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Abstract

In this thesis, we consider the proximal algorithms with extrapolation for solving

nonconvex nonsmooth optimization problems. This class of optimization problems

arise in many application areas of engineering, computer science, economic field, see

[18, 20, 23, 27, 40, 54, 64]. Due to the importance of these problems, a plenty of

algorithms are proposed for solving them. This thesis mainly studies two classes of

the proximal algorithms with extrapolation for solving different structured nonconvex

and nonsmooth optimization problems. The details are as follows:

1. We first consider the proximal gradient algorithm with extrapolation for mini-

mizing the sum of a Lipschitz differentiable function and a proper closed convex

function. Using the error bound condition studied in the literature [38] for ana-

lyzing the convergence properties of proximal gradient algorithm, we show that

there exists a threshold such that if the extrapolation coefficients are chosen

below this threshold, then the sequence generated converges R-linearly to a

stationary point of the problem. Moreover, the corresponding sequence of ob-

jective values is also R-linearly convergent. In addition, the threshold reduces

to 1 for convex problems and, as a consequence, we obtain the R-linear conver-

gence of the sequence generated by FISTA with fixed restart. Again for convex

problems, we show that the successive changes of the iterates vanish for many

choices of sequences of extrapolation coefficients that approach the threshold.

In particular, we prove that this conclusion also holds for the sequence generat-
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ed by the FISTA. Finally, we present some numerical experiments to illustrate

our results.

2. Difference-of-convex (DC) optimization problems attract many researchers’ at-

tention in recent years. Many numerical algorithms are proposed for solving

them. Among these algorithms, difference-of-convex algorithm (DCA) is a fun-

damental and classical one. We consider a class of DC optimization problems

whose objective is level-bounded and is the sum of a smooth convex function

with Lipschitz gradient, a proper closed convex function and a continuous con-

cave function. This kind of DC problems can be solved by the aforementioned

DCA, however, a direct application of DCA may lead to difficult subproblems.

To overcome this difficulty, proximal DCA has been proposed. While the sub-

problems involved in the proximal DCA are simpler, proximal DCA maybe slow

in practice. This is because proximal DCA reduces to the proximal gradient

algorithm when the concave part of the objective is void. In this theis, mo-

tivated by the extrapolation techniques for accelerating the proximal gradient

algorithm in the convex settings, we consider a proximal difference-of-convex

algorithm with extrapolation to possibly accelerate the proximal DCA. We

show that any accumulation point of the sequence generated by our algorithm

is a stationary point of the DC optimization problem for a fairly general choice

of extrapolation parameters: in particular, the parameters can be chosen as in

FISTA with fixed restart [26]. Moreover, by assuming the Kurdyka- Lojasiewicz

property of an auxiliary function and the differentiability of the concave part,

we establish global convergence of the sequence generated by our algorithm and

analyze its convergence rate. From the results in our numerical experiments on

two difference-of-convex regularized least squares models, proximal difference-

of-convex algorithm with extrapolation usually outperforms the proximal DCA
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with nonmonotone linesearch.
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Chapter 1

Introduction

In recent years, nonconvex problems arise in many application areas such as matrix

completion [17], image processing [20, 48], portfolio selection [40] and so on. Since the

nonconvex problems maybe from different practical applications, the structures of

these nonconvex problems are potentially different. For example, both the quadratic

problems and DC problems are nonconvex problems, but they have different struc-

tures. And there are many other different nonconvex problems whose structures are

different. Based on the special structures of these nonconvex optimization prob-

lems, many algorithms including proximal gradient algorithm, DCA, and ipiano are

proposed for solving them. However, some algorithms among them, in their origi-

nal forms, are not efficient enough to solve the nonconvex problems. Thus various

extrapolation techniques are used for possibly accelerating these algorithms.

In this thesis, we study the proximal algorithms with extrapolation for minimiz-

ing two classes of nonconvex optimization problems. Concretely, we first study the

proximal gradient algorithm with extrapolation for a minimizing problem, whose

objective is the sum of a Lipschitz differentiable function and a proper closed con-

vex function. And then we consider a proximal difference-of-convex algorithm with

extrapolation for minimizing a DC optimization problem.
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1.1 Motivation and related algorithms

1.1.1 Problem description and proximal gradient algorithms

As we all know, the gradient algorithm is a very simple but fundamental algorithm for

smooth and convex problems. During the past few years, many variants of gradient

algorithm including heavy ball method [51] are proposed for speeding up the original

gradient algorithm. Recently, due to the needs of some practical applications, many

researchers pay attention to a kind of composite functions, which are the sum of a

differentiable function and a nondifferentiable function whose proximal map is easy to

compute. To solve this kind of optimization problems, proximal gradient algorithm

[35] was proposed and further studied in many literatures [3, 43, 44, 45, 48].

In the first part of this thesis, we consider the following minimization problem:

min
x∈Rn

F (x) := f(x) + g(x), (1.1)

where g is a proper closed convex function and f is a possibly nonconvex function

that has a Lipschitz continuous gradient. We also assume that the proximal operator

of µg is easy to compute, where µ > 0 is a fixed number. Moreover, we assume the

optimal value of (1.1) is finite and attained.

Problem (1.1) arises in many real applications, such as image restoration [20, 48],

compressed sensing [18, 27], matrix completion [17] and so on. Since the scales

of these problems are very large, a plenty of first order algorithms are proposed for

solving them. Among these first order methods, proximal gradient algorithm [35] is a

fundamental and commonly used one, whose computational efforts in each iteration

are the evaluations of ∇f and the proximal mapping of µg. When f in (1.1) is

convex, then using the proximal gradient algorithm to solve (1.1), we obtain from

[61, Theorem 1(a)] that

F (xt)− inf
x∈Rn

F (x) = O

(
1

t

)
,

2



where {xt} is generated by the proximal gradient algorithm. However, the origi-

nal proximal gradient algorithm can be slow when it is used for solving practical

problems; see, for example, [26, Section 5].

Hence, many mathematicians and experts from different areas have tried dif-

ferent ways to accelerate the proximal gradient algorithm. Among those methods,

performing extrapolation, which means adding momentum terms involving the pre-

vious iterations to the current iteration, is an efficient and simple strategy. We give

a prototypical extrapolation algorithm as followsy
t = xt + βt(x

t − xt−1),

xt+1 = argmin
x∈Rn

{
〈∇f(yt), x〉+ 1

2µ
‖x− yt‖2 + g(x)

}
,

(1.2)

where µ > 0 is a positive constant that depends on the Lipschitz continuity modulus

of ∇f , and the extrapolation parameters βt satisfy 0 ≤ βt ≤ 1 for all t. One

well known example of the extrapolation methods is the fast iterative shrinkage-

thresholding algorithm (FISTA) proposed by Beck and Teboulle [8], which is based

on Nesterov’s extrapolation techniques [43, 44, 46, 47] and is designed for solving

(1.1) with f being convex and g being continuous. Their analysis can be directly

extended to the case when g is a proper closed convex function. Another multistep

version of accelerated gradient-like algorithm for solving problem (1.1) was proposed

and studied by Nesterov [45], but the theoretical analysis and proof techniques were

completely different. Since FISTA is a special extrapolation algorithm, it also takes

the form (1.2) and requires {βt} to satisfy a certain recurrence relation. We can see

from [8, 45] that FISTA displays a faster convergence rate than the original proximal

gradient algorithm, which is

F (xt)− inf
x∈Rn

F (x) = O

(
1

t2

)
,

where {xt} is generated by FISTA. Since then, many other accelerated proximal
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gradient algorithms which are based on Nesterov’s extrapolation techniques have

been proposed and studied. We refer the readers to see [10, 11, 61] for more details.

Due to the fast convergence rate of FISTA in term of objective values, many

literatures further study the extrapolation method (1.2), see, for example, [6, 21, 26,

33, 55]. Among them, O’Donoghue and Candès [26] proposed restart schemes for the

extrapolation coefficients βt based on FISTA for solving (1.1) with a convex f and

a void g. They mainly reset the extrapolation coefficients βt = β0 every T iterations

instead of using the recurrence relation of βt in FISTA for all t. When f is strong-

ly convex, they showed that the sequence of objective values was globally linearly

convergent to the optimal value of the problems for sufficient large T . We see from

the discussion in [26, Section 2.1] that FISTA with restart schemes is robust against

errors in the estimation of the strong convexity modulus of f . Later, Chambolle

and Dossal [21] showed that the whole sequence generated by (1.2) with βt = t−1
t+α−1

(α > 3) for solving (1.1) with a convex f is convergent in Hilbert space. Recently,

Attouch and Chabani [6] extended their results to allow errors in gradient compu-

tation. More recently, Tao, Boley and Zhang [55] proved local linear convergence

of FISTA, when it is applied to solving the LASSO (i.e., g is a positive multiple of

the `1 norm and f is a least squares loss function) by assuming that the problem

has a unique solution which satisfies strict complementarity condition. Johnstone

and Moulin [33] considered (1.1) with f being convex, and showed that the whole

sequence generated by (1.2) is convergent by assuming that the extrapolation coef-

ficients βt satisfy 0 ≤ βt ≤ β̄ for some β̄ < 1. Moreover, by imposing uniqueness

of the optimal solution together with a technical assumption, they showed that the

sequence generated by (1.2) is locally linearly convergent when applied to the LASSO

for a particular choice of {βt}.

Noting from the above literatures that the local linear convergence of (1.2) is

only established for convex problems whose optimal solution is unique for some spe-
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cific choices of extrapolation coefficients {βt}. These conditions are too restrictive

for many real application problems. In addition, for convex problems, nothing is

known concerning the convergence behavior of {xt} when supt βt = 1 for a choice

of {βt} other than βt = t−1
t+α−1

with α > 3. Thus, we further consider the conver-

gence behavior of the sequence {xt} generated by (1.2) in this thesis. In particular,

we discuss local linear convergence under more general conditions in the possibly

nonconvex case. We also study the convergence behavior of {xt} in the convex case

when supt βt = 1.

1.1.2 DC problems and DCA

In this subsection, we introduce the difference-of-convex (DC) optimization problems

and some well known algorithms which are usually applied to solving them.

DC optimization problems are very common in our real life. For example, they

arise in compressed sensing [64], digital communication system [2] and assignment

and power allocation [54]; see more applications in the recent monograph [62, Chap-

ter 7]. DC optimization problems are problems whose objective can be written as

the difference of a proper closed convex function and a continuous convex function.

Hence, making use of the special structures of the DC problems, many algorithms

have been proposed for solving them. Among them, DC algorithm (DCA) proposed

by Tao and An [50] becomes a fundamental and classical algorithm for solving DC op-

timization problems, see more details in [7, 31, 41, 56, 57, 58]. This algorithm mainly

uses a linear majorant to replace the concave part of the objective in DC problems

and then solves the resulting convex problems. Despite the simple framework of this

algorithm, a directly use of the original DCA may lead to difficult subproblems. In

view of this, recently, Gotoh, Takeda, and Tono [31] proposed a proximal DCA1 for

solving DC optimization problems whose objective can be written as the sum of a

1 This algorithm was called “the proximal difference-of-convex decomposition algorithm” in [31].
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smooth convex function with Lipschitz gradient, a proper closed convex function and

a continuous concave function. Their algorithm not only majorizes the concave part

in the objective by a linear majorant, but also majorizes the smooth convex part by

a quadratic majorant in each iteration. Then they showed that when the proximal

mapping of the proper closed convex function is simple, which means it can be easily

computed, the subproblems of their algorithm can be solved efficiently. However, we

note that when the concave part of the objective is void, their proximal DCA is the

same as the original proximal gradient algorithm for solving convex problems, which

can be slow in practice [26, Section 5]. Hence, proximal DCA may be also slow in

practice.

Then we want to incorporate some techniques to accelerate the proximal DCA.

Performing extrapolation is a commonly used technique. Indeed, such technique can

date back to Polyak’s heavy ball method [51] for solving convex optimization prob-

lems. We refer readers to see Subsection 1.1.1 for a detailed overview of extrapolation

technique used recently.

Inspired by the success of using extrapolation technique in the proximal gradi-

ent algorithm to accelerate the original proximal gradient algorithm, and in view

of the fact that the proximal gradient algorithm and the proximal DCA are the

same when applied to convex problems, in this thesis, we mainly use the extrapo-

lation techniques to possibly accelerate the proximal DCA for solving the same DC

optimization problems stated in proximal DCA [31].2

1.2 Contributions of this thesis

The contributions of this thesis are as follows:

• First, under the same error bound condition used in [38] for analyzing conver-

2 In the numerical section of [31], the authors also state that incorporating extrapolation techniques
suitably into the proximal DCA can accelerate the algorithm empirically.
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gence of the proximal gradient algorithm, we show that there is a threshold β̃

depending on f so that if supt βt < β̃, then the sequence {xt} generated by

(1.2) converges R-linearly to a stationary point of (1.1) and the sequence of

the objective value {F (xt)} is also R-linearly convergent. In particular, if f is

in addition convex, then β̃ reduces to 1 and we can conclude that the sequence

{xt} generated by the FISTA with fixed restart is R-linearly convergent to an

optimal solution of (1.1); see Section 3.2.3. The error bound condition is sat-

isfied for a wide range of problems including the LASSO, and hence our linear

convergence result concerning (1.2) with a fixed µ is more general than those

discussed in [33].

• Second, when f in (1.1) is convex and F is level-bounded, we show that if

supt βt = 1, {βt} is nondecreasing and
∑∞

t=1(1− βt) =∞, then the successive

changes ‖xt+1−xt‖ go to 0 as t→∞. As a corollary, we deduce that lim
t→∞
‖xt+1−

xt‖ = 0 for the sequence generated by the FISTA.

• For the DC problems, we propose a proximal difference-of-convex algorithm

with extrapolation (pDCAe) for solving them. We prove that, for a fairly gen-

eral choice of extrapolation parameters, if the objective is level-bounded, then

any accumulation point of the sequence generated by our algorithm is a sta-

tionary point of the DC problem we considered. The choice of parameters is

general enough to cover those used in FISTA with fixed restart [26]. Addition-

ally, by assuming that the objective is a level-bounded Kurdyka- Lojasiewicz

function (see, for example, [4]) and the concave part is differentiable, we show

that the whole sequence generated by our algorithm is globally convergent.

We also establish the convergence rate of the algorithm by using the Kurdyka-

 Lojasiewicz exponent of an auxiliary function. Finally, we perform numerical

experiments on `1−2 [64] and logarithmic [19] regularized least squares prob-
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lems. Our numerical experiments show that the pDCAe usually outperforms

the proximal DCA with nonmonotone linesearch.

1.3 Outline of this thesis

Chapter 2 gives some preliminary materials which will be used in the following chap-

ters. We first give an overview of some basic definitions and lemmas about non-

smooth analysis. Next, we introduce the definitions of Q-linear convergence and

R-linear convergence, give a lemma which implies the relationship between them.

Finally, we introduce the Kurdyka- Lojasiewicz (KL) property and uniformed KL

property, which are very important for the convergence analysis of many algorithms.

Chapter 3 focuses on the proximal gradient algorithm with extrapolation for solv-

ing problem (1.1). We present the framework of proximal gradient algorithm with

extrapolation for solving (1.1). Moreover, we show that any accumulation point of

the sequence generated by the proximal gradient algorithm with extrapolation is a

stationary point of the objective function F . Next, we introduce the error bound

condition, and using this condition, we show that both the objective sequence and

the iterate sequence are R-linearly convergent if the extrapolation coefficients are

below a certain threshold. We further demonstrate that our theory can be applied to

analyzing the convergence of FISTA with the fixed restart scheme for convex prob-

lems. In addtion, again for convex problems, we prove that the successive changes

of the iterates go to zero for many choices of {βt} that approach the threshold: the

choices are flexible enough to cover the choice of {βt} used in the FISTA. Finally,

some numerical experiments are performed to illustrate our results.

Chapter 4 is devoted to analyzing the convergence behavior of the Proximal DCA

with extrapolation (pDCAe) for solving a class of the DC problems. We first describe

the DC problems we studied and present the proximal DCA with extrapolation

8



for solving them. After that, we establish global subsequential convergence of the

sequence generated by pDCAe. In addition, by assuming that an auxiliary function

satisfies the Kurdyka- Lojasiewicz property and the the concave part is differentiable,

we establish global convergence of the sequence generated by our algorithm and

analyze its convergence rate. In the end of this chapter, we perform numerical

experiments on `1−2 [64] and logarithmic [19] regularized least squares problems.
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Chapter 2

Preliminary materials

Before we start to study the proximal algorithms for solving the nonconvex nons-

mooth problems, some basic notation and preliminary definitions and lemmas are

given. We first review some knowledge of nonsmooth optimization we used in this

thesis. Next, we give the definitions of two important classes of linear convergence

in optimization and numerical analysis, which are Q-linear convergence and R-linear

convergence. Finally, we recall the Kurdyka- Lojasiewicz (KL) property, which holds

for many functions. And then, we give the definition of KL functions and uniformed

KL property. This property will be used in our thesis for analyzing the convergence

of proximal difference-of-convex algorithm with extrapolation.

2.1 Basic knowledge in nonsmooth optimization

We recall some basic definitions and notions of nonsmooth optimization in this

subsection.

For a nonempty closed set C ⊆ Rn, its indicator function is defined by

δC(x) =

{
0 if x ∈ C,
+∞ if x /∈ C.

Moreover, we use dist(x, C) to denote the distance from x to C, where dist(x, C) =

infy∈C ‖x− y‖. When C is in addition convex, we use ProjC(x) to denote the unique

10



closest point on C to x.

The domain of an extended-real-valued function h : Rn → [−∞,∞] is defined as

dom h = {x ∈ Rn : h(x) < +∞}. We say that h is proper if it never equals −∞ and

dom h 6= ∅. Such a function is closed if it is lower semicontinuous. A proper closed

function h is said to be level bounded if the lower level sets of h are bounded, i.e.,

the set {x ∈ Rn : h(x) ≤ r} is bounded for any r ∈ R. For a proper closed function

h : Rn → R ∪ {∞}, the (limiting) subdifferential of h at x ∈ dom h is given by

∂h(x) =

{
v ∈ Rn : ∃ xt h→ x, vt → v with lim inf

y→xt

h(y)− h(xt)− 〈vt, y − xt〉
‖y − xt‖

≥ 0 ∀t
}
,

(2.1)

where z
h→ x means z → x and h(z) → h(x). We also write dom ∂h := {x ∈

Rn : ∂h(x) 6= ∅}. The aforementioned subdifferential (2.1) is the same as the

subdifferential defined in convex analysis when h is convex, i.e.,

∂h(x) = {v ∈ Rn : h(y)− h(x)− 〈v, y − x〉 ≥ 0, ∀y ∈ Rn} ;

see, for example, [53, Proposition 8.12]. In addition, if h is continuously differentiable,

then the subdifferential (2.1) is just ∇h. The partial gradient of a continuously

differentiable h with respect to the i-th component of x is denoted by ∇ih.

For a proper closed convex function h, we use Proxh(v) to denote the proximal

operator of h at any v ∈ Rn, i.e.,

Proxh(v) = argmin
x∈Rn

{
h(x) +

1

2
‖x− v‖2

}
.

We note that this operator is well defined for any v ∈ Rn. One often used proximal

operator of µh instead of h at v ∈ Rn is as follows:

Proxh(v) = argmin
x∈Rn

{
h(x) +

1

2µ
‖x− v‖2

}
,

11



where µ > 0 is a constant. We refer the readers to [42] for more properties of this

proximal operator.

In view of [53, Exercise 8.8(c)], we obtain that the following first-order necessary

condition always holds for an optimal solution x̂ of (1.1),

0 ∈ ∇f(x̂) + ∂g(x̂). (2.2)

One point x̃ ∈ Rn is called a stationary point of (1.1) if x̃ satisfies (2.2). In particular,

from the relation, we see that any optimal solution x̂ of (1.1) is a stationary point

of (1.1). Moreover, the set of stationary points of F in (1.1) is denoted by X .

2.2 Some definitions about the linear convergence

In this section, we recall two notions of (local) linear convergence, which will be

used in our convergence analysis in this thesis.

Definition 2.2.1. For a sequence {xt}, we say that {xt} converges Q-linearly to x∗

if there exist c ∈ (0, 1) and t0 > 0 such that

‖xt+1 − x∗‖ ≤ c‖xt − x∗‖, ∀t ≥ t0;

Similarly, we give the following R-linear convergence of sequence {xt}.

Definition 2.2.2. We say that {xt} converges R-linearly to x∗ if

lim sup
t→∞

‖xt − x∗‖
1
t < 1.

The following fact states the relationship between the two notions of linear con-

vergence, which will be used in our convergence analysis below.

Lemma 2.2.1. Suppose that {at} and {bt} are two sequences in R and 0 ≤ bt ≤ at

for all t. Suppose further that {at} is Q-linearly convergent. Then {bt} is R-linearly

convergent.
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2.3 KL property and uniformized KL property

This section introduces the Kurdyka- Lojasiewicz (KL) property [3, 4, 5, 13], which

is an important tool in establishing the convergence of many first-order methods; see,

for example, [4, 5]. Indeed, many functions including the semialgebraic functions

satisfy this property.

Definition 2.3.1. (KL property) For a proper closed function h, we say that the

KL property holds for h at point x̂ ∈ dom ∂h if there exist a neighborhood O of x̂, a

positive number a, and a continuous concave function φ : [0, a)→ R+ with φ(0) = 0

such that:

(i) φ is continuously differentiable on (0, a);

(ii) φ′ > 0 on (0, a);

(iii) Take any x ∈ O which satisfies h(x̂) < h(x) < h(x̂) + a, one has

1 ≤ φ′(h(x)− h(x̂)) dist(0, ∂h(x)). (2.3)

A function h is called a KL function, if it satisfies the KL property at all points in

dom ∂h .

We next recall the following result provided in [14, Lemma 6] concerning the

uniformized KL property. For notational simplicity, the set containing all concave

continuous functions φ : [0, a) → R+ that are continuously differentiable on (0, a)

with φ′ > 0 and φ(0) = 0 is denoted by Ξa.

Lemma 2.3.1. (Uniformized KL property) Suppose that the function h is proper

closed and the set Γ is compact. If h is a constant on Γ and satisfies the KL property

at each point of Γ, then there exist ε, a > 0 and φ ∈ Ξa such that for any x̂ ∈ Γ and

any x satisfying dist(x,Γ) < ε and h(x̂) < h(x) < h(x̂) + a,

1 ≤ φ′(h(x)− h(x̂))dist(0, ∂h(x)).
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Chapter 3

Linear convergence of proximal

gradient with extrapolation for

solving a class of nonconvex

nonsmooth problems

In this chapter, we mainly analyze the convergence behavior of proximal gradient

algorithm with extrapolation for solving optimization problem (1.1).

We first present a very important fact for the differentiable function f in (1.1),

and this fact will play an important role in establishing our convergence results. Then

we present the proximal gradient algorithm with extrapolation. Next we construct

an auxiliary sequence, which will be applied to proving the subsequential conver-

gence of proximal gradient algorithm with extrapolation. Moreover, we introduce

the error bound condition. Under this error bound condition, we obtain the R-linear

convergence of sequence {xt} and {F (xt)} under the assumption that the extrap-

olation coefficients are below a certain threshold, where {xt} is generated by the

proximal gradient algorithm with extrapolation. In addition, we show that when f

is convex, the threshold reduces to 1, and FISTA with fixed restart is a special case

of our algorithm. Furthermore, we show that the successive changes of the iterates

go to zero for many choices of {βt} that approach the threshold 1: the choices are
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flexible enough to cover the choice of {βt} used in the FISTA. Finally, we perform

some numerical experiments to illustrate our results.

3.1 Proximal gradient algorithm with extrapola-

tion

In this section, we first give a fact of the differentiable function f and then present

the proximal gradient algorithm with extrapolation for solving (1.1). After that,

we introduce an auxiliary sequence which will be used for the convergence analysis

below.

We recall that in our problem (1.1), the function g is proper closed convex and

f has a Lipschitz continuous gradient; moreover, inf F > −∞ and X 6= ∅. Further-

more, we observe that any function f whose gradient is Lipschitz continuous can be

written as f = f1 − f2, where f1 and f2 are two convex functions with Lipschitz

continuous gradients. For instance, one can decompose f as

f(x) = f(x) +
c

2
‖x‖2︸ ︷︷ ︸

f1(x)

− c

2
‖x‖2︸ ︷︷ ︸
f2(x)

,

for any c ≥ Lf , where Lf is a Lipschitz continuity modulus of ∇f . It is then routine

to show that both f1 and f2 are convex functions with Lipschitz continuous gradients.

Thus, without loss of generality, from now on, we assume that f = f1−f2 for some

convex functions f1 and f2 with Lipschitz continuous gradients. For concreteness, we

denote a Lipschitz continuity modulus of ∇f1 by L > 0, and a Lipschitz continuity

modulus of ∇f2 by l ≥ 0. Moreover, by taking a larger L if necessary, we assume

throughout that L ≥ l. Then it is not hard to show that ∇f is Lipschitz continuous

with a modulus L.

We are now ready to present our algorithm studied in this chapter.
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PGe: Proximal gradient algorithm with extrapolation

Input: x0 ∈ dom g, {βt} ⊆
[
0,
√

L
L+l

]
. Set x−1 = x0.

for t = 0, 1, 2, · · · do
yt = xt + βt(x

t − xt−1),

xt+1 = Prox 1
L
g

(
yt − 1

L
∇f(yt)

)
.

(3.1)

end for

In the following contexts of this chapter, we shall discuss the convergence behavior

of PGe. According to the definition of proximal operator presented in Subsection 2.1,

the x-update in (3.1) is immediately given by

xt+1 = argmin
x∈Rn

{
〈∇f(yt), x〉+

L

2
‖x− yt‖2 + g(x)

}
. (3.2)

We will use this relation repeatedly in our convergence analysis below. Next, we

introduce an auxiliary sequence {Ht,α},

Ht,α = F (xt) + α‖xt − xt−1‖2, (3.3)

where α is a positive number in the interval [L+l
2
β̄2, L

2
], β̄ := supt βt and {xt} is

generated by PGe. In the next Subsection 3.2.1, we mainly consider the conver-

gence properties of {Ht,α}. The corresponding results obtained will then be applied

to establishing the convergence of {xt} and {F (xt)}. Similar auxiliary sequences

(3.3) were also used in [6, 21, 33] for analyzing (1.2) with different extrapolation

coefficients.

3.2 Convergence analysis of PGe

We first give some lemmas about the auxiliary sequence {Ht,α} which is defined as

(3.3).
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3.2.1 Some lemmas

Lemma 3.2.1. Let {xt} be a sequence generated by PGe and α ∈ [L+l
2
β̄2, L

2
]. Then

we have the following results.

(i) Given any fixed point z ∈ dom g, we obtain that

F (xt+1) ≤ F (z) +
L+ l

2
‖z − yt‖2 − L

2
‖xt+1 − z‖2. (3.4)

(ii) It holds that for all t,

Ht+1,α−Ht,α ≤
(
−L

2
+ α

)
‖xt+1− xt‖2 +

(
L+ l

2
β2
t − α

)
‖xt− xt−1‖2. (3.5)

(iii) The sequence {Ht,α} is nonincreasing.

Proof. We first prove (i). Take any fixed z ∈ dom g. From the definition of xt+1 in

(3.2) and the fact that the objective function in the minimization problem (3.2) is

strongly convex, we obtain that

〈∇f(yt), xt+1〉+
L

2
‖xt+1 − yt‖2 + g(xt+1)

≤ 〈∇f(yt), z〉+
L

2
‖z − yt‖2 + g(z)− L

2
‖xt+1 − z‖2.

By rearranging terms, we see further that

g(xt+1) ≤ g(z) + 〈−∇f(yt), xt+1 − z〉+
L

2
‖z − yt‖2

− L

2
‖xt+1 − yt‖2 − L

2
‖xt+1 − z‖2.

(3.6)

On the other hand, from the fact that f has a Lipschitz continuous gradient with a

Lipschitz continuity modulus L, we obtain that

f(xt+1) ≤ f(yt) + 〈∇f(yt), xt+1 − yt〉+
L

2
‖xt+1 − yt‖2. (3.7)
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Summing (3.6) and (3.7), we see further that

f(xt+1) + g(xt+1) ≤ f(yt) + g(z) + 〈∇f(yt), z − yt〉

+
L

2
‖z − yt‖2 − L

2
‖xt+1 − z‖2.

(3.8)

Next, using the fact that f = f1 − f2, we have

f(yt) + 〈∇f(yt), z − yt〉

= f1(yt)− f2(yt) + 〈∇f1(yt), z − yt〉 − 〈∇f2(yt), z − yt〉.
(3.9)

Since f1 is convex and continuously differentiable, we immediately obtain that

f1(yt) + 〈∇f1(yt), z − yt〉 ≤ f1(z). (3.10)

Using the fact that ∇f2 is Lipschitz continuous with a modulus l, we have

f2(z)− f2(yt)− 〈∇f2(yt), z − yt〉 ≤ l

2
‖z − yt‖2. (3.11)

Combining (3.10), (3.11) with (3.9) and recalling that f = f1 − f2, we see further

that

f(yt) + 〈∇f(yt), z − yt〉 ≤ f(z) +
l

2
‖z − yt‖2. (3.12)

Summing (3.8) and (3.12), and recalling that F = f+g, we obtain (3.4) immediately.

This proves (i).

We now prove (ii). From the definition of the y-update in (3.1), we see that

yt − xt = βt(x
t − xt−1). Using this and (3.4) with z = xt, we obtain that

F (xt+1)− F (xt) ≤ L+ l

2
β2
t ‖xt − xt−1‖2 − L

2
‖xt+1 − xt‖2.
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Combining this with the definition of Ht,α from (3.3), we see further that

Ht+1,α −Ht,α = F (xt+1) + α‖xt+1 − xt‖2 − F (xt)− α‖xt − xt−1‖2

= F (xt+1)− F (xt) + α‖xt+1 − xt‖2 − α‖xt − xt−1‖2

≤ −L
2
‖xt+1 − xt‖2 +

L+ l

2
β2
t ‖xt − xt−1‖2 + α‖xt+1 − xt‖2 − α‖xt − xt−1‖2

=

(
−L

2
+ α

)
‖xt+1 − xt‖2 +

(
L+ l

2
β2
t − α

)
‖xt − xt−1‖2,

which is just (3.5). This proves (ii). Finally, using the assumption that L+l
2
β̄2 ≤ α ≤

L
2
, we have

−L
2

+ α ≤ 0, and
L+ l

2
β2
t − α ≤

L+ l

2
β̄2 − α ≤ 0 ∀t.

Consequently, Ht+1,α − Ht,α ≤ 0, i.e., {Ht,α} is nonincreasing, which completes the

proof.

In view of Lemma 3.2.1, we immediately obtain the following corollary.

Corollary 3.2.2. Suppose that F in (1.1) is level bounded. Then the sequence {xt}

generated by PGe is bounded.

Proof. Take α = L
2

in the sequence {Ht,α}. From Lemma 3.2.1, we see that the

sequence {Ht,L
2
} is nonincreasing. From this and the definition of Ht,L

2
, we have

F (xt) ≤ Ht,L
2
≤ H0,L

2
<∞.

Since F is level bounded by assumption, we conclude that {xt} is bounded.

Lemma 3.2.3. Let {xt} be a sequence generated by PGe, and α ∈ [L+l
2
β̄2, L

2
]. Then

we have the following results.

(i) The sequence {Ht,α} is convergent.
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(ii)
∑∞

t=0

(
α− L+l

2
β2
t+1

)
‖xt+1 − xt‖2 <∞.

Proof. Since inf F > −∞ from our assumption, we immediately deduce that Ht,α =

F (xt)+α‖xt−xt−1‖2 is bounded from below. This together with the fact that {Ht,α}

is nonincreasing from Lemma 3.2.1 implies that {Ht,α} is convergent, which proves

(i).

We now prove (ii). using the fact −L
2

+ α ≤ 0, we have from (3.5) that

Ht+1,α −Ht,α ≤ −
(
α− L+ l

2
β2
t

)
‖xt − xt−1‖2. (3.13)

Summing both sides of (3.13) from 1 to N , we have

0 ≤
N∑
t=1

(
α− L+ l

2
β2
t

)
‖xt − xt−1‖2 ≤

N∑
t=1

(Ht,α −Ht+1,α) = H1,α −HN+1,α, (3.14)

where the nonnegativity is a consequence of the fact that α ≥ L+l
2
β̄2 ≥ L+l

2
β2
t for all

t. From (i), we see that {Ht,α} is convergent. Hence, letting N → ∞ in (3.14), we

conclude that

∞∑
t=1

(
α− L+ l

2
β2
t

)
‖xt − xt−1‖2

≤ H1,α − lim
N→∞

HN+1,α <∞,

which completes the proof.

In the following lemma, we show that when {βt} is chosen below a certain thresh-

old, any accumulation point of the sequence {xt} generated by PGe, if exists, is a

stationary point of F . This result has been proved in [33] when the function f is

convex. Indeed, in the convex case, it was shown in [33, Theorem 4.1] that the whole

sequence {xt} is convergent. However, the following convergence result is new when

the function f is nonconvex.
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Lemma 3.2.4. Suppose that β̄ <
√

L
L+l

and {xt} is a sequence generated by PGe.

Then we have the following results.

(i)
∑∞

k=0 ‖xt+1 − xt‖2 <∞.

(ii) Any accumulation point of {xt} is a stationary point of F .

Proof. Since β̄ <
√

L
L+l

, one can choose a fixed α ∈ (L+l
2
β̄2, L

2
). Hence, L+l

2
β2
t ≤

L+l
2
β̄2 < α for all t. Combining this with Lemma 3.2.3 (ii), we see that

0 <

(
α− L+ l

2
β̄2

) ∞∑
t=0

‖xt+1 − xt‖2

=
∞∑
t=0

(
α− L+ l

2
β̄2

)
‖xt+1 − xt‖2

≤
∞∑
t=0

(
α− L+ l

2
β2
t+1

)
‖xt+1 − xt‖2 <∞,

which immediately implies that the conclusion in (i) holds.

We next prove (ii). Choose any fixed accumulation point x̄ of the sequence {xt},

hence there exists a subsequence {xti} such that lim
i→∞

xti = x̄. From the x-update

(3.2), we have

xti+1 = argmin
x∈Rn

{
〈∇f(yti), x〉+

L

2
‖x− yti‖2 + g(x)

}
. (3.15)

Using the first-order optimality condition of the minimization problem (3.15), we see

further that

−L(xti+1 − yti) ∈ ∇f(yti) + ∂g(xti+1).

From this and the definition of yti , which is yti = xti +βti(x
ti−xti−1), we see further

that

− L[(xti+1 − xti)− βti(xti − xti−1)] ∈ ∇f(yti) + ∂g(xti+1). (3.16)
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Letting i go to ∞ on both sides of (3.16), and recalling that ‖xti+1 − xti‖ → 0 from

(i) together with the facts that ∇f is continuous and ∂g is closed (see, for example,

[15, Page 80]), we obtain that

0 ∈ ∇f(x̄) + ∂g(x̄),

which completes the proof.

Define Ω as the set of accumulation points of the sequence {xt} generated by

PGe. We note from Corollary 3.2.2 and Lemma 3.2.4 (ii) that ∅ 6= Ω ⊆ X when

F is level bounded. In the next proposition, we show that F is constant over Ω

if {βt} is chosen below a certain threshold. Since F is only assumed to be lower

semicontinuous, this result is nontrivial when F has stationary points that are not

globally optimal.

Proposition 3.2.5. Suppose that β̄ <
√

L
L+l

and {xt} is a sequence generated by

PGe with its set of accumulation points denoted by Ω. Then ζ := lim
t→∞

F (xt) exists

and F ≡ ζ on Ω.

Proof. Since β̄ <
√

L
L+l

, we take any fixed α ∈ (L+l
2
β̄2, L

2
). According to Lemmas

3.2.3 and 3.2.4, the sequence {Ht,α} is convergent and ‖xt+1 − xt‖ → 0. Using these

results and recalling that the definition of Ht,α is that Ht,α = F (xt) +α‖xt− xt−1‖2,

we can easily obtain that lim
t→∞

F (xt) exists. We denote this limit by ζ.

We now prove the second part, i.e., F ≡ ζ on Ω. If Ω = ∅, then the conclusion

holds trivially. Otherwise, take any x̂ ∈ Ω, by the definition, there must exist a

subsequence {xti} such that lim
i→∞

xti = x̂. Then we conclude from the definition of ζ

and the fact that F is lower semicontinuous that

F (x̂) ≤ lim inf
i→∞

F (xti) = ζ. (3.17)
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On the other hand, using the definition of xti as the minimizer in (3.2) and rearrang-

ing terms, we have

g(xti) + 〈∇f(yti−1), xti − x̂〉+
L

2
‖xti − yti−1‖2 ≤ g(x̂) +

L

2
‖x̂− yti−1‖2. (3.18)

Adding f(xti) to both sides of (3.18), we obtain further that

f(xti)+g(xti)+〈∇f(yti−1), xti− x̂〉+ L

2
‖xti−yti−1‖2 ≤ f(xti)+g(x̂)+

L

2
‖x̂−yti−1‖2.

(3.19)

Next, recall that yti−1 = xti−1 + βti−1(xti−1 − xti−2). Thus, we have

‖xti − yti−1‖ = ‖xti − xti−1 − βti−1(xti−1 − xti−2)‖

≤ ‖xti − xti−1‖+ β̄‖xti−1 − xti−2‖,
(3.20)

where the inequality is obtained by using the triangle inequality and the fact βti−1 ≤

β̄ = supt βt. Similarly, we have

‖x̂− yti−1‖ = ‖x̂− xti + xti − yti−1‖

≤ ‖x̂− xti‖+ ‖xti − yti−1‖.
(3.21)

Since ‖xt+1 − xt‖ → 0 and lim
i→∞

xti = x̂, it follows from (3.20) and (3.21) that

‖xti − yti−1‖ → 0 and ‖x̂− yti−1‖ → 0,

and hence ∇f(yti−1)→ ∇f(x̂), which follows from the continuity of ∇f . From these

and (3.19), we obtain that

ζ = lim sup
i→∞

F (xti) ≤ F (x̂). (3.22)

Thus F (x̂) = lim
i→∞

F (xti) = ζ from (3.17) and (3.22). Since x̂ ∈ Ω is arbitrary, we see

that F ≡ ζ on Ω, which completes the proof.

23



3.2.2 R-linear convergence of {xt} and {F (xt)}

This subsection establishes the R-linear convergence of {xt} and {F (xt)} under the

following assumption. We first introduce this assumption.

Assumption 1. (i) (Error bound condition) Given any fixed ξ ≥ infx∈Rn F (x),

there exist ε > 0 and τ > 0 such that

dist(x,X ) ≤ τ

∥∥∥∥Prox 1
L
g

(
x− 1

L
∇f(x)

)
− x
∥∥∥∥ ,

whenever ‖Prox 1
L
g(x− 1

L
∇f(x))− x‖ < ε and F (x) ≤ ξ.

(ii) There exists δ > 0, such that ‖x− y‖ ≥ δ whenever x, y ∈ X , F (x) 6= F (y).

The above assumption has been used in the convergence analysis of many al-

gorithms, including the gradient projection and block coordinate gradient descent

method, etc; see, for example, [9, 37, 38, 39, 59, 60, 61] and the references therein.

The assumption consists of two parts: the first part is an error bound condition,

while the second part states that when restricted to X , the isocost surfaces of F are

properly separated.

Under our blanket assumptions on F , Assumption 1 is known to be satisfied for

interesting choices of f and g, including:

• f(x) = h(Ax), g is a polyhedral function, where h is a twice continuously differ-

entiable function on Rn and ∇h is Lipschitz continuous, and on any compact

convex set, h is strongly convex; see, [37, Theorem 2.1] and [60, Lemma 6].

This covers the well-known LASSO;

• f is a quadratic function (possibly nonconvex), g is a polyhedral function; see,

for example, [60, Theorem 4].
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The first example is a convex problem, while the second one is possibly nonconvex.

We refer the readers to [60, 61, 67] and the references therein for more examples and

discussions on the error bound condition.

We next show that the auxiliary sequence {Ht,α} is Q-linearly convergent under

Assumption 1. Similar idea has been used for analyzing the convergence behavior of

a class of block coordinate gradient descent methods in [60, Theorem 2].

Lemma 3.2.6. Suppose that β̄ <
√

L
L+l

, α ∈ (L+l
2
β̄2, L

2
) and that Assumption 1

holds. Suppose further that {xt} is a sequence generated by PGe. Then we have the

following results.

(i) lim
t→∞

dist(xt,X ) = 0.

(ii) The sequence {Ht,α} is Q-linearly convergent.

Proof. We first prove (i). Using the triangle inequality, we observe that∥∥∥∥Prox 1
L
g

(
xt − 1

L
∇f(xt)

)
− xt

∥∥∥∥
≤
∥∥∥∥Prox 1

L
g

(
xt − 1

L
∇f(xt)

)
− Prox 1

L
g

(
yt − 1

L
∇f(yt)

)∥∥∥∥
+

∥∥∥∥Prox 1
L
g

(
yt − 1

L
∇f(yt)

)
− xt

∥∥∥∥
≤
∥∥∥∥Prox 1

L
g

(
xt − 1

L
∇f(xt)

)
− Prox 1

L
g

(
yt − 1

L
∇f(yt)

)∥∥∥∥
+

∥∥∥∥Prox 1
L
g

(
yt − 1

L
∇f(yt)

)
− yt

∥∥∥∥+ ‖yt − xt‖.

(3.23)

We now derive an upper bound for the first term on the right hand side of (3.23).

To this end, using the nonexpansiveness property of the proximal operator (see, for
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example, [52, Page 340]), we have∥∥∥∥Prox 1
L
g

(
xt − 1

L
∇f(xt)

)
− Prox 1

L
g

(
yt − 1

L
∇f(yt)

)∥∥∥∥
≤
∥∥∥∥xt − 1

L
∇f(xt)− yt +

1

L
∇f(yt)

∥∥∥∥
≤ ‖xt − yt‖+

1

L
‖∇f(xt)−∇f(yt)‖ ≤ 2‖xt − yt‖,

(3.24)

where the last inequality follows from the Lipschitz continuity of ∇f with a modulus

L. Combining (3.23), (3.24) and noticing that the xt+1 = Prox 1
L
g

(
yt − 1

L
∇f(yt)

)
from PGe, we see further that∥∥∥∥Prox 1

L
g

(
xt − 1

L
∇f(xt)

)
− xt

∥∥∥∥
≤ 3‖xt − yt‖+ ‖xt+1 − yt‖

≤ 3‖xt − yt‖+ ‖xt+1 − xt‖+ ‖xt − yt‖

= 4‖xt − yt‖+ ‖xt+1 − xt‖

= 4βt‖xt − xt−1‖+ ‖xt+1 − xt‖

≤ 4β̄‖xt − xt−1‖+ ‖xt+1 − xt‖,

(3.25)

where the second equality and the last inequality follows from the definition of yt in

(3.1) and the definition of β̄ repectively. Since ‖xt+1 − xt‖ → 0 by Lemma 3.2.4, we

conclude from (3.25) that∥∥∥∥Prox 1
L
g

(
xt − 1

L
∇f(xt)

)
− xt

∥∥∥∥→ 0. (3.26)

Let ξ = H0,α. Since {Ht,α} is nonincreasing from Lemma 3.2.1, we must haveHt,α ≤ ξ

for all t. And recalling the definition of {Ht,α}, we consequently obtain that F (xt) ≤ ξ

for all t. In view of this, (3.26) and Assumption 1 (i), we see that for ξ = H0,α, there

exist τ > 0 and a positive integer T so that for all t ≥ T , we deduce that

dist(xt,X ) ≤ τ

∥∥∥∥Prox 1
L
g

(
xt − 1

L
∇f(xt)

)
− xt

∥∥∥∥ . (3.27)
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Thus from (3.26) and (3.27), we immediately obtain the conclusion in (i).

We now prove (ii). Take an arbitrary z ∈ X , we have from (3.4) that

F (xt+1) ≤ F (z) +
L+ l

2
‖z − yt‖2 − L

2
‖xt+1 − z‖2

≤ F (z) +
L+ l

2
‖z − yt‖2

= F (z) +
L+ l

2
‖z − xt + xt − yt‖2

≤ F (z) + (L+ l)‖z − xt‖2 + (L+ l)‖xt − yt‖2.

(3.28)

Choose z in (3.28) as an x̄t ∈ X so that ‖x̄t−xt‖ = dist(xt,X ). Then using this and

(3.28), we see further that

F (xt+1)− F (x̄t) ≤ (L+ l)dist2(xt,X ) + (L+ l)‖xt − yt‖2. (3.29)

In addition, we observe from the definition of x̄t that

‖x̄t+1 − x̄t‖ ≤ ‖x̄t+1 − xt+1‖+ ‖xt+1 − xt‖+ ‖xt − x̄t‖

= dist(xt+1,X ) + dist(xt,X ) + ‖xt+1 − xt‖.
(3.30)

Recalling that ‖xt+1 − xt‖ → 0 by Lemma 3.2.4. This together with (3.26), (3.27)

and (3.30) shows that ‖x̄t+1−x̄t‖ → 0. From this and Assumption 1 (ii), it must then

hold true that F (x̄t) ≡ ζ for all sufficiently large t, where ζ is a positive constant.

Thus, for all sufficiently large t, we obtain from (3.29) that

F (xt+1)− ζ ≤ (L+ l)dist2(xt,X ) + (L+ l)‖xt − yt‖2. (3.31)

On the other hand, in view of the fact that x̄t is a stationary point of (1.1), we

immediately have −∇f(x̄t) ∈ ∂g(x̄t). Using the convexity of g, we see further that

for all t,

g(x̄t)− g(xt) ≤ 〈−∇f(x̄t), x̄t − xt〉.
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Combining the above relation with the definitions of F , Ht,α and ζ, we see that

ζ −Ht,α = F (x̄t)− F (xt)− α‖xt − xt−1‖2

= f(x̄t) + g(x̄t)− f(xt)− g(xt)− α‖xt − xt−1‖2

≤ f(x̄t)− f(xt) + 〈−∇f(x̄t), x̄t − xt〉 − α‖xt − xt−1‖2

= −f(xt)− [−f(x̄t)]− 〈−∇f(x̄t), xt − x̄t〉 − α‖xt − xt−1‖2

≤ L

2
‖xt − x̄t‖2 − α‖xt − xt−1‖2

for all sufficiently large t, the last inequality follows from the fact that −∇f is

Lipschitz continuous with a modulus L. Using this, the fact that ‖xt+1−xt‖ → 0 by

Lemma 3.2.4 and the conclusion ‖x̄t − xt‖ = dist(xt,X )→ 0 by (i), we deduce that

ζ ≤ lim
k→∞

Ht,α = inf
k
Ht,α, (3.32)

where the equality follows from Lemma 3.2.1 (iii).

Now, combining (3.25), (3.27) with (3.31) together, we see that for all sufficiently

large t,

F (xt+1)− ζ ≤ (L+ l)dist2(xt,X ) + (L+ l)‖xt − yt‖2

≤ (L+ l)τ 2(4β̄‖xt − xt−1‖+ ‖xt+1 − xt‖)2 + (L+ l)‖xt − yt‖2

≤ (L+ l)τ 2(4β̄‖xt − xt−1‖+ ‖xt+1 − xt‖)2 + (L+ l)β̄2‖xt − xt−1‖2

≤ C(‖xt − xt−1‖2 + ‖xt+1 − xt‖2),

for some positive constant C, the third inequality in the above formulation follows

from the definition of yt in (3.1) and the definition of β̄. Using this fact and the

definition of Ht,α, we see further that

0 ≤ Ht+1,α − ζ ≤ η(‖xt − xt−1‖2 + ‖xt+1 − xt‖2), (3.33)

where η = C + α, and the nonnegativity is a consequence of (3.32). On the other

hand, let δ = min
{
L
2
− α, α− L+l

2
β̄2
}

. Then δ > 0 and we see from (3.5) that

(Ht+1,α − ζ)− (Ht,α − ζ) ≤ −δ(‖xt+1 − xt‖2 + ‖xt − xt−1‖2). (3.34)
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Combining (3.34) and (3.33), we obtain further that for sufficiently large t

(Ht+1,α − ζ)− (Ht,α − ζ) ≤ −δ
η

(Ht+1,α − ζ). (3.35)

Reorganizing (3.35), we see that for all sufficiently large t,

0 ≤ Ht+1,α − ζ ≤
1

1 + δ
η

(Ht,α − ζ),

which implies that the sequence {Ht,α} is Q-linearly convergent. This completes the

proof.

We are now ready to prove the local linear convergence of the sequences {xt} and

{F (xt)}, using the Q-linear convergence of {Ht,α}.

Theorem 3.2.7. Suppose that β̄ <
√

L
L+l

and that Assumption 1 holds. Let {xt} be

a sequence generated by PGe. Then we have the following results.

(i) The sequence {xt} is R-linearly convergent to a stationary point of F .

(ii) The sequence {F (xt)} is R-linearly convergent.

Proof. Since β̄ <
√

L
L+l

, we choose a fixed α ∈ (L+l
2
β̄2, L

2
). Then, according to

Lemma 3.2.6, the sequence {Ht,α} is Q-linearly convergent. For notational simplicity,

we denote its limit by ζ. Take δ = min
{
L
2
− α, α− L+l

2
β̄2
}

. Then δ > 0 and we

obtain from (3.5) that

‖xt+1 − xt‖2 ≤ 1

δ
(Ht,α − ζ)− 1

δ
(Ht+1,α − ζ) ≤ 1

δ
(Ht,α − ζ), (3.36)

where the last inequality follows from the fact that the sequence {Ht,α} is nonin-

creasing and convergent to ζ, thanks to Lemmas 3.2.1 and 3.2.3. Combining the
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above inequality with the fact that the sequence {Ht,α} is Q-linearly convergent, we

see that there exist 0 < c < 1 and M > 0 such that

‖xt+1 − xt‖ ≤Mct (3.37)

for all t. Consequently, for any m2 > m1 ≥ 1, we have

‖xm2 − xm1‖ ≤
m2−1∑
k=m1

‖xt+1 − xt‖ ≤ Mcm1

1− c
.

From which, we see that {xt} is a Cauchy sequence and hence convergent. Denoting

its limit by x̂ and letting m2 →∞ in the above relation, we see further that

‖xm1 − x̂‖ ≤ Mcm1

1− c
.

From this relation, we have that {xt} is R-linearly convergent to its limit, which is

a stationary point of F according to Lemma 3.2.4. This proves (i).

Next, we prove (ii). Notice that for any t ≥ 1, we have from the definition of Ht,α

that

|F (xt)− ζ| = |Ht,α − ζ − α‖xt − xt−1‖2|

≤ Ht,α − ζ + α‖xt − xt−1‖2

≤ Ht,α − ζ +
α

δ
(Ht−1,α − ζ),

where the first inequality follows from the triangle inequality and the fact that the

sequence {Ht,α} is nonincreasing and convergent to ζ according to Lemmas 3.2.1 and

3.2.3, and the second inequality follows from (3.36). This together with the Q-linear

convergence of {Ht,α} and Lemma 2.2.1 implies the R-linear convergence of {F (xt)}.

This completes the proof.
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3.2.3 FISTA with restart: a special case of PGe

In this subsection, we introduce FISTA with restart schemes and compare it with

the our algorithm PGe.

Recently, O’Donoghue and Candès [26] proposed adaptive restart schemes for

FISTA, which attract many people’s attention. They mainly discussed FISTA with

fixed and adaptive restarts. Moreover, they proved the global linear convergence

of the objective value, when using FISTA with restart schemes for solving (1.1)

with f being strongly convex and g = 0. Similar restart techniques can also be

adopted in many other algorithms and applications. For example, in the popular

software, TFOCS [11], the authors also applied the restart technique. However, for

the convex nonsmooth problems such as the LASSO, they did not establish any linear

convergence results. For the LASSO, they stressed that “after a certain number of

iterations adaptive restarting can provide linear convergence”; see [26, Page 728].

Next, we will show that FISTA with the aforementioned restart techniques is a

special case of our algorithm PGe. Hence, by our theories in the previous subsection,

when applying FISTA with both of their restart schemes to solving LASSO, we

obtain that both the sequence {xt} and {F (xt)} generated by FISTA with both the

restart schemes are R-linearly convergent,

We first present the framework of FISTA [3, 45] for solving problem (1.1) with

an additionally convex f .
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FISTA Input: x0 ∈ dom g, θ−1 = θ0 = 1. Set x−1 = x0.

for t = 0, 1, 2 · · · do

βt =
θt−1 − 1

θt
,

yt = xt + βt(x
t − xt−1),

xt+1 = Prox 1
L
g

(
yt − 1

L
∇f(yt)

)
,

θt+1 =
1 +

√
1 + 4θ2

t

2
.

end for

In Subsection 1.1.1, we have introduced that FISTA is one of the variants of Nes-

terov’s accelerated proximal gradient algorithms and the extrapolation parameter in

FISTA takes a specific choice of {βt}. From the description of βt in FISTA above,

one can easily deduce that 0 ≤ βt < 1 for all t.1 While since f is convex, then we

can choose l = 0 and hence the threshold
√

L
L+l

= 1 in PGe. According to the above

discussion, we see that FISTA is a special case of PGe.

FISTA with restart schemes (see, for example, [11, 26]) is a new algorithm based

on FISTA, which presents faster convergence property. In our thesis, we consider

the same restart schemes used in [26], which are the fixed restart scheme and the

adaptive restart scheme. For the fixed restart scheme, we choose a fixed positive

integer T , then we reset θt−1 = θt = 1 every T iterations. While for the adaptive

restart scheme, here we use the gradient scheme,2 we reset θt = θt+1 = 1 whenever

〈yt − xt+1, xt+1 − xt〉 > 0; see [26, Eq. 13]. Obviously, if the fixed restart scheme is

1 See the proof in Corollary 3.2.11 in the next subsection.

2 There are two adaptive restart schemes considering in [26, Section 3.2]. One is the gradient
scheme, the other is the function value scheme. It was shown in [26, Section 3.2] that the above
mentioned two restart schemes perform similarly empirically and that the gradient scheme is ad-
vantageous over the function value scheme. Thus, in this thesis, we mainly consider the gradient
scheme.
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invoked in the FISTA with restart schemes, we will have β̄ < 1. Thus, we have the

following immediate corollary of Theorem 3.2.7.

Corollary 3.2.8. Suppose that f in (1.1) is convex and Assumption 1 holds. Suppose

further that {xt} is a sequence generated by FISTA with the fixed restart scheme or

both the fixed and adaptive restart schemes. Then

(i) {xt} is R-linearly convergent to a globally optimal solution of (1.1).

(ii) {F (xt)} is R-linearly convergent to the globally optimal value of (1.1).

In view of the discussions and some examples given following Assumption 1,

we obtain that the objective in the LASSO satisfies Assumption 1. Hence, when

applying FISTA with the fixed restart scheme or both the fixed restart scheme and

the adaptive restart scheme to solving the LASSO, we see from Corollary 3.2.8 that

both the sequences {xt} and {F (xt)} generated by the FISTA with restarts are

R-linearly convergent.

Before ending this subsection, we will give a remark to stress that there are two

main differences between our Corollary 3.2.8 and the convergence results in [26].

Remark 1. (i) The authors in [26] established the global linear convergence of

function values for (1.1) with a strongly convex f and a void g, while we prove

the local linear convergence of both {xt} and {F (xt)} for (1.1) with f being

convex.

(ii) Their global linear convergence is only guaranteed when T is chosen sufficiently

large; see [26, Eq. 6]. On the other hand, we do not have any restrictions on

the number T , the width of the restart interval.
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3.2.4 A further study of PGe when f is convex

In this subsection, we further study PGe when f is convex and F is level-bounded.

Under these assumptions, we can take l = 0 in our algorithm and hence we have√
L
L+l

= 1. Our Theorem 3.2.7 can then be applied to establishing R-linear conver-

gence of both {xt} and {F (xt)} generated by PGe when Assumption 1 holds and

β̄ < 1. However, in many widely used accelerated proximal gradient algorithms,

such as the FISTA, we have β̄ = 1. For these kinds of algorithms, nothing is known

concerning the convergence behavior of {xt} except when βt = t−1
t+α−1

with α > 3. In

this subsection, we will show that ‖xt+1 − xt‖ → 0 under a very general choice of

{βt}; we will also demonstrate that this condition is satisfied by the choice of {βt}

used in the FISTA. We would like to point out that using ‖xt+1 − xt‖ → 0, one can

obtain as an immediate corollary that any accumulation point of {xt} is a global

minimizer of (1.1). Thus, establishing ‖xt+1− xt‖ → 0 is an important step towards

understanding the convergence behavior of {xt}. Moreover, this fact can be used for

designing termination criterion.

We now present our analysis. We first give a simple auxiliary lemma.

Lemma 3.2.9. Let {at} be a nondecreasing nonnegative sequence with lim
t→∞

at = 1.

Then
∞∑
t=1

|at+1(1− at+2)− (1 + at)(1− at+1) + 1− at| <∞. (3.38)
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Proof. Write ct = 1− at for notational simplicity. Then

|at+1(1− at+2)− (1 + at)(1− at+1) + 1− at|

= |at+1ct+2 − (1 + at)ct+1 + ct|

= |at+1ct+2 − ct+1 − atct+1 + ct|

= |at+1ct+2 − ct+1 − atct+1 + ct − at+1ct+1 + at+1ct+1|

≤ |ct − ct+1|+ at+1|ct+2 − ct+1|+ ct+1|at+1 − at|

= |at − at+1|+ at+1|at+2 − at+1|+ (1− at+1)|at+1 − at|.

(3.39)

Next, we observe that

N∑
t=1

(|at − at+1|+ at+1|at+2 − at+1|+ (1− at+1)|at+1 − at|)

≤
N∑
t=1

(at+1 − at) +
N∑
t=1

(at+2 − at+1) +
N∑
t=1

(at+1 − at)

= 2aN+1 + aN+2 − 2a1 − a2,

(3.40)

where the inequality follows from the nondecreasing property of {at} and the fact

that lim
t→∞

at = 1. Letting N → ∞ in (3.40) and invoking lim
t→∞

at = 1 and (3.39), we

obtain (3.38) as desired.

Proposition 3.2.10. Suppose that f in (1.1) is in addition convex and F is a

level-bounded function. Suppose further that the sequence {βt} is nondecreasing with∑∞
t=1(1 − βt) = ∞ and β̄ = 1. Let {xt} be a sequence generated by PGe. Then

lim
k→∞
‖xt − xt−1‖ = 0.

Proof. Without loss of generality, let the optimal value of (1.1) be 0. Hence, for

all z ∈ X , we have F (z) = f(z) + g(z) = 0. We will subsequently show that

lim
t→∞

Ht,L
2

= 0. Granting this, we conclude from the definition of Ht,L
2

that

lim sup
t→∞

L

2
‖xt − xt−1‖2 ≤ lim sup

t→∞

(
F (xt) +

L

2
‖xt − xt−1‖2

)
= lim

t→∞
Ht,L

2
= 0,
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from which the desired conclusion follows immediately.

It now remains to show lim
t→∞

Ht,L
2

= 0. To this end, fix a z ∈ X and define an

auxiliary sequence ht = 1
2
‖xt − z‖2. Then it is not hard to show that

ht+1 − ht = 〈xt+1 − xt, xt+1 − z〉 − 1

2
‖xt+1 − xt‖2. (3.41)

Next, recall from (3.4) and the fact that ` = 0 that

f(xt+1) + g(xt+1) ≤ f(z) + g(z) +
L

2
‖z − yt‖2 − L

2
‖xt+1 − z‖2.

This together with the definition of Ht,L
2

and the assumption that F (z) = 0 gives

0 ≤ Ht+1,L
2
≤ L

2
‖z − yt‖2 − L

2
‖xt+1 − z‖2 +

L

2
‖xt+1 − xt‖2. (3.42)

For the first term on the right hand side of (3.42), using the definition of yt in PGe,

we see that

‖z − yt‖2 = ‖xt + βt(x
t − xt−1)− z‖2

= ‖xt − z‖2 + 2βt〈xt − z, xt − xt−1〉+ β2
t ‖xt − xt−1‖2

= ‖xt − z‖2 + 2βt(ht − ht−1) + (βt + β2
t )‖xt − xt−1‖2,

(3.43)

where the last equality follows from (3.41). Combining (3.42) with (3.43), we obtain

further that

Ht+1,L
2
≤ L

2
(‖xt − z‖2 + 2βt(ht − ht−1) + (βt + β2

t )‖xt − xt−1‖2)

− L

2
‖xt+1 − z‖2 +

L

2
‖xt+1 − xt‖2

= Lht + Lβt(ht − ht−1) +
L

2
(β2

t + βt)‖xt − xt−1‖2 − Lht+1 +
L

2
‖xt+1 − xt‖2

=
L

2
‖xt+1 − xt‖2 +

L

2
(β2

t + βt)‖xt − xt−1‖2 − Lξt

≤ L

2
‖xt+1 − xt‖2 + L‖xt − xt−1‖2 − Lξt,

(3.44)
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where ξt = ht+1− ht− βt(ht− ht−1), and the last inequality is obtained by using the

fact that {βt} is nondecreasing with β̄ = 1. Multiplying 1 − βt+1 to both sides of

(3.44), we obtain

(1− βt+1)Ht+1,L
2

≤ L

2
(1− βt+1)‖xt+1 − xt‖2 + L(1− βt+1)‖xt − xt−1‖2 − L(1− βt+1)ξt

≤ L

2
(1− βt+1)‖xt+1 − xt‖2 + L(1− βt)‖xt − xt−1‖2 − L(1− βt+1)ξt,

(3.45)

where the last inequality is a consequence of the fact that {βt} is nondecreasing.

We next show that the sequence {
∑N

t=1(1− βt+1)ξt} is bounded. For notational

simplicity, we define δt+1 = 1− βt+1. Then we have

N∑
t=1

δt+1ξt =
N∑
t=1

δt+1(ht+1 − ht − βt(ht − ht−1))

=
N∑
t=1

δt+1ht+1 −
N∑
t=1

δt+1ht −
N∑
t=1

δt+1βtht +
N∑
t=1

δt+1βtht−1

=
N+1∑
t=2

δtht −
N∑
t=1

δt+1ht −
N∑
t=1

δt+1βtht +
N−1∑
t=0

δt+2βt+1ht

=
N+1∑
t=1

δtht −
N∑
t=1

δt+1ht −
N∑
t=1

δt+1βtht +
N∑
t=0

δt+2βt+1ht

− δ1h1 − δN+2βN+1hN

=
N∑
t=1

[βt+1δt+2 − (1 + βt)δt+1 + δt]ht

+ δN+1hN+1 + δ2β1h0 − δ1h1 − δN+2βN+1hN

=
N∑
t=1

rtht + δN+1hN+1 + δ2β1h0 − δ1h1 − δN+2βN+1hN ,

(3.46)

where rt = βt+1δt+2 − (1 + βt)δt+1 + δt. Since {xt} is bounded from Corollary 3.2.2,
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we see immediately that {ht} is bounded from its definition. Using this fact and

applying Lemma 3.2.9 with at = βt, we obtain further that

lim sup
N→∞

∣∣∣∣∣
N∑
t=1

rtht

∣∣∣∣∣ ≤
∞∑
t=1

|βt+1δt+2 − (1 + βt)δt+1 + δt| · |ht| <∞,

where we recall that δt = 1− βt for all t. From this, (3.45), (3.46), the boundedness

of {ht} and {βt}, and Lemma 3.2.3, we have

∞∑
t=1

(1− βt+1)Ht+1,L
2

≤ L

2

∞∑
t=1

δt+1‖xt+1 − xt‖2 + L
∞∑
t=1

δt‖xt − xt−1‖2 + L · lim sup
N→∞

∣∣∣∣∣
N∑
t=1

δt+1ξt

∣∣∣∣∣
≤ L

2

∞∑
t=1

(1− β2
t+1)‖xt+1 − xt‖2 + L

∞∑
t=1

(1− β2
t )‖xt − xt−1‖2

+ L · lim sup
N→∞

∣∣∣∣∣
N∑
t=1

(1− βt+1)ξt

∣∣∣∣∣ <∞,

(3.47)

where the second inequality holds because 0 ≤ βt ≤ 1 for all t.

We are now ready to show that lim
t→∞

Ht,L
2

= 0. From Lemma 3.2.1 and Lemma

3.2.3, we know that {Ht,L
2
} is convergent and nonincreasing. Suppose to the contrary

that lim
t→∞

Ht,L
2

= inf
t
Ht,L

2
= H∞ > 0 for some H∞. Then from this and (3.47), we

have

H∞

∞∑
t=1

(1− βt) ≤
∞∑
t=1

(1− βt)Ht,L
2
<∞,

which is a contradiction to our assumption that
∑∞

t=1(1 − βt) = ∞. Thus, it must

hold true that lim
t→∞

Ht,L
2

= 0. This completes the proof.

In the following, we will show that Proposition 3.2.10 can be used to analyze the

convergence behavior of the sequence generated by the FISTA.
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Corollary 3.2.11. Suppose that f in (1.1) is convex and F is level-bounded. Then

the sequence {xt} generated by the FISTA satisfies lim
t→∞
‖xt+1 − xt‖ = 0.

Proof. According to Proposition 3.2.10, we only need to show that the sequence {βt}

in the FISTA is nonnegative and nondecreasing with supt βt = 1 and
∑∞

t=1(1−βt) =

∞.

First, using the definition that βt = θt−1−1
θt

and θt+1 =
1+
√

1+4θ2t
2

with θ−1 = θ0 = 1

in the FISTA, we have for any t ≥ 0 that

βt+1 − βt =
θt − 1

θt+1

− θt−1 − 1

θt
=
θ2
t − θt − θt−1θt+1 + θt+1

θtθt+1

=
θ2
t − θt−1θt+1 + θt+1 − θt

θtθt+1

=
θtθt−1( θt

θt−1
− θt+1

θt
) + θt+1 − θt

θtθt+1

,

(3.48)

and

θt+1 − θt =
1 +

√
1 + 4θ2

t

2
− θt ≥ 0. (3.49)

Moreover, for any t ≥ 0,

θt+1

θt
=

1 +
√

1 + 4θ2
t

2θt
=

1

2θt
+

√
1 +

1

4θ2
t

. (3.50)

Since {θt} is positive and nondecreasing from the definition of θt and (3.49), we see

from (3.50) that
{
θt+1

θt

}
is nonincreasing. Combining these facts with (3.48) and the

fact that β0 = β1 = 0, we obtain further that {βt} is nondecreasing and nonnegative.

Next, using the fact
√
a2 + b2 ≤ a+ b for a ≥ 0, b ≥ 0, we see that for t ≥ 1,

θt =
1 +

√
1 + 4θ2

t−1

2
≤ 1 + 1 + 2θt−1

2
= 1 + θt−1. (3.51)
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Since θ0 = 1, by induction, we obtain further that θt ≤ t + 1 for any t ≥ 1. Hence,

from the nondecreasing property of {θt}, we have for any t ≥ 1 that

1− βt = 1− θt−1 − 1

θt
=
θt − θt−1 + 1

θt
≥ 1

θt
≥ 1

t+ 1
,

which implies that
∑∞

t=1(1−βt) =∞. Finally, by induction, we obtain that θt ≥ t+2
2

for t ≥ 0. This together with (3.51) implies that

1− βt =
θt − θt−1 + 1

θt
≤ 2

θt
≤ 4

t+ 2

for any t ≥ 1. From this last relation, we see that βt ≥ t−2
t+2

. This together with the

nondecreasing property of {βt} and the fact that 0 ≤ βt ≤ 1 for all t implies that

supt βt = 1.

3.3 Numerical experiments

In this section, some numerical experiments are performed to show that both the

sequence {xt} generated by PGe and the corresponding objective values sequence

{F (xt)} are R-linearly convergent.

Three different classes of problems are considered in this section, which are the

`1 regularized logistic regression problem, the LASSO, and the nonconvex quadratic

problem over a simplex. Among them, the first two examples are convex optimiza-

tion problems, while the third one is possibly nonconvex optimization problem. We

use different choices of the extrapolation coefficients βt in PGe for these problems.

Concretely, we apply PGe with βt chosen as in FISTA with both the fixed and the

adaptive restart schemes, βt chosen as in FISTA, and βt ≡ 0 (proximal gradient al-

gorithm) to solving the first two convex optimization problems. On the other hand,

we apply PGe with βt ≡ 0.98
√

L
L+l

and βt ≡ 0 (proximal gradient algorithm) for
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the nonconvex optimization problems. We also use FISTA to solve the nonconvex

problems as a heuristic.

All these numerical experiments are performed by Matlab 2014b on a 64-bit PC

with a 3.60GHz Inter Core i7-4790 processor and 32GB of RAM.

3.3.1 `1 regularized logistic regression

We first consider the `1 regularized logistic regression problem:

v
log

:= min
x̃∈Rn,x0∈R

m∑
i=1

log(1 + exp(−bi(aTi x̃+ x0))) + λ‖x̃‖1, (3.52)

where ai is a vecor in Rn space, bi is a integer in {−1, 1}, i = 1, 2, · · · ,m, with bi

not all the same, m < n and λ > 0 is the regularization parameter. It is easy to see

that (3.52) is in the form of (1.1) with

f(x) =
m∑
i=1

log(1 + exp(−bi(Dx)i)), g(x) = λ‖x̃‖1, (3.53)

where x := (x̃, x0) ∈ Rn+1, and D is a matrix with the ith row given by (aTi 1). More-

over, one can show that ∇f is Lipschitz continuous with modulus 0.25λmax(D>D).

Hence, in our testing algorithms below, we take L = 0.25λmax(DTD). Since f in

(3.53) is convex, we take l = 0 in our algorithms.

Next we will show that v
log
> −∞ and the solution set X of (3.52) is nonempty.

Recalling that the dual problem of (3.52) is given by

max
u∈Rm

d
log

(u) := −
∑m

i=1[−biui log(−biui) + (1 + biui) log(1 + biui)]

s.t. ‖ATu‖∞ ≤ λ, eTu = 0,
(3.54)

where A is the matrix whose ith row is given by aTi . From [15, Theorem 3.3.5],

we conclude that the optimal values of (3.52) and (3.54) are the same, and that an

optimal solution of (3.54) exists. In addition, due to the facts that λ > 0 and bi are
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not all the same, the generalized Slater condition is satisfied for (3.54), i.e., there

exists ũ satisfying ‖AT ũ‖∞ < λ, eT ũ = 0 and −1 < biũi < 0 for i = 1, . . . ,m. Hence,

by [52, Corollary 28.2.2], an optimal solution of (3.52) exists. Consequently, we see

that v
log
> −∞ and the solution set X of (3.52) is nonempty.

Thus, we can apply PGe to solving problem (3.52). Moreover, in view of the

discussion following Assumption 1, Assumption 1 is satisfied for (3.53). Hence, from

Corollary 3.2.8, we can expect the R-linear convergence of the sequences {xt} and

{F (xt)} generated by FISTA with both fixed restart and adaptive restart schemes.

Now we perform numerical experiments to study PGe. We choose different ex-

trapolation parameters {βt} in PGe: βt chosen as in FISTA with both the fixed and

the adaptive restart schemes, where we perform a fixed restart every 500 iterations

(FISTA-R500), βt chosen as in FISTA and βt ≡ 0 as in the proximal gradient algo-

rithm (PG). The regularization parameter λ in (3.52) is always taken as λ = 5. We

initialize all the above algorithms at the origin. For the termination, in view of [52,

Theorem 31.3], we see that for any x̄ ∈ X , ∇p(Dx̄) is an optimal solution of (3.54).

Specifically, we define

ut = min

{
1,

λ

‖AT∇p(Dxt)‖∞

}
∇p(Dxt),

and terminate the algorithms if the duality gap and the dual feasibility violation are

small, i.e.,

max

{ |f(xt) + g(xt)− d
log

(ut)|
max{f(xt) + g(xt), 1}

,
50|eTut|

max{‖ut‖, 1}

}
≤ 10−6.

The algorithms are also terminated when the number of iterations reaches 5000.

We consider random instances for our experiments. For each (m,n, s) = (300, 3000, 30),

(500, 5000, 50) and (800, 8000, 80), we generate an m×n matrix A with i.i.d. standard

Gaussian entries. We then choose a support set T of size s uniformly at random, and

42



generate an s-sparse vector x̂ supported on T with i.i.d. standard Gaussian entries.

The vector b is then generated as b = sign(Ax̂+ ce), where c is chosen uniformly at

random from [0, 1].

The computational results are presented in the following figures, i.e., Figures 3.1,

3.2 and 3.3. We plot ‖xt − x∗‖ against the number of iterations t in part (a) of each

figure, where x∗ denotes the approximate solution obtained at termination of the

respective algorithm. While the part (b) of each figure plots |F (xt)−Fmin| versus the

number of iterations t, where Fmin denotes the minimum of three objective values

obtained from the three respective algorithms. According to these figures, we see

that both the sequence {xt} and {F (xt)} generated by FISTA with both fixed and

adaptive restart schemes are R-linearly convergent, which are consistent with our

theoretical results. Moreover, FISTA with both fixed and adaptive restart schemes

always performs better than FISTA and the proximal gradient algorithm from the

figures.

Figure 3.1: l1 − logistic : n = 3000,m = 300, s = 30

(a) (b)
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Figure 3.2: l1 − logistic : n = 5000,m = 500, s = 50

(a) (b)

Figure 3.3: l1 − logistic : n = 8000,m = 800, s = 80

(a) (b)

3.3.2 LASSO

In this subsection, we study the second convex optimization problem, i.e., the LASSO

problem, which is in the following form:

v
ls

:= min
x∈Rn

1

2
‖Ax− b‖2 + λ‖x‖1, (3.55)

where A ∈ Rm×n and b ∈ Rm are given. It can be seen from the objective function

in (3.55) that (3.55) is in the form of (1.1) with

f(x) =
1

2
‖Ax− b‖2, g(x) = λ‖x‖1. (3.56)

From the above relation, one can easily show that ∇f is Lipschitz continuous and

f + g has compact lower level sets. Thus, PGe can be applied to solving (3.55).
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Moreover, Assumption 1 is satisfied for (3.56) according to the discussion following

Assumption 1. Hence, from Corollary 3.2.8, we can expect the R-linear convergence

of both the sequences {xt} and {F (xt)} generated by FISTA with fixed and adaptive

restart schemes. Finally, it is routine to show that a Lipschitz continuity modulus of

∇f can be chosen as λmax(ATA). From this result, we take L = λmax(ATA) in the

algorithms below. Since f is convex, we set l = 0 in the algorithms.

Note that f(x) in (3.56) can be formulated as f(x) = h(Ax) = 1
2
‖Ax − b‖2,

where h(v) = 1
2
‖v− b‖2. Then the conjugate function of h can be easily computed as

h∗(u) := supv∈Rm{uTv − h(v)} = 1
2
‖u‖2 + bTu. As a consequence, the dual problem

of (3.55) is given as follows:

max
u∈Rm

d
ls
(u) := −1

2
‖u‖2 − bTu

s.t. ‖ATu‖∞ ≤ λ.
(3.57)

From [15, Theorem 3.3.5], we can show that the optimal values of (3.55) and (3.57)

are the same, and moreover, an optimal solution of (3.57) exists. We will use the

dual problem to develop the termination criterion for our algorithms below.

Now we perform numerical experiments to study PGe. We choose the same

extrapolation parameters as in the previous subsection. The regularization parameter

λ is taken as λ = 5. We initialize all the above algorithms at the origin and we use

the duality gap to terminate the algorithms. As the previous subsection, for any

optimal solution x̄ of (3.55), we obtain ∇h(Ax̄) is an optimal solution of (3.57) from

[52, Theorem 31.3]. Then we define

ut = min

{
1,

λ

‖AT∇h(Axt)‖∞

}
∇h(Axt),

and terminate the algorithms if the duality gap is small, i.e.,

|f(xt) + g(xt)− d
ls
(ut)|

max{f(xt) + g(xt), 1}
≤ 10−6.
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We also terminate them when the number of iterations reaches 5000.

The problems used in our experiments are generated as follows. For each (m,n, s) =

(300, 3000, 30), (500, 5000, 50) and (800, 8000, 80), we generate an m × n matrix A

with i.i.d. standard Gaussian entries. We then choose a support set T of size s

uniformly at random, and generate an s-sparse vector x̂ supported on T with i.i.d.

standard Gaussian entries. The vector b is then generated as b = Ax̂+ 0.01ẽ, where

ẽ has standard i.i.d. Gaussian entries.

The computational results are presented in the following figures, i.e., Figures 3.4,

3.5 and 3.6. We plot ‖xt − x∗‖ against the number of iterations t in part (a) of each

figure, where x∗ denotes the approximate solution obtained at termination of the

respective algorithm. Additionally, in the part (b) of each figure, we plot |F (xt) −

Fmin| versus the number of iterations t, where Fmin denotes the minimum of the

three objective values obtained from the three respective algorithms. Similar as in

the previous subsection, we see from these figures that both the sequence {xt} and

{F (xt)} generated by FISTA with both fixed and adaptive restart schemes are R-

linearly convergent, which are consistent with our theoretical results. Additionally,

the algorithm with restart performs better than the others.

Figure 3.4: l1 − ls : n = 3000,m = 300, s = 30

(a) (b)

46



Figure 3.5: l1 − ls : n = 5000,m = 500, s = 50

(a) (b)

Figure 3.6: l1 − ls : n = 8000,m = 800, s = 80

(a) (b)

3.3.3 Nonconvex quadratic programming with simplex con-
straints

In this subsection, we look at problems of the following form, which are possibly

nonconvex:

min
x∈Rn

1

2
xTAx− bTx

s.t. eTx = s, x ≥ 0,

(3.58)

where A ∈ Rn×n is a symmetric matrix that is not necessarily positive semidefinite,

b ∈ Rn and s is a positive number. This is an example of nonconvex quadratic pro-

gramming problems, which is an important class of problems in global optimization

[23, 29, 32, 40]. From the objective and constrain condition in (3.58), one can easily
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reformulate (3.58) in the form of (1.1) with

f(x) =
1

2
xTAx− bTx, g(x) = δS(x), (3.59)

where S =
{
x ∈ Rn : eTx = s, x ≥ 0

}
. Moreover, it is clear that f has a Lipschitz

continuous gradient and f + g is level bounded. Hence, we can apply PGe to solving

(3.58). Additionally, Assumption 1 is satisfied for (3.59), according to the discussion

following Assumption 1. As a consequence, from Theorem 3.2.7, we can expect the

R-linear convergence of both the sequences {xt} and {F (xt)} generated by PGe when

β̄ <
√

L
L+l

. Finally, we can decompose matrix A by A = A1−A2, where A1 and −A2

are the projections of A onto the cone of positive semidefinite matrices and the cone of

negative semidefinite matrices, respectively. Hence, we can rewrite f as f = f1− f2,

where f1(x) = 1
2
xTA1x − bTx and f2(x) = 1

2
xTA2x. From the above discussions,

in our following numerical experiments, we take L = max{λmax(A), |λmin(A)|} and

l = |λmin(A)| so that L and l are the Lipschitz continuity moduli of ∇f1 and ∇f2,

respectively, and L ≥ l by the definition of L.

Now some numerical experiments are performed to study PGe. We choose d-

ifferent extrapolation parameters {βt} in PGe: βt ≡ 0.98
√

L
L+l

(PGe), βt chosen

as in FISTA and βt ≡ 0 (PG). Here we want to point out that FISTA applied to

the nonconvex problem (3.58) is not known to converge, unlike the other two algo-

rithms which have convergence guarantee by our theory. We initialize all the above

algorithms at the origin. Unlike the previous convex examples, we terminate these

algorithms when the successive changes of the iterates are small, i.e.,

‖xt − xt−1‖
max{‖xt‖, 1}

≤ 10−6.

The algorithms are also terminated when the number of iterations reaches 5000.
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Our test problem is generated as follows. We generate a 2000 × 2000 matrix

D with i.i.d. standard Gaussian entries. We then generate a symmetric matrix

A = D+D>. Finally, the vector b is generated with i.i.d. standard Gaussian entries,

and s is generated as max{1, 10t}, with t chosen uniformly at random from [0, 1].

Our computational results are presented in Figure 3.7. Figure 3.7 (a) plots

‖xt − x∗‖ versus the number of iterations t, where x∗ denotes the approximate solu-

tion obtained at termination of the respective algorithm. Additionally, Figure 3.7 (b)

plots |F (xt)− Fmin| versus the number of iterations t, where Fmin denotes the mini-

mum of three objective values obtained from the three respective algorithms. From

Figure 3.7 (a), we see that the sequence {xt} generated by PGe with βt ≡ 0.98
√

L
L+l

is R-linearly convergent, which is consistent with our theoretical results. However,

Figure 3.7 (b) shows that not all the algorithms are approaching Fmin. This case is

possible, which is because the iterates generated by the algorithm may get stuck at

local minimizers.

Figure 3.7: Nonconvex Quadratic Problem

(a) (b)

We next perform another numerical experiment to test the quality (which means

to see the function values at termination) of the approximate solution obtained from

the above three algorithms. In this second experiment, we generate random instances

as follows: we generate an n× n matrix D with i.i.d. standard Gaussian entries and
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symmetrize it to form A = D + D>; moreover, we generate a vector b with i.i.d.

standard Gaussian entries, and an s = max{1, 10t}, where t is chosen uniformly at

random from [0, 1].

In this test, we generate 50 random instances as the description above for each

n = 500, 1000, 1500, 2000 and 2500. The following Table 3.1 presents the number of

iterations averaged over the 50 instances for each n (iter), and the function value at

termination (fval), also averaged over the 50 instances. From the reports in Table 3.1,

we see that while PGe with βt ≡ 0.98
√

L
L+l

(i.e., PGe) is always the fastest algorithm,

the function values obtained can be slightly compromised for some instances.

Table 3.1: Comparing PGe, FISTA and PG on random instances.

PGe FISTA PG
n iter fval iter fval iter fval

500 120 −56.02 175 −56.90 322 −57.96
1000 171 −69.77 274 −66.79 636 −66.93
1500 166 −66.29 270 −63.71 560 −65.29
2000 215 −80.72 271 −80.43 635 −81.21
2500 284 −81.70 359 −80.13 813 −83.81

3.4 Conclusions of this chapter

This chapter mainly studies the algorithm PGe (3.1) for solving a class of nonconvex

nonsmooth optimization problems. Assuming the error bound condition holds for

the objective, we establish the R-linear convergence of both the sequence {xt} gen-

erated by the algorithm and the corresponding objective values sequence {F (xt)} if

the extrapolation coefficients are below the threshold
√

L
L+l

. If f in problem (1.1) is

convex, the threshold reduced to 1. We further show that FISTA with fixed restart is

a special case of PGe, hence our theory can be used to establish the R-linear conver-

gence of the sequences {xt} and {F (xt)} generated by FISTA with fixed restart for
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solving (1.1) with a convex f , when the objective satisfies the error bound condition.

In addition, for convex problems, we prove the successive changes of {xt} generated

by PGe go to 0 for a fairly choices of extrapolation coefficients whose threshold ap-

proach 1 under the assumption that the objective is level bounded. We show that the

choices of extrapolation are general enough to cover the choices in FISTA. Finally,

some numerical experiments are performed to verify our theoretical results.
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Chapter 4

Proximal difference-of-convex
algorithm with extrapolation

This chapter mainly deals with the difference-of-convex(DC) problems. These prob-

lems arise in many practical applications, and many nonconvex problems can be

rewritten as the DC problems. In this chapter, we consider a proximal difference-

of-convex algorithm with extrapolation(pDCAe) for solving a kind of DC problems.

The DC models we studied are given first, and then we present the algorithm pDCAe.

Next, we establish the global subsequential convergence of pDCAe. Moreover, by as-

suming the Kurdyka- Lojasiewicz (KL) property holds for an auxiliary function, we

establish the global convergence of {xt} generated by pDCAe and then analyze the

convergence rate of {xt} under suitable conditions. Finally ,we perform numerical

experiments on two DC problems. Our numerical experiments show that the pDCAe

usually outperforms the proximal DCA with nonmonotone linesearch.

4.1 DC problem description and the pDCAe

This section mainly gives a description of the DC problems we considered in this the-

sis, and then presents the proximal difference-of-convex algorithm with extrapolation

(pDCAe).
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The problems we considered in this chapter have the following form,

v := min
x∈Rn

F (x) := f(x) + P (x), (4.1)

where f is differentiable and convex, ∇f is Lipschitz continuous with a Lipschitz

continuity modulus L > 0, and

P (x) = P1(x)− P2(x),

with P1 being a proper closed convex function and P2 being a continuous convex

function. We assume in addition that F is level-bounded. This latter assumption

implies that v > −∞ and that the set of global minimizers of (4.1) is nonempty.

Recently problem (4.1) becomes a hot topic in the optimization society and it can

be found in many practical applications such as compressed sensing, where f can

take the least squares loss function as the data fitting term, and P can be chosen

as a nonsmooth regularizer for inducing some desirable structures in the solution.

For more examples, we refer the readers to [1, 12, 28, 64, 65, 66] and the reference

therein.

From the assumptions on f and P , problem (4.1) is a standard DC problem

and thus we can apply the renowned DCA to solving it. However, as discussed in

Subsection 1.1.2, directly using DCA may lead to difficult subproblems. Concretely,

the subproblems of DCA for solving (4.1) take the following form:

xt+1 ∈ Argmin
x∈Rn

{
f(x) + P1(x)− 〈ξt, x〉

}
, (4.2)

where ξt ∈ ∂P2(xt). It can be seen from (4.2) that these problems are convex, but

they do not necessarily have closed form/simple solutions. In order to overcome this

difficulty, recently, Gotoh, Takeda, and Tono [31] proposed a proximal DCA based on
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DCA. When applied proximal DCA to solving (4.1), the subproblems are as follows,

xt+1 = argmin
x∈Rn

{
〈∇f(xt)− ξt, x〉+

L

2
‖x− xt‖2 + P1(x)

}

= argmin
x∈Rn

{
L

2

∥∥∥∥x− (xt − 1

L
[∇f(xt)− ξt]

)∥∥∥∥2

+ P1(x)

}
,

(4.3)

where ξt ∈ ∂P2(xt). Compared with (4.2), by the definition of proximal operator

given in Subsection 2.1.1, solving the subproblem (4.3) is equivalent to evaluating

the proximal operator of 1
L
P1, which is easy to compute for a large class of P1; see,

for example, [25, Tables 10.1 and 10.2].

Although the subproblems of proximal DCA are simple for many commonly used

function P1, using this algorithm for solving the practical problems maybe slow. The

reason is that the proximal DCA is the same as the proximal gradient algorithm when

P2 = 0 and the proximal gradient algorithm can take a lot of iterations in practice

[26, Section 5]. However, as we discussed in Subsection 1.1.1, performing various

extrapolation techniques on the proximal gradient algorithm for convex optimization

problems can successfully accelerate the original proximal gradient algorithm, see

more details in [43, 44, 45, 46]. Stimulated by these facts, we attempt to incorporate

extrapolation techniques into the proximal DCA to possibly accelerate this algorithm.

Specifically, we consider the following algorithm for solving the DC optimization

problem (4.1):
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Proximal difference-of-convex algorithm with extrapolation
(pDCAe):

Input: x0 ∈ domP1, {βt} ⊆ [0, 1) with sup
t
βt < 1. Set x−1 = x0.

for t = 0, 1, 2, · · ·

Take any ξt ∈ ∂P2(xt) and set

yt = xt + βt(x
t − xt−1),

xt+1 = argmin
y∈Rn

{
〈∇f(yt)− ξt, y〉+

L

2
‖y − yt‖2 + P1(y)

}
.

(4.4)

end for

Compared with the subproblem (4.3) in the proximal DCA, pDCAe is exactly

the same as the proximal DCA when βt ≡ 0. Thus, we can view the proximal DCA

as a special case of pDCAe. Moreover, from the framework of pDCAe, we see that

the extrapolation coefficients {βt} are general enough to comprise many commonly

used extrapolation coefficients such as the extrapolation parameters used in FISTA

with fixed restart schemes or FISTA with both fixed and adaptive restart schemes

for solving (4.1) with a void P2 [26]. We can see the concrete introduction of FISTA

and the restart schemes for FISTA in Subsection 3.2.3.

Here we just give an overview of the restart schemes used in FISTA [26]. In these

restart schemes, one first sets θ−1 = θ0 = 1, then recursively takes for t ≥ 0 that

βt =
θt−1 − 1

θt
with θt+1 =

1 +
√

1 + 4θ2
t

2
. (4.5)

The restart schemes used in [26] focus on the update θt. Concretely, under some

suitable conditions, one resets θt−1 = θt = 1 for some t > 0. In the fixed restart

scheme, one takes a fixed positive integer T and then resets θt−1 = θt = 1 every

T iterations. While in the adaptive restart scheme, one resets θt−1 = θt = 1 if
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〈yt−1 − xt, xt − xt−1〉 > 0. In view of the above definitions and discussions, we

can easily deduce by induction that the extrapolation coefficients {βt} chosen as in

FISTA with fixed restart scheme or FISTA with both fixed and adaptive restart

schemes satisfy {βt} ⊆ [0, 1) and sup
t
βt < 1, which accord with the assumptions on

{βt} in pDCAe.
1 Moreover, the extrapolation parameters {βt} chosen as in FISTA

with both fixed and adaptive restart schemes will be used in Section 4.3.

4.2 Convergence analysis of pDCAe

In this section, we consider the convergence property pDCAe for solving (4.1). We

first establish the global subsequential convergence of pDCAe. Then, by making

an additional differentiability assumption on P2 and assuming that the Kurdyka-

 Lojasiewicz property holds for an auxiliary function, we prove the global convergence

of the whole sequence generated by pDCAe and analyze the rate of convergence.

4.2.1 Global subsequential convergence of pDCAe

We start with the following definition of stationary points; see, for example, [63,

Equation (23)] and [30, Remark 1].

Definition 4.2.1. Suppose that F is the objective function in (4.1). We say that x̄

is a stationary point of F if

0 ∈ ∇f(x̄) + ∂P1(x̄)− ∂P2(x̄).

We use X to denote the set of all stationary points of F .

Then it is not hard to show that any local minimizer of F is a stationary point of

F . Concretely, let x̃ be a local minimizer of F , then we obtain from [53, Theorem 10.1]

1 Indeed, FISTA with fixed restart scheme and FISTA with both fixed and adaptive restart schemes
are special cases of pDCAe for (4.1) with P2 = 0.
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that 0 ∈ ∂F (x̃). From this result, locally Lipschitz continuity of the continuous

convex function P2, the smoothness of f , [53, Exercise 8.8] and [53, Exercise 10.10],

we see further that

0 ∈ ∇f(x̃) + ∂P1(x̃) + ∂(−P2)(x̃)

⊆ ∇f(x̃) + ∂P1(x̃) + ∂̄(−P2)(x̃)

= ∇f(x̃) + ∂P1(x̃)− ∂̄P2(x̃)

= ∇f(x̃) + ∂P1(x̃)− ∂P2(x̃),

where the set inclusion follows from [16, Theorem 5.2.22] with ∂̄(−P2) denoting the

Clarke subdifferential of the locally Lipschitz function −P2 (see [24, Page 27] and [16,

Definition 5.2.3]), the first equality follows from [24, Proposition 2.3.1], while the last

equality holds because both the Clarke subdifferential and the limiting subdifferential

coincide with the classical subdifferential in convex analysis when the function is

convex and continuous; see [24, Proposition 2.3.6] and [53, Proposition 8.12].

Next, we start to analyze the convergence properties of pDCAe applied to solving

(4.1). Before giving the convergence results, we recall that the objective function

F in (4.1) is level-bounded, the extrapolation coefficients {βt} in pDCAe satisfy

sup
t
βt < 1 and {βt} ⊆ [0, 1).

Theorem 4.2.1. Suppose that {xt} is a sequence generated by pDCAe for solving

(4.1). Then we have the following results.

(i) The sequence {xt} is bounded.

(ii) limt→∞ ‖xt+1 − xt‖ = 0.

(iii) Any accumulation point of {xt} is a stationary point of F .

Proof. Noting that xt+1 is the global minimizer of a strongly convex function from

(4.4) in pDCAe, by comparing the objective values of this strongly convex function
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at xt+1 and xt, we obtain that

〈∇f(yt)− ξt, xt+1〉+
L

2
‖xt+1 − yt‖2 + P1(xt+1)

≤ 〈∇f(yt)− ξt, xt〉+
L

2
‖xt − yt‖2 + P1(xt)− L

2
‖xt+1 − xt‖2.

(4.6)

From the Lipschitz continuity of ∇f with a modulus of L > 0, we see that

f(xt+1) ≤ f(yt) + 〈∇f(yt), xt+1 − yt〉+
L

2
‖xt+1 − yt‖2. (4.7)

Adding P (xt+1) on both sides of (4.7), then by the definition of P , we see further

that

f(xt+1) + P (xt+1) ≤ f(yt) + 〈∇f(yt), xt+1 − yt〉+
L

2
‖xt+1 − yt‖2 + P (xt+1)

= f(yt) + 〈∇f(yt), xt+1 − yt〉+
L

2
‖xt+1 − yt‖2 + P1(xt+1)− P2(xt+1).

(4.8)

In view of the convexity of P2, we immediately have

P2(xt)− P2(xt+1) ≤ 〈ξt, xt − xt+1〉, (4.9)

where ξt ∈ ∂P2(xt). Combining (4.9) and (4.8), we see that

f(xt+1) + P (xt+1) ≤ f(yt) + 〈∇f(yt), xt+1 − yt〉+
L

2
‖xt+1 − yt‖2

+ P1(xt+1)− P2(xt) + 〈ξt, xt − xt+1〉

= f(yt) + 〈∇f(yt), xt+1 − xt〉+ 〈∇f(yt), xt − yt〉+
L

2
‖xt+1 − yt‖2

+ P1(xt+1)− P2(xt) + 〈ξt, xt − xt+1〉

= f(yt) + 〈∇f(yt)− ξt, xt+1 − xt〉+ +
L

2
‖xt − yt‖2 + P1(xt+1)

+ 〈∇f(yt), xt − yt〉 − P2(xt)
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≤ f(yt) +
L

2
‖xt − yt‖2 + P1(xt)− L

2
‖xt+1 − xt‖2 + 〈∇f(yt), xt − yt〉 − P2(xt)

= f(yt) + 〈∇f(yt), xt − yt〉+
L

2
‖xt − yt‖2 + P1(xt)− P2(xt)− L

2
‖xt+1 − xt‖2

≤ f(xt) + P (xt) +
L

2
‖xt − yt‖2 − L

2
‖xt+1 − xt‖2,

(4.10)

where the second inequality is a consequence of (4.6) and the last inequality holds

because f is convex and P = P1 − P2. Now, recalling the definition of yt from (4.4),

we see further from (4.10) that

f(xt+1) + P (xt+1) ≤ f(xt) + P (xt) +
L

2
β2
t ‖xt − xt−1‖2 − L

2
‖xt+1 − xt‖2.

Consequently, we have upon rearranging terms that

L

2
(1−β2

t )‖xt−xt−1‖2 ≤
[
f(xt) + P (xt) +

L

2
‖xt − xt−1‖2

]
−
[
f(xt+1) + P (xt+1) +

L

2
‖xt+1 − xt‖2

]
.

(4.11)

Using the fact {βt} ⊂ [0, 1) and (4.11) , we deduce that the sequence {f(xt) +

P (xt) + L
2
‖xt − xt−1‖2} is nonincreasing. From this and the assumption in the

algorithm that x0 = x−1, we see further that for all t ≥ 0

f(xt) + P (xt) ≤ f(xt) + P (xt) +
L

2
‖xt − xt−1‖2 ≤ f(x0) + P (x0).

Since the objective f +P is level-bounded from our assumption, we obtain from the

above inequality that {xt} is bounded. This proves (i).

Next we prove (ii). Summing both sides of (4.11) from t = 0 to ∞, we obtain

that

L

2

∞∑
t=0

(1− β2
t )‖xt − xt−1‖2 ≤ f(x0) + P (x0)− lim inf

t→∞

[
f(xt+1) + P (xt+1) +

L

2
‖xt+1 − xt‖2

]
≤ f(x0) + P (x0)− v <∞.
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In view of the above relation and the fact sup
t
βt < 1, we immediately deduce that

lim
t→∞
‖xt+1 − xt‖ = 0. This proves (ii).

Finally, choose x̄ to be an arbitrary accumulation point of {xt}, thus there exists

a subsequence {xti} such that lim
i→∞

xti = x̄. Then, in view of the first-order optimality

condition of the subproblem (4.4) at point xti+1, we have

−L(xti+1 − yti) ∈ ∂P1(xti+1) +∇f(yti)− ξti .

Substituting yti = xti + βti(x
ti − xti−1) into the above inclusion, we obtain further

that

− L[(xti+1 − xti)− βti(xti − xti−1)] ∈ ∂P1(xti+1) +∇f(yti)− ξti . (4.12)

In addition, since P2 is continuous and convex, which together with the boundedness

of {xti} from (i) imply that the sequence {ξti} is bounded. Thus, without loss of

generality, we may assume that lim
i→∞

ξti exists by passing to a further subsequence

if necessary, which belongs to ∂P2(x̄) due to the closedness of ∂P2. Using this and

invoking ‖xti+1 − xti‖ → 0 from (ii) together with the closedness of ∂P1 and the

continuity of ∇f , we have upon passing to the limit in (4.12) that

0 ∈ ∂P1(x̄) +∇f(x̄)− ∂P2(x̄),

which completes the proof.

The following proposition gives convergence results of {F (xt)} for a sequence {xt}

generated by pDCAe. We will apply the results to establishing the global convergence

of {xt} under additional assumptions in the next subsection.

Proposition 4.2.2. Suppose that {xt} is a sequence generated by pDCAe for solving

(4.1). Then the following statements hold.
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(i) ζ := lim
t→∞

F (xt) exists.

(ii) F ≡ ζ on Ω, where Ω is the set of accumulation points of {xt}.

Proof. In view of (4.11) and the fact {βt} ⊆ [0, 1), the sequence {F (xt) + L
2
‖xt −

xt−1‖2} is nonincreasing. Using this and the lower boundedness of {F (xt) + L
2
‖xt −

xt−1‖2} together with the result ‖xt+1 − xt‖ → 0 from Theorem 4.2.1(ii), we imme-

diately deduce that ζ := lim
t→∞

F (xt) exists, which proves (i).

Now we prove (ii). We first note from Theorem 4.2.1(i) and (iii) that ∅ 6= Ω ⊆ X .

Take any x̂ ∈ Ω. Hence, there exists a convergent subsequence {xti} such that

lim
i→∞

xti = x̂. Since xti is the minimizer of the subproblem (4.4), we see that

P1(xti)+〈∇f(yti−1)−ξti−1, xti〉+L
2
‖xti−yti−1‖2 ≤ P1(x̂)+〈∇f(yti−1)−ξti−1, x̂〉+L

2
‖x̂−yti−1‖2.

Rearranging terms, we obtain further that

P1(xti)+〈∇f(yti−1)−ξti−1, xti−x̂〉+L

2
‖xti−yti−1‖2 ≤ P1(x̂)+

L

2
‖x̂−yti−1‖2. (4.13)

On the other hand, observe that

‖x̂− yti−1‖ = ‖x̂− xti + xti − yti−1‖ ≤ ‖x̂− xti‖+ ‖xti − yti−1‖ (4.14)

and that

‖xti − yti−1‖ = ‖xti − xti−1 − βti−1(xti−1 − xti−2)‖

≤ ‖xti − xti−1‖+ ‖xti−1 − xti−2‖,
(4.15)

where we made use of the fact that yti−1 = xti−1 +βti−1(xti−1−xti−2) for the equality.

Since ‖xt+1 − xt‖ → 0 from Theorem 4.2.1(ii) and lim
i→∞

xti = x̂, we have by passing

to the limits in (4.14) and (4.15) that

‖x̂− yti−1‖ → 0 and ‖xti − yti−1‖ → 0. (4.16)
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In addition, we deduce from the convexity and continuity of P2 and the fact that

lim
i→∞

xti = x̂ that the sequence {ξti} is bounded. Using this and (4.16), we obtain

further that

ζ = lim
i→∞

f(xti) + P (xti)

= lim
i→∞

f(xti) + P (xti) + 〈∇f(yti−1)− ξti−1, xti − x̂〉+
L

2
‖xti − yti−1‖2

≤ lim sup
i→∞

f(xti) + P1(x̂)− P2(xti) +
L

2
‖x̂− yti−1‖2 = F (x̂),

where we made use of (4.13) and the definition of P for the inequality. Finally, since

F is lower semicontinuous, we also have

F (x̂) ≤ lim inf
i→∞

F (xti) = lim
i→∞

F (xti) = ζ.

Consequently, F (x̂) = lim
i→∞

F (xti) = ζ from the above discussion. Since x̂ ∈ Ω is

arbitrary, we conclude that F ≡ ζ on Ω. This completes the proof.

4.2.2 Global convergence of pDCAe

This subsection focuses on the convergence analysis of {xt} generated by pDCAe for

solving (4.1) by adding some suitable assumptions. Moreover, we also establish the

convergence rate of {xt}. We start by introducing the following assumption.

Assumption 2. The function P2 in (4.1) is continuously differentiable on an open

set N0 that contains X . Moreover, the gradient ∇P2 is locally Lipschitz continuous

on N0.

At first glance, Assumption 2 seems to be restrictive. However, it can be satisfied

by many DC regularizers P (x) that arise in practical applications such as compressed

sensing [64], statistical learning problems [28, 65] and so on. Next we give some

concrete examples which satisfy Assumption 2.
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Example 1. The first example is the least squares problem with `1−2 regularization

[64], which is in following form:

min
x∈Rn

F`1−2(x) =
1

2
‖Ax− b‖2 + λ‖x‖1 − λ‖x‖, (4.17)

where A ∈ Rm×n, b ∈ Rm and λ > 0 are given. In addition, we assume that A does

not have zero columns in order to guarantee that the objective F`1−2 is level-bounded,

see the concrete proof in [64, Lemma 3.1] and [36, Example 4.1(b)]. It is easy to see

that problem (4.17) corresponds to (4.1) with f(x) = 1
2
‖Ax−b‖2, P1(x) = λ‖x‖1 and

P2(x) = λ‖x‖.

Next, we will prove that 0 is not a stationary point of F`1−2 when 2λ < ‖AT b‖∞.

Suppose to the contrary that 0 ∈ X , then by the definition of stationary point of

(4.1), we have AT b ∈ λ∂‖0‖1 − λ∂‖0‖. Computing the subdifferentials of ‖ · ‖1 and

‖ · ‖ at point 0, we obtain further that

AT b ∈ λ[−1, 1]n − λB(0, 1),

where B(0, 1) = {x ∈ Rn : ‖x‖ ≤ 1}. In view of this, we have ‖AT b‖∞ ≤ 2λ, which

is a contradiction.

Hence, we conclude that if λ < 1
2
‖AT b‖∞, then 0 is not a stationary point of F`1−2.

Due to closedness of the stationary points set X , we can easily construct an open

set N0 which contains X to make that P2 is continuously differentiable with locally

Lipschitz gradient on N0. From the above discussions, we see that Assumption 2 is

satisfied for (4.17) if we choose λ < 1
2
‖AT b‖∞.

Example 2. We next present the minmax concave penalty (MCP) regularization

[65], whose DC decomposition can be found in [1, 30]:

P (x) = λ

n∑
i=1

∫ |xi|
0

[
1− x

θλ

]
+
dx = λ‖x‖1 − λ

n∑
i=1

∫ |xi|
0

min
{

1,
x

θλ

}
dx︸ ︷︷ ︸

P2(x)

,
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where θ is a fixed positive number, λ > 0 is the regularization parameter and [x]+ =

max{0, x}. It is routine to show that P2 is continuously differentiable and

∇iP2(x) = λ sign(xi) min{1, |xi|/(θλ)}.

In addition, from the above formulation, we can readily show that ∇P2 is Lipschitz

continuous with a modulus 1
θ
.

Example 3. We consider the smoothly clipped absolute deviation (SCAD) regular-

ization [28], whose DC decomposition can be found in [1, 30]:

P (x) = λ

n∑
i=1

∫ |xi|
0

min

{
1,

[θλ− x]+
(θ − 1)λ

}
dx = λ‖x‖1−λ

n∑
i=1

∫ |xi|
0

[min{θλ, x} − λ]+
(θ − 1)λ

dx︸ ︷︷ ︸
P2(x)

,

where θ > 2 is a constant and the regularization parameter λ > 0 is given. By

simply computing, we immediately obtain that P2 is continuously differentiable and

the partial gradient of P2 is given by

∇iP2(x) = sign(xi)
[min{θλ, |xi|} − λ]+

θ − 1
.

Using this relation, it is easy to show that 1
θ−1

is a Lipschitz continuity modulus of

∇P2.

Example 4. We consider the transformed `1 regularization [66] in this example.

The DC decomposition of this regularization function is given in [1]:

P (x) =
n∑
i=1

(a+ 1)|xi|
a+ |xi|

=
a+ 1

a
‖x‖1 −

n∑
i=1

[
a+ 1

a
|xi| −

(a+ 1)|xi|
a+ |xi|

]
︸ ︷︷ ︸

P2(x)

,

where a > 0 is given . We can see from [1, Section 5.4] that P2(x) is Lipshcitz

continuously differentiable, and a Lipschitz continuity modulus of ∇P2(x) can be

taken as 2(a+1)
a2

.
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Example 5. In the last example, we consider the logarithmic penalty function [19],

whose DC decomposition can be found in [1, 30]:

P (x) =
n∑
i=1

[λ log(|xi|+ ε)− λ log ε] =
λ

ε
‖x‖1 −

n∑
i=1

λ

[
|xi|
ε
− log(|xi|+ ε) + log ε

]
︸ ︷︷ ︸

P2(x)

,

where λ > 0 and ε > 0 are fixed numbers. By the formulation of P2(x), it is routine

to show that P2(x) is continuously differentiable with a Lipschitz continuous gradient

whose Lipschitz continuity modulus can be chosen as λ
ε2

.

We next present our global convergence analysis. We will show that the sequence

{xt} generated by pDCAe is convergent to a stationary point of F under suitable

assumptions. The global convergence results for many algorithms based on the KL

property are considered in [3, 4, 5, 7]. Our analysis mainly follows and applies the

recent simple general methodology developed in [14], within the necessary adequate

adaptations required in the analysis to handle and use an auxiliary function H, which

is defined as follows:

H(x, y) = f(x) + P (x) +
L

2
‖x− y‖2. (4.18)

Next we will give the global convergence results in this chapter.

Theorem 4.2.3. (Global convergence of pDCAe) Suppose that Assumption 2

holds. Suppose further that H is a KL function and the sequence {xt} is a sequence

generated by pDCAe for solving (4.1). Then the following statements hold.

(i) lim
t→∞

dist((0, 0), ∂H(xt, xt−1)) = 0.

(ii) The sequence {H(xt, xt−1)} is nonincreasing and lim
t→∞

H(xt, xt−1) = ζ, where ζ

is given in Proposition 4.2.2.

65



(iii) The set of accumulation points of {(xt, xt−1)} is Υ := {(x, x) : x ∈ Ω} and

H ≡ ζ on Υ, where Ω is the set of accumulation points of {xt}.

(iv) The sequence {xt} is convergent to a stationary point of F ; moreover,
∑∞

t=1 ‖xt−

xt−1‖ <∞.

Proof. Using the result {xt} is bounded from Theorem 4.2.1(i) and the definition of

Ω, we immediately obtain that

lim
t→∞

dist(xt,Ω) = 0.

Since Ω ⊆ X by Theorem 4.2.1(iii), thus we see that for arbitrary ν > 0, there must

exist T0 > 0 so that dist(xt,Ω) < ν and xt ∈ N0 whenever t ≥ T0, where N0 is

the open set from Assumption 2. Moreover, noting that Ω is compact due to the

boundedness of {xt}, by shrinking ν if necessary, we may assume without loss of

generality that ∇P2 is globally Lipschitz continuous on the bounded set N := {x ∈

N0 : dist(x,Ω) < ν}.

Next, considering the subdifferential of the function H in (4.18) at the point

(xt, xt−1) for t ≥ T0, we have

∂xH(xt, xt−1) = ∇f(xt) + ∂P1(xt)−∇P2(xt) + L(xt − xt−1),

∂yH(xt, xt−1) = −L(xt − xt−1),

the above relations follow from the definition of P , the facts that P2 is continuously

differentiable in N and that xt ∈ N for t ≥ T0. Hence, the subdifferential of H at

point (xt, xt−1) for t ≥ T0 can be written as the following form:

∂H(xt, xt−1) = [{∇f(xt)−∇P2(xt) + L(xt − xt−1)}+ ∂P1(xt)]× {−L(xt − xt−1)}.

(4.19)
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On the other hand, using the first order optimality condition of the subproblem

(4.4) in pDCAe, we have for any t ≥ T0 + 1 that

−L(xt − yt−1)−∇f(yt−1) +∇P2(xt−1) ∈ ∂P1(xt),

where we use the continuous differentiability of P2 in N and xt−1 ∈ N whenever

t ≥ T0 + 1. In view of this relation, we obtain further that

− L(xt−1 − yt−1) +∇f(xt)−∇f(yt−1) +∇P2(xt−1)−∇P2(xt)

= ∇f(xt)−∇P2(xt) + L(xt − xt−1)− L(xt − yt−1)−∇f(yt−1) +∇P2(xt−1)

∈ ∇f(xt)−∇P2(xt) + L(xt − xt−1) + ∂P1(xt).

Combining this with (4.19), we have

(−L(xt−1−yt−1)+∇f(xt)−∇f(yt−1)+∇P2(xt−1)−∇P2(xt),−L(xt−xt−1)) ∈ ∂H(xt, xt−1).

Using this relation, the definition of yt from (4.4) and the global Lipschitz continuity

of ∇f and ∇P2 on N , we deduce that there exists C > 0, for t ≥ T0 + 1

dist((0, 0), ∂H(xt, xt−1)) ≤ C(‖xt − xt−1‖+ ‖xt−1 − xt−2‖). (4.20)

Since ‖xt+1 − xt‖ → 0 from Theorem 4.2.1(ii), we conclude from (4.20) that

lim
t→∞

dist((0, 0), ∂H(xt, xt−1)) = 0,

which proves (i).

We now prove (ii) and (iii). Combining the definition of H and (4.11) together

with the fact that sup
t
βt < 1 from pDCAe, there must exist a positive number D

such that

H(xt, xt−1)−H(xt+1, xt) ≥ D‖xt − xt−1‖2 (4.21)

for all t. In particular, the sequence {H(xt, xt−1)} is nonincreasing. And this se-

quence is also bounded below by v from the definition of H, hence we see that the
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sequence {H(xt, xt−1)} is convergent. Next, using the result ‖xt − xt−1‖ → 0 ac-

cording to Theorem 4.2.1(ii), we obtain that Υ is the set of accumulation points of

{(xt, xt−1)}t≥1. Moreover, in view of Proposition 4.2.2(i), we see further that

lim
t→∞

H(xt, xt−1) = ζ.

Furthermore, for any (x̂, x̂) ∈ Υ, by the definition, we see that x̂ ∈ Ω. Hence, in

view of Proposition 4.2.2(ii), we obtain H(x̂, x̂) = F (x̂) = ζ. As x̂ ∈ Ω is arbitrary,

we conclude that H ≡ ζ on Υ. This proves (ii) and (iii).

Finally, we prove (iv). In view of Theorem 4.2.1(iii), we just need to show that

{xt} is convergent. We carry out our proof in two cases. We first consider the

case that there exists a t > 0 such that H(xt, xt−1) = ζ. From (ii), {H(xt, xt−1)}

is nonincreasing and convergent to ζ, thus we conclude that for arbitrary t̄ ≥ 0,

H(xt+t̄, xt+t̄−1) = ζ. Using this and (4.21), we immediately have that xt = xt+t̄ for

any t̄ ≥ 0, which means that {xt} converges finitely.

We next consider the second case, which is that H(xt, xt−1) > ζ for all t. Recalling

that H is a KL function, Υ is a compact subset of dom ∂H and H ≡ ζ on Υ, we

see from Lemma 2.3.1 that there exist an ε > 0 and a continuous concave function

φ ∈ Ξa with a > 0 such that for all (x, y) ∈ U

1 ≤ φ′(H(x, y)− ζ)dist((0, 0), ∂H(x, y)), (4.22)

where

U = {(x, y) ∈ Rn × Rn : dist((x, y),Υ) < ε}∩{(x, y) ∈ Rn × Rn : ζ < H(x, y) < ζ + a} .

Using the fact {xt} is bounded due to Theorem 4.2.1(i) and Υ is the set of accumu-

lation points of {(xt, xt−1)}t≥1 from (iii), we obtain that

lim
t→∞

dist((xt, xt−1),Υ) = 0.
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Hence, we see from the above relation that there exists T1 > 0 such that dist((xt, xt−1),Υ) <

ε for all t ≥ T1. In addition, since the sequence {H(xt, xt−1)} is nonincreasing and

convergent to ζ by (ii), there exists T2 > 0 such that ξ < H(xt, xt−1) < ξ + a for all

t ≥ T2. Taking T̄ = max{T0 +1, T1, T2}, from the above discussion, we conclude that

the sequence {(xt, xt−1)}t≥T̄ belongs to U . Combining this with (4.22), we obtain

that

φ′(H(xt, xt−1)− ζ) · dist((0, 0), ∂H(xt, xt−1)) ≥ 1, for all t ≥ T̄ . (4.23)

Using the concavity of φ, we see further that for any t ≥ T̄ ,[
φ(H(xt, xt−1)− ζ)− φ(H(xt+1, xt)− ζ)

]
· dist((0, 0), ∂H(xt, xt−1))

≥ φ′(H(xt, xt−1)− ζ)) · dist((0, 0), ∂H(xt, xt−1)) · (H(xt, xt−1)−H(xt+1, xt))

≥ H(xt, xt−1)−H(xt+1, xt),

where the last inequality is made use of (4.23) and the fact that {H(xt, xt−1)} is

nonincreasing according to (ii). Combining this with (4.20) and (4.21), we have

[
φ(H(xt, xt−1)− ζ)− φ(H(xt+1, xt)− ζ)

]
·C(‖xt−xt−1‖+‖xt−1−xt−2‖) ≥ D‖xt−xt−1‖2

whenever t ≥ T̄ . By rearranging terms, we obtain that for any t ≥ T̄ ,

‖xt−xt−1‖2 ≤ C

D

(
φ(H(xt, xt−1)− ζ)− φ(H(xt+1, xt)− ζ)

)
·
(
‖xt − xt−1‖+ ‖xt−1 − xt−2‖

)
.

(4.24)

Taking square root on both sides of (4.24), then in view of the AM-GM inequality,

we have

‖xt − xt−1‖ ≤
√

2C

D
(φ(H(xt, xt−1)− ζ)− φ(H(xt+1, xt)− ζ)) ·

√
‖xt − xt−1‖+ ‖xt−1 − xt−2‖

2

≤ C

D

(
φ(H(xt, xt−1)− ζ)− φ(H(xt+1, xt)− ζ)

)
+

1

4
‖xt − xt−1‖+

1

4
‖xt−1 − xt−2‖,
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which implies that

1

2
‖xt−xt−1‖ ≤ C

D

(
φ(H(xt, xt−1)− ζ)− φ(H(xt+1, xt)− ζ)

)
+

1

4
(‖xt−1−xt−2‖−‖xt−xt−1‖).

(4.25)

Summing the above relation from t = T̄ to ∞, we have

∞∑
t=T̄

‖xt − xt−1‖ ≤ 2C

D
φ(H(xT̄ , xT̄−1)− ζ) +

1

2
‖xT̄−1 − xT̄−2‖ <∞.

We conclude from the above relation that the sequence {xt} is convergent and the

sequence {‖xt+1 − xt‖}t≥0 is summable, which completes the proof.

We next consider the convergence rate of the sequence {xt} under the assumption

that the auxiliary function H is a KL function whose φ ∈ Ξa (see Definition 2.3.1)

takes the form φ(s) = cs1−θ for some θ ∈ [0, 1). This kind of convergence rate

analysis has also been performed for other optimization algorithms; see, for example,

[3]. Our analysis applies the technique which was first introduced in [3] but makes

use of the auxiliary function H in (4.18).

Remark 2. Indeed, both the error bound condition and KL inequality can be applied

to establishing the convergence rates of many first order methods. And the error

bound condition can imply the KL-inequality with an exponent 1
2
, when the objective

is level bounded. We refer readers to the recent paper [34] for the details.

Theorem 4.2.4. Let {xt} be a sequence generated by pDCAe for solving (4.1). Sup-

pose that Assumption 2 holds and that {xt} converges to some x̄ and the auxiliary

function H is a KL function with φ in the KL inequality (2.3) chosen as φ(s) = cs1−θ

for some c > 0 and θ ∈ [0, 1). Then we have the following results.

(i) If θ = 0, then {xt} converges finitely, i.e., there exists t0 > 0 so that xt is

constant for all t > t0;

70



(ii) If θ ∈ (0, 1
2
], then {xt} converges linearly, i.e., there exist c1 > 0, t1 > 0 and

η ∈ (0, 1) such that ‖xt − x̄‖ < c1η
t for all t > t1;

(iii) If θ ∈ (1
2
, 1), then {xt} converges sublinearly, i.e., there exist c2 > 0 and t2 > 0

such that ‖xt − x̄‖ < c2t
− 1−θ

2θ−1 for all t > t2.

Proof. First, we prove (i). If θ = 0, we first prove that there must exist t0 > 0

such that H(xt0 , xt0−1) = ζ. Suppose to the contrary that H(xt, xt−1) > ζ for all

t > 0. Using the assumption lim
t→∞

xt = x̄ and the fact that the sequence {H(xt, xt−1)}

is nonincreasing and convergent to ζ by Theorem 4.2.3(ii) together with the fact

φ(s) = cs and the KL inequality (4.23), we see that for all sufficiently large t,

dist((0, 0), ∂H(xt, xt−1)) ≥ 1

c
,

which contradicts Theorem 4.2.3(i). Thus, there exists t0 > 0 so that H(xt0 , xt0−1) =

ζ. Again using the result {H(xt, xt−1)} is nonincreasing and convergent to ζ, it must

then hold that H(xt0+t̄, xt0+t̄−1) = ζ for any t̄ ≥ 0. Thus, we conclude from (4.21)

that xt0 = xt0+t̄ for any t̄ ≥ 0. This proves (i).

We next analyze the other two cases, which means that θ ∈ (0, 1). From the

discussion above, we see that if there exists t0 > 0 such that H(xt0 , xt0−1) = ζ,

then one can show that {xt} is finitely convergent, and the desired conclusions hold

trivially. Hence, for θ ∈ (0, 1), we just need to consider the case when H(xt, xt−1) > ζ

for all t > 0.

In the following, we define Ht = H(xt, xt−1) − ζ and St =
∑∞

i=t ‖xi+1 − xi‖,

where St is well defined due to the summability of the sequence {‖xt+1 − xt‖} by

Theorem 4.2.3(iv). Then, according to (4.25), we obtain that for all t ≥ T̄ (where T̄
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is defined as in (4.23)) that

St = 2
∞∑
i=t

1

2
‖xi+1 − xi‖ ≤ 2

∞∑
i=t

1

2
‖xi − xi−1‖

≤ 2
∞∑
i=t

[
C

D

(
φ(H(xi, xi−1)− ζ)− φ(H(xi+1, xi)− ζ)

)
+

1

4
(‖xi−1 − xi−2‖ − ‖xi − xi−1‖)

]

≤ 2C

D
φ(H(xt, xt−1)− ζ) +

1

2
‖xt−1 − xt−2‖

=
2C

D
φ(Ht) +

1

2
(St−2 − St−1).

Combining this with the fact that {St} is nonincreasing, we obtain further that

St ≤
2C

D
φ(Ht) +

1

2
(St−2 − St) (4.26)

for all t ≥ T̄ . On the other hand, since lim
t→∞

xt = x̄ from our assumption and the

sequence {H(xt, xt−1)} is nonincreasing and convergent to ζ by Theorem 4.2.3(ii),

we deduce from (4.23) with φ(s) = cs1−θ that for all sufficiently large t,

c(1− θ)(Ht)
−θdist((0, 0), ∂H(xt, xt−1)) ≥ 1. (4.27)

In addition, in view of (4.20) and the definition of St, we see that for all sufficiently

large t,

dist((0, 0), ∂H(xt, xt−1)) ≤ C(St−2 − St). (4.28)

Combining (4.27) and (4.28), we obtain by rearranging terms that for all sufficiently

large t

(Ht)
θ ≤ C · c(1− θ) · (St−2 − St).

From the definition of Ht and St and the fact θ ∈ (0, 1), we see that all the terms in

the above inequality are nonnegative. Hence, raising to a power of 1−θ
θ

to both sides

of the above relation and then scaling by c, it can be shown that

c(Ht)
1−θ ≤ c · (C · c(1− θ) · (St−2 − St))

1−θ
θ .
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Combining this with (4.26) and recalling that the definition of φ(Ht) (i.e., φ(Ht) =

c(Ht)
1−θ), we see that for all sufficiently large t,

St ≤ C1(St−2 − St)
1−θ
θ +

1

2
(St−2 − St)

≤ C1(St−2 − St)
1−θ
θ + St−2 − St,

(4.29)

where C1 = 2C
D
c · (C · c(1− θ))

1−θ
θ and the second inequality is made use of the

nonincreasing property of the sequence {St} by the definition.

Now we split our proof into two cases: θ ∈ (0, 1
2
] or θ ∈ (1

2
, 1).

We first consider the case that θ ∈ (0, 1
2
]. Then we can deduce that 1−θ

θ
≥ 1.

Using the result ‖xt+1−xt‖ → 0 from Theorem 4.2.1(ii), we immediately obtain that

St−2 − St → 0. In view of this and (4.29), we conclude that there exists t1 > 0 so

that for all t ≥ t1, we have

St ≤ (C1 + 1)(St−2 − St),

which implies that St ≤ C1+1
C1+2

St−2. Hence,

‖xt − x̄‖ ≤
∞∑
i=t

‖xi+1 − xi‖ = St ≤ St1−2

(√
C1 + 1

C1 + 2

)t−t1+1

for all t ≥ t1. This proves (ii).

Finally, we consider the case that θ ∈ (1
2
, 1). Thus, we have 1−θ

θ
< 1. Combining

this with (4.29) and the fact that St−2 − St → 0 together, we see that there exists

t2 > 0 such that for all t ≥ t2, we have

St ≤ C1(St−2 − St)
1−θ
θ + St−2 − St

≤ C1(St−2 − St)
1−θ
θ + (St−2 − St)

1−θ
θ

= (C1 + 1)(St−2 − St)
1−θ
θ .
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Since the terms on both sides of the above inequality are all nonnegative, raising to

a power of θ
1−θ to both sides of the above inequality, we see further that for all t ≥ t2

S
θ

1−θ
t ≤ C2(St−2 − St),

where C2 = (C1 + 1)
θ

1−θ . Consider the sequence ∆t := S2t. Then for any t ≥ d t2
2
e,

we have

∆
θ

1−θ
t ≤ C2(∆t−1 −∆t).

Proceeding as in the proof of [3, Theorem 2] starting from [3, Equation (13)], one

can show similarly that there exists a positive C3 > 0 such that for all sufficiently

large t

∆t ≤ C3t
− 1−θ

2θ−1 ,

see the first equation on [3, Page 15]. This implies that

‖xt − x̄‖ ≤ St

{
= ∆ t

2
≤ 2ρC3t

−ρ if t is even,

≤ St−1 = ∆ t−1
2
≤ 2ρC3(t− 1)−ρ ≤ 4ρC3t

−ρ if t is odd

for all sufficiently large t (≥ 2), where ρ := 1−θ
2θ−1

. This completes the proof.

Remark 3. We recall that there are many concrete examples of functions f satisfying

the KL property at all points in dom ∂f with φ(s) = cs1−θ for some θ ∈ [0, 1) and

c > 0. Indeed, all proper closed semialgebraic functions satisfy this property; see, for

example, [13, section 2] and [4, section 4.3]. We refer the readers to [4, 34] for more

examples. In particular, one can show that if f(x) = 1
2
‖Ax − b‖2 for some matrix

A and vector b, P is given as in any one of the five examples at the beginning of

this subsection, then the function H in (4.18) is a KL function with φ(s) = cs1−θ for

some θ ∈ [0, 1) and c > 0.
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4.3 Numerical experiments

In this section, we perform numerical experiments on two classes of DC regularized

least squares problems. All our numerical experiments are performed by Matlab

2015b on a 64-bit PC with a 3.60GHz Inter Core i7-4790 processor and 32GB of

RAM.

In the numerical experiments below, we mainly deal with the DC regularized

least squares problem, which takes the following form:

min
x∈Rn

1

2
‖Ax− b‖2 + P1(x)− P2(x), (4.30)

where A ∈ Rm×n, b ∈ Rm are given, P1 is a proper closed convex function and P2 is a

continuous convex function. Two different regularizers are used in our experiments,

they are the `1−2 regularizer studied in Example 1 and the logarithmic regularizer

discussed in Example 5. We also apply two different algorithms to solving (4.30) with

the aforementioned two regularizers, one is our algorithm pDCAe, and the other is

the proximal DCA with nonmonotone linesearch, which is based on the proximal

DCA [31] . The concrete details of these algorithms discussed above are presented

as follows.

pDCAe. In this algorithm, we take L = λmax(ATA).2 The extrapolation co-

efficients {βt} in pDCAe are chosen as (4.5), and both the fixed (with T = 200)

and the adaptive restart schemes as described in Section 4.1 or Subsection 3.2.3 are

performed. We initialize the algorithm at the origin and terminate it when

‖xt − xt−1‖
max{1, ‖xt‖}

< 10−5.

pDCAls. This algorithm is based on the proximal DCA. The main difference

between pDCAls and the proximal DCA is that pDCAls incorporates a nonmonotone

2 λmax(ATA) is computed via the MATLAB code lambda = norm(A*A’); when m ≤ 2000, and by
opts.issym = 1; lambda= eigs(A*A’,1,’LM’,opts); otherwise.
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linesearch strategy into the proximal DCA. Concretely, the framework of pDCAls

is exactly the same as that of the proximal gradient algorithm with nonmonotone

linesearch considered in [63] (see also [22, Appendix A, Algorithm 1]) with f(x) =

1
2
‖Ax− b‖2 and P (x) = P1(x)− P2(x) when the subproblem [22, Appendix A, A.4]

is replaced by

min
x∈Rn

{
〈AT (Axt − b)− ξt, x− xt〉+

Lt
2
‖x− xt‖2 + P1(x)

}
,

where ξt ∈ ∂P2(xt). We just use the same notation in [22, Appendix A, Algorithm

1]. In detail, we set c = 10−4, τ = 2, M = 4, L0
0 = 1, and

L0
t = min

{
max

{
‖A(xt − xt−1)‖2

‖xt − xt−1‖2
, 10−8

}
, 108

}

for t ≥ 1. We initialize the algorithm at the origin and terminate it when

‖xt − xt−1‖
max{1, ‖xt‖}

< 10−5.

In our numerical experiments below, we compare our algorithm pDCAe with

pDCAls for solving (4.30) on random instances generated as follows. We first generate

an m × n matrix A with i.i.d. standard Gaussian entries, and then normalize this

matrix so that the columns of A have unit norms. A subset T of size s is then

chosen uniformly at random from {1, 2, 3, . . . , n} and an s-sparse vector y having

i.i.d. standard Gaussian entries on T is generated. Finally, we set b = Ay + 0.01 · n̂,

where n̂ ∈ Rm is a random vector with i.i.d. Gaussian entries.

Next, we will present the concrete DC problems we consider in the numerical

experiments, and then analyze the numerical results.
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4.3.1 Least squares problems with `1−2 regularizer

This subsection mainly discusses the least squares problem with `1−2 regularized,

min
x∈Rn

F`1−2(x) =
1

2
‖Ax− b‖2 + λ‖x‖1 − λ‖x‖, (4.31)

where A ∈ Rm×n, b ∈ Rm are given, and λ > 0 is the regularization parameter. This

problem can be reformulated as the form of (4.30) with P1(x) = λ‖x‖1 and P2(x) =

λ‖x‖. Moreover, we assume that the matrix A in (4.31) always does not have zero

columns. In view of this assumption, the discussions in Example 1, Theorem 4.2.3

and Remark 3, we conclude that F`1−2 is a level-bounded function, and that the

sequence {xt} generated by pDCAe is globally convergent when λ < 1
2
‖AT b‖∞.

Next, we will present the numerical results we obtain from our numerical exper-

iments. In this test, we consider (m,n, s) = (720i, 2560i, 80i) for i = 1, 2, . . . , 10.

For each triple (m,n, s), we generate 50 instances randomly as described above. The

following Tables 4.1 and 4.2 present the computational results corresponding to prob-

lem (4.31) with λ = 5 × 10−4 and λ = 1 × 10−3 respectively.3 In detail, Tables 4.1

and 4.2 report the time for computing λmax(ATA) (tλmax), the number of iterations

(iter), CPU times in seconds (CPU time),4 and the function values at termination

(fval), averaged over the 50 random instances. We can see from these tables that

pDCAe always outperforms pDCAls.

4.3.2 Least squares problems with logarithmic regularizer

This subsection focuses on the least squares problem with logarithmic regularization

function,

min
x∈Rn

Flog(x) =
1

2
‖Ax− b‖2 +

n∑
i=1

[λ log(|xi|+ ε)− λ log ε] , (4.32)

3 These λ satisfy λ < 1
2‖A

T b‖∞ for all our random instances.

4 The CPU time reported for pDCAe does not include the time for computing λmax(ATA).
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Table 4.1: Solving (4.31) with λ = 5× 10−4

problem size iter CPU time fval
n m s tλmax pDCAls pDCAe pDCAls pDCAe pDCAls pDCAe

2560 720 80 0.1 1709 882 3.29 1.20 2.9152e-02 2.9140e-02
5120 1440 160 0.8 1728 902 14.64 5.56 6.0489e-02 6.0465e-02
7680 2160 240 0.7 1757 926 32.63 12.62 9.3975e-02 9.3937e-02
10240 2880 320 1.5 1768 954 58.11 23.07 1.2712e-01 1.2706e-01
12800 3600 400 2.7 1775 970 91.01 36.59 1.6056e-01 1.6049e-01
15360 4320 480 4.2 1788 978 127.92 51.59 1.9320e-01 1.9312e-01
17920 5040 560 6.8 1773 982 171.04 70.18 2.2553e-01 2.2543e-01
20480 5760 640 9.0 1767 982 222.97 91.53 2.5625e-01 2.5614e-01
23040 6480 720 12.3 1793 982 286.26 115.87 2.9232e-01 2.9220e-01
25600 7200 800 16.4 1771 978 354.42 145.77 3.2321e-01 3.2306e-01

where A ∈ Rm×n, b ∈ Rm are given, ε is a fixed positive number, and λ > 0 is the

regularization parameter. In view of Example 5, one can easily rewrite Flog as the

form of (4.30) with P1(x) = λ
ε
‖x‖1 and P2(x) =

∑n
i=1 λ

[
|xi|
ε
− log(|xi|+ ε) + log ε

]
.

Moreover, it is routine to show that Flog is level-bounded. Combining this result

with Theorem 4.2.3 and Remark 3, we can conclude that {xt} generated by pDCAe

is globally convergent to a stationary point of (4.32).

Next, we will analyze the numerical results we obtain from our numerical tests.

We consider (m,n, s) = (720i, 2560i, 80i) for i = 1, 2, . . . , 10 in the numerical ex-

periments below. For each triple (m,n, s), we generate 50 instances randomly as

described above. The following Tables 4.3 and 4.4 present the computational results

corresponding to problem (4.32) with λ = 5× 10−4 and λ = 1× 10−3 respectively.5

Concretely, Tables 4.1 and 4.2 report the time for computing λmax(ATA) (tλmax), the

number of iterations (iter), CPU times in seconds (CPU time),6 and the function val-

ues at termination (fval), averaged over the 50 random instances. We can conclude

5 We set ε = 0.5 in (4.32).

6 The CPU time reported for pDCAe does not include the time for computing λmax(ATA).
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Table 4.2: Solving (4.31) with λ = 1× 10−3

problem size iter CPU time fval
n m s tλmax pDCAls pDCAe pDCAls pDCAe pDCAls pDCAe

2560 720 80 0.1 918 596 1.75 0.82 5.9412e-02 5.9406e-02
5120 1440 160 0.8 926 602 7.84 3.74 1.2070e-01 1.2069e-01
7680 2160 240 0.7 950 602 17.58 8.30 1.8853e-01 1.8851e-01
10240 2880 320 1.5 947 602 30.60 14.42 2.5495e-01 2.5492e-01
12800 3600 400 2.7 937 602 47.39 22.72 3.1448e-01 3.1445e-01
15360 4320 480 4.2 939 602 66.58 31.79 3.7809e-01 3.7805e-01
17920 5040 560 6.8 959 602 92.42 43.43 4.5133e-01 4.5128e-01
20480 5760 640 8.8 954 602 118.99 55.95 5.1992e-01 5.1986e-01
23040 6480 720 12.4 953 602 149.64 70.96 5.7837e-01 5.7831e-01
25600 7200 800 16.6 954 602 188.81 89.25 6.4832e-01 6.4825e-01

from these tables that pDCAe always outperforms pDCAls.

Table 4.3: Solving (4.32) with λ = 5× 10−4

problem size iter CPU time fval
n m s tλmax pDCAls pDCAe pDCAls pDCAe pDCAls pDCAe

2560 720 80 0.1 855 600 1.69 0.82 3.7906e-02 3.7899e-02
5120 1440 160 0.8 867 602 7.24 3.70 7.6135e-02 7.6122e-02
7680 2160 240 0.7 878 602 16.03 8.13 1.1437e-01 1.1435e-01
10240 2880 320 1.5 867 602 27.77 14.37 1.5118e-01 1.5115e-01
12800 3600 400 2.7 874 602 43.66 22.46 1.9070e-01 1.9067e-01
15360 4320 480 4.3 860 602 60.39 31.62 2.2817e-01 2.2813e-01
17920 5040 560 6.8 874 602 83.83 42.92 2.6709e-01 2.6704e-01
20480 5760 640 8.8 871 602 107.99 55.39 3.0447e-01 3.0442e-01
23040 6480 720 12.1 865 602 135.40 70.66 3.4205e-01 3.4199e-01
25600 7200 800 16.4 872 602 169.65 87.89 3.8134e-01 3.8127e-01

4.4 Conclusions of this chapter

In this chapter, we mainly consider the algorithm pDCAe for solving a class of DC

optimization problems (4.1) and further study the convergence behaviors of pDCAe.
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Table 4.4: Solving (4.32) with λ = 1× 10−3

problem size iter CPU time fval
n m s tλmax pDCAls pDCAe pDCAls pDCAe pDCAls pDCAe

2560 720 80 0.1 468 378 0.90 0.51 7.5333e-02 7.5330e-02
5120 1440 160 0.8 470 397 3.91 2.47 1.5081e-01 1.5080e-01
7680 2160 240 0.7 471 401 8.54 5.52 2.2800e-01 2.2799e-01
10240 2880 320 1.5 470 400 14.85 9.57 3.0344e-01 3.0343e-01
12800 3600 400 2.7 469 402 23.22 15.16 3.7838e-01 3.7837e-01
15360 4320 480 4.2 473 402 32.65 21.18 4.5567e-01 4.5565e-01
17920 5040 560 6.8 474 402 44.58 28.69 5.3133e-01 5.3131e-01
20480 5760 640 8.8 474 402 57.91 37.02 6.0635e-01 6.0632e-01
23040 6480 720 12.2 476 402 72.78 46.77 6.8363e-01 6.8360e-01
25600 7200 800 16.1 476 402 90.38 58.47 7.5855e-01 7.5853e-01

We first present the framework of pDCAe, and show that the extrapolation coeffi-

cients {βt} are general enough to cover those used in FISTA with fixed restart [26]

and the proximal DCA [31]. Then we establish the global subsequential convergence

of {xt} generated by pDCAe. Moreover, by assuming the Kurdyka- Lojasiewicz prop-

erty of an auxiliary function and the differentiability of P2(x) in (4.1), we establish

global convergence of pDCAe. In addition, we analyze the convergence rate of {xt}.

Finally, we perform numerical experiments to illustrate our theoretical results. The

numerical results show that our algorithm usually outperforms the proximal DCA

with nonmonotone linesearch for two classes of DC regularized least squares prob-

lems.
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Chapter 5

Conclusions of the thesis and
future work

In this chapter, we conclude the contents of this thesis, and point out some possible

work which we will do in the future.

5.1 Conclusions of the thesis

Nonconvex nonsmooth optimization problems have always been hot issues in many

fields. Recently, as the era of big data is coming, these problems play more and more

important roles in a lot of application areas. Motivated by this, this thesis focus-

es on the proximal algorithms with extrapolation for solving nonconvex nonsmooth

optimization problems. We first study the proximal gradient algorithm with extrap-

olation for the minimization of the sum of a Lipschitz differentiable function and a

proper closed convex function. And then we propose a proximal difference-of-convex

algorithm with extrapolation for minimizing the sum of a Lipschitz differentiable

convex function, a proper closed convex function and a continuous concave function,

which is (4.1).

In this thesis, we mainly consider the convergence behavior of the proximal gra-

dient algorithm with extrapolation for solving (1.1) and the proximal difference-of-

convex algorithm with extrapolation for solving (4.1). More precisely, using the error
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bound condition which was used in [38], we establish the R-linear convergence of the

sequence {xt} generated by the proximal gradient algorithm with extrapolation under

the assumption that the extrapolation coefficient is chosen below a certain thresh-

old. Moreover, we also establish the R-linear convergence of the objective sequence

{F (xt)}. In addition, for solving problem (1.1) with a convex f , we show that the

threshold of the extrapolation coefficients reduce to 1 and FISTA with fixed restart

is a special case of our proximal gradient algorithm with extrapolation. As a conse-

quence, we conclude R-linear convergence of the iterates generated by FISTA with

fixed restart for solving (1.1) with a convex f , when the objective satisfies the error

bound condition. Again for convex problems, we show that the successive changes

of iterates {‖xt+1 − xt‖} go to 0 for many choices of the extrapolation coefficients

that approach 1 which cover FISTA.

For the difference-of-convex model (4.1), we first present our proposed algorithm,

and show that the extrapolation coefficients in our algorithm can cover the extrapo-

lation coefficients used in FISTA with fixed restart and proximal difference-of-convex

algorithm. Then we establish the global subsequential convergence of the sequence

{xt} generated by the proximal difference-of-convex algorithm with extrapolation

without any additional assumption on the objective function. We also establish the

global convergence of {xt} generated by the proximal difference-of-convex algorithm

with extrapolation under additional assumptions that P2 in (4.1) is differentiable and

an auxiliary function is a Kurdyka- Lojasiewicz function. These assumptions can be

satisfied by plenty of functions. Moreover, we analyze the convergence rate of {xt},

which depends on the Kurdyka- Lojasiewicz exponent of an auxiliary function.

Finally, some numerical experiments are performed to illustrate our theoretical

results and the efficiency of proximal algorithms with extrapolation.
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5.2 Future work

We mainly investigate the convergence behavior of proximal algorithms with extrap-

olation for nonconvex optimization problems in this thesis. Although we establish

some convergence results, there are also some work we can do in the future.

When considering proximal gradient algorithm with extrapolation for solving

(1.1), from the framework of our algorithm, we see that proximal grdadient algo-

rithm is a special case of our algorithm. Hence, the linear convergence results we

established in this thesis extend corresponding results obtained for the proximal gra-

dient algorithm [37, 38, 39]. However, we have to point out that the local convergence

rates of the sequences {xt} and {F (xt)} generated by FISTA for solving (1.1) with a

convex f are still unknown, even under the error bound condition. In addition, while

the global convergence rates in terms of objective values when applying FISTA and

the proximal gradient algorithm to solving (1.1) with a convex f are both known

(resp., O(1/t2) and O(1/t)), such a rate is still unknown for FISTA with restart.

These are interesting questions for future research.

For the difference-of-convex problems (4.1), we proposed the proximal difference-

of-convex algorithm with extrapolation for solving them. Our analysis is based on

an assumption on the extrapolation coefficients, i.e., sup
t
βt < 1. When sup

t
βt = 1,

whether the sequence {xt} converges or not is still unknown, not even for subsequen-

tial convergence. When we analyze the global convergence of the sequence {xt}, we

add an assumption that P2 is a differentiable function, then we establish the global

convergence results. However, for many difference-of-convex functions, P2 may be

not differentiable, what is the convergence behavior in this case? These questions

are possible future research directions.
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