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Abstract

The thesis is concerned with sparse portfolio optimization and dynamic portfolio in-

vestment. The sparse portfolios we consider in this thesis are least-0-norm portfolio

and least-p-norm with p P p0, 1q portfolio from the solution set of the Markowitz

mean-variance (MV) optimization model. They are both NP hard problems. The

dynamic portfolio investment model we consider is the projection of the given re-

turns into a constraint comprised of a time-varying expected return in the form of

parameterized ordinary differential equation (ODE) involving the Markowitz model.

In this thesis, we resort to the stochastic linear complementarity approach, penalty

methods to solve the sparse portfolio optimization problems and numerical methods

to discretize and solve the parameter identification problem in the dynamic portfolio

investment problem.

The least-0-norm portfolio we consider is in the framework of the classical Markowitz

MV model when multiple solutions exist, among which the sparse solution is stable

and cost-efficient. We study a two-phase stochastic linear complementarity approach

(two-phase approach) to find a sparse solution. This approach stabilizes the opti-

mization problem, finds the sparse asset allocation that saves the transaction cost,

and results in the solution set of the Markowitz MV model. We apply the sample

average approximation (SAA) method to overcome the randomness in the two-phase

approach and give detailed convergence analysis. We implement this methodology

on the data sets of Standard and Poor 500 index (S&P 500), real data of Hong Kong
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and China market stocks (HKCHN) and Fama & French 48 industry sectors (FF48).

With mock investment in the training data, we construct portfolios, test them in the

out-of-sample data, find their Sharpe ratios and compare with the `1 penalty regular-

ized portfolios, `p penalty regularized portfolios, cardinality constrained portfolios,

and 1{N investment strategy. The least-0-norm portfolio is naturally sparser than

the Markowitz portfolio. Moreover, we show the advantage of our approach in the

risk management by using the criteria of standard deviation (STD), Value-at-Risk

(VaR) and Conditional Value-at-Risk (CVaR).

We also consider the least-p-norm solution, p P p0, 1q in the Markowitz model

solution set. The sparse portfolio model we study is solved by the penalty method.

This model finds the least-p-norm sparse asset allocation in the solution set of the

Markowitz MV model, saves the transaction cost and stabilizes the optimization

problem. We apply the SAA method to overcome the randomness in the least-p-

norm sparse portfolio model and give detailed convergence analysis. We implement

this penalty method on the data sets of 20 A&H stocks, Fama & French 12 industry

sectors (FF12) and Fama & French 25 portfolios formed on size and book-to-market

(FF25). Using portfolios constructed in the training sample, we test them in the out-

of-sample data, find their Sharpe ratios and compare with the }¨}0 sparse portfolio, `1

penalty regularized portfolios, cardinality constrained portfolios, and 1{N investment

strategy. Theoretically, least-p-norm portfolio would be sparser than the least-0-norm

portfolio, but the least-0-norm portfolio might be more robust due to the simple

structure of the two-phase approach.

The dynamic investment model that we propose and study is a model with expect-

ed return evolution containing unknown parameters. We project the target return

to the constraint comprised of the parametric differential equation of the expected

return coupled with the Markowitz MV model in every period. We discretize the

model by the time-stepping method and use quasi-Newton method to identify the
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parameters. Portfolios are then constructed according to the expected return evo-

lution in multiple investment periods. The portfolio is re-balanced at the end of a

round of dynamic portfolio investment incorporating the updated parameters. An

empirical example using Dow Jones Industrial Average component stocks and index

is given, which demonstrates the model.
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Chapter 1

Introduction

1.1 Background

The portfolio, most of us construct, is comprised of a wide range of stocks from d-

ifferent sectors, cross several markets and through uncertain time periods. Portfolio

selection is concerned with constructing an ensemble of assets that maximize one’s

return. However, return and risk are a pair of trade-off. One can not pursue high

return with low risk. Markowitz (1952) ushered the era of modern portfolio man-

agement by his mean-variance model. In this model, he initiated a way for portfolio

selection that balances the variance and return by mean-variance framework.

Although Markowitz model is elegantly straightforward, it is not trivial to com-

pute portfolios from the Markowitz MV model. In practice, it is challenging to

construct perfect portfolios from the model due to many reasons. We name several

of them. Firstly, when the assets in the investment universe are large-scale, even if

we allocate the investment into the assets wisely according to MV model, the trans-

action costs are considerable. Not to say the rapidly rising trading complexity along

with the increasing number of assets in the market. Secondly, when the distribution

of the stock returns is non-normal, a problem of overfitting arises in the estimation

of unknown parameters, see Merton (1980). Due to estimation error, the MV model

results are opaque and unstable, see Michaud and Michaud (2008). Last but not
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least, the Markowitz portfolio problem could be highly unstable. When assets in the

investment universe are highly correlated, the smallest singular value of the returns

matrix is extremely small, which leads to the phenomenon that small changes in the

data would result large changes in solution, as reported in Brodie et al. (2009).

A natural thinking is that if we could find a scientific way to obtain sparse and

stable portfolios. Sparsity is researched intensively and has a wide application in

compressed sensing, portfolio selection.

There is indeed an ensemble of recently developed sparse Markowitz portfolio

theories in the literature. In Brodie et al. (2009), Chen et al. (2013), Chen et al.

(2017), DeMiguel et al. (2009a), Xu et al. (2014) and Xue et al. (2012), researchers

proposed approaches which use penalty, e.g. `1 penalty, `p penalty, for p P p0, 1q to

regularize the Markowitz portfolio optimization. Another stream of research is to

add a cardinality constraint in the Markowitz portfolio selection model to select a

cardinality number of assets. Many of the researchers investigated the cardinality

constrained portfolio selection (CCPS) based on the branch-and-bound method, in

Bertsimas and Shioda (2009), Bonami and Lejeune (2009). They developed a branch-

and-bound method based on a novel geometric approach in Gao and Li (2013), or

constructed a tight semidefinite program (SDP) problem approach in Zheng et al.

(2014). Various other methods to study the CCPS include heuristic approaches in

Cesarone et al. (2013), Deng et al. (2012), a positive programming approach in Tian

et al. (2016), and a nonmonotone projected gradient (NPG) method in Xu et al.

(2016).

Although these several works are used to enhance the Markowitz portfolio selec-

tion, they have problems, such as the change of the objective function, imposition

of additional constraints. Then there is an idea arising from those frameworks. How

about finding a sparse solution from the optimal solution set of the classic Markowitz

MV model? When the covariance matrix is semi-definite, i.e., when there exist mul-
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tiple solutions of the Markowitz portfolio optimization problem, we study a novel

method to select a sparse portfolio solution of the classic Markowitz MV model.

Our approach is traced back to inspirations from Candes and Tao (2005). Chen

and Xiang (2016) gave a way to find sparse solutions of the linear complementarity

problem (LCP). By this method, we study a two-phase stochastic linear comple-

mentarity approach to find an approximate sparse solution of MV model by solving

two simple convex problems in two phases. Note that finding a sparse portfolio over

the solution set of MV model is an NP-hard problem, see Natarajan (1995). One

of the advantages of the method is that we can approximate the NP-hard problem

by solving a convex quadratic optimization problem and a linear optimization prob-

lem. Moreover, due to the discontinuity of `0 norm, it may not be easy to know

how to guarantee the convergence when the SAA method is applied to the problem.

Therefore, another contribution of this chapter is that we establish the convergence

analysis when we apply the SAA method with the two-phase approach to find a

sparse portfolio.

We use the two-phase approach to compute the sparse Markowitz portfolio of

a randomly generated example, and three empirical examples, which are S&P 500

portfolios, HKCHN cross market portfolios and FF48 portfolios. We test their out-of-

sample performance. From the preliminary results, our approach has better perfor-

mance compared with the reported well-performed `1 penalty regularized portfolio, `p

penalty regularized portfolio, cardinality constrained portfolio and 1{N investment

strategy in DeMiguel et al. (2009b).

Our approach outperforms traditional Markowitz portfolios in the sense that: the

sparse portfolio saves transaction fees and reduces investment complexity. Normally,

the transaction cost is positive linearly related to the number of assets allocated. The

sparse solutions from our approach naturally produce a cost efficient investment.

Moreover, our approach outperforms other sparse portfolios in the sense that the
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sparse solution of the two-phase approach is located in the solution set of the classical

Markowitz portfolio optimization where the objective is only the risk measure. The

merit of variance minimization of the Markowitz portfolio is inherited by the sparse

solution from the two-phase approach in the sense that the sparse solution is exactly

a solution of the classic Markowitz portfolio optimization problem.

From the results of our empirical examples, our sparse portfolio could outperform

the comparative portfolios from the perspective of Sharpe ratio. Therefore, by our

approach, we find a sparse and stable Markowitz portfolio such that the portfolio is

well-posed to achieve the goal of classical MV model and preserves the stability and

sparsity properties.

It is widely know that `p norm penalty yields even sparser solution. Based on

our previous work in Wang and Sun (2017) where we had studied a novel two-

phase approach to find a `0 norm sparse solution of MV model, we then propose

a model by imposing `p-norm regularization to find a least-p-norm sparse solution

over the optimal solution set. Our approach is traced back to inspirations from

Chen and Xiang (2016) and Candes and Tao (2005). Note that finding a `p-norm

sparse portfolio over the solution set of MV model is an NP-hard problem, see Ge

et al. (2011). One of the challenges is that `p-norm is non-convex and non-Lipschitz.

Moreover, it is hard to guarantee the convergence when the SAA method is applied

to the problem. In order to overcome the difficulties, we use the penalty method to

solve the problem. We also establish the convergence analysis when we apply the

SAA method to handle the stochastic returns.

To test the effectiveness of the penalty method model, we use the nonmonotone

proximal gradient (NPG) algorithm to compute the least-p-norm sparse Markowitz

portfolio of a randomly generated example, and three empirical examples using data

sets of 20 A&H stocks portfolios, FF12 and FF25 portfolios. We construct a series of

portfolios and compare their out-of-sample performance. From out-of-sample results,
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our approach has better performance in Sharpe ratio compared to the reported well-

performed `1 penalty regularized portfolio, cardinality constrained portfolio, least-0-

norm sparse portfolio and 1{N investment strategy, see DeMiguel et al. (2009b).

This approach outperforms traditional Markowitz portfolios in the sense that: the

sparse portfolio saves transaction fees and reduces investment complexity. Normally,

the transaction cost increases with the increasing number of selected assets. Thus,

the least-p-norm sparse solution of portfolio allocation saves investors transaction

cost as well as mental energy to management the individual assets.

Moreover, our approach outperforms other sparse portfolios in the sense that the

least-p-norm solution selects a limited number of stocks in the solution set of the

MV model. The merit of balanced return-risk tradeoff of the Markowitz portfolio is

inherited by the least-p-norm solution in the sense that the least-p-norm solution is

exactly a solution of the classic Markowitz portfolio optimization problem.

Therefore, by our approach, we find a sparse and stable Markowitz portfolio

such that the portfolio is well-posed to achieve the goal of classical MV model and

preserves the stability and sparsity properties.

The Markowitz (1952) MV portfolio selection model is a seminal work in the

contemporary finance. The MV model provides the portfolio allocation strategy

concerning return and risk tradeoff. However, investors need to consider portfolio

construction over a long-time horizon. The dynamic portfolio management thus

embarks an ensemble of research works. Li et al. (2002), Li and Ng (2000), Zhou and

Li (2000), Cui et al. (2014) and etc. ushered a new norm of self-financing dynamic

portfolio policy formed with time evolution. Recently developed modern methods

in works such as Liu et al. (2013) enhanced the dynamic portfolio construction for

real-time optimization.

We consider the dynamic portfolio management within a certain period to fit in

given target return and then make investment at the end of the time period. It is very
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often that investors pursue for a certain return. Ammann (2003), Holthausen (1981)

and Horneff et al. (2010) reported that investors and portfolio managers often pursue

for a guaranteed return. However, the setting of return is unexamined. Therefore,

we propose a model to fit this gap. We minimize the return dispersion to a specified

target or benchmark return with a constraint involving the return and risk dynamics.

This modeling is meaningful in the real practice. For some investors, they concern

themselves with index tracking, fund tracking or inflation-indexed securities tracking,

see Cowell (2013). Then it is natural to have a target return.

The mathematical model could trace back to models discussed in Pang and Stew-

art (2008), Chen and Wang (2013), Chen and Wang (2014). In our model, the ex-

pected return ρ is a state variable and the portfolio position w is a control variable.

Expected return at the current period depends on the expected return and positions

in the portfolio at the last period with unknown parameters. Investors demand for

the minimization of the expected return dispersion to the target return constrained

by a parametric differential equation of ρ involving the MV model. The parame-

ters in a round of dynamic portfolio investment are thus identified by optimization.

In this way, we also determine the expected return by the parametric differential

equation.

We use real data on asset returns. With time elapsing, the information accu-

mulates. The investor could adopt a re-balancing strategy every certain periods of

time. On the re-balancing date, the parameters which set the expected return are

learnt in the sample by the multi-period investment. In this way, the investors use

the parameters learnt in the dynamic investment in the training sample to set the

expected return and construct the portfolio for the out-of-sample investment.

It is hard to derive the continuous solution, so we use the simple discrete time

model to resolve the continuous optimization problem. We discretize the parametric

optimization model with an ODE constraint involving MV model by time-stepping
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method and solve it. The optimization arguments are the unknown parameters in

the state variable dynamics and the state variable ρi, for i “ 1, ..., N . We use them

to construct the portfolio and make out-of-sample investment decision.

The contributions of our model are in several aspects. Firstly, we consider param-

eter identification in the dynamic portfolio using quasi-Newton method. Secondly,

it is a brand new model to set the return dynamically with regards to target return.

We have constructed the discrete scheme to identify the parameters and proved the

solvability and convergence.

We implemented this model in an empirical example. The data sets that we use

are Dow Jones Industrial Average (DJIA) component stocks and index returns. Using

a reasonable amount of sample data to do multi-period investments, we identify the

unknowns of the optimization system. We then determine the dynamic investment

strategy by using the predicted expectation return and predicted sample to construct

the Markowitz portfolios. We show the out-of-sample portfolio returns, Sharpe ratios

and portfolio values on each re-balance date.

1.2 Contributions and organization of the Thesis

In this thesis, we study sparse portfolio selection and dynamic portfolio selection. For

the least-0-norm and the least-p-norm sparse portfolio selection, the main difficulty

to solve the sparse portfolio selction is nonsmooth nonconvex optimization problem.

The sparse solution of linear complementarity problem in Chen and Xiang (2016)

provides a way to approximate the least-0-norm portfolio optimization problem by

a two-phase method which solves a quadratic programming (QP) problem and a

linear programming problem. The penalty method is designed for a class of non-

Lipschitz optimization problems in Chen et al. (2016). The least-p-norm portfolio

selection is thus constructed via the penalty method. Investors often need to manage
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portfolio dynamically. We use the quasi-Newton method for parameter identification

in a dynamic portfolio selection with minimization of the deviation of the expected

return to the target return as the objective and a parametric ODE with a QP problem

as the constraint. The model is solved by time-stepping method discretely.

In Chapter 2, we present a brief introduction to the Markowitz MV model, some

important sparse portfolio models. Some of the introductory knowledge in the linear

complementarity problem (LCP), penalty method which will be used in the following

chapters are also given.

In Chapter 3, we study a two-phase approach to find the sparse portfolio via

stochastic linear complementarity approach. We formulate the model as a minimiza-

tion to find the least-0-norm solution in the solution set of Markowitz MV model.

We construct the solution set and approximates the least-0-norm solution by the

least-1-norm solution. Hence, the nonconvex nonsmooth problem is solved by a QP

problem and a linear programming problem. We use the SAA method to deal with

the randomness and prove the convergence. Some properties of the solutions are dis-

cussed. A randomly generated example and several empirical examples are presented

to illustrate the performance of the proposed model.

In Chapter 4, we study a penalty method to find the least-p-norm sparse portfolio.

This is to find the least-p-norm solution in the solution set of Markowitz MV model.

We use the penalty method which solves a class of non-Lipschitz problem by the

nonmonotone proximal gradient (NPG) algorithm to construct the sparse portfolio.

We use the SAA method and prove the convergence. Some properties of the solutions

are discussed. A randomly generated example and several empirical examples are

presented to demonstrate the performance of the proposed model.

In Chapter 5, we study parameter identification in the dynamic portfolio selection

which is formed as a problem to minimize the deviation of the expected returns to

the target return with a constraint of a parametric differential equation involving
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the MV model. The expected return dynamics is an ODE function with unknown

parameters. At every time step, the investors construct portfolio in the framework

of the Markowitz MV model with the expected return given by the ODE. We solve

for the unknown parameters to minimize the deviation of the expected return to

the target return in a discrete scheme. A numerical example is given to show the

performance of the dynamic portfolio.

The whole thesis deals with the sparse portfolio selection via stochastic linear

complementarity approach and penalty method; and parameter identification in the

dynamic portfolio selection via quasi-Newton method with a constraint of an ODE

equation involving a QP problem. Chapter 6 makes the conclusion of the thesis and

points out the further work.

9
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Chapter 2

Preliminary

The purpose of this chapter is to review the basic concepts of portfolio selection

model and present some lemmas and prerequisite knowledge which will be used in

the following chapters.

2.1 Several Models

Specifically, for m securities, the traditional Markowitz portfolio is to find a portfolio

that has minimal variance for a given expected return ρ by solving the following

problem:

min wTCw
s.t. wTµ “ ρ

wT1m “ 1,
(2.1)

where w “ pw1, w2, ..., wmq
T , 1m is an m-dimensional vector with all entries being

one, random variable ri : Ξ Ñ R is the return of the ith security, µi “ Erripξqs is

its expected return, the return of the securities rpξq “ pr1pξq, r2pξq, ..., rmpξqq
T , the

expected return of the securities µ “ pµ1, µ2, ..., µmq
T , the covariance matrix of the

returns C “ Erprpξq´µqprpξq´µqT s. Note that C is an mˆm positive semi-definite

matrix. Denote H as its optimal solution set.

In recent years, there is an ensemble of recently developed sparse Markowitz

portfolio theories in the literature as follows.
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1. Regularized method: The approaches use penalty to regularize the Markowitz

portfolio optimization, such as `1 penalty in Brodie et al. (2009),

min wTCw ` λ}w}1
s.t. wT1m “ 1, wTµ “ ρ,

(2.2)

or in Chen et al. (2013), `p penalty for p P p0, 1q,

min wTCw ` λ}w}pp
s.t. wT1m “ 1, wTµ “ ρ.

(2.3)

2. Cardinality constrained portfolio selection (CCPS): The core of the model is

to add a cardinality constraint in the Markowitz portfolio selection model to

select a cardinality number of assets in the portfolio,

min wTCw
s.t. wT1m “ 1, wTµ “ ρ

}w}0 ď k.

2.2 Some Lemmas

Throughout this thesis, we use the following notation. xTy denotes the scalar prod-

ucts of two vectors x and y, }¨}pp and }¨}0 denote the p-norm and 0-norm of a vector re-

spectively. The p-norm is }x}p :“ pΣn
i“1|xi|

pq1{p. dpx, Sq :“ infx1PS }x´x
1} denotes the

distance from point x to set S. For two sets S1 and S2, DpS1, S2q :“ supxPS1
dpx, S2q

denotes the deviation of set S1 from set S2 and

HpS1, S2q :“ maxpDpS1, S2q,DpS2, S1qq

denotes the Hausdorff distance between two sets S1 and S2.

We present some auxiliary lemmas on error bound, obtained from Theorem 3.1

in Luo and Luo (1994). Let A P Rnˆn and b P Rmˆ1.
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Lemma 2.1. There exists a C0 ą 0 so that for all x P Rn, n “ m` 2, we have

distpx, Sq ď C0}Ax´ b}1, (2.4)

where S “ tx : }Ax´ b}1 “ 0u.

The constant C0 is not explicitly computed. In this case, S is compact.
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Chapter 3

Sparse portfolio selection via

stochastic linear complementarity

approach

In this chapter, we study a two-phase approach to find the sparse portfolio via s-

tochastic linear complementarity approach. The model is formulated as minimization

of the 0-norm of the solutions in the solution set of Markowitz MV model. By the

two-phase approach, we turn the nonconvex nonsmooth problem to a QP problem

and a linear programming problem which approximates the sparse solution. We first

deduce the formulation by sparse solutions of LCP in Chen and Xiang (2016), then

we use the SAA method to deal with the randomness and prove the convergence.

Some properties of the solutions are derived. We tested the model by a randomly

generated example and several empirical examples which demonstrated the perfor-

mance of the proposed model.

This chapter is organized as follows. In Section 3.2, we introduce the two-phase

approach to find a sparse Markowitz portfolio. In Section 3.3, we analyze the con-

vergence of the SAA method. In Section 3.4, we show the numerical and empirical

applications of the model. Section 3.5 is a conclusion.

15



3.1 Model formulation

3.1.1 Model construction and two-phase stochastic linear
complementarity approach

We consider the sparse Markowitz portfolio optimization problem as follows:

min ‖ w ‖0

s.t. w P H, (3.1)

where H is the optimal solution set of the Markowitz portfolio optimization problem

min wTCw
s.t. wTµ “ ρ

wT1m “ 1
}w}1 ď η,

(3.2)

where η ě 1.

Compared with problem (2.1), problem (3.2) has an additional constraint to limit

the arbitrage }w}1 ď η. Short selling, which is defined as “the sale of a security that

the seller does not own or that the seller owns but does not deliver” by the SEC,

is considered crucial for effective arbitrage. In fact, short sale is often constrained.

In other words, arbitrage is limited, see implications in DeMiguel et al. (2009a),

Diamond and Verrecchia (1987), Shleifer and Vishny (1997). Moreover, when η “

1, problem (3.2) is equivalent to the classical Markowitz portfolio model without

shortselling:

min wTCw
s.t. wTµ “ ρ

wT1m “ 1,
w ě 0,

(3.3)

and when η “ 8, problem (3.2) is equivalent to (2.1).

Problem (4.1) is a nonconvex noncontinuous optimization problem and may not

be easy to solve. Inspired by the method in Chen and Xiang (2016), we provide the
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two-phase stochastic linear complementarity approach to approximate problem (4.1)

in the following subsection.

3.1.2 Two-phase stochastic linear complementarity approach

The basic idea of this approach is that we reformulate the feasible set of problem

(4.1) (solution set of problem (3.2)) as a linear system and find its least `1 norm

to approximate its sparse solution. To this end, we consider the reformulation of

problem (3.2)

min pw` ´ w´qTCpw` ´ w´q
s.t. pw` ´ w´qTµ “ ρ

pw` ´ w´qT1m “ 1
w` ě 0, w´ ě 0
1T2mpw

`, w´q ď η.

(3.4)

Firstly, we will show the equivalence between problem (3.2) and problem (3.4).

Secondly, we will study how to find a sparse solution from the optimal solution set

of problem (3.4).

Proposition 3.1. Problem (3.2) and problem (3.4) are equivalent in the sense that

(i) If w˚ is an optimal solution of (3.2), then ppw`q˚, pw´q˚q is a solution of problem

(3.4), where pw`q˚ “ maxpw˚, 0q, pw´q˚ “ maxp´w˚, 0q ; (ii) if ppw`q˚, pw´q˚q is an

optimal solution of (3.4), then w˚ “ pw`q˚´pw´q˚ is an optimal solution of problem

(3.2); (iii) the least `1 norm solution and sparse solution of problem (3.4) must be

the least `1 norm solution and sparse solution of problem (3.2) and vice versa.

Proof. (i) Let w˚ be an optimal solution of problem (3.2). Then pŵ`, ŵ´q is a

feasible solution of (3.4), where ŵ` “ maxpw˚, 0q and ŵ´ “ maxp´w˚, 0q. Let

us prove that pŵ`, ŵ´q is an optimal solution of (3.4). Assume for the sake of a

contradiction that pŵ`, ŵ´q is not an optimal solution of problem (3.4), then there
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exists pw̄`, w̄´q such that

pw̄` ´ w̄´qTCpw̄` ´ w̄´q ă pŵ` ´ ŵ´qTCpŵ` ´ ŵ´q. (3.5)

Let w̄ “ pw̄`´ w̄´q. Since }w̄}1 ď }w̄
`}1`}w̄

´}1 “ 1T2mpw̄
`, w̄´q ď η, w̄ is a feasible

solution of problem (3.2), then (3.5) implies

w̄TCw̄ ă pw˚qTCw˚,

a contradiction that w˚ is an optimal solution of problem (3.2).

(ii) Let v1 and v be the optimal values of problem (3.2) and problem (3.4) re-

spectively. It is obvious that for any feasible solution w̃ of problem (3.2), pw̃`, w̃´q

is a feasible solution of problem (3.4) with the same objective function value, that is

pw̃` ´ w̃´qTCpw̃` ´ w̃´q “ w̃TCw̃,

where w̃` “ maxpw̃, 0q and w̃´ “ maxp´w̃, 0q. Then v1 ě v. Let ppw`q˚, pw´q˚q be

an optimal solution of problem (3.4), w˚ “ pw`q˚´pw´q˚. Note that w˚ is a feasible

solution of problem (3.2). Let w1 be an optimal solution of problem (3.2). Then

v ď v1 “ w1TCw1 ď pw˚qTCw˚ “ ppw`q˚ ´ pw´q˚qTCppw`q˚ ´ pw´q˚q “ v,

which means pw˚qTCw˚ “ w1TCw1 and w˚ is an optimal solution of problem (3.2).

(iii) By (i) and (ii), we have that for any optimal solution w˚ of (3.2), any pw`, w´q

such that 1T2mpw
`, w´q ď η, w` ´ w´ “ w˚ and w` ě 0, w´ ě 0 is the optimal

solution of (3.4). Then let w˚`1 be the least `1 norm solution of (3.2). Then we

claim pw``1 , w
´
`1
q is a least `1 norm solution of (3.4) where w``1 “ maxtw˚`1 , 0u and

w´`1 “ maxt´w˚`1 , 0u. Otherwise, there exists an optimal solution pw`, w´q of (3.4)

such that

1Tm|w
`
´ w´| ď 1T2mpw

`, w´q ă 1T2mpw
`
`1
, w´`1q “ 1Tm|w

˚
`1
|,

which contradicts the fact that w˚`1 is the least `1 norm solution of problem (3.2).
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Moreover, let pw``1 , w
´
`1
q be the least `1 norm solution of (3.4), it is obvious that

pw``1q
Tw´`1 “ 0. Otherwise, 1T2mpw

`
`1
, w´`1q ą 1T2mpw̄

`
`1
, w̄´`1q, where w̄``1 “ maxpw``1 ´

w´`1 , 0q, w̄
´
`1
“ maxpw´`1 ´ w``1 , 0q and pw̄``1 , w̄

´
`1
q is a feasible solution of (3.4), which

contradicts the fact that pw``1 , w
´
`1
q is the least `1 norm solution of problem (3.4).

Moreover, w˚`1 “ pw``1 ´ w´`1q is the least `1 norm solution of (3.2). Otherwise,

there exists an optimal solution of w̄`1 of (3.2) such that

1T2mpmaxpw̄``1 , 0q,maxp´w̄´`1 , 0qq “ 1Tm|w̄`1 | ă 1Tm|w
˚
`1
| “ 1T2mpw

`
`1
, w´`1q,

which contradicts the fact that pw``1 , w
´
`1
q is the `1 norm solution of problem (3.4).

The proof for sparse solution is similar to the least `1 norm solution, we omit the

details. l

It is obvious that problem (3.4) can be rewritten as:

min ppw`qT , pw´qT qHppw`qT , pw´qT qT

s.t. G

ˆ

pw`q
pw´q

˙

ě b

w` ě 0, w´ ě 0,

(3.6)

where H “

ˆ

C ´C
´C C

˙

, G “

¨

˚

˚

˚

˚

˝

µT ´µT

1Tm ´1Tm
´µT µT

´1Tm 1Tm
´1Tm ´1Tm

˛

‹

‹

‹

‹

‚

, b “

¨

˚

˚

˚

˚

˝

ρ
1
´ρ
´1
´η

˛

‹

‹

‹

‹

‚

. Moreover, problem

(3.6) can be rewritten as an LCP:

xT pMx` qq “ 0,Mx` q ě 0, x ě 0, (3.7)

where M “

ˆ

H ´GT

G O5ˆ5

˙

, q “

ˆ

O2mˆ1

´b

˙

, x “

¨

˝

w`

w´

y

˛

‚, y “ py1, y2, y3, y4, y5q
T .

We use LCP(q,M) to denote LCP(3.7) with the related q and M .

Hereafter, for simplicity, we use x “ pw`, w´, yq to denote x “ ppw`qT , pw´qT , yT qT .

Problem (3.6) and problem (3.7) are equivalent in the sense that (i) if ppw`q˚, pw´q˚q P
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R2m is a solution of (3.6) then there is y˚ P R4 such that ppw`q˚, pw´q˚, y˚q is a so-

lution of (3.7); (ii) if ppw`q˚, pw´q˚, y˚q is a solution of (3.7) then w˚ is a solution of

(3.6).

By Theorem 3.1.7 in Cottle et al. (1992), since M is a positive semi-definite

matrix, the solution set of the LCPpq,Mq, denoted by the SOL(q,M) can be written

as:

SOLpq,Mq “ tx P R2m`4
` |Mx` q ě 0, H

ˆ

w`

w´

˙

“ ς, qTx “ γu (3.8)

where ς “ H

ˆ

pw`q˚

pw´q˚

˙

, γ “ qTx˚ and x˚ “ ppw`q˚, pw´q˚, y˚q is an arbitrary

solution of the LCPpq,Mq.

By a given solution x˚ of the LCPpq,Mq, all the solutions pw`, w´q of the

Markowitz portfolio optimization with corresponding Lagrange multipliers y are giv-

en in the SOLpq,Mq. Then we try to look for a sparse solution in the solution set

SOLpq,Mq. We can find the sparse Markowitz portfolio of problem (4.1) by solving

min }pw`, w´q}0
s.t. Mx` q ě 0

x ě 0

H

ˆ

w`

w´

˙

“ ς

qTx “ γ,

(3.9)

where ς “ H

ˆ

pw`q˚

pw´q˚

˙

, γ “ qTx˚ and x˚ “ ppw`q˚, pw´q˚, y˚q is an arbitrary

solution of the LCPpq,Mq.

Note that } ¨ }1 is a good approximation of } ¨ }0, which has been widely used such

as Brodie et al. (2009). Then we can approximate problem (3.9) by the following
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linear programming:

min pw`, w´qT12m

s.t. Mx` q ě 0
x ě 0

H

ˆ

w`

w´

˙

“ ς

qTx “ γ,

(3.10)

where ς “ H

ˆ

pw`q˚

pw´q˚

˙

, γ “ qTx˚ and x˚ “ ppw`q˚, pw´q˚, y˚q is a solution of the

LCP(q,M).

It will be very interesting to consider the upper bound of the `0 norm of the

classical Markowitz portfolio optimization sparse solutions. We will discuss it in the

following proposition.

Proposition 3.2. Consider problem (4.1), the number of nonzero entries in a solu-

tion of problem (4.1) is at most rankpCq ` 3, where C is the covariance matrix.

Proof. H denotes the solution set of problem (3.2). Let w̃ and pw`, w´q be the

sparse solution of problem (3.2) and (3.4). By Proposition 3.1, }w̃}0 “ }pw
`, w´q}0.

Note that problem (3.4) can be written as the LCPpq,Mq. From rank(G)= 3, it is

obvious that rankpMq ď rankpHq ` 3 “ rankpCq ` 3, the last equation is from the

definition of H. Then by (Chen and Xiang, 2016, Theorem 2.1) and Remark 3.1, we

have

}w̃}0 “ }pw
`, w´q}0 ď rankpCq ` 3.

l

3.1.3 Equivalence between the least `1 norm solution and
the sparse solution

Under some conditions, we can show that a solution of problem (3.9) can be found

exactly by solving problem (3.10) if we replace pw`, w´q by x in the objective func-

tions for both two problems (In this subsection, we consider problem (3.9) and (3.10)
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with objective function }x}0 and }x}1 respectively). To this end, we need the follow-

ing definition from Candes and Tao (2005). Here |t| is the number of elements of the

set t.

Definition 3.1. An mˆn matrix P is said to satisfy the s-restricted isometry prop-

erty (RIP) with a restricted isometry constant δs, if for every mˆ |t| sub-matrix Pt

of P and for every vector z P R|t| with |t| ď s,

p1´ δsq}z}
2
2 ď }Ptz}

2
2 ď p1` δsq}z}

2
2.

P is said to satisfy the s, s1-restricted orthogonality (RO) with a restricted orthog-

onality constant θs,s1 for s`s1 ď n if for all sub-matrices, Pt P R
mˆ|t| and Pt1 P R

mˆ|t1|

of P , with |t| ď s and |t1| ď s1, for all the vectors z P R|t| and z1 P R|t
1|,

|pPtz, Pt1z
1
q| ď θs,s1}z}2}z

1
}2

holds for all the disjoint sets t and t1.

The following theorem is from Chen and Xiang (2016).

Theorem 3.1. Let x̂ be the optimal solution of linear programming problem (3.10)

with }x̂}0 ď s. Then

1. if H satisfies the RIP with a restricted isometry constant δ2s ă 1, then x̂ is the

unique sparse solution of the LCP(q,M);

2. if H satisfies the RIP and RO with

δs ` θs,s1 ` θs,2s1 ă 1,

then x̂ is the unique solution of (3.10) and the unique sparse solution of the

LCP(q,M).
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Theorem 4.1 shows the relationship between problems (3.9) and (3.10).

Therefore, we approach an NP-hard problem by solving two simple problems (3.7)

and (3.10) in two phases.

Remark 3.1. In this subsection, we considers the }x0} where x “ pw`, w´, yq,

but we actually want to consider }w}0. The reason we consider }x}0 is that, un-

der the conditions of Theorem 4.1, its solution can be obtained by solving prob-

lem (3.10). Moreover, assuming that w˚ is the optimal solution of problem (4.1)

and x̄ “ ppw̄q`, pw̄q´, ȳq is the optimal solution of problem (3.9) with objective func-

tion }x}0, it is obvious that

}ppw`q˚, pw´q˚, ŷq}0 ě }pw̄
`, w̄´, ȳq}0 “ }x̄}0 ě }pw̄

`, w̄´q}0 ě }ppw
`
q
˚, pw´q˚q}0,

for any ŷ P R5. Then 0 ă }x̄}0 ´ }ppw
`q˚, pw´q˚q}0 ď 5. In case that the dimension

of w is very large, problem (3.9) is a good approximation of problem (4.1).

But the RIP and RO conditions in Theorem 4.1 are not easy to satisfy. In the rest

of chapter, we consider problem (3.9) and (3.10) with objective function }pw`, w´q}0

and }pw`, w´q}1 respectively.

3.2 The SAA method and convergence analysis

In this section, we use the SAA method to model the randomness of the Markowitz

portfolio and consider the convergence analysis between the original problem and the

approximation problem.

Let trj “ prj1, ..., r
j
mqu

N
j“1 be the i.i.d. samples of random variable r. Then the

SAA mechanism of the LCP sparse Markowitz portfolio optimization is:

min pw`, w´qT12m

s.t. MNx` q ě 0
x ě 0

HN

ˆ

w`

w´

˙

“ ςN

qTx “ γN ,

(3.11)
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where

CN “
1

N

N
ÿ

j“1

prj ´ µNqpr
j
´ µNq

T ,

µi,N “
1
N

N
ř

j“1

rji , µN “ pµ1,N , . . . , µm,Nq
T , MN “

ˆ

HN ´GT
N

GN O5ˆ5

˙

, HN “

ˆ

CN ´CN
´CN CN

˙

,

GN “

¨

˚

˚

˚

˚

˝

µTN ´µTN
1Tm ´1Tm
´µTN µTN
´1Tm 1Tm
´1Tm ´1Tm

˛

‹

‹

‹

‹

‚

, ςN “ HNppw
`qTN , pw

´qTNq
T
N , yN “ py1,N , y2,N , y3,N , y4,N , y5,Nq

T ,

γN “ qTxN and xN “ ppw
`qTN , pw

´qTN , y
T
Nq

T is a solution of the following LCP

xTMNx` q
Tx “ 0,MNx` q ě 0, x ě 0. (3.12)

Note that the LCPpq,MNq (3.12) is driven from the first order necessary condition

of the following SAA form of problem (3.6):

min ppw`qT , pw´qT qHNppw
`qT , pw´qT qT

s.t. GN

ˆ

w`

w´

˙

ě b

w` ě 0, w´ ě 0.

(3.13)

It follows that we consider the convergence analysis between the original problem

(3.10) and its SAA form (4.11). Although problem (3.10) is a stochastic linear

problem, some of its parameters are solutions of the LCPpq,Mq (3.7). So it is hard

to give the convergence analysis between problem (3.10) and its SAA form directly.

We also prove it in two steps. In the first step, we prove the convergence analysis

of KKT pairs between problem (3.6) and its SAA form (3.13). In the second step,

we prove the convergence between the optimal solutions and the optimal values of

(3.10) and (4.11). We need the following Slater condition.

Assumption 3.1. There exists a feasible point pw`0 , w
´
0 q such that pw`0 , w

´
0 q ą 0,

1T2mpw
`
0 , w

´
0 q ă η, pw`0 ´ w

´
0 q

Tµ “ ρ and pw`0 ´ w
´
0 q

T1m “ 1.
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Let fpw`, w´q “ ppw`qT , pw´qT qHppw`qT , pw´qT qT ,

fNpw
`, w´q “ ppw`qT , pw´qT qHNppw

`
q
T , pw´qT qT ,

D “ pGT , I2mˆ2mq
T , and DN “ pG

T
N , I2mˆ2mq

T ,

and I is an identity matrix. Then

gpw`, w´q “ D

ˆ

w`

w´

˙

´
`

bT , 01ˆ2m

˘T
, and gNpw

`, w´q “ DN

ˆ

w`

w´

˙

´
`

bT , 01ˆ2m

˘T
,

reformulate the constraints G

ˆ

w`

w´

˙

´ b, GN

ˆ

w`

w´

˙

´ b and pw`, w´q ě 0.

We consider the convergence analysis between KKT pairs between problem (3.6)

and its SAA form (3.13). The KKT condition of problem (3.6) is:

$

’

’

&

’

’

%

0 “ 2H

ˆ

w`

w´

˙

´DT

ˆ

y
s

˙

0 “ mintgpw`, w´q,

ˆ

y
s

˙

u,

and the KKT condition of problem (3.13) is:

$

’

’

&

’

’

%

0 “ 2HN

ˆ

w`

w´

˙

´DT
N

ˆ

yN
sN

˙

0 “ mintgNpw
`, w´q,

ˆ

yN
sN

˙

u,

where y, s, yN and sN are Lagrangian multipliers corresponding to the constraints

G

ˆ

w`

w´

˙

ě b, pw`, w´q ě 0, GN

ˆ

w`

w´

˙

ě bN and pw`, w´q ě 0 respectively.

Proposition 3.3. Suppose Assumption 3.1 holds. Then there exists a sufficiently

large compact set C Ă R4m`5 such that (i) the intersection of C and the set of KKT

pairs of the true problem (3.6), denoted by Y ˚, is nonempty; (ii) for N sufficiently
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large, the intersection of C and the set of KKT pairs of the SAA problem (3.13),

denoted by YN , is nonempty; (iii) for every ε ą 0, there exists Npεq ą 0 such that

HpYN , Y ˚q ď ε

for N ě Npεq.

The result is directly implied by Proposition 2.3 in Xu and Zhang (2012). Note

that in Proposition 2.3 of Xu and Zhang (2012), they use the condition named “no

nonzero abnormal multipliers constraint qualification (NNAMCQ)” to bound the

Lagrangian multipliers. This constraint qualification is well known, see Borwein and

Zhu (1999) and Ye (2000).

Here the NNAMCQ may not hold in problem (3.6) since we rewrite every equal-

ity constraint in (3.4) as two inequality constraints. Note that problems (3.4) and

(3.6) are equivalent and py1 ´ y3q and py2 ´ y4q are corresponding Lagrangian mul-

tipliers of equality constraints, y5 and s are corresponding Lagrangian multipliers

of inequality constraints in problem (3.4). Moreover, by Assumption 3.1, problem

(3.4) satisfies MFCQ, which implies NNAMCQ. Then py1 ´ y3, y2 ´ y4, y5, sq and

py1,N ´ y3,N , y2,N ´ y4,N , y5,N , sNq are uniformly bounded for N sufficiently large and

there exists sufficiently large compact set C such that Y ˚ and YN are nonempty.

Note that the KKT pairs of problem (3.6) and problem (3.13) are the solutions

of the LCPpq,Mq in (3.7) and the LCPpq,MNq in (3.12), Proposition 3.1 shows the

convergence analysis between the first phase problem of our two-phase method and

implies ςN Ñ ς and γN Ñ γ as N Ñ 8 almost surely.

Then we move to the convergence analysis of the second phase problem (3.10)

and its SAA problem (4.11). We use the Chapter 6, Proposition 6 and Remark 8 in

Bonnans and Shapiro (2000) to show the result. Let v˚ and vN denote the optimal

value of the true problem (3.10) and the SAA problem (4.11) respectively.
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Proposition 3.4. Suppose Assumption 3.1 holds. Then there exists a sufficiently

large compact set K P R2m`5 such that (i) the intersection of K and the optimal

solution set of problem (3.10), denoted by S, is nonempty; (ii) for N sufficiently

large the intersection of K and optimal solution set of problem (4.11), denoted by

SN , is nonempty; (iii) we have vN Ñ v˚ and DpSN ,Sq Ñ 0 w.p.1 as N Ñ 8 w.p.1.

Proof. Obviously, the optimal solution set of problem (3.10) is nonempty and v˚ is

finite. Note that the feasible sets of problem (3.6) and problem (3.13) are closed and

belong to the compact set tw`, w´ P Rm : 1Tmpw
``w´q ď η, w`, w´ ě 0u. Moreover,

we have uniform boundness of py1´y3, y2´y4, y5q, and py1,N ´y3,N , y2,N ´y4,N , y5,Nq

for N sufficiently large by Proposition 2.2 in Xu and Zhang (2012) and the discussion

below Proposition 3.3, we have S and SN are nonempty for N sufficiently large.

Moreover, by Proposition 3.3, we have that ςN Ñ ς and γN Ñ γ as N Ñ 8 w.p.1.

Then by the uniform law of large numbers (Bonnans and Shapiro, 2000, Chapter 6,

Proposition 7), the constraint functions of problem (4.11) uniformly converge to the

constraint functions of problem (3.10). Note that problem (3.10) and problem (4.11)

are linear problems, by Proposition 6 and Remark 8 in Chapter 6 of Bonnans and

Shapiro (2000), we have vN Ñ v˚ and DpSN ,Sq Ñ 0 w.p.1 as N Ñ 8 w.p.1. l

3.3 Applications

In this section, we demonstrate the two-phase approach by a randomly generated

example and three empirical examples. We used Matlab R2014a, in a computer with

Intel Core 2 Due CPU E8500 3.16GHz for the randomly generated example portfolio

construction, Hong Kong and China cross market portfolio construction and FF48

portfolio construction; Matlab R2015a in the service machine with the Intel Xeon

E7-4890v2 processor, 2.8GHz, 37.5M Cache, 15 Cores per CPU, 4 CPU, 60 Core in

total for S&P500 portfolio construction.
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In the examples, we compute the first phase optimization problem by “quad-

prog” and the second phase optimization problem by “linprog”. For the comparative

portfolios, we computed the `1 norm penalty regularized portfolio by “CVX”1. For

portfolios with cardinality constraint, we compute with a Matlab tool box Yalmip

“optimize”2. For the `p penalty regularized portfolio, we approximate the nonsmooth

objective function with a smoothing function which has been extensively investigated

in Bian and Chen (2014), Chen (2012) and compute it by “fmincon”. The distance

of the comparative portfolios to the Markowitz portfolio feasible solution set is al-

so calculated. Together, we also compute and compare VaR and CVaR of these

portfolios.

3.3.1 Randomly generated example

We randomly generate sample returns of nine asset and applied the two-phase method

to construct sparse portfolios.

Example 3.1. For nine assets in the investment universe, we generate the multi-

variate normal random variables with mean µ and covariance Σ as the sample of the

asset returns. We set every three assets in a group with the same expected return,

the same STD, and fully correlated.

Explicitly, our assets have been arranged in three groups. Asset 1, asset 2 and

asset 3 in Group a; asset 4, asset 5, and asset 6 in Group b; asset 7, asset 8 and asset

9 in Group c. The mean returns of the nine assets are µ “ r10 10 10 1 1 1 3 3 3s,

and the variance of the nine assets are σ2 “ r5 5 5 1 1 1 2 2 2s. The correlations for

assets in the same group is 1 and correlations of assets inter-groups are ρab “ 0.5,

ρac “ 0.3 and ρbc “ 0.8.

1 Downloaded from http://cvxr.com/cvx/download/.

2 Downloaded from http://users.isy.liu.se/johanl/yalmip/. Copyright owned by Johan Lofberg.
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We calculate and analyze the true optimal value and the approximate optimal

value. The true optimal value and the SAA optimal value (STD) for various sample

sizes, are displayed respectively in Table 3.1.

Data missing case: Consider a case where the price data of some trading days

is missing for some assets, which is very often encountered in the real practice. Then

the covariance matrix of the underlying assets could not be easily constructed. In Qi

and Sun (2006), a quadratically convergent Newton method is introduced to compute

the nearest covariance matrix. Using the above sample, we randomly delete some

data, then apply the method in Qi and Sun (2006) to construct the nearest covariance

matrix of the portfolio optimization problem. We then use the two-phase approach

to solve the reconstructed problem.

The optimal value (variance) at phase 2 in the case of data missing is 6.23 (the

equal STD 2.4960) in Table 3.1 Column 11. The two-phase stochastic approach could

be accustomed to the case of asset prices data missing.

Convergence analysis: We also conduct tests for different sample size N “

100, 500, 1000, ¨ ¨ ¨ , 10000. For each sample size, we conduct 100 independent exer-

cises. The true optimal value and approximate optimal values with N increasing

are shown in Table 3.1. The convergence of the optimal values with N increasing is

shown in Figure 4.1.

N true 500 1500 3000 4500 6000 7500 9000 10000 dmissing
Val 2.489 2.490 2.487 2.487 2.487 2.489 2.488 2.490 2.486 2.496

Table 3.1: Convergence analysis of SAA sparse portfolio optimal value (STD) for
Example 4.1
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Figure 3.1: The convergence of the SAA problem in Example 4.1.

3.3.2 Empirical applications

In this subsection, we conduct empirical tests. The data sets that we use are returns

of S&P 500, 50 Hong Kong and mainland China stocks, and FF48.

We use a rolling window procedure for out-of-sample comparison. T is the total

period of returns in the data set; τ is the length of the rolling window; os is the

length of the out-of-sample testing window, which is the holding period. The data

frequency is daily or monthly, depending on the data set.

Our testing scheme is that we use τ returns as the training data, then use the

subsequent os returns as the forecasting data to compute the out-of-sample return,

STD, Sharpe ratio and sparsity. We do the exercise from the beginning of our

sampling data and roll ahead. For example, our first portfolio selection takes place

at the end of the first τ trading days or months. We use the τ historical returns

to estimate covariance matrix C and mean µ by SAA method. We then solve the

portfolio optimization problem by using the estimated parameters, targeting the

required return and compute the weights of optimal solutions. Once a portfolio is
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thus determined, it is held for the subsequent os trading days or months from (τ `1)

to (τ ` os), and its returns are recorded. We repeat the same process, using returns

from 2 to (τ`1) to construct the portfolio in test 2. The portfolio is observed for the

subsequent os trading days or months from (τ ` 2) to (τ ` os` 1) and their returns

are recorded.

To reduce the effects of chance factors, we repeat the same exercise always with

a rolling window as described above for 20 rolling times (out-of-sample performance

tests). For a given period (whether it is the full period, or the subperiods), all

the daily or monthly returns corresponding to this period are used to compute the

average return and its STD.

The criteria that we pay attention to are portfolio STD, Sharpe ratio. Sharpe

ratio, which measures the risk-adjusted return, is a ratio of return and STD in

Sharpe (1994),

SR “
rp
σp
, (3.14)

where rp is portfolio return; σp is portfolio STD. We compute the

pσpq
2
“

1

20

1

os

19`τ
ÿ

t“τ

os´1
ÿ

s“0

pwTt rt`s`1 ´ rpq
2, (3.15)

with

rp “
1

20

1

os

19`τ
ÿ

t“τ

os´1
ÿ

s“0

wTt rt`s`1. (3.16)

It measures the trade-off between returns and volatilities of the portfolios.

We also compute each test Sharpe ratio,

SRt
“
rtp
σtp
, t “ τ, ..., τ ` 19 (3.17)
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where rtp is portfolio return; σtp is portfolio STD at test t. We compute the

pσtpq
2
“

1

os

os´1
ÿ

s“0

pwTt rt`s`1 ´ rpq
2, (3.18)

with

rtp “
1

os

os´1
ÿ

s“0

wTt rt`s`1. (3.19)

We compare the value of risk measure between different portfolios by using VaR

and CVaR. VaR is a widely used risk measure to evaluate the market risk. The

definition of VaR in McNeil et al. (2015) is:

V aRα “ inftl P R : P pL ď lq ě αu.

which says that VaR at confidence level α is given by the smallest number l so that

the probability that the loss L exceeds l is at most p1´αq and the definition of CVaR

Rockafellar and Uryasev (2000) is:

CV aRα “
1

1´ α

ż 1

α

V aRγpLqdγ.

We use the historical simulation method to calculate VaR and CVaR. For the

computation of VaR and CVaR, the portfolios are thus held for the subsequent os1

days or months after the training period and their daily or monthly out-of-sample

returns are observed. The confidence level of the VaR and CVaR is α “ 99%.

We also investigate the distance of the `1 penalty regularized portfolio, cardinality

constrained portfolio solution and `p penalty regularized portfolio to the optimal

Markowitz portfolio solution set, which is defined as the shortest distance between

the comparative portfolio solution to the optimal solution set:

min ‖ z ´ w ‖2

s.t. z P H, (3.20)
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where H is the solution set of the Markowitz portfolio optimization problem and w

is a solution of the comparative portfolio. The optimal value of the optimization

problem (3.20) is the distance of the comparative portfolio solution to the optimal

solution set.

Example 3.2. S&P 500. The data set contains the returns of S&P 500 index com-

ponent stocks of big companies by market capitalization listed on the NYSE or NAS-

DAQ.

Our sampling data is from Compustat. Sampling data are daily returns of S&P

500 from January 2001 to August 2001. The required return is set as the average

of the training sample returns. Our empirical analysis relies on a “rolling-sample”

procedure. In this example, τ “ 100, os “ 5 for STD, Sharpe ratio computation,

os1 “ 20, α “ 99% for VaR and CVaR computation.

We likewise carry out computation for our comparative portfolios. The empirical

results of the forecasting return, STD, Sharpe ratio, sparsity, Var and CVaR are

in Table 3.2. The sparsity of the MV model is contained in the bracket of the

LCP sparse portfolio column. Abbreviations are LCP sparse portfolio (LCPSP), `1

penalty regularized portfolio with tuning parameter λ “ 0.1 (L1 0.1), cardinality

constrained portfolio with cardinality number 100 (CCPS100) and 1{N investment

strategy (1/N). The one-by-one test results of Sharpe ratio and sparsity are displayed

in Figure 3.2.
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S&P 500 LCPSP `1 λ “ 0.1 CCPS100 1/N
return 0.001 0.000823 0.0014 -0.00003
STD 0.0024 0.002287 0.0084 0.0074
Sharpe 0.3989 0.359736 0.1694 -0.0045
VaR 0.0041 0.004289 0.0115 0.0131
CVaR 0.0046 0.004292 0.0147 0.0131
sparsity 89(406) 66.25 58.6 500
distance 1.00E-05 3.50E-07

Table 3.2: S&P 500 Portfolio return, STD, Sharpe Ratio, sparsity, VaR, CVaR and
distance.

Example 3.3. We randomly select 50 stocks which includes 25 Hong Kong stocks

and 25 China stocks.

Data construction: These stocks include 20 stocks in the Shanghai-Hong Kong

Stock Connect Scheme and 30 A&H share stocks3. We collected the daily adjusted

close price from October 2013 to January 2014 of the 50 stocks and calculated the

daily returns of stocks constructed from the collected price data.

These stocks include Hong Kong Stock Exchange and Clearing Ltd., China rail-

way group Ltd., GOME Electrical Appliances Holding Ltd., Digital China Holdings

Ltd., Brightoil Petroleum Holdings Ltd.,Shandong Weigao Group Medical Polymer

Co, Aluminum Corporation of China Ltd., Shanghai Electric Group Co. Ltd., China

Everbright Ltd.,Shenzhen International Holdings Ltd. listed in Hong Kong market,

and China Merchants Bank, SAIC Motor, Gansu Yasheng Industrial, China Spacesat,

Kweichow Moutai, Sichuan Roal and Bridage, Daqin Railway, Huaxia Bank, Industri-

al and Commercial Bank of China, Bank of China listed in the China market. A and

H shares include China Vanke Co Ltd, Ping An insurance, China Pacific Insurance,

Huaneng Power International Inc, Anhui Conch Cement, Luoyang Glass,China Min-

sheng Bank, First Tractor, China CITIC Bank, Jingwei Textile, Jiangsu Express,

3 A Chinese company could raise capital by issuing A shares and H shares. In other words, the
equity structure of a company could be comprised of A share, H share and other shares. H share:
shares of company incorporated in mainland China that are traded on the HKEx.
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Guangzhou Automobile, Shanghai Pharmaceuticals, Jingcheng Machinery Electric

Co. Ltd., and CSSC Offshore & Marine Engineering.

We use the same data rolling scheme. The required return is set as the average

of the total returns. The training data window length is τ “ 25. The holding period

data length is os “ 10. For VaR and CVaR computation, we use os1 “ 20 for

observation and set confidence level α “ 99%.

The empirical results of the forecasting return, STD, Sharpe ratio, sparsity, Var

and CVaR are in Table 3.3. The sparsity of the MV model is contained in the brack-

et. The one-by-one rolling results of the tests are displayed in Figures 3.3(a), 3.3(b).

Our portfolio outperforms `1 portfolio (with tuning parameter 0.1), cardinality con-

strained portfolio (with the cardinality number 20 and 25), `p portfolio (with p=0.5,

tuning parameter 0.015) and 1{N investment strategy, denoted by L1 0.1, CCPS 20,

CCPS 25, Lp 0.015, and 1{N respectively.

After the Shanghai-Hong Kong Stock Connect, there will be soon Shenzhen-

Hong Kong Stock Connect4. The sparse portfolio allocation research is thus of great

importance for cross market investment.

HKCHN LCPSP `1 0.1 CCPS 20 CCPS25 `p 0.015 1/N
return 0.001296 0.00044 0.001348 0.001583 0.000537 -0.00171
STD 0.007345 0.007115 0.013617 0.012368 0.010248 0.006009
Sharpe 0.1764 0.061903 0.099 0.128 0.0524 -0.2841
VaR 0.013248 0.011514 0.023592 0.024182 0.014756 0.010944
CVaR 0.01408 0.011807 0.026692 0.024382 0.015791 0.010944
sparsity 27(49) 14 19.45 23.1 24.1
distance 0.0024 0.003406 0.00012 0.144709

Table 3.3: Hong Kong and Mainland China Cross Market Portfolio return, STD,
Sharpe Ratio, sparsity, VaR and CVaR and distance.

Example 3.4. FF48. It includes 48 industry sector portfolios (abbreviated to FF48).

4 Source: Hong Kong Wenhui
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Our sampling data is from Fama and French. Sampling data are monthly returns

of 48 industry sector value-weighted portfolios in percentage from September 2005

to January 2011.

We use the same data rolling scheme. The required return is set as the average

of the total returns on each test. The size of the rolling window is τ “ 25. The

out-of-sample performance tests use os “ 10. For VaR and CVaR computation, we

use os1 “ 20 for observation and set confidence level α “ 99%. Our sample data is

rolling ahead monthly. We roll the window and repeat the procedure for 20 tests to

generate the average aggregate results.

The empirical results of the forecasting return, STD, Sharpe ratio, sparsity, Var

and CVaR are in Table 3.4. The sparsity of the MV model is contained in the

bracket. The one-by-one test results of Sharpe ratio and sparsity are displayed in

Figures 3.4(a), 3.4(b). Our portfolio outperforms `1 portfolio (with tuning parameter

0.1), cardinality constrained portfolio (with the cardinality number 18 and 24), `p

portfolio (with p=0.5, tuning parameter 0.015) and 1{N investment strategy, denoted

by L1 0.1, CCPS 18, CCPS 24, Lp 0.015, and 1{N respectively.

FF48 LCPSP `1 0.1 CCPS18 CCPS 24 `p 0.015 1/N
return -0.1201 -0.13259 -0.6413 -0.3736 -0.3334 -0.7838
STD 5.9265 5.917113 8.5639 7.5703 5.3545 8.002
Sharpe -0.0203 -0.0224 -0.0749 -0.0493 -0.0623 -0.098
VaR 8.5242 14.59896 12.8905 9.8635 10.0079 7.827
CVaR 10.3835 14.86594 15.514 12.8947 13.5395 10.0896
sparsity 29(48) 24.35 21.45 7.2 31.2 48
distance 0.0044 0.2232 0.5608 0.0938

Table 3.4: FF48 Portfolio return, STD, Sharpe Ratio, VaR, CVaR, sparsity and
distance.
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3.3.3 Discussion of the empirical results

In this subsection, we discuss the out-of-sample performance of our approach and

our comparing approaches. Table 3.2, Table 3.3, and Table 3.4 report the out-of-

sample performance of the portfolios constructed from the S&P 500, Hong Kong and

mainland China cross-market stocks and FF48 data sets. We illustrate each test’s

Sharpe ratio performance and sparsity by bar graph in Figures 3.2, 3.3 and 3.4.

On one hand, we can observe from the tables and figures in Section 4.2 that the

number of assets selected in the our approach are sparser than that in the classi-

cal Markowitz portfolios. That means we could construct sparse Markowitz mean-

variance portfolios with reduced transaction cost in this way. Note that the simple

structure of sparse portfolios enables the portfolio construction to depend less on

the human management. Moreover, the sparsity of the sparse Markowitz portfolio

solution could provide a reference for the setting of k in the cardinality constrained

portfolio selection model.

On the other hand, the empirical results of the examples show that the two-

phase optimization scheme could find sparse solutions in the optimal solution set of

the Markowitz MV model. The out-of-sample results indicate that the LCP sparse

portfolio from our approach can keep the property of the classical Markowitz portfolio

very well. That is in all the tests, the STDs of LCP sparse portfolio are reasonably

small and in most of the tests, its STDs are the smallest. Moreover, not only the

performance of the Sharpe radio, VaR and CVaR are reasonably good, but also the

Sharpe radios in all the periods are stabler than the other portfolios in Figures 3.2(a),

3.3(a) and 3.4(a).
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Figure 3.2: S&P 500 Portfolio (a)Sharpe Ratio, (b)Sparsity. The bar from the left
to the right in each test stands for LCP sparse portfolio, `1 0.1, CCPS100 and 1/N.
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Figure 3.3: Hong Kong and Mainland China Cross Market Portfolio (a)Sharpe Ratio,
(b)Sparsity. The bar from the left to the right in each test stands for LCP sparse
portfolio, `1 0.1, CCPS20, CCPS25, `p 0.015 and 1/N.
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Figure 3.4: FF48 Portfolio (a)Sharpe Ratio, (b)Sparsity. The bar from the left to
the right in each test stands for LCP sparse portfolio, `1 0.1, CCPS18, CCPS24, `p
0.015 and 1/N.
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Chapter 4

Sparse Markowitz portfolio

selection by penalty methods

In this chapter, we study a penalty method to find the least-p-norm sparse portfolio.

The model is formulated to minimize the p-norm of the solutions in the solution set

of Markowitz MV model. Using the penalty method solved by the nonmonotone

proximal gradient (NPG) algorithm, we construct the sparse portfolio when the

optimization problem is nonconvex nonsmooth. We then use the SAA method to

handle randomness and prove the convergence. Some properties of the solutions are

derived. We tested the model by a randomly generated example and several empirical

examples which demonstrated the performance of the proposed model.

This chapter is organized as follows. In Section 4.2, we introduce the penalty

method to find a sparse Markowitz portfolio. In Section 4.3, we analyze the con-

vergence of the SAA method. In Section 4.4, we show the numerical and empirical

applications of the model. Section 4.5 is a conclusion.
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4.1 Model construction and stochastic penalty method

We consider the least-p-norm sparse Markowitz portfolio optimization problem as

follows:

min ‖ w ‖pp
s.t. w P H, (4.1)

where H is the optimal solution set of the Markowitz portfolio optimization prob-

lem (2.1). We call the portfolio computed from the model the least-p-norm sparse

portfolio.

Sparse solution of the optimal solution set of the Markowitz portfolio optimization

problem (2.1) is defined as:

min ‖ w ‖0

s.t. w P H. (4.2)

We show in Theorem 4.1 that under some condition, problem (4.1) and problem

(4.2) are equivalent.

Problem (4.1) is a nonconvex non-Lipschitz NP-hard optimization problem, see

Chen et al. (2016), Ge et al. (2011) and may not be easy to be solved. Inspired by

the method in Chen and Xiang (2016) and Chen et al. (2016), we provide the penalty

method to approximate problem (4.1) in the following subsection.

4.1.1 Penalty method for a least-`p-norm solution of the MV
model

The basic idea of this approach is that we reformulate the feasible set of problem

(4.1) (solution set of problem (2.1)) as a linear system and find its least-p-norm

solution.

We can find the least-p-norm solution from the optimal solution set of the MV
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model by solving

min }w}pp

s.t. Cw ` y1µ` y21m “ 0

wTµ´ ρ “ 0

wT1m “ 1,

where the feasible set of above problem is the optimal solution set of MV model

problem (2.1). It is derived from the first-order Karush-Kuhn-Tucker condition of

the MV model with y1 and y2 as the Lagranger multipliers of the two constraints of

problem (2.1). Define A as a pm ` 2q ˆ pm ` 2q matrix, b as a m ` 2 vector, where

A “

¨

˝

C µ 1m
µT 0 0
1Tm 0 0

˛

‚, b “

¨

˝

0m
ρ
1

˛

‚, x “

ˆ

w
y

˙

, y “

ˆ

y1

y2

˙

. The above problem

could be approximated by:

min }w}pp (4.3)

s.t. }Ax´ b} ď σ,

for a small positive number σ.

We denote the solution set of problem (4.3) as S. Note that }w}pp is not locally

Lipschitz continuous at some points. Then we can approach problem (4.3) by the

penalty method provided in Chen et al. (2016). We write the penalty form of problem

(4.3) as follows:

min }w}pp ` λp}Ax´ b}
2
´ σ2

q`, (4.4)

where λ is the penalty parameter. This λ is, indeed, hard to estimate in practise. To

circumvent the problem, the penalty method that we used gradually increases the

parameter.
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The least-p-norm sparse portfolio model has several advantages:

• Sparsity: The sparsity in optimization problems already exists in many appli-

cation cases in the literature, such as image, compressed sensing, e.g. Chen

et al. (2016), Chen et al. (2017), Chen et al. (2013). The non-Lipschitz non-

convex lp penalty is a widely used technique to find sparse solutions. It is

natural to deploy this idea in the portfolio management. It is desirable in the

real investment that a limited number of positions are created and managed.

• Stability: It is possible that assets are collinear. It is reported that when the

sample size goes to large, the MV model solution performs well in DeMiguel

et al. (2009b) and DeMiguel et al. (2009a). We use the least-p-norm optimiza-

tion to reduce the sensitivity of the portfolio between the assets. It is possible

to use limited training sample when the least-p-norm optimization boasts sta-

bility property.

• Transaction cost saving: In addition to the wise portfolio selection, investors

concern themselves with the practical problem of transaction cost. Transaction

cost is a non-trivial issue when investors execute trades. As discussed in Brodie

et al. (2009), large investors’ transaction cost is linear to the amount of the

assets bought; small investors’ transaction cost depends on the number of assets

chosen. Therefore, reducing number of assets in portfolio benefits both two

types of investors.

4.1.2 Some features of the least-p-norm solution

In this subsection, we show some features of the least-p-norm solution.

Lemma 4.1. All least-p-norm solutions with p P p0, 1q of the H, the optimal solution

set of problem (2.1), are extreme points of H.
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The proof is immediately obtained from Theorem 3 in Ge et al. (2011).

It will be very interesting to consider the upper bound of nonzero entries in

a least-p-norm solution and relation of the sparse (least-0-norm) and least-p-norm

solutions of the classical Markowitz portfolio optimization problem. We will discuss

it in the following proposition.

Proposition 4.1. Let w̃ be a solution to problem (4.1) and w̄ be a solution to problem

(4.2). Then

1. Consider problem (4.1), the number of nonzero entries in a solution of problem

(4.1) is at most rankpCq ` 2, where C is the covariance matrix.

2. There is a p̄ P p0, 1q such that }pw̃, ỹq}0 “ }pw̄, ȳq}0 for all p P p0, p̄q, where

pw̃, ỹq, pw̄, ȳq stands for pw̃T , ỹT qT , pw̄T , ȳT qT , being the least-p-norm and least-

0-norm solution in H.

Proof. 1. Denote the matrix A as two blocks such that A “
`

B D
˘

, where

B “

¨

˝

C
µT

1Tm

˛

‚ and D “

¨

˝

µ 1m
0 0
0 0

˛

‚. Let G “

ˆ

µT

1Tm

˙

be the matrix contains

the coefficients of the constraints. From rank(G)=2, it is obvious that rankpBq ď

rankpCq ` 2. For any fixed y, by (Ge et al., 2011, Theorem 3), we have

}w̃}0 ď rankpBq ď rankpCq ` 2.

2. Similar to the second part of Theorem 2.1 in Chen and Xiang (2016), let tx1, x2, ..., xmu

be the set of extreme points of H. x̃ “ pw̃, ỹq, x̄ “ pw̄, ȳq. Then we have for all x̄,

}x̄}pp ě mint}x1
}
p
p, }x

2
}
p
p, ..., }x

m
}
p
pu “ }x̃}

p
p. (4.5)

Then we prove the second part of the proposition by contradiction. If the part 2

of the proposition does not hold, then there exist a sequence tpiu, pi ą 0, pi Ñ 0
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as i Ñ 8 and a sequence txju of extreme points of H, where xji is a least-p-norm

solution and we have

}xji}0 ą }x̄}0. (4.6)

Since there are finite many i, without loss of generality, we assume ji “ j, we have

}x̄}0 “ lim
piÓ0
}x̄}pipi ě lim

piÓ0
}xj}pipi “ }x

j
}0 (4.7)

from (4.5). It contradicts to (4.6). Hence we obtain the second part of the proposi-

tion. l

Remark 4.1. From the conclusion of Proposition 4.1 part 2 and 0 ď }x̃}0´}w̃}0 ď 2,

0 ď }x̄}0 ´ }w̄}0 ď 2, where the difference is the number of Lagranger multipliers,

we have the relationship between problems (4.1) and (4.2) for some p P p0, p̄q is

´2 ď p}w̃}0 ´ }w̄}0q “ p}x̄}0 ´ }w̄}0q ´ p}x̃}0 ´ }w̃}0q ď 2, i.e., |}w̃}0 ´ }w̄}0| ď 2.

Corollary 4.1. There is an extreme point x̄ of S such that x̄ is a sparse solution of

the H.

4.1.3 Exact penalty

We apply the Theorem 3.2 in Chen et al. (2016) to demonstrate that the penalty

method could find the local minimizer of (4.3). Our problem is a special case of

Theorem 3.2 in Chen et al. (2016), where the constraints are equalities. In the

paper Chen et al. (2016), a class of non-lipschitz optimization problem is researched

with constraints comprised of a simple polyhedron S1 and S2 “ tx : }Ax ´ b} ď

σ,Bx ď hu. In this chapter, we consider a special case where S1 is the full space and

S2 “ tx : }Ax´ b} ď σu.

Assumption 4.1. (blanket assumption on (4.3)) }w}pp is a nonnegative continuous

function. The feasible set of (4.3) is S :“ tx : }Ax ´ b} ď σu. Moreover, A has full

low rank and there exists x0 P S so that }Ax0 ´ b} ă σ.
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Theorem 4.1. Suppose that w˚ is a local minimizer of (4.3). Then there exists a

λ˚ ą 0 such that w˚ is a local minimizer of (4.4) whenever λ ě λ˚.

Proof. The objective function Φpxq in the paper Chen et al. (2016) is Φpxq “

}
`

1m 02

˘T
x}pp “ }w}pp in our case, where 1m is a m-dimensional vector with all

entries being 1 and 02 is a 2-dimensional vector with all entries being 0. It is a

nonnegative continuous function. Moreover, the bridge penalty function }w}pp is not

locally Lipschitz continuous at the point 0. To proceed, it is easy to see that }w}pp

satisfies Assumption 3.1 from Chen et al. (2016).

Applying Theorem 3.2, C0 defined in Lemma 2.1 and Corollary 3.1 in Chen et al.

(2016) with Ω2 “ txI : }AIxI ´ b} ď σu, we immediately obtain the desired results

in this theorem. l

We solve a sequence of the smooth problem in the form:

min Fλ,µpwq :“ }w}pp ` fλ,µpxq, (4.8)

for some penalty parameter λ and smoothing parameter µ, where

fλ,µpxq :“ hλ,µp}Ax´ b}
2
´ σ2

q, (4.9)

hλ,µpsq :“ λ max
0ďtď1

tst´
µ

2
t2u. (4.10)

We now describe the algorithm to solve the least-p-norm sparse portfolio model

(4.8).

Penalty method for problem (4.8)

Let wfsbl be an arbitrary feasible point of problem (4.1). Choose w0 P H, λ0 ą 0,

µ0 ą 0, ε0 ą 0, ρ ą 1, and θ P p0, 1q arbitrarily. Set k “ 0 and x0,0 “ x0 P H.
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1: If Fλk,µkpx
k,0q ą Fλk,µkpx

fsblq, set xk,0 “ xfsbl and apply NPG method with xk,0

as the initial point to find xk to the problem with λ “ λk and µ “ µk satisfying

dp0,∇fλk,µkpxkq ` Bpxpqq ď εk

2: Set λk`1 “ ρλk, µk`1 “ θµk, εk`1 “ θεk, and xk`1,0 “ xk

3: Set k Ð k ` 1, go to step 1

4.2 The SAA method and convergence analysis

In this section, we use the SAA method to model the randomness of the Markowitz

portfolio and consider the convergence analysis between the original problem and the

approximation problem.

Let trj “ prj1, ..., r
j
mqu

N
j“1 be the i.i.d. samples of random variable r. Then the

SAA mechanism of the Markowitz portfolio optimization is:

min }w}pp
s.t. }ANx´ b} ď σ,

x P C
(4.11)

where

CN “
1

N

N
ÿ

j“1

prj ´ µNqpr
j
´ µNq

T ,

µi,N “ 1
N

N
ř

j“1

rji , µN “ pµ1,N , . . . , µm,Nq
T , AN “

¨

˝

CN µN 1m
µTN 0 0
1Tm 0 0

˛

‚, and xN “

pwTN , y
T
Nq

T is a solution of the above problem. Additionally, we assume that the

solution belongs to a compact set x P C. Denote the solution set of problem (4.11)

as SN .

It follows that we consider the convergence analysis between the original problem

(4.3) and its SAA form (4.11).

Assumption 4.2. There exists a compact set C such that S X C ‰ H, for N suffi-

ciently large, SN X C ‰ H.
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Assumption 4.2 implies the compactness of tw P Rm : }ANpw
T , yT qT ´ b} ď σu.

Then we move to the convergence analysis of problem (4.3) and its SAA problem

(4.11). We use the Chapter 6, Proposition 6 and Remark 8 in Bonnans and Shapiro

(2000) to show the result.

Proposition 4.2. Suppose Assumption 4.2 holds. Denote the set S and v˚ as the

optimal solution set and optimal value of the true problem (4.3) and SN and vN as

the optimal solution set and optimal value of the SAA problem (4.11) respectively.

Assume S is nonempty and v˚ is finite. Then we have vN Ñ v˚ and DpSN ,Sq Ñ 0

w.p.1 as N Ñ 8 w.p.1.

Proof. As we have the optimal solution sets of problem (4.3) and problem (4.11)

are contained in a compact set, by the uniform law of large numbers (Bonnans and

Shapiro, 2000, Chapter 6, Proposition 7), the constraints function of problem (4.11)

uniformly converge to the constraints function of problem (4.3). In other words,

the convergence between the the feasible sets of problem (4.3) and its SAA problem

(4.11) is almost surely.

Note that problem (4.3) and problem (4.11) are optimization problems with linear

constraints, by Proposition 6 and Remark 8 in Chapter 6 of Bonnans and Shapiro

(2000), we have vN Ñ v˚ and DpSN ,Sq Ñ 0 w.p.1 as N Ñ 8 w.p.1. l

4.3 Applications

In this section, we demonstrate the least-p-norm sparse portfolio model by a ran-

domly generated example and three empirical examples. We use Matlab R2014a, in

a computer with Intel Core 2 Due CPU E8500 3.16GHz.
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4.3.1 Randomly generated example

We randomly generate sample returns of nine assets and applied the penalty method

to construct least-p-norm sparse portfolios.

Example 4.1. For the nine assets in the investment universe, we generate the mul-

tivariate normal random variables with mean µ and covariance Σ as the sample of

the asset returns. We set every three assets in a group with the same expected return,

the same standard deviation, and fully correlated.

Explicitly, our assets have been arranged in three groups. Asset 1, asset 2 and

asset 3 in Group a; asset 4, asset 5, and asset 6 in Group b; asset 7, asset 8 and asset

9 in Group c. The mean returns of the nine assets are µ “ r10 10 10 1 1 1 3 3 3s,

and the variance of the nine assets are σ2 “ r5 5 5 1 1 1 2 2 2s. The correlations for

assets in the same group is 1 and correlations of assets inter-groups are ρab “ 0.5,

ρac “ 0.3 and ρbc “ 0.8.

We calculate and analyze the true optimal value and the SAA approximate opti-

mal value. The true optimal value and the SAA optimal value (standard deviation)

for various sample sizes, are displayed respectively in Table 4.1. v˚p“0.3 stands for the

optimal value with p “ 0.3. Same for v˚p“0.5 and v˚p“0.7.

Convergence analysis: We conduct tests with different sample size N “

1000, 2000, ¨ ¨ ¨ , 10000. We could observe from the box plot of these results that

the optimal values of problem (4.11) converges with N increasing in Figure 4.1. For

each sample size, we conduct 100 independent exercises. The true optimal value and

approximate optimal values with N increasing are shown in Table 4.1.
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Figure 4.1: } ¨ }p, p “ 0.3, 0.5, 0.7 sparse portfolio SAA convergence
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Table 4.1: Convergence results for the } ¨ }p sparse portfolio model

TRUE 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
v˚p“0.3 4.7338 4.7317 4.7276 4.7518 4.7215 4.7266 4.7236 4.7322 4.7292 4.7344 4.7283
v˚p“0.5 4.7334 4.7222 4.7216 4.7358 4.7258 4.7214 4.7231 4.7255 4.7380 4.7441 4.7368
v˚p“0.7 4.7335 4.7514 4.7367 4.7352 4.7192 4.7384 4.7509 4.7207 4.7312 4.7242 4.7224

4.3.2 Empirical applications

In this subsection, we conduct empirical tests. The data sets that we use are returns

of 20 A&H Hong Kong and China bank and insurance stocks, FF12 and FF25 .

We use a rolling window procedure for the out-of-sample comparison. τ is the

length of the rolling window; os is the length of the out-of-sample testing window,

which is the holding period. The data frequency is daily (20 A & H stocks) or
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monthly (FF12, FF25).

Our testing scheme is that we use τ returns as the training data to construct the

portfolio, then use the subsequent os returns as the out-of-sample data to compute

the out-of-sample returns. We do the exercise from the beginning of our sampling

data and roll ahead. For example, our first portfolio selection takes place at the end

of the first τ trading days or months. We use the τ historical returns to estimate

covariance matrix C and mean µ by the SAA method. We solve the portfolio op-

timization problem by using the estimated C, µ, the required return taken as the

average of the µ and compute the weights. Once a portfolio is thus determined, it is

held for the subsequent os trading days or months from (τ ` 1) to (τ ` os), and its

returns are recorded. We repeat the same process, using returns from 2 to (τ ` 1)

to construct the portfolio in test 2. The portfolio is observed for the subsequent os

trading days or months from (τ ` 2) to (τ ` os` 1) and their returns are recorded.

To reduce the effects of chance factors, we repeat the same exercise as described

above for T rolling times (out-of-sample performance tests). For a given period,

all the out-of-sample returns corresponding to this period are used to compute its

average return, STD, Sharpe ratio and sparsity.

The comparing portfolios that we consider are the least-0-norm sparse portfolio,

modeled by (2.1); regularized method which use penalty to regularize the Markowitz

portfolio optimization such as `1 penalty.

min wTCw ` λ}w}1
s.t. wT1m “ 1, wTµ “ ρ;

(4.12)

cardinality constrained portfolio selection (CCPS) model which adds a cardinality

constraint in the Markowitz portfolio selection model to select a cardinality number

of assets in the portfolio,
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min wTCw
s.t. wT1m “ 1, wTµ “ ρ

}w}0 ď k,

in many investigations.

In the examples, we compute the least-p-norm sparse portfolio model by the

penalty method. For the comparative portfolios, we compute the sparse portfolio via

a two-phase linear complementarity approach by “quadprog” at the first phase and

“linprog” at the second phase; the `1 norm penalty regularized portfolio by “cvx”;

the cardinality constrained portfolio with a Matlab tool box Yalmip “optimize”1.

The criteria that we pay attention to is portfolio Sharpe ratio. Sharpe ratio,

which measures the risk-adjusted return, is a ratio of return and STD in Sharpe

(1994) and defined in (3.14) to (3.16). It measures the trade-off between returns and

volatilities of the portfolios.

We compute the sparsity by taking the average of the number of assets selected

in each test during the full period.

Example 4.2. We select 20 A & H share stocks which includes 10 Hong Kong stocks

and 10 China stocks.

Data construction: These stocks include 10 financial companies, each of them

issuing both A and H share stocks. There are 20 A & H share stocks of them2. We

collect the daily adjusted close price from April 3, 2012 to July 16, 2012 of the 20

stocks and calculate the daily returns of stocks constructed from the collected price

data. We repeat the experiments for 60 times.

1 Downloaded from http://users.isy.liu.se/johanl/yalmip/. Copyright owned by Johan Lofberg.

2 A Chinese company could raise capital by issuing A shares and H shares. In other words, the
equity structure of a company could be comprised of A share, H share and other shares. H share:
shares of company incorporated in mainland China that are traded on the HKEx.
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In the H share market, there is a term “eight banks five insurances” to indi-

cate the bank and insurance company shares from China. The eight banks (A

and H share code in the bracket following each company’s name) are Industrial

and Commercial Bank of China (ICBC 1398.HK 601398.SS), Bank of China (BOC

3988.HK 601988.SS), China Construction Bank (CCB 0939.HK 601939.SS), Bank of

Communications (BC 3328.HK 601328.SS), China Merchants Bank (CMB 3968.HK

600036.SS), China CITIC Bank (CITIC 0998.HK 601998.SS), China Minsheng Bank

(MSB 0188.HK 600016.SS) and Agricultural Bank of China (ABC), which joined in

2010. We do not include ABC in our sample, for its IPO date is later than 2009.

The five insurance companies are China Life Insurance (2628.HK 601628.SS), Ping

An Insurance (2318.HK 601318.SS), China Pacific Insurance (2601.HK 601601.SS),

China Taiping Insurance and PICC property and Casualty. The later two companies

are only listed in the Hong Kong stock market, so we do not consider.

We use the data rolling scheme as described above. The required return is set as

the average of the sample means in each test. The training data window length is

τ “ 15. The holding period data length is os “ 1.

The empirical results of the out-of-sample return, STD, Sharpe ratio, sparsity are

in Table 4.2. Our portfolio outperforms MV model, least-0-norm sparse portfolio,

`1 portfolio (with tuning parameter 0.1), cardinality constrained portfolio (with the

cardinality number 17) and 1{N investment strategy, denoted by MV, } ¨ }0, `1 0.1,

CCPS 17 and 1{N respectively.

The sparse portfolio allocation research is of great importance for cross market

investment.
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Table 4.2: Empirical results for A&H shares

`0.3 `0.5 `0.7 MV } ¨ }0 `1 0.1 CCPS17 1/N
rp -0.1535 -0.0794 -0.1007 -0.1577 -0.1537 -0.2276 -0.4200 -0.1653
σp 1.1130 1.0262 0.9747 1.1143 1.1091 0.8982 1.2419 0.9643
SR -0.1379 -0.0774 -0.1033 -0.1415 -0.1386 -0.2534 -0.3382 -0.1714
sparsity 14.50 14.20 15.20 19.90 19.90 15.70 16.70

Example 4.3. FF12. 12 industry sector portfolios monthly return data (abbreviated

to FF12).

We use the same data rolling scheme. The required return is set as the average

of the return mean in each test. The training data window length is τ “ 8. The

holding period data length is os “ 1. Our experiment data are from April 2008 to

January 2013. We repeat the experiments for T “ 50 times.

The empirical results of the out-of-sample return, STD, Sharpe ratio, sparsity are

in Table 4.3. Our portfolio outperforms MV model, least-0-norm sparse portfolio,

`1 portfolio (with tuning parameter 0.1), cardinality constrained portfolio (with the

cardinality number 9) and 1{N investment strategy, denoted by MV, } ¨ }0, `1 0.1,

CCPS 9 and 1{N respectively.

Table 4.3: Empirical results for FF12

`0.3 `0.5 `0.7 MV } ¨ }0 `1 0.1 CCPS9 1/N
rp 1.3728 1.4090 1.3573 1.3521 1.3456 1.4501 1.1217 -0.0687
σp 4.5138 4.4369 4.2259 4.4898 4.4960 4.8551 4.5394 4.1610
SR 0.3041 0.3176 0.3212 0.3011 0.2993 0.2987 0.2471 -0.0165
sparsity 9.98 9.96 10.04 12 12 8.98 8.54

Example 4.4. FF25. The data set are 25 portfolios monthly average value weighted

returns formed on size and book-to-market (5ˆ 5).

We use the same data rolling scheme and setting for the required return. The

training data window length is τ “ 20. The holding period data length is os “ 1.
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Our experiment data are from February 1968 to December 1974. We repeat the

experiments for T “ 50 times.

The empirical results of the out-of-sample return, STD, Sharpe ratio, sparsity are

in Table 4.4. Our portfolio outperforms MV model, least-0-norm sparse portfolio,

`1 portfolio (with tuning parameter 0.1), cardinality constrained portfolio (with the

cardinality number 23) and 1{N investment strategy, denoted by MV, } ¨ }0, `1 0.1,

CCPS23 and 1{N respectively.

Table 4.4: Empirical results for FF25

`0.3 `0.5 `0.7 MV } ¨ }0 `1 0.1 CCPS23 1/N
rp 0.7063 0.7145 0.7043 0.6807 0.7067 0.6860 0.1316 0.2387
σp 9.7032 9.6954 9.6928 9.6842 9.7052 10.3757 6.1313 6.7813
SR 0.0728 0.0737 0.0727 0.0703 0.0728 0.0661 0.0215 0.0352
sparsity 24.78 24.84 24.88 25 24.98 20.92 21.24

4.3.3 Discussion of the empirical results

In this subsection, we discuss the out-of-sample performance of our approach and

our comparing approaches. Tables 4.2, 4.3, 4.4 report the out-of-sample performance

of the portfolios constructed from the 20 A & H stocks, FF12 and FF25 data sets.

In the case when the MV model has multiple solutions, our method combines the

advantage of the MV model and its sparsity modification methods (least-0-norm

sparse portfolio, `1 regularization, CCPS and so on).

Sparsity and Sharpe ratio

On the one hand, we can observe from the tables in Section 4.2 that we could select

sparser portfolio than portfolio directly constructed from MV model. Ideally, the

trading cost is linearly related to the number of assets in the portfolio, that means

transaction cost is saved for investors. Moreover the simple structure of the } ¨ }p

sparse portfolios enables the portfolio construction independent of parameter setting.
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Moreover, the sparsity of the sparse Markowitz portfolio solution could provide a

reference for the collinearity of the assets.

On the other hand, the empirical results of the examples show that the least-p-

norm sparse portfolio model could find sparse solutions in the optimal solution set of

the Markowitz MV model. The out-of-sample results indicate that the least-p-norm

sparse portfolio from our approach can keep the return-risk balance very well. That

is in all the tests, the sparse portfolio are reasonably well in the SR.

Robustness

We also check the robustness of our method. Observing from Tables 4.2, 4.3, 4.4,

we could conclude that for p takes a number of value in (0,1), our method could

outperform other portfolios.

For a different sample period, we do the test again. For dataset FF12, if we use

the data from August 1991 to January 2013 and T “ 200 in this case, the least-p-

norm sparse portfolio could outperform all the other portfolios except `1 portfolio.

For dataset 20 A&H stocks, if we use the data from February 7, 2012 to July 16,

2012 and T “ 100 in this case, the } ¨ }0.5 sparse portfolio could outperform all the

other portfolios and the } ¨ }p with p “ 0.3, 0.7 sparse portfolio could outperform all

but 1/N portfolio. For dataset FF25, if we increase the sample period by twice, the

sparse portfolio perform well than others except the cardinality portfolio. It shows

in most cases, our method could outperform.

Since this penalty method is designed for non-convex, non-Lipschitz optimization

problem, it is sensitive to the initial value taken, we use the sparse solution as the

initial value and it works better than taking a feasible point by A{b, which might

result in extreme results in our examples.
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Chapter 5

Dynamic portfolio investment via

parameterized expected return

evolution

This chapter considers parameter identification in the dynamic portfolio selection

by minimizing the deviation of the expected returns to the target returns with a

constraint of a parametric ODE involving QP. We assume in this chapter that the

dynamics of expected return is a first-order ODE solution with unknown parameters

as the coefficients. At every time step, the investors make investment in the frame-

work of the Markowitz MV model with the expected return given by the ODE. To

estimate the parameters, it is then using the quasi-Newton method to obtain the

unknown parameters in the coefficients of the ODE. We re-balance the portfolio at

the end of a round of dynamic investment by using the updated parameter values.

Numerical scheme is obtained by using the time-stepping method. Parameters are

identified discretely. A numerical example is presented to show the performance of

the dynamic portfolio.

The rest of this chapter is organized as follows. In Section 5.2, we present the

proposed model, and give detailed analysis of the model. In Section 5.3, we discretize

the model by the time-stepping method and provide the way to solve it. In Section

59



5.4, an empirical example is given. In Section 5.5, we summarize the chapter.

5.1 Model formulation

5.1.1 The proposed model

In this section, we study a parameter identification model with ODE constraint

involving MV model applied in the portfolio management. We consider m available

securities. At time t, we use wptq “ pw1ptq, w2ptq, ..., wmptqq
T to be the weight of asset

allocation, 1m to be the m-dimensional vector with all entries equal to one, and ρptq

to be the expected portfolio return; t in the range r0, T s. The Markowitz (1952) MV

optimization model portfolio has minimal risk for a given level of expected return by

solving the following QP problem at time t:

min 1
2
wptqTCptqwptq

s.t. wptqTµptq “ ρptq
wptqT1m “ 1,

(5.1)

where rptq “ pr1ptq,r2ptq, ..., rmptqq
T is the return of the securities; the expected

return µptq “ Errptqs and the covariance matrix of the returns is

Cptq “ Erprptq ´ µptqqprptq ´ µptqqT s.

We consider the case where Cptq is positive-definite for any t P r0, T s. Therefore, at

each time step, the solution of the MV model is unique. Denote the solution set of

problem (5.1) as Spt, ρptqq.

We define the parametric model generally. We consider ρptq as the state variable

and wptq as the control variable. We use p to represent unknown parameters in the

state evolution. Although the minimal risk portfolio could be obtained from the MV

model for a given expected return level, the expected return level is hard to determine.

From the investor’s viewpoint, the change of expected return at the current period
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should depend on her expectation on the return rate and her reflection on the last

period’s weights. Therefore, a reasonable assumption of the expected return ODE

form is:

9ρptq “ Θpt, ρ, w, pq “ apt, p1qρptq ` bpt, p2q
Twptq (5.2)

where we denote apt, p1q : Rl1 Ñ R and bpt, p2q : Rl2 ÑP Rm at time t. l1 and l2 are

dimensions of the parameters p1 and p2. The Θ is an affine function in pρptq, wptqq.

Since apt, p1q and bpt, p2q varies with time, we could assume that apt, p1q and bpt, p2q

contain unknown parameters: p1 in apt, p1q and p2 in bpt, p2q, p “ pp1, p2q.

Coefficient varying with time

We consider the market fluctuation 9µptq to reflect last period’s weights on the

expected return setting. Moreover, we assume 9µptq is Lipschitz continuous. Then

denote b “ b 9µptq, b P R. Moreover, we assume a is linearly varying with time,

Θpt, ρ, w, pq “ pc0 ` c1tqρptq ` b 9µT ptqwptq, (5.3)

which is apt, p1q “ c0 ` c1t, bpt, p2q “ b 9µptq, p1 “ pc0, c1q, p2 “ pbq, p “ pp1, p2q.

From dynamic investment in the training sample, we could evaluate the values

of the parameters c0, c1, and b. c0, c1 reflect the investment tendency and b reflects

the feedback to the market fluctuation.

The model with ODE constraint involving MV is to find the optimal parameter

p:

min
p

f “
T
ş

0

pρ̄ptq ´ ρptqq2dt

s.t. 9ρptq “ Θpt, ρptq, wptq, pq
ρp0q “ ρ0, t P r0, T s,

(5.4)

where wptq is the solution to problem (5.1), ρ0, the initial value, and T , the terminal

time.

We denote ρ̄ptq P C1 as a given target return series. By the objective function, it

identifies the parameters in the ODE to make the expected return mostly fit to the
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target return. In the constraint, the parametric ODE combining with the MV model

reflects the investor’s viewpoints on the expected return setting.

In this problem, we project the target return to the area where expected return

and portfolio weights are defined by the constraint. The MV model boasts the

solution, which turns out to be a linear relationship between wptq and ρptq. We

discuss it in subsection 5.1.2.

5.1.2 MV model

Solution of the MV model

In this subsection, we discuss the solution of MV model (5.1) and gives out an

analytical relation between ρptq and wptq. The explicit solution to MV model (5.1)

is researched in Chapter 3, Evstigneev et al. (2015), and Part III, Markowitz et al.

(2000). We start analyzing the problem by introducing several basic assumptions.

Assumption 5.1. Let λptq be the smallest eigenvalues of Cptq and λ̄ptq be the largest

eigenvalues of Cptq. Suppose

λ “ min
tPr0,T s

λptq ą 0, (5.5)

and

λ “ max
tPr0,T s

λptq ă `8. (5.6)

If Assumption 5.1 is satisfied, then MV model (5.1) is strictly convex and the solu-

tion exists and is unique. If Assumption 5.1 holds, then the inverse of the covariance

matrix Cptq´1 is positive definite.

Assumption 5.2. µptq and 1m are linearly independent for any t P r0, T s.

Proposition 5.1. When Assumptions 5.1 and 5.2 are satisfied, we obtain that:
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1. All the following constants,

z1ptq “ 1TmCptq
´11m ą 0, z2ptq “ µptqTCptq´11m,

z3ptq “ µptqTCptq´1µptq ą 0, z4ptq “ z1ptqz3ptq ´ z2ptq
2
ą 0

are bounded.

2. The Markowitz portfolio selection problem (5.1) has a unique solution w̄ptq for

@t P r0, T s given by

w̄ptq “ ȳ1ptqCptq
´11m ` ȳ2ptqCptq

´1µptq, (5.7)

where ȳ1ptq “
z3ptq ´ ρptqz2ptq

z4ptq
, ȳ2ptq “

ρptqz1ptq ´ z2ptq

z4ptq
.

3. For any t P r0, T s, the Lagranger multipliers ȳ1ptq and ȳ2ptq, and w̄ptq in 2 are

bounded.

Proof:

1. By Assumption 5.1, Cptq is symmetric positive definite, so C´1ptq is symmetric

positive definite. Therefore,

xµT ptq, C´1
ptq1my “ xC

´1
ptqµT ptq, 1my. (5.8)

By Assumption 5.2, µptq ‰ η1m for some number η. Using Cauchy-Schwartz

inequality, we could obtain that,

|xµT ptq, C´1
ptq1my|

2
ă xµT ptq, C´1

ptqµptqyx1Tm, C
´1
ptq1my, (5.9)

which says z4ptq “ z1ptqz3ptq ´ z2ptq
2 ą 0. Therefore, γ{λ

2m
ă z4ptq ă γ{λ2m

for some number γ.
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Clearly, 1{λ
m
ă z1ptq “ x1

T
m, C

´1ptq1my ă 1{λm. z3ptq “ xµ
T ptq, C´1ptqµptqy ą

0, because C´1ptq is positive definite. As µptq is bounded, z2ptq, z3ptq are

bounded and inf
tPr0,T s

z4ptq “ γ{λ
2m

.

2. Applying the Lagrangian method, we can find the Lagranger multipliers y1, y2

such that,

Lpwptq, y1ptq, y2ptqq “ 0.5wptqTCptqwptq´y1ptqp1
T
mwptq´1q´y2ptqpµ

T
ptqwptq´ρptqq.

(5.10)

The first order optimality condition of the MV model is,

$

’

’

’

’

’

&

’

’

’

’

’

%

BL

Bw
“ Cptqwptq ´ y1ptq1m ´ y2ptqµptq “ 0

BL

By1

“ 1´ 1Tmwptq “ 0

BL

By2

“ ρptq ´ µT ptqwptq “ 0.

(5.11)

By Assumption 5.1, we solve
δL

δw
“ 0, which yields,

w̄ptq “ y1ptqC
´1
ptq1m ` y2ptqC

´1
ptqµptq. (5.12)

Expanding equation (5.12) by timing both sides µT ptq for a particular ρptq and

1Tm to solve for ȳ1ptq, ȳ2ptq,

"

ρptq “ ȳ1ptqµ
T ptqC´1ptq1m ` ȳ2ptqµ

T ptqC´1ptqµptq
1 “ ȳ1ptq1

T
mC

´1ptq1m ` ȳ2ptq1
T
mC

´1ptqµptq.
(5.13)

Using z1ptq, z2ptq, z3ptq, z4ptq, we could rewrite (5.13) as,

ˆ

z1ptq z2ptq
z2ptq z3ptq

˙ˆ

ȳ1

ȳ2

˙

“

ˆ

1
ρptq

˙

. (5.14)
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Then, we can obtain,

$

’

’

’

’

&

’

’

’

’

%

w̄ptq “ ȳ1ptqCptq
´11m ` ȳ2ptqCptq

´1µptq

ȳ1ptq “
z3ptq ´ ρptqz2ptq

z4ptq

ȳ2ptq “
ρptqz1ptq ´ z2ptq

z4ptq
.

(5.15)

3. When the first and second part of the proposition are proved, the Lagranger

multipliers ȳ1ptq and ȳ2ptq, w̄ptq from (5.15) are bounded for any t P r0, T s.

This completes the proof. ˝

By solving (5.15), we obtain,

w̄ptq “ p
z3ptq

z4ptq
Cptq´11m ´

z2ptq

z4ptq
Cptq´1µptqq ` ρptqp

z1ptq

z4ptq
Cptq´1µptq ´

z2ptq

z4ptq
Cptq´11mq.

(5.16)

Let

Xptq “
z3ptq

z4ptq
Cptq´11m ´

z2ptq

z4ptq
Cptq´1µptq, (5.17)

and

Y ptq “
z1ptq

z4ptq
Cptq´1µptq ´

z2ptq

z4ptq
Cptq´11m, (5.18)

in formula (5.16). We know that the weights at time period t,

w̄ptq “ Xptq ` ρptqY ptq. (5.19)

It is the solution of the MV model. Since we do not know the time distribution

of rptq, we may estimate the sample covariance Cptq and mean µptq by using the

sample average approximation (SAA) method. Therefore, Xptq and Y ptq could be

computed from the sample data at each time step t.
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Two-Fund Theorem

Theorem 5.1. The solution to the QP:

min 1
2
wptqTCptqwptq ´ λµptqTwptq

s.t. wptqT1m “ 1,
(5.20)

with λ ą 0 can be represented as

w̃ptq “ p1´ αqwminptq ` αwmkptq, (5.21)

where wptqmin “ Cptq´1e{z1ptq is the minimum variance portfolio1, and wptqmk “

Cptq´1µptq{z2ptq is the market portfolio2 and α “ λz2ptq.

Using Theorem 5.1, we could allocate the portfolio to be the linear combination

of two portfolios. The return associated with the portfolio is,

ρptq “p1´ αqµptqwminptq ` αµptqwmkptq (5.23)

“p1´ αqz2ptq{z1ptq ` αz3ptq{z2ptq.

We could set target return as given by Equation (5.23).

5.1.3 ODE constraint involving MV model

Combined with MV model, it is a dynamic system which we take as the constraint:

"

9ρptq “ Θpt, ρptq, wptq, pq
ρp0q “ ρ0, t P r0, T s,

(5.24)

where wptq P Spt, ρptqq, ρ0 is the initial value of the expected return ODE. We

could estimate the variance Cptq and the mean µptq at time t by sample average

approximation (SAA).

1 It is the solution to the optimization problem:

min 1
2wptq

TCptqwptq
s.t. wptqT 1m “ 1.

(5.22)

2 It is labeled as market portfolio as it reflects all the market information on the assets.
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5.2 Discretization and solving the problem

5.2.1 The proposed model

In this section, we introduce the numerical method to solve the optimization problem

with the ODE constraint involving MV in (5.4). We use the time-stepping method,

a numerical scheme to discretize the problem. The idea of time-stepping is to use a

finite-difference quotient to replace the time derivative 9ρ. We divide the time interval

r0, T s into N subintervals, with step size h. Therefore, hN “ T , thi “ thi´1 ` h and

we have,

0 “ th0 ă th1 ă . . . ă thN “ T. (5.25)

Let ρhi « ρpthi q. The discrete form of the model (5.4) is,

min
p

f “
N
ř

i“1

pρ̄hi ´ ρ
h
i q

2

s.t. ρhi “ ρhi´1 ` hΘpthi , γρ
h
i´1 ` p1´ γqρ

h
i , γw

h
i´1 ` p1´ γqw

h
i , pq

ρh0 “ ρ0

i “ 1, ..., N.

(5.26)

where whi “ Xh
i ` Y h

i ρ
h
i , X

h
i “ Xpthi q, Y

h
i “ Y pthi q, ρ

h
i “ ρpthi q, w

h
i “ wpthi q and

γ P p0, 1q.

5.2.2 ODE constraint involving MV model

The constraint in our model is explicitly in this section a MV model with an initial

value ODE problem of ρ dynamics.

Given a starting point ρ0, it computes wh0 P Sp0, ρh0q, and two finite series con-

taining parameter p,

tρh1 , ρ
h
2 , . . . , ρ

h
Nu Ă R (5.27)

and

twh1 , w
h
2 , . . . , w

h
Nu Ă Rm (5.28)
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by recursive iteration: for i “ 1, . . . , N ,

ρhi “ ρhi´1 ` hΘpthi , γρ
h
i´1 ` p1´ γqρ

h
i , γw

h
i´1 ` p1´ γqw

h
i , pq

whi “ Xh
i ` Y

h
i ρ

h
i ,

(5.29)

where h is the step size and γ is a scalar. When γ “ 0, it is an implicit numerical

scheme; γ “ 1, an explicit scheme, or γ P p0, 1q, a semi-implicit scheme. Implicit

Euler scheme is usually more stable, see Chen and Wang (2014) and Chen and Wang

(2013), therefore, we use γ “ 0 in the Euler scheme (5.29).

The implicit Euler method for the ODE

Using the implicit Euler method, we discretize the ODE of ρ. Denote ρhi « ρpthi q

at time step i. Let ahi pp1q “ apthi , p1q “ c0 ` c1t
h
i and bhi pp2q “ bpthi , p2q “ b4µhi ,

4µhi “ µpthi q ´ µpt
h
i´1q for i “ 1, 2, ..., N . We have,

ρhi ´ ρ
h
i´1

h
“ ahi pp1qρ

h
i ` pb

h
i pp2qq

Twhi , (5.30)

which implies

ρhi “ ρhi´1 ` hpa
h
i pp1qρ

h
i ` pb

h
i pp2qq

Twhi q. (5.31)

The MV model at each time step has a solution in the form of (5.19), therefore,

equation (5.31) could be written as

ρhi “ ρhi´1 ` hpa
h
i pp1qρ

h
i ` pb

h
i pp2qq

T
pXh

i ` Y
h
i ρ

h
i qq, (5.32)

which is

p1´ ahi pp1qh´ pb
h
i pp2qq

TY h
i hqρ

h
i “ ρhi´1 ` hb

h
i pp2q

T
Xh
i , i “ 1, ..., N. (5.33)

Let αhi pp1, p2q :“ 1 ´ ahi pp1qh ´ pb
h
i pp2qq

TY h
i h, γhi pp2q “ hpbhi pp2qq

TXh
i . Assume

αhi pp1, p2q ‰ 0, γhi pp2q ‰ 0. Equations (5.33) are

αhi pp1, p2qρ
h
i “ ρhi´1 ` γ

h
i pp2q, i “ 1, ..., N, (5.34)
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or

ρhi “
1

αhi pp1, p2q
ρhi´1 `

γhi pp2q

αhi pp1, p2q
, i “ 1, ..., N. (5.35)

With equation (5.34) as a constraint, problem (5.26) is stated as:

min
p1,p2,ρh

f “ }ρh ´ ρ̄h}22

s.t.

¨

˚

˚

˚

˝

αh1pp1, p2q ¨ ¨ ¨ ¨ ¨ ¨ 0
´1 αh2pp1, p2q ¨ ¨ ¨ 0

. . . . . .
...

´1 αhNpp1, p2q

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

ρh1
ρh2
...
ρhN

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

γh1 pp2q ` ρ
h
0

γh2 pp2q
...

γhNpp2q

˛

‹

‹

‹

‚

,

(5.36)

where p1 “ pc0, c1q, p2 “ b, ρh “ pρh1 , ..., ρ
h
Nq and ρ̄h “ pρ̄h1 , ..., ρ̄

h
Nq.

In problem (5.36), we reformulate problem (5.26) into a nonlinear optimization

problem with nonlinear constraints and solve it by “fmincon” using quasi-Newton

method in Matlab. The optimization arguments are p1, p2 and ρ together.

5.3 Solvability

In this section, we first show the solution of problem (5.36) exists, then further prove

that the solution is the KKT point. Before we show the existence of the solution,

we first deduce the formula of ρhi by the implicit Euler method. With ahi pp1q, b
h
i pp2q,

αhi pp1, p2q, γ
h
i pp2q defined in the previous section, hereafter we use ahi , b

h
i , α

h
i , γhi for

simplicity.

Suppose Θ “ ahi ρ
h
i ` pb

h
i q
Twhi , for a given initial value ρ0, the expected return ρhi

at time step thi satisfies the system

ρhi “

$

’

&

’

%

ρh0
i
ś

j“1
αh
j

`
i
ř

j“1

γhj
i
ś

j1“j
αh
j1

, i “ 1, ..., N,

ρ0, i “ 0.

(5.37)
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Proof of Formula (5.37): We show that formula (5.37) could be proved by math-

ematical induction applying equation (5.33).

Suppose at thi for i “ 2...N ´ 1, we have Formula (5.37)

ρhi “
ρh0
i
ś

j“1

αhj

`

i
ÿ

j“1

γhj
i
ś

j1“j

αj1

,

then at thi`1, according to formula (5.33),

ρhi`1 “
1

αhi`1

ρhi `
γhi`1

αhi`1

“

ρh0
i
ś

j“1
αh
j

`
i
ř

j“1

γhj
i
ś

j1“j
αj1

αhi`1

`
γhi`1

αhi`1

“
ρh0

i`1
ś

j“1

αhj

`

i
ÿ

j“1

γhj
i`1
ś

j1“j

αj1

`
γhi`1

αhi`1

“
ρh0

i`1
ś

j“1

αhj

`

i`1
ÿ

j“1

γhj
i`1
ś

j1“j

αj1

.

(5.38)

˝

Assumption 5.3. Assume that 9µptq is bounded for any t P r0, T s.

Theorem 5.2. If the parameters c0, c1, b are box constrained and h small enough,

then problem (5.36) has a solution.

Proof: Firstly, we show that the optimization problem is solvable. The solution

set is non-empty. By Proposition 5.1, we could observe that the solution to the MV

model is non-empty for each given ρptq.

Secondly, we show the feasible set is bounded. Because of the randomness of

4µhj , Xh
j and Y h

j , suppose that

X̄ “ maxt4µhjXh
j u

N
j“1, (5.39)
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Ȳ “ maxt4µhjY h
j u

N
j“1. (5.40)

We show that the ρhi for i “ 1, ..., N is bounded by the implicit Euler scheme,

ρhi “
ρh0

i
ś

j“1

p1´ ahjh´ b
h
j
T
Yj,hhq

`

i
ÿ

j“1

bhj
T
Xh
j h

i
ś

j1“j

p1´ ahj1h´ b
h
j1

T
Y h
j1
hq

. (5.41)

We take h small enough such that 1 ´ ahjh ´ b4µhjY h
j h ą 0 for all j “ 1, ..., N .

When write bhj “ b4µhj , use (5.39) and (5.40), write ahj “ c0 ` c1t
h
j , and ρh0 ą 0, we

have

|ρhi | “ |
ρh0

i
ś

j“1

p1´ ahjh´ b4µhjY h
j hq

`

i
ÿ

j“1

b4µhjXh
j h

i
ś

j1“j

p1´ ahj1h´ b4µhjY h
j1
hq

| (5.42)

ď
ρh0

i
ś

j“1

p1´ ahjh´ bȲ hq

`

i
ÿ

j“1

|bX̄h|
i
ś

j1“j

p1´ ahj1h´ bȲ hq

“
ρh0

i
ś

j“1

p1´ pc0 ` c1thj qh´ bȲ hq

`

i
ÿ

j“1

|bX̄h|
i
ś

j1“j

p1´ pc0 ` c1thj1qh´ bȲ hq

.

Use the fact that thi ď T for i “ 1, ..., N , the summation formula of geometric

progression, and reformulate to use exponential equation, we have

|ρhi | ď
ρh0

p1´ pc0 ` c1T qh´ bȲ hqi
`

i
ÿ

j“1

|bX̄h|
i
ś

j1“j

p1´ pc0 ` c1T qh´ bȲ hq

(5.43)

“
ρh0

p1´ pc0 ` c1T ` bȲ qhqi
`
|bX̄h|p1´ 1

p1´pc0`c1T qh´bȲ hqi
q

1´ 1
p1´pc0`c1T qh´bȲ hq

. (5.44)

Let η “ 1 ´ pc0 ` c1T qh ´ bȲ h, τ “ c0 ` c1T ` bȲ , then η “ 1 ´ τh. Since

h “ T {N , it is easy to see that 0 ă η ď 1 ` |τ |T . For an arbitrary i, N sufficiently
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large, let i “ θN , θ P r0, 1s, then

ηi “ p1´ τhqi “ p1´ τT {NqNθ. (5.45)

The limitation of equation (5.45), lim
NÑ8

p1 ´ τT {NqNθ “ e´τTθ. If τ ą 0, then

η ă 1, e´τT ă ηN ă ηi ă 1; if τ ă 0, then η ą 1, 1 ă ηi ă ηN ă e´τT . Then we

have: ηi P rminp1, e´τT q ´ δ,maxp1, e´τT q ` δs for a small number δ P R. Hence ηi is

bounded. The righthand side of (5.44) could be written as

ρh0
ηi
`
|bX̄h|p1´ 1

ηi
q

1´ 1
η

“
ρh0
ηi
`
|bX̄h|ηpηi ´ 1q

ηipη ´ 1q

ď
ρh0
ηi
`
|bX̄|Tηpηi ´ 1q

ηipη ´ 1q
. (5.46)

If we denote the righthand side term of (5.46) as l, then for sure ρhi P r´2l, 2ls

for i “ 1, ..., N . c0, c1 and b are also bounded.

The objective function is continuous. The feasible set is non-empty and bounded.

It is directly obtained that problem (5.36) has a solution.˝

We then show that the local minimizer is the KKT point. Denote the constraint

of problem (5.36) as gpρh, c0, c1, bq “ 0.

Definition 5.1. Let F be the feasible region of problem (5.36). We say that a point

pρh
˚
, c˚0 , c

˚
1 , b

˚q P RN`3 is a KKT point of problem (5.36) provided that pρh
˚
, c˚0 , c

˚
1 , b

˚q P

F and there exists λ P RN`3 such that

0 P ∇fpρh˚, c˚0 , c˚1 , b˚q `∇gpρh
˚
, c˚0 , c

˚
1 , b

˚
qλ.

Definition 5.2 (Andreani et al. (2012), Definition 4). Let pρh
˚
, c˚0 , c

˚
1 , b

˚q P F

and let I Ď t1, ..., Nu be such that t∇gipρh
˚
, c˚0 , c

˚
1 , b

˚q|i P Iu is a basis for s-

pan t∇gipρh
˚
, c˚0 , c

˚
1 , b

˚q|i “ 1, ..., Nu. We say that relaxed constant positive lin-

ear dependence (RCPLD) holds for the system gpρ, c0, c1, bq “ 0 at pρh
˚
, c˚0 , c

˚
1 , b

˚q
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if there exists δ ą 0 such that t∇gipxq|i “ 1, ..., Nu has the same rank for each

pρh
˚
, c˚0 , c

˚
1 , b

˚q P Bδpρh
˚
, c˚0 , c

˚
1 , b

˚q.

Theorem 5.3. Suppose the objective function is bounded. Let pρh
˚
, c˚0 , c

˚
1 , b

˚q be

a local minimizer of problem (5.36), if the RCPLD holds at pρh
˚
, c˚0 , c

˚
1 , b

˚q, then

pρh
˚
, c˚0 , c

˚
1 , b

˚q is a KKT point of problem (5.36).

Proof: It is easy to see that there exists δ ą 0 such that Rankp∇gipρh, c0, c1, bqq “

4 for i “ 1, ..., N . Therefore t∇gipρh, c0, c1, bq|i “ 1, ..., Nu has the same rank for

each x P Bδpρh
˚
, c˚0 , c

˚
1 , b

˚q. Thus, the RCPLD condition by Andreani et al. (2012)

is satisfied. Moreover, the objective function is bounded. By Theorem 2.1 in Chen

et al. (2017), Theorem 7.1.10 in Sun et al. (2004), we could obtain the conclusion.

5.4 Applications

In this section, we demonstrate the model by an empirical example. The Matlab

version that we use for the numerical example is Matlab R2014a, in a computer

with Intel Core 2 Due CPU E8500 3.16GHz. The data sets that we used are DJIA

index and component stocks. The DJIA stocks and index data are daily stock prices

downloaded from Yahoo Finance.

The parameter identification process to find the parameters and the investment

strategy in each portfolio re-balancing (investment round) is illustrated in Table 5.1.

The portfolio weight wh0 is from the Markowitz MV model given the initial value of

expected return ρ0. Then at the first time step, the expected return depends on the

expected return ρh0 and the portfolio allocation wh0 at time step 0. The following

ρhi ppq and whi ppq, i “ 1, . . . , N are evaluated by the process illustrated in (5.29).

We use dynamic investment in every N time steps as the training data to find the

parameters. Then put the parameters into the ρ ODE, we obtain the expected return

to construct the portfolio and make the out-of-sample investment subsequently after
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parameter identification. To compute the covariance and expected returns at each

time step, we use 40 daily returns, i.e. nearly two trading months as sampling data,

at each time step.

time step 0 1 2 . . . N out-of-sample invest
target ρ̄hi ρ̄h0 ρ̄h1 ρ̄h2 . . . ρ̄hN
expected ρhi ρh0 “ ρ0 ρh1ppq ρh2ppq . . . ρhNppq ρhN
w̄hi “ Spρ̄hi q Spρ̄h0q Spρ̄h1q Spρ̄h2q . . . Spρ̄hNq w̄N “ Spρ̄hNq
whi “ Spρhi q Spρh0q Spρh1ppqq Spρh2ppqq . . . SpρhNppqq whN “ SpρhNq; wN`1,Ăos “ SpρhN`1, rosq

Objective p “ arg min
N
ř

i“1

pρ̄hi ´ ρ
h
i q

2

Table 5.1: The parameter identification and investment process in a round of dynamic
investment

Example 5.1. DJIA data set. The Dow Jones Industrial Average Index is a rep-

resentative index in the American capital market to measure the overall market per-

formance. The components of the index are 30 blue chip stocks.

One target return is the DJIA index. For each step’s portfolio return setting, we

simply compute the corresponding average DJIA index price return from the index

data. We call the portfolio formed by this setting index tracking portfolio.

The other target return is based on the two-fund theorem (call it two-fund track-

ing strategy), see Chapter 6, Luenberger (1997). We take α “ 0.5 in (5.23) for this

example. We call the portfolio formed by this setting the two-fund tracking portfolio.

Data Collection: We collected the daily price and computed the returns of the 30

stocks of the DJIA composition. The 30 stocks are Apple, American Express, Boeing,

Caterpillar, Cisco Systems, Chevron, E.I.du Pont de Nemours, Walt Disney, General

Electric, Goldman Sachs, Home Depot, IBM, Intel, Johnson & Johnson, JPMorgan,

Coca-Cola, McDonald, 3M, Merck, Microsoft, NIKE, Pfizer, Procter & Gamble,

Travelers, UnitedHealth Group, United Technologies, Visa, Verizon, Wal-Mart and

Exxon Mobile, which covers a wide range of industries. The sampling period is from

March 18, 2008 to December 31, 2015, which covers 1962 trading days. We construct
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the portfolio selected from the DJIA component stocks by tracking the DJIA index

returns or tracking the target return of two funds.

For the empirical example: the historical data of the first 40 ˆ 36 transaction

days from March 20, 2008 to March 3, 2009 (the number of steps in one round of

dynamic investment is N “ 36; and each step or period is 40 days) are used to build

the initial portfolio. The investor makes the first re-balance after 40 ˆ 36 (N “ 36)

transaction days. The portfolio is re-balanced for every 40 transaction days. The

update of stock weights for every 40 transaction days depends on the 40ˆ 36 rolling

historical data. The example assumes an initial investment of unit 1. From March

18, 2008 to December 31, 2015, re-balancing takes place on 10 occasions. We show

the rebalancing performance over time horizon in the empirical example. All the test

information is listed in Table 5.2.

continuous function discrete scheme

ρ̄ptq: ρ̄ptq “ rDJIAptq data set: DJIA daily returns
w̄ptq: Spρ̄ptqq sampling period: 3/18/2008-12/31/2015
Θ: aρ` bTw the duration of 1 time step: 40 days
τ : 1 N steps to build ODE: 36

initial value of unknowns: 03`N

ρ0 0.05%

Table 5.2: The given information of the empirical example of DJIA data set

The identified parameters are put in Table 5.3. Due to the limitation of space,

we show the mean and standard deviation of the identified parameters. We could

obtain the sequence of ρhi for i “ 1, ..., N after the parameters are learnt.
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DJIA dataset, over 10 rebalances

index tracking
parameter c0 c1 b

mean 0.1642 -0.0130 -0.0073
std 0.2130 0.0216 0.0148

two fund tracking
parameter c0 c1 b

mean 1.3224 -0.1021 0.0668
std 0.9832 0.0606 0.2447

Table 5.3: The identified parameters
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Figure 5.1: DJIA index tracking portfolio (a)box plot of parameters; (b)ρ, ρ̄ over
steps in the last rebalance
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Figure 5.2: DJIA two-fund tracking portfolio (a)box plot of parameters; (b)ρ, ρ̄ over
steps in the last rebalance

We compare the out-of-sample performance of several portfolios. Namely, the

portfolio allocation whN constructed using the final step data by setting expected

return as ρhN ; the portfolio w̄hN constructed at the final step by setting expected

return as ρ̄hN ; the portfolio wN`1,Ăos constructed using out-of-sample data denoted

as os in step N ` 1 by setting the expected return as ρhN`1; the SPDR Dow Jones

Industrial Average ETF Trust (DIA)3 performance rN`1,DIA in the corresponding

N ` 1 step period. We display the first two as a pair as they are kind of static

portfolio with portfolio allocation determined by the in-sample data. The last two

portfolios are in a pair. We compare the performance of the four portfolios.

5.4.1 Discussion of the results

We show the portfolio return and Sharpe ratio (SR)4 of the index tracking portfolio

and two fund tracking portfolio over 10 re-balancing occasions from March 3, 2009

to December 30, 2015 respectively in Table 5.4 and Table 5.5. When parameters are

determined for a round of dynamic investment, we construct out-of-sample portfolios

3 This fund is Exchange Traded Fund (ETF). Its investment results before expenses corresponds
to the proce and yield performance of the Dow Jones Industrial Average. The ticker symbol is DIA.

4 Sharpe ratio is the ratio of
rp
σp

.rp is portfolio return; σp is portfolio standard deviation. It

measures the trade-off between returns and volatility of the portfolios.
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by setting different returns. “rfs” stands for portfolio return using ρhN at the final

step. “rtargetfs” stands for portfolio return using the target ρ̄hN at the final step. “ros”

stands for portfolio return where allocation determined by the return ρhN`1 and the

out-of-sample sample. “rDIA” stands for DIA portfolio return. Over 10 occasions,

the average return and Sharpe ratio of the wN`1,õs portfolio is better than the other

portfolios, which means the return-risk tradeoff is well balanced.

For index tracking portfolio, Figure 5.1(d) is the box plot of the identified pa-

rameters c0, c1 and b. It shows the distribution of the identified parameters over 10

rounds of dynamic investments. We could observe that all the identified parameters

are included in the box. There are no scatters. Figure 5.1(e) is ρhi when known pa-

rameters substituted into the ODE; and ρ̄hi computed from index data set over steps

for i “ 1, ..., N in the last round of investment. For the two fund tracking portfolio,

we illustrate the parameters in box plot in Figure 5.2(a), the expected return setting

over steps in the last round of investment in Figure 5.2(b).

After 10 re-balancing which lasts for almost 92 months, the portfolio value wN`1,Ăos

is highest among the portfolios in both cases of expected return setting strategy. In

Figure 5.3 and Figure 5.4, we show the portfolio values tracking index or tracking

two funds over the time. The parameters learnt in the dynamic investment in the

training period well tune the investors’ expectation on the target return, due to the

reason that the model captures investor’s expectation change based on its last period

return and the market movement in between two steps. During the overall invest-

ment period from 2008 to 2015, it is bull market most of the time. We could learn

from the results of the empirical example that the our strategy is even better than

the passive strategy of DIA portfolio.
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ρ̄ set as the index return

round rwN,h
rw̄N,h

rwN`1,Ăos
rDIV SRwN,h

SRw̄N,h
SRwN`1,Ăos

SRDIV

1 0.02% -0.02% -0.04% -0.06% 0.0131 -0.0135 -0.1384 -0.0709
2 0.04% 0.00% 0.15% 0.19% 0.0326 0.0021 0.1246 0.3129
3 0.36% 0.34% 0.00% 0.03% 0.2832 0.2743 -0.001 0.0506
4 -0.07% -0.07% -0.24% 0.04% -0.0604 -0.0637 -0.1637 0.1071
5 0.01% 0.00% 0.09% 0.02% 0.0063 0.0037 0.0919 0.0415
6 0.04% 0.04% 0.45% 0.10% 0.0229 0.024 0.2379 0.108
7 -0.11% -0.15% 0.39% -0.02% -0.0651 -0.0898 0.3121 -0.0213
8 -0.03% -0.03% 0.44% 0.06% -0.0174 -0.017 0.1934 0.0686
9 0.23% 0.23% -0.15% 0.04% 0.1725 0.1761 -0.0862 0.0513

10 0.05% 0.05% 0.18% -0.03% 0.0431 0.0432 0.1389 -0.0488
average 0.05% 0.04% 0.13% 0.13% 0.0431 0.0339 0.071 0.0599

Table 5.4: index tracking portfolio 10 times rebalancing performance
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Figure 5.3: DJIA index tracking portfolio value over 10 rounds of investment
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ρ̄ constructed from targeting the two-fund portfolio return

round rwN,h
rw̄N,h

rwN`1,Ăos
rDIV SRwN,h

SRw̄N,h
SRwN`1,Ăos

SRDIV

1 -0.02% -0.07% 0.16% -0.06% -0.0207 -0.06 0.5355 -0.0709
2 0.05% 0.15% 0.15% 0.19% 0.0369 0.1286 0.1245 0.3129
3 0.36% 0.32% -0.07% 0.03% 0.2833 0.2567 -0.0442 0.0506
4 -0.30% 0.00% -0.26% 0.04% -0.1014 -0.0016 -0.1811 0.1071
5 -0.03% -0.07% 0.10% 0.02% -0.0321 -0.0626 0.09 0.0415
6 0.00% -0.07% 0.44% 0.10% 0.0022 -0.0541 0.1754 0.108
7 -0.17% -0.27% 0.54% -0.02% -0.1006 -0.158 0.3322 -0.0213
8 -0.03% -0.02% 0.50% 0.06% -0.0172 -0.015 0.1725 0.0686
9 0.16% 0.25% -0.15% 0.04% 0.0369 0.174 -0.0866 0.0513

10 0.04% 0.03% 0.28% -0.03% 0.0369 0.0308 0.1872 -0.0488
average 0.01% 0.02% 0.17% 0.04% 0.0124 0.0239 0.1305 0.0599

Table 5.5: two-fund tracking portfolio 10 times rebalancing performance
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Figure 5.4: DJIA two-fund tracking portfolio value over 10 rounds of investment
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Chapter 6

Conclusions and Future work

This chapter summarizes the thesis, and lists the further research directions related

to the current work done in this thesis.

6.1 Conclusions

The focus of the thesis has been placed on portfolio optimization. Concretely, the

following research problems have been investigated in this thesis.

1. We study a two-phase stochastic linear complementarity approach to seek for

a least-0-norm sparse asset allocation of the Markowitz portfolio. In contrast

to `1 penalty regularized portfolio, `p penalty regularized portfolio, cardinali-

ty constrained models and 1{N investment strategy, the two-phase approach

finds the sparse Markowitz portfolio selection with efficient investment in accor-

dance with the Markowitz minimum variance portfolio structure and preserves

the stability of the model. The convergence analysis showed that the SAA

method is effective with this two-phase portfolio optimization approach. The

application demonstrated the sparsity, and the superior performance of our

approach from the perspective of Sharpe ratio, STD, VaR, and CVaR.

2. We study a stochastic penalty method to seek for a least-p-norm sparse asset
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allocation of the Markowitz portfolio. The method finds the sparse Markowitz

portfolio selection in accordance with the Markowitz minimum variance portfo-

lio structure and preserves the stability of the model. The method we propose

is a natural extension of finding sparse solution in the optimal solution set of

MV model in Wang and Sun (2017). We have described a NPG algorithm

to compute the optimal solutions and implemented it using data sets of 20

A&H stocks, FF12 and FF25 empirically. In contrast to sparse solution of

the MV model, `1 penalty regularized portfolio, cardinality constrained models

and 1{N investment strategy, the application demonstrated the sparsity, and

the superior performance of our approach from the perspective of Sharpe ratio.

The convergence analysis showed that SAA method is effective with this least-

p-norm with p P p0, 1q sparse portfolio selection model using penalty method.

A randomly generated example illustrates the convergence for p taking several

different values.

3. We have used optimization methods for parameter identification in the dynam-

ic portfolio selection. In this case, it is to fit target return with an expected

return following a parametric dynamic differential equation with a QP prob-

lem. We have described the time-stepping scheme and described the investment

procedure. In this framework, we have conducted the re-balancing when pa-

rameters in ρ ODE are determined. An empirical example using DJIA data

set was given to demonstrate the parametric dynamic portfolio model in useful

scenarios such as index tracking strategy and fund tracking.

6.2 Future Work

Related topics for the future research work are listed below.

1. For sparse portfolio studied in Chapter 3 and Chapter 4, we consider the models
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when short-selling is allowed. Although the results show our methods bring in

sparsity thus transaction cost reduction, it is worthwhile to further explore the

portfolio construction when short-selling is not allowed.

2. Although we have studied parameters identification in a dynamic portfolio

model with expected return evolution in Chapter 5, due to the complexity, we

project the target return into the ODE constraint involving the MV model.

We could further consider to project both the target return and target asset

allocation into the ODE constraint.
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