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Abstract 

One of the key issues in navigation and kinematic positioning is to estimate state 

parameters from measurements and dynamics information with errors. The commonly 

used method for kinematic positioning and navigation is measurements from integrated 

Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU), and a 

Kalman filtering method can be used to fuse these two types of measurements with their 

uncertainties. The conventional Kalman filter is an optimal estimator for a linear system 

contaminated by Gaussian noises. In fact, most of the real-world dynamic systems tend to 

have a certain degree of nonlinearity, thus various filters have been proposed for dealing 

with nonlinear models, such as Extended Kalman filter (EKF), Unscented Kalman filter 

(UKF), and particle filter (PF). The optimality of these filter algorithms, however, is 

linked with the knowledge of the system noise and the quality of the measurements. The 

performance of the filters can be degraded or even diverged in the case that the stochastic 

model used in the estimation is largely different from the real dynamic system noise, or in 

the case that measurements containing outliers are used in the estimation process. This 

research investigates the method to improve the accuracy and robustness of state 

estimates in GNSS/IMU integrated navigation systems. 

The main contributions of the thesis are: 

(1) A common theoretical framework for both EKF and UKF is established by correlation 

inference. 

A common theoretical framework of the two filters is established by correlation inference. 

The estimator expressed by the inference only depends on measurements, approximated 
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state, and predicted measurements as well as their covariance and cross-covariance 

matrices. The relationships and the performance differences between UKF and EKF are 

discussed in terms of theoretical foundation and algorithms, and are tested using both 

simulation and observation data. The results indicated the superiority of UKF for 

kinematic state estimation. 

(2) Based on the above theoretical framework established, an adaptive UKF (AUKF) 

method is proposed to reduce the influence of the disturbance of a dynamic system. 

An AUKF is rigorously derived based on the correlational inference method. The 

adaptive nonlinear estimator not only reduces the influence of those unpredictable 

dynamic disturbances, but also takes into account the effects of the nonlinear model. An 

adaptive mechanism is developed by using an innovation vector at the current 

measurement epoch, which avoids the storage of innovation sequences and is more 

sensitive to the discrepancy between those from the predicted system state and the 

measurements. Both simulation and field test have shown that the AUKF outperforms the 

conventional UKF in terms of accuracy of the positioning and velocity estimates in the 

case of dynamic disturbances. 

(3) M-M estimation theory is applied and a robust M-M UKF (RMUKF) is developed to 

further reduce the influence of measurement outliers. 

Since the estimate accuracy is improved by the aforementioned AUKF method in the 

case of dynamic disturbances. This study is then extended to further reduce the influence 

of measurement outliers, if any, for which the RMUKF method is proposed. The 

RMUKF estimator is robust and it applies the maximum likelihood (M-) principle to the 
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errors in both functional model and measurements. The estimator of the RMUKF is also 

deduced and analysed. A weight matrix composed of bi-factor shrink elements is 

developed for the RMUKF for keeping the original correlation coefficients of predicted 

state elements unchanged. The RMUKF successfully attenuates both the dynamic model 

disturbances and the influence of measurement outliers. 

(4) The theory developed above is verified by using an integrated IMU/GNSS navigation 

system in which the nonlinear IMU error model is treated as a dynamic model. 

The conventional IMU error model is derived based on the assumption that a small angle 

exists in attitude errors only. Hence the coordinate transformation matrices in the 

positioning solution can be presented by approximated matrices. To illustrate the 

proposed nonlinear estimators, a nonlinear IMU error model derived by the Euler angle 

errors, is employed to integrate with GNSS in a loosely coupled integration strategy. The 

performance of the proposed estimators is evaluated by using both simulation and field 

data.   
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Chapter 1 Introduction 

1.1 Problem Description and Research Objectives 

1.1.1 Problem Description 

State estimation is to provide a complete representation of the internal status of 

a system at a given instant of time (Simon, 2006). Estimating the state is of 

paramount importance to the tracking of kinematic or dynamic systems, such as 

vehicle tracking and navigation. The aim of the state estimation is to solve state 

parameters from noisy signals or measurements collected from sensors (Yang et 

al., 2016). The sensors, in general, can be receivers of the Global Navigation 

Satellite Systems (GNSS), Inertial Navigation System (INS) and other 

geometric or physical measurement sensors. Signals from the sensors are 

subjected to errors including both systematic and random errors.  

A Kalman filter is an optimal estimator and has been widely applied in real-

time system state estimation under the assumptions that the errors in both 

measurements and dynamic models following normal (or Gaussian) 

distributions and the dynamic models are linear. However, the state estimation 

of a Kalman filter, may need to address the nonlinearity of the state space 

model (Yang et al., 2004), thus several extended Kalman filters have been 

proposed. For example, the Extended Kalman filter (EKF) and Linearized 

Kalman filter (LKF) are two approaches that use the first-order Taylor 

expansions to analytically deal with the nonlinearity of the state space models. 
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The Particle filter (PF) uses a sequential Monte Carlo sampling method based 

on a Bayesian theorem to approximate the posterior Probability Density 

Function (PDF) of the system state. However, for some real time applications, 

this method may not be feasible (Doucet et al., 2001). The Unscented Kalman 

filter (UKF), introduced by Julier and Uhlmann (1997), in which the functional 

models can be either linear or nonlinear, is also a probabilistic approach to 

approximate the state distribution by Gaussian random variables. The filter 

utilizes the Unscented Transform (UT) to estimate the system state, which then 

undergoes a nonlinear transformation (Wan & van der Merwe, 2000; Julier & 

Uhlmann, 2004).  

The Kalman filter and its alternatives, however, are susceptible to outliers in 

measurements, if any, since the outlier contaminated data are inconsistent with 

the overall distribution pattern (Fitzgerald, 1971; Durgaprasad & Thakur, 1998). 

For practical systems, two types of outliers are often assumed, bad data in 

measurements and unpredictable disturbance of the dynamic models. The 

adaptive estimation proposed in this study is to handle the unpredictable 

disturbance of the dynamic model and also the biased prior stochastic 

information of the model. This approach adjusts the stochastic model in 

accordance with the real dynamic system noises. For the outliers in the 

measurements, a robust estimation is introduced to reduce the weight of those 

measurements that contain outliers (Yang, 1991). These two methods are under 

the assumption that only one type of outliers exists. 
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1.1.2 Objectives 

This research aims to develop a robust and adaptive nonlinear filter for the 

application of a navigation system integrating the GNSS and Inertial 

Measurement Unit (IMU) to provide a continuous on-the-fly navigation state. 

This aim is achieved by realizing the following four research objectives: 

1. Comparing the performances of the UKF and EKF under a common 

theoretical framework and various scenarios.  

An alternative Kalman estimator derivation is presented with a correlational 

inference based on the cross-covariance matrices between measurements, 

predicted state and predicted measurements and a common Kalman filtering 

framework is established. A comparison between the UKF together with scaled 

unscented transform (SUT) and EKF is conducted based on theoretical analysis, 

simulation and field tests. The Taylor Expansion of an arbitrary nonlinear 

model is employed to analyze the performance of the filters. Integrated vehicle 

navigation, simulation and field tests are carried out using different state space 

models, different feedback modes and different integration strategies to assess 

the performance of the UKF and EKF.  

2. Developing an adaptive Unscented Kalman filter based on correlational 

inference.  

Based on the correlational inference, an adaptive Unscented Kalman filter 

(AUKF) is developed for reducing the influence of the dynamic model’s 
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disturbance. An adaptive factor introduced for the AUKF is the innovation 

vector at the present epoch. The use of the adaptive mechanism is mainly to 

effectively reduce the unpredictable disturbances of the dynamic model. 

3. Developing a robust method for effectively addressing contaminated 

measurements. 

A robust unscented Kalman filter based on the maximum likelihood estimation 

method is developed for the attenuation of those contaminated measurements 

and the disturbances of the dynamic model. Correlations between states are 

taken into consideration to prevent the error transform, and a weight matrix 

composed of bi-factor elements is introduced to keep the original state 

correlation coefficients unchanged.  

4. Validating the proposed methods by using nonlinear state space model. 

The effectiveness of the two proposed methods, i.e. AUKF and RMUKF, are 

tested using both simulation and field data collected from a GNSS/IMU 

integrated navigation system, in which the nonlinear IMU error model is 

employed for the system dynamic model. Both the simulation and field tests are 

proceed without initial alignment.  

1.2 Dissertation Outline 

The structure of the thesis is given in Figure 1.1 and its details are as follows: 

Chapter 2 and Chapter 3 present literature review related to the study of this 
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thesis and functional models respectively. 

Chapter 4, an alternative expression for a Kalman filter based on a 

correlational inference is presented. A comparative study of the Kalman filter 

and UKF including an analytical analysis of the UKF and EKF based on Taylor 

expansions, and their prediction accuracy are given. The overall performance of 

the UKF and EKF is tested and compared using an integrated vehicle 

navigation system. A theoretical framework for the Kalman filtering is 

established, and the corresponding estimators are derived.  

Chapter 5 addresses an unpredictable dynamic model’s disturbances or use of 

improper stochastic information which could cause degradation in the filter’s 

performance or even divergence. It mainly includes: 1) the construction of an 

adaptive factor based on the discrepancy of the current system to control the 

dynamic model disturbances, which is flexible for constructing the adaptive 

factor; 2) the nonlinear IMU error model is employed to perform the 

GNSS/IMU integration in a loosely coupled strategy.  

Chapter 6 presents a robust M-M UKF (RMUKF) to handle the measurement 

outliers. The correlated bi-factor equivalent weight matrix for the RMUKF is 

determined by using the maximum likelihood (M-) principle. The robust 

mechanism suppresses the state outliers from both the dynamic model and 

measurements and so it can provide a robust solution in an iterative manner. 

The major findings of this study and conclusions are summarized in Chapter 7, 

and recommendations for further research are also made in this chapter. 
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Figure 1.1 The organization of the thesis 
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Chapter 2 An Overview of Existing Filtering Methods 

In this Chapter a brief history of the development for navigation systems, 

including GNSS and IMU development, together with their integration 

strategies is reviewed first. Various nonlinear estimation methods including the 

state-of-the-art research on adaptive estimators, robust estimators, and adaptive 

robust Kalman filters are then examined for the development of a robust 

adaptive estimator for this study.  

2.1 Integrated Navigation System 

Historically, navigation was primarily used for directing vessels upon the open 

seas and accomplished by the use of compasses and other observations such as 

those from the sun and stars. Nowadays, GNSS have been widely applied in 

many aspects of our lives. Using GNSS to navigate requires at least four light-

of-sight measurements. In an urban canyon environment, however, the visibility 

of the GNSS satellites or the geometry of the observations are often poor, and 

even worse, the GNSS signals can be blocked. In addition, high-rise buildings 

may introduce multipath effects which degrade positioning accuracy. In this 

case, a single satellite navigation system can hardly provide continuous, 

accurate and robust state estimates for the user’s position. . A solution to this 

problem is an integration of GNSS with other types of sensors such as 

accelerometers and gyroscopes.  
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2.1.1 Global Navigation Satellite Systems  

GNSS, a general term of satellite-based radio navigation systems, has played a 

fundamental role in positioning and navigation over 20 years. It is an all-

weather system providing world-coverage information on position, velocity and 

time (PVT) 24 hours a day. The first GNSS, i.e. the Global Positioning System 

(GPS), was originally intended for military only, however, with the 

development of several other navigation systems, such as the Chinese BeiDou 

Navigation Satellite System (BDS), the European Galileo and Russian 

GLONASS, navigation applications have been largely extended to almost all 

location based services nowadays.  

The principle of GNSS positioning is the use of the range measurements from 

several satellites with known positions to the receiver to estimate the position of 

the receiver (Hofmann-Wellenhof et al., 2003). The range is in fact measured 

according to the travel time of the signal from the satellite to the receiver. 

Ideally, the clocks in both the receiver and satellites need to be synchronized 

first, and then the range can be calculated by the travel time of the signal 

multiplied by the speed of light. The position of the receiver is at the spherical 

surface with the radius equal to the range. Since the range measurements are 

affected by the biases of the clocks, they are called pseudorange measurements. 

To solve the additional parameters for the bias between the clocks of the 

receiver and the satellite, the positioning solution requires at least four satellites. 
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2.1.1.1 Global Positioning System 

GPS was developed by the Department of Defense (DoD) of the United States 

in the 1970s and declared operational in 1995 (Noureldin, Karamat, & Georgy, 

2013). Currently, the system operates with 32 satellites, including 12 Block II R 

satellites, 7 Block II R-M satellites, and 12 Block II F satellites. The system can 

achieve a 10-meter-level positioning accuracy with single point positioning 

(SPP). To improve the services, next generation satellites, i.e. GPS Block III, is 

under development via GPS moderation. The new satellites signals in addition 

to the current ones will improve the accuracy and availability for all users (Betz 

et al., 2006).  

2.1.1.2 BeiDou Navigation Satellite System 

The BDS, developed in China, enables interoperation with other GNSS. Unlike 

GPS, the BDS has an additional message service and will consist of 35 

satellites upon completion aiming to provide worldwide positioning services by 

2020. The system includes 5 geostationary (GEO) satellites, 3 inclined 

geosynchronous orbit (IGSO) satellites, and 27 Medium Earth orbit (MEO) 

satellites. Until November 2016, 20 satellites were operational, including 6 

GEO satellites, 8 IGSO satellitse, and 6 MEO satellites. Currently, the system is 

providing regional position services covering the Asia-Pacific region. The 

positioning and velocity accuracy of the system for free civilian users can be 

achieved within 10 m and within 0.2 m/s respectively.  
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2.1.1.3 Galileo 

Galileo, developed by the European Union (EU), was first raised in 1999. The 

first two experimental satellites were launched in 2005 and currently it has 18 

satellites in operation. With 30 satellites, it will become fully operational and 

provide worldwide navigation services for both civil and military users at a 

same level of accuracy by 2020. The system intends to interoperate with GPS, 

which enables the receivers to combine the signals from both Galileo and GPS 

constellations to increase the positioning accuracy (Jin et al., 2014). The 

Galileo system announced the initial services on December 15th, 2016 

(European GNSS Agency, 2016). The initial stage is able to provide the 

following services: search and rescue service, precise time synchronization, and 

public regulated service. 

2.1.1.4 GLONASS 

GLONASS was introduced in 1976 by the former Soviet Union. The system 

was fully operational by 1995 with 24 satellites. However, only 6 satellites 

remained in 2001 due to the economic crisis of the country. By 2010, the 

GLONASS constellation consisted of 18 satellites and provided navigation 

support predominantly for the Russian territory. Currently, the system is again 

fully operational with 27 satellites and provides worldwide navigation 

information. 
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2.1.2 Inertial Measurement Unit 

An Inertial Navigation System (INS) uses the dead reckoning (DR) method to 

determine navigation state, position, velocity and attitude. DR is a relative 

navigation method that estimates the position of an object based on the 

previously determined coordinates and the relative movement sensed at the 

present epoch, such as the velocity and attitude information. The navigation 

update of an INS is dependent on the internal hardware for 3-dimensinal 

navigation by means of a rigorous computation model, based on such as 

gyroscopes and accelerometers, rather than on the external guidance. An IMU, 

which consists of three orthogonal gyroscopes and three orthogonal 

accelerometers, is the core hardware for inertial measurements. The IMU 

measures the angular motion rate and the linear motion of an object. The 

sensors are mounted rigidly onto the device and formed a strapdown system so 

that the gyroscopes and accelerometers can sense the motion of the body frame 

with respect to the inertial frame. The velocity, position, and attitude of the 

object are then mathematically integrated from the measured data and projected 

to the local level frame.  

Micro-Electro-Mechanical System (MEMS) technology enables the 

development of low-cost and small size integrated navigation systems for land 

vehicle and guidance applications. Despite the technological advances, MEMS- 

based IMUs inherit the error behavior of conventional inertial sensors, and also 

suffer from a variety of error sources which engender as a low performance 

device (Park & Gao, 2006). Thus, the IMU is difficult to be independently used 
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as a navigation system, given that its estimation accuracy will degrade in a 

short period of time.  

2.1.3 Integration Strategies 

Based on the complementary characteristics of GNSS and IMU, positioning 

information derived from GNSS can be used to compensate IMU output; IMU 

can also provide position information between GNSS updates or satellite signal 

outages. An integrated system can become an enhanced navigation system that 

provides continuous and accurate position information. Typically, three 

commonly used strategies can be applied to the integrated system namely, 

loosely coupled strategy, tightly coupled strategy, and ultra-tightly coupled 

strategy (Petovello, 2003). The ultra-tightly coupled integration is conducted at 

the hardware level and hence is not included in this dissertation.  

2.1.3.1 Loosely Coupled Integration 

In the loosely coupled integration, both the raw GNSS measurements and IMU 

output are processed separately. Normally, the GNSS measurements are 

processed iteratively by the least squares or Bancroft method (Bancroft, 1985); 

and the IMU outputs are solved by the DR method. The differences between the 

GNSS and DR positions and velocities represent the filter’s observations. The 

advantages of the loosely coupled integration are that the system is robust as 

two positioning systems work independently and the data processing of the 

filter is fast due to the separation of the two processing systems. Its main 

disadvantage is that at least 4 GPS satellites are needed for positioning and INS 
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error accumulates over time. The scheme of this type of integration is presented 

in Figure 2.1. 

 

Figure 2.1 Loosely coupled integration 

 

2.1.3.2 Tightly Coupled Integration  

The tightly coupled integration process GNSS raw data and IMU output 

together. The position and velocity obtained from the DR approach are for 

predicting GNSS measurements using the position and velocity of the satellites. 

The advantage of the approach is that the system can provide navigation 

solutions when the number of satellites in view is less than 4. The major 

disadvantage of the tight integration is the increased dimension of the state 

vector, the clock bias, which results in heavy computational loads. The scheme 

of the tightly coupled integration is showed in Figure 2.2. 
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Figure 2.2 Tightly coupled integration  

 

The main difference between the above two strategies is that different types of 

measurement data are used in the estimation. The loosely coupled integration 

uses processed measurements, in which the navigation states estimated by the 

GNSS receiver are integrated with the DR solution. However, the tightly 

coupled integration strategy employs raw GNSS measurements, such as 

pseudoranges and Doppler shifts, to conduct DR in a Kalman filter to estimate 

navigation states. 

2.2 State Estimation  

Filters to fuse noisy information from different sources are used to obtain an 

accurate state estimate of an integrated system. The Kalman filter is the most 

widely used method for state estimation (Gao et al., 2008; Challa, 2011). The 

filter provides an accurate estimated state based on the minimum mean squared 
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error (MMSE). In reality, however, a dynamic system is generally nonlinear. 

Thus, the system has to be linearized by the first-order Taylor series expansion 

and further applied by the Kalman filter afterwards, namely EKF. The first 

order Taylor series expansion requires calculating the Jacobian matrix, while 

the reason to neglect the higher-order terms of the Taylor expansion is due to its 

large computation load, which introduces linearization errors and sometimes 

may cause filter divergence. To estimate the system state at a high accuracy, in 

recent years, two alternative methods, UKF and PF, have been proposed. The 

UKF method propagates the state mean and covariance through nonlinear 

functions without using a linearization process. The PF method employs a 

number of particles to approximate the state directly.  

2.2.1 General State Space Model 

State space model expresses measurements as a function of state that 

completely characterizes the dynamic of a system (Friedland, 1986; Hamilton, 

1994). The model also depicts the probabilistic dependence between the latent 

state variable and the observed measurements (Zhe & Emery, 2013). A 

discrete-time state space model can be expressed as, 

𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝑤𝑘                       (2.1) 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑒𝑘       (2.2) 

where 𝑓 is the transition equation of the state evolution and ℎ is the observation 

equation; 𝑓 and ℎ can be either linear or nonlinear functions. 𝑘 is the time index 
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or epoch; 𝑥𝑘 is the n-dimensional system state at epoch 𝑘; 𝑦𝑘 is the observation 

vector; 𝑤𝑘  and 𝑒𝑘  are the vectors of process noise and observation noise 

respectively. 

The objective of the state space modelling is to estimate the PDF of the state 

vector using the observed data, which can be derived from a recursive process 

based on Bayes’ rule (Zhe & Emery, 2013). The recursive process first predicts 

the system state at the current epoch based on the estimated state at the last 

epoch and the system evolution equation, and then corrects or updates the 

predicted result using the measurements of the current epoch to obtain the 

estimates of the current epoch (Orderud, 2005). The prediction stage propagates 

the current state distribution through function 𝑓 , and then the predicted 

probability density function is obtained, 

𝑝(𝑥𝑘|𝑦𝑘−1) = ∫𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑦𝑘−1) 𝑑𝑥𝑘−1             (2.3) 

where 𝑝(𝑥𝑘|𝑥𝑘−1) is the probability model of the state evolution specified by 

function 𝑓 and the process noise distribution 𝑝(𝑤𝑘). The update stage corrects 

the predicted PDF based on the latest measurements via the Bayesian rule 

(Rigatos, 2012), 

𝑝(𝑥𝑘|𝑦𝑘) =
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦𝑘−1)

𝑝(𝑦𝑘|𝑦𝑘−1)
                (2.4) 

where the normalising constant, 

𝑝(𝑦𝑘|𝑦𝑘−1) = ∫ 𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦𝑘−1)𝑑𝑥𝑘              (2.5) 



37 
 

depends on the likelihood function 𝑝(𝑦𝑘|𝑥𝑘) which is fully specified by the 

observation function ℎ and the observation noise distribution 𝑝(𝑒𝑘).  

The general form of the Bayesian approach is difficult to be analytically 

resolved as the dominator of eq. (2.4) cannot be computed analytically (Doucet 

et al., 2000; Doucet et al., 2001). The state space model, if it is linear and the 

noise terms 𝑤𝑘, 𝑒𝑘 are Gaussian distributed with zero mean, then the Kalman 

filer can be applied to estimate the PDF of the state. The particle filter, however, 

is able to implement the recursive Bayesian filter numerically.   

2.2.2 Kalman Filter 

Kalman filtering has been widely applied in multi-sensor integration for 

decades. It is an effective and versatile method to estimate the state from 

uncertain dynamics by combining noisy sensor outputs. Nevertheless, the state 

estimation of Kalman filtering, no matter what sensor outputs are used, has to 

address the nonlinearity of the state space model (Yang et al., 2004). Several 

methods for extending the standard Kalman filter to nonlinear state space model 

have been developed. For example, the EKF has been commonly used for 

nonlinear multi-sensor fusion (Grejner-Brzezinska & Yi, 2003; Wu & Yang, 

2010). It propagates the first two moments of the density, mean and covariance 

of the system state, through the linearized model (Gordon et al., 1993; Huang & 

Wang, 2006), as given by: 
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𝑥𝑘 = 𝑓(𝑥̂𝑘−1) + 𝑓(1)(𝑥̂𝑘−1)(𝑥𝑘−1 − 𝑥̂𝑘−1) +
1

2
(𝑥𝑘−1 −

𝑥̂𝑘−1)
𝑇𝑓(2)(𝑥̂𝑘−1)(𝑥𝑘−1 − 𝑥̂𝑘−1) + ⋯     

   (2.6) 

𝑦𝑘 = ℎ(𝑥̅𝑘) + ℎ(1)(𝑥̅𝑘)(𝑥𝑘 − 𝑥̅𝑘) +
1

2
((𝑥𝑘 − 𝑥̅𝑘))

𝑇
ℎ(2)(𝑥̅𝑘)(𝑥𝑘 − 𝑥̅𝑘) + ⋯

         (2.7) 

where 𝑥𝑘−1 and 𝑥̂𝑘−1 are the true and estimated states vectors respectively at 

epoch 𝑘 − 1 ;  𝑥̅𝑘  is the predicted state vector; 𝑓(1)(∙)  denotes the Jacobian 

matrix of nonlinear function 𝑓(∙); and 𝑓(2) denotes the Hessian matrix.  

The detail of the derivation is presented in Chapter 3. The linear state space 

model with the first-order expansion can be written as, 

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑤𝑘         (2.8) 

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑒𝑘       (2.9) 

where 𝐹 and 𝐻 are the linear transform matrices of the dynamic equation and 

the design matrix of the observation equation respectively, which are formed by 

the first two terms in eqs. (2.6) and (2.7) respectively; 𝑤𝑘 and 𝑒𝑘 are the two 

noise vectors following a Gaussian distribution with zero mean.  

Let the covariance matrices of 𝑤𝑘  and 𝑒𝑘  are 𝛴𝑤𝑘
 and 𝛴𝑘  respectively, the 

prediction state is, 

𝑥̅𝑘 = 𝐹𝑥̂𝑘−1                       (2.10) 
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and its covariance matrix can be obtained from the error propagation, 

𝛴𝑥̅𝑘
= 𝐹𝛴𝑥̂𝑘−1

𝐹𝑇 + 𝛴𝑤𝑘
       (2.11) 

The estimated state vector and its covariance matrix are, 

𝑥̂𝑘 = 𝑥̅𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑥̅𝑘)      (2.12) 

𝛴𝑥̂𝑘
= (𝐼 − 𝐾𝑘𝐻)𝛴𝑥̅𝑘

(𝐼 − 𝐻𝑇𝐾𝑘
𝑇) + 𝐾𝑘𝛴𝑘𝐾𝑘

𝑇   (2.13) 

where 𝐾𝑘 is the Kalman gain with the expression as, 

𝐾𝑘 = 𝛴𝑥̅𝑘
𝐻𝑇(𝐻𝛴𝑥̅𝑘

𝐻𝑇 + 𝛴𝑘)      (2.14) 

The EKF approximates the posterior PDF by Gaussian, in which the first two 

moments of the density propagates through the linearized equations obtained by 

calculating the Jacobian matrices of the nonlinear functions 𝑓  and ℎ . This 

increases calculation complexity and inevitably introduces linearization errors. 

2.2.3 Unscented Kalman Filter 

The UKF, was introduced by Julier and Uhlmann (1997), is another 

probabilistic approach to approximate the state distribution using Gaussian 

random variables. The filter utilizes the Unscented Transform (UT) to estimate 

the system state which undergoes a nonlinear transformation (Wan & van der 

Merwe, 2000; Julier & Uhlmann, 2004). UKF samples a set of sigma points to 

match the current statistics properties and then propagates the points through 

the nonlinear function. The predicted mean and covariance are then estimated 
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by the transformed and weighted sigma points and achieves at least to the 

second order of Taylor expansion (Julier & Uhlmann, 1997, 2002; Cui et al., 

2005; Gustafsson & Hendeby, 2012).  

The selection method of sigma points is based on the covariance matrix of the 

estimated state using a deterministic method, 

𝑥̂0,𝑘−1 = 𝑥̂𝑘−1

𝑥̂𝑖,𝑘−1 = 𝑥̂𝑘−1 + 𝛾𝑆𝑖

𝑥̂𝑖+𝑛,𝑘−1 = 𝑥̂𝑘−1 − 𝛾𝑆𝑖

      𝑖 = 1,2,⋯ , 𝑛    (2.15) 

where 𝑛 is the dimension of the augmented state vector; 𝛾 is a scale factor, 

𝛾 = √𝑛 + 𝜅        (2.16) 

where the parameter 𝜅 fine tunes the sigma points. This affects the third- and 

higher-order terms of the Taylor expansion. It is possible for some of the fourth 

order-terms to be matched, when the state vector is Gaussian if 𝜅 = 3 − 𝑛. 𝑆𝑖 in 

eq.(2.15) is the 𝑖th row or column of the square root of the state covariance 

matrix, 

𝑆𝑖 = √𝛴𝑥̂𝑘−1 𝑖
        (2.17) 

𝛴𝑥̂𝑘−1
 is the state covariance matrix, and the subscript 𝑖 is the 𝑖𝑡ℎ column of the 

matrix square root. This formula can be solved by Cholesky decomposition.   

The predicted state, 

𝑥̅𝑖,𝑘 = 𝑓(𝑥̂𝑖,𝑘−1)       (2.18) 
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𝑥̅𝑘 = ∑ (𝑤𝑖𝑥̅𝑖,𝑘)
2𝑛
𝑖=0        (2.19) 

where 𝑤𝑖 is the weight of the ith sigma point, 

𝑤0 =
𝜅

𝑁+𝜅
, 𝑖 = 0

𝑤𝑖 =
𝜅

2(𝑁+𝜅)
, 𝑖 ≠ 0

      (2.20) 

where 𝑁 is the number of the sigma points, 𝑁 = 2𝑛 + 1.  

The predicted covariance matrix can be calculated by the weighted transformed 

sigma points and the approximated mean values, 

𝛴𝑥̅𝑘
= 𝛴𝑤𝑘

+ ∑ 𝑤𝑖(𝑥̅𝑖,𝑘 − 𝑥̅𝑘)(𝑥̅𝑖,𝑘 − 𝑥̅𝑘)
𝑇2𝑛

𝑖=0    (2.21) 

The predicted measurement 𝑦̅ and corresponding covariance are, 

𝑦̅𝑖,𝑘 = ℎ(𝑥̅𝑖,𝑘)        (2.22) 

𝑦̅𝑘 = ∑ 𝑤𝑖
2𝑛
𝑖=0 𝑦̅𝑖,𝑘       (2.23) 

𝛴𝑦̅𝑘
= 𝛴𝑘 + ∑ 𝑤𝑖(𝑦̅𝑖,𝑘 − 𝑦̅𝑘)(𝑦̅𝑖,𝑘 − 𝑦̅𝑘)

𝑇2𝑛
𝑖=0     (2.24) 

The cross-correlated covariance is, 

𝛴𝑥̅𝑘𝑦̅𝑘
= ∑ 𝑤𝑖(𝑥̅𝑖,𝑘 − 𝑥̅𝑘)(𝑦̅𝑖,𝑘 − 𝑦̅𝑘)

𝑇2𝑛
𝑖=0     (2.25) 

The Kalman gain of the UKF is, 

𝐾𝑘 = 𝛴𝑥̅𝑘𝑦̅𝑘
𝛴𝑦̅𝑘

−1       (2.26) 
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The estimated state vector is, 

𝑥̂𝑘 = 𝑥̅𝑘 + 𝐾𝑘(𝑦𝑘 − 𝑦̅𝑘)      (2.27) 

and the estimated covariance is, 

𝛴𝑥̂𝑘
= 𝛴𝑥̅𝑘

− 𝐾𝑘𝛴𝑦̅𝑘
𝐾𝑘

𝑇      (2.28) 

2.2.3.1 Scaled Unscented Transform 

Unscented Transform (UT) is the key technique of the UKF and it determines 

sigma points to match the current statistical properties. The sampling strategy 

of the sigma points is not unique. Symmetric sampling, minimal skew sampling 

and spherical simplex sampling are popular methods. The symmetric sampling 

approach is widely used as it has the best estimation accuracy (Orderud, 2005). 

The bound radius of the sigma points are related to the state dimension. An 

increase in state dimension will lead to an increase in the bound radius of the 

sigma points, which may introduce the nonlocal effect, i.e. the filter may not 

guarantee the positive semi-definite of the covariance matrix (Julier, 1998). 

SUT is proposed to scale the bound radius of the sigma points to overcome the 

nonlocal effect as presented below, 

𝜒𝑖 = 𝑥̂𝑘−1 ± √(𝑛 + 𝜆)𝛴𝑥̂𝑘−1
      (2.29 a) 

𝑊0
(𝑚)

=
𝜆

𝑛+𝜆
        (2.29 b) 

𝑊0
(𝑐)

=
𝜆

𝑛+𝜆
+ (1 − 𝛼2 + 𝛽)      (2.29 c) 
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𝑊𝑖 =
1

2(𝑛+𝜆)
        (2.29d) 

𝜆 = 𝛼2(𝑛 + 𝜆) − 𝑛       (2.29e) 

where 0 ≤ 𝛼 ≤ 1 is the scale factor that determines the bound radius of the 

sigma points; if the state is Gaussian, then 𝛽 = 2; 𝜅 ≥ 0 to guarantee positive 

semi-definiteness of the covariance matrix; 𝑊𝑖 is the weight of the 𝑖𝑡ℎ sigma 

point; and the superscripts 𝑚  and 𝑐  represent the mean and covariance 

respectively. The details of the derivation process can be found in Gustafsson 

and Hendeby (2012). 

The scaled and non-scaled symmetric sampling approaches are presented in 

Figures 2.3 and 2.4, respectively. The two approaches propagate the sigma 

points through the system transition function expressed by eq.(2.30) and the 

parameters of scaled symmetric sampling are set as 𝛼 = 0.01, 𝛽 = 2, 𝜅 = 0. 

𝑦1 = 𝑥1 𝑠𝑖𝑛 𝜃
𝑦2 = 𝑥2 𝑐𝑜𝑠 𝜃

       (2.30) 

Figures 2.3 (a) and 2.4 (a) are the mean and sigma points of the initial state. The 

transformed sigma points and the approximate mean are presented in Figures 

2.3 (b) and 2.4 (b).  
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Figure 2.3 Scaled unscented transform 

 

 

Figure 2.4 Unscented transform 

 

Figure 2.5 shows the spread of the sigma points before and after propagation 

though the nonlinear equation with respect to 𝑥̂0,𝑘−1  and 𝑥̅0,𝑘 , respectively. 
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𝑥̂0,𝑘−1  is the estimated state at epoch 𝑘 − 1 ; 𝑥̅0,𝑘  is the prediction via the 

nonlinear model. The spread of the sigma points in SUT is noticeably smaller 

relative to that in UT, as shown in Figures 2.5(a) and 2.5(b). UT inevitably 

introduces nonlocal effects to the estimation of the system state. It is also found 

that the spread of the sigma points in SUT is affected by 𝛼. The spread of SUT 

is the same as that of UT when 𝛼 = 1. In this research SUT is considered in the 

system state estimation.   

 

 

Figure 2.5 Comparison of sigma points spread distances with respect to the 

state mean value SUT (a) and UT (b) 
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2.2.4 Particle Filter 

The Particle filter is a representative method and uses a sequential Monte Carlo 

sampling method based on a Bayesian theorem to approximate the posterior 

PDF of the system state (Gordon et al., 1993). The optimal estimation of the 

nonlinear and non-Gaussian state space model is provided by a large quantity of 

samples (Arulampalam et al., 2002; Gustafsson et al., 2002; Rigatos, 2012).  

The PDF of the state vector can be expressed by 𝑝(𝑥𝑘|𝑦1:𝑘) with all available 

information. The PF prediction stage employs the system model and the PDF of 

the last epoch to obtain the prior information for the present epoch 𝑘, as shown 

in eq. (2.1). At the present epoch, the PDF of state vector can be estimated via 

the Bayesian rule eq. (2.4) with 

𝑝(𝑦𝑘|𝑦1:𝑘−1) = ∫𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)𝑑𝑥𝑘    (2.31) 

where the normalized constant depends on the likelihood function (2.32) which 

is determined by the observation model (Gordon et al., 1993) 

𝑝(𝑦𝑘|𝑥𝑘) = ∫ 𝛿(𝑦𝑘 − ℎ𝑘(𝑥𝑘))𝑝(𝑒𝑘)𝑑𝑒𝑘    (2.32) 

Equation (2.4), however, is hard to be solved by any analytical method. Thus, 

the PF is commonly formulated as a Sequential Importance Sampling (SIS) 

method (Challa, 2011). The kernel of the method is to approximate the interest 

PDF based on a set of random samples {𝑥𝑘
(𝑖), 𝑖 = 1, … ,𝑁} and the associated 



47 
 

weights 𝜔𝑘
𝑖 , which are normalized to ∑ 𝜔𝑘

𝑖
𝑖 = 1 . The posterior density at 

present epoch 𝑘 can be approximated as, 

𝑝(𝑥𝑘|𝑦𝑘) ≈ ∑ 𝜔𝑘
(𝑖)𝛿(𝑥𝑘 − 𝑥𝑘

(𝑖))𝑁
𝑖=1      (2.33) 

The weights are determined by importance sampling, with the samples being 

drawn from another distribution that has a support similar to the interest rather 

than the sample directly from the interest probability distribution. That is, the 

samples are drawn from the importance density 𝑞(𝑥𝑘
𝑖 |𝑦𝑘) with the associated 

weight, 

ω𝑘
𝑖 ∝

𝑝(𝑥𝑘
𝑖 |𝑦𝑘)

𝑞(𝑥𝑘
𝑖 |𝑦𝑘)

        (2.34) 

Factorize the importance density, 

𝑞(𝑥𝑘
𝑖 |𝑦𝑘) = 𝑞(𝑥𝑘|𝑥𝑘−1, 𝑦𝑘)𝑞(𝑥𝑘−1|𝑦𝑘−1)    (2.35) 

then the old particles 𝑥𝑘−1
𝑖 ∼ 𝑞(𝑥𝑘−1|𝑦𝑘−1)  can be augmented by 𝑥𝑘 ∼

𝑞(𝑥𝑘|𝑥𝑘−1, 𝑦𝑘) to obtain new particles 𝑥𝑘
𝑖 ∼ 𝑞(𝑥𝑘

𝑖 |𝑦𝑘).  

The weight update is expressed as, 

𝜔𝑘
𝑖 ∝ 𝜔𝑘−1

𝑖
𝑝(𝑦𝑘|𝑥𝑘

𝑖 )𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ,𝑦𝑘)
       (2.36) 

Based on the SIS method, eq. (2.33) closes to the posterior density if the 

number of the particle is infinite. In practice, a prior transition density 
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𝑝(𝑥𝑘|𝑥𝑘−1
𝑖 )  is chosen as the importance density, which is known as the 

bootstrap filter (Gordon et al., 1993). 

Compared with the standard Kalman filter, the PF method has the advantages of 

no restriction being placed on the state space model or on the distribution of the 

system or on the measurements. However, the computation burden of the PF is 

heavy, especially in the case of high dimension state vector, and the exact 

distribution must be known (Daum, 2005; Chang & Liu, 2015). 

2.3 Adaptive and Robust Estimation 

The Kalman filter and its alternatives reduce error effects on the state estimates 

in a least squares sense, owing to the weighting information from different 

sources. The Kalman gain is the relative weight between the measurements and 

the system prediction obtained from the covariance matrices of the predicted 

state, measurements, and predicted measurements. In this sense, the state vector 

and its covariance matrix are obtained by solving a linear regression problem. It 

is well documented, however, the presented outliers, which refer to those data 

inconsistent with the overall pattern of the distribution, will degrade the 

estimation quality and render the estimate unreliable (Fitzgerald, 1971; 

Durgaprasad & Thakur, 1998). In general, two types of outliers are assumed, 

the uncertainties of the dynamic model and bad data in the measurements. An 

adaptive filter and robust filter have been developed for addressing the two 

types of outliers. 
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2.3.1 Adaptive Estimation 

The accuracy of estimates from a Kalman filter relies on the knowledge of 

stochastic information and the dynamic model. Adaptive Kalman filtering is 

effective in resisting the effect of inaccuracy of the stochastic information 

(Ding et al., 2007; Hide et al., 2003; Hu et al., 2003; Wang et al., 2010). For the 

disturbances of the dynamic environment, a re-weighting technique is often 

used, in which the covariance matrices of the predicted state and the 

measurements are re-evaluated through the use of a moving window (Sage & 

Husa, 1969). A more flexible adaptive Kalman filter (AKF) that introduces an 

adaptive factor based on the discrepancy between the estimated and predicted 

states or based on the predicted residuals was proposed (Yang et al., 2001a; 

Yang & Gao, 2005). Furthermore, an optimal AKF was derived based on both 

the errors of the predicted state and the predicted residuals (Yang & Gao, 

2006). A combination AKF based on the moving window variance estimate and 

the adaptive factors was proposed (Yang & Xu, 2003). The performance of the 

Kalman filter is improved after the adaptive variance estimation or adaptive 

factors are applied. However, due to the “crude” approximations of the 

nonlinear equation, the EKF can lead to poor representation of the probability 

distributions and nonlinear functions of interest (Chang et al., 2012).  

The adaptation methods for the UKF have been discussed by many researchers. 

Han et al. (2009) analyzed two distinctive adaptive methods. In his first method, 

a cost function is constructed in order to minimize the difference between a 

theoretical covariance and actual innovation covariance; the Massachusetts 
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Institute of Technology (MIT) rule, which is developed in MIT and is firstly 

used in the Model Reference Adaptive Control (MRAC) approach (Markov & 

Tsankova, 2014), is used to derive the adaptive law, and the adaptive 

covariance matrix of the process noise is then estimated. The presented 

algorithm, however, needs to calculate partial derivatives. In the second method, 

two parallel UKFs run in a master and a slave manner, in which the master 

UKF estimates the system state while the slave UKF estimates the noise 

covariance matrix for the master UKF. Its computational demand is increased 

due to parallel UKFs. Hajiyev and Soken (2014) presented a robust adaptive 

Unscented Kalman filter (AUKF) based on a windowing approach. To 

adaptively estimate the covariance of the measurement noise, Gao et al. (2015) 

developed an AUKF using historical innovation sequence and the moving 

window approach.  

2.3.2 Robust Estimation 

The measurement outliers also can significantly degrade the state estimate of 

the Kalman filtering method. Statistical testing methods and robust estimations 

are two strategies to deal with the measurement outliers. The former strategy 

includes detection and isolation of the contaminated data, thus the classical 

least squares criterion can be applied to the remaining data. The statistical test 

method was initially founded by Baarda (1967, 1968) to detect the outliers in 

geodetic networks. The observation outliers are detected based on the residual 

vectors and isolated based on Baarda’s w-test (Guo, 2015). The latter strategy 

applies the robust estimation criterion to the contaminated measurements 
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directly to reduce the influences of the bad data. Several robust estimation 

methods have been proposed to improve the robustness of the Kalman filter in 

terms of resistance to the effect of measurement outlier on the estimation results, 

such as the Gaussian sum approach, H∞ filter, and maximum likelihood (M-) 

technique. These algorithms are based on the concept of robust statistics. The 

H∞ based Kalman filter minimizes the worst-case estimation error, and averages 

over all samples (He & Han, 2010). The filter treats modeling errors and 

uncertainties as bounded noise. In contrast, the Gaussian sum approach 

approximates non-Gaussian distribution analytically by several Gaussian 

distributions (Alspach & Sorenson, 1972; Caputi & Moose, 1993). The widely 

applied M- estimation technique improves the robustness of the Kalman filter 

by assuming that the observation errors follows Huber’s distribution 

(Durgaprasad & Thakur, 1998), and then uses the M-estimation approach 

(Kovacevic et al., 1992; Durovic & Kovacevic, 1999). The approach down 

weights those contaminated measurements and conducts like least squares 

filters. For the correlated measurements or state elements, the Cholesky 

decomposition method is often used to de-correlate the correlations.  

2.3.3 Robust Adaptive Estimation 

In above methods, the dynamic model or the measurements are assumed to be 

accurate, that is both of the errors follow the Gaussian distribution. When the 

dynamic model has biases or/and the measurements contain outliers, the filter 

may yield unreliable results. A robust adaptive Kalman filter (RAKF) can 

overcome these limitations. Several new robust adaptive Kalman filters in 
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which different adaptive factors were used to control the influences of both 

dynamic model disturbances and measurement outliers are proposed (Yang et 

al., 2001a; Yang et al., 2001b; Yang et al., 2004). These adaptive factors were 

constructed based on the robust state estimation only from measurements. 

Stochastic model adaptation methods, namely robust Maximum likelihood for 

measurements and the least squares estimation for the dynamic model (M-LS), 

the least squares estimation for measurements and Maximum likelihood for 

dynamic model (LS-M), and Maximum likelihood for both measurements and 

dynamic model (M-M) filters, were also developed to accommodate outliers or 

outlying disturbances by robust estimators using equivalent robust weights 

(Yang, 1991). In addition, a robust Kalman filter for a rank deficient 

observational model was derived by Koch & Yang (1998). A robust estimator 

for correlated measurements that employs the bi-factor reduction model of 

weight elements to suppress outliers was developed (Yang et al., 2002). By 

applying the M-estimator to the Kalman filter, the influences of dynamic model 

disturbances and measurement outliers have been effectively attenuated 

(Durovic & Kovacevic, 1999; Chan, et al., 2005; Gandhi & Mili, 2010). Wang 

et al. (2014) proposed a robust adaptive UKF that simultaneously deals with the 

dynamic model error and measurement outliers. In this method, Huber’s robust 

function was used to adjust measurement weights based on the innovation 

vector, and the process noise matrix is adjusted by a fading factor based on the 

discrepancy between the predicted state and estimated state at the present epoch. 

Hajiyev & Soken (2014) developed a fault tolerant estimation algorithm based 
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on UKF. This algorithm adaptively estimates covariance matrices of the process 

noise or measurement noise according to the type of the fault. Li et al. (2016) 

proposed a robust adaptive UKF that uses a moving window and matrix 

matching technology to adaptively estimate the uncertainties of the 

measurement noise and process noise, although the length of the moving 

window is not easy to be determined. 
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Chapter 3 Measurements and Dynamic Models for GNSS/INS 

Integration 

As mentioned in Chapter 2, a Kalman filter predicts the system state based on 

the dynamic model and updates the predicted state vector using new 

measurements. In this Chapter, the details of the measurement model for 

difference data types, the dynamic model, and the coordinate frames, as well as 

the transformation between the different frames are discussed. 

3.1 GNSS Measurement Models 

3.1.1 GNSS Measurements 

In a Kalman filtering process, the measurements at the current epoch are used to 

update or correct the predicted state for the stat estimate. The commonly used 

three types of GNSS measurements in civilian applications are carrier phases, 

Doppler shifts, and pseudoranges.  

The carrier phase measurement is the sum of the fractional carrier phase and an 

unknown integer constant representing the number of full waves (Leick, 2004). 

The range of the satellite-receiver can be obtained by multiplying the carrier 

wavelength to the phase measurement. Due to the high accuracy of the carrier 

phase measurements, the position estimated from this type of measurements can 

achieve centimeter-level accuracy. However, the measurements contain 

unknown integer numbers of cycles, known as integer ambiguity, which needs 

to be estimated in the estimation process for a precise positioning application. 
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The real-time kinematic (RTK) positioning and precise point positioning (PPP) 

approaches use both carrier phase and pseudorange measurements (Hofmann-

Wellenhof et al., 2003). RTK uses the double-differencing of four simultaneous 

GNSS measurements from two satellites and two ground receivers, one of 

which is the RTK user and the other is the so-called base station (with known 

position) located within a certain distance from the user. The double-

differencing can largely reduce the atmospheric error effect in the four 

measurements so that the integer ambiguities can be quickly solved and fixed, 

which results in a high accuracy position solution. In the PPP approach, dual or 

even triple frequencies GNSS measurements and precise satellite orbit and 

clock products are used to obtain a decimeter level positioning accuracy 

solution. 

Doppler measurements are instantaneous phase rates, which are derivatives of 

the carrier phase measurements. It represents the frequency shift caused by the 

relative motion between the receiver and the satellites (Kaplan & Hegarty, 

2005). 

The pseudorange is related to the satellite-receiver distance and is measured by 

the speed of light multiplied by the GNSS signal’s travel time obtained by 

aligning the pseudo-random noise (PRN) code generated by the receiver 

together with an identical code in the signal to that in the satellite (Leick, 

2004). The codes used to acquire the travel time of the signal, however, contain 

errors from both the receiver clock and satellite clock.   
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A variety of errors affect the quality of GNSS measurements. These errors can 

be classified into three categories: satellite related errors, receiver related errors, 

and signal propagation errors (Wang, 2006). The satellite related errors include 

satellite clock and ephemeris errors. The receiver related errors is the noise 

introduced by the receiver itself. The signal propagation errors are mainly 

caused by the troposphere, the ionosphere and multipath effect. In an urban 

environment, the multipath effect dramatically degrades the positioning 

accuracy.  

Based on the above mentioned error sources, the measurement equation of 

pseudoranges can be expressed as (Leick, 2004), 

𝑃 = 𝜌 + 𝑑𝜌 + 𝑐(𝑑𝑡 − 𝑑𝑇) + 𝑑𝑖𝑜𝑛 + 𝑑𝑡𝑟𝑜𝑝 + 𝜀𝑝   (3.1) 

where P is the pseudorange measurement in meters; 𝜌 is the geometric range 

between the satellite and the receiver antenna in meters; 𝑑𝜌  is the satellite 

orbital error in meters; 𝑐 is the speed of light; 𝑑𝑡 is the satellite clock error; 𝑑𝑇 

is the receiver clock error; 𝑑𝑖𝑜𝑛  is the ionospheric delay; 𝑑𝑡𝑟𝑜𝑝  is the 

tropospheric delay; 𝜀𝑝 is the measurement noise including multipath effect. The 

geometric range is a function of the receiver and the satellite positions, 

𝜌 = √(𝑥𝑟 − 𝑥𝑖)2 + (𝑦𝑟 − 𝑦𝑖)2 + (𝑧𝑟 − 𝑧𝑖)2    (3.2) 

where (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) are the receiver coordinates, and (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) are the satellite 

coordinates obtained from the satellite ephemeris. 
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The measurement equation of the carrier phase is (Leick, 2004), 

𝜆𝜙 = 𝜌 + 𝑐(𝑑𝑡 − 𝑑𝑇) − 𝜆𝑁 − 𝑑𝑖𝑜𝑛 + 𝑑𝑡𝑟𝑜𝑝 + 𝜀𝜙   (3.3) 

where 𝜙 is the carrier phase measurement in cycles; 𝜆 is the carrier wavelength; 

𝑁 is the integer ambiguity; and 𝜀𝜙 is the carrier phase measurement noise and 

multipath effect. 

The velocity can be solved from Doppler shifts. The equation can be expressed 

as following (Leick, 2004), 

𝑃̇ = 𝜌̇ + 𝑑𝜌̇ + 𝑐(𝑑𝑡̇ − 𝑑𝑇̇) + 𝑑̇𝑖𝑜𝑛 + 𝑑̇𝑡𝑟𝑜𝑝 + 𝜀𝑝̇   (3.4) 

where 𝑃̇ is the observed range rate derived from Doppler shifts; 𝜌̇ is the true 

range rate between the satellite and the receiver; 𝑑𝑡̇ and 𝑑𝑇̇ are the clock drift 

of the satellite and receiver respectively; 𝑑̇𝑖𝑜𝑛  is the ionospheric error drift; 

𝑑̇𝑡𝑟𝑜𝑝  is the tropospheric error drift; and 𝜀𝑝̇  is the drift error caused by the 

measurement noise and multipath effect. 

3.1.2 Differential GNSS 

Error sources, such as satellite clock error, ionospheric delay and tropospheric 

delay in GNSS measurements are spatially correlated, i.e. the two delays slowly 

vary with spatial location. The closer two points, the smaller the difference 

between the delays of the two points. If two points are very close, e.g. a few 

kilometers apart, the atmospheric delays around the two locations can 

considered similar, or even the same. This is the reason why the differential 
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GNSS (DGNSS) is widely used to reduce the correlated error effects in the 

GNSS measurements for better and faster solutions (Grewal et al., 2007). 

DGNSS, which includes single difference (SD) and double difference (DD), 

has been widely applied in on-the-fly kinematic positioning and the details for 

them are introduced in the next sections 

3.1.2.1 Single Difference  

SD is operated on two measurements collected at two receivers simultaneously 

observing the same set of satellite and the satellite clock error and orbital errors 

are cancelled. The ionospheric and tropospheric delays can be also greatly 

reduced. This is under the assumption that the two receivers are located with 

the atmospheric spatially correlated region. 

The pseudorange SD equation is (Leick, 2004), 

𝛥𝑃1,2 = 𝛥𝜌1,2 + 𝛥𝑑𝜌 − 𝑐𝛥𝑇 + 𝛥𝑑𝑖𝑜𝑛 + 𝛥𝑑𝑡𝑟𝑜𝑝 + 𝜀𝛥𝑝  (3.5) 

where 𝛥𝑃1,2 is the difference between the two observed pseudoranges and the 

subscripts denote the two receivers; 𝛥𝜌1,2  the difference between the two 

geometric rages; 𝛥𝑇 is the difference between the two receiver clocks; 𝛥𝑑𝑖𝑜𝑛 

and 𝛥𝑑𝑡𝑟𝑜𝑝 represent the differences in the ionospheric and tropospheric delays 

respectively; and 𝜀𝛥𝑝 is the receiver noise.  

𝛥𝜌1,2 can be expressed as, 
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𝛥𝜌1,2 = √(𝑥𝑟1 − 𝑥𝑖)2 + (𝑦𝑟1 − 𝑦𝑖)2 + (𝑧𝑟1 − 𝑧𝑖)2 −

√(𝑥𝑟2 − 𝑥𝑖)2 + (𝑦𝑟2 − 𝑦𝑖)2 + (𝑧𝑟2 − 𝑧𝑖)2    (3.6) 

where (𝑥𝑟1, 𝑦𝑟1, 𝑧𝑟1)  and (𝑥𝑟2, 𝑦𝑟2, 𝑧𝑟2)  are the positions of the rover and 

reference stations respectively .  

Similarly, the SD phase measurement equation is (Leick, 2004), 

𝛥𝛷 = 𝛥𝜌 + 𝑐𝛥𝑑𝑇 − 𝜆𝛥𝑁 − 𝛥𝑑𝑖𝑜𝑛 + 𝛥𝑑𝑡𝑟𝑜𝑝 + 𝜀Δ𝜙   (3.7) 

where 𝛥𝛷 is the SD phase measurement in the unit of length.  

3.1.2.2 Double Difference  

Double difference (DD) can be formed by two receivers simultaneously 

observing two satellites. The method can further eliminate the satellite and 

receiver clock errors, and reduce the atmospheric error. The DD pseudorange 

and carrier phase measurement equations are (Leick, 2004), 

∆𝛻𝑃 = ∆𝛻𝜌 + ∆𝛻𝑑𝜌 + ∆𝛻𝑑𝑖𝑜𝑛 + ∆𝛻𝑑𝑡𝑟𝑜𝑝 + 𝜀∆𝛻𝑝   (3.8) 

∆𝛻𝛷 = ∆𝛻𝜌 − 𝜆∆𝛻𝑁 − ∆𝛻𝑑𝑖𝑜𝑛 + ∆𝛻𝑑𝑡𝑟𝑜𝑝 + 𝜀∆𝛻𝜙   (3.9) 

where the symbol ∆𝛻 refers to the DD operator. 

The drawbacks of the DGNSS methods are that the terms of the noise in the DD 

measurement equations is increased and the multipath effect still cannot be 

reduced; and the separation of the receivers, i.e. the length of the baseline, is 

limited to a certain range, depending on the regional atmospheric condition.  



61 
 

3.2 Dynamic Models 

3.2.1 Constant Velocity Model 

A vehicle’s movement itself often gives information that may be used to 

establish a dynamic model for its positioning and navigation. The Constant 

Velocity (CV) model, as the simplest kinematic model, is often applied in low-

speed vehicle navigation. It is expressed as: 

𝑟𝑘+1 = 𝑟𝑘 + 𝑟̇𝑘Δ𝑡       (3.10) 

where 𝑟𝑘 and 𝑟̇𝑘 denote the position and velocity vectors respectively at the 𝑘𝑡ℎ 

epoch, Δ𝑡 is the time interval between two consecutive epochs.  

The CV model can be expressed as in a given geocentric coordinate system, 

[
𝑋𝑘+1

𝑋̇𝑘+1
] = [

𝐼 Δ𝑡𝐼
0 𝐼

] [
𝑋𝑘

𝑋̇𝑘
] + 𝑤𝑘     (3.11) 

where 𝐼 is a 3 × 3 unit matrix; 𝑤𝑘 is the error vector of the functional model; 

𝑋𝑘+1 and 𝑋̇𝑘+1, are the position and velocity vectors respectively at epoch 𝑘 +

1, which consist of three components as is expressed below, 

𝑋𝑘+1 = [𝛿𝑥𝑘+1 𝛿𝑦𝑘+1 𝛿𝑧𝑘+1]
𝑇      (3.12) 

𝑋̇𝑘+1 = [𝛿𝑥̇𝑘+1 𝛿𝑦̇𝑘+1 𝛿𝑧̇𝑘+1]
𝑇      (3.13) 

The covariance matrix of 𝑤𝑘  for a constant time interval Δ𝑡  was given by 

(Mohamed & Schwarz, 1999). 𝑤𝑘  can also be estimated by a variance 

component estimation (Yang & Xu, 2003). 
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If a geographic coordinate system is applied, the position vector is,  

𝑟 = [𝛿𝜙 𝛿𝜆 𝛿ℎ]𝑇       (3.14) 

where 𝛿𝜙, 𝛿𝜆, and 𝛿ℎ are the corrections of the latitude, longitude, and altitude 

components respectively.  

The velocity vector is then, 

𝑟̇ = [𝛿𝑉𝑁 𝛿𝑉𝐸 𝛿𝑉𝑈]𝑇      (3.15) 

where 𝛿𝑉𝑁 , 𝛿𝑉𝐸  and 𝛿𝑉𝑈  are the corrections of the north, east and vertical 

components respectively.  

The CV model can be expressed as,  

[
𝑟𝑘+1

𝑟̇𝑘+1
] = [

𝐼 Δ𝑡𝐷
0 𝐼

] [
𝑟𝑘
𝑟̇𝑘

] + 𝑤𝑘      (3.16)       

where 𝐷 is given as,  

𝐷 =

[
 
 
 
 

1

𝑅
1

𝑅 cos𝜙

1
1 ]

 
 
 
 

      (3.17)    

where 𝑅 is the radius of the earth. 

3.2.2 Constant Acceleration Model 

If a constant acceleration (CA) is assumed for a vehicle’s movement, the 

simplest dynamic model for the CV is usually expressed as, 
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𝑋̈𝑘+1 = [𝛿𝑥̈𝑘+1 𝛿𝑦̈𝑘+1 𝛿𝑧̈𝑘+1]     (3.18) 

where 𝑋̈𝑘+1 denotes the acceleration vector at epoch 𝑘 + 1 consisting of three 

components: a𝑥̈𝑘+1, 𝑦̈𝑘+1 and 𝑧̈𝑘+1.  

The dynamic model is then, 

[

𝑥𝑘+1

𝑥̇𝑘+1

𝑥̈𝑘+1

] = [
𝐼 𝐼Δ𝑡

1

2
Δ𝑡2𝐼

𝐼 𝐼𝛥𝑡
𝐼

] [

𝑥𝑘

𝑥̇𝑘

𝑥̈𝑘

] + [
0
0
𝐼
]𝑤𝑘    (3.19) 

where 𝑤𝑘 is still the white noise vector of the model with the covariance matrix 

𝛴𝑤𝑘
 expressed as 

𝛴𝑤𝑘
= 𝜎𝑎

2

[
 
 
 
 
Δ𝑡4

20

Δ𝑡3

8

Δ𝑡2

6

Δ𝑡3

8

Δ𝑡2

3

Δ𝑡

2

Δ𝑡2

6

Δ𝑡

2
1 ]

 
 
 
 

      (3.20) 

where 𝜎𝑎
2 is a constant variance factor (Gelb, 1974).  

In most cases, the CV or CA model may be integrated into a Kalman filter, 

which may enhance the continuity and reliability of the solution. 

3.3 Inertial Measurement Models 

3.3.1 Coordinate Frame and Transformation 

GPS measurements are in the WGS 84 coordinate frame, which is similar to 

that of ITRF. At present, the difference between WGS 84 and ITRF is within 

millimeters. In contrast, INS measurements of orientation changes and the 
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accelerations are expressed in the body frame. Thus, coordinate transformation 

is needed for the integration of GPS and INS measurements. 

3.3.1.1 Essential Coordinate Frames 

The most common reference frames used in this study are briefly examined in 

this section and more details can be found in (Petovello, 2003). 

Inertial Frame 

An inertial frame (𝑖) can be a non-rotating and non-accelerating frame centered 

at the Earth’s Centre of mass. Its Z-axis is parallel to the Earth’s instantaneous 

spin axis; its X-axis points towards the mean equinoctial colure in the 

equatorial plane; and its Y-axis, orthogonal to the X- and Z-axes, is to complete 

a right-handed frame. 

Earth-Centered Earth-Fixed Frame 

The Earth-Centered Earth-Fixed (𝑒) frame is centered at the Earth’s Centre of 

mass. Its Z-axis is parallel to the Earth’s mean spin axis; its X-axis points 

towards the mean meridian of Greenwich; and its Y-axis is orthogonal to the X- 

and Z-axes for completion of a right-handed frame. 

Local Frame 

A local frame (𝑙), often referred as the East-North-Up (ENU) reference frame, 

is centered at the origin of the navigation system. Its Z-axis points upwards 

along the normal of the selected reference ellipsoid; Its X-axis points towards 
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the geodetic East on the horizontal plane; and its Y-axis points towards the 

geodetic North on the horizontal plane. 

Body Frame 

The body frame (𝑏) represents the orientation of the IMU axes. In a strapdown 

inertial system, IMU is rigidly mounted to the vehicle with arbitrary orientation. 

The axes are set to align with the roll, pitch and heading axes of that vehicle.  

Platform Frame 

The platform frame (𝑝) is the frame in which the accelerations transformed 

from accelerometers and angular rates from the gyros are solved. 

3.3.1.2 Coordinate Transformation 

The coordinate transformation from one frame to another is accomplished by a 

rotation matrix, which is an orthogonal matrix and often named as the 

directional cosine matrix (DCM) of 3 × 3 dimension containing the cosine of 

the angles of a vector in the two frames (Savage, 2000). The DCM from the 

above defined 𝑒 frame and 𝑙 frame is obtained from the geodetic coordinate (El-

Sheimy, 2012), 

𝑅𝑒
𝑙 = [

− 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜆 0
−𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜆 −𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜑
𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜆 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜆 𝑠𝑖𝑛 𝜑

]    (3.21) 

where 𝜑 and 𝜆 are the latitude and longitude respectively. 
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The DCM from the 𝑙 frame to 𝑏 frame is obtained from the Euler angles, which 

represent the rotation angles around the axes by yaw (𝐴), pitch (𝑝), and roll (𝑟) 

(Shin, 2005). Yaw, pitch and roll are defined as the rotation angle around the Z-

axis, X-axis and Y-axis respectively and all are in the counter-clockwise 

direction. The sequence of the successive rotations along the three axes is 

named rotation sequence. In this research, the rotation sequence adopted is: 

along the Y-axis is the first rotation, along the Z-axis is the second, and along 

the X-axis is the third rotation. The overall rotation matrix can be expressed as, 

𝑅𝐿
𝑏 = 𝑅(𝑟)𝑅(𝐴)𝑅(𝑝)       (3.22) 

The elements of the DCM are, 

𝑅𝐿
𝑏(1,1) = 𝑐𝑜𝑠 𝑟 ∗ 𝑐𝑜𝑠 𝐴 − 𝑠𝑖𝑛 𝑟 ∗ 𝑠𝑖𝑛 𝐴 ∗ 𝑠𝑖𝑛 𝑝   (3.23a) 

𝑅𝐿
𝑏(1,2) = 𝑐𝑜𝑠 𝑟 ∗ 𝑠𝑖𝑛 𝐴 + 𝑠𝑖𝑛 𝑟 ∗ 𝑐𝑜𝑠 𝐴 ∗ 𝑠𝑖𝑛 𝑝   (3.23b) 

𝑅𝐿
𝑏(1,3) = −𝑐𝑜𝑠 𝑝 ∗ 𝑠𝑖𝑛 𝑟      (3.23c) 

𝑅𝐿
𝑏(2,1) = −𝑠𝑖𝑛 𝐴 ∗ 𝑐𝑜𝑠 𝑝      (3.23d) 

𝑅𝐿
𝑏(2,2) = 𝑐𝑜𝑠 𝐴 ∗ 𝑐𝑜𝑠 𝑝      (3.23e) 

𝑅𝐿
𝑏(2,3) = 𝑠𝑖𝑛 𝑝       (3.23f) 

𝑅𝐿
𝑏(3,1) = 𝑐𝑜𝑠 𝐴 ∗ 𝑠𝑖𝑛 𝑟 + 𝑠𝑖𝑛 𝐴 ∗ 𝑠𝑖𝑛 𝑝 ∗ 𝑐𝑜𝑠 𝑟   (3.23g) 

𝑅𝐿
𝑏(3,2) = 𝑠𝑖𝑛 𝐴 ∗ 𝑠𝑖𝑛 𝑟 − 𝑐𝑜𝑠 𝐴 ∗ 𝑠𝑖𝑛 𝑝 ∗ 𝑐𝑜𝑠 𝑟   (3.23h) 
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𝑅𝐿
𝑏(3,3) = 𝑐𝑜𝑠 𝑝 ∗ 𝑐𝑜𝑠 𝑟      (3.23i) 

The vector in the body frame can be transformed to the local frame by, 

𝑝𝑙 = 𝑅𝑏
𝑙 𝑝𝑏    (3.24) 

where 𝑝𝑙  and 𝑝𝑏  are the vectors expressed in the 𝑙  frame and 𝑏  frame 

respectively; and the rotation matrix 𝑅𝑏
𝑙  projects 𝑝𝑏 from the 𝑏 frame to the 𝑙 

frame.  

3.3.2 Mechanization Equations 

Mechanization equations are used to obtain navigation state from IMU 

measurements named specific force (𝑓) and angular rate (𝜔). The equations 

model the motion of a moving object in the 𝑙 frame can be expressed as follows 

(El-Sheimy, 2012),  

𝑟̇𝑙 = 𝐷−1 ∙ 𝑉𝑙        (3.25a) 

𝑉̇𝑙 = 𝑅𝑏
𝑙 𝑓𝑏 − (2Ω𝑖𝑒

𝑙 + Ω𝑒𝑙
𝑙 ) ∙ 𝑉𝑙 + 𝑔𝑙     (3.25b) 

𝑅̇𝑏
𝑙 = 𝑅𝑏

𝑙 (Ω𝑖𝑏
𝑏 − Ω𝑖𝑙

𝑏 ) = 𝑅𝑏
𝑙 Ω𝑖𝑙

𝑏       (3.25c) 

Equation (3.25a) represents the relationships between the geographic 

coordinates and the velocity component in the 𝑙 frame, where 𝑟𝑙 = [𝜑 𝜆 ℎ]𝑇 

is the vehicle position denoted by geographic latitude, longitude and altitude in 

the 𝑙 frame; 𝐷 is the transform matrix projecting the velocity components to the 

geographic coordinates, 
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𝐷 = [

0
1

𝑀+ℎ
0

1

(𝑁+ℎ) 𝑐𝑜𝑠 𝜑
0 0

0 0 1

]      (3.26) 

where 𝑀  is the radius of curvature in the Meridian; and 𝑁  is the curvature 

radius in the prime vertical.  

In eq. (3.25b), 𝑉𝑙 = [𝑉𝐸 𝑉𝑁 𝑉𝑈]𝑇 is the velocity of the vehicle, composed of 

the East, North, and Up components in the 𝑙 frame; 𝑅𝑏
𝑙  is the transformation 

matrix from the 𝑏 frame to 𝑙 frame and is a function of the attitude components; 

𝑉̇𝑙  is the acceleration of the vehicle in the 𝑙  frame; 𝑓𝑏  is the specific force 

vector in the 𝑏  frame and is measured by accelerometers; 𝛺𝑒𝑙
𝑙 ∙ 𝑉𝑙  is the 

centripetal acceleration of the 𝑙 frame with respect to the 𝑒 frame; 2𝛺𝑖𝑒
𝑙 ∙ 𝑉𝑙 is 

the Coriolis acceleration; 𝑔𝑙 is the gravity vector including the gravitation term 

and the centripetal term related to the Earth rotation. 

Equation (3.25c) is the attitude mechanization equation, where 𝛺𝑖𝑏
𝑏  is the skew-

symmetric matrix of the angular velocity vector 𝜔𝑖𝑏
𝑏  which is the rotation rate of 

the 𝑏  frame with respect to the 𝑖  frame, expressed in the 𝑏  frame; 𝛺𝑖𝑙
𝑏  is the 

skew-symmetric matrix of the angular velocity vector 𝜔𝑖𝑙
𝑏  which is the 𝑙 frame 

rotation rate with respect to the 𝑖 frame and expressed in the 𝑏 frame; and 𝜔𝑖𝑙
𝑏  is 

calculated by, 

 𝜔𝑖𝑙
𝑏 = 𝑅𝑙

𝑏 ∙ (𝜔𝑖𝑒
𝑙 + 𝜔𝑒𝑙

𝑙 )      (3.27) 
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where 𝜔𝑖𝑒
𝑙  is the Earth rotation rate expressed in the 𝑙 frame; 𝜔𝑒𝑙

𝑙  is the rotation 

rate of in the local frame with respect to the 𝑒 frame expressed in the 𝑙 frame.  

Before the estimation process for the state vector from the IMU measurements 

is performed, the orientation between the 𝑙  frame and 𝑏  frame needs to be 

determined, for which the initial alignment procedure is required. Gyroscope 

measurements include the Earth rotation rate and the orientation changes 

between both 𝑏 and 𝑙 frames. To obtain the angular rate of the moving object, 

the two terms should be removed, as shown in eqs. (3.25c) and (3.27).  

3.3.3 IMU Error Model 

The error of IMU sensors degrades the accuracy of the navigation state solved 

by eq. (3.25). The error in the state solution can be modeled by either a 

deterministic or a stochastic model in the estimation.  

The performance of IMU can be indicated by bias, scale factor and noise. The 

bias consists of two parts: a deterministic part and a stochastic part. The 

deterministic part refers to the offset in the output of the sensors and the 

stochastic part refers to the rate at which the error in an inertial sensor 

accumulates with time (El-Sheimy, 2012). The scale factor, which is a 

deterministic error, indicates the relationship between the input and output of 

the inertial sensor. For a low-cost IMU, its deterministic error can be treated or 

modeled as a white noise component, due to its little contribution compared to 

its own measurement noise (Falco et al., 2012). 
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3.3.3.1 Linear IMU Error Model 

The traditional deterministic error model is defined by perturbing the nominal 

differential of the above nonlinear eq. (3.25) with the assumption that the angle 

error is small (El-Sheimy, 2012). The two classic error analysis approaches are 

the phi angle approach and psi angle approach. The first approach solves the 

navigation equation and the error models in the l frame, while the second 

approach solves the navigation equation in the 𝑝 frame (Kong, 2000). Thus, the 

initial alignment process, which establishes the relationship between the 𝑏 and 𝑙 

frames, is needed to reduce the initial attitude error to fulfill the small angle 

assumption.  

The errors of the state parameters are defined as: 

𝛿𝑟𝑙 = 𝑟̃𝑙 − 𝑟𝑙        (3.28a) 

𝛿𝑣𝑙 = 𝑣̃𝑙 − 𝑣𝑙        (3.28b) 

𝑅̃𝑏
𝑙 = 𝑅𝑏

𝑙 + 𝛿𝑅𝑏
𝑙 = (𝐼 + 𝐸𝑙)𝑅𝑏

𝑙      (3.28c) 

where 𝛿𝑟𝑙  and 𝛿𝑣𝑙  represent the perturbed position and velocity respectively; 

the elements with a tilde (∙)̃ are calculated quantities, which contain errors.  

If the Euler angles between the two frames are small, the following 

approximations hold,  

sin 𝜃 ≈ 𝜃
cos 𝜃 ≈ 1

        (3.29) 
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Thus, the rotation matrix between the two frames can be simplified as, 

𝑅𝑎
𝑏 = [

1 −𝜃𝑧 𝜃𝑦

𝜃𝑧 1 −𝜃𝑥 
−𝜃𝑦 𝜃𝑥 1

] = 𝐼 + 𝐸      (3.30) 

where 𝐸 is the skew-symmetric matrix of the Euler angles. 

Attitude Error Model 

The derivation of the attitude error starts from differentiating eq. (3.28c), which 

is, 

𝑅̇̃𝑏
𝑙 = 𝑅̇𝑏

𝑙 + 𝐸̇𝑙𝑅𝑏
𝑙 + 𝐸𝑙𝑅𝑏

𝑙 𝛺𝑙𝑏
𝑏       (3.31) 

where 𝛺𝑙𝑏
𝑏  is the is the skew-symmetric matrix of the angular velocity 

vector 𝜔𝑙𝑏
𝑏  which is the rotation rate of the 𝑏 frame with respect to the 𝑙 frame, 

expressed in the 𝑏 frame. For eq. (3.25c) if the computed rotation matrix is 

assumed to contain errors, it can be written as, 

𝑅̃̇𝑏
𝑙 = 𝑅̃𝑏

𝑙 𝛺̃𝑙𝑏
𝑏         (3.32) 

Substituting eq. (3.28c) into the above equation and replacing the error term in 

the skew matrix, eq. (3.32) becomes,  

𝑅̃̇𝑏
𝑙 = (𝐼 + 𝐸𝑙)𝑅𝑏

𝑙 (𝛺𝑙𝑏
𝑏 + 𝛿𝛺𝑙𝑏

𝑏 )     (3.33) 

Comparing this equation with eq. (3.25) and neglecting the second-order term 

𝐸𝑙𝑅𝑏
𝑙 𝛿Ω𝑙𝑏

𝑏 , one can obtain, 
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𝐸̇𝑙𝑅𝑏
𝑙 = 𝑅𝑏

𝑙 𝛿𝛺𝑙𝑏
𝑏        (3.34) 

Thus, the attitude error can be written as, 

𝜀̇𝑙 = 𝑅̃𝑏
𝑙 𝛿𝜔𝑙𝑏

𝑏         (3.35) 

where 𝜔𝑙𝑏
𝑏  is the angular velocity of the 𝑏 frame with respect to the 𝑙 frame, and 

can be calculated by, 

𝜔𝑙𝑏
𝑏 = 𝜔𝑖𝑏

𝑏 − 𝑅𝑙
𝑏𝜔𝑖𝑙

𝑙        (3.36) 

Linearizing the above equation and neglecting the second-order terms leads to 

the angular velocity error term 𝛿𝜔𝑙𝑏
𝑏 , 

𝛿𝜔𝑙𝑏
𝑏 = 𝛿𝜔𝑖𝑏

𝑏 − 𝑅𝑙
𝑏Ω𝑖𝑙

𝑙 𝜀𝑙 − 𝑅𝑙
𝑏𝛿𝜔𝑖𝑙

𝑙      (3.37) 

Substituting eq. (3.37) into eq. (3.35), the attitude error model in the 𝑙 frame is, 

𝜀̇𝑙 = 𝑅𝑏
𝑙 𝛿𝜔𝑖𝑏

𝑏 − Ω𝑖𝑙
𝑙 𝜀𝑙 − 𝛿𝜔𝑖𝑙

𝑙       (3.38) 

Velocity and Positioning Error Model 

The velocity error model can be derived by differentiating eq. (3.25b),  

𝛿𝑉̇𝑙 = 𝛿𝑅𝑏
𝑙 𝑓𝑏 + 𝑅𝑏

𝑙 𝛿𝑓𝑏 − (2𝛺𝑖𝑒
𝑙 + 𝛺𝑒𝑙

𝑙 ) ∙ 𝛿𝑉𝑙 − (𝛿𝛺𝑖𝑒
𝑙 + 𝛿𝛺𝑒𝑙

𝑙 )𝑉𝑙 + 𝛿𝑔𝑙 

         (3.39) 

According to eq. (3.28c),  

𝛿𝑅𝑏
𝑙 = 𝐸𝑙𝑅𝑏

𝑙         (3.40) 
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Thus, eq. (3.39) is, 

𝛿𝑉̇𝑙 = 𝐸𝑙𝑅𝑏
𝑙 𝑓𝑏 + 𝑅𝑏

𝑙 𝛿𝑓𝑏 − (2𝛺𝑖𝑒
𝑙 + 𝛺𝑒𝑙

𝑙 ) ∙ 𝛿𝑉𝑙 − (𝛿𝛺𝑖𝑒
𝑙 + 𝛿𝛺𝑒𝑙

𝑙 )𝑉𝑙 + 𝛿𝑔𝑙 

         (3.41) 

where 𝛿𝑔𝑙 is the error in the computation of normal gravitation. 

The position error model can then be easily obtained, 

𝛿𝑟̇l = 𝐷−1𝛿𝑉𝑙        (3.42) 

3.3.3.2 Nonlinear IMU Error Model 

IMU error models for large misalignment angles have been presented in 

literature recently. A quaternion-based error model, which does not rely on the 

assumption of small angle, is developed to solve the initial attitude uncertainties 

for in-motion alignment (Kong, 2004; Zhong et al., 2012). The quaternion 

method is more effective than the Euler angles and DCM methods. However, it 

increases the dimension of the state by estimate the quaternion vector instead of 

Euler angels. Yan et al. (2008) proposed a nonlinear error model based on the 

Euler angle errors and this model is used in this research.  

In general, the DCM consists of Euler angles which contain large errors. The 

time derivative of the rotation matrix 𝑅𝑏
𝑙  is, 

𝑅̇𝑏
𝑙 (1,1) = −𝑟̇ sin 𝑟 cos 𝐴 − 𝐴̇ cos 𝑟 sin𝐴 − 𝑟̇cos 𝑟 sin𝐴 sin 𝑝 −

𝐴̇ sin 𝑟 cos𝐴 sin 𝑝 − 𝑝̇ sin 𝑟 sin𝐴 cos 𝑝     

  (3.43a) 
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𝑅̇𝑏
𝑙 (1,2) = −𝐴̇ cos 𝑝 cos 𝐴 + 𝑝̇ sin 𝐴 sin 𝑝    (3.43b) 

𝑅̇𝑏
𝑙 (1,3) = −𝐴̇ sin 𝐴 sin 𝑟 + 𝑟̇ cos 𝐴 cos 𝑟 + 𝐴̇ cos 𝐴 sin 𝑝 cos 𝑟 +

𝑝̇ sin 𝐴 cos 𝑝 cos 𝑟 − 𝑟̇ sin 𝐴 sin 𝑝 sin 𝑟     

  (3.43c) 

𝑅̇𝑏
𝑙 (2,1) = −𝑟̇ sin 𝑟 sin𝐴 + 𝐴̇ cos 𝑟 cos𝐴 + 𝑟̇cos 𝑟 cos 𝐴 sin 𝑝 −

𝐴̇ sin 𝑟 sin𝐴 sin 𝑝 + 𝑝̇ sin 𝑟 cos 𝐴 cos 𝑝     

  (3.43d) 

𝑅̇𝑏
𝑙 (2,2) = −𝐴̇ sin 𝐴 cos 𝑝 − 𝑝̇ cos 𝐴 sin 𝑝     (3.43e) 

𝑅̇𝑏
𝑙 (2,3) = 𝐴̇ cos 𝐴 sin 𝑟 + 𝑟̇ sin 𝐴 cos 𝑟 + 𝐴̇ sin 𝐴 sin 𝑝 cos 𝑟 −

𝑝̇ cos𝐴 cos 𝑝 cos 𝑟 + 𝑟̇ cos 𝐴 sin 𝑝 sin 𝑟      

  (3.43f) 

𝑅̇𝑏
𝑙 (3,1) = 𝑝̇ sin 𝑝 sin 𝑟 − 𝑟̇ cos 𝑝 cos 𝑟    (3.43g) 

𝑅̇𝑏
𝑙 (3,2) = 𝑝̇ cos 𝑝       (3.43h) 

𝑅̇𝑏
𝑙 (3,3) = −𝑝̇ sin 𝑝 cos 𝑟 − 𝑟̇ cos 𝑝 sin 𝑟    (3.43i) 

The matrix can be written as, 

𝑅̇𝑏
𝑙 = 𝑅𝑏

𝑙 ([

𝑝̇ cos 𝑟 − 𝐴̇ cos 𝑝 sin 𝑟

𝑟̇ + 𝐴̇ sin 𝑝

𝑝̇ sin 𝑟 + 𝐴̇ cos 𝑝 cos 𝑟

] ×) =

𝑅𝑏
𝑙 [[

cos 𝑟 0 − cos 𝑝 sin 𝑟
0 1 sin 𝑝

sin 𝑟 0 cos 𝑝 cos 𝑟
] [

𝑝̇
𝑟̇
𝐴̇

] ×]    (3.44) 
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where the (∙×) terms represent the skew matrix form of the elements. 

Comparing with eq. (3.25c), then, 

𝜔𝑙𝑏
𝑙 = [

cos 𝑟 0 − cos 𝑝 sin 𝑟
0 1 sin 𝑝

sin 𝑟 0 cos 𝑝 cos 𝑟
] [

𝑝̇
𝑟̇
𝐴̇

]     (3.45) 

As the error exists in the attitude angle, the rotation matrix projects the vector to 

a virtual frame, namely the platform frame (𝑝). The difference between the 𝑝 

and 𝑙 frames is, 

Δ𝑅 = 𝑅𝑏
𝑝 − 𝑅𝑏

𝑙 = 𝑅𝑏
𝑝 − 𝑅𝑝

𝑙 𝑅𝑏
𝑝      (3.46) 

where 𝑅𝑏
𝑝 is the rotation matrix from the 𝑏 frame to the 𝑝 frame; and 𝑅𝑝

𝑙  is the 

rotation matrix from the 𝑝 frame to the 𝑙 frame.  

Considering eq. (3.25c), the time derivative of the above equation is, 

𝑅̇𝑏
𝑙 = 𝑅̇𝑝

𝑙 𝑅𝑏
𝑝 + 𝑅𝑝

𝑙 𝑅𝑏
𝑝𝛺̃𝑙𝑏

𝑏 = 𝑅𝑏
𝑙 𝛺𝑙𝑏

𝑏      (3.47) 

It can be further rewritten as, 

𝑅𝑝
𝑙 𝛺𝑙𝑝

𝑝 𝑅𝑏
𝑝 + 𝑅𝑝

𝑙 𝑅𝑏
𝑝𝛺̃𝑙𝑏

𝑏 − 𝑅𝑏
𝑙 𝛺𝑙𝑏

𝑏 = 0     (3.48) 

Multiplying 𝑅𝑙
𝑝  to the left, and multiplying 𝑅𝑝

𝑏 to the right side of the above 

equation leads to,  

𝛺𝑙𝑝
𝑝 + 𝑅𝑏

𝑝𝛺̃𝑙𝑏
𝑏 𝑅𝑝

𝑏 − 𝑅𝑏
𝑝𝛺𝑙𝑏

𝑏 𝑅𝑝
𝑏 = 0     (3.49) 

Thus,  
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𝜔𝑙𝑝
𝑝

= 𝑅𝑏
𝑝
(𝜔𝑙𝑏

𝑏 − 𝜔̃𝑙𝑏
𝑏 )       (3.50) 

Substituting eq. (3.47) into eq. (3.50) and considering eq. (3.46), 

𝜔𝑙𝑝
𝑝 = (𝐼 − 𝑅𝑙

𝑃)𝜔𝑖𝑙
𝑙 + 𝑅𝑙

𝑝𝛿𝜔𝑖𝑙
𝑙 − 𝑅𝑏

𝑝𝛿𝜔𝑖𝑏
𝑏     (3.51) 

Therefore, the attitude error can be expressed with the consideration of eq. 

(3.45) 

𝜀̇ = [

cos 𝑟 0 − cos 𝑝 sin 𝑟
0 1 sin 𝑝

sin 𝑟 0 cos 𝑝 cos 𝑟
]

−1

[(𝐼 − 𝑅𝑙
𝑃)𝜔𝑖𝑙

𝑙 + 𝑅𝑙
𝑝𝛿𝜔𝑖𝑙

𝑙 − 𝑅𝑏
𝑝𝛿𝜔𝑖𝑏

𝑏 ] 

         (3.52) 

Let   

𝐶𝜔 = [

𝑐𝑜𝑠 𝑟 0 − 𝑐𝑜𝑠 𝑝 𝑠𝑖𝑛 𝑟
0 1 𝑠𝑖𝑛 𝑝

𝑠𝑖𝑛 𝑟 0 𝑐𝑜𝑠 𝑝 𝑐𝑜𝑠 𝑟
]     (3.53) 

Then, 

C𝜔
−1 =

1

cos 𝑟
[
cos 𝑝 cos 𝑟 0 sin 𝑝 cos 𝑟
sin 𝑝 sin 𝑟 cos 𝑟 − cos 𝑝 sin 𝑟
− sin 𝑟 0 cos 𝑝

]   (3.54) 

Thus, the attitude error model can be written as (Yan et al., 2008), 

𝜀̇ = C𝜔
−1[(𝐼 − 𝑅𝑙

𝑃)𝜔𝑖𝑙
𝑙 + 𝑅𝑙

𝑝𝛿𝜔𝑖𝑙
𝑙 − 𝑅𝑏

𝑝𝛿𝜔𝑖𝑏
𝑏 ]    (3.55) 

According to the derivative of eq. (3.39), the velocity error model is (Yan et al., 

2008), 
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𝛿𝑣̇ = [(𝐼 − (𝑅𝑙
𝑃)𝑇)]𝑅𝑏

𝑝
𝑓𝑏 + (𝑅𝑙

𝑝
)
𝑇
𝑅𝑏

𝑝
𝛿𝑓𝑏 − (2 ∙ 𝛿𝛺𝑖𝑒

𝑙 + 𝛿𝛺𝑒𝑙
𝑙 )𝑉𝑙 −

(2𝛺𝑖𝑒
𝑙 + 𝛺𝑒𝑙

𝑙 ) ∙ 𝛿𝑉𝑙 + (2 ∙ 𝛿𝛺𝑖𝑒
𝑙 + 𝛿𝛺𝑒𝑙

𝑙 ) ∙ 𝛿𝑉𝑙 + 𝛿𝑔𝑙  (3.56) 

The position error model remains the same as eq. (3.42). 

The above derivation gives the navigation error model without the need for the 

assumption of small angle error.  

3.4 Summary 

In this chapter, general GNSS measurement models were described, and the 

differential techniques to eliminate the spatial related errors were introduced. 

The differential techniques are recognized as an effective method in reducing 

spatial and clock errors. Dynamic system models including the CV model, CA 

model, and IMU error models were reviewed. The CV and CA models can be 

applied to GNSS measurements to improve positioning performance in terms of 

accuracy, continuity and reliability. The IMU error models are often used as the 

dynamic model and the classical IMU error model was derived under the 

assumption of small misalignment angles. In reality, the environmental 

disturbances and sensors errors may not satisfy this assumption. In this case, 

nonlinear error models using a differential direction cosine matrix is needed. 

The concepts reviewed in this chapter will lay an important foundation for the 

work in the later chapters. 
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Chapter 4 Comparison between Kalman and Unscented 

Kalman Filters 

An alternative derivation of the Kalman filter by using correlational inference 

concept predominantly for nonlinear state space models is presented in this 

Chapter. The inference is for the revelation of the relationships among the 

measurement vector, the predicted state vector, and also their cross-covariance 

matrices. Based on the correlational inference, a common Kalman filter 

framework is established and a comparison study of EKF and UKF is 

conducted under this framework using different methods and data including 

theoretical formulation, simulations and field tests. Different feedback control 

modes regarding integrated vehicle navigation are employed to evaluate the 

performance of UKF and EKF.  

4.1 Kalman Filtering Framework Analysis Based on 

Correlational Inference 

The Kalman filtering algorithm is derived using vector algebra as a minimum 

mean squared estimator. Its major advantages are less computational 

requirements, elegant recursive properties, and an optimal estimator for linear 

systems with Gaussian error statistics (Faragher, 2012). However, the filter 

requires a set of linear transformation to depict the time evolution of the system 

state, i.e., the dynamic model. The filter also needs a measurement model for 

the linear relationship between the state parameters and the observations. In 

practice, however, the dynamic systems are often in a nonlinear way to 
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transition from one epoch to the next. In this case, the nonlinear models are 

linearized using the first-order Taylor expansion. Neglecting higher-order terms 

in the Taylor expansion can introduce linearization errors in the model. This 

will result in a low accuracy state solution (Gordon et al., 1993; Julier & 

Uhlmann, 1997). The UKF uses UT to approximate the transformed mean and 

covariance rather than approximates the nonlinear equations, is explored to deal 

with nonlinear state estimation in a different approach and achieves Taylor 

expansion at least to the second order. 

4.1.1 Correlational Inference 

Considering following the discrete nonlinear estimation system mentioned in 

Chapter 2, 

𝑋 = 𝑓(𝑋𝑘−1) + 𝑤𝑘       (2.1) 

𝑦𝑘 = ℎ(𝑋𝑘) + 𝑒𝑘       (2.2) 

where 𝑦𝑘  is the 𝑚 × 1  measurement vector, 𝑋𝑘  and  𝑋𝑘−1  are 𝑛 × 1  state 

vectors at epoch 𝑘 and 𝑘 − 1 respectively.  

The equation for the error or residual of the measurement is, 

𝑉𝑘 = ℎ𝑘(𝑋̂𝑘) − 𝑦𝑘 = 𝑦̂𝑘 − 𝑦𝑘     (4.1) 

where 𝑦̂𝑘 = ℎ𝑘(𝑋̂𝑘); 𝑋̂𝑘  is the estimated state vector; and 𝑉𝑘  is the residual 

vector of 𝑦𝑘.  

The predicted state vector 𝑋̅𝑘 can be obtained by eq. (2.1), 



80 
 

𝑋̅𝑘 = 𝑓𝑘(𝑋̂𝑘−1)       (4.2) 

The predicted measurement vector 𝑦̅𝑘 is given by, 

𝑦̅𝑘 = ℎ𝑘(𝑋̅𝑘)        (4.3) 

with the corresponding covariance matrix 𝛴𝑦̅𝑘

∗  at the epoch 𝑘 . If the 

measurement vector 𝑦𝑘 (at epoch 𝑘) is available, the innovation vector 𝑉̅𝑘 can 

be obtained, 

𝑉̅𝑘 = 𝑦𝑘 − ℎ𝑘(𝑋̅𝑘) = 𝑦𝑘 − 𝑦̅𝑘     (4.4) 

Given that two vectors 𝑦𝑘 and 𝑦̅𝑘 are independent, covariance matrix 𝛴𝑉̅𝑘
 can 

be calculated by, 

𝛴𝑉̅𝑘
= 𝛴𝑘 + 𝛴𝑦̅𝑘

∗ = 𝛴𝑘 + 𝐻𝑘𝛴𝑋̅𝑘
𝐻𝑘

𝑇     (4.5)  

where 𝐻𝑘 is the linearized form of the measurement model/function ℎ𝑘(∙); and 

𝛴𝑋̅𝑘
 is the covariance matrix of the predicted state vector 𝑋̅𝑘. 

In theory, the following equation is valid, 

𝑦̂𝑘 − 𝑦̂̅𝑘 = 0        (4.6)  

and considering the error equation form of 𝑦̂̅𝑘,  

𝑦̂̅𝑘 = 𝑦̂𝑘 = ℎ𝑘(𝑋̂𝑘) = 𝑦̅𝑘 + 𝑉𝑦̅𝑘
= 𝑦𝑘 + 𝑉𝑘    (4.7) 
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where 𝑦̂̅𝑘 denotes the estimated vector of predicted measurements 𝑦̅𝑘; 𝑦̂𝑘 is the 

estimated measurement vector; 𝑉𝑦̅𝑘
 and 𝑉𝑘 are the residual vectors with respect 

to 𝑦̅𝑘 and 𝑦𝑘, respectively.  

Thus,  

𝑉𝑘 − 𝑉𝑦̅𝑘
+ (𝑦𝑘 − 𝑦̅𝑘) = 0      (4.8) 

Considering eq. (4.4), it becomes, 

𝑉𝑦̅𝑘
− 𝑉̅𝑘 − 𝑉𝑘 = 0       (4.9) 

Eqs. (4.6) or (4.7) can be regarded as constraint equations. In addition, the 

residual vector of 𝑋̅𝑘 is denoted by 𝑉𝑋̅𝑘
, 

𝑉𝑋̅𝑘
= 𝑋̂𝑘 − 𝑋̅𝑘       (4.10) 

Considering that 𝑦̅𝑘 contains the predicted state 𝑋̅𝑘 from a nonlinear function as 

shown in eq. (4.3), 𝑦̅𝑘  and 𝑋̅𝑘  are thus correlated with the cross-covariance 

matrix 𝛴𝑋̅𝑘𝑦̅𝑘
. To estimate the state vector 𝑋̂𝑘 from the measurement vector 𝑦𝑘, 

𝑋̅𝑘 and 𝑦̅𝑘with their covariance and cross-covariance matrices 𝛴𝑘, 𝛴𝑋̅𝑘
 and 𝛴𝑦̅𝑘

∗ , 

as well as 𝛴𝑋̅𝑘𝑦̅𝑘
, the Lagrange objective function is firstly constructed by 

considering eqs. (4.6) and (4.9), 

𝑉𝑘
𝑇𝛴𝑘

−1𝑉𝑘 + [𝑉𝑦̅𝑘

𝑇 𝑉𝑋̅𝑘

𝑇 ] [
𝛴𝑦𝑘

∗ 𝛴𝑦̅𝑘𝑋̅𝑘

𝛴𝑋̅𝑘𝑦̅𝑘
𝛴𝑋̅𝑘

]

−1

[
𝑉𝑦̅𝑘

𝑉𝑋̅𝑘

] − 2𝜆𝑇(𝑉𝑦̅𝑘
− 𝑉̅𝑘 − 𝑉𝑘) = 𝑚𝑖𝑛  

         (4.11) 
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where 𝜆 is the Lagrange multiple vector.  

Taking the partial derivatives of eq. (4.11) with respect to 𝑉𝑘, 𝑉𝑦̅𝑘
, 𝑉𝑋̅𝑘

, and 𝜆, 

and setting them to 0, one can obtain: 

𝑉𝑘 = −𝛴𝑘𝜆         (4.12) 

[
𝑉𝑦̅𝑘

𝑉𝑋̅𝑘

] = [
𝛴𝑦̅𝑘

∗ 𝛴𝑦̅𝑘𝑋̅𝑘

𝛴𝑋̅𝑘𝑦̅𝑘
𝛴𝑋̅𝑘

] [
𝜆
0
] = [

𝛴𝑦̅𝑘

∗ 𝜆

𝛴𝑋̅𝑘𝑦̅𝑘
𝜆
]     (4.13) 

From eq. (4.13), the solution is, 

𝑉𝑦̅𝑘
= 𝛴𝑦̅𝑘

∗ 𝜆

𝑉𝑋̅𝑘
= 𝛴𝑋̅𝑘𝑦̅𝑘

𝜆
        (4.14) 

Based on eqs. (4.12) and (4.14) and considering eq. (4.9), one can obtain  

𝛴𝑘𝜆 + 𝛴𝑦̅𝑘

∗ 𝜆 − 𝑉̅𝑘 = 0       (4.15) 

𝜆 = (𝛴𝑦̅𝑘

∗ + 𝛴𝑘)
−1

𝑉̅𝑘         (4.16) 

Substituting eq. (4.16) into eq. (4.14), the residual vectors of the predicted 

measurements and predicted state vector are obtained respectively as follows, 

𝑉𝑦̅𝑘
= 𝛴𝑦̅𝑘

∗ (𝛴𝑦̅𝑘

∗ + 𝛴𝑘)
−1

𝑉̅𝑘  (4.17) 

𝑉𝑋̅𝑘
= 𝛴𝑋̅𝑘𝑦̅𝑘

(𝛴𝑦̅𝑘

∗ + 𝛴𝑘)
−1

𝑉̅𝑘  (4.18) 

Because of eq. (4.15),  
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𝑉𝑋̅𝑘
= 𝛴𝑋̅𝑘𝑦̅𝑘

Σ𝑉̅𝑘

−1𝑉̅𝑘       (4.19) 

and, 

𝑋̂𝑘 = 𝑋̅𝑘 + 𝑉𝑋̅𝑘

= 𝑋̅𝑘 + 𝛴𝑋̅𝑘𝑦̅𝑘
(𝛴𝑦̅𝑘

∗ + 𝛴𝑘)
−1

(𝑦𝑘 − 𝑦̅𝑘)

= 𝑋̅𝑘 + 𝐾𝑘𝑉̅𝑘

    (4.20) 

where 𝐾𝑘 is the Kalman gain matrix, 

𝐾𝑘 = 𝛴𝑋̅𝑘𝑦̅𝑘
(𝛴𝑦̅𝑘

∗ + 𝛴𝑘)
−1

= 𝛴𝑋̅𝑘𝑦̅𝑘
𝛴𝑉̅𝑘

−1    (4.21) 

It should be stressed that in the above equations, the estimated state vector 𝑋̂𝑘 

and its Kalman gain matrix 𝐾𝑘  contain neither any Jacobian matrices of the 

nonlinear measurement model nor dynamic equations. Furthermore, since 𝑦̅𝑘 

and 𝑦𝑘 are independent, then 

𝛴𝑋̅𝑘𝑦̅𝑘
= 𝛴𝑋̅𝑘𝑉̅𝑘

       (4.22) 

Thus, from eq. (4.19), 

𝑋̂𝑘 = 𝑋̅𝑘 + 𝛴𝑋̅𝑘𝑉̅𝑘
Σ𝑉̅𝑘

−1𝑉̅𝑘 = 𝑋̅𝑘 + 𝐾𝑘𝑉̅𝑘    (4.23) 

The posterior covariance matrix of the estimated state vector reads, 

𝛴𝑋̂𝑘
= 𝛴𝑋̅𝑘

− 𝐾𝑘𝛴𝑉̅𝑘
𝐾𝑘

𝑇      (4.24) 

The above expression shows that the covariance matrix of the estimated state 

vector is smaller than that of the predicted state vector. Also, the posterior 
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covariance matrix of the state vector is not related to any linearization process 

since 𝐾𝑘  is obtained from eq. (4.21). Therefore, the latter is not related to 

linearization. 

4.1.2 Theoretical Analysis 

The following facts of interest are obtained from the above derivations: 

(i) The derivation presented in the section illustrates the Kalman filtering 

theoretical framework. In this framework, the estimated state vector relates to 

the innovation vector and its covariance matrix, the cross-covariance matrix of 

the predicted vectors, and the predicted state vector; yet the methods to gain 

these covariance matrices are not limited. Thus, the state estimated from the 

prior covariance and cross-covariance matrices makes Kalman filtering process 

more flexible and more extensible. In the new expression (4.23), the predicted 

state vector X̅k with ΣX̅k
 can be obtained by approximation method, such as, UT 

(Julier and Uhlmann 1997). Additionally, the correlational inference has proved 

that the state estimate is not difficult to obtain by the approximation method, 

and furthermore the estimate does not need any computation of Jacobian matrix 

for measurement equation or dynamic equation. 

(ii) The estimators of 𝑋̂𝑘 and 𝛴𝑋̂𝑘
 are expressed in the eqs. (4.20) and (4.24), in 

which the predicted state vector 𝑋̅𝑘 and innovation vector 𝑉̅𝑘 with its covariance 

matrix 𝛴𝑉̅𝑘
 can be derived by (4.2), (4.4) and (4.5). The innovation vector 𝑉̅𝑘 

reflects the consistency between the predicted state and the measurement. The 
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Kalman gain matrix 𝐾𝑘  is determined by 𝛴𝑋̅𝑘𝑦̅𝑘
 and 𝛴𝑉̅𝑘

−1 . Hence, the cross-

covariance matrix between 𝑋̅𝑘 and 𝑉̅𝑘  as well as the weight matrix 𝛴𝑉̅𝑘

−1 of 𝑉̅𝑘 

are crucial in determining the gain matrix 𝐾𝑘. The estimated state vector X̂k can 

also be easily obtained when the cross-covariance matrices 𝛴𝑋̅𝑘𝑦̅𝑘
 or 𝛴𝑋̅𝑘𝑉̅𝑘

 are 

determined. In UKF, Σ𝑋̅𝑘𝑦̅𝑘
 is generated according to the sample dispersion of 

𝑋̅𝑘  and 𝑦̅k, of which the predicted state vectors are not related to the actual 

linearized models, while Σ𝑋̅𝑘𝑦̅𝑘
 is usually much more accurate than that 

propagated from the linearized equations (Yang et al., 2016). 

(iii) The eq. (4.19) expresses the relationship between the two correlated 

stochastic vectors 𝑉𝑋̅𝑘
 and 𝑉̅𝑘 . This relationship illustrates that the stochastic 

unknown vector 𝑉𝑋̅𝑘
, which does not appear in the system model can be derived 

from the related estimated vector V̅k, by using cross-covariance matrix Σ𝑋̅𝑘𝑦̅𝑘
. 

This relationship is also appeared in collocation (Moritz 1980; Koch 1977; 

Yang et al. 2009). If two correlated stochastic vectors s  and s1  with 

expectations 𝐸(𝑠) = 0 and 𝐸(𝑠1) = 0 and also with the covariance matrices 𝛴𝑠 

and 𝛴𝑠1
 as well as cross-covariance matrix 𝛴𝑠𝑠1

= 𝛴𝑠1𝑠
𝑇  exist, the relationship 

between the two estimated vectors ŝ and ŝ1 is then, 

ŝ = Σss1
Σs1

−1ŝ1 or ŝ = Σs1sΣs1
−1ŝ      (4.25) 

(vi) If the state space model is linear, the basic expression of the new derived 

estimator from the correlational inference is equivalent to Kalman filter. Both 
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the linearized form of the error expressed in eq. (4.1) and the form of the 

predicted state expressed in eq. (4.2) are, 

𝑉𝑘 = 𝐻𝑘𝑋̂𝑘 − 𝑦𝑘       (4.26) 

𝑋̅𝑘 = 𝐹𝑘,𝑘−1𝑋̂𝑘−1       (4.27) 

with the covariance matrix 𝛴𝑋̅𝑘
, 

𝛴𝑋̅𝑘
= 𝐹𝑘,𝑘−1𝛴𝑋̂𝑘−1

𝐹𝑘,𝑘−1
𝑇 + 𝛴𝑤𝑘

     (4.28) 

where, 𝐹𝑘,𝑘−1 is the transition matrix.  

Thus, the Kalman filter solution is obtained (Koch & Yang, 1998), 

𝑋̂𝑘 = 𝑋̅𝑘 + 𝛴𝑋̅𝑘
𝐻𝑘

𝑇(𝐻𝑘𝛴𝑋̅𝑘
𝐻𝑘

𝑇 + 𝛴𝑘)
−1

(𝐻𝑘𝑋̅𝑘 − 𝑦𝑘)   (4.29) 

It is noted that the innovation (or predicted residual) vector in the linearized 

form is expressed as, 

𝑉̅𝑘 = 𝐻𝑘𝑋̅𝑘 − 𝑦𝑘       (4.30) 

and the corresponding predicted measurement is, 

𝑦̅𝑘 = 𝐻𝑘𝑋̅𝑘        (4.31) 

The following equations can be easily obtained from eqs. (4.28) and (4.31), 

𝛴𝑋̅𝑘𝑉̅𝑘
= 𝛴𝑋̅𝑘𝑦̅𝑘

= 𝛴𝑋̅𝑘
𝐻𝑘

𝑇      (4.32) 

𝛴𝑉̅𝑘
= 𝛴𝑦̅𝑘

∗ + 𝛴𝑘 = 𝐻𝑘𝛴𝑋̅𝑘
𝐻𝑘

𝑇 + 𝛴𝑘     (4.33) 
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The conventional Kalman gain matrix then reads, 

𝐾𝑘 = 𝛴𝑋̅𝑘
𝐻𝑘

𝑇(𝐻𝑘𝛴𝑋̅𝑘
𝐻𝑘

𝑇 + 𝛴𝑘)
−1

= 𝛴𝑋̅𝑘𝑉̅𝑘
𝛴𝑉𝑘

−1   (4.34) 

This derivation suggests that the state estimator (4.20) derived by the 

correlational inference is equivalent to the standard Kalman filter estimator 

(4.29) in the case that the system model is linear.  

This correlational inference deduces Kalman filter by the relationship among 

the predicted measurement vector 𝑦𝑘 and the predicted state vector X̅k, as well 

as the cross-covariance matrix 𝛴𝑋̅𝑘𝑦̅𝑘
. The deduction avoids the linear model 

requirements of Kalman filter. With the use of the new expression of Kalman 

filter, different methods can be deduced in the same framework based on the 

revealed relationships between the measurement and the state vectors. If the 

state space model is linear, the relationship of the measurement vector 𝑦𝑘 and 

the state vector 𝑋𝑘  can be easily obtained with variance propagation law, 

Kalman filter estimator is then obtained; If the state space model is nonlinear, 

and the first order Taylor expansion is used to approximate the nonlinear 

equation, the covariance matrix can also be obtained by variance-covariance 

propagation, then the EKF estimator is derived; or UT is employed to 

approximate the covariance matrix, then the UKF is expressed. 

4.2 Comparison of EKF and UKF Nonlinear Techniques  

As mentioned before, the EKF and UKF use different techniques to 

approximate nonlinear estimations. The EKF uses the first-order Taylor 
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expansion to approximate nonlinear equations, while UKF uses the sigma 

points to approximate the mean and its covariance matrix of the transformed 

state vector. In this section, the performance of the UKF and EKF are analysed 

and compared. 

4.2.1 Linearization of Nonlinear Equations 

Let an arbitrary nonlinear equation be, 

𝑥𝑘 = 𝑓(𝑥𝑘−1)        (4.35) 

where 𝑓(∙) is the nonlinear model expressing the state transition of time; 𝑥𝑘−1 

is the one dimensional system state at time epoch 𝑘 − 1, and it is a random 

variable with the mean 𝑥̂𝑘−1 and variance 𝜎𝑥̂𝑘−1

2 . To predict the state mean and 

variance using a Kalman filter, the nonlinear equation must be linearized, and is 

commonly by use of Taylor expansion about 𝑥̂𝑘−1, 

𝑓(𝑥𝑘−1) = 𝑓(𝑥̂𝑘−1 + 𝛿𝑥) = 𝑓(𝑥̂𝑘−1) + 𝑓(1)𝛿𝑥 +
1

2
𝑓(2)𝛿𝑥2 +

1

3!
𝑓(3)𝛿𝑥3 +

1

4!
𝑓(4)𝛿𝑥4 + ⋯       (4.36) 

where 𝛿𝑥 is the difference between the true state and the estimated state, with a 

zero mean Gaussian and variance 𝜎𝑥̂𝑘−1

2 ; 𝑓(𝑖) is the 𝑖𝑡ℎ order term of a partial 

derivative operator with respect to 𝑥̂𝑘−1.  

The transformed mean 𝑥̅𝑘 can be obtained by taking expectations of eq. (4.36), 

and considering 𝐸(𝛿𝑥) = 0, and 𝐶𝑜𝑣(𝛿𝑥) = 𝜎𝑥̂𝑘−1

2 , 
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𝑥̅𝑘 = 𝑓(𝑥̂𝑘−1) +
1

2
𝑓(2)𝜎𝑥̂𝑘−1

2 +
3

4!
𝑓(4)𝜎𝑥̂𝑘−1

4 ⋯   (4.37) 

The covariance of 𝑥̅𝑘 then, can be obtained by, 

𝛴𝑥̅𝑘
= 𝐸[(𝑥 − 𝑥̅𝑘)(𝑥 − 𝑥̅𝑘)

𝑇]

=

𝑓(1)𝜎𝑥̂𝑘−1

2 [𝑓(1)]
𝑇

+
1

3!
𝐸 [(𝑓(1)𝛿𝑥)(𝑓(3)𝛿𝑥3)

𝑇
] +

1

3!
𝐸 [(𝑓(3)𝛿𝑥3)(𝑓(1)𝛿𝑥)

𝑇
]

+
1

4!
𝐸 [(𝑓(2)𝛿𝑥2)(𝑓(2)𝛿𝑥2)

𝑇
] −

1

4!
𝐸[𝑓(2)𝛿𝑥2]𝐸[𝑓(2)𝛿𝑥2]

𝑇

  

         

(4.38) 

Recalling that the Jacobian matrix 𝐹  is the first order partial derivative of 

nonlinear equation 𝑓(∙), then eq. (4.38) can be written as, 

𝛴𝑥̅𝑘
= 𝐹𝜎𝑥̂𝑘−1

2 𝐹𝑇

+
1

3!
𝐸 [(𝑓(1)𝛿𝑥)(𝑓(3)𝛿𝑥3)

𝑇
] +

1

3!
𝐸 [(𝑓(3)𝛿𝑥3)(𝑓(1)𝛿𝑥)

𝑇
]

+
1

4!
𝐸 [(𝑓(2)𝛿𝑥2)(𝑓(2)𝛿𝑥2)

𝑇
] +

1

4!
𝐸[𝑓(2)𝛿𝑥2]𝐸[𝑓(2)𝛿𝑥2]

𝑇

 

(4.39) 

Due to the complexity of computation, the first order of the expansion is used to 

propagate the mean and the variance of the state. The higher order terms of the 

expansion are ignored, which introduced linearization error. Furthermore, if the 

approximation point (or the approximate value of the parameter) is far away 

from the true value, then the first-order approximation of the nonlinear equation 

will introduce large linearization errors. Thus, the EKF is not an optimal 

estimator. The filter may diverge quickly if the initial state or the process 
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uncertainties are not accurately known or have not been carefully dealt with. It 

should be mentioned that if the curvature of the nonlinear equation is not large 

enough, the EKF may result in reasonable estimates of the state parameters. It 

means that the dynamic model is near to the linear one. Furthermore, if the 

approximation point is sufficiently close to the true value, then neglecting the 

high-order terms would not significantly affect the state estimates. 

4.2.2 Unscented Transform 

The UT was proposed by Julier and Uhlmann (1997) on the intuition that the 

approximation of a Gaussian distribution being easier than approximating an 

arbitrary nonlinear equation. By this means that the Gaussian statistical 

properties of random variables which propagate through a nonlinear 

transformation can be more easily approximated. To analyze the transformation, 

the nonlinear eq. (4.35) and its expansion are used again by propagating a 

sigma point, 

𝑥̅𝑖,𝑘 = 𝑓(𝑥̂𝑖,𝑘−1) + 𝑓(1)𝛿𝑥𝑖 +
1

2
𝑓(2)𝛿𝑥𝑖

2 +
1

3!
𝑓(3)𝛿𝑥𝑖

3 +
1

4!
𝑓(4)𝛿𝑥𝑖

4 + ⋯  

(4.40) 

The mean of the predicted state is a weighted mean of the sigma points as 

expressed below, 

𝑥̅𝑘 = 𝑤0𝑥̅0,𝑘 + ∑ (𝑤𝑖𝑥̅𝑖,𝑘)
2𝑛
𝑖=1       (4.41) 
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Substituting the weight of the sigma points expressed in eqs. (2.29b) and (2.29d) 

into eq. (4.6), and taking the expectation of all the sigma points, the predicted 

mean is, 

𝑥̅𝑘 =
𝜆

𝑛+𝜆
𝐸(𝑥̅0,𝑘) +

1

2(𝑛+𝜆)
𝐸(𝑥̅1,𝑘) +

1

2(𝑛+𝜆)
𝐸(𝑥̅2,𝑘) + ⋯+

1

2(𝑛+𝜆)
𝐸(𝑥̅𝑖,𝑘)  

         (4.42) 

Substituting eq. (4.40) into (4.42), the following can be obtained, 

𝑥̅𝑘 = 𝑓(𝑥̅) +
1

2(𝑛+𝜆)
∑ (

1

2
𝑓(2)𝜎̃𝑖,𝑘−1

2 +
1

4!
𝑓(4)𝜎̃𝑖,𝑘−1

4 + ⋯)2𝑛
𝑖=1   (4.43) 

where 𝜎̃𝑖,𝑘−1
2  is the element of the weighted covariance of the state in eq. 

(2.29a), and, 

𝜎̃𝑖,𝑘−1 = √(𝑛 + 𝜆)𝜎𝑖,𝑘−1
2       (4.44) 

Thus, eq. (4.43) is written as, 

𝑥̅𝑘 = 𝑓(𝑥̅𝑘) +
1

2
𝑓(2)𝜎𝑖,𝑘−1

2 +
1

2(𝑛+𝜆)
∑ (

1

4!
𝑓(4)𝜎̃𝑖,𝑘−1

4 +
1

6!
𝑓(6)𝜎̃𝑖,𝑘−1

6 … )2𝑛
𝑖=1  

         (4.45) 

The covariance matrix of the above transformed state can be obtained by 

following eq. (2.21),  

𝛴𝑥̅𝑘
=

1

2(𝑛+𝜆)
(∑ (𝑥̅𝑖,𝑘 − 𝑥̅𝑘)(𝑥̅𝑖,𝑘 − 𝑥̅𝑘)

𝑇2𝑛
𝑖=1 )    (4.46) 

Similar to eq. (4.39), 
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𝛴𝑥̅𝑘
= 𝐹𝜎𝑥̂𝑘−1

2 𝐹𝑇 +
1

2(𝑛+𝜆)
∑ 𝐸 [

1

3!
(𝑓(1)𝛿𝑥𝑖)(𝑓

(3)𝛿𝑥𝑖
3)

𝑇
+2𝑛

𝑖=1

1

3!
(𝑓(3)𝛿𝑥𝑖

3)(𝑓(1)𝛿𝑥𝑖)
𝑇

+
1

4!
(𝑓(2)𝛿𝑥𝑖

2)(𝑓(2)𝛿𝑥𝑖
2)

𝑇
+ ⋯]   

  (4.47) 

From the above derivations, it can be found that the UT is able to achieve the 

accuracy similar to that of the third-order Taylor expansion. . 

4.2.3 Performance Comparison 

To compare the prediction precision of UT and first-order Taylor Expansion, 

the same model as expressed in eq. (2.30) in Chapter 2 is selected,  

𝑦1 = 𝑥1 𝑠𝑖𝑛 𝜃
𝑦2 = 𝑥2 𝑐𝑜𝑠 𝜃

       (2.30) 

The system state is denoted by 𝑋 = [𝑥 𝑦 𝜃]𝑇with a covariance matrix 𝛴 =

1 ∗ 10−2 ∗ 𝑑𝑖𝑎𝑔([(1𝑚)2 (1.4𝑚)2 (3𝑚)2]) . Figures 4.1(a) and 4.1(b) 

present the initial mean and predicted mean, as well as their 1-σ error ellipse 

which is derived from the covariance matrix. The error ellipse is used for 

presenting the error bound of the estimated states. The dot-dash line in the dark 

colour shown in Figure 4(b) is the Monte Carlo approach with 107  samples 

used to provide the reference for the prediction results. It can be seen that the 

UT results are more close to the reference, while the first-order Taylor 

expansion predicted mean is biased and its error ellipse is enlarged and biased. 

The Root Mean Square Error (RMSE) of UT and first-order Taylor expansion 

is presented in Table 4.1. 
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Figure 4.1 Performance comparisons of prediction precision (a) is the initial 

state with 1-σ error ellipse, and (b) is predicted state mean with 1-σ error 

ellipses by UT, first-order Taylor expansion, and Monte Carlo approach 

 

Table 4.1 Comparisons of RMSEs [m] of UT and the first-order Taylor 

expansion prediction 

 UKF EKF 

X 0.001 0.062 

Y 0.002 0.093 
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4.3 Theoretical Relation between Extended and Unscented 

Kalman Filters  

The correlational inference in section 4.1 was used to establish the common 

framework for the UKF and EKF. From the derivations and state estimators, 

some theoretical relationships between UKF and EKF are found as follows, 

(i) Both the UKF and EKF can be operated within the Kalman filtering 

framework. The accuracy of the estimated state depends on the accuracy of 

predicted state 𝑥̅𝑘, the predicted measurement 𝑦̅𝑘 and the Kalman gain matrix.  

(ii) The UKF has better prediction accuracy than the EKF in most nonlinear 

state cases as illustrated in Figure 4.1. The mean and covariance matrix of the 

state estimate resulting from the UKF are obtained by the weighted sigma 

points propagated through the nonlinear function. The UT used in the 

propagation process avoids the problem with introducing the linearization error 

which degrades the filter performance. 

(iii) The accuracy of the predicted measurement vector 𝑦̅𝑘 resulting from the 

UKF is more accurate than that of the EKF. In the UKF, a set of sigma points 

propagated through the nonlinear system dynamic model and the observation 

model are used to approximate the predicted measurements. The first 

propagation obtains system predicted state and its covariance matrix, as 

mentioned in point (2), and the second propagation uses re-sampled sigma 

points propagate through the nonlinear observation model to obtain the 
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predicted measurements and its covariance matrix, as well as the cross-

covariance matrix between the predicted state vector and predicted 

measurement vector. The EKF, however, uses the linearized models, system 

model and observation model to obtain the predicted state and measurement 

vectors, as well as their covariance matrices; hence it introduces a linearization 

error in both predicted state information and predicted measurement 

information.       

(iv) The reliability of the estimated state 𝑥̂𝑘  from a Kalman filter relies on 

quality of the Kalman gain matrix 𝐾𝑘 . In the EKF, the Kalman gain is 

calculated using the predicted covariance matrix 𝛴𝑥̅𝑘
, measurement noise 

covariance matrix 𝛴𝑘, and the linearized design matrix 𝐻𝑘. A linearization error 

exists in all these three items. However, in the UKF, the cross-covariance 

matrix 𝛴𝑥̅𝑘𝑦̅𝑘
 and the predicted measurement covariance matrix 𝛴𝑦̅𝑘

 are 

obtained from weighted sigma points. This result can be used to calculate the 

projected mean and its variance up to the second order (Julier & Uhlmann, 

2004). 

(v) Unlike the EKF, the Jacobian matrix for a nonlinear equation system is not 

needed in the UKF estimation process. 

(vi) The UKF iteratively propagates the sigma points through nonlinear 

functions, while the EKF only calculates the Jacobian matrix once for the whole 

estimation process. The former is more close to the reality of a dynamic system 

and thus leads to a better solution. 
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(vii) For the matching of the current statistic properties, the UKF uses the UT to 

capture the stochastic information the estimated state. The UT calculates the 

square root of the state covariance matrix by Cholesky decomposition which 

requires a positive-definite matrix (Agarwal & Mehra, 2014). However, the 

decomposition requires numerical stability of the process, since the UKF cannot 

guarantee a positive-definite matrix resulting from iterations. 

4.4 Comparison Using Simulated and Field Data 

To comprehensively evaluate the performance difference between the UKF and 

EKF applied to vehicle navigation, a simulation test and two field tests were 

carried out. Data for the three cases were processed on a PC with Intel Core i7-

3770 CPU at 3.40 GHz, 16-GB RAM equipped with Windows 7, and the 

Matlab R2010a 64-bit program was used.  

For the first case, a moving vehicle with a constant turning behaviour under the 

open-loop mode was adopted. The second test was carried out in Hong Kong, 

for which GPS and IMU were integrated with the loosely coupled strategy, and 

estimated errors were fed back to the estimation system compensate the errors 

of the IMU sensors. The third test was conducted in Beijing, in which GPS 

observations with a constant velocity model were conducted to form a tightly 

coupled integration system. It was for an analysis of the effectiveness of these 

different state space models and feedback modes used in the EKF and UKF.  
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4.4.1 Case 1: Open Loop Constant Turn Model 

Constant turning is a form of behaviour where a vehicle turns with a constant 

angular rate 𝜔 . A nonlinear dynamic model with respect to the vehicle’s 

heading velocity is commonly used to express the system state. In the 

aforementioned simulation, a constant turning at an angular rate of 2.54°/s with 

a heading velocity of 81 km/h was selected for the test. The trajectory of the 

vehicle was designed on a 500 m radius and its coordinates are shown in Figure 

4.2. It was assumed that the observations were sampled at every 1 s while the 

states were updated every 0.1 s. The simulation period was 141 s. Figure 4.3 

shows the implementation scheme of the data processing.  

 

 

Figure 4.2 Designed vehicle trajectory 
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Figure 4.3 Open loop implementation scheme of filter integration 
 

 

The discrete dynamic model with the state vector is, 

𝑓(𝑥𝑘 𝑦𝑘 𝑣𝑘 𝜔𝑘 𝜃𝑘) =

[
 
 
 
 
𝑥𝑘−1 + 𝑣𝑘−1𝑡 sin 𝜃𝑘−1

𝑦𝑘−1 − 𝑣𝑘−1𝑡 cos 𝜃𝑘−1
𝑣𝑘−1

𝜔𝑘−1

𝜃𝑘−1 − 𝜔𝑘−1𝑡 ]
 
 
 
 

+ 𝑤𝑘−1 (4.48) 

where 𝑥𝑘 , and 𝑦𝑘  are the vehicle’s position in the selected two-dimensional 

coordinate system; 𝑣𝑘, 𝜔𝑘 and 𝜃𝑘 are the heading velocity, angular velocity and 

heading of vehicle, respectively; 𝑤𝑘−1 is the Gaussian noise with zero mean 

and covariance matrix 𝛴𝑤𝑘−1
; and the subscript 𝑘 indicates time epoch.  

The observation function is, 

𝑦𝑘 = 𝐻𝑘𝑋𝑘 + 𝑒𝑘       (4.49) 

where 𝐻𝑘  is an identity matrix, and 𝑒𝑘  is the uncorrelated observation noise 

with covariance matrix 𝛴𝑘 = 𝑑𝑖𝑎𝑔[(1𝑚)2 (1𝑚)2 (0.5𝑚/𝑠)2 (0.001𝑟𝑎𝑑/

GPS 

Measuremen

ts 

Sensor 

Outputs 
Mechanization 

UKF/EKF 

Integrated 

Solution 



99 
 

𝑠)2 (0.01𝑟𝑎𝑑)2].  

The initial state was set to 𝑋 = [498.93 −0.94 22.62 0.045 −0.016]𝑇. 

The state estimates resulting from both the UKF and EKF were compared 

against the simulated value (the reference or truth) for the validation and 

comparison of their performances. The difference of the estimate from the 

reference indicates in the error of the estimation results. Figures 4.4(a) and 

4.4(b) show the errors of the UKF and EKF estimates in the X and Y 

components respectively. Figure 4.5 shows the heading error of the vehicle. 

Figure 4.6 shows the estimated angular velocity and their reference values. The 

RMSE of all epochs of the UKF EKF are listed in Table 4.2 for the overall 

accuracy of the time period. 
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Figure 4.4 Difference between the UKF and EKF estimates and the truth for the 

X component (a) and the Y component (b)  
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Figure 4.5 Error of the estimated heading  

 

 

Figure 4.6 Estimated and reference angular velocities 
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Table 4.2 RMSE of all filter epochs 

 UKF EKF 

X [m] 0.98 2.19 

Y [m] 0.54 2.51 

V [m/s] 0.17 0.17 

𝜔 [rad/s] 0.001 0.0008 

𝜃 [rad] 0.009 0.012 

 

  

Figure 4.7 Predicted covariance matrix trace of UKF (a) and EKF (b) 
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The trace of the predicted covariance matrix is presented in Figure 4.7. Figure 

4.7(a) shows the covariance matrix trace (CMT) of the predicted state resulting 

from the UKF and EKF respectively. The difference between the two 

estimators from epoch 10 to 100 s is presented in Figure 4.7(b). 

From the two figures we can see that: 

(i) In Figure (4.6) The RMSE of the UKF for the X and Y components are 0.98 

m and 0.54 m respectively, which are significantly less than the EKF results of 

2.19 m and 2.51 m. This indicates that the UKF significantly outperforms the 

EKF. 

(ii) From Figure 4.7, the trace of the covariance matrix of the predicted state 

resulting from the UKF is larger than that of EKF, 𝑡𝑟(𝛴𝑥̅𝑘

𝑈𝐾𝐹) > 𝑡𝑟(𝛴𝑥̅𝑘

𝐸𝐾𝐹). This 

suggests that the UKF is less affected by historical data, which leads the 

estimate close to the observation. 

4.4.2 Case 2: Closed-Loop GPS/IMU Integrated Navigation System 

In the second test case, which was the field test conducted in Hong Kong, the 

closed-loop mode was selected for the GPS/IMU integrated navigation system. 

The route of the vehicle was through dense building areas with many 

overpasses and viaducts. The position of the vehicle represented is in the Hong 

Kong 80 Grid coordinate system. The test duration was about 15 minutes and 

the data were collected from a Hitachi H48C 3-axis accelerometer and Analog 

Devices ADXRS300 gyroscope at 100 Hz (Analog Devices Inc., 2004; Hitachi, 
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2007). The accelerometer was for measuring the acceleration in the heading 

direction and the gyroscope measured the change in the heading of the vehicle. 

A GPS module was equipped for position and velocity measurements every 1.4 

s. The GPS and IMU were loosely coupled and the system provides state 

information including position, timing, velocity, acceleration and heading in the 

National Marine Electronics Association (NMEA) 0813 standard. This standard 

is a specification for communication between marine electronics equipment.  

In this case, the error state is used to establish the system dynamic model. The 

estimated result is used for compensating the error of the IMU measurements. 

The schematic of the close-loop implementation is shown in Figure 4.8, with 

the state vector 𝑋 = [𝛿𝑥 𝛿𝑦 𝛿𝑣 𝛿𝜃 𝑏 𝛿𝜔 𝑠]𝑇, and the nonlinear dynamic model 

being expressed by the following equations,  
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 (4.50) 

where 𝛿𝑥 and 𝛿𝑦 are the positioning errors in the two coordinate components; 

𝛿𝑣 is the error of the velocity with respect to the heading direction; 𝛿𝜃 is the 

heading error; 𝑏 is the acceleration bias; 𝛿𝜔 is the angular rate bias; 𝑠 is the 

accelerometer scale factor; 𝜏𝑔 is the correlation time of the accelerometer and 



105 
 

the gyroscope; T is the time interval, the system noise was defined as 𝑤𝑘 =

[0 0 0 0 𝑤𝑏 𝑤𝛿𝜔 𝑤𝑠]
𝑇  and white noise with a covariance matrix 𝛴𝑤𝑘

 were 

assumed.  

The observation equation is, 

𝑦𝑘 = 𝐻𝑘𝑋𝑘 + 𝑒𝑘       (4.51) 

where,  

𝐻𝑘 = [

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0
0

0
0

1
0

0
1

0
0

0
0

0
0

]     (4.52) 

𝑦𝑘 = [𝑃𝑔𝑝𝑠 − 𝑃𝐼𝑁𝑆, 𝑉𝑔𝑝𝑠 − 𝑉𝐼𝑁𝑆, 𝐻𝑒𝑎𝑑𝐺𝑃𝑆 − 𝐻𝑒𝑎𝑑𝐼𝑁𝑆]
𝑇
  (4.53) 

 

Figure 4.8 Close loop implementation scheme of UKF/EKF 
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The positioning trajectory estimated from the UKF and EKF, along with the 

positioning resulting from the SD approach of GPS measurements as the 

reference is shown in Figure 4.9. The positioning errors in the X, Y components 

and their overall accuracy in the time series are depicted in Figures 4.10(a), (b) 

and (c). The dash line denotes the UKF and the solid line for the EKF. The 

RMSE of these results are listed in Table 4.3. 

 

Figure 4.9 Estimated trajectory of the vehicle resulting from UKF, EKF and 
GPS (as the reference) 
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Figure 4.10 Positioning error of UKF and EKF in the, X components (a), Y 

components (b), and overall Position error (c) (GPS SD positioning results were 
used as the reference). 
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Table 4.3 Comparison of the position results of RMSEs [m] from UKF and 

EKF  

 UKF EKF 

X 16.30 21.59 

Y 20.64 26.18 

Those peak values shown in Figure 4.10(c) correspond to the area marked by 

the circle in Figure 4.9, which were caused by the fact that the number of 

visible satellites was under four. Figure 4.11 presents the velocity solved by 

GPS measured Doppler shifts and estimated by the UKF and EKF.  

From this test case, it can be seen that the UKF outperforms the EKF in terms 

of positioning accuracy. The reason is that the error model moderates the 

nonlinearity of the state space model. The UKF estimated result is closer to the 

measurements than those of EKF, even though the measurements are 

contaminated.  
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Figure 4.11 Velocity estimated by GPS (a), UKF (b) and EKF (c) 
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4.4.3 Case 3: Constant Velocity Model 

In the third test scenario, conducted along the Beijing’s Fifth Ring Road in a 

suburban environment for testing the constant velocity model for the system 

dynamic model, the GPS receiver was equipped to collect the position and 

velocity of the vehicle at a 1 second sampling rate. The driving time was about 

3 hours. The predicted position and velocity were transferred to nonlinear GPS 

observation model. The integration architecture is presented in Figure 4.12. The 

state vector is 𝑋 = [𝑥, 𝑦, 𝑧, 𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 , 𝛿𝑡, 𝛿𝑡̇]
𝑇

, where [𝑥, 𝑦, 𝑧]𝑇  are the 

coordinates of the vehicle in the WGS84 coordinate system; [𝑣𝑥, 𝑣𝑦, 𝑣𝑧]
𝑇
 are the 

corresponding velocity components; 𝛿𝑡 is the receiver clock bias, and 𝛿𝑡̇ is the 

clock bias rate. The system observed the pseudorange and Doppler shift 

directly, thus the observation vector is 𝑦𝑘 = [𝜌𝑖, 𝜌̇𝑖]
𝑇 , where 𝜌𝑖  is the 

pseudorange of the 𝑖𝑡ℎ satellite and 𝜌̇𝑖  is its Doppler shift. The initial states 

were set to zero.  

The vehicle trajectory measured by the GPS SD approach with pseudorange 

measurements is illustrated in Figure 4.13. The positioning solution from 

carrier phase measurements was used as the reference.  
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Figure 4.12 Tightly Integration scheme of UKF/EKF 

 

 

Figure 4.13 Vehicle trajectory 
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The errors of the estimated position resulting from the UKF and EKF for the 

time series are shown in Figures 4.14 and 4.15 respectively. The large peak 

values shown at the beginning epochs in Figure 4.15 were caused by the zero 

initial state. The spikes in time series are mainly caused by the multipath effect 

of GPS measurements. The RMSE of position estimation is listed in Table 4.4. 

The velocity results are plotted in Figures 4.16 and 4.17; and the convergence 

time is shown in Figure 4.18.  
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Figure 4.14 UKF positioning error (in the X component (a), Y component (b), 
and Z component (c) (GPS carrier phase solution is the reference) 
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Figure 4.15 Error of EKF position in the X component (a), Y component (b), 
and Z component (c) 
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Table 4.4 The RMSE of UKF and EKF positioning [m] 

 UKF EKF 

X 0.10 0.22 

Y 0.12 0.27 

Z 0.14 0.42 
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Figure 4.16 Velocity error of UKF with respect to the GPS Doppler 

measurement, in X components (a), Y components (b), and Z components (c) 
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Figure 4.17 Velocity error of EKF with respect the GPS Doppler measurements, 

X components (a), Y components (b), and Z components (c) 
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Figure 4.18 Converge time of UKF (a) and EKF (b) 
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4.5 Summary 

In this Chapter, the theoretical framework of Kalman filtering was established 

based on the correlational inference and the statistical relationship between the 

UKF and standard Kalman filter was obtained by the inference. The 

performance of the UKF and EKF were tested using both simulation and field 

tests with different feedback modes. From the derivation of the Taylor 

expansions, the UKF could achieve at least the second-order accuracy; while 

the EKF propagates the mean and covariance of the state estimate by the first 

order expansion. In the tests, the vehicle state vector is estimated from the UKF 

and EKF and different state space models were adopted. The behaviour of the 

filters combined with different feedback modes and integration strategies were 

tested. The first test simulated the vehicle trajectory in the open-loop model. 

The nonlinear equations act as the system model directly in the UKF, while the 

EKF calculates the Jacobian matrix to linearize the equation. The RMSE of 

UKF for the X component is 0.98 meter and 0.54 meter for the Y component 

with respect to the simulated true position. EKF achieved 2.19 meter and 2.51 

meter RMSE for the respective X and Y components. The second test was a 

field test, in which the IMU and GPS were integrated in the closed loop mode, 

and the error model was used as the system dynamic model. The model 

moderated the nonlinearity of the equations. The third test used a linear CV 

model as the system dynamic model, and the tightly coupled strategy was 

adopted to estimate the position and velocity. The measurement model is 

nonlinear. The RMSE of UKF for the X, Y and Z components are 0.10 meter, 
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0.12 meter, and 0.14 meter; while the RMSE of those of EKF are 0.22 meter, 

0.27 meter, and 0.42 meter. The performances of the UKF and EKF from all the 

three tests are acceptable. The UKF performed better in terms of accuracy and 

consistency, especially with nonlinear equations.  
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Chapter 5 Correlational Inference-based Adaptive Estimation  

The superiority of the UKF to nonlinear state estimation was presented in 

Chapter 4. The estimation accuracy of the UKF is affected by the level of 

knowledge of the stochastic model. In the GNSS/IMU integrated navigation, 

the knowledge of measurement model noise is obtained by the GNSS 

positioning solution, while the process noise as priori information is time-

varying. Additionally, the uncertainty of the dynamic model disturbances can 

distort the process noise information. Incorrect noise information degrades the 

filter performance and can even lead to diverge of the estimation. In this study, 

an AUKF based on correlational inference was developed for addressing the 

dynamic system disturbance influences, and an adaptive factor was introduced 

for the AUKF to adjust the contribution of the dynamic model and the 

measurement model. 

5.1 Adaptive Unscented Kalman Filtering Based on Correlational 

Inference 

5.1.1 Adaptive Unscented Kalman Filter 

The UKF described in Chapter 2 depends on the approximation method for 

nonlinear system models. The approximation method is very difficult to 

accurately predict the distribution or the dynamic errors. Additionally, the 

inaccurate estimation of the last epoch will affect the selection of the sigma 

points at the present epoch. Thus, the state prediction vector 𝑋̅𝑘 is influenced, in 
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the same way as the predicted measurement vector 𝑦̅𝑘 from eq. (4.3). To control 

the influence of the dynamic model disturbances, an adaptive factor 𝛼𝑘 

(0 < 𝛼𝑘 < 1) is introduced. The adaptive UKF estimator can be obtained based 

on the correlational inference. The predicted state vector is assumed to be 

contaminated by some kinematic disturbance phenomenon; the contribution of 

𝑋̅𝑘 therefore should be weakened. Thus, eq. (4.11) can be rewritten with the 

adaptive factor 𝛼𝑘, similar to Yang et al. (2001a), 

𝑉𝑘
𝑇𝛴𝑘

−1𝑉𝑘 + [𝑉𝑦̅𝑘

𝑇 𝑉𝑋̅𝑘

𝑇 ] ∙ 𝛼𝑘 ∙ [
𝛴𝑦𝑘

∗ 𝛴𝑦̅𝑘𝑋̅𝑘

𝛴𝑋̅𝑘𝑦̅𝑘
𝛴𝑋̅𝑘

]

−1

[
𝑉𝑦̅𝑘

𝑉𝑋̅𝑘

] − 2𝜆𝑇(𝑉𝑦̅𝑘
− 𝑉̅𝑘 −

𝑉𝑘) = 𝑚𝑖𝑛        (5.1) 

and eq. (4.14) is updated as, 

𝑉𝑦̅𝑘
=

1

𝛼𝑘
𝛴𝑦𝑘

∗ 𝜆

𝑉𝑋̅𝑘
=

1

𝛼𝑘
𝛴𝑋̅𝑘𝑦̅𝑘

𝜆
       (5.2) 

The adaptive UKF estimator is (Yang, et al., 2001b; Yang & Gao, 2005, 2006), 

𝑋̂𝐴𝐾 = 𝑋̅𝑘 +
1

𝛼𝑘
𝛴𝑋̅𝑘𝑦̅𝑘

(
1

𝛼𝑘
𝛴𝑦𝑘

∗ + 𝛴𝑘)
−1

(y𝑘 − 𝑦̅𝑘)

= 𝑋̅𝑘 + 𝛴𝑋̅𝑘𝑦̅𝑘
(𝛴𝑦𝑘

∗ + 𝛼𝑘𝛴𝑘)
−1

(𝑦𝑘 − 𝑦̅𝑘)
  (5.3) 

This equation can also be expressed as, 

𝑋̂𝑘 = 𝑋̅𝑘 + 𝐾̃𝑘(𝑦𝑘 − 𝑦̅𝑘)      (5.4) 

where 𝐾̃𝑘 is the adaptive Kalman gain matrix, which is expressed as,   
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𝐾̃𝑘 = 𝛴𝑋̅𝑘𝑦̅𝑘
𝛴̃𝑉̅𝑘

−1       (5.5) 

and,  

𝛴̃𝑉̅𝑘
= ∑ 𝑤𝑖[(𝑦̃𝑘)𝑖 − 𝑦̅𝑘]

2𝑛
𝑖=0 [(ỹ𝑘)𝑖 − 𝑦̅𝑘]

𝑇 + 𝛼𝑘Σ𝑘   (5.6) 

where 𝛴̃𝑉̅𝑘
 is the innovation covariance matrix of the adaptive estimation. 

The larger the errors of 𝑋̅𝑘  generated from the sigma points, the larger the 

covariance matrices, 𝛴𝑋̅𝑘𝑦̅𝑘
 and 𝛴𝑉̅𝑘

. Thus, the adaptive factor 𝛼𝑘  plays a 

valuable role in weakening the contribution of disturbed or contaminated 

predicted state vector 𝑋̅𝑘, or strengthens the contribution of the measurement 

vector 𝑦𝑘. 

The adaptive factor can be constructed as (Yang & Gao, 2006),  

𝛼𝑘 = {

1 𝑡𝑟(𝛴̂𝑋̅𝑘
) < 𝑡𝑟(𝛴𝑋̅𝑘

)

∑ 𝜎𝑋̅𝑘𝑖

2𝑛
𝑖=1

∑ 𝛥𝑛
𝑖=1 𝑋̅𝑘𝑖

2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (5.7) 

where, Δ𝑋̅𝑘  marks the discrepancy between the predicted state and the 

estimated state; and 

Δ𝑋̅𝑘 = 𝑋̃𝑘 − 𝑋̅𝑘       (5.8) 

𝑡𝑟(𝛴̂𝑋̅𝑘
) ≈ 𝑡𝑟(Δ𝑋̅𝑘Δ𝑋̅𝑘

𝑇) = Δ𝑋̅𝑘
𝑇Δ𝑋̅𝑘 = ∑ Δ𝑋̅𝑘𝑖

2𝑛
𝑖=1    (5.9) 
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where 𝑋̃𝑘  is the estimate from the measurement information at the present 

epoch. The estimate can be derived from the linearized measurement model by 

the robust least squares method (Yang et al., 2002), 

𝑉𝑘 = 𝐻𝑘𝑋̂𝑘 − 𝑦𝑘       (5.10) 

where 𝐻𝑘 is the Jacobian matrix of ℎ𝑘, which is the nonlinear design matrix, the 

state robust estimate from the measurements is then, 

𝑋̃𝑘 = (𝐻𝑘
𝑇𝑃̅𝑘𝐻𝑘)

−1𝐻𝑘
𝑇𝑃̅𝑘𝑦𝑘      (5.11) 

where 𝑃̅𝑘 denotes the equivalent weight matrix of 𝑦𝑘, the latter is determined by 

the robust estimation principle. 

The robust state is estimated by the linearized measurement model, by which 

the calculation burden of the estimation with a nonlinear state space model is 

increased. Thus, another adaptive factor was given by (Yang & Gao, 2006), 

𝛼𝑘 = {

1 𝑡𝑟(𝛴̂𝑉̅𝑘
) < 𝑡𝑟(𝛴𝑉̅𝑘

)

∑ 𝜎𝑉̅𝑘𝑖

2𝑛𝑘
𝑖=1

∑ 𝑉̅𝑘𝑖
2𝑛𝑘

𝑖=1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (5.12) 

where 𝑛𝑘  represents the number of the measurements; 𝛴̂𝑉̅𝑘
 is the estimated 

covariance matrix of the predicted residual vector 𝑉̅𝑘, which can be calculated 

by either the windowing method, eq. (5.13) or the predicted residual vector at 

the present epoch, eq. (5.14); 𝛴𝑉̅𝑘
 is the covariance matrix of the innovation 

vector and can be obtained by eq. (4.33) by means of the linearized 

measurement model or unscented transformation of the nonlinear equation. The 
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above two approaches lead to the same result as the vector solution is a linear 

equation. 

𝛴̂𝑉̅𝑘
=

1

𝑚−1
∑ 𝑉̅𝑘−𝑖𝑉̅𝑘−𝑖

𝑇𝑚
𝑖=1       (5.13) 

𝛴̂𝑉̅𝑘
= 𝑉̅𝑘𝑉̅𝑘

𝑇        (5.14) 

where 𝑚 is the length of the window; and 𝜎𝑉𝑘𝑖

2  in eq. (5.12) can be calculated as, 

𝜎𝑉̅𝑘𝑖

2 = 𝜎𝑦̅𝑘𝑖
∗

2 + 𝜎𝑘𝑖

2        (5.15) 

where 𝜎𝑉̅𝑘𝑖

2 , 𝜎𝑦̅𝑘𝑖
∗

2 and 𝜎𝑘𝑖

2  are the 𝑖𝑡ℎ  diagonal element of 𝛴𝑉̅𝑘
, 𝛴𝑦̅𝑘

 and 𝛴𝑘 

respectively. When the discrepancy between the predicted measurement and the 

measurement is large, the value of 𝛼𝑘 is less than 1. Therefore, the contribution 

of the predicted state to the estimation results from the unscented transform is 

weakened. 

5.1.2 Discussions 

Window-based adaptive estimation methods have been proposed in several 

studies (Gao et al., 2015; Hajiyev & Soken, 2014). The core of the approaches 

is the matching of calculated covariance matrices with the theoretical ones. The 

latter are derived by windowing approximation. Hajiyev and Soken (2014) 

employed an adaptive matrix to scale the covariance matrix of measurement 

noise and an adaptive factor to adjust the covariance matrix of process noise. 

The adaptive matrix is estimated based on the covariance matching principle, 
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i.e. the calculated covariance matrix 𝛴𝑦̅𝑘
 is equal to the theoretical covariance 

matrix 𝛴̂𝑦̅𝑘
. The theoretical covariance matrix 𝛴̂𝑦̅𝑘

 is obtained by innovation 

sequences. The adaptive factor can also be estimated with residual sequences 

via the window approach. The calculation of the adaptive matrix involves 

matrix inversion. The adaptive factor is then calculated by the trace of the 

covariance matrices. In the window-based adaptive estimation approach 

proposed by Gao et al. (2015), historical innovation sequences or residual 

sequences were also used to calculate the theoretical covariance matrix for the 

adjustment of the covariance matrices of the measurement or process noise. The 

theoretical covariance matrix is calculated based on the randomly weighted 

historical information rather than the simple moving average.  

The adaptive factor was constructed by exploiting the relationships among the 

covariance matrices revealed in the correlational inference. The inference 

established the theoretical equivalence between the UKF and Kalman filter. 

Unlike the window-based adaptive scheme, the proposed adaptive scheme is 

designed to weaken the contribution of the priori information based on the 

disturbances of the system, whereas, the window based adaptive schemes 

balance the noise information of the dynamic or measurement model. The 

adaptive estimator, which does not need any functional model linearization, 

was analytically derived, based on the relationships between the covariance 

matrices of the innovation vector and the predicted state vector. The adaptive 

factor is obtained by the innovation vector at the present epoch, which avoids 
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the need to store the historical information. Additionally, the adaptive 

mechanism is sensitive to the discrepancy of the filter at the give epoch. 

5.2 Numerical Experiment and Analysis 

Both simulation and field tests were also conducted for the performance 

assessment of the AUKF applied to an integrated GNSS/IMU navigation 

system, and a comparison between AUKF and UKF was also conducted. The 

integrated system used a nonlinear IMU error model as the dynamic model. 

This is different from the classical linear IMU error model which is derived 

under the assumption of small misalignment angles. In reality, the 

environmental disturbances and sensors errors may not satisfy this assumption 

thus the nonlinear error model presented in Chapter 3 was used in this study. 

The loosely coupled configuration was employed in the integration of the IMU 

and GPS. Data were processed in the Matlab R2010a 64-bit program on a PC 

with Intel Core i7-3770 CPU at 3.40 GHz, 16-GB RAM equipped with Win 7. 

5.2.1 Simulation Result 

The simulation was based on the moving vehicle with different driving 

behaviors. The simulation duration is 3000s. The configuration of the 

simulation is shown in Table 5.1. The simulation was processed without any 

initial alignment.  
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Table 5.1 Simulation settings and initial conditions 

gyro constant drift 100°/h 

angular random walk 5°/√h 

velocity random walk 1000 ηg/√Hz 

accelerometer bias 2000 ηg 

Initial position [22.31° 114.18° 41 m] 

Initial positioning error [1 m 1 m 3 m] 

Initial velocity error [0.2 m/s 0.2 m/s 0.2 m/s ] 

Initial Misalignment angle [-20° 34° 80°]  

 

The estimated results are compared with the simulated value (the reference) as 

shown in Figure 5.1 for the positioning error. The red dotted line indicates the 

AUKF estimate error, and the blue dotted line represents the UKF estimate 

error. It can be observed that the UKF estimate is affected by the dynamic 

model error. The overall RMSE of the UKF estimate in the East, North, and 

Altitude components are 1.94 m, 2.45 m, and 26.14 m respectively; while that 

of AUKF are 1.04 m, 0.98 m, and 1.61 m. In addition, the largest error of UKF 

for the East, North, and Altitude components are 12.87 m, 19.12 m and 75.94 m, 

respectively; while those estimated by the AUKF are 3.70 m, 5.01 m, and 7.93 

m. It is also found that the UKF estimate in the altitude component has a bias, 

caused by both measurement noise and disturbed predicted information. The 
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AUKF reduced the weight of the predicted information by an adaptive factor, 

driving the estimate to the measurements.   

The velocity errors of the two filters are illustrated in Figure 5.2. The errors 

presented a similar pattern to that of the positioning error. The oscillations of 

the AUKF estimates are much smaller than that of the UKF, and the velocity 

estimate in the altitude direction is divergent. This can be explained below: The 

predicted information of the filter is disturbed by the IMU sensor error, hence 

causing a biased UKF estimate. The AUKF, however, used an adaptive factor 

to weaken the predicted information which weakens the bias. The result 

illustrates that the AUKF has outperformed the UKF under the disturbances of 

the dynamic model, which is presented in Table 5.2. 

 



131 
 

 

Figure 5.1 Position error of two filters in East (a), North (b), and Altitude (c) 
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Figure 5.2 Velocity error of two filters in East (a), North (b), and altitude (c) 
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Table 5.2 RMSE of two filter solutions 

  UKF AUKF 

Position [m] 

East 

North 

Altitude 

1.94 

2.45 

26.14 

1.04 

0.98  

1.61 

Velocity 

[m/s] 

East 

North 

Altitude 

1.64    

1.60    

2.73 

0.19 

0.20 

0.19 

 

5.2.2 Field Test Results 

This experiment and analysis subsection presents experimental results to 

demonstrate the performance of positioning solution. The proposed adaptive 

filter applied to IMU/GPS integrated vehicle navigation was tested in field for a 

period lasting approximately one and half an hour. The IMU and GPS 

parameters and initial c 

onditions are listed in Table 5.3. 
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Table 5.3 IMU and GPS parameters and initial conditions 

IMU Sampling Frequency 100 Hz 

GPS Sampling Frequency 10 Hz 

IMU Accelerometer bias 500 µg 

IMU gyro bias 1 deg/h 

Initial Position Error [7 m, 7 m 7 m] 

Initial Velocity Error [0.1 m/s 0.1 m/s 0.1 m/s] 

Initial Attitude Error [10° 20° -15°] 

 

The estimation results were compared with the robust SPP solution which is 

used as the reference. From the position errors shown in Figure 5.3, it can be 

seen that the position estimated from the AUKF is much closer to the GPS 

measured position The AUKF constrained the errors at the East component 

during the process period. The peak value of the UKF estimate error during the 

time period between 283980 s and 284070 s is 2.66 m, while that of the AUKF 

is 1.30 m. The error UKF estimate errors in the altitude direction fluctuate in 

the range between -40 m and 58 m during the process time, while that of the 

AUKF vary between -22 m and 17 m. This means a large improvement is 

achieved by the AUKF. The remaining oscillation around epoch 283300 s to 

283600 s and 283900 s to 284200 s are caused by poor GPS measurements. 

From the velocity errors shown in Figure 5.4, one can see that the UKF has no 

resistance to outliers in the dynamic model and that the AUKF retrains the error 

of the velocity. It is also noticed that the AUKF converges faster than the UKF. 
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Since the UKF operates under the Kalman framework and employs the 

unscented transform to deal with the nonlinear equations, the disturbances in 

the dynamic model may bias the predicted information. The AUKF 

dynamically adjusts the statistics of the measurements during the filtering 

process so that the contribution of the inaccurate prior information can be 

reduced. Therefore, the AUKF can effectively resist the disturbances of the 

dynamic model, leading to much higher accuracy than that the standard UKF. 

Table 5.4 illustrates the RMSE of the position and velocity errors, which 

indicate that the AUKF is superior to UKF. 
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Figure 5.3 Position error of two filters in East (a), North (b), and Altitude (c) 
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Figure 5.4 Velocity error in East (a), North (b), and altitude (c) 
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Table 5.4 RMSE of two filter solutions 

  UKF AUKF 

Position [m] 

East 

North 

Altitude 

0.49 

1.30 

18.24 

0.24 

0.72 

3.23 

Velocity 

[m/s] 

East 

North 

Altitude 

0.50 

0.61 

1.66 

0.04      

0.04       

0.05 

 

5.3 Summary 

In this Chapter, an adaptive Unscented Kalman filter (AUKF) based on the 

correlational inference was proposed and its performance was tested. The 

adaptive mechanism improves the performance of the filter in dealing with 

contaminated predicted state and nonlinear models. The adaptive factor is 

obtained from the innovation vector at the present epoch, which avoids the 

storage of innovation sequences and is more sensitive to the discrepancy of the 

predicted system state from the measurements. In both simulation and the field 

tests, the loosely coupled configuration and nonlinear dynamic model were 

used and results showed that the AUKF outperformed the UKF in terms of 

velocity and positioning accuracy. In the simulation, the UKF RMSE in East, 

North, and Altitude components estimation are 1.94 meter, 2.45 meter, and 

26.14 meter correspondingly; while the RMSE of those of AUKF are 1.04 
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meter, 0.98 meter, and 1.61 meter. In the field test, the UKF RMSE in 

positioning estimation are 0.49 meter, 1.30 meter, and 18.24 meter; while the 

RMSE of those of AUKF are 0.24 meter, 0.72 meter, and 3.23 meter. 
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Chapter 6 Robust M-M Unscented Kalman Filter 

The adaptive estimator described in Chapter 5 rebalances the contribution of the 

dynamic model and the measurements, and hence effectively improves the 

performance of the filter. The estimator, however, relies on the robustness of 

the measurements. It also rescales the covariance matrix of the dynamic model 

in terms of the system discrepancy, namely, innovation vector. The accuracy of 

the estimator, however, degrades if the measurements contain outliers. The 

robust M-M estimator presented in this chapter is to obtain more accurate 

estimate from both contaminated dynamic predictions and measurement. 

6.1 M-M Estimation 

Yang (1991) introduced three robust estimators based on the M-estimation 

technique for measurements in the following three cases 1) the measurements 

follow the contaminated normal distribution (M-LS), 2) The prior estimate has 

outliers (LS-M), and 3) both measurements and prior estimate follow the 

contaminated normal distribution (M-M). This section reviews the methodology 

of the three estimators.  

Let the linear measurement equation be, 

𝑦 = 𝐻𝑋 + 𝛥        (6.1) 

where 𝑦 is the 𝑛 × 1 measurement vector; 𝐻 is the 𝑛 × 𝑚 design matrix; 𝛥 is 

the 𝑛 × 1 error vector; and 𝑋 is the 𝑚 × 1 state vector with prior estimated 𝑋̅ 

and covariance matrix 𝛴𝑋̅.  
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The error equation of the measurement is, 

𝑉 = 𝐴𝑋̂ − 𝑦        (6.2) 

where 𝑉 is the 𝑛 × 1 residual vector and 𝑋̂ is the estimated state of 𝑋.  

If the predicted residuals, Δ𝑋̅ = 𝑋̅ − 𝑋, and the measurements are independent 

and identically distributed with Gaussian distribution, the risk function based on 

the least squares (LS) Bayesian estimation is, 

𝛺 = 𝑉𝑇𝛴𝛥𝑉 + (𝑋̅ − 𝑋̂)
𝑇
𝛴𝑋̅

−1(𝑋̅ − 𝑋̂)    (6.3) 

where 𝛴𝛥 is the measurements covariance matrix. 

Assuming that the measurement 𝑦  is contaminated by outliers and the 

contaminated distribution is, 

𝐹𝛥(𝜀) = (1 − 𝜀)𝜙𝛥 + 𝜀𝑀      (6.4) 

where 0 < 𝜀 < 1 , 𝑀  is any symmetric distribution, and 𝜙𝛥  is the norm 

distribution.  

Applying the M-estimation, the risk function becomes, 

𝛺𝑦 = ∑ 𝜌(𝑣𝑖) +𝑛
𝑖=1 (𝑋̅ − 𝑋̂)

𝑇
𝛴𝑋̅

−1(𝑋̅ − 𝑋̂)/2    (6.5) 

where 𝑣𝑖  is the 𝑖𝑡ℎ row of the measurement residual; 𝜌(∙) is the robust score 

function used to cut off the outliers and the contaminated Gaussian noise. The 

Huber’s score function can be applied to suppress the influence of the outliers, 
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𝜌(𝑣𝑖) = {

𝑣𝑖
2

2
|𝑣𝑖| < 𝜏

𝜏|𝑣𝑖| −
𝜏2

2
|𝑣𝑖| ≥ 𝜏

     (6.6) 

where 𝜏  is chosen to give a desired efficiency at the Gaussian model 

(Kovacevic et al., 1992).  

The estimator is then, 

𝑋̂ = 𝑋̅ − Σ𝑋̅𝐻𝑇[𝛹(𝑉)]      (6.7) 

Define 𝑝(𝑣𝑖) = 𝜓(𝑣𝑖)/𝑣𝑖, eq. (6.7) is then rewritten as, 

𝑋̂ = 𝑋̅ − 𝛴𝑋̅𝐻𝑇𝑃(𝑉)𝑉      (6.8) 

where 𝑃(𝑉) is usually a diagonal matrix with the elements 𝑝(𝑣𝑖). 

Considering another case, in which the predicted state 𝑋̅  follows a 

contaminated normal distribution. The model is defined by 

𝐹𝛥𝑋̅(𝜀𝑥) = (1 − 𝜀𝑥)𝜙𝑥 + 𝜀𝑥𝑀     (6.9) 

where 𝜙𝑥 is a normal distribution.  

The risk function with M-estimation is, 

𝛺𝑋̅ =
𝑉𝑇𝛴𝛥𝑉

2
+ ∑ 𝛽(𝛿𝑥̃𝑗)

𝑚
𝑗=1       (6.10) 

where 𝛿𝑥̃𝑗 = ∑ (𝛴
𝑋̅

−
1

2)
𝑗𝑘

(𝛿𝑥̂𝑘)
𝑚
𝑗=1 , 𝛿𝑥̂𝑘 = 𝑋̂𝑘 − 𝑋̅𝑘 ; and 𝛽(∙)  functions are 

similar to as 𝜌(∙).  
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The estimator determined by the condition (6.10) is known as the LS-M 

estimators.  

The estimated state is then, 

𝑋̂𝑘 = (𝐻𝑇𝛴𝛥
−1𝐻 + 𝑃(𝛿𝑋̂𝑘))

−1

(𝐻𝑇𝛴𝛥
−1𝑦 + 𝑃(𝛿𝑋̂𝑘)𝑋̅𝑘)  (6.11) 

where 𝑃(𝛿𝑋̂𝑘) is also a diagonal matrix with elements 𝑝(𝛿𝑥̂𝑖) = 𝜂(𝛿𝑥̂𝑖)/𝛿𝑥̂𝑖 , 

and 𝜂(∙) is similar to the 𝜓(∙) function. 

If both the measurement vector 𝑦  and the prior estimate vector 𝑋̅  are 

contaminated, two score functions of M-estimates can be used. This function is, 

𝛺 = ∑ 𝜌(𝑣𝑖)
𝑛
𝑖=1 + ∑ 𝛽(𝛿𝑥̃𝑗)

𝑚
𝑗=1      (6.12) 

The estimator determined by the condition function (6.12) known as the M-M 

estimator, as the M-estimation principle is applied for both the measurement 

and the predicted state vectors. The robust estimator is expressed as, 

𝑋̂𝑘 = (𝐻𝑇𝑃(𝑉)𝐻 + 𝑃(𝛿𝑋̂𝑘))
−1

(𝐻𝑇𝑃(𝑉)𝑦 + 𝑃(𝛿𝑋̂𝑘)𝑋̅𝑘)  (6.13) 

which is the combination of the LS-M and M-LS estimators. It also can be 

written as follows (Koch, 1999; Yang, et al., 2001a), 

𝑋̂𝑘 = 𝑋̅𝑘 + 𝛴𝑋̅𝐻𝑘
𝑇(𝐻𝑘𝛴𝑋̅𝐻𝑘

𝑇 + 𝛴𝛥)−1(𝑦𝑘 − 𝑦̅𝑘)   (6.14) 

where 𝛴𝑋̅ = (𝑃(𝛿𝑋̂𝑘))
−1

 and 𝛴𝛥 = (𝑃(𝑉))
−1

 are the equivalent covariance 

matrices of the predicted state and measurement vectors. 



144 
 

6.2 Robust M-M Unscented Kalman Filter 

The above M-M estimator is related only to the measurement and predicted 

state vectors’ residuals rather than the state space model. The outliers of the 

dynamic model and the measurements are down weighted by their iterated 

residuals with the robust equivalent covariance matrices of both predicted state 

vector and measurement noise vector. Thus, the RMUKF can be derived by 

embedding the formulated robust covariance, which iteratively suppresses the 

effects of the outliers in both dynamic model and measurements. Considering 

the estimated state vector from a nonlinear state space model by the UKF 

expressed in eqs. (2.15) to (2.29) presented in Chapter 2, the residual vectors of 

the measurement and predicted state can be obtained using the estimated state 

vector below, 

𝑦̂𝑘 = ℎ(𝑋̂𝑘)        (6.15) 

𝑉𝑘 = 𝑦̂𝑘 − 𝑦𝑘        (6.16) 

𝑉𝑋̅𝑘
= 𝑋̂𝑘 − 𝑋̅𝑘       (6.17) 

where 𝑦̂𝑘 is the estimated measurement.  

Based on the M-estimation principle, the risk function is, 

𝑉𝑋̅𝑘

𝑇 𝑃̅𝑋̅𝑘
𝑉𝑋̅𝑘

+ 𝑉𝑘
𝑇𝑃̅𝑘𝑉𝑘 = 𝑚𝑖𝑛      (6.18) 
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where 𝑃̅𝑋̅𝑘
 and 𝑃̅𝑘 are the robust equivalent weight matrices of the respective 

predicted state and measurement vectors;  

An alternative expression of the risk function can be expressed as, 

𝑉𝑋̅𝑘

𝑇 𝛴𝑋̅𝑘

−1𝑉𝑋̅𝑘
+ 𝑉𝑘

𝑇𝛴𝑘
−1𝑉𝑘 = 𝑚𝑖𝑛     (6.19) 

where 𝛴𝑋̅𝑘
 and 𝛴𝑘  are the equivalent covariance matrices of 𝑋̅𝑘  and 𝑦𝑘 

respectively, with such elements as, 

𝜎𝑖
2 = 𝜆𝑖𝑖𝜎𝑖

2  𝜆𝑖𝑖 ≥ 1 

𝜎𝑗
2 = 𝜆𝑗𝑗𝜎𝑗

2 𝜆𝑗𝑗 ≥ 1

𝜎𝑖𝑗 = 𝜆𝑖𝑗𝜎𝑖𝑗

      (6.19a) 

where 𝜆𝑖𝑖 and 𝜆𝑗𝑗 denote the shrink factors, 𝜆𝑖𝑗 = √𝜆𝑖𝑖𝜆𝑗𝑗; 𝜎𝑖
2, 𝜎𝑗

2, as well as 𝜎𝑖𝑗 

are equivalent variances and covariance elements.  

The new covariance matrix has thus kept the original correlations unchanged, 

𝛴 = [
𝜎11

2 ⋯ 𝜎1𝑛
2

⋮ ⋱ ⋮
𝜎𝑛1

2 ⋯ 𝜎𝑛𝑛
2

] = [
𝜆11𝜎11

2 ⋯ 𝜆1𝑛𝜎1𝑛
2

⋮ ⋱ ⋮
𝜆𝑛1𝜎𝑛1

2 ⋯ 𝜆𝑛𝑛𝜎𝑛𝑛
2

]   (6.19b) 

It should be noted that the measurements are independent within the loosely 

coupled integration; the predicted state elements, however, are correlated. The 

traditional method normalizes the error equation, which not only requires 

additional calculation, but also transforms or masks the errors, and may result 

in conversion of the outliers to measurements or state elements. This 

conversion would lead to improper weighting for the measurements. To handle 
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the correlated predicted information, a bi-factor reduction model is employed 

to evaluate the weight matrix of the state: a matrix is similar to that used in 

correlated observations presented in (Yang et al., 2002). 

If both the predicted state and measurement vectors are assumed to be 

contaminated by outliers, the equivalent weight matrices of the measurements 

and the predicted state vector can be constructed as, 

𝑝̅𝑖𝑗 = 𝛾𝑖𝑗𝑝𝑖𝑗        (6.20) 

𝑝̅𝑥̅𝑖𝑗
= 𝛾𝑖𝑗𝑝𝑥̅𝑖𝑗

        (6.30) 

where 𝑝̅𝑖𝑗 and 𝑝̅𝑥̅𝑖𝑗
 are the elements of the respective weight matrix 𝑃̅𝑘 and 𝑃̅𝑋̅𝑘

; 

𝑝𝑖𝑗  and 𝑝𝑥̅𝑖𝑗
 are the 𝑖𝑗𝑡ℎ  elements of the measurement and predicted state 

vectors, 

𝑃𝑘 = 𝛴𝑘
−1        (6.31) 

𝑃𝑋̅𝑘
= 𝛴𝑋̅𝑘

−1        (6.32) 

and 𝛾𝑖𝑗 is the reduction factor of the weight elements, 

𝛾𝑖𝑗 = √𝛾𝑖𝑖𝛾𝑗𝑗        (6.33) 

𝛾𝑖𝑖 and 𝛾𝑗𝑗 are two reduction factors of the weight elements, the so-called bi-

factor, and the values for which can be, 
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𝛾𝑖𝑖 = {
1 |𝑣̃𝑖| ≤ 𝑐

|𝑣̃𝑖|

𝑐
|𝑣̃𝑖| > 𝑐

       (6.34) 

where 𝑐  is a constant, and a value in 1.0-1.5 is usually chosen ;  𝑣̃𝑖  is the 

standardized residual with, 

𝑣̃𝑖 = median|𝑉|/0.6745      (6.35) 

where 𝑉 is the residual vector of the measurement or the predicted state; and the 

constant 1/0.6745 is a correction factor for Fisher consistency at the Gaussian 

distribution (Fakharian et al., 2011). 

The equivalent weight matrix of the measurement is then in the form of, 

𝑃̅ = [

𝛾11 ⋯ 𝛾1𝑛

⋮ ⋱ ⋮
𝛾𝑛1 ⋯ 𝛾𝑛𝑛

] ∙ 𝑃      (6.36) 

The equivalent weight matrix of the predicted state vector can be obtained in 

the same form as eq. (6.36). Thus, the robust covariance matrix of the predicted 

state vector 𝛴𝑋̅𝑘
 and covariance matrix 𝛴𝑘  of the measurement vector are 

obtained, 

𝛴𝑋̅𝑘
= 𝑃𝑋̅𝑘

−1        (6.37) 

𝛴𝑘 = 𝑃̅𝑘
−1        (6.38) 

The robust estimates of the state vector and its covariance matrix then can be 

derived via eqs. (2.27) and (2.28), while the iterations can effectively suppress 

the influences of the outliers to the state estimate. 
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It can be found from the above derivation that the robust estimation process 

requires iteration at each estimation epoch. The estimated state vector at the 

first iteration acts as the reference for calculating the measurement residuals 

and predicted state residuals, based on which the robust equivalent weight 

matrices for M-M estimation are obtained. Figure 6.1 presents the estimate 

procedure of the RMUKF method. 

 

Figure 6.1 Flow chart for the RMUKF procedure 
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To summarize, the following characteristics can be stated,  

(i) The M-M estimation technique is not limited to linear models. It can be also 

applied to nonlinear models with unscented transform. 

(ii) The RMUKF can effectively attenuate the disturbances of the dynamic 

model and measurement outliers by an iteration procedure. 

(iii) The algorithm can be modified into an adaptive algorithm by adding an 

adaptive factor to the covariance matrix of the innovation vector if the 

measurement error is normal distributed. The equivalent weight matrix of the 

innovation vector can decrease the contribution of the dynamic model to the 

estimated state vector based on system discrepancy. 

(iv) The equivalent weight matrix determined by eq. (6.36) is symmetric and 

keeps the correlation coefficients of the original predicted state unchanged. 

(v) The derivation is carried out with a nonlinear state space model. In practice, 

however, it may appear that the state space model consisting of a nonlinear 

model and a linear model, for which the algorithm is also suitable for this 

situation.   

6.3 Computation and Analysis 

To verify the proposed RMUKF, a simulation and a field test were conducted. 

The loosely coupled integration strategy was used to fuse the GPS and IMU 

data. A nine-state nonlinear error model, presented in Chapter 3, was used as 
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the dynamic model equation. Data were processed using the Matlab R2010a 64-

bit program on a PC with Intel Core i7-3770 CPU at 3.40 GHz, 16-GB RAM 

equipped with Win10. 

6.3.1 Simulation Test 

The configuration for the simulation is listed in Table 6.1. Simulation duration 

is 549s. The measurement outliers, listed in Table 6.2, are manually input.  

 
Table 6.1 Simulation configuration 

gyro constant drift 100°/h 

angular random walk 5°/√h 

velocity random walk 1000 ηg/√Hz 

accelerometer bias 2000 ηg 

Initial position [22.31° 114.18° 41 m] 

Initial positioning error [1 m 1 m 3 m] 

Initial velocity error [0.2 m/s 0.2 m/s 0.2 m/s ] 

Initial Misalignment angle [-20° 37° 80°]  
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Table 6.2 Magnitude of input outliers 

Epoch 
East 

[m/s] 

North 

[m/s] 

Altitude 

[m/s] 

Latitude 

[m] 

Longitude 

[m] 

Altitude 

[m] 

150s + 4.8 - - + 10.01 - - 

200s + 1.33 + 0.97 - + 9.95 + 9.96 - 

300s + 1.13 - 0.92 - + 10.01 + 10.21 - 

450s + 0.44 - - + 9.95 - - 

138s - - - - - + 10 

 

The estimation results were compared with the simulated value (as the 

reference. The positioning errors of the simulation results in the three 

components are illustrated in Figure 6.2. Figure 6.3 is for the velocity error. It 

can be observed that the UKF result is sensitive to the outliers, and the error 

magnitude is more than 10 m in the longitude component, while that of the 

RMUKF is less than 5 m. The position error of the RMUKF is much smaller 

than that of the UKF, and its peak value is confined. This pattern is more 

obviously in the velocity estimation. The maximum errors of the UKF and 

RMUKF are plotted in Figure 6.4, which shows that the magnitude of estimate 

error of the RMUKF is smaller than that of the UKF. The RMSEs given in 

Table 6.3 show that the UKF and RMUKF have a similar performance in terms 

of position errors in the three components, however, the RMUKF suppressed 

the influences of the outliers and the velocity estimated from the RMUKF is 

superior to that of the UKF. 
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Figure 6.2 Position error of two filters in Latitude (a), Longitude (b), and 

Altitude (c) 
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Figure 6.3 Velocity error of two filters in East (a), North (b), and Altitude (c) 
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Figure 6.4 Maximum error of position (a) and velocity (b) of two filters 

 

Table 6.3 RMSE of UKF and RMUKF 

 
Latitude 

[m] 

Longitude 

[m] 

Altitude 

[m] 

East 

[m/s] 

North 

[m/s] 

Up 

[m/s] 

UKF 0.84 1.83 1.57 0.90 0.46 0.72 

RMUKF 1.21 1.10 1.75 0.40 0.30 0.30 
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6.3.2 Field Test 

The proposed RMUKF applied to IMU/GPS integrated vehicle navigation was 

also tested in field and the test lasted about one and a half hours. The IMU and 

GPS parameters and initial conditions are listed in Table 6.4. 

Table 6.4 IMU and GPS parameters and initial conditions 

IMU Sampling Frequency 100 Hz 

GPS Sampling Frequency 10 Hz 

IMU Accelerometer bias 500 µg 

IMU gyro bias 1 deg/h 

Initial Position Error [7 m, 7 m 7 m] 

Initial Velocity Error [0.1 m/s 0.1 m/s 0.1 m/s] 

Initial Attitude Error [10° 20° -15°] 

 

The robust equivalent weight function is applied in the M-M UKF. The 

estimated results are compared with GPS robust SPP solution, and the result of 

position errors are presented in Figure 6.5. It can be seen that the RMUKF 

position is much closer to the GPS measured position. Compared with those 

UKF results, the RMUKF restricted the positioning error. The velocity result 

presented in Figure 6.6 indicates that the RMUKF outperformed UKF, 

especially in the east component during the early period. The RMSE presented 

in Figure 6.7 also proves the superior performance of the RMUKF. 
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Figure 6.5 Position error of two filters at East (a), North (b), and Altitude (c) 
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Figure 6.6 Velocity errors of two filters at East (a), North (b), and Altitude (c) 
Components 
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Figure 6.7 RMSE of position (a) and velocity (b) 

 

6.4 Summary 

This chapter presented a robust Unscented Kalman filter based on the M-M 

estimation method. The filter can suppress the state outliers from both the 

dynamic model and the measurements and hence provides a robust solution in 

an iterative manner. Furthermore, the correlations between the predicted state 

elements are solved by a correlated bi-factor algorithm that keeps the original 
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simulation and field experiments. In the field test, the RMSE of RMUKF 

positioning estimate in East, North, and Altitude components are 0.31 meter, 

0.40 meter, and 0.63 meter correspondingly; while the RMSE of those of UKF 

are 0.32 meter, 1.25 meter, and 5.60 meter. The measurement outliers and 

uncertainties of the system are both handled well by the RMUKF, while the 

UKF result fluctuated with outlier and could hardly maintain the accuracy.  
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Chapter 7 Conclusions and Future Recommendations 

The main aim of the study is to investigate a robust and adaptive nonlinear filter 

to effectively improve the performance of GPS/IMU integrated navigation 

system. A comprehensive investigation the performances of various filters in 

the loosely coupled strategy have been conducted using both simulation and 

field tests.   

The main contribution of this research includes:  

(i) The correlational inference of the Kalman fileting method has revealed the 

fundamental relationship among the estimated state vector, the innovation 

vector and the predicted state vector, as well as their covariance and cross-

covariance matrices. The new expression of the state estimator can be easily 

expressed into the standard Kaman filter, EKF and UKF. In addition, the new 

target function of UKF is firstly presented, and the estimator is rigorously 

derived.  

(ii) Proposed an adaptive Unscented Kalman filter (AUKF) based on the 

correlational inference to deal with the contaminated predicted information and 

the nonlinear model with an adaptive factor which is constructed based on the 

system discrepancy at the present epoch. 

(iii) Developed a robust M-M UKF (RMUKF) to further reduce the influences 

of the measurement outliers, with the consideration of the dynamic disturbances 

and nonlinear model. The robust equivalent weight matrices of the predicted 
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state vector and measurement noise are constructed based on the residual 

vectors of the predicted states and measurements in an iterative manner. The 

correlations between the state parameters have been kept unchanged by using 

the bi-factor algorithm to construct the weight matrix. 

7.1 Conclusions 

The AUKF and RMUKF presented in this thesis improved the effectiveness and 

the accuracy of the UKF in the case of dynamic disturbances and system 

outliers. Kalman filtering is an effective and versatile method to estimate 

kinematic state from the measurements and dynamic model information in the 

integrated navigation systems. However, its functional models are based on the 

linear assumption, which are not very suited for real-world applications. To 

estimate nonlinear system states, the EKF has been widely applied. It 

analytically approximates the nonlinear equation by the first-order Taylor 

expansion. The cumbersome derivation and determination of the Jacobian 

matrix not only increases the complexity of the mathematical computation, but 

also introduces linearization errors. The UKF is another Gaussian 

approximation method that approximates a transformed probability statistically 

based on a set of sigma points.  

Kalman filtering and its alternatives are all based on the weighted least squares 

principle, which are susceptible to measurement outliers, the abnormal 

disturbances of moving vehicles or the uncertainties of the dynamic models, 

and also the model errors introduced from the linearization process. In this 



162 
 

research, the comparative studies for the UKF and EKF using different 

feedback modes were conducted, and test results revealed that the UKF 

outperformed the EKF. In the case of inaccurate stochastic information of 

physic or geometric errors of a dynamic model, the adaptive estimation 

introduced for this study is used to address the nonlinear model problems and 

dynamic model abnormality. In addition, the robust adaptive UKF introduced is 

to attenuate the influences of measurement outliers and stochastic uncertainties 

of the dynamic model on state estimates. 

The following conclusions can be drawn from the theoretical analysis, 

simulation and field tests: 

The Kalman filter derived using a correlational inference is very flexible and 

furthermore, the standard Kalman filter and the UKF can be easily 

accomplished in the same framework. The statistical relationships between the 

UKF and Kalman filter are thus obtained by the correlational inference. The 

performance of the UKF and EKF were analytically analyzed. The UKF uses 

the UT technique to approximate the predicted state vector 𝑋̅𝑘  with its 

covariance matrix 𝛴𝑋̅𝑘
. In contrast, the EKF acquires the predicted state vector 

𝑋̅𝑘  with its covariance matrix 𝛴𝑋̅𝑘
 using the analytical method, variance-

covariance propagation law, together with linearization. The performance of 

prediction accuracy of two approaches was also compared. The Monte Carlo 

approach was used to provide the reference information for this comparison. 

The simulation and field tests with different feedback modes, such as direct and 
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indirect modes, in which the former uses the nonlinear state space model and 

the latter uses the linear state space model, were used to compare the overall 

performance of the UKF and EKF. The UKF has a better performance in 

nonlinear state estimation, while the EKF requires the linearize model to 

propagate the state mean and covariance matrix. Therefore, the UKF is easier in 

model design. The trace of the covariance matrix of the predicted UKF state is, 

in theory, larger than that of the EKF. This suggests that the UKF places less 

weight on historical information to reduce the contribution of the dynamic 

model information to the state estimates. Furthermore, the sigma points used in 

the UKF are sampled according to the updated state covariance matrix, which 

indicates that the predicted state parameters and their covariance matrix are 

closely related to the updated information. It is also noted that the estimation 

process of the EKF is less complicated than that of UKF. 

The adaptive UKF (AUKF) was derived based on the correlational inference. 

From the theoretical point of view, the AUKF improved the performance of the 

filter in dealing with contaminated predicted state parameters and nonlinear 

models. If the predicted state has been seriously contaminated or the statistical 

information is insufficient for an accurate description of the present situation, a 

pertinent adaptive factor can effectively balance the contribution between the 

updated parameters and measurements by reducing the weight of the 

contaminated predicted information. Thus the influences of the contaminated 

dynamic model information are controlled by the adaptive factor. The adaptive 

factor is obtained from the innovation vector at the present epoch, which avoids 
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the storage of innovation sequences and is more sensitive to the discrepancy of 

the predicted system state parameters and those estimated from the 

measurements. Both simulation and the field test, using loosely coupled 

configuration with a nonlinear dynamic model, have shown that the AUKF has 

superior performance in velocity and positioning parameter estimates, 

compared to the UKF.  

The robust adaptive UKF based on the M-M estimation method can suppress 

the effects of both dynamic model disturbances and measurement outliers on 

the state estimates, and also provide a robust solution in an iterative manner. 

Furthermore, the correlations of the predicted state parameters are rigorously 

taken into account by the correlated bi-factor algorithm, in which the original 

correlations of the predicted parameters have been kept unchanged. The 

performance of the robust M-M UKF (RMUKF) was tested also by a 

simulation and a field test. The measurement outliers and dynamic model 

disturbances as well as the stochastic model uncertainties, were well handled by 

RMUKF.  

7.2 Recommendations 

Based on the studies in this thesis, the following recommendations for future 

work are suggested. 

In urban canyons, the lack of GNSS observations is the main factor affecting 

the accuracy of a GNSS/IMU integrated navigation system, especially in the 

case that the integrated system uses low-cost inertial sensors. Such a system 
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suffers from low precision and high sensitivity to surrounding environment. 

The accuracy of the system degrades quickly during outage of satellite signals 

due to the accumulation of IMU errors. The horizontal or vertical constraints, 

such as the known lateral and vertical acceleration components, should be taken 

into account in the state estimation, which will be known as constrained UKF. 

This topic could contribute to further study in for improvements of the 

navigation accuracy. 

The tightly coupled integration GNSS/IMU strategy has the advantages that 

GNSS raw measurements are involved in the positioning solution. A robust 

tightly coupled integrated navigation strategy can be another research direction, 

especially as regards multiple GNSS signals integrated with inertial navigation 

system. It is expected that the robust coupled integrated navigation can be 

effective in improving the reliability of kinematic state estimation as well as the 

continuity of navigation solutions. 

The robustness of the integrated system can be further improved by the 

inclusion of a new data source, such as map information, new sensors, and 

vision inputs. The new data sources, not only improve the availability, accuracy 

and reliability, but also the robustness owing to the redundant measurements.  

The proposed algorithm can be further extended to smart phone positioning, in 

which the consumer grade IMU and radio signals as well as GNSS signals are 

integrated for the estimation or tracking of the phone position. The adaptive 

robust algorithm proposed in this study can be applied in improving the 
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performance of the smart phone positioning by rebalancing the weights among 

various measurements as well as the dynamic model information. 
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