1,

σ < −
1+ v√

(2σ−1)2v2+4u

1+
(2σ−3)v√

(2σ−1)2v2+4u

.

If 1− u
2v2

< −1, then

max{1− u
2v2
,−

1− v√
(2σ−1)2v2+4u

1− (2σ−3)v√
(2σ−1)2v2+4u

}

< σ < −
1+ v√

(2σ−1)2v2+4u

1+
(2σ−3)v√

(2σ−1)2v2+4u

∇λ1(u, v) · Φ1(u, v) < 0
and

∇λ2(u, v) · Φ2(u, v) < 0

If 1− u
2v2

> −1,

σ < −
1− v√

(2σ−1)2v2+4u

1− (2σ−3)v√
(2σ−1)2v2+4u

.

If 1− u
2v2

< −1, then

max{1− u
2v2
,−

1+ v√
(2σ−1)2v2+4u

1+
(2σ−3)v√

(2σ−1)2v2+4u

}

< σ < −
1− v√

(2σ−1)2v2+4u

1− (2σ−3)v√
(2σ−1)2v2+4u

It is not true.

Substituting the above traveling wave ansatz into (3.1), one yields the following

traveling wave equations

{
−cUz − (UV )z = dUzz,
−cVz − (σV 2 + U)z = εVzz.

(3.7)

with boundary conditions

(U, V )(z)→ (u±, v±) as z → ±∞ (3.8)

where u± > 0.

Integrating (3.7) and we can obtain the following ODE system

{
dUz = −cU − UV + ρ1 =: F (U, V )
εVz = −cV − σV 2 − U + ρ2 =: G(U, V )

(3.9)
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where ρ1, ρ2 are constants that satisfy

ρ1 = cu− + u−v− = cu+ + u+v+,

ρ2 = cv− + σv2
− + u− = cv+ + σv2

+ + u+.
(3.10)

Rearranging (3.10), from direct calculations, the wave speed c is determined by

{
c(u+ − u−) + (u+v+ − u−v−) = 0
c(v+ − v−) +

(
σ(v2

+ − v2
−) + u+ − u−

)
= 0

(3.11)

from which we can deduce a quadratic equation of wave speed c.

c2 + v−c+ u+

(−σ(v2
+ − v2

−)

u+ − u−
− 1
)

= 0 (3.12)

Note that when σ satisfies

−σ(v2
+ − v2

−)

u+ − u−
< 1, (3.13)

then the discriminant of the quadratic equation (3.12) is positive. Therefore (3.12)

has two solutions. The positive solution gives the wave speed of the second charac-

teristic family of system (3.1) while the negative solution gives the wave speed of the

first characteristic family. Hereforth we only take the case c > 0 into account and

the analysis can be extended to the case c < 0. The positive wave speed c is given

by

c = −v−
2

+
1

2

√
v2
− + 4u+

(
1 +

σ(v2
+ − v2

−)

u+ − u−

)
(3.14)

Then if v− > 0, c+ v− ≥ 0 always holds. And if v− ≤ 0 and
−σ(v2+−v2−)

u+−u− − 1 < 0, then

c ≥ |v−| = −v−, which is equivalent to
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c+ v− ≥ 0 (3.15)

The entropy condition for the shock of second characteristic family (e.g. see [16]) is

λ2(u+, v+) < c < λ2(u−, v−) (3.16)

where λ2(u, v) is defined in (3.4). When σ is small, we derive form the entropy

inequality (3.16) that

Indeed c < λ2(u−, v−) first gives,

−(2σ + 1)v−
2

+

√
(2σ − 1)2 + 4u−

2
> −v−

2
+

1

2

√
v2
− + 4u+(1 +

σ(v2
+ − v2

−)

u+ − u−
)

⇐⇒ −v−
2

+

√
v2
− + 4u−

2
> −v−

2
+

√
v2
− + 4u+

2

⇐⇒ u− > u+

On the other hand, λ2(u+, v+) < c gives,

−(2σ + 1)v+

2
+

√
(2σ − 1)2 + 4u+

2
< −v−

2
+

1

2

√
v2
− + 4u+(1 +

σ(v2
+ − v2

−)

u+ − u−
)

⇐⇒ −v+

2
+

√
v2

+ + 4u+

2
< −v−

2
+

√
v2
− + 4u+

2

⇐⇒ v− − v+

2
<

√
v2
− + 4u+ −

√
v2

+ + 4u+

2

⇐⇒ v− − v+ <
(v− − v+)(v− + v+)√
v2
− + 4u+ +

√
v2

+ + 4u+

⇐⇒ 0 <
( v− + v+√

v2
− + 4u+ +

√
v2

+ + 4u+

− 1
)

(v− − v+)

⇐⇒ v− < v+

In summary, from the entropy inequality (3.16), we can have

0 ≤ u+ < u−, v− < v+ (3.17)
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which will be used in phase-plane analysis.

Now we can conclude the following result concerning the existence of traveling wave

solutions of (3.1), namely, the existence of solutions to (3.7), (3.8).

Theorem 3.1. Let the entropy condition (3.16) holds.

(i) When ρ1 = 0, if u−
v−(v+−v−)

< σ( v+
v−

+ 1) < 1 and σ v+
v−
< 1

2
, there exists a monotone

shock profile (U, V )(x−ct) to system (3.7), (3.8), which is unique up to a translation

and satisfies Uz < 0 and Vz > 0, where the wave speed c = −v−.

(ii) When ρ1 6= 0, if σ(v+ +v−) < u−−u+
v+−v− and σ(v+ +v−)+(1

2
+σ)c > 0, there exists a

monotone shock profile (U, V )(x− ct) to system (3.7), (3.8), which is unique up to a

translation and satisfies Uz < 0 and Vz > 0, where the wave speed c is given by (3.14).

3.2 Phase-plane analysis

In this section, we shall use the phase plane analysis to perform the existence of trav-

eling wave solutions of (3.1) as stated in Theorem 3.1. According to the definition

of constants ρ1 and ρ2 in (3.10), we see that the ODE system (3.9) must have two

equilibria (u−, v−) and (u+, v+) and the number of critical points is presented in the

following Table 3.2.
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Table 3.2: Number of critical points

ρ1 = 0 ρ1 6= 0

σ > 0
3

(u+, v+), (u−, v−),
(0,m) = (0,− c

σ
− v+)

2
(u+, v+), (u−, v−)

σ = 0
2

(u+, v+), (u−, v−)
2

(u+, v+), (u−, v−)

σ < 0
3

(u+, v+), (u−, v−),
(0,m) = (0,− c

σ
− v+)

3
(u+, v+), (u−, v−),

(p, q) = (− σρ1
c+σv++σv−

,− c(σ+1)
σ
− v+ − v−)

Next, we examine the properties of critical points in each case. The Jacobian

matrix of the linearized system of (3.9) at critical point (u∗, v∗) is

Ĵ(u∗, v∗) =

[−(c+v∗)
d

−u∗
d

−1
ε

− c+2σv∗
ε

]
with eigenvalues γ which satisfy

γ2 +
(c+ v∗

d
+
c+ 2σv∗

ε

)
γ +

1

dε

(
(c+ v∗)(c+ 2σv∗)− u∗

)
= 0 (3.18)

It’s easy to verify that the discriminant of quadratic equation (3.18) is non-negative

in the region X defined as X = {(u, v) | u ≥ 0, u∗ ≥ 0} . Hence all roots of (3.18)

are real.

The two roots γ1 and γ2 satisfy

γ1 + γ2

∣∣∣
(u∗,v∗)

= −(
c+ v∗
d

+
c+ 2σv∗

ε
),

γ1γ2

∣∣∣
(u∗,v∗)

=
1

dε

(
c2 + (2σ + 1)v∗c+ 2σv2

∗ − u∗
)

=: H(c, u∗, v∗).

3.2.1 Case of ρ1 = 0

First, from the definition of ρ1 in 3.10 and 3.17, we know u+ = 0 and c = −v−. On

the other hand, u− > 0 and from the definition of ρ2 in 3.10, we have
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σ
(v+

v−
+ 1
)
< 1 (3.19)

Case 1: σ = 0.

When σ = 0, there are only two equilibria (u+, v+) and (u−, v−). At the critical point

(u+, v+), we have γ1 = − c+v+
d

< 0 and γ2 = − c
ε
< 0 and hence (u+, v+) is a stable

nodal sink. At the critical point (u−, v−), we have γ1 = − c
2ε
− 1

2

√
c2

ε2
+ 4u−

εd
< 0 and

γ2 = − c
2ε

+ 1
2

√
c2

ε2
+ 4u−

εd
> 0. Therefore, (u−, v−) is a saddle point. Next we shall

prove that there is a heteroclinic connection between (u−, v−) and (u+, v+).

When σ = 0, we look at the nullclines of system (3.7) which are given by

{
U(V + c) = 0,
U = −cV + ρ2.

The first equation gives two straight lines, U = 0 and V = −c, and the second

equation also gives a straight line (see Figure 3.1).To this end, we shall prove the

region G (see Figure 3.1) enclosed by these two curves contains an invariant region

of system (3.9) (3.8), which is defined by

G = {(U, V ) | 0 ≤ U ≤ −cV + ρ2, V ≥ −c}

The region G is bounded by

Γ1 = {(U, V ) | V = −c, 0 < U < u−},

Γ2 = {(U, V ) | U = −cV + ρ2, 0 < U < u−, − c < V < v+},

Γ3 = {(U, V ) | U = 0, − c < U < v+}.
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Figure 3.1: Phase portrait for ρ1 = 0 and σ = 0

Along Γ1 and Γ3, we have Uz = 0 and the direction field of (3.9) is horizontal. In

addition, Γ1 and Γ3 are below Γ2, then we show that Vz|(U,V )∈Γ1,Γ3 > 0 which means

the direction field along the edges Γ1 and Γ3 points to the right horizontally. Along

the edge Γ2, we have Vz = 0 and the direction field of (3.9) is vertical. Also, from

the Figure 3.1, we can see Γ2 is on the right hand side of Γ1 and above Γ3, then it is

easy to show that Uz|(U,V )∈Γ2 < 0 and thus the orbits crossing Γ2 points downwards.

Therefore G is an invariant region of system (3.9).

Next, we shall prove that the unstable manifold of system (3.9) emanating from the

saddle point (u−, v−) is trapped inside the invariant region G. From direct calculation,

we derive the tangent direction of Γ1 at (u−, v−) is dU
dV
|Γ1

(u−,v−) = −∞ and the tangent

direction of Γ2 at (u−, v−) is dU
dV
|Γ2

(u−,v−) = −c.

To this end, we compare the direction of the unstable manifold of system (3.9) at

the saddle point (u−, v−) with the tangent directions of nullclines calculated above.

Then we consider the positive eigenvalue of Ĵ(u−, v−) is γ2 = − c
2ε

+ 1
2

√
c2

ε2
+ 4u−

εd
> 0

which has the eigenvector R2 =

[
−u−

d

γ2

]
. Hence the slope of the unstable manifold of
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(3.9) at (u−, v−) is

dU

dV

∣∣∣
(u−.v−)

= − c
2
− ε

2

√
c2

ε2
+

4u−
εd

One can easily check that

−∞ =
dU

dV

∣∣∣Γ1

(u−,v−)
<
dU

dV

∣∣∣
(u−,v−)

<
dU

dV

∣∣∣Γ2

(u−,v−)
= −c

Therefore we deduce that the direction of the unstable manifold of (3.9) at (u−, v−)

is between the tangent lines of Γ2 and Γ1 at (u−, v−) which points inside the region G.

On the basis of the Poincaré-Bendixson theorem, this unstable manifold has to reach

the stable equilibrium (u+, v+). This trajectory connecting (u−, v−) and (u+, v+)

generates a solution for the system (3.9) with Uz < 0 and Vz > 0.

Case 2: σ 6= 0

When σ 6= 0, there are three critical points (u−, v−), (u+, v+) and (0,m) with m =

− c
σ
− v+.

The nullclines of system (3.7) are

{
U(V + c) = 0,
U = −σV 2 − cV + ρ2.

The first equation gives two straight lines, U = 0 and V = −c, and the second

equation gives a parabola (see Figure 3.2 for σ < 0 and Figure 3.3 for σ > 0).

If σ is small such that

σv+

v−
≤ 1

2
(3.20)

For critical point (u+, v+), we have γ1 = − c+v+
d

< 0 and γ2 = − c+2σv+
ε

< 0. There-

fore, (u+, v+) is a stable nodal sink. From the definition of λ1(u, v) and λ2(u, v) in

(3.4), we have λ2(u−, v−) > c for any σ 6= 0 and λ1(u−, v−) < c for any σ 6= 0.

Therefore, λ1(u−, v−) < c < λ2(u−, v−) and γ1γ2|(u−,v−) < 0 which means (u−, v−) is
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a saddle point. For the critical point (0,m), we have two cases to discuss as below.

When σ < 0, the critical point (0,m) with m > v+ is on the right hand side of the

symmetry axis of the parabola (see Figure 3.2). Hence, we have γ1 = − c+m
d

< 0 and

γ2 = − c+2σm
ε

> 0. Then (0,m) is a saddle point. When σ > 0, the critical point

(0,m) with m < v− is on the left hand side of the symmetry axis of the parabola

(see Figure 3.3). Therefore, we have γ1 = − c+m
d

> 0 and γ2 = − c+2σm
ε

> 0 which

means (0,m) is an unstable nodal source. To make a summary, we have the following

lemma.

Lemma 3.1. When ρ1 = 0 and σ 6= 0, three critical points have the following

properties:

(i) The critical point (u+, v+) is a stable nodal sink;

(ii) The critical point (u−, v−) is a saddle point;

(iii) When σ < 0, the critical point (0,m) is a saddle point. When σ > 0, the critical

point (0,m) is an unstable nodal source.

Next we shall show there is a heteroclinic orbit connecting the critical points

(u+, v+) and (u−, v−).

Case i: σ < 0

When σ < 0, similar to above analysis, we can prove the region G (see Figure 3.2)

enclosed by these two curves is an invariant region of system (3.9). The region

G = {(U, V )
∣∣∣ 0 ≤ U ≤ −σV 2 − cV + ρ2, V ≥ −c} is bounded by

Γ1 = {(U, V ) | V = −c, 0 < U < u−},

Γ2 = {(U, V ) | U = −σV 2 − cV + ρ2, 0 < U < u−, − c < V < v+},

Γ3 = {(U, V ) | U = 0, − c < V < v+}.

24



Figure 3.2: Phase portrait for ρ1 = 0 and σ < 0

To this end, we shall show that the unstable manifold of system (3.9) emanating

from the saddle point (u−, v−) points inside the invariant region G. From direct cal-

culation, we derive the tangent direction of Γ1 at (u−, v−) is dU
dV
|Γ1

(u−,v−) = −∞ and

the tangent direction of Γ2 at (u−, v−) is dU
dV
|Γ2

(u−,v−) = (2σ − 1)c.

Next we derive the direction of the unstable manifold of system (3.9) at the sad-

dle point (u−, v−) and make comparisons with the directions of nullclines calcu-

lated above. We consider the positive eigenvalue of Ĵ(u−, v−) is γ2 = (2σ−1)c
2ε

+

1
2

√
(2σ−1)2c2

ε2
+ 4u−

εd
which has the eigenvector R2 =

[
−u−

d

γ2

]
. Hence the slope of the

unstable manifold of (3.9) at (u−, v−) is

dU

dV

∣∣∣
(u−.v−)

= (2σ − 1)c− εγ2

One can easily check that

−∞ =
dU

dV

∣∣∣Γ1

(u−,v−)
<
dU

dV

∣∣∣
(u−,v−)

<
dU

dV

∣∣∣Γ2

(u−,v−)
= (2σ − 1)c

On the other hand, at the saddle point (0,m), the eigenvector of the positive eigen-
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value γ2 is R2 =

[
0
α

]
which is along the V-axis and hence can not form a non-trivial

trajectory. Therefore we deduce that the direction of the unstable manifold of (3.9)

at (u−, v−) is between the tangent lines of Γ2 and Γ1 at (u−, v−) which points inside

the region G. On the basis of the Poincaré-Bendixson theorem, this unstable mani-

fold has to reach the stable equilibrium (u+, v+). This trajectory connecting (u−, v−)

and (u+, v+) generates a solution for the system (3.9) with Uz < 0 and Vz > 0.

Case ii: σ > 0

When σ > 0, similar to above analysis, we can prove the region G bounded by Γ1, Γ2

and Γ3 (see Figure 3.3) enclosed by these two curves is an invariant region of system

(3.9).

(a) Phase portrait for 0 < σ ≤ 1
2 (b) Phase portrait for σ > 1

2

Figure 3.3: Phase portraits for ρ1 = 0 and σ > 0

Also, one can easily check

−∞ =
dU

dV

∣∣∣Γ1

(u−,v−)
<
dU

dV

∣∣∣
(u−,v−)

<
dU

dV

∣∣∣Γ2

(u−,v−)
= (2σ − 1)c

This shows that the unstable manifold of the saddle point (u−, v−) points inside G.

Since there is no other critical points inside G, by the Poincaré-Bendixson theorem

the unstable manifold emanating from the saddle point (u−, v−) to reach the stable
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nodal sink (u+, v+) eventually. Such a trajectory generates a traveling wave solution

for the system with Uz < 0, Vz > 0.

Then we need to calculate dU
dV
|(0,m) to rule out the possibility that the unstable node

(0,m) connects to the critical points (u+, v+) and (u−, v−). The Jacobian matrix at

(0,m) is

Ĵ(0,m) =

[
− c+m

d
0

−1
ε
− c+2σm

ε

]
which has two positive eigenvalues γ1 = − c+m

d
> 0, γ2 = − c+2σm

ε
> 0. The cor-

responding eigenvector of γ1 is R1 =

[
−εβ(− c+m

d
+ c+2σm

ε
)

β

]
. The corresponding

eigenvector of γ2 is R2 =

[
0
α

]
which is along the V-axis and hence can not form a

non-trivial trajectory. Now we turn to consider the direction of the unstable mani-

fold at the unstable node (0,m), which is

dU

dV

∣∣∣
(0,m)

= −ε(−c+m

d
+
c+ 2σm

ε
)

=
ε

d
(c+m)− (c+ 2σm)

< −(c+ 2σm)

The slope of the tangent line of the parabola U = −σV 2 − cV + ρ2 at (0,m) is

dU

dV

∣∣∣
(0,m)

= −2σm− c = −(c+ 2σm) > 0

Hence the unstable manifold of the eigenvalues γ1 can not enter the invariant region

G. Outside the region enclosed by the parabola and V-axis, we know that Vz < 0,

hence the trajectories always point to the left.

Therefore, from above analysis, when ρ1 = 0, there only exist trajectories connecting
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(u+, v+) and (u−, v−) which correspond to a traveling wave solution of the system

with Uz < 0, Vz > 0. Combining (3.19) (3.20) (3.13), the proof of first part of Theo-

rem 3.1 is completed.

3.2.2 Case of ρ1 6= 0

From (3.4), we see that

H(λ2(u−, v−), u−, v−) =
1

dε

((
− (2σ + 1)v−

2
+

√
(2σ − 1)2v2

− + 4u−
2

)2

+ (2σ + 1)v−
(
− 2σ + 1)v−

2
+

√
(2σ − 1)2v2

− + 4u−
2

)
+ 2σv2

− − u−
)

=
1

dε

(
−

(2σ + 1)v2
−

4
+

(2σ − 1)2v2
−

4
+ u− + 2σv−u−

)
=

1

dε

(((2σ − 1)2 − (2σ + 1)2
)
v2
−

4
+ 2σv2

−

)
=0

Also, H(λ2(u+, v+), u+, v+) = H(λ2(u−, v−), u−, v−) = 0.

Using the entropy condition (3.16) and from the definition of λ1(u, v) in (3.4), we

know that λ1(u−, v−) < c and we can show that

γ1γ2|(u−,v−) = H(c, u−, v−) < H(λ2(u−, v−), u−, v−) = 0

γ1γ2|(u+,v+) = H(c, u+, v+) > H(λ2(u+, v+), u+, v+) = 0

We know c+ v+ > c+ v− ≥ 0 from (3.15), then

γ1 + γ2|(u±,v±) = −(
c+ v±
d

+
c+ 2σv±

ε
) < 0
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Therefore the equilibrium (u+, v+) is a stable node and (u−, v−) is a saddle point.

Next we look at the nullclines of system (3.7) which are given by{
U(V + c) = ρ1,
U = −σV 2 − cV + ρ2.

(3.21)

We shall show that the region G enclosed by these two curves composes an invariant

region of system (3.9) (3.8), which is defined by

G =
{

(U, V ) | ρ1

V + c
≤ U ≤ σV 2 − cV + ρ2

}
(3.22)

The edges of the region G are denoted by

Γ1 = {(U, V ) | U =
ρ1

V + c
, u+ < U < u−, v− < V < v+},

Γ2 = {(U, V ) | U = −σV 2 − cV + ρ2, u+ < U < u−, v− < V < v+}.

Case 1: σ ≥ 0

When σ ≥ 0, there are only two equilibria (u+, v+) and (u−, v−).

(a) Phase portrait for σ = 0 (b) Phase portrait for σ > 0

Figure 3.4: Phase portrait for ρ1 6= 0 and σ ≥ 0

When σ = 0, the first equation of (3.21) gives a hyperbola and the second e-

quation of (3.21) gives a straight line (see Figure 3.4(a)). When σ > 0, the second
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equation gives a parabola (see Figure 3.4(b)). From the same analysis, along the

edge Γ1 : Uz = 0 and Vz|(U,V )∈Γ1 > 0 which means the direction field of (3.9) a-

long the edge Γ1 points to the right horizontally. Along the edge Γ2 : Vz = 0 and

Uz|(U,V )∈Γ2 < 0 which means the direction field of (3.9) along the edge Γ2 points

downwards. Therefore G is an invariant region of system (3.9). The phase portrait

is illustrated in Figure 3.4.

To prove that the heteroclinic connection between (u−, v−) and (u+, v+), we shall

show that the unstable manifold of system (3.9) emanating from the saddle point

(u−, v−) points inside the invariant region G.

To this end, we calculate the tangent directions of the nullclines at (u−, v−). Solv-

ing V from the first equation of (3.21) and differentiating with respect to U , we derive

dU

dV

∣∣∣Γ1

(u−,v−)
= − ρ1

(V + c)2

∣∣∣
(u−,v−)

= − u−
c+ v−

(3.23)

where dU
dV
|Γ1

(u−,v−) denotes the tangent direction of Γ1 at (u−, v−). From the second

equation of (3.21), we derive

dU

dV

∣∣∣Γ2

(u−,v−)
= −(c+ 2σv−) < 0 (3.24)

where dU
dV
|Γ2

(u−,v−) denotes the tangent direction of Γ2 at (u−, v−).

Next we derive the direction of the unstable manifold of system (3.9) at the saddle

(u−, v−) and make comparisons with the directions of the nullclines calculated above.

To this end, we consider the positive eigenvalue of Ĵ(u−, v−),

γ2 = −
c+v−
d

+ c+2σv−
ε

2
+

√
( c+v−

d
− c+2σv−

ε
)2 + 4u−

εd

2

which has the following eigenvector
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R2 =

[
−u−

d

γ2 + c+v−
d

]
Tangent to the eigenvector R2, the direction of the unstable manifold of (3.9) at

(u−, v−) is given by

dU

dV

∣∣∣
(u−,v−)

=
−u−

d

γ2 + c+v−
d

=
−ε(γ2 + c+v−

d
)(γ2 + c+2σv−

ε
)

γ2 + c+v−
d

= −εγ2 − (c+ 2σv−)

< −(c+ 2σv−)

(3.25)

On the other hand, since γ2 > 0, we have

−u−
d

γ2 + c+v−
d

>
−u−

d
c+v−
d

= − u−
c+ v−

. (3.26)

Therefore, combining (3.23), (3.24), (3.25), we end up with

dV

dU

∣∣∣Γ1

(u−,v−)
<
dV

dU

∣∣∣
(u−,v−)

<
dV

dU

∣∣∣Γ2

(u−,v−)
(3.27)

where the left hand side of (3.27) represents the tangential direction of the edge Γ2

at (u−, v−), the right-hand side of (3.27) is the tangential direction of the edge Γ1

at (u−, v−), and the middle term of (3.27) is the direction of unstable manifold of

system (3.9) at (u−, v−). Therefore we deduce that the direction of the unstable

manifold of (3.9) at (u−, v−) is between the tangent lines of Γ2 and Γ1 at (u−, v−)

which points inside the region G. On the basis of the Poincaré-Bendixson theorem,

this unstable manifold has to reach the stable equilibrium (u+, v+). This trajecto-

ry connecting (u−, v−) and (u+, v+) generates a solution for the system (3.9) with
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Uz < 0 and Vz > 0.

Case 2: σ < 0

When σ < 0, there are three critical points (u+, v+), (u−, v−) and (p, q) = (− σρ1
c+σv++σv−

,− c(σ+1)
σ
−

v+ − v−). Using the entropy condition (3.16) and λ1(u∗, v∗) < 0 < c, we can know

that (u+, v+) is a stable node and (u−, v−) is a saddle point. Then we have three

different cases as sketched below.

Figure 3.5: Phase portrait for ρ1 6= 0, σ < 0 and q > v+ > v−

(a) Phase portrait for σ < 0 and v+ > v− > q (b) Phase portrait for σ < 0 and v+ > q > v−

Figure 3.6: Phase portrait for ρ1 6= 0, σ < 0
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However, in Figure 3.6, (u+, v+) is on the right hand side of the symmetry axis

V = − c
2σ

which means v+ > 0 and −2σv+ > c. Then according to the definition of

λ2(u, v) in (3.4), we have λ2(u+, v+) > −2σv+ > c which doesn’t satisfy the entropy

condition λ2(u+, v+) < c in (3.16). Hence we only consider the case q > v+ > v− and

the phase portrait is illustrated in Figure 3.5. Also, we know (p, q) is on the right

hand side of the symmetry axis of the parabola V = − c
2σ

from which we can have

σ(v+ + v−) + (
1

2
+ σ)c > 0 (3.28)

Using the same phase plane analysis as that of the case ρ1 6= 0 and σ ≥ 0, we can

conclude there exists a traveling wave emanating from the saddle point (u−, v−) to

reach the stable node (u+, v+) eventually with Uz < 0 and Vz > 0.

Next we consider that the invariant region S which is defined by

S =
{

(U, V ) | − σV 2 − cV + ρ2 ≤ U ≤ ρ1

V + c

}
The edges of the region S are denoted by

Γ3 = {(U, V ) | U =
ρ1

V + c
, p < U < u+, v+ < V < q},

Γ4 = {(U, V ) | U = −σV 2 − cV + ρ2, p < U < u+, v+ < V < q}.

We have already knew λ1(p, q) < 0 < c. The point (p, q) is on the right hand side

of the symmetry axis of the parabola V = − c
2σ

which means q > 0 and −2σq > c.

Then according to the definition of λ2(u, v) in (3.4), we have λ2(p, q) > −2σq > c.

Therefore γ1γ2|(p,q) < 0 and the critical point (p, q) is a saddle point. The tangent

direction of the parabola at the saddle point (p, q) is dU
dV
|Γ4

(p,q) = −(c+ 2σq) > 0. The

tangent direction of the hyperbola at the saddle point (p, q) is dU
dV
|Γ3

(p,q) = − p
c+q

< 0.

To this end, we consider the positive eigenvalue of Ĵ(p, q),

γ2 = −
c+q
d

+ c+2σq
ε

2
+

√
( c+q
d
− c+2σq

ε
)2 + 4p

εd

2
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which has the following eigenvector

R2 =

[
−p
d

γ2 + c+q
d

]
Then from direct calculation, we can have

dU

dV

∣∣∣
(p,q)

=
−p
d

γ2 + c+q
d

=
−ε(γ2 + c+q

d
)(γ2 + c+2σq

ε
)

γ2 + c+q
d

= −(c+ 2σq)− εγ2

=
ε

2

(c+ q

d
− c+ 2σq

ε
−
√

(
c+ q

d
− c+ 2σq

ε
)2 +

4p

εd

)
< 0

Hence, we end up with

dU

dV

∣∣∣Γ3

(p,q)
<
dU

dV

∣∣∣
(p,q)

< 0 <
dU

dV

∣∣∣Γ4

(p,q)

Therefore, such a trajectory corresponds to a traveling wave solution of the system

with Uz > 0 and Vz < 0 which means the unstable manifold emanating from the

saddle point (p, q) goes to the stable nodal sink (u+, v+) eventually. However, it

doesn’t satisfy the entropy condition (3.16) which makes the results have more real-

istic physical meaning. Therefore there exists a monotone traveling wave which sat-

isfies Uz < 0 and Vz > 0. Then the proof of second part of Theorem 3.1 is completed.
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Chapter 4

Numerical Simulations of wave
propogation

In this chapter, we present corresponding numerical simulations of wave propagation

for cases ρ1 = 0 and ρ1 6= 0 and we shall focus on the applications of system (1.4) in

biological systems. Here we use method of line to simulated the wave propagation in

a finite spatial domain, Ω = (0, 350), with no-flux boundary condition and the initial

data are taken to be

u0(x) = ū+
1

1 + e(2(x−50))
,

v0(x) = v̄ +
1

1 + e(−2(x−50))
.

(4.1)

which is motivated by [21].

First, we simulate the traveling wave phenomena with σ = 0 in Figure 4.1 and Figure

4.2. It is a special case of the attraction-repulsion chemotaxis model which describes

the aggregation of Microglia in Alzhemer’s disease. In Figure 4.1, we choose param-

eter values as d = 0.5, ε = 15, χ = 1 and σ = 0 to be compatible with the data

in [22] where the authors emphasize the motility of chemical signals is much larger

than the diffusion rate of cells (i.e. d� ε).
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(a) (b)

Figure 4.1: Numerical simulation of traveling wavefront u of model (1.4) with d = 0.5,
ε = 15, χ = 1, σ = 0, ρ1 6= 0 and initial data are ū = 0.5, v̄ = −0.5. The arrow
indicated the propagating direction of traveling waves.

(a) (b)

Figure 4.2: Numerical simulation of traveling wavefront u of model (1.4) with d = 5,
ε = 0.3, χ = 1, σ = 0, ρ1 = 0 and initial data are ū = 0, v̄ = −1. The arrow
indicated the propagating direction of traveling waves.

By contrast, in the following two cases, the diffusion rate of chemicals is much

smaller than the diffusion rate of cells. In Figure 4.3 and Figure 4.4, we study the

wave propagation of model (1.4) with d = 5, χ = 1 and ε = 0.3. When σ = −ε, it’s

a system transformed from a chemotaxis system about the initiation angiogenesis.

Moreover, patterns of traveling are also numerically presented in [21, 41] which de-
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scribes the directed migration of endothecial cells towards the signalling molecules

VEGF.

(a) (b)

Figure 4.3: Numerical simulation of traveling wavefront u of model (1.4) with d = 5,
ε = 0.3, χ = 1, σ = −0.3, ρ1 6= 0 and initial data are ū = 0.5, v̄ = −0.5. The arrow
indicated the propagating direction of traveling waves.

(a) (b)

Figure 4.4: Numerical simulation of traveling wavefront u of model (1.4) with d = 5,
ε = 0.3, χ = 1, σ = −0.1, ρ1 = 0 and initial data are ū = 0, v̄ = −0.8. The arrow
indicated the propagating direction of traveling waves.

Figure 4.5 and Figure 4.6 perform propagating waves generated by the model

(1.4) transformed from the system (1.7) with d = 5, χ = 1, ε = 0.3 and σ = ε = 0.3.
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The model (1.7) accounts for the chemotactic movement of reinforced random walker.

(a) (b)

Figure 4.5: Numerical simulation of traveling wavefront u of model (1.4) with d = 5,
ε = 0.3, χ = 1, σ = 0.3, ρ1 6= 0 and initial data are ū = 0.5, v̄ = −0.5. The arrow
indicated the propagating direction of traveling waves.

(a) (b)

Figure 4.6: Numerical simulation of traveling wavefront u of model (1.4) with d = 5,
ε = 0.3, χ = 1, σ = 0.3, ρ1 = 0 and initial data are ū = 0, v̄ = −1.5. The arrow
indicated the propagating direction of traveling waves.

Finally, we show some numerical results with |σ| large to see the behavior of trav-

eling wave of u. We consider three sets of parameter values: (1) σ = −2 with initial
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data, ū = 0.5 and v̄ = −0.5; (2) σ = −2 with initial data, ū = 0 and v̄ = −1; (3)

σ = 1.5 with initial data, ū = 0 and v̄ = −1. Then from Figure 4.7, Figure 4.8 and

Figure 4.9, as the propagating of wave, we can see there are some small oscillations

showing on the traveling wave. Moreover, when σ < 0, the oscillations occurs on

the head of the wave (See Figure 4.7 and Figure 4.8). When σ > 0, the oscillations

propagates from the tail of the wave to the head of the wave (See Figure 4.9).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Numerical simulation of traveling wavefront u of model (1.4) with d = 5,
ε = 0.3, χ = 1, σ = −2 and initial data are ū = 0.5, v̄ = −0.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Numerical simulation of traveling wavefront u of model (1.4) with d = 5,
ε = 0.3, χ = 1, σ = −2 and initial data are ū = 0, v̄ = −1.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Numerical simulation of traveling wavefront u of model (1.4) with d = 5,
ε = 0.3, χ = 1, σ = 1.5 and initial data are ū = 0, v̄ = −1.
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Chapter 5

Conclusions and Future work

This thesis established the existence of traveling wave solutions for system (1.4)

which has very prominent applications in biomedical or biological sciences. Then we

proved the existence of traveling wave solutions by the phase plane analysis. Despite

abundant results obtained in [9, 10, 41], there are still many interesting questions

remain to be solved.

The first point is about the smallness assumption for |σ|. From Figure 4.7, Figure

4.8 and Figure 4.9 in Chapter 4, it’s easy to see the solution behavior showed by

numerical results for large |σ| with u+ ≥ 0 is different from the situation for small

|σ|. When |σ| is large, the system (1.4) is no longer hyperbolic. Hence the existence

of traveling wave solutions for large |σ| needs to be examined by different methods.

On the other hand, the stability / instability of traveling wave solutions is another

interesting problem. The stability result for Keller-Segel [12] was obtained in [26].

Nonlinear stability of the model (1.4) with σ = −ε was proved in [20] by method

of energy estimates and then the results of transformed model were transferredback

to the original Keller-Segel chemotaxis model in [21]. Although there are many

gorgeous results obtained in previous studies [41], it remains open to study the

property of the system in general form (1.4). In addition, the assumption of small

initial perturbations is needed in [19, 20, 41] to study the stability. However, the
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numerical simulations in [41] shows the stability of traveling waves with large initial

perturbations which is deserved to be examined in the future.

Moreover, the study of existence of two dimensional traveling wave solutions (e.g.,

planar waves) is also another important problem that is worthwhile to be explored

in the future.
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