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Abstract

The thesis will present the volatility forecasting using some fuzzy methods. Three

topics are considered:

1. The proposed volatility modeling technique based on fuzzy method is used to

replace the model averaging technique in multivariate volatility forecasting.

2. Use the Hidden Markov Model (HMM) for the volatility forecasting of the

univariate and multivariate time series.

3. Application of this proposed volatility forecasting technique with fuzzy meth-

ods.

For topic 1, a fuzzy-method-based multivariate volatility model is intended to im-

prove the model averaging technique for multivariate volatility forecasting. Volatility

modeling is crucial for risk management and asset allocation. This is an influential

area in financial econometrics. The central requirement of volatility modeling is to

be able to forecast volatility accurately. The literature review of volatility model-

ing shows that the approaches of model averaging estimation are commonly used

to reduce model uncertainty to achieve a satisfactory forecasting reliability. How-

ever, those methods attempt to produce a more reliable forecast by confirming all

forecasting outcomes equally from several volatility models. Forecasting patterns

generated by each model may be similar. Using all forecasting results may cause re-

dundant computations without improving prediction reliability. The proposed mul-
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tivariate volatility modeling method which is called the Fuzzy-method-based Mul-

tivariate Volatility Model (abbreviated as FMVM) classifies the individual models

into smaller scale clusters and selects the most representative model in each group.

Hence, repetitive but unnecessary computational burden can be reduced, and fore-

casting patterns from representative models can be integrated. The proposed FMVM

is benchmarked against existing multivariate volatility models on forecasting volatili-

ties of Hong Kong Hang Seng Index (HSI) constituent stocks. Numerical results show

that it can obtain relatively smaller forecasting errors with less model complexity.

For topic 2, HMM-based Multivariate Volatility Model is proposed to present

another orientation for multivariate volatility forecasting. The foundation of this

method is retrieved from technical analysis, which believes historical data will in-

fluence the future performance. Recognition of distinct patterns and search similar

pattern is crucial for this approach. The proposed HMM-based volatility forecasting

algorithm can obtain a volatility matrix from the past distinct patterns, which is

found to generate accurate volatility forecast. We use the K-means clustering al-

gorithm to classify the latest attributes into predetermined clusters and label each

attributes vector with the index of its cluster. Then, each attributes vector labeled

with a distinct index, and those indexes can form a new pattern with a window of

a predetermined size. Subsequently, compute the likelihood values of each pattern

using trained HMM and define the similarities by using these likelihood values. The

closest value of past likelihood value to the likelihood value of current pattern means

the corresponding pattern with this closest value share the same similarity with the

current pattern. As the foundation of this method implies, we believe the behavior of

the most similar pattern will reoccur. The HMM-based multivariate volatility model

is also compared to the FMVM and the volatility averaging model with the same data

used in topic 1. Numerical results show that HMM-based multivariate model can

obtain a better forecasting accuracy than that of the multivariate volatility model
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with model averaging technique.

For topic 3, A case of portfolio management of a hedge fund is taken as one appli-

cation of the proposed volatility forecasting algorithms. A framework of a quantita-

tive trading hedge fund is designed, and a changing allocation problem is considered.

The application of both our multivariate volatility model and classical portfolio man-

agement models is considered at the same time. Regarding the application of these

proposed models, a full flow line of product development with quantitative research

is shown in this topic.
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Chapter 1

Introduction

1.1 Background

In the finance industry, the volatility is maintained to characterize the risk of a

financial instrument. Volatility, always denoted by σ, is attributed by the standard

deviation of returns, given the trading price series. Volatility is a human-made notion.

In some statistical models, the dynamic progress of the volatility is usually presented

by the variance of the returns series, the square of the volatility, denoted by σ2.

Therefore the methods to indicate volatility become crucial. Historical volatility and

implied volatility are two common ways to measure volatility. Historical volatility is

derived from the historical returns series (originating from trading prices series). The

reported frequency of returns series can be by ticks, seconds, minutes, hours, days,

even months. Volatility is annualized to fill the gaps generated by different report

intervals (or different minimum time intervals). Another measurement of volatility

is implied volatility. As the name of implied volatility is, volatility is deducted from

the trading data of options and Black-Scholes Option Pricing Model (BS formula).

A common measurement to describe the risk of a financial asset is historical

volatility. The term and report frequency need to be specified when calculating

historical volatility. This period is usually denoted as a 30-day run, 90-day term or

120-day. After defining the term and report frequency, the current realized volatility
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is usually defined as the historical volatility based on the latest prices or returns

series. More description of different measurements of volatility is shown below:

• Realized volatility is the current or latest historical volatility which is calculated

from the returns series with a specified term. Realized volatility is the square

root of the realized variance. The annualized variance is realized variance in a

specified term multiplies the ratio how many terms can form one trading year.

Annualized volatility is the square root of annualized variance.

• Implied volatility is deducted from BS formula with observed price and other

information mentioned in BS formula.

Investors care about volatility for many reasons, including but not limited to:

• The change of volatility is a threshold switching between tendency strategy or

mean reversion strategy.

• Volatility presents the emotion of investors.

• Volatility is one measurement concerning market uncertainty.

• Volatility matrix, collaborating volatilities and covariances of particular assets

in a portfolio, can suggest an optimal position for each asset, given a portfolio

management model.

• Change of volatility affects the prices of options. Projection of volatility can

instruct a trader’s behavior on trading options.

• Upward volatility reading implies further sharply changing of the market.

• Raising of volatility may foretell the beginning of a further market tendency.

2



• Volatility is a crucial component in some mean reversion trading strategies.

For instance, volatility is one of the most important parameters in Bollinger

Band means reversion strategy.

• Volatility trading can be fulfilled by trading options, swap, or VIX directly.

Volatility is a traditional risk measurement in quantitative investment; also,

volatility plays a paramount role in quantitative investment. There are several classes

of volatility models giving different estimation methods of volatility. These categories

of volatility models can be grouped as 1) obtaining an estimation of second-moment

measurement based on the first-moment measurement; 2) modeling the movement

of volatility; 3) modeling volatility by using intra-day data; 4) inferring the volatility

from the market expectation.

1.1.1 Single Factor Model

The single factor model can be presented as

Ri = αi + βiF + εi,

where Ri is the return of the financial asset, F is a random variable, α is a constant,

and β is the coefficient of random variable F . Once the estimations of α and β are

known, the expectation of the return and variance are

E(Ri) = αi + βiE(F ),

and

σ2
i = βi

2σF
2 + σ2

εi
,

where σ2
F is variance of the common factor of F , and σ2

εi
is the variance of the residual

term εi.
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Assume that the factorial term is uncorrelated with the residual term and that

different securities share the same common factor. Thus, the covariance with any

two securities can be described as

σij = βiβjσF
2.

Suppose that any security follows the single factor model, then the return and the

variance of a portfolio consisting of n securities can be described as

E(Rp) =
n∑
i=1

αiωi +
n∑
i=1

βiωiE(F ),

and

σ2
p =

n∑
i=1

βi
2ωi

2σF
2 +

n∑
i=1

σ2
εi
ωi

2.

If αi, βi, σ
2
εi

, the mean and variance of common factor F , E(F ), σ2
F are known, the

mean and variance of the security can be solved directly by using those information.

1.1.2 Multi-Factor Model

Assume that the return of the security i can be described by k factors fj, j =

1, 2, . . . , k. The multi-factor model can be illustrated as

Ri = αi + βi1f1 + · · ·+ βikfk + εi,

where Ri is the return of the security i, α is a constant, βik is factor exposure

coefficient of the kth factor, fk is a random variable called the kth factor, and εi is

the error term. The expectation of the return of the security is

E(Ri) = αi + βi1f1 + · · ·+ βikfk.

The risk of the security can be described as

V (Ri) = V (αi + βi1f1 + · · ·+ βikfk) + V (εi)

= β
′

iV (f)βi + V (εi),

4



where βi = (αi, βi1, . . . , βik)
′

and V (f) is the (k + 1) × (k + 1) covariance matrix.

Similarly, the risk of security, under the scheme of the multi-factor model, consists

of β
′
iV (f)βi and V (ε).

The calculation of the volatility is decided by the covariance matrix V (f) and

the variance of the error term V (εi). The V (εi) can be obtained by

σ̂ =
1

T

T∑
t=1

(rit −B
′

itf̂)2.

By deduction, the factor premium can be described by

V (f) = (
T∑
t=1

N∑
i=1

BitB
′

it)
−1(

T∑
t=1

N∑
i=1

σ2
iBitB

′

it)(
T∑
t=1

N∑
i=1

BitB
′

it)
−1,

where σ2
i is the variance of εit. Thus, the estimation of V (f) can be described as

V̂ (f̂) = (
T∑
t=1

N∑
i=1

BitB
′

it)
−1(

T∑
t=1

N∑
i=1

σ̂2
iBitB

′

it)(
T∑
t=1

N∑
i=1

BitB
′

it)
−1.

Thus, the risk of a portfolio is

V (Ri) = V (αi + f1βi1 + · · ·+ fkβik) + V (εi)

= β
′

iV (f)βi + V (ε)

= β
′

i(
T∑
t=1

N∑
i=1

BitB
′

it)
−1(

T∑
t=1

N∑
i=1

σ̂2
iBitB

′

it)(
T∑
t=1

N∑
i=1

BitB
′

it)
−1βi + σ̂2

i .

Assume that there are two securities i and j, their return series are rit and rjt

respectively. Their covariance is

C(rit, rjt) = B
′

itV (f)Bit + C(εi, εj),

where C(εi, εj) = 0.
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1.1.3 Generalized Auto Regressive Conditional Heteroskedas-
ticity (GARCH) Models

The models from the GARCH class consist of the conditional mean equation and

conditional variance equation, where the conditional mean equation represents the

first-moment measurement (return) and the conditional variance equation represents

the second-moment measurement (variance). Some conventional models are ARCH

model, GRACH model, Integrated GARCH model, Asymmetric GARCH model, and

Exponential GARCH model.

ARCH Model

Engle founded ARCH(p) model [18], which is described as

rt = µ+ εt,

σ2
t = α0 + α1ε

2
t−1 + · · ·+ αpε

2
t−p,

where εt is error term, α0 > 0, and α1, . . . , αp ≥ 0. Due to the continuity of volatility,

ARCH model requires a large p, even let p→∞ (GARCH(∞)).

GARCH Model

Due to the lag of ARCH model, Bollerslev adds the autoregressive terms to ARCH

model [7], which is named as GARCH(p,q) model:

σ2
t = ω + α1ε

2
t−1 + · · ·+ αpε

2
t−p + β1σ

2
t−1 + · · ·+ βqσ

2
t−q,

where ω > 0, α1, . . . , αp ≥ 0, and β1, . . . , βp ≥ 0. Comparing to ARCH model, the

number of estimation of the parameter in GARCH model much fewer. In the practice,

GARCH model with the parameters p and q, no larger than two, can describe the

volatility well enough. One of commonly used GARCH models is GARCH(1,1)

model:

σ2
t = ω + αε2

t−1 + βσ2
t−1,
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where ω > 0, and α, β ≥ 0. The unconditional variance is

σ2 =
ω

1− α− β
. (1.1)

Integrated GARCH Model

As shown in Equation (1.1): while α + β = 1, the unconditional covariance is ∞.

This is integrated GARCH (IGARCH) model:

σ2
t = ω + (1− λ)ε2

t−1 + λσ2
t−1.

Asymmetric GARCH Model

The conditional variances of the individual returns are given by [22]

σ2
t = c+

p∑
k=1

αkε
2
t−k +

p∑
k=1

ϑkI(εt−k < 0)ε2
t−k,

+

q∑
j=1

βjσ
2
t−j

where I(εt−k < 0) denotes the indicator function which takes the value of unity if

εt−k < 0, and zero otherwise.

Exponential GARCH model

All the parameters in GARCH model are larger than or equal to zero, i.e., ω > 0,

α1, . . . , αp ≥ 0, β1, . . . , βp ≥ 0. Nelson released this constraint [34]

log(σ2
t ) = α + g(zt−1) + βlog(σ2

t−1),

g(zt) = ωzt + λ(|zt| −
√

2/π),

zt = εt/σ ∼ N(0, 1).
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1.1.4 Realized Volatility Model

GARCH is widely used to describe the volatility in low-frequency area. However, the

information in the high-frequency world is far more complex and perhaps meaningful

than that in a low-frequency world. Further, volatility information retrieved from

high-frequency data can be much more useful than that from low-frequency data.

Realized volatility, proposed by Anderson and Bollerslev [2], is a risk measurement

built on the intraday return series. Because this method does not depend on a

particular model, the calculation of realized volatility is simply and directly. Thus,

realized volatility is widely used in high-frequency trading. The realized volatility

is the square root of the realized variance, where the realized variance is defined as

the follows. Divide the trading day k into L intervals. Assume that Pt,i is closing

price of the ith interval, i = 1, . . . , L, and the log returns in this interval is ri,t =

ln(Pt,i)− ln(Pt,i−1); then the realized volatility of the day t can be described as

RV =
L∑
i=1

r2
t,i.

If the intraday log return time series are uncorrelated, then Merton uses the quadratic

variation approach [32] to prove that

RV =
L∑
i=1

r2
t,i

= lim
L→∞

L∑
i=1

r2
t,i.

As sampling frequency goes up, the realized volatility will be closer and closer to the

integrated volatility. Also, as the sampling frequency becomes bigger, the estimate of

realized volatility will be more and more accurate. However, the liquidity problem,

noise, and spread usually existed in the market microstructure. Thus the length of
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each interval of high-frequency data shall not be too small. More research needs to

be done on the optimal length of the interval.

1.2 Literature Review

1.2.1 Volatility Models

The global financial crisis of 2008 has led investors to reassess the forecasting ad-

equacy of financial models against soaring volatilities. The use of volatility mod-

els in quantitative risk management has gained increasing importance among aca-

demics and practitioners concerned with measuring and managing financial risks

[11, 49, 37, 50]. There are also important applications in insurance [31, 43] and

supply chain management [48, 44]. These models can be used to forecast volatil-

ity in order to assist investors in making financial decisions. These models can be

classified into univariate volatility models and multivariate ones. The most widely

used univariate model, named Generalized Autoregressive Conditional Heteroscedas-

tic (GARCH) model, was developed in [7].

The multivariate volatility models attempt to specify the dynamic process of

the diagonal elements of volatility matrix or variance-covariance matrix. The dis-

tinction of each multivariate volatility model derives from the differences between

their specifications of the conditional correlation processes. In the literature, various

multivariate GARCH models have been developed, including BEKK GARCH model

[20], the constant conditional correlation (CCC) model [8], the orthogonal GARCH

(OGARCH) model [1], the dynamic conditional correlation model (DCC) [17], and

the asymmetric dynamic conditional correlation model (ADCC) [9].

To improve the forecasting accuracy and reduce model uncertainty in multivariate

volatility models, the model averaging strategy deploying multi-models, namely the

average multivariate volatility model (AMVM) [36] has been developed. The AMVM
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generates a multivariate volatility model by integrating the forecasting outcomes of

all models equally. However, using forecasting results from all selected multivariate

models may not be the most effective, as some models may generate similar prediction

patterns with the others. Repetitive but unnecessary computation is used to analyze

similar forecasting patterns. The approach increases computational burden of the

multivariate volatility models; however, the approach does not improve forecasting

accuracy.

To avoid the redundant computation, multivariate volatility models with similar

forecasting patterns can be clustered in a group and only the most significant model

in each cluster is integrated into the final volatility model. Optimal weights for all

the groups are determined in order to reduce forecasting errors. Fuzzy classification

operations can perform these processes. Indeed, fuzzy classification operations have

been developed successfully in many practical classification systems [3, 4]. They are

also widely used in finance [40, 10].

1.2.2 Hidden Markov Models and Fuzzy Technique

Hidden Markov modeling is a probabilistic technique for the study of observed items

arranged in a discrete-time series [38]. These observed items can be countably or

continuously distributed; they can be scalars or vectors [38]. The hidden Markov

model (HMM) is a parametric probability model can generate and analyze a discrete–

time series. HMM has two components:

• a finite state Markov chain,

• a finite set of output probability distributions.

In a generating perspective, the Markov chain synthesizes a states sequence and

the corresponding output distribution and then converts this sequence to times

series. Conversely, in the view of analysis, an observed time series give evidence

10



about the hidden sequence and the HMM parameters. The Baum-Welch algorithm

is one widely used method for maximum likelihood estimation of a HMM. HMMs

are widely applied for two reasons: rich mathematical structure and high effective-

ness in applications[39]. The HMM technique can be applied to advanced speech

recognition [39], natural language processing [6], standard profile analysis [16], time

series prediction [24, 25, 26, 23]. These applications have one commonality: they

are applied to the pattern recognition field. Financial time series can be viewed as

an observed pattern. Therefore, HMM is a useful tool for pattern recognition in

the finance industry. Due to the proven suitability for dynamic system modeling, a

new method is proposed to forecast stock price using HMM [24]. Later on, Hassan

synthesizes the HMM, Artificial Neural Networks and Genetic Algorithms to identify

financial market behavior in the historical data [25, 26]. Furthermore, a fuzzy model

along with the HMM is synthesized for stock market data forecasting [23]. To reduce

the number of fuzzy rules in the previous method, a multi-objective evolutionary

algorithm is implemented to make a trade-off between the number of fuzzy rules

and the prediction accuracy [26]. However, the details of how HMM can be used to

figure out the similar pattern is hidden in the literature. Those HMM forecasting

algorithms merely concern the prices data. The other attributes, such as trading

volumes, linear correlations, and volatilities, do not involved in these models.

The fuzzy c-means (FCM) clustering algorithm is applicable to a wide variety

of numerical data, and it is also accessible to generate fuzzy partitions for any set

of numerical data; also, the FCM clustering introduces functions namely member-

ship functions to describe the similarity a data point shares with each cluster [5].

An integrated approach that uses the FCM, mixture models, and the collaborative

clustering framework to classify the mixed data which contains both numerical and

categorical attributes. This novel clustering framework not only uses the FCM as

a component of it but also highlights that the FCM is a very effective and popular
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algorithm for numerical data [35]. A new segmentation approach named I-Ching

spatial shadowed FCM is very efficient not only in tackling the overlapping segments

but also in suppressing the noise in images. This method is also founded on the

FCM with some reversion of the FCM: the fuzzy set in the FCM is replaced by the

shadowed set and I-Ching operators are used to find the optimal cluster centers of

the shadowed FCM [53]. Fuzzy methods are not only widely used in clustering but

also in solving programming and transportation problem. An interactive fuzzy goal

programming algorithm is proposed to solve a decentralized bi-level multiobjective

fractional programming problem, and it can make a fuzzy decision by taking most

satisfactory solution for all decision makers at the both levels [13]. In solving the

transportation problem, an interval programming model using the nearest interval

approximation of trapezoidal fuzzy numbers is developed to obtain the optimal solu-

tion of the multi-objective multi-item solid transportation problem under uncertainty

[15, 14]. The fuzzy methods are widely applied to different areas. In numerical data

clustering, the FCM is very effective and common algorithm. Thus, our framework

handling redundant computation is inspired by the FCM clustering initially.

1.2.3 Copulas and Trading Strategies

In probability theory and statistics, a copula is a multivariate probability distribution

for which the marginal probability distribution of each variable is uniform. Sklar’s

Theorem states that any multivariate joint distribution can be written in terms of

univariate marginal distribution functions and a copula which describes the depen-

dence structure between the variables [42]. Copulas are popular in high-dimensional

statistical applications as they provide an opportunity to easily model and estimate

the distribution of random vectors by estimating marginals and copulas separately.

There are numerous parametric copula families available, which usually have pa-

rameters that control the strength of dependence. Some popular parametric copula
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models are outlined below.

Pairs trading is a famous trading strategy invented by Wall Street quantitative

analyst Nunzio Tartaglia and his fellow in 1980s and this strategy has been conducted

for nearly thirty years. The intrinsic idea of pair trading is to identify a pair of

financial assets those have same or similar risk exposure and price movement in

the past. Regarding this trading idea, distance method and co-integration method,

namely the traditional methods here, are widely conducted. Distance method uses

the distance between the standardized prices of two financial assets as the mispricing

measurement and conducts the trading instruction when the measurement satisfies

the trigger conditions. Similarly, the co-integration method enters into long/short

position when the difference of those returns is relatively large and closes its position

when the difference is reverting to its mean level. More details can be found in the

literature by Engle [19].

Nowadays, people were debating about the usefulness of the traditional meth-

ods. While some asserted that one could not receive an abnormal return, some still

earned nearly 10% annual return by using this strategy. The traditional methods are

based on the assumptions: mean-reverting property and jointly normal distributed

property of the returns. Once the latter property is assumed, the linear correlation

can thoroughly describe dependency. The distribution of spread/difference is sta-

tionary under different circumstances of prices and returns [47]. However, returns in

financial markets cannot always follow those properties, which may cause few trad-

ing opportunities and low return consequently [28, 12]. Considering this drawback, a

new technique should be considered in pairs trading. An alternative way to solve this

problem is to relax the assumption of linear dependence structure. Copulas theory

is considerable in this case because copulas can describe the nonlinear dependence

structure of two random variables with more robust and accurate description. This

method can find joint distribution of two marginal distributions of two random vari-
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ables and it was originally founded in the book by Sklar [42]. As one knows the

historical returns of two stocks, she or he can estimate the marginal distribution of

each stock with the data of historical returns and then estimate a particular kind of

copula of this two marginal distributions.

1.3 Summary of Contributions of the Thesis

The original contributions of this thesis are as follows:

• We propose a novel multivariate volatility model namely the Fuzzy-method-

involving Multivariate Volatility Model (FMVM) to cluster multivariate volatil-

ity models with similar forecasting patterns. Here we propose the FMVM as

this is effective in gathering similar patterns for forecasting stock exchanges

which are involved with uncertainty [10]. As only significant forecasting pat-

terns are used by the proposed multivariate volatility model, repetitive and

unnecessary computational burden can be reduced in the final multivariate

volatility model. This algorithm contributes on the following research issues:

(1) this algorithm is the vanguard which combines the fuzzy clustering tech-

nique and multivariate volatility models in order to perform forecasting; (2)

this research proposes a weighting mechanism to select models from different

clusters and aggregate forecasting power of those selected models to perform

forecasting; (3) our proposed FMVM overcomes the limitation of the exist-

ing AMVM which requires excessive utilization and computation burden, and

existing AMVM is likely to generate unnecessary forecasting errors; (4) the

proposed FMVM can achieve better prediction accuracy with smaller compu-

tational efforts.

• The Hidden Markov Model based (HMM) forecasting algorithm is proposed

to increase the forecasting accuracy, which can be used in both univariate
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and multivariate volatility forecasting. Any attributes can be generated into

recognition patterns. Based on the similarity of recognition pattern, the Hidden

Markov Model based (HMM) forecasting algorithm can give forecasting results

based on more information than other methods. This algorithm contributes on

the following research issues: (1) this algorithm implements the foundation of

the technical analysis, “the history implies the future”; (2) As most volatility

matrix forecasting methods are restricted to the dynamic processes of volatiles

and covariances, the HMM forecasting algorithm can extend the attributes,

for instance, more on trading volume, prices (open, high, low, close), some

macroeconomic factors than volatiles and covariances.

• General volatility forecasting research only seldom show their applications to a

real application. The application of our proposed multivariate volatility fore-

casting algorithm is presented in a full chain of a financial product design: the

formation of a financial product along with a trading strategy; the volatility

matrix prediction of a portfolio consisting of self-designed financial products;

the adjustment of the allocation of the portfolio based on the portfolio man-

agement model and the forecasted volatility matrix.

1.4 Organization of the Thesis

The thesis is structured as it follows.

• Chapter 2 focuses on a proposed fuzzy-involving forecasting algorithm. The

proposed multivariate volatility modeling method which is called the Fuzzy-

method-involving Multivariate Volatility Model (abbreviated as FMVM) clas-

sifies the individual models into smaller scale clusters and selects the most

representative model in each cluster. Hence, repetitive but unnecessary com-

putational burden can be reduced and forecasting patterns from representative
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models can be integrated. The proposed FMVM is benchmarked against ex-

isting multivariate volatility models on forecasting volatilities of Hong Kong

Hang Seng Index (HSI) constituent stocks. Numerical results show that it can

obtain relatively lower forecasting errors with less model complexity.

• Chapter 3 proposes a HMM-based forecasting algorithm. Technical analysis

believe that the historical data will interpret the future performance; technical

analysis needs the statistics and machine learning tools to recognize distinct

patterns. Thus the data patterns can be used to trained the HMM and later

use the trained HMM to calculate the log-likelihood values of the new pattern;

then, find the date that shares the most close value with the log-likelihood

values of the present pattern and use the change between this data point and

the following data point to do forecasting of the present data point.

• Chapter 4 is devoted on the application of proposed volatility forecating mod-

els. To start with, we present a quantitative trading product design. Then we

integrate the application of the fuzzy volatility model to the product design. As

the framework of the product is assumed, the risk management of the product

should be taken in to consideration. Usually, the practitioner need to manage

a portfolio after constructing different financial products in a period. Then,

the portfolio management is take into consideration afterwards. Therefore, the

volatility matrix, a crucial part in portfolio risk management, should be accu-

rately forecasted. To tackle the difficulty of forecasting volatility matrix, the

methods as the fuzzy volatility modeling technique and the fuzzy HMM tech-

nique can be applied to the product design. Finally, detailed implementation

procedures are also presented by means of the case analysis.

• Chapter 5 concludes the whole thesis and plans for the future work.
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Chapter 2

A Novel Multivariate Volatility

Modeling

In this chapter, we propose a novel multivariate volatility models namely the Fuzzy-

method-involving Multivariate Volatility Model (FMVM) in order to cluster mul-

tivariate volatility models with similar forecasting patterns. Here we propose the

FMVM as this is effective on clustering similar patterns for forecasting stock ex-

changes which are involved with uncertainty [10]. In order to evaluate the perfor-

mance of the forecasted volatility matrix, the Frobenius norm is used to evaluate

forecasting errors of different multivariate volatility models relative to the realized

covariance matrix [2]. First the FMVM classifies all the individual models into

smaller scale clusters by using the fuzzy C-means clustering algorithm where the op-

timal number of clusters is given. Hence, models which generate similar forecasting

patterns can be grouped into a cluster. It then selects the model with the lowest

tracking error from each cluster. Subsequently, it determines the optimal weight for

each selected model. As only significant forecasting patterns are used by the proposed

multivariate volatility model, repetitive and unnecessary computational burden can

be reduced in the final multivariate volatility model. The effectiveness of the pro-

posed FMVM is evaluated based on two cases with either 4 or 15 HSI constituent

stocks. The empirical result shows that the FMVM is able to improve the forecasting
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accuracy compared with the average multivariate volatility model (AMVM). It also

shows that the computational cost required by the FMVM is less than that required

by the AMVM.

The proposed FMVM is applied to risk management and portfolio management.

As an example, a fund manager needs to determine the predetermined weights of

the assets from the same portfolio. When the other constraints are unchanged, the

change of the volatility matrix affects the optimal weights of all the assets in the

same portfolio. To address the uncertainty, one needs to process risk management in

order to adjust portfolio in advance. However, some widely used optimal portfolio

models are very sensitive to the volatility matrix. Therefore, a better forecasting

method is essential.

The rest of this chapter is organized as follows: Section 2.1 and 2.2 give a brief

introduction of some widely used univariate and multivariate volatility models; Sec-

tion 2.3 and 2.4 discuss the particularization of the proposed FMVM; Section 2.5

presents the empirical results and analysis. Several well-known and widely used

volatility models were applied to 15 highly weighted HSI constituent stocks from

November 2010 to October 2014. The effectiveness of the FMVM is compared with

those tested volatility models.

2.1 Univariate Volatility Model

This section first introduces the univariate generalized autoregressive conditional

heteroscedastic (GARCH) model and it then shows a general form of the multivariate

GARCH models.

Bollerslev proposed a univariate volatility model namely GARCH model [7]. For

a log return time series rt, let εt = rt − µt be innovation at time t. Denote the
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information set available at time t by Ft.

µt = E(rt|Ft)

is the conditional mean of rt and

σ2
t = V ar(rt|Ft)

= E[(rt − µt)2|Ft]

is conditional variance of rt. εt is formulated in the model GARCH(p, q) as

rt = µt + εt, εt = σtzt,

σ2
t = c+

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j,

where {zt} is a sequence of independent and identically distributed (i.i.d.) random

variables with mean equal to 0 and variance equal to 1, c > 0, αi ≥ 0, βj ≥ 0, and∑max(p,q)
i=1 (αi +βi) < 1. For i > p and j > q, ai and bj are given as αi = 0 and βj = 0

respectively. Given the GARCH(1,1) model and assume that the forecast origin is t,

we define one-step-ahead forecast form can be defined as

σ2
t+1 = c+ α1ε

2
t + β1σ

2
t .

2.2 Multivariate Volatility Model

In this section, we turn to the general form of the multivariate volatility models and

the widely-used multivariate volatility models.

2.2.1 General Form

Almost all the multivariate volatility models can be represented as the decomposition

of the conditional volatility matrix Ht [8]:

Ht = DtRtDt (2.1)
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where Rt is the one-step-ahead conditional correlation matrix with its (i, j)th entry

denoted by ρij,t, conditional linear correlation of ri,t and rj,t, and Dt is a diagonal

matrix with
√
σii,t on the (i, i)th entry. Equation (2.1) is a convenient decomposition,

which allows separate specification of the conditional volatilities and conditional

cross-asset returns correlations. The specification of
√
σii,t and ρij,t is varied among

those multivariate GARCH models which is given in the following part. Given that,

we have n financial assets and εt = rt − µt, is the n× 1 vector of residuals from the

ordinary least square regressions (OLS) of the predictor variables. For n financial

assets, Dt can be given as

Dt =


σ1,t

σ2,t

. . .

σn,t


and Rt is given as

Rt =


1 ρ12,t · · · ρ1n,t

ρ21,t 1 · · · ρ2n,t
...

...
. . .

...
ρn1,t ρn2,t · · · 1


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where ρij,t = ρji,t, i 6= j. Ht in Equation (2.1) can be elaborated as

Ht = DtRtDt

= (DtRt)Dt

=


σ1,t σ1,tρ12,t · · · σ1,tρ1n,t

σ2,tρ21,t σ2,t · · · σ2,tρ2n,t
...

...
. . .

...
σn,tρn1,t σn,tρn2,t · · · σn,t

Dt

=

 σ1,tσ1,t σ1,tρ12,tσ2,t · · · σ1,tρ1n,tσn,t
σ2,tρ21,tσ1,t σ2,tσ2,t · · · σ2,tρ2n,tσn,t

...
...

. . .
...

σn,tρn1,tσ1,t σn,tρn2,tσ2,t · · · σn,tσn,t



=


σ11,t σ12,t · · · σ1n,t

σ21,t σ22,t · · · σ2n,t
...

...
. . .

...
σn1,t σn2,t · · · σnn,t


where σij,t = σji,t, i 6= j. Based on the one-step-ahead forecast, Equation (2.1) are

given as Ĥt+1 = D̂t+1R̂t+1D̂t+1.

Given the different specifications of Dt or/and Rt, the general form can be rep-

resented as a different type of multivariate volatility models:

1) When Rt is simply assumed as the constant conditional correlation matrix

without varying with time, R, Rt = R. The general form can be written into

the Constant Conditional Correlation Model (CCC) which is detailed in [8].

2) When Rt is a time varying matrix, the CCC can be reformulated as the Dy-

namic Conditional Correlation Model (DCC) which can be referred to [17].

3) When the possibility of asymmetric effects can be allowed on conditional vari-

ance and correlations, the DCC can be relaxed into the the Asymmetric Dy-

namic Conditional Correlation Model (ADCC) which can be referred to [9].
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4) When the standardized return is defined and the static principle component

decompositions of standardized residuals are used, the OGARCH can be for-

mulated, where the Orthogonal GARCH model (OGARCH) can be referred to

[1].

5) When Ht is assumed as the positive definite, the BEKK GARCH model (BEKK)

is somehow a quartic form of the general which can be referred to [20].

2.2.2 Constant Conditional Correlation Model

Bollerslev developed a multivariate GARCH model which assumes the (constant)

conditional correlations of the εit, t = 1, 2, . . . , n constituting the conditional corre-

lation matrix, R1t [8], ahead conditional correlations are constant. This developed

model is namely CCC is given by H1t = D1tR1tD1t, where D1t is a diagonal matrix

with σit [7]

σ2
i,t = ci +

p∑
k=1

αikε
2
i,t−k +

q∑
j=1

βijσ
2
i,t−j,

where ci, αi1, . . . , αip, βi1, . . . , and βiq are all constants.

2.2.3 Dynamic Conditional Correlation Model

Engle developed time-varying conditional correlation matrix [17]. Let D2t equal to

D1t. Given the standardized residuals, ε̃2t = (D2t)
−1εt, the DCC model assumes

that the (i, j)th element of the conditional covariance matrix of ε̃2t, namely R2t, is

given by qijt/
√
qiitqjjt, where qijt is the (i, j)th element of matrix of Qt,

Qt = Q(1− γ2 − δ2) + γ2ε̃2,t−1ε̃
′

2,t−1 + δ2Qt−1,

for a fixed positive definite matrix Q, and positive parameters satisfying γ2 + δ2 < 1.

Finally, H2t is obtained by re-combining D2t and R2t based on Equation (2.1). The

details can be found in [17].
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2.2.4 Asymmetric Dynamic Conditional Correlation Model

Cappiello, et al. generalized the DCC allowing for the possibility of asymmetric

effects on conditional variances and correlations [9]. The conditional variances of the

individual returns are given by [22]

σ2
i,t = ci +

p∑
k=1

αikε
2
t−k +

p∑
k=1

ϑikI(εi,t−k < 0)ε2
i,t−k

+

q∑
j=1

βijσ
2
i,t−j,

where I(εi,t−k < 0) denotes the indicator function which takes the value of unity

if εi,t−k < 0, and zero otherwise. Let ε̃3t = (D3t)
−1εt, where D3t is the diagonal

matrix formed with the square roots of σ2
i,t. The ADCC model assumes that the

(h, j)th entry of the conditional covariance matrix of σ2
i,t, namely R3t, is given by

qijt/
√
qiitqjjt, where qijt is the (i, j)th element of matrix Qt defined by

Qt = Q(1− γ3 − δ3 − ϑ3) + γ3ε̃3,t−1ε̃
′

3,t−1 + δ3Qt−1

+ϑ3ε3,t−1ε
′

3,t−1,

where ε3,t = ε̃3,t � I(ε3,t < 0) (here � denotes the Hadamard product), Q is a

fixed positive definite matrix, and γ3, δ3 and ϑ3 are positive parameters satisfying

γ3 + δ3 + ϑ3 < 1. Finally, H3t is constructed using D3t and R3t as in Equation (2.1).

2.2.5 Orthogonal GARCH Model

The orthogonal GARCH, abbreviated as O-GARCH, is developed in [1] and uses a

static principle component decomposition of standardized residuals defined by

ε̃it =
εit − ε̄iT
siT

, t = 1, 2, . . . , T,
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where ε̄iT and siT are the sample mean and the standard deviation of the returns.

Denote the sample covariance matrix of the standardized return by

S̃T =

∑T
t=1 ε̃tε̃t

′

T
, ε̃t = (ε̃1t, . . . , ε̃nt).

Then

S̃TWT = ΛTWT ,

where WT and ΛT are the corresponding n × n matrices of eigenvectors and eigen-

values, respectively. Referring to [1], set

H4t(u) = VW(u)Γt(u)W(u)
′
V,

where W(u) = (w1, . . . ,wu) denotes the n× u matrix of eigenvectors corresponding

to the first largest u eigenvalues, V is a diagonal matrix with the sample standard

deviation of rit, illustrated in Section 2.1, on the (i, i)th entry and Γt(u) is a u × u

diagonal matrix whose (j, j)th entry, γjt, j = 1, . . . , u, is assumed to satisfy the

following univariate GARCH(p, q) specification

γjt = cj +

p∑
k=1

αjks
2
jt−k +

q∑
l=1

βjlγjt−l, j = 1, . . . , u,

where sj = (ε1, . . . , εT )
′
wj, j = 1, . . . , N . The details refer to [1].

2.2.6 BEKK GARCH Model (BEKK)

It is developed in [20] a multivariate volatility model known as BEKK GARCH model

(BEKK). The specification of BEKK is given by

Ht = C0C
′

0 +
n∑
k=1

p∑
i=1

A
′

kiEt−iEt−iAki

+
n∑
k=1

q∑
j=1

B
′

kjHt−jBkj,
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where C0 is a lower triangle matrix, Aki and Bki are n× n parameter matrices, and

Et−i = (ε1,t−i, . . . , εn,t−i)
′
.

2.3 The Framework of Fuzzy Multivariate Volatil-

ity Modeling

In order to moderate the model uncertainty and to improve the forecasting accuracy

simultaneously, Pesaran et al. developed the average volatility models by applying

model average techniques [36]. The average multivariate volatility model (AMVM)

is given as

Hamvm
t =

1

m

m∑
i=1

Hi,t,

where Hi,t is the forecasted conditional volatility matrix in the multivariate volatil-

ity model and m is the total number of the multivariate volatility models. Figure

2.1 illustrates the mechanism of the model averaging technique which generates an

identical weight to m multivariate volatility models to forecast the one-day ahead

volatility matrix. However, this method has several limitations:

The data is used to
develop models for
each individual.
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𝑚

⋮ ⋮

 𝐇
𝑎𝑚𝑣𝑚

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑚𝑜𝑑𝑒𝑙𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑙𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥

Figure 2.1: The mechanism of the simple model averaging technique
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1) The excessive utilization ascribes to the similarity among different multivari-

ate volatility models. These models sharing the similarity are classified into

the same cluster. One forecasted volatility matrix generated by a volatility

model may have linear correlation with another forecasted matrix generated

by another similar model. The model averaging technique does not take this

phenomenon into consideration.

2) The computation burden derived from the utilization of large scale multi-

models. Although this large amount of computation helps to adapt more sit-

uation and it performs indeed better than a single model, it occupies a lot of

computation resources. Also, they may share similar properties or attributes

with some other models, which can be grouped together to release the compu-

tation burden.

3) There exist some individual models which may involve higher tracking errors

comparing with other considered models. Although it is a forthright way to

weight each model equally, these models with higher tracking errors still affect

the averaging tracking errors by model averaging. A more proper way is to

give smaller weights to those models with higher tracking errors, and to give

larger weights to those models with higher forecasting accuracy.

To tackle the limitations of the existing model averaging technique, we propose

the FMVM which attempts to give an alternative way to improve the forecasting

accuracy. As illustrated in Figure 2.2, the mechanism of the FMVM is divided by

training and operation phases. In the training phase, the FMVM inputs the data

and then applies the data to all individual models; it groups such individual models

into different clusters using fuzzy C-means (FCM) clustering algorithm [10], when

the number of the clusters is given; it selects the model with minimum tracking

errors from each cluster; it determines the optimal weights to those selected models
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Figure 2.2: The mechanism of the FMVM

such that the mixed model has the minimum tracking errors. The FMVM decides

the optimal number of the clusters, c, and selects the model with minimum tracking

errors in each cluster. Subsequently, in the operation phase, the FMVM performs

an one-day ahead forecasting based on c and the resolved optimal weights of the

selected models. It uses the selected individual models with their optimal weights to

forecast the volatility matrix.

2.4 Methodology

2.4.1 Training Phase

The mechanism of the training phase is shown in the Figure 2.3 and Figure 2.4. In

the training phase, the FMVM attempts to solve model-averaging problem based

on fuzzy clustering and quadratic programming. We assume that m multivariate

volatility models are used and the data length is 3k − 1. In both training and
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Calculate volatility matrices for different models

Classify the models into 𝑐 clusters

Select the best model for each cluster

Find the optimal weights to 

minimize total tracking errors

Input data

Output matrix

Figure 2.3: The brief mechanism of the training phase

operation phases, 2k − 1 data are involved. Define

Hreal
t (k) = (Hreal

t−k+1, . . . ,H
real
t ),

Hi,t(k) = (Hi,t−k+1, . . . ,Hi,t), i = 1, . . . ,m,

Li,t(k) = ‖Hi,t(k)−Hreal
t (k)‖F , i = 1, . . . ,m,

where Hreal
t (k), Hi,t(k), and Li,t(k) are the n× (k × n) realized volatility matrix, m

input time-varying n× (k × n) volatility matrix for the ith model, and the tracking

error for the ith model, respectively. Assume that there is a data set with m input

time-varying (k × n) × n volatility matrices Hi,t(k) (i = 1, . . . ,m) and one output

time-varying matrix Hfmvm
t . The training phase performs three tasks: (1) classify

the input models with the fuzzy C-means classification and select the model with

the least tracking errors from each cluster, (2) determine the optimal weight for each

selected model, (3) determine the optimal number of clusters, c.

Model Selection

The FMVM first transforms the input matrices into the vectors using the half-

vectorization. The half-vectorization, vech(Hj,t), processes the symmetric n × n
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Figure 2.4: The mechanism of the training phase
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matrix Hj,t of the n(n+ 1)/2× 1 columns vech(Hj,t) only processes the lower trian-

gular part of Hj,t, where vech(Hj,t) is given by:

vech(Hj,t) = [Hj,t(1, 1), . . . ,Hj,t(n, 1),Hj,t(2, 2), ...,

Hj,t(n, 2), ...,Hj,t(n− 1, n− 1),Hj,t(n, n− 1),Hj,t(n, n)], j = 1, . . . ,m
(2.2)

Given the volatility matrices Hj,t(k) (j = 1, . . . ,m), the k-length half-vectorization,

vech(Hj,t(k)), is defined as

vech(Hj,t(k)) = [(vech(Hj,t−k+1)), . . . , (vech(Hj,t))], (j = 1, . . . ,m). (2.3)

Let Xj = vech(Hj,t(K)), j = 1, . . . ,m. Define the number of clusters as c. The fuzzy

C-means (FCM) clustering algorithm [10] is used to partition m training samples,

Xj = vech(Hj,t(k)), into clusters C1, C2, . . . , and Cc, where (5) computes the

cluster center Vi of the cluster Ci and the membership grade uij of the training

sample Xj belonging to Ci, with 1 ≤ i ≤ c and 1 ≤ j ≤ m. We used the FCM

clustering algorithm as this is widely used in pattern recognition [10]. In FCM, it

denotes a fussiness index as s, 1 ≤ s < ∞. This fuzziness index s [5] is usually

chosen to be 2. The FCM clustering algorithm merges m matrices Xj) into clusters

Ci (i = 1, 2, . . . , c; 2 ≤ c ≤ m) by solving the following minimization problem [5]:

Js =
c∑
i=1

m∑
j=1

(uij)
s||Vi −Xj||2F , (2.4)

where ||Vi −Xj||F is the Frobenius norm between matrix Xj and the cluster center

Vi (i = 1, 2, . . . , c); usij is the membership grade of Xj belonging to cluster Ci, in

which s is the weighting exponent controlling the relative weights placed on each of

the ||Vi − Xj||2F , 1 ≤ s < ∞. The FCM clustering algorithm is summarized as

following steps:

1: Initialize c = 2.
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2: Generate the random number as the membership grade u
(0)
ij of the sample Xj

to the cluster Ci, where 0 ≤ u
(0)
ij ≤ 1,

∑c
i=1 u

(0)
ij = 1, 1 ≤ i ≤ c and 1 ≤ j ≤ m.

Set k = 1.

3: Compute the cluster center Vi of Ci based on

V
(k)
i =

∑n
j=1(u

(k−1)
ij )sXj∑n

j=1(u
(k−1)
ij )s

, (2.5)

where 1 ≤ i ≤ c.

4: Update uij based on:

u
(k)
ij =

1∑c
d=1(

||V(k)
i −Xj ||

||V(k)
d −Xj ||

)
2
s−1

, (2.6)

where 1 ≤ i ≤ c, 1 ≤ j ≤ m, and
∑c

i=1 uij = 1.

5: Set k = k + 1. Repeat Step 3 and Step 4 until Js is no longer decreasing [10].

6: Let c = c+ 1. Go to Step 1 until c ≥ m+ 1.

Weight Assignment

The optimal weights of the selected models can be obtained by solving the following

minimization problem:

min ‖Hreal
t (k)−

c∑
i=1

λ∗iH
∗
i,t(k)‖2

F ,

s. t.

c∑
i=1

λ∗i = 1,

(2.7)

where H∗i,t(k) is the best prediction generated by the optimal model from Ci. (2.7)

can be reformulated as a quadratic form as
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min λTAλ + λTB + C,

s. t.

c∑
i=1

λi = 1,
(2.8)

where

λ = (λ1, λ2, . . . , λc)
T ,

A =


∑n

i=1

∑nk
j=1 x

(1)
ij x

(1)
ij . . .

∑n
i=1

∑nk
j=1 x

(1)
ij x

(c)
ij

...
. . .

...∑n
i=1

∑nk
j=1 x

(c)
ij x

(1)
ij . . .

∑n
i=1

∑nk
j=1 x

(c)
ij x

(c)
ij

 ,

B = −2((x
(1)
ij yij), (x

(2)
ij yij), . . . , (x

(c)
ij yij))

T ,

C =
n∑
i=1

nk∑
j=1

y2
ij = ‖Hreal

t (k)‖F ,

x
(c)
ij is the entry in the ith row and jth column of H∗i,t(k), and yij is the element in

the ith row and jth column of Hreal
t (k).

Based on the FMVM, the forecasted volatility matrix Hfmvm
t can be developed

as

Hfmvm
t =

c∑
i=1

λ∗iH
∗
i,t,

i = 1, . . . , c,

2 ≤ c ≤ m.

(2.9)

where nM is the amount of the one-day-ahead volatility matrices determined by each

individual multivariate volatility model; H∗i,t is the one-day-ahead volatility matrix

of the selected model i∗; and λ∗i is the fuzzy optimal weight the selected model i∗.
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Determination of the Number of Clusters

Given the predetermined number of clusters, c, the optimal number of clusters,

namely c∗, can be determined as follows:

min
c

Lc = ‖Hfmvm
t (k, c)−Hreal

t (k)‖F . (2.10)

2.4.2 Operation Phase

Given c∗, and the optimal weights of the i∗th selected model from the ith cluster

which are determined in the training phase, the forecasted volatility matrix, namely

Hfmvm
t , can be determined as:

Hfmvm
t =

c∗∑
i=1

λ∗iH
∗
i,t, (2.11)

where H∗i,t is the one-day-ahead volatility matrix of the selected model i, and λ∗i is

the optimal weight for the ith cluster.

Assume that we have n financial assets and the rolling windows size of realized

covariance matrix is k. For the ith asset, εi,t = ri,t − µi,t, is the n × 1 vector of

residuals from the ordinary least square (OLS) regressions. Given a k × n residual

matrix

Ereal
t =


ε1,t−k+1 ε2,t−k+1 · · · εn,t−k+1

ε1,t−k+2 ε2,t−k+2 · · · εn,t−k+2
...

...
. . .

...
ε1,t ε2,t · · · εn,t

 .
The realized covariance matrix with k time-series samples is defined as

Hreal
t = Ereal

t

T
Ereal
t /k.
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Hreal
t can be elaborated as

Hreal
t =


1
k

∑t
i=T0

ε1,iε1,i
1
k

∑t
i=T0

ε1,iε2,i · · · 1
k

∑t
i=T0

ε1,iεn,i
1
k

∑t
i=T0

ε2,iε1,i
1
k

∑t
i=T0

ε2,iε2,i · · · 1
k

∑t
i=T0

ε2,iεn,i
...

...
. . .

...
1
k

∑t
i=T0

εn,iε1,i
1
k

∑t
i=T0

εn,iε2,i · · · 1
k

∑t
i=T0

εn,iεn,i

 , (2.12)

where T0 = t− k + 1. Hreal
t is the benchmark for each Hi,t, i = 1, . . . ,m.

The proposed FMVM and the AMVM generate the tracking errors Lfmvmt and

Lamvmt at t which are denoted respectively as

Lfmvmt = ‖Hreal
t −Hfmvm

t ‖F ,

Lamvmt = ‖Hreal
t −Hamvm

t ‖F ,

where ‖.‖F is the Frobenius norm. The covariance matrices generated by the FMVM

and AMVM using k time-series samples can be written respectively as

Hfmvm
t (k) = [Hfmvm

t−k+1, . . . ,H
fmvm
t ],

Hamvm
t (k) = [Hamvm

t−k+1, . . . ,H
amvm
t ],

and, the proposed FMVM and the AMVM generate the tracking errors Lfmvmt and

Lamvmt in k-length time period at t which are denoted respectively as

Lfmvmt (k) = ‖Hreal
t (k)−Hfmvm

t (k)‖F ,

Lamvmt (k) = ‖Hreal
t (k)−Hamvm

t (k)‖F .

Consequently, we denote ∆t as the evaluation indicator of the FMVM which is rela-

tive to the AMVM at time index t, and ∆t(k) is denoted as those with a k-length-

time-period data. Based on the tracking errors of the FMVM and AMVM, ∆t and

∆t(k) can be elaborated as

∆t = Ltfmvm − Lamvmt ,

∆t(k) = Lfmvmt (k)− Lamvmt (k).
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The algorithm of the operation phase is summarized as follows:

1: If ∆t > 0, the FMVM lags behind the AMVM with time t, else the FMVM

leads the AMVM with time t.

2: If ∆t(k) > 0, the FMVM lags behind the AMVM with time t with a k-length-

time-period data, else the FMVM leads the AMVM with time t. If ∆t(k) = 0

or ∆t = 0, the performance of the FMVM is equivalent to that of the AMVM.

3: Prepare the time series samples, based on a particular decision period, of n

financial assets. Determine the types and number of the individual multivariate

volatility models, m, and the rolling window size k;

4: Determine the parameters of multivariate volatility models based on the time

series samples of the log-return of assets. Generate the n×n covariance matrix

Hi,t with a k-length rolling window size at each time point of the index t.

Generate the realized volatility based on another k-length period samples.

5: Generate a multivariate volatility model, Hi,t(k), by plugging Ht−k+1,Ht−k+2, . . . ,Ht,

in chronological order. Hence, the realized form Hreal
t (k) can be developed.

6: For i = 1, 2, . . . ,m, the matrix A is recombined by the elements of those Hi,t(k)

using the optimization algorithm; determine matrix B, based on the elements

of Hi,t(k) and Hreal
t (k); determine C based on the Frobenius norm of Hreal

t (k);

based on A, B and C, Λ = (λ1, λ2, . . . , λm)T in Equation (2.8) can be deter-

mined by harnessing the quadratic programming.

7: Obtain the Lfmvmt and Lamvmt and make decision based on FMVM using ∆t if

this is necessary.
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2.5 Empirical Results

In this section, we demonstrate with examples how the proposed FMVM overcomes

the limitations of the average multivariate volatility model (AMVM), namely that:

(1) the FMVM selects less models without sacrificing forecasting powers; (2) the

FMVM can achieve more accurate forecasting results than those achieved by AMVM.

Indeed, the proposed FMVM can achieve better forecasting accuracy with smaller

computational efforts.

The proposed FMVM is first evaluated based on 15 highly weighted HSI con-

stituent stocks. Table 2.1 shows the selected samples in both the low-dimensional

cases and the high-dimensional cases of the volatility matrix forecasting, and 17 dif-

ferent widely-used multivariate volatility models. In the low-dimensional cases, top

4 weighted HSI constituent stocks are chosen and those stocks are ‘5.HK’, ‘939.HK’,

‘1299.HK’, and ‘9413.HK’. In the high-dimensional cases, top 15 weighted HSI con-

stituent stocks, including the 4 identical stocks in the low-dimensional cases, are

selected. Another 11 stocks are ‘1398.HK’, ‘3988.HK’, ‘883.HK’, ‘857.HK’, ‘386.HK’,

‘2628.HK’, ‘3.HK’, ‘151.HK’, ‘762.HK’, ‘494.HK’, and ‘3328.HK’. Table 2.1 specifies

17 most widely used multivariate volatility models. The models from the same class

with different p or q is distinct from other models in the same class. For example,

CCC(1, 1) and CCC(2, 1) come from the same family; however, CCC(1, 1) is a dis-

tinctive model and CCC(1, 1) is a independent model from CCC(2, 1). These daily

trading samples, from 29 October 2010 to 7 October 2014, are obtained from the

Bloomberg database which is collected from 29 October 2010 to 7 October 2014.

The forecasting results of the proposed FMVM are compared with those obtained

by the 17 commonly used forecasting models which are listed in listed in Table 2.1.

All the models are used to forecast the one-day-ahead volatility matrices based on

different rolling window size with k = 20, 30, . . . , 120. Also we compared the results
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obtained by the proposed FMVM with the existing multivariate volatility approach,

the AMVM [36].

The CCC, DCC, ADCC, BEEK, OGARCH, AMVM models and the proposed

FMVM were implemented using matlab with toolboxes including the Oxford MFE

Matlab toolbox [41]. The one-day-ahead volatility matrices for AMVM is given as:

Table 2.1: Selected stocks and models

The Low-Dim Case The High-Dim Case Multivariate Volatility Models

‘5.HK’ ‘5.HK’ CCC(p, q)

‘939.HK’ ‘939.HK’ CCC(1, 1), CCC(1, 2)
‘1299.HK’ ‘1299.HK’ CCC(2, 1), CCC(2, 2)
‘941.HK’ ‘941.HK’

‘1398.HK’ DCC(p, q)

‘3988.HK’ DCC(1, 1), DCC(1, 2)
‘883.HK’ DCC(2, 1), DCC(2, 2)
‘857.HK’
‘386.HK’ ADCC(p, q)

‘2628.HK’ ADCC(1, 1), ADCC(1, 2)
‘3.HK’ ADCC(2, 1), ADCC(2, 2)

‘151.HK’
‘762.HK’ OGARCH(p, q)

‘494.HK’ OGARCH(1, 1), OGARCH(1, 2)
‘3328.HK’ OGARCH(2, 1), OGARCH(2, 2)

BEKK

4 assets 15 assets 17 models

Hamvm
t =

1

17

17∑
i=1

Hi,t (2.13)

where H1,t,H2,t, . . . ,H17,t are the conditional volatility matrix of each model listed

in Table 2.1.

We evaluate the models with different rolling window sizes. The window size

is varied from k = 20 to 120 in a step of 10. The date, 7 October 2014, is used

as the end window. We used the last k trading days as the operation period and
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the preceding k trading days as the training period. Therefore each model can be

evaluated 2k times. For instance, in the training phase, the forecasted results are

Ŷt, . . . , Ŷt+k, where Ŷt is a forecasted value at time t based on the information the

time series samples of t − k + 1, . . . , t − 1. Similarly, in the operation phase, the

forecasted results are Ŷt+k+1, . . . , Ŷt+2k, where Ŷt+k+1 is forecasted based on the time

series samples of t+ 1, . . . , t+k. In training phase, we try to use k forecasted results

Ŷt, . . . , Ŷt+k to train the FMVM model (where the optimal number of clusters and

the optimal weights of the selected models are predefined); in operation phase, we

use the trained FMVM to forecast k forecasted results Ŷt+k+1, . . . , Ŷt+2k. We need

the operation phase to validate the performance of the proposed FMVM. Both low-

dimensional and high-dimensional circumstances are considered.

2.5.1 The Low-Dimensional Case

Here, we consider a simple case with 4 stocks which are shown in the first column of

Table 2.1. The tracking errors ∆I(k) and the differences ∆II(k) are shown in Table

2.2. LFI (k) and LFI (A) are the total tracking errors for the training phase obtained by

the FMVM and the AMVM, respectively. LFII(k) and LAII(k) are the total tracking

errors for the operation phase obtained by the FMVM and the AMVM, respectively.

Table 2.2: Tracing errors in the training and the operation phase (low-dim)

RWS k clusters LFI (k) LAI (k) ∆I(k) LFII(k) LAII(k) ∆II(k)

20 3 3.1162 7.7491 -4.6329 4.8583 7.9454 -3.0870
30 3 7.5967 15.0727 -7.4761 4.4505 7.3815 -2.9310
40 5 5.0178 16.6071 -11.5893 6.6014 9.6715 -3.0701
50 4 7.3173 18.0725 -10.7552 6.7466 10.8176 -4.0710
60 7 8.9751 18.9535 -9.9784 6.8483 10.3731 -3.5247
70 4 8.0716 19.3060 -11.2343 8.0451 12.0133 -3.9682
80 6 7.0084 16.1564 -9.1481 7.9594 13.0397 -5.0804
90 6 7.1209 13.4263 -6.3055 10.2467 14.1335 -3.8868
100 4 9.9625 12.9350 -2.9725 10.5589 14.4315 -3.8726
110 7 9.5720 14.0492 -4.4772 10.1283 14.7852 -4.6569
120 7 8.7855 15.5307 -6.7453 9.5383 13.6743 -4.1360
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This results for both training and operation phases show that the tracking errors

of the FMVM are smaller than those of the AMVM as the differences are negative

in all cases. Hence, the FMVM can surpass the AMVM not only in the training

but also in the operation phase. Table 2.2 shows that the number of clusters with

respect to different rolling windows. Table 2.2 shows that the FMVM required less

computational effort, as three to seven models are only involved of the FMVM. As

the number of clusters is identical to the number of the individual models, the FMVM

does not need to involve with all 17 models. Therefore, this low-dimensional case

study shows that the proposed FMVM can achieve better forecasting accuracy with

smaller computational efforts comparing with the AMVM.

2.5.2 The High-Dimensional Case

In the high dimensional case, we consider 15 stocks from the Hang Seng Index, as

shown in the second column of Table 2.1. Table 2.3 shows the tracking errors and

the differences between the FMVM and the AMVM.

Table 2.3: Tracing errors in the training and the operation phase (high-dim)

RWS k clusters LFI (k) LAI (k) ∆I(k) LFII(k) LAII(k) ∆II(k)

20 5 15.6529 49.2121 -33.5592 18.4214 33.4936 -15.0722
30 3 26.8251 50.9704 -24.1454 17.1039 33.4648 -16.3608
40 4 34.6771 85.3520 -50.6749 20.5884 40.1193 -19.5309
50 4 25.2633 97.2940 -72.0308 31.0473 48.5467 -17.4994
60 5 27.5873 94.5644 -66.9771 29.7626 51.8209 -22.0584
70 4 25.1795 93.0677 -67.8883 30.0937 57.6992 -27.6054
80 3 23.2929 87.4429 -64.1500 26.4884 58.3126 -31.8242
90 5 18.1365 84.6518 -66.5153 29.4302 64.1372 -34.7070
100 3 21.0107 82.8058 -61.7951 22.8918 68.6020 -45.7102
110 3 19.7757 78.7352 -58.9595 21.6531 69.0370 -47.3840
120 4 20.1628 76.0412 -55.8784 21.2291 70.0627 -48.8337

The result shows that the tracking errors of the FMVM are smaller than those of

the AMVM. It also shows that the FMVM can surpass the AMVM not only in the

training phase but also in the operation phase. Also smaller computational effort is
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required by the FMVM as three to five models are involved among all the seventeen

models. Therefore, the empirical results show that the FMVM can obtain better

forecasting accuracy and the FMVM requires much less computational effort than

that required by the AMVM.

2.6 Conclusion

In this thesis, a novel multivariate volatility model FMVM is proposed to improve

forecasting accuracy. The proposed FMVM overcomes the disadvantages of incurring

redundant computation when all multivariate volatility models are employed in an

averaging manner. The proposed FMVM classifies individual volatility model into

smaller scale clusters by using fuzzy C-means clustering algorithm and selects the

most representative model with the lowest tracking error from each cluster. Optimal

weight for each selected model can then be sought via training. The effectiveness

of the proposed FMVM is evaluated based on 15 stocks from the Hang Seng Index.

Empirical results have shown that the proposed FMVM can obtain better accuracy in

volatility forecasting with less number of volatility models. Hence, less computational

effort is required by the proposed FMVM than that required by the AMVM. For the

future work,we will apply the proposed FMVM to other financial products such as

the commodity market.
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Chapter 3

The Hidden Markov Model Based
Forecasting Algorithm

The primary purpose of this chapter is to present a novel volatility forecasting tech-

nique by using Hidden Markov Model. The opening, high, low, closing prices, trading

volume, turnovers and similar patterns are also crucial factors in volatility matrix

forecasting. However, current methods only discuss the relationship between the

returns series and volatility matrix. Lacking information may lead to forecasting

errors. The HMM-based algorithm can process more attributes than prices and re-

turns. This algorithm can also define the similar pattern of current evidence in the

historical data.

3.1 Hidden Markov Models

The Hidden Markov Model (HMM) is proposed as a stochastic signal model with a

wide range of application, such as speech recognition, multiple sequence alignment,

protein homolog recognition, signal processing and other pattern recognitions. [39,

16, 6]. The HMM is kind of extension of discrete Markov chains.
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3.1.1 Discrete Markov Processes

Markov processes describe such a system described as follows. The system is in

one of a set of N distinct states, S1, S2, . . . , SN . The system undergoes a change

or a invariability unchanged of probabilities associated with the state at regularly

spaced discrete times, t = 1, 2, ..., t. Denote the actual state at t as qt. The proba-

bilistic specification of current state and the predecessor states is required to a full

probabilistic description of this system.

Given a first order Markov Chain, this probabilistic description of this system

becomes the probabilistic specification of the current and the predecessor state, i.e.,

P (qt = Sj|qt−1 = Si, qt−2 = Sk, . . . ) = P (qt = Sj|qt−1 = Si). (3.1)

Equation (3.1) is independent of time, thereby the transition probability aij of state

switching from state i to state j is

aij = P (qt = Sj|qt−1 = Si), 1 ≤ i, j ≤ N, (3.2)

where aij ≥ 0 and
∑N

j=1 aij = 1. The above stochastic process is observable, because

the output of the process is the set of states at each instant of time, where each state

corresponds to a observation [39]. Given a observation sequence O as O = q1, q2, ..., qt

and a model, the probability of O can be expressed and evaluated as

P (O|Model) = P (q1, q2, ..., qt|Model)

= P (q1) · P (q2|q1) · . . . P (qt|qt−1)

= πq1 · aq1q2 · . . . aqt−1qt .

where πq1 = P (q1 = q1) is the initial state probabilities and q1 is in of a set of

{S1, S2, . . . , SN}. The initial state probabilities are

πi = P (q1 = Si), 1 ≤ i ≤ N.
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Given an example of a Markov process in Figure 3.1, the model for a stock mar-

ket movement has three states, Bull, Even, and Bear, and three corresponding

observations up, unchanged, and down. Given a sequence of observations,

O = {up, up, down, up, unchanged, unchanged, down, down, unchanged},

we can easily verify the state sequence produced these observations is

Q = {Bull, Bull, Bear,Bull, Even,Even,Bear,Bear, Even}.

Bull

Bear

Even

up

down

unchanged

0.1

0.2

0.6

0.3
0.5

0.3

0.2

0.1 0.7

Figure 3.1: Markov process example

If we denote states Bull, Even, and Bear as s1, s2, s3, the probability of this

observation sequence is

P (O|Model) = P (s1, s1, s3, s1, s2, s2, s3, s3, s2|Model)

= P (s1)P (s1|s1)P (s3|s1)P (s1|s3)P (s2|s1)P (s2|s2)P (s3|s2)P (s3|s3)P (s2|s3)

= π1 · a11 · a13 · a31 · a12 · a22 · a23 · a33 · a32

= 1 · (0.1) · (0.3) · (0.5) · (0.6) · (0.7) · (0.1) · (0.2) · (0.3)

= 3.7800× 10−5.
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The above Markov model illustrates a simple intuition of financial market: index

booms in the bull market, remain unfaltering in even market, and descend in the bear

market. However, index trends directionally, i.e., up, down, or sideways no matter

in bull, even, or bear market[33]. For instance, the index cannot only drop but also

inflate or remains unchanged in the bear market. Therefore, a extension of the above

model is required to describe our financial market. A extended model for a stock

market movement has three states, Bull, Even, and Even, the model for a stock

market movement in Figure 3.2 has three states, Bull, Even, and Even, whereas

one of this three states can emit one observation from a set of three observations up,

unchanged, and down. Considering we have the same observation sequence as that

of the above Markov model,

O = {up, up, down, up, unchanged, unchanged, down, down, unchanged}.

we cannot identify exactly what state sequence brings out the above observation

sequence. Therefore, the state sequence is ‘hidden’ [38, 6]. The extended model has

this ‘hidden’ phenomenon called the HMM.

Bull

Bear

Even

Up (0.6)

0.1

0.2

0.6

0.3
0.5

0.3

0.2

0.1 0.7

Unchanged (0.3)

Up (0.3)

Unchanged (0.6)

Down (0.1)

Down (0.1)

Up (0.2)

Unchanged (0.3)

Down (0.5)

Figure 3.2: Hidden Markov model example
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3.1.2 The HMM

The HMM requires two predetermined parameters at the initial. It denotes the

number of states in the model as N and the number of distinct observation per state

as M . A complete specification of an HMM requires specification of these two model

parameters, N and M [39]. The definition of a HMM is as follows: The complete

parameter set of the model is

λ = (A,B, π), (3.3)

where A is the transition matrix that represents each state transition probability

distribution, B is the emission matrix that represents each observation symbol prob-

ability distribution, and π is the prior probability array that presents each the initial

state distribution. S is the state set and V is the observation set:

S = {s1, s2, . . . , sN}, (3.4)

V = {v1, v2, . . . , vM}. (3.5)

It denotes a fixed state sequence of length T as Q, and the corresponding observation

sequence as O:

Q = (q1, q2, . . . , qT ), (3.6)

O = (o1, o2, . . . , oT ). (3.7)

The transition matrix A, storing the probability of state j ensuing state i, is time-

independent:

A =


a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...
aN1 aN2 . . . aNN

 ,
aij = P (qt = sj|qt−1 = si), 1 ≤ i, j ≤ N.

(3.8)
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The emission matrix B, storing the probability of observation k emitting from state

j, is time-independent:

B =


b1(1) b1(2) . . . b1(M)
b2(1) b2(2) . . . b2(M)

...
...

. . .
...

bN(1) bN(2) . . . bN(M)

 ,
bi(k) = P (xt = vk|qt = si), 1 ≤ i ≤ N, 1 ≤ k ≤M.

(3.9)

The prior probability array, storing each initial state distribution, is

π = (π1, π2, . . . , πN),

πi = P (q1 = si), 1 ≤ i ≤ N.
(3.10)

The HMM has two assumptions [38, 39, 16, 6]:

• The Markov process. The Markov assumption presumes that the current state

is dependent of the previous state and is independent of the other processor

states:

P (qt|q1, q2, . . . , qt−1) = P (qt|qt−1). (3.11)

• The time-independence. The independence assumption presumes that the cur-

rent observation at time t is dependent only on the current state and is inde-

pendent of previous observation:

P (ot|o1, o2, . . . , ot−1, q1, q2, . . . , qt) = P (ot|qt). (3.12)

Given a HMM λ, and a sequence of observations O, the probability of the obser-

vations O for a specific state sequence Q is

P (O|Q, λ) =
T∏
t=1

P (ot|qt, λ) = bq1(o1) · bq2(o2) · · · bqT (oT ), (3.13)
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and the probability of the state sequence is

P (Q|λ) =
T∏
t=1

P (ot|qt, λ) = π1 · aq1q2 · aq2q3 · · · aqT−1qT . (3.14)

Therefore, the probability of the observations given the model is

P (O|λ) =
∑
Q

P (O|Q, λ)P (Q|λ)

=
∑
q1···qT

πq1bq1(o1)aq1q2bq2(o2) · · · aqT−1qT bqT (oT ).

(3.15)

3.1.3 An Example

As an example, consider a Markov model with three states of volatility and five

possible emissions. Three states of volatility are low, moderate, and high. These

five potential emissions are 1, 2, 3, 4, and 5. Under the low volatility state, the

probabilities of each emission are 0.80, 0.05, 0.05, 0.05, and 0.05 receptively. Under

the moderate state, the probabilities of each emission are 0.10, 0.20, 0.35, 0.20, and

0.15 receptively. Under the high state, the probabilities of each emission are 0.05,

0.10, 0.15, 0.25, and 0.45 receptively.

The model generates a sequence of numbers from the set {1, 2, 3, 4, 5} with the

following rules:

• Beginning in low volatility state, the transition rules of this state are:

– If the emission is 1, the state will remain low volatility state.

– If the emission is 2, the state will transit to moderate volatility state.

– If the emission is 3, 4, or 5, the state will transit to high volatility state.

• In moderate volatility state, the transition rules are:

– If the emission is 1, the state will transit to low volatility state.
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– If the emission is 3, 4, or 5, the state will remain moderate volatility state.

– If the emission is 2, the state will transit to high volatility state.

• In high volatility state, the transition rules are:

– If the emission is 2, the state will transit to low volatility state.

– If the emission is 1 or 4, the state will transit to moderate volatility state.

– If the emission is 3 or 5, the state will remain high volatility state.

The state diagram for this Markov model has three states, low, moderate, and

high, as shown in Figure 3.3. The transition matrix is

High

Moderate

Low

0.60
0.30

0.10

0.80
0.05

0.15

0.70

0.20

0.10

Figure 3.3: The state digram of three volatility states

A =

0.80 0.05 0.15
0.10 0.70 0.20
0.10 0.30 0.60

 .
The emission matrix is

B =

0.80 0.05 0.05 0.05 0.05
0.10 0.20 0.35 0.20 0.15
0.05 0.10 0.15 0.25 0.45

 .
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We are aware of the rule of how these emissions generate from each state and also

know how these states switch with the known emissions, thus this model is not

hidden. Supposing we do not know this rule, what we can observe are sequences of

emissions. If we notice more ones than any other number given the observation, we

can suspect the model is under low volatility state. The probability of the outcome of

1 under the low volatility state is 0.8. However, we are not sure, because we neither

know how the emission generates from each state nor know how state switches given

the emission.

In a perspective of Hidden Markov model, the sequence of emissions is the only

information. Therefore, one may consider following questions:

• How can we estimate the transition matrix and emission matrix?

• What is the most likely state path?

• What are the forward probability and the posterior probability?

Assume we knew the sequence of emissions, S, generates from a HMM with A

and B, we can estimate the transition matrix and emission matrix. The length of

sequence is 1000. The last 100 observations are shown in Table 3.1. We use the

Baum-Welch algorithm to estimate the transition matrix Â and emission matrix B̂

based on the sequence of emissions, S. In this example the estimated transition

matrix Â is

Â =

0.60 0.12 0.28
0.20 0.79 0.01
0.42 0.05 0.53

 .
The estimated emission matrix is

B̂ =

0.00 0.01 0.13 0.34 0.52
0.81 0.09 0.04 0.04 0.02
0.17 0.31 0.45 0.06 0.00

 .
Given the estimated transmission matrix and the estimated emission matrix, the log
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Table 3.1: The last 100 observations

Index Obs. Index Obs. Index Obs. Index Obs. Index Obs.

901 3 921 5 941 1 961 3 981 4
902 4 922 3 942 3 962 5 982 3
903 3 923 3 943 4 963 4 983 1
904 3 924 5 944 2 964 5 984 2
905 1 925 1 945 4 965 2 985 1
906 2 926 5 946 4 966 3 986 5
907 1 927 3 947 4 967 1 987 3
908 5 928 1 948 2 968 4 988 1
909 5 929 4 949 2 969 3 989 1
910 2 930 2 950 3 970 5 990 3
911 5 931 2 951 3 971 5 991 3
912 3 932 1 952 3 972 5 992 5
913 4 933 1 953 5 973 4 993 5
914 4 934 1 954 5 974 1 994 2
915 5 935 1 955 5 975 3 995 5
916 2 936 4 956 2 976 3 996 1
917 3 937 4 957 5 977 3 997 4
918 3 938 5 958 3 978 4 998 5
919 5 939 2 959 4 979 2 999 1
920 5 940 2 960 1 980 4 1000 4

of the probability of a given sequence can be calculated in 3.2. We can find the same

Table 3.2: The last 100 observations: identification

Obs. log P (ot|λ) Obs. log P (ot|λ) Obs. log P (ot|λ) Obs. log P (ot|λ) Obs. log P (ot|λ)
3 -2.6247 5 -2.3949 1 -0.4097 3 -2.6247 4 -2.3211
4 -2.3211 3 -2.6247 3 -2.6247 5 -2.3949 3 -2.6247
3 -2.6247 3 -2.6247 4 -2.3211 4 -2.3211 1 -0.4097
3 -2.6247 5 -2.3949 2 -2.5992 5 -2.3949 2 -2.5992
1 -0.4097 1 -0.4097 4 -2.3211 2 -2.5992 1 -0.4097
2 -2.5992 5 -2.3949 4 -2.3211 3 -2.6247 5 -2.3949
1 -0.4097 3 -2.6247 4 -2.3211 1 -0.4097 3 -2.6247
5 -2.3949 1 -0.4097 2 -2.5992 4 -2.3211 1 -0.4097
5 -2.3949 4 -2.3211 2 -2.5992 3 -2.6247 1 -0.4097
2 -2.5992 2 -2.5992 3 -2.6247 5 -2.3949 3 -2.6247
5 -2.3949 2 -2.5992 3 -2.6247 5 -2.3949 3 -2.6247
3 -2.6247 1 -0.4097 3 -2.6247 5 -2.3949 5 -2.3949
4 -2.3211 1 -0.4097 5 -2.3949 4 -2.3211 5 -2.3949
4 -2.3211 1 -0.4097 5 -2.3949 1 -0.4097 2 -2.5992
5 -2.3949 1 -0.4097 5 -2.3949 3 -2.6247 5 -2.3949
2 -2.5992 4 -2.3211 2 -2.5992 3 -2.6247 1 -0.4097
3 -2.6247 4 -2.3211 5 -2.3949 3 -2.6247 4 -2.3211
3 -2.6247 5 -2.3949 3 -2.6247 4 -2.3211 5 -2.3949
5 -2.3949 2 -2.5992 4 -2.3211 2 -2.5992 1 -0.4097
5 -2.3949 2 -2.5992 1 -0.4097 4 -2.3211 4 -2.3211

sequence with the same log P (ot|λ). In Table 3.3, the same probability indicates to

the same observation sequence. What if the observe sequence is with length more

than 2 observations, how can we find the similar sequence? Or if we have a unique

sequence, how can we find the similar sequence of this unique sequence. Then we
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Table 3.3: The last 100 observations: the same sequence with the same probability

Obs. log P (1t|λ) Obs. log P (2t|λ) Obs. log P (3t|λ) Obs. log P (4t|λ) Obs. logP (5t|λ)
1 -0.4097 2 -2.5992 3 -2.6247 4 -2.3211 5 -2.3949

can use the most similar probability to find the similar observations sequence. This

can be illustrated in the following example.

Assume that we had several unique observation sequences:

O1 = {1, 2, 1, 3, 1, 2, 1, 1, 1},

O2 = {1, 3, 3, 3, 1, 2, 2, 2, 1},

O3 = {2, 1, 3, 3, 1, 2, 3, 3, 1},

O4 = {3, 1, 2, 1, 2, 3, 3, 1, 2},

O5 = {3, 3, 3, 2, 1, 2, 3, 2, 2},

O6 = {3, 3, 3, 3, 1, 2, 3, 2, 3},

O7 = {1, 2, 1, 3, 2, 2, 1, 1, 1}.

How can we find the most similar pattern of O7 from O1 to O6? If the O7 is the same

observations sequence as the O1, then we have:

O1 = {1, 2, 1, 3, 1, 2, 1, 1, 1},

O2 = {1, 3, 3, 3, 1, 2, 2, 2, 1},

O3 = {2, 1, 3, 3, 1, 2, 3, 3, 1},

O4 = {3, 1, 2, 1, 2, 3, 3, 1, 2},

O5 = {3, 3, 3, 2, 1, 2, 3, 2, 2},

O6 = {3, 3, 3, 3, 1, 2, 3, 2, 3},

O7 = {1, 2, 1, 3, 1, 2, 1, 2, 1}.

It is easy to figure out O1 = O7. Although using the HMM model to find the similar

pattern is a repetitive work in this case, we can verify whether HMM can do well in
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a n-length observations sequences (n ≥ 2). In this case, the estimated transmission

matrix is

Â =

0.3128 0.3470 0.3402
0.2289 0.6414 0.1297
0.5271 0.2180 0.2548

 ,
and the estimated emission matrix is

B̂ =

0.2361 0.2331 0.5308
0.3328 0.1977 0.4695
0.4761 0.4666 0.0573

 .
Given the estimated HMM, we can calculate the probability of observations for each

sequence as shown in Table 3.4. In Table 3.4, log P (O7|λ) equals to log P (O1|λ).

Table 3.4: The probability of the occurrence of a given observation sequence

Obs. log P (O|λ)

O1 -10.0844
O2 -9.9382
O3 -9.5651
O4 -10.1584
O5 -10.2035
O6 -9.4157
O7 -10.0844

Thus, we can presume that O7 and O1 were the same observation sequence. In fact,

O7 and O1 are the same one. Now, we go back to the unique observation sequences,

where

O1 = {1, 2, 1, 3, 1, 2, 1, 1, 1},

...

O7 = {1, 2, 1, 3, 2, 2, 1, 1, 1}.

In this case, we can hardly tell which pattern from O1 to O6 is similar to the pattern

O7. However, we can estimate a new HMM and calculate the probabilities of their

occurrences. In this case of unique observations sequence, the estimated transmission
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matrix is

Â =

0.1115 0.7679 0.1206
0.2489 0.1298 0.6213
0.2163 0.4651 0.3187

 ,
and the estimated emission matrix is

B̂ =

0.4171 0.4770 0.1059
0.6622 0.3095 0.0283
0.3851 0.2978 0.3171

 .
Given the estimated model, we can obtain the probabilities of the occurrences of these

unique observations sequences as shown in Table 3.5 For these unique observations

Table 3.5: The probability of the occurrence of a given observations sequence

Obs. log P (O|λ) |log P (O7|λ)− log P (Oi|λ)|
O1 -7.7154 0.4592
O2 -10.6649 2.4902
O3 -12.0390 3.8643
O4 -11.7904 3.6158
O5 -13.4506 5.2760
O6 -15.1084 6.9338
O7 -8.1747 0.0000

sequences, their probabilities of occurrence give a HMM are distinct from each other.

However, we can use

min
i
|log P (O7|λ)− log P (Oi|λ)| (3.16)

to find the most similar pattern of O7. In Table 3.5, O1 is the solution for Equation

(3.16). Therefore, O1 is the most similar observations sequences of O7.

3.2 Clustering Multivariate Data Using a Single

HMM

In this section, we investigate a new method to identify similar data and group them

into clusters using a single HMM. The idea of it is the identification of similar data
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that can be used to forecast time series [27]. However, this kind of method may not

be reasonable to forecast time series. We will evaluate its efficiency and look for

some other ways to refine this methodology.

Clustering is a process in which, given a set of unlabeled dataset, the data items

are grouped into different clusters based on some measure of similarity. Here, the log-

likelihood values for each dataset items are used to define the measure of similarity.

In Hassan’s model, the single HMM is used to define the measurement of similarity

of the dataset [27]. Then, based on the similarity, the data items are labeled and

grouped into different clusters. The functions of HMM are as follows:

• the log-likelihood values represent how well the data fits the trained HMM;

• the log-likelihood values represent how different data items are similar;

• based on different log-likelihood values, the dataset can be grouped into differ-

ent clusters.

3.2.1 Generating Likelihood Values Using HMM

Initially, a single HMM is built by defining the similarity of data items via log-

likelihood values. As a rule of the thumb, the number of states can be chosen as the

same number of variables in each of the data items. Thus, k-state HMM is chosen,

because there are k instances in each data vector. Assume that the input data is D.

Before training an HMM, we have to define the initial parameter values of A, B

and π. For the parameter values of A, initialize the transition provabilities aij such

that ∑
i

aij = 1

for all j by using randomly generated numbers. Similarly, the π is initialized by
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using randomly generated numbers such that

N∑
i

πi = 1.

To obtain initial values for the observation emission probability matrix B, the use

of the segmental k-means algorithm has been considered. The segmental k-means

algorithm is described as

• choose a random N group of data vectors among m data vectors;

• assign each of N groups of data to one of the states in HMM (the number of

groups in the HMM is set to be equal to the number of states).

For group i (or state i), the mean vector is

ûi =
1

ki

∑
Dt∈i

Ot,

where ki is the number of data vectors in group i. Meanwhile, the covariance value

is

V̂i =
1

ki

∑
Dt∈i

(Dt − ûi)T (Dt − ûi),

where Ot is continuous observation (Dt ∈ D). The initial observation emission

probability distributions for each of the training data vectors for each state is

b̂i(Dt) =
1

(2π)k/2|V̂ |1/2
exp[−1

2
(Dt − ûi)V̂ −1

i (Dt − ûi)T ],

where 1 ≤ i ≤ k. Previous steps are used to form the initialization part. After

initialization, we need to re-estimate the initially chosen parameter values of the

HMM parameters. The re-estimation method here is the Baum-Welch algorithm,

which is described as follows. To describe the whole Baum-Welch algorithm, the
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forward-backward algorithm is used to calculate the probability of an observation

sequence with relatively less computation burden. The forward-backward algorithm

is descried below

• The forward variable αt(i) is defined as

αt(i) = Pr(O1, O2, . . . , Ot, St=i|λ),

where αt(i) indicates the probability of the partial observation at time t and

the state i is reached at the same time t, given a model λ.

• Initialize

α1(i) = πibi(O1)

for all states i, where i ∈ 1, . . . , N .

• Obtain the values of αt(j) for each time unit t, t = 2, . . . , T , and all state j,

j = 1, . . . , N , as

αt(j) = [
∑
i

αt−1(i)aij]bj(Ot),

where i = 1, . . . , N .

• obtain the resultant probability of the observation sequence for the given model

λ by the following equation

Pr(O|λ) =
∑
i

αT (i).

• The backward algorithm computes the probability of the observation sequence

for the given λ, in a similar way to that of the forward algorithm. In this case,

a backward variable βt(i) is introduced as

βt(i) = Pr(Ot+1, Ot+2, . . . , OT |St=i, λ),
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which provides the probability of the partial observation sequence at time t+1

to the time T , given the stat i at time t and the model λ. As the forward

variable and the final probability is obtained by using the following equation

Pr(O|λ) =
∑
i

πibi(O1)β1(i),

where i = 1, . . . , N .

Either of the forward or backward algorithms can be used to calculate Pr(O|λ) for

evaluation or re-estimation purpose.

Given the model λ, the forward-backward algorithm can be used to calculate the

probability of generating the observation sequence. Assume we knew the model λ,

the parameter values, the probabilities produced by the model parameters can be

evaluate given the observation sequence. Given the current probabilities and the

probabilities for the obtained observation sequence, we can further estimate more

proper parameter for the model.

Initialize an model, λ, by choosing some non-zero parameter values. The a pos-

terior probability of transitions γij, form state i to state j is calculated using

γt(i, j) = Pr(St = i, St+1 = j|O, λ)

=
αt(i)aijbj(Ot+1)βt+1(j)

Pr(O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)∑

i αT (i)
.

The value of the variable γt(i), represent the a posterior probability of state i at

time t for the observation sequence and the model λ, is calculated using

γt(i) = Pr(St = i|O, λ)

=
αt(i)βt(i)∑

i αT (i)
.
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The Baum-Welch algorithm is as follows

• The new calculated values of γt(i), at time t = 1, are usually assumed to be

the new estimate π̄ of the initial state probabilities πi,

π̄i = γt(i),

where t = 1.

• The new estimate of the probability of the transition form state i to state j is

b̄j(k) =

∑
t∈Ot=vk γt(j)∑T
t=1 γt(j)

.

• The new estimate of the value of āij is as

āij =

∑T−1
t=1 γt(i, j)∑T−1

t=1

∑
j γt(i, j)

=

∑T−1
t=1 γt(i, j)∑T−1
t=1 γt(i)

.

• Repeat previous steps until

Pr(O|λ̄) ≤ Pr(O|λ)

is satisfied.

To handle more than one observation sequence, n, the re-estimation equations be-

come

āij =

∑
n

∑Tn−1
t−1 γnt (i, j)∑

n

∑Tn−1
∑
j γ

n
t (i,j)

t=1

,

b̄k =

∑
n

∑
t∈Ont =vk

γnt (j)∑
n

∑Tn
t=1 γ

n
t (j)

.
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The re-estimated parameter values determine the final HMM. The likelihood

function is represented by Pr(D|λ), where D represents the continuous observation

sequence and λ is the final HMM. The next step is to calculate the likelihood values.

After training HMM, use the forward algorithm to calculate the likelihood values

for each of the data vectors xi, i = 1, . . . , n.

For the m k-dimensional data vectors, we can obtain m distinct likelihood values.

The likelihood or logarithm of likelihood values, known as log-likelihood values,

may be interpreted as follows.

• One data item consists of k-dimensional data Dh = (x1h, x2h, . . . , xkh),

• Another data item consists of k-dimensional data Dj = (x1j, x2h, . . . , xkj);

• If log-likelihood values lh and lj corresponding to the data items Dh and Dj are

close to each other, then we may infer that the data items Dh and Dj should

belong to the same cluster.

3.3 HMM-Based Financial Time Series Forecast-

ing

Technical analysis believes that the historical data will interpret the future perfor-

mance; technical analysis needs the statistics and machine learning tools to recognize

distinct patterns. Thus the data patterns can be used to train the HMM and later

use the trained HMM to calculate the log-likelihood values of the new pattern; then,

to find the date that shares the closest value with the log-likelihood values of the

present pattern and use the change between this data point and the following data

point to do forecasting of the present data point.

The steps for forecasting using HMM can be described as

• Build, train HMM, and obtain log-likelihood values for patterns;
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• Locate similar data patterns to the current ones;

• Obtain forecast value using the change of price of matched pattern and neigh-

boring pattern.

It should be noted that the observation sequence consists of daily trading volume

and stock prices open, high, low and close: i.e., each data pattern in the dataset

comprises of the daily training volume,open, high, low and closing stock prices. These

five features are used as predictors for the next days stock price.

3.3.1 Methodology of HMM Forecasting

Assume that we had T1 data items in the initial training phase, T2 data items totally,

the rolling windows size is s, the number of states and the number of clusters of K-

means algorithm are set to be equal to the number of variables. The HMM forecasting

can be illustrated in details

• In the training phase, use K-means clustering algorithm to label data items.

For instance, data items would be labeled into any one from 1, . . . , G1 by their

similarity in this case, where L1, the number of clusters, is predetermined.

• Then, transform all data items in the training phase into integer among 1, . . . , G1.

After this transformation, all data items, represented by a vector for each

one, can be represented by a integer instead. For instance, k-dimension vec-

tors D1, D2, . . . , DT1 can be represent by I1, I2, . . . , IT1 , where Ii ∈ 1, . . . , G1,

for any i. Assume there are L2 attributes of Dt. For simplification, set the

number of cluster equal to the number of attributes, G1 = G2. For any t,

Dt = [attribute1
t , attribute

2
t , attribute

3
t , . . . , attribute

L2
t ].

• Treat these “integers” time series, formed by Ii, as the recognition pattern.

However, the rolling window size, w, is considered to demarcate the length of
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each pattern. The recognition pattern can be shown as can be shown as

1: is [I1, I2, . . . , Iw],

2: is [I2, I3, . . . , Iw+1],

3: is [I3, I4, . . . , Iw+2],

. . .

i: is [Ii, Ii+1, . . . , Ii+w−1],

. . .

For example, when the rolling window is predetermined as 20, the first recog-

nition pattern is I1, I2, . . . , I20. The first three pattern can be shown as

1: is [I1, I2, . . . , I20],

2: is [I2, I3, . . . , I21],

3: is [I3, I4, . . . , I22].

• Re-frame the T1 k-dimension vectors D1, D2, . . . , DT1 to (T1 − w) recognition

pattern series k-dimension vectorsXw, Xw+1, . . . , XT1 whereXk = Ik−w+1, Ik−w+2, . . . , Ik,

where w ≤ k ≤ T1. For example,

X1 is [I1−w+1, I1−w+2, . . . , I1],

X2 is [I2−w+1, I2−w+2, . . . , I2],

X3 is [I3−w+1, I3−w+2, . . . , I3],

. . .

Xt is [It−w+1, It−w+2, . . . , It],

. . .

XT1 is [IT1−w+1, IT1−w+2, . . . , IT1 ].
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• Treat X1, X2, . . . , XT1 as a new variable in the training phase. If one wants

to forecast any information of

DT1+1 = [attribute1
T1+1, attribute

2
T1+1, . . . , attribute

G2
T1+1],

for instance, forecasting ˆattribute
1

T1+1. As the technique analysis believes that

history tends to repeat itself, our algorithm tends to find the similarity between

recent recognition pattern and the previous recognition patterns. Therefore,

we need to find the most similar to XT1+1 pattern from X1, X2, . . . , XT1 , where

Xt represent the recognition pattern with rolling window size rws at time index

t. Then, HMM classification method can be applied to find the most similar

pattern in this circumstance.

• Train HMM by inputing X1, X2, . . . , XT1 and calculate log-likelihood values

Lm of mth data pattern from X1, X2, . . . , XT1 : I1, I2, . . . , IT1 .

• Search the most nearest value of IT1 from I1, I2, . . . , IT1 . Assume that the

index most similar log-likelihood value is m∗, 1 ≤ m∗ ≤ T1. Then, Xm∗ is

thought to be the most similar recognition pattern of XT1+1.

• Assume that the process from pattern XT1 to XT1+1 will be same as the process

from Xm∗ to Xm∗+1. The forecasting of one attribute, i.e. ˆattribute1
T1+1, of

XT1+1 can be describe as

ˆattribute1
T1+1 =

attribute1
m∗+1 − attribute1

m∗

attribute1
m∗

attribute1
T1
.

For forecasting any other attributes, the forecasting can be executed using the

same formula

ˆattributeT1+1 =
attributem∗+1 − attributem∗

attributem∗
attributeT1 ,

where attributet can be opent, hight, lowt, closet, or volumnt.
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3.3.2 Methodology of HMM Multivariate Volatility Fore-
casting

We assume that n financial assets are considered and that k is the rolling window

size. The conditional volatility matrix at time index t is

Ht =


σ11,t σ12,t · · · σ1n,t

σ21,t σ22,t · · · σ2n,t
...

...
. . .

...
σn1,t σn2,t · · · σnn,t

 ,

where σii,t = σ2
it and σij,t = σji,t if i 6= j. The number of attributes of volatility

matrix is (n+1)n/2. In terms of the attributes of the volatility matrix, the volatility

matrix can be represented as

Ht =


a1,t a2,t a3,t · · · an,t

a2,t an+1,t an+2,t · · · ...

a3,t an+2,t a2n,t · · · ...
...

...
...

. . . an(n+1)/2−1,t

an,t a2n−1,t · · · an(n+1)/2−1,t an(n+1)/2,t

 ,

where a1,t, a2,t, . . . , an(n+1)/2,t is ((n + 1)n/2) attributes which represents variances

or covariances of respective assets in volatility matrix. Those attributes can give all

information of volatility matrix, thus attributes vector can be introduced to represent

volatility matrix in another way as

Vt = vech(Ht).

Assume the number of historical data vectors for forecasting is triple the number

of rolling window size, 3k, and current decision time index is t, then information

with 3k−length day need to be considered and matrix VA is introduce to save all
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information. Information matrix can be described as

VAt =


Vt−3k+1

Vt−3k−2

Vt−3k−3
...

Vt

 =


a1,t−3k+1 a2,t−3k+1 · · · an(n+1)/2,t−3k+1

a1,t−3k+2 a2,t−3k+2 · · · an(n+1)/2,t−3k+2

a1,t−3k+3 a2,t−3k+3 · · · an(n+1)/2,t−3k+3
...

...
. . .

...
a1,t a2,t · · · an(n+1)/2,t

 .

Group each row of VAt into L clusters by K-means clustering algorithm and each

row will be labeled with respective index from 1, 2, . . . , L, i.e., row i will be labeled

with index Ii (Ii ∈ 1, 2, . . . , L). Labeled information matrix can be described as

[VAt|It] =


a1,t−3k+1 a2,t−3k+1 · · · an(n+1)/2,t−3k+1 It−3k+1

a1,t−3k+2 a2,t−3k+2 · · · an(n+1)/2,t−3k+2 It−3k+2

a1,t−3k+3 a2,t−3k+3 · · · an(n+1)/2,t−3k+3 It−3k+3
...

...
. . .

...
...

a1,t a2,t · · · an(n+1)/2,t It

 .

Given rolling window size k, the transformed recognition pattern matrix is

Tt =


Xt−2k

Xt−2k+1

Xt−2k+2
...

Xt

 =


It−3k+1 It−3k+2 · · · It−2k

It−3k+2 It−3k+3 · · · It−2k+1

It−3k+3 It−3k+4 · · · It−2k+2
...

...
. . .

...
It−k+1 It−k+2 · · · It

 ,

where Xi, i = t − 2k, t − 2k + 1, dots, t, is the transformed recognition pattern

at time index i with k transformed information of k sequential time points. Use

Tt to train HMM model and decode the likelihood value lli, similarity measure, of

each transformed recognition pattern Xi. Then the transformed recognition pattern

matrix with similarity measure is

[Tt|Lt] =


It−3k+1 It−3k+2 · · · It−2k llt−2k

It−3k+2 It−3k+3 · · · It−2k+1 llt−2k+1

It−3k+3 It−3k+4 · · · It−2k+2 llt−2k+2
...

...
. . .

...
...

It−k+1 It−k+2 · · · It llt

 .
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Find the most similar pattern by solving following problem

min
i∈Rt

||llt − lli||2F ,

Rt = {t− 2k, t− 2k + 1, . . . , t− 1}.

Assume that i∗ is the solution of this problem, which means the recognition pattern

at time index t is very similar to the recognition pattern at time index i∗, thus the

one-day-ahead attributes vector is

V̂t+1 = [
a1,i∗+1

a1,i∗
a1,t,

a2,i∗+1

a2,i∗
a2,t, . . . ,

an(n+1)/2,i∗+1

an(n+1)/2,i∗
an(n+1)/2,t]

and the one-day-ahead volatility matrix is

Ĥt =


a1,i∗+1

a1,i∗
a1,t

a2,i∗+1

a2,i∗
a2,t · · · an,i∗+1

an,i∗
an,t

a2,i∗+1

a2,i∗
a2,t

an+1,i∗+1

an+1,i∗
an,t · · · a2n−1,i∗+1

a2n−1,i∗
a2n−1,t

...
...

. . .
...

an,i∗+1

an,i∗
an,t

a2n−1,i∗+1

a2n−1,i∗
a2n−1,t · · ·

an(n+1)/2,i∗+1

an(n+1)/2,i∗
an(n+1)/2,t

 .

In addition, more about attributes and estimation of forecasting errors are shown as

follows:

• More attributes included. The attributes can be more than volatilities and

covariances, the distinct entries of volatility matrix. Other attributes can be

prices or indexes (open, high, low, close), volumes, interest rate, currency ex-

change and so on.

• Estimation of forecasting errors. The forecasting errors is considered with k

sequential time indexes. In other words, k sequential volatility matrices are

considered together to calculate the forecasting errors. Given that

Hreal
T0

(k) = [Hreal
T0−k+1,H

real
T0−k+2, . . . ,H

real
T0

],

Ĥ
hmm

T0
(k) = [Ĥ

hmm

T0−k+1, Ĥ
hmm

T0−k+2, . . . , Ĥ
hmm

T0
].
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where Hreal
T0

(k) and Ĥ
hmm

T0
(k) are the n × (k × n) matrices consisting of k se-

quential realized volatility matrices and k sequential forecasted volatility matri-

ces by HMM multivariate forecasting algorithm respectively . The covariance

matrices generated by the HMM multivariate forecasting algorithm using k

time-series samples can be written respectively as

TEhmm
T0

= ‖Hreal
T0

(k)− Ĥ
hmm

T0
(k)‖F ,

where ‖.‖F is the Frobenius norm.

3.4 Empirical Results

In this section, we present univariate forecasting and multivariate forecasting by ap-

plying proposed HMM forecasting algorithm. In the univariate forecasting example,

we use HMM forecasting algorithm to forecast the close price of Heng Sang Index

(HSI) based on open, high, low, close, and volume. In the multivariate forecast-

ing example, we apply the proposed algorithm to test the multivariate samples, and

compare the HMM forecasting algorithm with our FMVM forecasting algorithm.

3.4.1 Hang Seng Index Forecasting: A Univariate Forecast-
ing Example

The HMM forecasting is evaluated based on HSI. These daily trading samples, from

2 February 2015 to 1 March 2016, are obtained from the Blomberg databases. The

forecasting results of the HMM forecasting algorithm are compared with the realized

results. This period includes the upward tendency, downward tendency and mean

reversion period. Thus the HMM forecasting can be tested whether it is applicable

in different situations. Five attributes are mentioned in this case: they are open,

high, low, close, and volume. The forecasting target is the attribute, close.
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• In the training phase, use K-means clustering algorithm to label data items.

For simplification, the number of clusters is fixed as the same as the number

of the attribute, 5. Data items would be labeled into any one from 1, . . . , 5 by

their similarity in this case, where L = 5.

• Then, transform all data items in the training phase into integer among 1, . . . , 5.

After this transformation, all data items, represented by a vector for each one,

can be represented by an integer instead. For instance, k-dimension vectors

D1, D2, . . . , DT1 can be represented by I1, I2, . . . , IT1 , where Ii ∈ 1, . . . , 5, for

any i. For any t, Dt = [opent, hight, lowt, closet, volumnt].

• The rolling window size, w, is considered to demarcate the length of each

pattern. For example, when the rolling window size, w, is predetermined as

20, the first recognition pattern is I1, I2, . . . , I20. The first three patterns can

be shown as

1: is [I1, I2, . . . , I20],

2: is [I2, I3, . . . , I21],

3: is [I3, I4, . . . , I22],

. . .

• Re-frame the T1 20-dimension vectors D1, D2, . . . , DT1 to (T1 − w) recogni-

tion pattern series 20-dimension vectors Xrws, Xrws+1, . . . , XT1 where Xk =

Ik−20+1, Ik−20+2, . . . , Ik, where 20 ≤ k ≤ T1. For example,

X1 is [I1−w+1, I1−w+2, . . . , I1],

X2 is [I2−w+1, I2−w+2, . . . , I2],

X3 is [I3−w+1, I3−w+2, . . . , I3],

. . .
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Xt is [It−w+1, It−w+2, . . . , It],

. . .

XT1 is [IT1−w+1, IT1−w+2, . . . , IT1 ].

• Treat X1, X2, . . . , XT1 as a new variable in the training phase. If one wants to

forecast any information ofDT1+1 = [openT1+1, highT1+1, lowT1+1, closeT1+1, vol.T1+1],

for instance, forecasting ˆcloseT1+1. As the technique analysis believes that his-

tory tends to repeat itself, our algorithm tends to find the similarity between

recent recognition pattern and the previous recognition patterns. Therefore,

we need to find the most similar to XT1+1 pattern from X1, X2, . . . , XT1 , where

Xt represent the recognition pattern with rolling window size rws at time index

t. Then, HMM classification method can be applied to find the most similar

pattern in this circumstance.

• Train HMM by inputing X1, X2, . . . , XT1 and calculate log-likelihood values

Lm of mth data pattern from X1, X2, . . . , XT1 : I1, I2, . . . , IT1 .

• Search the most nearest value of IT1 from I1, I2, . . . , IT1 . Assume that the

index most similar log-likelihood value is m∗, 1 ≤ m∗ ≤ T1. Then, Xm∗ is

thought to be the most similar recognition pattern of XT1+1.

• Assume that the process from pattern XT1 to XT1 + 1 will be same as the

process from Xm∗ to Xm∗+1. The forecasting of one attribute, i.e. ˆcloseT1+1, of

XT1+1 can be described as

ˆcloseT1+1 =
closem∗+1 − closem∗

closem∗
closeT1 .

The final result is shown in Figure 3.4.1. The pattern of the forecasted HSI is very

similar to that of the realized HSI, however, there exists latency of the forecasted
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Figure 3.4: The HMM forecasting result of HSI

HSI. The forecasted HSI can represented the tendency of the realized HSI in most

time.

The divergence between the realized HSI and the forecasted HSI is shown in Fig-

ure 3.4.1. To evaluate the absolute difference between the realized and the forecasted

values, the absolute difference is shown in Figure 3.4.1. The divergence cannot di-

rectly represent the relative difference of HSI. Thus, the bias ratio of the realized

results, Absolute difference
HSI

, is shown in Figure 3.4.1. The mean and standard deviation

of the bias ration is also shown in Figure 3.4.1. The mean of bias ratio is 0.0271 and

the standard deviation of bias ration is 0.0143. The upper bound is 0.0414 and the

lower bound is 0.0128.

3.4.2 Volatility Forecasting

The HMM forecasting algorithm is also evaluated based on 15 high weighted HSI

constituent stocks, which is detailed in Table 3.6. These daily trading samples, from

29 October 2010 to 7 October 2014, are obtained from the Bloomberg database which

is collected from 29 October 2010 to 7 October 2014. The HMM forecasting uses the
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Figure 3.5: Difference between the realized and the forecasted HSI
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Figure 3.6: The absolute difference between the realized and the forecasted HSI
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same data set that used in the empirical results of FMVM. Thus, we can compare

HMMforecasting algorithm to proposed HMVM. The HMM forecasting algorithm is

also used to forecast the one-day-ahead volatility matrices based on different rolling

window size with k = 20, 30, . . . , 120. Also we compared the results obtained by the

HMM forecasting algorithm with the existing multivariate volatility approach, the

AMVM [36] and with our proposed HMM-based forecasting algorithm.

Table 3.6: Selected stocks in each case

The Low-Dim Case The High-Dim Case ordinal number

‘5.HK’ ‘5.HK’ 1
‘939.HK’ ‘939.HK’ 2

‘1299.HK’ ‘1299.HK’ 3
‘941.HK’ ‘941.HK’ 4

‘1398.HK’ 5
‘3988.HK’ 6
‘883.HK’ 7
‘857.HK’ 8
‘386.HK’ 9

‘2628.HK’ 10
‘3.HK’ 11

‘151.HK’ 12
‘762.HK’ 13
‘494.HK’ 14

‘3328.HK’ 15
4 assets 15 assets

3.4.3 Univariate Forecasting

A Low-Dimensional Example: Forecasting Volatilities with Rolling Win-
dow Size 20

For simplicity, we consider as simple case with 4 constituent stocks of HSI: ‘5.HK’,

‘939.HK’, ‘1299.HK’, and ‘941.HK’, shown in Table 3.6. Tag ‘5.HK’, ‘939.HK’,

‘1299.HK’, and ‘941.HK’ by label 1, 2, 3, and 4. Thus the volatility of ‘5.HK’,

‘1299.HK’, and ‘941.HK’ can be labeled as σ2
1, σ2

2, σ2
3, and σ2

4. Their covariance can

be represented by σ12, σ13, σ14, σ23, σ24, σ34 (σij = σji, if i 6= j). We evaluate the

HMM volatility forecasting algorithm with different rolling window sizes. The rolling
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Figure 3.9: Date item with log-likelihood values (RWS: 20, N: 4)

window size is varied from k = 20 to 120 in a step of 10. To explain the forecast-

ing volatilities procedure clearly, the numerical result of some intermediate steps are

given in this part. Those results present can show the performance of the HMM

volatility forecasting directly. In this example, 4 assets can constitute 4 variances

(volatilities), σ2
1, σ2

2, σ2
3, σ2

4 and 6 covariances, σ12, σ13, σ14, σ23, σ24, σ34.

The log-likelihood values of any two data items can show how much they share

the similarity: the closer the log-likelihood values are, more similar the two data

items are. The data labels with their log-likelihood values are shown in Figure 3.4.3.

The data labels for a sample are ranking in time-series order with the respective log-

likelihood values. Rank their log-likelihood values in ascending order, the ascending

values is shown in Figure 3.4.3. In operation phase, use the similar dynamic progress

of the most similar pattern to forecast the following volatility or covariance. The

‘1299.HK’, and ‘941.HK’

The volatilities, σ2
1, σ2

2, σ2
3, σ2

4, are estimated on a basis of 20 trading days.
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Figure 3.10: Log-likelihood values in ascending order (RWS: 20, N: 4)

Therefore, the rolling window size in this case is also set as 20. The realized and

forecasted volatilities of ‘5.HK’ and those of ‘939.HK’ are shown in Figure 3.11. In the

same way, the realized and forecasted volatilities of the ‘1299.HK’, and ‘941.HK’ are

shown in Figure 3.12. In the variance forecasting, some peaks of forecasted volatilities

occur when using the HMM volatility forecasting algorithm. Those ‘peaks’ cause the

high forecasting errors in some trading days. Some delays of HMM forecasting occur

at the turnover of the tendency of volatility. The covariance, which describes volatile

attribute of any two financial assets, of any two from ‘5.HK’, ‘939.HK’, ‘1299.HK’,

and ‘941.HK’ can also test the usefulness of HMM forecasting algorithm. Those

realized and the forecasted results of each covariance, σ12, σ13, σ14, σ23, σ24, σ34,

are shown in Figure 3.13 to 3.15. The drawbacks of the HMM forecasting reoccur

in forecasting covariances: the delay of the switching tendency and the ‘peak’ of

forecasting still exist.
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Figure 3.11: Difference between the realized and the forecasted results (RWS:20, N:4,
P1)
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(b) The volatility of ‘941.HK’

Figure 3.12: Difference between the realized and the forecasted results (RWS: 20, N:
4, P2)

A High-Dimensional Example: Forecasting Volatilities with Rolling Win-
dow Size 120

In high-dimensional case, we consider 15 constituent stocks of HSI: ‘5.HK’, ‘939.HK’,

‘1299.HK’, ‘941.HK’, ‘1398.HK’, ‘3988.HK’, ‘883.HK’, ‘857.HK’, ‘386.HK’, ‘2628.HK’,

‘3.HK’, ‘151.HK’, ‘762.HK’, shown in Table 3.6. Tag from ‘5.HK’, ‘939.HK’, ‘1299.HK’

to ‘941.HK’ by label 1, 2, . . . , 15. These 15 stocks can compose 15 volatilities and
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Figure 3.13: Difference between the realized and the forecasted results (RWS: 20, N:
4, P3)
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Figure 3.14: Difference between the realized and the forecasted results (RWS: 20, N:
4, P4)

105 covariances in their volatility matrix. Therefore, the attribute vector can be

V15,t = (a1t, a2t, . . . , a120,t),

where a1t, a2t, . . . , a120,t represents σ11, σ21, . . . , σ15,1, . . . , σ22, σ32, . . . , σ15,2, . . . , σ120,120

at time index t. The log-likelihood values of any two data items can show how much

they share the similarity: the closer the log-likelihood values are, more similar the

two data items are. The data labels with their log-likelihood values are shown in

Figure 3.4.3. The data labels for a sample are ranking in time-series order with the
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Figure 3.15: Difference between the realized and the forecasted results (RWS: 20, N:
4, P5)

respective log-likelihood values. Rank their log-likelihood values in ascending order,

the ascending values is shown in Figure 3.4.3. In operation phase, use the similar

dynamic progress of the most similar pattern to forecast the following volatility or

covariance. The ‘1299.HK’, and ‘941.HK’

In terms of 15 assets, 15 variances and 105 distinct covariances exist in one
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Figure 3.16: Date item with log-likelihood values (RWS: 120, N: 15)

77



0 20 40 60 80 100 120 140

Record Number

-150

-100

-50

0

Lo
g-

lik
el

ih
oo

d 
va

lu
e

Log-likelihood value(Ascending order, N=15, RWS=120)

Figure 3.17: Log-likelihood values in ascending order (RWS: 120, N: 15)

volatility matrix. For simplification, we only show the details of first 10 attributes.

The volatility, σ2
1, and covariances, σ21, σ31, . . . , σ10,1, are estimated on a basis of

120 trading days. The realized and forecasted volatilities of ‘5.HK’ and those of

covariances of ‘5.HK’ and ‘939.HK’are shown in Figure 3.18. In the same way, the

realized and forecasted covariances of the ‘5.HK’ and ‘1299.HK’, and those of ‘5.HK’

and ‘941.HK’ are shown in Figure 3.19. In the variance or covariance forecasting,

some peaks of forecasted volatilities occur when using the HMM volatility forecasting

algorithm. Those ‘peaks’ cause the high forecasting errors in some trading days.

Some delays of HMM forecasting occur at the turnover of the tendency of volatility.

Other realized and the forecasted results of each covariance, σ51, σ61, σ71, σ81,

σ91, σ10,1, are shown in Figure 3.20 to 3.22. The drawbacks of the HMM forecasting

reoccur in forecasting covariances: the delay of the switching tendency and the ‘peak’

of forecasting still exist.
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Figure 3.18: Difference between the realized and the forecasted results (RWS: 120,
N: 15, P1)
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Figure 3.19: Difference between the realized and the forecasted results (RWS: 120,
N: 15, P2)

3.4.4 Multivariate Forecasting

The CCC, DCC, ADCC, BEEK, OGARCH, AMVM models and the proposed FMVM

were implemented using matlab with toolboxes including the Oxford MFE Matlab

toolbox [41]. We evaluate the models with different rolling window sizes. The win-

dow size is varied from k = 20 to 120 in a step of 10. The date, 7 October 2014, is

used as the end window. Both low-dimensional and high-dimensional circumstances

are considered.
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Figure 3.20: Difference between the realized and the forecasted results (RWS: 120,
N: 15, P3)
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Figure 3.21: Difference between the realized and the forecasted results (RWS: 120,
N: 15, P4)

The Low-Dimensional Case: Forecasting Based on the First Attribute

Here, we consider a simple case with 4 stocks which are shown in the first column

of Table 2.1. in the HMM forecasting algorithm, K-means clustering algorithm is

involved in the transformed pattern recognition part. The clustering results may

change each time, thus investigation of whether the forecasting results is steady or

not needs to be done. Therefore, the HMM forecasting algorithm is simulated in

20 times. To investigate the influence of the K-means clustering, the HMM fore-
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Figure 3.22: Difference between the realized and the forecasted results (RWS: 120,
N: 15, P5)

casting algorithm involves in-sample data to save the computation time. However,

the comparing classes, the FMVM model and the AMVM model is applied based

on out-of-sample data. The tracking errors TEhmm
T (k) with different rolling window

size and different simulation order are shown in Table 3.7 and Table 3.8. TEhmm
T (k)

is the total tracking errors for the training phase obtained by the HMM multivariate

forecasting algorithm with in-sample data. More specific, TEhmm
mean(k) and TEhmm

mode(k)

is the mean and mode of all the simulation results with every rolling windows sized

mentioned in this part. Referring to Table 3.7 and Table 3.8, the simulation results

show that the uncertainty of K-means clustering algorithm does not affect the HMM

forecasting algorithm. The forecasting errors are very close in different simulation. In

table 3.9, the HMVM is the best among three forecasting algorithm and the AMVM

is better than the HMM forecasting algorithm. This might be this case only involves

the forecasting based on the first attribute. If the forecasting based on all attributes,

the HMM forecasting algorithm might be better.
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Table 3.7: Simulation results of forecasting errors with different rolling windows size
(low-dim)

Simulation 20 30 40 50 60 70 80 90 100 110 120
1 10.8488 14.5491 10.9235 15.3039 16.4204 17.1651 17.2774 17.1305 17.2211 17.6132 18.1535
2 11.3438 15.0610 10.9226 14.6879 16.377 17.1404 17.2774 17.1453 17.2211 17.6016 18.1407
3 13.0120 14.7521 10.9175 15.3039 16.4662 17.1585 17.2198 17.1558 17.2175 17.6042 18.1461
4 10.1323 15.0778 10.9181 14.6879 16.4460 17.1235 17.2276 17.1234 17.2299 17.6058 18.1321
5 12.9604 8.3660 10.9277 15.3060 16.4057 17.0701 17.2462 17.1305 17.2211 17.5993 18.1394
6 10.8263 15.2066 10.9240 15.3002 16.4247 17.1626 17.2232 17.1209 17.2299 17.5991 18.1397
7 11.5866 15.0825 10.7589 14.8215 16.4466 17.1626 17.2401 17.1241 17.2093 17.5991 18.1397
8 13.0120 9.5023 10.9235 15.2986 16.4116 17.1585 17.2160 17.1209 17.2290 17.5993 18.1344
9 10.8488 15.2231 10.9275 14.6879 16.3988 17.1379 17.2232 17.1162 17.2290 17.6042 18.1344

10 11.3438 17.7201 10.9248 15.2917 16.3774 17.1626 17.2401 17.1322 17.2290 17.5981 18.1344
11 10.8488 17.2659 10.9181 15.2831 16.4204 17.1635 17.2774 17.1551 17.2282 17.6042 18.1461
12 13.0120 9.6063 10.9234 14.5191 16.4258 17.1651 17.2193 17.1558 17.2418 17.6042 18.1461
13 12.9604 15.0671 10.8733 15.2710 16.4096 17.1585 17.2774 17.1624 17.2299 17.6042 18.1461
14 13.0120 9.2935 10.9200 15.3079 16.4803 17.0626 17.2232 17.1209 17.2211 17.6042 18.1344
15 11.3438 15.2026 10.9277 15.3082 16.4096 17.0701 17.2232 17.1107 17.2228 17.6162 18.1791
16 12.9604 15.0750 10.9545 15.3151 16.4103 17.0416 17.2204 17.1453 17.2175 17.5993 18.1481
17 13.4458 15.1709 10.9226 15.3471 16.4125 17.1635 17.2484 17.1209 17.2299 17.6205 18.1321
18 13.0120 15.0899 10.9212 15.4424 16.4012 17.1585 17.2198 17.1340 17.2503 17.6016 18.1486
19 10.8263 15.1837 10.9212 15.2807 16.4096 17.1626 17.2484 17.1107 17.2282 17.5993 18.1397
20 12.9604 15.1788 10.9249 14.6879 16.4143 17.1262 17.2268 17.1325 17.2418 17.6042 18.1461

mean 12.0148 14.1337 10.9137 15.1226 16.4184 17.1357 17.2388 17.1324 17.2274 17.6041 18.1430
max 13.4458 17.7201 10.9545 15.4424 16.4803 17.1651 17.2774 17.1624 17.2503 17.6205 18.1791
min 10.1323 8.3660 10.7589 14.5191 16.3774 17.0416 17.2160 17.1107 17.2093 17.5981 18.1321
std 1.0901 2.6551 0.0390 0.3020 0.0255 0.0406 0.0223 0.0158 0.0094 0.0060 0.0105

The Low-Dimensional Case: Forecasting Based All Attributes

Here, we consider a simple case with 4 stocks which are shown in the first column of

Table 2.1, same stocks in the previous example. The stability of the HMM forecast-

ing algorithm in low dimensional case has been investigated in the previous example.

This time, the HMM forecasting algorithm is compared with the HMVM and the

AMVM with the same out-of-sample data. The results are shown in Table 3.10. In

this case, the HMM forecasting algorithm is improved when considering all attributes

in its forecasting. The ranking of the forecasting accuracy is the HMM forecasting al-

gorithm, the FMVM, and the AMVM. Also, the results show the forecasting accuracy

become better and better as the rolling windows size is lager and lager. This implies

the HMM forecasting algorithm will be improved as more recognition patterns and

more attributes considered.

The High-Dimensional Case: Forecasting Based on the First Attribute

Here, we consider a high-dimensional case with 15 stocks which are shown in the

second column of Table 2.1. in the HMM forecasting algorithm, K-means clustering

algorithm is involved in the transformed pattern recognition part. The clustering
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Table 3.8: Simulation results in two digits (low-dim, two decimal)

Simulation 20 30 40 50 60 70 80 90 100 110 120

1 10.85 14.55 10.92 15.30 16.42 17.17 17.28 17.13 17.22 17.61 18.15
2 11.34 15.06 10.92 14.69 16.38 17.14 17.28 17.15 17.22 17.60 18.14
3 13.01 14.75 10.92 15.30 16.47 17.16 17.22 17.16 17.22 17.60 18.15
4 10.13 15.08 10.92 14.69 16.45 17.12 17.23 17.12 17.23 17.61 18.13
5 12.96 8.37 10.93 15.31 16.41 17.07 17.25 17.13 17.22 17.60 18.14
6 10.83 15.21 10.92 15.30 16.42 17.16 17.22 17.12 17.23 17.60 18.14
7 11.59 15.08 10.76 14.82 16.45 17.16 17.24 17.12 17.21 17.60 18.14
8 13.01 9.50 10.92 15.30 16.41 17.16 17.22 17.12 17.23 17.60 18.13
9 10.85 15.22 10.93 14.69 16.40 17.14 17.22 17.12 17.23 17.60 18.13

10 11.34 17.72 10.92 15.29 16.38 17.16 17.24 17.13 17.23 17.60 18.13
11 10.85 17.27 10.92 15.28 16.42 17.16 17.28 17.16 17.23 17.60 18.15
12 13.01 9.61 10.92 14.52 16.43 17.17 17.22 17.16 17.24 17.60 18.15
13 12.96 15.07 10.87 15.27 16.41 17.16 17.28 17.16 17.23 17.60 18.15
14 13.01 9.29 10.92 15.31 16.48 17.06 17.22 17.12 17.22 17.60 18.13
15 11.34 15.20 10.93 15.31 16.41 17.07 17.22 17.11 17.22 17.62 18.18
16 12.96 15.08 10.95 15.32 16.41 17.04 17.22 17.15 17.22 17.60 18.15
17 13.45 15.17 10.92 15.35 16.41 17.16 17.25 17.12 17.23 17.62 18.13
18 13.01 15.09 10.92 15.44 16.40 17.16 17.22 17.13 17.25 17.60 18.15
19 10.83 15.18 10.92 15.28 16.41 17.16 17.25 17.11 17.23 17.60 18.14
20 12.96 15.18 10.92 14.69 16.41 17.13 17.23 17.13 17.24 17.60 18.15

mean 12.01 14.13 10.91 15.12 16.42 17.14 17.24 17.13 17.23 17.60 18.14
max 13.45 17.72 10.95 15.44 16.48 17.17 17.28 17.16 17.25 17.62 18.18
min 10.13 8.37 10.76 14.52 16.38 17.04 17.22 17.11 17.21 17.60 18.13
std 1.09 2.66 0.04 0.30 0.03 0.04 0.02 0.02 0.01 0.01 0.01

mode 13.01 15.08 10.92 15.30 16.41 17.16 17.22 17.12 17.23 17.60 18.15

Table 3.9: Tracking errors of the FMVM, the AMVM and the HMM-based algorithm
(low-dim)

RWS k TEFII(k) TEAII(k) TEhmmmean(k) TEhmmmode(k)

20 4.8583 7.9454 12.0148 13.01
30 4.4505 7.3815 14.1337 15.08
40 6.6014 9.6715 10.9137 10.92
50 6.7466 10.8176 15.1226 15.30
60 6.8483 10.3731 16.4184 16.41
70 8.0451 12.0133 17.1357 17.16
80 7.9594 13.0397 17.2388 17.22
90 10.2467 14.1335 17.1324 17.12
100 10.5589 14.4315 17.2274 17.23
110 10.1283 14.7852 17.6041 17.60
120 9.5383 13.6743 18.1430 18.15
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Table 3.10: Tracking errors of the FMVM, the AMVM and the HMM-based algo-
rithm (low-dim, all attributes)

RWS k TEFII(k) TEAII(k) TEhmm(k)

20 4.8583 7.9454 2.7832
30 4.4505 7.3815 2.2278
40 6.6014 9.6715 2.4847
50 6.7466 10.8176 2.3918
60 6.8483 10.3731 1.9618
70 8.0451 12.0133 1.9843
80 7.9594 13.0397 2.0036
90 10.2467 14.1335 1.6198
100 10.5589 14.4315 1.7146
110 10.1283 14.7852 1.4480
120 9.5383 13.6743 1.4450

results may change each time, thus investigation of whether the forecasting results

is steady or not needs to be done. Therefore, the HMM forecasting algorithm is

simulated in 20 times. To investigate the influence of the K-means clustering, the

HMM forecasting algorithm involves in-sample data to save the computation time.

However, the comparing classes, the FMVM model and the AMVM model is ap-

plied based on out-of-sample data. The tracking errors TEhmm
T (k) with different

rolling window size and different simulation order are shown in Table 3.11 and 3.12.

TEhmm
T (k) is the total tracking errors for the training phase obtained by the HMM

multivariate forecasting algorithm with in-sample data. More specific, TEhmm
mean(k)

and TEhmm
mode(k) is the mean and mode of all the simulation results with every rolling

windows sized mentioned in this part.

Referring to Table 3.11 and Table 3.12, the simulation results show that the

uncertainty of K-means clustering algorithm does not affect the HMM forecasting

algorithm. The forecasting errors are very close in different simulation. In table

3.13, the HMVM is the best among three forecasting algorithm and the AMVM is

better than the HMM forecasting algorithm. This might be this case only involves

the forecasting based on the first attribute. If the forecasting based on all attributes,
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Table 3.11: Simulation results of forecasting errors with different rolling windows
size (high-dim)

Simulation 20 30 40 50 60 70 80 90 100 110 120
1 91.8885 55.3793 839.7773 85.2940 82.0625 85.2951 91.5574 96.1251 99.2492 99.6343 102.3337
2 91.8885 55.2579 839.8575 100.1592 82.2236 85.1728 100.5265 96.0500 97.4358 101.4063 102.2740
3 65.6424 55.2579 838.8812 87.9835 81.9495 85.3986 101.9195 96.4401 99.3486 99.6202 104.0646
4 65.6424 54.1040 839.8546 87.9897 82.0254 85.5637 100.5265 96.4779 99.4288 99.4886 102.2733
5 479.4283 55.3793 839.9576 66.3139 82.2236 85.6143 98.4934 96.1276 99.4008 99.6494 102.2303
6 91.8885 55.3793 839.7773 87.9897 82.0430 86.0466 91.5574 96.3380 99.4497 99.6494 102.2720
7 392.9276 55.2579 840.3552 88.6758 82.2236 85.5637 98.3849 94.9320 99.3352 99.6494 102.2303
8 91.8885 53.7214 839.8575 88.6758 81.5488 85.6601 100.3989 96.4779 97.4442 99.5320 102.2682
9 392.9276 76.3668 840.0506 88.6758 82.2236 85.5637 92.3905 96.4779 99.3352 100.3899 102.2291

10 73.0100 53.7214 536.6419 87.9897 82.2236 86.1089 101.9195 96.1211 555.5268 99.5849 102.2525
11 91.8885 55.2524 839.8575 88.2184 82.2236 85.7782 91.5574 96.3380 99.4276 99.6494 102.2238
12 56.6853 55.2579 839.9205 87.9897 82.2236 85.4040 95.3844 96.4401 99.3486 99.5888 102.2867
13 309.1451 63.8147 839.7773 87.9897 82.2236 85.4505 100.3989 96.4779 99.3352 99.5950 102.1405
14 65.6424 76.3668 839.8575 88.6758 82.0625 85.5534 92.3905 96.4779 99.4288 99.5718 102.2238
15 65.6424 55.3793 838.8812 100.1592 82.2236 86.1138 100.3989 94.9320 97.2129 99.6202 102.2303
16 91.8885 53.7214 840.3540 87.9897 82.9796 85.5593 91.5574 96.4779 99.4276 99.5093 102.2291
17 56.6853 53.9577 536.6419 88.2184 82.2236 86.0466 100.4293 96.1276 99.3795 99.5473 102.2238
18 57.5364 59.5460 839.9576 94.6963 82.0625 85.4506 98.8869 96.4779 99.3678 99.5950 102.3094
19 91.8885 55.3793 839.8575 94.9992 82.0625 85.6062 100.3989 96.4779 99.4288 99.5768 102.2733
20 73.0100 59.5460 536.6419 88.2184 82.2236 85.5534 100.3209 96.4779 99.4008 99.5950 102.2531

mean 139.8572 57.9023 794.3379 88.8451 82.1628 85.6252 97.4699 96.2136 121.8856 99.7226 102.3411
max 479.4283 76.3668 840.3552 100.1592 82.9796 86.1138 101.9195 96.4779 555.5268 101.4063 104.0646
min 56.6853 53.7214 536.6419 66.3139 81.5488 85.1728 91.5574 94.9320 97.2129 99.4886 102.1405
std 133.7207 6.7726 111.0668 6.7075 0.2517 0.2669 4.0338 0.4648 102.0712 0.4369 0.4076

mode 91.8885 55.3793 839.8575 87.9897 82.2236 85.5637 91.5574 96.4779 99.4288 99.6494 102.2303

Table 3.12: Simulation results of forecasting errors with different rolling windows
size (high-dim, two decimal)

Simulation 20 30 40 50 60 70 80 90 100 110 120
1 91.89 55.38 839.78 85.29 82.06 85.30 91.56 96.13 99.25 99.63 102.33
2 91.89 55.26 839.86 100.16 82.22 85.17 100.53 96.05 97.44 101.41 102.27
3 65.64 55.26 838.88 87.98 81.95 85.40 101.92 96.44 99.35 99.62 104.06
4 65.64 54.10 839.85 87.99 82.03 85.56 100.53 96.48 99.43 99.49 102.27
5 479.43 55.38 839.96 66.31 82.22 85.61 98.49 96.13 99.40 99.65 102.23
6 91.89 55.38 839.78 87.99 82.04 86.05 91.56 96.34 99.45 99.65 102.27
7 392.93 55.26 840.36 88.68 82.22 85.56 98.38 94.93 99.34 99.65 102.23
8 91.89 53.72 839.86 88.68 81.55 85.66 100.40 96.48 97.44 99.53 102.27
9 392.93 76.37 840.05 88.68 82.22 85.56 92.39 96.48 99.34 100.39 102.23

10 73.01 53.72 536.64 87.99 82.22 86.11 101.92 96.12 555.53 99.58 102.25
11 91.89 55.25 839.86 88.22 82.22 85.78 91.56 96.34 99.43 99.65 102.22
12 56.69 55.26 839.92 87.99 82.22 85.40 95.38 96.44 99.35 99.59 102.29
13 309.15 63.81 839.78 87.99 82.22 85.45 100.40 96.48 99.34 99.59 102.14
14 65.64 76.37 839.86 88.68 82.06 85.55 92.39 96.48 99.43 99.57 102.22
15 65.64 55.38 838.88 100.16 82.22 86.11 100.40 94.93 97.21 99.62 102.23
16 91.89 53.72 840.35 87.99 82.98 85.56 91.56 96.48 99.43 99.51 102.23
17 56.69 53.96 536.64 88.22 82.22 86.05 100.43 96.13 99.38 99.55 102.22
18 57.54 59.55 839.96 94.70 82.06 85.45 98.89 96.48 99.37 99.59 102.31
19 91.89 55.38 839.86 95.00 82.06 85.61 100.40 96.48 99.43 99.58 102.27
20 73.01 59.55 536.64 88.22 82.22 85.55 100.32 96.48 99.40 99.59 102.25

mean 139.86 57.90 794.34 88.85 82.16 85.63 97.47 96.21 121.89 99.72 102.34
max 479.43 76.37 840.36 100.16 82.98 86.11 101.92 96.48 555.53 101.41 104.06
min 56.69 53.72 536.64 66.31 81.55 85.17 91.56 94.93 97.21 99.49 102.14
std 133.72 6.77 111.07 6.71 0.25 0.27 4.03 0.46 102.07 0.44 0.41

mode 91.89 55.38 839.86 87.99 82.22 85.56 91.56 96.48 99.43 99.65 102.23

the HMM forecasting algorithm might be better.

The High-Dimensional Case: Forecasting Based All Attributes

Here, we consider a simple case with 15 stocks which are shown in the first column of

Table 2.1, same stocks in the previous example. The stability of the HMM forecasting

algorithm in high dimensional case has been investigated in the previous example.

This time, the HMM forecasting algorithm is compared with the HMVM and the
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Table 3.13: Tracking errors of the FMVM, the AMVM and the HMM-based algo-
rithm (high-dim)

RWS k TEFII(k) TEAII(k) TEhmmmean(k) TEhmmmode(k)

20 4.8583 7.9454 12.0148 13.01
30 4.4505 7.3815 14.1337 15.08
40 6.6014 9.6715 10.9137 10.92
50 6.7466 10.8176 15.1226 15.30
60 6.8483 10.3731 16.4184 16.41
70 8.0451 12.0133 17.1357 17.16
80 7.9594 13.0397 17.2388 17.22
90 10.2467 14.1335 17.1324 17.12
100 10.5589 14.4315 17.2274 17.23
110 10.1283 14.7852 17.6041 17.60
120 9.5383 13.6743 18.1430 18.15

AMVM with the same out-of-sample data. The results is shown in Table 3.14. In this

case, the HMM forecasting algorithm is improved when considering all attributes in

its forecasting. The ranking of the forecasting accuracy is the HMM forecasting algo-

rithm, the FMVM, and the AMVM. Also, the results show the forecasting accuracy

become better and better as the rolling windows size is lager and lager. This implies

the HMM forecasting algorithm will be improved as more recognition patterns and

more attributes considered.

Table 3.14: Tracking errors of the FMVM, the AMVM and the HMM-based algo-
rithm (high-dim, all attributes)

RWS k TEFII(k) TEAII(k) TEhmm(k)

20 18.4214 33.4936 27.8650
30 17.1039 33.4648 12.9244
40 20.5884 40.1193 11.9522
50 31.0473 48.5467 18.1909
60 29.7626 51.8209 14.6072
70 30.0937 57.6992 13.4278
80 26.4884 58.3126 13.3793
90 29.4302 64.1372 11.2650
100 22.8918 68.6020 10.3618
110 21.6531 69.0370 9.8495
120 21.2291 70.0627 9.5463
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3.4.5 Conclusion

In this chapter, the HMM-based forecasting algorithm is proposed to fulfill an idea

from a technical analysis perspective. The proposed HMM-based forecasting algo-

rithm attempts to find the most similar pattern from the historical data and makes

a prediction in the belief that the history will repeat itself. The proposed forecasting

algorithm evaluates the similarities of the historical patterns based on their probabil-

ities of their occurrence under an HMM model. The prediction of a future pattern is

made by repeat the historical movement of the successor of the most similar pattern

of the current pattern. The effectiveness of the proposed HMM-based forecasting

algorithm is evaluated based on 15 stocks from the Hang Seng Index. A compari-

son of the AMVM, FMVM and the HMM-forecasting algorithm is made, given the

same data used in Chapter 2. The empirical results show that the HMM-forecasting

algorithm can obtain better accuracy in volatility forecasting than the AMVM. The

effectiveness of the HMM forecasting algorithm is varying when the number of in-

put attributes is changing. The HMM forecasting algorithm performs worse than the

FMVM when the HMM-based method is forecasting based on the similarity concern-

ing one attribute. However, it can perform better than the FMVM when it considers

all input attributes.
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Chapter 4

The Application of Fuzzy

Volatility Model

The purpose of this chapter is to investigate the application of fuzzy volatility model.

To start with, we present a quantitative trading product design. Then, we integrate

the implementation of the fuzzy volatility model for the product design. As the

framework of the product is assumed, the risk management of the product should

be taken into consideration. Usually, practitioners need to manage a portfolio after

constructing different financial products in a period. Then, portfolio management

is taken into account afterward. Therefore, the volatility matrix, a crucial part of

portfolio risk management, should be accurately forecasted. To tackle the difficulty of

forecasting volatility matrix, the methods as the fuzzy volatility modeling technique

and the fuzzy HMM technique are applied to the product design. Finally, detailed

implementation procedures are also put forward through the case analysis.

4.1 Background: Source of Inspiration

Pairs trading is a popular trading strategy invented by Wall Street quant Nunzio

Tartaglia and his fellow in 1980s, and this procedure has been conducted for nearly

thirty years [21]. The intrinsic idea of pair trading is to identify a pair of financial

assets those have same or similar risk exposure and price movement in the past.
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Regarding this trading idea, distance method, and co-integration method, namely the

traditional methods here, are widely conducted. Distance method uses the distance

between the standardized prices of two financial assets as the mispricing measurement

and conducts the trading instruction when the measurement satisfies the trigger

conditions. Similarly, the co-integration method enters into long or short position

when the difference of those returns is relatively large and closes its position when the

difference is reverting to its mean level. More details can be found in the literature

by Engle[19].

Nowadays, people were debating about the usefulness of the traditional methods.

While some asserted that one could not receive an abnormal return, some still earned

nearly 10% annual return by using this strategy. The traditional methods are the

assumptions: mean-reverting property and jointly normal distributed property of the

returns. Once the latter property is assumed, the linear correlation can completely

describe dependency and the distribution of spread or difference are stationary un-

der different circumstances of prices and returns [46]. However, returns in financial

markets cannot always follow those properties, which may cause few trading oppor-

tunities and low return consequently [28, 12]. Considering this drawback, a new

technique should be considered in pairs trading. An alternative way to solve this

problem is to relax the assumption of linear dependence structure. Copulas theory

is considerable in this case because copulas can describe the nonlinear dependence

structure of two random variables with more robust and accurate description. This

method can find joint distribution of two marginal distributions of two random vari-

ables, and it was originally founded in the book by Sklar [42]. As one knows the

historical returns of two stocks, she can estimate the marginal distribution of each

stock with the data of historical returns and then estimate a particular kind of copula

of this two marginal distributions.
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4.1.1 Trading Strategy Using Copulas Method

Xie mentioned that the mispricing measurement used in the traditional method is

robust only if the validity of joint normal distribution assumption holds [47]. A

method having the properties as comparability and consistency is desirable to re-

move the restrictions of the traditional method. While comparability means that

the numerical value of this measurement can reflect the degree of mispricing at any

given time point, consistency means that the measurement should be consistent and

comparable over the different period and return level. To satisfy those two proper-

ties, a measurement is proposed to capture the degree of mispricing [46].

Definition Given time t, the returns of two stocks are RX
t = rXt and RY

t = rYt .

Define P (RX
t < rXt |RY

t = rYt ), the conditional probability of stock X’s return smaller

than the current realization rXt given the stock Y’s return equal to current realiza-

tion rYt as the mis-pricing index of X given Y, denoted as MIX|Y . Similarly, we have

MIY |X [47].

Theorem 1 Assuming E and E
′

are two possible scenario of the stock prices at

time t. RX
t = rXt and RY

t = rYt in scenario E while RX
t = rX

′

t and RY
t = rY

′

t in

scenario E
′
. E(RX

t ) = E(RY
t ) = Rt. r

Y
t = rY

′

t , εXt = δXt , εYt = δYt ,εX
′

t = δX
′

t , and

εY
′

t = δY
′

t . MIX|Y > MIX|Y ′ if and only if δXt − δYt = δX
′

t − δY
′

t .
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Proof

MIX|Y = P (RX
t < rXt |RY

t = rYt )

= P (RX
t −RY

t < rXt −RY
t |RY

t = rYt )

= P (RX
t −RY

t < rXt − rYt |RY
t = rYt )

= P (((RX
t −Rt)− (RY

t −Rt)) < rXt − rYt |RY
t = rYt )

= P (εXt − εYt < rXt − rYt |RY
t )

= P (εXt − εYt < (rXt − rt)− (rYt − rt)|RY
t = rt)

= P (εXt − εYt < δXt − δYt |RY
t = rt)

Despite non-observation of detailed numerical values of εXt and εYt , the differences,

δXt and δYt , are captured by the difference between the realization return and its mean

return respectively. It can be seen that MIX|Y is a monotonic increasing function of

δXt − δYt given that RY
t = rYt , which shows that a higher value of MIX|Y indicates a

higher degree of mispricing. Thus, this satisfies the comparability property.

The consistency property MIX|Y of can be showed as: the measurement MIX|Y

indicates the likelihood that the spread, εXt − εYt , is smaller than the current realiza-

tion, (rXt − rt)− (rYt − rt), given the information. Since the likelihood is comparable

across different time periods and return levels, it can be concluded that the measure-

ment MIX|Y is consistency [47].

Theorem 2 If the current realized returns of security X and security Y equal to

the expected return Rt = rt, then MIX|Y = 0.5.
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Proof

MIX|Y = P (RX
t < rXt |RY

t = rYt )

= P (RX
t < rt|RY

t = rYt )

= P (RX
t −RY

t < rt − rYt |RY
t = rYt )

= P ((RX
t −Rt)− (RY

t −Rt) < rt − rt|RY
t = rYt )

= P (εXt − εYt < rt − rt|RY
t = rYt )

= P (εXt − (RY
t −Rt) < rt − rt|RY

t = rYt )

= P (εXt − 0 < rt − rt|RY
t = rYt )

= P (εXt < rt − rt|RY
t = rYt )

= P (εXt < 0|RY
t = rYt )

= P (εXt < 0)

= 0.5

This suggests that when the error terms of the returns of the two stocks equal to 0,

MIX|Y should be equal to 0.5, which means that under fair pricing, MIX|Y is 0.5.

Similarly, it can be proved that under fair pricing, MIY |X is also 0.5.

Corollary

If MIX|Y > 0.5, then stock X is overpriced relative to stock Y.

If MIX|Y = 0.5, then stock X is fairly priced relative to stock Y.

If MIX|Y < 0.5, then stock X is underpriced relative to stock Y.

It has been discussed that the new measurement MIX|Y has the property of compa-

rability and consistency. Under fair pricing, the MIX|Y is 0.5, and this means that

stock X is fairly priced relative to stock Y when MIX|Y = 0.5. When MIX|Y > 0.5,

stock X is overpriced relative to stock Y, and when MIX|Y < 0.5 , the stock X is
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under-priced than stock Y [46].

Mis-Pricing Index under Copulas Framework

The procedure to obtain MIX|Y or MIY |X using copula technique is provided below.

The marginal distributions of the returns of stock X and Y are assumed to be F1

and F2, while joint distribution is H.

Theorm 3 (Sklar’s Theorem) If F (·) is a n-dimensional cumulative distribution

function for the random variables X1, X2, · · · , Xn with continuous margins F1, ..., Fn,

then there exists a copula function C, such that

F (X1, X2, · · · , Xn) = C(F1(x1), · · · , Fn(xn)).

If the margins are continuous, then C is unique. If any distribution is discrete, then

C is uniquely defined on the support of the joint distribution.

Let U = F1(RX) and V = F2(RY ). According to Sklar’s theorem, we can always

identify a unique copula C which satisfies the following equation

H(rX , rY ) = C(u, v) = C(F1(x1), F2(x2)).

Theorm 4 Given current realization of returns of stock X and stock Y , rX and rY ),

we have

MIX|Y =
∂C(u, v)

∂v
,

and

MIY |X =
∂C(u, v)

∂u
.

Proof

94



Given rX and rY , the mispricing index of X given Y can be calculated as

MIX|Y = P (RX < rX |RY = rY ) = P [F1(RX) < F1(rX))|F2(RY ) = F2(rY ))].

Let u = F1(FX) and v = F2(rY ), then

MIX|Y = P (U < u|V = v) =
∂C(u, v)

∂v
.

Similarly, we obtain that

MIY |X = P (V < v|U = u) =
∂C(u, v)

∂u
.

Copulas-Based Pairs Trading Algorithm

Similar to the distance method and co-integration method, the trading strategy us-

ing copulas-based technique still consists of two periods, which are formation period

and trading period. Below is the trading algorithm assuming pair X and Y is already

selected [47]. The trading strategy is illustrated below.

Step 1. Calculate daily returns for each stock during formation period. Estimate

the marginal distributions of returns of stock X and stock Y, which are F1 and F2

separately.

Step 2. After obtaining the marginal distributions, estimate the copula described

by Sklar’s theorem to link the joint distribution H with margins F1 and F2, denoted

as C.

Step 3. During trading period, daily closing prices pXt and pYt are used to cal-

culate the daily returns (rXt , r
Y
t ). Therefore, MIX|Y and MIY |X can be calculated

for every day in the trading period by using the estimated copula C.
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Step 4. Construct short position in stock X and long position in stock Y on the

day that MIX|Y > ∆1 and MIY |X > ∆2 if no positions in X or Y is held. Construct

long position in stock X and short position in stock Y on the day that MIX|Y > ∆2

and MIY |X > ∆1 if no positions in X or Y is held. The market value of short po-

sitions should always equal to the market value of long positions at the start. All

positions are closed if MIX|Y reaches ∆3 or MIY |X reaches ∆4; ∆1,∆2,∆3,∆4 where

all pre-determined threshold values are.

4.1.2 Tail-Dependence Method with Copulas

An Pairs-Selecting Strategy

Estimate the cumulative distribution function of each log-return by using a kernel

smoothing density which is estimate based on a normal kernel function. Kernel

function is a function satisfying

∫ +∞

−∞
k(x)dx = 1.

Let random vector x be as x = (x1, x2, · · · , xN). And kn(·), n = 1, 2, · · · , N , is a

univariate function of random vector x. Use the continued product of kn(xn), n =

1, 2, . . . , N to construct a function illustrated as

k(x) =
N∑
n=1

kn(xn).

It can also be described as

k(x;h) =
N∑
n=1

kn(
xn
hn

).

Let {Y }Tt=1 be a N × 1 dimensional time series vector and Yt = (Y1t, Y2t, . . . , YNt)
′
.

F (·) and f(·) are the joint distribution function and the density function of Yt re-

96



spectively. The cumulative distribution function and probability density function of

marginal distribution of Ynt can be denoted as Fn(·) and fn(·). Give un ∈ (0, 1).

Regarding the canonical maximum likelihood estimation, the empirical probability

density function is

f̂n(yn) =
1

Thn

T∑
n=1

kn(
yn − Ynt
hn

),

for n = 1, . . . , n. As Yt is at point y = (y1, y2, . . . , yN)
′
, the estimate of its joint

distribution function f(·) is

f̂(y) =
1

T |h|

T∑
n=1

k(y − Yt;h),

where |h| is the value of the determinant of |h|. The estimate of the marginal

distribution function of Ynt at point yn is

F̂n(yn) =

∫ yn

−∞
f̂n(x)dx.

Similarly, the estimate of the joint distribution function of Yt at point y = (y1, y2, . . . , yN)
′

is

F̂ (y) =

∫ y1

−∞

∫ y2

−∞

∫ y3

−∞
. . .

∫ yn

−∞
f̂(x)dx.

If we choose normal kernel function as kn(x) = φ(x) = 1√
2π
e−

x2

2 , then F̂n(yn) and

F̂ (y) can be illustrated as

F̂n(yn) =
1

T

T∑
1

φ(
yn − Ynt
hn

),

F̂ (y) =
1

T

T∑
1

N∏
n=1

Φ(
yn − Ynt
hn

),

97



which φ(·) and Φ(·) represent the probability density function and cumulative dis-

tribution function of standard normal distribution.

By using kernel smoothing density estimation, we can gain two cumulative dis-

tribution functions of two log return series. After constructing this two cumulative

distribution functions, we can estimate the dependent parameters of Clayton copula

and Gumbel copula by using canonical maximum likelihood method (CML).

Before illustrating CML method, we have to introduce the inference functions for

margins (IFM) method because they are similar to each other with a little differ-

ence. By knowing the estimate of marginal distribution at point xni, use maximum

likelihood method to estimate parameters, θ1 and θ2, which can be represented as

θ̂1 = arg max
T∑
1

ln(f̂n1(xni); θ1),

θ̂2 = arg max
T∑
1

ln(f̂n2(xni); θ2).

Consequently, the the estimate of the unknown parameter α is

α̂ arg max
T∑
1

ln[c( ˆFn1(xnt), ˆFn2(ynt);α)].

The above is known as CML method.

After estimation, it is considerable to test whether Clayton copula or Gumbel

copula can fit the sample well by using Kolmogorov-Smirnov test. If those copulas can

fit the sample well, then compute the upper-tail and lower-tail dependence coefficient

of those two log-returns series. Accordingly, form an assets-selecting strategy based

on the upper-tail and lower-tail dependence and establish a stock-programing-trading

strategies.

If those copulas can fit the sample well, then compute the upper-tail and lower-

tail dependence coefficient of those two log-returns series. The relationship between
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the lower-tail dependence coefficient and the dependent parameter of Clayton copula

is

λCloCl = 2
1
αCl

and the dependent parameter of Gumbel copula and the upper-tail dependence co-

efficient is

λCupGu = 2− 2αGu

where αCl and αGu are the dependent parameter of Clayton copula and that of

Gumbel copula respectively.

Tail-Dependence Pairs Trading Strategy

Tail-dependence pairs trading algorithm is another copulas-based method in pairs

trading field [52]. We have revised their trading strategies and the new algorithm is

shown below.

Step 1. Calculate daily returns for each stock during formation period. Estimate

the marginal distribution F1 of returns of stock X and the marginal distribution F2

of returns of stock Y respectively.

Step 2. After obtaining the marginal distributions, estimate the Gumbel copula

CGu and Clayton copula CCL based on margins F1 and F2.

Step 3. Compute upper tail and lower tail dependence coefficients to verify the

section of the pairs.

Step 4. During trading period, daily closing prices pXt and pYt are used to cal-

culate the daily returns (rXt , r
Y
t ).
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Step 5. Calculate the tail-dependence conditional probabilities

PlX|Y = Pr(RX
t < rXt |RY

t < rYt ),

P lY |X = Pr(RY
t < rYt |RX

t < rXt ),

PuX|Y = Pr(RX
t > rXt |RY

t > rYt ),

PuY |X = Pr(RY
t > rYt |RX

t > rXt ).

Construct short position in stock X and long position in stock Y on the day that

PlX|Y > ∆lo
1 , PlY |X > ∆lo

2 , as well as no positions in X or Y are held; in the same

way, construct long position in stock X and short position in stock Y on the day that

PuX|Y > ∆up
3 , PuY |X > ∆up

4 , and no positions in X or Y is held.

4.1.3 Relative Method with Copulas

The estimation procedure of copulas is the same as that we illustrated in the pre-

vious part. However, we have a new measurement to capture mispricing other than

those methods in the literature [51] and [52]. At the same time point, the number,

n1, of historical returns RX
t of stock X, smaller (larger) than the realization return

rXt , should not be too much different from n2 of returns RY
t smaller (larger) than the

realization return rYt . If n1 is far from n2, then stock X might be mis-priced and the

arbitrage opportunity exists. The algorithm is illustrated below

Step 1. Count the amount of historical returns satisfied RX
t < rXt , denoted as

n1. Count the number of historical returns satisfied RY
t < rYt , denoted as n2; simi-

larly we have n3 of RX
t > rXt and n4 of RY

t > rYt .

Step 2. The algorithm with a trigger point, ∆∗ ∈ (0, 1), is described below
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• If n1 > n2 and n2

n1
>= ∆∗ then one may short-sell stock Y and, close the short

position on the next trading day.

• Else if, n1 < n2 and n1

n2
>= ∆∗, then one may short-sell stock X and, close the

short position on the next trading day.

• Else if, n3 < n4 and n3

n4
>= ∆∗, then one may long stock X and, close the long

position on the next trading day.

• Else if, n4 < n3 and n4

n3
>= ∆∗, then one may long stock Y and, close the long

position on the next trading day.

Here, ∆∗ is a predetermined value. We can find a particular interval of it by con-

ducting back-testing.

4.2 The Quantitative Trading Product Design

This section introduces how to design a financial product through the idea of the

fundamental trading strategy, the way to form products, the formation of a portfolio

of these underlying products, and its risk management.

4.2.1 The Fundamentals of the Product and its Design Idea

This subsection aims to show how to construct a quantitative trading product. The

process is as follows: a product can be formed by a trading strategy and the under-

lying assets; as issuing the product to investors, the cash pool can be used to trade

the underlying assets under the instruction of the trading strategy. By executing the

trading strategy, the fund manager aims to obtain the return projected in the back

testing; after the investment period, return the net value of product as it set in the

investment agreement. This part is illustrated in Subsection 4.1.
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Stock Pair 1

Trading Strategy

Stock Pair 2

Trading Strategy

Stock Pair n

Trading Strategy

Trading Strategy

Stock Pair 3

…

Product 1

Product 2

Product 3

Product n

Portfolio Volatility Matrix

Multivariate 
Volatility Models

Risk Management

The FMVM Model

Figure 4.1: The diagram of product design

The core of the product is the trading strategy. The trading strategy and invest-

ment idea define the risk characters of the quantitative trading product. Thus, the

risk management should be considered in the product design as shown in 4.1. As

issuing more than one product, a portfolio is constructed at the same time. The risk

character of the portfolio is defined by the volatility matrix. Based on the volatility

matrix, one can make a decision with other risk management models. Thus, the

application of the FMVM model and fuzzy HMM model can be shown here.

4.2.2 Copulas-Based Two-Sided-Long-Short Strategy

Tail-dependence pairs trading algorithm is an alternative copula-based method in

pairs trading field [52]. The strategy shows a positive result. However, they do

not consider what to do once the strategy gives a wrong signal; meanwhile, they

only close the position on the following trading day only for simplification reason.

Here the work refine the previous strategy: 1) revise the timing strategy, 2) add the
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stop-loss strategy to this strategy.

Step 1: Calculate daily returns for each stock during formation period. Estimate the

marginal distributions of returns of stock X and stock Y, which are F1 and F2

separately.

Step 2: After obtaining the marginal distributions, estimate the Gumbel and Clayton

copulas to link the joint distribution CGu and CCL with margins F1 and F2.

Step 3: Compute upper tail and lower tail dependence coefficients to verify the sec-

tion of the pairs. Verify whether the upper tail dependence parameter satisfies

λCloCl > k1; similarly, verify whether the lower tail dependence parameter satis-

fies λCloGu > k2.

Step 4: Calculate the tail-dependence conditional probabilities

PlX|Y = Pr(RX
t < rXt |RY

t < rYt ),

P lY |X = Pr(RY
t < rYt |RX

t < rXt ),

PuX|Y = Pr(RX
t > rXt |RY

t > rYt ),

PuY |X = Pr(RY
t > rYt |RX

t > rXt ).

Step 5: The timing of opening position. If there is no position of security, then

– construct short position of security X, if PlX|Y > ∆lo
1 ;

– construct long position of security X, if PuX|Y > ∆up
3 ;

– construct long position of security Y, if PlY |X > ∆lo
2 ;

– construct short position of security Y, if PuY |X > ∆up
4 .

Step 6: The timing of closing position:

– close any position, if the strategy shows a wrong signal.
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– close the long position of security X, if PlX|Y > ∆lo
1 ;

– close the short position of security X, if PuX|Y > ∆up
3 ;

– close the long position of security Y, if PlY |X > ∆lo
2 ;

– close the short position of security Y, if PuY |X > ∆up
4 .

Here ∆lo
1 , ∆lo

2 , ∆up
3 , and ∆up

4 are pre-determined threshold values, which can be found

in the training phase.

Parameter Setting

In the copulas-based trading strategy, the upper tail dependence coefficient and lower

tail dependence coefficient of a pair of financial instruments are estimated by means

of Clayton copula and Gumbel copula; as being illustrated before, the lower tail

dependence of Clayton copula and the upper tail dependence coefficient of Gumbel

Coupla are

λCloCl = 2
1
αCl ,

λCupGu = 2− 2αGu ,

where the selection criterion is “If λCloCl > k1 and λCupGu > k2, then form a pair consists

of asset X and asset Y.” k1 and k2 are predetermined.

In the timing strategy, ∆lo
1 , ∆lo

2 , ∆up
3 , and ∆up

4 are predetermined. They are

thresholds of the tail-event probability

PlX|Y = Pr(RX
t < rXt |RY

t < rYt ),

P lY |X = Pr(RY
t < rYt |RX

t < rXt ),

PuX|Y = Pr(RX
t > rXt |RY

t > rYt ),

PuY |X = Pr(RY
t > rYt |RX

t > rXt ),

where PlX|Y , PlY |X , PuX|Y , and PuY |X should satisfy 0 ≤ PlX|Y ≤ 1, 0 ≤ PlY |X ≤ 1,
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0 ≤ PuX|Y ≤ 1, and 0 ≤ PuY |X ≤ 1. Similarly, the thresholds should also follow

0 ≤ ∆lo
1 ≤ 1, 0∆lo

2 ≤ 1, 0 ≤ ∆up
3 ≤ 1, and 0 ≤ ∆up

4 ≤ 1.

4.2.3 Copulas-Based One-Sided-Long Strategy

The previous strategy is designed for a two-sided market with a long-short portfolio

in Section 4.2.2, i.e., long a stock in Chinese mainland market and short sell its

counterpart in Hong Kong market or short sell one in Chinese mainland market

and long its counterpart in Hong Kong market. However, high transaction fees and

wrong trading instructions occurred both in long and short positions. For a Chinese

mainland investor, he or she can take a long position in a mainland stock with a

reference system of the tail dependence between the mainland banking sector and

the banking industry in Hong Kong. Thus, we can form a new strategy:

Step 1: Calculate daily returns for each stock during formation period. Estimate the

marginal distributions of returns of stock X and stock Y, which are F1 and F2

separately.

Step 2: After obtaining the marginal distributions, estimate the Gumbel and Clayton

copulas to link the joint distribution CGu and CCL with margins F1 and F2.

Step 3: Compute upper tail and lower tail dependence coefficients to verify the sec-

tion of the pairs. Verify whether the upper tail dependence parameter satisfies

λCloCl > k1; similarly, verify whether the lower tail dependence parameter satis-

fies λCloGu > k2.

Step 4: Calculate the tail-dependence conditional probabilities

PuX|Y = Pr(RX
t > rXt |RY

t > rYt ),

P lX|Y = Pr(RX
t < rXt |RY

t < rYt ).
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Step 5: The timing of opening position. If there is no position of security, then

– construct long position of security X, if PuX|Y > ∆up.

Step 6: The timing of closing position.

– close any position, if the strategy shows a wrong signal;

– close the long position of security X, if PlX|Y > ∆lo;

where ∆up and ∆lo are pre-determined threshold values satisfying 0 ≥ ∆up,∆low ≥ 1,

which can be found in the training phase

4.3 The Application of the FMVM to Portfolio

Management

This section shows how the FMVM can apply to portfolio management. We as-

sume the realized volatility matrix is the benchmark for our risk measurement. The

framework of this application is shown in Figure 4.2. Assume that the term of return

series, s, is fixed and the number of asset is n, the return series matrix Rt is defined

as

Rt =


r1,t−s+1 r2,t−s+1 · · · rn,t−s+1

r1,t−s+2 r2,t−s+2 · · · rn,t−s+2
...

...
. . .

...
r1,t r2,t · · · rn,t

 .
Do not miss up Rt here with Rt in Chapter 2. Rt here describes the returns series

matrix. The same notation in Chapter 2 denotes the conditional correlation matrix.

Input the returns series matrix Rt to the FMVM illustrated in Chapter 2, the fore-

casted volatility matrix Ĥt+1 can be retrieved from the FMVM. Given the returns

series matrix Rt and the forecasted volatility matrix Ĥt+1, the forecasted optimal
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𝑚𝑜𝑑𝑒𝑙1, 𝑚𝑜𝑑𝑒𝑙2, … ,𝑚𝑜𝑑𝑒𝑙𝑛𝑀

𝐀𝐩𝐩𝐥𝐲 𝐭𝐡𝐞 𝐅𝐌𝐕𝐌 𝐚𝐥𝐠𝐫𝐢𝐭𝐡𝐦

𝐅𝐨𝐫𝐞𝐜𝐚𝐬𝐭𝐞𝐝 𝐯𝐨𝐥𝐚𝐭𝐢𝐥𝐢𝐭𝐲 𝐦𝐚𝐭𝐫𝐢𝐱

 𝐇𝑡+1

𝐑𝐞𝐭𝐮𝐫𝐧 𝐦𝐚𝐭𝐫𝐢𝐱
𝑅𝑡

CCC
𝐶𝐶𝐶 1,1 , 𝐶𝐶𝐶 1,2
𝐶𝐶𝐶 2,1 , 𝐶𝐶𝐶 2,2

DCC
𝐷𝐶𝐶 1,1 , 𝐷𝐶𝐶 1,2
𝐷𝐶𝐶 2,1 , 𝐷𝐶𝐶 2,2

ADCC
𝐴𝐷𝐶𝐶 1,1 , 𝐴𝐷𝐶𝐶 1,2
𝐴𝐷𝐶𝐶 2,1 ,𝐴𝐷𝐶𝐶 2,2

𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒

𝐌𝐚𝐱𝐢𝐦𝐮𝐦 𝐒𝐡𝐚𝐫𝐩𝐞 𝐏𝐨𝐫𝐭𝐟𝐨𝐥𝐢𝐨

𝐟𝐨𝐫𝐞𝐜𝐚𝐬𝐭𝐞𝐝 𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐰𝐞𝐢𝐠𝐡𝐭𝐬 𝐨𝐫
𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐛𝐞𝐟𝐨𝐫𝐞𝐡𝐚𝐧𝐝 𝐰𝐞𝐢𝐠𝐡𝐭𝐬

 𝐖𝑡+1

𝐑𝐞𝐚𝐥𝐢𝐳𝐞𝐝 𝐑𝐞𝐭𝐮𝐫𝐧𝐦𝐚𝐭𝐫𝐢𝐱
𝑅𝑡+1

𝐑𝐞𝐚𝐥𝐢𝐳𝐞𝐝 𝐯𝐨𝐥𝐚𝐭𝐢𝐥𝐢𝐭𝐲 𝐦𝐚𝐭𝐫𝐢𝐱

𝐇𝑡+1

𝐌𝐚𝐱𝐢𝐦𝐮𝐦 𝐒𝐡𝐚𝐫𝐩𝐞 𝐏𝐨𝐫𝐭𝐟𝐨𝐥𝐢𝐨

𝐫𝐞𝐚𝐥𝐢𝐳𝐞𝐝 𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐰𝐞𝐢𝐠𝐡𝐭𝐬

𝐖𝑡+1

𝐀𝐝𝐣𝐮𝐬𝐭 𝐩𝐨𝐫𝐭𝐟𝐨𝐥𝐢𝐨 𝐛𝐞𝐟𝐨𝐫𝐞𝐡𝐚𝐧𝐝
𝐨𝐧 𝐭𝐢𝐦𝐞 𝑡

Portfolio attributes
𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑟𝑒𝑡𝑢𝑟𝑛 𝑅1𝑡+1
𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑟𝑖𝑠𝑘 𝑉1𝑡+1
𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 𝑅1𝑡+1

Portfolio benchmark
𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑟𝑒𝑡𝑢𝑟𝑛 𝑅2𝑡+1
𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑟𝑖𝑠𝑘 𝑉2𝑡+1
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𝐄𝐯𝐥𝐚𝐮𝐭𝐢𝐨𝐧

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

Figure 4.2: The application of the FMVM in portfolio management
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weights of each assets, ŵi,t+1, can be obtained via Equation 4.1.

min Ŵ
T

t+1Ĥt+1Ŵt+1,

s. t. Ŵt+1Rt = r̄t,

n∑
i=1

ŵi,t+1 = 1,

0 ≤ ŵi,t+1 ≤ 0.5,

(4.1)

where ŵi,t+1 is the forecasted optimal weight of the asset i in the portfolio and r̄t is

the current portfolio return. Each weight cannot be larger than 0.5 and the short-sell

of an asset is prohibited in our case. The constraint of none short-sell is reasonable

in our case: it is unreasonable to short-sell any product that is constituted by one

of our trading strategies. The maximum weight is placed to control the tail events

of one asset: the “black swan” happens without any foreboding. We need do best

preparation no matter when the worst case might happen. Therefore, we define the

maximum weight of an asset.

Based on the returns series matrix Rt and the forecasted volatility matrix Ĥt+1,

the forecasted optimal weights of each asset, ŵi,t+1, can be obtained in another way:

maximize the Sharpe ratio and release the constraint of portfolio return. In this case,

the cost of funds is also included. Usually, the cost of funds is represented by the

risk-free rate rf . In participation, rf in Equation 4.2 could be the real cost of the

fund house.

max
Ŵt+1Rt − rf

Ŵ
T

t+1Ĥt+1Ŵt+1

,

s. t.
n∑
i=1

ŵi,t+1 = 1,

0 ≤ ŵi,t+1 ≤ 0.5.

(4.2)
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Given the forecasted optimal weights matrix Ŵt+1, the performance of the before-

hand adjustment can be evaluated in time t + 1 as the realized volatility matrix is

available. The portfolio return and portfolio variance after beforehand adjustment

can be used to evaluate the performance. The portfolio return after beforehand

adjustment can be described as

r̄p,t+1 = Ŵt+1Rt+1

and the portfolio variance after beforehand adjustment can be described as

σ2
p,t+1 = Ŵ

T

t+1Ht+1Ŵt+1.

Furthermore, the Sharpe ration under beforehand adjustment is

S.R.p,t+1 =
r̄p,t+1 − rf
σp,t+1

.

The benchmarks of the beforehand adjustment are all retrieved from the realized

information such as the realized optimal weights, the realized portfolio return and

the realized portfolio variance under a specified optimal portfolio models. The model

can be the minimum-variance model with a specific return

min WT
t+1Ht+1Wt+1,

s. t. Wt+1Rt+1 = r̄t+1,

n∑
i=1

wi,t+1 = 1,

0 ≤ wi,t+1 ≤ 0.5,
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or maximum-Sharpe-ratio model

max
Wt+1Rt − rf

WT
t+1Ht+1Wt+1

,

s. t.

n∑
i=1

wi,t+1 = 1,

0 ≤ wi,t+1 ≤ 0.5.

Therefore, the benchmark portfolio return is

r̄realp,t+1 = Wt+1Rt+1,

and the benchmark portfolio variance is

σ2,real
p,t+1 = WT

t+1Ht+1Wt+1.

Furthermore, the benchmark Sharpe ratio is

S.R.realp,t+1 =
r̄realp,t+1 − rf
σrealp,t+1

.

4.4 The Empirical Result: Trading Strategies

In this section, we show the empirical result of the trading strategies with a different

version. Finally, the application of the previous volatility modeling will be discussed

together with the financial instruments with the trading strategies.

4.4.1 Copulas-Based Two-Sided-Long-Short Strategy

Copulas-based two-sided-long-short strategy is formed by the method and data il-

lustrated in Zhang’s Strategy [52]. In this subsection, the back-testing result will be

shown.

The data will be divided into two parts: one is for the training phase; another

one is for the validation phase. The data in the training phase is used to form the
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thresholds ∆lo
1 , ∆lo

2 , ∆up
3 , and ∆up

4 . For simplicity, let 0 ≤ ∆lo
1 = ∆lo

2 = ∆up
3 = ∆up

4 ≤

1. Once PlX|Y > ∆lo
1 , PlY |X > ∆lo

2 , PuX|Y > ∆up
3 , or PuY |X > ∆up

4 , the trading

strategy will be trigged. Let initial values of 0∆lo
1 = ∆lo

2 = ∆up
3 = ∆up

4 = 0.001, step

width equals to 0.001, and the termination is 0.999. In the training phase, find the

optimal interval of the thresholds, and test these intervals in the validation stage.

In this section, the companies listing both on China stock market and Hong

Kong stock market have been chosen to form a strategy. Those selected companies

are China Merchants Bank (CMB), Minsheng Bank (MB), Bank of Communications

(BOCs), Agricultural Bank China (ABC), Industrial and Commercial Bank of China

(ICBC), China Construction Bank (CCB), Bank of China (BOC), and China Citic

Bank (CITIC). Unilateral transaction data will be deleted and only the transaction

data keep on the intersected trading days of two markets. The stock data is retried

from Nov. 28, 2007 to Nov. 27, 2014. In the training phase, the data from Nov. 28,

2007 to Nov. 27, 2013 is used to active the selection strategy, which verifies whether

the pair shall be selected. The data from Nov. 28, 2012 to Nov. 27, 2013 is used to

train the thresholds in the trading strategy. The data from Nov. 28, 2013 to Nov.

27, 2014 is used to validate the thresholds.

Fitting Copulas

The stocks share high tail dependence can be selected to form the trading pairs.

The parameters of Copulas and tail coefficients are shown in 4.1. The parameters of

Copulas have passed K-S test at 95% confidence level.

Generally, the lower tail dependencies of those pairs are higher than their up-

per tail dependence, which shows a similar result to previous research [52]. In an

economic perspective, the stocks listed in a different market should represent the

same intrinsic value of this company. Thus the dependence structure between the re-

turn series of different markets shall share a strong relationship. Also, the stochastic
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Table 4.1: Copulas coefficients and tail dependence coefficients

Pairs αCl αGu λCloCl
λCupGu

CMB 0.7997 1.5172 0.4203 0.4209
CCB 0.8234 1.4945 0.4309 0.4099
MB 0.6637 1.4167 0.3519 0.3686
BOCs 0.7393 1.4733 0.3916 0.3992
ABC 0.5557 1.3577 0.2873 0.3338
ICBC 0.6399 1.3972 0.3385 0.3577
BOC 0.1007 1.0275 0.0010 0.0368
CITIC 0.6077 1.3512 0.3196 0.3297

progress of prices of the same company should be similar. In addition, they may have

a strong tail dependence. In 4.1, the tail dependence of the BOC pair is relatively

smaller than the other pairs; thus, the BOC pair should be omitted.

Result in Training and Validation Phases

The result of the training phase can be found in 4.2. In the training, the threshold

intervals should determined such that each pair can get relatively higher return in

the training phase. If the optimal interval can be stable in different phases, then this

Table 4.2: Copulas-based two-sided-long-short strategy in the training Phase

Pairs Optimal threshold interval Return success rate

CMB [0.869,0.890] [5.41%6.57%] [54.55%57.63%]
CCB [0.6660.687] [2.90%3.60%] [61.76%63.16%]
MB [0.5380.554] [20.39%21.86%] [52.74%53.10%]
BOCs [0.8130.823] [8.40%9.84%] [50.63%56.25%]
ABC [0.9320.939] [10.63%10.84%] [56.25%57.58%]
ICBC [0.9540.961] 0.30% 50.00%
BOC - - -
CITIC [0.8240.870] [13.20%15.77%] [47.14%48.68%]

strategy can be also stable in its operation. In the terms of the optimal threshold

interval, those pairs whose return are higher than the SHIBOR in corresponding

term, 4.40%, are the CMB pair, the MB pair, the BOCs pair, the ABC pair and the

CITIC pair; in which, the returns of the ABC pair, the CITIC pair and the BOCs

pair are higher than 10%. Table 4.3 shows the optimal threshold interval, return,
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Table 4.3: Copulas-based two-sided-long-short strategy in the validation Phase

Pairs Optimal threshold interval Return success rate

CMB [0.692,0.697] [8.98%10.23%] [50.27%50.54%]
CCB [0.6150.637] [20.02%20.19%] [51.85%53.85%]
MB [0.4130.428] [21.32%22.86%] [53.13%53.74%]
BOCs [0.7280.755] [23.62%20.01%] [52.26%53.78%]
ABC [0.9270.940] [17.06%19.56%] [49.19%50.40%]
ICBC [0.3770.457] [19.33%23.87%] [49.19%,50.40%]
BOC - - -
CITIC [0.8580.870] [18.73%20.74%] [48.39%49.47%]

and the success rate in the unrefined tail dependence strategy.

4.4.2 Copulas-Based One-Sided-Long Strategy

Table 4.4 shows these characters in three stages. The parameter stabilities are tested

in three stages: the optimal parameters are found in the first stage and also tested

in the second stages. The optimal parameters in the first stage and the second stage

are also tested in the third stage. The first stage is the in-sample data. The optimal

parameters found in the previous stage are verified in the current stage based on out-

of-sample data. From Table 4.3, the CMB, BOC, BOCs, MB, and CITIC pairs show

well parameter stabilities. Oppositely, the parameters of the ABC, ICBC, and CCB

pairs change rapidly in different stages. The implication of the parameter stabilities

is “more stable the parameters are, more stable the net value of the pair may be”.

This can be tested in the net values of different pairs in Figures 4.3 to 4.6. The curve

of the net values of the CMB, BOC, BOCs, MB, and CITIC pairs are very steady.

However, a jump of the net value curve of the ABC pair occurs in 4.4(b). The net

value curves of the ICBC and the CCB pairs fluctuate rapidly in Figures 4.5(a) and

4.5(b). Thus the performance of this trading strategy is based on the parameter

stabilities of the selected pairs. In Table 4.3, the return of Copulas-based strategy is

higher than that of buy and hold strategy in all cases.
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Table 4.4: Copulas-based single-long strategy empirical results

Pairs First stage Second stage Third stage
O.P. R. B.&H.R O.P. R. B.&H.R O.P. R. B.&H.R.

CMB (0.6, 0.8) 84.30 -20.81 (0.7, 0.6) 57.43 48.05 (0.7, 0.7) 121.61 -5.11
(0.6, 0.8) 54.20 (0.6, 0.8) 99.25

(0.7, 0.6) 112.04
BOC (0.7, 0.7) 33.03 -0.22 (0.7, 0.7) 59.85 27.19 (0.6, 0.6) 86.10 -33.71

(0.7, 0.7) 59.85 (0.7, 0.7) 72.24
(0.7, 0.7) 72.24

BOCs (0.7, 0.6) 166.30 12.47 (0.5, 0.7) 108.82 33.90 (0.5, 0.7) 294.44 59.69
(0.7, 0.6) 73.11 (0.7, 0.6) 200.13

(0.5, 0.7) 294.44
ABC (0.5, 0.9) 20.26 -12.26 (0.5, 0.6) 54.02 48.98 (0.8, 0.5) 84.78 -21.46

(0.5, 0.9) 38.60 (0.5, 0.9) 37.45
(0.5, 0.6) 84.51

ICBC (0.8, 0.8) 20.15 -16.61 (0.4, 0.9) 77.13 39.35 (0.6, 0.7) 105.57 -19.57
(0.8, 0.8) 43.91 (0.8, 0.8) 66.92

(0.4, 0.9) 60.68
CCB (0.6, 0.8) 43.90 -16.49 (0.6, 0.9) 62.04 50.31 (0.6, 0.7) 134.47 -29.12

(0.6, 0.8) 50.79 (0.6, 0.8) 55.13
(0.6, 0.9) 34.12

MB (0.6, 0.8) 74.32 -27.27 (0.5, 0.8) 71.57 46.47 (0.8, 0.6) 101.84 -16.14
(0.6, 0.8) 54.90 (0.6, 0.8) 78.10

(0.5, 0.8) 80.61
CITIC (0.5, 0.8) 97.64 10.27 (0.7, 0.7) 118.44 35.41 (0.5, 0.8) 243.60 -27.35

(0.5, 0.8) 95.13 (0.5, 0.8) 243.60
(0.7, 0.7) 189.64
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Figure 4.3: The net values of the CMB pair and the BOC pair

4.5 The Empirical Result: the Application of the

Proposed Volatility Model

The empirical results show the outcome of adjustment of the weight of the portfolio

guided by the FMVM in different schemes: the minimum-variance portfolio and the

maximum-Sharpe-ratio portfolio. We assume we adjust our portfolio based on the

forecasted optimal weights of the following trading day, where the forecasted optimal

weights are produced by the portfolio management models corresponding with the

forecasted volatility matrix. Then, this adjustment in advance can be tested by the
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Figure 4.4: The net values of the BOCs pair and the ABC pair
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Figure 4.5: The net values of the ICBC pair and the CCB pair

realized benchmark, which can be calculated in the following trading day.

We apply our FMVM to volatilty matrix forecasting. The individual models

involved are CCC(1, 1), CCC(1, 2), CCC(2, 1), CCC(2, 2), DCC(1, 1), DCC(1, 2),

DCC(2, 1), DCC(2, 2), ADCC(1, 1), ADCC(1, 2), ADCC(2, 1), and ADCC(2, 2).

Given the rolling widows size 189, 20 volatility matrices of last 20 trading days are

forecasted under the FMVM scheme. The volatility matrix forecasted on each trading

day is applied to the minimum-variance portfolio and the maximum-Sharpe-ratio

portfolio for portfolio management purpose. The return constraint in the minimum-

variance portfolio is set to be current annualized return on decision day.

115



0 50 100 150 200 250

the trading day

1

1.2

1.4

1.6

1.8

2

2.2
T

he
 n

et
 v

al
ue

The net value of the product consists of MB pair

(a) The volatility of ‘1299.HK’

0 50 100 150 200 250

the trading day

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

T
he

 n
et

 v
al

ue

The net value of the product consists of CITIC pair

(b) The volatility of ‘941.HK’

Figure 4.6: The net values of the MB pair and the CITIC pair

Table 4.5 and Table 4.8 show the outcomes of adjustment in advance under the

minimum-variance portfolio and the maximum-Sharpe-ratio portfolio respectively.

The benchmarks of these outcomes are given in 4.6 and Table 4.9. In these ta-

bles, “P.R.” is shored for portfolio return. “P.V.” is shorted for portfolio variance.

“P.S.R.” is shorted for portfolio Sharpe ratio. Under the minimum-variance portfo-

Table 4.5: A fusion of the minimum-variance portfolio and the FMVM

Day W1 W2 W3 W4 W5 W6 W7 W8 P.R. P.V. P.S.R.
1 0.49 0.13 0.02 0.08 0.14 0.06 0.04 0.05 0.38 0.0011 10.90
2 0.29 0.20 0.05 0.10 0.13 0.05 0.08 0.08 0.38 0.0017 8.59
3 0.29 0.20 0.05 0.10 0.14 0.05 0.09 0.09 0.37 0.0018 8.28
4 0.31 0.21 0.06 0.11 0.13 0.05 0.09 0.02 0.37 0.0019 8.10
5 0.32 0.22 0.06 0.11 0.14 0.02 0.04 0.09 0.38 0.0019 8.25
6 0.29 0.20 0.06 0.11 0.12 0.05 0.08 0.09 0.38 0.0018 8.62
7 0.35 0.23 0.08 0.11 0.11 0.05 0.06 0.00 0.39 0.0021 8.10
8 0.33 0.20 0.05 0.11 0.10 0.06 0.07 0.07 0.40 0.0018 8.92
9 0.31 0.22 0.06 0.11 0.11 0.05 0.05 0.08 0.40 0.0020 8.66
10 0.26 0.23 0.06 0.13 0.13 0.03 0.08 0.09 0.41 0.0020 8.67
11 0.33 0.22 0.08 0.11 0.11 0.05 0.07 0.03 0.41 0.0020 8.78
12 0.25 0.22 0.07 0.11 0.12 0.04 0.09 0.09 0.42 0.0020 8.97
13 0.26 0.22 0.08 0.11 0.11 0.05 0.08 0.09 0.41 0.0020 8.78
14 0.25 0.22 0.07 0.11 0.12 0.05 0.09 0.09 0.42 0.0020 8.87
15 0.25 0.22 0.07 0.11 0.12 0.05 0.09 0.09 0.42 0.0020 8.92
16 0.25 0.22 0.08 0.11 0.11 0.05 0.09 0.09 0.42 0.0020 9.09
17 0.25 0.21 0.08 0.11 0.11 0.05 0.11 0.09 0.43 0.0019 9.22
18 0.28 0.23 0.10 0.10 0.09 0.06 0.12 0.02 0.45 0.0022 9.06
19 0.25 0.21 0.08 0.09 0.09 0.07 0.12 0.09 0.45 0.0020 9.74
20 0.26 0.21 0.09 0.10 0.09 0.07 0.10 0.09 0.44 0.0020 9.48

lio, the outcomes of the beforehand adjustment are shown in Table 4.5. The bench-

marks are shown in Table 4.6. The returns of under beforehand adjustment are

arranged from 37% to 45%, in contrast, its benchmarks are arranged from 51% to

54%. The variances under the beforehand adjustment are arranged from 0.11 to

0.21%, in contrast, its benchmarks are arranged from 0.20 to 0.21%. The Sharpe
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Table 4.6: The realized results of the minimum-variance portfolio

Day W1 W2 W3 W4 W5 W6 W7 W8 P.R. P.V. P.S.R.
1 0.25 0.24 0.06 0.13 0.11 0.03 0.10 0.08 0.41 0.0021 8.52
2 0.25 0.24 0.06 0.12 0.12 0.03 0.10 0.08 0.40 0.0020 8.36
3 0.25 0.24 0.06 0.12 0.12 0.03 0.10 0.08 0.40 0.0021 8.45
4 0.25 0.25 0.07 0.12 0.11 0.03 0.10 0.08 0.42 0.0021 8.66
5 0.25 0.25 0.07 0.12 0.11 0.03 0.10 0.08 0.41 0.0021 8.64
6 0.25 0.24 0.07 0.12 0.12 0.03 0.10 0.07 0.42 0.0021 8.66
7 0.25 0.24 0.07 0.12 0.11 0.03 0.10 0.07 0.42 0.0021 8.69
8 0.23 0.25 0.07 0.13 0.12 0.03 0.10 0.08 0.43 0.0022 8.73
9 0.23 0.25 0.07 0.13 0.12 0.03 0.10 0.08 0.43 0.0022 8.81
10 0.23 0.25 0.07 0.13 0.12 0.03 0.10 0.08 0.43 0.0022 8.86
11 0.23 0.24 0.08 0.13 0.12 0.03 0.09 0.07 0.42 0.0021 8.76
12 0.23 0.24 0.08 0.13 0.12 0.03 0.10 0.07 0.43 0.0021 8.83
13 0.22 0.24 0.08 0.13 0.12 0.03 0.10 0.07 0.43 0.0021 8.85
14 0.22 0.24 0.08 0.13 0.12 0.03 0.10 0.07 0.43 0.0021 8.91
15 0.22 0.24 0.07 0.13 0.13 0.03 0.10 0.07 0.43 0.0021 8.87
16 0.23 0.24 0.08 0.13 0.13 0.03 0.10 0.07 0.42 0.0021 8.84
17 0.23 0.24 0.08 0.13 0.12 0.03 0.10 0.07 0.43 0.0021 8.88
18 0.23 0.24 0.08 0.13 0.12 0.03 0.10 0.07 0.43 0.0021 8.88
19 0.23 0.24 0.08 0.13 0.12 0.03 0.10 0.07 0.43 0.0021 8.89
20 0.23 0.24 0.08 0.13 0.13 0.04 0.09 0.07 0.41 0.0020 8.76

ratios under the beforehand adjustment are arranged from 8.10 to 10.90, in contrast,

its benchmarks are arranged from 8.36 to 8.91. In Table 4.7, the average of each

attribute is given on the beforehand adjustment and its benchmark. The average

return after adjustment is 1% smaller than that of the benchmark, where only 15%

of the beforehand adjustment are no worse than the benchmark. The average risk

variance after adjustment is 0.02% lower than the benchmark, and 90% of them out-

performs the benchmark variances. The Sharpe ratio of the beforehand adjustment

is 8.90 in the average, 0.16 higher than that of the benchmark. The Sharpe ratios of

the beforehand adjustment are 55% better than that of the benchmark.

Table 4.7: The comparison of the beforehand adjustment to the benchmarks under
the minimum-variance portfolio

Avg. Ret. Outperform Ratio Avg. Var. Outperform Ratio Avg. S.R Outperform Ratio
Beforehand 0.41 15% 0.0019 90% 8.90 55%
Benchmark 0.42 85% 0.0021 10% 8.74 45%

Under the maximum-Sharpe-ratio portfolio, the outcomes of the beforehand ad-

justment are shown in Table 4.8. The benchmarks are shown in Table 4.9. The re-

turns of under beforehand adjustment are arranged from 49% to 53%, in the contrast,

its benchmarks are arranged from 51% to 54%. The variances under the beforehand

adjustment are arranged from 0.13 to 0.31%, in the contrast, its benchmarks are ar-

ranged from 0.27 to 0.31%. The Sharpe ratios under the beforehand adjustment are
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Table 4.8: A fusion of the maximum-Sharpe-ratio portfolio and the FMVM

Day W1 W2 W3 W4 W5 W6 W7 W8 P.R. P.V. P.S.R.
1 0.50 0.16 0.07 0.07 0.03 0.01 0.09 0.08 0.49 0.0013 12.88
2 0.38 0.20 0.11 0.08 0.00 0.00 0.13 0.10 0.50 0.0025 9.69
3 0.38 0.20 0.11 0.07 0.00 0.00 0.13 0.11 0.50 0.0025 9.57
4 0.41 0.22 0.12 0.08 0.00 0.00 0.14 0.03 0.50 0.0028 9.21
5 0.41 0.22 0.12 0.08 0.00 0.00 0.06 0.11 0.50 0.0027 9.23
6 0.38 0.20 0.12 0.08 0.00 0.00 0.12 0.11 0.51 0.0026 9.65
7 0.45 0.24 0.14 0.08 0.00 0.00 0.08 0.01 0.52 0.0031 8.95
8 0.41 0.19 0.11 0.07 0.00 0.00 0.12 0.10 0.52 0.0024 10.15
9 0.39 0.22 0.12 0.07 0.00 0.00 0.09 0.11 0.52 0.0027 9.64
10 0.32 0.22 0.13 0.08 0.01 0.00 0.13 0.11 0.53 0.0028 9.64
11 0.41 0.23 0.13 0.08 0.01 0.00 0.10 0.04 0.52 0.0028 9.46
12 0.31 0.22 0.13 0.08 0.02 0.00 0.13 0.11 0.53 0.0028 9.71
13 0.30 0.23 0.13 0.09 0.01 0.00 0.12 0.12 0.52 0.0028 9.45
14 0.30 0.23 0.13 0.08 0.01 0.00 0.14 0.11 0.53 0.0028 9.62
15 0.30 0.23 0.13 0.08 0.01 0.00 0.13 0.11 0.53 0.0028 9.62
16 0.30 0.21 0.13 0.08 0.02 0.00 0.14 0.11 0.53 0.0027 9.72
17 0.29 0.21 0.13 0.08 0.02 0.01 0.16 0.11 0.53 0.0027 9.81
18 0.31 0.23 0.14 0.09 0.03 0.04 0.15 0.02 0.50 0.0027 9.25
19 0.27 0.20 0.12 0.07 0.03 0.05 0.15 0.11 0.52 0.0024 10.03
20 0.29 0.21 0.12 0.07 0.02 0.05 0.13 0.11 0.51 0.0025 9.76

Table 4.9: The realized results of the maximum-Sharpe-ratio portfolio

Day W1 W2 W3 W4 W5 W6 W7 W8 P.R. P.V. P.S.R.
1 0.31 0.25 0.11 0.10 0.00 0.00 0.14 0.09 0.51 0.0029 9.11
2 0.31 0.25 0.11 0.09 0.00 0.00 0.14 0.09 0.51 0.0029 8.99
3 0.31 0.25 0.11 0.09 0.00 0.00 0.14 0.10 0.51 0.0030 9.08
4 0.31 0.24 0.12 0.09 0.01 0.00 0.14 0.09 0.51 0.0029 9.14
5 0.31 0.25 0.12 0.09 0.01 0.00 0.13 0.09 0.52 0.0030 9.17
6 0.31 0.25 0.12 0.09 0.01 0.00 0.13 0.10 0.52 0.0030 9.23
7 0.30 0.25 0.12 0.09 0.01 0.00 0.13 0.10 0.52 0.0029 9.24
8 0.29 0.25 0.12 0.09 0.01 0.00 0.14 0.09 0.54 0.0031 9.30
9 0.29 0.25 0.12 0.09 0.03 0.00 0.13 0.09 0.53 0.0030 9.33
10 0.29 0.25 0.12 0.09 0.03 0.00 0.13 0.10 0.53 0.0030 9.36
11 0.29 0.24 0.13 0.09 0.02 0.00 0.13 0.09 0.53 0.0030 9.36
12 0.28 0.24 0.13 0.10 0.02 0.00 0.14 0.09 0.53 0.0029 9.39
13 0.28 0.24 0.13 0.09 0.02 0.00 0.14 0.09 0.53 0.0029 9.47
14 0.28 0.24 0.13 0.09 0.03 0.00 0.14 0.09 0.53 0.0029 9.49
15 0.28 0.24 0.13 0.09 0.02 0.00 0.14 0.09 0.53 0.0029 9.51
16 0.28 0.24 0.13 0.09 0.02 0.00 0.14 0.09 0.53 0.0029 9.45
17 0.28 0.24 0.12 0.09 0.03 0.00 0.14 0.09 0.52 0.0028 9.44
18 0.28 0.23 0.12 0.09 0.04 0.00 0.14 0.09 0.52 0.0028 9.41
19 0.28 0.23 0.13 0.09 0.04 0.00 0.14 0.09 0.52 0.0028 9.42
20 0.29 0.23 0.13 0.09 0.04 0.00 0.12 0.09 0.51 0.0027 9.40

arranged from 8.95 to 12.88, in the contrast, its benchmarks are arranged from 8.99

to 9.49. In Table 4.10, the average of each attribute is given with respect to the be-

forehand adjustment and its benchmark. The average return after adjustment is very

close to that of the benchmark, where only 15% of the beforehand adjustment are no

worse than the benchmark. The average risk variance after adjustment is lower than

the benchmark and 90% of them outperforms the benchmark variances. Regarding

to the Sharpe ratio, the average Sharpe ratio is 0.43 lager than the benchmark value.

The beforehand adjustment can be better than the benchmark in 85% of time. Given

Table 4.10: The comparison of the beforehand adjustment to the benchmarks under
the maximum-Sharpe-ratio portfolio

Avg. Ret. Outperform Ratio Avg. Var. Outperform Ratio Avg. S.R Outperform Ratio
Beforehand 0.52 15% 0.0026 95% 9.75 85%
Benchmark 0.52 85% 0.0029 5% 9.32 15%

118



these results, a beforehand adjustment, given forecasted volatility matrix produced

by the FMVM and the maximum-Sharpe-ratio portfolio, can obtain a portfolio with

better Sharpe ratio comparing to the benchmark. This application of the FMVM

shows that our FMVM can help us to maintain a relatively lower risky portfolio.
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Chapter 5

Conclusions and Future Work

This chapter draws conclusions on the thesis and points out some possible research

directions related to the work done in this thesis.

5.1 Conclusions

The focus of the thesis has been placed on various multivariate volatility forecasting

algorithms for a better volatility forecasting. Specifically, two research problems have

been investigated in detail.

1. In this thesis, the FMVM is proposed to improve forecasting accuracy when

developing multivariate volatility models. The proposed FMVM attempts to

overcome the limitations of the existing AMVM which requires redundant com-

putation on multivariate volatility models. The proposed FMVM classifies the

individual volatility models into smaller scale clusters by using fuzzy C-means

clustering algorithm. It then selects the most representative model with the

lowest tracking error in each cluster and determines the optimal weight to each

selected model. Based on the determined weights, some forecasting patterns

are fed into the multivariate volatility model. Hence, repetitive but unnec-

essary computational effort can be avoided in the FMVM. The effectiveness

of the proposed FMVM is evaluated based on 15 stocks from the Hang Seng
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Index. The empirical results show that the FMVM can obtain better accuracy

in volatility forecasting. Also, the number of volatility models involved in the

FMVM is less than those required by the AMVM. Hence, a less computational

effort is required by the FMVM than that of the AMVM.

2. The Hidden Markov Model (HMM) based forecasting algorithm is proposed to

increase the forecasting accuracy, which can be used in both univariate and

multivariate volatility forecasting. Attributes can be classified into recognition

patterns. Based on the similarity of recognition pattern, the HMM-based fore-

casting algorithm can give forecasting results based on more information than

other methods. Most volatility matrix forecasting methods are restricted to

the dynamic processes of volatilities and covariances, whereas the HMM-based

forecasting algorithm can include other attributes, for instance, trading volume,

prices (open, high, low, close), some macroeconomic factors than volatiles and

covariances. The HMM forecasting algorithm, considering other attributes, can

obtain better prediction results than those generated by the FMVM.

5.2 Future Work

Related topics for the future research work are listed below.

1. The first orientation is described in Figure 5.1. Although the FMVM and the

HMM forecasting algorithm are accurate forecasting techniques for univariate

and multivariate forecasting in Chapter 2 and 3, the forecasting errors of the

FMVM are relatively higher than that of the HMM forecasting algorithm and

the forecasting delay is also relatively higher caused by the vacancy of the

process description. However the FMVM and the HMM forecasting algorithms

have complementary characteristics. Thus using some fuzzy rules and fuzzy

logics one may coordinate those two algorithms to enhance the forecasting
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accuracy. This fuzzy combination can be applied to volatility forecasting.

The data is used to
develop models
for each individual.

ො𝜎
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𝑡𝑟𝑖𝑔𝑔𝑒𝑟

Figure 5.1: The future work of the first orientation

2. Regarding multivariate volatility matrices forecasting, the FMVM provides a

dynamic process description with relatively higher forecasting errors. Mean-

while, the HMM forecasting forecasts as more accurate without sound process

description. Therefore, in the future work, trying to figure out a more coop-

erative way to multivariate volatility forecasting is indeed meaningful. Such

orientation is described in Figure 5.2.

3. Although the application and its empirical results are given in Chapter 4, the

fuzzy fusion model is not involved. In the future, other fuzzy forecasting meth-

ods can be tested in investigating more in the relationship between allocation

prediction and volatility forecasting. The results will be insightful for risk

management and portfolio management. This research orientation is shown in

Figure 5.3
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Figure 5.2: The mechanism of the second orientation

The data is used to
develop models
for each individual.

 𝐇
𝑓𝑚𝑣𝑚

𝑇ℎ𝑒 𝐹𝑀𝑉𝑀
𝑓𝑜𝑟𝑒𝑐𝑎𝑡𝑖𝑛𝑔
𝑎𝑙𝑔𝑜𝑟𝑖𝑖ℎ𝑡𝑚

𝑇ℎ𝑒 𝐻𝑀𝑀
𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒
𝑓𝑜𝑟𝑒𝑐𝑎𝑡𝑖𝑛𝑔
𝑎𝑙𝑔𝑜𝑟𝑖𝑖ℎ𝑡𝑚

 𝐇
ℎ𝑚𝑚

𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
𝑤ℎ𝑜𝑠𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟
𝑖𝑠 𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜
𝑡ℎ𝑒 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

 𝐇
𝑓𝑢𝑧𝑧𝑦

𝑂𝑡ℎ𝑒𝑟 𝑓𝑢𝑧𝑧𝑦
− 𝑏𝑎𝑠𝑒𝑑
𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒
𝑓𝑜𝑟𝑒𝑐𝑎𝑡𝑖𝑛𝑔
𝑎𝑙𝑔𝑜𝑟𝑖𝑖ℎ𝑡𝑚

𝐇𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑𝐵𝑒𝑐ℎ𝑚𝑎𝑟𝑘

𝑇ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡

𝑚𝑜𝑑𝑒𝑙

𝑇ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡

𝑚𝑜𝑑𝑒𝑙

𝑇ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡

𝑚𝑜𝑑𝑒𝑙

𝑇ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡

𝑚𝑜𝑑𝑒𝑙

 𝐖
𝑓𝑚𝑣𝑚

𝑇ℎ𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟

 𝐖
ℎ𝑚𝑚

 𝐖
𝑓𝑢𝑧𝑧𝑦

𝐖𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑

Figure 5.3: The mechanism of the third orientation
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4. Add the buffering phenomenon to multivariate volatility models. The structure

of volatilities are different for different structures of returns: the market trends

and the extreme of returns will separate the volatility in different regimes. Only

define the regime by thresholds will cause the regime unshifting problem. Cur-

rent multivariate models are based on the description of the dynamic process

of diagonal elements of volatility matrix, i.e., volatilities, and the description of

the dynamic process of the linear correlation [30, 45, 54, 55, 29]. However, the

buffering phenomenon is only considered in the univariate case. In univariate

case, the buffered model can fit better than that of the classical models. It

is reasonable to extend this buffering phenomenon to every diagonal entry of

a volatility matrix. Further, we can use the Buffered form to modify the dy-

namic process of correlation terms. Thus, we can propose a new multivariate

volatility model, a multivariate buffered autoregressive model with generalized

autoregressive conditional heteroscedasticity.

125



126



Bibliography

[1] Alexander, C. (2001), “Orthogonal garch,” Mastering risk, 2, 21–38.

[2] Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003), “Modeling
and forecasting realized volatility,” Econometrica, 71, 579–625.

[3] Batuwita, R. and Palade, V. (2010), “FSVM-CIL: fuzzy support vector machines
for class imbalance learning,” IEEE Transactions on Fuzzy Systems, 18, 558–571.

[4] Batuwita, R., Palade, V., and Bandara, D. C. (2011), “A customizable fuzzy
system for offline handwritten character recognition,” International Journal on
Artificial Intelligence Tools, 20, 425–455.

[5] Bezdek, J. C., Ehrlich, R., and Full, W. (1984), “FCM: The fuzzy c-means clus-
tering algorithm,” Computers & Geosciences, 10, 191–203.

[6] Blunsom, P. (2004), “Hidden markov models,” Lecture notes, August, 15, 18–19.

[7] Bollerslev, T. (1986), “Generalized autoregressive conditional heteroskedasticity,”
Journal of econometrics, 31, 307–327.

[8] Bollerslev, T. (1990), “Modelling the coherence in short-run nominal exchange
rates: a multivariate generalized ARCH model,” The review of economics and
statistics, 72, 498–505.

[9] Cappiello, L., Engle, R. F., and Sheppard, K. (2006), “Asymmetric dynamics in
the correlations of global equity and bond returns,” Journal of Financial econo-
metrics, 4, 537–572.

[10] Chen, S.-M. and Chang, Y.-C. (2010), “Multi-variable fuzzy forecasting based
on fuzzy clustering and fuzzy rule interpolation techniques,” Information sciences,
180, 4772–4783.

[11] Christoffersen, P. F. and Diebold, F. X. (2000), “How relevant is volatility fore-
casting for financial risk management?” Review of Economics and Statistics, 82,
12–22.

127



[12] Crook, J. and Moreira, F. (2011), “Checking for asymmetric default dependence
in a credit card portfolio: A copula approach,” Journal of Empirical Finance, 18,
728–742.

[13] Dalman, H. (2016a), “An interactive fuzzy goal programming algorithm to
solve decentralized bi-level multiobjective fractional programming problem,” arXiv
preprint arXiv:1606.00927.

[14] Dalman, H. (2016b), “Uncertain programming model for multi-item solid trans-
portation problem,” International Journal of Machine Learning and Cybernetics,
pp. 1–9.
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