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Abstract 

 

Despite the continuous evolution and development in the field of structural health 

monitoring (SHM), interpreting the huge amount of monitoring data from an SHM system 

to obtain useful information on structural conditions remains a challenge. Furthermore, 

due to the complexity of structures, measurement noise, inherent uncertainties in 

measured data and analytical methods, precise models which reflect the actual structural 

systems are difficult to create. In this regard, this thesis presents novel model-free data-

interpretation methodologies within the Bayesian framework for structural health 

evaluation and prediction.  

The first part of the thesis is aimed at conducting SHM-based structural condition 

assessment using Bayesian linear model (BLM) and Bayesian generalized linear model 

(BGLM). For condition assessment of bridge expansion joints, the relationship pattern 

between thermal movement of expansion joints and effective temperature of bridge deck 

is quantified using BLM and long-term monitoring data. The model parameters, model 

error and their associated uncertainties are estimated by analytical and simulation 

algorithms. With the established BLM, an anomaly index is defined to evaluate the failure 

probability of the expansion joints. The maximum and minimum displacements of the 

expansion joints under design extreme temperatures are predicted and compared with the 

design allowable values for validation. Then the BLM is extended to BGLM for assessing 
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wind-induced displacement responses of instrumented bridge. With the monitoring data 

of displacement and wind during typhoons, the correlation pattern between wind-induced 

displacement and wind speed/direction is explored. The crucial issue of optimizing model 

structure is dealt with by employing Bayesian model class selection, in terms of 

maximizing the log-likelihood function. Based on the established model, the bridge 

displacement responses and the associated confidence intervals under wind speed at 

serviceability limit state (SLS) are predicted and compared with the design allowable 

values for validation. 

In the second part, Bayesian inference-based dynamical linear models (BDLM) are 

developed for prognosis and damage detection by using the time series of structural 

response. Firstly, different step ahead predictions by various models considering different 

component forms, such as trend, seasonal and regression components, are evaluated and 

compared in accordance with three model criteria. After the most suitable model is 

determined, a novel detection technique based on the forecasting of BDLM is proposed 

for local anomaly diagnosis. An index called Bayes factor is introduced for outlier 

detection. It is carried out by checking the current observation against the forecasting 

distribution (yielded from the BDLM at current moment) as well as against an alternative 

model (whose mean value is shifted by a prescribed offset). The detection rule is that if 

the alternative model better fits the actual observation, a potential outlier is detected. Then, 
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the logic of outlier detection is extended to distinguish between the single outlier and the 

appearance of a change through defining the cumulative Bayes factors, which can 

diagnose the anomaly of local component under extreme events or due to structural 

damage. Finally, Bayesian hypothesis testing is conducted by comparing the time series 

of structural response before and after the change point to make a judgement on whether 

the structure is healthy. Two case studies using the in-service monitoring data from a high-

speed train and the data from a bridge benchmark problem are provided to show the 

applicability and effectiveness of the proposed method. 
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Chapter 1 

Introduction 

1.1 Research Motivation 

The main objective of structural health monitoring (SHM) is to track the health 

condition of structures in order to prevent any catastrophic failure as well as to prolong 

the service life of engineered structures. The practical applications of the SHM 

technology to critical civil structures (such as high-rise buildings, long-span bridges), and 

transportation systems (such as rail and aircraft), have been increased in the past decades 

because of (i) the ability of SHM systems in offering continuous monitoring for detecting 

any adverse condition and evaluating structural durability, reliability and integrity; and 

(ii) the advances on sensing, communication and signal processing technologies (Dirbaz 

2013). Successful implementations of long-term SHM systems to critical infrastructure 

systems have been increasingly reported. Most examples are on long-span bridges and 

high-rise buildings, such as the Confederation Bridge in Canada (Cheung et al. 1997), the 

Great Belt Bridge in Demark (Henrik and Denmark 2002), the Tsing Ma Bridge, Ting 

Kau Bridge, and Kap Shui Mun Bridge in Hong Kong (Wong 2004, 2007), and the Canton 

Tower (Ni et al. 2009) in the Chinese mainland. More applications can be found in the 

literature (Chang et al. 2003; Li et al. 2014; Annamdas et al. 2015; Seo et al. 2015; Li 
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and Hao 2016). A viable SHM system enables continuous measurement of loading 

environment and structural responses, providing a valuable tool for condition assessment 

and performance prediction of the instrumented structure. Research efforts have been 

made on damage detection, structural load-carrying capacity evaluation and remaining 

service life estimation with the use of long-term SHM data. These efforts span a broad 

range of research from tracking the change of structural characteristics for damage 

detection, to developing codified approaches for structural load-carrying capacity 

estimation, and to SHM-based reliability evaluation for forecasting structural remaining 

life (Seo et al. 2016). Simply put, all the efforts are made for structural health evaluation 

and prediction.  

Structural condition assessment techniques can generally be categorized into physics-

based and data-based methods, though a combination of them is usually employed (Farrar 

and Lieven 2007). The physics-based techniques are especially useful for making a 

prediction of structural responses to new system configurations or new loading conditions, 

while their computations are more complicated than data-based methods. Data-based 

assessment approaches depend on the previous measurements from the system to evaluate 

the current structural condition, typically by use of pattern recognition methods. Although 

the data-based assessment approaches are able to indicate the change in the presence of 

new system configurations or varying loading conditions, their performance on 
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classifying the nature of the change is poor. So perfecting the balance between the two 

assessment techniques is critical, whose principle will depend on the amount of available 

data and the level of confidence in forecast accuracy. After the current status of a structure 

is assessed, the prognosis problem will be addressed according to the goal of the prognosis. 

The most types of prognosis estimate how long the structure can continue in its safe use 

or how the structure will respond to the anticipated and unanticipated 

environments/loading such as extreme earthquakes. 

However, most condition assessment and forecast methods may produce inexact and 

limited results in conjunction with field measurements because of (i) incompleteness of 

measured data, (ii) inherent uncertainties in measured data and analytical methods, (iii) 

measurement noise (Dirbaz 2013). These internal and external uncertainties created 

during design, construction and use, pose a great challenge to engineers/operators in 

charge of structure safety, operation and maintenance.  

Stimulated by the challenges and limitations stated above, the efforts of this PhD 

work are to explore structural health evaluation and prediction of in-service structures 

using the measured responses and environments from the SHM systems, with an 

emphasis on dealing with uncertainty from a Bayesian perspective. This study starts with 

developing a Bayesian linear model (BLM) for condition assessment of bridge expansion 

joints with the use of long-term monitoring data of displacement and temperature. After 
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that, BLM is extended to Bayesian generalized linear model (BGLM), for the purpose of 

assessing wind-induced displacement with the monitoring data of displacement and wind 

data acquired during typhoons. Finally, Bayesian dynamic linear model (BDLM) is 

formulated for modeling the time-dependent structural responses. Based on the BDLM 

and Bayesian forecasting, a novel on-line change/damage detection method is developed 

and verified.  

1.2 Research Objectives 

This study is intended to investigate structural health evaluation and prediction of in-

service structures based on SHM data in the Bayesian framework. The research objectives 

are as follows: 

1. To formulate a Bayesian linear model (BLM) for condition assessment of bridge 

expansion joints. Using the long-term monitoring data from an SHM system, the 

relationship pattern between the thermal movement of expansion joints and the 

effective temperature of bridge deck is established, where the uncertainty is 

quantitatively described. It is then applied to forecast future movement of the 

expansion joints.  

2. To formulate a Bayesian general linear model (BGLM) for assessing wind-induced 

displacement responses of bridges. With the monitoring data of displacement and 
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wind during typhoons, the correlation pattern between wind-induced displacement 

and wind speed/direction is developed for bridge condition assessment and prediction. 

In particular, model class selection approach is explored to determine the optimal 

model among numerous candidate models. 

3. To propose a Bayesian dynamic linear model (BDLM) framework for modeling time-

dependent structural response. The time series of structural response is modelled by 

assembling combinations of generic components, including local level/trend 

component, periodic component, and regression component. Then the formulated 

model is applied to forecast the structural behavior at one or several steps ahead 

beyond the current time.  

4. To develop an on-line change/damage detection method based on BDLM and 

Bayesian forecasting. The change detection is carried out by checking the current 

observation against the current model (forecast distribution) and against an 

alternative model (whose mean value is shifted by a prescribed offset). To determine 

whether the observation is an outlier or the occurrence of change/damage, a special 

logic is developed. Then Bayesian hypothesis testing is conducted through 

comparing the time series of structural response before and after the change point to 

make a judgement on whether the structure is healthy. 
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1.3 Thesis Outline 

This thesis consists of the following seven chapters: 

Chapter 1 introduces the motivation for the present research, makes clear the 

objectives of research to be pursued, and states the structure of the thesis.  

Chapter 2 presents the background of this research. The applications of the structural 

health monitoring (SHM) technology to civil structures are reviewed. Research efforts 

employing Bayesian probabilistic approaches to SHM are summarized and the limitations 

in these attempts are addressed.  

Chapter 3 proposes a Bayesian linear model (BLM) for condition assessment of 

bridge expansion joints. Using the long-term monitoring data from an SHM system, 

Bayesian relationship between the thermal movement of bridge expansion joints and the 

effective temperature of bridge deck is formulated, in which the uncertainty is 

quantitatively characterized. With the formulated Bayesian model, an anomaly index is 

defined to evaluate the failure probability of the expansion joints. The maximum and 

minimum displacements of the expansion joints under design extreme temperatures are 

predicted and compared with the design allowable values for validation.  

Chapter 4 presents a Bayesian generalized linear model (BGLM) for assessing wind-

induced displacement response of bridges. With the monitoring data of displacement and 

wind during typhoons, the correlation pattern between wind-induced displacement and 
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wind speed/direction is formulated. The most suitable class of models is determined by 

the Bayesian model class selection techniques, which is then applied for bridge response 

prediction.  

Chapter 5 presents a Bayesian dynamic linear model (BDLM) framework for 

modeling time-dependent structural response. The monitoring data of strain response is 

modelled by assembling combinations of generic components, such as local level/trend 

component, periodic component, and regression component, to account for the missing 

physical phenomena. Kalman filter, Kalman smoother and Gibbs sampling algorithms are 

applied to estimate the hidden state variables and model parameters for each component. 

Finally, the performance of the proposed model in forecasting structural behavior at 

different steps ahead are examined. 

Chapter 6 presents a novel on-line change/damage detection method based on BDLM 

and Bayesian forecasting. The change/damage detection is carried out by checking the 

current observation against the current model (forecast distribution generated from the 

BDLM at current moment) and against an alternative model (whose mean value is shifted 

by a prescribed offset). The detection rule is that if the alternative model better fits the 

actual observation, a potential change/damage is indicated. To determine whether the 

current observation is an outlier or the beginning of a structural change, a special logic is 

developed by defining Bayes factors and cumulative Bayes factors. Then Bayesian 
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hypothesis testing is conducted through comparing the time series of structural response 

before and after the change point to make a judgement on whether the structure is healthy. 

The performance of the proposed method is verified with the monitoring data from an in-

service bridge and an in-operation high-speed train.  

Chapter 7 summarizes the major conclusions of this thesis and gives the 

recommendations for further research. 
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Chapter 2 

Literature Review 

2.1 Structural Health Monitoring of Civil Structures 

Structural health monitoring is essential to evaluate the safety of critical infrastructure 

systems, such as high-rising buildings, larger-scale space structures and long-span bridges. 

It refers to the use of continuous field monitoring and analyses of environmental and 

structural parameters under operation conditions, for the purpose of warning abnormal 

states or accidents at an early stage to avoid casualties and providing maintenance advice 

(Hoursner et al. 1997; Li et al. 2014). Over the past decades, long-term SHM systems had 

been increasingly implemented on civil structures worldwide. Most applications were on 

long-span bridges, such as the Confederation Bridge in Canada (Cheung et al. 1997), the 

Commodore Barry Bridge in United States (Barrish et al. 2000), the Akashi Kaikyo 

Bridge in Japan (Kashima et al. 2001), the Singapore-Malaysia second link bridge 

(Brownjohn and Moyo 2001), the Great Belt Bridge in Demark (Henrik and Denmark 

2002), the Tsing Ma Bridge, Ting Kau Bridge, and Kap Shui Mun Bridge in Hong Kong 

(Wong 2004, 2007), the Sutong Bridge in the Chinese of mainland (Ni et al. 2004), the 

Jindo Bridge in South Korea (Jang et al. 2010). Applications of SHM systems to high-

rise buildings were also widely reported. For example, the Republic Plaza in Singapore 
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(Brownjohn et al. 1998), the Marco Polo tension leg platform in United States (Dijk and 

Boom 2007), the Canton Tower (Ni et al. 2009) and Shanghai Tower (Zhang et al. 2015) 

in the Chinese mainland, the San Siro Meazza stadium in Italy (Cigada et al. 2010), the 

Toyosu Building in Japan (Takao and Takao 2015). The applications of the SHM 

technology to other infrastructure systems can be found in the literature (Chang et al. 

2003; Li et al. 2014; Annamdas et al. 2015; Seo et al. 2015; Li and Hao 2016). Different 

from traditional non-destructive evaluation techniques, SHM systems enable real-time 

and long-term monitoring of a structure. In connection with SHM systems, research 

efforts have been mainly focused on damage detection, structural load-carrying capacity 

evaluation, and remaining service life estimation of structures. These efforts span a broad 

range of data processing approaches from tracking the change of structural characteristics 

to SHM-based reliability assessment for forecasting structural remaining life (Seo et al. 

2016). Typical SHM methods are reviewed in the following.  

2.1.1 Damage detection 

Damage can be defined as changes in structural characteristics that make adverse 

effects to structural integrity (Farrar and Worden 2007). The structural characteristics 

parameters are functions of the physical properties of a structure, including structural 

mass, stiffness and damping. Therefore, change in those physical properties will cause 
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the change of structural characteristics parameters. Based on this principle, the damage 

detection algorithms are devoted to detecting the change in structural characteristics 

parameters through the structural responses measured from an array of sensors linked into 

the SHM system. There have been a great number of investigations on developing damage 

detection algorithms in line with on vibration and strain measurement (Peeters et el. 2001; 

Lee et al. 2007; Magalhães et al. 2008, 2010; Phares et al. 2013 a, b).  

2.1.1.1 Vibration-based damage detection 

1) Natural frequencies 

Based on the vibration measurement by an SHM system, extensive research works 

have been devoted to damage detection based on detecting changes of the dynamic 

characteristics parameters, such as natural frequency, modal shape curvature, modal strain 

energy, dynamic flexibility and others (Seo et al. 2016). Among the dynamic 

characteristic parameters, natural frequency is recognized as one of the most obvious 

indicators in detecting damage occurrence. Over the past decades, many investigators 

have studied using the change in natural frequencies to detect damage of structures 

(Gawley and Adams 1979; Kato and Shimada 1986; Farrar et al. 1994; Peeters and De 

Roeck 2001; Kullaa 2003; Teughels and De Roeck 2004; De Roech and Reynders 2009; 

Mekjavić 2015).  
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Gawley and Adams (1979) were among pioneers to develop vibration-based damage 

detection procedures. They developed a damage detection method coupled with analytical 

techniques to detect, locate and quantify damage by using the change in natural 

frequencies.  

In 1986, Kato and Shimada performed the first vibration-based SHM test on a 

prestressed concrete bridge. During the bridge failure test, vibration measurement was 

carried out in vertical and horizontal directions and the change of natural frequencies at 

each damage stage was examined. It was found that the natural frequency of the first 

vertical bending mode decreased rapidly as the static load increased to the ultimate load.  

Another important work on damage detection using vibration monitoring data was 

carried out on I-40 Bridges over the Rio Grande (Farrar et al. 1994). Because the I-40 

Bridge was to be razed, the investigators were able to introduce simulated fatigue cracks 

into this structure in order to verify various damage identification methods and observe 

the change in load paths. Researchers from Los Alamos National Laboratory (LANL) and 

Sandia National Laboratory (SNL) carried out this SHM test. They introduced four 

different damage states on the bridge by continually cutting the web and bottom flange of 

the steel girder at the mid-span of the bridge and investigated the change in nature 

frequencies. It was observed that the frequency changes were not precisely proportional 
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to the changes in structural stiffness. A large number of follow-up studies have utilized 

the data obtained from the bridge to assess the capabilities of various damage detection 

algorithms (Farrar and Jauregui 1998; Kim and Stubbs 2003; Wang and Ong 2010).  

Another significant work on modal and damage identification based on vibration data 

from the Z24 bridge in Switzerland was performed by Peeters and De Roeck (2001). They 

established black-box models to describe the variation of natural frequencies as a function 

of temperature based on the data from the bridge. If the measured frequency exceeds 

certain confidence intervals, it is more likely another cause than temperature that drives 

the frequency variation, which implies a damaged status. After that, many other follow-

up studies have used the data from this bridge to assess the capability of various damage 

detection methods (Kullaa 2003; Teughels and De Roeck 2004; De Roech and Reynders 

2009).  

Mekjavić (2015) developed a structural damage detection approach for bridges using 

only the change of natural frequencies. To demonstrate the capability of the proposed 

method, numerical simulation and experiment of a concrete girder bridge were carried 

out through incrementally applying static load. It was shown that the proposed method 

can accurately locate damage and predict the extent of damage using the high-frequency 

vibrational responses. 
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2) Mode shape curvature 

Mode shape curvature has been recognized as a good candidate for damage detection 

of structures. Abdel Wahab and De Roeck (1999) investigated using the change in modal 

curvature (MC) to detect damage in a prestressed concrete bridge, the Z24 bridge. At first, 

a theoretical study using simulated data for a simple continuous beam was conducted and 

a damage indicator called “curvature damage factor (CDF)” was defined. Then the 

technique was further applied to the Z24 bridge.  

Guan et al. (2007) performed the implementation of a long-term SHM system on a 

FRP highway bridge and used vibration-based techniques for damage detection. The 

mode shape curvature was extracted from the ambient vibration to detect localized 

damage in the structure. In addition to damage detection, finite element model was 

updated by using measured frequencies to better represent the true properties of the 

structure. 

Recently, Frans et al. (2017) made a comparative study of the mode shape curvature 

and damage locating vector methods for diagnosing structural damage. In their study, 

three type of structures (shear building, beam-type and plane truss structures) and several 

damage scenarios were considered in numerical simulation. The simulation result showed 

that mode shape curvature was suitable for beam structures but not for truss structures, 

while the damage locating vector method was appropriate to locate damage of truss 
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structures.  

3) Modal strain energy 

Structural damage detection using modal strain energy is one of the most efficient 

and reliable structural health evaluation techniques (Doebling et al. 1997; Shi et al. 1998, 

2000; Yan et al. 2010, 2012; Moradipour et al. 2015). Doebling et al. (1997) proposed an 

approach based on modal strain energy in conjunction with finite element (FE) model to 

select the subset of identified vibration modes for structural damage detection. It was 

shown that using the maximum modal strain energy provides more accurate updating 

results than using the minimum modal frequency.  

Shi et al. (2000) presented a modal strain energy change-based method to realize 

structural damage location identification and damage magnitude quantification. The 

performance of the proposed method was validated by numerical simulation and 

experiment on a single-bay, and two-story portal steel frame structure. Their results 

indicated that the modal strain energy change is noise sensitive, but it can localize single 

and multiple damage and quantify the damage.  

Moradipour et al. (2015) proposed an improved modal strain energy method and 

investigated its effectiveness by applying it to a fix-end beam and a three-story frame with 

single and multiple damage. The derived mode shapes of the intact structure and damaged 

structure at each damage level were separately used in the improved formulation to 
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determine the damage location and magnitude.  

4) Dynamic flexibility 

Apart from the aforementioned modal parameters, the change in dynamic flexibility 

is also capable of detecting the presence of damage. Pandey and Biswas (1994, 1995) 

proposed an approach based on changes in the flexibility matrix of a structure, which can 

be easily and accurately estimated from the several lowest modes of vibration of the 

structure, to identify and locate damage. The difference in flexibility matrix before and 

after the occurrence of damage was treated as an indicator to locate the damage.  

Catbas et al. (2006) presented the modal flexibility-based displacement profile as an 

index for damage detection. Firstly, the modal flexibility was determined from the 

frequency response function measurements of the structure, and then it was employed to 

obtain the deflection profile. To demonstrate the effectiveness of this approach, two real-

life bridges (a steel stringer bridge in Cincinnati and a posttensioned concrete box girder 

bridge in Switzerland) with different damage scenarios were selected as test beds. 

Ni et al. (2008) proposed an index in terms of relative flexibility change coupled with 

three-dimensional (3D) finite element model to locate damage. The capability of this 

approach for damage location on the Ting Kau Bridge (a cable-stayed bridge in Hong 

Kong) was examined by investigating various damage scenarios, and taking into account 

measurement noise as well as two ambient factors (temperature and traffic loading).  
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Scianna and Jang (2011) presented a model-free modal flexibility procedure to 

identify structural damage and investigated its capability by application to a laboratory 

scale girder bridge under constant temperature and an in-service highway bridge under 

ambient loading conditions.  

Sung et al. (2014) applied a damage detection algorithm for cantilever beam-type 

structures, which used the damage-induced inter-story deflection (DIID) derived from 

modal flexibility matrix to locate damage. This approach has a clear theoretical base and 

can locate the damage without need of a finite element model. For validating its 

effectiveness, a series of numerical and experimental studies on a 10-story building were 

carried out. It was observed that the proposed approach can successfully detect the 

damage locations for both single- and multiple-damage scenarios.  

2.1.1.2 Strain-based damage detection 

In parallel with the development of vibration-based identification techniques, 

recently emerged some studies which use time domain approaches coupled with strain 

measurements for structural damage detection. The basic principle of strain-based 

detection techniques is that the change of structural physical properties will cause a 

change in magnitude of strain responses. Although there have been a significant number 

of studies on vibration-based damage detection, only a few studies have attempted to 
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detect structure damage using strain-based identification methods (Seo et al. 2015).  

Lin and Thaduri (2005) investigated the electrical time domain reflectometry (ETDR) 

distributed strain sensing technique for damage detection. Its capability was demonstrated 

by application to a small-scale concrete beam with an imbedded ETDR distributed strain 

sensor. It was shown that the embedded ETDR sensor not only can identify load-induced 

damage at early stage, but also locate single and multiple damage positions 

simultaneously along a single sensing line.  

Jang et al. (2007) developed a strain damage locating vector (DLV) method combing 

static strain measurement and DLV to identify possible damage location. A series of 

numerical simulations and experiments were carried out to verify the effectiveness of the 

proposed strain DLV method and the results showed that it can locate the damage 

successfully. 

Phares et al. (2013) performed a field validation for a strain-based statistical damage 

detection algorithm on the Iowa Bridges in U.S. In place of actual damage on the bridge, 

two sacrificial specimens that simulate damage-sensitive locations were installed on the 

bridge, and diverse levels and types of damage were imposed on the specimens. It was 

shown that the algorithm was able to accurately identify the damage by using strain data 

collected from sensors on the sacrificial specimens.  

Xu et al. (2013) performed a damage detection strategy based on distributed strain 



Chapter 2 Literature Review 

19 

responses measured by long-gauge fiber Bragg grating (FBG) sensors. The distributed 

strain mode was first derived via the frequency response function of the distributed strain 

responses and then an index named strain mode residual trend was developed using strain 

statistical tendency analysis and confidence probability. 

Recently, Hong et al. (2016) proposed a damage-assessment method based on long-

gauge strain response resulting from moving vehicular loads on bridges. Numerical 

simulation, laboratory experiments and field testing of a real bridge (Kawane Bridge in 

Japan) were carried out to demonstrate the applicability of the proposed method. The 

macrostrain-based damage index was sensitive to local damage covered by gauge length 

of the long-gauge strain sensors and less affected by measurement error.  

2.1.2 Structural load-carrying capacity and remaining life estimation 

In addition to SHM-based damage detection algorithms, SHM systems have also been 

used to evaluate structural load-carrying capacity and remaining life in real time. One of 

the typical methods for structural load carrying capacity estimation is using load rating 

concept. For example, the American Association of State Highway Transportation 

Officials (AASHTO) Manual for Bridge Evaluation (2010) provides guidelines to 

engineers on how to evaluate the bridge load rating for determination of the live load 

carrying capacity. Based on the documented guidelines, the calculation load rating relies 
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on using a sophisticated finite element model calibrated with field data or reliability 

analysis using SHM data. 

Turer and Shahrooz (2011) investigated the different levels of analytical modeling 

(1D, 2D and 3D models) on the sensitivity of load rating in conjunction with experimental 

studies conducted on an actual bridge. Both dynamic data and static deformed profile 

information were collected to calibrate the analytical model at different stages, and the 

finding showed that 2D-grid models can successfully simulate the critical members.  

Davids et al. (2012) presented an approach based on finite element analysis 

specifically for load rating of flat slab concrete bridges. The designed FE software 

formulation and convergence were verified by comparing with the known analytical 

solutions and the predictions from commercial FE software under realistic loading 

scenarios. To assess the applicability of the FE modeling strategy, the load ratings 

obtained by FE model analysis were compared with the results of load tests and the 

predictions from AASHTO approximate analysis.  

Seo et al. (2013) described a load rating protocol coupled with a strain-based SHM 

system for the generation of multiple rating distributions for highway steel I-girder 

bridges. The strain time history data were used to calibrate finite element models 

according to two load scenarios: known and unknown trucks, and then the refiled FE 

models were adopted to calculate the multiple load rating distributions, which finally 
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were combined into a single holistic distribution. For verification of the proposed protocol, 

the distribution was compared with the results calculated from a rating package that was 

in use in Iowa Department of Transportation. 

In addition to the evaluation of load rating based on finite element models, newly 

emerging methods using various reliability techniques in conjunction with load test data 

or field monitoring data from SHM systems have been reported (Akgül and Frangopol 

2003, 2004; Bhattacharya et al. 2005). Akgül and Frangopol (2004) investigated the 

interaction between the reliability index and rating factor for various bridge types at 

different limit states and applied the reliability-based evaluation technique to a group of 

14 bridges in a bridge network. Bhattacharya et al. (2005) presented a probability-based 

method for determination of bridge load rating using site-specific structural response. 

This method is able to eliminate a majority of live-load modeling uncertainties, and can 

be applied to determine load rating for various projected time intervals and limit states 

(yield and ultimate).  

Estimating the remaining life of bridges is a significant element in long-term bridge 

performance management. However, only a few researches have focused on estimating 

the remaining life of bridges by using long-term monitoring data from SHM systems. 

Frangopol et al. (2008) presented an approach for incorporating the monitoring data from 

an SHM system to assess structural reliability and illustrated it on Lehigh River Bridge 



Chapter 2 Literature Review 

22 

SR-33 (a steel truss bridge). Recently, Hajializadeh et al. (2017) presented a framework 

for virtual monitoring of steel bridges and applied it in a cable-stayed bridge in 

Netherlands to calculate the fatigue damage and assess the remaining life. The virtual 

SHM system refers to that all components of the bridge are not monitored directly, but 

rather using the load information and a calibrated FE model. The validated numerical 

model coupled with actual site traffic loading can provide a satisfactory prediction of the 

accumulative fatigue damage.  

2.2 Bayesian Approach 

2.2.1 Overview of Bayesian approach 

Probability is a useful tool to express the likelihood of an occurrence of an event. It 

has been extensively applied in many areas of science, such as natural sciences, social 

sciences and medical science, for decision making, forecasting and stochastic structure 

exploration. In the field of probability theory, there are two kinds of interpretations for 

the probability of an event. One is called “frequency” probability, the other is “Bayesian” 

probability (Ando 2010). The core difference is that frequency consider probability to be 

a property of the physical world, whereas Bayesians consider probability to be a measure 

of uncertainty regarding their knowledge of the physical world (Stone 2013). More 
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detailed discussions on the differences between the Bayesian and frequentist approaches 

can be found in Gill (2014). 

Bayesian estimation and inference has a number of advantages in statistical modeling 

and data analysis. It provides a rational approach for updating beliefs in light of new 

information. The process of inductive learning via Bayes’ rule is referred to as Bayesian 

inference. The result of combining the prior information and observed data in this way is 

the posterior distribution. In other words, the posterior is proportional to the prior times 

likelihood (function for observed data). If the prior information is vague, then it will have 

negligible weight in the posterior, and the posterior will in effect be dominated by the data 

information. Similarly, as more and more data obtained, the weight of data information 

relative to the prior increases, and again the posterior effectively relies on the information 

in data. Once the data provide conclusive evidence, there is essentially no room left for 

subjective opinion (prior information) (O’Hagan 2004). 

In addition to the formal interpretation as a means of induction, Bayesian approach 

also provides: (i) parameter estimates with good statistical properties; (ii) parsimonious 

descriptions of observed data; (iii) predictions for missing data and forecasts of future 

data; and (iv) a computational framework for model estimation, selection and validation 

(Hoff 2009). 
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2.2.2 Bayesian methods in SHM 

Bayesian methods have been widely used in a variety of areas since the pioneering 

work by Thomas Bayes (1763) and the significant contribution by Jeffreys (1961), Cox 

(1961) and Jaynes (1968, 1974, 2003). In diverse disciplines of social sciences, natural 

sciences and engineering, Bayesian methods have been developed and widely applied, 

especially in statistical physics (Jaynes 1974, 2003), finance (Rachev 2008), social and 

behavioral sciences (Gill 2014), marketing (Rossi et al. 2012), econometrics (Zellner 

1996), medical sciences (Woodworth 2004), computer sciences (Lee 2007), and civil 

engineering (Yuen 2010) among others.  

Bayesian approach is very useful for civil structures because there are many types of 

modeling and parametric uncertainty in structural problems. Since the first trial of 

combination of Bayesian approach and SHM conducted by Beck (1989), Bayesian 

approach began to attract the attention of researchers in SHM. The studies have mainly 

focused on two purposes: model updating and system identification (Yuen 2010). One 

goal is to identify structural parameters, such as stiffness, frequencies, mode shapes. 

These identified parameters can be used as an indicator for the status of the structure or a 

damage index. For example, the frequencies of a structure can be monitored from time to 

time and an abnormal value indicates possible damage of the structure. However, this 

change may be caused by uncertainty. So it is necessary to quantify the uncertainty and 
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narrow the distributions of the frequencies to distinguish whether the change is due to 

deterioration of the structure. Another purpose is to obtain a mathematical model to 

represent the underlying system for future prediction. There are also parameters to be 

identified, but these parameters may not be physical, such as the coefficients of regress 

models. These identified parameters are used only to provide an accurate prediction of 

system output. Nevertheless, quantifying the uncertainty of parameters is also necessary 

for further processing.  

The first application of Bayesian approach in SHM can be traced back to Beck (1989), 

where a Bayesian statistical framework was applied to system identification that selects 

the optimal model from a series of candidate models based on its input/output 

measurement. Sohn and Law (1997) presented a Bayesian probability approach for 

damage detection which was not only able to detect the most likely damage locations but 

also the number of damage locations in a structure. Beck and Katafygiotis (1998) 

addressed the problem of updating a structural model and its associated uncertainties by 

using dynamic response data. In the Bayesian statistical framework, the most 

probable/optimal model was selected for response predictions at prescribed dynamic 

loadings. Vanik et al. (2000) presented a Bayesian probabilistic method for structural 

health monitoring, where the probability density function for the model stiffness 

parameters conditional on measured modal data was developed and then applied to 
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calculate the damage probability.  

Lam et al. (2006) proposed an artificial neural network (ANN) design method based 

on Bayesian probabilistic approach, where the number of hidden layers and neurons was 

selected by the Bayesian model class selection approach. Then the Bayesian ANN design 

algorithm in conjunction with pattern recognition method formed a practical SHM 

strategy. Later, Lam and Ng (2008) extended the Bayesian ANN design method to cover 

the selection of activation functions for neurons in the hidden layers. In the case study, 

damage-induced changes in Ritz vectors and modal parameters were separately utilized 

as pattern features to train ANNs and the Bayesian ANN design method was employed to 

select the most suitable class of ANN models.  

Arangio and Beck (2012) developed a two-step Bayesian procedure in which the 

probability logic approach was applied to neural network models for identification and 

quantification of damage in a suspension bridge. In the first step, the occurrence of 

damage was detected; and in second step, the specific damage element was identified and 

the intensity of damage was quantified.  

Sankararaman and Mahadevan (2013) developed a Bayesian approach to 

continuously quantify and update the uncertainty in terms of three steps, that is damage 

detection, damage localization, and damage quantification. Finally, the uncertainties in 

the three steps were combined to determine the PDF of the damage parameter. The 
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method was illustrated in regard to a frame structure and a hydraulic actuation system.  

Au (2011, 2012) proposed a Fast Bayesian FFT method and its improved version for 

output-only modal identification, in which uncertainties associated with the modal 

parameters can be quantitatively assessed. Au et al. (2011, 2012a, 2012b, 2013) assessed 

the most probable values of the identified mode shapes by the Bayesian approach, 

addressed the uncertainties of modal properties from both frequentist and Bayesian 

perspectives, and discussed the implementation issues of the proposed Fast Bayesian FFT 

method for field applications. 

Arangio and Bontempi (2015) presented a Bayesian neural network for damage 

detection and investigated its applicability to a cable-stayed bridge which was proposed 

as a benchmark problem by Asian-Pacific Network of Center for Research in Smart 

Structure Technology. The proposed method was able to detect anomalies of the structure 

with the monitoring vibration data acquired before and after damage. 

Huang and Beck (2015) proposed a hierarchical sparse Bayesian learning 

methodology for computing the probability of localized stiffness loss induced by damage, 

which employs modal parameters as extra variables for Bayesian model updating.  

Dzunic et al. (2017) applied the recently developed switching Bayesian model to the 

problem of automatic damage detection. Based on a state-space approach, the model was 

derived from a set of measurement data without the corresponding physical information, 



Chapter 2 Literature Review 

28 

and the change of the model parameters served as an indicator of damage.  

In addition to the aforementioned Bayesian methods for modal identification and 

damage detection, Bayesian model updating has been addressed for structural strength 

and reliability predictions (Geyskens et al. 1998; Enright and Frangopol 1998, 1999; 

Zhang and Mahadevan 2000; Ching and Leu 2009; Stewart 2010; Ma et al. 2013, 2014). 

Geyskens et al. (1998) proposed a predictive model for a specific concrete mix based on 

Bayesian theory, which accounted for all sources of model uncertainty and dealt with the 

important issue of model-induced correlation. Enright and Frangopol (1998, 1999) 

proposed a time-variant bridge reliability estimation algorithm for deteriorating concrete 

bridges in a Bayesian framework. Through combining the information from both 

inspection data and engineering judgment, the approach can be used in a rational manner 

to better predict future bridge conditions. Zhang and Mahadevan (2000) proposed a 

Bayesian procedure to quantify the modeling uncertainty using nondestructive 

inspections and applied it to a fatigue reliability problem. Ching and Leu (2009) 

developed a Bayesian framework for estimating time-varying reliabilities of civil 

infrastructure facilities under the circumstance that only condition-state data of 

components were available, and applied it to assess the reliability of a hydraulic gate 

system. Yuen and Kuok (2010) developed a systematic approach for reliable health 

assessment of reinforced concrete buildings by modeling and quantifying the 
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environmental influence on modal frequencies using the Bayesian spectral approach and 

the Bayesian modal class selection approach. Ma et al. (2013, 2014) proposed an 

approach for predicting the remaining bridge strength by integrating Bayesian network 

and in-situ load testing, which accounted for uncertainty of important factors on corrosion 

damage, stiffness degradation, and load-deflection response. Rafiq et al. (2015) presented 

a condition-based deterioration modeling methodology for bridges using Bayesian belief 

network (BBN) and dynamic Bayesian network (DBN), in which the predictions of the 

deterioration rates for the bridges were able to be updated in light of data obtained from 

the monitoring, inspection or maintenance actives. 

2.3 Remarks 

In summary, a significant number of studies have focused on structural damage 

detection, structural load-carrying capacity estimation, reliability analysis and remaining 

life prediction, etc., based on the obtained data from SHM systems. No matter what kind 

of methodology applied in these studies, most of them are related to structural elements 

or structural parameters. It is well known that a precise structural model accurately 

reflecting the real behavior of an in-service structure is difficult to create due to the 

uncertainty inherent in complex civil structures. Moreover, model-based methods may 

not identify structural damage successfully. By contrast, there is limited literature on 
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developing completely data-driven models in the context of Bayesian methodology for 

structural health evaluation and prediction, especially the model-free data interpretation 

methods which accommodate time-series response data. The model-free data 

interpretation methodology is applicable to diverse types of structures since no 

geometrical and material information is required. 
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Chapter 3 

SHM-based Condition Assessment of Bridges Using BLM 

3.1 Introduction 

A lot of research efforts have been given on model updating by use of a mass of 

measurement data acquired from SHM systems (Beck et al. 2001; Sohn and Law 2001; 

Figueiredo et al. 2014; Lam et al. 2015). Among various model updating techniques, 

Bayesian model updating techniques can not just find the most plausible model but also 

quantify the probability of the model parameters conditional on the measurement data. 

Inheriting this appealing advantage, Bayesian model updating methods are robust and 

suitable to characterize modeling uncertainties of structural systems (Ching et al. 2005). 

However, the application of Bayesian methods in civil engineering are still in its infancy; 

there is great potential for exploration (Yuen 2010). Herein, we focus on applying 

Bayesian approach for condition assessment of bridge expansion joints with the use of 

long-term monitoring data from an SHM system. 

Expansion joints are important components in bridge structures, which are designed 

to accommodate the relative movement between bridge deck and abutments, ensuring the 

serviceability of bridges. Due to the direct and repetitive impact of vehicle loads, 

expansion joints often become the weakest part of bridges, especially for long-span 
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bridges with observed premature failures, resulting in considerable repair and 

maintenance costs (Roeder 1998; Chang and Lee 2002; Lima and Brito 2009; Guo et al. 

2014). For example, the expansion joints in the Runyang Suspension Bridge in China 

(1,490 m) had been repaired only two years after the bridge was opened to traffic; for the 

Jiangyin Suspension Bridge in China (1,385 m), excessive wear and transversal shear 

failure of bearings in expansion joints were observed after 3 to 4 years of service (Guo et 

al. 2014); the expansion joints in the Martinus Nijhoff Bridge had been repaired several 

times in recent years (Coelho et al. 2013). These premature failures of expansion joints 

call for a better understanding of the mechanism of failure. 

The implementation of structural health monitoring (SHM) systems enable to gain 

substantial information of the field performance of bridges, and to foresee the possible 

failure of expansion joints in an early stage. Based on the long-term monitoring data from 

an SHM system, research efforts have been devoted to condition assessment of bridge 

expansion joints. Ni et al. (2007) established a normal correlation pattern between the 

effective temperature and thermal movement for predicting the extreme displacement. 

Ding and Li (2011) assessed the bridge expansion joints using the long-term displacement 

under changing environmental conditions (considering changes in temperature and traffic 

load). Guo et al. (2014) analyzed the expansion joints displacement of a long-span steel 

bridge equipped with viscous dampers, with an emphasis on the influence of viscous 
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dampers. In these studies, the relationship models between temperature and displacement 

were formulated with certain coefficients. However, there are various uncertainties 

involved in the movement of expansion joints; so a more feasible approach is to formulate 

an optimal model with uncertainty coefficients based on the system input-output data. 

Bayesian approach is the best choice. In this chapter, Bayesian linear regression model is 

developed to explore the correlation pattern between the displacement of expansion joints 

and effective temperature of bridge deck for condition diagnosis and prognosis. 

3.2 Bayesian Linear Model (BLM) 

3.2.1 Modeling framework 

Suppose we have n sets of independent observations {(𝑦𝛼, 𝑥𝛼), 𝛼 = 1,2, … , 𝑛}, 

where 𝑦𝛼 ’s are random response variables and 𝑥𝛼 ’s are vectors of k-dimensional 

explanatory variables (𝑥𝛼1, … , 𝑥𝛼𝑘 ). The linear regression model of the relationship 

between the response variables and explanatory variables is expressed as 

 𝑦𝛼 = 𝛽1𝑥𝛼1 + 𝛽2𝑥𝛼2 + ⋯+ 𝛽𝑘𝑥𝛼𝑘 + 𝜀𝛼 ,     𝛼 = 1,⋯ , 𝑛 (3.1) 

where 𝜀𝛼 is an error term. This model can be expressed compactly in matrix form by 

defining the following vectors and matrix 
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𝑦 = [

𝑦1

𝑦2

⋮
𝑦𝑛

], 𝛽 = [

𝛽1

𝛽2

⋮
𝛽𝑘

], 𝑋 = [

𝑥11 𝑥12

𝑥21 𝑥22

⋯ 𝑥1𝑘

⋯ 𝑥2𝑘

⋮ ⋮
𝑥𝑛1 𝑥𝑛2

⋱ ⋮
⋯ 𝑥𝑛𝑘

], and 𝜀 = [

𝜀1

𝜀2

⋮
𝜀𝑛

] 

and written as 

 𝑦 = 𝑋𝛽 + 𝜀 (3.2) 

3.2.2 Likelihood function 

Assume the error term 𝜀 has a multivariate normal distribution with mean 0𝑛 and 

covariance matrix 𝜎2𝐼𝑛, where 0𝑛 is an n-vector with all elements being 0 and 𝐼𝑛 is a 

𝑛 × 𝑛  identity matrix. Its notation is 𝜀 ~ 𝑁(0𝑛, 𝜎2𝐼𝑛) . Using the definition of 

multivariate normal distribution, the likelihood function can be written as  

 𝑓(𝑦|𝑋, 𝛽, 𝜎2) =
1

(2𝜋𝜎2)𝑛 2⁄
exp [−

(𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽)

2𝜎2
] (3.3) 

Here the likelihood function is expressed as the joint probability density function for all 

data conditional on the unknown parameters 𝛽 and 𝜎2. 

For convenience of further derivations, we rewrite the likelihood in a different form. 

It can be shown that (Koop 2003) 

(𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) = 𝑎𝑠2 + (𝛽 − 𝛽̂)
𝑇
𝑋𝑇𝑋(𝛽 − 𝛽̂) 

where  

𝑎 = 𝑛 − 𝑘 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 
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𝑠2 =
(𝑦 − 𝑋𝛽̂)𝑇(𝑦 − 𝑋𝛽̂)

𝑎
 

𝑏 = 𝑎𝑠2 

It is noted that 𝛽̂ , 𝑠2  and 𝑎  are the Ordinary Least Squares (OLS) estimator for 𝛽 , 

standard error, and degrees of freedom, respectively. As such, the likelihood function can 

be written as  

𝑓(𝑦|𝑋, 𝛽, 𝜎2) =
1

(2𝜋)𝑛 2⁄
{
1

𝜎𝑘
𝑒𝑥𝑝 [−

1

2𝜎2
((𝛽 − 𝛽̂)

𝑇
𝑋𝑇𝑋(𝛽 − 𝛽̂))]} 

(3.4) 

 × {
1

𝜎𝑎
𝑒𝑥𝑝 [−

𝑏

2𝜎2
]} 

3.2.3 Prior selection 

The prior information is a basic aspect of Bayesian inference, which reflects the prior 

knowledge of the phenomenon before seeing the data. Though there are numerous forms 

of priors, it is common to use the specific priors that are easy for calculation. Natural 

conjugate prior has such advantages. A conjugate prior distribution, when combined with 

the likelihood, can yield a posterior that keeps the same type of distribution with the prior.  

In the linear regression model, we elicit a prior for 𝛽 and 𝜎2 which is denoted by 

𝑝(𝛽, 𝜎2). The posterior density for 𝛽 and 𝜎2 will be denoted by 𝑝(𝛽, 𝜎2|𝑦, 𝑋), which 

means the posterior density is conditional on the data. The form of Equation (3.4) suggests 

that the natural conjugate prior is Normal Inverted-Gamma distribution. More specifically, 

a prior for 𝛽  conditional on 𝜎2  is a normal distribution and a prior for 𝜎2  is an 
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Inverted-Gamma distribution. It proves convenient to write  

 𝑝(𝛽, 𝜎2) = 𝑝(𝛽|𝜎2) 𝑝(𝜎2) (3.5) 

with  

𝑝(𝛽|𝜎2) = 𝑁(𝛽0, 𝜎
2∑0) =

1

(2𝜋𝜎2)𝑘 2⁄ ∙ |∑0|1 2⁄
exp [−

(𝛽 − 𝛽0)
𝑇∑0

−1(𝛽 − 𝛽0)

2𝜎2
] 

𝑝(𝜎2) = 𝐼𝐺 (
𝑎0

2
,
𝑏0

2
) =

(𝑏0
2
)
𝑎0 2⁄

Γ(𝑎0
2
)

(𝜎2)−𝑎0 2⁄ −1exp (−
𝑏0

2𝜎2
) 

where ∑0 is a symmetric positive definite matrix of size 𝑘 × 𝑘. 

3.2.4 Posterior distribution 

The posterior distribution for the unknown parameters can be derived by multiplying 

the likelihood (Equation (3.3)) and the prior distribution (Equation (3.5)), 

 𝑝(𝛽, 𝜎2|𝑦, 𝑋) =  𝑝(𝑦|𝑋, 𝛽, 𝜎2) ∙  𝑝(𝛽, 𝜎2) 

(3.6a) 

 ∝ (𝜎2)−𝑛 2⁄ exp [−
(𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽)

2𝜎2
] 

× (𝜎2)−𝑘 2⁄ exp [−
(𝛽 − 𝛽0)

𝑇∑0
−1(𝛽 − 𝛽0)

2𝜎2
] 

× (𝜎2)−𝑎0 2⁄ −1exp (−
𝑏0

2𝜎2
) 

Combining these densities and the joint posterior gives 

 𝑝(𝛽, 𝜎2|𝑦, 𝑋) ∝ (𝜎2)−𝑘 2⁄ exp {−
1

2𝜎2
(𝛽𝑇[𝑋𝑇𝑋 + ∑0

−1]𝛽

− 2𝛽𝑇[𝑋𝑇𝑦 + ∑0
−1𝛽0] + 𝑦𝑇𝑦 + 𝛽0

𝑇∑0
−1𝛽0)} (3.6b) 

 × (𝜎2)−(𝑎0+𝑛)/2−1exp (−
𝑏0

2𝜎2
) 

Completing the square obtains the following expression of posterior distribution 
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 𝑝(𝛽, 𝜎2|𝑦, 𝑋) ∝ (𝜎2)−𝑘 2⁄  exp {−
(𝛽 − 𝛽∗)𝑇(∑∗)−1(𝛽 − 𝛽∗)

2𝜎2
} 

(3.6c) 
 × (𝜎2)−𝑎∗/2−1exp (−

𝑏∗

2𝜎2
) 

where 

 ∑∗ = (𝑋𝑇𝑋 + ∑0
−1)−1 

𝛽∗ = (𝑋𝑇𝑋 + ∑0
−1)−1(𝑋𝑇𝑦 + ∑0

−1𝛽0) 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 

𝑎∗ = 𝑎0 + 𝑛 

𝑏∗ = 𝑏0 + (𝑦 − 𝑋𝛽̂)
𝑇
(𝑦 − 𝑋𝛽̂) + (𝛽 − 𝛽̂)𝑇[(𝑋𝑇𝑋)−1 + ∑0]

−1(𝛽 − 𝛽̂) 

 

Note that Equation (3.6c) is again the kernel Normal Inverted-Gamma distribution, 

and can be factored as the conditional posterior distribution 𝛽 multiplied by the marginal 

posterior distribution of 𝜎2 

 𝑝(𝛽, 𝜎2|𝑦, 𝑋) = 𝑝(𝛽|𝜎2, 𝑦, 𝑋) × 𝑝(𝜎2|𝑦, 𝑋) (3.7) 

where  

 𝛽|𝜎2, 𝑦, 𝑋 ~ 𝑁(𝛽∗, 𝜎2∑∗) 

𝜎2|𝑦, 𝑋 ~ 𝐼𝐺 (
𝑎∗

2
,
𝑏∗

2
) 

 

Since the posterior distribution of parameters is obtained, we can summarize the 

characteristics of the posterior distribution, such as posterior mean, posterior median, and 

posterior credible intervals. 
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3.2.5 Marginal posterior density 

In regression modeling, the coefficients on the explanatory variables, 𝛽, are usually 

the primary concern. The expression in Equation (3.7) describes the joint posterior 

distribution. If we are interested in the marginal posterior distribution for the 

parameters 𝛽, the variance parameter 𝜎2 has to be integrated out through 

 𝑝(𝛽|𝑦, 𝑋) = ∫ 𝑝(𝛽, 𝜎2|𝑦, 𝑋)𝑑𝜎2
∞

0

 

(3.8a)  ∝ ∫ (𝜎2)−(𝑘+𝑎∗) 2⁄ −1 exp {−
(𝛽 − 𝛽∗)𝑇(∑∗)−1(𝛽 − 𝛽∗) + 𝑏∗

2𝜎2
}  𝑑𝜎2

∞

0

 

 = ∫ (𝜎2)−(𝑘+𝑎∗) 2⁄ −1
∞

0

exp {−
𝐵

2𝜎2
}  𝑑𝜎2  

where 𝐵 = (𝛽 − 𝛽∗)𝑇(∑∗)−1(𝛽 − 𝛽∗) + 𝑏∗ . Let 𝑢 =
𝐵

2𝜎2 , then  𝜎2 =
𝐵

2𝑢
  and 

𝑑𝜎2

𝑑𝑢
=

−
𝐵

2
𝑢−2. 

 𝑝(𝛽|𝑦, 𝑋) ∝ ∫ (
𝐵

2𝑢
)

−(𝑘+𝑎∗) 2⁄ −1∞

0

∙ exp{−𝑢} ∙ (− 
𝐵

2
𝑢−2) 𝑑𝑢 

(3.8b) 

 = (
𝐵

2
)
−(𝑘+𝑎∗) 2⁄

∫ 𝑢(𝑘+𝑎∗) 2⁄ −1
∞

0

 exp{−𝑢}𝑑𝑢 

The definition of Gamma function is 𝑓(𝑢) =
1

Γ(𝛼)
𝑢𝛼−1𝜆𝛼exp(−𝜆𝑢). When 𝜆 = 1, 𝛼 =

(𝑘 + 𝑎∗) 2⁄  , then 𝑓(𝑢) =
1

Γ((𝑘+𝑎∗) 2⁄ )
𝑢(𝑘+𝑎∗) 2⁄ −1exp(−𝑢) . From the properties of 

Gamma distribution, it follows that ∫ 𝑢(𝑘+𝑎∗) 2⁄ −1∞

0
 exp{−𝑢}𝑑u = Γ((𝑘 + 𝑎∗) 2⁄ ). 

Equation (3.8b) can be re-written as  

 𝑝(𝛽|𝑦, 𝑋) ∝ (
𝐵

2
)
−(𝑘+𝑎∗) 2⁄

Γ((𝑘 + 𝑎∗) 2⁄ )  ∝ 𝐵−(𝑘+𝑎∗) 2⁄  

(3.8c)  = [(𝛽 − 𝛽∗)𝑇(∑∗)−1(𝛽 − 𝛽∗) + 𝑏∗]−(𝑘+𝑎∗) 2⁄  

 = [1 + (𝛽 − 𝛽∗)𝑇(𝑏∗∑∗)−1(𝛽 − 𝛽∗)]−(𝑘+𝑎∗) 2⁄  
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 = [1 +
1

𝑎∗
(𝛽 − 𝛽∗)𝑇(

𝑏∗

𝑎∗
∑∗)−1(𝛽 − 𝛽∗)]

−(𝑘+𝑎∗) 2⁄

 

which is the kernel for the density of a multivariate Student-t distribution (Ando 2010). 

Thus, the marginal posterior distribution for 𝛽 is Student-t distribution, whose form is  

 𝛽|𝑦, 𝑋~𝑡(𝛽∗,
𝑏∗

𝑎∗
Σ∗, 𝑎∗) (3.9) 

with 

𝐸(𝛽|𝑦, 𝑋) = 𝛽∗ 

and 

𝑉𝑎𝑟(𝛽|𝑦, 𝑋) =
𝑏∗

𝑎∗ − 2
∑∗ 

3.2.6 Prediction distribution 

Suppose we have the linear regression model as in Equation (3.1), with likelihood 

and prior given in Equations (3.3) and (3.5), and the posterior distribution given in 

Equation (3.7). We want to make a prediction about a set of unobserved data (𝑦# =

𝑦1
#, … , 𝑦𝑚

# ), which can be generated by 

 𝑦# = 𝑋#𝛽 + 𝜀# (3.10) 

where 𝑦# is unobserved, 𝛽 in Equation (3.10) is the same as the 𝛽 in Equation (3.2) 

and 𝜀# is independent of 𝜀 but follows 𝑁(0, 𝜎2𝐼𝑚). We  assume that the explanatory 

variable 𝑋# is observed and is a 𝑚 × 𝑘 matrix.  

The Bayesian prediction is conducted by calculating  
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𝑝(𝑦#| 𝑋#) = ∫𝑝(𝑦#| 𝑋#, 𝛽, 𝜎2)𝑝(𝛽, 𝜎2|𝑦, 𝑋)  𝑑𝛽𝑑𝜎2 

(3.11) 
 

=
Γ(

𝑎∗ + 𝑚
2 )

Γ(
𝑎∗

2 )(𝜋𝑎∗)𝑚 2⁄
|∑#|−1 2⁄ {1

+
1

𝑎∗
(𝑦# − 𝜇#)𝑇∑#−1

(𝑦# − 𝜇#)}
−(𝑎∗+𝑚) 2⁄

 

where 𝜇# = 𝑋#𝛽∗,  and ∑# =
𝑏∗

𝑎∗
(𝐼 + 𝑋#∑∗−1 𝑋#𝑇

) . This turns out to be the 

multivariate Student-t distribution (Ando 2010; Koop 2003), whose mean and covariance 

are 𝐸(𝑦#| 𝑋#) = 𝑋#𝛽∗ and 𝑣𝑎𝑟(𝑦#| 𝑋#) =
𝑏∗

𝑎∗−2
(𝐼 + 𝑋#∑∗−1 𝑋#𝑇

), respectively. 

3.3 Computational Scheme for Parameter Estimation 

3.3.1 Gibbs sampler  

Posterior inference about 𝛽 and 𝜎2, and prediction for unobserved data can all be 

done analytically using the results presented in the previous section. However, there are 

cases such as nonlinear function of 𝛽 , linear regression model with other prior 

distributions, and more complex models with a larger set of unknown parameters, where 

analytical solutions are not possible. In such circumstances, it is appropriate to figure 

them out by using a simulation method. A number of simulation methods such as Markov 

chain Monte Carlo (MCMC) method, have been developed in the past two decades, which 

greatly simplify the integration calculation and make it possible to extend Bayesian 

analysis to a variety of complex models. Since Gibbs sampler was firstly introduced to 
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Bayesian statistics by Gelfand and Smith (1990), it remains in current and widespread 

use. Being one of the MCMC algorithms, Gibbs sampler is a special case of the more 

general Metropolis-Hasting algorithm and is useful when sampling from a multivariate 

posterior is not feasible, while sampling from the conditional distribution for each 

parameter is feasible (Feinberg et al. 2005). The idea in Gibbs sampler is to generate 

posterior samples by sweeping through each variable to sample from its conditional 

distribution with remaining variables being fixed to their current values. In this study, 

Gibbs sampler is used to obtain the marginal distributions for 𝛽 and 𝜎2; its iterative 

process is summarized in Algorithm 3.1. 

 

Algorithm 3.1 Gibbs sampler for marginal distributions 

1. Initializing the parameters {𝛽(0), 𝜎2(0)} and let 𝑘 = 1, 

2. Sample 𝛽(𝑘) from the conditional distribution 𝑓(𝛽|𝑦, 𝑋, 𝜎2(𝑘−1)), 

3. Sample 𝜎2(𝑘) from the conditional distribution 𝑓(𝜎2|𝑦, 𝑋, 𝛽(𝑘)), 

4. Let 𝑘 = 𝑘 + 1, go back to (2) and (3) and repeat until L samples  

   {𝛽(𝑘), 𝜎2(𝑘): 𝑘 = 1,… , 𝐿} are obtained.  

 

As the number of Gibbs iterations increases to infinity, the draws from the conditional 

distributions converge to the joint posterior distribution 𝑓(𝛽, 𝜎2|𝑦, 𝑋). Therefore, after a 

large enough number of iterations, the marginal distributions of 𝛽  and 𝜎2  can be 

approximated by the empirical distributions of samplers. In other words, one repeats the 
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Gibbs iterations L times (large enough for convergence) and save the last 𝐿1 samplers of 

𝛽(𝑘) and 𝜎2(𝑘) (𝑘 = 𝐿0, … , 𝐿) for estimating approximate marginal distributions of 𝛽 

and 𝜎2. Apart from that, the posterior means, the standard errors, and the 95% confidence 

intervals of the 𝛽 and 𝜎2 can be calculated by using the last 𝐿1 samplers. The 95% 

confidence interval is estimated using the 2.5% and 97.5% of the posterior samples. It is 

required to judge convergence of the process before using the samples obtained from 

Gibbs sampler for making inference, because it directly affects the accuracy of the 

statistical results. A concept of burn-in period (here referred to as 𝐿0 = 𝐿 − 𝐿1 ) is 

introduced to estimate the time period required for the draws to reach its stationary state, 

and the criteria for convergence judgment will be discussed in the next sub-section.  

The predictive density can also be estimated based on the Gibbs sampling output. By 

using the posterior samples  {𝛽(𝑘), 𝜎2(𝑘): 𝑘 = 𝐿0, … , 𝐿}, the predictive density of future 

value 𝑦#, given 𝑋#, can be approximated as 

𝑓(𝑦#|𝑋#) = ∫𝑓(𝑦#|𝑋#, 𝛽, 𝜎2)𝑓(𝛽, 𝜎2|𝑦, 𝑋)  𝑑𝛽𝑑𝜎2

≈
1

𝐿 − 𝐿0
∑ 𝑓(𝑦#|𝑋#, 𝛽(𝑘), 𝜎2(𝑘))

𝐿

𝑘=𝐿0

 

(3.12) 

3.3.2 Convergence diagnostics 

One important practical issue in application of MCMC algorithms is to check the 
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convergence of the sampling process before using the draws for parameters estimation. 

In contrast to convergence of optimizing algorithms (such as minimum least squares or 

maximum likelihood), the Markov chain converges to a density rather than deterministic 

points (Congdon 2003). Solution to the problem of determining convergence can be 

addressed in two approaches: the first is theoretical, wherein the Markov transition kernel 

of the chain is predetermined to insure convergence of the generated samples; the second 

approach is applying diagnostic tools to check the convergence issue (Cowles and Carlin 

1996). In practice, the second approach is widely applied for convergence verification. In 

this study, the second approach is adopted and two common criteria are introduced for 

convergence checking. 

In the process of examining the convergence of Gibbs sequences, trace plots would 

be useful and intuitive for detecting poorly sampled Markov chains. If the Markov chain 

has converged to the distribution, the trace plot will fluctuate smoothly without any trends. 

If some trends of Markov chain are observed, it is a clear sign of nonconvergence. 

Although this method is easily implemented, we have to be careful because the trace plot 

will tend to be stable even when the Markov chain is trapped in a local region (Ando 

2010).  

Geweke (1992) proposed a convergence diagnostic (CD) test statistic that measures 

the equality of the means of first and last part of the Markov chain. If the samples are 
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drawn from the stationary distribution, the means calculated from the first part and last 

part of the chain are equal. Divides the L draws from the Gibbs sampler into an initial 𝐿0 

which are discarded as burn-in replications and the remaining 𝐿1  draws. Further, the 

latter draws are divided into three sets: a first set of 𝐿𝐴 draws, a middle set of 𝐿𝐵 draws 

and a last set of 𝐿𝐶 draws. In practice, it has been found that setting 𝐿𝐴 = 0.1𝐿1,  𝐿𝐵 =

0.5𝐿1, 𝐿𝐶 = 0.4𝐿1  works well in many applications (Koop 2003). For the purpose of 

calculating the convergence diagnostic, the middle set of draws are dropped out for 

making it likely that the first and last sets of draws are independent of one another. Let 

𝑀𝐿𝐴
  and 𝑀𝐿𝐶

  be the average of the first and last set of draws, 𝜎𝐿𝐴
  and 𝜎𝐿𝐶

  be the 

standard error of these two parts. Then the test statistic is  

 𝐶𝐷 =
𝑀𝐿𝐴

− 𝑀𝐿𝐶

𝜎𝐿𝐴
+ 𝜎𝐿𝐶

, (3.13)  

which is asymptotically normal distribution as 𝑁(0,1). Large value of CD means that 

there is a significant difference between 𝑀𝐿𝐴
 and 𝑀𝐿𝐶

, hence the number of total Gibbs 

iterations should be increased to generate sufficient samples. If the convergence 

diagnostic indicates that enough draws have been obtained, then finial results can be 

calculated based on the complete set of 𝐿1 draws. 
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3.4 Application: Expansion Joints in a Cable-Stayed Bridge 

3.4.1 Ting Kau Bridge 

The Ting Kau Bridge (TKB) in Hong Kong is a three-tower cable-stayed bridge with 

two main spans of 448 m and 475 m, respectively, and two side spans of 127 m each 

(Bergermann and Schlaich 1996). The bridge deck is separated into two carriageways 

with a width of 18.8 m each, between them being three slender single-leg towers with 

heights of 170 m, 194 m, and 158 m, respectively. The deck is supported by 384 stay 

cables in four cable planes. As part of a long-term SHM system devised by the Hong 

Kong SAR Government Highways Department, more than 230 sensors have been 

permanently installed on the TKB after completing the bridge construction in 1999 (Wong 

2004; Ko and Ni 2005). The sensors deployed on the bridge include accelerometers, strain 

gauges, displacement transducers, anemometers, temperature sensors, GPS, and weigh-

in-motion sensors (Wong 2007; Ni et al. 2011). Two displacement transducers have been 

used for the measurement of longitudinal movements of the expansion joints at the two 

ends of the continuous bridge deck (DSGAW01 and DSGPW01). There are a total of 83 

temperature sensors in the SHM system; 51 of them are installed on a deck cross section 

for measurement of steel, concrete, asphalt and atmosphere temperature. The deployment 

of displacement transducers and temperature sensors on the TKB is illustrated in Figure 

3.1 to Figure 3.3.  
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Figure 3.1 Deployment of displacement transducers and temperature sensors on Ting 

Kau Bridge (TKB) 

 

 

Figure 3.2 Displacement transducer at Tsing Yi abutment 

 

 

 

Figure 3.3 Temperature sensors on deck cross section 
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3.4.2 Processing of monitoring data 

One-year continuous monitoring data (displacement and temperature) obtained from 

the TKB are used herein. The displacement and temperature measurement data were 

acquired with sampling rates of 2.56 Hz and 0.07 Hz, respectively, from which the hourly-

average values of displacements and temperatures have been obtained.  

In this study, the effective temperature is used to represent the average of temperature 

distributed across the cross section, which accounts for the thermal movements of the 

bridge deck. It is obtained by weighted average of temperatures measured at all subareas, 

where the weighting is the ratio of each subarea to the total area of the cross section (Ni 

et al. 2007). The effective temperature can be expressed as  

 
𝑇 = ∑

𝐴𝑖

𝐴
𝑇̅𝑖

𝑘

𝑖=1

 (3.14) 

where 𝐴𝑖 = 𝑖th  subarea; A is the gross area of the cross section; 𝑇̅𝑖 = measured 

temperature at the 𝑖th subarea; and 𝑘 =number of subareas divided for the cross section. 

The measured temperatures from 39 sensors on the deck cross section, including 15 in 

steel and 24 in concrete, are used to calculate the effective temperature. Figure 3.4 

illustrates the effective temperature of the bridge deck and the displacements of the 

expansion joints in one year. The positive direction of displacement is defined as towards 

the end of bridge deck along the bridge longitudinal direction.  

After obtaining the effective temperature, a check on the relationship between the 
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displacement of the expansion joints and the effective temperature of the bridge deck is 

made. Figure 3.5 shows the deck effective temperature and expansion joint displacement 

at the Ting Kau and Tsing Yi abutments for 48 hours duration, where DSGAW01 denotes 

the displacement at Ting Kau abutment while DSGPW01 denotes the displacement at the 

Tsing Yi abutment. It is seen that the change of displacement coincides with effective 

temperature fluctuation very well. Furthermore, a good linear relationship between the 

expansion joint displacement and the deck effective temperature is observed, as shown in 

Figure 3.6. So it is concluded that the movement of the expansion joints is mainly caused 

by the temperature fluctuation. A Bayesian linear regression model will be formulated in 

following sub-section. 
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(a) Effective temperature 

 

(b) Displacement 

Figure 3.4 Sequences of measured effective temperature and displacement 
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Figure 3.5 Time histories of displacement and effective temperature 

 

  

Figure 3.6 Relationship between displacement and temperature 

3.4.3 Bayesian analysis and assessment 

3.4.3.1 Problem description 

A linear regression model is assumed for the correlation between the expansion joint 

displacement and the deck effective temperature. As specified in Equation (3.1), the 

response variable 𝑦 represents the average displacement of the expansion joints per hour 

0 6 12 18 24 30 36 42 48

27

28

29

30

31

32

33

30

40

50

60

70

80

 

T
e

m
p
e

ra
tu

re
 (
℃

)

Time (hour)

 Temperature

D
is

p
la

c
e

m
e
n

t 
(m

m
)

 DSGAW01

 DSGPW01

5 10 15 20 25 30 35

-150

-100

-50

0

50

100

Temperature (C)

D
is

p
a
lc

e
m

e
n
t 

(m
m

)

 

 

2=578.41

DSGAW01

5 10 15 20 25 30 35

-150

-100

-50

0

50

100

Temperature (C)

D
is

p
a
lc

e
m

e
n
t 

(m
m

)

 

 

2=536.13

DSGPW01



Chapter 3 SHM-based Condition Assessment of Bridges Using BLM 

51 

and the covariates x denote the effective mean hour temperature. The data set, of sample 

size 𝑛 = 3602, covers the whole year. Since only one variable, effective temperature, is 

considered in the linear regression model in this case, the model reduces to 

 𝑦𝛼 = 𝛽1𝑥𝛼1 + 𝛽2𝑥𝛼2 + 𝜀𝛼 ,     𝛼 = 1,⋯ , 𝑛 (3.15) 

where 𝜀𝛼 is the regression error, and 𝑥𝛼1 is implicitly set to 1 to allow for an intercept.  

3.4.3.2 Selection of prior distribution  

When using Bayesian method to formulate a regression model, prior distribution 

should be specified for each model parameter. The Normal Inverse-Gamma prior, 

expressed in Equation (3.16), is adopted 

 𝑓(𝛽, 𝜎2) = 𝑓(𝛽|𝜎2) 𝑓(𝜎2) = 𝑁(0, 𝜎2∑0) 𝐼𝐺 (
𝑎0

2
,
𝑏0

2
) (3.16) 

The level of (un)certainty in a prior is manipulated through the specified features of 

the prior distribution, and these features are called hyperparameters in the Bayesian 

context. For example, a normal distribution is defined through a mean and a variance and 

the amount of knowledge incorporated into normal distribution is directly controlled by 

the mean and variance hyperparameters. Figure 3.7 shows four normal distributions 

having different variance hyperparameters. It can be seen that the distributions with small 

variance (1 and 10) are illustrating much more certainty about the possible values of the 

parameter because the spread of these distributions covers a much smaller range of 
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possible values compared to those plots with large variance. In other words, the 

distributions with large variance (100 and 1000) show very little certainty about the 

possible values of the parameter because there is much larger spread of possible values 

that fall under this prior.  

Akin to the normal distribution, the Inverse-Gamma distribution with different 

parameter values is also manipulated, as shown in Figure 3.8. In general, the parameters 

a and b indicate the possible range of values for the corresponding parameters being 

estimated. The smaller the values of a and b, the larger the spread of the possible values.  

Because of very little certainty of the parameters, we choose reasonable values for 

the parameters of prior distribution covering a wide range of the possible values. Here, 

we set ∑0 = 1000 × 𝐼2  (𝐼2  is second order identity matrix), and 𝑎0 = 𝑏0 = 0.002 

(equivalent to 𝑎 = 𝑏 = 0.001 in Figure 3.8), which make the prior diffused. 

 

Figure 3.7 Prior distribution illustrating different levels of informativeness (Normal) 
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Figure 3.8 Prior distribution illustrating different levels of informativeness (Inverse-

Gamma) 
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Model 1 (Ting Kau side). As shown in the figure, there is no evidence of lack of 

convergence based on the examination of the trace plots. The right hand panels of Figure 

3.9 are the plots of the posterior distributions for 𝛽1, 𝛽2, 𝜎2 and the corresponding 95% 

confidence intervals (the blue area). Similarly, the sample paths and posterior densities of 

parameters for Model 2 (Tsing Yi side) are presented in Figure 3.10. 

Table 3.1 summarizes the detailed information of the estimated parameters, including 

posterior mean, standard deviation (SD), 95% posterior confidence interval, skewness, 

kurtosis and convergence diagnostic CD. It is seen that the values of CD for the 

parameters are all close to 0, demonstrating that the posterior samples meet the 

requirement of convergence for parameter estimation. Since the analytical solutions for 

mean and SD are available as shown in section 3.2.3 and 3.2.4, the analytical values are 

also obtained for comparison with the results estimated by using the Gibbs sampler 

approach. It is apparent that the simulation values are pretty much the same as the 

analytical values, verifying the accuracy of the Gibbs sampler in the present study. The 

95% posterior interval of each parameter covers the analytical values. The SD is a 

measure that can quantify the uncertainty of each parameter. From the table, it is seen that 

𝛽2 has the lowest SD value (0.03), 𝛽1 comes second (0.75), and model error 𝜎2 owns 

the largest SD value (2.26). But their relative errors are 0.4%, 0.38% and 2.41% for 

𝛽1,  𝛽2, 𝜎2 , respectively, which implies the model error 𝜎2  has a higher uncertainty 
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than 𝛽1, and 𝛽2 . As shown in the table, the values of skewness are nearly zero and 

kurtosis are close to 3, which indicate the estimated posterior densities are approximately 

normal distribution. The mean slopes of the linear regression functions are 7.93 and 6.88 

mm/℃  for the expansion joints at the Ting Kau abutment and Tsing Yi abutment, 

respectively. The expansion lengths for spans on the left and right sides of the central 

tower are 575 m and 602 m, so the thermal expansion coefficients can be estimated as 

13.7×10-6 per ℃ and 11.4×10-6 per ℃, which are close to the design value of 12.0×10-6 

per ℃.  

Compared with traditional model, the biggest advantage of Bayesian model is that 

the model error is quantitatively obtained simultaneously, making the model more 

reasonable. From Table 3.1 it is seen that Model 2 has a smaller model error that indicates 

Model 2 is relatively more accurate. 

Using the mean values of the parameters 𝛽1 and 𝛽2, the linear relationship between 

the displacement of the expansion joints and the effective temperature of the deck can be 

determined as shown by red solid lines in Figure 3.11. It is seen that the results estimated 

by the Bayesian method agree well with the measurement.  
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Table 3.1 Summary of the evaluated parameters 

Expansion joint Ting Kau side (Model 1) Tsing Yi side (Model 2) 

Parameters 𝛽1 𝛽2 𝜎2 𝛽1 𝛽2 𝜎2 

Mean 
Gibbs -186.94 7.93 93.7 -152.65 6.88 84.18 

Analytical -186.88 7.92 93.69 -152.83 6.88 84.03 

SD 
Gibbs 0.75 0.03 2.26 0.73 0.03 2.03 

Analytical 0.75 0.03 2.24 0.72 0.03 2.03 

95% confidence 

interval 

[-

188.40,  

-185.43] 

[7.87, 

8.00] 

[89.46, 

98.33] 

[-

154.05,  

-151.23] 

[6.82, 

6.93] 

[80.30, 

88.36] 

Skewness -0.01 -0.005 0.15 0.04 -0.03 0.13 

Kurtosis 2.98 2.97 2.97 2.92 2.93 3.06 

CD -0.024 0.025 -0.029 -0.001 0.003 0.012 

 

  

  

  

Figure 3.9 Sample paths and estimated posterior densities for parameters  

(Ting Kau side) 

 

0 1000 2000 3000 4000 5000

-190

-188

-186

-184

Iterations


1

-190 -189 -188 -187 -186 -185 -184
0

0.2

0.4

0.6

-188.4 -185.43

95%


1

p
.d

.f

0 1000 2000 3000 4000 5000

7.8

7.9

8

8.1

Iterations


2

7.8 7.85 7.9 7.95 8 8.05
0

5

10

15

7.87 8

95%


2

p
.d

.f

0 1000 2000 3000 4000 5000

85

90

95

100

105

Iterations


2

90 95 100
0

0.05

0.1

0.15

0.2

89.46 98.33

95%

2

p
.d

.f



Chapter 3 SHM-based Condition Assessment of Bridges Using BLM 

57 

  

  

  

Figure 3.10 Sample paths and estimated posterior densities for parameters 

(Tsing Yi side) 

  

Figure 3.11 Measured and Bayesian linear relations between displacement and 

effective temperature 
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3.4.3.4 Anomaly index 

With the uncertain parameters being identified, the probabilistic regression models 

are specified. As shown in Figure 3.12 and Figure 3.13, the predicted displacement of the 

expansion joint at any given temperature is not a definite value but a probability 

distribution. In practice, we mainly concern the probability of failure when a new 

measurement of displacement is obtained. Here a common performance indicator, named 

anomaly index, is introduced to evaluate the failure probability of the expansion joints 

based on new measurement data.  

The probability of failure of a system is defined as the probability of violating any of 

its limit states (Frangopol 2011; Frangopol and Soliman 2013). A limit-state function is 

defined as  

 𝑔 = 𝑅 − 𝑆 (3.17) 

where R is the capacity of displacement of the expansion joints under a certainty 

temperature, S is the measured displacement response at the same temperature.  

Based on this limit-state function, the failure probability can be expressed as 

 𝑃𝑓 = 𝑃(𝑔 < 0) = 𝑃(𝑅 − 𝑆 < 0) = ∫ 𝐹𝑅(𝑥)𝑓𝑆(𝑥)𝑑𝑥
0

−∞

 (3.18) 

where 𝐹𝑅(𝑥) is the cumulative probability distribution function (CPDF) of the capacity 

and 𝑓𝑆(𝑥) is the probability density function (PDF) of the measured displacement.  

Suppose the displacement capacity R and the displacement response S are 
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independent normal variates, with means and variances 𝜇𝑅 , 𝜇𝑆  and 𝜎𝑅
2 , 𝜎𝑆

2 , 

respectively. In this case, 𝑔 = 𝑅 − 𝑆 is also a normal variate with  

𝜇𝑔 = 𝜇𝑅 − 𝜇𝑆, 𝜎𝑔
2 = 𝜎𝑅

2 + 𝜎𝑆
2. 

The failure probability is  

 𝑃𝑓 = 𝐹𝑔(0) = Φ(
0 − 𝜇𝑔

𝜎𝑔
) = Φ(−

𝜇𝑅 − 𝜇𝑆

√𝜎𝑅
2 + 𝜎𝑆

2
) (3.19) 

The corresponding anomaly index is 

 𝜆 = Φ−1(𝑃𝑓) (3.20) 

where Φ−1(∙) is the inverse of the standard normal cumulative distribution function. The 

anomaly index can be computed as  

 𝜆 =
|𝜇𝑅 − 𝜇𝑆|

√𝜎𝑅
2 + 𝜎𝑆

2
 (3.21) 

For instance, consider the distribution of the displacement of the expansion joint at 

Ting Kau side under the temperature of 20℃ whose mean and variance are 50.92 mm 

and 93.29 respectively. Assuming the measured displacement is 90, 80, 70, 60, 50, 40, 30, 

20 mm under the same temperature, the corresponding abnormal index can be calculated 

by Equation (3.21), as shown in Figure 3.14. Note that the more the measured 

displacement deviating from the center of the distribution (blue dotted line), the bigger 

the anomaly index, which indicates a higher probability of failure about the expansion 

joint. Therefore, the degree of failure can be graded in term of the value of the anomaly 

index 𝜆. Meanwhile, the 95% confidence level (red line in Figure 3.14) is shown as a 
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threshold for easily indicating anomaly values. It is figured out that there exists a risk of 

failure for the expansion joint when the anomaly index exceeds the threshold. 

 

 

Figure 3.12 Distribution of expansion joint displacement under different temperatures 

(Ting Kau side) 

 

 

Figure 3.13 Distribution of expansion joint displacement under different temperatures 

(Tsing Yi side) 
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Figure 3.14 Anomaly index 
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However, the displacement ranges with 95% confidence interval are [298.52, 371.37] at 

the Ting Kau side and [252.99, 325.26] at the Tsing Yi side, whose upper bounds exceed 

the design criterion. It is better to increase the design values for the safety of the expansion 

joints. 

 

  

(a) Temperature = -2℃ (b) Temperature = 40℃ 

Figure 3.15 Distribution of predicted displacement at Ting Kau side 

 

  

(a) Temperature = -2℃ (b) Temperature = 40℃ 

Figure 3.16 Distribution of predicted displacement at Tsing Yi side 
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Table 3.2 Predicted displacements corresponding to minimum and maximum 

temperatures 

Expansion 

joint 

T 

(℃) 

Mean (mm) SD 95 % confidence 

interval (mm) 
 

Gibbs Analytical Gibbs Analytical 

Ting Kau 

side 

-2 -202.78 -202.66 9.76 9.84 
[-221.81, -

184.04]  

40 130.24 130.01 9.81 9.82 [114.48, 149.56] 

Tsing Yi 

side 

-2 -166.50 -167.42 9.31 9.08 
[-184.92, -

148.25]  

40 122.38 122.77 9.12 9.06 [104.74, 140.34] 

3.5 Summary 

This chapter presents an efficient approach using Bayesian inference for condition 

assessment of bridge expansion joints. Making use of the long-term SHM data, Bayesian 

linear model (BLM) is formulated to characterize the relationship between the 

displacement of expansion joints and the effective temperature of bridge deck. The model 

parameters associated with their uncertainties are estimated by using Gibbs sampler, and 

then compared with the analytical results for validation. Based on the formulated BLM, 

the anomaly index is defined for evaluating the probability of failure of expansion joints 

when new measurement is available. The predicted mean displacements at the maximum 

and minimum temperatures are close to the design values, but the upper bounds of the 

predicted displacement ranges with 95% confidence interval exceed the design criterion. 

It is therefore suggested to appropriately increase the design values for the sake of the 

expansion joint safety.  
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Chapter 4 

SHM-based Condition Assessment of Bridges Using BGLM 

4.1 Introduction 

Although the linear regression model is an easy and convenient technique for a 

variety of problems, in some practical situations, the response variables do not depend 

linearly on the explanatory variables. The purpose of the generalized linear model is to 

extend the idea of linear model to cases where an assumption of linear relationship 

between the explanatory variables and response variables is not appropriate, by 

introducing a suitable transformation. For example, if 𝑦𝑖 = 𝑥𝑖1
𝑏1𝑥𝑖2

𝑏2 ⋯𝑥𝑖𝑘
𝑏𝑘 × 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛, 

then log 𝑦𝑖 = 𝑏1log 𝑥𝑖1 + ⋯+ 𝑏𝑘log 𝑥𝑖𝑘 + 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 , and a linear model relating 

log 𝑦𝑖 to log 𝑥𝑖𝑗 is applicative.  

A generalized linear model consists of three elements (Gelman et al. 1995): (i) a linear 

predictor,𝜂 = 𝑋𝛽; (ii) a link function 𝑔(∙) which provides the relationship between the 

linear predictor and the mean of the outcome variable 𝐸(𝑦) = 𝜇 = 𝑔−1(𝜂) = 𝑔−1(𝑋𝛽); 

(iii) a probability distribution for 𝑦  from the exponential family. The most common 

exponential-family distributions along with link functions are shown in Table 4.1. 
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Table 4.1 Common distributions and link functions 

Distribution Support of distribution Type of data Link function Mean function 

Normal Real: (−∞,+∞) Linear-response data 𝑋𝛽 = 𝜇 𝜇 = 𝑋𝛽 

Exponential Real: (0,+∞) Exponential-response data 𝑋𝛽 = 𝜇−1 𝜇 = (𝑋𝛽)−1 

Poisson Integer: 0,1,2,… Count of occurrences in 

fixed amount of time/space 

𝑋𝛽 = ln (𝜇) 𝜇 = exp (𝑋𝛽) 

Binomial Integar: 0,1,2,…,N Count of ‘yes’ occurrences 

out of N 

𝑋𝛽 = 𝑙𝑛 (
𝜇

1 − 𝜇
) 𝜇 =

exp (𝑋𝛽)

1 + exp (𝑋𝛽)
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In this study, the Bayesian generalized linear model (BGLM) aims to tackle the 

modeling and prediction of wind-induced displacement responses of bridges. The 

displacement response of a long-span bridge caused by aerostatic and fluctuating wind 

actions, is one of important parameters characterizing the safety of the bridge under strong 

winds. The lateral response of cable-supported bridges is in general susceptible to wind. 

The large-amplitude displacement under strong winds would threaten the safety of the 

whole bridge (Wang and Ding 2014). As an example, the first Tacoma Narrows Bridge in 

Washington State collapsed under winds of approximately 18m/s due to violent torsional 

flutter (Green and Unruh 2004). The lateral displacement response of bridges under winds 

has been evaluated by theoretical exploration, numerical simulation, and wind tunnel test 

(Cheng and Xiao 2006; Chan 2009; Soon et al. 2013). However, the actual displacement 

response of an in-service bridge is difficult to be accurately evaluated by the above 

approaches due to inappropriate ignorance of some subordinate factors, imprecise 

assignment of initial values, and uncertain boundary condition (Wang and Ding 2014). 

During the past decades, structural health monitoring (SHM) has been emerging as a 

powerful technique for collecting reliable and objective data about structural responses, 

such as displacement response, under various operational conditions, and performing 

real-time diagnosis of structural status. Global Positioning System (GPS), among other 

types of sensory systems, is a powerful tool for measuring the static and dynamic 
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displacement response of civil structures and has been widely applied to long-span 

bridges (Ashkenazi and Roberts 1997; Fujino et al. 2000; Miyata et al. 2002; Ni et al. 

2004; Guo et al. 2005). In Hong Kong, as a supplement to the Wind and Structural Health 

Monitoring System (WASHMS) instrumented on the Tsing Ma Bridge, Kap Shui Mun 

Bridge and Ting Kau Bridge, a GPS system has been deployed to monitor the 

displacement response of the bridge towers, cables and deck (Wong et al. 2001; Wong 

2004). 

With the monitoring data, investigations on correlation between the displacement 

response and wind speed have been conducted (Nakamura 2000; Xu and Chan 2009; 

Wang and Ding 2014). However, the formulated relations only involve the wind speed 

but ignore another important factor - the wind direction. From these models, the same 

displacement response would be produced under identical wind speeds but with different 

wind directions. It is obviously unreasonable. In addition, these relation models were 

formulated by estimating the deterministic model parameters based on statistical analysis 

of a large amount of monitoring data. Different from the classical estimation method, the 

Bayesian approach treats the unknown parameters as distributions rather than 

deterministic values and more importantly, it provides room for incorporating prior 

information with the obtained SHM data through Bayes’ theorem to achieve a feasible 

estimation (Zhu and Frangopol 2013). Although the Bayesian approach has been widely 
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used in different engineering fields (Sohn and Law 1997; Enright and Frangopol 1999; 

Vanik 2000; Ching and Leu 2009; Yuen 2010; Au 2011; Au et al. 2012), no reported 

studies have been available on assessing wind-induced displacement responses of bridges 

by the Bayesian approach. 

In this chapter, BGLM is formulated for modeling the wind-induced displacement 

responses of bridges with the use of monitoring data acquired during typhoons. In 

particular, the most suitable model is determined by the Bayesian model class selection 

technique. The formulated BGLM is then applied for response prediction.  

4.2 Bayesian Generalized Linear Model (BGLM) 

4.2.1 Theoretical formulation 

Suppose we have n independent observations {(𝑦𝑖, 𝑥𝑖), 𝑖 = 1,⋯ , 𝑛}, where  𝑦𝑖’s are the 

response variables and 𝑥𝑖’s are the explanatory variables, and the relationship between 

them is expressed as the following non-linear function 

 

𝑦𝑖 = 𝛽0 + 𝛽11𝑥1𝑖 + 𝛽12𝑥1𝑖
2 + ⋯+ 𝛽1𝑘1

𝑥1𝑖
𝑘1 

(4.1)  +𝛽21𝑥2𝑖 + 𝛽22𝑥2𝑖
2 + ⋯+ 𝛽2𝑘2

𝑥2𝑖
𝑘2 + ⋯ 

+𝛽𝑝1𝑥𝑝𝑖 + 𝛽𝑝2𝑥𝑝𝑖
2 + ⋯+ 𝛽𝑝𝑘𝑝

𝑥
𝑝𝑖

𝑘𝑝+𝜀𝑖,     𝑖 = 1,⋯ , 𝑛 

When the error 𝜀𝑖  is a normal distribution with mean 0 and variance 𝜎2, 
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𝜀𝑖 ~ 𝑁(0, 𝜎2), this model can be expressed as density form 

 𝑓(𝑌|𝑋, 𝛽, 𝜎2) =
1

(2𝜋𝜎2)𝑛 2⁄
exp [−

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽)

2𝜎2
] (4.2) 

with  

𝑌 = [

𝑦1

𝑦2 
⋮
𝑦𝑛

], 𝜀 = [

𝜀1

𝜀2 
⋮
𝜀𝑛

]  

𝛽 = [𝛽0, 𝛽11, ⋯ , 𝛽1𝑘1
, 𝛽21,⋯ , 𝛽2𝑘2

,⋯ , 𝛽𝑝1, ⋯ , 𝛽𝑝𝑘𝑝
]
𝑇

 

𝑋 =

[
 
 
 
 
 1 𝑥11 …
1 𝑥12 …

𝑥11
𝑘1 𝑥21 … 𝑥21

𝑘2 … 𝑥𝑝1 … 𝑥𝑝1

𝑘𝑝

𝑥12
𝑘1 𝑥22 … 𝑥22

𝑘2 … 𝑥𝑝2 … 𝑥𝑝2

𝑘𝑝

⋮ ⋮ ⋱
1 𝑥1𝑛 …

⋮ ⋮ ⋱  ⋮ ⋱  ⋮ ⋱ ⋮

𝑥1𝑛
𝑘1 𝑥2𝑛 … 𝑥2𝑛

𝑘2 … 𝑥𝑝𝑛 … 𝑥𝑝𝑛

𝑘𝑝
]
 
 
 
 
 

 

The posterior inference for the model parameters (𝛽,  𝜎2) can be obtained by applying 

the computational methods for Bayesian linear models described in Chapter 3. However, 

the most plausible/suitable class of models among numerous candidate models will be 

identified by the Bayesian model class selection techique.  

4.2.2 Optimal model class selection 

One commonly encountered problem in regression modeling is to find the best/optical 

model to explore the relationship between the explanatory and response variables. 

Although a more complicated model can fit the data better than a less complicated one 

which has fewer adjustable parameters, it is likely to lead to over-fitting. When the over-

fitted model is used for future prediction, it could lead to poor results because of the 
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identified model depending too much on the training data and the measurement noise in 

the data (Yuen 2010). Thus, the selected model should balance the accuracy and 

complexity. In other words, it is necessary to agree well with the observed data but others 

to be as simple as possible.  

The Bayesian approach for selecting a model is to choose the model with the largest 

posterior probability among a set of candidate models. So the posterior probability is the 

fundamental objective of interest for model selection. The posterior distribution of model 

parameters (𝜃) is defined via Bayes’ theorem 

 𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 (4.3) 

where 𝑝(𝑦|𝜃), 𝑝(𝜃) are the likelihood function and joint prior distribution, respectively; 

𝑝(𝑦) is the marginal likelihood that we want to compute. The marginal likelihood in logs 

is 

 𝑙𝑛 𝑝(𝑦) = 𝑙𝑛 𝑝(𝑦|𝜃) + 𝑙𝑛 𝑝(𝜃) − 𝑙𝑛 𝑝(𝜃|𝑦) (4.4) 

When the three terms in the right hand-side of Equation (4.4) are analytically available, 

the marginal likelihood, 𝑙𝑛 𝑝(𝑦) , can be computed easily. The value of 𝜃  is usually 

chosen as a point with high posterior density to maximize the accuracy of this 

approximation. However, the third term 𝑝(𝜃|𝑦) is often difficult to calculate due to the 

unknown exact form of posterior distribution. In this situation, Chib (1995) proposed to 

divide the parameter vector 𝜃 into several blocks so that the full conditional distribution 
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for each block is available in closed form. To illustrate the idea, we consider the case of 

two blocks, as our example, 𝜃 = (𝛽, 𝜎2) where 𝑝(𝛽|𝜎2, 𝑦) and 𝑝(𝜎2|𝑦) are available 

in closed form. The joint posterior distribution of 𝜃 can be estimated as  

 𝑝(𝜃|𝑦) = 𝑝(𝛽, 𝜎2|𝑦) = 𝑝(𝛽|𝜎2, 𝑦)𝑝(𝜎2|𝑦) (4.5) 

where an appropriate Monte Carlo estimate for 𝑝(𝜎2|𝑦) is  

 𝑝̂(𝜎2|𝑦) ≈
1

𝐿1
∑ 𝑓(𝜎2|𝑦, 𝛽(𝑘))

𝐿1

𝑘=1

 
(4.6) 

in which {𝛽(𝑘); 𝑘 = 1,⋯ , 𝐿1}  is a set of posterior samples from Gibbs sampler. The 

𝑝̂(𝜎2|𝑦) → 𝑝(𝜎2|𝑦)  as 𝐿1  becomes large. Therefore, the marginal likelihood can be 

estimated as  

 

ln 𝑝(𝑦) ≈ ln 𝑝(𝑦|𝛽⋆, 𝜎2⋆
)

+ ln 𝑝(𝛽⋆, 𝜎2⋆
) − ln 𝑝(𝛽⋆|𝜎2⋆

, 𝑦) − ln 𝑝̂(𝜎2⋆
|𝑦) 

(4.7) 

where the first three terms on the right-hand side are available in closed form. The value 

of 𝛽⋆,  𝜎2⋆
 may be chosen as the posterior mean, posterior mode, posterior median or 

other point which can maximize the accuracy of this approximation.  

4.3 Application: Wind-Induced Displacement of a Suspension 

Bridge 

4.3.1 Tsing Ma Bridge and SHM system 

A long-term SHM system has been implemented on the Tsing Ma Bridge (TMB) in 
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Hong Kong. The TMB is a suspension bridge with a main span of 1,377 m and a total 

length of 2,132 m, carrying both highway and railway (Figure 4.1). The height of the two 

bridge towers is 206 m from the base level to the tower saddle. Two online monitoring 

systems called Wind and Structural Health Monitoring System (WASHMS) and GPS On-

Structure Instrumentation System (GPS-OSIS) were installed on the bridge in 1997 and 

2000, respectively (Wong et al. 2001; Wong 2004, 2007; Ni et al. 2011). 

The GPS-OSIS has a total of 14 GPS receivers deployed over several key components 

of the bridge, including the towers, main cables and four different sections of the bridge 

deck, to monitor the displacement responses of the TMB in longitudinal, lateral and 

vertical directions (see Figure 4.1). To avoid the obstruction of signal receiving caused 

by vehicles, the antennae of all the GPS receivers on the bridge deck were mounted at a 

height of 4 m above the deck level and with a view angle of above 15° (see Figure 4.2). 

The sampling rate of GPS is 10 Hz. 

The WASHMS for the TMB includes a total of 6 anemometers, of which 2 ultrasonic 

anemometers are located at the mid-main span, 2 mechanical propeller-type anemometers 

at the middle of the Ma Wan side span, and 2 mechanical propeller-type anemometers on 

the top of the Tsing Yi tower and on the top of the Ma Wan tower, as shown in Figure 4.1. 

To eliminate the disturbance from the bridge deck, the anemometers at the deck level 

were installed on the south and north sides of the bridge deck respectively via a boom of 
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9 m long extended from the outmost of the deck. The sampling rate of anemometers is 

2.56 Hz.  

 

 

Figure 4.1 Location of GPS receivers and anemometers on Tsing Ma Bridge (TMB) 

 

 

 (a) Tower top (b) Main cable (c) Deck  

Figure 4.2 Deployment of GPS receivers at different portions of TMB 

4.3.2 SHM data 

The wind-induced displacement responses of the bridge vary depending on the 

intensity of wind speed. Displacement responses resulting from strong wind are most 

interesting for design and assessment purpose. Although advances in computational 
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technologies or wind tunnel test allow the estimation of these critical displacement 

responses of bridge structure, the predicted results might still deviate from the real values, 

and lead to risky conservative design or performance assessment. Since the SHM system 

can provide real responses of a bridge structure under in-service conditions, integration 

of the SHM data will yield a more accurate assessment of displacement responses. 

Available for this study is continuously measured data during typhoons hitting Hong 

Kong in 2011. According to the Hong Kong Observation (HKO), there were 3 typhoons 

(Haima, Nesat, and Nockten) of signal No.3 and above during 2011 (HKO 2013). The 

first step of data processing is to ascertain wind data acquired from which anemometer, 

on the north or south side, at the deck in each typhoon to represent the actual wind load 

acting on the deck girder and cables. That is because only those coming from windward 

side are actual wind. Instead, the wind data collected from the anemometer at the leeward 

sider are interfered by the bridge deck and not the real wind load acting on the bridge. 

The 10-min wind speed and wind direction measured during the three typhoons are 

plotted in Figure 4.3. 

The popular approaches for estimating wind-induced buffeting response of structures 

are largely based on the assumption of stationary wind excitations, which means the wind 

speed in a given time duration, e.g. 10 minutes, is regarded to be steady and the wind 

fluctuation around its mean is a stationary random process. However, the stationarity 
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assumption might be inappropriate in the case of typhoon or hurricane winds, where the 

magnitude and direction of mean wind speed may fluctuate violently with time and the 

random wind turbulence may show nonstationary characteristics (Chen and Kareem 2001; 

Chen 2012). Thus, we introduce the peak dynamic displacement (𝐷𝑚𝑎𝑥) during typhoon 

periods, which is estimated from the standard deviation (𝜎𝐷) of displacement response 

multiplied by a statistical peak factor (m) 

 𝐷𝑚𝑎𝑥 = 𝑚𝜎𝐷 (4.8) 

The value of m in Equation (4.8) is estimated based on a great deal of measurement data 

during typhoon events. Figure 4.4 shows the variation of the peak factor against the mean 

wind speed at different positions. It is found that the peak factor tends to stay fairly flat 

at high wind speeds. The mean values of peak factor at the mid-main cable, mid-main 

span and 1/4 main span, are approximately 2.5. Unfortunately, the measurement data at 

the 3/4 span are abnormal and therefore not considered in the following analysis. The 

detailed information of the peak factor is illustrated in Table 4.2. 

The total displacement response of the bridge in lateral direction is then given by 

 𝐷̂ = 𝐷 + 𝑚𝜎𝐷 (4.9) 

where 𝐷̂  is the wind-induced total displacement of the bridge deck and cable; 𝐷 

represents the wind-induced mean displacement; 𝜎𝐷 denotes the standard deviation of 

wind-induced displacement; m is the statistical peak factor. Figure 4.5 shows the 
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relationship between mean wind speed and wind-induced total displacement at different 

positions in lateral direction. It is seen that there exists a nonlinear relationship between 

the displacement and wind speed. 

 

Table 4.2 Peak factor at different positions 

Location Mid-main cable Mid-main span 1/4 main span  

Peak factor 2.37 2.42 2.54 

 

 

(a) Wind speed 

 

(b) Wind direction 

Figure 4.3 Sequence of measured wind speed and wind direction 
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(a) Mid-main cable (b) Mid-main span 

 

(c) 1/4 main span 

Figure 4.4 Peak factor at different positions 

 

  

(a) Mid-main cable (b) Mid-main span 

 

(c) 1/4 main span 

Figure 4.5 Correlation between wind speed and total displacement in lateral direction 
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4.3.3 Model comparison 

To determine an appropriate regression model between the displacement response 

and wind speed/wind direction, different explanatory variables and degrees of polynomial 

are considered and compared. The following five models are considered:  

M1 : 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝜀𝑖 

M2 : 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥1𝑖
2 + 𝜀𝑖 

M3  𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥1𝑖
2 + 𝛽3𝑥1𝑖

3 + 𝜀𝑖 

M4 : 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖 

M5 : 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥1𝑖
2 + 𝛽3𝑥2𝑖 + 𝜀𝑖 

where 𝑦𝑖  is the 10-min total displacement response, 𝑥1𝑖  and 𝑥2𝑖  are 10-min mean 

wind speed and wind direction. It is seen that only wind speed is treated as an explanatory 

variable in models M1, M2 and M3; whereas, both wind speed and wind direction are 

included in M4 and M5. Among the five candidate models, Bayesian model class 

selection is applied to select the optimal one for exploring the relationship between the 

wind-induced displacement and wind speed/direction. Meanwhile, root mean squared 

error (RMSE) is used for model performance assessment  

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 
(4.10) 

where 𝑦𝑖 is the measurement value and 𝑦̂𝑖 is the estimated mean value.  
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The measured data are decomposed into two sets training data set (data obtained from 

typhoons Haima and Nesat) and testing data set (data obtained from typhoon Nockten). 

The Bayesian regression model is formulated by using the training data, while the unseen 

testing data are only used to evaluate the performance of the formulated model. Figure 

4.6 and Figure 4.7 compare the Log-ML and RMSE values for models M1 to M5 for the 

training data set. Both the Log-ML and RMSE show that M4 is the most suitable model 

for all three locations (mid-main cable, mid-main span, 1/4 main span), which implies 

that wind direction plays an important role in explaining the wind-induced displacement. 

Comparing the results among M1 to M3, RMSE is slightly better for M3 while Log-ML 

is maximized for M2. Although M5 has extra quadratic term of wind speed, it does not 

perform better than M4 in terms of either Log-ML or RMSE. Figure 4.8 shows the RMSE 

of each model for the testing data set. similar to the results in the training data set, M4 

has the best RMSE score, M5 comes second and M1 does worst. In general, the predictive 

performance for the testing data set is poorer than for the training data set according to 

RMSE, but insignificant.  

As shown in Figure 4.5, there exists a nonlinear relationship between the wind-

induced displacement and wind speed, especially in the range of high wind speed. 

However, the optimal model M4 is a linear relationship model between the displacement 

and wind speed and direction. The reason may be that the number of measured data under 
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not very high wind speeds (< 10m/s) accounts for a large proportion, affecting the final 

results of model selection. Once the wind speed is strong enough, such as 50m/s or above, 

quadratic term plays a heavier role in assessing wind-induced displacement, which is 

useful for predicting the displacement response under strong winds. So in the next section, 

both M2 and M4 will be compared and discussed.  
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Figure 4.6 Log-ML values for training data 

 

Figure 4.7 RMSE values for training data 

 

Figure 4.8 RMSE values for testing data  
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4.3.4 Parameter estimation 

4.3.4.1 Parameters of M2  

In M2, there are four parameters 𝛽0, 𝛽1, 𝛽2 𝑎𝑛𝑑 𝜎2 . Here, the total number of 

Markov chain iterations is chosen to be 100,000, of which the first 50,000 (𝐿0 = 50,000) 

iterations are discarded as burn-in replications. Thus, there remain 50,000 (𝐿1 = 50,000, 

 𝐿𝐴 = 0.1𝐿1,  𝐿𝐵 = 0.5𝐿1, 𝐿𝐶 = 0.4𝐿1 ) posterior samples generated from Gibbs 

sampler for parameter estimation. As indicated previously, it is important to examine the 

convergence of Gibbs sequences before making Bayesian inference. Both trace plots and 

CD test statistic are used to check the convergence of the posterior samples. 

With respect to the various locations (mid-main cable, mid-main span and 1/4 main 

span), three different regression models on wind-displacement are constructed. Thus, 

three sets of parameters for three models should be determined. Figure 4.9 to Figure 4.11 

show the results of the model parameters of M2 for the three models. In the left panels of 

the figures are plots of sample paths of 50,000 draws and the right panels are the 

corresponding posterior densities. It is seen that the Markov chain is stationary by 

examining the trace plots. With the complete set of draws, the posterior density of each 

parameter is determined and the corresponding 95% confidence interval (the blue area) 

is also specified. The values of CD are all close to 0, indicating the posterior samples meet 

the requirement of convergence in parameter estimation. By using the posterior samples, 
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the posterior mean, standard deviation and 95 confidence interval are calculated, as shown 

in Table 4.3. The 95% confidence interval is estimated using the 2.5th and 97.5th 

percentiles of the posterior samples, which is regarded covering the true parameter values. 

To facilitate visual comparison, the results of model coefficients for different models are 

presented in terms of box plots, as shown in Figure 4.12. It clearly shows the variation 

range of each model coefficient and provides indications of symmetry of the data.  

Figure 4.13 shows the relationships of mean wind speed and displacement, together 

with 95% confidence intervals. The red curve denotes the mean values of the model 

parameters, which agrees well with the measurement. The majority of measurement lie 

between the upper and lower bounds of the 95% confidence interval. The most striking 

feature of Bayesian approach is that the parameters of a Bayesian model are treated as 

distributions rather than deterministic values; as a result, the predicted displacement 

response also conforms to a distribution when a wind speed is given. It makes sense for 

civil engineering application because there are various types of modeling and parametric 

uncertainty in civil engineering problems. In Figure 4.13, the distribution of displacement 

response at the wind speed 12m/s is presented as an example. Based on the distribution, 

the displacement response with greatest probability or its probability for any given 

displacement response can be calculated. This function benefits the bridge manager to 

prepare for the arrival of a strong typhoon, such as making a decision as to whether or 
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when to shut down the traffic for safety according to the wind speed forecast issued by 

observatory. Another important point is that such model can be updated through updating 

the distributions of the model parameters when more monitoring data are available, so as 

to yield an evolutionary wind-resistant performance assessment of the bridge. The more 

valid monitoring data (especially those recorded under strong wind conditions), the 

narrower the variation range of model parameters (in terms of SD) and the higher the 

reliability of prediction. Meanwhile the model error 𝜎2 will be smaller too.  

 

Table 4.3 Summary of estimated parameters for M2 

Location Parameter Mean 
Standard 

deviation 

95% confidence 

interval 
CD 

Mid-main 

cable 

𝛽0 3.89 8.77 -13.14 21.26 -0.001 

𝛽1 -3.97 1.78 -7.50 -0.63 -0.002 

𝛽2 0.81 0.09 0.63 0.99 0.006 

𝜎2 721.11 44.17 640.01 812.67 -0.004 

Mid-main 

span 

𝛽0 2.48 9.06 -15.35 20.22 0.001 

𝛽1 -3.34 1.87 -7.02 0.35 0.001 

𝛽2 0.87 0.10 0.68 1.07 -0.003 

𝜎2 962.30 59.23 853.23 1084.51 0.002 

1/4 main 

span 

𝛽0 4.99 8.57 -11.81 21.69 0.007 

𝛽1 -2.74 1.73 -6.13 0.66 -0.010 

𝛽2 0.63 0.09 0.46 0.80 0.012 

𝜎2 548.94 35.13 484.24 622.73 0.001 
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Figure 4.9 Sample paths and posterior distributions for M2 (mid-main cable) 

  

0 1 2 3 4 5

-40

-20

0

20

40

Iterations ( 104)


1

-30 -20 -10 0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

-13.14 21.26

95%


1

p
.d

.f

0 1 2 3 4 5

-10

-5

0

5

Iterations ( 104)


2

-10 -5 0 5
0

0.05

0.1

0.15

0.2

0.25

-7.5 -0.51

95%


2

p
.d

.f

0 1 2 3 4 5

0.4

0.6

0.8

1

1.2

Iterations ( 104)


3

0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

0.63 0.99

95%


3

p
.d

.f

0 1 2 3 4 5

600

700

800

900

Iterations ( 104)


2

600 650 700 750 800 850 900
0

0.002

0.004

0.006

0.008

0.01

640.01 812.67

95%


2

p
.d

.f



Chapter 4 SHM-based Condition Assessment of Bridges Using BGLM 

86 

 

 

 

 

 

 

 

 

 

Figure 4.10 Sample paths and posterior distributions for M2 (mid-main span) 
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Figure 4.11 Sample paths and posterior distributions for M2 (1/4 main span) 
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Figure 4.12 Estimated model coefficients for M2 
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(c) 1/4 main span 

Figure 4.13 Measured and fitted relationship between wind-induced displacement and 

wind speed (M2) 
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convergence by examining the trace plots. The posterior mean, standard deviation, 95% 

confidence interval and CD are summarized in Table 4.4. The values of CD are almost 0, 

again proving the convergence of posterior samples. The 95% confidence interval is 

estimated using the 2.5th and 97.5th percentiles of the posterior samples, which is regarded 

covering the true parameter values. Akin to the mid-main cable, the summary of the model 

parameters for the mid-main span and 1/4 main span is also presented in Table 4.4. Note 

that the model errors 𝜎2  for all three locations using M4 is reduced by 30% in 

comparison with M2. This further proves that M4 is more suitable than M2 explaining 

the wind-induced displacement response when the wind speed is not very high (< 20m/s). 

Taking into account both wind speed and wind direction, a three dimensional wind-

induced displacement is plotted in Figure 4.17. The circle dots are the measured 

displacement and the two planes represent the 95% confidence surfaces. It is seen that 

most of the monitoring data lie within the two confidence surfaces. Although M4 can well 

explain the wind-induced displacement here, it has its limitations. M4 can merely express 

the linear relationship between the wind-induced displacement and wind speed and wind 

direction. From Figure 4.5 it is clearly seen that there exists a nonlinear relationship 

between the wind-induced displacement and wind speed with the increase of wind speed. 

The above model can well describe the wind-induced displacement at relatively low wind 

speeds, but may not be appropriate for high wind speeds, such as for predicting the 
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displacement at the design wind speed. The detailed information will be discussed in the 

next sub-section.  

 

Table 4.4 Summary of estimated parameters for M4 

Location Parameter Mean 
Standard 

deviation 

95% confidence 

interval 
CD 

Mid-main 

cable 

𝛽0 11.98 5.15 3.43 20.50 -0.004 

𝛽1 10.99 0.36 10.41 11.58 -0.002 

𝛽2 -0.85 0.05 -0.93 -0.76 0.007 

𝜎2 352.12 21.88 317.60 389.49 0.005 

Mid-main 

span 

𝛽0 14.67 5.35 5.94 23.52 -0.003 

𝛽1 11.64 0.39 10.99 12.29 -0.003 

𝛽2 -0.86 0.05 -0.94 -0.77 0.003 

𝜎2 380.05 24.11 342.33 420.99 0.004 

1/4 main 

span 

𝛽0 12.88 4.97 4.77 21.10 0.009 

𝛽1 9.31 0.35 8.74 9.88 -0.005 

𝛽2 -0.72 0.05 -0.80 -0.64 -0.006 

𝜎2 313.87 20.20 282.17 348.82 0.001 
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Figure 4.14 Sample paths and posterior distributions for M4 (mid-main cable) 
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Figure 4.15 Sample paths and posterior distributions for M4 (mid-main span) 
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Figure 4.16 Sample paths and posterior distributions for M4 (1/4 main span) 
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(c) 1/4 main span 

Figure 4.17 Measured and fitted relationship between wind-induced displacement and 

wind speed/direction (M4) 
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both of them are larger than that at 1/4 main span. The main reason is that the main span 

has greater span than the side spans and is more sensitive to wind effects. Comparing the 

predicted displacement responses from M2 and M4, it is found that the predicted 

displacement from M2 are much larger than from M4. The possible cause is the quadratic 

term in M2 which plays a significant role for high wind speed. M4 is not suitable for 

predicting the displacement under high wind speed. According to M2, the maximum 

predicted displacement occurs at the mid-main span of the bridge deck, whose mean value 

and 95% confidence interval are 2.32 m and 1.93-2.71 m, respectively. Compared with 

the maximum allowable total displacement given in the design stage, the predicted total 

displacement of the mid-main span, even the upper bound, is less than the design value 

in SLS. It can be concluded that the design is reasonable with appropriate safety reserve. 

One important point is that this model can be updated when more monitoring data are 

available, especially under high wind speed conditions, so as to yield an evolutionary 

wind-resistant performance assessment of the bridge. The confidence interval of forecast 

displacement will be narrower and more accurate with the increase of valid monitoring 

data obtained under strong winds. 
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Table 4.5 Predicted displacement responses under design wind speed 

Model Location Mean (m) 
Standard 

deviation 

95% confidence 

interval (m) 

M2 

Mid-main cable 2.11 0.18 1.76 2.47 

Mid-main span 2.32 0.19 1.93 2.71 

1/4 main span 1.66 0.17 1.32 1.99 

M4 

Mid-main cable 0.70 0.03 0.64 0.76 

Mid-main span 0.80 0.03 0.73 0.87 

1/4 main span 0.57 0.03 0.52 0.62 

4.4 Summary 

An extended BLM termed as Bayesian generalized linear model (BGLM) is proposed 

for assessing wind-induced displacement responses of an instrumented bridge. Among a 

set of candidate models considering different explanatory variables and degrees of 

polynomial, Bayesian model class selection is applied to choose the optimal model for 

exploring the relationship between the wind-induced displacement and wind 

speed/direction. According to Log-ML and RMSE values, the model M4 taking into 

account both wind speed and wind direction as explanatory variables, is the optimal one 

to fit the wind-induced displacement response under low wind speed. However, for 

predicting the displacement response under strong winds, the model M2 with quadratic 

term of wind speed performs better. This is because the quadratic term plays an important 

role in assessing wind-induced displacement when the wind speed is very large (such as 

50m/s). The predicted maximum wind-induced displacement responses in lateral 

direction are less than the design value in serviceability limit state (SLS). 
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Chapter 5  

BDLM for Real-time Condition Prediction 

5.1 Introduction 

Civil structures and infrastructure systems in service are always aging, deteriorating 

and eventually approaching their service life limit (Yao and Glisic 2015). A promising 

solution for mitigating the risk caused by ageing structures is to deploy appropriate 

sensors at the critical locations to monitor the condition of the structures in real-time. 

Despite that SHM systems have capacity to collect huge amounts of data, interpreting 

these data to obtain useful information on structural condition remains a challenge. One 

of the difficulties is to identify the baseline response of structures without the effect of 

external actions such as temperature and make a rational prediction of structural response 

in real-time. To succeed at this task, a Bayesian dynamic linear model (BDLM) is 

formulated to express the time-dependent responses of structures by assembling 

combinations of generic components. Then the formulated model is applied to forecast 

the structural responses at several steps ahead beyond the current time.  

BDLMs (also called state space models in the field of machine learning) treat the time 

series as the output of a dynamic system perturbed by random disturbances. They are 

suitable for modeling univariate and, multivariate time series, also for representing the 
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structural changes, non-stationarity and irregular patterns (Perris et al. 2009). Unlike the 

classical time series method assuming a fixed relationship between the dependent 

variables (response variables) and the independent variables (regressors), dynamic linear 

model considers that the relationship changes over time. It is able to directly capture 

features of time series data, such as trend, seasonality, and regression effects. More 

importantly, the dynamic linear model allows for the description of temporary or 

permanent shifts in time series parameters that occur abruptly, which is necessary for 

outlier and damage detection in structural health monitoring paradigm. Although BDLM 

has gained application in engineering field in 1960s after the emergence of well-known 

Kalman filter (Kalman 1960, 1961), it appeared and became well known in handing the 

time series during 1970s (Akaile 1974) and 1980s (Aoki 1987; Harvey 1990), and became 

a center of interest in recent decades (Pole et al. 1994; Harrison and West 1999). BDLMs 

have recently obtained wide applications in a vast range of fields, from applied statistics 

to economics, from biology to genetics, from geophysical to engineering, and so on. It is 

partially attributed to the development of efficient computational methods, such as 

Markov Chain Monte Carlo algorithms that can deal with complex nonlinear and non-

Gaussian cases, and sequential Monte Carlo methods that are suitable for online analysis 

(Petris et al. 2009). 

This study develops a framework employing BDLM for modeling the time-dependent 
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structural responses, and then apply it to make online short-term prediction. The model is 

constructed by superposing generic components, such as locally linear trend, seasonal 

effect, and regression component. One advantage of Bayesian forecasting is that the 

forecast result is a posterior response distribution, in contrast to most non-Bayesian 

methods that only produce deterministic response and cannot quantify the reliability of 

forecast result. Bayesian forecasting is a continuous learning process that the state of prior 

knowledge is revised sequentially by incorporating new data. As a result, the proposed 

model can promptly respond to changes in time series of structural response and provide 

a posterior distribution of predictive structural response reflecting both the prior 

information and real-time data. The posterior structural response distribution can be used 

to generate a single-value (typically but not necessarily the mean) response as well as 

confidence level which represents the uncertainty of structural response prediction. The 

proposed method is then applied and validated with the use of monitoring data of strain 

response from an in-service cable-stayed bridge.  

5.2 Bayesian Dynamic Linear Model 

5.2.1 Model form and notation 

In general, the dynamic linear model consists of the following two equations (West 
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and Harrison 1999): 

 Observation Equation: 𝑦𝑡 = 𝐹𝑡
′𝜃𝑡 + 𝑣𝑡 𝑣𝑡~𝑁[0, 𝑉𝑡] 

(5.1) 

 System Equation: 𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 + 𝜔𝑡 𝜔𝑡~𝑁[0,𝑊𝑡] 
(5.2) 

The observation equation describes the relationship between the observed data 𝑦𝑡 and 

the unknown state parameters 𝜃𝑡, and the system equation represents the state parameters 

𝜃𝑡  vary through the passage of time, illustrating the dynamic changes of the state 

variables. The notations in the Equation (5.1) and (5.2) are: 

 Observations: 𝑦𝑡 is the observation series at time t; 

 Regression vector: 𝐹𝑡 is a 𝑝 × 1 vector of known constants (the regression vector); 

 State parameters: 𝜃𝑡 is the 𝑝 × 1 vector of unknown parameters; 

 Evolution matrix: 𝐺𝑡  is an 𝑝 × 𝑝  matrix of known coefficients, determining the 

evolution of the state parameters; 

 Observational and evolution errors: 𝑣𝑡  and 𝜔𝑡 , are assumed to be mutually 

independent, and obey Gaussian distribution with mean zero and covariance matrices 

𝑉𝑡 and 𝑊𝑡, respectively. The error 𝑣𝑡 is a random perturbation in the measurement 

process that affects the observation 𝑦𝑡 but has no further influence on the series. By 

contrast, the error 𝜔𝑡 affects the development of the system into the future.  
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5.2.2 Sequential updating 

Based on the observed data {𝑦1, 𝑦2, ⋯ , 𝑦𝑡}  and other relative information, it is 

assumed that the posterior distribution of state parameter at time 𝑡  is 

𝑃(𝜃𝑡|𝐷𝑡)~𝑁(𝑚𝑡, 𝐶𝑡) . The prior distribution of the state parameters for time 𝑡 + 1 , 

𝑃(𝜃𝑡+1|𝐷𝑡), can be obtained by exploring the system equation 

𝐸[𝜃𝑡+1|𝐷𝑡] = 𝐺𝑡+1𝐸[𝜃𝑡|𝐷𝑡] + 𝐸[𝜔𝑡+1] = 𝐺𝑡+1𝑚𝑡 = 𝑎𝑡+1 

(5.3) 
𝑉𝑎𝑟[𝜃𝑡+1|𝐷𝑡] = 𝐺𝑡+1𝑉𝑎𝑟[𝜃𝑡|𝐷𝑡]𝐺𝑡+1

′ + 𝑉𝑎𝑟[𝜔𝑡+1] = 𝐺𝑡+1𝐶𝑡𝐺𝑡+1
′ + 𝑊𝑡+1

= 𝑅𝑡+1 

where 𝐷𝑡  denotes the state of information at time 𝑡.  Its normal form is 

𝑃(𝜃𝑡+1|𝐷𝑡)~𝑁(𝑎𝑡+1, 𝑅𝑡+1). 

The 1-step forecast distribution 𝑃(𝑦𝑡+1|𝐷𝑡) for observation series can be derived by 

exploring the observation equation 

𝐸[𝑦𝑡+1|𝐷𝑡] = 𝐹𝑡+1
′ 𝐸[𝜃𝑡+1|𝐷𝑡] + 𝐸[𝑣𝑡+1] = 𝐹𝑡+1

′ 𝑎𝑡+1 = 𝑓𝑡+1 

(5.4) 
𝑉𝑎𝑟[𝑦𝑡+1|𝐷𝑡] = 𝐹𝑡+1

′ 𝑉𝑎𝑟[𝜃𝑡+1|𝐷𝑡]𝐹𝑡+1 + 𝑉𝑎𝑟[𝑣𝑡+1] = 𝐹𝑡+1
′ 𝑅𝑡+1𝐹𝑡+1 + 𝑉𝑡+1

= 𝑄𝑡+1 

Its normal form is 𝑃(𝑦𝑡+1|𝐷𝑡)~𝑁(𝑓𝑡+1, 𝑄𝑡+1). 

When the observation 𝑦𝑡+1 is available, the distribution of state parameter at time 

𝑡 + 1 is updated to 𝑃(𝜃𝑡+1|𝐷𝑡+1)~𝑁(𝑚𝑡+1, 𝐶𝑡+1), where the means and variances are 

given by  

 𝑚𝑡+1 = 𝑎𝑡+1 + 𝐴𝑡+1𝑒𝑡+1, 
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 𝐶𝑡+1 = 𝑅𝑡+1 − 𝐴𝑡+1𝐴𝑡+1
𝑇 𝑄𝑡+1 

𝑒𝑡+1 = 𝑦𝑡+1 − 𝑓𝑡+1, 

𝐴𝑡+1 = 𝑅𝑡+1𝐹𝑡+1/𝑄𝑡+1 

(5.5) 

where 𝐷𝑡+1 = {𝐷𝑡, 𝑦𝑡+1}. The flowchart of updating of the Bayesian DLM is illustrated 

in Figure 5.1. 

 

 
Figure 5.1 Flowchart of updating of Bayesian DLM 

5.2.3 k-steps ahead predictions 

Forecasting several steps ahead requires the prior information to be projected into the 

future through repeated application of the system equation. Given the posterior 

distribution of state parameter at time t, 𝑃(𝜃𝑡|𝐷𝑡)~𝑁(𝑚𝑡, 𝐶𝑡), the mean and variance of 

state parameter for 1-steps ahead forecast are 

𝐸[𝜃𝑡+1|𝐷𝑡] = 𝐺𝑡+1𝐸[𝜃𝑡|𝐷𝑡] + 𝐸[𝜔𝑡+1] = 𝐺𝑡+1𝑚𝑡 = 𝑎𝑡(1) 

(5.6) 
𝑉𝑎𝑟[𝜃𝑡+1|𝐷𝑡] = 𝐺𝑡+1𝑉𝑎𝑟[𝜃𝑡|𝐷𝑡]𝐺𝑡+1

′ + 𝑉𝑎𝑟[𝜔𝑡+1] = 𝐺𝑡+1𝐶𝑡𝐺𝑡+1
′ + 𝑊𝑡+1

= 𝑅𝑡(1) 

Similarly, the mean and variance of state parameter at 2-step ahead forecast are 

 

 Known  1-step forecast Updating

 

𝑃(𝜃𝑡 |𝐷𝑡) 

{𝑦1 , 𝑦2 , ⋯ , 𝑦𝑡}  

𝑃(𝜃𝑡+1|𝐷𝑡) 

𝑃(𝑦𝑡+1|𝐷𝑡) 

𝑃(𝜃𝑡+1|𝐷𝑡+1) 

𝑦𝑡+1  

Time t Time t +1

𝐷𝑡  denotes the state of information at time 𝑡 𝐷𝑡+1 = (𝑦𝑡+1, 𝐷𝑡)  
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𝐸[𝜃𝑡+2|𝐷𝑡] = 𝐺𝑡+2𝐸[𝜃𝑡+1|𝐷𝑡] + 𝐸[𝜔𝑡+2] = 𝐺𝑡+2𝑎𝑡(1) = 𝑎𝑡(2) 

(5.7) 
𝑉𝑎𝑟[𝜃𝑡+2|𝐷𝑡] = 𝐺𝑡+2𝑉𝑎𝑟[𝜃𝑡+1|𝐷𝑡]𝐺𝑡+2

′ + 𝑉𝑎𝑟[𝜔𝑡+2] = 𝐺𝑡+2𝑅𝑡(1)𝐺𝑡+2
′

+ 𝑊𝑡+2 = 𝑅𝑡(2) 

Extending this procedure to k-steps ahead forecast, its mean and variance are 

𝐸[𝜃𝑡+𝑘|𝐷𝑡] = 𝐺𝑡+𝑘𝐸[𝜃𝑡+𝑘−1|𝐷𝑡] + 𝐸[𝜔𝑡+𝑘] = 𝐺𝑡+𝑘𝑎𝑡(𝑘 − 1) = 𝑎𝑡(𝑘) 

(5.8) 
𝑉𝑎𝑟[𝜃𝑡+𝑘|𝐷𝑡] = 𝐺𝑡+𝑘𝑉𝑎𝑟[𝜃𝑡+𝑘−1|𝐷𝑡]𝐺𝑡+𝑘

′ + 𝑉𝑎𝑟[𝜔𝑡+𝑘]

= 𝐺𝑡+𝑘𝑅𝑡(𝑘 − 1)𝐺𝑡+𝑘
′ + 𝑊𝑡+𝑘 = 𝑅𝑡(𝑘) 

Its normal form is 𝑃(𝜃𝑡+𝑘|𝐷𝑡)~𝑁(𝑎𝑡(𝑘), 𝑅𝑡(𝑘)). 

Once the forecast of the state parameters is known, the associated forecast for the 

observation series can be calculated by the observation equation as 

𝐸[𝑦𝑡+𝑘|𝐷𝑡] = 𝐹𝑡+𝑘
′ 𝐸[𝜃𝑡+𝑘|𝐷𝑡] + 𝐸[𝑣𝑡+𝑘] = 𝐹𝑡+𝑘

′ 𝑎𝑡(𝑘) = 𝑓𝑡(𝑘) 

(5.9) 
𝑉𝑎𝑟[𝑦𝑡+𝑘|𝐷𝑡] = 𝐹𝑡+𝑘

′ 𝑉𝑎𝑟[𝜃𝑡+𝑘|𝐷𝑡]𝐹𝑡+𝑘 + 𝑉𝑎𝑟[𝑣𝑡+𝑘]

= 𝐹𝑡+𝑘
′ 𝑅𝑡(𝑘)𝐹𝑡+𝑘 + 𝑉𝑡+𝑘 = 𝑄𝑡(𝑘) 

Its normal form is 𝑃(𝑦𝑡+𝑘|𝐷𝑡)~𝑁(𝑓𝑡(𝑘), 𝑄𝑡(𝑘)). 

5.2.4 Variance analysis 

In most applications, the observation variance, 𝑉𝑡 , and the system evolution 

covariance, 𝑊𝑡, are rarely completely known. Thus, several approaches are specified to 

estimate 𝑉𝑡  and 𝑊𝑡 : (i) both 𝑉𝑡  and 𝑊𝑡  are constant unknown, i.e., 𝑉𝑡 = 𝑉  and 

𝑊𝑡 = 𝑊 ; (ii) 𝑉𝑡 = 𝛼𝑉̅𝑡  and 𝑊𝑡 = 𝛽𝑊̅𝑡  where 𝑉̅𝑡  and 𝑊̅𝑡  are assumed to be known 
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while 𝛼 and 𝛽 are unknown constants; (iii) 𝑉𝑡 = 𝑉 while 𝑊𝑡 is explicitly related to 

𝐺𝑡 via a discount factor. 

A commonly used model for the first case is to consider the observation and evolution 

variance matrices are time-invariant, for instance, 𝑉𝑡 = 𝜎𝑦
2  and 𝑊𝑡 =

𝑑𝑖𝑎𝑔(𝜎𝜃,1
2 , 𝜎𝜃,2

2 , ⋯ , 𝜎𝜃,𝑝
2 ). Here the unknown parameters (𝜎𝑦

2, 𝜎𝜃,1
2 , 𝜎𝜃,2

2 ,⋯ , 𝜎𝜃,𝑝
2 ) need to 

be evaluated. Often the prior distributions of the unknown parameters are assumed to 

conform to Inverse-Gamma distribution with 

𝜎𝑦
2~𝐼𝐺(𝛼𝑦, 𝛽𝑦) 

(5.10) 

𝜎𝜃,𝑖
2 ~𝐼𝐺(𝛼𝜃,𝑖, 𝛽𝜃,𝑖), 𝑖 = 1,… . , 𝑝 

Given the observations 𝑦1:𝑇, the joint posterior of the states 𝜃1:𝑇 and the unknown 

parameters 𝜓 = (𝜎𝑦
2, 𝜎𝜃,1

2 , 𝜎𝜃,2
2 , ⋯ , 𝜎𝜃,𝑝

2 ) is (Petris et al. 2009) 

𝜋(𝑦1:𝑇 , 𝜃1:𝑇 , 𝜓) = 𝜋(𝑦1:𝑇|𝜃1:𝑇 , 𝜓) ∙ 𝜋(𝜃1:𝑇|𝜓) ∙ 𝜋(𝜓) 

(5.11) = ∏𝜋(𝑦𝑡|𝜃𝑡, 𝜎𝑦
2) ∙ ∏𝜋(𝜃𝑡|𝜃𝑡−1, 𝜎𝜃,1

2 , 𝜎𝜃,2
2 , ⋯ , 𝜎𝜃,𝑝

2 ) ∙

𝑇

𝑡=1

𝑇

𝑡=1

 

𝜋(𝜃0) ∙ 𝜋(𝜎𝑦
2) ∙ ∏𝜋(𝜎𝜃,𝑖

2 )

𝑝

𝑖=1

 

What we are interested in is making inference about the unobservable states 𝜃1:𝑇 

and the unknown parameters 𝜓. Obviously, it is analytically intractable and has to resort 

to a simulation method, such as MCMC approach. The Gibbs sampler is suitable for 

simulating draws from the full conditional distribution of states and from the full 
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conditional distributions of unknown parameters in turn. The detail of the simulation-

based Bayesian inference will be given in Section 5.4. 

The full conditional distribution of 𝜎𝑦
2 is  

𝜋(𝜎𝑦
2|𝑦1:𝑇, 𝜃1:𝑇 , 𝜎𝜃,1

2 , 𝜎𝜃,2
2 ,⋯ , 𝜎𝜃,𝑝

2 ) ∝ ∏𝜋(𝑦𝑡|𝜃𝑡 , 𝜎𝑦
2) ∙

𝑇

𝑡=1

 𝜋(𝜎𝑦
2) 

(5.12) 

∝ 𝜎𝑦
2
𝑇
2
+𝛼𝑦−1

𝑒𝑥𝑝 {−𝜎𝑦
2 ∙ [

1

2
∑(𝑦𝑡 − 𝐹𝑡

′𝜃𝑡)
2

𝑇

𝑡=1

+ 𝛽𝑦]} 

which is again an Inverse-Gamma distribution 

𝜎𝑦
2|𝑦1:𝑇, 𝜃1:𝑇 , 𝜎𝜃,1

2 , 𝜎𝜃,2
2 , ⋯ , 𝜎𝜃,𝑝

2 ~I𝐺 (
𝑇

2
+ 𝛼𝑦,

1

2
𝑆𝑆𝑦 + 𝛽𝑦) 

(5.13) 

with 𝑆𝑆𝑦 = ∑ (𝑦𝑡 − 𝐹𝑡
′𝜃𝑡)

2𝑇
𝑡=1 . Similarly, the full conditional distribution of 𝜎𝜃,𝑖

2  is 

𝜎𝜃,𝑖
2 |𝑦1:𝑇, 𝜃1:𝑇𝜎𝜃,1

2 , … , 𝜎𝜃,𝑖−1
2 , 𝜎𝜃,𝑖+1

2 , 𝜎𝜃,𝑝
2 ~𝐺 (

𝑇

2
+ 𝛼𝜃,𝑖,

1

2
𝑆𝑆𝜃,𝑖 + 𝛽𝜃,𝑖), 

𝑖 = 1,… . , 𝑝 

(5.14) 

with 𝑆𝑆𝜃,𝑖 = ∑ (𝜃𝑡,𝑖 − (𝐺𝑡𝜃𝑡−1)𝑖)
2𝑇

𝑡=1 . 

5.3 Component Forms 

The key issue in applying the BDLM to characterize the time-dependent responses of 

structures due to various external effects is the superposition of generic components such 

as trend component, seasonal component, and regression component. For this purpose, 

the observe data 𝑦𝑡 can be expressed as 

𝑦𝑡 = 𝑦𝑇𝑡 + 𝑦𝑆𝑡 + 𝑦𝑅𝑡 + 𝑣𝑡 
(5.15) 



Chapter 5 BDLM for Real-time Condition Prediction 

108 

where 𝑦𝑇𝑡 , 𝑦𝑆𝑡 , 𝑦𝑅𝑡  and 𝑣𝑡  denote the trend component, seasonal component, 

regression component and error, respectively. In terms of the state space Equations (5.1) 

and (5.2), these terms can be expressed as 

𝜃𝑡 = (

𝜃𝑇𝑡

𝜃𝑆𝑡

𝜃𝑅𝑡

), 𝐹𝑡 = (
𝐹𝑇𝑡

𝐹𝑆𝑡

𝐹𝑅𝑡

), 𝐺𝑡 = (

𝐺𝑇𝑡

𝐺𝑆𝑡

𝐺𝑅𝑡

) 

𝑊𝑡 = (

𝑊𝑇𝑡

𝑊𝑆𝑡

𝑊𝑅𝑡

), 𝑉𝑡 = 𝜎𝑜𝑏𝑠
2  

5.3.1 Trend component 

In time series, polynomial models can be used to describe trends that are viewed as 

smooth developments over time. Especially, the first- and second-order polynomial 

models are often found in application. The simplest trend model is the first-order 

polynomial trend. The observed time series data can be written as 

𝑦𝑡 = 𝜇𝑡 + 𝑣𝑡, 𝑣𝑡~𝑁(0, 𝜎𝑜𝑏𝑠
2 ) 

𝜇𝑡 = 𝜇𝑡−1 + 𝜔𝑡, 𝜔𝑡~𝑁(0, 𝜎𝑙𝑒𝑣𝑒𝑙
2 ) 

(5.16) 

which can be expressed in the form of state space model by setting 

𝜃𝑇𝑡 = 𝜇𝑡, 𝐹𝑇𝑡 = 1, 𝐺𝑇𝑡 = 1, 𝑊𝑇𝑡 = 𝜎𝑙𝑒𝑣𝑒𝑙
2 , 𝑉𝑡 = 𝜎𝑜𝑏𝑠

2  

A second-order polynomial trend model allows for systematic decline or growth in 

level and has the form 
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𝑦𝑡 = 𝜇𝑡 + 𝑣𝑡, 𝑣𝑡~𝑁(0, 𝜎𝑜𝑏𝑠
2 ) 

𝜇𝑡 = 𝜇𝑡−1 + 𝛼𝑡−1 + 𝜔1𝑡, 𝜔1𝑡~𝑁(0, 𝜎𝑙𝑒𝑣𝑒𝑙
2 ) 

𝛼𝑡 = 𝛼𝑡−1 + 𝜔2𝑡, 𝜔2𝑡~𝑁(0, 𝜎𝑡𝑟𝑒𝑛𝑑
2 ) 

(5.17) 

The state vector has two elements, 𝜇𝑡 and 𝛼𝑡, the first denoting the current level 

and the second denoting the current rate of change in level. In the form of state model, it 

can be written as  

𝜃𝑇𝑡 = (
𝜇𝑡

𝛼𝑡
), 𝐹𝑇𝑡 = (

1
0
), 𝐺𝑇𝑡 = (

1 1
0 1

), 𝑊𝑇𝑡 = (
𝜎𝑙𝑒𝑣𝑒𝑙

2 0

0 𝜎𝑡𝑟𝑒𝑛𝑑
2 ), 𝑉𝑡 = 𝜎𝑜𝑏𝑠

2  

Higher order polynomial trend can be introduced by extending the first and second 

order models, but practically such higher orders are rarely used.  

5.3.2 Seasonal component 

Cyclical or periodic behavior is evident in many time series associated with structural 

systems. For example, the displacement of bridge expansion joints changes periodically 

every day. It is important to recognize and include cyclical patterns in forecasting models. 

The cyclical behavior of time series can be well modelled using mathematical functions, 

such as sines and cosines (Laine et al. 2014). Consider the time series 𝑦𝑡  that are 

represented by a series of harmonics as  

𝑦𝑡 = ∑(𝑎𝑘 cos(𝑘𝜔𝑡) + 𝑏𝑘 sin(𝑘𝜔𝑡))

𝑛

𝑘=1

+ 𝑣𝑡 (5.18) 
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where 𝜔 = 2𝜋/𝑠. If the number of cyclic components is 𝑠, the full seasonal model has 

𝑠/2 harmonics and 𝑛 ≤ 𝑠/2. The 𝑘th harmonic of 𝑦𝑡 is defined as 

𝑢𝑘𝑡 = 𝑎𝑘 cos(𝑘𝜔𝑡) + 𝑏𝑘 sin(𝑘𝜔𝑡) 

In order to realize the 𝑘th  harmonic evolution from time (𝑡 − 1)  to time 𝑡 , the 

conjugate harmonic of 𝑢𝑘𝑡 is introduced 

𝑢𝑘𝑡
∗ = −𝑎𝑘 sin(𝑘𝜔𝑡) + 𝑏𝑘 cos(𝑘𝜔𝑡) 

Thus the corresponding state vector has two variables 

𝜃𝑠𝑒𝑎𝑠(𝑘) = (𝑢𝑘𝑡, 𝑢𝑘𝑡
∗ )′ 

By defining the evolution matrix 

𝐺𝑠𝑒𝑎𝑠(𝑘) = (
cos 𝑘𝜔 sin 𝑘𝜔

− sin 𝑘𝜔 cos 𝑘𝜔
) 

we have 

(
𝑢𝑘𝑡

𝑢𝑘𝑡
∗ ) = 𝐺𝑠𝑒𝑎𝑠(𝑘) (

𝑢𝑘(𝑡−1)

𝑢𝑘(𝑡−1)
∗ ) + (

𝜔𝑘𝑡

𝜔𝑘𝑡
∗ ) , 𝜔𝑘𝑡, 𝜔𝑘𝑡

∗ ~𝑁(0, 𝜎𝑠𝑒𝑎𝑠(𝑘)
2 ). 

The regression vector and error matrix are 

𝐹𝑠𝑒𝑎𝑠(𝑘) = (
1
0
) 

𝑊𝑠𝑒𝑎𝑠(𝑘) = (
𝜎𝑠𝑒𝑎𝑠(𝑘)

2 0

0 𝜎𝑠𝑒𝑎𝑠(𝑘)
2 ) 

when seasonality can be well explained by n (𝑛 ≤ 𝑠/2) harmonics, the seasonal effect 

model in the form of state space model becomes 

𝜃𝑆𝑡 = (𝜃𝑠𝑒𝑎𝑠(1)
′ , ⋯ , 𝜃𝑠𝑒𝑎𝑠(𝑛)

′ )
′
 

𝐹𝑆𝑡 = (𝐹𝑠𝑒𝑎𝑠(1)
′ , ⋯ , 𝐹𝑠𝑒𝑎𝑠(𝑛)

′ )
′
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𝐺𝑆𝑡 = 𝑑𝑖𝑎𝑔(𝐺𝑠𝑒𝑎𝑠(1), ⋯ , 𝐺𝑠𝑒𝑎𝑠(𝑛)) 

𝑊𝑆𝑡 = 𝑑𝑖𝑎𝑔(𝑊𝑠𝑒𝑎𝑠(1), ⋯ ,𝑊𝑠𝑒𝑎𝑠(𝑛)) 

5.3.3 Regression component 

In the context of SHM, regression components are employed to describe the 

dependence between the response of a structure and the hidden state variables associated 

with other observations, such as temperature and wind. Now consider the modeling of the 

time series 𝑦𝑡 by regressing on 𝑞 independent variables labelled {𝑥1, 𝑥2, ⋯ , 𝑥𝑞}. For 

each t, the model equations are  

𝑦𝑡 = 𝛽1𝑡𝑥1𝑡 + ⋯+ 𝛽𝑞𝑡𝑥𝑞𝑡 + 𝑣𝑡 

𝛽𝑖𝑡 = 𝛽𝑖𝑡−1 + 𝜔𝑖𝑡, 𝜔𝑖𝑡~𝑁(0, 𝜎𝑖
2) 𝑖 = 1,⋯ , 𝑞 

(5.19) 

In terms of state space model, the regression model can be expressed as  

𝜃𝑅𝑡 = (𝛽1𝑡,⋯ , 𝛽𝑞𝑡)
′
 

𝐹𝑅𝑡 = (𝑥1𝑡, , ⋯ , 𝑥𝑞𝑡)
′
 

𝐺𝑡 = 𝐼𝑞 

𝑊𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝜎1
2, ⋯𝜎𝑞

2) 

5.4 Simulation-Based Bayesian Inference 

For convenience, some symbols are defined firstly. We use the vectors 
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𝑦1:𝑇 = [𝑦1, 𝑦2, … , 𝑦𝑇]  

𝜃1:𝑇 = [𝜃1, 𝜃2, ⋯ , 𝜃𝑇] 

to represent the history of observed data and state parameters until time 𝑇, and  

𝑦𝑇+1:𝑇+𝐻 = [𝑦𝑇+1, 𝑦𝑇+2, … , 𝑦𝑇+𝐻]  

𝜃𝑇+1:𝑇+𝐻 = [𝜃𝑇+1, 𝜃𝑇+2, ⋯ , 𝜃𝑇+𝐻] 

to represent potential future observation and state parameters from time 𝑇 onward to 

(𝑇 + 𝐻) . Let the unknown observation variance 𝑉𝑡 = 𝜎𝑦
2  and evolution covariance 

𝑊𝑡 = 𝑑𝑖𝑎𝑔(𝜎𝜃,1
2 , 𝜎𝜃,2

2 , ⋯ , 𝜎𝜃,𝑝
2 ).  Thus the unknown parameters can be expressed 

collectively as 𝜓 = (𝜎𝑦
2, 𝜎𝜃,1

2 , 𝜎𝜃,2
2 , ⋯ , 𝜎𝜃,𝑝

2 ), which is also called hyperparameters.  

5.4.1 Posterior predictive density 

From a Bayesian perspective, we are going to obtain the posterior distribution for the 

objects of interest. If we are interested in a forward prediction, the posterior predictive 

distribution is what we want. Conditional on prior information and available data through 

time 𝑇, beliefs about the future can be expressed by the joint posterior distribution  

𝑝(𝑦𝑇+1:𝑇+𝐻, 𝜃𝑇+1:𝑇+𝐻, 𝜃1:𝑇 , 𝜓|𝑦1:𝑇) 

While it is complicated in manipulation, the above expression can be decomposed 

into tractable components 
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𝑝(𝑦𝑇+1:𝑇+𝐻, 𝜃𝑇+1:𝑇+𝐻, 𝜃1:𝑇 , 𝜓|𝑦1:𝑇)

= 𝑝(𝜃1:𝑇 , 𝜓|𝑦1:𝑇) × 𝑝(𝑦𝑇+1:𝑇+𝐻, 𝜃𝑇+1:𝑇+𝐻|𝜃1:𝑇 , 𝜓) 

(5.20) 

This expression decomposes the joint distribution into two parts: the first part, 

𝑝(𝜃1:𝑇 , 𝜓|𝑦1:𝑇), is the joint posterior density for history of states and hyperparameters; 

the second part, 𝑝(𝑦𝑇+1:𝑇+𝐻, 𝜃𝑇+1:𝑇+𝐻|𝜃1:𝑇 , 𝜓), is the joint distribution for future data 

and states based on the current states and hyperparameters. Analytical solution for each 

part is impossible, even for simple cases. Therefore, we employ MCMC methods to 

explore the posterior distribution. According to the components in Equation (5.20), the 

algorithm is split into two steps: (i) draw a pair of (𝜃1:𝑇, 𝜓) from 𝑝(𝜃1:𝑇 , 𝜓|𝑦1:𝑇), and 

(ii) plug the draw into 𝑝(𝑦𝑇+1:𝑇+𝐻, 𝜃𝑇+1:𝑇+𝐻|𝜃1:𝑇 , 𝜓)  to generate the future states 

𝜃𝑇+1:𝑇+𝐻 and data 𝑦𝑇+1:𝑇+𝐻.  

5.4.2 BDLM parameter estimation: Gibbs sampler 

The posterior distribution for states 𝜃1:𝑇 and hyperparameters 𝜓 can be expressed 

as 

𝑝(𝜃1:𝑇 , 𝜓|𝑦1:𝑇) = 𝑝(𝑦1:𝑇|𝜃1:𝑇, 𝜓)𝑝(𝜃1:𝑇 , 𝜓) ∝ 𝑝(𝜃1:𝑇|𝜓, 𝑦1:𝑇)𝑝(𝜓|𝑦1:𝑇) (5.21) 

where 𝑝(𝜃1:𝑇 , 𝜓)  represents a joint prior for states and hyperparameters; 

𝑝(𝑦1:𝑇|𝜃1:𝑇 , 𝜓) is a conditional likelihood. Following Kim and Nelson (1999), Gibbs 

sampler is suitable for simulating draws from 𝑝(𝜃1:𝑇 , 𝜓|𝑦1:𝑇) , which iterates on two 
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operations. First, we draw states from 𝑝(𝜃1:𝑇|𝜓, 𝑦1:𝑇)  conditional on the data and 

hyperparameters. Second, we draw hyperparameters from 𝑝(𝜓|𝜃1:𝑇 , 𝑦1:𝑇) conditional 

on the data and states. Subject to regularity conditions (Roberts and Smith 1994), the 

sequence of draws converges to a draw from the joint distribution 𝑝(𝜃1:𝑇 , 𝜓|𝑦1:𝑇). 

For convenience in being natural conjugates, the prior for (𝜃0, 𝜓0)  is taken as a 

conjugate normal inverse gamma, that is  

𝑃(𝜃0|𝜓0) ∝ 𝑁(𝜃̅, 𝑃̅) 

𝑃(𝜓0) ∝ 𝐼𝐺(𝑇0, 𝜓̅
−1). 

5.4.2.1 Gibbs step 1: drawing states given hyperparameters 

The conditional density 𝑝(𝜃1:𝑇|𝜓, 𝑦1:𝑇) in the first part of Equation (5.21) can be 

factored as (Kim and Nelson 1999; Cogley and Sargent 2001)  

 𝑝(𝜃1:𝑇|𝜓, 𝑦1:𝑇) = 𝑝(𝜃𝑇|𝜓, 𝑦1:𝑇)∏ 𝑝(𝜃𝑡|𝜃𝑡+1, 𝜓, 𝑦1:𝑇)
𝑇−1

𝑡=1
 (5.22) 

The first term 𝑝(𝜃𝑇|𝜓, 𝑦1:𝑇) is the marginal posterior for the terminal state, and the other 

terms are conditional densities for the preceding time periods. Since the densities on the 

right-hand side of the expression conform to Gaussian, the samples can be separately 

drawn from Equations (5.23) and (5.24) 

 𝑝(𝜃𝑇|𝜓, 𝑦1:𝑇)~𝑁(𝜃𝑇|𝑇 , 𝑃𝑇|𝑇) (5.23) 
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 𝑝(𝜃𝑡|𝜃𝑡+1, 𝜓, 𝑦1:𝑇)~𝑁(𝜃𝑡|𝑡+1, 𝑃𝑡|𝑡+1) (5.24) 

1. Mean and variance of 𝑝(𝜃𝑇|𝜓, 𝑦1:𝑇) 

The mean 𝜃𝑇|𝑇 and variance 𝑃𝑇|𝑇 can be obtained via the Kalman filter, which is a 

recursive algorithm via estimating the state variable at each time period given information 

up to that time period. It consists the following equations which are evaluated recursively 

over time. Starting from an initial value 𝜃0|0  and 𝑃0|0 , the conditional means and 

variances can be obtained by iteration (Kim and Nelson 1999) 

 𝜃𝑡|𝑡−1 = 𝐺𝑡𝜃𝑡−1|𝑡−1 

𝑃𝑡|𝑡−1 = 𝑃𝑡−1|𝑡−1 + 𝑊 

𝜂𝑡|𝑡−1 = 𝑦𝑡 − 𝐹𝑡
′𝜃𝑡|𝑡−1 

𝑓𝑡|𝑡−1 = 𝐹𝑡
′𝑃𝑡|𝑡−1𝐹𝑡 + 𝑉 

𝜃𝑡|𝑡 = 𝜃𝑡|𝑡−1 + 𝐾𝑡𝜂𝑡|𝑡−1 

𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝐹𝑡
′𝑃𝑡|𝑡−1 

(5.25) 

where 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐹𝑡𝑓𝑡|𝑡−1
−1  . The first equation 𝜃𝑡|𝑡−1 = 𝐺𝑡𝜃𝑡−1|𝑡−1  predicts state 

variable one step ahead using the transition equation and the second equation estimates 

the variance of state parameter at time 𝑡 based on the information at time 𝑡 − 1. The 

third and fourth equations calculate the mean and variance of prediction error, 

respectively. The final two equations are referred to updating state variable using the new 

observation 𝑦𝑡 at time 𝑡. Running these equations for periods 𝑡 = 1,2… , 𝑇, the final 
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recursion yields 𝜃𝑇|𝑇 and 𝑃𝑇|𝑇 for the terminal state. 

2. Mean and variance of 𝑝(𝜃𝑡|𝜃𝑡+1, 𝜓, 𝑦1:𝑇) 

After the terminal state 𝜃𝑇  is drawn from 𝑝(𝜃𝑇|𝜓, 𝑦1:𝑇) , the next task is to 

recursively draw 𝜃𝑡  (for 𝑡 = 𝑇 − 1, 𝑇 − 2,… ,0 ) from 𝑝(𝜃𝑡|𝜃𝑡+1, 𝜓, 𝑦1:𝑇)  by the 

forward filtering backward sampling (FFBS) algorithm. Assuming that we already have 

(𝜃𝑇 , … , 𝜃𝑡+1) , the next step is to draw 𝜃𝑡  from 𝑁(𝜃𝑡|𝑡+1, 𝑃𝑡|𝑡+1) , where 𝜃𝑡|𝑡+1  and 

𝑃𝑡|𝑡+1 can be computed by iteration 

 𝜃𝑡|𝑡+1 = 𝜃𝑡|𝑡 + 𝑃𝑡|𝑡𝑃𝑡+1|𝑡
−1 (𝜃𝑡+1 − 𝜃𝑡|𝑡) 

(5.26) 

 𝑃𝑡|𝑡+1 = 𝑃𝑡|𝑡 − 𝑃𝑡|𝑡𝑃𝑡+1|𝑡
−1 𝑃𝑡|𝑡 

Note that 𝜃𝑡|𝑡+1  explicitly depends on the value of 𝜃𝑡+1  already generated. The 

process of FFBS algorithm is summarized in Algorithm 5.1. 

 

Algorithm 5.1 Forward filtering backward sampling (FFBS) 

1. Run Kalman filter; 

2. Draw 𝜃𝑇~𝑁(𝜃𝑇|𝑇 , 𝑃𝑇|𝑇) 

3. For 𝑡 = 𝑇 − 1, 𝑇 − 2,… ,0, draw 𝜃𝑡~𝑁(𝜃𝑡|𝑡+1, 𝑃𝑡|𝑡+1) 

 

To summarize, the Gibbs sampling for drawing states has two steps. First, draw 𝜃𝑇 

from Equation (5.23), by using Equation (5.25) to compute the mean and variance. Next 

draw 𝜃𝑇−1 from Equation (5.24), by using Equation (5.26) to compute the mean and 

variance conditional on 𝜃𝑇 . Then draw 𝜃𝑇−2  conditional on the realization of 𝜃𝑇−1 
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until to the beginning of sample. 

5.4.2.2 Gibbs step 2: drawing hyperparameters given states 

Conditional on 𝜃1:𝑇 and 𝑌1:𝑇, the hyperparameters are observable. Since the prior 

of 𝜓 is an inverse Gamma distribution and the conditional likelihood is Gaussian, the 

posterior is also an inverse Gamma density 

 𝑝(𝜓|𝜃1:𝑇 , 𝑦1:𝑇) = 𝐼𝐺(𝑇1, 𝜓1
−1) (5.27) 

where 

𝑇1 = 𝑇0 +
𝑇

2
 

𝜓1 = 𝜓̅ +
1

2
𝑉̅𝑇 

𝑉̅𝑇 = 𝑑𝑖𝑎𝑔(𝑆𝑆𝑦,𝑆𝑆𝜃,1, ⋯ , 𝑆𝑆𝜃,𝑝) 

𝑆𝑆𝑦 = ∑ (𝑦𝑡 − 𝐹𝑡
′𝜃𝑡)

2
𝑇

𝑡=1
 

𝑆𝑆𝜃,𝑖 = ∑ (𝜃𝑡,𝑖 − (𝐺𝑡𝜃𝑡−1)𝑖)
2𝑇

𝑡=1 , 𝑖 = 1,⋯ , 𝑝 

5.4.2.3 Summary of Gibbs sampling 

As described above, the Gibbs sampler algorithm consists of two simulations, 

drawing the state parameters from their conditional distribution given the 

hyperparameters and observations, and drawing the hyperparameters from the conditional 
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distribution given the states and observations, as summarized in Algorithm 5.2. After a 

burn-in period, the sequence of draws approximates a sample from 𝑝(𝜃1:𝑇 , 𝜓|𝑦1:𝑇). 

 

Algorithm 5.2 Gibbs sampler  

0. Initialize: set and 𝜓(0) 

1. For 𝑖 = 1,⋯ ,𝑁 

 a) Draw 𝜃1:𝑇(𝑖)
 from 𝑝(𝜃1:𝑇|𝜓(𝑖−1), 𝑦1:𝑇) using FFBS 

 b) Draw 𝜓(𝑖) from 𝑝 (𝜓|𝜃1:𝑇(𝑖)
, 𝑦1:𝑇) 

5.4.3 Beliefs about the future 

Having processed the known data, the next step is to simulate the future states and 

observations. Conditional on the current state and hyperparameters, the posterior density 

for future data and states is quite traceable and can be factored into 

𝑝(𝑦𝑇+1:𝑇+𝐻, 𝜃𝑇+1:𝑇+𝐻|𝜃𝑇 , 𝜓, 𝑦1:𝑇)

= 𝑝(𝜃𝑇+1:𝑇+𝐻|𝜃𝑇 , 𝜓, 𝑦1:𝑇)

× 𝑝(𝑦𝑇+1:𝑇+𝐻|𝜃𝑇+1:𝑇+𝐻, 𝜃𝑇 , 𝜓, 𝑦1:𝑇) 

(5.28) 

in which the first term on the right-hand side is a marginal distribution for future states, 

and the second term is a conditional distribution for future observations. Since the states 

are Markov, the first term continues to be factored into 

 𝑝(𝜃𝑇+1:𝑇+𝐻|𝜃𝑇 , 𝜓, 𝑦1:𝑇) = ∏ 𝑝(𝜃𝑇+𝑖|𝜃𝑇+𝑖−1, 𝜓, 𝑦1:𝑇)
𝐻

𝑖=1
 (5.29) 
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where 𝑝(𝜃𝑇+𝑖|𝜃𝑇+𝑖−1, 𝜓, 𝑦1:𝑇)~𝑁(𝜃𝑇+𝑖−1,𝑊). Therefore, to sample future states from 

Equation (5.29), we take 𝐻  random draws of 𝜔𝑖  from 𝑁(0,𝑊)  and iterate on the 

system equation 

 𝜃𝑇+𝑖 = 𝜃𝑇+𝑖−1 + 𝜔𝑖 
(5.30) 

Having obtained the future states, all that remains is to simulate future data. The 

second term in Equation (5.28) can be factored as 

 

𝑝(𝑦𝑇+1:𝑇+𝐻|𝜃𝑇+1:𝑇+𝐻, 𝜃𝑇 , 𝜓, 𝑦1:𝑇)

= ∏ 𝑝(𝑦𝑇+𝑖|𝑦
𝑇+1:𝑇+𝑖−1, 𝜃𝑇+1:𝑇+𝐻, 𝜃𝑇 , 𝜓, 𝑦1:𝑇)

𝐻

𝑖=1
 

(5.31) 

where 𝑝(𝑦𝑇+𝑖|𝑦
𝑇+1:𝑇+𝑖−1, 𝜃𝑇+1:𝑇+𝐻, 𝜃𝑇 , 𝜓, 𝑦1:𝑇)~𝑁(𝐹𝑇+𝑖

′ 𝜃𝑇+𝑖, 𝑉).  To sample future 

observation from Equation (5.31), we take 𝐻 random draws of 𝑣𝑖 from 𝑁(0, 𝑉) and 

iterate on the measurement equation 

 𝑦𝑇+𝑖 = 𝐹𝑇+𝑖
′ 𝜃𝑇+𝑖 + 𝑣𝑖 . 

(5.32) 

5.5 Application: Strain Data from a Cable-Stayed Bridge 

Integrating monitoring data from an on-line SHM system into structural condition 

assessment would enable engineers to evolutionally trace the health status of in-service 

structures (Ni et al. 2012). One of the most common measurands in structural monitoring 

is strain, which is aimed to derive information about stresses experienced by the 

monitored structure during its service/operation. Stress is probably the most important 



Chapter 5 BDLM for Real-time Condition Prediction 

120 

response, as it can directly indicate the safety reserve of a structural component or provide 

information about the load-carrying capacity of the whole structure (Koshiba et al. 2001). 

Strain/stress is better suited to characterize local damage of a structure than vibration data 

such as acceleration. Here, the BDLM is applied to model the time-dependent strain 

responses of a bridge by use of the monitoring data acquired from the SHM system 

instrumented on the Ting Kau Bridge (TKB). 

5.5.1 TKB and measurement data 

As part of long-term SHM system installed on the TKB, a total of 88 strain gauges 

(66 single strain gauges and 22 rosette strain gauges) were deployed to monitor the strain 

response at four bridge deck cross sections denoted by CH113782.0, CH12082.5, 

CH12217.5 and CH12555.0 as illustrated in Figure 5.2 (Wong 2004). A total of 83 

temperature sensors were installed to measure the temperature change of steel, concrete, 

asphalt and air. Figure 5.3 and 5.4 show the layout of strain gauges and temperature 

sensors on the deck cross section of CH12217.5. The sampling rates of the strain gauges 

and temperature sensors are 25.6 Hz and 0.07 Hz, respectively.  

In this study, 27 days of continuous monitoring data from the SHM system are used. 

There are 12 values per a day, by averaging the monitoring data in every two hours, 

making up a total of 324 observations. Figure 5.5(a) shows the time history of strain data 
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from the strain gauge SS-GLW-06 (Figure 5.3). It is seen that the strain time series display 

periodical behavior, with a period of one day, which implies that it is suitable to 

incorporate a season component in modeling. Figure 5.5(b) shows the temperature of 

structural steel, atmosphere and asphalt for the same time period. Similar to the strain 

data, the temperature time series exhibit periodical behavior as well. It might be 

appropriate to include a regression component for representing the relationship between 

strain and temperature. 
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Figure 5.2 Location of strain gauges and temperature sensors along bridge deck 

 

 

Figure 5.3 Location of strain gauges on deck cross section (CH12217.5) 

 

 

Figure 5.4 Location of temperature sensors on deck cross section (CH12217.5) 
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(a) Strain 

 

(b) Temperature 

Figure 5.5 Time histories of strain and temperature data 

5.5.2 Model selection 

5.5.2.1 Model selection criteria 

To validate the accuracy of prediction, two common statistics indicators are used, 

namely, root mean squared error (RMSE) and mean absolute percentage error (MAPE). 

They are defined as 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑡 − 𝑦𝑡)2𝑛

𝑡=1

𝑛
 

(5.33) 
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 𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦̂𝑡 − 𝑦𝑡

𝑦𝑡
|

𝑛

𝑡=1

 (5.34) 

where 𝑦̂𝑡 and 𝑦 represent the predicted and observed values at time 𝑡, respectively, and 

𝑛 is the number of observations.  

In the context of Bayesian analysis, the Bayesian predictive information criterion 

(BPIC) proposed by Ando (2007) is a useful tool to evaluate the quality of Bayesian 

models from predictive point of view, which is an estimator for the posterior mean of 

expected log-likelihood of the Bayesian predictive distribution, defined as  

 𝐿𝐿𝐻 = ∑log (𝑝(𝑦𝑡|𝐷𝑡−1))

𝑇

𝑡=1

 (5.35) 

where 𝑦𝑡  is the real observed data, and 𝑝(𝑦𝑡|𝐷𝑡−1)  is the probability of 𝑦𝑡  in 

accordance with the predictive distribution. The maximum of 𝐿𝐿𝐻 is favored.  

5.5.2.2 Model 1: trend and season 

The first suggested model for strain data is a two components model which includes 

a linear trend component and seasonal component, 

𝑦𝑡 = 𝑦𝑇𝑡 + 𝑦𝑆𝑡 + 𝑣𝑡 

At first, it is unclear how many harmonics representing the seasonal component give the 

best fit for the data, so each alternative is explored. The following four models are 

considered 
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Model 1a: linear trend + one harmonic; 

Model 1b: linear trend + two harmonics; 

Model 1c: linear trend + three harmonics; 

Model 1d: linear trend + four harmonics. 

Assume that the initial prior is non-informative, thus the initializers of variance for 

all parameters are set adequately large. Table 5.1 shows the summary of forecast 

performance for different models. According to the results given in the table, Model 1c 

with three harmonics has the best forecast performance, with its scores in RMSE and 

MAPE being minimum, and LLH score being maximum. 

The results from Model 1c are illustrated in Figure 5.6. Figure 5.6(a) shows the real 

observed data together with 1-step ahead prediction and the corresponding 90% 

prediction interval. Generally, most of the observations lie within the predictive interval 

in addition to some extrema. The forecast performance is satisfactory. In Figure 5.6(b), 

the results of trend analysis with 90% probability envelope are plotted. The level remains 

relatively stable and to an extent it reflects the trend of change. Figure 5.6 (c) shows the 

seasonal component of the DLM, with 90% credibility interval. It is varying with time, 

but very slowly. Compared with the temperature in Figure 5.5(b), the seasonal effect 

seems to have a relationship with temperature. This suggests that temperature might be 

considered as potential explanatory variables. 

Next we take a closer look at the residuals of the model, as the inadequacies and flaws 
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in the model can be revealed and the prediction performance can be assessed by studying 

the residuals. Figure 5.6(d) shows the scaled prediction errors with 90% probability 

interval (red dashed line). It is seen that most of the prediction errors are within the 

probability region. Figure 5.6(e) plots the autocorrelation function of the prediction errors. 

It is found that the residuals are not perfectly uncorrelated, as some relative 

autocorrelations exist at some lags. Figure 5.6(f) gives the Q-Q plot of the prediction 

errors, which compares the empirical quantiles of the prediction errors with those 

obtained from the theoretical distribution. The result shows that the points (normalized 

error values) approximately lie on the line of expectation.  

 

Table 5.1 Summary of forecast performance of Model 1 

Model No. RMSE MAPE (%) LLH 

Model 1a 2.08 13.66 -448.58 

Model 1b 1.82 11.81 -359.92 

Model 1c 1.76 11.03 -331.53 

Model 1d 1.84 11.39 -359.65 
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(a) 1-step ahead prediction 

 

(b) Trend component 

 

(c) Seasonal component 
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(d) Forecast residual 

 

(e) Autocorrelation of forecast residuals 

 

(f) Q-Q plot of forecast residuals 

Figure 5.6 Model 1c: linear trend + 3 harmonics 
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Temperature in bridge deck cross section can be decomposed into two portions: 

differential temperature and effective temperature. The differential temperature is 

temperature differences between the upper and lower surfaces of the bridge deck cross 

section, which causes the internal stresses and bending moments when section ends are 

restrained; while the effective temperature is an average temperature distributed along the 

section, which results in longitudinal movements of the bridge deck (Ni et al. 2007). 

Hence it is necessary to try two different model versions according to the temperature 

category. In Model 2a, the differential temperature is regarded as an explanatory, while 

Model 2b only uses the temperature data from the sensor (P1-GLE-02C) which is close 

to the strain gauge. Since the contribution from temperature effect, the level may lie above 

or below the underlying level of the data. To achieve a level independent of the regression 

effects, the temperature variable is shifted to reach a zero mean,  

 𝑇𝑒𝑚𝑝𝑡
∗ = 𝑇𝑒𝑚𝑝𝑡 − ∑

𝑇𝑒𝑚𝑝𝑡

𝑇

𝑇

𝑡=1

 (5.36) 

where 𝑇  is the number of the observation in dataset. When the dataset is static, this 

solution is reasonable. Problem arises when the dataset is dynamic, such as in the case of 

doing real-time analysis. An alternative approach is to carry out a dynamic shifting  

 𝑇𝑒𝑚𝑝𝑡
# = 𝑇𝑒𝑚𝑝𝑡 − ∑

𝑇𝑒𝑚𝑝𝑖

2𝑘 + 1

𝑡+𝑘

𝑖=𝑡−𝑘

 (5.37) 

It should be noted that the dynamic shifting method requires information of future 
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temperature and to determine an appropriate window size 𝑘 . Another convenient 

alternative is applying the value of mean temperature which is calculated by using the last 

year’s temperature data at the same period, just as we do in this study. Figure 5.7 shows 

the shifted temperature that has zero mean. 

The performance of the two models are summarized in Table 5.2. According to the 

three criteria, Model 2a has better performance than Model 2b. Figure 5.8 shows the 

results of Model 2a. The 1-step ahead predictions for Model 2a in Figure 5.8(a) do not 

perform better than for Model 1c in Figure 5.6(a), especially for the prediction of extreme 

observations. The RMSE and MAPE are 2.83 and 18.65% respectively, both higher than 

the results of Model 1c, while the value of LLH is -825.16, lower than that of Model 1c 

(-331.53). Compared with the level for Model 1c, the level for Model 2a in Figure 5.6(b) 

fluctuates greater and does not well represent the underlying level of the time series of 

strain data. Figure 5.8(c) displays the effect of temperature. It also exhibits periodicity 

like the temperature in Figure 5.7(a). Figure 5.8(d) shows the standardized prediction 

errors. The errors are visibly larger than those in Model 1c, and more errors lie beyond 

90% probability interval. From the autocorrelation function and Q-Q plot for prediction 

errors presented in Figure 5.8(e)-(f), it is seen that there are still some correlations in the 

errors and the residuals are not well consistent with normal distribution.  
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Table 5.2 Summary of forecast performance of Model 2 

Model No. RMSE MAPE (%) LLH 

Model 2a  2.83 18.65 -825.16 

Model 2b 2.94 19.47 -926.42 

 

 

(a) Differential temperature 

 

(b) Temperature measured from the sensor P1-GLE-02C 

Figure 5.7 Shifted temperature 
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(a) 1-step ahead prediction 

 

(b) Trend component 

 

(c) Regression component 
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(d) Scaled forecast residuals 

 

(e) Autocorrelation of forecast residuals 

 

(f) Q-Q plot of forecast residuals 

Figure 5.8 Model 2a: linear trend + regression 

5.5.2.4 Model 3: trend, seasonal and regression 

In Model 3, we take into account all three components to explain the strain response 

𝑦𝑡 = 𝑦𝑇𝑡 + 𝑦𝑆𝑡 + 𝑦𝑅𝑡 + 𝑣𝑡 

where 𝑦𝑇𝑡 is a linear trend, 𝑦𝑆𝑡 is three harmonics, and 𝑦𝑅𝑡 is a regression component 

with differential temperature as an explanatory variable.  
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The forecasting accuracy of Model 3 is presented in Table 5.3. Figure 5.9 compares 

the forecast performance of Model 1c, Model 2a, and Model 3. According to the scores 

of RMSE, MAPE and LLH, Model 3 has the best performance as expected among the 

three models.  

In Figure 5.10, the result from Model 3 is plotted. Figure 5.10(a) shows the observed 

data with 1-step ahead prediction and 90% prediction interval. The prediction is 

satisfactory on the whole, except several extreme observations which are outside the 

prediction interval. Comparing the level parameters among the three models, it is seen 

that the levels for Model 3 (Figure 5.10(b)) and Model 1c are quite similar, and they are 

much more representative of the underlying level than that in Model 2a. The seasonal 

effect in Model 3 (Figure 5.10(c)) is less than that in Model 1c. This can be explained by 

the effect of differential temperature in Figure 5.10(d), which also has the seasonal 

properties that affect each other. Figure 5.10(e) shows the scaled prediction errors for 

Model 3, which are better than Model 2a and Model 1c. The autocorrelation of forecast 

errors in Figure 5.10(f) and normal test in Figure 5.10(g) have been improved in 

comparison with the earlier models. 
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Table 5.3 Summary of forecast performance of Model 3 

Model No. RMSE MAPE (%) LLH 

Model 3 1.64 10.05 -291.39 

 

 

 

Figure 5.9 Forecast performance of Model 1c, Model 2a and Model 3 
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(a) 1-step ahead prediction 

 

(b) Trend component 

 

(c) Seasonal component 
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(d) Regression component 

 

(e) Scaled forecast residuals 

 

(f) Autocorrelation of forecast residuals 

 

(g) Q-Q plot of forecast residuals 

Figure 5.10 Model 3: linear trend + season + regression 

0 100 200 300 400 500 600
-6

-4

-2

0

2

4

6

Time (hour)

S
tr

a
in

 (

)

 

 

Most possible value

90% credibility interval

0 100 200 300 400 500 600
-4

-2

0

2

4

Time (hour)

S
tr

a
in

 (

)

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

Lag

A
u
to

c
o
rr

e
la

ti
o
n

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

Theoretical Quantiles

E
m

p
ir
ic

a
l 
Q

u
a
n
ti
le

s



Chapter 5 BDLM for Real-time Condition Prediction 

138 

5.5.3 k-steps ahead predictions 

In sub-section 5.5.2, the 1-step ahead forecast performance of three different models 

has been investigated. Here we further examine the prediction performance on k-steps 

ahead based on Model 1c, Model 2a and Model 3. For each model we make k-steps ahead 

predictions with start point at two different times: the 240th hour and the 500th hour. Thus 

the k-steps ahead predictions are based on all known information at the start point. To 

compare the short- and long- term forecast performance, a range of different k values, 6, 

12, 24, 36, are tested. As there are 12 observations per day, the above k values correspond 

to 0.5, 1, 2, 3 days respectively.  

Figure 5.11 shows the k-steps ahead predictions with starting time at the 240th hour 

for the three models. It is clear that prediction performance of Model 3 is best, Model 1c 

comes second and Model 2 performs worst. This is because Model 1c only contains trend 

and seasonal components, which changes slowly and cannot make timely adjustments for 

larger k values, while Model 3 with additional regression component can quickly make 

compensation via the differential temperature. The bad prediction performance of Model 

2a is due to the lack of seasonal component which is important to describe the periodic 

characteristics, albeit the regression component also has periodicity. For all three models, 

most of the observations lie within the 90% prediction interval. The prediction interval of 

the three models increases over time, which means that uncertainty of prediction grows 
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along with time. Especially the prediction interval of Model 2a is quite unstable and wider 

after 𝑘 = 6  

Figure 5.12 shows the performance scores for the three models with different k values. 

For the convenience to compare the 𝐿𝐿𝐻 for datasets with different sizes, we uses the 

average log likelihood per step, 𝐿𝐿𝐻/𝑘. It can be seen that Model 3 (with smallest scores 

of RMSE and MAPE, and largest scores of 𝐿𝐿𝐻/𝑘) has the best prediction performance 

according to all three criteria, except for 𝑘 = 6. When 𝑘 = 6, Model 2a only with trend 

and regression component is the best model according to the three criteria. That happens 

to be where the prediction results meet well with the observations at the k ranging from 1 

to 6, as shown in Figure 5.11(b). For all three models, the scores of RMSE and MAPE 

slightly decrease with 𝑘, while 𝐿𝐿𝐻/𝑘 are quite stable, except 𝑘 = 6, since all three 

measures, RMSE, MAPE and 𝐿𝐿𝐻/𝑘 are sensitive to outliers for small 𝑘 values.  
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(a) Model 1c, k ranging from 1 to 36 

 

(b) Model 2a, k ranging from 1 to 36 

 

(c) Model 3, k ranging from 1 to 36 

Figure 5.11 k-steps ahead prediction made at the 240th hour 
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(a) k=6 

   

(b) k=12 

   

(c) k=24 

   

(d) k=36 

Figure 5.12 Forecast performance for different k-steps ahead starting at the 240th hour 
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In Model 2, the predictions are far from satisfactory, especially after 𝑘 = 24, and the 

confidence interval is larger than that in other two models. The prediction intervals of the 

three models increase over time, implying prediction uncertainty increases with the 

number of prediction steps.  

Figure 5.14 shows the performance scores for the three models with different 

prediction steps. Among the three models, Model 3 has the best RMSE, MAPE and 

LLH/k scores, Model 1c comes next, and Model 2s is worst. For all three models, the 

scores of RMSE and MAPE slightly decrease with increasing k, with exception from 𝑘 =

24  to 𝑘 = 36  in Model 2, while 𝐿𝐿𝐻/𝑘  is quite stable, since RMSE, MAPE and 

𝐿𝐿𝐻/𝑘 are all sensitive to outliers for small k values.  
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(a) Model 1c, k ranging from 1 to 36 

 

(b) Model 2a, k ranging from 1 to 36 

 

(c) Model 3, k ranging from 1 to 36 

Figure 5.13 k-steps ahead prediction made at the 500th hour 
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(a) k=6 

   

(b) k=12 

   

(c) k=24 

   

(d) k=36 

Figure 5.14 Forecast performance for different k-steps ahead starting at the 500th 

hour 
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response time series. The structural responses subjected to external effects are 

characterized by superposing generic components including baseline response, seasonal 

component, and regression component. In contrast to classical time series model, BDLM 

does not require the data series to be stationary and can provide structural response 

predictions along with their associated confidence interval to account for the response 

dynamics and uncertainty. Moreover, the state space method directly contains a model 

error term, which makes the analysis more robust to mis-specification of the model. By 

using MCMC simulation method, the unknown parameters and their corresponding 

uncertainties are estimated. The effectiveness and robustness of the proposed method are 

illustrated by applying it to strain responses measured from a cable-stayed bridge. 

According to three model criteria, various models with different components are 

compared to select the most suitable model for making one or several steps ahead 

predictions. The results show that the selected optimal model performs well in prediction.  
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Chapter 6  

BDLM for Structural Damage Detection 

6.1 Introduction 

An ideal SHM system is expected to possess the ability of near real-time automated 

structural health diagnosis through a continuous monitoring process, and provide 

managers critical information to make cost-effective, risk-based decisions that maintain 

safety of the structure. Hence a real-time detection algorithm is desirable. In this chapter, 

a real-time damage detection technique based on Bayesian dynamic linear model (BDLM) 

and Bayesian forecasting will be proposed. The BDLM is a tool for time series analysis 

and Bayesian forecasting enables to calculate one-step ahead forecast distribution. The 

change detection will be carried out by checking the current observation against the 

routine model (forecast distribution generated by the BDLM for current instant) as well 

as against an alternative model (whose mean value is shifted by a prescribed offset). The 

detection rule is that if the alternative model better fits the actual observation, a potential 

change is alarmed. To further determine whether the current observation is an outlier or 

the beginning of a change, a specific logic will be developed by introducing the Bayes 

factor and maximum cumulative Bayes factor. While the potential change in time series 

of structural response is alarmed, Bayesian hypothesis testing will be conducted for 
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damage extent assessment and uncertainty quantification. In short, the real-time 

automated structural health diagnosis technique proposed in this chapter possess the 

following features: (i) potential outliers being detected; (ii) the beginning of change being 

identified; (iii) damage extent and uncertainty being quantified.  

6.2 Bayesian Probabilistic Damage Detection 

6.2.1 Bayes factor 

Bayes factor, a quantity for comparing models or for testing hypothesis in a Bayesian 

framework, plays a significant role in assessing the goodness of fit of competing models 

(Ando 2010). Suppose we have two models, the routine model 𝑀𝑅 and an alternative 

model 𝑀𝐴. The Bayes factor is defined as the ratio of the marginal likelihood of the data 

𝑦𝑡 

 𝐻 =
𝑝(𝑦𝑡|𝑀𝐴)

𝑝(𝑦𝑡|𝑀𝑅)
 (6.1) 

which measures the evidence for model 𝑀𝐴  versus model 𝑀𝑅  on the basis of data 

information. Bayes factor prefers the model with the larger value of marginal likelihood. 

For better quantitative comparison between two models, Jeffreys (1961) suggested 

interpreting the Bayes factor as a scale of evidence, as shown in Table 6.1. This table 

provides some descriptive statements although the partitions are somewhat arbitrary. 
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Table 6.1 Jeffreys’ scale of evidence for Bayes factor 

 Bayes factor Interpretation  

 𝐻 < 1 Negative support for 𝑀𝐴 

 1 < 𝐻 < 3 Barely worth mention evidence for 𝑀𝐴 

 3 < 𝐻 < 10 Substantial evidence for 𝑀𝐴 

 10 < 𝐻 < 30 Strong evidence for 𝑀𝐴 

 30 < 𝐻 < 100 Very strong evidence for 𝑀𝐴 

 100 < 𝐻 Decisive evidence for 𝑀𝐴 

6.2.2 Outlier detection 

Detection of potential outliers is the first step in the proposed algorithm, which is 

conducted based on the calculation of Bayes factor. The basic idea is to check the current 

observation against the routine model 𝑀𝑅 (forecast distribution for current time), and 

against an alternative model 𝑀𝐴 (its mean value is shifted by +h based on the forecasting 

distribution). For time 𝑡, the Bayes factor can be expressed as 

 𝐻𝑡 =
𝑝(𝑦𝑡|𝐷𝑡−1, 𝑀𝐴)

𝑝(𝑦𝑡|𝐷𝑡−1, 𝑀𝑅)
 (6.2) 

where 𝑦𝑡 is the measurement at time 𝑡 and 𝐷𝑡−1 refers to the history information up 

to time 𝑡 − 1. In the case of Gaussian distributions, the Bayes factor is (Lipowsky et al. 

2010)  

 𝐻1,𝑡 = 𝑒𝑥𝑝 (
2ℎ ∙ (𝑦𝑡 − 𝑓𝑡) − ℎ2

2𝜎𝑡
2 ). (6.3) 

where ℎ is the shift value, 𝑦𝑡 is the observation value, 𝑓𝑡 and 𝜎𝑡 are the mean and 

standard deviation of the forecasting distribution. A Bayes factor 𝐻 = 1 indicates that 
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the probability of the observation derived from model 𝑀𝑅 is identical to the probability 

of that derived from Model 𝑀𝐴 . According to the suggestion by Jeffreys (1961), the 

threshold can be set as 𝐻𝑚𝑖𝑛 = 10  for outlier detection. However, the shift value ℎ 

should be determined according to the required confidence level. After 𝐻𝑚𝑖𝑛 and ℎ are 

confirmed, an uncertainty limit (ucl) can be obtained by the following equation  

 𝑢𝑐𝑙 =
𝑙𝑛 (𝐻𝑚𝑖𝑛)

ℎ
𝜎𝑡

2 +
ℎ

2
 (6.4) 

When the shift value is set to ℎ = 1.645𝜎𝑡 at 90% confidence level, the uncertainty limit 

𝑢𝑐𝑙 = 2.22𝜎𝑡. It amounts to saying that, an observation will be diagnosed as outlier if its 

deviation from the mean value of Model 𝑀𝑅 is larger than 𝑢𝑐𝑙. 

According to the Bayes factor defined in Equation (6.4), only the outliers with 

positive deviation can be detected. To make the outliers with negative deviation detectable 

as well, a second Bayes factor is defined as  

 𝐻2,𝑡 = 𝑒𝑥𝑝 (
−2ℎ ∙ (𝑦𝑡 − 𝑓𝑡) − ℎ2

2𝜎𝑡
2 ) (6.5) 

In the process of automatic monitoring, both the Bayes factors 𝐻1,𝑡 and 𝐻2,𝑡 will be 

examined in parallel to detect positive and negative outliers.  

6.2.3 Change detection 

In the monitoring context, individual Bayes factor only focuses on the outlier 
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detection and cannot distinguish between outliers and the beginning of a change. To 

overcome this, cumulative Bayes factor is introduced, which is defined as the product of 

𝑘 consecutive Bayes factors, 

 
𝐻𝑡(𝑘) = ∏ 𝐻𝑡

𝑡

𝑡−𝑘+1

, 𝑘 = 1,2, … , 𝑙𝑚𝑎𝑥 
(6.6) 

where 𝑙𝑚𝑎𝑥 is the maximum number of Bayes factor taken into account. For each 𝑘, 

𝐻𝑡(𝑘) measures the evidence provided by the most recent 𝑘 consecutive observations. 

The maximal cumulative Bayes factor is obtained by  

 𝐿𝑡 = max(𝐻𝑡(𝑘)) = 𝐻𝑡(𝑙𝑡) (6.7) 

where 𝑙𝑡  refers to the run length which counts the number of recent, consecutive 

observations that contribute to the maximum value of 𝐿𝑡. It can be calculated recursively 

by 

𝑙𝑡 = {
 1,      𝑖𝑓 𝐿𝑡−1 ≤ 1 
1 + 𝑙𝑡−1, 𝑖𝑓 𝐿𝑡−1 > 1

 

The rational run length threshold of 𝑙𝑡 is suggested as 𝑙𝑚𝑖𝑛 = 4 by Pole et al. (1994). 

If 𝐿𝑡 > 𝐻𝑚𝑖𝑛 , then a notification of change is issued at time 𝑡  (time of notification, 

TON), and the time of occurrence (TOC) is (𝑡 − 𝑙𝑡 + 1 ), which calls for feed-back 

interventions. 

The sequence of 𝐿𝑡 realizes the real-time tracing forecasting performance of model 

𝑀𝑅 relative to model 𝑀𝐴. If 𝐿𝑡 < 𝐻𝑚𝑖𝑛, the routine model 𝑀𝑅 operates as usual. On 

the other hand, breakdown in forecasting performance of 𝑀𝑅 is indicated. The signal of 
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changes can be triggered by the following two reasons: 

(1) The occurrence of two consecutive Bayes factors 𝐻𝑡 > 𝐻𝑚𝑖𝑛, which is 

equivalent to 𝐿𝑡 > 𝐻𝑚𝑖𝑛
2 ; 

(2) The concurrence of 𝐿𝑡 > 𝐻𝑚𝑖𝑛 and 𝑙𝑡 > 𝑙𝑚𝑖𝑛. 

Beginning at time 𝑡, the procedure of automated detection algorithm is summarized 

in the flowchart in Figure 6.1. Firstly calculate the single Bayes factor and judge whether 

𝑦𝑡  is an outlier. If not, calculate the maximum cumulative Bayes factor 𝐿𝑡  and run 

length 𝑙𝑡 for change detection. Once a change is detected, the intervention is carried out 

by resetting the time to the time of occurrence and by adjusting the mean value of 𝑀𝑅 to 

the observation 𝑦𝑡, 𝑓𝑡 = 𝑦𝑡, then proceed to analyze starting at TOC. 

 

 

Figure 6.1 Flowchart of detection algorithm 

6.2.4 Damage assessment 

Suppose we have a set of time series response consisting of different sets, of which 

N
o

Yes Reject 𝑦𝑡  

as a potential outlier 

𝐻𝑡 > 𝐻𝑚𝑖𝑛  and 

 𝐻𝑡−1 ≤ 𝐻𝑚𝑖𝑛  

2) Reset time → 𝑡 = 𝑡 − 𝑙𝑡 + 1 

1) Issue signal of possible changes
𝐿𝑡 > 𝐻𝑚𝑖𝑛

2   

𝐿𝑡 > 𝐻𝑚𝑖𝑛  and 𝑙𝑡 > 𝑙𝑚𝑖𝑛  
or

Yes

N
o

Next time step 

𝑡 = 𝑡 + 1 

3) Model adjustment → 𝑓𝑡 = 𝑦𝑡  
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dataset j-1, dataset j and dataset j+1 obtained under different structural health states are 

shown in Figure 6.2. The main purpose of this study is to automatically detect the changes 

in time series response by use of the detection logic proposed in Sub-section 6.2.3, for 

example, to find out TOC 1 and TOC 2 in this case, and then to assess the damage extent 

based on Bayesian hypothesis testing through comparing the time series response 

measured before and after the potential change point.  

 

Figure 6.2 Time series datasets obtained under different conditions 

 

The structural damage assessment involves comparing two sets of structural 

responses obtained under two different structural conditions. When the structural 

response measured from one status is compared with the response obtained from another 

status, the difference between them will be used to identify structural damage. For 

example, it is assumed that dataset j-1 in Figure 6.2 is the structural response under 

healthy condition, and dataset j is the response under unhealthy condition. The question 

is how to effectively identify and quantify them. Let 𝑦1, … , 𝑦𝑛 be the structural response 

in dataset j, which follow normal distribution, that is 𝑦~𝑁(𝜇, 𝜎2) . In this study, the 

variance 𝜎2 is assumed the same as in healthy status, and the hypothesis testing is made 

j-1 j j+1

……

TOC 1 TOC 2
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only on the mean of the observed response. The structure is healthy if the mean of the 

responses (here it refers to dataset j-1) is zero, while it is damaged if otherwise. Hence, 

the null hypothesis 𝐻0 and alternative hypothesis 𝐻1 are as follows 

 𝐻0: No damage 𝜇 = 0 

𝐻1: Damage 𝜇 ≠ 0 with 𝜇|𝐻1~𝑁(𝜌, 𝜏2) 

(6.8) 

where 𝜌 and 𝜏2 are two parameters of the prior distribution of 𝜇 under the alternative 

hypothesis. If no information is available, 𝜌 = 0 and 𝜏2 = 𝜎2 are suggested (Migon et 

al. 2014). Then the posterior distribution of 𝜇  can be calculated as follows 

(Sankararaman and Mahadevan 2013) 

 Posterior mean of 𝜇 =
𝜌

𝜏2+
𝑦1+𝑦2…+𝑦𝑛

𝜎2
1

𝜏2+
𝑛

𝜎2

 

Posterior variance of 𝜇 = (
1

𝜏2 +
𝑛

𝜎2)
−1 

(6.9) 

Structural damage evaluation can be achieved by means of Bayes factor, which is defined 

as the ratio of probability of observed data given the null hypothesis to the probability of 

observed data given the alternate hypothesis 

 𝐵10 =
𝑃(𝐷|𝐻1)

𝑃(𝐷|𝐻0)
 (6.10) 

where 𝐷 refers to the observed data. The logarithm of Bayes factor is derived by Jiang 

Mahadevan (2008) as 

 log 𝐵10 = −
1

2
log(𝑛 + 1) +

𝑛2𝑅2

2(𝑛 + 1)𝜎2
 (6.11) 

where 𝑅 refers to the mean of observed structural response. If the Bayes factor 𝐵10 is 
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greater than 1, it implies that the data favor the hypothesis 𝐻1 and hence suggests that 

there is damage. Another advantage is that the uncertainty in damage detection can be 

quantitatively assessed on the basis of Bayes factor. The probability for damage is  

 𝑝(𝐻1|𝐷) =
𝑝(𝐷|𝐻1)𝑝(𝐻1)

𝑝(𝐷|𝐻0)𝑝(𝐻0) + 𝑝(𝐷|𝐻1)𝑝(𝐻1)
 (6.12) 

where 𝑝(𝐻1) and 𝑝(𝐻0) denote the prior probabilities of acceptance at the hypothesis 

𝐻1 and 𝐻0. If each of these prior probabilities is assigned as 0.5, then Equation (6.12) is 

simplified as  

 𝑝(𝐻1|𝐷) =
𝐵10

𝐵10 + 1
 (6.13) 

𝐵10 → 0 indicates 0% confidence in accepting the alternative hypothesis, and 𝐵10 → ∞ 

indicates 100% confidence.  

In order to facilitate real-time continuous damage detection, a moving window along 

with data forward is used to cover the recent data for conducting hypothesis testing. 

Taking Figure 6.2 as an example, the predefined window moves along dataset j from 

TOC1 to TOC2 and the data covered by the window are selected to conduct hypothesis 

testing. After dataset j is finished, same procedure is applied to dataset j+1 for hypothesis 

testing. Based on the results of Bayesian hypothesis testing, we can make a judgement on 

whether the structure is healthy and the damage extent in unhealthy case.  
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6.3 Illustrations of Damage Detection 

6.3.1 Application 1: in-service monitoring data from a high-speed train 

An in-service passenger train running on a high-speed railway in China has been 

instrumented with an array of optical fiber sensors to monitor the strain/stress variations 

in different structural components of the train (Figure 6.3). The strain sensors are mainly 

mounted on 4 measurement zones of bogies: (i) the zone with high loads imposed, (ii) 

stress transmission zone, (iii) the zone with high predicted responses by FEM calculation, 

and (iv) welded joints (Figure 6.4). 

Onboard monitoring made during the routine operation of the train has lasted for an 

entire month from December 2015 to January 2016. During the monitoring period, the 

train ran at its normal speed around 160 to 200 km/h. The high speed railway is longer 

than 1,000 km in total. Sampling rate for all the sensors was set as 5,000 Hz. 

Pre-processing of the acquired strain data is conducted in order to obtain the average 

amplitudes of stress ranges at different time intervals. It consists of the following steps: 

(i) multiplying the strain data with elasticity modulus E of steel to obtain stress time 

histories; (ii) applying the rainflow counting method (Wang and Ni 2016) to extract the 

stress range in each of stress cycles. From one stress cycle, the stress range Sa is obtained 

by calculating the difference between the maximum stress σmax and the minimum stress 

σmin measured in that stress cycle, i.e., 𝑆𝑎 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛; (iii) eliminating those stress 
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ranges with their amplitudes smaller than 1 MPa (the majority of them are caused by 

noise); and (iv) calculating the average amplitude of the stress ranges at each time interval. 

The data used in this study are the stress ranges collected at one point when the train 

ran through two railway sections before and after lathing the wheels (lathing is a process 

to make wheels perfectly rounded). The dataset of the first example illustrated in Figure 

6.6 consists of three parts (named as dataset 1 dataset 2 and dataset 3), where the dataset 

1 and dataset 3 are the stress ranges before lathing, and dataset 2 is the stress ranges after 

lathing (Figure 6.5). The dataset of the second example illustrated in Figure 6.8 contains 

only two parts (named as dataset 1 and dataset 2), where dataset 1 is the stress ranges 

before lathing and dataset 2 is the stress ranges after lathing (Figure 6.7).  

The results of the first example by the proposed method are shown in Figure 6.6. 

Figure 6.6(a) compares the Bayes factor with the threshold 𝐻𝑚𝑖𝑛 = 10. Throughout the 

entire process, all Bayes factor values are below the warning line except at time 𝑡 = 30, 

which means the occurrence of only one outlier. Figure 6.6(b) presents the maximum 

cumulative Bayes factor for change detection. It is seen that the maximum cumulative 

Bayes factor is larger than 10 at times 𝑡 = 31 and 81, which means that two notifications 

of change are issued separately at the two moments. Both run lengths are 𝑙𝑡 = 2. So the 

real time of occurrence is at 𝑡 = 30 and 80 respectively, which are well coincident with 

the time point of lathing the wheels. Then the monitoring stress ranges after the time 𝑡 =
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30 and 𝑡 = 80 are used for damage identification and the results of logarithm of Bayes 

factor are shown in Figure 6.6(c). It is clear that most of values of logarithm of Bayes 

factor between 𝑡 = 30 and 𝑡 = 80 are larger than 100, exceeding the given threshold 

of 𝐻𝑚𝑖𝑛 = 10 , and their corresponding probabilities are approximately 100%, which 

give decisive evidence that the monitoring stress ranges during this time period are not in 

the same category as the stress ranges measured before lathing. While the values of 

logarithm of Bayes factor after time 𝑡 = 80  are below than the threshold, which 

indicates the monitoring stress range during this period are in the same category as the 

stress ranges measured before lathing. The proposed algorithm satisfactorily detects the 

change of stress ranges and identifies the different patterns of stress ranges after the 

wheels are lathed.  

The results of the second example by the proposed method are shown in Figure 6.8. 

Figure 6.8(a) compares the Bayes factor with the threshold 𝐻𝑚𝑖𝑛 = 10. Throughout the 

entire process, all Bayes factors are below the warning line, which means no outlier 

occurrence. Figure 6.8(b) illustrates the maximum cumulative Bayes factor for change 

detection. It is seen that the maximum cumulative Bayes factor is larger than 10 at time 

𝑡 = 57, which means a notification of change is issued at this moment. The run length is 

𝑙𝑡 = 2. So the real time of occurrence is at 𝑡 = 56, which is well coincident with the time 

point of lathing the wheels. Figure 6.8(c) shows the results of logarithm of Bayes factor. 
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It is clear that the values after time 𝑡 = 56 are larger than 100, exceeding threshold of 

𝐻𝑚𝑖𝑛 = 10, and their corresponding probabilities are approximately 100%, which offer 

decisive evidence that the monitoring stress ranges after time 𝑡 = 56 are not in the same 

category as the stress ranges measured before lathing. The state of the train wheels has 

changed at time 𝑡 = 56. The proposed method effectively identifies the differences of 

monitoring data from the different structural states.  

 

 

Figure 6.3 Onboard monitoring of an in-service high speed train 
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Figure 6.4 Locations of optical fiber strain sensors deployed on a bogie 
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Figure 6.5 Time history of stress ranges (1st example) 

 

 

(a) Bayes factor 

 

(b) Maximal cumulative Bayes factor 

 

(c) Bayesian hypothesis testing 

Figure 6.6 Bayes factor for outlier/change detection and damage assessment  

(1st example) 
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Figure 6.7 Time history of stress ranges (2nd example) 

 

 

(a) Bayes factor 

 

(b) Maximal cumulative Bayes factor 

 

(c) Bayesian hypothesis testing 

Figure 6.8 Bayes factor for outlier/change detection and damage assessment  

(2nd example) 
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6.3.2 Application 2: SMC benchmark bridge 

The proposed damage detection method is then applied to a cable-stayed bridge with 

several observed damage patterns. All the data used in this section come from the ‘SMC 

benchmark problem for condition assessment and damage detection’ proposed by the 

Center of Structure Monitoring and Control (SMC) at the Harbin Institute of Technology, 

China. This benchmark structure is a cable-stayed bridge witnessing the bridge deck from 

health to damage and an SHM system recorded this process. The detailed information of 

the benchmark problem can be found at the benchmark homepage and relevant papers (Li 

et al. 2010, 2011, 2012, 2014). In the study here only acceleration data recorded by the 

SHM system from the bridge healthy status to damaged status are used to validate the 

proposed method. There are 14 accelerometers installed on the bridge deck of main span 

and two side spans, the sensor locations as shown in Figure 6.9. 

Two sets of acceleration time history measured from the side span and the mid-main 

span are applied to validate the proposed damage detection method, as shown in Figures 

6.10 and 6.12. The datasets covering 12 days witness the bridge deck from health to 

damage. To start with, the acceleration data are pre-processed to obtain the root mean 

square (RMS) of acceleration per hour.  

The damage detection results for the RMS acceleration of side span (Acc 2) are 

shown in Figure 6.11. Figure 6.11(a) compares the Bayes factor with the threshold 
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𝐻𝑚𝑖𝑛 = 10. Throughout the entire process, all Bayes factors are below the warning line, 

which means no outlier occurrence. Figure 6.11(b) illustrates the maximum cumulative 

Bayes factor for change detection. It is seen that the maximum cumulative Bayes factor 

is larger than 10 at time 𝑡 = 147, which means that a notification of change is issued at 

this moment. As the run length is 𝑙𝑡 = 4, the real time of occurrence is at 𝑡 = 144 which 

is exactly the time moment when the bridge was observed as being damaged (Li et al. 

2014). Figure 6.11(c) shows the results of logarithm of Bayes factor. It is clear that the 

values of Bayes factor after TOC 𝑡 = 144 exceed the given threshold of 𝐻𝑚𝑖𝑛 = 10 

and their corresponding probabilities are approximately 100%, which given very strong 

evidence that the acceleration responses of side span after TOC are not in the same 

category as before, and hence it is highly likely that damage occurred at that time moment.   

Figure 6.13 shows the application of the proposed method to the RMS acceleration 

of mid-main span (Acc 8). Similar to the previous case, the maximum cumulative Bayes 

factor exceeds the specified threshold at the turning point 𝑡 = 144. The logarithms of 

Bayes factor for damage signature are also greater than the specified threshold after the 

turning point 𝑡 = 144, implying that the data favor the hypothesis 𝐻1 and suggesting 

that there is damage. 

 

Figure 6.9 Layout of accelerometers in the benchmark bridge 

Accelerometer
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Figure 6.10 Time history of acceleration (side span) 

 

 

(a) Bayes factor 

 

(b) Maximal cumulative Bayes factor 

 

(c) Bayesian hypothesis testing 

Figure 6.11 Bayes factor for outlier/change detection and damage detection (side 

span) 
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Figure 6.12 Time history of acceleration (mid-main span) 

 

 

(a) Bayes factor 

 

(b) Maximal cumulative Bayes factor 

 

(c) Bayesian hypothesis testing 

Figure 6.13 Bayes factor for outlier/change detection and damage detection (mid-

main span) 
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6.4 Summary 

A real-time damage detection algorithm based on Bayesian approach is developed 

and validated in this chapter. This algorithm consists two steps: outlier/change detection 

and damage assessment. The dynamic process is modeled by BDLM, where the order can 

be adjusted to satisfy the prognostic needs. The outlier/change detection is carried out by 

comparing the routine model (forecast distribution generated by the BDLM) with an 

alternative model (whose mean value is shifted by a prescribed offset). If the alternative 

model better fits the actual observation, a potential outlier/change is detected. To 

determine whether the current observation is an outlier or the beginning of a change, a 

judgement criterion based on Bayes factor and maximum cumulative Bayes factors is 

developed. The damage detection is conducted based on Bayesian hypothesis testing, 

which compares the structural response before and after the change point. The damage 

detection algorithm is investigated with the data collected from an in-service high-speed 

train and the SMC benchmark bridge. With the maximum cumulative Bayes factor, the 

exact time of lathing the train wheels is identified. The results of Bayesian hypothesis 

testing make clear that the two sets of stress ranges measured before and after lathing are 

not in the same category, indicating that the structure state has changed. Similarly, a signal 

of change is accurately triggered according to the maximum cumulative Bayes factor 

when damage occurs in the bridge. The results of Bayesian hypothesis testing also 
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indicate that the status of bridge has changed after TOC. 
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Chapter 7  

Conclusions and Recommendations 

7.1 Conclusions 

In this PhD study, two methodologies including SHM-based structural condition 

assessment using Bayesian linear model (BLM) and Bayesian generalized linear model 

(BGLM), and structural condition prognosis and damage detection using Bayesian 

dynamical linear model (BDLM) are developed. The major findings from this study are 

summarized in the following: 

(1) Bayesian linear model (BLM) is well suited for modeling the relationship between 

the displacement of expansion joints and the effective temperature of bridge deck. By 

using MCMC simulation analysis, the model parameters associated with their 

uncertainties are successfully estimated which are close to the analytical results. Based 

on the formulated BLM, an anomaly index is proposed for evaluating the probability of 

failure of expansion joints. The predicted mean displacements at the maximum and 

minimum temperatures are found close to the design values, but the upper bound of the 

predicted displacement ranges with 95% confidence interval exceeds the design criterion. 

It is suggested to increase the design values for the sake of expansion joint safety. 

(2) An extended BLM termed as Bayesian generalized linear model (BGLM) is 
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proposed for assessing wind-induced displacement responses of bridges. Among a set of 

candidate models where each model considers different explanatory variables and orders 

of variables, the Bayesian model class selection technique is applied to choose the optimal 

model for capturing the true relationship between the wind-induced displacement and 

wind speed/direction. Both Log-ML and RMSE values show that Model M4 containing 

one order of the two explanatory variables, wind speed and direction, is the optimal one 

to fit the wind-induced displacement response. However, for predicting the displacement 

response under strong winds, Model M2 with quadratic term of wind speed performs 

better. This is because the quadratic term plays an important role in assessing wind-

induced displacement when the wind speed is very large (such as 50m/s or above). The 

predicted maximum wind-induced displacement responses and the corresponding 

confidence interval under the design wind speed in serviceability limit state (SLS) are 

less than the design value. 

(3) Bayesian dynamic linear model (BDLM) performs well in modeling the time-

dependent responses of structures subject to external effects by superposing generic 

components, including baseline response, seasonal component, and regression 

component. In contrast to classical time series models, BDLM does not require the data 

series to be stationary and can provide structural response prediction along with their 

associated confidence interval to account for the response dynamics and uncertainty. 
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Moreover, the state space method directly contains a model error term, which makes the 

analysis more robust to mis-specification of the model. The effectiveness and robustness 

of the proposed method are illustrated and validated using the strain response acquired 

from an in-service cable-stayed bridge. According to three criteria, the selected optimal 

model performs well in one or several steps ahead prediction.  

(4) A real-time damage detection method based on BDLM is developed and validated 

in two case studies. This method consists of two steps: outlier/change detection and 

damage detection. First the time-dependent responses of a structure are modelled by 

BDLM, where the generic components are adjusted to satisfy the prognostic needs. The 

outlier/change detection is carried out by comparing the routine model (forecast 

distribution generated by the BDLM) with an alternative model (whose mean value is 

shifted by a prescribed offset). If the alternative model better fits the actual observation, 

a potential outlier/change is detected. To determine whether the current observation is an 

outlier or the beginning of a change, a judgement criterion based on Bayes factor and 

maximum cumulative Bayes factor is developed. The damage detection is conducted by 

means of Bayesian hypothesis testing, which compares the structural response before and 

after the potential change point. The damage detection algorithm is illustrated with the 

monitoring data collected from an in-service high-speed train and from the SMC 

benchmark bridge. The signal of change is accurately triggered according to the 
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maximum cumulative Bayes factor when the structural damage/anomaly occurs. Then 

Bayesian hypothesis testing further confirm the extent of structural damage. The state 

change of the train before and after wheel lathing, and the damage of bridge deck are both 

successfully detected at the turning point.  

7.2 Recommendations for Further Research 

The development methods for structural health evaluation and prediction are still 

preliminary and in its infancy. To improve the proposed methods for more effective and 

practical applications, the following research issues are suggested to be pursued in the 

future: 

(1) In most situations, the observed response may not be just a single value, but rather 

multiple responses. The Bayesian linear model and Bayesian generalized linear model 

can be generalized to multiple responses models, where the correlation in responses 

should be considered. 

(2) The proposed BDLM in Chapter 5 for modeling the time-dependent responses of 

structure can handle multiple structural responses simultaneously. This dissertation only 

focuses on one response variable. To accommodate multiple responses cases, the model 

error covariance matrix should be redefined. 

(3) To provide more reliable damage detection, a logic for interaction of detections 
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of multiple measurements could be implemented. At present, every measurement is run 

by the detection method separately and the signal of damage is also separately triggered. 

An enhanced logic would be to issue the damage warning when a certain percentage of 

all observed measurements signal anomaly. 

(4) In proposed Bayesian dynamic linear model, the observational noise and system 

noise are assumed as Gaussian. However, in some applications, such as detection of 

structural changes of time series models, the necessity of non-Gaussian hypothesis 

becomes apparent. The proposed model can be extended to non-Gaussian state space 

model.  
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