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Abstract

Despite the continuous evolution and development in the field of structural health
monitoring (SHM), interpreting the huge amount of monitoring data from an SHM system
to obtain useful information on structural conditions remains a challenge. Furthermore,
due to the complexity of structures, measurement noise, inherent uncertainties in
measured data and analytical methods, precise models which reflect the actual structural
systems are difficult to create. In this regard, this thesis presents novel model-free data-
interpretation methodologies within the Bayesian framework for structural health
evaluation and prediction.

The first part of the thesis is aimed at conducting SHM-based structural condition
assessment using Bayesian linear model (BLM) and Bayesian generalized linear model
(BGLM). For condition assessment of bridge expansion joints, the relationship pattern
between thermal movement of expansion joints and effective temperature of bridge deck
is quantified using BLM and long-term monitoring data. The model parameters, model
error and their associated uncertainties are estimated by analytical and simulation
algorithms. With the established BLM, an anomaly index is defined to evaluate the failure
probability of the expansion joints. The maximum and minimum displacements of the
expansion joints under design extreme temperatures are predicted and compared with the

design allowable values for validation. Then the BLM is extended to BGLM for assessing



wind-induced displacement responses of instrumented bridge. With the monitoring data

of displacement and wind during typhoons, the correlation pattern between wind-induced

displacement and wind speed/direction is explored. The crucial issue of optimizing model

structure is dealt with by employing Bayesian model class selection, in terms of

maximizing the log-likelihood function. Based on the established model, the bridge

displacement responses and the associated confidence intervals under wind speed at

serviceability limit state (SLS) are predicted and compared with the design allowable

values for validation.

In the second part, Bayesian inference-based dynamical linear models (BDLM) are

developed for prognosis and damage detection by using the time series of structural

response. Firstly, different step ahead predictions by various models considering different

component forms, such as trend, seasonal and regression components, are evaluated and

compared in accordance with three model criteria. After the most suitable model is

determined, a novel detection technique based on the forecasting of BDLM is proposed

for local anomaly diagnosis. An index called Bayes factor is introduced for outlier

detection. It is carried out by checking the current observation against the forecasting

distribution (yielded from the BDLM at current moment) as well as against an alternative

model (whose mean value is shifted by a prescribed offset). The detection rule is that if

the alternative model better fits the actual observation, a potential outlier is detected. Then,



the logic of outlier detection is extended to distinguish between the single outlier and the

appearance of a change through defining the cumulative Bayes factors, which can

diagnose the anomaly of local component under extreme events or due to structural

damage. Finally, Bayesian hypothesis testing is conducted by comparing the time series

of structural response before and after the change point to make a judgement on whether

the structure is healthy. Two case studies using the in-service monitoring data from a high-

speed train and the data from a bridge benchmark problem are provided to show the

applicability and effectiveness of the proposed method.
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Chapter 1

Introduction

1.1 Research Motivation

The main objective of structural health monitoring (SHM) is to track the health

condition of structures in order to prevent any catastrophic failure as well as to prolong

the service life of engineered structures. The practical applications of the SHM

technology to critical civil structures (such as high-rise buildings, long-span bridges), and

transportation systems (such as rail and aircraft), have been increased in the past decades

because of (1) the ability of SHM systems in offering continuous monitoring for detecting

any adverse condition and evaluating structural durability, reliability and integrity; and

(1) the advances on sensing, communication and signal processing technologies (Dirbaz

2013). Successful implementations of long-term SHM systems to critical infrastructure

systems have been increasingly reported. Most examples are on long-span bridges and

high-rise buildings, such as the Confederation Bridge in Canada (Cheung et al. 1997), the

Great Belt Bridge in Demark (Henrik and Denmark 2002), the Tsing Ma Bridge, Ting

Kau Bridge, and Kap Shui Mun Bridge in Hong Kong (Wong 2004, 2007), and the Canton

Tower (Ni et al. 2009) in the Chinese mainland. More applications can be found in the

literature (Chang et al. 2003; Li et al. 2014; Annamdas et al. 2015; Seo et al. 2015; Li
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and Hao 2016). A viable SHM system enables continuous measurement of loading

environment and structural responses, providing a valuable tool for condition assessment

and performance prediction of the instrumented structure. Research efforts have been

made on damage detection, structural load-carrying capacity evaluation and remaining

service life estimation with the use of long-term SHM data. These efforts span a broad

range of research from tracking the change of structural characteristics for damage

detection, to developing codified approaches for structural load-carrying capacity

estimation, and to SHM-based reliability evaluation for forecasting structural remaining

life (Seo et al. 2016). Simply put, all the efforts are made for structural health evaluation

and prediction.

Structural condition assessment techniques can generally be categorized into physics-

based and data-based methods, though a combination of them is usually employed (Farrar

and Lieven 2007). The physics-based techniques are especially useful for making a

prediction of structural responses to new system configurations or new loading conditions,

while their computations are more complicated than data-based methods. Data-based

assessment approaches depend on the previous measurements from the system to evaluate

the current structural condition, typically by use of pattern recognition methods. Although

the data-based assessment approaches are able to indicate the change in the presence of

new system configurations or varying loading conditions, their performance on
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classifying the nature of the change is poor. So perfecting the balance between the two

assessment techniques is critical, whose principle will depend on the amount of available

data and the level of confidence in forecast accuracy. After the current status of a structure

is assessed, the prognosis problem will be addressed according to the goal of the prognosis.

The most types of prognosis estimate how long the structure can continue in its safe use

or how the structure will respond to the anticipated and unanticipated

environments/loading such as extreme earthquakes.

However, most condition assessment and forecast methods may produce inexact and

limited results in conjunction with field measurements because of (i) incompleteness of

measured data, (ii) inherent uncertainties in measured data and analytical methods, (ii1)

measurement noise (Dirbaz 2013). These internal and external uncertainties created

during design, construction and use, pose a great challenge to engineers/operators in

charge of structure safety, operation and maintenance.

Stimulated by the challenges and limitations stated above, the efforts of this PhD

work are to explore structural health evaluation and prediction of in-service structures

using the measured responses and environments from the SHM systems, with an

emphasis on dealing with uncertainty from a Bayesian perspective. This study starts with

developing a Bayesian linear model (BLM) for condition assessment of bridge expansion

joints with the use of long-term monitoring data of displacement and temperature. After
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that, BLM is extended to Bayesian generalized linear model (BGLM), for the purpose of
assessing wind-induced displacement with the monitoring data of displacement and wind
data acquired during typhoons. Finally, Bayesian dynamic linear model (BDLM) is
formulated for modeling the time-dependent structural responses. Based on the BDLM
and Bayesian forecasting, a novel on-line change/damage detection method is developed

and verified.

1.2 Research Objectives
This study is intended to investigate structural health evaluation and prediction of in-

service structures based on SHM data in the Bayesian framework. The research objectives

are as follows:

1. To formulate a Bayesian linear model (BLM) for condition assessment of bridge
expansion joints. Using the long-term monitoring data from an SHM system, the
relationship pattern between the thermal movement of expansion joints and the
effective temperature of bridge deck is established, where the uncertainty is
quantitatively described. It is then applied to forecast future movement of the
expansion joints.

2. To formulate a Bayesian general linear model (BGLM) for assessing wind-induced

displacement responses of bridges. With the monitoring data of displacement and
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wind during typhoons, the correlation pattern between wind-induced displacement

and wind speed/direction is developed for bridge condition assessment and prediction.

In particular, model class selection approach is explored to determine the optimal

model among numerous candidate models.

3. To propose a Bayesian dynamic linear model (BDLM) framework for modeling time-

dependent structural response. The time series of structural response is modelled by

assembling combinations of generic components, including local level/trend

component, periodic component, and regression component. Then the formulated

model is applied to forecast the structural behavior at one or several steps ahead

beyond the current time.

4. To develop an on-line change/damage detection method based on BDLM and

Bayesian forecasting. The change detection is carried out by checking the current

observation against the current model (forecast distribution) and against an

alternative model (whose mean value is shifted by a prescribed offset). To determine

whether the observation is an outlier or the occurrence of change/damage, a special

logic is developed. Then Bayesian hypothesis testing is conducted through

comparing the time series of structural response before and after the change point to

make a judgement on whether the structure is healthy.
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1.3 Thesis Outline

This thesis consists of the following seven chapters:

Chapter 1 introduces the motivation for the present research, makes clear the

objectives of research to be pursued, and states the structure of the thesis.

Chapter 2 presents the background of this research. The applications of the structural

health monitoring (SHM) technology to civil structures are reviewed. Research efforts

employing Bayesian probabilistic approaches to SHM are summarized and the limitations

in these attempts are addressed.

Chapter 3 proposes a Bayesian linear model (BLM) for condition assessment of

bridge expansion joints. Using the long-term monitoring data from an SHM system,

Bayesian relationship between the thermal movement of bridge expansion joints and the

effective temperature of bridge deck is formulated, in which the uncertainty is

quantitatively characterized. With the formulated Bayesian model, an anomaly index is

defined to evaluate the failure probability of the expansion joints. The maximum and

minimum displacements of the expansion joints under design extreme temperatures are

predicted and compared with the design allowable values for validation.

Chapter 4 presents a Bayesian generalized linear model (BGLM) for assessing wind-

induced displacement response of bridges. With the monitoring data of displacement and

wind during typhoons, the correlation pattern between wind-induced displacement and
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wind speed/direction is formulated. The most suitable class of models is determined by

the Bayesian model class selection techniques, which is then applied for bridge response

prediction.

Chapter 5 presents a Bayesian dynamic linear model (BDLM) framework for

modeling time-dependent structural response. The monitoring data of strain response is

modelled by assembling combinations of generic components, such as local level/trend

component, periodic component, and regression component, to account for the missing

physical phenomena. Kalman filter, Kalman smoother and Gibbs sampling algorithms are

applied to estimate the hidden state variables and model parameters for each component.

Finally, the performance of the proposed model in forecasting structural behavior at

different steps ahead are examined.

Chapter 6 presents a novel on-line change/damage detection method based on BDLM

and Bayesian forecasting. The change/damage detection is carried out by checking the

current observation against the current model (forecast distribution generated from the

BDLM at current moment) and against an alternative model (whose mean value is shifted

by a prescribed offset). The detection rule is that if the alternative model better fits the

actual observation, a potential change/damage is indicated. To determine whether the

current observation is an outlier or the beginning of a structural change, a special logic is

developed by defining Bayes factors and cumulative Bayes factors. Then Bayesian
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hypothesis testing is conducted through comparing the time series of structural response

before and after the change point to make a judgement on whether the structure is healthy.

The performance of the proposed method is verified with the monitoring data from an in-

service bridge and an in-operation high-speed train.

Chapter 7 summarizes the major conclusions of this thesis and gives the

recommendations for further research.



Chapter 2

Literature Review

2.1 Structural Health Monitoring of Civil Structures

Structural health monitoring is essential to evaluate the safety of critical infrastructure
systems, such as high-rising buildings, larger-scale space structures and long-span bridges.
It refers to the use of continuous field monitoring and analyses of environmental and
structural parameters under operation conditions, for the purpose of warning abnormal
states or accidents at an early stage to avoid casualties and providing maintenance advice
(Hoursner et al. 1997; Li et al. 2014). Over the past decades, long-term SHM systems had
been increasingly implemented on civil structures worldwide. Most applications were on
long-span bridges, such as the Confederation Bridge in Canada (Cheung et al. 1997), the
Commodore Barry Bridge in United States (Barrish et al. 2000), the Akashi Kaikyo
Bridge in Japan (Kashima et al. 2001), the Singapore-Malaysia second link bridge
(Brownjohn and Moyo 2001), the Great Belt Bridge in Demark (Henrik and Denmark
2002), the Tsing Ma Bridge, Ting Kau Bridge, and Kap Shui Mun Bridge in Hong Kong
(Wong 2004, 2007), the Sutong Bridge in the Chinese of mainland (Ni ef al. 2004), the
Jindo Bridge in South Korea (Jang ef al. 2010). Applications of SHM systems to high-

rise buildings were also widely reported. For example, the Republic Plaza in Singapore
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(Brownjohn et al. 1998), the Marco Polo tension leg platform in United States (Dijk and

Boom 2007), the Canton Tower (Ni ef al. 2009) and Shanghai Tower (Zhang et al. 2015)

in the Chinese mainland, the San Siro Meazza stadium in Italy (Cigada et al. 2010), the

T