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Abstract

In this thesis, we consider two classes of matrix optimization problems. One is the

matrix decomposition problem (MDP), which aims to decompose a given data matrix

into the sum of two matrices with different desirable structures. The other one is the

matrix factorization problem (MFP), which aims to factorize a given data matrix

into the product of two small factor matrices with different desirable structures.

These two classes of problems cover many existing widely-studied models with many

applications in areas such as machine learning and imaging sciences. To solve MDP

and MFP, which are possibly nonconvex, nonsmooth and even non-Lipschitz, we

develop two efficient first-order splitting algorithms for them, respectively.

We first consider MDP. Specifically, we adapt the alternating direction method

of multipliers (ADMM) with a general dual step-size to solve a reformulation of the

original problem that contains three blocks of variables, and analyze its convergence.

We show that for any dual step-size less than the golden ratio, there exists a compu-

table threshold such that if the penalty parameter is chosen above such a threshold

and the sequence thus generated by our ADMM is bounded, then the cluster point

of the sequence gives a stationary point of the nonconvex optimization problem. We

achieve this via a potential function specifically constructed for our ADMM. Mo-

reover, we establish the global convergence of the whole sequence if, in addition,

this special potential function is a Kurdyka- Lojasiewicz function. Furthermore, we

present a simple strategy for initializing the ADMM to guarantee boundedness of
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the sequence. Finally, we perform numerical experiments comparing our ADMM

with the proximal alternating linearized minimization proposed in [8] for the back-

ground/foreground extraction problem on real datasets. The numerical results show

that our ADMM with a nontrivial dual step-size is efficient.

We then consider MFP. To solve it, we develop a non-monotone alternating up-

dating method based on a potential function. Our method essentially updates two

blocks of variables in turn by inexactly minimizing this potential function, and up-

dates another auxiliary block of variables using an explicit formula. The special

structure of our potential function allows us to take advantage of efficient compu-

tational strategies for non-negative matrix factorization to perform the alternating

minimization over two blocks of variables. A suitable line search criterion is also

incorporated to improve the numerical performance of our method. Under some

mild conditions, we show that our line search criterion is well defined, and establish

that the sequence generated is bounded and any cluster point of the sequence is

a stationary point of our problem. Moreover, we discuss the convergence rate for

the function value if, in addition, the objective is a Kurdyka- Lojasiewicz function.

Finally, we conduct some numerical experiments using real datasets to compare our

method with some existing efficient methods for non-negative matrix factorization

and matrix completion. The numerical results show that our method can outperform

these methods for these specific applications.
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Chapter 1

Introduction

Nowadays, many optimization problems arising in various areas, e.g., signal proces-

sing, image processing and machine learning, are nonconvex, nonsmooth and even

non-Lipschitz. Moreover, these problems are usually presented in large scale. Thus,

the fast solution methods for these problems are urgently in demand. On the ot-

her hand, the first-order splitting methods have played a significant role for solving

convex problems and inspired many efficient numerical algorithms in different appli-

cations. Hence, it is conceivable that the performance of using the first-order splitting

methods for nonconvex, nonsmooth and non-Lipschitz problems can be promising.

In fact, some encouraging empirical performances have been verified for different

applications in the literature. However, the theoretic analysis is still limited. The

goal of this thesis is to develop efficient first-order splitting algorithms for solving

some existing or new nonconvex, nonsmooth and non-Lipschitz problems capturing

concrete applications in various areas, and analyze their convergences. Specifically,

in this thesis, we consider the following two classes of matrix optimization problems:

• Matrix Decomposition Problem (MDP): in this problem, we focus on

decomposing a given data matrix D P Rmˆn into two components L P Rmˆn

and S P Rmˆn with different desirable structures such that D « L` S.

• Matrix Factorization Problem (MFP): in this problem, we focus on facto-

1



CHAPTER 1. INTRODUCTION PhD Thesis

rizing a given data matrix M P Rmˆn into two factors X P Rmˆr and Y P Rnˆr

with different desirable structures such that M « XY J, where r ď mintm, nu.

These two classes of matrix optimization problems arise in many applications

from areas such as machine learning and imaging sciences. We will discuss more

details for their models in Section 1.1 and Section 1.2, respectively, and develop two

efficient first-order splitting algorithms for solving them in Chapter 3 and Chapter

4, respectively. To better distinguish these two classes of problems, throughout this

thesis, for MDP, we use L P Rmˆn and S P Rmˆn as the decision variables, and use

D P Rmˆn as the given matrix; while, for MFP, we use X P Rmˆr and Y P Rnˆr as

the decision variables, and use M P Rmˆn as the given matrix. With a slight abuse

of notation, we use FpL, Sq in (1.1) and FpX, Y q in (1.4) to denote the objectives

in the models for MDP and MFP, respectively.

1.1 Matrix decomposition problem

The MDP considered in this thesis can be modeled as

min
L,S
FpL, Sq :“ ΨpLq ` ΦpSq `

1

2
}D ´A rBpLq ` CpSqs}2F , (1.1)

where Ψ,Φ : Rmˆn Ñ R` Y t8u are proper closed nonnegative functions, and Ψ

is convex, while Φ is possibly nonconvex, nonsmooth and non-Lipschitz ; A,B, C :

Rmˆn Ñ Rmˆn are linear maps and B, C are injective. In particular, ΨpLq and

ΦpSq in (1.1) can be different regularizers used for inducing the desired structures.

For instance, ΨpLq can be used for inducing low rank in L. One possible choice is

ΨpLq “ }L}˚ (see Chapter 2 for notation and definitions). Alternatively, one may

consider ΨpLq “ δΩpLq, where Ω is a compact convex set such as Ω “ tL P Rmˆn :

}L}8 ď l, L:1 “ L:2 “ ¨ ¨ ¨ “ L:nu with l ą 0, or Ω “ tL P Rmˆn : }L}˚ ď r1u

with r1 ą 0; the former choice restricts L to have rank at most 1 and makes (1.1)

— 2 —



PhD Thesis CHAPTER 1. INTRODUCTION

nuclear-norm-free (see [52, 54]). On the other hand, ΦpSq can be used for inducing

sparsity. In the literature, ΦpSq is typically separable, i.e., taking the form

ΦpSq “ µ
m
ÿ

i“1

n
ÿ

j“1

φpsijq, (1.2)

where φ is a nonnegative continuous function with φp0q “ 0 and µ ą 0 is a regulari-

zation parameter. Some concrete examples of φ include:

1. bridge penalty [41, 44]: φptq “ |t|p for 0 ă p ď 1;

2. fraction penalty [28]: φptq “ α|t|{p1` α|t|q for α ą 0;

3. logistic penalty [64]: φptq “ logp1` α|t|q for α ą 0;

4. smoothly clipped absolute deviation [24]: φptq “

ż |t|

0

minp1, pα ´ s{µq`{pα ´

1qq ds for α ą 2;

5. minimax concave penalty [93]: φptq “
ş|t|

0
p1´ s{pαµqq` ds for α ą 0;

6. hard thresholding penalty function [25]: φptq “ µ´ pµ´ |t|q2`{µ.

The bridge penalty and the logistic penalty have also been considered in [20]. Finally,

the linear map A can be suitably chosen to model different scenarios. For example,

A can be chosen to be the identity map for extracting L and S from a noisy data D,

and the blurring map for extracting L and S from a blurred data D. The linear map

B can be the identity map or some “dictionary” that spans the data space (see, for

example, [57]), and C can be chosen to be the identity map or the inverse of certain

sparsifying transform (see, for example, [65]). More examples of (1.1) can be found

in [11, 12, 13, 20, 67, 89].

One representative application that is frequently modeled by (1.1) via a suitable

choice of Φ, Ψ, A, B and C is the background/foreground extraction problem, which

is an important problem in video processing; see [9, 10] for recent surveys. In this

— 3 —
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problem, one attempts to separate the relatively static information called “back-

ground” and the moving objects called “foreground” in a video. The problem can

be modeled by (1.1), and such models are typically referred to as robust principal

component analysis (RPCA)-based models. In these models, each image is stacked

as a column of a data matrix D, the relatively static background is then modeled

as a low rank matrix, while the moving foreground is modeled as sparse outliers.

The data matrix D is then decomposed (approximately) as the sum of a low rank

matrix L P Rmˆn modeling the background and a sparse matrix S P Rmˆn mo-

deling the foreground. Various approximations are then used to induce low rank and

sparsity, resulting in different RPCA-based models, most of which take the form of

(1.1). One example is to set Ψ to be the nuclear norm of L, i.e., the sum of singular

values of L, to promote low rank in L and Φ to be the `1 norm of S to promote

sparsity in S, as in [13]. Besides convex regularizers, nonconvex models have also

been widely studied recently and their performances are promising; see [20, 83] for

background/foreground extraction and [6, 18, 35, 63, 64, 97] for other problems in

image processing. There are also nuclear-norm-free models that do not require the

singular value decomposition of the matrix variable L when solving them, making

the model more practical especially when the size of matrix is large. For instance,

in [54], the authors set Φ to be the `1 norm of S and Ψ to be the indicator function

of Ω “ tL P Rmˆn : L:1 “ L:2 “ ¨ ¨ ¨ “ L:nu. A similar approach was also adop-

ted in [52] with promising performances. Clearly, for nuclear-norm-free models, one

can also take Φ to be some nonconvex sparsity inducing regularizers, resulting in

a special case of (1.1) that has not been explicitly considered in the literature be-

fore; we will consider these models in our numerical experiments in Section 3.3. The

above discussion shows that problem (1.1) is flexible enough to cover a wide range

of RPCA-based models for background/foreground extraction.

Problem (1.1) is nonconvex in general. Thus, in this thesis, we will focus on

— 4 —
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finding a stationary point of the objective F in (1.1). As we will show later in

Section 3.1, model (1.1) can be reformulated into an optimization problem with three

blocks of variables. This kind of problems containing several blocks of variables has

been widely studied in the literature; see, for example, [54, 62, 67]. Hence, it is

natural to adapt the algorithm used there, namely, the alternating direction method

of multipliers (ADMM), for solving (1.1). Classically, the ADMM can be applied to

solving problems of the following form that contains 2 blocks of variables:

min
x1,x2

t f1px1q ` f2px2q : A1px1q `A2px2q “ b u , (1.3)

where f1, f2 are proper closed convex functions and A1, A2 are linear maps. The

iterative scheme of ADMM is

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

xk`1
1 P Argmin

x1

 

Lβpx1, x
k
2, z

k
q
(

,

xk`1
2 P Argmin

x2

 

Lβpxk`1
1 , x2, z

k
q
(

,

zk`1
“ zk ´ τβpA1px

k`1
1 q `A2px

k`1
2 q ´ bq,

where τ P p0,
?

5`1
2
q is the dual step-size and Lβ is the augmented Lagrangian function

for (1.3) defined as

Lβpx1, x2, zq :“ f1px1q ` f2px2q ´ xz,A1px1q `A2px2q ´ by

`
β

2
}A1px1q `A2px2q ´ b}

2

with β ą 0 being the penalty parameter. Under some mild conditions, the sequence

tpxk1, x
k
2qu generated by the above ADMM can be shown to converge to an optimal

solution of (1.3); see for example, [5, 23, 27, 33]. However, the ADMM used in

[54, 62, 67] does not have a convergence guarantee; indeed, it is shown recently in

[16] that the ADMM, when applied to a convex optimization problem with 3 blocks

— 5 —
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of variables, can be divergent in general. This motivates the study of many provably

convergent variants of the ADMM for convex problems with more than 2 blocks of

variables; see, for example, [37, 38, 55, 56]. Recently, Hong et al. [40] established the

convergence of the multi-block ADMM with τ “ 1 for certain types of nonconvex

problems whose objective is a sum of a possibly nonconvex Lipschitz differentiable

function and a bunch of convex nonsmooth functions when the penalty parameter

is chosen above a computable threshold. The problem they considered covers (1.1)

when Φ is convex, or smooth and possibly nonconvex. Later, Wang et al. [83]

considered a more general type of nonconvex problems that contains (1.1) as a special

case and allows some nonconvex nonsmooth functions in the objective. To solve this

type of problems, they considered a variant of the ADMM whose subproblems are

simplified by adding a Bregman proximal term. However, their results cannot be

applied to the direct adaptation of the ADMM for solving (1.1). In view of the

above, we will develop the three-block ADMM with a non-trivial dual step-size for

(1.1) and analyze its convergence in Chapter 3.

1.2 Matrix factorization problem

The MFP considered in this thesis can be modeled as

min
X,Y
FpX, Y q :“ ΨpXq ` ΦpY q `

1

2

›

›ApXY Jq ´ b
›

›

2
, (1.4)

where X P Rmˆr and Y P Rnˆr are decision variables with r ď mintm, nu, the

functions Ψ : Rmˆr Ñ R Y t8u and Φ : Rnˆr Ñ R Y t8u are proper closed but

possibly nonconvex, nonsmooth and non-Lipschitz, b P Rq is a given vector and

A : Rmˆn Ñ Rq is a linear map with q ď mn and AA˚ “ I1. Model (1.4) covers

many existing widely-studied models in many application areas such as machine

1 We here make a blanket assumption on A that AA˚ “ I for matrix factorization problem

— 6 —
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learning [81] and imaging sciences [96]. Similarly, ΨpXq and ΦpY q in (1.4) can be

various regularizers for inducing the desired structure. We take ΨpXq for example. Ψ

can be the Frobenius norm of X for improving the stability of the estimation of factor

X. When the factorX is required to be sparse, Ψ can be chosen as a sparsity-inducing

norm, which is typically separable, i.e, taking the form ΨpXq “ ν
řm
i“1

řr
j“1 ψpxijq

with different forms of the penalty ψ (the concrete examples of ψ can be found in

Section 1.1). When the factor X is required to have low rank, one can consider

ΨpXq “ ν}X}˚ with ν ą 0 or ΨpXq “ δX pXq, where X “ tX P Rmˆr : }X}˚ ď r1u

with 0 ă r1 ď r. Moreover, one can also impose nonnegativity on X by considering

ΨpXq “ δX pXq, where X “ tX P Rmˆr : X ě 0u. For the linear map A, it can

be suitably chosen to model different scenarios. For instance, A can be the identity

map for the factorization of a given matrix, or the sampling map for recovering a

matrix from some observations as in the matrix completion problem [14, 15, 68, 69].

More examples of (1.4) can be found in recent surveys [81, 96].

One representative application of (1.4) is the non-negative matrix factorization

(NMF) problem, where ΨpXq and ΦpY q are chosen as the indicator functions for

X “ tX P Rmˆr : X ě 0u and Y “ tY P Rnˆr : Y ě 0u, respectively, and A is

the identity map. NMF was first introduced by Paatero and Tapper [66], and then

popularized by Lee and Seung [46]. It now has been widely used in data mining

applications due to its ability to provide interpretable decompositions of data. The

basic task of NMF is to find two nonnegative matrices X P Rmˆr
` and Y P Rnˆr

`

such that M « XY J for a given nonnegative data matrix M P Rmˆn
` . One can also

impose some desired structures (e.g., sparsity) on X or Y by using some suitable

regularizers (e.g., `1-norm). Thus, this type of problems can be modeled by (1.4)

via suitable choices of Ψ, Φ and A. We refer readers to [4, 29, 30, 31, 47, 86]

for more information on NMF and its variants. Another important application of

(1.4) is the matrix completion (MC) problem, which aims to recover an unknown
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low rank matrix from a sample of its entries. This problem also arises in various

applications, e.g., collaborative filtering [70, 77], sensor-network localization [7] and

system identification [59]. One popular class of methods for MC is based on nuclear-

norm minimization [14, 15, 68, 69], or, more generally, Schatten-p (0 ă p ď 1)

pquasi´qnorm minimization [45, 60, 61, 94]. However, this class of methods bears

the computational cost of singular value decompositions or eigenvalue decompositions

of huge (mˆn) matrices, which can become costly for large-scale problems. Recently,

an alternative class of methods based on low–rank matrix factorization has attracted

more and more attentions in the literature; see, for example, [43, 73, 74, 75, 79, 87].

In these methods, the mˆn matrix variable is replaced by the product of two or more

small-sized matrices. Strategies such as alternating minimization are then adopted

so that the resulting subproblems only involve small-sized matrix variables and hence

can be solved efficiently. In particular, it has been showed in [73, 74, 75] that the

Schatten-p (0 ă p ď 1) (quasi-)norm of any matrix is equivalent to minimizing

the weighted sum of Schatten-p1 quasi-norm and Schatten-p2 quasi-norm of its two

factor matrices for suitable p1, p2 ą 0. Thus, Schatten-p (0 ă p ď 1) (quasi-)norm

minimization for MC can be modeled as (1.4) with suitable choices of Ψ, Φ and A.

Promising numerical results of this method have also been reported in [73, 74].

Problem (1.4) is in general nonconvex (even when Ψ, Φ are convex) and NP-

hard2. Therefore, in this thesis, we also focus on finding a stationary point of

the objective F in (1.4). Note that F here also involves two blocks of variables.

This kind of structure has been widely studied in the literature; see, for example,

[3, 8, 22, 39, 42, 80, 91, 92, 95]. As we mentioned in Section 1.1, one popular class

of methods for tackling this kind of problems is the alternating direction method of

multipliers (ADMM) (see [22, 92, 95]), in which each iteration consists of an alter-

2 Problem (1.4) is NP-hard because it contains NMF as a special case, which is NP-hard in general
[82].
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nating minimization of an augmented Lagrangian function that involves X, Y and

some auxiliary variables, followed by updates of the associated multipliers. However,

the conditions presented in [22, 92, 95] that guarantee convergence of the ADMM

are too restrictive. In fact, their condition requires that the successive change of

the dual variable goes to zero, which is uncheckable in practice. Moreover, updating

the auxiliary variables and the multipliers can be expensive for large-scale problems.

Another class of methods for (1.4) is the alternating-minimization-based (or block-

coordinate-descent-type) methods (see [3, 8, 19, 32, 53, 58, 80, 91]), which alternately

(exactly or inexactly) minimizes FpX, Y q over each block of variables and conver-

ges under some mild conditions. When A is not the identity map, the majorization

technique can be used to simplify the subproblems. Some representative algorithms

of this class are proximal alternating linearized minimization (PALM) [8], hierarchi-

cal alternating least squares (HALS) (for NMF only; see [19, 32, 53, 58]) and block

coordinate descent (BCD) [91]. Comparing with ADMM, it was reported in [91] that

BCD outperforms ADMM in both CPU time and solution quality for NMF. While

methods such as PALM, HALS and BCD are currently the state-of-the-art algo-

rithms for solving problems of the form (1.4), in Chapter 4 of this thesis, we develop

a new iterative method for (1.4), which, according to our numerical experiments in

Section 4.4, outperforms HALS and BCD for NMF, and PALM for MC.

1.3 Contributions of the thesis

The contributions of this thesis can be divided into two parts.

• The first part is for MDP. Following the studies in [40, 83] on convergence

of nonconvex ADMM and its variant, and the recent studies in [1, 49, 84],

we manage to analyze the convergence of the ADMM applied to solving the

possibly nonconvex problem (1.1). In addition, we would like to point out
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that all the nonconvex ADMM mentioned in Section 1.1 only have a dual step-

size of τ “ 1. While it is known that the classical ADMM converges for any

τ P p0,
?

5`1
2
q for convex problems, and that empirically τ «

?
5`1
2

works best

(see, for example, [26, 27, 33, 55]), to our knowledge, the algorithm with a

dual step-size τ ‰ 1 has never been studied in the nonconvex scenarios. Thus,

we also study the ADMM with a general dual step-size, which will allow more

flexibilities in the design of algorithms. The specifical contributions in this part

are presented as follows.

– We show that for any positive dual step-size τ less than the golden ra-

tio, the cluster point of the sequence generated by our ADMM gives a

stationary point of (1.1) if the penalty parameter is chosen above a com-

putable threshold depending on τ , whenever the sequence is bounded.

We achieve this via a potential function specifically constructed for our

ADMM. To the best of our knowledge, this is the first convergence result

for the ADMM in the nonconvex scenario with a possibly nontrivial dual

step-size (τ ‰ 1). This result is also new for the convex scenario for the

directly extended multi-block ADMM.

– We establish global convergence of the whole sequence generated by the

ADMM under the additional assumption that the special potential function

is a Kurdyka- Lojasiewicz function.

– Furthermore, we discuss an initialization strategy to guarantee the boun-

dedness of the sequence generated by the ADMM.

– We conduct some numerical experiments to evaluate the performance of

our ADMM by using different nonconvex regularizers on real datasets

in Section 3.3. Our computational results illustrate the efficiency of our

ADMM with a nontrivial dual step-size.
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• The second part is for MFP. In this part, we develop a new iterative method

for (1.4). Our method is based on the following potential function (specifically

constructed for the objective F in (1.4)):

Θα,βpX, Y, Zq :“ ΨpXq ` ΦpY q `
α

2
}XY J ´ Z}2F `

β

2
}ApZq ´ b}2 , (1.5)

where α and β are real numbers. Instead of alternately (exactly or inexactly)

minimizing FpX, Y q or the augmented Lagrangian function, our method alter-

nately updates X and Y by inexactly minimizing Θα,βpX, Y, Zq over X and Y ,

and then updates Z by an explicit formula. Note that the coupled variables

XY J is now separated from A in our potential function. Thus, one can readily

take advantage of efficient computational strategies for NMF, such as those

used in HALS (see the “hierarchical-prox” updating strategy in Section 4.2),

for inexactly minimizing Θα,βpX, Y, Zq over X or Y . Furthermore, our method

can be implemented for NMF and MC without explicitly forming the huge

(m ˆ n) matrix Z (see (4.46) and (4.49)) in each iteration. This significantly

reduces the computational cost per iteration. Finally, a suitable non-monotone

line search criterion, which is motivated by recent studies on non-monotone

algorithms (see, for example, [17, 34, 88]), is also incorporated to improve the

numerical performance. The specifical contributions in this part are presented

as follows.

– We propose a potential function Θα,β and study its properties. IfAA˚ “ I

and α, β are chosen such that αI ` βA˚A ą 0 and 1
α
` 1

β
“ 1, then the

problem min
X,Y,Z

tΘα,βpX, Y, Zqu is equivalent to (1.4) (see Theorem 4.1).

Furthermore, under the weaker conditions that AA˚ “ I and 1
α
` 1

β
“ 1,

we can show that (i) a stationary point of Θα,β gives a stationary point

of F ; (ii) a stationary point of F can be used to construct a stationary
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point of Θα,β (see Theorem 4.2). Thus, one can find a stationary point of

F by finding a stationary point of Θα,β.

– We develop a non-monotone alternating updating method based on this

potential function to find a stationary point of Θα,β, and hence of F .

The convergence analysis of this method is presented. We show that

our non-monotone line search criterion is well defined and any cluster

point of the sequence generated by our method is a stationary point of F

under some mild conditions. Moreover, we discuss the convergence rate for

the function value if, in addition, the objective is a Kurdyka- Lojasiewicz

function.

– Finally, we conduct some numerical experiments to evaluate the perfor-

mance of our method for NMF and MC on real datasets in Section 4.4.

Our computational results illustrate the efficiency of our method.

1.4 Organization of the thesis

This thesis is organized as follows.

• In Chapter 1, we briefly introduce the backgrounds and models for two classes

of matrix optimization problems considered in this thesis and summarize the

main contributions of this thesis.

• In Chapter 2, we present some basic notions and some well-known theoretical

results needed in this thesis.

• In Chapter 3, we develop the three-block ADMM with a non-trivial dual step-

size for MDP (1.1) and analyze its convergence. Then, we conduct numerical

experiments to evaluate the performance of our ADMM.
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• In Chapter 4, we derive a non-monotone alternating updating method for MFP

(1.4) and analyze its convergence. The numerical experiments for nonnegative

matrix factorization and matrix completion are also conducted to evaluate the

performance of our method.

• In Chapter 5, we summarize our main results in this thesis and give some

possible further works.
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Chapter 2

Notation and Preliminaries

In this chapter, we summarize some basic notation used throughout this thesis, and

recall some well-known theoretical results in the literature.

2.1 Basic notation

In this thesis, we use Rm to denote the set of all m-dimensional vectors and use Rmˆn

to denote the set of all mˆn matrices. For a vector x P Rm, we let xi denote its i-th

entry, }x} denote the Euclidean norm of x and Diagpxq denote a diagonal matrix

whose i-th diagonal element is xi. For a matrix X P Rmˆn, xij denotes its ij-th entry

and xj denotes its j-th column. The `0-“norm” denoted by }X}0 is defined as the

number of nonzero entries in X and the `8-norm denoted by }X}8 is defined as the

largest entry in magnitude in X. The `1-norm and `p-quasi-norm (0 ă p ă 1) of X

are defined as }X}1 :“
řm
i“1

řn
j“1 |xij| and }X}p :“

´

řm
i“1

řn
j“1 |xij|

p
¯

1
p
, respectively.

Moreover, the Schatten-p (quasi-)norm (0 ă p ă 8) of X is defined as }X}Sp “

´

řminpm,nq
i“1 ςpi pXq

¯
1
p
, where ςipXq is the i-th singular value of X. For p “ 2, the

Schatten-2 norm reduces to the Frobenius norm }X}F , and for p “ 1, the Schatten-1

norm reduces to the nuclear norm }X}˚. The spectral norm of X is denoted by }X},

which is the largest singular values of X. Additionally, for two matrices X and Y
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of the same size, we denote their trace inner product by xX, Y y :“
řm
i“1

řn
j“1 xijyij.

We also use X ď Y (resp. X ě Y ) to denote xij ď yij (resp. xij ě yij) for all pi, jq.

For the linear map A : Rmˆn Ñ Rmˆn, A˚ denotes the adjoint linear map and

}A} denotes the induced operator norm of A, i.e., }A} “ supt}ApXq} : }X}F ď 1u.

Particularly, for notational simplicity, we use λmax (resp., λmin) to denote the largest

(resp., smallest) eigenvalue of the linear map A˚A in Chapter 3. For a linear map

T : Rmˆn Ñ Rmˆn, we write T ą 0 if T is positive definite. Finally, the identity

map is denoted by I.

For an extended-real-valued function f : Rmˆn Ñ r´8,8s, we say that it is

proper if fpXq ą ´8 for all X P Rmˆn and its domain domf :“ tX P Rmˆn : fpXq ă

8u is nonempty. Such a function is lower semicontinuous at a point X P Rmˆn if

fpXq ď lim infYÑX fpY q. We say that f is lower semicontinuous or closed on Rmˆn

if f is lower semicontinuous at every X P Rmˆn. For a proper function f , we use

the notation Y
f
ÝÑ X to denote Y Ñ X and fpY q Ñ fpXq. The basic (limiting)

subdifferential [71, Definition 8.3] of f at X P domf used in this thesis is

BfpXq :“
!

D P Rmˆn : DXk f
ÝÑ X and Dk

Ñ D with Dk
P pBfpXk

q for all k
)

,

where pBfpUq denotes the Fréchet subdifferential of f at U P domf , which is the set

of all D P Rmˆn satisfying

lim inf
Y‰U, YÑU

fpY q ´ fpUq ´ xD, Y ´ Uy

}Y ´ U}F
ě 0.

From the above definition, we can easily observe that

!

D P Rmˆn : DXk f
ÝÑ X, Dk

Ñ D, Dk
P BfpXk

q

)

Ď BfpXq. (2.1)

We also recall that when f is continuously differentiable or convex, the above subdif-

ferential coincides with the classical concept of derivative or convex subdifferential of
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f ; see, for example, [71, Exercise 8.8] and [71, Proposition 8.12]. Moreover, from the

generalized Fermat’s rule [71, Theorem 10.1], we know that if X P Rmˆn is a local

minimizer of f , then 0 P BfpXq. In this thesis, we say that X˚ is stationary point of

f if 0 P BfpX˚q. Additionally, for a function f with several groups of variables, we

write BXf (resp., ∇Xf) for the subdifferential (resp., derivative) of f with respect to

the group of variables X.

For a nonempty closed set X Ď Rmˆn, its indicator function δX is defined by

δX pXq “

"

0 if X P X ,
`8 otherwise.

The normal cone of X at the point X P X is given by NX pXq “ BδX pXq. We also use

distpX, X q to denote the distance from X to X , i.e., distpX, X q :“ infY PX }X´Y }F ,

and PX pXq to denote the closest point to X in X .

For a proper closed function g : Rm Ñ p´8,8s, the proximal mapping Proxg :

Rm Ñ Rm of g is defined by

Proxgpzq :“ Argmin
xPRm

"

gpxq `
1

2
}x´ z}2

*

.

For any ν ą 0, the matrix shrinkage operator Sν : Rmˆn Ñ Rmˆn is defined by

SνpXq :“ UDiagps̄qV J with s̄i “

"

si ´ ν, if si ´ ν ą 0,
0, otherwise,

where U P Rmˆt, s P Rt
` and V P Rnˆt are given by the singular value decomposition

of X, i.e, X “ UDiagpsqV J.

2.2 Kurdyka- Lojasiewicz property

We next recall the Kurdyka- Lojasiewicz (KL) property, which plays an important role

in our global convergence analysis in Section 3.2 and convergence rate in Section 4.3.
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For notational simplicity, we use Ξη (η ą 0) to denote the class of concave functions

ϕ : r0, ηq Ñ R` satisfying: (1) ϕp0q “ 0; (2) ϕ is continuously differentiable on p0, ηq

and continuous at 0; (3) ϕ1pxq ą 0 for all x P p0, ηq. Then, the KL property can be

described as follows.

Definition 2.1 (KL property and KL function). Let f be a proper lower semi-

continuous function.

(i) For rX P dom Bf :“ tX P Rmˆn : BfpXq ‰ Hu, if there exist an η P p0,`8s,

a neighborhood V of rX and a function ϕ P Ξη such that for all X P V X tX P

Rmˆn : fp rXq ă fpXq ă fp rXq ` ηu, it holds that

ϕ1pfpXq ´ fp rXqqdistp0, BfpXqq ě 1,

then f is said to have the Kurdyka- Lojasiewicz (KL) property at rX.

(ii) If f satisfies the KL property at each point of dom Bf , then f is called a KL

function.

We refer the interested readers to [2] and references therein for examples of KL

functions. Based on the above definition, we can further describe the KL exponent,

which is defined [2, 3] as follows.

Definition 2.2. Suppose that f is a proper closed function satisfying the KL property

at rX P dom Bf :“ tX P Rmˆn : BfpXq ‰ Hu with ϕpsq “ ãs1´ϑ for some ã ą 0 and

ϑ P r0, 1q, i.e., there exist a, ε, η ą 0 such that

distp0, BfpXqq ě a
´

fpXq ´ fp rXq
¯ϑ

whenever X P dom Bf , }X ´ rX}F ď ε and fp rXq ă fpXq ă fp rXq ` η. Then, f is

said to have the KL property at X̃ with an exponent ϑ. If f is a KL function and
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has the same exponent ϑ at any rX P dom Bf , then f is said to be a KL function with

an exponent ϑ.

Finally, we recall the following uniformized KL property, which was established

in [8, Lemma 6].

Proposition 2.1 (Uniformized KL property). Suppose that f is a proper lower

semicontinuous function and Γ is a compact set. If f ” f˚ on Γ for some constant

f˚ and satisfies the KL property at each point of Γ, then there exist ε ą 0, η ą 0 and

ϕ P Ξη such that

ϕ1pfpXq ´ f˚q distp0, BfpXqq ě 1

for all X P tX P Rmˆn : distpX, Γq ă εu X tX P Rmˆn : f˚ ă fpXq ă f˚ ` ηu.
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Chapter 3

ADMM for Matrix Decomposition

Problem

In this chapter, we consider applying ADMM with a general dual step-size for solving

the matrix decomposition problem (1.1), i.e.,

min
L,S
FpL, Sq :“ ΨpLq ` ΦpSq `

1

2
}D ´A rBpLq ` CpSqs}2F .

Note that this problem is possibly nonconvex, nonsmooth and non-Lipschitz. Thus,

we focus on finding a stationary point of the objective F , i.e., finding a point pL˚, S˚q

such that 0 P BFpL˚, S˚q. Moreover, from [71, Exercise 8.8] and [71, Proposi-

tion 10.5], we see that

BFpL, Sq “
ˆ

BΨpLq ` B˚A˚ pApBpLq ` CpSqq ´Dq
BΦpSq ` C˚A˚ pApBpLq ` CpSqq ´Dq

˙

.

Then, a stationary point pL˚, S˚q of F must satisfy the following first-order necessary

conditions:

$

&

%

0 P BΨpL˚q ` B˚A˚ pApBpL˚q ` CpS˚qq ´Dq ,

0 P BΦpS˚q ` C˚A˚ pApBpL˚q ` CpS˚qq ´Dq .
(3.1)

Later, we will show that for any dual step-size less than the golden ratio
?

5`1
2

, there

exists a computable threshold sβ such that if the penalty parameter β is chosen above
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sβ and the sequence thus generated by our ADMM is bounded, then the cluster

point of the sequence gives a stationary point of F , i.e., a point satisfying (3.1).

We achieve this via a potential function specifically constructed for our ADMM.

Moreover, we establish the global convergence of the whole sequence if, in addition,

this special potential function is a Kurdyka- Lojasiewicz function. Furthermore, we

present a simple strategy for initializing the algorithm to guarantee boundedness

of the sequence. Finally, we perform numerical experiments comparing our ADMM

with the proximal alternating linearized minimization (PALM) proposed in [8] on the

background/foreground extraction problem with real data. The numerical results

show that our ADMM with a nontrivial dual step-size is efficient.

The rest of this chapter is organized as follows. We first present the ADMM for

(1.1) in Section 3.1. We then present the convergence analysis in Section 3.2. Some

numerical results are reported in Section 3.3.

3.1 Alternating direction method of multipliers

In this section, we present an ADMM for (1.1). To this end, we first rewrite (1.1) as

the following equivalent form:

min
L,S,Z

ΨpLq ` ΦpSq `
1

2
}D ´ApZq}2F

s.t. BpLq ` CpSq “ Z.

(3.2)

We then introduce the augmented Lagrangian function of (3.2) as follows:

LβpL, S, Z,Λq “ ΨpLq ` ΦpSq `
1

2
}D ´ApZq}2F

´ xΛ, BpLq ` CpSq ´ Zy ` β

2
}BpLq ` CpSq ´ Z}2F ,

where Λ P Rmˆn is the Lagrangian multiplier and β ą 0 is the penalty parameter.

Now, we are ready to present the complete ADMM for (3.2) (equivalently (1.1)) in
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Algorithm 1.

Algorithm 1 ADMM for solving (3.2)

Input: Initial point pS0, Z0,Λ0q, dual step-size parameter τ ą 0, penalty parameter
β ą 0. Set k “ 0.

while a termination criterion is not met, do

Step 1. Set

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Lk`1
P Argmin

L
LβpL, Sk, Zk,Λk

q, (3.3a)

Sk`1
P Argmin

S
LβpLk`1, S, Zk,Λk

q, (3.3b)

Zk`1
“ argmin

Z
LβpLk`1, Sk`1, Z,Λk

q, (3.3c)

Λk`1
“ Λk

´ τβpBpLk`1
q ` CpSk`1

q ´ Zk`1
q.

Step 2. Set k :“ k ` 1.

end while

Output: pLk, Skq

Comparing with the ADMM considered in [40], the above algorithm has an extra

dual step-size parameter τ ą 0 in the Λ-update. Such a dual step-size was introduced

in [27, 33] for the classical ADMM (i.e., for convex problems with two separate blocks

of variables), and was further studied in [26, 55, 78, 90] for other variants of the

ADMM. Numerically, it was also demonstrated in [78] that a larger dual step-size

(τ «
?

5`1
2

) results in faster convergence for the convex problems they consider. Thus,

we adapt this dual step-size τ in our algorithm above. Surprisingly, in our numerical

experiments, a parameter choice of τ «
?

5`1
2

leads to the worst performance for our

nonconvex problems.

When τ “ 1, the above algorithm is a special case of the general algorithm

studied in [40] when Ψ and Φ are smooth functions, or convex nonsmooth functions.

The algorithm is shown to converge when β is chosen above a computable threshold.

However, their convergence result cannot be directly applied when τ ‰ 1 or when Φ
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is nonsmooth and nonconvex. Nevertheless, following their analysis and the related

studies [49, 84, 83], the above algorithm can be shown to be convergent under suitable

assumptions. We will present the convergence analysis in Section 3.2.

Before ending this section, we further discuss the three subproblems in Algorithm

1. First, notice that the L-update and S-update are given by

$

’

’

’

’

&

’

’

’

’

%

Lk`1
P Argmin

L

"

ΨpLq `
β

2
}BpLq ` CpSkq ´ Zk

´
1

β
Λk
}

2
F

*

,

Sk`1
P Argmin

S

"

ΦpSq `
β

2
}BpLk`1

q ` CpSq ´ Zk
´

1

β
Λk
}

2
F

*

.

In general, these two subproblems are not easy to solve. However, when Ψ and

Φ are chosen to be some common regularizers used in the literature, for example,

ΨpLq “ }L}˚ and ΦpSq “ }S}1, then these subproblems can be solved efficiently via

the proximal gradient method. Additionally, when ΨpLq “ δΩpLq with Ω being a

closed convex set and B “ I, the L-update can be given explicitly by

Lk`1
“ PΩ

ˆ

´CpSkq ` Zk
`

1

β
Λk

˙

,

which can be computed efficiently if Ω is simple, for example, when Ω “ tL P

Rmˆn | }L}8 ď l, L:1 “ L:2 “ ¨ ¨ ¨ “ L:nu for some l ą 0. For the S-update, when Φ is

given by (1.2) with φ being one of the penalty functions presented in the introduction

and C “ I, it can be solved efficiently via a simple root-finding procedure. Finally,

from the optimality conditions of (3.3c), the Zk`1 can be obtained by solving the

following linear system

A˚ApZq ` βZ “ A˚pDq ´ Λk
` β

`

BpLk`1
q ` CpSk`1

q
˘

,

whose complexity would depend on the choice of A in our model (1.1). For example,

when A is just the identity map, the Zk`1 is given explicitly by

Zk`1
“

1

1` β

“

D ´ Λk
` β

`

BpLk`1
q ` CpSk`1

q
˘‰

.
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3.2 Convergence analysis of ADMM

In this section, we discuss the convergence of Algorithm 1 for 0 ă τ ă 1`
?

5
2

. We

first present the first-order optimality conditions for the subproblems in Algorithm

1 as follows, which will be used repeatedly in our convergence analysis below.

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 P BΨpLk`1
q ´ B˚pΛk

q ` βB˚
`

BpLk`1
q ` CpSkq ´ Zk

˘

, (3.4a)

0 P BΦpSk`1
q ´ C˚pΛk

q ` βC˚
`

BpLk`1
q ` CpSk`1

q ´ Zk
˘

, (3.4b)

0 “ A˚pApZk`1
q ´Dq ` Λk

´ βpBpLk`1
q ` CpSk`1

q ´ Zk`1
q, (3.4c)

Λk`1
´ Λk

“ ´τβ
`

BpLk`1
q ` CpSk`1

q ´ Zk`1
˘

. (3.4d)

Our convergence analysis is largely based on the following potential function:

Θτ,βpL, S, Z,Λq “ LβpL, S, Z,Λq ` θpτqβ}BpLq ` CpSq ´ Z}2F ,

where

θpτq :“ max

"

1´ τ,
pτ ´ 1qτ 2

1` τ ´ τ 2

*

, for 0 ă τ ă
1`

?
5

2
. (3.5)

Note that θp¨q is a convex and nonnegative function on
´

0, 1`
?

5
2

¯

. Thus, for any

pL, S, Z,Λq, we have Θτ,βpL, S, Z,Λq ě LβpL, S, Z,Λq for 0 ă τ ă 1`
?

5
2

, and the

equality holds when τ “ 1 (so that θpτq “ 0).

Our convergence analysis also relies on the following assumption.

Assumption 3.1. Ψ, Φ, B, C, β and τ are chosen such that

(a1) B˚B ľ σI for some σ ą 0 and C˚C ľ σ1I for some σ1 ą 0;

(a2) Ψ is continuous on its domain;

(a3) the first iterate pL1, S1, Z1,Λ1q satisfies

Θτ,βpL
1, S1, Z1,Λ1

q ă h0 :“ lim inf
}L}F`}S}FÑ8

ΨpLq ` ΦpSq.
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Remark 3.1 (Note on Assumption 3.1). (i) Since B and C in (1.1) are injective,

(a1) holds trivially; (ii) (a2) holds for many common regularizers (for example, the

nuclear norm) or the indicator function of a set; (iii) (a3) places conditions on the

first iterate of the algorithm. It is not hard to observe that this assumption holds

trivially if both Ψ and Φ are coercive, i.e., if lim inf
}L}F`}S}FÑ8

ΨpLq`ΦpSq “ 8. We will

discuss more sufficient conditions for this assumption after our convergence results,

i.e., after Theorem 3.2.

We now start our convergence analysis by proving the following preparatory

lemma, which states that the potential function is decreasing along the sequence

generated from Algorithm 1 if the penalty parameter β is chosen above a computa-

ble threshold.

Lemma 3.1. Suppose that 0 ă τ ă 1`
?

5
2

and tpLk, Sk, Zk,Λkqu is a sequence gene-

rated by Algorithm 1. If (a1) in Assumption 3.1 holds, then for k ě 1, we have

Θτ,βpL
k`1, Sk`1, Zk`1,Λk`1

q ´Θτ,βpL
k, Sk, Zk,Λk

q

ď

´

max
!

1
τ
, τ2

1`τ´τ2

)

¨
λ2max

β
´

λmin`β
2

¯

}Zk`1 ´ Zk}2F ´
σβ
2
}Lk`1 ´ Lk}2F ,

(3.6)

where λmax (resp., λmin) denotes the largest (resp., smallest) eigenvalue of the linear

map A˚A. Moreover, if β ě ´
λmin

2
` 1

2

b

λ2
min `max

 

1
τ
, τ2

1`τ´τ2

(

¨ 8λ2
max, then the

sequence tΘτ,βpL
k, Sk, Zk,Λkqu8k“1 is decreasing.

Proof. We start our proof by noticing that

Θτ,βpL
k`1, Sk`1, Zk`1,Λk`1

q ´Θτ,βpL
k`1, Sk`1, Zk`1,Λk

q

“ ´xΛk`1
´ Λk, Lk`1

` Sk`1
´ Zk`1

y “
1

τβ
}Λk`1

´ Λk
}

2
F ,

(3.7)

where the last equality follows from (3.4d). We next derive an upper bound of
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}Λk`1 ´ Λk}2F . To proceed, we first note from (3.4c) that

0 “ A˚pApZk`1
q ´Dq ` Λk

´ βpBpLk`1
q ` CpSk`1

q ´ Zk`1
q

“ A˚pApZk`1
q ´Dq ` Λk

`
1

τ
pΛk`1

´ Λk
q

ùñ Λk`1
“ τA˚pD ´ApZk`1

qq ` p1´ τqΛk,

where the second equality follows from (3.4d). Hence, for k ě 1,

Λk`1
´ Λk

“ rτA˚pD ´ApZk`1
qq ` p1´ τqΛk

s ´ rτA˚pD ´ApZk
qq ` p1´ τqΛk´1

s

“ τA˚ApZk
´ Zk`1

q ` p1´ τqpΛk
´ Λk´1

q.

(3.8)

We now consider two separate cases: 0 ă τ ď 1 and 1 ă τ ă 1`
?

5
2

.

• For 0 ă τ ď 1, it follows from the convexity of } ¨ }2F that

}Λk`1
´ Λk

}
2
F “

›

›τA˚ApZk
´ Zk`1

q ` p1´ τqpΛk
´ Λk´1

q
›

›

2

F

ď τλ2
max}Z

k`1
´ Zk

}
2
F ` p1´ τq}Λ

k
´ Λk´1

}
2
F .

We further add ´p1 ´ τq
›

›Λk`1 ´ Λk
›

›

2

F
to both sides of the above inequality

and simplify the resulting inequality to get

}Λk`1
´ Λk

}
2
F

ď λ2
max}Z

k`1
´ Zk

}
2
F `

1´τ
τ

`

}Λk
´ Λk´1

}
2
F ´ }Λ

k`1
´ Λk

}
2
F

˘

“ p1´ τqτβ2
`

}BpLkq ` CpSkq ´ Zk
}

2
F ´ }BpLk`1

q ` CpSk`1
q ´ Zk`1

}
2
F

˘

` λ2
max}Z

k`1
´ Zk

}
2
F .

(3.9)

where the last equality follows from (3.4d).
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• For 1 ă τ ă 1`
?

5
2

, dividing τ from both sides of (3.8), we have

1

τ

`

Λk`1
´ Λk

˘

“ A˚A
`

Zk
´ Zk`1

˘

`

ˆ

1

τ
´ 1

˙

pΛk
´ Λk´1

q

“
1

τ
¨ τA˚A

`

Zk
´ Zk`1

˘

`

ˆ

1´
1

τ

˙

pΛk´1
´ Λk

q.

This together with 0 ă 1
τ
ă 1 and the convexity of } ¨ }2F , implies that

›

›

1
τ

`

Λk`1
´ Λk

˘
›

›

2

F
ď 1

τ
}τA˚A

`

Zk
´ Zk`1

˘

}
2
F `

`

1´ 1
τ

˘

}Λk´1
´ Λk

}
2
F

ď τλ2
max}Z

k`1
´ Zk

}
2
F `

`

1´ 1
τ

˘

}Λk
´ Λk´1

}
2
F

ùñ }Λk`1
´ Λk

}
2
F ď τ 3λ2

max}Z
k`1

´ Zk
}

2
F `

`

τ 2
´ τ

˘

}Λk
´ Λk´1

}
2
F .

Then, adding ´pτ 2 ´ τq
›

›Λk`1 ´ Λk
›

›

2

F
to both sides of the above inequality,

simplifying the resulting inequality and using the fact that 1 ` τ ´ τ 2 ą 0 for

1 ă τ ă 1`
?

5
2

, we see that

}Λk`1
´ Λk

}
2
F

ď
τ 3λ2

max

1` τ ´ τ 2
}Zk`1

´ Zk
}

2
F `

τ 2 ´ τ

1` τ ´ τ 2

`

}Λk
´ Λk´1

}
2
F ´ }Λ

k`1
´ Λk

}
2
F

˘

“
τ 3λ2

max

1` τ ´ τ 2
}Zk`1

´ Zk
}

2
F `

pτ ´ 1qτ 3β2

1` τ ´ τ 2

`

}BpLkq ` CpSkq ´ Zk
}

2
F

´ }BpLk`1
q ` CpSk`1

q ´ Zk`1
}

2
F

˘

,

(3.10)

where the equality follows from (3.4d).

Thus, for 0 ă τ ă 1`
?

5
2

, combining (3.9), (3.10) and recalling the definition of θpτq

in (3.5), we have

1

τβ
}Λk`1

´ Λk
}

2
F ď max

"

1

τ
,

τ 2

1` τ ´ τ 2

*

¨
λ2

max

β
}Zk`1

´ Zk
}

2
F

` θpτqβ
`

}BpLkq ` CpSkq ´ Zk
}

2
F ´ }BpLk`1

q ` CpSk`1
q ´ Zk`1

}
2
F

˘

.

(3.11)
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Next, note that the function Z ÞÑ LβpLk`1, Sk`1, Z,Λkq is strongly convex with

modulus at least λmin ` β. Using this fact and the definition of Zk`1 as a minimizer

in (3.3c), we see that

Θτ,βpL
k`1, Sk`1, Zk`1,Λk

q ´Θτ,βpL
k`1, Sk`1, Zk,Λk

q

“ LβpLk`1, Sk`1, Zk`1,Λk
q ´ LβpLk`1, Sk`1, Zk,Λk

q

` θpτqβ
`

}BpLk`1
q ` CpSk`1

q ´ Zk`1
}

2
F ´ }BpLk`1

q ` CpSk`1
q ´ Zk

}
2
F

˘

ď θpτqβ
`

}BpLk`1
q ` CpSk`1

q ´ Zk`1
}

2
F ´ }BpLk`1

q ` CpSk`1
q ´ Zk

}
2
F

˘

´
λmin`β

2
}Zk`1

´ Zk
}

2
F .

(3.12)

Moreover, using the fact that Sk`1 is a minimizer in (3.3b), we have

Θτ,βpL
k`1, Sk`1, Zk,Λk

q ´Θτ,βpL
k`1, Sk, Zk,Λk

q

“ LβpLk`1, Sk`1, Zk,Λk
q ´ LβpLk`1, Sk, Zk,Λk

q

` θpτqβ
`

}BpLk`1
q ` CpSk`1

q ´ Zk
}

2
F ´ }BpLk`1

q ` CpSkq ´ Zk
}

2
F

˘

ď θpτqβ
`

}BpLk`1
q ` CpSk`1

q ´ Zk
}

2
F ´ }BpLk`1

q ` CpSkq ´ Zk
}

2
F

˘

.

(3.13)

Finally, note that L ÞÑ LβpL, Sk, Zk,Λkq is strongly convex with modulus at least

σβ from (a1) in Assumption 3.1. From this, we can similarly obtain

Θτ,βpL
k`1, Sk, Zk,Λk

q ´Θτ,βpL
k, Sk, Zk,Λk

q

ď θpτqβ
`

}BpLk`1
q ` CpSkq ´ Zk

}
2
F ´ }BpLkq ` CpSkq ´ Zk

}
2
F

˘

´
σβ

2
}Lk`1

´ Lk}2F .

(3.14)

Thus, summing (3.7), (3.11), (3.12), (3.13) and (3.14), we obtain (3.6).

Now, suppose in addition that β ě ´
λmin

2
` 1

2

b

λ2
min `max

 

1
τ
, τ2

1`τ´τ2

(

¨ 8λ2
max.

Then, it is easy to check that

max

"

1

τ
,

τ 2

1` τ ´ τ 2

*

¨
λ2

max

β
´
λmin ` β

2
ď 0.
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Hence we see from (3.6) that

Θτ,βpL
k`1, Sk`1, Zk`1,Λk`1

q ´Θτ,βpL
k, Sk, Zk,Λk

q ď 0,

which means that tΘτ,βpL
k, Sk, Zk,Λkqu8k“1 is decreasing. This completes the proof.

l

We next show that the sequence generated by Algorithm 1 is bounded if β is

chosen above a computable threshold, under (a1) and (a3) in Assumption 3.1. For

notational simplicity, from now on, we let

sβ :“ max
!

maxt1{τ, τu ¨ λmax, ´
λmin

2
` 1

2

b

λ2
min`max

 

1
τ
, τ2

1`τ´τ2

(

¨ 8λ2
max

)

. (3.15)

Proposition 3.1 (Boundedness of sequence generated by ADMM). Suppose

that 0 ă τ ă 1`
?

5
2

and β ą sβ. If (a1) and (a3) in Assumption 3.1 hold, then a

sequence tpLk, Sk, Zk,Λkqu8k“1 generated by Algorithm 1 is bounded.

Proof. With our choice of β and (a1) in Assumption 3.1, we see immediately from

Lemma 3.1 that the sequence tΘτ,βpL
k, Sk, Zk,Λkqu8k“1 is decreasing. This together

with (a3) in Assumption 3.1 shows that, for k ě 1,

h0 ą Θτ,βpL
1, S1, Z1,Λ1

q ě Θτ,βpL
k, Sk, Zk,Λk

q

“ ΨpLkq ` ΦpSkq `
1

2
}D ´ApZk

q}
2
F ´ xΛ

k,BpLkq ` CpSkq ´ Zk
y

` p1` 2θpτqq
β

2
}BpLkq ` CpSkq ´ Zk

}
2
F

“ ΨpLkq ` ΦpSkq `
1

2
}D ´ApZk

q}
2
F `

β

2
}BpLkq ` CpSkq ´ Zk

´
1

β
Λk
}

2
F

´
1

2β
}Λk
}

2
F ` θpτqβ}BpLkq ` CpSkq ´ Zk

}
2
F ,

(3.16)

where the last equality is obtained by completing the square. We next derive an

upper bound for
›

›Λk
›

›

2

F
. We start by substituting (3.4d) into (3.4c) and rearranging
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terms to obtain

0 “ A˚pApZk
q ´Dq ` Λk´1

`
1

τ
pΛk

´ Λk´1
q

ùñ ´τΛk
“ τA˚pApZk

q ´Dq ` p1´ τq pΛk
´ Λk´1

q.

We now consider two different cases:

• For 0 ă τ ď 1, it follows from the convexity of } ¨ }2F and (3.17) that

} ´ τΛk
}

2
F ď τ}A˚pApZk

q ´Dq}2F ` p1´ τq}Λ
k
´ Λk´1

}
2
F

ď τλmax}ApZk
q ´D}2F ` p1´ τq}Λ

k
´ Λk´1

}
2
F

“ τλmax}ApZk
q ´D}2F ` p1´ τqτ

2β2
}BpLkq ` CpSkq ´ Zk

}
2
F ,

where the equality follows from (3.4d). Then, we have

}Λk
}

2
F ď

λmax

τ
}ApZk

q ´D}2F ` p1´ τqβ
2
}BpLkq ` CpSkq ´ Zk

}
2
F . (3.17)

• For 1 ă τ ă 1`
?

5
2

, by dividing ´τ from both sides of (3.4c), we obtain

Λk
“

1

τ
τA˚pD ´ApZk

qq `

ˆ

1´
1

τ

˙

pΛk
´ Λk´1

q.

Then, since 0 ă 1
τ
ă 1, using the convexity of } ¨ }2F and (3.4d), we have

}Λk
}

2
F ď

1

τ
}τA˚pD ´ApZk

qq}
2
F `

ˆ

1´
1

τ

˙

}Λk
´ Λk´1

}
2
F

ď τλmax}D ´ApZk
q}

2
F ` pτ ´ 1qτβ2

}BpLkq ` CpSkq ´ Zk
}

2
F .

(3.18)

Thus, combining (3.17) and (3.18), we have

}Λk
}

2
F ď maxt1{τ, τu ¨ λmax}D ´ApZk

q}
2
F

`maxt1´ τ, pτ ´ 1qτuβ2
}BpLkq ` CpSkq ´ Zk

}
2
F

ùñ ´
1

2β
}Λk
}

2
F ě ´

maxt1{τ,τuλmax

2β
}D ´ApZk

q}
2
F

´
maxt1´τ,pτ´1qτuβ

2
}BpLkq ` CpSkq ´ Zk

}
2
F .
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Substituting (3.19) into (3.16), we have

h0 ą Θτ,βpL
k, Sk, Zk,Λk

q ě ΨpLkq ` ΦpSkq

`
1

2

ˆ

1´maxt1{τ, τu ¨
λmax

β

˙

}D ´ApZk
q}

2
F

`
β

2

›

›BpLkq ` CpSkq ´ Zk
´

1

β
Λk

›

›

2

F

`
“

2θpτq ´maxt1´ τ, pτ ´ 1qτu
‰

¨
β

2

›

›BpLkq ` CpSkq ´ Zk
›

›

2

F
.

(3.19)

With (3.19) established, we are now ready to prove the boundedness of the se-

quence. We start with the observation that for 0 ă τ ă 1`
?

5
2

and β ą sβ, we always

have

1´maxt1{τ, τu ¨
λmax

β
ą 0 (3.20)

and

2θpτq ´maxt1´ τ, pτ ´ 1qτu “

$

’

’

’

’

&

’

’

’

’

%

1´ τ ą 0, for 0 ă τ ă 1,

0, for τ “ 1,

τpτ´1qpτ2`τ´1q
1`τ´τ2

ą 0, for 1 ă τ ă 1`
?

5
2
,

(3.21)

where θpτq is defined in (3.5). Then we consider two cases:

• For τ P p0, 1q Y
´

1, 1`
?

5
2

¯

, it follows from (3.19), (3.20), (3.21), and the non-

negativity of Ψ and Φ that t}D ´ApZkq}F u, t}BpLkq ` CpSkq ´ Zk ´ 1
β
Λk}F u

and t}BpLkq ` CpSkq ´ Zk}F u are bounded; and moreover,

ΨpLkq ` ΦpSkq ă h0.

The boundedness of tLku and tSku follows immediately from this last relation.

Furthermore, tΛku is bounded since

}Λk
}F ď β}BpLkq ` CpSkq ´ Zk

´
1

β
Λk
}F ` β}BpLkq ` CpSkq ´ Zk

}F .
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Finally, we obtain the boundedness of tZku from

}Zk
}F ď }BpLkq ` CpSkq ´ Zk

´
1

β
Λk
}F ` }BpLkq}F

` }CpSkq}F `
1

β
}Λk
}F .

(3.22)

• For τ “ 1, it follows from (3.19), (3.20), (3.21), and the nonnegativity of Ψ

and Φ that t}D´ApZkq}F u and t}BpLkq` CpSkq´Zk´ 1
β
Λk}F u are bounded;

and moreover ΨpLkq ` ΦpSkq ă h0, from which we see immediately that tLku

and tSku are bounded. The boundedness of tΛku now follows from (3.17) with

τ “ 1, i.e., Λk “ A˚pD´ApZkqq. The boundedness of tZku again follows from

(3.22).

This completes the proof. l

We are now ready to prove our first global convergence result for Algorithm 1,

which also characterizes the cluster point of the sequence generated.

Theorem 3.1 (Global subsequential convergence). Suppose that 0 ă τ ă 1`
?

5
2

and β ą sβ. If Assumption 3.1 holds, then

(i) lim
kÑ8

}Lk`1 ´ Lk}F ` }S
k`1 ´ Sk}F ` }Z

k`1 ´ Zk}F ` }Λ
k`1 ´ Λk}F “ 0;

(ii) for any cluster point pL˚, S˚, Z˚,Λ˚q of a sequence tpLk, Sk, Zk,Λkqu generated

by Algorithm 1, pL˚, S˚q is a stationary point of F .

Proof. The boundedness of the sequence tpLk, Sk, Zk,Λkqu follows immediately from

Proposition 3.1 and thus a cluster point exists. We now prove statement (i).

Suppose that pL˚, S˚, Z˚,Λ˚q is a cluster point of the sequence tpLk, Sk, Zk,Λkqu

and let tpLki , Ski , Zki ,Λkiqu be a convergent subsequence such that

lim
iÑ8

pLki , Ski , Zki ,Λkiq “ pL˚, S˚, Z˚,Λ˚q.
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By summing (3.6) from k “ 1 to k “ ki ´ 1, we have

Θτ,βpL
ki , Ski , Zki ,Λkiq ´Θτ,βpL

1, S1, Z1,Λ1
q

ď ´C
ki´1
ÿ

k“1

}Zk`1
´ Zk

}
2
F ´

σβ

2

ki´1
ÿ

k“1

}Lk`1
´ Lk}2F ,

(3.23)

where C :“ λmin`β
2

´max
!

1
τ
, τ2

1`τ´τ2

)

¨
λ2max

β
ą 0 (since β ą sβ). Passing to the limit

in (3.23) and rearranging terms in the resulting relation, we obtain

C
8
ÿ

k“1

}Zk`1
´ Zk

}
2
F `

σβ

2

8
ÿ

k“1

}Lk`1
´ Lk}2F

ď Θτ,βpL
1, S1, Z1,Λ1

q ´Θτ,βpL
˚, S˚, Z˚,Λ˚q ă 8,

where the last inequality follows from the properness of Ψ and Φ. This together with

C ą 0 and σ ą 0 implies that

8
ÿ

k“1

}Zk`1
´ Zk

}
2
F ă 8 and

8
ÿ

k“1

}Lk`1
´ Lk}2F ă 8.

Hence, we have

Zk`1
´ Zk

Ñ 0, Lk`1
´ Lk Ñ 0. (3.24)

Next, by summing both sides of (3.11) from k “ 1 to k “ ki and passing to the limit,

we have

8
ÿ

k“1

}Λk`1
´ Λk

}
2
F ď max

!

1
τ
, τ2

1`τ´τ2

)

¨ τλ2
max

8
ÿ

k“1

}Zk`1
´ Zk

}
2
F

` θpτqτβ2
´

}BpL1
q ` CpS1

q ´ Z1
}

2
F ´ lim inf

kÑ8
}BpLk`1

q ` CpSk`1
q ´ Zk`1

}
2
F

¯

,

from which we conclude that

Λk`1
´ Λk

Ñ 0. (3.25)

— 34 —



PhD Thesis CHAPTER 3. ADMM

Finally, we have Sk`1 ´ Sk Ñ 0 from (3.24), (3.25), (3.4d) and (a1) in Assumption

3.1. This proves statement (i).

We next prove statement (ii). From the lower semicontinuity of Θτ,β (since Ψ

and Φ are lower semicontinuous), we have

lim inf
iÑ8

Θτ,βpL
ki`1, Ski`1, Zki ,Λkiq ě ΨpL˚q ` ΦpS˚q `

1

2
}D ´ApZ˚q}2F

´ xΛ˚, BpL˚q ` CpS˚q ´ Z˚y ` p1` 2θpτqq
β

2
}BpL˚q ` CpS˚q ´ Z˚}2F .

(3.26)

On the other hand, from the definition of Ski`1 as a minimizer in (3.3b), we have

Θτ,βpL
ki`1, Ski`1, Zki ,Λkiq ď Θτ,βpL

ki`1, S˚, Zki ,Λkiq

` θpτqβ
`

}BpLki`1
q ` CpSki`1

q ´ Zki}
2
F ´ }BpLki`1

q ` CpS˚q ´ Zki}
2
F

˘

.

Taking limit in above equality, and invoking statement (i) and (a2) in Assumption

3.1, we see that

lim sup
iÑ8

Θτ,βpL
ki`1, Ski`1, Zki ,Λkiq ď ΨpL˚q ` ΦpS˚q `

1

2
}D ´ApZ˚q}2F

´ xΛ˚, BpL˚q ` CpS˚q ´ Z˚y ` p1` 2θpτqq
β

2
}BpL˚q ` CpS˚q ´ Z˚}2F .

(3.27)

Then, combining (3.26) and (3.27), we see that

lim
iÑ8

Θτ,βpL
ki`1, Ski`1, Zki ,Λkiq “ ΨpL˚q ` ΦpS˚q `

1

2
}D ´ApZ˚q}2F

´ xΛ˚, BpL˚q ` CpS˚q ´ Z˚y ` p1` 2θpτqq
β

2
}BpL˚q ` CpS˚q ´ Z˚}2F ,

which, together with (a2) in Assumption 3.1, Lk`1´Lk Ñ 0, Sk`1´Sk Ñ 0 and the

definition of Θτ,β, implies that

lim
iÑ8

ΦpSki`1
q “ ΦpS˚q. (3.28)
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Thus, passing to the limit in (3.4a)-(3.4d) along tpLki , Ski , Zki ,Λkiqu and invoking

statement (i), (3.28) and (2.1), we see that

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 P BΨpL˚q ´ B˚pΛ˚q ` βB˚ pBpL˚q ` CpS˚q ´ Z˚q ,

0 P BΦpS˚q ´ C˚pΛ˚q ` βC˚ pBpL˚q ` CpS˚q ´ Z˚q ,

0 “ A˚pApZ˚q ´Dq ` Λ˚ ´ βpBpL˚q ` CpS˚q ´ Z˚q,

BpL˚q ` CpS˚q “ Z˚.

(3.29)

Rearranging terms in (3.29), it is not hard to obtain

$

&

%

0 P BΨpL˚q ` B˚A˚ pApBpL˚q ` CpS˚qq ´Dq ,

0 P BΦpS˚q ` C˚A˚ pApBpL˚q ` CpS˚qq ´Dq .

This shows that pL˚, S˚q is a stationary point of F . This completes the proof. l

Remark 3.2 (Comments on the computable threshold). From the above dis-

cussions, we establish under Assumption 3.1 the convergence of the ADMM with

0 ă τ ă 1`
?

5
2

when the penalty parameter β is chosen above a computable thres-

hold sβ which depends on τ . The existence of this kind of threshold is also obtained

in the recent studies [1, 40, 49, 83, 84] on the nonconvex ADMM and its variants

with τ “ 1. In Fig. 3.1, we plot sβ against τ with A being the identity map (hence,

λmax “ λmin “ 1). It is not hard to see from Fig. 3.1 that for a given penalty para-

meter β ą 1, we can always choose a dual step-size τ from an interval containing 1

so that the corresponding ADMM is convergent.

Remark 3.3 (Practical computation consideration on penalty parameter).

In computation, for a 0 ă τ ă 1`
?

5
2

, the sβ in (3.15) may be too large and hence

fixing a β close to it can lead to slow convergence. As in [50, 78], one could possibly

accelerate the algorithm by initializing the algorithm with a small β (less than sβ)

and then increasing the β by a constant ratio until β ą sβ if the sequence generated
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Figure 3.1: The computable threshold β̄ for 0 ă τ ă 1`
?

5
2

.

becomes unbounded or the successive change does not vanish sufficiently fast. Clearly,

after at most finitely many increases, the penalty parameter β gets above the threshold

β̄ and the convergence of the resulting algorithm is guaranteed by Theorem 3.1 under

Assumption 3.1. On the other hand, if β is never increased, this means that the

successive change goes to zero and the sequence is bounded. Then it is routine to

show that any cluster point is a stationary point if Φ is continuous in its domain.

Under the additional assumption that the potential function Θτ,β is a KL function,

we show in the next theorem that the whole sequence generated by Algorithm 1 is

convergent if β is greater than a computable threshold, again under Assumption 3.1.

Our proof makes use of the uniformized KL property; see Proposition 2.1. This

technique was previously used in [8] to prove the convergence of the proximal alter-

nating linearized minimization algorithm for nonconvex and nonsmooth problems,

and later in [83, 84] to prove the global convergence of the Bregman ADMM with

τ “ 1. Our analysis, though follows a similar line of arguments as in [83, 84], is
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much more intricate. This is because when τ ‰ 1, the successive change in the dual

variable cannot be controlled solely by the successive changes in the primal variables.

Theorem 3.2 (Global convergence of the whole sequence). Let 0 ă τ ă

1`
?

5
2

and β ą β̄. Suppose in addition that Assumption 3.1 holds and the potential

function Θτ,βp¨q is a KL function. Then, the sequence tpLk, Sk, Zk,Λkqu8k“1 generated

by Algorithm 1 has a cluster point pL˚, S˚, Z˚,Λ˚q. Moreover, tpLk, Sk, Zk,Λkqu8k“1

converges to pL˚, S˚, Z˚,Λ˚q and pL˚, S˚q is a stationary point of (1.1).

Proof. In view of Theorem 3.1, we only need to show that the sequence is convergent.

We start by noting from (3.19), (3.20) and (3.21) that tΘτ,βpL
k, Sk, Zk, Λkqu8k“1 is

bounded below. Since this sequence is also decreasing from Theorem 3.1, we conclude

that limkÑ8 Θτ,βpL
k, Sk, Zk,Λkq “: θ˚ exists. In the following, we will consider two

cases.

Case 1) Suppose first that Θτ,βpL
N , SN , ZN ,ΛNq “ θ˚ for some N ě 1. Since

tΘτ,βpL
k, Sk, Zk, Λkqu8k“1 is decreasing, we must have Θτ,βpL

k, Sk, Zk,Λkq “ θ˚ for

all k ě N . Then, it follows from (3.6) that LN`t “ LN and ZN`t “ ZN for all t ě 0.

Hence, tLku and tZku converge finitely. Moreover, from (3.8), we have

}Λk`1
´ Λk

}F “ |1´ τ | ¨ }Λ
k
´ Λk´1

}F “ ¨ ¨ ¨ “ |1´ τ |
k`1´N

¨ }ΛN
´ ΛN´1

}F

for all k ě N . Since 0 ă τ ă 1`
?

5
2

, we have 0 ă 1 ´ |1 ´ τ | ď 1 and hence we see

further that

8
ÿ

k“N

}Λk`1
´ Λk

}F ď
1

1´ |1´ τ |
}ΛN

´ ΛN´1
}F ă 8, (3.30)

— 38 —



PhD Thesis CHAPTER 3. ADMM

which implies the convergence of tΛku. Additionally, for all k ě N , we have

}Sk`1
´ Sk}F ď

1
?
σ1
}CpSk`1

q ´ CpSkq}F

“
1
?
σ1

›

›

›

›

1

τβ
pΛk

´ Λk`1
q ´

1

τβ
pΛk´1

´ Λk
q

›

›

›

›

F

ď
1

τβ
?
σ1
}Λk`1

´ Λk
}F `

1

τβ
?
σ1
}Λk

´ Λk´1
}F ,

where the first inequality follows from (a1) in Assumption 3.1 and the equality fol-

lows from (3.4d). This together with (3.30), implies that
ř8

k“N }S
k`1 ´ Sk}F ă 8.

Thus, tSku is also convergent. Consequently, we see that tpLk, Sk, Zk, Λkqu8k“1 is a

convergent sequence in this case.

Case 2) From now on, we consider the case where Θτ,βpL
k, Sk, Zk, Λkq ą θ˚

for all k ě 1. In this case, we will divide the proof into three steps: 1. we first

prove that Θτ,β is constant on the set of cluster points of the sequence tpLk, Sk,

Zk, Λkqu8k“1 and then apply the uniformized KL property; 2. we bound the distance

from 0 to BΘτ,βpL
k, Sk, Zk,Λkq; 3. we show that the sequence tpLk, Sk, Zk, Λkqu8k“1

is a Cauchy sequence and hence is convergent. The complete proof is presented as

follows.

Step 1. We recall from Proposition 3.1 that the sequence tpLk, Sk, Zk, Λkqu8k“1

generated by Algorithm 1 is bounded and hence must have at least one cluster point.

Let Γ denote the set of cluster points of tpLk, Sk, Zk, Λkqu8k“1. We will show that

Θτ,β is constant on Γ.

To this end, take any pL˚, S˚, Z˚,Λ˚q P Γ and consider a convergent subsequence

tpLki , Ski , Zki ,Λkiqu with limiÑ8pL
ki , Ski , Zki ,Λkiq “ pL˚, S˚, Z˚,Λ˚q. Then from

the lower semicontinuity of Θτ,β (since Ψ and Φ are lower semicontinuous) and the

definition of θ˚, we have

θ˚ “ lim
iÑ8

Θτ,βpL
ki , Ski , Zki ,Λkiq ě Θτ,βpL

˚, S˚, Z˚,Λ˚q. (3.31)
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On the other hand, notice from the definition of Sk`1 as a minimizer in (3.3b) that

Θτ,βpL
ki , Ski , Zki´1,Λki´1

q ´Θτ,βpL
ki , S˚, Zki´1,Λki´1

q

“ LβpLki , Ski , Zki´1,Λki´1
q ´ LβpLki , S˚, Zki´1,Λki´1

q

` θpτqβ
`

}BpLkiq ` CpSkiq ´ Zki´1
}

2
F ´ }BpLkiq ` CpS˚q ´ Zki´1

}
2
F

˘

ď θpτqβ
`

}BpLkiq ` CpSkiq ´ Zki´1
}

2
F ´ }BpLkiq ` CpS˚q ´ Zki´1

}
2
F

˘

.

This together with Theorem 3.1(i), the continuity of Θτ,β with respect to L (from

(a2) in Assumption 3.1), Z and Λ; and the definition of θ˚ implies that

θ˚ “ lim
iÑ8

Θτ,βpL
ki , Ski , Zki ,Λkiq ď Θτ,βpL

˚, S˚, Z˚,Λ˚q. (3.32)

Combining (3.31) and (3.32), we conclude that Θτ,βpL
˚, S˚, Z˚,Λ˚q “ θ˚. Since

pL˚, S˚, Z˚,Λ˚q P Γ is arbitrary, we conclude further that the potential function Θτ,β

is constant on Γ.

The fact that Θτ,β ” θ˚ on Γ together with our assumption that Θτ,βp¨q is a KL

function and Proposition 2.1 implies that there exist ε ą 0, η ą 0 and ϕ P Ξη, such

that

ϕ1 pΘτ,βpL, S, Z,Λq ´ θ
˚
q dist p0, BΘτ,βpL, S, Z,Λqq ě 1

for all pL, S, Z,Λq satisfying distppL, S, Z,Λq,Γq ă ε and θ˚ ă Θτ,βpL, S, Z,Λq ă

θ˚`η. On the other hand, since limkÑ8 distppLk, Sk, Zk,Λkq,Γq “ 0 by the definition

of Γ, and Θτ,βpL
k, Sk, Zk, Λkq Ñ θ˚, then for such ε and η, there exists k1 ě 3 such

that distppLk, Sk, Zk,Λkq,Γq ă ε and θ˚ ă Θτ,βpL
k, Sk, Zk,Λkq ă θ˚ ` η for all

k ě k1. Thus, for k ě k1, we have

ϕ1
`

Θτ,βpL
k, Sk, Zk,Λk

q ´ θ˚
˘

dist
`

0, BΘτ,βpL
k, Sk, Zk,Λk

q
˘

ě 1. (3.33)

Step 2. We next consider the subdifferential BΘτ,βpL
k, Sk, Zk,Λkq. Looking at
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the partial subdifferential with respect to L, we have

BLΘτ,βpL
k, Sk, Zk,Λk

q

“ BΨpLkq ´ B˚pΛk
q ` p1` 2θpτqqβB˚pBpLkq ` CpSkq ´ Zk

q

“ BΨpLkq ´ B˚pΛk´1
q ` βB˚pBpLkq ` CpSk´1

q ´ Zk´1
q

` 2θpτqβB˚pBpLkq ` CpSkq ´ Zk
q ´ B˚pΛk

´ Λk´1
q

` βB˚pCpSkq ´ Zk
´ CpSk´1

q ` Zk´1
q

Q 2θpτqβB˚pBpLkq ` CpSkq ´ Zk
q ´ B˚pΛk

´ Λk´1
q

` βB˚pCpSkq ´ Zk
´ CpSk´1

q ` Zk´1
q

piq
“ ´

´

1` 2θpτq
τ

¯

B˚pΛk
´ Λk´1

q ` βB˚rpCpSkq ´ Zk
q ´ pCpSk´1

q ´ Zk´1
qs

piiq
“ ´

´

1` 2θpτq
τ

¯

B˚pΛk ´ Λk´1q ` βB˚
“`

´ BpLkq ´ Λk´Λk´1

τβ

˘

´
`

´ BpLk´1q ´ Λk´1´Λk´2

τβ

˘‰

“ ´

´

1` 2θpτq`1
τ

¯

B˚pΛk
´ Λk´1

q ` 1
τ
B˚pΛk´1

´ Λk´2
q ´ βB˚BpLk ´ Lk´1

q,

where the inclusion follows from (3.4a), and the equalities (i) and (ii) follow from

(3.4d). Similarly,

BSΘτ,βpL
k, Sk, Zk,Λk

q

“ BΦpSkq ´ C˚pΛk
q ` p1` 2θpτqqβC˚pBpLkq ` CpSkq ´ Zk

q

“ BΦpSkq ´ C˚pΛk´1
q ` βC˚pBpLkq ` CpSkq ´ Zk´1

q

` 2θpτqβC˚pBpLkq ` CpSkq ´ Zk
q ´ C˚pΛk

´ Λk´1
q ´ βC˚pZk

´ Zk´1
q

Q 2θpτqβC˚pBpLkq ` CpSkq ´ Zk
q ´ C˚pΛk

´ Λk´1
q ´ βC˚pZk

´ Zk´1
q

“ ´

ˆ

1`
2θpτq

τ

˙

C˚pΛk
´ Λk´1

q ´ βC˚pZk
´ Zk´1

q,

where the inclusion follows from (3.4b) and the last equality follows from (3.4d).
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Moreover,

∇ZΘτ,βpL
k, Sk, Zk,Λk

q “ A˚pApZk
q ´Dq ` Λk

´ βpBpLkq ` CpSkq ´ Zk
q

´ 2θpτqβpBpLkq ` CpSkq ´ Zk
q

“ A˚pApZk
q ´Dq ` Λk´1

´ βpBpLkq ` CpSkq ´ Zk
q

´ 2θpτqβpBpLkq ` CpSkq ´ Zk
q ` pΛk

´ Λk´1
q

“ ´2θpτqβpBpLkq ` CpSkq ´ Zk
q ` pΛk

´ Λk´1
q

“

ˆ

1`
2θpτq

τ

˙

pΛk
´ Λk´1

q,

where the third equality follows from (3.4c) and the last equality follows from (3.4d).

Finally,

∇λΘτ,βpL
k, Sk, Zk,Λk

q “ ´pBpLkq ` CpSkq ´ Zk
q “

1

τβ
pΛk

´ Λk´1
q,

where the last equality follows from (3.4d). Thus, from the above relations, there

exists a ą 0 so that

dist
`

0, BΘτ,β

`

Lk, Sk, Zk,Λk
˘˘

ď a
`

}Lk ´ Lk´1
}F ` }Z

k
´ Zk´1

}F ` }Λ
k
´ Λk´1

}F ` }Λ
k´1

´ Λk´2
}F
˘

.
(3.34)

Step 3. We now prove the convergence of the sequence by combining (3.34) with

(3.33). For notational simplicity, define

∆k :“ ϕ
`

Θτ,βpL
k, Sk, Zk,Λk

q ´ θ˚
˘

´ ϕ
`

Θτ,βpL
k`1, Sk`1, Zk`1,Λk`1

q ´ θ˚
˘

.

Since Θτ,β is decreasing and ϕ is monotonic, it is easy to see ∆k ě 0 for k ě 1. Then
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we have for all k ě k1 that

a
`

}Lk ´ Lk´1
}F ` }Z

k
´ Zk´1

}F ` }Λ
k
´ Λk´1

}F ` }Λ
k´1

´ Λk´2
}F
˘

¨∆k

ě distp0, BΘτ,βpL
k, Sk, Zk,Λk

qq ¨∆k

ě distp0, BΘτ,βpL
k, Sk, Zk,Λk

qq ¨ ϕ1
`

Θτ,βpL
k, Sk, Zk,Λk

q ´ θ˚
˘

¨
“

Θτ,βpL
k, Sk, Zk,Λk

q ´Θτ,βpL
k`1, Sk`1, Zk`1,Λk`1

q
‰

ě Θτ,βpL
k, Sk, Zk,Λk

q ´Θτ,βpL
k`1, Sk`1, Zk`1,Λk`1

q

ě b1}L
k`1

´ Lk}2F ` b2}Z
k`1

´ Zk
}

2
F

ě
1

2
mintb1, b2u ¨

“

}Lk`1
´ Lk}F ` }Z

k`1
´ Zk

}F
‰2
,

(3.35)

where the first inequality follows from (3.34), the second inequality follows from the

concavity of ϕ, the third inequality follows from (3.33), the fourth inequality follows

from (3.6) with b1 :“ σβ
2

and b2 :“ λmin`β
2

´max
!

1
τ
, τ2

1`τ´τ2

)

¨
λ2max

β
.

Dividing both sides of (3.35) by c :“ 1
2

mintb1, b2u, taking the square root and

using the inequality
?
uv ď u`v

2
for u, v ě 0 to further upper bound the left hand

side of the resulting inequality, we obtain that

1
2γ

`

}Lk ´ Lk´1}F ` }Z
k ´ Zk´1}F ` }Λ

k ´ Λk´1}F ` }Λ
k´1 ´ Λk´2}F

˘

`
γa
2c

∆k

ě }Lk`1
´ Lk}F ` }Z

k`1
´ Zk

}F ,
(3.36)

where γ is an arbitrary positive constant. On the other hand, it follows from (3.8)

that

}Λk
´ Λk´1

}F “ }τA˚ApZk´1
´ Zk

q ` p1´ τqpΛk´1
´ Λk´2

q}F

ď τλmax}Z
k
´ Zk´1

}F ` |1´ τ | ¨ }Λ
k´1

´ Λk´2
}F .

Adding ´|1´ τ | ¨ }Λk ´Λk´1}F to both sides of the above inequality and simplifying
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the resulting inequality, we obtain that

}Λk
´ Λk´1

}F

ď τλmax

1´|1´τ |
}Zk ´ Zk´1}F `

|1´τ |
1´|1´τ |

`

}Λk´1 ´ Λk´2}F ´ }Λ
k ´ Λk´1}F

˘

“ d1}Z
k
´ Zk´1

}F ` d2

`

}Λk´1
´ Λk´2

}F ´ }Λ
k
´ Λk´1

}F
˘

,

(3.37)

where we write d1 :“ τλmax

1´|1´τ |
and d2 :“ |1´τ |

1´|1´τ |
for notational simplicity. Similarly,

}Λk´1
´Λk´2

}F ď d1}Z
k´1
´Zk´2

}F ` d2

`

}Λk´2
´Λk´3

}F ´ }Λ
k´1
´Λk´2

}F
˘

.(3.38)

Then substituting (3.37) and (3.38) into (3.36) and rearranging terms, we have

´

1´ 1
2γ

¯

}Lk`1
´ Lk}F `

´

1´ 1
2γ
´ d1

γ

¯

}Zk`1
´ Zk

}F

ď 1
2γ

`

}Lk ´ Lk´1
}F ´ }L

k`1
´ Lk}F

˘

`

´

1
2γ
` d1

γ

¯

`

}Zk
´ Zk´1

}F ´ }Z
k`1

´ Zk
}F
˘

` d1
2γ

`

}Zk´1
´ Zk´2

}F ´ }Z
k
´ Zk´1

}F
˘

` d2
2γ

`

}Λk´1
´ Λk´2

}F ´ }Λ
k
´ Λk´1

}F
˘

` d2
2γ

`

}Λk´2
´ Λk´3

}F ´ }Λ
k´1

´ Λk´2
}F
˘

`
γa
2c

∆k.

(3.39)

Thus, summing (3.39) from k “ k1 to 8, we have

´

1´ 1
2γ

¯

ř8

k“k1
}Lk`1

´ Lk}F `
´

1´ 1
2γ
´ d1

γ

¯

ř8

k“k1
}Zk`1

´ Zk
}F

ď 1
2γ
}Lk1 ´ Lk1´1

}F `

´

1
2γ
` d1

γ

¯

}Zk1 ´ Zk1´1
}F `

d1
2γ
}Zk1´1

´ Zk1´2
}F

` d2
2γ
}Λk1´1

´ Λk1´2
}F `

d2
2γ
}Λk1´2

´ Λk1´3
}F

`
aγ
2c
ϕ
`

Θτ,βpL
k1 , Sk1 , Zk1 ,Λk1q ´ θ˚

˘

ă 8.

Recall that γ introduced in (3.36) is an arbitrary positive constant. Taking γ ą 1`2d1
2
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and hence 1´ 1
2γ
ą 1´ 1

2γ
´ d1

γ
ą 0, we have from the above inequality that

8
ÿ

k“k1

}Lk`1
´ Lk}F ă 8 and

8
ÿ

k“k1

}Zk`1
´ Zk

}F ă 8.

Hence tLku and tZku are convergent. Additionally, summing (3.37) from k “ k1 to

8, we have

8
ÿ

k“k1

}Λk
´ Λk´1

}F ď d1

8
ÿ

k“k1

}Zk
´ Zk´1

}F ` d2}Λ
k1´1

´ Λk1´2
}F ă 8,

which implies that tΛku is convergent. Finally, from (3.4d) and (a1) in Assumption

3.1, we see that tSku is also convergent. Consequently, we conclude that tpLk, Sk,

Zk, Λkqu8k“1 is a convergent sequence. This completes the proof. l

Our convergence analysis relies on Assumption 3.1. While (a3) in Assumption 3.1

appears restrictive since it makes assumptions on the first iterate of Algorithm 1, we

show below that this assumption would hold upon a suitable choice of initialization.

Specifically, if we initialize at pL0, S0, Z0,Λ0q satisfying

$

&

%

Θτ,βpL
1, S1, Z1,Λ1

q ď Θτ,βpL
0, S0, Z0,Λ0

q, (3.40a)

Θτ,βpL
0, S0, Z0,Λ0

q ă h0, (3.40b)

then it is easy to check that (a3) in Assumption 3.1 holds. In the next proposition,

we demonstrate that (3.40a) can always be satisfied with a suitable initialization.

After this, we will propose a specific way to initialize Algorithm 1 for a wide range

of problems so that both (3.40a) and (3.40b) are satisfied.

Proposition 3.2. Suppose that 0 ă τ ă 1`
?

5
2

and β ą β̄. If the initialization

pL0, S0, Z0,Λ0q is chosen as pL0, S0q P dom Ψˆ dom Φ and

Λ0
“ A˚pD ´ApZ0

qq, (3.41)
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then we have

Θτ,βpL
1, S1, Z1,Λ1

q ď Θτ,βpL
0, S0, Z0,Λ0

q.

Proof. First, from (3.4c), we have

0 “ A˚pApZ1
q ´Dq ` Λ0

´ βpBpL1
q ` CpS1

q ´ Z1
q

ùñ BpL1
q ` CpS1

q ´ Z1
“

1

β
Λ0
`

1

β
A˚pApZ1

q ´Dq “
1

β
A˚ApZ1

´ Z0
q,

(3.42)

where the last equality follows from (3.41). Then,

Θτ,βpL
1, S1, Z1,Λ1

q ´Θτ,βpL
1, S1, Z1,Λ0

q

“ ´xΛ1
´ Λ0,BpL1

q ` CpS1
q ´ Z1

y “ τβ}BpL1
q ` CpS1

q ´ Z1
}

2
F

“ pτ ` θpτqq β}BpL1
q ` CpS1

q ´ Z1
}

2
F ´ θpτqβ}BpL1

q ` CpS1
q ´ Z1

}
2
F

“ pτ ` θpτqq β
›

›

›

1
β
A˚ApZ1 ´ Z0q

›

›

›

2

F
´ θpτqβ}BpL1

q ` CpS1
q ´ Z1

}
2
F

ď pτ ` θpτqq
λ2

max

β
}Z1

´ Z0
}

2
F ´ θpτqβ}BpL1

q ` CpS1
q ´ Z1

}
2
F , (3.43)

where the second equality follows from (3.4d) and the fourth equality follows from

(3.42). Additionally, using the same arguments as in the proof of Lemma 3.1 leading

to (3.12), (3.13) and (3.14), it is easy to see that

Θτ,βpL
1, S1, Z1,Λ0

q ´Θτ,βpL
1, S1, Z0,Λ0

q ď ´
λmin`β

2
}Z1 ´ Z0}2F

` θpτqβ
`

}BpL1
q ` CpS1

q ´ Z1
}

2
F ´ }BpL1

q ` CpS1
q ´ Z0

}
2
F

˘

, (3.44)

Θτ,βpL
1, S1, Z0,Λ0

q ´Θτ,βpL
1, S0, Z0,Λ0

q

ď θpτqβ
`

}BpL1
q ` CpS1

q ´ Z0
}

2
F ´ }BpL1

q ` CpS0
q ´ Z0

}
2
F

˘

, (3.45)

Θτ,βpL
1, S0, Z0,Λ0

q ´Θτ,βpL
0, S0, Z0,Λ0

q

ď θpτqβ
`

}BpL1
q ` CpS0

q ´ Z0
}

2
F ´ }BpL0

q ` CpS0
q ´ Z0

}
2
F

˘

. (3.46)
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Summing (3.43), (3.44), (3.45) and (3.46), we obtain

Θτ,βpL
1, S1, Z1,Λ1

q ´Θτ,βpL
0, S0, Z0,Λ0

q

ď

´

pτ ` θpτqq λ
2
max

β
´

λmin`β
2

¯

}Z1
´ Z0

}
2
F ´ θpτqβ}BpL0

q ` CpS0
q ´ Z0

}
2
F .

(3.47)

We now consider two cases:

• For 0 ă τ ď 1, it is easy to see θpτq “ 1´ τ and

β ą max
!

λmax

τ
, ´ λmin

2
` 1

2

b

λ2
min `

8
τ
λ2

max

)

.

Then, we have

pτ ` θpτqqλ
2
max

β
´

λmin`β
2

“
λ2max

β
´

λmin`β
2

ď
λ2max

τβ
´

λmin`β
2

ă 0.

• For 1 ă τ ă 1`
?

5
2

, it is easy to see θpτq “ pτ´1qτ2

1`τ´τ2
and

β ą max
!

τλmax, ´
λmin

2
` 1

2

b

λ2
min `

8τ2

1`τ´τ2
λ2

max

)

.

Then, we have

pτ ` θpτqqλ
2
max

β
´

λmin`β
2

“
τλ2max

p1`τ´τ2qβ
´

λmin`β
2

ă
τ2λ2max

p1`τ´τ2qβ
´

λmin`β
2

ă 0.

Thus, combining the above with (3.47) and θpτq ě 0, we conclude that

Θτ,βpL
1, S1, Z1,Λ1

q ď Θτ,βpL
0, S0, Z0,Λ0

q.

This completes the proof. l

From Proposition 3.2, we see that if the initialization pL0, S0, Z0,Λ0q is chosen

to satisfy the conditions in Proposition 3.2, then (3.40a) holds. Based on this, we

can now present one specific way to initialize Algorithm 1 so that both (3.40a) and
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(3.40b) are satisfied for a class of problems, whose objective functions ΨpLq and ΦpSq

take forms δΩpLq and (1.2), respectively; here, Ω is a compact convex set.

The initialization we consider is:

L0
“ PΩpκDq, S

0
“ 0, Z0

“ BpL0
q, Λ0

“ A˚
`

D ´ApZ0
q
˘

, (3.48)

where κ is a scaling parameter. One can easily check that this initialization satisfies

(3.41). Moreover,

Θτ,βpL
0, S0, Z0,Λ0

q “
1

2

›

›D ´A
`

Z0
˘
›

›

2

F
“

1

2
}D ´A pBpPΩpκDqqq}

2
F .

Thus, the condition (3.40b) is equivalent to

1

2
}D ´A pBpPΩpκDqqq}

2
F ă lim inf

}L}F`}S}FÑ8
ΨpLq ` ΦpSq “ lim inf

}S}FÑ8
ΦpSq. (3.49)

We further discuss this inequality for some concrete examples of Φ presented in the

introduction.

Example 3.1. Suppose that Φ is coercive. Then lim inf
}S}FÑ8

ΦpSq “ 8 and hence (3.49)

holds trivially for any choice of κ.

Example 3.2. Suppose that ΦpSq “ µ
řm
i“1

řn
j“1

α|sij |

1`α|sij |
for α ą 0. Then lim inf

}S}FÑ8
ΦpSq “

µ. Hence, (3.49) holds if the parameter κ can be chosen so that 1
2
}D ´A pBpPΩpκDqqq}

2
F

ă µ.

Example 3.3. Suppose that ΦpSq “ µ
řm
i“1

řn
j“1

ş|sij |

0
minp1, pα´ t{µq`{pα´ 1qq dt

for α ą 2. Then lim inf
}S}FÑ8

ΦpSq “ 1
2
pα ` 1qµ2. Hence, (3.49) holds if κ can be chosen

so that 1
2
}D ´A pBpPΩpκDqqq}

2
F ă

1
2
pα ` 1qµ2.

Example 3.4. Suppose that ΦpSq “ µ
řm
i“1

řn
j“1

ş|sij |

0
p1 ´ t{pαµqq` dt for α ą

0. Then, lim inf
}S}FÑ8

ΦpSq “ 1
2
αµ2. Hence, (3.49) holds if κ can be chosen so that

1
2
}D ´A pBpPΩpκDqqq}

2
F ă

1
2
αµ2.

— 48 —



PhD Thesis CHAPTER 3. ADMM

Example 3.5. Suppose that ΦpSq “ µ
řm
i“1

řn
j“1 µ ´ pµ ´ |sij|q

2
`{µ. Then it is not

hard to show that lim inf
}S}FÑ8

ΦpSq “ µ2. Hence, (3.49) holds if κ can be chosen so that

1
2
}D ´A pBpPΩpκDqqq}

2
F ă µ2.

3.3 Numerical experiments

In this section, we conduct numerical experiments to show the performances of our

algorithm. All experiments are run in MATLAB R2015b on a 64-bit PC with an

Intel Core i7-4790 CPU (3.60 GHz) and 32 GB of RAM equipped with Windows 10

OS.

3.3.1 Implementation details

Testing model We consider the problem of extracting background/foreground

from a given video under different scenarios. Specifically, we consider:

min
L,S

ΦpSq ` 1
2
}D ´ApL` Sq}2F

s.t. L P Ω,
(3.50)

where Ω “ tL P Rmˆn | }L}8 ď 1, L:1 “ L:2 “ ¨ ¨ ¨ “ L:nu and A is a linear map.

This model corresponds to (1.1) with ΨpLq “ δΩpLq and B “ C “ I. We compare

the performances of the ADMM with different choices of τ , as well as the proximal

alternating linearized minimization (PALM) proposed in [8], on solving (3.50). For

ease of future reference, we recall that the PALM for solving (3.50) is given by

$

’

’

’

’

’

&

’

’

’

’

’

%

Lk`1
“ PΩ

ˆ

Lk ´
1

ck
A˚pApLk ` Skq ´Dq

˙

,

Sk`1
P Argmin

S

#

ΦpSq `
dk
2

›

›

›

›

S ´ Sk `
1

dk
A˚pApLk`1

` Skq ´Dq

›

›

›

›

2

F

+

,

where ck and dk are positive numbers.
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In our experiments, we consider the following three choices of the sparse regula-

rizer ΦpSq:

• bridge regularizer: ΦpSq “ µ}S}pp for 0 ă p ď 1;

• fraction regularizer: ΦpSq “ µ
řm
i“1

řn
j“1

α|sij |

1`α|sij |
for α ą 0;

• logistic regularizer: ΦpSq “ µ
řm
i“1

řn
j“1 logp1` α|sij|q for α ą 0;

and two choices of the linear map A:

• ApL ` Sq :“ L ` S: in this case, model (3.50) can be applied to extracting

background/foreground from a surveillance video with noise.

• ApL ` Sq :“ HpL ` Sq with H P Rmˆm being the matrix representation of a

regular blurring operator (the blurring is assumed to occur frame-wise): in this

case, model (3.50) can be applied to extracting background/foreground from a

blurred and noisy surveillance video.

Testing videos We choose four real videos, “Hall”, “Bootstrap”, “Fountain” and

“ShoppingMall”, from the dataset I2R1 provided by Li et al. [51]. The details of

these videos are as follows:

• Hall video contains 200 144ˆ 176 frames (from airport2001 to airport2200);

• Bootstrap video contains 200 120ˆ 160 frames (from b01801 to b02000);

• Fountain video contains 200 128 ˆ 160 frames (from Fountain1301 to Foun-

tain1500);

• ShoppingMall video contains 200 256ˆ 320 frames (from ShoppingMall1501

to ShoppingMall1700).

1 This dataset is available in http://perception.i2r.a-star.edu.sg/bk_model/bk_index.

html. The authors also provide 20 ground-truth images of foregrounds for each video in this
dataset.
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We show one frame of each testing video under two different scenarios (noisy and

noisy blurred), and their ground-truth images of foregrounds in Fig. 3.2. Additio-

nally, all pixel values of the testing videos are re-scaled into r0, 1s in our numerical

experiments.

Hall Bootstrap Fountain ShoppingMall

noisy

noisy
blurred

ground
truth

Figure 3.2: One frame (from left to right: airport2180, b01842, Fountain1440 and
ShoppingMall1535) of each testing video under different scenarios (the first two rows)
and the ground-truth image of foreground of each testing video (the last row).

Parameters setting For the ADMM, we use the following heuristics2 to update

β: we initialize ns “ 0 and β “ 0.6β̄, where β̄ is given in (3.15). In the k-th iteration,

we compute

fnormk
“ }Lk}F ` }Z

k
}F ,

succ chgk “ }Lk ´ Lk´1
}F ` }Z

k
´ Zk´1

}F .

Then, we increase ns by 1 if succ chgk ą 0.99 ¨ succ chgk´1. Obviously, ns is non-

decreasing in this procedure. We then update β as 1.1β whenever β ď 1.01β̄ and

2 Note from Theorem 3.1(i) that the successive change of each variable goes to zero as k Ñ 8.
Thus, intuitively, it is more favorable to see a decrease in the successive change as k increases. This
heuristic is designed based on this intuition.
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the sequence satisfies either ns ě 0.3k or fnormk ą 1010. On the other hand, for

PALM, we set ck “ dk “
λmax

0.99
.

We initialize our algorithm and the PALM at the point specified in (3.48) with

κ “ 1. Moreover, we terminate our ADMM by the following two-stage criterion3: in

each iteration, we check if

}Lk ´ Lk´1}F ` }Z
k ´ Zk´1}F

}Lk}F ` }Zk}F ` 1
ă TolA,1

for some TolA,1 ą 0; if it holds, then we further check if

}Sk ´ Sk´1}F ` }Λ
k ´ Λk´1}F

}Sk}F ` }Λk}F ` 1
ă TolA,2

for some TolA,2 ą 0. We terminate the algorithm if this latter condition is also

satisfied. For the PALM, we terminate it when

}Lk ´ Lk´1}F ` }S
k ´ Sk´1}F

}Lk}F ` }Sk}F ` 1
ă TolP

for some TolP ą 0. The specific values of TolA,1, TolA,2 and TolP are given in the

following experiments.

3.3.2 Comparisons between ADMM with different τ and
PALM

In this subsection, we use the performance profile to evaluate the performances of

the ADMM with different τ and the PALM for extraction under different scenarios.

The performance profile is proposed by Dolan and Moré [21] as a tool for evaluating

3 We use this two-stage criterion rather than computing the relative errors of all four variables
(L, S, Z, Λ) in each iteration of our algorithm because computing matrix Frobenius norms can be
expensive, especially for large scale problems. This strategy will help reduce the cost per iteration.
We examine }Lk´Lk´1}F and }Zk´Zk´1}F in the first stage because these quantities being small
intuitively implies that }Sk ´ Sk´1}F and }Λk ´ Λk´1}F are small; see the proof of Theorem 3.1,
particularly (3.24), (3.25) and the discussions that follow.
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and comparing the performance of a collection of solvers K on a set of test problems

J .

To describe this method, we assume that we have K solvers and J problems, and

we use the iteration number as a performance measure. Then, for each problem j

and solver k, we set

iterj,k “ the iteration number required to solve problem j by solver k.

and compute the performance ratio

rj,k “
iterj,k

mintiterj,k : k P Ku
. (3.51)

The performance profile of iteration numbers is then defined as the distribution

function for the performance ratio, i.e.,

ρkpνq “
1

J
7tj P J : rj,k ď νu

for ν ě 1. Similarly, the performance profile of function values is obtained by using

fvalj,k in place of iterj,k in (3.51), where fvalj,k denotes the function value at the

solution given by solver k for solving problem j. Generally speaking, for solver

k P K, the higher ρkpνq indicates a better performance within the factor ν.

In our experiments, we evaluate the following solvers: the ADMM with τ “ 0.8,

the ADMM with τ “ 1, the ADMM with τ “ 1.6 and the PALM.

For ApL ` Sq “ L ` S, our test problems are described in Table 3.1, where we

use the four real videos introduced above as our input data in (3.50), with 3 choices

of sparse regularizers, 10 choices of µ, and 6 choices of p and α. Thus, we have

4 solvers and a total of 720 test problems, with 240 test problems for each sparse

regularizer. Moreover, we set TolA,1 “ 10´4, TolA,2 “ 5 ˆ 10´3 and TolP “ 10´4.

Fig. 3.3 shows the performance profiles of iteration numbers and function values for

different regularizers under this scenario.
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Table 3.1: Problem setting for ApL` Sq “ L` S

data µ regularizers

4 real videos
5e-1, 1e-1, 5e-2, 1e-2, 5e-3 bridge: p “ 0.2, 0.4, 0.5, 0.6, 0.8, 1
1e-3, 5e-4, 1e-4, 5e-5, 1e-5 fraction/logistic: α “ 0.01, 0.1, 1, 2, 5, 10

For ApL`Sq “ HpL`Sq, our test problems are described in Table 3.2, where we

use 2 choices of p and α. Thus, we have 4 solvers and a total of 240 test problems,

with 80 test problems for each sparse regularizer. In our experiments, we use the

method described in [36] to generate the blurring matrix H, which can be represented

as a Kronecker product H “ Hr bHc under the periodic boundary condition. The

matlab codes4 that generate Hr and Hc are shown below, where “frame size” is the

size of each frame:

[P, center] = psfGauss(frame_size, 1);

[Hr, Hc] = kronDecomp(P, center, ’periodic’);

Moreover, we set TolA,1 “ 5 ˆ 10´3, TolA,2 “ 10´2 and TolP “ 3 ˆ 10´3. Fig. 3.4

shows the performance profiles under this scenario.

Table 3.2: Problem setting for ApL` Sq “ HpL` Sq

data µ regularizers

4 real videos
5e-1, 1e-1, 5e-2, 1e-2, 5e-3 bridge: p “ 0.5, 1
1e-3, 5e-4, 1e-4, 5e-5, 1e-5 fraction/logistic: α “ 1, 2

It is not hard to see from Fig. 3.3 and Fig. 3.4 that the performance profiles

of iteration numbers for the ADMM with τ “ 0.8 and τ “ 1 usually lie above

those for the PALM; and their performance profiles of function values are almost

the same. This shows that the ADMM with τ “ 0.8 or τ “ 1 takes less iterations

4 The codes are available at http://www.imm.dtu.dk/~pcha/HNO/ as a supplement to the book
[36].
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for solving all the test problems while giving comparable function values. For bridge

regularizer in the case where ApL ` Sq “ L ` S (see Fig. 3.3(a)) and in the case

where ApL ` Sq “ HpL ` Sq (see Fig. 3.4(a)), we can see that the ADMM with

τ “ 0.8 sightly outperforms the ADMM with τ “ 1 in terms of the number of

iterations. For other regularizers, their performances are comparable. Additionally,

for the ADMM with τ “ 1.6, we can see from Fig. 3.3 and Fig. 3.4 that it always

terminates with the worst function value, although it is always fastest in the case

where ApL` Sq “ HpL` Sq (see Fig. 3.4).

To better visualize the performance of the algorithms in terms of function values,

we also plot RelErrk :“ |FpLk, Skq ´ Fmin|{Fmin against the number of iterations

for each algorithm, where FpLk, Skq denotes the objective value obtained by each

algorithm at pLk, Skq and Fmin denotes the minimum of the objective values obtained

from all algorithms. We only consider the ADMM with τ “ 0.8, the ADMM with

τ “ 1 and the PALM, and terminate them only after at least 500 iterations and

the termination criteria are satisfied with TolA,1 “ 10´5, TolA,2 “ 5 ˆ 10´4 and

TolP “ 10´5. For brevity, we focus on the scenario ApL ` Sq “ L ` S and use

the “Hall” video. The results are presented in Fig. 3.5, from which we can see that

the ADMM with τ “ 1 or τ “ 0.8 performs better than PALM for those particular

instances.

3.3.3 Simulation results

In this subsection, we present some simulation results for the background/foreground

extraction problem. In order to evaluate the performance in background/foreground

extraction, we compare the support of the recovered foreground S˚ with the support

of the ground-truth S̃ by computing the following measurement:

F-measure :“ 2ˆ
precision ¨ recall

precision` recall
,
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where precision and recall are defined as

precision :“
TP

TP` FP
, recall :“

TP

TP` FN
,

in which,

• TP stands for true positives: the number of true foreground pixels that are

recovered;

• FP stands for false positives: the number of background pixels that are misde-

tected as foreground;

• FN stands for false negatives: the number of true foreground pixels that are

missed.

The support of the recovered foreground S˚ is obtained by thresholding S˚ entry-

wise with a threshold value (we use 1e-3 in our numerical experiments). We would

like to point out that F-measure varies between 0 and 1 according to the similarity

of the support of S˚ and S̃. The higher the F-measure value, the better the recovery

accuracy of the support of S̃. The F-measure approaches the maximum value 1 if

the supports of S˚ and S̃ are the same, which means the foreground is recovered

completely.

In our experiments below, we choose τ “ 0.8 for the ADMM. We also use the

aforementioned four real videos as input with 3 choices of sparse regularizers and 2

choices of p and α. For each fixed p and α, we experiment with different regularization

parameters µ (5e-1, 1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5) and present

only the µ corresponding to the maximal F-measure.5

Extraction from noisy surveillance videos In this case, ApL ` Sq “ L ` S,

λmax “ λmin “ 1 and we set TolA,1 “ 10´4, TolA,2 “ 5ˆ 10´3 and TolP “ 10´4. The

5 If the F-measures are the same, we pick the µ that corresponds to the minimal number of
iterations.
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computational results are reported in Table 3.3, where we report p and α, the optimal

µ, the number of iterations, the CPU time (seconds) and F-measure. We also show

the extracted backgrounds and foregrounds given by the ADMM in Fig. 3.6.

Extraction from noisy and blurred surveillance videos In this case, ApL`

Sq “ HpL`Sq, λmax “ λmaxpH
˚Hq, λmin “ λminpH

˚Hq and we set TolA,1 “ 5ˆ10´3,

TolA,2 “ 10´2 and TolP “ 3ˆ10´3. The blurring matrix H is generated by the same

method introduced in Subsection 3.3.2. One frame of each corrupted video is shown

in the second row in Fig. 3.2. We report the computational results in Table 3.4 and

show the extracted backgrounds and foregrounds by the ADMM in Fig. 3.7.

Summary From the results above, it can be seen that the ADMM with τ “

0.8 performs better in the sense that it takes less CPU time for solving most test

problems while returning comparable F-measures. The performances of our ADMM

for extraction are also promising from Fig. 3.6 and Fig. 3.7.
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Figure 3.3: Performance profiles of iteration numbers (denoted by “iter” on the left)
and function values (denoted by “fval” on the right) for each sparse regularizer with
ApL` Sq “ L` S. The blown-up subfigures are used to highlight the differences in
a specific range of ν.
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Figure 3.4: Performance profiles of iteration numbers (denoted by “iter” on the left)
and function values (denoted by “fval” on the right) for each sparse regularizer with
ApL`Sq “ HpL`Sq. The blown-up subfigures are used to highlight the differences
in a specific range of ν.
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Figure 3.5: The RelErrk vs the number of iterations for each sparse regularizer
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Table 3.3: Numerical results for extraction for case ApL` Sq “ L` S

ADMM PALM

Data regularizer µ iter time F-measure fval µ iter time F-measure fval

Hall

bri. p 1.0 5e-02 10 2.07 0.7562 1869.66 5e-02 19 2.58 0.7560 1869.62

0.5 1e-02 32 8.42 0.7634 1149.09 1e-02 36 6.40 0.7624 1149.12

fra.α 1.0 5e-02 23 5.55 0.7578 1595.60 5e-02 33 5.56 0.7578 1595.60

2.0 5e-02 12 2.79 0.7368 2106.98 5e-02 15 2.36 0.7368 2106.98

log.α 1.0 5e-02 12 11.34 0.7566 1721.64 5e-02 39 36.11 0.7576 1721.36

2.0 5e-02 12 9.61 0.7368 2426.38 5e-02 16 14.57 0.7368 2426.39

Bootstrap

bri. p 1.0 1e-01 14 2.13 0.8180 8832.69 1e-01 19 1.82 0.8180 8832.69

0.5 5e-02 23 5.27 0.8206 7960.33 5e-02 22 3.70 0.8209 7959.47

fra.α 1.0 1e-01 15 3.36 0.8163 7155.41 1e-01 20 3.44 0.8165 7155.41

2.0 1e-01 14 3.15 0.8264 9709.11 1e-01 16 2.49 0.8261 9709.11

log.α 1.0 1e-01 16 11.37 0.8195 7941.13 1e-01 22 14.56 0.8195 7941.13

2.0 1e-01 12 5.06 0.8363 11473.90 1e-01 10 3.70 0.8363 11473.90

Fountain

bri. p 1.0 1e-01 9 1.38 0.7749 2446.89 1e-01 7 0.65 0.7749 2446.88

0.5 5e-02 13 2.23 0.7000 2511.64 5e-02 11 1.23 0.6922 2511.32

fra.α 1.0 1e-01 9 1.66 0.7717 2284.07 1e-01 8 1.03 0.7717 2284.07

2.0 5e-02 10 1.86 0.7717 2151.58 5e-02 9 1.16 0.7717 2151.58

log.α 1.0 1e-01 9 6.81 0.7738 2365.23 1e-01 7 4.86 0.7738 2365.23

2.0 5e-02 9 6.37 0.7717 2294.74 5e-02 8 5.55 0.7717 2294.74

ShoppingMall

bri. p 1.0 1e-01 10 6.10 0.7046 16920.08 1e-01 13 4.96 0.7043 16920.09

0.5 1e-02 39 41.28 0.7087 6234.82 1e-02 79 70.33 0.7078 6235.19

fra.α 1.0 1e-01 12 9.94 0.7055 15220.65 1e-01 18 11.31 0.7055 15220.65

2.0 5e-02 15 12.93 0.7061 13797.45 5e-02 26 16.00 0.7061 13797.42

log.α 1.0 1e-01 11 33.15 0.7055 16070.07 1e-01 16 44.65 0.7055 16070.08

2.0 5e-02 12 27.84 0.7057 15326.69 5e-02 18 49.90 0.7057 15326.69
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Table 3.4: Numerical results for extraction for case ApL` Sq “ HpL` Sq

ADMM PALM

Data regularizer µ iter time F-measure fval µ iter time F-measure fval

Hall

bri. p 1.0 5e-02 24 9.18 0.6801 6616.61 5e-02 36 15.52 0.6626 6412.11

0.5 1e-02 44 19.25 0.6358 5439.40 1e-02 45 21.11 0.6357 5448.62

fra.α 1.0 5e-02 57 25.50 0.5265 5692.80 5e-02 49 22.39 0.5616 5811.12

2.0 1e-02 66 33.11 0.5381 4779.83 1e-02 61 32.21 0.5445 4852.03

log.α 1.0 5e-02 42 48.90 0.5970 6066.31 5e-02 44 54.91 0.6033 6071.10

2.0 1e-02 54 67.45 0.5188 5121.25 1e-02 52 64.82 0.5211 5167.56

Bootstrap

bri. p 1.0 1e-01 22 5.97 0.7651 11098.68 1e-01 50 15.13 0.7364 10866.62

0.5 1e-02 56 24.10 0.6694 4046.93 1e-02 86 37.02 0.6589 3864.54

fra.α 1.0 5e-02 66 24.98 0.5705 5427.10 5e-02 99 36.25 0.5270 5175.45

2.0 5e-02 73 25.45 0.5267 6070.65 5e-02 111 38.21 0.4676 5776.34

log.α 1.0 5e-02 47 44.05 0.5651 6480.76 5e-02 87 81.41 0.5666 6172.91

2.0 5e-02 73 68.53 0.4891 7670.60 5e-02 115 109.46 0.4179 7329.97

Fountain

bri. p 1.0 5e-02 28 7.83 0.7229 6167.61 5e-02 64 20.55 0.6970 5688.45

0.5 1e-02 51 17.03 0.6881 5271.96 1e-02 78 27.25 0.6606 5054.11

fra.α 1.0 5e-02 64 22.24 0.5155 5384.44 5e-02 84 29.27 0.5000 5259.77

2.0 1e-02 62 24.29 0.4482 4784.08 1e-02 87 34.54 0.4341 4596.22

log.α 1.0 5e-02 50 47.58 0.6095 5676.79 5e-02 77 74.04 0.5760 5451.61

2.0 1e-02 53 50.74 0.4438 5042.31 1e-02 80 77.10 0.4525 4819.92

ShoppingMall

bri. p 1.0 5e-02 22 31.99 0.6431 14000.88 5e-02 25 39.06 0.6411 13957.07

0.5 5e-03 54 107.27 0.6271 5590.31 5e-03 40 82.12 0.6328 5878.83

fra.α 1.0 1e-02 33 65.56 0.5045 5267.76 5e-02 60 108.54 0.5106 10698.09

2.0 1e-02 51 94.69 0.5810 6137.38 1e-02 38 74.95 0.5935 6450.37

log.α 1.0 5e-02 58 237.06 0.5453 12096.71 5e-02 39 158.97 0.5967 12514.39

2.0 1e-02 38 154.29 0.5856 7182.66 1e-02 33 135.12 0.5913 7332.29
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bri.p “ 1.0 bri.p “ 0.5 fra.α “ 1

fra.α “ 2 log.α “ 1 log.α “ 2

Figure 3.6: Extracted backgrounds and foregrounds given by the ADMM for noisy
surveillance videos.
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bri.p “ 1.0 bri.p “ 0.5 fra.α “ 1

fra.α “ 2 log.α “ 1 log.α “ 2

Figure 3.7: Extracted backgrounds and foregrounds given by the ADMM for noisy
and blurred surveillance videos.
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Chapter 4

NAUM for Matrix Factorization
Problem

In this chapter, we consider the matrix factorization problem (1.4), i.e.,

min
X,Y
FpX, Y q :“ ΨpXq ` ΦpY q `

1

2

›

›ApXY Jq ´ b
›

›

2
.

To solve this possibly nonconvex, nonsmooth and non-Lipschitz problem, we in-

troduce a potential function Θα,β in (1.5), which is specifically constructed for the

objective F in (1.4). For ease of future reference, we recall that Θα,β is given by

Θα,βpX, Y, Zq :“ ΨpXq ` ΦpY q `
α

2
}XY J ´ Z}2F `

β

2
}ApZq ´ b}2 ,

where α and β are real numbers. The relation between F and Θα,β is discussed in

Section 4.1. We then, in Section 4.2, develop a non-monotone alternating updating

method (NAUM) with a suitable line search criterion based on this potential function.

In Section 4.3, under some mild conditions, we show the well-definedness of our line

search criterion, and establish that the sequence generated by NAUM is bounded and

any cluster point of the sequence gives a stationary point of F . Moreover, we discuss

the convergence rate for the function value if, in addition, the objective is a Kurdyka-

 Lojasiewicz function. Finally, in Section 4.4, we conduct numerical experiments to

compare our method with some existing efficient methods for non-negative matrix
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factorization and matrix completion on real datasets. The numerical results show

that our method can outperform these methods for these specific applications.

Before proceeding, we discuss the first-order necessary conditions for (1.4). First,

from [71, Exercise 8.8] and [71, Proposition 10.5], we see that

BFpX, Y q “
ˆ

BΨpXq `A˚
`

ApXY Jq ´ b
˘

Y

BΦpY q `
`

A˚
`

ApXY Jq ´ b
˘˘J

X

˙

.

Then, it follows from the generalized Fermat’s rule [71, Theorem 10.1] that any local

minimizer p sX, sY q of (1.4) satisfies 0 P BFp sX, sY q, i.e.,

$

&

%

0 P BΨp sXq `A˚pAp sX sY Jq ´ bqsY ,

0 P BΦpsY q ` pA˚pAp sX sY Jq ´ bqqJ sX,
(4.1)

which implies that p sX, sY q is a stationary point of F . In this chapter, we again focus

on finding a stationary point pX˚, Y ˚q of F in (1.4), i.e., pX˚, Y ˚q satisfies (4.1) in

place of p sX, sY q.

Additionally, we present the following two propositions, which will be useful for

developing our NAUM.

Proposition 4.1. Suppose that AA˚ “ I and αpα ` βq ‰ 0. Then, αI ` βA˚A is

invertible and its inverse is given by 1
α
I ´ β

αpα`βq
A˚A.

Proof. It is easy to check that 1
α
I ´ β

αpα`βq
A˚A is well defined since αpα ` βq ‰ 0,

and that

`

αI ` βA˚A
˘

ˆ

1

α
I ´ β

αpα ` βq
A˚A

˙

“ I.

This completes the proof. l

Proposition 4.2. Let ψ : Rm Ñ p´8,8s and φ : Rn Ñ p´8,8s be proper closed

functions. Given P,Q P Rmˆn and a P Rn, b P Rm with }a} ‰ 0, }b} ‰ 0, the

following statements hold.
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(i) The problem min
xPRm

 

ψpxq ` 1
2
}xaJ ´ P }2F

(

is equivalent to the problem

min
xPRm

#

ψpxq `
}a}2

2

›

›

›

›

x´
Pa

}a}2

›

›

›

›

2
+

;

(ii) The problem min
yPRn

 

φpyq ` 1
2
}byJ ´Q}2F

(

is equivalent to the problem

min
yPRn

#

φpyq `
}b}2

2

›

›

›

›

y ´
QJb

}b}2

›

›

›

›

2
+

.

Proof. Statement (i) can be easily proved by noticing that

}xaJ ´ P }2F “ }xa
J
}

2
F ´ 2xxaJ, P y ` }P }2F “ }a}

2
}x}2 ´ 2xx, Pay ` }P }2F

“ }a}2
›

›x´ Pa{}a}2
›

›

2
´ }Pa}2{}a}2 ` }P }2F .

Then, statement (ii) can be easily proved by using statement (i) and }byJ ´ Q}2F

“ }ybJ ´QJ}2F . l

4.1 The potential function

In this section, we analyze the relation between F in (1.4) and its potential function

Θα,β in (1.5). Intuitively, Θα,β originates from F by separating the coupled variables

XY J from the linear mapping A via introducing an auxiliary variable Z and penali-

zing XY J “ Z. We will see later that the stationary point of F can be characterized

by the stationary point of Θα,β. Before proceeding, we prove the following technical

lemma.

Lemma 4.1. Suppose that AA˚ “ I and 1
α
` 1

β
“ 1. Then, for any pX, Y, Zq

satisfying

Z “
´

I ´ β
α`β
A˚A

¯

`

XY J
˘

`
β

α`β
A˚pbq, (4.2)

we have FpX, Y q “ Θα,βpX, Y, Zq.
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Proof. First, from (4.2), we have

XY J ´ Z “
β

α`β
A˚pApXY Jq ´ bq, (4.3)

ApZq ´ b “ A
´

XY J ´ β
α`β
A˚ApXY Jq ` β

α`β
A˚pbq

¯

´ b

“ ApXY Jq ´ β
α`β
AA˚ApXY Jq ` β

α`β
AA˚pbq ´ b

“ α
α`β

`

ApXY Jq ´ b
˘

, (4.4)

where the last equality follows from AA˚ “ I. Then, we see that

α

2
}XY J ´ Z}2F `

β

2
}ApZq ´ b}2

“
α

2

›

›

›

β
α`β
A˚pApXY Jq ´ bq

›

›

›

2

F
`
β

2

›

›

›

α
α`β

`

ApXY Jq ´ b
˘

›

›

›

2

“
αβ2

pα`βq2
¨

1

2

›

›A˚pApXY Jq ´ bq
›

›

2

F
`

α2β
pα`βq2

¨
1

2

›

›ApXY Jq ´ b
›

›

2

“
αβ2

pα`βq2
¨

1

2

›

›ApXY Jq ´ b
›

›

2
`

α2β
pα`βq2

¨
1

2

›

›ApXY Jq ´ b
›

›

2

“
αβ
α`β

¨
1

2

›

›ApXY Jq ´ b
›

›

2
,

where the first equality follows from (4.3) and (4.4); and the third equality follows

from AA˚ “ I. This, together with 1
α
` 1

β
“ 1 and the definitions of F and Θα,β

completes the proof. l

Based on the above lemma, we now establish the following property of Θα,β.

Theorem 4.1. Suppose that AA˚ “ I. If α and β are chosen such that αI`βA˚A ą

0 and 1
α
` 1

β
“ 1, then the problem min

X,Y,Z
tΘα,βpX, Y, Zqu is equivalent to (1.4).

Proof. First, it is easy to see from αI ` βA˚A ą 0 that the function Z ÞÝÑ

Θα,βpX, Y, Zq is strongly convex. Thus, for any fixed X and Y , the optimal solution

Z˚ to the problem min
Z
tΘα,βpX, Y, Zqu exists and is unique, and can be obtained
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explicitly. Indeed, from the optimality condition, we have

αpZ˚ ´XY Jq ` βA˚pApZ˚q ´ bq “ 0.

Then, since αI ` βA˚A is invertible (as αI ` βA˚A ą 0), we see that

Z˚ “ pαI ` βA˚Aq´1
“

αXY J ` βA˚pbq
‰

“

”

1
α
I ´ β

αpα`βq
A˚A

ı

“

αXY J ` βA˚pbq
‰

“

´

I ´ β
α`β
A˚A

¯

pXY Jq `
”

β
α
A˚pbq ´ β2

αpα`βq
A˚AA˚pbq

ı

“

´

I ´ β
α`β
A˚A

¯

pXY Jq `
”

β
α
´

β2

αpα`βq

ı

A˚pbq

“

´

I ´ β
α`β
A˚A

¯

pXY Jq ` β
α`β
A˚pbq,

where the second equality follows from Proposition 4.1 and the fourth equality fol-

lows from AA˚ “ I. This, together with Lemma 4.1, implies that FpX, Y q “

Θα,βpX, Y, Z
˚q. Then, we have that

min
X,Y,Z

tΘα,βpX, Y, Zqu “ min
X,Y

!

min
Z
tΘα,βpX, Y, Zqu

)

“ min
X,Y

tΘα,βpX, Y, Z
˚
qu

“ min
X,Y

tFpX, Y qu .

This completes the proof. l

Remark 4.1 (Comments on Theorem 4.1). From the proof of Lemma 4.1, we

see that if Φ and Ψ are the indicator functions of some nonempty closed sets, then

FpX, Y q “
´

1
α
` 1

β

¯

Θα,βpX, Y, Zq holds with the special choice of Z in (4.2) whe-

never AA˚ “ I and 1
α
` 1

β
ą 0. Thus, the result in Theorem 4.1 remains valid

whenever AA˚ “ I and α, β are chosen such that αI ` βA˚A ą 0 and 1
α
` 1

β
ą 0.

— 69 —



CHAPTER 4. NAUM PhD Thesis

It can be seen from Theorem 4.1 that (1.4) is equivalent to minimizing Θα,β with

some suitable choices of α and β. On the other hand, we can also characterize the

relation between the stationary points of F and Θα,β under weaker conditions on α

and β.

Theorem 4.2. Suppose that AA˚ “ I and α, β are chosen such that 1
α
` 1

β
“ 1.

Then, the following statements hold.

(i) If pX˚, Y ˚, Z˚q is a stationary point of Θα,β, then pX˚, Y ˚q is a stationary

point of F ;

(ii) If pX˚, Y ˚q is a stationary point of F , then pX˚, Y ˚, Z˚q is a stationary point

of Θα,β, where Z˚ is given by

Z˚ “
´

I ´ β
α`β
A˚A

¯

`

X˚
pY ˚qJ

˘

`
β

α`β
A˚pbq. (4.5)

Proof. First, if pX˚, Y ˚, Z˚q is a stationary point of Θα,β, then we have 0 P BΘα,βpX
˚,

Y ˚, Z˚q, i.e.,

$

’

’

’

&

’

’

’

%

0 P BΨpX˚
q ` αpX˚

pY ˚qJ ´ Z˚qY ˚, (4.6a)

0 P BΦpY ˚q ` αpX˚
pY ˚qJ ´ Z˚qJX˚, (4.6b)

0 “ αpZ˚ ´X˚
pY ˚qJq ` βA˚pApZ˚q ´ bq. (4.6c)

Since 1
α
` 1

β
“ 1, we have αpα ` βq ‰ 0 and hence αI ` βA˚A is invertible from

Lemma 4.1. Then, using the same arguments in the proof of Theorem 4.1, we see

from (4.6c) that pX˚, Y ˚, Z˚q satisfies (4.5). Moreover, using (4.5) and the same

arguments in (4.3) and (4.4), we have

X˚
pY ˚qJ ´ Z˚ “

β
α`β
A˚pApX˚

pY ˚qJq ´ bq, (4.7)

ApZ˚q ´ b “ α
α`β

`

ApX˚
pY ˚qJq ´ b

˘

. (4.8)
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Thus, substituting (4.7) into (4.6a) and (4.6b), we see that

$

’

&

’

%

0 P BΨpX˚
q `

αβ
α`β
A˚pApX˚

pY ˚qJq ´ bqY ˚,

0 P BΦpY ˚q ` αβ
α`β

`

A˚pApX˚
pY ˚qJq ´ bq

˘J
X˚.

(4.9)

This together with 1
α
` 1

β
“ 1 implies pX˚, Y ˚q is a stationary point of F . This

proves statement (i).

We now prove statement (ii). First, if pX˚, Y ˚q is a stationary point of F , then

invoking 1
α
` 1

β
“ 1 and (4.1), we have (4.9). Next, we consider pX˚, Y ˚, Z˚q with Z˚

given by (4.5). Then, pX˚, Y ˚, Z˚q satisfies (4.7) and (4.8). Thus, substituting (4.7)

into (4.9), we obtain (4.6a) and (4.6b). Moreover, we have from (4.7) and (4.8) that

αpZ˚ ´X˚
pY ˚qJq ` βA˚pApZ˚q ´ bq

“ ´
αβ
α`β
A˚

`

pApX˚
pY ˚qJq ´ b

˘

` βA˚
´

α
α`β

`

ApX˚
pY ˚qJq ´ b

˘

¯

“ 0.
(4.10)

This together with (4.6a) and (4.6b) implies that pX˚, Y ˚, Z˚q is a stationary point

of Θα,β. This proves statement (ii). l

Remark 4.2 (Comments on Theorem 4.2). From the proof in Theorem 4.2, one

can see that if BΨ and BΦ are cones, Theorem 4.2 remains valid under the weaker

conditions that AA˚ “ I and 1
α
` 1

β
ą 0.

From Theorem 4.2, we see that a stationary point of F can be obtained from a

stationary point of Θα,β with a suitable choice of α and β, i.e., 1
α
` 1

β
“ 1. Since

the linear map A is no longer associated with the coupled variables XY J in Θα,β,

finding a stationary point of Θα,β is conceivably easier. Thus, one can consider

finding a stationary point of Θα,β in order to find a stationary point of F . Note that

some existing alternating-minimization-based methods (see, for example, [3, 91]) can

be used to find a stationary point of Θα,β, and hence of F , under the conditions that
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AA˚ “ I and α, β are chosen so that αI ` βA˚A ą 0 and 1
α
` 1

β
“ 1. These

conditions further imply that α ą 1 and β “ α
α´1

ą 1. However, as we will see from

our numerical results in Section 4.4, finding a stationary point of Θα,β with α ą 1

can be slow. In view of this, in the next section, we develop a new non-monotone

alternating updating method for finding a stationary of Θα,β (and hence of F) under

the weaker conditions that AA˚ “ I and 1
α
` 1

β
“ 1. This allows more flexibilities

in choosing α and β.

4.2 Non-monotone alternating updating method

In this section, we consider a non-monotone alternating updating method (NAUM)

for finding a stationary point of Θα,β with 1
α
` 1

β
“ 1. Compared to the existing

alternating-minimization-based methods [3, 91] applied to Θα,β, which update X,

Y , Z by alternately solving subproblems related to Θα,β, NAUM updates Z by an

explicit formula (see (4.15)) and updates X, Y by solving subproblems related to

Θα,β in a Gauss-Seidel manner. Before presenting the complete algorithm, we first

comment on the updates of X and Y .

Let pXk, Y kq denote the value of pX, Y q after the pk´1q-st iteration, and let pU, V q

denote the candidate for pXk`1, Y k`1q at the k-th iteration (we will set pXk`1, Y k`1q

to be pU, V q if a line search criterion is satisfied; more details can be found in Algo-

rithm 2). For notational simplicity, we also define

HαpX, Y, Zq :“
α

2
}XY J ´ Z}2F

for any pX, Y, Zq. Then, at the k-th iteration, we first compute Zk by (4.15) and, in

the line search loop, we compute U in one of the following 3 ways for a given µk ą 0:

• Proximal

U P Argmin
X

ΨpXq `HαpX, Y
k, Zk

q `
µk
2
}X ´Xk

}
2
F . (4.11a)
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• Prox-linear

U P Argmin
X

ΨpXq ` x∇XHαpX
k, Y k, Zk

q, X ´Xk
y`

µk
2
}X ´Xk

}
2
F . (4.11b)

• Hierarchical-prox If Ψ is column-wise separable, i.e., ΨpXq “
řr
i“1 ψipxiq for

X “ rx1, ¨ ¨ ¨ ,xrs P Rmˆr, we can update U column-by-column. Specifically,

for i “ 1, 2, ¨ ¨ ¨ , r, compute

ui P Argmin
xi

ψipxiq `Hαpujăi,xi,x
k
jąi, Y

k, Zk
q `

µk
2
}xi ´ xki }

2. (4.11c)

After computing U , we compute V in one of the following 3 ways for a given σk ą 0:

• Proximal

V P Argmin
Y

ΦpY q `HαpU, Y, Z
k
q `

σk
2
}Y ´ Y k

}
2
F . (4.12a)

• Prox-linear

V P Argmin
Y

ΦpY q ` x∇YHαpU, Y
k, Zk

q, Y ´ Y k
y `

σk
2
}Y ´ Y k

}
2
F . (4.12b)

• Hierarchical-prox If Φ is column-wise separable, i.e., ΦpY q “
řr
i“1 φipyiq

for Y “ ry1, ¨ ¨ ¨ ,yrs P Rnˆr, we can update V column-by-column. Specifically,

for i “ 1, 2, ¨ ¨ ¨ , r, compute

vi P Argmin
yi

φipyiq `HαpU,vjăi,yi,y
k
jąi, Z

k
q `

σk
2
}yi ´ yki }

2. (4.12c)

For notational simplicity, we further let

ρ :“
›

›

›
I ´ β

α`β
A˚A

›

›

›

2

(4.13)

and let γ ě 0 be a nonnegative number satisfying

pα ` γq I ` βA˚A ľ 0. (4.14)

Now, we are ready to present NAUM as Algorithm 2.
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Remark 4.3 (Comments on “hierarchical-prox”). The hierarchical-prox upda-

ting scheme requires the column-wise separability of Ψ or Φ. This is satisfied for

many common regularizers, for example, } ¨ }2F , } ¨ }1, } ¨ }pp p0 ă p ă 1q, and the

indicator function of a column-wise separable constraint.

Remark 4.4 (Comments on ρ and γ). Since AA˚ “ I, we see that the eigen-

values of A˚A are either 0 or 1. Then, the eigenvalues of I ´ β
α`β
A˚A must be

either 1 or α
α`β

, and hence ρ “ max t1, α2{pα ` βq2u. Similarly, the eigenvalues

of ´pαI ` βA˚Aq are either ´α or ´pα ` βq. Then, (4.14) is satisfied whenever

γ ě maxt0, ´α, ´pα ` βqu.

In Algorithm 2, the update for Zk is given explicitly. This is motivated by the

condition on Z at a stationary point of Θα,β; see (4.6c). In fact, following the

same arguments in (4.10), we see that (4.6c) always holds at pXk, Y k, Zkq with Zk

given in (4.15) when AA˚ “ I and 1
α
` 1

β
“ 1. If, in addition, αI ` βA˚A ą

0 holds, one can show that Zk is actually the optimal solution to the problem

min
Z

 

Θα,βpX
k, Y k, Zq

(

. In this case, our NAUM with N “ 0 in (4.16) can be conside-

red as an alternating-minimization-based method (see, for example, [3, 91]) applied

to the problem min
X,Y,Z

tΘα,βpX, Y, Zqu.

Our NAUM also allows U and V to be updated in three different ways. Thus,

one can choose suitable updating schemes to fit different applications. In particular,

if Ψ or Φ are column-wise separable, taking advantage of the structure of Θα,β and

the fact that XY J can be written as
řr
i“1 xiy

J
i with X “ rx1, ¨ ¨ ¨ ,xrs P Rmˆr and

Y “ ry1, ¨ ¨ ¨ ,yrs P Rnˆr, one can update X or Y column-wise even when A ‰ I.

The motivation for updating X (or Y ) column-wise rather than updating the whole

X (or Y ) is that the resulting subproblems (4.11c) (or (4.12c)) can be reduced to the

computation of the proximal mapping of ψi (or φi), which is easy for many commonly
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Algorithm 2 NAUM for finding a stationary point of F
Input: pX0, Y 0q, α and β such that 1

α `
1
β “ 1, ρ as in (4.13), γ ě 0 satisfying (4.14),

τ ą 1, c ą 0, µmin ą 0, σmax ą σmin ą 0, and an integer N ě 0. Set k “ 0.

while a termination criterion is not met, do

Step 1. Compute Zk by

Zk “

ˆ

I ´ β

α` β
A˚A

˙

´

XkpY kqJ
¯

`
β

α` β
A˚pbq. (4.15)

Step 2. Choose µ0
k ě µmin and σ0

k P rσ
min, σmaxs arbitrarily. Set µ̃k “ µ0

k, σk “ σ0
k and

µmax
k “ pα` 2γρq}Y k}2 ` c.

(2a) Set µk Ð min tµ̃k, µ
max
k u. Compute U by either (4.11a), (4.11b) or (4.11c).

(2b) Compute V by either (4.12a), (4.12b) or (4.12c).

(2c) If

FpU, V q ´ max
rk´Ns`ďiďk

FpXi, Y iq ď ´
c

2

´

}U ´Xk}2F ` }V ´ Y
k}2F

¯

, (4.16)

then go to Step 3.

(2d) If µk “ µmax
k , set σmax

k “ pα ` 2γρq}U}2 ` c, σk Ð min tτσk, σ
max
k u and

then, go to step (2b); otherwise, set µ̃k Ð τµk and σk Ð τσk and then,
go to step (2a).

Step 3. Set Xk`1 Ð U , Y k`1 Ð V , µ̄k Ð µk, σ̄k Ð σk, k Ð k ` 1 and go to Step 1.

end while

Output: pXk, Y kq

used ψi (or φi). Indeed, from (4.11c) and (4.12c), ui and vi are given by

$

’

’

’

&

’

’

’

%

ui P Argmin
xi

!

ψipxiq `
α

2

›

›xipy
k
i q
J
´ P k

i

›

›

2

F
`
µk
2
}xi ´ xki }

2
)

,

vi P Argmin
yi

!

φipyiq `
α

2

›

›uiy
J
i ´Q

k
i

›

›

2

F
`
σk
2
}yi ´ yki }

2
)

,

(4.17)

where P k
i and Qk

i are defined by

P k
i :“ Zk

´
ři´1
j“1ujpy

k
j q
J
´
řr
j“i`1x

k
j py

k
j q
J,

Qk
i :“ Zk

´
ři´1
j“1ujv

J
j ´

řr
j“i`1ujpy

k
j q
J.

(4.18)

Then, from Proposition 4.2, we can reformulate the subproblems in (4.17) and obtain
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the corresponding solutions by computing the proximal mappings of ψi and φi, which

can be computed efficiently when ψi and φi are some common regularizers used in

the literature. In particular, when ψip¨q and φip¨q are } ¨ }1, } ¨ }22 or the indicator

function of the box constraint, these subproblems have closed-form solutions. This

updating strategy has also been used for nonnegative matrix factorization; see, for

example, [19, 53, 58]. However, the methods used in [19, 53, 58] can only be applied

for some specific problems with A “ I, while NAUM can be applied for more general

problems with AA˚ “ I.

Additionally, NAUM adapts a non-monotone line search criterion (see Step 2 in

Algorithm 2) to improve the numerical performance. This is motivated by recent

studies on non-monotone algorithms with promising performances; see, for example,

[17, 34, 88]. However, different from the non-monotone line search criteria used there,

NAUM only includes pU, V q in the line search loop and checks the stopping criterion

(4.16) after updating a pair of pU, V q, rather than checking (4.16) immediately once U

or V is updated. Thus, we do not need to compute the function value after updating

each block of variable. This may reduce the cost of the line search and make NAUM

more practical, especially when computing the function value is relatively expensive.

4.3 Convergence analysis of NAUM

In this section, we discuss the convergence properties of Algorithm 2. First, we

present the first-order optimality conditions for the three different updating schemes

in (2a) of Algorithm 2 as follows:

• Proximal

0 P BΨpUq ` α
`

UpY k
q
J
´ Zk

˘

Y k
` µkpU ´X

k
q, (4.19a)
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• Prox-linear

0 P BΨpUq ` α
`

Xk
pY k

q
J
´ Zk

˘

Y k
` µkpU ´X

k
q, (4.19b)

• Hierarchical-prox For i “ 1, 2, ¨ ¨ ¨ , r,

0 P Bψipuiq ` α

˜

i
ÿ

j“1

ujpy
k
j q
J
`

r
ÿ

j“i`1

xkj py
k
j q
J
´Zk

¸

yki ` µkpui ´ xki q. (4.19c)

Similarly, the first-order optimality conditions for the three different updating sche-

mes in (2b) of Algorithm 2 are

• Proximal

0 P BΦpV q ` α
`

UV J ´ Zk
˘J
U ` σkpV ´ Y

k
q, (4.20a)

• Prox-linear

0 P BΦpV q ` α
`

UpY k
q
J
´ Zk

˘J
U ` σkpV ´ Y

k
q, (4.20b)

• Hierarchical-prox For i “ 1, 2, ¨ ¨ ¨ , r,

0 P Bφipviq ` α

˜

i
ÿ

j“1

ujv
J
j `

r
ÿ

j“i`1

ujpy
k
j q
J
´Zk

¸J

ui ` σkpvi ´ yki q. (4.20c)

We also need to make the following assumptions.

Assumption 4.1.

(a1) Ψ, Φ are proper, closed, level-bounded functions and continuous on their dom-

ains;

(a2) AA˚ “ I;

(a3) 1
α
` 1

β
“ 1.
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Remark 4.5 (Note on Assumption 4.1). (i) From (a1), it is easy to see from [71,

Theorem 1.9] that inf Ψ and inf Φ are finite, i.e., Ψ and Φ are bounded from below. In

particular, the iterates (4.11a), (4.11b), (4.11c), (4.12a), (4.12b) and (4.12c) are well

defined; (ii) The continuity assumption in (a1) holds for many common regularizers,

for example, `1-norm, nuclear norm and the indicator function of a nonempty closed

set; (iii) (a2) is satisfied for some commonly used linear maps, for example, the

identity map and the sampling map.

We start our convergence analysis by proving the following auxiliary lemma.

Lemma 4.2 (Sufficient descent of F). Suppose that Assumption 4.1 holds. Let

tpXk, Y kqu be the sequence generated by Algorithm 2 and pU, V q be the candidate

generated by steps (2a) and (2b) at the k-th iteration. Then, for any integer k ě 0,

we have

FpU, V q ´ FpXk, Y k
q

ď ´
µk ´ pα ` 2γρq}Y k}2

2
}U ´Xk

}
2
F ´

σk ´ pα ` 2γρq}U}2

2
}V ´ Y k

}
2
F .

(4.21)

Proof. First, from Lemma 4.1 and (4.15), we see that FpXk, Y kq “ Θα,βpX
k, Y k, Zkq.

For any pU, V q, let

W “

´

I ´ β
α`β
A˚A

¯

`

UV J
˘

`
β

α`β
A˚pbq. (4.22)

Then, from Lemma 4.1, we have FpU, V q “ Θα,βpU, V,W q. Thus, we only need to

consider the difference Θα,βpU, V,W q ´Θα,βpX
k, Y k, Zkq.

We start by noting that

A˚ApW q “
´

A˚A´ β
α`β
A˚ pAA˚qA

¯

`

UV J
˘

`
β

α`β
A˚ pAA˚q pbq

“ α
α`β
A˚A

`

UV J
˘

`
β

α`β
A˚pbq,

(4.23)
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where the last equality follows from (a2) in Assumption 4.1. Then, we obtain that

∇ZΘα,βpU, V,W q

“ αpW ´ UV Jq ` βA˚ApW q ´ βA˚pbq

“ α
”

´
β

α`β
A˚ApUV Jq ` β

α`β
A˚pbq

ı

` β
”

α
α`β
A˚A

`

UV J
˘

`
β

α`β
A˚pbq

ı

´ βA˚pbq

“ 0,

where the second equality follows from (4.22) and (4.23). Moreover, since γ is chosen

such that pα` γqI `βA˚A ľ 0 (see (4.14)), we see that, for any k ě 0, the function

Z ÞÝÑ Θα,βpU, V, Zq `
γ
2
}Z ´ Zk}2F is convex and hence

Θα,βpU, V, Z
k
q `

γ

2
}Zk

´ Zk
}

2
F

looooooomooooooon

“0

ě Θα,βpU, V,W q `
γ

2
}W ´ Zk

}
2
F ` x∇ZΘα,βpU, V,W q

looooooooomooooooooon

“0

` γpW ´ Zk
q, Zk

´W y,

which implies that

Θα,βpU, V,W q ´Θα,βpU, V, Z
k
q ď

γ

2
}W ´ Zk

}
2
F . (4.24)
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Then, substituting (4.15) and (4.22) into (4.24), we obtain

Θα,βpU, V,W q ´Θα,βpU, V, Z
k
q

ď
γ

2

›

›

›

´

I ´ β
α`β
A˚A

¯

`

UV J ´Xk
pY k

q
J
˘

›

›

›

2

F

ď
γ

2

›

›

›
I ´ β

α`β
A˚A

›

›

›

2

¨
›

›UV J ´Xk
pY k

q
J
›

›

2

F

“
γρ

2

›

›UpV ´ Y k
q
J
` pU ´Xk

qpY k
q
J
›

›

2

F

ď
γρ

2

´

›

›UpV ´ Y k
q
J
›

›

F
`
›

›pU ´Xk
qpY k

q
J
›

›

F

¯2

ď
γρ

2

´

}U}}V ´ Y k
}F ` }Y

k
}}U ´Xk

}F

¯2

ď γρ
´

}U}2}V ´ Y k
}

2
F ` }Y

k
}

2
}U ´Xk

}
2
F

¯

,

(4.25)

where the equality follows from the definition of ρ in (4.13), the second last inequality

follows from the relation }AB}F ď }A}}B}F and the last inequality follows from the

relation }a` b}2 ď 2}a}2 ` 2}b}2.

Next, we show that

Θα,βpU, V, Z
k
q ´Θα,βpU, Y

k, Zk
q ď

α}U}2 ´ σk
2

}V ´ Y k
}

2
F . (4.26)

To this end, we consider the following three cases.

• Proximal: in this case, we have

Θα,βpU, V, Z
k
q ´Θα,βpU, Y

k, Zk
q

“ ΦpV q `HαpU, V, Z
k
q ´ ΦpY k

q ´HαpU, Y
k, Zk

q

“

”

ΦpV q `HαpU, V, Z
k
q `

σk
2
}V ´ Y k

}
2
F

ı

´
“

ΦpY k
q `HαpU, Y

k, Zk
q
‰

´
σk
2
}V ´ Y k

}
2
F

ď ´
σk
2
}V ´ Y k

}
2
F ,
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where the inequality follows from the definition of V as a minimizer of (4.12a).

This implies (4.26).

• Prox-linear: in this case, we have

Θα,βpU, V, Z
k
q ´Θα,βpU, Y

k, Zk
q

“ ΦpV q `HαpU, V, Z
k
q ´ ΦpY k

q ´HαpU, Y
k, Zk

q

ď ΦpV q `HαpU, Y
k, Zk

q ` x∇YHαpU, Y
k, Zk

q, V ´ Y k
y `

α}U}2

2
}V ´ Y k

}
2
F

´ ΦpY k
q ´HαpU, Y

k, Zk
q

“ ΦpV q ` x∇YHαpU, Y
k, Zk

q, V ´ Y k
y `

σk
2
}V ´ Y k

}
2
F ´ ΦpY k

q

`
α}U}2 ´ σk

2
}V ´ Y k

}
2
F

ď
α}U}2 ´ σk

2
}V ´ Y k

}
2
F ,

where the first inequality follows from the fact that Y ÞÑ ∇YHαpX, Y, Zq is Lip-

schitz with modulus α}X}2 and the last inequality follows from the definition

of V as a minimizer of (4.12b).

• Hierarchical-prox: in this case, for any 1 ď i ď r, we have

Θα,βpU,vjăi,vi,y
k
jąi, Z

k
q ´Θα,βpU,vjăi,y

k
i ,y

k
jąi, Z

k
q

“ φipviq `HαpU,vjăi,vi,y
k
jąi, Z

k
q ´ φipy

k
i q ´HαpU,vjăi,y

k
i ,y

k
jąi, Z

k
q

“

”

φipviq `HαpU,vjăi,vi,y
k
jąi, Z

k
q `

σk
2
}vi ´ yki }

2
ı

´
σk
2
}vi ´ yki }

2

´
“

φipy
k
i q `HαpU,vjăi,y

k
i ,y

k
jąi, Z

k
q
‰

ď ´
σk
2
}vi ´ yki }

2,

where the inequality follows from the definition of vi as a minimizer of (4.12c).
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Then, summing the above relation from i “ r to i “ 1 and simplifying the

resulting inequality, we obtain (4.26).

Similarly, we can show that

Θα,βpU, Y
k, Zk

q ´Θα,βpX
k, Y k, Zk

q ď
α}Y k}2 ´ µk

2
}U ´Xk

}
2
F (4.27)

by considering the following three cases.

• Proximal: in this case, we have

Θα,βpU, Y
k, Zk

q ´Θα,βpX
k, Y k, Zk

q

“ ΨpUq `HαpU, Y
k, Zk

q ´ΨpXk
q ´HαpX

k, Y k, Zk
q

“

”

ΨpUq `HαpU, Y
k, Zk

q `
µk
2
}U ´Xk

}
2
F

ı

´
“

ΨpXk
q `HαpX

k, Y k, Zk
q
‰

´
µk
2
}U ´Xk

}
2
F

ď ´
µk
2
}U ´Xk

}
2
F ,

where the inequality follows from the definition of U as a minimizer of (4.11a).

This implies (4.27).
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• Prox-linear: in this case, we have

Θα,βpU, Y
k, Zk

q ´Θα,βpX
k, Y k, Zk

q

“ ΨpUq `HαpU, Y
k, Zk

q ´ΨpXk
q ´HαpX

k, Y k, Zk
q

ď ΨpUq `HαpX
k, Y k, Zk

q ` x∇XHαpX
k, Y k, Zk

q, U ´Xk
y `

α}Y k}2

2
}U ´Xk

}
2
F

´ΨpXk
q ´HαpX

k, Y k, Zk
q

“ ΨpUq ` x∇XHαpX
k, Y k, Zk

q, U ´Xk
y `

µk
2
}U ´Xk

}
2
F ´ΨpXk

q

`
α}Y k}2 ´ µk

2
}U ´Xk

}
2
F

ď
α}Y k}2 ´ µk

2
}U ´Xk

}
2
F ,

where the first inequality follows from the fact that ∇XHαpX, Y, Zq is Lipschitz

with modulus α}Y }2 and the last inequality follows from the definition of U as

a minimizer of (4.11b).

• Hierarchical-prox: in this case, for any 1 ď i ď r, we have

Θα,βpujăi,ui,x
k
jąi, Y

k, Zk
q ´Θα,βpujăi,x

k
i ,x

k
jąi, Y

k, Zk
q

“ ψipuiq `Hαpujăi,ui,x
k
jąi, Y

k, Zk
q ´ ψipx

k
i q ´Hαpujăi,x

k
i ,x

k
jąi, Y

k, Zk
q

“

”

ψipuiq `Hαpujăi,ui,x
k
jąi, Y

k, Zk
q `

µk
2
}ui ´ xki }

2
ı

´
µk
2
}ui ´ xki }

2

´
“

ψipx
k
i q `Hαpujăi,x

k
i ,x

k
jąi, Y

k, Zk
q
‰

ď ´
µk
2
}ui ´ xki }

2,

where the inequality follows from the definition of ui as a minimizer of (4.11c).

Then, summing the above relation from i “ r to i “ 1 and simplifying the

resulting inequality, we obtain (4.27).
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Now, summing (4.25), (4.26) and (4.27), and using FpU, V q “ Θα,βpU, V,W q and

FpXk, Y kq “ Θα,βpX
k, Y k, Zkq, we obtain (4.21). This completes the proof. l

From the above lemma, we see that the sufficient descent of FpX, Y q can be

guaranteed as long as µk and σk are sufficiently large. Thus, based on this lemma,

we can show in the following proposition that our line search criterion (4.16) in

Algorithm 2 is well defined.

Proposition 4.3 (Well-definedness of the line search criterion). Suppose that

Assumption 4.1 holds. Let pXk, Y kq be the sequence generated by Algorithm 2. Then,

for each k ě 0, the line search criterion (4.16) is satisfied after finitely many inner

iterations.

Proof. We prove this proposition by contradiction. Assume that there exists a

k ě 0 such that the line search criterion (4.16) cannot be satisfied after finitely

many inner iterations. Note from (2a) and (2d) in Step 2 of Algorithm 2 that

µk ď µmax
k “ pα` 2γρq}Y k}2` c and hence µk “ µmax

k must be satisfied after finitely

many inner iterations. Let nk denote the number of inner iterations when µk “ µmax
k

is satisfied for the first time. If µ0
k ě µmax

k , then nk “ 1; otherwise, we have

µminτnk´2
ď µ0

kτ
nk´2

ă µmax
k ,

which implies that

nk ď

Z

logpµmax
k q ´ logpµminq

log τ
` 2

^

. (4.28)

Then, from (2d) in Step 2 of Algorithm 2, we have U ” Uµmax
k

and σmax
k “ pα `

2γρq}Uµmax
k
}2 ` c after at most nk ` 1 inner iterations, where Uµmax

k
is computed by

(4.11a), (4.11b) or (4.11c) with µk “ µmax
k . Moreover, we see that σk “ σmax

k must

be satisfied after finitely many inner iterations. Similarly, let n̂k denote the number
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of inner iterations when σk “ σmax
k is satisfied for the first time. If σ0

k ą σmax
k , then

n̂k “ nk; if σ0
k “ σmax

k , then n̂k “ 0; otherwise, we have

σminτ n̂k´1
ď σ0

kτ
n̂k´1

ă σmax
k ,

which implies that

n̂k ď

Z

logpσmax
k q ´ logpσminq

log τ
` 1

^

.

Thus, after at most maxtnk, n̂ku`1 inner iterations, we must have V ” Vσmax
k

, where

Vσmax
k

is computed by (4.12a), (4.12b) or (4.12c) with σk “ σmax
k . Therefore, after at

most maxtnk, n̂ku ` 1 inner iterations, we have

FpUµmax
k
, Vσmax

k
q ´ FpXk, Y k

q

ď ´
µmax
k ´ pα ` 2γρq}Y k}2

2
¨ }Uµmax

k
´Xk

}
2
F ´

σmax
k ´ pα ` 2γρq}Uµmax

k
}2

2
¨ }Vσmax

k
´ Y k

}
2
F

“ ´
c

2

`

}Uµmax
k
´Xk

}
2
F ` }Vσmax

k
´ Y k

}
2
F

˘

,

where the inequality follows from (4.21) and the equality follows from µmax
k “ pα `

2γρq}Y k}2 ` c and σmax
k “ pα` 2γρq}Uµmax

k
}2 ` c. This together with

FpXk, Y k
q ď max

rk´Ns`ďiďk
FpX i, Y i

q

implies that (4.16) must be satisfied after at most maxtnk, n̂ku ` 1 inner iterations,

which leads to a contradiction. l

Now, we are ready to prove our main convergence result, which characterizes a

cluster point of the sequence generated by Algorithm 2. Our proof of statement (ii)

in the following theorem is similar to that of [88, Lemma 4]. However, the arguments

involved are more intricate since we have two blocks of variables in our line search

loop.
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Theorem 4.3. Suppose that Assumption 4.1 holds. Let tpXk, Y kqu be the sequence

generated by Algorithm 2. Then,

(i) (boundedness of sequence) tpXk, Y kqu, tµ̄ku and tσ̄ku are bounded;

(ii) (diminishing successive changes) lim
kÑ8

}Xk`1´Xk}F `}Y
k`1´Y k}F “ 0;

(iii) (global subsequential convergence) any cluster point pX˚, Y ˚q of tpXk, Y kqu

is a stationary point of F .

Proof. Proof of Statement (i). We first show that

FpXk, Y k
q ď FpX0, Y 0

q (4.29)

for all k ě 1. We will prove it by induction. Indeed, for k “ 1, it follows from

Proposition 4.3 that

FpX1, Y 1
q ´ FpX0, Y 0

q ď ´
c

2

`

}X1
´X0

}
2
F ` }Y

1
´ Y 0

}
2
F

˘

ď 0

is satisfied after finitely many inner iterations. Hence, (4.29) holds for k “ 1. We

now suppose that (4.29) holds for all k ď K for some integer K ě 1. Then, we only

need to show that (4.29) also holds for k “ K ` 1. For k “ K ` 1, we have

FpXK`1, Y K`1
q ´ FpX0, Y 0

q ď FpXK`1, Y K`1
q ´ max

rK´Ns`ďiďK
FpXk, Y k

q

ď ´
c

2

`

}XK`1
´XK

}
2
F ` }Y

K`1
´ Y K

}
2
F

˘

ď 0,

where the first inequality follows from the induction hypothesis and the second ine-

quality follows from (4.16). Hence, (4.29) holds for k “ K ` 1. This completes the

induction. Then, from (4.29), we have that for any k ě 0,

FpX0, Y 0
q ě FpXk, Y k

q “ ΨpXk
q ` ΦpY k

q `
1

2

›

›ApXk
pY k

q
J
q ´ b

›

›

2
,
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which, together with (a1) in Assumption 4.1, implies that the sequences tXku, tY ku

and t}ApXkpY kqJq´b}u are bounded. Moreover, from Step 2 and Step 3 in Algorithm

2, it is easy to see µ̄k ď µmax
k “ pα` 2γρq}Y k}2 ` c for all k. Since tY ku is bounded,

the sequences tµmax
k u and tµ̄ku are bounded. Next, we prove the boundedness of

tσ̄ku. Indeed, at the k-th iteration, there are three possibilities:

• µ̄k ă µmax
k : In this case, we have σ̄k ď σ0

kτ
ñk ď σmaxτ ñk , where ñk denotes

the number of inner iterations for the line search at the k-th iteration and

ñk ď max
!

1,
Y

logpµmax
k q´logpµminq

log τ
` 2

])

(see (4.28) and the discussions preceding

it).

• µ̄k “ µmax
k and σ̄k ą σmax

k : In this case, we have σ̄k ď σ0
kτ

ñk ď σmaxτ ñk , where

ñk ď max
!

1,
Y

logpµmax
k q´logpµminq

log τ
` 2

] )

.

• Otherwise, we have σ̄k ď σmax
k “ pα` 2γρq}Xk`1}2 ` c.

Note that tñku is bounded as tµmax
k u is bounded. Thus, tσ̄ku is bounded as the

sequences tXku and tñku are bounded. This proves statement (i).

Proof of Statement (ii). For notational simplicity, from now on, we let ∆Xk :“

Xk`1 ´Xk, ∆Y k :“ Y k`1 ´ Y k, ∆Zk :“ Zk`1 ´ Zk and

`pkq “ arg max
i
tFpX i, Y i

q : i “ rk ´N s`, ¨ ¨ ¨ , k u. (4.30)

Then, the line search criterion (4.16) can be rewritten as

FpXk`1, Y k`1
q ´ FpX`pkq, Y `pkq

q ď ´
c

2

`

}∆Xk}
2
F ` }∆Y k}

2
F

˘

ď 0. (4.31)
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Observe that

FpX`pk`1q, Y `pk`1q
q “ max

rk`1´Ns`ďiďk`1
FpX i, Y i

q

“ max

"

FpXk`1, Y k`1
q, max
rk`1´Ns`ďiďk

FpX i, Y i
q

*

piq

ď max

"

FpX`pkq, Y `pkq
q, max
rk`1´Ns`ďiďk

FpX i, Y i
q

*

ď max

"

FpX`pkq, Y `pkq
q, max
rk´Ns`ďiďk

FpX i, Y i
q

*

piiq
“ max

 

FpX`pkq, Y `pkq
q, FpX`pkq, Y `pkq

q
(

“ FpX`pkq, Y `pkq
q,

where (i) follows from (4.31) and (ii) follows from (4.30). Therefore, the sequence

tFpX`pkq, Y `pkqqu is non-increasing. Since FpX`pkq, Y `pkqq is also bounded from below

(due to (a1) in Assumption 4.1), we conclude that there exists a number rF such that

lim
kÑ8
FpX`pkq, Y `pkq

q “ rF . (4.32)

We next prove by induction that for all j ě 1,

$

’

&

’

%

lim
kÑ8

∆X`pkq´j “ lim
kÑ8

∆Y `pkq´j “ 0, (4.33a)

lim
kÑ8
FpX`pkq´j, Y `pkq´j

q “ rF . (4.33b)

We first prove (4.33a) and (4.33b) for j “ 1. Applying (4.31) with k replaced by

`pkq ´ 1, we obtain

FpX`pkq, Y `pkq
q ´ FpX`p`pkq´1q, Y `p`pkq´1q

q ď ´
c

2

`

}∆X`pkq´1}
2
F ` }∆Y `pkq´1}

2
F

˘

.

Thus, from this and (4.32), we have

lim
kÑ8

c

2

`

}∆X`pkq´1}
2
F ` }∆Y `pkq´1}

2
F

˘

“ 0,
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which implies that

lim
kÑ8

∆X`pkq´1 “ lim
kÑ8

∆Y `pkq´1 “ 0. (4.34)

Then, from (4.32) and (4.34), we have

rF “ lim
kÑ8
FpX`pkq, Y `pkq

q

“ lim
kÑ8
FpX`pkq´1

`∆X`pkq´1 , Y `pkq´1
`∆Y `pkq´1q

“ lim
kÑ8
FpX`pkq´1, Y `pkq´1

q,

where the last equality follows because tpXk, Y kqu is bounded and F is uniformly

continuous on any compact subset of domF under (a1) in Assumption 4.1. Thus,

(4.33a) and (4.33b) hold for j “ 1.

We next suppose that (4.33a) and (4.33b) hold for j “ J for some J ě 1. It

remains to show that they also hold for j “ J ` 1. Indeed, from (4.31) with k

replaced by `pkq ´ J ´ 1 (here, without loss of generality, we assume that k is large

enough such that `pkq ´ J ´ 1 is nonnegative), we have

FpX`pkq´J , Y `pkq´J
q ´ FpX`p`pkq´J´1q, Y `p`pkq´J´1q

q

ď ´
c

2

`

}∆X`pkq´J´1}
2
F ` }∆Y `pkq´J´1}

2
F

˘

,

which implies that

}∆X`pkq´J´1}
2
F ` }∆Y `pkq´J´1}

2
F

ď
2

c

`

FpX`p`pkq´J´1q, Y `p`pkq´J´1q
q ´ FpX`pkq´J , Y `pkq´J

q
˘

.

This together with (4.32) and the induction hypothesis implies that

lim
kÑ8

∆X`pkq´pJ`1q “ lim
kÑ8

∆Y `pkq´pJ`1q “ 0.
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Thus, (4.33a) holds for j “ J ` 1. From this, we further have

lim
kÑ8
FpX`pkq´pJ`1q, Y `pkq´pJ`1q

q

“ lim
kÑ8
FpX`pkq´J

´∆X`pkq´pJ`1q , Y `pkq´J
´∆Y `pkq´pJ`1qq

“ lim
kÑ8
FpX`pkq´J , Y `pkq´J

q “ rF ,

where the second equality follows because tpXk, Y kqu is bounded and F is uniformly

continuous on any compact subset of domF under (a1) in Assumption 4.1. Hence,

(4.33b) also holds for j “ J ` 1. This completes the induction.

We are now ready to prove the main result in this statement. Indeed, from (4.30),

we can see k ´ N ď `pkq ď k (without loss of generality, we assume that k is large

enough such that k ě N). Thus, for any k, we must have k ´N ´ 1 “ `pkq ´ jk for

1 ď jk ď N ` 1. Then, we have

}∆Xk´N´1}F “ }∆X`pkq´jk }F ď max
1ďjďN`1

}∆X`pkq´j}F ,

}∆Y k´N´1}F “ }∆Y `pkq´jk }F ď max
1ďjďN`1

}∆Y `pkq´j}F .

This together with (4.33a) implies that

lim
kÑ8

∆Xk “ lim
kÑ8

∆Xk´N´1 “ 0,

lim
kÑ8

∆Y k “ lim
kÑ8

∆Y k´N´1 “ 0.

This proves the statement (ii).

Proof of Statement (iii). First, since tpXk, Y kqu is bounded from statement

(i), there exists at least one cluster point. Suppose that pX˚, Y ˚q is a cluster

point of tpXk, Y kqu and let tpXki , Y kiqu be a convergent subsequence such that

lim
iÑ8

pXki , Y kiq “ pX˚, Y ˚q. Then, it is easy to see from (4.15) that lim
iÑ8

Zki “ Z˚,

where Z˚ is given by (4.5). Thus, it can be shown as in (4.10) that

αpZ˚ ´X˚
pY ˚qJq ` βA˚pApZ˚q ´ bq “ 0. (4.35)
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We next show that

$

&

%

0 P BΨpX˚
q ` αpX˚

pY ˚qJ ´ Z˚qY ˚, (4.36a)

0 P BΦpY ˚q ` αpX˚
pY ˚qJ ´ Z˚qJX˚. (4.36b)

We start by showing (4.36a) in the following cases:

• Proximal & Prox-linear: in these two cases, passing to the limit along tpXki , Y kiqu

in (4.19a) or (4.19b) with Xki`1 in place of U and µ̄ki in place of µk, and invo-

king (a1) in Assumption 4.1, statements (i), (ii) and (2.1), we obtain (4.36a).

• Hierarchical-prox: in this case, passing to the limit along tpXki , Y kiqu in (4.19c)

with Xki`1 in place of U and µ̄ki in place of µk, and invoking (a1) in Assumption

4.1, statements (i), (ii) and (2.1), we have

0 P Bψipx
˚
i q ` αpX

˚
pY ˚qJ ´ Z˚qy˚i

for any i “ 1, 2, ¨ ¨ ¨ , r. Then, rearranging the above relations, we obtain

(4.36a).

Similarly, we can obtain (4.36b). Thus, combining (4.35), (4.36a) and (4.36b), we

see that pX˚, Y ˚, Z˚q is a stationary point of Θα,β, which further implies pX˚, Y ˚q is

a stationary point of F from Theorem 4.2. This proves statement (iii). l

Remark 4.6 (Comment on (a3) in Assumption 4.1). If Φ and Ψ are the in-

dicator functions of some nonempty closed sets, the results in Theorem 4.3 remain

valid under the weaker condition on α and β that 1
α
` 1

β
ą 0 with a slight modifi-

cation in (4.16) of Algorithm 2. Indeed, when Φ and Ψ are the indicator functions,

one can see from Remark 4.1 and the proofs of Lemma 4.2 and Proposition 4.3 that

if 1
α
` 1

β
ą 0, then

FpU, V q ´ FpXk, Y k
q “

´

1
α
` 1

β

¯

`

Θα,βpU, V,W q ´Θα,βpX
k, Y k, Zkq

˘

ď ´

´

1
α
` 1

β

¯´

µk´pα`2γρq}Y k}2

2
¨ }U ´Xk}2F `

σk´pα`2γρq}U}2

2
¨ }V ´ Y k}2F

¯

,
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and the line search criterion is well defined with c replaced by
´

1
α
` 1

β

¯

c. Moreover,

recalling [71, Exercise 8.14], we see that BΨ and BΦ are normal cones. Thus, follo-

wing Remark 4.2 and the similar augments in Theorem 4.3, we can obtain the same

results when 1
α
` 1

β
ą 0 with c replaced by

´

1
α
` 1

β

¯

c in (4.16) of Algorithm 2.

Remark 4.7 (Comments on updating µmax
k and σmax

k ). In Algorithm 2, we need

to evaluate µmax
k “ pα`2γρq}Y k}2`c and σmax

k “ pα`2γρq}U}2`c in each iteration.

However, computing the spectral norms of Y k and U might be costly, especially when

r is large. Hence, in our experiments, instead of computing }Y k}2 and }U}2, we

compute }Y k}2F and }U}2F , and update µmax
k and σmax

k by µmax
k “ pα` 2γρq}Y k}2F ` c

and σmax
k “ pα ` 2γρq}U}2F ` c instead. Since }Y k} ď }Y k}F and }U} ď }U}F , it

follows from (4.21) that

FpU, V q ´ FpXk, Y k
q

ď ´
µk ´ pα ` 2γρq}Y k}2F

2
¨ }U ´Xk

}
2
F ´

σk ´ pα ` 2γρq}U}2F
2

¨ }V ´ Y k
}

2
F .

Then, one can show that Proposition 4.3 and Theorem 4.3 remain valid. Additionally,

the quantities }U}2F and }Y k}2F can also be reused in the computation of the successive

changes }U ´Xk}2F and }V ´ Y k}2F to reduce the cost of line search.

Next, under the additional assumption that the objective function F in (1.4)

is a KL function with an exponent ϑ, we can discuss the local convergence rate

of Algorithm 2 with respect to the function value. To this end, we first give the

following supporting lemma.

Lemma 4.3. Suppose that Assumption 4.1 holds. Let tpXk, Y kqu be the sequence

generated by Algorithm 2. Then, there exists d1 ą 0 such that

dist
`

0, BFpXk, Y k
q
˘

ď d1

`

}Xk
´Xk´1

}F ` }Y
k
´ Y k´1

}F
˘

. (4.37)
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Proof. We first let tZku be the sequence generated by (4.15). Thus, it is easy to see

A˚pApXk
pY k

q
J
q ´ bq “

α ` β

β

`

Xk
pY k

q
J
´ Zk

˘

“ α
`

Xk
pY k

q
J
´ Zk

˘

, (4.38)

where the last equality follows from 1
α
` 1

β
“ 1. Then, we consider the subdifferential

BFpXk, Y kq.

For the partial subdifferential with respect to X or xi, we consider the following

three cases:

• Proximal: in this case, we have

BXFpXk, Y k
q

“ BΨpXk
q `A˚pApXk

pY k
q
J
q ´ bqY k

“ BΨpXk
q ` α

`

Xk
pY k

q
J
´ Zk

˘

Y k

“ BΨpXk
q ` α

`

Xk
pY k´1

q
J
´ Zk´1

˘

Y k´1
` µ̄k´1pX

k
´Xk´1

q ´ µ̄k´1pX
k
´Xk´1

q

` αpXk
pY k

q
JY k

´Xk
pY k´1

q
JY k´1

q ´ αpZkY k
´ Zk´1Y k´1

q

Q ´µ̄k´1pX
k
´Xk´1

q ` αXk
pY k

´ Y k´1
q
JY k

` αXk
pY k´1

q
J
pY k

´ Y k´1
q

´ αpZk
´ Zk´1

qY k
´ αZk´1

pY k
´ Y k´1

q,

where the second equality follows from (4.38) and the inclusion follows from

(4.19a).
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• Prox-linear: in this case, we have

BXFpXk, Y k
q

“ BΨpXk
q `A˚pApXk

pY k
q
J
q ´ bqY k

“ BΨpXk
q ` α

`

Xk
pY k

q
J
´ Zk

˘

Y k

“ BΨpXk
q ` α

`

Xk´1
pY k´1

q
J
´ Zk´1

˘

Y k´1
` µ̄k´1pX

k
´Xk´1

q ´ µ̄k´1pX
k
´Xk´1

q

` αpXk
pY k

q
JY k

´Xk´1
pY k´1

q
JY k´1

q ´ αpZkY k
´ Zk´1Y k´1

q

Q ´µ̄k´1pX
k
´Xk´1

q ` αXk
pY k

´ Y k´1
q
JY k

` αXk
pY k´1

q
J
pY k

´ Y k´1
q

` pXk
´Xk´1

qpY k´1
q
JY k´1

´ αpZk
´ Zk´1

qY k
´ αZk´1

pY k
´ Y k´1

q,

where the second equality follows from (4.38) and the inclusion follows from

(4.19b).

• Hierarchial-prox: in this case, for any i “ 1, 2, ¨ ¨ ¨ , r, we have

BxiFpXk, Y k
q

“ Bψipx
k
i q `A˚pApXk

pY k
q
J
q ´ bqyki

“ Bψipx
k
i q ` α

`

Xk
pY k

q
J
´ Zk

˘

yki

“ Bψipx
k
i q ` α

´

ři
j“1x

k
j py

k´1
j q

J
`
řr
j“i`1x

k´1
j pyk´1

j q
J
´ Zk´1

¯

yk´1
i ` µ̄k´1

`

xki ´ xk´1
i

˘

` α
ři
j“1

`

xk´1
j ´ xkj

˘

pyk´1
j q

Jyk´1
i ` α

`

Xk
pY k

q
Jyki ´X

k´1
pY k´1

q
Jyk´1

i

˘

´ α
`

Zkyki ´ Z
k´1yk´1

i

˘

´ µ̄k´1

`

xki ´ xk´1
i

˘

Q α
ři
j“1

`

xk´1
j ´ xkj

˘

pyk´1
j q

Jyk´1
i ` α

`

Xk
´Xk´1

˘

pY k
q
Jyki

` αXk´1
`

Y k
´ Y k´1

˘J
yki ` αX

k´1
pY k´1

q
J
`

yki ´ yk´1
i

˘

´ α
`

Zk
´ Zk´1

˘

yki ´ αZ
k´1

`

yki ´ yk´1
i

˘

´ µ̄k´1

`

xki ´ xk´1
i

˘

,

where the second equality follows from (4.38) and the inclusion follows from

(4.19c).
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Similarly, for the partial subdifferential with respect to Y or yi, we also consider

the following three cases:

• Proximal: in this case, we have

BYFpXk, Y k
q “ BΦpY k

q `
`

A˚pApXk
pY k

q
J
q ´ bq

˘J
Xk

“ BΦpY k
q ` α

`

Xk
pY k

q
J
´ Zk

˘J
Xk

“ BΦpY k
q ` α

`

Xk
pY k

q
J
´ Zk´1

˘J
Xk

` σ̄k´1pY
k
´ Y k´1

q

´ σ̄k´1pY
k
´ Y k´1

q ´ α
`

Zk
´ Zk´1

˘J
Xk

Q ´σ̄k´1pY
k
´ Y k´1

q ´ α
`

Zk
´ Zk´1

˘J
Xk,

where the second equality follows from (4.38) and the inclusion follows from

(4.20a).

• Prox-linear: in this case, we have

BYFpXk, Y k
q

“ BΦpY k
q `

`

A˚pApXk
pY k

q
J
q ´ bq

˘J
Xk

“ BΦpY k
q ` α

`

Xk
pY k

q
J
´ Zk

˘J
Xk

“ BΦpY k
q ` α

`

Xk
pY k´1

q
J
´ Zk´1

˘J
Xk

` σ̄k´1pY
k
´ Y k´1

q

´ σ̄k´1pY
k
´ Y k´1

q ` αpY k
´ Y k´1

qpXk
q
JXk

´ α
`

Zk
´ Zk´1

˘J
Xk

Q ´σ̄k´1pY
k
´ Y k´1

q ` αpY k
´ Y k´1

qpXk
q
JXk

´ α
`

Zk
´ Zk´1

˘J
Xk,

where the second equality follows from (4.38) and the inclusion follows from

(4.20b).
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• Hierarchial-prox: in this case, for any i “ 1, 2, ¨ ¨ ¨ , r, we have

ByiΘα,βpX
k, Y k, Zk

q

“ Bφipy
k
i q `

`

A˚pApXk
pY k

q
J
q ´ bq

˘J
xki

“ Bφipy
k
i q ` α

`

Xk
pY k

q
J
´ Zk

˘J
xki

“ Bφipy
k
i q ` α

´

ři
j“1x

k
j py

k
j q
J
`
řr
j“i`1x

k
j py

k´1
j q

J
´ Zk´1

¯J

xki ` σ̄k´1

`

yki ´ yk´1
i

˘

` α
ři
j“1

`

yk´1
j ´ ykj

˘

pxkj q
Jxki ` α

`

Y k
´ Y k´1

˘

pXk
q
Jxki

´ α
`

Zk
´ Zk´1

˘J
xki ´ σ̄k´1

`

yki ´ yk´1
i

˘

Q α
ři
j“1

`

yk´1
j ´ ykj

˘

pxkj q
Jxki ` α

`

Y k
´ Y k´1

˘

pXk
q
Jxki

´ α
`

Zk
´ Zk´1

˘J
xki ´ σ̄k´1

`

yki ´ yk´1
i

˘

,

where the second equality follows from (4.38) and the inclusion follows from

(4.20c).

Note that, for any i, we have }xki ´ xk´1
i } ď }Xk ´ Xk´1}F and }yki ´ yk´1

i } ď

}Y k ´ Y k´1}F , and moreover,

}Zk`1
´ Zk

}F ď

›

›

›

´

I ´ β
α`β
A˚A

¯

`

Xk`1
pY k`1

q
J
´Xk

pY k
q
J
˘

›

›

›

F

ď

›

›

›
I ´ β

α`β
A˚A

›

›

›
¨
›

›Xk`1
pY k`1

q
J
´Xk

pY k
q
J
›

›

F

“
?
ρ
›

›

›
Xk`1

`

Y k`1
´ Y k

˘J
`
`

Xk`1
´Xk

˘

pY k
q
J

›

›

›

F

ď
?
ρ
›

›

›
Xk`1

`

Y k`1
´ Y k

˘J
›

›

›

F
`
?
ρ
›

›

`

Xk`1
´Xk

˘

pY k
q
J
›

›

F

ď
?
ρ}Xk`1

}}Y k`1
´ Y k

}F `
?
ρ}Y k

}}Xk`1
´Xk

}F ,

where the equality follows from the definition of ρ (see (4.13)). Thus, from the above

relations and the boundednesses of tpXk, Y kqu, tµ̄ku and tσ̄ku (see statement (i) in

Theorem 4.3), we can obtain (4.37). This completes the proof. l
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Then, we discuss the convergence rate of our NAUM in the following theorem.

Theorem 4.4. Suppose that Assumption 4.1 holds and F in (1.4) is a KL function

with an exponent ϑ, i.e., F satisfies KL property with ϕpsq “ ãs1´ϑ for some ã ą 0

and ϑ P r0, 1q. Let tpXk, Y kqu8k“0 be the sequence generated by Algorithm 2. Then,

there exists a constant F˚ such that the following statements hold.

(i) If ϑ “ 0, then FpXk, Y kq ď F˚ for all large k;

(ii) If ϑ P
`

0, 1
2

‰

, then there exist % P p0, 1q and ζ ą 0 such that

FpXk, Y k
q ´ F˚ ď ζ%k

for all large k;

(iii) If ϑ P
`

1
2
, 1
˘

, then there exists ζ ą 0 such that

FpXk, Y k
q ´ F˚ ď ζ k´

1
2ϑ´1

for all large k.

Proof. We start by defining an index sequence tξptqu8t“0 as follows:

ξptq “ `ppN ` 1qtq, t “ 0, 1, 2, ¨ ¨ ¨ ,

where `pkq is defined in (4.30). Since k´N ď `pkq ď k for any k ě N , we then have

ξptq “ `ppN ` 1qtq ě pN ` 1qt ´N “ pN ` 1qpt ´ 1q ` 1 ě `ppN ` 1qpt ´ 1qq ` 1 ą

ξpt ´ 1q for any t ě 1. Thus, tξptqu8t“0 is increasing. Note that tFpXξptq, Y ξptqqu8t“0

is a subsequence of tFpX`pkq, Y `pkqqu8k“0. Then, this sequence is non-increasing and

bounded from below, and there exists a number F˚ such that

lim
tÑ8
FpXξptq, Y ξptq

q “: F˚.
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Moreover, it follows from (4.31) with k replaced by ξptq ´ 1 that

FpXξptq, Y ξptq
q

ď FpX`pξptq´1q, Y `pξptq´1q
q ´

c

2

`

}∆Xξptq´1}
2
F ` }∆Y ξptq´1}

2
F

˘

ď FpX`ppN`1qpt´1qq, Y `ppN`1qpt´1qq
q ´

c

2

`

}∆Xξptq´1}
2
F ` }∆Y ξptq´1}

2
F

˘

“ FpXξpt´1q, Y ξpt´1q
q ´

c

2

`

}∆Xξptq´1}
2
F ` }∆Y ξptq´1}

2
F

˘

,

(4.39)

where the second inequality follows from the facts that tFpX`pkq, Y `pkqqu8k“0 is non-

increasing and ξptq ´ 1 “ `ppN ` 1qtq ´ 1 ě pN ` 1qpt ´ 1q. We next consider two

cases.

Case 1: First, we suppose that FpXξpT q, Y ξpT qq “ F˚ for some T ě 0. Since the

sequence tFpXξptq, Y ξptqqu8t“0 is non-increasing, we must have FpXξptq, Y ξptqq “ F˚

for all t ě T . Then, for all k P rpN ` 1qt´N, pN ` 1qts with any t ě T , we have

FpXk, Y k
q ď FpXξptq, Y ξptq

q “ F˚.

This proves three statements.

Case 2: From now on, we consider the case where FpXξptq, Y ξptqq ą F˚ for all

t ě 0. From statement (i) in Theorem 4.3, we see that tpXξptq, Y ξptqqu8t“0 is bounded

and hence must have at least one cluster point. Let Γ denote the set of cluster

points of tpXξptq, Y ξptqqu8t“0. Then, from the facts that Ψ, Φ are continuous on their

domains ((a1) in Assumption 4.1) and the definition of F˚, it is not hard to see

FpX˚, Y ˚q ” F˚ for any pX˚, Y ˚q P Γ. This together with our assumption that F

is a KL function with ϕpsq “ as1´ϑ and Proposition 2.1 (uniformized KL property)

implies that there exist ε ą 0 and η ą 0, such that

ϕ1 pFpX, Y q ´ F˚q dist p0, BFpX, Y qq ě 1

for all pX, Y q satisfying distppX, Y q, Γq ă ε and F˚ ă FpX, Y q ă F˚ ` η. On

the other hand, since lim
tÑ8

distppXξptq, Y ξptqq, Γq “ 0 by the definition of Γ, and
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FpXξptq, Y ξptqq Ñ F˚, then for such ε and η, there exists an integer T0 ě 0 such

that distppXξptq, Y ξptqq, Γq ă ε and F˚ ă FpXξptq, Y ξptqq ă F˚ ` η for all t ě T0.

Thus, for t ě T0, we have

ϕ1
`

FpXξptq, Y ξptq
q ´ F˚

˘

dist
`

0, BFpXξptq, Y ξptq
q
˘

ě 1. (4.40)

For notational simplicity, let ∆
ξptq
F :“ FpXξptq, Y ξptqq ´ F˚. Since tFpXξptq, Y ξptqqu is

non-increasing, it is easy to see that ∆
ξptq
F is non-increasing, ∆

ξptq
F ą 0 for t ě 0 and

∆
ξptq
F Ñ 0. Then, we have that, for all t ě T0,

1 ď ϕ1
´

∆
ξptq
F

¯

dist
`

0, BFpXξptq, Y ξptq
q
˘

ď
a

1´ ϑ
¨

´

∆
ξptq
F

¯´ϑ

¨ d1 p}∆Xξptq´1}F ` }∆Y ξptq´1}F q

ď
ad1

1´ ϑ
¨

´

∆
ξptq
F

¯´ϑ

¨

b

2 p}∆Xξptq´1}2F ` }∆Y ξptq´1}2F q

ď
ad1

1´ ϑ
¨

´

∆
ξptq
F

¯´ϑ

¨

c

4

c

`

FpXξpt´1q, Y ξpt´1qq ´ FpXξptq, Y ξptqq
˘

“ d2

´

∆
ξptq
F

¯´ϑ

¨

b

∆
ξpt´1q
F ´∆

ξptq
F ,

(4.41)

where d2 :“ 2ad1
p1´ϑq

?
c
ą 0, the first inequality follows from (4.40), the second inequality

follows from (4.37), the third inequality follows from p`q ď
a

2pp2 ` q2q for p, q ě 0

and the last inequality follows from (4.39). In the following, we consider three cases.

(i): ϑ “ 0. In this case, we see from (4.41) that ∆
ξpt´1q
F ´∆

ξptq
F ě 1

d22
for all t ě T0,

which contradicts ∆
ξptq
F Ñ 0. Thus, Case 2 cannot happen.

(ii): 0 ă ϑ ď 1
2
. In this case, we have 0 ă 2ϑ ď 1. Since ∆

ξptq
F Ñ 0, there exists

T2 ě 0 such that ∆
ξptq
F ď 1 for all t ě rT :“ maxtT0, T2u. Then, for all t ě rT , we see

from (4.41) that

∆
ξptq
F ď

´

∆
ξptq
F

¯2ϑ

ď d2
2

´

∆
ξpt´1q
F ´∆

ξptq
F

¯

,
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which implies that

∆
ξptq
F ď %̃∆

ξpt´1q
F ď ¨ ¨ ¨ ď %̃t´

rT`1 ∆
ξp rT´1q
F ,

where %̃ :“
d22

1`d22
ă 1. Then, for all k P rpN ` 1qt´N, pN ` 1qts with any t ě rT , we

have

FpXk, Y k
q ´ F˚ ď ∆

ξptq
F ď %̃t´

rT`1 ∆
ξp rT´1q
F ď %̃

k
N`1

´ rT`1 ∆
ξp rT´1q
F “ ζ%k,

where ζ :“ %̃´
rT`1 ∆

ξp rT´1q
F and % :“ %̃

1
N`1 ă 1, the last inequality follows from

t ě k
N`1

. This proves statement (ii).

(iii): 1
2
ă ϑ ă 1. We define fpsq :“ s´2ϑ for s P p0, 8q. It is easy to see that f

is non-increasing. Then, for any t ě T0, we further consider the following two cases.

• If fp∆
ξptq
F q ď 2fp∆

ξpt´1q
F q, it follows from (4.41) that

1{d2
2 ď p∆

ξptq
F q

´2ϑ
¨ p∆

ξpt´1q
F ´∆

ξptq
F q “ fp∆

ξptq
F q ¨ p∆

ξpt´1q
F ´∆

ξptq
F q

ď 2fp∆
ξpt´1q
F q ¨ p∆

ξpt´1q
F ´∆

ξptq
F q ď 2

ż ∆
ξpt´1q
F

∆
ξptq
F

fpsq ds

“
2p∆

ξpt´1q
F q1´2ϑ ´ 2p∆

ξptq
F q1´2ϑ

1´ 2ϑ
“

2p∆
ξptq
F q1´2ϑ ´ 2p∆

ξpt´1q
F q1´2ϑ

2ϑ´ 1
,

which, together with 2ϑ´ 1 ą 0, implies that

p∆
ξptq
F q

1´2ϑ
´ p∆

ξpt´1q
F q

1´2ϑ
ě p2ϑ´ 1q{p2d2

2q. (4.42)

• If fp∆
ξptq
F q ě 2fp∆

ξpt´1q
F q, it is not hard to see that p∆

ξptq
F q1´2ϑ ě 2

2ϑ´1
2ϑ p∆

ξpt´1q
F q1´2ϑ.

Then, we have

p∆
ξptq
F q

1´2ϑ
´ p∆

ξpt´1q
F q

1´2ϑ
ě p2

2ϑ´1
2ϑ ´ 1qp∆

ξpt´1q
F q

1´2ϑ

ě p2
2ϑ´1
2ϑ ´ 1qp∆

ξpT0´1q
F q

1´2ϑ,

(4.43)
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where the last inequality follows from the facts that ∆
ξptq
F is non-increasing and

1´ 2ϑ ă 0.

Thus, combining (4.42) and (4.43), we obtain

p∆
ξptq
F q

1´2ϑ
´ p∆

ξpt´1q
F q

1´2ϑ
ě d3 :“ min

!

p2ϑ´ 1q{p2d2
2q, p2

2ϑ´1
2ϑ ´ 1qp∆

ξpT0´1q
F q

1´2ϑ
)

.

Then, we have

p∆
ξptq
F q

1´2ϑ
ě p∆

ξptq
F q

1´2ϑ
´ p∆

ξpT0q
F q

1´2ϑ
“
řt
j“T0`1

´

p∆
ξpjq
F q

1´2ϑ
´ p∆

ξpj´1q
F q

1´2ϑ
¯

ě pt´ T0qd3 ě
d3

2
t,

where the last inequality holds for t ě 2T0. This implies that ∆
ξptq
F ď d4 t

´ 1
2ϑ´1 ,

where d4 :“
`

d3
2

˘´ 1
2ϑ´1 . Then, for all k P rpN ` 1qt´N, pN ` 1qts with any t ě 2T0,

we have

FpXk, Y k
q ´ F˚ ď ∆

ξptq
F ď d4 t

´ 1
2ϑ´1 ď ζ k´

1
2ϑ´1 ,

where ζ :“ pN ` 1q
1

2ϑ´1d4 and the last inequality follows from t ě k
N`1

. This proves

statement (iii). l

4.4 Numerical experiments

In this section, we conduct numerical experiments to test our algorithm for NMF

and MC on real datasets. All experiments are run in MATLAB R2015b on a 64-bit

PC with an Intel Core i7-4790 CPU (3.60 GHz) and 32 GB of RAM equipped with

Windows 10 OS.
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4.4.1 Non-negative matrix factorization

As we mentioned in the introduction, NMF is a very important problem in many

applications. The basic model for NMF is

min
X,Y

1

2

›

›XY J ´M
›

›

2

F
s.t. X ě 0, Y ě 0, (4.44)

where X P Rmˆr and Y P Rnˆr are decision variables. Note that the feasible set of

(4.44) is unbounded. We hence focus on the following model:

min
X,Y

1

2

›

›XY J ´M
›

›

2

F
s.t. 0 ď X ď Xmax, 0 ď Y ď Y max, (4.45)

where Xmax ě 0 and Y max ě 0 are upper bound matrices. One can show that, when

Xmax
ij and Y max

ij are sufficiently large, solving (4.45) gives a solution of (4.44). In our

experiments, we set Xmax
ij “ 1016 and Y max

ij “ 1016 for all pi, jq. Now, we see that

(4.45) corresponds to (1.4) with ΨpXq “ δX pXq, ΦpY q “ δYpY q and A “ I, where

X “ tX P Rmˆr : 0 ď X ď Xmaxu and Y “ tY P Rnˆr : 0 ď Y ď Y maxu. We

apply NAUM to solving (4.45), and use (4.11c) and (4.12c) to update U and V . The

specific updates of Zk, ui and vi are

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Zk
“

α

α ` β
Xk
pY k

q
J
`

β

α ` β
M,

ui “ max

"

0, min

"

xmax
i ,

αP k
i y

k
i ` µkx

k
i

α}yki }
2 ` µk

**

, i “ 1, 2 ¨ ¨ ¨ , r,

vi “ max

"

0, min

"

ymax
i ,

αpQk
i q
Jui ` σky

k
i

α}ui}2 ` σk

**

, i “ 1, 2 ¨ ¨ ¨ , r,

where P k
i and Qk

i are defined in (4.18). Note that here it is not necessary to update

Zk explicitly. Indeed, we can directly compute P k
i y

k
i and pQk

i q
Jui by substituting

— 102 —



PhD Thesis CHAPTER 4. NAUM

Zk as below:

$

&

%

P k
i y

k
i “

α
α`β

Xk
pY k

q
Jyki `

β
α`β

Myki ´
ři´1
j“1ujpy

k
j q
Jyki ´

řr
j“i`1x

k
j py

k
j q
Jyki ,

pQk
i q
Jui “

α
α`β

Y k
pXk

q
Jui `

β
α`β

MJui ´
ři´1
j“1vju

J
j ui ´

řr
j“i`1y

k
ju

J
j ui.

(4.46)

When computing XkpY kqJyki and Y kpXkqJui in the above, we first compute pY kqJyki

and pXkqJui to avoid forming the huge (m ˆ n) matrix XkpY kqJ. This technique

is also used in many popular algorithms for NMF to reduce the computational cost

(see, for example, [4, 29, 30, 47, 86]).

We will compare NAUM with some recent algorithms1 for NMF: the hierarchical

alternating least squares (HALS) method2 (see, for example, [19, 29, 30, 32, 53, 58])

and the block coordinate descent method for NMF (BCD-NMF3) (see Algorithm 2

in Section 3.2 in [91]). It shall be mentioned that there are two classical methods

for NMF: the multiplicative updating (MU) method [47] and the alternating least

squares (ALS) method [4], which can be called simply by the Matlab function nnmf4

with options mult and als, respectively. However, as observed in [29, 30, 32, 91,

95] and our experiments, the performances of mult and als are not competitive.

Additionally, it has been reported in [91] that BCD-NMF outperforms ADMM in

both CPU time and solution quality. Therefore, we do not include MU, ALS and

1 Most existing algorithms are directly developed for (4.44). However, they need the assumption
that the sequence generated is bounded in their convergence analysis. Although this assumption
is uncheckable and may fail, these algorithms always work well in practice. Thus, we directly use
these algorithms in our comparisons, rather than modifying them for (4.45).

2 HALS for (4.44) is given by

$

’

’

’

’

&

’

’

’

’

%

xk`1
i “ max

#

0,
Myk

i ´
ři´1

j“1x
k`1
j pyk

j q
Jyk

i ´
řr

j“i`1x
k
j py

k
j q
Jyk

i

}yk
i }

2

+

, i “ 1, ¨ ¨ ¨ , r,

yk`1
i “ max

#

0,
MJxk`1

i ´
ři´1

j“1y
k`1
j pxk`1

j qJxk`1
i ´

řr
j“i`1y

k
j px

k`1
j qJxk`1

i

}xk`1
i }2

+

, i “ 1, ¨ ¨ ¨ , r.

3 The Matlab codes for BCD-NMF is available at http://www.math.ucla.edu/~wotaoyin/

papers/bcu/nmf/index.html.

4 The nnmf function is a part of the Statistics and Machine Learning Toolbox for Matlab.
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ADMM in our comparisons.

To evaluate the performances of different algorithms, we follow [32] to use an

evolution of the objective function value. To define this evolution, we first define

epkq :“
Fk ´ Fmin

F0 ´ Fmin

,

where Fk denotes the objective function value obtained by an algorithm at pXk, Y kq

and Fmin denotes the minimum of the objective function values obtained among all

algorithms across all initializations. We also use T pkq to denote the total compu-

tational time after completing the k-th iteration of an algorithm. Thus, T p0q “ 0

and T pkq is non-decreasing with respect to k. Then, the evolution of the objective

function value obtained from a particular algorithm with respect to time t is defined

as

Eptq :“ min tepkq : k P ti : T piq ď tuu .

One can see that 0 ď Eptq ď 1 (since 0 ď epkq ď 1 for all k) and Eptq is non-

increasing with respect to t. The Eptq can be considered as a normalized measure of

the reduction of the objective function value with respect to time. For a given matrix

M and a positive integer r, one can take the average of Eptq over several independent

trials with different initializations, and plot the average Eptq within time t for a given

algorithm.

The experiments are conducted on face datasets (dense matrices) and text data-

sets (sparse matrices). For face datasets, we use CBCL5, ORL6 [72] and the extended

Yale Face Database B (e-YaleB)7 [48] for our test. CBCL contains 2429 images of

5 Available in http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.

6 Available in http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

7 Available in http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html. Both ori-
ginal images and cropped images are provided in this dataset. The cropped images except 18
corrupted ones are used in our experiments.
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faces with 19ˆ19 pixels, ORL contains 400 images of faces with 112ˆ92 pixels, and

e-YaleB contains 2414 images of faces with 168ˆ 192 pixels. In our experiments, for

each face dataset, each image is vectorized and stacked as a column of a data matrix

M of size mˆn. For text datasets, we use three datasets from the CLUTO toolkit8.

The specific values of m and n for each dataset and the values of r used for our tests

are summarized in Table 4.1.

Table 4.1: Real data sets

Face Datasets (dense matrices) Text Datasets (sparse matrices)
Data Pixels m n r Data Sparsity m n r

CBCL 19ˆ 19 361 2429 30, 60 classic 99.92% 7094 41681 10, 20
ORL 112ˆ 92 10304 400 30, 60 sports 99.14% 8580 14870 10, 20
e-YaleB 168ˆ 192 32256 2414 30, 60 ohscal 99.47% 11162 11465 10, 20

In our experiments, we initialize all the algorithms at the same random initial

point pX0, Y 0q, generated by the following Matlab commands:

X0 = max(0,randn(m,r)); X0 = X0/norm(X0,’fro’)*sqrt(norm(M,’fro’));

Y0 = max(0,randn(n,r)); Y0 = Y0/norm(Y0,’fro’)*sqrt(norm(M,’fro’));

and set the maximum running time to Tmax for all algorithms. The specific values

of Tmax are given in Fig. 4.1 and Fig. 4.2. Additionally, we use the default settings

for BCD-NMF. For NAUM, we set µmin “ µ̄´1 “ 1, σmin “ σ̄´1 “ 1, σmax “ 106,

τ “ 4, c “ 10´4, N “ 3, and we choose µ0
k “ max

 

0.1µ̄k´1, µ
min

(

and σ0
k “

min
 

max
 

0.1σ̄k´1, σ
min

(

, σmax
(

for any k ě 0. Moreover, we set β “ α
α´1

, γ “

maxt0, ´α, ´pα ` βqu and ρ “ max t1, α2{pα ` βq2u for some α. We then test

NAUM9 with α “ 0.6, 0.8, 1.1, 2, compare them to HALS and BCD-NMF, and plot

the average Eptq for each algorithm within time Tmax.

8 CLUTO: A clustering toolkit that is available in http://glaros.dtc.umn.edu/gkhome/cluto/

cluto/download.

9 We observed from our experiments for NMF that NAUM with α ă 0.6 is not competitive. Thus,
we do not choose α ă 0.6 in our comparisons.
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Fig. 4.1 and Fig. 4.2 show the average Eptq of 30 independent trials for NMF

on face datasets and text datasets, respectively. From the results, we can see that

NAUM with α “ 0.6 performs best in most cases, and NAUM with α ă 1 always

performs better than NAUM with α ą 1. This shows that choosing α and β under

the weaker condition 1
α
` 1

β
“ 1 (hence α can be small than 1) can improve the

numerical performance of NAUM.

4.4.2 Matrix completion

We next apply our NAUM to a recent model for MC:

min
X,Y

η

2
}X}˚ `

η

2
}Y }˚ `

1

2

›

›PΩpXY
J
´Mq

›

›

2

F
, (4.48)

where η ą 0 is a penalty parameter, Ω is the index set of the known entries of M ,

and PΩpZq keeps the entries of Z in Ω and sets the remaining ones to zero. This

model was first considered in [73, 74] and was shown to be equivalent to Schatten-1
2

quasi-norm minimization. Encouraging numerical performance of this model has also

been reported in [73, 74]. Note that (4.48) corresponds to (1.4) with ΨpXq “ η
2
}X}˚,

ΦpY q “ η
2
}Y }˚ and A “ PΩ. Thus, we can apply NAUM with (4.11b) and (4.12b)

to solving (4.48). The updates of Zk, U and V are

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Zk
“ Xk

pY k
q
J
`

β

α ` β
PΩ

`

M ´Xk
pY k

q
J
˘

,

U “ Sη{p2µkq
ˆ

Xk
´

α

µk
pXk

pY k
q
J
´ Zk

qY k

˙

,

V “ Sη{p2σkq
ˆ

Y k
´
α

σk
pUpY k

q
J
´ Zk

q
JU

˙

.
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Substituting Zk into U and V and using 1
α
` 1

β
“ 1 gives

$

’

’

’

’

&

’

’

’

’

%

U “ Sη{p2µkq
ˆ

Xk
´

1

µk

“

PΩpX
k
pY k

q
J
´Mq

‰

Y k

˙

,

V “ Sη{p2σkq
ˆ

Y k
´
α

σk
Y k
pU ´Xk

q
JU ´

1

σk

“

PΩpX
k
pY k

q
J
´Mq

‰J
U

˙

.

(4.49)

Thus, similar to NAUM for NMF, we do not need to update Zk explicitly for MC.

We compare NAUM with the proximal alternating linearized minimization (PALM),

which was proposed in [8] and was used to solve (4.48) in [73, 74]. For ease of future

reference, we recall that the PALM for solving (4.48) is given by

$

’

’

’

’

&

’

’

’

’

%

Xk`1
“ S η

2}Y k}2

ˆ

Xk
´

1

}Y k}2

“

PΩpX
k
pY k

q
J
´Mq

‰

Y k

˙

,

Y k`1
“ S η

2}Xk`1}2

ˆ

Y k
´

1

}Xk`1}2

“

PΩpX
k`1
pY k

q
J
´Mq

‰J
Xk`1

˙

.

For NAUM, we use the same parameter settings as in Section 4.4.1, but choose

α “ 0.4, 0.6, 1.1. All the algorithms are initialized at the same random initialization

pX0, Y 0q generated by the following Matlab commands:

X0 = randn(m, r); Y0 = randn(n, r);

and terminated if one of the following stopping criteria is satisfied:

• |Fk´Fk´1|

Fk`1
ď 10´4 holds for 3 consecutive iterations;

• }Xk´Xk´1}F`}Y
k´Y k´1}F

}Xk}F`}Y k}F`1
ď 10´4 holds;

• the running time is more than 300 seconds,

where Fk :“ η
2
}Xk}˚ `

η
2
}Y k}˚ `

1
2

›

›PΩpX
kpY kqJ ´Mq

›

›

2

F
denotes the objective

function value obtained by each algorithm at pXk, Y kq.
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Table 4.2 presents the numerical results of different algorithms for different pro-

blems, where two face datasets (CBCL and ORL) are used as our test matrices M

and a subset Ω of entries is sampled uniformly at random. In the table, sr denotes

the sampling ratio, i.e., a subset Ω of (rounded) mn ˚sr entries is sampled; r denotes

the rank used for test; “iter” denotes the number of iterations; “Normalized fval”10

denotes the normalized function value FpX˚, Y ˚q´Fmin

Fmax´Fmin
, where pX˚, Y ˚q is obtained

by each algorithm, FpX˚, Y ˚q is the function value at pX˚, Y ˚q for each algorithm

and Fmax (resp. Fmin) denotes the maximum (resp. minimum) of the terminating

function values obtained from all algorithms in a trial (one random initialization

and Ω); “RecErr” denotes the recovery error }X˚pY ˚qJ´M}F
}M}F

. All the results presented

are the average of 10 independent trials. Additionally, in each case, the smallest

normalized function value, the least CPU time and the smallest recovery error are

in bold.

From Table 4.2, we can see that NAUM with α “ 0.4 gives the smallest function

values and the smallest recovery error within least CPU time in most cases. Moreover,

NAUM with α “ 0.6 also performs better than NAUM with α “ 1.1 and PALM with

respect to the function value and the recovery error in most cases. This again shows

that a flexible choice of α and β can lead to better numerical performances and the

choice of α “ 0.4 performs best for MC from our experiments.

10 This measure is used to distinguish the function values obtained by different algorithms and it
varies between 0 and 1. In a trial, for each algorithm, the smaller the “Normalized fval” value, the
better the quality of solution obtained by this algorithm. “0” means that this algorithm attains
the smallest function value among all algorithms in this trial.
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Figure 4.1: Average Eptq of 30 independent trials for NMF on face datasets.
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Figure 4.2: Average Eptq of 30 independent trials for NMF on text datasets.
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Table 4.2: Numerical results for MC on face datasets

η data sr r α “ 0.4 α “ 0.6 α “ 1.1 PALM α “ 0.4 α “ 0.6 α “ 1.1 PALM

iter Normalized fval

5

CBCL

0.5 30 780 1189 3320 3306 1.13e-01 7.50e-02 4.52e-01 1
0.5 60 921 1218 3850 4654 3.24e-02 5.10e-02 3.85e-01 1
0.2 30 1174 2366 4767 3573 8.01e-03 2.21e-01 6.87e-01 9.60e-01
0.2 60 1577 1919 5360 5037 1.03e-02 8.95e-02 8.08e-01 8.86e-01

ORL

0.5 30 1218 1243 1241 1468 0 2.94e-01 5.06e-01 1
0.5 60 1049 1051 1051 1327 0 1 4.00e-01 7.73e-01
0.2 30 2074 325 385 2691 2.59e-03 7.01e-01 1 1.31e-01
0.2 60 1551 1551 356 2222 0 3.82e-01 1 2.12e-01

10

CBCL

0.5 30 457 654 1793 1935 2.20e-02 1.29e-01 3.60e-01 9.81e-01
0.5 60 514 594 1950 2559 2.65e-01 1.15e-01 3.79e-01 8.71e-01
0.2 30 627 1313 2513 2116 1.91e-02 3.75e-02 8.35e-01 7.79e-01
0.2 60 866 1095 2713 2889 2.07e-02 2.89e-02 9.22e-01 4.86e-01

ORL

0.5 30 1003 1186 1192 1402 3.30e-02 1.47e-01 4.30e-01 1
0.5 60 975 1009 1012 1276 0 8.58e-01 6.11e-01 9.99e-01
0.2 30 1409 364 411 2646 0 7.16e-01 1 8.10e-02
0.2 60 1241 1504 376 2185 4.05e-06 3.97e-02 1 2.21e-01

CPU time RecErr

5

CBCL

0.5 30 35.56 54.14 151.23 119.05 1.05e-01 1.05e-01 1.06e-01 1.08e-01
0.5 60 57.66 76.09 240.19 206.47 8.81e-02 9.02e-02 9.04e-02 8.99e-02
0.2 30 34.04 68.57 137.97 75.56 1.37e-01 1.37e-01 1.38e-01 1.43e-01
0.2 60 72.01 87.82 245.21 147.08 1.34e-01 1.35e-01 1.35e-01 1.36e-01

ORL

0.5 30 294.20 300 300 300 1.72e-01 1.84e-01 2.01e-01 2.12e-01
0.5 60 300 300 300 300 1.66e-01 2.11e-01 2.05e-01 2.11e-01
0.2 30 300 47.35 55.86 300 2.08e-01 3.04e-01 3.81e-01 2.24e-01
0.2 60 300 300 69.21 300 2.16e-01 2.35e-01 3.49e-01 2.61e-01

10

CBCL

0.5 30 21.01 30.12 82.45 70.32 1.16e-01 1.19e-01 1.18e-01 1.17e-01
0.5 60 32.40 37.38 122.51 113.80 1.09e-01 1.11e-01 1.14e-01 1.11e-01
0.2 30 18.15 38.01 72.84 44.62 1.60e-01 1.61e-01 1.62e-01 1.60e-01
0.2 60 39.13 49.37 123.74 83.52 1.57e-01 1.57e-01 1.58e-01 1.56e-01

ORL

0.5 30 252.15 300 300 300 1.71e-01 1.77e-01 1.95e-01 2.08e-01
0.5 60 289.57 300 300 300 1.53e-01 2.01e-01 2.03e-01 2.09e-01
0.2 30 207.22 53.08 60.54 300 1.95e-01 3.06e-01 3.83e-01 2.14e-01
0.2 60 243.45 295.60 74.09 300 1.87e-01 1.95e-01 3.60e-01 2.36e-01
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Chapter 5

Concluding Remarks

In this chapter, we summarize our main results in this thesis and give some possible

directions for the further research.

5.1 Summary

In this thesis, we have considered two classes of matrix optimization problems, which

arise in many applications, and developed two efficient algorithms to solve them,

respectively.

We first study the matrix decomposition problem (MDP), which aims to decom-

pose a given data matrix D P Rmˆn into two components L P Rmˆn and S P Rmˆn

with different desirable structures such that D « L`S, and adapt the ADMM with

a general dual step-size τ , which can be chosen in p0, 1`
?

5
2
q, to solve it. Theoreti-

cally, we establish that any cluster point of the sequence generated by our ADMM

with a non-trivial dual step-size gives a stationary point under some assumptions;

we also give simple sufficient conditions for these assumptions. Under an additional

assumption that a potential function is a Kurdyka- Lojasiewicz function, we can furt-

her establish the global convergence of the whole sequence generated by our ADMM.

Numerically, we conduct some experiments for background/foreground extraction

and show the efficiency of our algorithm.
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We next study the matrix factorization problem (MFP), which aims to factorize

a given data matrix M P Rmˆn into two factors X P Rmˆr and Y P Rnˆr with

different desirable structures such that M « XY J, where r ď mintm, nu. To

sovle MFP, we introduce a specially constructed potential function Θα,β defined

in (1.5) which contains one auxiliary block of variables. We then develop a non-

monotone alternating updating method with a suitable line search criterion based

on this potential function. Unlike other existing methods such as those based on

alternating minimization, our method essentially updates the two blocks of variables

alternately by solving subproblems related to Θα,β and then updates the auxiliary

block of variables by an explicit formula (see (4.15)). Using the special structure of

Θα,β, we demonstrate how some efficient computational strategies for NMF can be

used to solve the associated subproblems in our method. Moreover, under some mild

conditions, we establish that the sequence generated by our method is bounded and

any cluster point of the sequence gives a stationary point of our problem. We also

discuss the convergence rate for the function value under an additional assumption

that the objective is a Kurdyka- Lojasiewicz function. Finally, we conduct some

numerical experiments for NMF and MC on real datasets to illustrate the efficiency

of our method.

5.2 Future research

Studying MDP and MFP in this thesis is just a start for us to study the first-

order splitting methods for the nonconvex, nonsmooth and non-Lipschitz problems.

We believe that this topic can be interesting and promising, although it is still

challenging. Some possible future works closely related to this thesis are presented

as follows.

• Our ADMM may not be beneficial when B or C has no special structure, because
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the corresponding subproblems of ADMM may not have closed-form solutions.

Nonetheless, as in [49, 83, 84], it may be possible to add “proximal terms”

to simplify the subproblems of our ADMM and lead to some more efficient

variants of ADMM. In addition, in view of the recent work [85], it may also be

possible to study the convergence of our ADMM for some specially structured

nonconvex Ψ.

• The special potential function given in (1.5) for our NAUM is used to separate

the coupled variables XY J from the linear map A. This technique may be

possibly used for other kinds of problems. Indeed, for our MDP (see (1.1)), it

is possible to consider the following potential function:

Θ̃α,βpL, S, Zq :“ ΨpLq ` ΦpSq `
α

2
}BpLq ` CpSq ´ Z}2F `

β

2
}D ´ApZq}2F ,

where α and β are real numbers. It is conceivable that Θ̃α,β is closely related

to (1.1). Thus, we may derive a new efficient method for (1.1) based on Θ̃α,β

under some conditions.

• Our NAUM may be restricted to the condition AA˚ “ I, which is mainly

used to construct our potential function. Thus, for the more general liner

map A in (1.4), we may consider using our ADMM discussed in Chapter 3

to solve (1.4). As we mentioned in Section 1.2, the known conditions that

guarantee convergence of the ADMM presented in [22, 92, 95] for NMF are

too restrictive. Therefore, it may be interesting to study the ADMM with

convergence guarantee for solving problems of the form (1.4).

• Although we consider MDP and MFP separately in this thesis, these two classes

of problems have some connections. Note that the matrix L considered in (1.1)

is always supposed to have low rank. Thus, it is possible to consider (1.1)
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incorporated with low-rank matrix factorization, i.e., consider the following

problem:

min
X,Y,S

Ψ1pXq `Ψ2pY q ` ΦpSq `
1

2

›

›D ´A
“

BpXY Jq ` CpSq
‰
›

›

2

F
,

where X P Rmˆr, Y P Rnˆr and S P Rmˆn are decision variables with r ď

mintm, nu; Ψ1 : Rmˆr Ñ RYt8u, Ψ2 : Rnˆr Ñ RYt8u and Φ : Rmˆn Ñ RY

t8u are proper closed functions; A,B, C : Rmˆn Ñ Rmˆn are linear maps. This

model also arises in applications such as robust principal component analysis

[76]. Thus, it is also a possible future research direction.
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