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Abstract

The dissertation is concerned with the multi-layer porous wall model which is pro-

posed to simulate the drug transfer mechanism in the arterial wall when treat with

the cardiovascular diseases. It is an interface problem with two types of interface

points: the imperfect contact interface point at the first layer and the rough coef-

ficient interface points at other layers. We firstly consider the linear and quadratic

immersed finite element (IFE) methods to solve the steady-state problem. Then, we

investigate fundamental properties of these IFE spaces. Through interpolation error

analysis, we prove that these IFE spaces have optimal approximation capabilities.

In addition, we get the optimal convergence rate by using both linear and quadratic

IFE methods to solve the multi-layer porous wall model.

Furthermore, we analyze the long time stability and the asymptotic behavior of

the IFE method for the multi-layer porous wall model for the drug-eluting stents

(DES). With the help of the IFE methods for the spatial descretization, and the im-

plicit Euler scheme for the temporal discretization, respectively, we deduce the global

stability of fully discrete solution. Then, we investigate the asymptotic behavior of

the discrete scheme which reveals that the multi-layer porous wall model converges

to the corresponding elliptic equation if the body force approaches to a steady-state.

In addition, we use these IFE spaces to solve the unsteady problem. We prove

that the backward Euler scheme has the optimal convergence rate in both the L2 and

H1 norms. We also do some numerical experiments to verify the theoretical results.
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In the last part, some conclusions and future work plans are given.
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Chapter 1

Introduction

In this chapter, we start with the introduction to the multi-layer porous wall model

for the drug-eluting stents (DES). It is one of the most complete models to simulate

the drug release mechanism from the coating of the stents to the arterial wall when

treat with the cardiovascular diseases. Next, we provide a brief survey of numerical

methods for the interface problems and a short review of the recently developed

immersed finite element (IFE) methods.

1.1 Multi-layer Porous Wall Model for the Drug-

eluting Stents

It is known that coronary heart disease is one of the main cause of death in developed

countries [49] and accounts for 18% of all deaths in the United States annually

according to report from the American Heart Association [58]. The blockage or

occlusion of one or more of the arteries which supply blood to the heart muscle is the

characteristic of the coronary heart disease. The reason is atherosclerosis, a complex

progressive inflammatory disease [34], which leads to the buildup of fatty plaque

material near the inner surface of the arterial wall [45]. This leads to episodes of

chest pain if left it untreated. Ultimately, the atherosclerotic plaque is vulnerable to

rupture, leading to the formation of a blood clot which blocks the artery, causing a
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heart attack.

Until relatively recent years, bypass surgery was required to treat with this kind

of heart disease. Afterwards, the bypass surgery has been replaced by inserting a

small metallic mesh devices, called a stent, into the occluded artery to maintain

blood flow acting as a supporting scaffold. However, when a stent is implanted

into an artery, the endothelium is severely damaged. The consequent inflammatory

response, excessive proliferation and migration of smooth muscle cells lead to the

development of in-stent restenosis, a reocclusion of the artery, which is a significant

limitation of the bare metal stents [47]. Then, the introduction of DES significantly

reduced the occurrence of in-stent restenosis by releasing a drug to inhibit smooth

muscle cell proliferation, see Figure 1.1. In part of A, we see the deflated balloon

catheter inserted into the narrowed coronary artery. In part of B, the balloon is

inflated, compressing the plaque and restoring the size of the artery. Finally, part C

shows the widened artery. Such a drug, released in a controlled manner through a

permeable membrane, is aimed at preventing a possible restenosis by virtue of its anti-

proliferative action against smooth muscle cells. The DES which have revolutionized

the treatment of coronary heart disease consists of a tubular wire mesh coated with

a thin layer of biocompatible polymeric gel containing a therapeutic drug. Although

a number of animal experiments are recommended for preclinical safety and efficacy

evaluation of these devices [56], incomplete understanding of the factors governing

drug release and distribution following stenting currently limits the optimization of

such drug release profiles.

In order to understand the drug release mechanism from the coating of the stents

to the arteries, and enhance control of the rate of drug delivery, we focus on the

multi-layer porous wall model for the DES, which is proposed to simulate the drug

transfer in the arterial wall when treat with the cardiovascular diseases in this dis-

sertation. Mathematical models and numerical simulations play an important role in
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understanding the mass transfer mechanism. In the last years, a number of mathe-

matical models [29, 46, 48, 50, 52, 57, 64] are proposed to simulate the drug transfer

process in this kind of mass release from DES through the arterial wall. Most of

these studies disregarded the complex multi-layered structure of the wall and con-

sidered a homogeneous porous material with averaged properties for simplicity. As

is well known that the arterial wall is a porous heterogeneous structure, consisting of

a sequence of adjacent layers with different structural and chemical properties [25],

such as, the three distinct layers model (the intima, the media, and the adventitia)

is introduced in [60], a four layers( ehdothelium, intima, internal elastic lamina and

media) model is proposed in [24, 61], and so on. Each layer is treated as a macroscop-

ically homogeneous medium with its own diffusive property and continuity of mass

flux between any two adjacent layers is imposed. It is believed that a better mod-

eling of the wall structure brings us a more effective description of the drug release

from a DES. One of these complete wall models is the multi-layer wall model that

takes into account the heterogeneous properties of the different layers constituting

the arterial wall. Although the complex geometry of the stents would require the use

of three-dimensional (3D) models, nevertheless most of the mass dynamics mainly

occurs along the direction normal to the stents coating (see Figure 1.2) and the easier

handling of the geometry allows a systematic analysis on a wild range of parameters

which leads to the explicit of the governing equations. G. Pontrelli and F. Monte

proposed a simplified 1D multi-layer porous wall model in [51], see the illustration

in Figure. 1.3, which is a large version of the part surrounded by the blue lines in

Figure 1.2. Let us briefly review this model firstly. Without loss of generality, let us

consider a set of intervals [αi−1, αi], i = 0, 1, 2, . . . , n having thickness li = αi−αi−1

modeling the coating and the arterial wall, see Figure. 1.3. Therefore, considered

the complex multi-layer structure of the wall, the multi-layer porous wall model is

3



Figure 1.1: A drug-eluting stent im-
planted in a stenotic artery [46]. (Credit:
US National Heart Lung and Blood in-
stitute)

l

1

l

2

l

n

l

0

ST

Figure 1.2: The cross-section of the drug-
eluting stent implanted in a artery.

α-1 α0 α1 α2 αi αn x

l0 l1 l2 li lnST

Figure 1.3: A sketch of the layered wall. ST indicates the metallic stent strut bearing
the polymeric coating ([α−1, α0]), while the continuous wall layers are defined by
[αi−1, αi], i = 1, 2, . . . , n. This illustration is based on [51].
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governed by the following interface initial-boundary value problem [51]:



∂u

∂t
+

∂

∂x
(−D∂u

∂x
+ 2δu) + βu = f, x ∈ (α−1, αn), t > 0,

−D0
∂u

∂x
= 0, x = α−1, t > 0,

u(x, 0) = u0, x ∈ (α−1, α0),

u(x, 0) = 0, x ∈ (αi−1, αi), i = 1, 2, ...n,

u(αn, t) = 0, t > 0,

(1.1)

where, D(x), δ(x), β(x) and f(x, t) are functions on (α−1, αn) such that



D(x) = Di, when x ∈ (αi−1, αi), 0 ≤ i ≤ n, t > 0,

δ(x) = δi, when x ∈ (αi−1, αi), 0 ≤ i ≤ n, δ0 = 0, t > 0,

β(x) = βi, when x ∈ (αi−1, αi), 0 ≤ i ≤ n, β0 = 0, t > 0,

f(x, t) = fi(x, t), when x ∈ (αi−1, αi), 0 ≤ i ≤ n, t > 0,

(1.2)

with Di the drug diffusivity. δi and βi denote for a constant characteristic convection

parameter and drug reaction coefficient in [αi−1, αi], i = 1, 2, . . . , n, respectively. We

also assume that Di > 0 for 0 ≤ i ≤ n and δi, βi > 0 for 1 ≤ i ≤ n. At the

initial time (t = 0), the drug is contained only in the coating and it is distributed

with maximum concentration u0 and, subsequently, released into the arterial wall.

Here, and throughout this paper, a mass volume-averaged concentration u(x, t) is

considered. We know that the metallic strut is impermeable to the drug, so there

is no mass flux passes through the boundary surface at x = α−1. Therefore, a zero-

flux condition is normally imposed and the initial drug concentration is taken to be

uniform. In the outmost n-th layer, the absorbing conditions is more realistic, since

the vasa vasorum of the adventitia are continually replenished with fresh blood and

sweep away any residual drug [48].
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In addition, to prolong the drug release time, a permeable membrane (called

topcoat) of permeability p is located at the first interface (x = α0) between the

coating and the arterial wall. Thus, the mass flux passed through it continuously

while the drug concentration might have a possible jump. In this case, the mass

transfer through the topcoat can be described by the following equation:

 [u]α0 = λD0u
′(α−0 ),

−D0u
′(α−0 ) = −D1u

′(α+
0 ) + 2δ1u(α+

0 ),
(1.3)

where, λ = 1/p, and u(α±0 ) = lim
x→α±

0

u(x), [u]α0 = u(α+
0 ) − u(α−0 ). Throughout this

dissertation, we will use u′, u′′ to denote the the partial derivatives of u with respect

to the space variable x. Besides, ut, utt shall be used to denote the partial derivatives

of u with respect to the time variable t. To close this mass transfer system, the jump

conditions requiring the continuity of flux and concentration are assigned at each

interface point x = αi (i = 1, 2, . . . , n− 1):

 u(α−i ) = u(α+
i ),

−Diu
′(α−i ) + 2δiu(α−i ) = −Di+1u

′(α+
i ) + 2δi+1u(α+

i ).
(1.4)

For the system (1.1)-(1.4), if the body force f(x, t) converges to a steady-state force

f̄(x) as t→∞ in L2 norm, that is lim
t→∞

∥∥f(x, t)− f̄(x)
∥∥

0
= 0, we get the correspond-

ing steady-state equations:

(−Dū′(x) + 2δū(x))′ + βū(x) = f̄(x), x ∈ [α−1, αn], (1.5)

D0ū
′(α−1) = 0, (1.6)

ū(αn) = 0, (1.7)

with jump conditions (1.3) and (1.4).
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1.2 Survey of Previous Work for IFE Methods

An popular method of solving interface problems with rough coefficients is to use the

IFE method. IFE methods have been developed for over decades since the first article

[30] was published. In IFE methods, we can use a mesh independent of the interface,

such as the Cartesian mesh, and allow the interface to go through the interior of the

emelemts. Therefore, the mesh in an IFE method consists of interface elements whose

interior are cut through by the interface and the rest called non-interface elements.

The basic idea of IFE method is to construct special basis functions according to

the jump conditions on interface elements while using standard basis functions in

the non-interface elements. There have been many publications about IFE methods

solving the elliptic interface problems [2, 3, 14, 17, 18, 23, 28, 30, 32, 35, 36, 44, 63],

elasticity interface problems [15, 42, 44], biharmonic interface problems [37], Stokes

interface problems [1], moving interface problems [20, 38, 39], and so on.

1.2.1 IFE Methods for One Dimensional Elliptic Interface
Problems

In 1998, Li firstly introduced a linear IFE method for one dimensional two-point

boundary value problem with one interface in [30]:

 − (β(x)u′)′ + q(x)u(x) = f(x), 0 < x < 1,

u(0) = 0, u(1) = 0,
(1.8)

with β(x) > 0 is a piecewise continuous function and has a finite jump at the interface

point 0 < α < 1. The natural jump conditions hold as follows:

[u]α = 0, [βu′]α = 0,
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here, [u]α is a jump of function u at the interface point α, and

β(x) =

 β−(x), 0 < x ≤ α,

β+(x), α ≤ x < 1.

In a uniform partition 0 = x1 < x2 < · · · < xn = 1 of the interval [0, 1] with

the mesh size h = xi − xi−1, assume that there exists an index j such that the

interface point α ∈ [xj, xj+1]. Then, we call [xj, xj+1] and [xi, xi+1], i 6= j, the

interface element and non-interface element, respectively. By denoting ρ = β−

β+ and

D = h − β+−β−

β+ (xj+1 − α), the two piecewise linear local basis functions on the

interface element [xj, xj+1] were constructed as follows:

φj =



0, 0 < x < xj−1,

x− xj−1

xj − xj−1

, xj−1 ≤ x < xj

1 +
xj − x
D

, xj ≤ x < α,

ρ(xj+1 − x)

D
, α ≤ x < xj+1,

0, xj+1 ≤ x < 1,

φj+1 =



0, 0 < x < xj,

x− xj
D

, xj ≤ x < α,

1 +
ρ(x− xj+1)

D
, α ≤ x < xj+1,

x− xj+2

xj+1 − xj+2

, xj+1 ≤ x < xj+2,

0, xj+2 ≤ x < 1.
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For the non-interface element [x1, xi+1], the linear basis functions were defined as

follows:

φi =



0, 0 < x < xi−1,

x− xi−1

xi − xi−1

, xi−1 ≤ x < xi,

x− xi+1

xi − xi+1

, xi ≤ x < xi+1,

0, xi+1 ≤ x < 1,

φi+1 =



0, 0 < x < xi,

x− xi
xi+1 − xi

, xi ≤ x < xi+1,

x− xi+2

xi+1 − xi+2

, xi+1 ≤ x < xi+2,

0, xi+2 ≤ x < 1.

Then, for the uniform partition defined before, the local linear IFE space Sh(T ) was

defined as follows:

Sh(T ) =

 span{φi, φi+1}, if T = [xi, xi+1], i 6= j,

span{φj, φj+1}, if T = [xj, xj+1].

These local finite element spaces are used to form the global finite element space.

IFE spaces formed by higher degree polynomials have been constructed. In partic-

ular, several types of quadratic IFE basis functions were introduced in [8, 36]. The

approximation capability of corresponding IFE spaces was analyzed. The arbitrary

degree IFE spaces were form in [2]. In [4, 10], the authors solve the variable coef-

ficients elliptic problem and Penns bioheat transfer equation with nonhomogenous

flux jump condition. By using the computed solution from the IFE method, an in-

expensive and effective flux recovery technique is employed to approximate the flux

over the whole domain. The optimal convergence for the IFE approximation and

9



its flux is carried out. The construction of the finite element space falls into the

general framework of Babus̆ka and J.E. Osborn [6, 7] from which we can deduce the

construction above.

These one dimensional IFE basis functions introduced above are continuous. A

Galerkin scheme using any of these IFE spaces is a conforming finite element method.

Approximation properties of these IFE spaces and error estimates of the related IFE

solutions have been proved to be optimal in both L2 and H1 norms [3]. Let

Hp(Ω) = {u ∈ C(Ω) : u|Ω± ∈ Hp+1(Ω±), and [βu(j)]α = 0, j = 1, 2, . . . , p}.

Then, we recall the results in the following theorems [63].

Theorem 1.1. There exists a constant C independent of the location of the interface

point α, such that for all u ∈ Hp(Ω),

‖Ipu− u‖0 + h ‖Ipu− u‖1 ≤ C
4p

(p− 1)!
hp+1|u|p+1.

Here, Ipu is the p-th degree IFE interpolation of u.

Theorem 1.2. There exists a constant C independent of the location of the interface

point α, such that

‖uh − u‖0 + h ‖uh − u‖1 ≤ C
4p

(p− 1)!
hp+1|u|p+1.

Here, uh is the p-th degree IFE solution for the one dimensional elliptic interface

problems, and u ∈ Hp(Ω) is the solution of the interface problem defined by (1.8).

1.2.2 IFE Methods for Two Dimensional Elliptic Interface
Problems

IFE methods for two dimensional elliptic interface problems have been extensively

studied in the past decade, see [10, 11, 13, 14, 17–19, 28, 31, 32, 35, 55, 59], and the

10



references therein. Firstly, we will briefly recall the IFE methods for two dimensional

elliptic interface problems. For a Cartesian triangle partition Th of the domain Ω =

Ω− ∪Ω+ ∪ Γ (Γ denotes the interface), there are two types of the element: interface

elements and non-interface elements. For an interface element T, T ∩ Ωs 6= ∅, s =

−, +, we define the basis function on the triangular element T as follows:

φi(x, y) =



φ−i (x, y) = a−x+ b−y + c−, x ∈ T−,

φ+
i (x, y) = a+x+ b+y + c+, x ∈ T+,

φ−i (D) = φ+
i (D), φ−i (E) = φ+

i (E),∫
DE

β−
∂φ−i
∂nDE

ds =

∫
DE

β+ ∂φ+
i

∂nDE
ds,

φi(Aj) = δij, i, j = 1, 2, 3,

here, D = (xD, yD), E = (xE, yE) are the two interface points where the interface in-

tersected the edge of the element T , and nDE is the unit normal vector of the straight

line DE, see Figure 1.4. The coefficients a−, b−, c−, a+, b+, c+ can be uniquely de-

termined by the above 6 conditions. For the rectangle partition (see Figure 1.5), we

define the bilinear basis functions as follows:

φi(x, y) =



φ−i (x, y) = a− + b−x+ c−y + d−xy, x ∈ T−,

φ+
i (x, y) = a+ + b+x+ c+y + d+xy, x ∈ T+,

φ−i (D) = φ+
i (D), φ−i (E) = φ+

i (E), φ−i (
D + E

2
) = φ+

i (
D + E

2
),

∫
DE

β−
∂φ−i
∂nDE

ds =

∫
DE

β+ ∂φ+
i

∂nDE
ds,

φi(Aj) = δij, i, j = 1, 2, 3, 4.

Also, these 8 conditions can determined the bilinear functions uniquely. Another IFE

methods for two dimensional elliptic interface problems is the nonconforming IFE

11
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Figure 1.4: A typical triangular interface element
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Figure 1.5: A typical rectangular interface element.

methods, which are firstly constructed in [63] using the mid-point value and integral

value degrees of freedom, respectively. Those IFE functions are derived from the

well-known nonconforming rotated Q1 finite element [54]. General speaking, there

are two types of IFE methods for two dimensional elliptic interface problems: the

conforming IFE methods and nonconforming IFE methods. In [32], both conforming

and nonconforming linear IFE methods have been developed on triangle meshes for

the two dimensional elliptic interface problems. For other recent results concerning

numerical methods for the IFE methods, we refer for instance to [23, 35], et al.
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1.2.3 IFE Methods for Other Interface Problems

IFE methods have been extended to other types of interface problems involving a

system of PDEs, time dependent PDEs, and higher order PDEs.

In [33], the authors used the nonconforming linear IFE method based on the tri-

angular Cartesian mesh to solve the planner elasticity interface problem, and derived

that O(h) convergence in L∞ norm. In [13, 15], the authors presented a conform-

ing linear IFE method and the optimal convergence rate in L∞ norm was derived

for the elasticity problem. The nonconforming bilinear IFE method was developed

for the elasticity problem and studied the error behaviors for both the linear and

bilinear IFE methods in L2 and H1 norms in [44]. In [5], the authors proposed a

backward Euler scheme using IFE methods to solve a semi-linear parabolic problem

with interface and get the corresponding error estimate. In [41], by the help of the

Laplace transform, the authors proposed a IFE methods to solving the parabolic

interface problem. An immersed Eulerian-Lagrangian localized adjoint method was

developed for transient advection-diffusion problem with interface. In [44], the au-

thors indicated that the bilinear IFE functions are guaranteed to be applicable to

a larger class of elasticity interface problems than linear IFE functions. In [42], the

authors proposed a nonconforming IFE method for solving planar elasticity interface

problems with structured (or Cartesian) meshes even if the material interface has

a nontrivial geometry and observed the optimal approximation capability. In addi-

tion, the IFE functions developed in [42] are applicable to arbitrary configurations

of elasticity materials and interface locations and the displacement Galerkin method

based on this IFE space is robust (locking-free).

In [9], the authors modified the stiffness matrix of the IFE method to develop an

IFE method for an interface problem with periodic structure on an infinite domain.

In [40], with the enhanced stability due to the added penalty, the authors use the

13



IFE methods contain extra stabilization terms introduced only at interface edges for

penalizing the discontinuity in IFE functions to solve the elliptic interface problem.

In [43] the author combined the IFE methods and discontinuous Galerkin (DG) to

derive a priori error estimates for a class of interior penalty DG methods for a classic

second-order elliptic interface problem and got the optimal convergence rate in the

energy norm.

IFE methods have been used also for other time dependent problems with moving

interfaces, such as in [20], the authors developed several fully discrete IFE schemes for

solving the parabolic equation with moving interfaces. In [39], the authors used the

IFE methods together with the method of lines (MoL) to solve the parabolic interface

problems. The IFE-MoL schemes were extended to handle the nonhomogeneous flux

jump conditions with moving interface problems in [38], see [3, 8, 12, 20, 23, 35, 37, 39]

for more details.

1.3 Outline of the Dissertation

In this dissertation, we focus on the IFE methods for the multi-layer porous wall

model. The rest of this dissertation is organized as follows.

In Chapter 2, we construct the linear IFE method to solve the steady-state prob-

lem on an uniform partition. The approximation capabilities will be analyzed via

the error estimations of the interpolation. Not only can the linear IFE methods be

proven to have the optimal convergence rate in both L2 and H1 norms , but also

numerical results indicate that their convergence rates do not deteriorate when the

mesh becomes finer.

In Chapter 3, we solve the elliptic interface problem using the quadratic IFE

method on an Cartesian mesh. Error estimation for this quadratic method will be

carried out. Finally, we develop numerical schemes based on the quadratic IFE
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method to demonstrate features of this quadratic IFE methods.

In Chapter 4, we analyze the long time stability and the asymptotic behavior of

the model. With the help of the IFE methods for the spatial descretization, and

the implicit Euler scheme for the temporal discretization, respectively, we deduce

the global stability of fully discrete solution. Then, we investigate the asymptotic

behavior of the discrete scheme which reveals that the multi-layer porous wall model

converges to the corresponding elliptic equation if f(x; t) approaches to a steady-

state f̄(x) as t → ∞. Finally, some numerical experiments are given to verify the

theoretical predictions.

In Chapter 5, typical semi-discrete and fully discrete schmes are presented and

analyzed. Optimal convergence for the both semi-discrete and fully discrete scheme is

proved. Finally, some numerical experiments are provided to confirm our theoretical

results.

In Chapter 6, we give some conclusions for this dissertation and discuss the future

research plan.
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Chapter 2

Linear IFE Method

It is clearly that the steady-state problem (1.3)-(1.7) is an interface problem with two

types of interface points: the imperfect contact interface point at α0 and the rough

coefficient interface points at αj, 1 ≤ j ≤ n−1. A popular method of solving interface

problems with rough coefficients is to use the IFE method. The basic idea of IFE

method is to construct special basis functions according to the jump conditions on

interface elements while using standard basis functions in the non-interface elements.

In this chapter, we develop linear IFE method for the steady-state problem of the

multi-layer porous wall model. The steady-state model has its own importance and

the IFE spaces developed are also applicable to the dynamic multi-layer porous wall

model.

2.1 Setting and Weak Solution

In this section, we study the existence and uniqueness of the weak solution for the

interface problem described by (1.3)-(1.7). We still use u in stead of ū to denote the

concentration in the steady-state problem in the rest of this chapter if there is no

danger of causing confusion. We start from the following space for the weak problem:

Hk
α(α−1, αn) =

{
v ∈ L2(α−1, αn) | v|Ω± ∈ Hk(Ω±), v(αn) = 0

}
, (2.1)
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where k ≥ 1 is an integer and Ω− = (α−1, α0), Ω+ = (α0, αn). On the space

Hk
α(α−1, αn), we define the following norm:

‖u‖k,(α−1,αn) =
√
‖u‖2

k,Ω− + ‖u‖2
k,Ω+ . (2.2)

In addition, we use ‖·‖0,Ω to denote the L2 norm throughout this dissertation. Some-

times, the subscript of the domain Ω will be omitted if there is no danger of causing

confusion. Multiplying (1.5) by the test function v ∈ H1
α(Ω), integrating on the

domain Ω, and using integration by parts yields∫ αn

α−1

(−Du′ + 2δu)′v + βuv dx

=

∫ α0

α−1

−Du′′v dx+

∫ αn

α0

(−Du′ + 2δu)′v + βuv dx

= −Du′v|α0
α−1

+

∫ α0

α−1

Du′v′ dx+ (−Du′v + 2δuv)|αn
α0

+

∫ αn

α0

(Du′ − 2δu)v′ + βuv dx.

Using the jump conditions and boundary conditions in (1.3)-(1.7), we have∫ αn

α−1

(−Du′ + 2δu)′v + βuv dx

=
[v]α0 [u]α0

λ
+

∫ αn

α−1

(
v′(x)(Du′(x)− 2δu(x)) + βv(x)u(x)

)
dx.

Now it is natural to write the following weak problem for the interface problem

described by (1.3)-(1.7): find u ∈ H1
α(Ω) such that

a(u, v) = (f, v), ∀ v ∈ H1
α(Ω), (2.3)

where the bilinear form a(u, v) is defined as

a(u, v) =
[v]α0 [u]α0

λ

+

∫ αn

α−1

(
v′(x)(Du′(x)− 2δu(x)) + βv(x)u(x)

)
dx, ∀u, v ∈ H1

α(Ω).

(2.4)
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We now consider a bilinear form related with a(u, v):

a0(u, v) =
[v]α0 [u]α0

λ
+

∫ αn

α−1

(
Dv′(x)u′(x) + βv(x)u(x)

)
dx, ∀u, v ∈ H1

α(Ω). (2.5)

It is obvious that a0(u, v) is a symmetric semi-positive-definite bilinear form on

H1
α(Ω). Now, let u ∈ H1

α(Ω) be such that a0(u, u) = 0. Then

([u]α0)
2

λ
+

∫ αn

α−1

(
D(u′(x))2 + β(u(x))2

)
dx = a0(u, u) = 0, (2.6)

which, because of the positiveness of D and β described in (1.2), leads to ‖u‖1,(Ω+) =

0. This further implies u(α+
0 ) = 0. Then, by (2.6), we have

(u(α−0 ))2

λ
+

∫ α0

α−1

D0(u′(x))2 dx = 0. (2.7)

Thus, u(α−0 ) = 0 and u′(x) = 0, ∀x ∈ Ω−. Therefore, u = 0 on Ω− and we have

u = 0 on Ω. All of these show that a0(u, v) is a symmetric positive-definite bilinear

form on H1
α(Ω); hence, we can use it to define a norm as follows:

‖u‖a0 =

(
([u]α0)

2

λ
+

∫ αn

α−1

(
D(u′(x))2 + β(u(x))2

)
dx

)1/2

, ∀u ∈ H1
α(Ω).

Lemma 2.1. There exist positive constants Ci(D, β, λ), i = 1, 2 such that

C1 ‖u‖1,(α−1,αn) ≤ ‖u‖a0 ≤ C2 ‖u‖1,(α−1,αn) , ∀u ∈ H
1
α(Ω). (2.8)

Proof. The existence of C2(D,λ, β) for (2.8) follows from the definition of ‖·‖a0 and

the Sobolev imbedding theorem; hence, we prove the first inequality by showing the

continuity of identity mapping:

I :
(
H1
α(Ω), ‖·‖a0

)
→
(
H1
α(α−1, αn), ‖·‖1,Ω

)
,
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here, the spaces
(
H1
α(Ω), ‖·‖a0

)
and

(
H1
α(Ω), ‖·‖1,Ω

)
, denote the linear space H1

α(Ω)

as normed spaces with norm ‖·‖a0 and norm ‖·‖1,(Ω), respectively. Let u ∈ H1
α(Ω)

and let {um}∞i=1 ⊆ H1
α(Ω) be a sequence such that lim

m→∞
‖um − u‖a0 = 0. Then, by

min
1≤i≤n

{Di, βi} ‖um − u‖2
1,Ω+ ≤ ‖um − u‖2

a0
,

we have lim
m→∞

‖um − u‖1,(Ω+) = 0. This further implies that lim
m→∞

∣∣um(α+
0 )− u(α+

0 )
∣∣ =

0. Then, from

∣∣um(α−0 )− u(α−0 )
∣∣

≤
∣∣um(α+

0 )− u(α+
0 )
∣∣+ λ1/2

∣∣(um(α+
0 )− u(α+

0 ))− (um(α−0 )− u(α−0 ))
∣∣

λ1/2

≤
∣∣um(α+

0 )− u(α+
0 )
∣∣+ λ1/2 ‖um − u‖a0 ,

we have lim
m→∞

∣∣um(α−0 )− u(α−0 )
∣∣ = 0. In addition, from

D0 ‖u′m − u′‖
2
0,Ω− ≤ ‖um − u‖a0 ,

we know that lim
m→∞

‖u′m − u′‖0,Ω− = 0. Finally, by

um(x)− u(x) = um(α−0 )− u(α−0 )−
∫ α0

x

(
u′m(s)− u′(s)

)
ds,

we conclude that lim
m→∞

‖um − u‖0,Ω− = 0. Therefore, lim
m→∞

‖um − u‖1,Ω− = 0 which,

together with lim
m→∞

‖um − u‖1,Ω+ = 0, leads to lim
m→∞

‖um − u‖1,Ω = 0, and the conti-

nuity of the identity mapping I is proven.

Theorem 2.1. The bilinear form a(u, v) defined by (2.4) is continuous and coercive

under the assumption that (C1(D,λ, β))2 > 2 max
1≤i≤n

δi. Thus, the weak problem (4.2)

admits a unique solution u ∈ H1
α(Ω) for every f ∈ L2(Ω).
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Proof. Again, the continuity of a(u, v) follows directly from its definition and the

Sobolev imbedding theorem. Then, by Lemma 2.1, we have

a(u, u) = a0(u, u)− 2

∫ αn

α−1

δu′(x)u(x) dx = ‖u‖2
a0
− 2

∫ αn

α−1

δu′(x)u(x) dx

≥ (C1(D,λ, β))2 ‖u‖2
1,Ω − 2 max

1≤i≤n
δi ‖u‖2

1,Ω

=
(
(C1(D,λ, β))2 − 2 max

1≤i≤n
δi
)
‖u‖2

1,Ω ,

from which the coercivity follows because of the assumption that (C1(D,λ, β))2 >

2 max
1≤i≤n

δi. Finally, the existence and uniqueness of the weak solution to (4.2) follows

from the Lax-Milgram theorem.

2.2 Local Linear IFE Space for the First Interface

In this section, we develop a linear IFE space on the first interface element and

carry out its approximation property. We start from the construction of a linear IFE

space for the interface problem. Form a uniform partition Th for the solution domain

[α−1, αn] as follows:

α−1 = x0 < x1 < x2 < . . . < xi < xi+1 < . . . < xN−1 < xN = αn,

hi = xi − xi−1 = h, i = 1, 2, . . . , N,

Th = {[xi, xi+1], i = 0, 1, 2, . . . , N − 1}.

(2.9)

As usual, we callNh = {xi}Ni=0 the set of nodes. For each element T ∈ Th, we call it an

interface element if T ∩ {αi}n−1
i=0 6= ∅; otherwise, we name it a non-interface element.

Without loss of generality, we assume that each interface element contains only one

interface point. Throughout this dissertation, T inth denotes the collection of interface

elements, and T nonh = Th/T inth denotes the collection of non-interface elements. On

each non-interface element T = [xi, xi+1] ∈ T nonh , we let φi(x), φi+1(x) be the two
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linear Lagrange shape functions associated with nodes xi and xi+1, respectively, i.e.,

φj(xk) = δj,k, k, j = i, i+ 1.

Then, we have

φi(x) =
x− xi+1

xi − xi+1

, φi+1(x) =
x− xi

xi+1 − xxi
.

Following the general framework of finite element method, on each non-interface

element T = [xi, xi+1], the local linear IFE space is the standard linear finite element

space, i.e.,

Sh(T ) = span{φi(x), φi+1(x)}, T = [xi, xi+1], T ∩ {αi}n−1
i=0 = ∅,

Our main effort is to develop local linear IFE spaces on all the interface elements.

Then, all the local IFE spaces are put together to form a conforming IFE space for

solving the interface problem. For the construction of the local linear IFE space

on an interface element T = [xi, xi+1] containing the j-th interface point αj for

j ∈ {0, 1, 2 . . . , n− 1}, we will use the following linear polynomials:

Ľi,αj
(x) =

αj − x
αj − xi

, Ľαj ,i(x) =
x− xi
αj − xi

,

Ľαj ,i+1(x) =
xi+1 − x
xi+1 − αj

, Ľi+1,αj
(x) =

x− αj
xi+1 − αj

.

(2.10)

Firstly, let us consider the local linear IFE space on the interface element T =

[xi, xi+1] such that α0 ∈ T . We note that the interface jump conditions across α0 are

different from those at other interface points. Let

ψ0
i (x) =

 Ľi,α0(x) + aiĽα0,i(x), x ∈ [xi, α0],

diĽα0,i+1(x), x ∈ [α0, xi+1],

ψ0
i+1(x) =

 ai+1Ľα0,i(x), x ∈ [xi, α0],

di+1Ľα0,i+1(x) + Ľi+1,α0(x), x ∈ [α0, xi+1].

(2.11)
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Then ψ0
i (x) and ψ0

i+1(x) are piecewise linear polynomials such that ψ0
k(xj) = δkj,

j, k = i, i + 1. The coefficients in these piecewise linear functions can be further

determined by the interface jump conditions across α0 which is stated in the following

theorem.

Theorem 2.2. Coefficients of ψ0
i (x) and ψ0

i+1(x) defined in (2.11) are uniquely de-

termined by interface jump conditions in (1.3) across α0 such that the coefficients

ai, ai+1, di, di+1 of ψ0
i (x) and ψ0

i+1(x) are as follows:

ai =
1

∆
(−D0Ľ

′
i,α0
− 2λD0δ1Ľ

′
i,α0

+D0D1λĽ
′
i,α0

Ľ′α0,i+1),

di =
−1

∆
D0Ľ

′
i,α0

,

ai+1 =
1

∆
(D1Ľ

′
i+1,α0

),

di+1 =
1

∆
(D1Ľ

′
i+1,α0

+D0D1λĽ
′
α0,i

Ľ′i+1,α0
),

(2.12)

here, ∆ = 2δ1 +D0Ľ
′
α0,i
−D1Ľ

′
α0,i+1 + 2δ1λD0Ľ

′
α0,i
− λD0D1Ľ

′
α0,i

Ľ′α0,i+1.

Proof. Applying the jump conditions (1.3) across α0 to ψ0
i (x) and ψ0

i+1(x), by direct

calculations, we can see that ai, di satisfy

 di − ai = λD0(Ľ′i,α0
+ aiĽ

′
α0,i

),

di − ai = λD1diĽ
′
α0,i+1 − 2λδ1di,

while ai+1, di+1 satisfy

 di+1 − ai+1 = λD0ai+1Ľ
′
α0,i

,

di+1 − ai+1 = λD1(di+1Ľ
′
α0,i+1 + Ľ′i+1,α0

)− 2λδ1di+1.

It is easy to see that they are two linear systems about ai, di, ai+1, di+1, and the de-

terminant of their coefficient matrices both are ∆. In addition, by direct calculation,
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we get

∆ = 2δ1 +
D0

α0 − xi
+

D1

xi+1 − α0

+
2δ1λD0

α0 − xi
+

λD0D1

(α− xi)(xi+1 − α0)
.

Since each term on the right hand side is positive, we can easily verify that ∆ > 0.

Hence each of these two systems has a unique solution, and ai, ai+1, di, di+1 are

uniquely determined. In addition, they can be expressed as (2.12).

Theorem 2.2 indicates that ψ0
i (x) and ψ0

i+1(x) are well defined IFE shape functions

on the interface element T = [xi, xi+1] containing the first interface points α0, and

we can then use them to form a local linear IFE space

Sh(T ) = span{ψ0
i , ψ

0
i+1},

where the superscript in ψ0
i and ψ0

i+1 emphasizes that this local linear IFE space is

for the element T = [xi, xi+1] containing the first interface points α0.

For the approximation capability, we consider the IFE interpolation in Sh(T ).

For every u ∈ L2(T ) such that u|[xi,α0] ∈ C0[xi, α0] and u|[α0,xi+1] ∈ C0[α0, xi+1], its

linear IFE interpolation is

Ǐ0
hu(x) := u(xi)ψ

0
i (x) + u(xi+1)ψ0

i+1(x). (2.13)

Then, by Theorem 2.2, we can write the IFE interpolation as follows

Ǐ0
hu(x) =

u(xi)Ľi,α0(x) + u−I Ľα0,i(x), x ∈ [xi, α0],

u+
I Ľα0,i+1(x) + u(xi+1)Ľi+1,α0(x), x ∈ (α0, xi+1],

(2.14)

where u−I and u+
I have the following expression:

u−I =
1

∆
(−D0u(xi)Ľ

′
i,α0

+D1u(xi+1)Ľ′i+1,α0
− 2λu(xi)D0Ľ

′
i,α0

δ1

+D0D1λu(xi)Ľ
′
i,α0

Ľ′α0,i+1),

u+
I =

1

∆
(D0u(xi)Ľ

′
i,α0

+D1u(xi+1)Ľ′i+1,α0
+D0D1λu(xi+1)Ľ′α0,i

Ľ′i+1,α0
),
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here ∆ is same to that one used in Theorem 2.2. On the other hand, we can also

form a standard linear finite element interpolation of u on T = [xi, xi+1] as follows

Ĩ0
hu(x) :=

u(xi)Ľi,α0(x) + u(α−0 )Ľα0,i(x), x ∈ [xi, α0],

u(α+
0 )Ľα0,i+1(x) + u(xi+1)Ľi+1,α0(x), x ∈ [α0, xi+1].

(2.15)

Then, we have the following standard error estimates for linear finite element inter-

polation:

‖u− Ĩ0
h‖0,(xi,α0) + h‖u− Ĩ0

hu‖1,(xi,α0) ≤ Ch2‖u‖2,(xi,α0),

‖u− Ĩ0
h‖0,(α0,xi+1) + h‖u− Ĩ0

hu‖1,(α0,xi+1) ≤ Ch2‖u‖2,(α0,xi+1),
(2.16)

provided further that u|(xi,α0) ∈ H2(xi, α0) and u|(α0,xi+1) ∈ H2(α0, xi+1).

We can then estimate the error in Ǐ0
hu by the splitting u−Ǐ0

hu = u−Ĩ0
hu+Ĩ0

hu−Ǐ0
hu.

Theorem 2.3. Let T = [xi, xi+1] be an interface element containing the first in-

terface point α0. Then, for every u ∈ L2(T ) such that u|(xi,α0) ∈ H2(xi, α0) and

u|(α0,xi+1) ∈ H2(α0, xi+1), we have

‖u− Ǐ0
hu‖0,(xi,xi+1) + h‖u− Ǐ0

hu‖1,(xi,xi+1) ≤ Ch2‖u‖2,(xi,xi+1), (2.17)

where C is a constant independent of α0 ∈ [xi, xi+1].

Proof. By (2.14) and (2.15), we have

Ĩ0
hu− Ǐ0

hu =

 (u(α−)− u−I )Ľα0,i(x), x ∈ [xi, α0],

(u(α+)− u+
I )Ľα0,i+1(x), x ∈ [α0, xi+1].

(2.18)

By simple calculations and the jump conditions, we have

|u(α+)− u+
I | =

1

∆
| −D0(Ĩ0

hu− u)′(α−0 ) +D1(Ĩ0
hu− u)′(α+

0 )

+D0D1λĽ
′
α0,i

(Ĩ0
hu− u)′(α+

0 )|

≤ 1

∆
(|J1|+ |J2|+ |J3)|,

(2.19)
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where

J1 = D0e
′(α−0 ), J2 = D1e

′(α+
0 ), J3 = D0D1λĽ

′
α0,i

e′(α+
0 ),

with e(x) = Ĩ0
hu(x)− u(x). Because e(xi) = e(α−0 ) = e(α+

0 ) = e(xi+1) = 0, we have

|e′(α−0 )| ≤ (α0 − xi)1/2 ‖u‖2,(xi,α0) , |e
′(α+

0 )| ≤ (xi+1 − α0)1/2 ‖u‖2,(xi,α0) .

Then, following the standard procedure, we obtain

|J1| ≤ D0(α0 − xi)
1
2‖u‖2,(xi,α0),

|J2| ≤ D1(xi+1 − α0)
1
2‖u‖2,(α0,xi+1),

|J3| ≤ D0D1(α0 − xi)−1(xi+1 − α0)
1
2‖u‖2,(α0,xi+1).

In addition, the following estimate for ∆ holds:

1

∆
≤ C min{(α0 − xi), (xi+1 − α0), (α0 − xi)(xi+1 − α0)}.

We can easily get that

|J1|
∆
≤ C(α0 − xi)

3
2‖u‖2,(xi,α0) ≤ Ch

3
2‖u‖2,(xi,α0),

|J1|
∆
≤ C(xi+1 − α0)

3
2‖u‖2,(α0,xi+1) ≤ Ch

3
2‖u‖2,(α0,xi+1),

|J3|
∆
≤ C(xi+1 − α0)

3
2‖u‖2,(α0,xi+1) ≤ Ch

3
2‖u‖2,(α0,xi+1).

Then, by applying these estimates to (2.19) and using the norm defined in (2.2), we

obtain

|u+
I − u(α+)| ≤ Ch

3
2 (‖u‖2,(xi,α0) + ‖u‖2,(α0,xi+1)) ≤ Ch

3
2‖u‖2,(xi,xi+1).

Hence, by (2.18) and the fact that

‖Ľα0,i+1(x)‖0,(α0,xi+1) + h‖Ľα0,i+1(x)‖1,(α0,xi+1) ≤ Ch1/2,
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we have

‖Ĩ0
hu− Ǐ0

hu‖0,(α0,xi+1) + h‖Ĩ0
hu− Ǐ0

hu‖1,(α0,xi+1) ≤ Ch2‖u‖2,(xi,xi+1). (2.20)

Since ‖u − Ǐ0
hu‖k,(α0,xi+1) ≤ ‖u − Ĩ0

hu‖k,(α0,xi+1) + ‖Ĩ0
hu − Ǐ0

hu‖k,(α0,xi+1), k = 0, 1, by

(2.16) and (2.20), we have the following estimate:

‖u− Ǐ0
hu‖0,(α0,xi+1) + h‖u− Ǐ0

hu‖1,(α0,xi+1) ≤ Ch2‖u‖2,(xi,xi+1). (2.21)

Similarly, we can show

‖u− Ǐ0
hu‖0,(xi,α0) + h‖(u− Ǐhu)‖1,(xi,α0) ≤ Ch2‖u‖2,(xi,xi+1). (2.22)

Finally, estimates given in (2.17) follows from (2.21) together with (2.22).

2.3 Local Linear IFE Space for Other Interfaces

We now consider the local linear IFE space on the interface element T = [xi, xi+1]

such that αj ∈ T for an integer j ∈ {1, 2, . . . , n− 1}. As before, we let

ψji (x) =

 Ľi,αj
(x) + biĽαj ,i(x), x ∈ [xi, αj],

ciĽαj ,i+1(x), x ∈ [αj, xi+1],

ψji+1(x) =

 bi+1Ľαj ,i(x), x ∈ [xi, αj],

ci+1Ľαj ,i+1(x) + Ľi+1,αj
(x), x ∈ [αj, xi+1].

(2.23)

We note that the interface jump conditions at αj, j ∈ {1, 2, . . . , n− 1} are the same

type and they can be used to determine coefficients in ψji (x) and ψji+1(x) as stated

in the following theorem.

Theorem 2.4. Assume that δj ≤ δj+1, then coefficients of ψji (x) and ψji+1(x) defined

by (2.23) are uniquely determined by interface jump conditions in (1.4) across αj such
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that the coefficients bi, bi+1, ci, ci+1 of ψji (x) and ψji+1(x) are as follows:

bi = ci =
−1

∆
DjĽ

′
i,αj
,

bi+1 = ci+1 =
1

∆
Dj+1Ľ

′
i+1,αj

,

(2.24)

here, ∆ = −Dj+1Ľ
′
αj ,i+1 +DjĽ

′
αj ,i

+ 2δj+1 − 2δj.

Before we go to the proof, we should mention here that the ∆ we used here has

a new value different from the one in Theorem 2.2. This abuse will not cause any

confusion, since each ∆ appear in its theorem only. Throughout this dissertation,

there are several times of this kind of reuse about ∆.

Proof. By applying the jump conditions in (1.4) across αj to ψji (x) and ψji+1(x), we

can see that coefficients bi and ci satisfy

 bi = ci,

Dj(Ľ
′
i,αj

+ biĽ
′
αj ,i

)− 2δjbi = Dj+1ciĽ
′
αj ,i+1 − 2δj+1ci,

while bi+1 and ci+1 satisfy

 bi+1 = ci+1,

Djbi+1Ľ
′
αj ,i
− 2δjbi+1 = Dj+1(ci+1Ľ

′
αj ,i+1 + Ľ′i+1,αj

)− 2δj+1ci+1.

The determinant of coefficient matrices in these two linear systems is ∆. Since

δi+1 ≥ δi, it can be easy to shown that ∆ > 0. Hence each of these two systems must

have a unique solution, respectively, and bi, bi+1, ci, ci+1 are uniquely determined

and they can expressed as in (2.24).

Remark 2.1. It seems to the authors that the assumption δj ≤ δj+1 is a reasonable

assumption for practical applications. Recall that δj is the convection parameter in
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the layer [αj−1, αj]. According to the model setup, a larger j means the layer [αj−1, αj]

is closer to the blood flow in the artery; hence, it is reasonable to assume a larger

convection there.

It is obvious that functions ψjk(x), k = i, i + 1 defined by (2.23) are such that

ψjk(xl) = δk,l, k, l = i, i + 1. Again, these functions are linear IFE shape functions

and they can be used to define a local linear IFE space:

Sh(T ) = span{ψji , ψ
j
i+1},

where the superscript in ψji and ψji+1 emphasizes that this local linear IFE space is

for the T = [xi, xi+1] containing the j-th interface point αj for j ∈ {1, 2, . . . , n− 1}.

For the approximation capability of Sh(T ) with αj ∈ T for some j ∈ {1, 2, . . . , n−

1}, we consider the error in the linear IFE interpolation in Sh(T ). For every u ∈

C0(T ) = C0([xi, xi+1]), its linear IFE interpolation is

Ǐjhu(x) := u(xi)ψ
j
i (x) + u(xi+1)ψji+1(x). (2.25)

By Theorem 2.4, the linear IFE interpolation on T = [xi, xj+1] can be written as

Ǐjhu(x) =


u(xi)Ľi,αj

(x) + uIαj
Ľαj ,i(x), x ∈ [xi, αj],

uIαj
Ľαj ,i+1(x) + u(xi+1)Ľi+1,αj

(x), x ∈ [αj, xi+1],
(2.26)

here,

uIαj
=

1

∆
(−u(xi)DjĽ

′
i,αj

+ u(xi+1)Dj+1Ľ
′
i+1,αj

).

We can also form the standard linear Lagrange interpolation of u on T = [xi, xi+1]

as follows:

Ĩjhu(x) :=

u(xi)Ľi,αj
(x) + u(αj)Ľαj ,i(x), x ∈ [xi, αj],

u(αj)Ľαj ,i+1(x) + u(xi+1)Ľi+1,αj
(x), x ∈ [αj, xi+1].

(2.27)
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The standard finite element approximation theory provides the following error bounds

for Ĩjhu:

‖u− Ĩjhu‖0,(xi,αj) + h‖u− Ĩjhu‖1,(xi,αj) ≤ Ch2‖u‖2,(xi,αj),

‖u− Ĩjhu‖0,(αj ,xi+1) + h‖u− Ĩjhu‖1,(αj ,xi+1) ≤ Ch2‖u‖2,(αj ,xi+1).
(2.28)

We now turn to the error estimation for u− Ǐjhu.

Theorem 2.5. Let T = [xi, xi+1] be an interface element containing the j-th interface

point αj, j = 1, 2, . . . , n− 1 and assume that δj ≤ δj+1. Then, for every u ∈ C0(T )

such that u|(xi,αj) ∈ H2(xi, αj) and u|(αj ,xi+1) ∈ H2(αj, xi+1), we have

‖u− Ǐjhu‖0,(xi,xi+1) + h‖u− Ǐjhu‖1,(xi,xi+1) ≤ Ch2‖u‖2,(xi,xi+1), (2.29)

where C is a constant independent of αj ∈ [xi, xi+1].

Proof. Let us consider the estimation on the subelement [xi, αj]. By the jump con-

ditions, we have

Ĩjhu(x)− Ǐjhu(x) = (u(αj)− uIαj
)Ľαj ,i(x) =

xi − x
∆(xi+1 − αj)(αj − xi)

(I + II + III),

(2.30)

here

I = DjĽi,αj
(xi+1)(u(αj)− u(xi)),

II = Dj+1(u(xi+1)− u(αj)),

III = −2u(αj)(xi+1 − αj)(δj+1 − δj).

Clearly, we have∫ αj

xi

∫ αj

x

u′′(y) dydx = u′(α−j )(αj − xi) + (u(xi)− u(α−j )),

and ∫ xi+1

αj

∫ x

αj

u′′(y) dydx = (u(xi+1)− u(α+
j ))− u′(α+

j )(xi+1 − αj),
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which means

I + II = −DjĽi,αj
(xi+1)

∫ αj

xi

∫ αj

x

u′′(y) dydx+Dj+1

∫ xi+1

αj

∫ x

αj

u′′(y) dydx

+Dj+1u
′(α+

j )(xi+1 − αj)−Dj(xi+1 − αj)u′(α−j ),

= J1 + J2,

(2.31)

where

J1 = −DjĽi,αj
(xi+1)

∫ αj

xi

∫ αj

x

u′′(y) dydx+Dj+1

∫ xi+1

αj

∫ x

αj

u′′(y) dydx,

J2 = Dj+1u
′(α+

j )(xi+1 − αj)−Dj(xi+1 − αj)u′(α−j ).

By the jump condition at αj, we have

J2 + III

=(Dj+1u
′(α+

j )− 2δj+1u(α+
j )−Dju

′(α−j ) + 2δju(α−j ))(xi+1 − αj) = 0.
(2.32)

Then, it remains to estimate J1. Noted that

|J1| ≤ Dj|Ľi,αj
(xi+1)|

∫ αj

xi

∫ αj

xi

|u′′(y)| dydx+Dj+1

∫ xi+1

αj

∫ xj+1

αj

|u′′(y)| dydx

≤ Ch3/2‖u‖2,(xi,xi+1),

by using the assumption that δj+1 ≥ δj, we have

∆(xi+1 − αj)(αj − xi) ≥ Dj(xi+1 − αj) +Dj+1(αj − xi) ≥ min{Dj, Dj+1}h.

Therefore, ∣∣∣ J1

∆(xi+1−αj
)(αj − xi)

∣∣∣ ≤ Ch1/2‖u‖2,(xi,xi+1). (2.33)
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Then, applying (2.31), (2.32), and (2.33) to (2.30), we obtain

‖Ĩjhu− Ǐ
j
hu‖0,(xi,αj)

≤ Ch1/2‖x− xi‖0,(xi,αj)‖u‖2,(xi,xi+1)

≤ Ch1/2
(∫ αj

xi

|x− xi|2 dx
)1/2

‖u‖2,(xi,xi+1) ≤ Ch2‖u‖2,(xi,xi+1),

and ‖Ĩjhu− Ǐ
j
hu‖1,(xi,αj) ≤ Ch‖u‖2,(xi,xi+1). These two estimates lead to

‖Ĩjhu− Ǐ
j
hu‖0,(xi,αj) + h‖Ĩjhu− Ǐ

j
hu‖1,(xi,αj) ≤ Ch2‖u‖2,(xi,xi+1).

Applying the similar arguments to the subelement [αj, xi+1], we obtain

‖Ĩjhu− Ǐ
j
hu‖0,(αj ,xi+1) + h‖Ĩjhu− Ǐ

j
hu‖1,(αj ,xi+1) ≤ Ch2‖u‖2,(xi,xi+1).

Hence, we have

‖Ĩjhu− Ǐ
j
hu‖0,(xi,xi+1) + h‖Ĩjhu− Ǐ

j
hu‖1,(xi,xi+1) ≤ Ch2‖u‖2,(xi,xi+1).

Finally, using the triangle inequality and the classical approximation result (2.28),

we can derive the estimate in (2.29) as follows:

‖u− Ǐjhu‖0,(xi,xi+1) + h‖u− Ǐjhu‖1,(xi,xi+1)

≤ ‖u− Ĩjhu‖0,(xi,xi+1) + h‖u− Ĩjhu‖1,(xi,xi+1)

+ ‖Ĩjhu− Ǐ
j
hu‖0,(xi,xi+1) + h‖Ĩjhu− Ǐ

j
hu‖1,(xi,xi+1)

≤ Ch2‖u‖2,(xi,xi+1).

2.4 Convergence of the Linear IFE Space

Using the local linear IFE spaces on each element T ∈ Th, we can define a linear IFE

space globally on whole solution domain (α−1, αn) as follows:

Sh(α−1, αn) = {v ∈ L2(α−1, αn) | v|Ω± ∈ C0(Ω±), v|T ∈ Sh(T ), ∀T ∈ Th},
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where, we recall that the local linear IFE space Sh(T ) is defined by

S
(1)
h (T ) =

 span{φi, φi+1}, T = [xi, xi+1], T ∩ {αi}n−1
i=0 = ∅,

span{ψji , ψ
j
i+1}, T = [xi, xi+1], αj ∈ T, j ∈ {0, 1, 2, . . . , n− 1}.

For a function u ∈ H1
α(α−1, αn), we define its linear IFE interpolation Ǐhu ∈ Sh(α−1, αn)

piecewisely such that, for every element T = [xi, xi+1],

Ǐhu|T =

u(xi)φi(x) + u(xi+1)φi+1(x), when T ∩ {αi}n−1
i=0 = ∅,

u(xi)ψ
j
i (x) + u(xi+1)ψji (x), when αj ∈ T, j ∈ {0, 1, 2, . . . , n− 1}.

Then, we derive an error bound for the linear IFE interpolation in the following

theorem.

Theorem 2.6. Assume that δj ≤ δj+1, j = 1, 2, . . . , n−1, then there exists a positive

constant C independent of h and the position of αj, j = 0, 1, . . . , n− 1 such that

‖u− Ǐhu‖0,(α−1,αn) + h‖u− Ǐhu‖1,(α−1,αn) ≤ Ch2‖u‖2,(α−1,αn), ∀u ∈ H2
α(α−1, αn).

(2.34)

Proof. By the definition of Ǐhu, we have for k = 1, 2,

‖u− Ǐhu‖k,(α−1,αn) =
∑
T∈Th

‖u− Ǐjhu‖k,T

=
∑

T∈T non
h

‖u− Ǐjhu‖k,T +
∑

T∈T int
h

‖u− Ǐjhu‖k,T ,

=
∑

T∈T non
h

‖u− Ĩhu‖k,T +
∑

T∈T int
h

‖u− Ǐjhu‖k,T .

Then, estimates for the standard linear finite element interpolation error ‖u−Ĩhu‖k,T ,

T ∈ T nonh and the estimates for the linear IFE interpolation error ‖u− Ǐhu‖k,T , T ∈

T inth given in Theorems 2.3 and 2.5 imply that

‖u− Ǐhu‖k,(α−1,αn) ≤ Ch2−k‖u‖2,(α−1,αn), k = 0, 1,
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which further leads to (2.34).

We now discuss the linear IFE solution to the interface problem described by

(1.3)-(1.7). Let

Sh,0(α−1, αn) = {v|v ∈ Sh(α−1, αn), v|x=αn = 0},

and the linear IFE solution uh ∈ Sh,0(α−1, αn) is then defined to be such that

a(uh, vh) = (f, vh), ∀ vh ∈ Sh,0(α−1, αn). (2.35)

The error bound for the linear IFE solution uh is given in the following theorem.

Theorem 2.7. Assume the condition required by Theorem 2.1 holds, δj ≤ δj+1, j =

1, 2, . . . , n − 1, and that the solution u to the weak problem (4.2) is such that u ∈

H2
α(α−1, αn). Then the linear IFE solution uh defined by (2.35) satisfies the following

estimate:

‖u− uh‖0,(α−1,αn) + h‖u− uh‖1,(α−1,αn) ≤ Ch2‖u‖2,(α−1,αn). (2.36)

Proof. It is easy to see that

a(u− uh, vh) = 0, ∀ vh ∈ Vh.

Hence, by using Theorem 2.1, we have

‖u− uh‖2
1,(α−1,αn) ≤ Ca(u− uh, u− uh) = a(u− uh, u− vh)

≤ C‖u− uh‖1,(α−1,αn)‖u− vh‖1,(α−1,αn).

The above inequality together with Theorem 2.6 imply

‖u− uh‖1,(α−1,αn) ≤ C inf
v∈S(1)

h,0(α−1,αn)

‖u− vh‖1,(α−1,αn)

≤ C‖u− Ǐhu‖1,(α−1,αn) ≤ Ch‖u‖2,(α−1,αn).
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Using the usual duality argument, we get

‖u− uh‖0,(α−1,αn) ≤ Ch2‖u‖2,(α−1,αn).

Then, (2.36) is proven.

2.5 Numerical Experiments

In this section we present numerical examples for demonstrating the convergence of

the linear IFE methods. We let the simulation interval be [0, 1], and assume there

are three interface points: α0 = 1/9, α1 = 1/3 and α2 = 2/3. These interface points

separate the interval into four sub-intervals [0, 1/9], [1/9, 1/3], [1/3, 2/3] and [2/3, 1].

We set the exact solution u for this problem to be

u(x) =


u0(x), x ∈ [0, 1/9],

u1(x), x ∈ [1/9, 1/3],

u2(x), x ∈ [1/3, 2/3],

u3(x), x ∈ [2/3, 1],

(2.37)

with

u0(x) =
1

30
xn−1, u1(x) =

1

3
xn, u2(x) = xn+1, u3(x) = 3(1− x)xn+1,

here, n is an integer. We also let

D1 =
18(n− 1)D0

10n
, δ1 =

1

2
(9nD1 − 8.1(n− 1)D0),

D2 =
6nD1 − 2δ1

3(n+ 1)
, δ2 =

1

2
(3(n+ 1)D2 − 3nD1 + 2δ1),

D3 =
8δ2 − 3(n+ 1)D2

3(n+ 5)
, δ3 =

1

4
(3(n− 1)D3 − 3(n+ 1)D2 + 4δ2),

λ =
1

81(n− 1)D0

.
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Then we can verify that u(x) satisfies the jump conditions (1.3)-(1.4). The right

hand side term fi(x), i = 0, 1, 2, 3, is determined by (1.5). We now report numerical

results generated by applying the IFE methods developed in Section 2.2-Section 2.4

to the interface problem described by (1.3)-(1.7) whose exact solution is u(x) defined

in (3.44).

Example 2.1. In this group of numerical experiments, we observe that the proposed

IFE methods work well for large values of βi, i = 1, 2, 3 emphasizing a stronger

reaction. We have tested these IFE methods with D0 arbitrarily chosen between 10−2

and 2× 10−2 and β1 ∈ (1, 2), β2 ∈ (102, 2× 102), β3 ∈ (104, 2× 104).

Table 2.1: Errors and convergence rates of the linear IFE method when n = 3 with
large values for βj, j = 1, 2, 3.

N L2norm rate H1norm rate
10 4.3701e-03 2.2745e-01
20 9.1751e-04 2.2519 1.1101e-01 1.0348
40 2.0358e-04 2.1721 5.4916e-02 1.0154
80 4.7784e-05 2.0910 2.7257e-02 1.0106
160 1.1416e-05 2.0655 1.3569e-02 1.0063
320 2.8087e-06 2.0231 6.7707e-03 1.0030
640 6.9626e-07 2.0122 3.3820e-03 1.0014
1280 1.7385e-07 2.0018 1.6906e-03 1.0004
2560 4.3403e-08 2.0019 8.4523e-04 1.0001

Tables 2.1 and 2.2 present typical numerical results for errors and the convergence

rates for the linear IFE method when n = 3 and n = 6, respectively. In related

computations for these data, we used the following parameters:

D0 = 0.010616229584014, β0 = 0, β1 = 1.72333131659,

β2 = 140.10036408113, β3 = 16730.88858585343.

Data in these tables clearly show that the linear and quadratic IFE methods converge

optimally in both the L2 and H1 norm.
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Table 2.2: Errors and convergence rates the linear IFE method with n = 6 and large
values for βj, j = 1, 2, 3.

N L2norm rate H1norm rate
10 5.8815e-03 2.7493e-01
20 1.3050e-03 2.1721 1.4092e-01 0.9642
40 2.8071e-04 2.2169 6.9235e-02 1.0253
80 6.3358e-05 2.1475 3.4282e-02 1.0140
160 1.4811e-05 2.0968 1.6990e-02 1.0128
320 3.5812e-06 2.0482 8.4612e-03 1.0058
640 8.8460e-07 2.0173 4.2231e-03 1.0026
1280 2.2033e-07 2.0054 2.1106e-03 1.0006
2560 5.5041e-08 2.0011 1.0552e-03 1.0002

Example 2.2. We have observed that the IFE methods also work well for small

values of βi, i = 1, 2, 3 which let the model described by the interface problem (1.3)-

(1.7) emphasize the diffusion or convection more than the reaction. In this group of

numerical experiments, we have tested the IFE methods for βi, i = 1, 2, 3 randomly

chosen such that β1 ∈ (0.01, 0.02), β2 ∈ (0.001, 0.002), β3 ∈ (0.0001, 0.0002).

Table 2.3: Errors and convergence rates of the linear IFE method when n = 3 with
small values for βj, j = 1, 2, 3.

N L2norm rate H1norm rate
10 4.9674e-03 2.1563e-01
20 1.2271e-03 2.0172 1.0790e-01 0.9989
40 3.0870e-04 1.9910 5.3986e-02 0.9990
80 7.6854e-05 2.0060 2.7025e-02 0.9983
160 1.9307e-05 1.9930 1.3516e-02 0.9997
320 4.8130e-06 2.0041 6.7603e-03 0.9994
640 1.2293e-06 1.9691 3.3804e-03 0.9999
1280 3.0329e-07 2.0191 1.6904e-03 0.9999
2560 7.5839e-08 1.9997 8.4520e-04 1.0000

Typical numerical results are presented in Tables Tables 2.3 and 2.4 which, again,

clearly demonstrate the optimal convergence of the proposed linear IFE method. In
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Table 2.4: Errors and convergence rates of the linear IFE method when n = 6 with
small values for βj, j = 1, 2, 3.

N L2norm rate H1norm rate
10 6.4165e-03 2.6721e-01
20 1.6163e-03 1.9891 1.3491e-01 0.9860
40 3.9695e-04 2.0257 6.7431e-02 1.0005
80 1.0065e-04 1.9796 3.3759e-02 0.9982
160 2.4837e-05 2.0188 1.6876e-02 1.0003
320 6.2946e-06 1.9803 8.4407e-03 0.9996
640 1.5535e-06 2.0186 4.2202e-03 1.0001
1280 3.9354e-07 1.9810 2.1102e-03 0.9999
2560 9.7113e-08 2.0188 1.0551e-03 1.0000

related computations for these data, we used the following parameters:

D0 = 0.010616229584014, β0 = 0, β1 = 0.015482995717499,

β2 = 0.001133907855848 β3 = 0.000162651593614.
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Chapter 3

Quadratic IFE Method

In this chapter, we develop a quadratic IFE method to solve the interface problem

(1.3)-(1.7). Let Th be the partition of the solution domain (α−1, α0) defined in (2.9).

As usual, on each element T = [xi, xi+1], we introduce another node xi+1/2 = xi+xi+1

2

and the standard local quadratic finite element shape functions associated with the

three local nodes: xi, xi+1/2 and xi+1. On each non-interface element T = [xi, xi+1],

the local quadratic IFE space is the standard quadratic finite element space:

Sh(T ) = span{Li(x), Li+1/2(x), Li+1(x)}, when T ∩ {αi}n−1
i=0 = ∅,

here,

Li(x) =
(x− xi+1/2)(x− xi+1)

(xi − xi+1/2)(xi − xi+1)
,

Li+1/2(x) =
(x− xi)(x− xi+1)

(xi+1/2 − xi)(xi+1/2 − xi+1)
,

Li+1(x) =
(x− xi)(x− xi+1/2)

(xi+1 − xi)(xi+1 − xi+1/2)
.

We need to construct quadratic IFE shape functions on interface elements. Let

T = [xi, xi+1] be an interface element containing αj, j ∈ {0, 1, 2, . . . , n−1}. Without

loss of generality, our discussions in this section mainly focus on the case: xi <

xi+1/2 < αj < xi+1 in which we will use the following quadratic polynomials as the
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building blocks for the quadratic IFE shape functions:

Li,αj
(x) =

(x− xi+1/2)(x− αj)
(xi − xi+1/2)(xi − αj)

, Li+1/2,αj
(x) =

(x− xi)(x− αj)
(xi+1/2 − xi)(xi+1/2 − αj)

,

Lαj ,i(x) =
(x− xi+1/2)(x− xi)

(αj − xi+1/2)(αj − xi)
, Hi+1,αj

(x) =
(x− αj)2

(xi+1 − αj)2
,

Hαj ,0 = 2
x− xi+1

αj − xi+1

− (x− xi+1)2

(αj − xi+1)2
, Hαj ,1 =

(x− αj)(x− xi+1)

(αj − xi+1)
.

(3.1)

All the ideas and results in this section can be readily extended to the other case:

xi < αj < xi+1/2 < xi+1 in which we will use three Hermite type basis functions

in the subinterval [xi, αj] and three Lagrange type basis functions in the subinterval

[αj, xi+1] in forms similar to (3.1) as building blocks for the corresponding quadratic

IFE shape functions.

The quadratic polynomials in (3.1) have the following properties:

L′i,αj
(αj) =

(αj − xi+1/2)

(xi − xi+1/2)(xi − αj)
, L′αj ,i

(αj) =
1

(αj − xi+1/2)
+

1

(αj − xi)
,

L′′i,αj
(x) =

2

(xi − xi+1/2)(xi − αj)
, L′′αj ,i

(x) =
2

(αj − xi+1/2)(αj − xi)
,

H ′′i+1,αj
(x) =

2

(xi+1 − αj)2
, H ′′αj ,0

(x) =
−2

(αj − xi+1)2
, H ′′αj ,1

(x) =
2

(αj − xi+1)
.

(3.2)

In addition, by using the standard interpolation error analysis procesure, we derive

the following estimates about these quadratic polynomials:

‖Lαj ,i‖0,(xi,αj) + h‖Lαj ,i‖1,(xi,αj) ≤ h3/2(αj − xi+1/2)−1,

‖Hαj ,1‖0,(αj ,xi+1) + h‖Hαj ,1‖1,(αj ,xi+1) ≤ Ch3/2,

‖Hαj ,0‖0,(αj ,xi+1) + h‖Hαj ,0‖1,(αj ,xi+1) ≤ Ch1/2.

(3.3)
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3.1 Local Quadratic IFE Space for the First In-

terface

Let T = [xi, xi+1] be an interface element containing the first interface point α0.

Firstly, We propose three quadratic IFE shape functions on this interface element in

the following formats:

ψ0
i (x) =

Li,α0(x) + c0
iLα0,i(x), x ∈ [xi, α0],

a0
iHα0,0(x) + b0

iHα0,1(x), x ∈ [α0, xi+1],

ψ0
i+1/2(x) =

Li+1/2,α0(x) + c0
i+1/2Lα0,i(x), x ∈ [xi, α0],

a0
i+1/2Hα0,0(x) + b0

i+1/2Hα0,1(x), x ∈ [α0, xi+1],
(3.4)

ψ0
i+1(x) =

 c0
i+1Lα0,i(x), x ∈ [xi, α0],

a0
i+1Hα0,0(x) + b0

i+1Hα0,1(x) +Hi+1,α0(x), x ∈ [α0, xi+1],

whose coefficients a0
k, b

0
k and c0

k, k = i, i + 1/2, i + 1 are to be chosen so that these

piecewise quadratic functions satisfy the interface jump conditions (1.3) across α0.

However, the two equations in the interface jump conditions (1.3)-(1.4) are obviously

not enough to determine all three coefficients in each of the proposed quadratic IFE

shape functions. Following the ideas in [3, 36], we therefore propose to impose

one extra jump condition for the unique determination of the quadratic IFE shape

functions:

D0(ψ0
k)
′′(α−0 ) = D1(ψ0

k)
′′(α+

0 )− 2δ1(ψ0
k)
′(α+

0 ), k = i, i+ 1/2, i+ 1. (3.5)

Other types of extra jump conditions can be considered, but the related error estima-

tion confirms that the one given in (3.5) leads to an optimally convergent quadratic

IFE space.

Theorem 3.1. Functions ψ0
i (x), ψ0

i+1/2(x) and ψ0
i+1(x) in (3.4) are uniquely deter-

mined by interface jump conditions in (1.3) and (3.5). In addition, the coefficients
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in these functions are as follows:

c0
k =


1

∆
[Θ′L′k,α0

(α0) +D0D1L
′′
k,α0

], k = i, i+ 1/2,

−1

∆
D2

1H
′′
i+1,α0

, k = i+ 1,

a0
k =

λD0L
′
k,α0

(α0) + [1 + λD0L
′
α0,k

(α0)]c0
k, k = i, i+ 1/2,

[1 + λD0L
′
α0,i

(α0)]c0
i+1, k = i+ 1,

b0
k =


1

D1

[D0L
′
k,α0

(α0) +D0L
′
α0,k

(α0)c0
i + 2δ1a

0
k], k = i, i+ 1/2,

1

D1

[D0L
′
α0,i

(α0)c0
i+1 + 2δ1a

0
i+1], k = i+ 1,

(3.6)

with

∆ = D2
1H
′′
α0,0
−D0D1L

′′
α0,i

+ 2D1δ1H
′′
α0,1
− 4δ2

1 −Θ′L′α0,i
(α0),

Θ′ = −D0D1H
′′
α0,1

+ 2δ1D0 − 2D0D1λδ1H
′′
α0,1

+ 4D0δ
2
1λ− λD0D

2
1H
′′
α0,0

.
(3.7)

Proof. Applying jump conditions in (1.3) and (3.5) to ψ0
k(x), k = i, i + 1/2, i + 1,

we have 
ψ0
k(α

+
0 )− ψ0

k(α
−
0 ) = λD0(ψ0

k)
′(α−0 ),

D0(ψ0
k)
′(α−0 ) = D1(ψ0

k)
′(α+

0 )− 2δ1ψ
0
k(α

+
0 ),

D0(ψ0
k)
′′(α−0 ) = D1(ψ0

k)
′′(α+

0 )− 2δ1(ψ0
k)
′(α+

0 ).

we know that this is a linear system for coefficients a0
k, b

0
k, and c0

k, and the determinant

of its coefficient matrix is ∆. It can be verified that ∆ < 0 under the assumption

xi < xi+1/2 < α0 < xi+1. Hence this linear system has a unique solution which yields

the formulas in (3.6) for a0
k, b

0
k, and c0

k, k = i, i+ 1/2, i+ 1.

It is easy to verify that the quadratic IFE shape functions given in Theorem 3.1

have the following property:

ψ
(0)
j (xk) = δj, k, j, k = i, i+ 1/2, i+ 1.
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Hence, we can use these quadratic IFE shape functions to define a local quadratic

IFE space on the interface element T = [xi, xi+1] containing α0 as follows:

Sh(T ) = span{ψi, ψi+1/2, ψi+1}.

We now consider the approximation capability of this local quadratic IFE space.

For every u ∈ L2(T ) such that u|[xi,α0] ∈ C0[xi, α0] and u|[α0,xi+1] ∈ C0[α0, xi+1], we

define its quadratic IFE interpolation as

Ǐ0
hu(x) := u(xi)ψ

0
i (x) + u(xi+1/2)ψ0

i+1/2(x) + u(xi+1)ψ0
i+1(x). (3.8)

Using the formulas for the coefficients of ψ0
k, k = i, i + 1/2, i + 1 given in Theorem

3.1, we show that

Ǐ0
hu(x) =

u(xi)Li,α0(x) + u(xi+1/2)Li+1/2,α0(x) + ū−α0
Lα0,i

(x), x ∈ [xi, α0],

ū+
α0
Hα0,0(x) + ū′α0

Hα0,1(x) + u(xi+1)Hi+1,α0(x), x ∈ [α0, xi+1],

(3.9)

where, constants ū−α0
, ū+

α0
and ū′α0

are defined by

ū−α0
=

1

∆
[Θ′l′0(α0) +D0D1l

′′
0(α0)−D2

1u(xi+1)H ′′i+1,α0
],

ū+
α0

= λD0l
′
0(α0) + [1 + λD0L

′
α0

(α0)]ū−α0
,

ū′α0
=

1

D1

[D0l
′
0(α0) +D0L

′
α0,i

(α0)ū−α0
+ 2δ1ū

+
α0

],

(3.10)

with

l0(x) = u(xi)Li,α0(x) + u(xi+1/2)Li+1/2,α0(x). (3.11)

l′0(α0) and l′′0(α0) denotes the value of the first and second order derivatives respect

to x at α0, respectively. In addition, using (3.1) and the definition of ∆ given in

(3.7), we derive the following estimate about 1
∆

:

1

|∆|
≤ C min

{
(α0 − xi), (α0 − xi)(α0 − xi+1/2),

(α0 − xi+1/2)(xi+1 − α0)2, (α0 − xi)(α0 − xi+1)2
}
.

(3.12)
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On the other hand, we can also interpolation u by those quadratic polynomials in

(3.1) as follows:

Ĩ0
hu(x) :=

u(xi)Li,α0(x) + u(xi+1/2)Li+1/2,α0(x) + u(α−0 )Lα0,i(x), x ∈ [xi, α0],

u(α+
0 )Hα0,0(x) + u′(α+

0 )Hα0,1(x) + u(xi+1)Hi+1,α0(x), x ∈ [α0, xi+1].

(3.13)

The above Lagrange-Hermit interpolation have the following standard error estimates

for Ĩ0
hu :

‖u− Ĩ0
hu‖0,(xi,α0) + h‖u− Ĩ0

hu‖1,(xi,α0) ≤ Ch3‖u‖3,(xi,α0),

‖u− Ĩ0
hu‖0,(α0,xi+1) + h‖u− Ĩ0

hu‖1,(α0,xi+1) ≤ Ch3‖u‖3,(α0,xi+1),
(3.14)

provided further that u|(xi,α0) ∈ H3(xi, α0) and u|(α0,xi+1) ∈ H3(α0, xi+1). For the

point-wise estimates, we have the following results:

|u′′(α−0 )− (Ĩ0
hu)′′(α−0 )| ≤ (α0 − xi)1/2‖u‖3,(xi,α0),

|u′′(α+
0 )− (Ĩ0

hu)′′(α+
0 )| ≤ (xi+1 − α0)1/2‖u‖3,(α0,xi+1),

|u′(α−0 )− (Ĩ0
hu)′(α−0 )| ≤ (α0 − xi+1/2)(α0 − xi)1/2‖u‖3,(xi,α0),

|u′(α+
0 )− (Ĩ0

hu)′(α+
0 )| ≤ (xi+1 − α0)3/2‖u‖3,(α0,xi+1).

(3.15)

The next theorem shows that the local quadratic IFE space has the expected optimal

convergence.

Theorem 3.2. Let T = [xi, xi+1] be an interface element such that α0 ∈ [xi, xi+1].

Then, for every u ∈ L2(T ) such that u|(xi,α0) ∈ H3(xi, α0) and u|(α0,xi+1) ∈ H3(α0, xi+1),

we have the following estimate for the quadratic IFE interpolation:

‖u− Ǐ0
hu‖0,(xi,xi+1) + h‖u− Ǐ0

hu‖1,(xi,xi+1) ≤ Ch3‖u‖3,(xi,xi+1), (3.16)

where C is a constant independent of α0 ∈ [xi, xi+1].
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Proof. Subtracting (3.9) from (3.13), we have

Ĩ0
hu− Ǐ0

hu =


(
u(α−0 )− ū−α0

)
Lα0,i(x), x ∈ [xi, α0],(

u(α+
0 )− ū+

α0

)
Hα0,0(x) +

(
u′(α+

0 )− ū′α0

)
Hα0,1, x ∈ [α0, xi+1].

(3.17)

Using (3.10) and the jump conditions in (1.3) and (3.5), we have

u(α−0 )− ū−α0
= τ1 + τ2 + τ3 + τ4 + τ5, (3.18)

where

τ1 = − 1

∆
(D0D1 + 2D0D1δ1λ)H ′′α0,1

e′(α−0 ), τ2 =
1

∆
(2D0δ1 + 4D0λδ

2
1)e′(α−0 ),

τ3 =
1

∆
D0D1e

′′(α−0 ), τ4 = − 1

∆
λD0D

2
1H
′′
α0,0

e′(α−0 ), τ5 = − 1

∆
D2

1e
′′(α+

0 ),

(3.19)

with e(x) = u(x)− Ĩ0
hu(x). (3.12) implies

1

|∆|
≤ C(α0 − xi)(xi+1 − α0),

Substituting the above inequality, the fact that H ′′α0,1
= (α0 − xi+1)−1 derived from

(3.2), and the estimate of |e′(α−0 )| given in (3.15) into (3.19), we obtain

|τ1| ≤ Ch3/2(α0 − xi+1/2)‖u‖3,(xi,xi+1).

Similarly, using (3.12), the bounds for |e′(α−0 )|, |e′′(α−0 )|, |e′′(α+
0 )| given in (3.15) and

the H ′′α0,0
given in (3.2), we get

|τk| ≤ Ch3/2(α0 − xi+1/2)‖u‖3,(xi,xi+1), k = 2, 3, 4, 5.

Then, putting these estimates for τk, 1 ≤ k ≤ 5 in (3.18), we obtain

|u(α−0 )− ū−α0
| ≤ Ch3/2(α0 − xi+1/2)‖u‖3,(xi,xi+1). (3.20)
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Substituting (3.20) and the estimate about Lα0,i given in (3.3) into (3.17), we obtain

the following estimate on the left subelement (xi, α0):

‖Ĩ0
hu− Ǐ0

hu‖0,(xi,α0) + h‖Ĩ0
hu− Ǐ0

hu‖1,(xi,α0) ≤ Ch3‖u‖3,(xi,xi+1). (3.21)

Now we aim to derive the estimate on the right subelement [αj, xi+1]. Using (3.10),

the jump conditions in (1.3), and (3.5), we have

u+
α0
− u(α+

0 ) =
1

∆

[
D0D1e

′′(α−0 ) + 2D0δ1e
′(α−0 )−D0D1H

′′
α0,1

e′(α−0 )−D2
1e
′′(α+

0 )

+ λD2
0D1(L′α0,i

(α−0 )e′′(α−0 )− L′′α0,i
e′(α−0 ))−D0D

2
1L
′
α0,i

(α0−)λe′′(α+
0 )
]
,

ū′α0
− u′(α+

0 ) =
D0L

′
α0,i

(α0−)

D1

(ū−α0
− u(α−0 )) +

D0

D1

e′(α−0 ) +
2δ1

D1

(ū+
α0
− u(α+

0 )).

Using arguments similar to those we used in (3.20), we have

|ū+
α0
− u(α+

0 )| ≤ Ch3/2(α0 − xi+1/2)‖u‖3,(xi,xi+1), (3.22)

and

|ū′α0
− u′(α+

0 )| ≤ |
D0L

′
α0,i

(α0−)

D1

(ū−α0
− u(α−0 ))|+ |D0

D1

e′(α−0 )|+ |2δ1

D1

(ū+
α0
− u(α+

0 ))|

≤ Ch3/2‖u‖3,(xi,xi+1).

(3.23)

Then, applying (3.22), (3.23), and the estimates about Hα0,k, k = 0, 1 given in (3.3)

to (3.17), we have the following estimate on the right subelement [α0, xi+1]:

‖Ĩ0
hu− Ǐ0

hu‖0,(α0,xi+1) + h‖Ĩ0
hu− Ǐ0

hu‖1,(α0,xi+1) ≤ Ch3‖u‖3,(xi,xi+1). (3.24)

Thus, the combination of (3.21) and (3.24) yields

‖Ĩ0
hu− Ǐ0

hu‖0,(xi,xi+1) + h‖Ĩ0
hu− Ǐ0

hu‖1,(xi,xi+1) ≤ Ch3‖u‖3,(xi,xi+1). (3.25)
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Finally, estimate given in (3.16) follows from

‖u− Ǐ0
hu‖0,(xi,xi+1) + h‖u− Ǐ0

hu‖1,(xi,xi+1)

≤ ‖u− Ĩ0
hu‖0,(xi,xi+1) + h‖u− Ĩ0

hu‖1,(xi,xi+1)

+ ‖Ĩ0
hu− Ǐ0

hu‖0,(xi,xi+1) + h‖Ĩ0
hu− Ǐ0

hu‖1,(xi,xi+1),

and then applying estimates in (3.14) and (3.25).

3.2 Local Quadratic IFE Space for Other Inter-

faces

We now develop a local quadratic IFE space on the interface elements T = [xi, xi+1]

that contains the interface point αj, for an integer j = 1, 2, . . . , n − 1. We pro-

pose three shape functions ψji (x), ψji+1/2(x) and ψji+1(x) in the following piecewise

quadratic polynomial formats:

ψji (x) =

Li,αj
(x) + ajiLαj ,i(x), x ∈ [xi, αj],

ajiHαj ,0(x) + bjiHαj ,1(x), x ∈ [αj, xi+1],

ψji+1/2(x) =


Li+1/2,αj

(x) + aji+1/2Lαj ,i(x), x ∈ [xi, αj],

aji+1/2Hαj ,0(x) + bji+1/2Hαj ,1(x), x ∈ [αj, xi+1],
(3.26)

ψji+1(x) =

 aji+1Lαj ,i(x), x ∈ [xi, αj],

aji+1Hαj ,0(x) + bji+1Hαj ,1(x) +Hi+1,αj
(x), x ∈ [αj, xi+1].

For the unique determination of the above three quadratic IFE shape functions, we

propose to use the following extra jump conditions because it leads to an optimally

convergent quadratic IFE space:

Dj(ψ
j
k)
′′(α−j )− 2δj(ψ

j
k)
′(α−j ) = Dj+1(ψjk)

′′(α+
j )− 2δj+1(ψjk)

′(α+
j ), k = i, i+ 1/2, i+ 1.

(3.27)
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Theorem 3.3. Assume that δj+1 ≥ δj and Djδj+1 ≥ Dj+1δj, then, the shape func-

tions proposed in (3.26) are uniquely determined by the jump conditions (1.4) and

(3.27). In addition, the coefficients in these functions have the following representa-

tions:

ajk =


− 1

∆
[ΘL′k,αj

(αj) +DjDj+1L
′′
k,αj

], k = i, i+ 1/2,

− 1

∆
D2
j+1H

′′
i+1,αj

, k = i+ 1,

bjk =


1

Dj+1

[
Θ̂ajk +DjL

′
k,αj

(αj)
]
, k = i, i+ 1/2,

1

Dj+1

Θ̂aji+1, k = i+ 1,

with

Θ = −DjDj+1H
′′
αj ,1

+ 2δj+1Dj − 2δjDj+1, Θ̂ = DjL
′
αj ,i

(αj)− 2δj + 2δj+1,

∆ = −ΘL′αj ,i
(αj)−DjDj+1L

′′
αj

+D2
j+1H

′′
αj ,0

+ 2(δj+1 − δj)(Dj+1H
′′
αj ,1
− 2δj+1).

(3.28)

Proof. The proof of the existence and uniqueness are similar to Theorem 3.1 by

using jump conditions (1.4) and (3.5), and the coefficients are obtained by solving

the related linear system.

By direct verification, we can see that the quadratic shape functions given in

(3.26) have the following property:

ψjk(xl) = δk,l, k, l = i, i+ 1/2, i+ 1.

Hence, they can be used to define the local quadratic IFE space on the interface

element T = [xi, xi+1] containing the interface point αj, j = 1, 2, . . . , n−1 as follows:

Sh(T ) = span{ψji , ψ
j
i+1/2, ψ

j
i+1}.
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In order to get approximation capability of the local quadratic IFE space Sh(T ),

we firstly consider the error in the quadratic IFE interpolation in Sh(T ). For every

u ∈ C0(T ) = C0([xi, xi+1]), we define its quadratic IFE interpolation as

Ǐjhu(x) := u(xi)ψ
j
i (x) + u(xi+1/2)ψji+1/2(x) + u(xi+1)ψji+1(x). (3.29)

By using the formulas given in Theorem 3.3, the quadratic interpolation on T =

[xi, xi+1] can be written as

Ǐjhu(x) =

u(xi)Li,αj
(x) + u(xi+1/2)Li+1/2,αj

(x) + ūαj
Lαj,i

(x), x ∈ [xi, αj],

ūαj
Hαj ,0(x) + ū′αj

Hαj ,1(x) + u(xi+1)Hi+1,αj
(x), x ∈ [αj, xi+1],

(3.30)

here,

ūαj
=

1

∆

(
Θl′j(αj) +DjDj+1l

′′
j (αj)−D2

j+1u(xi+1)H ′′i+1,αj

)
,

ū′αj
=

1

Dj+1

(
Θ̂ūαj

+Djl
′
j(αj)

)
.

(3.31)

In addition, by (3.1) and the definition of ∆ given in (3.28), we can derive the

following estimation about 1
∆

:

1

∆
≤ C min{(xi+1 − αj)(αj − xi), (αj − xi),

(αj − xi)(αj − xi+1/2), (αj − xi)3/2(αj − xi+1/2)1/2
}
. (3.32)

The Lagrange-Hermit interpolation of u using the quadratic polynomials in (3.1) has

the following expression:

Ĩjhu =

u(xi)Li,αj
(x) + ui+1/2Li+1/2,αj

(x) + u(αj)Lαj ,i(x), x ∈ [xi, αj],

u(αj)Hαj ,0(x) + u′(α+
j )Hαj ,1(x) + u(xi+1)Hi+1,,αj

(x), x ∈ [αj, xi+1].

(3.33)

49



If u|(xi,αj) ∈ H3(xi, αj) and u|(αj ,xi+1) ∈ H3(αj, xi+1), the standard finite element

approximation theory provides the following estimates for Ĩjhu:

‖u− Ĩjhu‖0,(xi,xi+1) + h‖u− Ĩjhu‖1,(xi,xi+1) ≤ Ch3‖u‖3,(xi,xi+1). (3.34)

In addition, point-wise estimates in (3.15) can be readily extended to αj as follows:

|u′′(α−j )− (Ĩjhu)′′(α−j )| ≤ (αj − xi)1/2‖u‖3,(xi,αj),

|u′′(α+
j )− (Ĩjhu)′′(α+

j )| ≤ (xi+1 − αj)1/2‖u‖3,(αj ,xi+1),

|u′(α−j )− (Ĩjhu)′(α−j )| ≤ (αj − xi+1/2)(αj − xi)1/2‖u‖3,(xi,αj).

(3.35)

We now turn to the estimation for u− Ǐjhu.

Theorem 3.4. Let [xi, xi+1] be an interface element containing the interface point

αj, j = 1, 2, . . . , n − 1, and assume that δj+1 ≥ δj and Djδj+1 ≥ Dj+1δj, then for

every u ∈ C0(T ) such that u|(xi,αj) ∈ H3(xi, αj) and u|(αj ,xi+1) ∈ H3(αj, xi+1), we

have

‖u− Ǐjhu‖0,(xi,xi+1) + h‖u− Ǐjhu‖1,(xi,xi+1) ≤ Ch3‖u‖3,(xi,xi+1), (3.36)

where C is a constant independent of αj ∈ [xi, xi+1].

Proof. Let us firstly consider the difference between Ǐjhu and Ĩjhu. Subtracting (3.30)

from (3.33), we have

Ĩjhu− Ǐ
j
hu =

 (u(αj)− ūαj
)Lαj ,i(x), x ∈ [xi, αj],

(u(αj)− ūαj
)Hαj ,0(x) + [u′(α+

j )− ū′αj
]Hαj ,1(x), x ∈ [αj, xi+1].

(3.37)

By using jump conditions in (1.4) and (3.27), we have

ūαj
− u(αj) = σ1 + σ2 + σ3 + σ4,
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here,

σ1 = − 1

∆
DjDj+1H

′′
αj ,1

e′(α−j ), σ2 = 2
1

∆
(Djδj+1e

′(α−j )− 2Dj+1δje
′(α−j )),

σ3 =
1

∆
DjDj+1e

′′(α−j ), σ4 = − 1

∆
D2
j+1e

′′(α+
j ),

with e(x) = Ĩjhu(x)− u(x). Using (3.32), we have

∣∣∣ 1

∆

∣∣∣ ≤ C(xi+1 − αj)(αj − xi).

The last equation in (3.2), together with the estimate for e′(α−j ) given in (3.35) imply

that

|σ1| ≤ Ch3/2(αj − xi+1/2)‖u‖3,(xi,xi+1).

Similarly, by using (3.32) and the bounds for |e′(α−j )|, |e′′(α−j )|, |e′′(α+
j )| given in

(3.35), we obtain

|σk| ≤ Ch3/2(αj − xi+1/2)‖u‖3,(xi,xi+1), k = 2, 3, 4.

Summing up σk from 1 to 4, we obtain

|u(αj)− ūαj
| ≤ Ch3/2(αj − xi+1/2)‖u‖3,(xi,xi+1). (3.38)

Applying (3.38) and the estimate about Lαj ,i given in (3.3) to (3.37) leads to the

following estimate on the left subelement [xi, αj]:

‖Ĩjhu− Ǐ
j
hu‖0,(xi,αj) + h‖Ĩjhu− Ǐ

j
hu‖1,(xi,αj) ≤ Ch3‖u‖3,(xi,xi+1). (3.39)

Similar, using (3.31) and the jump conditions in (1.4) and (3.27), we have

|u′(α+
j )− ū′αj

| ≤ Ch3/2‖u‖3,(xi,xi+1). (3.40)

Then, using (3.38), (3.40), and the estimates of Hαj ,k, k = 0, 1 given in (3.2), we

have the following estimate on the right subelement [αj, xi+1]:

‖Ĩjhu− Ǐ
j
hu‖0,(αj ,xi+1) + h‖Ĩjhu− Ǐ

j
hu‖1,(αj ,xi+1) ≤ Ch3‖u‖3,(xi,xi+1). (3.41)
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the above equation and (3.39) imply

‖Ĩjhu− Î
j
hu‖0,(xi,xi+1) + h‖Ĩjhu− Î

j
hu‖1,(xi,xi+1) ≤ Ch3‖u‖3,(xi,xi+1). (3.42)

Finally, (3.34) together with (3.42) imply (3.36) directly:

‖u− Ǐjhu‖0,(xi,xi+1) + h‖u− Ǐjhu‖1,(xi,xi+1) ≤ Ch3‖u‖3,(xi,xi+1).

3.3 Convergence of quadratic IFE space

We can define a quadratic IFE space globally on the whole solution domain (α−1, αn)

as follows:

Sh(α−1, αn) = {v ∈ L2(α−1, αn) | v|Ω± ∈ C0(Ω±), v|T ∈ Sh(T ), ∀T ∈ Th},

where, we recall that the local quadratic IFE space Sh(T ) is defined by

S
(2)
h (T ) =


span{Li, Li+1/2, Li+1}, T = [xi, xi+1], T ∩ {αi}n−1

i=0 = ∅,

span{ψji , ψ
j
i+1/2, ψ

j
i+1}, T = [xi, xi+1], αj ∈ T, j ∈ {0, 1, 2, . . . , n− 1}.

For a function u ∈ H1
α(α−1, αn), we define its quadratic IFE interpolation Ǐhu ∈

Sh(α−1, αn) piecewise such that, for every element T = [xi, xi+1],

Ǐhu|T =


u(xi)Li(x) + u(xi+1/2)Li+1/2 + u(xi+1)Li+1(x), T ∩ {αi}n−1

i=0 = ∅,

u(xi)ψ
j
i (x) + u(xi+1/2)ψji+1/2(x) + u(xi+1)ψji (x), αj ∈ T, j ∈ {0, 1, 2, . . . , n− 1}.

Then, we get the error bound for the quadratic IFE interpolation which is given in

the following theorem.

Theorem 3.5. Assume that δj+1 ≥ δj and Djδj+1 ≥ Dj+1δj, then there exists a

positive constant C independent of h and the position of αj, j = 0, 1, . . . , n− 1 such

that

‖u− Ǐhu‖0,(α−1,αn) + h‖u− Ǐhu‖1,(α−1,αn) ≤ Ch3‖u‖3,(α−1,αn).
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Proof. Since we already have the interpolation error estimate on each element, the

proof follows from arguments similar to those used in Theorem 2.6.

We now consider the quadratic IFE solution to the weak problem defined by (4.2).

Let

Sh,0(α−1, αn) = {v|v ∈ Sh(α−1, αn), v|x=αn = 0}.

The quadratic IFE solution uh ∈ S(2)
h,0(α−1, αn) to the interface problem described by

(1.3)-(1.7) is defined to be such that

a(uh, vh) = (f, vh), ∀ vh ∈ Sh,0(α−1, αn). (3.43)

Then the error bound for the quadratic IFE solution uh is can be got directly which

is stated in the following theorem.

Theorem 3.6. Assume the condition required by Theorem 2.1 holds, δj+1 ≥ δj and

Djδj+1 ≥ Dj+1δj. Let u ∈ H3
α([α−1, αn]) be the solution to the weak problem (4.2),

then the quadratic IFE solution uh defined by (3.43) satisfies the following estimate:

‖u− uh‖0,(α−1,αn) + h‖u− uh‖1,(α−1,αn) ≤ Ch3‖u‖3,(α−1,αn).

Proof. The proof follows form arguments similar to those used in Theorem 2.7.

3.4 Numerical Experiments

In this section we present some numerical examples to demonstrate the convergence

rate of the quadratic IFE method. We use the same examples as those we used in

Section 2.5. Firstly, let us briefly review the exact solution for the problem. Recalling

that the simulation interval is [0, 1], and the three interface points are assumed to be

α0 = 1/9, α1 = 1/3 and α2 = 2/3. These interface points separate the interval into

four sub-intervals [0, 1/9], [1/9, 1/3], [1/3, 2/3] and [2/3, 1]. The exact solution u for
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this problem is set to be

u(x) =


u0(x), x ∈ [0, 1/9],

u1(x), x ∈ [1/9, 1/3],

u2(x), x ∈ [1/3, 2/3],

u3(x), x ∈ [2/3, 1],

(3.44)

with

u0(x) =
1

30
xn−1, u1(x) =

1

3
xn, u2(x) = xn+1, u3(x) = 3(1− x)xn+1,

here, n is an integer. We also let

D1 =
18(n− 1)D0

10n
, δ1 =

1

2
(9nD1 − 8.1(n− 1)D0),

D2 =
6nD1 − 2δ1

3(n+ 1)
, δ2 =

1

2
(3(n+ 1)D2 − 3nD1 + 2δ1),

D3 =
8δ2 − 3(n+ 1)D2

3(n+ 5)
, δ3 =

1

4
(3(n− 1)D3 − 3(n+ 1)D2 + 4δ2),

λ =
1

81(n− 1)D0

.

It is calear that u(x) satisfies the jump conditions (1.3)-(1.4). In addition, the right

hand side term fi(x), i = 0, 1, 2, 3, is determined by (1.5). We now report numerical

results generated by applying the IFE methods developed in Section 3 and Section 4

to the interface problem described by (1.3)-(1.7) whose exact solution is u(x) defined

in (3.44).

Example 3.1. In this group of numerical experiments, we observe that the proposed

IFE methods work well for large values of βi, i = 1, 2, 3 emphasizing a stronger

reaction. We have tested these IFE methods with D0 arbitrarily chosen between 10−2

and 2× 10−2 and β1 ∈ (1, 2), β2 ∈ (102, 2× 102), β3 ∈ (104, 2× 104).
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Table 3.1 presents typical numerical results for errors and the convergence rates

for the quadratic IFE method when n = 3, Table 3.2 contains correspondingly nu-

merical results for the quadratic IFE method. In related computations for these

data, we used the following parameters:

D0 = 0.010616229584014, β0 = 0, β1 = 1.72333131659,

β2 = 140.10036408113, β3 = 16730.88858585343.

Data in these tables clearly show that the quadratic IFE methods converge optimally

in both the L2 and H1 norm.

Table 3.1: Errors and convergence rates of the quadratic IFE method when n = 3
with large values for βj, j = 1, 2, 3.

N L2norm rate H1norm rate
10 2.6661e-04 1.8276e-02
20 3.3866e-05 2.9768 4.5238e-03 2.0143
40 3.7201e-06 3.1865 9.6740e-04 2.2254
80 4.6298e-07 3.0063 2.4106e-04 2.0047
160 5.7719e-08 3.0038 5.9870e-05 2.0095
320 7.2261e-09 2.9977 1.4985e-05 1.9983
640 9.0293e-10 3.0005 3.7433e-06 2.0011
1280 1.1287e-10 2.9999 9.3613e-07 1.9995
2560 1.4107e-11 3.0002 2.3399e-07 2.0003

Example 3.2. In this group of numerical experiments, we have tested the IFE

methods for βi, i = 1, 2, 3 small enough such as, randomly chosen such that β1 ∈

(0.01, 0.02), β2 ∈ (0.001, 0.002), β3 ∈ (0.0001, 0.0002).

Typical numerical results are presented in Tables 3.2-3.4 which, again, clearly

demonstrate the optimal convergence of the proposed linear and quadratic IFE meth-

ods. In related computations for these data, we used the following parameters:

D0 = 0.010616229584014, β0 = 0, β1 = 0.015482995717499,

β2 = 0.001133907855848 β3 = 0.000162651593614.
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Table 3.2: Errors and convergence rates of the quadratic IFE method when n = 6
with large values for βj, j = 1, 2, 3.

N L2norm rate H1norm rate
10 5.3218e-04 3.7440e-02
20 6.8757e-05 2.9523 9.2084e-03 2.0236
40 8.7238e-06 2.9785 2.2819e-03 2.0127
80 1.0967e-06 2.9918 5.6983e-04 2.0016
160 1.3729e-07 2.9978 1.4243e-04 2.0003
320 1.7170e-08 2.9993 3.5611e-05 1.9998
640 2.1465e-09 2.9999 8.9031e-06 1.9999
1280 2.6833e-10 2.9999 2.2259e-06 1.9999
2560 3.3541e-11 3.0000 5.5647e-07 2.0000

Table 3.3: Errors and convergence rates of the quadratic IFE method when n = 3
with small values for βj, j = 1, 2, 3.

N L2norm rate H1norm rate
10 2.3101e-04 1.5134e-02
20 2.9875e-05 2.9510 3.8832e-03 1.9624
40 3.6881e-06 3.0180 9.5535e-04 2.0232
80 4.6321e-07 2.9932 2.4015e-04 1.9921
160 5.7849e-08 3.0013 5.9856e-05 2.0044
320 7.2484e-09 2.9966 1.4984e-05 1.9981
640 9.0585e-10 3.0003 3.7433e-06 2.0010
1280 1.1333e-10 2.9987 9.3613e-07 1.9995
2560 1.5537e-11 2.8669 2.3399e-07 2.0002

56



Table 3.4: Errors and convergence rates of the quadratic IFE method when n = 6
(right) with small values for βj, j = 1, 2, 3.

N L2norm rate H1norm rate
10 5.4047e-04 3.5801e-02
20 6.9574e-05 2.9576 9.0744e-03 1.9801
40 8.7780e-06 2.9866 2.2754e-03 1.9957
80 1.0982e-06 2.9987 5.6951e-04 1.9983
160 1.3749e-07 2.9978 1.4242e-04 1.9996
320 1.7173e-08 3.0011 3.5611e-05 1.9997
640 2.1486e-09 2.9987 8.9031e-06 1.9999
1280 2.6835e-10 3.0012 2.2259e-06 1.9999
2560 3.4181e-11 2.9728 5.5647e-07 2.0000
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Chapter 4

Long Time Stability and

Asymptotic Analysis

In this chapter, we study the long time stability and asymptotic behavior for the

multi-layer wall model using the IFE methods we constructed in Chapter 2 and

Chapter 3. Taking advantage of IFE functions, we investigated the convergence of

the discrete system as the time t → +∞, which can be used on Cartesian mesh

regardless of the location of the interface, and get the similar error estimate as

the continuous model. The numerical examples in the last section confirmed the

theoretical analysis, which suggested that the discrete scheme is efficient. Firstly, we

briefly review the notations and preliminaries for the problems which we will used

at the rest of this chapter. The piecewise Sobolev spaces defined by

Hk
α(Ω) =

{
v ∈ L2(Ω) | v|Ω± ∈ Hk(Ω±), v(αn) = 0

}
,

where k ≥ 1 is an integer and Ω = (α−1, αn), Ω− = (α−1, α0), Ω+ = (α0, αn). The

norm on the space Hk
α(Ω) is defined by:

‖u‖k,Ω =
√
‖u‖2

k,Ω− + ‖u‖2
k,Ω+ .

We shall use ‖ · ‖k denoting the above norm in the rest of this paper if there is no

danger of causing confusion. In addition, the notation ‖·‖0 is used to denote the L2

59



norm. Under the norm defined above, we have the following Poincaré inequality on

each subinterval Ω±:

‖v‖2
0,Ω± ≤ (λ±)−1‖v‖2

1,Ω± , ∀ v ∈ Hk(Ω±),

where λ± is the minimal eigenvalue of the Laplace operator −∆ on the space Hk(Ω±),

respectively. Let λ1 = max{λ+, λ−}, we have the following inequality

‖v‖2
0 ≤ λ−1

1 ‖v‖2
1, ∀ v ∈ Hk(Ω±). (4.1)

By the standard procedure, the interface problem described by (1.3)-(1.5) leads to

the following weak problem: find u ∈ H1
α(Ω) such that

a(ū, v) = (f̄ , v), ∀ v ∈ H1
α(Ω), (4.2)

where the bilinear form a(u, v) is defined same as (2.4). Then, we get the weak

formula for the parabolic system (1.1)-(1.4): find u ∈ H1
α(Ω)× (0, T ], such that,

(ut, v) + a(u, v) = (f, v), ∀ v ∈ H1
α(Ω),

u(x, 0) = u0(x), x ∈ Ω.
(4.3)

From (4.3), (4.2), and setting ūt = 0, we have

(zt, v) + a(z, v) = (F, v), ∀ v ∈ H1
α(Ω),

z(x, 0) = u0(x)− ū(x),
(4.4)

here, z(x, t) = u(x, t) − ū(x), F (x, t) = f(x, t) − f̄(x). With the above notations,

we get the semi-discrete scheme for the parabolic equation (4.3) as follows: find

uh ∈ Sh(Th) such that, for all t > 0,

 (uh,t, vh) + a(uh, vh) = (f, vh), ∀ vh ∈ Sh(Th),

uh(x, 0) = u0h(x), x ∈ Ω,
(4.5)
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where u0h is an approximation of u0 in the space Sh(Th). Throughout this chapter,

we set u0h = Phu0, here Ph : L2(Ω)→ Sh(Th) is the L2 projection defined by

(u− Phu, vh) = 0, ∀ vh ∈ Sh(Th). (4.6)

Let ∆t satisfying 0 < ∆t < 1 be the time step, and tn = n∆t (n = 0, 1, 2, ...).

Denoting φn the value of φ(tn), then, for a sequence {φn}∞n=0, we define

∂tφ
n =


φn − φn−1

∆t
, n = 1, 2, ...,

φ0, n = 0.

Applying the backward Euler scheme, we have the fully discrete scheme for the

problem (4.5): find a sequence {unh}∞n=0 such that

 (∂tu
n
h, vh) + a(unh, vh) = (fn, vh), ∀ vh ∈ Sh(Th),

u0
h = u0h, x ∈ Ω.

(4.7)

Subtracting (4.2) from (4.7), and setting znh = unh − ūh, we have

 (∂tz
n
h , vh) + a(znh , vh) = (F n, vh), ∀ vh ∈ Sh(Th),

zh(x, 0) = u0h(x, 0)− ūh(x),
(4.8)

here, we use the fact that ūh(x) is independent of t, and F n = fn − f̄ . Before

continuing the analysis below, we need to recall the following result [62]:

‖ū− ūh‖k ≤ Ch
p−k ‖ū‖p , k = 0, 1; p = 2, 3. (4.9)

4.1 Long Time Stability

In this section, we derive the long time stability for the problem (1.1)-(1.4). Firstly,

we make the following assumptions.
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(A1) Assume that the initial data u0(x) and the body force f(x, t) satisfy that, for

any given t > 0,

u0(x) ∈ L2(Ω), with ‖u0‖0 + e−λ1Kt
∫ t

0

eλ1Ks ‖f‖0 ds ≤ C,

where C is a positive constant. Hereafter, we will use the letter C to denote a general

positive constant which may take different values in different places but independent

of the mesh size h and the time step ∆t.

(A2) Assume that the initial data u0(x) and the body force f(x, t) satisfy

u0(x) ∈ H2
α(Ω), with ‖u0‖2 + e−λ1Kt

∫ t

0

eλ1Ks ‖fs‖0 ds ≤ C.

Obviously, from the first equation in (1.1) and (A2), it yields that ‖ut0‖0 ≤ C, if

‖ft(0)‖0 is bounded.

Theorem 4.1. Suppose that (A1) is valid. Then the solution u of the problem (1.1)-

(1.4) satisfies the following regularities, for any given s > 0,

‖u‖0 ≤ e−λ1Ks‖u0‖0 + e−λ1Ks
∫ s

0

eλ1Kt‖f‖0 dt. (4.10)

Furthermore, if (A2) holds, we have, for any given s > 0, that

‖us‖0 ≤ e−λ1Ks‖us0‖0 + e−λ1Ks
∫ s

0

eλ1Kt‖ft‖0 dt. (4.11)

Proof. Setting v = u in (4.3), we have

(ut, u) + a(u, u) = (f, u).

Using the fact that (ut, u) = 1
2
d
dt
‖u‖2

0 = ‖u‖0
d
dt
‖u‖0, and Cauchy-Scharwz inequality,

we have

‖u‖0
d

dt
‖u‖0 +K‖u‖2

1 ≤ ‖f‖0‖u‖0. (4.12)
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Using (4.1), eliminating the common factor ‖u‖0, and multiplying by eλ1Kt, we have

d

dt
(eλ1Kt‖u‖0) ≤ eλ1Kt‖f‖0. (4.13)

Integrating the above inequality respect to the time t from 0 to s, and multiplying

by e−λ1Ks, we get

‖u‖0 ≤ e−λ1Ks‖u0‖0 + e−λ1Ks
∫ s

0

eλ1Kt‖f‖0 dt. (4.14)

Taking derivative in (4.3), we have

(utt, v) + a(ut, v) = (ft, v). (4.15)

Letting v = ut, and similar to (4.12)-(4.13), we have

d

dt
(eλ1Kt‖ut‖0) ≤ eλ1Kt‖ft‖0.

Integrating the above inequality respect to the time t from 0 to s, and multiplying

by e−λ1Ks, we get

‖us‖0 ≤ e−λ1Ks‖us0‖0 + e−λ1Ks
∫ s

0

eλ1Kt‖ft‖0 dt.

By the similar process, we can prove the following theorem for the semi-discrete

approximation problem (4.5) using the IFE methods.

Theorem 4.2. Suppose that (A1) is valid. Then the solution u of the problem (4.5)

satisfies the following regularities, for any given s > 0,

‖uh‖0 ≤ e−λ1Ks‖u0‖0 + e−λ1Ks
∫ s

0

eλ1Kt‖f‖0 dt,

Furthermore, if (A2) holds, we have, for any given s > 0, that

‖uh,s‖0 ≤ e−λ1Ks‖us0‖0 + e−λ1Ks
∫ s

0

eλ1Kt‖ft‖0 dt.
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Now, we consider the fully discrete approximation problem (4.7) of the problem

(1.1)-(1.4).

Theorem 4.3. Suppose assumption (A1) is valid. For any given integer n > 0, the

solution sequence {unh} generated by (4.7) satisfies

‖unh‖0 ≤
1

(1 + ∆tKλ1)n
‖u0‖0 + ∆t

n∑
m=1

‖fm‖0

(1 + ∆tKλ1)n−m+1
. (4.16)

Furthermore, if (A2) holds, we have, for any given s > 0, that

‖∂tunh‖0 ≤
1

(1 + ∆tKλ1)n
‖u0‖0 + ∆t

n∑
m=1

‖∂tfm‖0

(1 + ∆tKλ1)n−m+1
. (4.17)

Proof. Taking v = ∆tunh in (4.7), we have

(unh − un−1
h , unh) + ∆ta(unh, u

n
h) = ∆t(fn, unh).

Using Cauchy-Schwarz inequality, (4.1), and eliminatting the common factor ‖unh‖0,

we have

‖unh‖0 + ∆tKλ1 ‖unh‖0 ≤
∥∥un−1

h

∥∥
0

+ ∆t ‖fn‖0 , (4.18)

which implies that

‖unh‖0 ≤
1

1 + ∆tKλ1

(
∥∥un−1

h

∥∥
0

+ ∆t ‖fn‖0)

≤ 1

(1 + ∆tKλ1)n
‖u0‖0 + ∆t

n∑
m=1

‖fm‖0

(1 + ∆tKλ1)n−m+1
.

(4.19)

From (4.7), we have

(∂ttu
n
h, vh) + a(∂tu

n
h, vh) = (∂tf

n, vh), ∀ vh ∈ Sh(Th).

Letting vh = ∂tu
n
h, we have

(∂tu
n
h − ∂tun−1

h , ∂tu
n
h) +Kλ1∆t ‖∂tunh‖

2
0 ≤ ‖∂tf

n‖0 ‖∂tu
n
h‖0 .
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Using Cauchy-Schwarz inequality, and eliminatting the common factor ‖∂tunh‖0, we

have

‖∂tunh‖0 +Kλ1∆t ‖∂tunh‖0 ≤
∥∥∂tun−1

h

∥∥
0

+ ‖∂tfn‖0 .

Similar to (4.19), we have

‖∂tunh‖0 ≤
1

(1 + ∆tKλ1)n
‖u0‖0 + ∆t

n∑
m=1

‖∂tfm‖0

(1 + ∆tKλ1)n−m+1
.

The proof is completed.

4.2 Asymptotic Analysis

In this section, we analyze the asymptotic behavior for the problem.

4.2.1 Asymptotic Analysis on the L2 Norm

Theorem 4.4. Suppose (A1) is valid, and there exists T > 0, such that

lim
s→+∞

∫ s

T

∥∥f − f̄∥∥
0
dt = 0, (4.20)

ū and u are the solutions of the problems (4.2) and (4.3), respectively. Then, we

have for any given s > 0,

‖u− ū‖0 ≤ e−λ1Ks‖u0 − ū‖0 + e−λ1Ks
∫ s

0

eλ1Kt‖f − f̄‖0 dt. (4.21)

Furthermore, if (A2) holds, and there exists T > 0, such that

lim
s→+∞

∫ s

T

‖ft‖0 dt = 0, (4.22)
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we have for any given s > 0, that

e−λ1Ks
∫ s

0

eλ1Kt ‖u− ū‖1 dt ≤
1

Kλ1/2
1

e−λ1Ks
∫ s

0

eλ1Kt
∥∥f − f̄∥∥

0
dt

+
1

Kλ1/2
1

e−λ1Ks
∫ s

0

‖ut0‖0 dt+
1

Kλ1/2
1

e−λ1Ks
∫ s

0

∫ t

0

eλ1Ks̃ ‖fs̃‖0 ds̃ dt.

(4.23)

Remark 4.1. From Theorem 4.4, we can see that if f(x, t) is smooth enough with

respect to the time t, (4.22) follows directly from (4.20) when the time t is large

enough. Furthermore, the right hand side term in (4.21) and (4.33) will attend to

zero when t → +∞ which suggests that the solution of the problem (4.2) converges

to that of the steady-state problem (4.3).

Proof. Letting v = z in (4.4), we have

(zt, z) + a(z, z) = (F, z). (4.24)

Using the similar technique as (4.12)-(4.14), we can get (4.21) easily.

From (4.24), we have

K‖z‖2
1 ≤ (F, z)− (zt, z).

Using Cauchy-Schwarz inequality, and (4.1), we have

‖z‖2
1 ≤

1

K
(‖F‖0 ‖z‖0 + ‖zt‖0 ‖z‖0) ≤ 1

Kλ1/2
1

(‖F‖0 ‖z‖1 + ‖zt‖0 ‖z‖1).

Eliminating the common factor, multiplying by eλ1Kt, integrating from 0 to s, and

multiplying by e−λ1Ks, we have

e−λ1Ks
∫ s

0

eλ1Kt ‖z‖1 dt ≤
1

Kλ1/2
1

e−λ1Ks
∫ s

0

eλ1Kt ‖F‖0 dt+
1

Kλ1/2
1

e−λ1Ks
∫ s

0

eλ1Kt ‖zt‖0 dt.

(4.25)
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Similar to (4.11), we have

‖zt‖0 ≤ e−λ1Kt‖ut0‖0 + e−λ1Kt
∫ t

0

eλ1Ks̃‖Fs̃‖0 ds̃.

Inserting the above inequality into (4.25), and racalling that F = f − f̄ , we obtain

(4.33). The proof is completed.

For the finite element semi-discrete approximation problem (4.5), we have the

following theorem. The proof is similar to the continuous problem, which is omitted

here.

Theorem 4.5. Suppose assumption (A1) and (4.20) are valid. uh and ūh are the

solutions of the problems (4.5) and (4.2), respectively. Then, we have, for any given

s > 0,

‖uh − ūh‖0 ≤ e−λ1Ks‖u0 − ū‖0 + e−λ1Ks
∫ s

0

eλ1Kt‖f − f̄‖0 dt. (4.26)

Futhermore, if (A2) and (4.22) hold, we have for any given s > 0, that

e−λ1Ks
∫ s

0

eλ1Kt ‖uh − ūh‖1 dt ≤
1

Kλ1/2
1

e−λ1Ks
∫ s

0

eλ1Kt
∥∥f − f̄∥∥

0
dt

+
1

Kλ1/2
1

e−λ1Ks
∫ s

0

‖ut0‖0 dt+
1

Kλ1/2
1

e−λ1Ks
∫ s

0

∫ t

0

eλ1Ks̃ ‖fs̃‖0 ds̃ dt.

(4.27)

Finally, we have the following results for the fully discrete scheme.

Theorem 4.6. Suppose assumption (A1) and (4.20) are valid. ūh and unh are the

solutions of the problems (4.2) and (4.7), respectively. Then, we have for any given

integer n > 0,

‖unh − ūh‖0 ≤
1

(1 + ∆tKλ1)n
‖u0‖0 + ∆t

n∑
m=1

∥∥fm − f̄∥∥
0

(1 + ∆tKλ1)n−m+1
. (4.28)
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Futhermore, if (A2) and (4.22) hold, we have for any given n > 0, that

K∆t
n∑

m=1

‖unh − ūh‖1 ≤ λ
−1/2
1 ∆t

n∑
m=1

∥∥fm − f̄∥∥
0

+ λ
−1/2
1

n∑
m=1

1

(1 + ∆tKλ1)m
‖u0‖0

+ λ
−1/2
1 ∆t

n∑
m=1

m∑
k=1

∥∥fk − f̄∥∥
0

(1 + ∆tKλ1)m−k+1
.

(4.29)

Proof. Letting n = m, and taking vh = 2∆tzmh in (4.8), we have

(zmh − zm−1
h , zmh ) + ∆ta(zmh , z

m
h ) = ∆t(Fm, zmh ). (4.30)

Then, similar to the proof of (4.16), we can get the estiamtes of unh − ūh in L2 norm

easily.

From (4.30), using Cauchy-Schwarz inequality, the coerciveness of the bilinear

form a(·, ·), and (4.1), we have

‖zmh ‖
2
0 +K∆t ‖zmh ‖

2
1 ≤ ∆t ‖Fm‖0 ‖z

m
h ‖0 +

∥∥zm−1
h

∥∥
0
‖zmh ‖0

≤ λ
−1/2
1 ∆t

∥∥fm − f̄∥∥
0
‖zmh ‖1 + λ

−1/2
1

∥∥zm−1
h

∥∥
0
‖zmh ‖1 .

Eliminating the common factor, the above inequality implies that

K∆t ‖zmh ‖1 ≤ λ
−1/2
1 ∆t

∥∥fm − f̄∥∥
0

+ λ
−1/2
1

∥∥zm−1
h

∥∥
0
.

Taking summation from 1 to n, we have

K∆t
n∑

m=1

‖zmh ‖1 ≤ λ
−1/2
1 ∆t

n∑
m=1

∥∥fm − f̄∥∥
0

+ λ
−1/2
1

n∑
m=1

∥∥zm−1
h

∥∥
0
,

Inserting the estimates of
∥∥zn−1

h

∥∥
0

into the above inequality, we can get the second

inequalities in (4.28). The proof is completed.

Remark 4.2. Recalling the convergence results in (5.3) for the spatial discrete, we

know immediately that the fully discrete solution converge to the exact solution of the

steady-state solution when h→ 0 and t→ +∞.
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4.2.2 Asymptotic Analysis on the H1 Norm

We discuss, further, the behavior of the solution as t → +∞ assuming that the

forcing term satisfying the following assumption:

(A3) ft, f ∈ L∞(R+, L2(Ω)), i.e. sup
t≥0

(‖f‖0 + ‖ft‖0) ≤ C,

and lim
t→+∞

‖f − f̄‖0 = 0.

Theorem 4.7. Suppose assumption (A1) and (4.20) are valid. uh and ūh are the

solutions of the problems (4.5) and (4.2), respectively. Then, we have, for any given

s > 0,

‖u− ū‖2
1 ≤ Ce−2δ0s(‖u0 − ū‖2

0 + ‖f0‖2
0) + Ce−2δ0s

∫ s

0

‖f − f̄‖2
0 + ‖ft‖2

0 dt, (4.31)

here, C is a positive constant depended on the data (Ω, K, δ0, λ1), and 0 < δ0 <

min{1, 1
2
Kλ1}.

Proof. Letting v = e2δ0tzt in (4.4), we have

(zt, e
2δ0tzt) + a(z, e2δ0tzt) = (F, e2δ0tzt). (4.32)

Since a(·, ·) is nonsymmetric, we have

a(z, e2δ0tzt) =
1

2

d

dt
(e2δ0ta(z, z))− δ0e

2δ0ta(z, z) +
1

2
e2δ0ta(z, zt)−

1

2
e2δ0ta(zt, z).

(4.33)

Substituting (4.33) into (4.32), integrating from 0 to s, using Cauchy-Schwarz in-

equality, Young’s inequality, we get

K1

2
e2δ0s‖z‖2

1 ≤
1

4

∫ s

0

e2δ0t‖F‖2
0 dt+

∫ s

0

(1 + δ0)e2δ0t‖z‖2
1 dt+

∫ s

0

e2δ0t‖zt‖2
1 dt+

1

2
‖z(0)‖2

1.
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Multiplying by e−2δ0s in the above inequality, we have

‖z‖2
1 ≤ C(e−2δ0s

∫ s

0

e2δ0t‖F‖2
0 dt+ e−2δ0s

∫ s

0

e2δ0t‖z‖2
1 dt

+ e−2δ0s

∫ s

0

e2δ0t‖zt‖2
1 dt+ e−2δ0s‖z(0)‖2

1).

(4.34)

Letting v = e2δ0tz in (4.4), we have

(zt, e
2δ0tz) + a(z, e2δ0tz) = (F, e2δ0tz),

which implies that

1

2

d

dt
(e2δ0t ‖z‖2

0) +K‖z‖2
1 ≤ e2δ0t ‖F‖0 ‖z‖0 + δ0e

2δ0t ‖z‖2
0 .

Since δ0 <
Kλ1

2
, using Young’s inequality, we have

‖F‖0 ‖z‖0 ≤
1

4(Kλ1
2
− δ0)

‖F‖2
0 + (

Kλ1

2
− δ0) ‖z‖2

0 .

Using the fact that ‖z‖2
0 ≤ λ−1

1 ‖z‖
2
1, and integration from time 0 to s, we have

e2δ0s ‖z‖2
0 +

∫ s

0

e2δ0t ‖z‖2
1 dt ≤ C(

∫ s

0

e2δ0t ‖F‖2
0 dx+

∫ s

0

e2δ0t ‖z‖2
0 dx).

Multiplying by e−2δ0s, we have

e−2δ0s

∫ s

0

e2δ0t‖z‖2
1 dt ≤ Ce−2δ0s‖z0‖2

0 + Ce−2δ0s

∫ s

0

‖F‖2
0 dt. (4.34)

Similarly, taking derivative in (4.4), we have

(ztt, v)a(zt, v) = (F, v).

Letting v = e−2δ0tzt, we have

(ztt, e
−2δ0tzt) + a(zt, e

−2δ0tzt) = (F, e−2δ0tzt).
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Similarly, we have

e−2δ0s

∫ s

0

e2δ0t‖zt‖2
1 dt ≤ Ce−2δ0s‖ut0‖2 + Ce−2δ0s

∫ s

0

‖Ft‖2
0 dt. (4.32)

Inserting (4.2.2) and (4.2.2) into (4.34), it is easily to get (4.33).

Theorem 4.8. Suppose assumption (A1) and (4.20) are valid. uh and ūh are the

solutions of the problems (4.5) and (4.2), respectively. Then, we have, for any given

s > 0,

‖uh − ūh‖2
1 ≤ Ce−2δ0s(‖u0 − ū‖2

0 + ‖f0‖2
0) + Ce−2δ0s

∫ s

0

‖f − f̄‖2
0 + ‖ft‖2

0 dt,

(4.33)

here, C is a positive constant depended on the data (Ω, K, δ0, λ1).

Theorem 4.9. Suppose assumption (A1) and (4.20) are valid. ūh and unh are the

solutions of the problems (4.2) and (4.7), respectively. Then, we have for any given

integer n > 0,

‖unh − ūh‖2
1 ≤ Ce−2δ0tn‖u0 − ūh‖2

0 + Ce−2δ0tn
n∑

m=1

(‖fm − f̄‖2
0 + ‖fmt ‖2

0), (4.34)

here, C is a positive constant depending on the data (Ω, K, δ0, λ1).

Proof. Let vh = e2δ0tm∂tz
m
h in (4.8), we have

(∂tz
m
h , e

2δ0tm∂tz
m
h ) + a(zmh , e

2δ0tm∂tz
m
h ) = (Fm, e2δ0tm∂tz

m
h ). (4.35)

We know that

a(zmh , ∂tz
m
h ) =

1

2∆t
(a(zmh , z

m
h )− a(zm−1

h , zm−1
h )) +

1

2
a(zmh , ∂tz

m
h )− 1

2
a(∂tz

m
h , z

m−1
h )

≥ 1

2∆t
(a(zmh , z

m
h )− a(zm−1

h , zm−1
h ))− C(‖zmh ‖2

1 + ‖zm−1
h ‖2

1 + ‖∂tzmh ‖2
1).
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Substituting above inequality into (4.35), and using Cauchy-Schwarz inequality,

Young’s inequality to the right hand side term, we have

e2δ0tm‖∂tzmh ‖2
0 +

1

2∆t
e2δ0tm(a(zmh , z

m
h )− a(zm−1

h , zm−1
h ))

≤ e2δ0tm‖Fm‖2
0 + C(e2δ0tm‖zm−1

h ‖2
1 + e2δ0tm‖zmh ‖2

1 + e2δ0tm‖∂tzmh ‖2
1).

(4.36)

Multiplying by 2∆t, using the fact that

e2δ0tn‖zn−1
h ‖2

0 ≤ e2δ0tn−1‖zn−1
h ‖2

0 + 2δ0∆te2δ0tn‖zn−1
h ‖2

0, (4.37)

and taking summing from 1 to n, then multiplying by e−2δ0tn , we have

e−2δ0tn2∆t
n∑

m=1

e2δ0tm‖∂tzmh ‖2
0 +K‖znh‖2

1

≤ C∆te−2δ0tn
n∑

m=1

e2δ0tm‖zmh ‖2
1 + C∆te−2δ0tn

n∑
m=1

e2δ0tm‖∂tzmh ‖2
1

+ Ce−2δ0tn
n∑

m=1

e2δ0tm‖Fm‖2
0 + C∆te−2δ0tne2δ0∆t‖z0

h‖2
1 + e−2δ0tn‖z0

h‖2
1.

Then, we have

e−2δ0tn2∆t
n∑

m=1

e2δ0tm‖∂tzmh ‖2
0 +K‖znh‖2

1

≤ Ce−2δ0tn
n∑

m=1

e2δ0tm‖Fm‖2
0 + C∆te−2δ0tn

n∑
m=1

e2δ0tm‖∂tzmh ‖2
1 + Ce−2δ0tn‖z0

h‖2
1.

(4.38)

Now, we aim to estimate the second term on the right hand side ∆te−2δ0tn
n∑

m=1

e2δ0tm‖∂tzmh ‖2
1.

Taking derivative in (4.8), we have

(∂ttz
m
h , vh) + a(∂tz

m
h , vh) = (∂tF

m, vh).
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Let vh = e2δ0tm∂tz
m
h , we have

1

2∆t
(e2δ0tm‖∂tzmh ‖2

0 − e2δ0tm‖∂tzm−1
h ‖2

0) +Ke2δ0tm‖∂tzmh ‖2
1

≤ 1

4ε
e2δ0tm‖Fm

t ‖2
0 + εe2δ0tm‖∂tzmh ‖2

0.

Multiplying by 2∆t, and using the fact that

e2δ0tm‖∂tzm−1
h ‖2

0 ≤ e2δ0tm−1‖∂tzm−1
h ‖2

0 + 2δ0∆te2δ0tn‖∂tzm−1
h ‖2

0,

we have

e2δ0tm‖∂tzmh ‖2
0 − e2δ0tm−1‖∂tzm−1

h ‖2
0 + 2∆tKe2δ0tm‖∂tzmh ‖2

1

≤ 1

4ε
2∆te2δ0tm‖Fm

t ‖2
0 + 2∆tεe2δ0tm‖∂tzmh ‖2

0 + 2δ0∆te2δ0tn‖∂tzm−1
h ‖2

0.

Taking summation from 1 to n, and multiplying by e−2δ0tn , we obtain

‖∂tznh‖2
0 + e−2δ0tn

n∑
m=1

2∆tKe2δ0tm‖∂tzmh ‖2
1 ≤ e−2δ0tn

n∑
m=1

1

2ε
∆te2δ0tm‖Fm

t ‖2
0

+ e−2δ0tn
n∑

m=1

(ε+ δ0)2∆te2δ0tm‖∂tzmh ‖2
0 + Ce−2δ0tnh‖z0

h‖2
0,

where, we used the fact that ∂tz
0
h = z0

h. Substituting above inequality into (4.38),

choosing ε = 1 − δ0, and noting (A1), we we have (4.34) immediately. The proof is

completed.

4.3 Numerical Experiments

In this section, we present some numerical results to verify the error estimates derived

in the above section. Let x ∈ [0, 1]. Assume that there are two interface points: α0

and α1, which separate the interval into there sub-intervals [0, α0], [α0, α1] and [α1, 1].
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The exact solution u for this problem is set to be

u(x, t) =


u0(x)(1 + e−t), x ∈ [0, α0], t > 0,

u1(x)(1 + e−t), x ∈ [α0, α1], t > 0,

u2(x)(1 + e−t), x ∈ [α1, 1], t > 0,

with

u0 =
x2v0(x)(α1 − 1)

α2
0

− x2v0(α0)(α1 − 1)

α2
0

+
1

2

gx2

D0α0

,

u1 = v1(x)(α1 − 1) +
D2

D1

v2(x)(x− α1),

u2 = v2(x)(x− 1),

here,

v0(x) =
xn

D0

− 1

D0

(
2δ1

D1

(αn0 − αn1 ) + αn1 )(x− α0), n ∈ Z+,

v1(x) =
xn − αn1
D1

+
αn1
2δ1

,

v2(x) = (D2n)−1(
δ2

δ1

− 1)α1(xn − αn1 ) +
αn1
2δ1

+
xn − αn1
D2

,

g = D2v
′
2(α0)(α0 − α1) +D2v2(α0)− 2δ1

D2

D1

v2(α0)(α0 − α1).

The form of the exact solution u is designed to satisfy the parabolic equations,

boundary condition and the jump conditions in (1.1)-(1.4). The right hand side

term f(x, t) is determined by (1.1)-(1.4).

Example 4.1. In the first example, we use the linear and quadratic IFE methods

to solve the problem (1.1)-(1.4), respectively. In addition, we choose α0 = 1/3, α1 =

2/3, n = 6, D0 = 1.5, D1 = 0.3, D2 = 0.15, δ0 = 0, δ1 = 7.5, δ2 = 10, β0 = 0, β1 =

30, β2 = 15, and set the mesh size h = 1/40, the time step ∆t = 0.1.

Based on linear and quadratic IFE methods, we plot the errors between the fully

discrete solution unh of the multi-layer porous wall model for the drug-eluting stents
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and the IFE solution ūh of the steady-state problem in Figures 4.1 and 4.3, respec-

tively. We observe that the system (1.1)-(1.4) approaches to the steady problem

(1.3)-(1.7) (about t > 5) when ‖f(t, x)− f̄(x)‖0 → 0 both in the L2 and H1 norms,

which is consistent with the theoretical predictions. Then, we compare the values

of the fully discrete IFE scheme of the unsteady problem (1.1)-(1.4), and the exact

solution of the steady problem (1.3)-(1.7) by using the linear and quadratic IFE

methods in Figures 4.2 and 4.4, respectively. The values of the two solutions are

almost same, which suggests that the multi-layer porous wall model converges to

a steady problem. In addition, we can see that there is no difference between the

two graphs when n = 50 and n = 100, the theoretical analysis stated in the above

section is verified again. We also plot the procedure how the numerical solution of

the unsteady problem converge to the exact solution of the steady problem in Figure

4.5. The graphs of the numerical solution coincide with the exact solution of the

steady problem when iteration times n > 50, which illustrates that the numerical

solutions based on the IFE method have a well performance in solving the interface

problem. In Figure 4.6, we plot the logarithm of ‖unh − ūh‖0 and ‖unh − ūh‖1 by

using linear and quadratic IFE methods respectively. All of them are straight lines

with negative slope, which illustrates that the fully discrete solution of the unsteady

problem converges to the exact solution of the steady-state problem exponentially.

Example 4.2. In this example, we choose the coefficients have a large jump, for

example, letting D0 = 1000, D1 = 10, D2 = 0.1. Of course, we can change the

interface points, for example let α0 = 1/7, α1 = 6/7. The other parameters are same

to the first example.

In Figure 4.7, we compare the numerical solutions of the unsteady problem gen-

erated by the linear and quadratic IFE methods and the exact solution of the steady-
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Figure 4.1: Errors ‖unh − ūh‖
2
0 (left), and ‖unh − ūh‖

2
1 (right) using the linear IFE

method (h = 1/40).
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Figure 4.2: The values of unh(x) when iterate 50 times (left), and 100 times (right)
using the linear IFE method by comparison with the exact solution of the steady
problem (h = 1/40).
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Figure 4.3: Errors ‖unh − ūh‖0 (left), and ‖unh − ūh‖1 (right) using the quadratic IFE
method (h = 1/40).
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Figure 4.4: The values of unh(x) when iterate 50 times (left), and 100 times (right)
using the quadratic IFE method by comparison with the exact solution of the steady
problem (h = 1/40).
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ū
(x
)
an

d
u
n h
(x
)

n=10

n=20

n=30

n=40

n=50

n=60

ū(x)

Figure 4.5: Linear IFE method (left) and Quadratic IFE method (right) (h = 1/40).
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Figure 4.6: The errors of ln(‖unh − ūh‖0) and ln(‖unh − ūh‖1) using linear (left) and
Quadratic (right) IFE method (h = 1/40).
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ū
(x
)
an

d
u
5
0

h
(x
)

Unsteady problem
Steady problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.2

-0.15

-0.1

-0.05

0

0.05

ū
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Figure 4.7: Linear IFE method (left) and Quadratic IFE method (right) (h = 1/40).
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Figure 4.8: Linear IFE method (left) and Quadratic IFE method (right) (h = 1/40).
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ū
(x
)
an

d
u
n h
(x
)

n=10

n=20

n=30

n=40

n=50

n=60
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Figure 4.9: Linear IFE method (left) and Quadratic IFE method (right) (h = 1/40).
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state problem. When the iteration times n > 50, they have already coincide with

each other, which shows that the IFE method can produce accurate solutions to the

interface problems, even if the jump of the coefficient is very large. Errors at the

each time level in L2 and H1 norms are plotted in Figure 4.8, from which we can

see that the IFE method has a well control on the error. To observe the convergence

performance of the IFE method, we plot the numerical solution on several time level

in Figure 4.9. We can see that the IFE method can handle the interface problem

very well. Since we change the location of the interface points in this example, it in

addition demonstrates that the convergence is independent of the location of the in-

terface points. Figure 4.10 plots the logarithm of the error ‖unh− ūh‖0 and ‖unh− ūh‖1

using linear and quadratic IFE methods, respectively. We can see that they are all

straight lines, which indicates the errors between the fully discrete solution of the

unsteady problem and the exact solution of the steady problem exponential decay.

The phenomenon is consistent with our theoretical results.

Remark 4.3. In Figure 4.9, we can see that the IFE solutions of (1.1)-(1.4) is

not exactly same to the exact solution of the steady-state problem when x ∈ (0.9, 1).

The reason causing this phenomenon is that we used a rough mesh (h=1/40). This

phenomenon will disappear as the mesh size becomes smaller, such as h = 1/160.

Meanwhile the figures show that the numerical solutions and the exact solution are

almost same near the two interface points even for the rough mesh size. Therefore,

these experiments strongly suggest that our method can handle the interface very well.
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Chapter 5

IFE Methods for the Time
Dependent Multi-layer Porous

Wall Model

In this chapter, IFE method are employed to solve the time dependent multi-layer

porous wall model. Typical semi-discrete and fully discrete schemes are presented and

analyzed. Optimal convergence rate for both semi-discrete and fully discrete schemes

is proved. Some numerical experiments are provided to validate our theoretical

results. In this chapter, we use the same notation introduced in Section 2.1. Recalling

that the weak formula for the parabolic system (1.1)-(1.4) is that: find u ∈ H1
α(Ω),

such that for all t > 0,

(ut, v) + a(u, v) = (f, v), ∀ v ∈ H1
α(Ω), (5.1)

u(x, 0) = u0(x), x ∈ Ω. (5.2)

where the bilinear form a(u, v) is defined as

a(u, v) =
[v]α0 [u]α0

λ
+

∫ αn

α−1

(
v′(x)(Du′(x)− 2δu(x)) + βv(x)u(x)

)
dx, ∀u, v ∈ H1

α(Ω).

As usual, we also denote Th the partition for the domain Ω. T int and T non are

used to denote the collection of the interface elements and non-interface elements,
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Figure 5.1: 1D linear (left) and quadratic (right) IFE local basis function.

respectively. In addition, we also assume that each interface element contains only

one interface point. Following the general framework of IFE, on each non-interface

element T ∈ T nonh , the local IFE space is the standard linear or quadratic finite

element space. Otherwise, on each interface element T ∈ T inth , we use the linear

or quadratic IFE space constructed in Chapter 2 and Chapter 3. We plot the local

linear and quadratic basis in Figure 5.1. We recall that the local IFE space Sh(T ) is

defined by

Sh(T ) = span{φi, i = 1, . . . , p},

where, p = 2 or p = 3 depends on the IFE space (linear or quadratic). So, for each

element T ∈ Th, we can define the the linear and quadratic IFE space on the whole

solution domain Ω as follows:

Sh(Th) = {v| v ∈ L2(Ω), v|Ω± ∈ C0(Ω±), v|T ∈ Sh(T ), v(αn) = 0, ∀T ∈ Th}.

The following convergence results are carried out in Chapter 2 and Chapter 3:

‖u− uh‖k ≤ Ch
p−k ‖u‖p , k = 0, 1; p = 2, 3. (5.3)
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With the above notations, we recall that the semi-discrete scheme in (4.5) for the

parabolic equation as follows: find uh ∈ Sh(Th) such that, for all t > 0, (uh,t, vh) + a(uh, vh) = (f, vh), ∀ vh ∈ Sh(Th),

uh(x, 0) = u0h(x), x ∈ Ω,
(5.4)

where u0h is an approximation of u0 in the space Sh(Th). Let ∆t = T
Nt

satisfying

0 < ∆t < 1 be the time step, and tn = n∆t (n = 0, 1, 2, ..., Nt). Denoting φn the

value of φ(tn), then, for a sequence {φn}Nt
n=0, we define

∂tφ
n =


φn − φn−1

∆t
, n = 2, ..., Nt,

φ1

∆t
, n = 1,

Applying the backward Euler scheme, we have the fully discrete scheme for the

problem (4.5): find a sequence {unh}
Nt
n=0 such that (∂tu

n
h, vh) + a(unh, vh) = (fn, vh), ∀ vh ∈ Sh(Th),

u0
h = u0h, x ∈ Ω.

(5.5)

5.1 Error Estimation for Semi-discrete Scheme

In this section, we derive a priori error estimates for semi-discrete scheme (5.4). The

error bound based on the norm defined in (2.2). Firstly, Let Rh : Hα
1 (Ω) → Sh(Th)

be the elliptic projection defined by

a(u−Rhu, vh) = 0, ∀ vh ∈ Sh(Th). (5.6)

Note that Rhu is well defined by the coercivity of a(·, ·) on the space Sh(Th) if the

coefficients of problem (1.1) satisfy the same assumption in Theorem 2.1. In addition,

we present the following lemma, the proof is similar to the Lemma 3.3 in [53], so we

omit it here.
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Lemma 5.1. Assume that u ∈ H2(0, T ;Hp
α(Ω)), t ∈ [0, T ], Rh is the elliptic projec-

tion defined above. Then, for p = 2, 3, the following error estimates hold,

‖u−Rhu‖0 + h ‖u−Rhu‖1 ≤ Ch
p ‖u‖p ,

‖(u−Rhu)t‖0 + h ‖(u−Rhu)t‖1 ≤ Ch
p ‖ut‖p ,

‖(u−Rhu)tt‖0 + h ‖(u−Rhu)tt‖1 ≤ Ch
p ‖utt‖p .

(5.7)

Remark 5.1. The value of p in the error estimates for the elliptic projection depends

on which IFE method were used, such as, if we use the liner IFE space, then p = 2.

Analogously, if the quadratic IFE space is used, then p should be 3.

It is clearly that, the results when we use quadratic IFE space are similarly to

the results linear IFE space is used. Therefore, we used the linear IFE method in

the following. The same properties can be get for the quadratic IFE methods.

Theorem 5.1. Assume that the exact solution u of the problem (1.3)-(1.7) satisfies

u ∈ H1(0, T ;H2
α(Ω)), and u0 ∈ H2

α(Ω). Let uh be the IFE solution of (5.4) and let

u0h = Rhu0 be the elliptic projection of u0. Then, there exist a constant C such that

for all t ∈ (0, T ],

‖uh − u‖0 ≤ Ch
2(‖u0‖2 + ‖u‖2 +

∫ t

0

‖ut‖2 ds).

Proof. Subtracting (5.1) from (5.4), and denoting γ = uh − u, we have

(γt, vh) + a(γ, vh) = 0. (5.8)

Now, letting the total error γ = θ + ρ, where θ = uh − Rhu, ρ = Rhu − u. From

(5.8), we obtain

(γt, vh) + a(θ, vh) + a(ρ, vh) = 0, ∀ vh ∈ Sh(Th),
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which implies

(θt, vh) + (ρt, vh) + a(θ, vh) = 0, ∀ vh ∈ Sh(Th). (5.9)

Letting vh = θ, and using (5.6), it is easy to get

(θt, θ) + (ρt, θ) + a(θ, θ) = 0,

which together with a(θ, θ) ≥ 0 implies that

‖θ‖0

d

dt
‖θ‖0 ≤ ‖ρt‖0 ‖θ‖0 .

Eliminating the common factor ‖θ‖0, and integrating form 0 to t, the following

estimate holds:

‖θ‖0 ≤ C(‖θ(0)‖0 +

∫ t

0

‖ρt‖0 ds). (5.10)

Letting uh(0) = Ǐhu0, we have

‖θ(0)‖0 ≤ ‖uh(0)− u0‖0 + ‖u0 −Rhu(0)‖0

≤ Ch2 ‖u0‖2 + Ch2 ‖u0‖2 ,

≤ Ch2 ‖u0‖2 ,

(5.11)

here, Ǐh is the IFE interpolation we defined in Chapter 2. Substituting (5.11) and

(5.7) into (5.10), we get

‖θ‖0 ≤ Ch
2(‖u0‖2 +

∫ t

0

‖ut‖2 dt)

≤ Ch2(‖u0‖2 +

∫ t

0

‖ut‖2 ds).

Then, by using the triangle inequality, we have

‖u− uh‖0 ≤ ‖θ‖0 + ‖ρ‖0 ≤ Ch
2(‖u0‖2 + ‖u‖2 +

∫ t

0

‖ut‖2 ds). (5.12)
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Theorem 5.2. Assume that the exact solution u of the problem (1.3)-(1.7) satisfies

u ∈ H2(0, T ;H2
α(Ω)), and u0 ∈ H2

α(Ω). Let uh be the IFE solution of (5.5) and let

u0h = Rhu0 be the elliptic projection of u0. Then, there exists a constant C such that,

for all t ∈ (0, T ],

‖uh − u‖1 ≤ Ch(‖u0‖2 + ‖ut(0)‖2 +

∫ t

0

‖ut‖2 ds+

∫ t

0

‖utt‖2 ds).

Proof. Recalling that γ = uh − u = uh −Rhu+Rhu− u = θ + ρ, and

‖ρ‖1 ≤ Ch ‖u‖2 ≤ Ch(‖u0‖2 +

∫ t

0

‖ut‖2) ds, (5.13)

it is suffices to bound the error ‖θ‖1. Letting vh = θt in (5.9), we have

‖θt‖2
0 + a(θ, θt) = −(ρt, θt). (5.14)

Since a(·, ·) is nonsymmetric,

a(θ, θt) =
1

2

d

dt
a(θ, θ) +

1

2
a(θ, θt)−

1

2
a(θt, θ)

≥ 1

2

d

dt
a(θ, θ)− 1

2
‖θt‖2

1 −
1

2
‖θ‖2

1 .

(5.15)

Inserting (5.15) into (5.14), and integrating from 0 to t, we can obtain

∫ t

0

‖θt‖2
0 ds+ ‖θ‖2

1 ≤ C
∫ t

0

(‖ρt‖2
0 + ‖θt‖2

1 + ‖θ‖2
1) ds. (5.16)

Taking derivative in (5.9), we have

(θtt, vh) + (ρtt, vh) + a(θt, vh) = 0, ∀ vh ∈ Sh(Th).

Letting vh = θt in above equation, and using the coercivity of the bilinear form a(·, ·),

it is easy to obtain

1

2

d

dt
‖θt‖2

0 +K‖θt‖2
1 ≤ C(‖ρtt‖

2
0 + ‖θt‖2

0).
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Integrating the above inequality form 0 to t, we get easily

‖θt‖2
0 +

∫ t

0

‖θt‖2
1 ds ≤ C(

∫ t

0

‖ρtt‖2
0 ds+

∫ t

0

‖θt‖2
0 ds) + C ‖θt(·, 0)‖2

0 .

Using Gronwall inequality and the nonnegativity of the term ‖θt‖2
0, it is natural to

get ∫ t

0

‖θt‖2
1 ds ≤ C(

∫ t

0

‖ρtt‖2
0 ds+ ‖θt(·, 0)‖2

0). (5.17)

Letting t = 0, and vh = θt(·, 0), (5.9) becomes

‖θt(·, 0)‖2
0 +K‖θt(·, 0)‖2

1 ≤ ‖ρt(·, 0)‖0 ‖θt(·, 0)‖0 ,

which implies that

‖θt(·, 0)‖0 ≤ ‖ρt(·, 0)‖0 . (5.18)

Inserting (5.18) and (5.17) into (5.16), we have

∫ t

0

‖θt‖2
0 ds+ ‖θ‖2

1 ≤ C(
∫ t

0

(‖ρt‖2
0 ds+

∫ t

0

‖ρtt‖2
0 ds+ ‖ρt(·, 0)‖0 +

∫ t

0

‖θ‖2
1 ds).

Using Gronwall inequality, and the estimation of ‖ρt‖0 , ‖ρtt‖0 in Lemma 5.1, we

have ∫ t

0

‖θt‖2
0 ds+ ‖θ‖2

1 ≤ Ch(‖ut(·, 0)‖2 +

∫ t

0

‖ut‖2 + ‖utt‖2 ds).

The above inequality together with (5.13) complete the proof.

5.2 Error Estimation for Fully Discrete Scheme

In this section, we study the error estimates in L2 and H1 norms using the backward

Euler scheme.
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Theorem 5.3. Let u and {unh}
Nt
n=1 be the solutions of problem (1.3)-(1.7) and the fully

discrete problem (4.7), respectively. In addition, we assume u ∈ H2(0, T ;H2
α(Ω)),

and u0 ∈ H2
α(Ω). Then, we have for n = 1, 2, . . . , Nt,

‖unh − un‖0 ≤ Ch
2(‖u0‖2 + ‖u‖2) + ∆t

∫ tn

0

‖utt‖0 ds. (5.19)

Proof. From (4.3) and (4.7), we have

(unt − ∂tunh, vh) + a(un − unh, vh) = 0, ∀ vh ∈ Sh(Th). (5.20)

As the previous theorem, we write un − unh = un − (Rhu)n + (Rhu)n − unh = ρn + θn.

Since the estimates for ρn are known, we now aim to bound the term θn. From the

definition of the elliptic projection Rh defined in (5.6), we have

a(ujh − (Rhu)j, vh) = a(ujh − u
j + uj − (Rhu)j, vh) = a(ujh − u

j, vh).

In addition, (5.20) implies

(∂tθ
j, vh) + a(θj, vh) = (∂t(u

j
h − (Rhu)j), vh) + a(ujh − (Rhu)j, vh)

= (∂t(u
j
h − u

j + uj − (Rhu)j), vh) + a(ujh − u
j, vh)

= (∂tρ
j, vh) + (∂t(u

j
h − u

j, vh) + (ujt − ∂tu
j
h, vh)

= (∂tρ
j, vh) + (ujt − ∂tuj, vh).

(5.21)

Letting vh = θj, multiplying by ∆t, using Cauchy-Schwarz inequality and the non-

negativity of a(θj, θj), we obtain

∥∥θj∥∥2

0
≤
∥∥θj∥∥

0

∥∥θj−1
∥∥

0
+ ∆t

∥∥∂tρj∥∥0

∥∥θj∥∥
0

+ ∆t
∥∥ujt − ∂uj∥∥0

∥∥θj∥∥
0
.

Eliminate the common factor ‖θj‖0 in the above inequality, we can get easily

∥∥θj∥∥
0
≤
∥∥θj−1

∥∥
0

+ ∆t
∥∥∂tρj∥∥0

+ ∆t
∥∥ujt − ∂uj∥∥0

.
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Taking summation from 1 to n, the above inequality becomes

‖θn‖0 ≤ ‖θ(0)‖0 + ∆t
n∑
j=1

∥∥∂tρj∥∥0
+ ∆t

n∑
j=1

∥∥ujt − ∂uj∥∥ . (5.22)

Now, we bound the second term on the right hand side.

∆t
n∑
j=1

∥∥∂tρj∥∥0
=

n∑
j=1

‖
∫ tj

tj−1

ρt ds‖0

≤
n∑
j=1

Ch2

∫ tj

tj−1

‖ut‖2 ds

≤ Ch2

∫ tn

0

‖ut‖2 ds.

(5.23)

By using the fact that

∫ tj

tj−1

(s− tj−1)utt ds =

∫ tj

tj−1

(s− tj−1) dut = ∆tujt − uj + uj−1,

we have

∆t
n∑
j=1

∥∥ujt − ∂uj∥∥ =
n∑
j=1

∆tujt − uj + uj−1 =
n∑
j=1

∫ tj

tj−1

(s− tj−1)utt ds ≤ ∆t

∫ tn

0

utt ds.

(5.24)

Inserting (5.11), (5.23), and (5.24) into (5.22), we can get (5.19) easily.

Theorem 5.4. Assume that u is the exact solution (1.3)-(1.7). Letting {unh}
Nt
n=1

be the solution of the backward Euler scheme (4.7). If u ∈ H3(0, T ;H2
α(Ω)), and

u0 ∈ H2
α(Ω), we have the following estimates satisfies for all 0 < n ≤ Nt,

‖unh − un‖
2
1 ≤ Ch

2(‖u0‖2 +

∫ tn

0

‖ut‖2
2 dt+

∫ tn

0

‖utt‖2
0 ds+

1

∆t

∫ ∆t

0

‖ut‖2 dt)

+ C(∆t)2(

∫ tn

0

‖utt‖2
0 dt+

∫ tn

0

‖uttt‖2
0 dt+

1

∆

∫ ∆t

0

‖utt‖2
0 dt).
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Proof. Letting vh = ∂tθ
j in (5.21), and using Cauchy-Schasrz inequality, it is easy to

get ∥∥∂tθj∥∥2

0
+ a(θj, ∂tθ

j) = (∂tρ
j, ∂tθ

j) + (ujt − ∂tuj, ∂tθj)

≤
∥∥∂tρj∥∥2

0
+
∥∥ujt − ∂tuj∥∥2

0
+

1

2

∥∥∂tθj∥∥2

0
.

(5.25)

Since the bilinear form a(·, ·) is nonsymmetric,

a(θj, ∂tθ
j) =

1

2∆t
(a(θj, θj)− a(θj−1, θj−1)) +

1

2∆t
a(θj, θj − θj−1)

− 1

2∆t
a(θj − θj−1, θj−1)

=
1

2∆t
(a(θj, θj)− a(θj−1, θj−1)) +

1

2
a(θj, ∂tθ

j)− 1

2
a(∂tθ

j, θj−1)

≥ 1

2∆t
(a(θj, θj)− a(θj−1, θj−1))− C(‖θj‖2

1 + ‖θj−1‖2
1 + ‖∂tθj‖2

1).

Substituting the above inequality into (5.25), we obtain

1

2

∥∥∂tθj∥∥2

0
+

1

2∆t
(a(θj, θj)− a(θj−1, θj−1)) ≤

∥∥∂tρj∥∥2

0
+
∥∥ujt − ∂tuj∥∥2

0

+ C(‖θj‖2
1 + ‖θj−1‖2

1 + ‖∂tθj‖2
1).

Multiply by 2∆t, take summation from 1 to n, and use the coercivity of the bilinear

form of a(·, ·) to get

∆t
n∑
j=1

∥∥∂tθj∥∥2

0
+K

∥∥θj∥∥2

1
≤ 2∆t

n∑
j=1

(
∥∥∂tρj∥∥2

0
+
∥∥ujt − ∂tuj∥∥2

0
)

+ C∆t
n∑
j=1

∥∥∂tθj∥∥2

1
+ C∆t

n∑
j=0

∥∥θj∥∥2

1
.

(5.26)

(5.21) implies

(∂ttθ
j, vh) + a(∂tθ

j, vh) = (∂ttρ
j, vh) + (∂tu

j
t − ∂ttuj, vh).
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Letting vh = ∂tθ
j, we have

1

∆t
(∂tθ

j − ∂tθj−1, ∂tθ
j) + a(∂tθ

j, ∂tθ
j) = (∂ttρ

j, ∂tθ
j) + (∂tu

j
t − ∂ttuj, ∂tθj).

Then, by using the fact that

(∂tθ
j−1, ∂tθ

j) ≥ −|(∂tθj−1, ∂tθ
j)| ≥ −1

2

∥∥∂tθj∥∥2

0
− 1

2

∥∥∂tθj−1
∥∥2

0
,

it is easy to get

1

2∆t
(
∥∥∂tθj∥∥2

0
−
∥∥∂tθj−1

∥∥2

0
) +K

∥∥∂tθj∥∥2

1
≤ C(

∥∥∂ttρj∥∥0
+
∥∥∂tujt − ∂ttuj∥∥0

)
∥∥∂tθj∥∥0

.

Multiplying the above inequality by 2∆t, and taking summation from 2 to n, we can

obtain

‖∂tθn‖2
0 + ∆t

n∑
j=2

∥∥∂tθj∥∥2

1
≤ ∆t

n∑
j=2

(
∥∥∂ttρj∥∥2

0
+
∥∥∂tujt − ∂ttuj∥∥2

0
) + C

∥∥∂tθ1
∥∥2

0
. (5.27)

Letting t = 1 and vh = ∂tθ
1 = θ1

∆t
in (5.21), we have

∥∥∂tθ1
∥∥2

0
+

1

2∆t
a(θ1, θ1) ≤ (

∥∥∂tρ1
∥∥

0
+
∥∥u1

t − ∂tu1
∥∥

0
)
∥∥∂tθ1

∥∥
0
.

The coercivity of the bilinear form a(·, ·) imolies

∥∥∂tθ1
∥∥2

0
+

1

∆t

∥∥θ1
∥∥2

1
≤ C(

∥∥∂tρ1
∥∥2

0
+
∥∥u1

t − ∂tu1
∥∥2

0
).

Substituting the above inequality into (5.27), and using the fact that ∆t ‖∂tθ1‖2
1 =

‖θ1‖2
1 /∆t, we can get easilys

‖∂tθn‖2
0+∆t

n∑
j=1

∥∥∂tθj∥∥2

1
≤

n∑
j=2

∆t(
∥∥∂ttρj∥∥2

0
+
∥∥∂tujt − ∂ttuj∥∥2

0
)+C(

∥∥∂tρ1
∥∥2

0
+
∥∥u1

t − ∂tu1
∥∥2

0
).
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Combining the above inequality together with (5.26), and using Gronwall inequality,

we have

∥∥θj∥∥2

1
≤ ∆t

n∑
j=1

(
∥∥∂tρj∥∥2

0
+
∥∥ujt − ∂tuj∥∥2

0
) +

n∑
j=2

∆t(
∥∥∂ttρj∥∥2

0
+
∥∥∂tujt − ∂ttuj∥∥2

0
)

+ C(
∥∥∂tρ1

∥∥2

0
+
∥∥u1

t − ∂tu1
∥∥2

0
).

(5.28)

By using Hölder’s inequality, we have

∥∥∂tρj∥∥2

0
=

∫
Ω

(
1

∆t

∫ tj

tj−1

ρt dt)
2 dx ≤ 1

∆t

∫ tj

tj−1

‖ρt‖2
0 dt ≤ C

h2

∆t

∫ tj

tj−1

‖ut‖2
2 dt,

∥∥ujt − ∂tuj∥∥2

0
=

∫
Ω

(
1

∆t

∫ tj

tj−1

(t− tj−1)utt dt)
2 dx ≤ C∆t

∫ tj

tj−1

‖utt‖2
0 dt.

(5.29)

Hence,

∆t
n∑
j=1

(
∥∥∂tρj∥∥2

0
+
∥∥ujt − ∂tuj∥∥2

0
) ≤ Ch2

∫ tn

0

‖ut‖2
2 dt+ C(∆t)2

∫ tn

0

‖utt‖2
0 dt.

(5.30)

By using integrating by parts, we have

∫ tj

tj−1

ρtt(t
j − t) dt = ρt(t

j − t)|tjtj−1 +

∫ tj

tj−1

ρt dt

= −∆tρj−1
t + ρj − ρj−1.

Similarly, ∫ tj−1

tj−2

ρtt(t− tj−2) dt = ∆tρj−1 − ρj−1 + ρj−2.
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Then, it is easy to get

∥∥∂ttρj∥∥2

0
=

∫
Ω

(
ρj − 2ρj−1 + ρj−2

(∆t)2
)2 dx

=
1

(∆t)2

∫
Ω

(

∫ tj

tj−1

ρtt(t
j − t) dt+

∫ tj−1

tj−2

ρtt(t− tj−2) dt) dx

≤ 1

(∆t)

∫ tj

tj−2

‖ρtt‖2
0 ds.

Use the estimation of ‖ρtt‖0, to get

n∑
j=2

∆t
∥∥∂ttρj∥∥2

0
≤ Ch2

∫ tn

0

‖utt‖2
0 ds. (5.31)

Using integrating by parts, we have

∫ tj

tj−1

uttt(t
j−1 − t)2 dt = (∆t)2ujtt − 2∆tujt + 2(ujt − u

j−1
t ),

∫ tj−1

tj−2

uttt(t− tj−2)2 dt = (∆t)2uj−1
tt − 2∆tuj−1

t + 2(uj−1
t − uj−2

t ).

The definition of the ∂t implies

∂tu
j
t − ∂ttuj =

ujt − u
j−1
t

∆t
− uj − 2uj−1 + uj−2

(∆t)2

=
1

2
(

∫ tj

tj−1

uttt dt−
1

(∆t)2

∫ tj

tj−1

uttt(t
j−1 − t)2 dt

+
1

(∆t)2

∫ tj−1

tj−2

uttt(t− tj−2)2 dt)
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By using the Hölder’s inequality, we have

n∑
j=2

∆t
∥∥∂tujt − ∂ttuj∥∥2

0
≤ C(∆t)2

n∑
j=2

(

∫ tj

tj−1

‖uttt‖2
0 dt+

∫ tj

tj−1

‖uttt‖2
0 dt+

∫ tj−1

tj−2

‖uttt‖2
0 dt)

≤ C(∆t)2

∫ tn

0

‖uttt‖2
0 dt.

(5.32)

On the other hand, the following estimate holds

∥∥∂tρ1
∥∥2

0
=

1

∆t

∫ ∆t

0

‖∂tρ‖ dt ≤ h2(
1

∆t

∫ ∆t

0

‖ut‖2 dt). (5.33)

The second inequality in (5.29) implies

∥∥u1
t − ∂tu1

∥∥2

0
=

∫
Ω

|u1
t − ∂tu1|2 dx ≤ C∆t

∫ ∆t

0

‖utt‖2
0 dt. (5.34)

Inserting (5.30)-(5.34) into (5.28), we have

∥∥θj∥∥2

1
≤ Ch2(

∫ tn

0

‖ut‖2
3 dt+

∫ tn

0

‖utt‖2
0 dt+ (

1

∆t

∫ ∆t

0

‖ut‖3 dt)

+ C(∆t)2(

∫ tn

0

‖utt‖2
0 dt+

∫ tn

0

‖uttt‖2
0 dt+

1

∆t

∫ ∆t

0

‖utt‖2
0 dt).

The above inequality together with the estimation of ‖ρ‖1 implies that

‖unh − un‖1 ≤ Ch
2(‖u0‖2 +

∫ tn

0

‖ut‖2
3 dt+

∫ tn

0

‖utt‖2
0 ds+ (

1

∆t

∫ ∆t

0

‖ut‖3 dt)

+ C(∆t)2(

∫ tn

0

‖utt‖2
0 dt+

∫ tn

0

‖uttt‖2
0 dt+

1

∆t

∫ ∆t

0

‖utt‖2
0 dt).

The proof is completed.
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5.3 Numerical Experiments

In this section we present numerical examples for IFE methods for the time dependent

multi-layer wall model. We let the simulation interval be [0, 1], and there are there

interface points: 1/9, 1/3, and 2/3. The exact solution u is set to be

u(x) =


(1− e−t)u0(x), x ∈ [0, 1/9],

(1− e−t)u1(x), x ∈ [1/9, 1/3],

(1− e−t)u2(x), x ∈ [1/3, 2/3],

(1− e−t)u3(x), x ∈ [2/3, 1],

(5.35)

with

u0(x) =
1

30
xn−1, u1(x) =

1

3
xn, u2(x) = xn+1, u3(x) = 3(1− x)xn+1,

here, n is an integer. We also let

D1 =
18(n− 1)D0

10n
, δ1 =

1

2
(9nD1 − 8.1(n− 1)D0),

D2 =
6nD1 − 2δ1

3(n+ 1)
, δ2 =

1

2
(3(n+ 1)D2 − 3nD1 + 2δ1),

D3 =
8δ2 − 3(n+ 1)D2

3(n+ 5)
, δ3 =

1

4
(3(n− 1)D3 − 3(n+ 1)D2 + 4δ2),

λ =
1

81(n− 1)D0

.

We use the uniform partition Th with the mesh size h = 1/N . For the fully dis-

cretization, we divided the time interval [0, T ] uniformly into Nt subintervals with

tn = n∆t, n = 1, 2, . . . , Nt, here, ∆t = T/Nt.

Example 5.1. In this example, we set the parameters βi is small, for example,

β1 = 10, β2 = 1, β3 = 0.1. Both linear and quadratic IFE methods are used to solve

the problem (1.1)-(1.4).
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Table 5.1: Errors and convergence rates of the linear IFE methods when n = 6 with
small values for βj (j = 1, 2, 3).

N L2norm rate H1norm rate
10 4.4506e-03 1.6272e-01
20 3.1104e-04 1.8870 4.2506e-02 0.9487
40 3.0870e-04 1.9518 5.3986e-02 0.9879
80 7.8347e-05 1.9891 2.1323e-02 0.9953
160 1.9182e-05 2.0302 1.0666e-02 0.9994
320 4.6431e-06 2.0466 5.3353e-03 0.9994

Table 5.2: Errors and convergence rates of the quadratic IFE methods when n = 6
with small values for βj (j = 1, 2, 3).

N L2norm rate H1norm rate
10 3.4162e-04 2.2631e-02
20 4.3977e-05 2.9576 5.7361e-03 1.9801
40 5.5477e-06 2.9868 1.4383e-03 1.9957
80 6.9407e-07 2.9987 3.6000e-04 1.9983
160 8.6812e-08 2.9991 9.0025e-05 1.9996
320 1.0967e-08 2.9848 2.2511e-05 1.9997

Firstly, we use the linear IFE method to solve the problem (1.1)-(1.4). In Table

5.1, the errors in L2 and H1 norms at the final time level T = 1 are presented with the

time step ∆t = 0.01h. We can see that both the L2 and H1 norms have the optimal

convergence rate. Then, we test by using quadratic IFE method, and present the

numerical results in Table 5.2. These results confirm our theoretical error analysis

in Theorems 5.1-5.4.

Example 5.2. In this example, we set the parameter βi, i = 1, 2, 3, are large.

In this example, we test both the linear and quadratic algorithm by flipping the

coefficients βi, i = 1, 2, 3, such as β1 = 1, β2 = 150, β3 = 15000. The numerical

result were reported in Tables 5.3 and 5.4. We can see that the pattern of error

decay is similar to the first example. Then the results of these numerical experiments

confirm our theory again.
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Table 5.3: Errors and convergence rates of the linear IFE methods when n = 6 with
large values for βj (j = 1, 2, 3).

N L2norm rate H1norm rate
10 3.6947e-03 1.7144e-01
20 8.2675e-04 2.1599 8.6976e-02 0.9790
40 1.9069e-04 2.1163 4.2979e-02 1.0170
80 4.7059e-05 2.0187 2.1382e-02 1.0072
160 1.2286e-05 1.9374 1.0672e-02 1.0026
320 3.1576e-06 1.9610 5.3356e-03 1.0001

Table 5.4: Errors and convergence rates of the quadratic IFE methods when n = 6
with large values for βj (j = 1, 2, 3).

N L2norm rate H1norm rate
10 3.2857e-04 2.2720e-02
20 4.3487e-05 2.9176 5.7409e-03 1.9846
40 5.5230e-06 2.9770 1.4384e-03 1.9968
80 6.9359e-07 2.9933 3.6000e-04 1.9984
160 8.6794e-08 2.9984 9.0025e-05 1.9996
320 1.0855e-08 2.9993 2.2511e-05 1.9997
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Chapter 6

Conclusions and Future Work

In this chapter, we give some conclusions and list a few research topics beyond this

dissertation.

6.1 Conclusions

In this dissertation, we carried out the linear and quadratic IFE methods for the

multi-layer porous wall model. We have discussed all the three fundamental as-

pects for a new finite element method, including the development of the IFE spaces,

the implementation of numerical methods with these spaces, and the corresponding

convergence analysis.

Firstly, we construct the IFE spaces whose functions satisfy nonhomogeneous

jump conditions. Then we investigate basic properties for this space and carry out

the error estimation for the linear and quadratic IFE interpolation of a Sobolev

function. The interpolation error estimates indicate that these spaces have the usual

approximation capability expected, which is O(h2) in L2 norm and O(h) in H1 norm

for the linear IFE method, and O(h3) in L2 norm and O(h2) in H1 norm for the

quadratic IFE method.

Secondly, we analyze the long time stability and asymptotic behavior for the

multi-layer wall model. With the IFE method for the spatial descretization, and
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the implicit Euler scheme for the temporal discretization, respectively, we deduce

the global stability of fully discrete scheme. In addition, based on the uniform

stability of the numerical solution, we investigate the discrete asymptotic behavior

and claim that the multi-layer porous wall model converges to the corresponding

elliptic equation if f(x, t) approaches to a steady-state f̄(x) in L2 norm as t → ∞.

Those theoretical results were also verified by the numerical examples.

Finally, we develop semi-discrete and fully discrete scheme for the multi-layer wall

model. Taking advantages of the immersed finite functions, the proposed methods

can be used on the Cartesian mesh regardless of the location of interface. A priori

error estimates shows that these IFE methods converge to exact solution with an

optimal order in both L2 norm and H1 norm.

6.2 Future Work

In this dissertation, we consider a one dimensional interface model with piecewise

constant coefficients. The design of the DES is a very complex task because their

performance in widening the arterial lumen and preventing further restenosis is in-

fluenced by many factors, such as those discussed in [29], the geometrical design of

the stents, the mechanical properties of the materials, the chemical properties of the

drug that is release, and so on. Considering the complex geometries of the stents, this

model can be improved by the variable coefficients to address directly the problems.

Several computational approaches to drug release from stents have been em-

ployed, such as the two dimensional model was computed in [16, 22, 65] and we can

find the three dimensional computation in [21, 26, 27, 66], etc. But, there are no

work related to the IFE methods. Therefore, we want to extended the theoretical

and numerical results to the two dimensional or three dimensional case.

Furthermore, this dissertation is examined when the drug is distributed in the
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Figure 6.1: Controlled release polymeric device

polymeric coating uniformly. The drug inside the polymeric coating is gradually

dissolved and then release outward. Therefore, the drug may be delivered at a

constant solubility whether the body need it or not. For some drug, a pattern of

input could be more appropriate. An even better approach for an optimal delivery

system is to design a polymeric coating device so that the drug is released under the

control of some physiological restraints. Under this circumstance, the concentration

at the boundary is no longer a constant, but is time dependent. In addition, the

boundary between the dissolved and loaded drug in the polymeric coating is an

moving interface, see Figure. 6.1. If the drug concentration at the boundary is time

independent, then it is a one dimensional moving interface problem. This motivates

the study of the IFE approximation of the solution of the moving interface problem.
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