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ABSTRACT 

Many real-world relational data can be modeled as graphs that contain vertices and 

edges representing, respectively, data entities and their relationship. One of the most 

important tasks is to discover graph clusters or communities, which are interesting 

subgraphs in the graph data. To find such clusters in graph data, many computational 

methods have been proposed. Most of the prevalent approaches discover graph clusters 

taking into the consideration either different topological properties of the graph, e.g., 

density, and modularity, or vertex attributes. However, effective computational 

approaches for discovering clusters in graphs, which consider both topology and 

attribute as factors are not many. In this thesis, we propose to discover graph clusters 

using the Attributed Graph, which contains a set of vertices, edges, and attributes that 

are associated with vertices. Combining the edge structure with the attribute, it is 

possible for a computational method to discover clusters in the attributed graph, taking 

into the consideration edge structure and attributes. Based on the Attributed Graph, we 

propose four different algorithms. Each of these four algorithms has their unique 

characteristics and may address the existing challenges in graph clustering. To discover 

interesting subgraphs in which vertices are inter-related, we propose an algorithm for 

identifying interesting sub-graphs making use of both edge structure and the degree of 

attribute association between pairwise vertices (MISAGA). MISAGA formulates the 

task of discovering k sub-graphs as a constrained optimization problem and solves it by 

identifying the optimal affiliation of sub-graphs for the vertices through an iterative 

updating algorithm. In each of the interesting sub-graphs found by MISAGA, vertices 

are densely connected and their attribute values are significantly associated, although 

their attribute values might not be the same. As there are no very effective graph 

clustering algorithms that are based on fuzzy set theory, we propose an algorithm for 

discovering fuzzy structural patterns in attributed graphs (FSPGA). FSPGA adopts an 

effective fuzzy clustering framework to allow overlapping clusters to be identified. As 

the identified clusters in some real applications, e.g., functional modules in biological 
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graphs, need to be connected components, we further propose two more algorithms, 

called EGCPI and TBPCI for identifying clusters of interest. Different from other 

approaches, EGCPI formulates the task of discovering clusters in the attributed graph 

as an optimization problem and tackles it with evolutionary clustering. It can identify 

those sub-graphs in which vertices are densely connected as well as their attributes are 

more similar. TBPCI identifies clusters utilizing local information of vertex 

connectedness and the attribute association between pairwise vertices in attributed 

graph. TBPCI may compute the optimal degree of boundedness between each pair of 

vertices which may capture how strong the vertices can be considered as bounded 

together. Then the clusters can be identified by grouping those vertices sharing degrees 

of boundedness which are sufficiently strong. The proposed algorithms have been used 

in different real-world applications, including community detection in social network 

graphs and functional modules identification in biological network graphs. The 

experimental results show these proposed algorithms outperform state-of-the-art 

approaches. 
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1. INTRODUCTION 

Many real relational data can be modeled as graphs containing a set of vertices and 

edges representing the data entities in the dataset and interconnection between the 

entities. Compared with the random graphs in which vertices are connected with their 

neighbors under nearly the same probability, graphs constructed based on real-world 

data are not random and always possess some special hidden structures [33]. These 

featured structures are sometimes called Community Structure [39]. In graph analytics, 

typically one of most crucial tasks is to identify community structure containing a 

number of graph clusters, or communities, which are interesting sub-graphs in which 

vertices are cohesively inter-related. Such interesting sub-graphs might be named 

particularly in a specific application. For example, in social network analysis, the 

discovering of clusters of interest is called social community detection. Similarly, in 

biological network data, e.g., protein-protein interaction (PPI) networks, the 

identification of such interesting sub-graphs is named as the identification of functional 

modules. How to discover such clusters in different types of graph data has drawn much 

attention in the recent [33] [58]. To discover clusters in graphs, different information 

can be utilized. Not surprisingly, most proposed approaches detect graph clusters 

mainly using pre-specific topological properties of the graph, e.g., edge centrality [39], 

modularity [76], and edge density. Hence, the graph constructed based on the data 

contains only vertices and edges, which represent data entities and the inter-connections 

between them. While, some other algorithms, discover these graph clusters using 

attribute values associated with the vertices. The discovered clusters contain vertices 

whose attribute values are more similar. Though effective methods to some extent, these 

algorithms might overlook some interesting clusters as they do not take into 

consideration various information stored in the graph data. 
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In this thesis, we attempt to combine both topology and attribute information that is in 

the graph and address the challenges existing in the state-of-the-art. Hence, we propose 

to discover clusters in the Attributed Graph, which contains vertices, unidirectional 

edges, and attributes values, which represent the data entities, the inter-connections 

between data entities, and features that may describe the entities, respectively. 

The rest of this section is organized as the following. In Section 1.1, the challenges 

existing in the state-of-the-art of graph clustering that may motivate us to propose more 

effective computational methods are illustrated. In Section 1.2, what sub-graphs are 

identified as clusters in attributed graphs is introduced. In Section 1.3, the algorithms 

that may address the challenges are introduced. In Section 1.4, we give the organization 

of the thesis. 

1.1. Motivation 

As mentioned, many real applications, such as social community detection, functional 

module identification, and document segmentation, are trying to find meaningful 

clusters in the graph constructed by different types of relational data. Thus, the 

discovering of clusters in graphs has drawn much attention in the recent. And there have 

been a number of approaches tackling this problem proposed. Most of these proposed 

algorithms, e.g., CNM [17], BGLL [8], CPM [80], AP [35], Link-Com [1], SC [57], and 

MMSB [2], may discover clusters in graphs mainly using the pro-specific topological 

properties of the graph, e.g., edge density, and modularity. 

There are some other algorithms which may discover graph clusters only using the 

attribute values associated with the vertices. For examples, k-means [73], MAC [36], 

and k-SNAP [95] can detect meaningful graph clusters based on the degree of 

similarities computed based on the attribute values associated with the vertices. 
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Besides, there have been some attempts to detect clusters in the attributed graph. For 

examples, SA-Cluster [112], Inc-Cluster [113], EDCAR [41], GBAGC [104], CESNA 

[110], and Circles [74] may discover the clusters in which vertices are densely 

connected and their attribute values are relatively more similar. Most of these 

mentioned algorithms may discover disjoint graph clusters only. 

Though these mentioned algorithms are effective to some extent, we find the following 

challenges existing in graph clustering which may motivate us to develop more 

effective and efficient algorithms. 

First, though utilizing different techniques, most algorithms perform the task of 

discovering clusters taking emphasis more either on some predefined topological 

properties of the graph or on the similarity of attribute values associated with the 

vertices. While algorithms that take into consideration both the aforementioned as 

measures for cluster identification are not many. As a result, there might be some 

meaningful graph clusters, e.g., social communities in a social network graph, protein 

complexes in a PPI network graph that cannot be discovered.  

Second, though some graph clustering algorithms can discover clusters taking into 

consideration graph topology and attribute information, the attribute values associated 

with vertices may not be fully utilized as they consider only those similar attribute 

values rather than related ones. Hence, some interesting sub-graphs with vertices 

possessing different but related attribute values may not be identified effectively. 

Third, though some algorithms utilize both graph topology and attribute information to 

identify clusters in a graph, strengths of topology and attributes values that may 

determine the cluster membership may not be truly revealed. For example, FCAN [44] 

may detect clusters by segmenting a data matrix in which each element represents the 
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strength of the relationship between pairwise data points. The entries of the data matrix 

are obtained by adding the binary value and the degree of similarity representing the 

connection and attribute similarity between pairwise vertices, respectively. This may 

also degrade the quality of detected graph clusters. 

Forth, most algorithms for detecting graph clusters are partition-based. In other words, 

they cannot identify overlapping clusters in a given graph. These overlapping sub-

graphs might be more desirable in some graph data, e.g., communities in social 

networks are sometimes overlapping. 

Fifth, techniques that can be used for identifying clusters utilizing both topological 

properties of the graph and attribute information still need developing. For example, 

there are no effective fuzzy-based algorithms that can identify overlapping clusters in a 

network graph. 

1.2. Problem of clustering in attributed graphs 

Different from clusters in graphs containing vertices and edges only, ones in attributed 

graphs are discovered by taking into the consideration topological and attribute 

properties. Therefore, how to define sub-graphs to be clusters of interest are the 

premises of mining clusters in the attributed graph. There have been several measures 

proposed to define what sub-graphs can be categorized into the clusters. For examples, 

in model-based algorithms like the ones in [104], [110], and [74], clusters are defined 

as those sub-graphs in which vertices share the maximum probabilities of being 

connected and homogeneous attribute values being associated. In density-based 

methods like the one in [41], clusters are defined as those sub-graphs in which vertices 

have the relatively high density of inter-connections and homogeneous attribute values. 

Though different names proposed in different works, sub-graphs which can be clusters 

of interest can be identified by using measures concerning both topology and attribute 
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carried by the attributed graph. Hence, in this thesis, we are considering to define the 

sub-graphs satisfying the following measure of interestingness to be clusters. A sub-

graph in an attributed graph is seen as a cluster if its vertices are densely connected and 

attribute values associated with the vertices are inter-related. It should be noted that 

inter-related attribute values may not be necessarily the same. Given this definition, 

vertices in a cluster in the attributed graph are cohesively inter-related not only 

topologically, but also characteristically. All the methods proposed in this thesis aim at 

identifying such sub-graphs in the attributed graph as clusters, utilizing different 

computational techniques. 

1.3. An overview of solutions 

Given the challenges also the motivations mentioned, we propose to perform the task 

of mining graph clusters using the Attributed Graph. Apparently, the discovering of 

clusters in an attributed graph is different from that in a traditional graph as attributes 

are associated with vertices. To discover clusters in an attributed graph, the crucial task 

is to identify the strength between pairwise vertices resulting from the associated 

attributes. To fulfill the mentioned task, we propose to identify such strength using 

different measures. One measure for quantifying the strength of attributes assigned to 

pairwise vertices is called the degree of attribute homogeneity, which is based on the 

Jaccard Similarity. The degree of attribute homogeneity becomes higher when there are 

more similar attributes associated with pairwise vertices. The other we further propose 

to use is a probabilistic measure which may identify patterns indicating pairwise 

attributes are significantly associated. The discovery of significant associations 

between pairwise attributes may filter out those unrelated attributes associated with 

pairwise vertices. Utilizing these identified significantly associated attributes, one may 

reveal the degree of attribute association between pairwise vertices. To obtain such 

degrees, we propose to use either an information theoretic measure [73] or a cosine 
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similarity measure to compute the total degree of attribute association between pairwise 

vertices. Combining with the edge structure, it is possible for a computational method 

to discover clusters in the attributed graph, taking both edge structure and attributes into 

the consideration. 

After transferring a network graph to an attributed graph, we attempt to propose four 

algorithms to discover clusters, utilizing both graph topology and attribute information. 

These four algorithms may mine clusters in the attributed graph by making use of 

different optimizing techniques. 

First, we propose MISAGA, which is an algorithm for identifying interesting sub-

graphs in attributed graphs making use of both edge structure and the degree of attribute 

association between pairwise vertices. MISAGA formulates the task of discovering 

clusters as a constrained optimization problem and solves it by identifying the optimal 

affiliation of sub-graphs for the vertices in the attributed graph through an iterative 

updating algorithm. 

Second, we propose FSPGA, which is an algorithm for detecting clusters in attributed 

graphs making use of fuzzy clustering. FSPGA adopts an effective fuzzy clustering 

framework to allow overlapping sub-graphs to be identified, which is very significant 

in some of the real applications, e.g., community detection in social network analysis. 

Third, we propose EGCPI, which is an efficient algorithm for the identification of 

interesting sub-graphs based on evolutionary clustering. EGCPI formulates the task of 

discovering clusters in the attributed graph as an optimization problem and tackles it 

with evolutionary clustering. By using the edge structure and the degree of attribute 

homogeneity measure, it can identify those sub-graphs in which vertices are densely 

connected, as well as the attributes of vertices, are more similar. 
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At last, we propose TBPCI, which is an algorithm to identify clusters in attributed 

graphs taking into the consideration both graph topology and significant attribute 

associations. TBPCI identifies clusters utilizing local information of vertex 

connectedness and the degree of attribute association between pairwise vertices in 

attributed graph. TBPCI may compute the optimal degree of boundedness between each 

pair of vertices which may capture how strong the vertices can be considered as 

bounded together. Then the clusters can be identified by grouping those vertices sharing 

degrees of boundedness which are sufficiently strong. 

The proposed algorithms have been used in different applications, including community 

detection in social networks and functional modules identification in biological network 

graphs. The experimental results show these proposed algorithms outperform state-of-

the-art approaches. 

1.4. Thesis organization 

To illustrate how we address the challenges mentioned, we organize the rest of the thesis 

as the following. 

In Section 2, we present the overview of the previous works that are related to detecting 

clusters in graphs. These related works are categorized based on their features, e.g., 

topology/attribute based clustering and graph clustering using the techniques of 

computational intelligence. In addition, we introduce different real problems that can 

be solved by those mentioned algorithms. 

In Section 3, how to represent an attributed graph and how to determine the strength in 

terms of attribute values between pairwise vertices are introduced. These mentioned 

issues are used by the proposed algorithms in this thesis. 
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In Section 4, we present the reason why MISAGA is proposed at first. Then, how 

MISAGA formulates mining clusters in the attributed graph as a constrained 

optimization problem and how to solve the problem by using an effective iterative 

updating algorithm are presented. In addition, the experiments that may test the 

efficiency and effectiveness of MISAGA and other baselines are presented. 

In Section 5, we present the background under which we propose the algorithm FSPGA 

at first. Then, how FSPGA formulates the discovering of clusters in attributed graphs 

as a fuzzy optimization problem, and the experiments which may test the efficiency and 

effectiveness of FSPGA and the compared baselines are introduced. 

In Section 6, we present the algorithm EGCPI, which is an evolutionary algorithm for 

detecting clusters in the attributed graph. The background under which we propose the 

algorithm, the details of EGCPI, and how to test the effectiveness of EGCPI and other 

baselines, using the experiments related to the real application, i.e., protein complex 

identification, are presented. 

In Section 7, we present the algorithm TBPCI, which is an algorithm for identifying 

interesting sub-graphs making use of local information on topology and associated 

attribute values. The details of the proposed algorithm and how to test the effectiveness 

of the proposed algorithm and other baselines, using the experiments related to the real 

application, i.e., functional modules detection in biological graphs, are presented. 

At last, in Section 8, we summarize the contributions of the thesis and propose future 

works. 
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2. OVERVIEW OF THE RELATED WORK 

To discover clusters in graphs, several algorithms have been proposed. Though different 

computational methodologies might be utilized, these algorithms can be categorized 

according to the specific properties that are considered, the techniques that are used, 

and the particular field into which they are applied. In this section, the state-of-the-art 

related to discovering clusters in graphs are introduced categorically. 

2.1. Graph clustering algorithms 

To detect meaningful clusters in the graph data, there have been several so-called graph 

clustering algorithms proposed. These algorithms can be categorized based on the 

information of graph data they utilize. 

2.1.1. Topology-based graph clustering 

Unsurprisingly, most algorithms detect graph clusters based on pre-specified topologies 

or edge structures, such as the vertices being more densely connected within the same 

cluster than those belong to other clusters. For example, in [39], an algorithm that 

detects communities based on specific requirements on edge centrality is presented. In 

[76], another measure, called modularity, which is defined as a function of the 

differences in density within and between graph clusters and a null-graph (in which 

vertices are connected randomly) is proposed. Based on it, several algorithms, such as 

CNM [17] and BGLL [8], are developed to search for graph clusters based on the 

optimization of modularity. In [40] and [34], the formalism of a random graph is 

introduced. This formalism shows clusters smaller than a certain size cannot be detected 

by these algorithms that detect for clusters based on modularity optimization. Though 

there are some limitations, these modularity-based algorithms can detect graph clusters 

in very large network graphs whose size is more than 1,000,000 vertices. 

Besides modularity optimization, there are other algorithms that can detect graph 
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clusters based on other properties of the graph. In [80], for example, an algorithm is 

proposed to detect graph clusters based on the concept of a clique using a clique 

percolation method (CPM). In [35], a graph clustering method called affinity 

propagation (AP) is proposed to detect clusters based on the similarities between cluster 

centers and other vertices. In [1], a method is proposed to detect graph clusters by 

introducing the concept of a link graph to facilitate optimization of edge densities. In 

[57], given vertices in the same cluster may share similar edge structure, spectral 

clustering is proposed to consider normalized cuts [89] for cluster identification. In 

[107], a semi-supervised algorithm for detecting clusters in graphs is proposed. Besides 

of making used of spectral techniques, the proposed algorithm also utilizes the prior 

knowledge determining the cluster affiliation of some vertices to obtain a better result. 

In [2] and [53], two approaches based on the Mixed Membership Stochastic 

Blockmodels (MMSB) are proposed, respectively to detect graph clusters by optimizing 

the posterior probability that a pair of vertices are actually connected. The higher the 

probability, therefore, the greater the sub-graph density. There are some algorithms for 

detecting graph clusters based on other techniques. In [108], a model based algorithm 

called CoDa is proposed to detect communities in graphs. Modeling the discovering of 

communities as identifying the community affiliations of each vertex, the best 

affiliation can be identified by optimizing the posterior probabilities that are used to 

represent the possibility that vertices belong to a community in a generative model. 

There are also some graph clustering algorithms that can discover graph clusters based 

on frequent patterns hidden in the graph, e.g., frequent sub-structure patterns [111]. For 

example, in [94], an algorithm is proposed to discover graph clusters by grouping the 

vertices sharing the predefined largest pattern of sub-structure. 

2.1.2. Attribute-based graph clustering 

Identification of clusters that is based solely on graph topologies does not take into 
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consideration attribute values associated with the vertices. In the case that such attribute 

values are useful for the discovering and understanding of the sub-graphs identified, 

many graph clustering algorithms cannot be used. 

To consider attributes in graph clustering, some attempts have been made to make use 

of the k-means algorithm [73] to group vertices with the higher similarity of attributes 

into the same clusters. In [36], an algorithm (MAC) that is based on probabilistic 

generative model is proposed for clustering vertices that are labeled with Boolean 

attribute values. In [95], a graph summarization algorithm called k-SNAP is proposed 

to detect graph clusters by grouping vertices into the same cluster according to a 

similarity measure of the attribute values. 

2.1.3. Graph clustering using graph topology and attribute 

Those graph clustering algorithms that take into consideration either topological 

properties of the graph or attributes associated to vertices are not very well suited for 

the task of discovering meaningful clusters in the graph because they take more 

emphasis either on graph topology or attributes associated with the vertices, but 

overlook the other. 

To consider both attributes and structures in graph clustering, several algorithms can be 

used. In [112], SA-Cluster is proposed to detect graph clusters using a neighborhood 

random walk model. Based on it, cluster membership of each vertex is determined at 

the time that the transition matrix reaches steady-state. In [113], inc-Cluster is proposed 

using the same random walk model as the SA-Cluster except that its efficiency is 

improved using an incremental method to compute the transition matrix. In [41], 

EDCAR is proposed to mine sub-graphs by grouping together vertices that are densely 

connected and share similar attribute values. In addition to graph structures, these 

algorithms are able to take into consideration vertex attributes. However, they are more 
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graph partitioning algorithms that are not developed to discover overlapping sub-graphs. 

Thus, interesting graph clusters may sometimes be overlooked. 

In addition to the above algorithms, some algorithms detect graph clusters by utilizing 

generative models. In [104], a general Bayesian model for graph clustering (GBAGC) 

is proposed to make use of a Bayesian generative model to estimate structural and 

attribute similarity of pairwise vertices in each cluster. A number of disjoint graph 

clusters are obtained after all parameters are estimated. In [110], an algorithm, called 

CESNA, is proposed to make use of a statistical model to determine the posterior 

probability that pairwise vertices are connected given particular edge structures and 

attributes in a graph cluster. Cluster membership is determined when the posterior 

probability is maximized. In [74], an algorithm called Circles is proposed to detect 

clusters in social network graphs. By taking user profiles as attributes, Circles 

determines cluster membership by estimating the similarity between user attributes and 

those which are commonly observed in members of each cluster. The cluster 

membership of a vertex is determined to be those that are predicted to have higher 

similarities with other vertices in the same clusters. In [44], FCAN is proposed to 

discover graph clusters in the complex network by using both link structure and relevant 

content associated with vertices. FCAN may detect clusters by segmenting a data matrix 

in which each element represents the strength of the relationship between pairwise data 

points. The entries of the data matrix are obtained by adding the binary value and the 

degree of similarity representing the connection and attribute similarity between 

pairwise vertices, respectively. 

Inspired by topic modeling [10], several topic-model-based approaches, such as Link-

PLSA-LDA [77], Relational Topic Model [18], iTopicModel [90], PL-DC [109] and 

Block-LDA [11] can also be used to identify graph clusters mainly in document 
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networks with words as attributes of vertices and citations as edges of an attributed 

graph. With these topic-model-based approaches, cluster membership is determined by 

maximizing the probability that vertices in the same cluster labeled with the same topics. 

However, due to rather high demand for computational resources, these topic-model-

based approaches are not developed to handle large attributed graphs [110]. 

2.2. Detecting graph clusters using computational intelligence 

Besides those mentioned graph clustering algorithms, there have been several 

algorithms which may detect graph clusters based on different techniques of 

computational intelligence. Generally speaking, evolutionary computation and fuzzy 

set theory have been used to develop the approaches to detecting clusters in graph data. 

2.2.1. Evolutionary graph clustering 

As the problem of graph clustering can be formulated as an optimization problem with 

relatively clear objectives, evolutionary algorithms (EAs) have been used to tackle the 

problem. Recently, there have been some effort to detect community structures using 

genetic algorithms (GAs) and the approach has been shown to be very effective. 

The first successful GA application for community detection is described in [96]. The 

approach makes use of the modularity measure as the fitness function so that it can be 

optimized. To eliminate communities with relatively lower modularity scores and 

uniqueness at the end of each reproduction cycle, an information theoretical measure is 

used to eliminate communities with relatively lower modularity scores and uniqueness. 

As a result, the quality of the final communities detected can be enhanced. 

Another GA developed to detect community structures was proposed in [59]. It takes 

into consideration Silhouette Width [86], normalized cut [89] and the modularity 

measure in a fitness function used to guide the evolutionary process. To facilitate the 
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exchange of community structures, this GA also makes use of a special crossover 

operator. Even though the operator slows down the evolutionary process, it allows for 

a greater diversity of community structures. 

Other than detecting graph clusters using single-objective evolutionary algorithms, 

multi-objective evolutionary algorithms can also be used for detecting graph clusters. 

For example, a multi-objective GA for detecting communities is proposed in [81]. Other 

than the modularity measure, the fitness of a community structure is evaluated based 

also on the use of another benchmark called community fitness [60]. Partitioning of a 

complex network has to allow both the two objectives to be optimized. Another 

example of multi-objective EA for graph clustering is proposed in [61], which is called 

MEAs-SN. MEAs-SN is a multi-objective evolutionary algorithm which can detect 

social clusters with more intra-positive edges as well as more negative edges between 

clusters. In [19], another evolutionary algorithm (DCRO) for detecting graph clusters 

is proposed. Different from MEAs-SN, DCRO detects graph clusters based on an 

efficient multi-objective evolutionary algorithm called Chemical reaction optimization 

(CRO) [12]. 

Besides the above evolutionary algorithms, there have been some attempts to detect 

graph clusters considering both network topology and attribute information. For 

example, an evolutionary community detection algorithm, called ECDA [45], is 

proposed to detect for communities in social networks by considering network 

connections and attribute labeled to each pair of vertices. 

2.2.2. Fuzzy graph clustering 

Besides above approaches, algorithms based on fuzzy techniques can also be applied to 

find graph clusters taking into consideration attributes associated to the vertices. For 

example, the classical fuzzy c-means algorithm [9] can discover graph clusters by 
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grouping those vertices with similar attributes together. In addition, other fuzzy 

clustering algorithms which are based on the fuzzy c-means model, such as relational 

fuzzy c-means algorithm [43] and improved fuzzy c-means algorithm [54], can also be 

used to detect clusters given the similarity of attribute values between pairwise vertices. 

Though adopting different techniques to detect graph clusters, most existing 

evolutionary algorithms for detecting graph clusters make use of various topological 

properties of networks when performing their tasks. While, those fuzzy algorithms for 

clustering in graphs mainly perform the task by taking into the consideration the 

similarity of attribute values between pairwise vertices. Thus, they also can be seen as 

graph clustering algorithms based on either graph topology or attribute values. 

2.3. Graph clustering in real applications 

As mentioned above, there are several real problems that can be solved as clustering in 

graph data. Given the state-of-the-art, two dominant applications are always 

investigated, including social community detection and functional module detection in 

biological graphs. Based on the characteristics of the applications, algorithms that are 

applied into real problems might be slightly different. 

2.3.1. Social community detection 

Social community detection is one of the most important applications of social network 

analysis. Many algorithms are proposed to solve the problem of community detection 

in social graphs. For examples, CoDa [108], Circles [74], ECDA [45] are three 

algorithms for detecting communities in social graphs. Besides, algorithms like CNM 

[17], BGLL [8], SA-Cluster [112], inc-Cluster [113], EDCAR [41], and CESNA [110] 

can also be used for social community detection. It is said that, most graph clustering 

algorithms are capable of performing the task of discovering meaningful communities 

in social graphs. 
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2.3.2. Graph clustering in PPI networks 

Recently, protein complex (functional module) identification in protein-protein 

interaction networks has also drawn much attention due to its important role in the 

understanding of cellular organizations and functions, such as replication, transcription 

and the control of gene expression, etc. [46]. A protein complex is a biomolecule that 

contains a number of proteins connecting with each other to perform cellular functions 

[91]. Based on the definition of the protein complex, it is also a sub-graph of interest 

existing in the PPI network graph. Due to the uniqueness of protein complex 

identification, e.g., proteins in a protein complex are always connecting with each other, 

algorithms for protein complex identification might not always the same to those 

general graph clustering algorithms. Thus, the state-of-the-art for protein complex 

identification should be investigated separately. 

To identify protein complexes on a large scale, time-consuming laboratory experiments, 

such as affinity purification (AP) followed by mass spectrometry (MS), have to be 

performed [38], [46]. Though effective, AP/MS cannot be considered as an efficient 

method as it requires a number of different steps to be carried out with different baits 

every time [28]. 

To minimize the laborious trials-and-errors procedures, some attempts to identify 

protein complexes computationally have recently been made [51] [62]. Most of these 

computational methods are developed based on different graph clustering algorithms. 

Due to some evidence of proteins in protein complexes tending to interact more with 

each other, many algorithms for protein complex identification aim at identifying 

densely connected sub-graphs by considering some graph properties, e.g., modularity 

and density, as protein complexes [87], [97], [114]. For example, one of the most 

popular graph clustering algorithms that are used for protein complex identification is 

MCODE [13]. MCODE can identify sub-graphs that contain densely connected vertices 
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in a PPI network graph as protein complexes, by taking into consideration local 

neighborhood density. 

Other than MCODE, another graph clustering algorithm called the MCL algorithm [29] 

has also been used for the identification of protein complexes. The MCL algorithm also 

discovers densely connected sub-graphs except that it does so by making use of a 

random-walk approach through simulating flow expansion and contraction [30] using 

what are called expansion and inflation operators. A number of dense clusters can be 

extracted from the incidence matrix of a PPI network graph when MCL achieves 

convergence. 

Another dense sub-graph identification algorithm, called RNSC [55] is proposed to 

identify protein complexes in PPI network graphs through graph partitioning. RNSC 

attempts to find an optimal set of partitions of a PPI network graph by employing 

different cost functions that are defined in terms of edge density, cluster size, and 

functional homogeneity. The graph partitions that are identified can correspond well 

with protein complexes. An algorithm that is similar to the RNSC is proposed in [31]. 

The algorithm also attempts to find protein complexes by partitioning a PPI network 

graph but it uses a minimum vertex-cut to identify cluster boundaries so that the vertices 

in each graph partition tend to connect more with other vertices that are in the same 

partition. 

In [52], an algorithm called SPICi is proposed to identify protein complex by 

considering the local density of a PPI network. Comparing with other density-based 

graph clustering algorithms, SPICi can be shown to be a very fast algorithm for protein 

complex identification. In [115], an algorithm called DCU is proposed to detect protein 

complexes utilizing an uncertain graph model. DCU utilizes two measures when 

identifying protein complexes. One of them is called the relative degree measure. It is 
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used to determine whether a protein belongs to a sub-graph. The other is called the 

expected density measure. It is used to determine whether a dense sub-graph satisfies 

with the minimum density to be identified as a protein complex. 

Other than edge density, some graph clustering algorithms perform their tasks by 

considering other graph properties and some of these algorithms have also been used 

for protein complexes identification in PPI networks. For example, a graph clustering 

algorithm called DPClus [3], can discover and refine graph clusters by keeping track of 

cluster periphery. This DPClus algorithm is later improved to enhance computational 

efficiency in another algorithm called IPCA [63]. IPCA finds graph clusters based on a 

vertex distance and a density measure. 

Another example of an algorithm that finds graph clusters based on graph properties 

other than edge-density is CFinder [4]. CFinder identifies graph clusters based on clique 

percolation and the graph clusters identified correspond well to known protein 

complexes. Similar to CFinder, the CMC algorithm also finds graph clusters based on 

the discovering of cliques [64]. By iteratively assigning weights which indicate the 

reliability of interactions between proteins, CMC attempts to find cliques that have the 

highest value of such weights. Other than CMC, another clique-based algorithm called 

IPC-MCE is proposed in [65]. The algorithm takes each maximal clique identified as 

the core of a protein complex. It then extends the core by including those “peripheral” 

proteins that are determined to have a higher probability to connect to the core. 

In [100], an algorithm called COACH is proposed to find protein complexes making 

use of a different graph property, i.e. core-attachment. In [82], another core-attachment-

based algorithm called WPNCA is proposed. Different from COACH, WPNCA utilizes 

a Pagerank-nibble algorithm to assign a weight to each interaction in a PPI network to 

obtain a better performance. 
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Most graph clustering algorithms do not discover overlapping clusters and cannot be 

used to identify overlapping protein complexes. There are some exceptions, however. 

For example, an algorithm proposed in [116] can detect overlapping protein complexes 

based on a generative network model. Another algorithm called ClusterONE [78] can 

also do so using a measure called graph cohesiveness. 

As there is some evidence of proteins belonging to the same protein complex 

performing similar or related functions [101], there are also some attempts to identify 

protein complexes that can take into consideration information about protein attributes 

rather than topology only. For example, in [66], PCIFI identifies protein complexes 

based on finding connected proteins that perform interdependent molecular functions. 

In [67], another algorithm performs the task of protein complex identification by 

simultaneously using PPI network data and gene expression data. In [47], an algorithm 

called PCIA is proposed to identify protein complexes in PPI networks based on 

network topology and attribute information. It makes use first of a measure of attribute 

similarity followed by the use of the MCL algorithm to identify densely connected 

clusters during the process. In [117], an algorithm called GMFTP, is proposed to 

identify protein complexes based on measures of similarity between attribute values of 

proteins. Given the experimental results presented, all the mentioned approaches have 

shown their effectiveness in protein complex identification. 

According to the experimental results shown in the related publications, all these 

mentioned approaches have shown their effectiveness in one or several real applications 

of detecting clusters in graphs. Given the challenges summarized in Section 1, we will 

propose four different algorithms, i.e., MISAGA, FSPGA, EGCPI and TBPCI to 

address them accordingly. 
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3. TECHNICAL PRELIMINARIES 

To mine clusters, it is essential to construct an attributed graph given a set of data 

containing data entities, inter-connections, and features describing the data entities, and 

determine how strong inter-related the pairwise vertices are regarding of the attribute 

values. In this section, the notations of the attributed graph and the determination of the 

strength in terms of the attribute values between pairwise vertices are introduced. 

3.1. Notation of the attributed graph 

Given a set of relational data which contains vertices, edges, and a set of attributes 

representing the data entities, relationship between entities and characteristics that may 

describe the entities, it can be represented as an Attributed Graph, containing nV 

vertices and nE edges, in which each vertex is associated with a set of attribute values, 

the graph can be represented as G = (V, E, Λ), where the set of vertices, V, can be 

denoted as, V= {vi | 1 ≤ i ≤ nV}, the set of edges, E, can be denoted as E = {eij | 1 ≤ i, j 

≤ nV, i ≠ j}, and the set of attributes that is associated with each vertex can be denoted 

as Λ where Λ = {atti | 1 ≤ i ≤ nΛ}. The algorithms proposed in this thesis will detect 

clusters of interest by representing relational data as G. 

3.2. Attribute strength between pairwise vertices 

To discover clusters of interest in G, it is important to determine how strong a pair of 

vertices are inter-related, according to the attribute values associated. To fulfill the task, 

we propose two different measures to determine such strength between pairwise 

vertices in the attributed graph. 

One measure is called the degree of attribute homogeneity (θ), it is defined as 
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where Λi represents the set of attribute values associated with vertex vi in G. θ is a 

Jaccard Similarity measure and ranges from 0 to 1. Apparently, θ becomes higher when 

there are more homogeneous attributes values associated with both pairwise vertices in 

G. Hence, θ may determine how similar the attribute values associated with pairwise 

vertices. 

The other measure is called the degree of attribute association (φ). φ can be obtained 

following a two-step approach. First, patterns of significant associated attribute values 

in G can be obtained by making use a statistical measure. To illustrate how this can be 

done, let us consider two attribute values, atti and attj. Let us use o(atti, attj) to denote 

the frequency that atti and attj appears respectively in the attribute value sets of two 

vertices which are connected. To denote the expected frequency that atti and attj are 

connected in G, we use the notation e(atti, attj). We consider atti and attj as having a 

significant interesting association with each other if o(atti, attj) is sufficiently different 

from e(atti, attj). To determine if the difference is statistically significant, we make use 

of the following test statistics 
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where o(atti+) represents the frequency that attribute value atti is associated with any 

connecting vertices. In [20], [21] and [48], this measure is shown to approximately 

follow the Standard Normal distribution. One may, therefore, decide that atti and attj 

are significantly associated with each other at a 95% confidence level if diff(atti, attj) is 

greater than 1.96. Otherwise, they can be considered not significantly associated with 

each other. With this measure, those attribute values that are not sufficiently relevant 

are filtered out. Although two attribute values are different, they might be significantly 



22 

 

relevant if diff between them is larger than some threshold. 

Having obtained the significantly associated patterns in attribute values, one may 

determine the degree of attribute association between two vertices, say vi and vj, by 

using appropriate measures. In this thesis, we mainly using two different measures tow 

compute φ between pairwise vertices in G. One method for computing φ is based on an 

information theoretic measure [73]. Let attik and attjm denote a pair of associated 

attribute values belonging to the attribute sets of vi and vj respectively. Let Pr(attik, attjm) 

denotes the probability that attik and attjm are connected in G. Let Pr(attik) and Pr(attjm) 

denote the probability that attik and attjm are associated with the connected vertices 

respectively, then the total degree of attribute association between vi and vj is defined 

as 
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It should be noted that the magnitude of r(vi, vj) increases with the number of 

associations between attribute values and the relative magnitude of the probabilities 

which reflect the degree of association between them. As those attribute values that are 

not significantly associated with each other has been filtered out, we only consider 

relevant and interesting attribute values. For the purpose of normalization, MISAGA 

computes an entropy measure as follows: 
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Given (3) and (4), φ between the vertices vi and vj can be obtained as 
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Using the above computational method, φij can be interpreted as the information 

redundancy of the attribute values that are associated with vi and vj. After normalization, 

the magnitude of φij ranges from 0 to 1. A greater value of that means that the attribute 

values of the pair of vertices, vi and vj are more strongly associated with each other, and 

so, their being members in the same group may reflect more interesting patterns. 

The other method for computing φ is based on cosine similarity, given all diffs between 

two vertices, vi and vj we can determine whether pairwise attributes values are 

significantly associated as (6) shows: 
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Once whether or not a combination of attributes values is significantly associated has 

been decided, we can compute φ between each pair of vertices in G 
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A higher value of φ means a higher proportional pairwise combination of significantly 

associated attribute values existing between two vertices. And it is concluded that the 

two vertices have a stronger association when considering their attribute information. 

By utilizing the θ measure and φ measure, the proposed algorithms in this thesis may 

determine how strong the pairwise vertices are inter-related in G when considering the 

attribute values associated. Combining with the edge structure, the proposed 

approaches may discover meaningful clusters taking into the consideration both graph 
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topology and attribute information in the attributed graph data. 
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4. MISAGA-AN ALGORITHM FOR MINING CLUSTERS IN ATTRIBUTED 

GRAPHS BY IDENTIFYING OPTIMAL CLUSTER MEMBERSHIP 

4.1. Background 

As mentioned before, clusters in graphs can be seen as interesting sub-graphs. In this 

section, an algorithm for identifying interesting sub-graphs in attributed graphs, 

MISAGA, is proposed. Taking into the consideration both edge structure and 

significantly associated attribute values of pairwise vertices in the attributed graph, 

MISAGA identifies interesting sub-graphs by formulating it as a constrained 

optimization problem and solves it by identifying the optimal affiliation of sub-graphs 

for the vertices in the attributed graph. MISAGA has been tested with several large-

sized real graphs and is found to be potentially very useful for various applications. 

The identification of interesting sub-graphs utilizing both graph topology and attribute 

information has been a widely accepted scenario. There have been several algorithms 

proposed to solve the problem taking into consideration edge structure and attribute 

information. For examples, SA-Cluster [112] and Inc-Cluster [113] are two random-

walk-based algorithms that can detect disjoint clusters in the attributed graph utilizing 

both connections and similar attribute values between pairwise vertices. EDCAR [41] 

is proposed to mine sub-graphs by grouping together vertices that are densely connected 

and share similar attribute values. GBAGC [104], CESNA [110], Circles [74] are three 

model-based algorithms for detecting clusters in the attributed graph. Link-PLSA-LDA 

[77], Relational Topic Model [18], iTopicModel [90], PL-DC [109] and Block-LDA [11] 

are approaches to partition relational data into clusters utilizing the topic models [10]. 

All these mentioned methods have shown to be effective. 

Having reviewed most algorithms for sub-graphs identification in attributed graphs, we 

have the following findings that may motivate us to propose a more effective approach. 

First, algorithms that consider both graph topology and attribute information are not 
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many. As mentioned in Section 1, most graph clustering algorithms utilize pre-specified 

topologies or attribute information. Second, almost all the algorithms utilize attribute 

similarity when detecting clusters. Thus, relevant attribute values which are different 

are overlooked within the clustering process. This may miss some interesting sub-

graphs hidden in the attributed graph. Third, the efficiency of the state-of-the-art needs 

improving to deal with large graphs. For examples, those topic-model-based approaches 

are not able to segment large attributed graphs [110]. 

To address the mentioned challenges, we propose MISAGA (Mining Interesting Sub-

graphs in Attributed Graph Algorithm). MISAGA performs its tasks by using a 

statistical measure that identifies attribute values that have interesting associations with 

each other. If the attribute values of a pair of vertices have interesting associations, then 

a measure called the degree of attribute association is computed. With such measures, 

the problem of discovering interesting sub-graphs is formulated and solved as a 

constrained optimization problem, MISAGA can find an optimal sub-graph 

arrangement by taking into consideration both edge structure as well as the attribute 

values associated with each vertex by so doing. 

For performance evaluation, MISAGA is tested with both synthetic and real data sets 

including social and PPI network data. The experimental results are verified against 

known ground-truth data. The findings show that the sub-graphs discovered by 

MISAGA can be very meaningful. 

4.2. MISAGA in details 

4.2.1. Mathematical preliminaries 

Given an attributed graph containing nV vertices and nE edges, in which each vertex is 

associated with a set of attribute values, MISAGA models the attributed graph as G = 

(V, E, Λ), which has been shown in Section 3. 
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Given G, MISAGA constructs an adjacency matrix Y of dimensions, nV by nV, to 

represent the connections between vertices in G so that an entry, yij, in Y has the value, 

1, if vi and vj are connected and, 0, if they are not. 

After obtaining Y which is used for representing the edge information of G, MISAGA 

uses another nV-by-nV matrix, A, to represent the mutual strength in terms of attribute 

values associated with the pairwise vertices. Here, each entry of A, say aij, is obtained 

by using the φ measure shown in (2), (3), (4), and (5). Hence, A can be named as 

attribute-association matrix. Using Y and A, MISAGA searches for an optimal solution 

to a constrained optimization problem that considers both edge structure and attribute 

association for the mining of interesting sub-graphs as clusters in attributed graphs. 

Having obtained the adjacency matrix Y and the attribute-association matrix A, 

MISAGA will detect sub-graphs existing in G by utilizing the information in the above 

two matrices. In this section, how MISAGA formulates the mining of sub-graphs as an 

optimization problem and how MISAGA solves the problem is illustrated. 

4.2.2. The objective function for mining interesting sub-graphs 

To formulate the sub-graph identification problem as an optimization problem, let us 

define k to be the number of interesting sub-graphs in G that is to be identified. Given 

k, we first introduce two nV-by-k auxiliary matrices, D and B, which represent the 

strength that each vertex belongs each of the k sub-graph, taking into consideration 

structure and attribute associations, respectively. With D and B, we can introduce a sub-

graph membership matrix C, which has the dimension of nV by k. Each element of C, 

say cij, indicates the strength of membership for vertex i to belong to sub-graph j so that 

the larger the value of cij, the greater the affinity between vertex i and sub-graph j. 

Given the adjacency matrix Y, the attribute-association matrix, A, the auxiliary 
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matrices D and B, and the sub-graph membership matrix C, MISAGA attempts to 

maximize the following objective function: 
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where (i) |C|2F, |D|2F, and |B|2F are the F-norm of matrices C, D, and B, which are used 

respectively to smooth the variables in these matrices, (ii) |DCT|2F, and |BCT|2F are the 

F-norm of the products of D and the transpose of C, and B and the transpose of C, 

respectively, (iii) α is a parameter that is used to adjust the relative weighting between 

edge density and attribute association to be considered when MISAGA searches for the 

optimal C, (iv) e1 and e2 are k-by-1 and nV-by-1 vectors in which all elements are set to 

1, (v) |Ce1-e2|2F is an l2-norm which is used to regulate the aggregation of the variables 

in each row of C so that they can be approximated by 1, which can be used conveniently 

when comparing the strength of sub-graph affiliation between different vertices. (vi) λ 

is a non-negative factor which is used to control the effects of the regulation term 

mentioned in (v). By utilizing the proposed objective function, MISAGA possesses the 

following advantages when used to identify interesting sub-graphs in attributed graphs. 

First, by introducing the two auxiliary matrices D and B, MISAGA can identify 

interesting sub-graphs by taking into consideration both graph topology and attribute 

association between the pairwise vertices in a graph. To explain how MISAGA 

determines the sub-graph membership of the vertices, let us consider the first two terms 

of the objective function: tr(CTYD) and tr(CTAB). 

These terms are used to aggregate the strength of the topology and attribute association 
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of all sub-graphs respectively. Each element in tr(CTYD) is used to aggregate the total 

number of edges within a sub-graph, given the values of the entries in C and D. 

tr(CTYD) can be optimized only when all the vertices can be assigned to appropriate 

sub-graphs in which they are connected by more intra-edges. In other words, the 

corresponding entries in C and D, say cij and dij, which are used to represent sub-graph 

membership, and the structural strength for vertex i to belong to sub-graph j, should be 

relatively high when vertex i are connected by relatively more vertices in sub-graph j.  

In the case of tr(CTAB), it aggregates the total degree of associations between pairwise 

vertices within each sub-graph. tr(CTAB) can be optimized only when all the vertices 

are assigned to the sub-graphs in which the degrees of attribute association between the 

pairwise vertices are high. 

Given the objective function as shown in (8), MISAGA attempts to find a sub-graph 

membership matrix C, that can be used to assign each vertex into a sub-graph in such a 

way that it is more connected to and shares a higher degree of attribute association with 

the other vertices in the same sub-graph. If such an optimal sub-graph assignment can 

be found, the optimization process adopted by MISAGA can find corresponding 

optimum values in the entries for this vertex in D and B and as a result, the 

corresponding element in C, which is used to represent the sub-graph membership 

between that vertex and that sub-graph is also at its optimum.  

However, one may notice that tr(CTYD) and tr(CTAB) also increase when the variables 

in D, B, and C simply increase. Thus, we use |DC|2F, and |BC|2F to penalize improper 

variations of the variables in D, B, and C so that, only when the elements of D, B, and 

C are assigned with appropriate values, the objective function O can be maximized. In 

such case, C contains the membership of the most interesting sub-graphs in each of 

which vertices are densely connected and their attribute values are significantly 
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associated. 

The other advantage that the optimization process adopted by MISAGA is that, by using 

the penalty term λ|Ce1-e2|2F, the aggregation of each row in C can be controlled to be 

around 1 and this can make comparison of the strength of sub-graph affiliation between 

different vertices and the extracting of overlapping sub-graphs to be more convenient. 

With these advantages, therefore, when an optimal value for the proposed objective 

function can be determined, the sub-graphs found by MISAGA can take both edge 

structure and attribute association into consideration at the same time. 

4.2.3. The iterative updating algorithm 

The proposed objective function is a constrained quadratic function. It is non-convex 

to C, D, and B simultaneously, but it is convex to C, D, or B when keeping the other 

two matrices unchanged. Based on this property, a series of updating rules for 

optimizing (8) can be obtained. 

4.2.3.1. Updating rule for C 

Let βij be the Lagrange multipliers for the constraints cij ≥ 0. The Lagrange function L 

for C is 

)(),( CββC
TtrOL                        (9) 

where β = [βij] is the matrix of Lagrange multipliers for the non-negativity of C. Based 

on the KKT condition for constrained optimization, we have the following 
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where “ₒ” means the Hadamard product of two matrices with the same dimension. 

Based on (10), we have the element-wise equation system for each element in C 
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Given the first equation in (11), we have 

ijijij   )(])1([ CeCeBCBDCDeeABYD
T

11

TTT

12      (12) 

Using (12) to replace βij in the equation of Hadamard product, we have the iterative 

updating rule for C 
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4.2.3.2. Updating rule for D 

Let γij be the Lagrange multipliers for the constraints dij≥0, hence the Lagrange function 

L for D is 
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TtrOL                      (14) 

where γ = [γij] is the matrix of Lagrange multipliers for the non-negativity of D. Based 

on the KKT condition, we have 
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Given the equation system (15), the element-wise updating rule for D can be derived 
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4.2.3.3. Updating rule for B 

Let ηij be the Lagrange multipliers for the constraints bij≥0, hence the Lagrange function 

L for B is 
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where η = [ηij] is the matrix of Lagrange multipliers for the non-negativity of B. Based 

on the KKT condition, we have 
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Given the equation system (18), the element-wise updating rule for B can be derived 
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While keeping other matrices unchanged, these updating rules will guide C, D, and B 

to identify the local optima in each iteration, respectively. 

4.2.4. Convergence analysis of the proposed updating rules 

To prove the convergence of the algorithm, we may make use of one property of an 

auxiliary function that is also used in the proof of the Expectation-Maximization 
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algorithm [32]. The property of the auxiliary function is described as the following. If 

there exists an auxiliary function satisfying the conditions that Q(x, x’) ≤ F(x) and Q(x, 

x) = F(x), then F is non-decreasing under the updating rule that 

),(maxarg '1 xxQx
x

t                         (20) 

The equality F(xt+1) = F(xt) holds only when x is a local maximum of Q(x, x’). By 

iteratively updating x according to (20), F will converge to the local maximum xmax = 

argmaxxF(x). By defining an appropriate auxiliary function for O, we may show the 

convergence of (8). 

First, we may prove the convergence of the updating rule (13). Let cij be any element 

in C, Ocij be the partial of (8) that is related to cij, Ocij(c
’
ij) be the partial objective value 

of (8) that is related to cij when cij is equal to some value, say c’
ij. Since the updating 

rule for C is element wise, it is sufficient to show Ocij is non-decreasing according to 

the updating rule (13). To prove this, we define the following auxiliary function for Ocij: 
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where O’
cij is the first order partial derivative relevant to cij. Although the auxiliary 

function is defined in (21), we need to prove it satisfies the aforementioned conditions. 

Apparently, Q(c, c) = Ocij(c). Hence, the left we need to prove is Q(c, ct
ij) ≤ Ocij(c). To 

prove this, we compared Q(c, ct
ij) shown in (21) with the Taylor expansion of Ocij near 

to ct
ij 
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where O’
cij and O”

cij are the first and second order partial derivatives relevant to cij. Note 

that 
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Using (23) to replace the relevant terms in (22), we can see that if Q(cij, c
t
ij) ≤ Ocij(cij), 

the following inequality must hold 
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Therefore, to show Q(cij, c
t
ij) ≤ Ocij(cij), it is equivalent to show 
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Since cij, dij and bij are non-negative, we have 
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Up to here, Q(c, ct
ij) ≤ Ocij(c) has been proved thus (18) is an auxiliary function for Ocij.  

Next, we will define the auxiliary functions regarding to the updating rules (16) and 

(19). Similarly, let Odij and Obij be the partial of (8) relevant to dij and bij and Odij(d
’
ij) 
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and Obij(b
’
ij) be the partial objective values when dij and bij equal to d’

ij and b’
ij, 

respectively. Since the updating rules for D and B are also element wise, it is sufficient 

to show that Odij and Obij are non-decreasing according to the updating rules (16) and 

(19). Let the following be the auxiliary functions regarding to Odij and Obij: 
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Since the proof for the above functions to be auxiliary functions regarding dij and bij is 

similar to that for cij, we don’t show the proof in detail due to the space limitation.  

Having obtained the auxiliary functions for cij, dij and bij, now we can show the 

convergence of (8) using the updating rules (13), (16) and (19). According to (20), we 

have 
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The above result is same to the updating rule (13). Since (21) is an auxiliary function, 

Ocij is non-decreasing when cij is updated according to (28) or (13). This is equivalent 

to say that O is non-decreasing when cij is updated according to (13) for cij is any 

element of C. 

Similarly, we have 
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The above results are same to the updating rules (16) and (19). Since (27) are auxiliary 

functions, Odij and Obij are non-decreasing when dij and bij are updated according to (16) 

and (19). This is equivalent to say that O is non-decreasing when dij and bij are updated 

according to (16) and (19), respectively. Since O is non-decreasing when C, D, and B 

are updated according to (13), (16) and (19), O will finally converge to the local optima.  

4.2.5. The stopping criterion 

As C, D, and B are iteratively updated, the objective value converges to the local optima 

asymptotically. Simultaneously, the variation of the three matrices, C, D, and B 

becomes less evident as the elements in each matrix are approximate to the magnitudes 

which lead the objective value to local optima. Thus, we may use the following stopping 

criterion to terminate the optimization process and MISAGA may obtain matrices C, D, 

and B that lead O to converge approximately. 

 

F

ii 1
CC                         (30) 

where Ci stands for the sub-graph membership matrix after the ith iteration of updating, 

τ represents the predefined tolerance which the Frobenius norm of the difference of C 

between two iterations should satisfy. When τ is set to be a relatively small value, 

MISAGA may obtain a sub-graph membership matrix C which is very approximate to 

the optimal. 
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4.2.6. Summary of the algorithm 

Having obtained the updating rules for C, D, and B and the stopping criterion for the 

optimization process, now we may describe the details of MISAGA. Based on the 

aforementioned description, the proposed algorithm can be summarized as the pseudo 

codes shown in Fig. 1. As it is seen in the figure, there are not many parameters that 

need to be input. After the parameter of weight justification α, maximum number of 

iteration max_iteration, tolerance for improvement τ, penalty factor λ and the number 

of sub-graphs k are determined, MISAGA will iteratively update the strength matrices 

C, D, and B till the variation of C between each two iterations is less than τ or the 

objective function converges to the local maxima. After the optimization process is 

terminated, MISAGA obtains the sub-graph membership matrix C, which contains the 

Algorithm 1-MISAGA 

Input:  Y, A, α, max_iteration, τ, λ, k  

Output:  C, D, B 

Randomly initialize C, D, B; 

C=C./[(Ce1e1
T]; 

 

for count=1: max_iteration  

 

      Fixing D and B 

update C according to (13); 

      Fixing C 

update D according to (16); 

   update B according to (19); 

 

       if (|Ci - Ci-1|F<τ)  

            compute objective value according to (8); 

            break; 

       end if 

 

end for 

 

return C, D, B; 

Fig. 1. Pseudo codes of MISAGA 
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optimal or approximately optimal membership between each vertex and k sub-graphs. 

Given C, MISAGA can identify the best sub-graph membership for each vertex in the 

attributed graph.  

4.3. Experiment and analysis 

To evaluate the effectiveness of MISAGA, we performed a number of experiments 

using both synthetic and real-world datasets. In this section, we describe the details of 

the data sets that we used. We also explain how experiments and what criteria we used 

to evaluate performance. 

4.3.1. Experimental set-up and performance metrics 

4.3.1.1. Baselines for comparison 

Compared with other approaches for sub-graph detection, MISAGA has many desirable 

features and it would be interesting to find out how much these features make MISAGA 

better. For such a purpose, we have selected a number of popular algorithms for 

performance benchmarking. They include Affinity Propagation clustering (AP), 

Spectral clustering (SC), k-means clustering, Multi-Assignment Clustering (MAC), 

CESNA, Relational topic model (RTM) and ECDA. One of the reasons why they are 

selected is that they are relatively more popular algorithms and have all been used 

effectively to discover sub-graphs in various network graphs. Also, they are 

representatives of the three categories of topology-based, attribute-based and topology-

and-attribute based algorithms respectively. 

For example, AP and SC are sub-graph identification algorithms that mainly consider 

topological structures of a graph when performing graph clustering. These two 

algorithms can discover interesting sub-graphs with sizes that can be very different from 

those methods that perform graph clustering based on modularity optimization, e.g., 

CNM and BGLL. For our experiments, we used the SC that makes use of the 
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normalized cut in graph clustering. For sub-graph identification algorithm that are 

based on attribute values, k-means clustering and MAC are used as to cluster vertices 

based on the similarity of the attribute values associated with them. 

For graph clustering algorithms that consider both graph topologies and attribute values, 

we used CESNA, RTM and ECDA. As most effective algorithms taking into 

consideration both graph topology and attribute values are model-based, we selected 

CESNA and RTM, which utilize generative models and topic models, respectively. 

While, ECDA performs its tasks using an evolutionary graph clustering algorithm. The 

three approaches are therefore very different even though they all take both topologies 

and attribute values into consideration. 

For performance benchmarking, the algorithms above were not re-implemented. The 

source code or executables made available by the authors were used in our experiments. 

All experiments were conducted under the same environment which included a 

workstation with 4-core 3.4GHz CPU and 16GB RAM. 

4.3.1.2. Experimental set-up 

Other than ensuring that the algorithms we used for benchmarking purposes are tested 

with the original code written by the authors in the same computing environment, the 

parameters that are required for these algorithms to run are set in such a way that either 

the default settings as recommended by the authors are used or that they are tuned by 

trials to find the best settings. 

Specifically, the AP, CESNA and ECDA algorithms do not require input parameters to 

be set by the users. For these algorithms, the default settings as recommended and 

implemented by the authors were used. For algorithms, including SC, k-means, MAC, 

and RTM, which require parameters to be manually input into the system, we tried as 
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many different settings as we can, to obtain the best results for performance 

benchmarking. For example, SC requires that the parameter of sigma and the number 

of clusters (k) be set by the users before it can run. To find a better set of parameters, 

we tried SC using different sigma and k settings from 1 to 10 and from 10 to 200 

respectively. The settings that give the best performance of SC are recorded and 

presented in our performance analysis report below. 

For MISAGA, we tried different settings of the parameter, λ, that is required for the 

algorithm to work. λ was set in our experiments to 10-1, 100, 10 and 102 and we found 

that MISAGA performed well when λ was set to 10-1 or 100. Thus, all the experimental 

results of MISAGA shown in this manuscript were obtained when λ was set to these 

values. As for the other parameters, we set α to 0.5, maximum iterations to 300, and τ 

to 1e-9. As for k, it is set to be the same as the other algorithms, k-means, MAC and 

RTM. All the algorithms, including MISAGA, were executed 10 times in each set of 

data to obtain average results. 

4.3.1.3. Data sets and descriptions 

For performance evaluations, we used both synthetic and real datasets with known 

ground truth. We used synthetic data to test the effectiveness and efficiency of different 

algorithms and we used the real data sets to test the robustness of the different 

algorithms. The data sets that we used are described below. 

Ego-facebook. The Ego-facebook [74] data set is social network data that is constructed 

based on a number of sub-networks extracted from facebook.com. As such, interesting 

ground truth sub-graphs that represent social circles are known and can be used for 

evaluation. In this dataset, there are 4039 vertices each of which represents a facebook 

user. These vertices are connected by 88234 edges that represent the friendship between 

users and for each vertex, a total of 1283 attribute values, which represent the profile 
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of the user are associated with the vertex that represents the user. 

Caltech. This is a set of social network data which is constructed based on the 

friendship relationship extracted from the California Institute of Technology. The social 

network users in Caltech can be segmented into different classes based on the house 

affiliation according to the college’s dorm system [98]. There are 769 vertices 

representing 769 social network users, and 16656 edges representing the friendship 

between users. A total of 53 attribute values that represent the user profiles is associated 

with the vertex that represents the user. 

Rice. This is a set of online social network data which is constructed based on the 

friendship relationship among students studying at the Rice University. There are 

altogether 4087 vertices representing students and 184828 edges representing the 

friendship between students represented as vertices. The student profile, which is made 

up of 74 attributes, is considered the set of attribute values that is associated with each 

vertex. The ground-truth communities of this data set have been identified based on 

dormitory residence [98]. 

Villa. This is another set of online social network data which was constructed based on 

the friendship relationship obtained from the University of Villanova. There are 

altogether 7772 vertices representing different users and 314989 edges representing the 

friendship between users. For each vertex, a set of 140 attribute values that represent 

the profile of the user is made associated with the vertex. The ground truth communities 

for this data set have been identified. 

Krogan [56]. This is a set of protein-protein interaction (PPI) network data related to 

Saccharomyces cerevisiae. It is constructed based on known interactions between 

proteins. In Krogan, there are 2674 vertices representing proteins, 7075 edges 
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representing interactions between them and a set of 3064 attribute values representing 

GO terms [5], associated with each protein, that represents the properties and functions 

of each protein. Interesting sub-graphs in this set of data represent known protein 

complexes that can be found in a CYC2008 database [83]. In other words, the ground-

truth sub-graphs of this set of PPI network is known. 

DIP [105]. This is another set of PPI network data which are constructed based on the 

interactions between proteins. In this dataset, there are 4579 vertices representing 

proteins, 20845 edges representing interactions between proteins and 4237 attribute 

values associated with each protein representing biological properties and functions. 

Like the Krogan dataset, the ground-truth sub-graphs for this DIP data set are also 

known. 

Syn1k. This is a set of synthetic data which is generated based on the rule that the 

probability of intra-sub-graph edges is higher than that of inter-sub-graph edges and 

that vertices in the same interesting sub-graph are more related to each other than those 

that are not. For this data set, we used 1000 vertices that are divided into 4 ground truth 

communities, 9900 edges, and 50 attribute values are made to associate with each vertex. 

The above datasets are used to test the effectiveness of MISAGA and other algorithms. 

In addition, to test the scalability of MISAGA, we have generated several additional 

synthetic datasets ranging in size from 5,000 to 100,000 for our experiments. 

4.3.1.4. Performance metrics 

For the purpose of performance evaluation, we used three evaluation measures, 

including the Normalized Mutual Information (NMI), the Average Accuracy (Acc) [85] 

and the Mean Jaccard Similarity (JS) [110] measures. All of them are widely used for 

evaluating the validity of detected sub-graphs or graph clusters. 
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The NMI measures the overall accuracy of the matches between sub-graphs that are 

detected and those that are considered “ground truth”. It is defined as 
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where Pr(Ci, Cj
*) denotes the probability that vertices are in both the detected sub-graph 

i and the ground truth sub-graph j, and Pr(Ci) denotes the probability that a vertex is 

found to exist in detected sub-graph, i. The NMI considers both the size of each 

discovered sub-graphs and the ground-truth sub-graphs by computing a fraction ratio 

between the sub-graphs that are identified and those that are available in the ground-

truth database. If the NMI measure is high, it means that the sub-graphs detected match 

well with the ground-truth sub-graphs. 

Contrary to the NMI, the Acc measure evaluates individually detected sub-graphs. It is 

defined as 

  
c
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i
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C

C
Acc ,                            (32) 

where |Ci| means the size of a detected sub-graph, and f(.) stands for a particular 

mapping function between a detected sub-graph i and the ground truth. For our purpose, 

we define f(.) to be the maximum overlap between detected sub-graph i and a ground-

truth sub-graph. As a result, Acc evaluates the best matching of each detected sub-graph. 

A higher value of Acc therefore means that each detected sub-graph has a better match 

with the ground truth. The higher the Acc is, the more effective the algorithm can be 

considered to be. Given its definition, Acc emphasizes more on the discovered sub-
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graphs when evaluating.  

The Mean Jaccard Similarity (JS) measures the average degree of agreement between 

the detected and ground-truth sub-graphs that share the highest Jaccard Similarity with 

them. It is defined as 
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where (i) S(Ci
*, Cj) denotes the Jarccard Similarity between the ground-truth, Ci

*, and 

detected sub-graph, Cj, (ii) |C| and |C*| denote the number of discovered sub-graphs, 

and that of ground-truth clusters, respectively. JS is a harmonic mean of the bi-

directional Jaccard Similarity measure computed between the discovered and the 

ground truth sub-graphs. It first computes the arithmetic mean of the sum of the best 

Jaccard Similarity between each sub-graph and one particular sub-graph in the ground-

truth database. Then, it does the same between each ground-truth sub-graph and one 

discovered sub-graph. JS is then determined by aggregating the above two arithmetic 

means using the weights of 0.5 for each. JS can evaluate the quality of discovered sub-

graphs by considering the proportion of overlap between them and the ground truth sub-

graphs without being affected by the sizes of sub-graphs identified and those that are 

known to be ground-truth. 

Even though they all can be considered as measures of the differences between detected 

and ground-truth sub-graphs, the NMI, Acc and JS, do not measure exactly the same 

aspects. In fact, what they measure can be considered as complementary. It is for this 

reason that all three measures are adopted as part of our evaluation criteria.  
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Besides directly comparing the performance obtained by MISAGA and other 

algorithms in our experiments, we also carried out some statistical tests to determine 

whether the performance obtained by MISAGA is significantly better than that obtained 

by other baselines. For this purpose, we used the single-sided z-test to determine 

whether MISAGA is significantly better than other baselines at the 95% confidence 

level.  

4.3.2. Experimental results using synthetics data 

4.3.2.1. Performance on identifying sub-graphs 

For performance evaluation, we used a set of synthetic graph data containing 1000 

vertices, 9900 edges and 50 attributes, to test the effectiveness of all different algorithms 

in discovering interesting sub-graphs. The community structure of the synthetic dataset 

is shown in Fig. 2. As mentioned above, the synthetic data are generated by assuming 

that the probability of vertices within the same sub-graph to be connected with other 

vertices to be higher than that of the probability between sub-graphs. For the purpose 

of our experiment, the data set Syn1k was generated by setting the probability of intra-

 

Fig. 2. Four ground truth sub-graphs of Syn1k. Vertices of the four 

sub-graphs are painted with different colors. 
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sub-graph connections to be 0.05 and the probability of inter-sub-graph connections to 

be 0.01.  

The performance of MISAGA and other algorithms on the synthetic data set Syn1k with 

respect to NMI, Acc and JS is given in Table 1. As the table shows, MISAGA performs 

relatively better than other algorithms. When NMI measure is considered, the NMI 

obtained by MISAGA is better than RTM, CESNA, MAC, k-means, ECDA, SC and AP 

by 25%, 26%, 34%, 44%, 266%, 329% and 547%, respectively. When Acc is considered, 

MISAGA outperforms MAC, CESNA, k-means, RTM, AP, SC and ECDA by 8%, 18%, 

20%, 25%, 34%, 68%, and 114%, respectively. When comparing performance using JS, 

MISAGA is better than MAC, CESNA, RTM, ECDA, SC, k-means and AP by 16%, 

33%, 39%, 102%, 203%, 378% and 3464%, respectively. With the z-test, MISAGA is 

found to be better than any other baselines at a 95% confidence level when their 

discovered sub-graphs are evaluated by NMI. When evaluated by Acc and JS, the 

performance obtained by MISAGA is significantly better than all the baselines, except 

with MAC. These experimental results show that MISAGA can be very effective with 

the discovering of interesting sub-graphs. 

TABLE 1 NMI, ACC AND JS IN SYN1K 

                                       Syn1k 

Approach NMI Acc JS 

AP 0.152* 0.747* 0.028* 

SC 0.232* 0.528* 0.329* 

k-means 0.691* 0.835* 0.209* 

MAC 0.745* 0.926 0.86 

CESNA 0.792* 0.845* 0.748* 

RTM 0.797* 0.797* 0.717* 

ECDA 0.272* 0.466* 0.493* 

MISAGA 0.995 0.999 0.998 

The symbol * means the experimental performance obtained by MISAGA is 

significantly better than that obtained by a baseline algorithm at the 95% 

confidence level. The statistical test used in the experiment is single-sided z-

test. 
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4.3.2.2. Scalability test 

In order to find out how MISAGA can scale up when data set size increases, a series of 

synthetic data of sizes ranging from 5000 to 100,000 were generated using the same 

probabilities of 0.05 and 0.01 for intra- and inter-sub-graph vertex connections as is 

with Syn1k. Given these generated data, the scalability of MISAGA was studied in a 

number of experiments involving different data sets. The results obtained were 

compared with those obtained with CESNA, RTM, and SC. As MISAGA and these 

algorithms are iterative in nature, the comparison is made based on the average 

execution time of each iteration. The results are shown in Fig. 3.  

The results show that MISAGA scales up well when compared with CESNA, RTM, 

and SC. Even with the data sets containing as many as 100,000 vertices, MISAGA was 

able to complete each iteration in the optimization process in around 1 second and this 

is slightly faster than CESNA. However, when comparing the number of iterations that 

is required for the two algorithms to complete the sub-graph discovery tasks, it should 

be noted that CESNA needed at least 300 iterations whereas MISAGA converges much 

below 300. Given this to be the case, MISAGA is more computationally efficient.  

When compared with RTM and SC, the computation time used by them was much more 

 

Fig. 3. Scalability comparison between MISAGA and other algorithms 
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demanding than MISAGA. When the data set size was increased to 10,000, RTM and 

SC was already not being able to cope. The computation time required was intolerable.  

4.3.2.3. Sensitivity test of the parameter 

As described in Section 3.2, for MISAGA to performs its tasks, it requires the setting 

of a parameter α. The parameter is used to adjust the weight between edge density and 

attribute association for interesting sub-graph discovery. How the parameter may affect 

the performance of MISAGA can be investigated in several sensitivity tests using the 

data set Syn1k. 

In our experiment, α was set to different values from 0 to 1, with an increment of 0.2, 

and MISAGA was used under these different settings to try to discover interesting sub-

graphs. The performance was measured with NMI, Acc and JS and the results are shown 

in Fig. 4. It is seen that when α was set to 0, which means that only the attribute values 

are considered in the sub-graph detection process, and when it is set to 1, which means 

that only the edge structures are considered, the performance of MISAGA is affected 

negatively. When setting α to the value between 0.4 and 0.6, MISAGA obtains very 

good results with most data sets.  Given these results, we set α to be 0.5 in all our 

experiments so that both attribute values and edge structures are considered equally 

 

Fig. 4. Sensitivity test of MISAGA using different α 
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important by MISAGA.  

In addition, to investigate how the settings of k, the total number of sub-graphs to be 

identified, may affect the performance of MISAGA, we used it to discover interesting 

sub-graphs in Syn1k by varying k from 2 to 20, with an increment of 2. The interesting 

sub-graphs identified were then evaluated by NMI, Acc and JS and the results are shown 

in Fig. 5. As shown in the figure, MISAGA performs the best according to NMI, Acc, 

and JS when k is configured appropriately (the best k for Syn1k is 4). Compared with 

the results of Acc, the NMI and JS as obtained by MISAGA seems to be more sensitive 

to the settings of k. This is because NMI and JS are two evaluation metrics which 

consider the extent of overall matching between discovered sub-graphs and the ground 

truth. An inappropriate setting of k might degrade the performance of MISAGA when 

its performance is measured by NMI and JS. As Acc mainly considers the best matching 

between a discovered sub-graph and a ground truth subgraph, MISAGA can obtain 

robust results using different settings of k. 

With the results measured using NMI, Acc and JS, we can conclude that we can use 

MISAGA to discover interesting sub-graphs for real world applications using different 

values of k. However, we recommend that k can be either manually set between 2 and 

nV/2 or done automatically by using the techniques described in [16], [72], and [99].  

 

Fig. 5. Sensitivity test of MISAGA using different k 
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4.3.3. Experimental results in real applications 

4.3.3.1. Social community detection 

The social communities in a social network can be considered interesting sub-graphs in 

a social network graph. The identification of such social communities is important to 

social network analysis. For performance evaluation of MISAGA, we used four sets of 

real social network data, including Ego-facebook, Caltech, Rice and Villa as testing data 

sets. All these data sets have known ground-truth communities that have been verified 

in the previous work and for this reason, performance of the different algorithms can 

be more objectively compared.  

The experimental results of NMI, Acc and JS obtained with these data sets are 

summarized in Table 2. As the table shows, MISAGA performs more robustly than 

other algorithms. For the data set Caltech, MISAGA outperforms SC, AP, and RTM by 

49%, 62% and 64% when they are evaluated by NMI. When Acc is considered, 

MISAGA is better than AP, CESNA, and SC by 6%, 27%, and 30%, respectively. When 

evaluated by JS, MISAGA surpasses ECDA, CESNA, and SC by 6%, 27%, and 54%, 

respectively.  

For the data set Ego-facebook, MISAGA surpasses, RTM by 14%, AP by 16% and SC 

by 19% in NMI. When Acc is considered, MISAGA outperforms SC by 30%, AP by 

TABLE 2 EXPERIMENTAL RESULTS IN SOCIAL NETWORK DATA 

Data set Caltech Ego-facebook Rice Villa 

Approach NMI Acc JS NMI Acc JS NMI Acc JS NMI Acc JS 

AP 0.279* 0.458 0.066* 0.58* 0.416* 0.049* 0.139* 0.257* 0.019* 0.178* 0.441* 0.057* 

SC 0.305* 0.375* 0.167* 0.569* 0.447* 0.107* 0.242* 0.455 0.066* 0.191* 0.492* 0.032* 

k-means 0.176* 0.268* 0.131* 0.385* 0.276* 0.077* 0.055* 0.174* 0.044* 0.2* 0.381* 0.042* 

MAC 0.106* 0.209* 0.081* 0.37* 0.257* 0.086* 0.024* 0.138* 0.056* 0.109* 0.325* 0.045* 

CESNA 0.221* 0.384* 0.203 0.399* 0.384* 0.196 0.114* 0.222* 0.109* 0.336* 0.633 0.285 

RTM 0.277* 0.23* 0.135* 0.592* 0.39* 0.161* 0.114* 0.195* 0.065* 0.375* 0.417* 0.102* 

ECDA 0.156* 0.202* 0.242 0.353* 0.234* 0.105* 0.056* 0.147* 0.053* 0.245* 0.389* 0.169* 

MISAGA 0.453 0.487 0.257 0.675 0.582 0.203 0.368 0.429 0.222 0.495 0.69 0.203 
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40%, and RTM by 49%, respectively. When evaluated by JS, MISAGA outperforms 

CESNA, RTM and SC by 4%, 26% and 90%, respectively. 

For the data set Rice, MISAGA outperforms SC, AP and CESNA by 52%, 165% and 

223% when they are evaluated by NMI. MISAGA also ranks the second best in Acc. 

When evaluated by JS, MISAGA outperforms CESNA, SC and RTM by 104%, 236% 

and 242% respectively.  

For the data set Villa, MISAGA is better than RTM, CESNA and ECDA by 32%, 47% 

and 102% when NMI is considered. MISAGA ranks the second best evaluated by JS, 

following CESNA. When Acc measure is considered, MISAGA is better than CESNA, 

SC, and AP by 9%, 40% and 56% respectively. 

In evaluating the performance of the different algorithms using the z-test, we can see 

that MISAGA outperforms most algorithms in most datasets. For examples, in the case 

of the NMI in all the datasets, MISAGA is statistically significantly better. When 

evaluated by Acc, MISAGA is also significantly better than most baselines in all the 

datasets, except AP in Caltech, SC in Rice, and CESNA in Villa. When evaluated by JS, 

MISAGA is statistically significantly better than any other baselines, except CESNA in 

Caltech, Ego-facebook, and Villa. Given such results obtained by the z-test, it is 

concluded that MISAGA is significantly more robust when used to discover meaningful 

sub-graphs in social network graphs. The experimental results also indicate that the 

interesting sub-graphs detected by MISAGA are consistently better matched with the 

ground-truth than the other algorithms. 

4.3.3.2. Structural modules detection in PPI networks 

Structural modules in biological networks, such as protein complexes in PPI network 

graphs can be considered interesting sub-graphs of the larger biological network graphs. 
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To further test the effectiveness of MISAGA, we used two sets of PPI network data in 

our experiments. They included the Krogan and DIP. These data sets were chosen as 

the ground-truth sub-graphs, which correspond to known protein complexes, could be 

found. Performance data based on NMI, Acc and JS were obtained from the experiments. 

The results obtained with these two data sets are shown in Table 3.  

As shown in the table, MISAGA obtains better performance than most of the other 

algorithms regarding of what performance measure are used. For the Krogan set, for 

example, MISAGA outperforms ECDA, k-means and AP by 6%, 11% and 15%, 

respectively, when evaluated by NMI. It surpasses AP, ECDA and SC by 6%, 39% and 

53% when evaluated by Acc. When evaluated by JS, MISAGA outperforms AP, ECDA 

and SC by 45%, 59% and 89%, respectively.  

For data set of DIP, MISAGA outperforms ECDA, MAC, and k-means by 4%, 5% and 

15% when evaluated by NMI. When the detected sub-graphs are evaluated by Acc, 

MISAGA ranks the second best among all the algorithms. In the case that it is evaluated 

by JS, MISAGA performs better than other algorithms. MISAGA outperforms AP, 

ECDA, k-means by 6%, 57% and 70%, respectively. These results show that MISAGA 

is also very effective in identifying meaningful functional modules in protein-protein 

TABLE 3 EXPERIMENTAL RESULTS IN PPI NETWORK DATA 

Data Set Krogan DIP 

Approach NMI Acc JS NMI Acc JS 

AP 0.385* 0.187 0.168* 0.263* 0.117 0.138 

SC 0.347* 0.129* 0.129* 0.174* 0.038* 0.038* 

k-means 0.398 0.128* 0.12* 0.274 0.078* 0.086* 

MAC 0.363* 0.114* 0.103* 0.3 0.062* 0.077* 

CESNA 0.203* 0.025* 0.018* 0.122* 0.015* 0.011* 

RTM 0.225* 0.054* 0.042* 0.157* 0.032* 0.029* 

ECDA 0.416 0.142* 0.153* 0.303 0.058* 0.093* 

MISAGA 0.441 0.198 0.244 0.316 0.113 0.146 

 



53 

 

interaction networks.  

According to the z-test, the performance of MISAGA is also statistically significantly 

better than most baselines in the case of the biological graphs. NMI, Acc, and JS 

obtained by MISAGA are significantly better than those obtained by most baselines, 

except only five cases. Given the relatively robust performance of MISAGA with social 

network and PPI network data, we demonstrate that MISAGA can be a useful algorithm 

for mining interesting sub-graphs as clusters.  

4.3.4. Convergence of the objective value 

To find out if MISAGA can converge in a finite number of iterations, variations of the 

values of the objective functions were considered in different experiments. For 

experimentation, we randomly selected one execution of MISAGA when each set of 

real data is run and the variations of the values of the objective function are recorded as 

shown in Fig. 6. From it, it can be seen that the objective function of MISAGA can 

achieve approximate convergence within 200 iterations. As the improvement of each 

iteration become less evident, we may take the objective values after 200 iterations as 

the approximately convergent ones. 

 

 

Fig. 6. Convergence of objective value in different real-world data 
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4.3.5. Case study of the detected sub-graphs 

Besides evaluating the detected sub-graphs with the use of different objective measures 

such as NMI, Acc, and JS, we also investigated into the details of some of the interesting 

sub-graphs detected by MISAGA. In particular, we have looked into the details from 

the aspects of both edge structure and attribute values associated with these sub-graphs.  

For example, in the dataset, Ego-facebook, one sub-graph identified by MISAGA 

completely matches with the community that is in the ground truth database. The 

structure of this community is shown in Fig. 7. Simultaneously, CESNA also identified 

this community, but the structure was not entirely identical (see the sub-graph inside 

the dashed circle in Fig. 7). Having checked each attribute value that is associated with 

each vertex in this community, we found that, even though two vertices in the sub-graph 

are connected, their respective attribute values are not exactly the same. Among the 

vertices in this sub-graph, only 15 out of over 1,200 attribute values that are associated 

 

Fig. 7. The structure of a ground truth cluster in the data set of Ego-facebook. 

MISAGA identifies all the vertices successfully. The structure identified by CESNA 

is in the dashed circle. 
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with them. And these attribute values are not always the same. If a similarity measure 

is computed based on the attribute values, these vertices would probably not be 

considered to be in the same sub-graphs. Using MISAGA, however, we found 20 pairs 

of attribute values that are significantly associated with each other but not the same.  

For the purpose of discussion, we listed 8 pairs of them in Table 4.  

Although the real user profiles are anonymized, we can infer that this social community 

might be related to a community of individuals that were friends of a school or 

university. As shown in the table, significant associations exist between different some 

attribute-value pairs. For example, “School 64” and “Hometown 935”, “School 1040” 

and “Hometown 935” between the “School” and “Hometown” attributes are found to 

be significantly associated. Such associations are expected as students from the same 

school may be friends and communicate more with each other if they are also from 

same district location. As another example, “School 1040” and “Year 64” being 

significantly associated may indicate that users in this community tend to communicate 

with others who entered the school in the same year. In addition, MISAGA has also 

discovered that there are significant interesting associations between users coming from 

the same school. 

TABLE 4 ASSOCIATED ATTRIBUTE VALUES IN THE DETECTED SOCIAL COMMUNITY 

education;school;id;anonymized feature# 1040 education;school;id;anonymized feature 1040 

education;school;id;anonymized feature 52 education;school;id;anonymized feature 52 

education;school;id;anonymized feature 52 education;school;id;anonymized feature 52 

education;school;id;anonymized feature 1040 education;year;id;anonymized feature 64 

education;school;id;anonymized feature 1040 hometown;id;anonymized feature 935 

education;year;id;anonymized feature 64 hometown;id;anonymized feature 935 

education;school;id;anonymized feature 52 location;id;anonymized feature 128 

location;id;anonymized feature 128 location;id;anonymized feature 128 

#: The user profile data are processed as anonymized attributes to protect the privacy. In the table, 

each row contains a pair of associated attribute values. Associated attribute values might be different 

from each other. 
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Instead of requiring that vertices in the same sub-graph share mostly the same attribute 

values, MISAGA is able to discover attribute values that are not the same but are 

associated with each other statistically significantly. The determination of sub-graph 

membership based on edge structure and such attribute association is the reason why 

MISAGA can better identify social communities.  

4.4. Summary 

In this section, a novel algorithm, that is called MISAGA, for mining interesting sub-

graphs in attributed graphs is presented. MISAGA performs its tasks by considering 

both the edge structure and the attribute values that are associated with each vertex. By 

computing a degree of association for vertices that are statistically significantly 

associated with each other, MISAGA formulates and solves the problem of discovering 

interesting sub-graphs in an attributed graph as a constrained optimization problem. 

MISAGA has been tested with different sets of synthetic and real data. It is found 

MISAGA is effective in finding optimal or near-optimal solutions. For future work, 

how MISAGA can be enhanced to allow different vertices to belong to different sub-

graph with different degrees of freedom will be interesting. In addition, it can also be 

enhanced to deal with attributed graphs with structures that change with time. The 

discovering of the dynamics of the changes will allow prediction of future structures to 

be made. 
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5. FSPGA-MINING CLUSTERS IN THE ATTRIBUTED GRAPH USING FUZZY 

OPTIMIZATION 

5.1. Background 

Sub-graphs in which vertices are cohesively inter-related are clusters or communities 

in the graph. These clusters are structural patterns hidden in the graph data. In this 

section, an algorithm for discovering fuzzy structural patterns, FSPGA, is proposed. 

FSPGA performs the task of clusters discovery as a fuzzy optimization problem which 

takes into consideration both graph topology and attribute values. FSPGA has been 

tested with both synthetic and real-world graph data sets and is found to be efficient 

and effective at detecting clusters in attributed graphs. FSPGA is a promising fuzzy 

algorithm for structural pattern detection in attributed graphs. 

Recently, there have been several graph clustering algorithms proposed to detect 

clusters in graphs utilizing both edge structure and attribute information. Several 

examples have been listed in Section 2. 

In addition, fuzzy pattern analysis, such as fuzzy clustering has been drawn much 

attention because the feature of “soft membership” that is possessed by the algorithms 

based on fuzzy techniques may lead one to detect more interesting sub-structures in 

different types of data. Besides of the classical fuzzy c-means algorithm [9], there are 

several algorithms based on the fuzzy c-means model, such as relational fuzzy c-means 

[43], fuzzy c-regression models [49], possibilistic fuzzy c-means models [84], and 

interval-based fuzzy model [92], which have been proposed for data clustering. And 

there are several fuzzy clustering algorithms proposed to solve specific clustering 

problems, such as motion detection [79] and linguistic analysis in web documents [22]. 

Among those proposed algorithms, FCAN [44] is the one that utilizes fuzzy techniques 

to detect clusters in complex network data. FCAN may detect clusters by segmenting a 

data matrix in which each element represents the strength of the relationship between 
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pairwise data points. The entries of the data matrix are obtained by adding the binary 

value and the degree of similarity representing the connection and attribute similarity 

between pairwise vertices, respectively. Though effective to some extent, FCAN may 

not truly identify the strengths of topology and attributes values that may determine the 

cluster arrangement within the clustering process. 

Given the prevalent works of clustering in graph data and fuzzy clustering algorithms, 

we have the following findings that may motivate us to develop a more suitable 

algorithm. First, most of the graph clustering algorithms detect clusters based on 

topological properties only, or the attribute information is not fully utilized, just like the 

work presented in [44]. Second, most of the approaches cannot detect overlapping 

clusters, which might be more desirable in some graph data, e.g., communities in social 

networks are sometimes overlapping. Last but the most, currently, there are no effective 

fuzzy algorithms for clustering in attributed graphs. 

To overcome the mentioned challenges, we propose FSPGA, an algorithm for 

discovering fuzzy structural patterns in the forms of clusters in attributed graphs. 

FSPGA performs its tasks by formulating the identification of clusters in attributed 

graphs as a constrained optimization problem that takes into the consideration edge 

structure and attribute. FSPGA may identify the optimal membership arrangement that 

is determined by both edge structure and attribute information between vertices and 

clusters. By adopting the fuzzy sets theory, FSPGA may detect overlapping clusters in 

the attributed graph. 

For performance evaluation, FSPGA is tested with both synthetic and real data sets 

including social and biological network graphs. The experimental results are verified 

against known ground-truth data. It is found that FSPGA obtains a better performance 

in both efficiency and effectiveness, compared with state-of-the-art graph clustering 
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algorithms and fuzzy clustering algorithms. Given the performance, FCDAG is a very 

promising fuzzy based algorithm for overlapping clustering in attributed graph data. 

5.2. FSPGA in details 

5.2.1. Mathematical preliminaries 

Given an attributed graph containing nV vertices and nE edges, in which each vertex is 

associated with a set of attribute values, FSPGA models the attributed graph as G = (V, 

E, Λ), which has been shown in Section 3. 

Given the vertices and edges in G, we use an adjacency matrix M of dimensions, nV by 

nV, to represent the connections between vertices in G so that an entry, mij, in M has the 

value, 1, if vi and vj are connected and, 0, if they are not. 

Besides the topological information, we also use another nV-by-nV matrix A, to 

represent the pairwise relationship in terms of attributes between vertices in G. Hence, 

each entry in A, say aij, can be obtained by any measure that may evaluate how similar 

or related the vertices vi and vj are, given the attribute values associated with them. Here 

we assume that aij should be nonnegative and a higher magnitude of it means vi and vj 

are more related, given the attribute values associated with the two vertices. 

Given adjacency matrix M and pairwise relationship matrix A, we use the following 

augmented matrix to represent the mutual information between any pair of vertices in 

G 













A0

0M
Y

)1( 


                         (34) 

where the parameter α is used to adjust the bias between edge structure and attribute 

similarity. The data matrix Y has the dimension of 2nV by 2nV, the mutual information 
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between pairwise vertices are located in the diagonal blocks of Y, while entries in other 

blocks are all zero-valued. Utilizing Y, FSPGA may perform the task of clusters 

detection in G. 

5.2.2. The objective function based clustering algorithm 

FSPGA performs the task of community detection using Y. To find optimal cluster 

membership for the vertices in G that takes into the consideration edge structure and 

attribute, FSPGA is considering to use an objective function to evaluate the overall 

quality of detected clusters. 

To formulate the objective that is adopted by FSPGA, we firstly introduce an auxiliary 

matrix having the dimension of 2nV-by-k, X, where k is the number of the clusters to 

seek. FSPGA uses X to represent strength in terms of structure and attributes that a 

vertex belongs to a cluster. Specifically, the first nV-by-k entries are used for 

representing the structural strength that a vertex belongs to a cluster, and the last nV-by-

k entries are used for representing the strength in terms of attributes that a vertex 

belongs to a cluster. Let xij be an element in X. The value of xij indicates either the 

structural strength or that in terms of attributes that vertex i belongs to cluster j, 

according to the subscripts of the element. Given the properties of X, it can be used to 

represent the overall strength that each vertex belongs to a cluster as X uses different 

blocks to consider the strength regarding structure and attribute, respectively. The 

aggregation of such strength can be obtained if an appropriate method can be used. 

Then, we introduce the cluster membership matrix C, which has the dimension of nV 

by k. Each element of C, say cij, indicates the strength of membership that vertex i 

belongs to cluster j. Apparently, a higher value of cij means vertex i belongs to cluster j 

more possibly. 

Given Y, auxiliary matrix X, and cluster membership matrix C, we propose FSPGA to 
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formulate the cluster detection in the attributed graph as the following objective 

function to be optimized 
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where (i) |C|2F, and |X|2F are the matrix Frobenius norms of C and X, which are used to 

smooth the variables in these matrices, (ii) |XCT|2F is the matrix Frobenius norm of the 

product of X and the transpose of C. (iii), e1 and e2 are k-by-1 and nV-by-1 vectors, in 

which all elements are 1’s. With the use of the proposed objective function, FSPGA can 

have the advantage that it can discover graph clusters by taking into consideration both 

edge structure and attribute information between vertices in the graph. 

By introducing the auxiliary matrix X, the cluster membership that is identified by 

FSPGA takes into consideration both edge structure and attribute information between 

pairwise vertices in G. Let us take the first term in (35) to explain how FSPGA 

determines the cluster membership. Having noted that tr(STYX) aggregate the strength 

of structure and attribute of all clusters, tr(STYX) increases much only when C and X 

allocate those vertices with more intra-edges and more similar attributes into the same 

cluster. Hence, variations of X may lead the corresponding cluster membership to 

variate accordingly. From the above description, X considers the strength of both 

structure and attribute simultaneously, (35) can be optimized when appropriate X and 

C is found. In other words, the best cluster arrangement that is in C is identified when 

(35) achieves convergence. Under such an arrangement of clusters, vertices with more 

intra-edges and inter-related attribute values lean to the same cluster more. Since the 

existence of X, those vertices with either relatively fewer intra-edges or lower inter-
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relation of attribute values may be assigned with lower magnitudes of strength. Only 

when elements in C and X are assigned with appropriate values, the objective function 

O can be maximized. Then, C forms the optimal cluster arrangement. 

5.2.3. The iterative updating algorithm 

The proposed objective function is a constrained quadratic function. Based on KKT 

condition for constrained optimization problems, we may find the corresponding rules 

to iteratively update the matrices C, and X to search the local optima. 

5.2.3.1. Updating rule for C 

Let γij and λi be the Lagrange multipliers for the constraints of cij ≥ 0 and Σjcij = 1. The 

Lagrange function L for C is 

 21)(),( eCeλCγγC
T  TtrOL                     (36) 

where γ = [γij] and λ = [λi] are Lagrange multipliers for the constraints of the non-

negativity of C and the sum-to-1 of variables in each row of C. Based on the KKT 

condition for constrained optimization, we have 
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where (i) “ₒ” means the Hadamard product of two matrices with the same dimension, 

(ii) X1 and X2 are two block matrices obtained by dividing X between row nV and nV+1. 

Based on (37), we have the following element wise equation system 
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Given the first equation in (38), we have 
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Using (39) to replace βij in the equation of Hadamard product, we have the iterative 

updating rule for C 
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In the above equation, one more unknown, λi, needs to be determined for the updating 

of the variables in C. Given the constraint that the sum of each row of variables is one 

(see Equation (38)), we have 
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Given Equation (41), λi can, therefore, be solved as 
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Using the value of λi to replace the corresponding variable in (40), the iterative updating 
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rule, which is under the fuzzy clustering framework for C, can be obtained. With such 

an updating rule, the sum of each row in C is constrained to be 1 within the optimization 

procedure. As a result, a vertex in G may belong to more than one cluster due to the 

considerations of fuzzy cluster boundaries.  

5.2.3.2. Updating rule for X 

Let γij be the Lagrange multipliers for the constraints xij≥0, hence the Lagrange function 

L for X is 

)(),( XγγX
TtrOL                        (43) 

where γ = [γij] is the matrix of Lagrange multipliers for the non-negativity of X. Based 

on the KKT condition, we have 
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Given the equation system (44), the element-wise updating rule for X can be derived 
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5.2.4. Summary of the algorithm 

Given the description from 5.2.1 to 5.2.3, FSPGA can be summarized as the pseudo 

codes shown in Fig. 8. Once the number of clusters k, the adjust parameter α, maximum 

number of iteration and the minimum tolerance, τ are determined, FSPGA will 

automatically search for the optimal matrix of cluster membership, C in a finite number 

of iterations. After FSPGA is stopped according to the terminal condition, the obtained 

C can be seen as the approximately optimal cluster arrangement. 
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5.2.5. Determining the cluster affiliation 

Having obtained the cluster membership for each vertex, FSPGA needs to determine 

the cluster affiliation for the vertices. Here, FSPGA may determine whether vertex vi 

belongs to cluster j according to the following inequality 

k

k
cij

11 



                           (46) 

where k is the number of clusters and β is a positive real number that is used to 

determine the extent of overlapping between identified clusters in the attributed graph. 

Here, β is a global parameter which is used to determine if each vertex, say vi, belongs 

to cluster j after the optimization process. In addition, it should be noted that β is used 

only for the case of vertices whose degrees of cluster membership are not the highest 

for that vertex and FSPGA can discover disjoint clusters in an attributed graph when β 

Algorithm 2-FSPGA 

Input:  Y, α, max_iteration, τ, k  

Output:  C, X 

 

Randomly initialize C, X; 

C=C./(Ce1e1
T); 

 

for count=1: max_iteration  

 

   Fixing X 

update λ and C using (42) and (40); 

   Fixing C 

Update X using (45); 

       if (|Ci - Ci-1|F<τ)  

            compute objective value using (35); 

            break; 

       end if 

end for 

return C, X; 

Fig. 8. Pseudo codes of FSPGA 
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is set to zero. Given this setting, it should be noted that it becomes more possible for 

more vertices to be assigned only to those clusters with the highest cluster membership 

and the extent of overlapping between detected clusters becomes smaller when β is set 

to a relatively high value. Hence, β can be adjusted according to the demand of 

overlapping in different attributed graph data and the variations of β won’t change the 

number of clusters.  

5.3. Experiment and analysis 

In this section, we describe the details of the data sets that we used. We also explain 

how experiments and what criteria we used to evaluate performance. 

5.3.1. Experimental set-up and evaluation metrics 

5.3.1.1. Baselines for comparison 

To show the desirable features of FSPGA, we selected a number of graph clustering 

algorithms to compare with FSPGA. These algorithms include Affinity Propagation 

clustering (AP), Spectral clustering (SC), CoDa, Fuzzy c-means clustering (FCM), 

improved Relational Fuzzy c-means clustering (iRFCM), CESNA, Relational topic 

model (RTM) and ECDA. Selecting these algorithms as baselines is because they are 

either the latest algorithms or classical ones and have all been used effectively to detect 

clusters in various network graphs. Specifically, AP, SC and CoDa may detect graph 

clusters that take different topological properties of network graph data. For our 

experiments, we used the SC that makes use of the normalized cut in graph clustering. 

FCM may detect graph clusters making use of information of similarity between 

pairwise vertices in G. Therefore, we used the information in Λ as the input that is used 

to compute the similarity between pairwise vertices for FCM. As iRFCM is a version 

of FCM that can be used to discover graph clusters, we tested it using the same data as 

FSPGA uses. Algorithms like CESNA, RTM and ECDA are ones taking into 

consideration both graph topologies and attribute values. RTM has been shown to be a 
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very effective topic-model based approach to segment relational data. CESNA performs 

graph clustering using a generative process that determines cluster membership of a 

vertex by computing an estimate of the joint probability based on structure and vertex 

attributes. ECDA performs its tasks using an evolutionary graph clustering algorithm. 

For performance benchmarking, we used the source code or executables made available 

by the authors. All the experiments were conducted under the same environment which 

included a workstation with 4-core 3.4GHz CPU and 16GB RAM. 

5.3.1.2. Experimental set-up 

To ensure that the algorithms we used in the experiment may obtain a robust 

performance, we tested them using the parameters in such a way that either the default 

settings as recommended by the authors are used or that they are tuned by trials to find 

the best settings. 

Specifically, the AP, Coda, and ECDA algorithms do not require input parameters to be 

set by the users. For these algorithms, the default settings as recommended and 

implemented by the authors were used. For algorithms, including SC, FCM, iRFCM, 

and RTM, which require parameters to be manually input into the system, we tried as 

many different settings as we can, to obtain the best results for performance 

benchmarking. For example, SC requires that the parameter of sigma to be set by the 

users before it can run. To find a better set of parameters, we tried SC using different 

sigma from 1 to 10. The settings that give the best performance of SC are recorded and 

presented in our performance analysis report below. As for the number of clusters, k, 

we set it for those algorithms that need k as a predefined parameter, including, SC, FCM, 

iRFCM, CESNA, and RTM, to be equal to the number of ground truth clusters that are 

used for benchmarking.  
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For FSPGA, we set β to 0 when FSPGA discovers structural patterns in those datasets 

whose ground-truth clusters are disjoint. We set β to 3 for all those datasets whose 

ground-truth clusters overlap with each other. As for the other parameters, we set α to 

0.5, maximum number of iterations to 300. As for k, it is set to be the same as the other 

algorithms, which is equal to the number of ground-truth clusters in each of the datasets. 

All the algorithms, including FSPGA, were executed 10 times to obtain statistical 

averages for the performance measures. 

5.3.1.3. Data description and attribute similarity used by FSPGA 

For performance evaluations, we used both synthetic and real datasets with known 

ground truth. We used synthetic data to test the effectiveness and efficiency of different 

algorithms and we used the real-world data sets to test the robustness of the different 

algorithms regarding different applications. The real data sets that we used are mainly 

categorized into two classes, including social network graph data and biological 

network graph data. 

The data sets Twitter, Ego-facebook, and Googleplus [74] are obtained from real social 

networking sites. The vertices, edges and attributes in these data sets represent users of 

the social networks, friendship between users and user profiles, respectively. The detail 

information on Ego-facebook dataset has been shown in Section 4.3.1.3. The Twitter 

data set is constructed based on a number of social circles extracted from twitter.com. 

For this data set, we have 2511 vertices, 37154 edges, and 9067 attribute values. 

Googleplus is another set of online social network data which was constructed based 

on the sub-networks from plus.google.com. There are 7856 vertices, 321268 edges, and 

2024 attribute values in the data set. The ground truth social communities for this data 

set have been identified. There are 132, 191, and 91 ground truth clusters which are 

used for benchmarking the identified clusters from datasets Twitter, Ego-facebook, and 

Googleplus, respectively. 
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Krogan [56], DIP [105], and BioGrid [93] are three sets of biological data that are 

constructed based on known interactions between proteins related to Saccharomyces 

cerevisiae. In these three data sets, the vertices, edges, and attribute values represent the 

proteins, protein-protein interactions and GO terms [5], respectively. The detail 

information on datasets of Krogan and DIP has been shown in Section 4.3.1.3. As for 

BioGrid dataset, there are 5640 vertices, 59748 edges, and 4286 attribute values. These 

three data sets have the ground-truth data stored in CYC2008 database [83] and there 

are 200 ground-truth clusters. Compared with those social network graph data used, 

Krogan, DIP and BioGrid, are sparser. Using these two types of data allows us to find 

out how robust the algorithms are when used with different types of graphs. 

Syn1k is a set of synthetic data which is generated based on the rule that the probability 

of intra-cluster edges is higher than that of inter-cluster edges and that vertices in the 

same cluster are more related to each other than those that are not. The detail 

information on Syn1k has been shown in Section 4.3.1.3. It should be noted that, the 

ground truth clusters of all the real data sets overlap with each other to some extent. 

Specifically, the overlapping rates between pairwise ground truth clusters in datasets 

Twitter, Ego-facebook, and Googleplus are 0.00193, 0.00113, and 0.01913, respectively. 

And that in Krogan, DIP, and BioGrid, it is 0.0004. 

The above datasets are used to test the effectiveness of FSPGA and other algorithms. In 

addition, to test the scalability of FSPGA, we have generated several additional 

synthetic datasets ranging in size from 5,000 to 100,000 for our experiments. 

To determine the strength between pairwise vertices in terms of attribute values that are 

used by FSPGA, we use the degree of attribute association method which can be 

obtained using (3), (4), and (5). Having obtained the degrees of interrelationship in 

terms of attribute values, we use them to construct A that is used by FSPGA. 
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5.3.1.4. Evaluation metrics 

For performance evaluation, we are considering different evaluation measures which 

are widely used for evaluating graph clustering algorithms and fuzzy clustering 

algorithms. For measures used for validating graph clusters, we used the Normalized 

Mutual Information (NMI), and the Average Accuracy (Acc) [85]. There are a number 

of measures for fuzzy clustering validity, such as Beni Index [106], Earth Mover’s 

Distance [6], and several fuzzy Rand-Index-based measures [7]. In our experiments, we 

selected Fuzzy Adjusted Rand Index (FARI) [7] for evaluating the graph clusters 

discovered by different algorithms.  

5.3.2. Experimental results using synthetic data 

5.3.2.1. Evaluation of clustering quality 

For performance evaluation, we used a set of synthetic graph data containing 1000 

vertices to test the effectiveness of all different algorithms. As mentioned above, the 

synthetic data are generated by assuming that the probability of vertices within the same 

cluster to be connected with other vertices to be higher than that of the probability 

between clusters. For our experiment, the data set Syn1k was generated by setting the 

probability of intra-cluster connections to be 0.05 and the probability of inter-cluster 

connections to be 0.01.  

TABLE 5 NMI, ACC AND FARI IN SYN1K 

                                       Syn1k 

Approach NMI Acc FARI 

AP 0.152 0.747 0.01 

CoDa 0.116 0.43 0.097 

SC 0.232 0.528 0.277 

FCM 0.732 0.871 0.674 

iRFCM 0.718 0.739 0.677 

CESNA 0.792 0.845 0.813 

RTM 0.797 0.797 0.683 

ECDA 0.272 0.466 0.203 

FSPGA 0.992 0.998 0.995 
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The performance of FSPGA and other algorithms on the synthetic dataset Syn1k with 

respect to NMI, Acc and FARI is given in Table 5. As the table shows, FSPGA performs 

better than other algorithms. No matter which of NMI, Acc, or FARI is considered, 

FSPGA may outperform all the compared baselines in dataset Syn1k. These 

experimental results show that FSPGA can be very effective with the discovering of 

clusters in the synthetic attributed graph.  

5.3.2.2. Scalability test 

To find out how FSPGA can scale up when data set size increases, a series of synthetic 

data of sizes ranging from 5000 to 100,000 were generated using the same probabilities 

of 0.05 and 0.01 for intra- and inter-cluster vertex connections as is with Syn1k. Given 

these generated data, the scalability of FSPGA was studied in a number of experiments 

involving different data sets. The results obtained were compared with those obtained 

with CESNA, RTM and iRFCM and AP. As FSPGA and these algorithms are iterative 

in nature, the comparison is made based on the average execution time of each iteration. 

The results are shown in Fig. 9. 

The results show that FSPGA scales up well when compared with RTM and iRFCM 

and AP. Even with the data sets containing as many as 100,000 vertices, FSPGA was 

 
Fig. 9. Scalability test between different algorithms 
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able to complete each iteration in the optimization process in around 1 second and this 

is slightly faster than CESNA. However, when comparing the number of iterations that 

is required for the two algorithms to complete the cluster discovery tasks, it should be 

noted that CESNA needed at least 300 iterations whereas FSPGA converges much 

below 300. Given this to be the case, FSPGA is more computationally efficient.  

When compared with AP, RTM, and iRFCM, the computational time used by them is 

much more than FSPGA did. It should be noted that we did not obtain the results of 

scalability test of RTM or iRFCM when the size of synthetic data is larger than 10,000 

as they were crushed under that situation. And the computational time of AP is also 

intolerable when the data size is larger than 25,000. 

5.3.2.3. Sensitivity test of α 

As described in Section 5.2, for FSPGA to performs its tasks, it requires the setting of 

a parameter α. The parameter is used to adjust the bias between edge density and 

strength in terms of attribute within the process of cluster identification. How the 

parameter may affect the performance of FSPGA can be investigated in several 

sensitivity tests using the data set Syn1k. 

 
Fig. 10. Sensitivity test of α 
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In our experiment, α was set to different values from 0 to 1, with an increment of 0.2, 

and FSPGA was used under these different settings to detect clusters. The performance 

was measured with NMI, Acc and FARI and the results are shown in Fig. 10.  

It is seen that when α was set to 0, which means that only the attribute values are 

considered, and when it is set to 1, which means that only the edge structure is 

considered, the performance of FSPGA is affected negatively. When setting α to the 

value between 0.4 and 0.6, FSPGA obtains very good results. Given these results, we 

set α to be 0.5 in all our experiments so that both attribute values and edge structures 

are considered equally important by FSPGA.  

5.3.3. Experimental results in real data 

5.3.3.1. Results in social community detection 

Social communities are important structural patterns in social graphs. The identification 

of such communities is important to social network analysis. For performance 

evaluation of FSPGA, we used three sets of social network data, including Twitter, Ego-

facebook, and Googleplus. All these data sets have known ground-truth communities 

that have been verified in previous work. Given the fact that the number of ground truth 

clusters is known, for those algorithms which need to set the number of clusters (k), we 

set it to be the number of known ground truth clusters in each dataset. 

TABLE 6 NMI, ACC AND FARI OBTAINED FROM SOCIAL NETWORK DATA 

 Twitter Ego-facebook Googleplus 

Approach NMI Acc FARI NMI Acc FARI NMI Acc FARI 

AP 0.5982nd 0.4793rd 0.123 0.5282nd 0.416 0.1941st 0.355 0.273 0.095 

CoDa 0.5843rd 0.471 0.1823rd 0.5243rd 0.5023rd 0.133rd 0.373 0.3753rd 0.079 

SC 0.493 0.305 0.094 0.52 0.447 0.126 0.33 0.296 0.081 

FCM 0.08 0.09 0.016 0.28 0.208 0.056 0.128 0.181 0.031 

iRFCM 0.535 0.37 0.172 0.315 0.282 0.074 0.266 0.318 0.054 

CESNA 0.572 0.5281st 0.169 0.483 0.6231st 0.118 0.422nd 0.472nd 0.1053rd 

RTM 0.028 0.099 0.014 0.227 0.167 0.061 0.023 0.151 0.019 

ECDA 0.529 0.385 0.1842nd 0.322 0.234 0.099 0.3953rd 0.341 0.1222nd 

FSPGA 0.6411st 0.5132nd 0.2411st 0.5791st 0.5882nd 0.172nd 0.4891st 0.5191st 0.1491st 
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The experimental results of NMI, Acc, and FARI obtained with these datasets are 

summarized in Table 6. As the table shows, FSPGA performs more robustly than other 

algorithms. When the identified clusters are evaluated by NMI, FSPGA outperforms all 

the other algorithms in all the three social network datasets. When evaluated by Acc, 

FSPGA ranks the best in Googleplus, and second best in Twitter, and Ego-facebook, 

respectively. When the identified clusters are evaluated by FARI, FSPGA outperforms 

the other algorithms in the case of Twitter, and Googleplus, and ranks second best in 

Ego-facebook. In total, the above results obtained from social network data show that 

the social communities detected by FSPGA better match with the ground-truth when 

compared with the others.  

5.3.3.2. Functional modules detection in biological graph data 

Structural modules in biological networks, such as protein complexes in protein-protein 

interaction (PPI) network graphs can be considered as another important application of 

cluster detection in attributed graphs. 

To further test the effectiveness of FSPGA, we used three sets of PPI network data in 

our experiments. They included the data sets Krogan, DIP and BioGrid. These data sets 

were chosen as the ground-truth, which correspond to known protein complexes, could 

TABLE 7 NMI, ACC AND FARI OBTAINED FROM BIOLOGICAL NETWORK DATA 

 Krogan DIP BioGrid 

Approach NMI Acc FARI NMI Acc FARI NMI Acc FARI 

AP 0.6921st 0.1873rd 0.11 0.6882nd 0.1172nd 0.098 0.109 0.016 0.003 

CoDa 0.6882nd 0.1992nd 0.2981st 0.463 0.0683rd 0.045 0.299 0.035 0.017 

SC 0.609 0.079 0.026 0.588 0.047 0.009 0.5453rd 0.032 0.0873rd 

FCM 0.454 0.078 0.115 0.49 0.06 0.1383rd 0.444 0.0482nd 0.073 

iRFCM 0.342 0.055 0.058 0.444 0.049 0.091 0.355 0.0463rd 0.045 

CESNA 0.484 0.055 0.027 0.425 0.026 0.063 0.449 0.026 0.049 

RTM 0.578 0.037 0.169 0.6143rd 0.025 0.1842nd 0.6222nd 0.021 0.1942nd 

ECDA 0.631 0.142 0.2292nd 0.299 0.058 0.016 0.145 0.026 0.043 

FSPGA 0.6773rd 0.2021st 0.1913rd 0.7121st 0.1291st 0.2671st 0.7551st 0.1251st 0.3721st 
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be found and some of the known protein complexes are overlapping. Performance data 

based on NMI, Acc and FARI were obtained from the experiments. The results obtained 

with these two data sets are shown in Table 7.  

As shown in the table, FSPGA obtains better performance than all the other algorithms 

regardless of performance measures used. When the evaluation measure, Acc is 

considered, FSPGA outperforms all the baselines in all three datasets. When NMI is 

considered, FSPGA ranks the best in the case of DIP and BioGrid, and third with 

Krogan. When the discovered clusters are evaluated by FARI, FSPGA outperforms all 

other algorithms with DIP and BioGrid, and ranks third with Krogan. 

As the objective function used by FSPGA considers pairwise relationship between any 

pair of vertices in terms of edge structure and attribute information, the relative 

weighting between how much each of these two factors should be considered can be 

adjusted dynamically during the optimization process. The fuzzy cluster membership 

matrix C obtained by FSPGA can find k clusters in which vertices share similar 

weighted structure with each other. This represents, in other words, the optimized 

weighted aggregation of intra-cluster connections and attribute relativity. This feature 

allows FSPGA to group unconnected but related vertices to be taken into consideration 

based on attribute relativity. Moreover, as FSPGA allows fuzzy cluster membership to 

be considered within the optimization process, thereby making it possible for FSPGA 

to find overlapping clusters as fuzzy structural patterns in an attributed graph. These 

features are the reasons why FSPGA can obtain a more robust performance with both 

overlapping and non-overlapping clustering.  

5.3.4. Case study-overlapping rate versus clustering quality 

To find out what impact the parameter β can have on the quality of clusters, FSPGA is 

tested with all real datasets, using β from 0.1 to 4, with a 0.1 increment. The clusters 
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obtained under different settings of β are evaluated using NMI, Acc, and FARI. The 

results are shown in Fig. 11 (a) - (c). Together with the overlapping rate of ground truth 

clusters of each real dataset, the impact of β on the quality of overlapping clustering 

were studied in detail.  

The variations of NMI, Acc, and FARI are shown in Fig. 11 (a)-(c). As it is shown in the 

figures, the magnitudes of different clustering validity measures share similar variations. 

As the value of β becomes larger than a particular value, the clustering quality does not 

improve by much. In Fig. 11 (d), it should be noted that the extent of overlapping in all 

the datasets decreases and approximates to zero as β becomes larger and larger. Given 

these results, it should be noted that β needs to be adjusted for FSPGA to discover 

clusters with different extent of overlapping. 

It is mentioned in 5.2.5 that β is used to constrain the number of vertices that can belong 

 
                     (a)                                      (b)          

 

                     (c)                                      (d) 

Fig. 11. NMI, Acc, FARI, and overlapping rate in social and biological datasets 
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to more than one cluster. As a result, each vertex in an attributed graph is probably 

assigned to the cluster with the greatest degree of cluster membership when β is set to 

be high enough. As a result, the clustering quality of FSPGA would be approximately 

the same as with crisp clustering. Given the fact that the overlapping rate of most 

datasets are relatively low, e.g., 0.00193 in Twitter, 0.00113 in Ego-facebook, and 

0.0004 in biological datasets, the clustering quality is better when β is set higher, e.g., 

2.5 to 3.5 in Twitter, Ego-facebook, and biological datasets. Using relatively large β, 

discovered clusters are mostly disjoint and the overall overlapping rate is therefore 

similar to that of the ground truth clusters (see Fig. 11 (d)).  

However, when β is set between 2.5 and 3.5, it may degrade the quality of clusters 

discovered in Googleplus. This is because this data set has a relatively high overlapping 

rate. E.g., the Acc decreases when β is set larger than 2.5.  

Given these characteristics of β, it is necessary for one to adjust the setting. However, 

FSPGA performs robustly when β is set between 2 and 3.5 and this is why β is set to 3 

in our experiments. 

5.4. Discussion 

5.4.1. Comparisons between FSPGA and formal fuzzy clustering algorithms 

With the above features, FSPGA can be considered different from such popular fuzzy 

clustering algorithms as the fuzzy c-means algorithm (FCM), and the relational fuzzy 

c-means algorithm (iRFCM). With the objective function that it uses, FSPGA can 

determine, dynamically, the degrees of cluster membership based on both the edge 

structure and attribute information of vertices. Compared with algorithms such as 

iRFCM which adjust global bias between M and A, FSPGA may identify meaningful 

clusters which other algorithms may miss.  
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Also, while existing fuzzy clustering algorithms minimize dissimilarity between data 

entities and cluster centers, FSPGA takes into consideration the edge structure and 

attribute relativity within each cluster. By so doing, FSPGA can identify clusters in 

which the weighted aggregation of intra-cluster connections and degrees of attribute 

relativity between any pair of vertices is optimized. These features are some of the 

reasons why FSPGA may perform better than other algorithms we used for comparison. 

5.4.2. Computational complexity and space requirements of FSPGA 

As the computational complexity of FSPGA is dependent mainly on the iterative 

updating of C and X, the complexity of the process of determining these matrices are 

considered here. 

Let nV and k be the number of vertices in the graph and the number of clusters in an 

attributed graph. It should be noted that k << nV in practice. According to Equation (40), 

for updating each element in C, say cij, it approximates the order of O((2k+2)nV). Hence 

updating all elements in C approximates the order of O(k(2k+2)nV
2). According to 

Equation (42), updating each element in λ follows the order of O(k). This is because the 

computational components in the numerator and denominator are the same as those in 

(40). As a result, updating λ follows the order of O(knV). According to Equation (45), 

the updating of each element in X approximates the order of O((k+2)nV). Hence 

updating all the elements in X follows the order of O(2k(k+2)nV
2).  

Given the complexity of updating variables in C and X, FSPGA is an algorithm with 

complexity of O(n2). In other words, FSPGA is more efficient than the spectral-based 

clustering algorithms since their computational complexity follows the order of O(n3). 

In fact, as the augmented matrix Y is always very sparse, theoretically, FSPGA should 

run faster than those algorithms, such as Affinity Propagation (AP), that also have the 

complexity of O(n2). The scalability test shown in Fig. 9 also supports the analysis here. 
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Regarding the space requirement of FSPGA, it should be noted that FSPGA does not 

require much memory space when performing the task of discovering fuzzy structural 

patterns in the attributed graph. This is because FSPGA only stores those non-zero 

elements in the augmented matrix Y. For example, one synthetic data set used in our 

experiment contains 100,000 vertices, but there are about 30,000,000 elements in Y 

which are larger than zero. Compared with the full memory space for 100,0002, 

30,000,000 is only 0.3% of the full space. Given the analysis here and the scalability 

test shown in Fig. 9, FSPGA can be used for discovering fuzzy structural patterns in 

large attributed graphs. 

5.5. Summary 

In this section, FSPGA, which is an algorithm for discovering fuzzy structural patterns 

in the form of clusters in the attributed graph, is proposed. Compared with prevalent 

algorithms that take different properties of an attributed graph, including topology, 

attribute, and both of the aforementioned, FSPGA may find an optimal arrangement of 

clusters for vertices in an attributed graph by formulating the task as a fuzzy constrained 

optimization problem. As the adoption of fuzzy set theory when determining the cluster 

membership, FSPGA can detect overlapping clusters, while most of the prevalent 

algorithms cannot. The experimental results presented in this paper show that FSPGA 

may perform robustly and efficiently in different types graph data, compared with the 

classical, latest graph clustering algorithms, and fuzzy clustering algorithms. In future, 

we will intend to further improve the efficiency of FSPGA and develop a version of 

FSPGA that may discover hierarchical structural patterns in attributed graphs. 
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6. EGCPI-AN EVOLUTIONARY ALGORITHM FOR IDENTIFYING 

CLUSTERS IN ATTRIBUTED GRAPHS 

6.1. Background 

As mentioned in Section 2, sometimes the task of mining clusters in some special 

network graphs needs treating particularly, e.g., protein complex identification in PPI 

network graphs. Such sub-graphs are always assumed to be connected components 

hidden in the attributed graph. Algorithms like MISAGA, and FSPGA need to combine 

with post-processing techniques for extracting connected components to ensure a better 

performance in such biological graphs. To develop more effective approaches that can 

be used in such attributed graphs, we propose two algorithms in Section 6 and 7. Given 

the experimental results that have been obtained, both two algorithms show their 

effectiveness in the task of sub-graph mining and outperform most state-of-the-art 

approaches. They are very promising methods for the given task. 

To perform the task of discovering protein complexes in the PPI network graph, there 

have been several algorithms proposed. Among these methods, ones that consider both 

network topology and attribute information are few. For example, PCIFI [66] can 

identify protein complexes through searching sub-graphs in which proteins perform 

interdependent molecular functions. In [67], another algorithm may identify protein 

complexes in the PPI network graph utilizing gene expression data. In [117], an 

algorithm called GMFTP, is proposed to identify protein complexes based on measures 

of similarity between attribute values of proteins. 

Based on most approaches that are proposed to identify protein complexes in PPI 

networks, we find that both topological and attribute information is very effective for 

identifying protein complexes, although there are not too many methods taking into the 

consideration both of the two types of information. We also find that most algorithms 

identify protein complexes by finding a number of clusters with some particular 
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properties that are optimized. Hence, sometimes the process of protein complex 

identification can be seen as an optimization problem. For such an optimization 

problem, we propose to tackle it with a novel approach based on an evolutionary 

algorithm called Evolutionary Graph Clustering for Protein Complex Identification 

(EGCPI). The advantages with the use of an evolutionary algorithm are that it does not 

have to work under linear constraints like those found in the typical numerical 

optimization problem. It can also discover multiple solutions and can be used to handle 

big data efficiently and effectively as it can be implemented in parallel. 

Given a PPI network, EGCPI constructs an Attributed Graph by annotating attributes 

to each protein, based on the GO database which is constructed in Gene Ontology (GO) 

project [5]. To discover protein complexes, EGCPI assigns a weight to each edge in the 

graph, according to the degree of topological similarity which quantifies the proportion 

of common neighboring proteins shared by two interacting proteins. This transforms a 

PPI network graph G into a weighted graph denoted as wG. 

Given a wG, EGCPI first finds a number of graph clusters in which the proteins are 

densely connected. It does so by optimizing an objective function that is defined in 

terms of the overall degree of topological similarity between connecting proteins in 

each cluster. After the identification of these dense graph clusters, EGCPI then makes 

use of a degree of attribute homogeneity measure to determine how similar the attribute 

values are between each pair of connecting proteins within each graph cluster. Based 

on the degree of attribute homogeneity, a breadth-first search strategy is then used to 

search for sub-graphs, within each graph cluster, that consist of proteins with similar 

attribute values. These sub-graphs are, therefore, relatively dense and their vertices 

share similar attribute values and they correspond well to the characteristics of many 

protein complexes in real life. 
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In order to evaluate the performance of EGCPI, we have tested it with different real 

data sets. The experimental results show that EGCPI performs well in terms of the 

number of accurately identified protein complexes that match with known protein 

complexes. We believe that EGCPI has great potential as an effective protein complex 

identifier. 

6.2. EGCPI in details 

Given a PPI network graph, EGCPI performs the task of protein complex identification 

in several steps. First, it models the PPI network graph using the notation (G) shown in 

Section 3. Second, a weighted Attributed Graph (wG) is then constructed by EGCPI. 

Given G, EGCPI determines a weight to each edge in the graph based on the degree of 

topological similarity. With all the weights for the edges determined, G is transformed 

into a wG. Given wG, an evolutionary algorithm is then used to identify graph clusters 

within which protein are densely connected by maximizing the overall degree of 

topological similarity in each cluster. Given the graph clusters, a breadth-first search 

strategy is used to search for subgraphs in each graph cluster based on the homogeneity 

of the attribute values associated with the connecting vertices. These subgraphs, whose 

vertices share similar attribute values and are relatively dense, are found to correspond 

well with protein complexes in real life. 

6.2.1. Mathematical preliminaries 

A PPI network can be represented as an attributed graph that contains nV vertices that 

represent proteins and nE edges that represent interactions between proteins. As we can 

obtain information about the attributes of each protein in a PPI network from the GO 

database, a set of attribute values can be considered as associating with each vertex in 

a PPI network graph so that this graph becomes an attributed graph. For our application, 

Λ contains three subsets, Λp, Λf, Λc corresponding to the attribute values of biological 

processes, molecular functions, and cellular components, respectively. Biological 
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processes is concerned with the biological objectives a protein is involved in. Molecular 

functions is concerned with the biochemical activities performed by a protein and 

cellular components is concerned with the location where a protein is most active in a 

cell. Thus, the PPI network graph can be represented using the notation in Section 3, G 

= (V, E, Λ), where V represents the set of vertices, E represents the set of edges and Λ 

represent the set of attribute values for proteins in G. 

In order to explain how the above notations are used, let us assume that we are given a 

protein with Uniprot ID [102], Q08683, then the attributes in terms of the GO terms can 

be obtained. It should be noted that not all attribute information available about the 

protein is used in our experiments with the proposed algorithm because some of them 

may contain information about protein complex membership. 

Other than avoiding the inclusion of these attribute values, it is noteworthy that the 

domains of the attributes are allowed to contain different values, i.e., it is possible that 

for any vertex in G, |Λv
p|≠|Λv

f|≠|Λv
c|. In addition, there is no requirement of EGCPI for 

any of the attributes of any vertex to have any value at all. Furthermore, there is also no 

requirement for the attribute value sets of two interacting proteins to have the same 

number of values for degree of attribute homogeneity to be determined. 

6.2.2. Construction of wG 

Given G, EGCPI makes use of a degree of topological similarity (σ) measure to weight 

each pair of interacting proteins according to how much they are connected. It is defined 

as 
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where ei+ is the set of vertices that are connected to vi, eij equals to 1 if there is an 

interaction between vi and vj. σ evaluates the extent that a protein pair is connected to 

each other when considering the network topology.  

The magnitude of σ ranges from 0 to 1. A higher value means that vi and vj are more 

highly connected. After a weight is determined for each edge in G, a weighted 

Attributed PPI network Graph (wG) is obtained. EGCPI then proceeds to try to find 

dense graph clusters using wG. 

6.2.3. Evolutionary graph clustering 

EGCPI identifies dense graph clusters using an evolutionary algorithm (EA). EAs have 

been shown to be very efficient at dealing with problems, such as NP-Complete 

problems that can otherwise be hard to tackle [14]. Recently, EAs have been used for 

graph clustering [45]. However, they have not been used for protein complex discovery 

in PPI networks. For EGCPI, an EA is used for the purpose of finding graph clusters 

that are more densely connected within a cluster than outside. This is because proteins 

in protein complexes are more densely connected in clusters as well. 

Given a wG represented and encoded in a chromosome, the EA that EGCPI makes use 

of searches for an optimal solution based on a single-criterion objective function 

defined in terms of the weights in a wG. Like other EAs, EGCPI evolves an optimal 

graph clustering arrangement in several steps. To begin, a number of chromosomes is 

first initialized and their fitness values computed based on the weights of the graphs. 

Based on these fitness values, a particular number of coupled individuals are then 

selected for reproduction, which consists of both crossover and mutation. 

Chromosomes with lower fitness values will then be eliminated from the population 

after each generation of descendants are reproduced. The steps of selection and 

reproduction are then repeated. 
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6.2.3.1. Gene representation 

EGCPI uses a straight-forward representation [50] to encode a graph clustering 

arrangement in a chromosome which has a length equal to the total number of vertices, 

nV, in the graph. Assuming that S stands for the number of clusters in the wG and that 

S can be different in different chromosomes, then we can represent the case of the ith 

vertex in the wG being in the jth cluster as the ith gene containing the allele j. 

6.2.3.2. Initialization 

Since the straight-forward representation is used in EGCPI, the initial number of 

clusters, S must be determined before the initialization. Here S is a randomized 

parameter decided by the algorithm before each initialization of a chromosome. In the 

case of EGCPI, S is not to exceed a maximum value of nV/2. 

According to the typical approach of initializing a chromosome, a randomized cluster 

ID is assigned to each vertex. However, total randomness may result in long 

convergence time. To avoid the problem, EGCPI initializes a population of 

chromosomes with a different process that consists of the following steps: (i) S nodes 

is first selected randomly as the initial clusters, (ii) for each vertex v, with e connections 

(e>0), a cluster ID among S’ is assigned to it, where |S’|≤S and S’ is the set of cluster 

IDs to which vertices connected to v are possibly assigned; (iii) all the vertices without 

any connection are assigned to one of S clusters randomly. These three steps are iterated 

p times, where p is the size of the population. With this approach of initialization, p 

different ways of partitioning the vertices in wG into different numbers of clusters can 

be generated. 

6.2.3.3. Reproduction 

The reproduction process consists of both crossover and mutation. Traditionally, the 

uniform crossover operator which swaps alleles between two selected parent 

chromosomes is adopted by many EAs. However, EGCPI adopts a crossover operator 
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modified from the standard uniform crossover. In addition to the popular mutation 

operator that randomly changes the allele of a gene, EGCPI also makes use of a Self-

Variation (SV) operator to introduce variation to a population of chromosomes. 

As part of the crossover, instead of allowing all chromosomes to be selected for 

reproduction, EGCPI allows only a proportion of the chromosomes to be randomly 

selected and this proportion is set arbitrarily to 30%. This means that the best 30% of 

the chromosomes in the population can be candidates for reproduction only. 

After selection, EGCPI performs crossover by first selecting one parent as a template. 

The cluster IDs of the other parent then replace all the alleles in the template which 

share the same gene positions with its cluster member according to the crossover rate. 

After crossover, each member of the selected cluster can then be selected for mutation 

based on the mutation rate. With these steps above, EGCPI generates a new descendant. 

Although the fitness of the population is incrementally improved as new populations 

are continually generated, it takes a rather long time for the evolution process to 

converge. This is especially the case with large data set size. To tackle the problem, 

EGCPI adds an additional reproduction operator, called Self-Variation (SV). The main 

task of SV is to relocate a vertex to a cluster within which vertices share relatively higher 

weights with it, based on the current graph clustering arrangement. In other words, a 

vertex should belong to a cluster that shares connections of higher weights with it 

because connections of higher weights might lead to a higher probability of identifying 

protein complexes in the cluster. To achieve the expected goal, we use a two-dimension 

matrix to complete the stage of SV: Given all nodes in a network and all clusters, the 

matrix VC[nV][S] is defined to represent the weight between a vertex and a cluster. For 

an element in VC, say vcij, it equals to zero if there is no connection between node i and 

other nodes in cluster j. Otherwise, it means some number of connections with a 
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magnitude of aggregated weight bridge node i and other nodes cluster j. Given VC[nV][S], 

Self-Variation is completed like the follows: For a vertex vi in cluster j, EGCPI firstly 

computes its expected weight E(dvic) between vi and each cluster, E(dvic) is defined as: 
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where wvi is the total weights of interactions whose one endpoint is vi. Once E(dvic) is 

obtained, EGCPI determines whether or not vi should be relocated to a new cluster by 

Algorithm 3-Evolutionary Clustering 

Input: G 

Output: A set of clusters C={ci, 1≤i≤nC} 

 

generate σ for each interaction according to (47); 

construct weighted Attributed PPI network Graph 

(wG); 

population initialization; 

done = false;  

while (done == false) { 

for (i = 0; i < maxdescendant; i ++) { 

            crossover; 

            Self-Variation; 

            insertion of individual; 

            elimination; 

} 

if(terminal-condition) { 

               done = true; 

} 

else { 

            if(re-initialization) { 

              population initialization 

              } 

} 

} 

return C; 

Fig. 12. Evolutionary graph clustering 
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computing the largest difference of the real weight and the expected weight between vi 

and each cluster, and this difference is defined as: 

  cvik
k i

dEvcdiff  maxmax                     (49) 

If diffmax≠j, vi will be moved to cluster diffmax, otherwise vi will not be relocated. After 

the completion of SV, those clusters which possess relatively lower weight might be 

eliminated and the quality of clusters produced by crossover can be improved. Using 

the SV stage, EGCPI can find optimal dense clusters in wG in a less time.  

6.2.3.4. The fitness function 

Every time when EGCPI initializes the population or reproduces a new-birthed 

individual, the fitness value of each chromosome is computed and the highest fitness 

value is seen as the population fitness. In order to find partitions in which clusters 

possess more weight of intra-interactions but less that of inter-connections between 

clusters, we use a measure called Independence of Cluster (IoC) to evaluate a cluster 

that is partitioned by each individual in the population. And this measure is defined as 
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where ci is the ith cluster in a partition, wjk is the weight that is assigned to interaction 

ejk in wG, the numerator and the denominator stand for the total weight of intra-

interactions and that of all interactions connecting proteins in ci. Once the IoC values 

of all clusters partitioned by an individual are obtained, we can evaluate the fitness of 

the individual by using the following objective function: 
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where nVi and nV represent the total number of vertices in cluster i and wG, respectively. 

IoCwG evaluates to what extent the independence is if a cluster is compared to another 

and it ranges from 0 to 1. Apparently, the higher IoCwG is, the more independent from 

other ones a cluster is. Therefore, IoCwG helps to diminish the interdependence between 

any two clusters.  

Algorithm 4-Protein complex identification 

Input: A set of clusters C 

Output: A set of protein complexes PC 

for each cluster ci { 

      generate θ for each interaction in ci; 

      for each vertex vi { 

 find θmax; 

      create a new protein complex r; 

      create a new link list Pvisiting; 

      Pvisiting = Pvisiting∪vi;  

      Pvisiting = Pvisiting∪vj; 

      while(|Pvisiting|>0){ 

          vk = head of Pvisiting; 

          Pvisiting- vk; 

          r = r∪vk; 

          search vm: neighbors of vk; 

          if(θkm≥λ×θmax){ 

            Pvisiting = Pvisiting∪vm; 

            } 

          } 

        if(Ovr≤OvMax){ 

           PC = PC∪r; 

          } 

     } 

} 

return PC; 

Fig. 13. Protein complex identification 
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6.2.3.5. Summary remarks 

Based on what has been illustrated from 6.2.3.1 to 6.2.3.4, the evolutionary algorithm 

is summarized as the pseudo codes shown in Fig. 12. When the phase of evolutionary 

clustering is finished, EGCPI obtains an individual containing optimal cluster 

arrangement for each protein in the wG. These clusters can be represented as C={ci, 

1≤i≤nC}, where nC stands for the number of clusters.  

6.2.4. Identifying protein complexes in found clusters 

After using the above EA in wG, EGCPI obtains a set of clusters from the best 

individual in a population. In this stage, EGCPI performs a further extraction of 

subgraphs as protein complexes in each cluster. Rather than detecting protein 

complexes based on network topology, EGCPI identifies protein complexes by taking 

into consideration attribute homogeneity between pairwise proteins because proteins 

within each found cluster are already densely connected. Before searching protein 

complexes, EGCPI computes the degree of attribute homogeneity (θ) between each pair 

of connected proteins, using (1) in Section 3. θ determines how similar the attribute 

values are between each pair of connecting proteins within the cluster. It ranges between 

0 and 1. A higher θ means there are more functional attributes performed by both of the 

connected proteins so that EGCPI tends to form protein complexes by searching such 

protein pairs in each graph cluster. After EGCPI uses the θ measure to weight all 

connected vertices, EGCPI uses a breadth-first search (BFS) method to form protein 

complexes in each cluster. First, it selects an interaction of a vertex with the highest θ, 

θmax, and incorporates both of the two connected vertices vi and vj into a seed set for 

forming a protein complex; second, based on θmax, EGCPI searches all the neighboring 

vertices and incorporates those which satisfy the minimum threshold of θ. In EGCPI, 

this threshold is defined as 
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where vk stands for a vertex in the seed set and vm is a vertex connecting to vk. In other 

words, only vertices sharing connections with θ which is higher than λ×θmax can be 

incorporated into the seed set. The searching in the second step will be terminated till 

there is no new vertex added to the seed set. When the above search in a cluster is 

finished, EGCPI forms a protein complex using the proteins in the seed set. EGCPI will 

stop forming protein complexes till it traverses all vertices in the cluster. As using the 

above search strategy may produce some protein complexes whose sizes are small, 

EGCPI discards those identified protein complexes including fewer than 3 proteins.  

To reduce the redundancy of proteins in the identified protein complexes, EGCPI 

computes an overlapping score between an identified protein complex and protein 

complexes in the identified set. The overlapping score is defined as: 
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where r and PCI stand for an identified protein complex after once of the search and 

any other protein complex that is in the identified set, respectively. Then EGCPI uses a 

threshold OvMax to exclude those identified protein complexes whose overlapping 

TABLE 8 STATISTICS ON THE USED DATA SETS OF PPI NETWORKS 

Data Set nV nE nΛ 

Collins 1620 9064 2042 

Gavin 1430 6531 2107 

Krogan-Core 2674 7075 3064 

DIP-Scere 4579 20845 4237 

DIP-Hsapi 2434 3053 7031 

nV, the number of proteins; nE, the number of interactions; nΛ, the number of attributes. 
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scores are higher than the threshold. In order to explain this BFS method in detail, we 

give the pseudo codes in Fig. 13. 

6.3. Experiment and analysis 

For performance testing, EGCPI has been tested with five sets of real PPI network data. 

They include: (i) Collins [23], (ii) Gavin [37], (iii) Krogan-Core [56], (iv) DIP-Scere 

[105] and (v) DIP-Hsapi [105]. Datasets (i), (ii) and (iii), which can be collected from 

the BioGRID database [93], are concerned with yeast Saccharomyces cerevisiae. In our 

experiments, the data we used are collected from version 3.2.118 of the BioGRID 

database. Compared with Collins, Gavin, and Krogan-Core, DIP-Scere, which is also 

related to Saccharomyces cerevisiae, has a much larger data set size. Unlike the other 

data sets, DIP-Hsapi, is collected from human beings. Both the two DIP datasets are 

collected from the 2013 version of the DIP database [105]. The properties of these five 

datasets are shown in Table 8.  

For all the five data sets, the protein attribute information required for the construction 

of the PPI network graphs were obtained from the January 2016 version of the GO 

database [24]. As mentioned above, the GO terms of the cellular components which 

may provide information about the protein complexes that a protein belongs to are not 

included in the experimental data sets. 

To evaluate the performance of different protein complex identification algorithms, we 

compared the protein complexes identified with known protein complexes in 

Saccharomyces cerevisiae as contained in January 2016 version of the CYC2008 [83] 

and MIP/CYGD [75] [42] databases. There are 408 and 255 known protein complexes 

for Saccharomyces cerevisiae in the CYC2008 and MIP/CYGD databases respectively. 

Following the work completed in [78], we used the known protein complexes in these 

databases for performance evaluation. After removing protein complexes that are made 
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up of fewer than 3 proteins, we have obtained a total of 296 distinct protein complexes 

in the two databases for performance evaluation. 

For the evaluation of protein complexes in the data set, DIP-Hsapi, we compared the 

protein complexes identified by different computational approaches with the known 

ones contained in the MIPS/CORUM [75] [88] database and there are altogether 1466 

known protein complexes that are made up of three or more proteins in MIPS/CORUM. 

6.3.1. Experiment set-up and performance evaluation 

For performance evaluation, EGCPI were compared with different algorithms, 

including GMFTP, MCL, DPClus, IPCA, CFinder, COACH, SPICi and ClusterONE. 

We used these 9 algorithms to identify protein complexes in the five datasets described 

above. Algorithms like MCL, DPClus, IPCA, CFinder COACH, SPICi and 

ClusterONE identify protein complexes in PPI networks based only on network 

topologies. Attribute information that is made available are not considered by these 

algorithms. As algorithms like MCL, SPICi and ClusterONE can be used with weighted 

PPI network data, we also used them to identify protein complexes in the weighted PPI 

network data that are used by EGCPI. As GMFTP considers both network topology and 

functional attributes when identifying protein complexes, it is provided with exactly the 

same attribute information as we provided for EGCPI. For the above algorithms to 

perform their tasks, the settings of the parameters for each of them are given in Table 9.  

When using EGCPI to find graph clusters, the population size is set to 100, and the 

TABLE 9 PARAMETER SETTINGS OF DIFFERENT ALGORITHMS 

Approach Parameter Approach Parameter 

ClusterONE s=3, density=auto (default setting) GMFTP K=1000 (default setting) 

MCL inflation = 1.8 (default setting) SPICi minimum cluster size = 3 

DPClus CPin=0.5, din=0.6 (default setting) IPCA S=3, P=2, Tin=0.4/0.9 

CFinder k=3 COACH W=0.225 (default setting) 

EGCPI λ=0.7/0.8, OvMax=0.7/0.8/0.9  
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crossover rate is set to 0.6 for evolutionary clustering. We ran the EA for 30 generations 

before it was required to return the best partition of graph clusters. The reason why the 

maximum number of generations is set to 30 is because we found that the EA used in 

EGCPI could usually achieve the best results within around 30 generations. For λ, it 

TABLE 10 RESULTS OF F-MEASURE AND MMR OBTAINED FROM BIOGRID DATASETS 

Data Set Approach # Coverage f-measure MMR 

Precision Recall f-measure 

 

 

 

 

Collins 

EGCPI 236 1160 0.67 0.54 0.61st 0.292nd 

GMFTP 203 1160 0.59 0.47 0.523rd 0.283rd 

ClusterONE 203 1293 0.54 0.45 0.49 0.25 

DPClus 203 1185 0.53 0.44 0.48 0.26 

MCL 282 1620 0.4 0.49 0.44 0.26 

SPICi 120 973 0.68 0.34 0.45 0.2 

IPCA 499 1160 0.48 0.66 0.552nd 0.331st 

COACH 245 1114 0.51 0.48 0.49 0.27 

CFinder 114 1160 0.7 0.32 0.44 0.2 

 

 

 

 

Gavin 

EGCPI 298 1150 0.66 0.56 0.61st 0.271st 

GMFTP 172 917 0.64 0.42 0.52nd 0.223rd 

ClusterONE 243 1268 0.4 0.37 0.38 0.19 

DPClus 217 1107 0.41 0.36 0.38 0.19 

MCL 177 1430 0.39 0.27 0.33 0.14 

SPICi 126 907 0.54 0.27 0.36 0.15 

IPCA 695 1124 0.36 0.61 0.463rd 0.252nd 

COACH 324 1052 0.43 0.46 0.44 0.223rd 

CFinder 98 1124 0.56 0.2 0.29 0.11 

 

 

 

 

Krogan-Core 

EGCPI 526 1442 0.53 0.65 0.591st 0.321st 

GMFTP 299 1411 0.41 0.49 0.44 0.283rd 

ClusterONE 242 1071 0.48 0.42 0.453rd 0.23 

DPClus 497 1758 0.25 0.5 0.33 0.26 

MCL 514 2674 0.2 0.42 0.27 0.22 

SPICi 233 1239 0.38 0.36 0.37 0.19 

IPCA 701 1140 0.41 0.67 0.512nd 0.32nd 

COACH 349 1056 0.49 0.53 0.512nd 0.27 

CFinder 115 1140 0.49 0.21 0.3 0.14 

#: The number of protein complexes identified. Coverage: The number of distinct proteins in the 

identified protein complexes. 
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was set to 0.7 or 0.8. As for OvMax, it was set to 0.7, 0.8 or 0.9 to obtain a better 

performance.  

For other algorithms, their parameters were set following the recommendations of the 

authors or modified as many times as possible to obtain a better performance. For 

example, different settings of Tin in IPCA have been proposed. In [103], it was set to 

0.9 and in [68], it was set to 0.4 to obtain best results. For our experiments, we, therefore, 

used both these two settings to obtain a better performance. Another example is the 

parameter setting of CFinder. As there are no recommended settings for the size of the 

clique, we tried different values of k, from 3 to 50, and found that CFinder performed 

better when k was set to 3.  

For the purpose of performance evaluation, we used two measures. One is the f-measure 

which can be taken as a measure that determines the overall accuracy of the identified 

protein complex. The f-measure can be defined as follows: 

FNTP

TP
recall

FPTP

TP
precision

recallprecision

recallprecision
measuref












,

2

          (54) 

The f-measure is determined by the value of precision and recall. TP is the number of 

identified protein complexes whose matching rates are equal to or larger than a 

particular threshold O’. In our experiments, we set the threshold to 0.2, which is 

recommended in [69]. FP is the number of identified protein complexes whose 

matching rates are less than the threshold O’. FN is the number of known protein 

complexes that are not matched by any identified protein complex. The other measure 

we used to determine the quality of identified protein complexes is the Maximum 

Matching Rate (MMR) [78]. Unlike the f-measure, it needs a predefined threshold to 
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evaluate the identified protein complexes, MMR offers a natural way to measure how 

accurately the identified protein complexes can represent a benchmarking set. Based on 

the features of f-measure and MMR, these two evaluation criteria are complementary to 

each other.  

6.3.2. Performance analysis 

The experimental results of f-measure and MMR obtained by different algorithms have 

been summarized in Table 10 and 11. As the table shows, EGCPI obtains best f-measure 

in all the five data sets. Although EGCPI doesn’t always obtain the best performance 

on Precision or Recall, but it makes a better compromise between the two measures so 

that the results of f-measure obtained by EGCPI are better than those done by other 

approaches. Given the results of f-measure, it is said the overall accuracy of protein 

TABLE 11 EXPERIMENTAL RESULTS OF F-MEASURE AND MMR OBTAINED FROM DIP DATASETS 

Data Set Approach # Coverage f-measure MMR 

Precision Recall f-measure 

 

 

 

 

DIP-Scere 

EGCPI 441 2787 0.48 0.64 0.551st 0.322nd 

GMFTP 517 2509 0.28 0.60 0.383rd 0.33rd 

ClusterONE 335 1368 0.35 0.42 0.383rd 0.19 

DPClus 856 2973 0.15 0.54 0.24 0.26 

MCL 691 4579 0.12 0.32 0.18 0.18 

SPICi 394 2055 0.24 0.39 0.3 0.18 

IPCA 1602 2142 0.23 0.8 0.36 0.371st 

COACH 853 1952 0.27 0.7 0.392nd 0.322nd 

CFinder 192 2143 0.3 0.2 0.24 0.13 

 

 

 

 

DIP-Hsapi 

EGCPI 489 1241 0.37 0.13 0.21st 0.051st 

GMFTP 187 806 0.31 0.04 0.07 0.02 

ClusterONE 201 710 0.29 0.04 0.08 0.02 

DPClus 563 1644 0.19 0.09 0.12 0.051st 

MCL 549 2434 0.17 0.07 0.1 0.042nd 

SPICi 194 863 0.35 0.05 0.09 0.02 

IPCA 289 515 0.56 0.12 0.192nd 0.051st 

COACH 151 492 0.63 0.07 0.133rd 0.033rd 

CFinder 111 515 0.5 0.04 0.08 0.02 
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complexes identified by EGCPI is better than prevalent algorithms. When evaluated by 

the MMR measure, EGCPI also performed robustly in all the data sets. As the table 

shows, in the datasets of Gavin, Krogan-Core, and DIP-Hsapi, EGCPI ranks the first 

and it holds the second-best place in Collins and DIP-Scere. Given such results, it is 

concluded that the protein complexes identified by EGCPI may more accurately 

represent the known protein complexes in the benchmarking sets. As for the number of 

identified protein complexes and the coverage, EGCPI covered relatively more proteins 

when detecting protein complexes in each set of data, but it did not identify a large 

number of protein complexes. Together with the results of f-measure and MMR, it is 

seen that EGCPI is not an algorithm that obtains better experimental results by 

increasing the number of identified protein complexes.  

To investigate whether other algorithms can obtain a competitive performance if they 

are used with the same weighted PPI network data, we compared the experimental 

performance obtained by those algorithms which can deal with weighted network data, 

including ClusterONE, MCL, and SPICi with that obtained by EGCPI. The results are 

summarized in Table 12. As the table shows, the performance of ClusterONE, MCL and 

SPICi is improved to some extent, but EGCPI still outperforms these three algorithms 

even when they use the weighted network data generated by the degree of topological 

similarity. Obtaining such results shows taking into consideration both topology and 

attribute makes EGCPI outperform those algorithms considering network topology only. 

In total, EGCPI’s performance on the task of protein complex identification is very 

promising. It obtains better results in both MMR and f-measure in most data sets. 

Therefore, EGCPI can perform better when it treats the task of protein complex 

identification as an optimization problem which takes into consideration both attribute 

information and topology of a PPI network. 
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6.3.3. The effect of parameter settings 

As described before, there are two parameters in EGCPI, λ and OvMax determining the 

results of identified protein complexes. In order to investigate how these parameters, 

impact the results of protein complex identification, we executed EGCPI to identify 

protein complexes in the five data sets with λ and OvMax changing from 0.1 to 1.0, 

using a 0.1 increment. After collecting the identified protein complexes using different 

combinations of λ and OvMax, we evaluate them with Precision, Recall, f-measure and 

MMR. Here we take the variations of the above measures obtained in the data set 

Krogan-Core as an example (Fig. 14). As the surfs shown in Fig. 14 (a) and Fig. 14 (c), 

Precision and f-measure share an analogous trend when λ and OvMax change. Simply 

setting λ and OvMax to the values near to 0 or 1 may not obtain satisfying results. For 

example, EGCPI may obtain a relatively low Precision when λ is set to 0.2, no matter 

how to configure OvMax. When using a small λ, EGCPI may incorporate more proteins 

with lower degree of attribute homogeneity so that the protein complexes may not well 

match the known protein complexes. Although Precision and f-measure are relatively 

higher when λ and OvMax are set very near to 1, EGCPI cannot identify those protein 

complexes including more proteins so that some biological significance of the identified 

protein complexes is missing. Given such concerns, appropriate settings of λ and 

OvMax are essential to the experimental performance of EGCPI.  

As Fig. 14 (b) and Fig. 14 (d) show, Recall, and MMR share the similar variations under 

different combinations of λ and OvMax. Using higher λ and OvMax, EGCPI may 

identify more protein complexes in the PPI network, so that it is possible for EGCPI to 

identify more protein complexes in the benchmarking set and higher Recall can be 

obtained. Since each identified protein complex including fewer proteins as λ and 

OvMax are set as higher values, its MMR is consequently larger than that of the 

identified protein complex including more proteins. Since we desire an approach that 
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can accurately identify protein complexes including relatively more proteins, in general, 

we recommend to let EGCPI perform the task of protein complex discovery when λ and 

OvMax are set between 0.6 and 0.9. EGCPI may obtain a robust performance when λ 

and OvMax are appropriately configured in that range. This is also the reason why we 

used the parameter settings for EGCPI which are shown in Table 9 in our experiments.  

6.3.4. Complexity of EGCPI 

To determine the efficiency of EGCPI, we analyze the complexity of EGCPI and 

recorded the execution time when it performed the task of protein complex 

identification. Here we mainly focus on the complexity of the evolutionary clustering 

as it is the dominant part of EGCPI. Unlike other algorithms, the complexity of EGCPI 

can be considered separately for initialization and reproduction. When EGCPI 

initializes a population of p individuals for a PPI network containing nV vertices and nE 

edges, for each chromosome which can be randomly initialized to contain S clusters, it 

 
(a)                                     (b) 

 
(c)                                     (d) 

Fig. 14. Sensitivity test of EGCPI using different settings of λ and OvMax 
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performs its tasks requiring O(2p(nE+S)), to construct the chromosomes and compute 

their fitness values. For reproduction, if d descendants are produced for each generation, 

and if the rate of crossover is r, EGCPI works under the complexity of O(nVr) and it 

takes O(2nE+nV(4+r+S)+2S), for mutation and the computation of fitness. For the whole 

reproduction process, therefore, the complexity is O(d(2nE+nV(4+r+S)+2S)). If EGCPI 

takes g generations to achieve convergence, the complexity is of 

O(2p(nE+S)+dg(2nE+nV(4+r+S)+2S)). Since 2p and dg are much smaller than nE and 

nV, we can assume that the two are equal to a constant, c. So, the complexity of EGCPI 

is approximately of O(c(3nE+SnV)). But as reproduction progresses, the complexity 

should be much lower than this estimation since the operations for SV (i.e., 

O(nE+nV(S+2))) decrease tremendously as the evolutionary clustering goes on. In our 

experiment, we ran EGCPI on a workstation with 4 CPU (3.5GHz) and 16GB RAM. 

The total time consumption for evolutionary graph clustering in the largest dataset DIP-

Scere was less than 3.5 seconds and that EGCPI reproduced individuals of each 

generation costing less than 0.15 second when we used the settings of EGCPI 

mentioned in Section 6.3.1. Given the complexity analysis and time-consumption 

recorded in the experiment, EGCPI can be seen as an efficient algorithm for protein 

complex identification. 

6.3.5. Biological significance of identified protein complexes 

Besides evaluating EGCPI by f-measure and MMR, we also investigated whether there 

was something biologically significant in the identified protein complexes. 

To perform the investigation, we used GO::TermFinder [15] to make a functional 

enrichment analysis. Provided by SGD [25], GO::TermFinder is a web-based service 

that can be used for searching significant shared GO terms in the proteins of an 

identified protein complex. In our analysis, we set different thresholds of p-value from 

1E-2 to 1E-15. In other words, those GO terms whose p-values are equal to or lower 
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than the threshold may be identified as significant GO ones. Not all these protein 

complexes whose proteins share significant GO terms are known ones that can be found 

in databases such as MIPS/CYGD and CYC2008, but they can be considered as 

candidates of real protein complexes due to their statistical significance revealed by the 

functional enrichment analysis. Having obtained the p-value of each protein complex, 

we recorded the ratio that the identified protein complexes containing at least one GO 

term with the p-value lower than different thresholds in each GO category.  

Besides analyzing the protein complexes identified by EGCPI, we also performed the 

TABLE 12 EXPERIMENTAL RESULTS USING WEIGHTED NETWORK DATA 

Data Set Approach # Coverage f-measure MMR 

Precision Recall f-measure 

 

Collins 

EGCPI 236 1160 0.67 0.54 0.6 0.29 

ClusterONE 181 1207 0.59 0.44 0.5 0.26 

MCL 302 1620 0.4 0.52 0.46 0.28 

SPICi 94 819 0.79 0.31 0.44 0.18 

 

Gavin 

EGCPI 298 1150 0.66 0.56 0.6 0.27 

ClusterONE 156 950 0.6 0.37 0.46 0.2 

MCL 202 1430 0.44 0.36 0.39 0.17 

SPICi 83 532 0.75 0.25 0.37 0.13 

 

Krogan-

Core 

EGCPI 526 1442 0.53 0.65 0.59 0.32 

ClusterONE 222 1007 0.5 0.42 0.46 0.25 

MCL 581 2674 0.2 0.48 0.29 0.24 

SPICi 65 435 0.86 0.22 0.35 0.13 

 

DIP-Hsapi 

EGCPI 489 1241 0.37 0.13 0.2 0.05 

ClusterONE 229 775 0.31 0.05 0.09 0.02 

MCL 644 2434 0.17 0.08 0.11 0.05 

SPICi 37 148 0.73 0.02 0.04 0.01 

 

DIP-Scere 

EGCPI 441 2787 0.48 0.64 0.55 0.32 

ClusterONE 243 919 0.52 0.44 0.48 0.21 

MCL 903 4579 0.13 0.46 0.2 0.23 

SPICi 44 235 0.7 0.11 0.19 0.07 

In the experiment shown in this table, ClusterONE, MCL and SPICi identified protein complexes 

using weighted PPI network graphs that are generated based on the degree of topological similarity 

measure. 
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same p-value test on the protein complexes identified by GMFTP, MCL, IPCA and 

ClusterONE. GMFTP has been proved to be a very effective method which takes into 

consideration both network topology and functional attributes. MCL, IPCA, and 

ClusterONE are also proved to be effective methods considering network topology to 

identify protein complexes in the PPI network. Selecting the above approaches to 

compare with EGCPI is because all of them obtained robust performances in the five 

sets of data. Those approaches which did not perform robustly were not considered in 

the p-value test. The results of p-value test of EGCPI, GMFTP, MCL, IPCA and 

ClusterONE are presented in Table 13. As the table shows, the proportion of protein 

complexes with significant GO terms identified by EGCPI is higher than that of other 

algorithms, especially when the threshold of p-value is tightened (e.g., p-value<1E-15). 

This means EGCPI can identify more protein complexes with shared significant GO 

terms, compared with other approaches. Despite some of those identified protein 

complexes are not the known protein complexes currently, they have a higher 

possibility to be identified as real protein complexes through laboratory experiments in 

future. Based on the results of p-value test, it is seen that EGCPI is a promising approach 

to protein complex discovery. 

Moreover, we also enumerate a number of matched protein complexes identified by 

EGCPI and select several protein complexes to make an analysis of both topology and 

GO information.  

In Table 14, we enumerate 10 matched protein complexes identified by EGCPI. As the 

table shows, known protein complexes including more proteins like RSC complex, 

Mitochondrial ribosomal complex (small unit), Anaphase-promoting complex and 

PBAF complex can be successfully identified by EGCPI. Meanwhile, protein 

complexes including fewer sub-units such as Cytoplasmic exosome complex and 
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Arp2/3 Complex can be detected by the proposed approach, too. Given such results, it 

is seen that EGCPI is effective for identifying protein complexes with different sizes.  

In data set Krogan-Core, DASH complex was identified successfully by EGCPI. The 

structure stored in the CYC2008 database is shown in Fig. 15. It is noticed that proteins 

except P69850 and P69852 connect to each other densely. Due to this topological 

feature, P69850 and P69852 might be excluded from the protein complex by some 

algorithms based on network topology. For examples, CFinder, which is based on clique 

TABLE 13 P-VALUE TEST ON PROTEIN COMPLEXES IDENTIFIED BY DIFFERENT ALGORITHMS 

Data Set Approach <1E-15 <1E-10 <1E-5 <1E-2 

Collins EGCPI 36.86% 60.59% 87.29% 94.91% 

GMFTP 31.53% 59.6% 85.71% 94.09% 

MCL 15.6% 28.72% 70.21% 83.69% 

IPCA 30.7% 50.3% 78.4% 90.2% 

ClusterONE 25.6% 48.8% 78.8% 93.1% 

Gavin EGCPI 42.62% 63.09% 86.91% 95.64% 

GMFTP 31.4% 51.74% 82.56% 92.44% 

MCL 22.59% 33.33% 64.97% 80.79% 

IPCA 14.9% 37.7% 72.9% 92.8% 

ClusterONE 20.9% 31.7% 60.5% 90.1% 

Krogan-Core EGCPI 32.13% 46.19% 74.52% 89.54% 

GMFTP 18.39% 35.45% 63.88% 69.23% 

MCL 8.37% 14.79% 43.17% 70.82% 

IPCA 14.6% 28.4% 67.6% 88.7% 

ClusterONE 21.9% 38% 68.2% 88.4% 

DIP-Scere EGCPI 33.56% 52.15% 82.54% 94.56% 

GMFTP 14.2% 26.26% 54.28% 78.99% 

MCL 8.17% 11.43% 32.56% 62.95% 

IPCA 3.9% 15.2% 58.1% 91.5% 

ClusterONE 15.5% 26.9% 60.6% 85.1% 

DIP-Hsapi EGCPI 22.49% 50.1% 93.66% 99.79% 

GMFTP 16.04% 39.04% 84.49% 97.33% 

MCL 9.29% 25.87% 71.22% 87.07% 

IPCA 1.4% 18% 92% 100% 

ClusterONE 9.5% 33.8% 84.6% 99% 
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percolation, also identified DASH complex successfully, but P69850 and P69852 were 

excluded from the complex because of their lower connectivity, compared with other 

proteins in the complex. MCL identified all the proteins of DASH complex, but the 

identified structure involved a superfluous protein, Q12374 into the complex. 

Compared with other algorithms, EGCPI can identify complexes successfully may be 

due to the following reasons. First, it utilizes an evolutionary clustering approach to 

locating proteins sharing with a higher degree of topological similarity in a cluster. Then, 

the BFS method is used to form the protein complex not only based on topology but 

also the degree of attribute homogeneity between two connected proteins. For example, 

TABLE 14 TEN MATCHED PROTEIN COMPLEXES IDENTIFIED BY EGCPI 

Protein complex mr Subunits (Uniprot ID) 

Cytoplasmic exosome 

complex 

0.9 P46948,P25359,P53859,P53256,Q12277,P38792,Q05636,Q08162,Q08285,

P48240 

RSC complex 0.94 P38781,Q12406,Q02206,Q06168,P25632,P53330,P38210,Q9URQ5,P53236

,Q06639,P32832,Q05123,Q03124,P32597,Q07979,Q06488,P43609 

Mitochondrial ribosomal 

complex (small subunit) 

0.81 P53733,P10663,P47150,P21771,P38175,P10662,Q01163,P02381,P53305,Q

02608,P36056,P12686,P32902,Q02950,P17558,Q03201,P27929,P47141,P3

8796,P28778,P19955,P40496,P33759,Q45TY3,O75012,Q03799,Q03246,Q0

3976,P38120,P53292,P42847 

TFIID complex 0.86 Q03750,P11747,P35189,P46677,P38129,Q12030,P50105,Q12297,P23255,Q

03761,P53040,Q05027,Q05021,Q04226 

mRNA cleavage and 

polyadenylation specificity 

factor complex 

0.93 P36104,P35728,P39927,P29468,Q06224,Q06632,Q12102,P32598,Q01329,

P45976,Q08553,P42073,P42841,Q06102,P53538 

DASH complex 1.0 P69852,P69851,P69850,P36131,P53168,Q12248,P36162,Q03954,P35734,P

53267 

Anaphase-promoting 

complex 

0.8 P14724,Q12440,Q04601,P09798,Q08683,P53068,Q12157,P40577,Q12379,

P38042,P53886,Q12107,P16522,P26309,P53197 

Nuclear exosome complex 1.0 P46948,P25359,P53859,P38801,P53256,Q12277,P38792,Q05636,Q08162,

Q08285,Q12149,P48240 

PBAF Complex 0.634 O96019,Q68CP9,Q86U86,P51532,Q12824,Q92922,Q8TAQ2,Q969G3,Q96

GM5,Q92925,Q6STE5 

Arp2/3 Complex 0.875 P61160,P61158,O15143,O15144,O15145,P59998,O15511 

mr, matching rate between the identified protein complex and the known protein complex; Uniprot 

IDs of matched proteins are in bold font. 
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there are 21 GO terms and 16 GO terms annotated to P36131 and P69852 as attributes 

values, respectively. 16 GO terms are shared by the two proteins so that degree of 

attribute homogeneity between them is 0.76, which is relatively high. Given this reason, 

P69852 is treated as a member of the identified protein complex by EGCPI. Taking into 

consideration attribute homogeneity when identifying protein complex makes EGCPI 

find more proteins with homogeneous attributes and improve its accuracy of protein 

complex identification.  

In DIP-Hsapi, EGCPI successfully identified Arp2/3 Complex. The structure of Arp2/3 

complex is shown in Fig. 16. As the figure shows, Arp2/3 complex is a typical star 

structure that O15144 connects all the other proteins in the protein complex. The 

identified protein complex successfully matched all the proteins in the known complex, 

but Q92747 was incorrectly incorporated into Arp2/3 complex. By investigating the GO 

terms annotated to Q92747 and O15144, we found that more than 60 percent of the 

attributes of Q92747 were also associated to O15144. As a result, EGCPI treated 

 

Fig. 15. The structure of DASH complex in CYC2008 database. The structure 

identified by EGCPI completely matches that of the DASH complex. 
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Q92747 as a member of the identified protein complex because Q92747 performs 

similar functions to those of O15144. Given the “incomplete” status of Arp2/3 complex 

and the similar functional attributes performed by Q92747 and O15144, there is a high 

possibility that Q92747 is confirmed as a member of Arp2/3 complex in future through 

laboratory-based experiments.  

6.4. Summary 

In this section, a novel approach to protein complex identification, EGCPI is proposed. 

EGCPI constructs a weighted PPI network Graph by assigning interactions with 

weights according to the degree of the topological similarity measure. Based on the 

evolutionary strategy that can form the optimal clusters with vertices that are densely 

connected in the PPI network graph, a breadth-first search method is then used to further 

partition each cluster and discover protein complexes with proteins sharing high degree 

 

Fig. 16. The structure of Arp2/3 Protein complex in MIPS/CORUM 

database. The matched proteins identified by EGCPI are in the dashed circle. 
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of attribute homogeneity. The experimental performance proves that EGCPI using 

evolutionary graph clustering can obtain better results when identifying known protein 

complexes. In future, we will attempt to improve the efficiency of EGCPI, develop 

some evolutionary approaches which can discover overlapping protein complexes in 

the PPI network. 
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7. TBPCI-MINING CLUSTERS IN THE ATTRIBUTED GRAPH BY 

COMPUTING THE OPTIMAL DEGREE OF BOUNDEDNESS 

7.1. Background 

In this section, we present a novel approach, called TBPCI, to identify clusters based 

on the concept of a measure of boundedness. Such a measure is defined as an objective 

function of a Jaccard Index-based connectedness measure which takes into 

consideration how much two proteins within a network are connected to each other, and 

an association measure which takes into consideration how much two connecting 

proteins are associated based on their attributes. Based on the above two measures, the 

objective function is derived from capturing how strong the vertices can be considered 

as bounded together and the objective value is therefore referred as the aggregated 

degree of boundedness. To identify interesting sub-graphs, TBPCI computes the degree 

of boundedness between all possible pairwise vertices. Then, TBPCI uses a Breadth-

First-Search method to determine whether a vertex pair should be incorporated into the 

same sub-graph. TBPCI has been used in the application of protein complex 

identification and tested with several real data sets and the experimental results show it 

is an effective approach for identifying clusters in the attributed graph. 

To perform the task of protein complex identification in PPI network graphs, there have 

been several algorithms proposed. Among these methods, ones that consider both 

network topology and attribute information are not many. In [66], a method that 

identifies protein complexes based on finding clusters in which proteins perform similar 

functions is proposed. In [67], another algorithm is proposed to simultaneously consider 

PPI network data and gene expression data in the protein complex identification process. 

In [47], an algorithm called PCIA is proposed to identify protein complexes in PPI 

networks based on network topology and attribute information. It makes use first of a 

measure of attribute similarity followed by the use of the MCL algorithm to identify 
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densely connected clusters during the process. In [117], an algorithm called GMFTP, is 

proposed to identify protein complexes using the generative model by also considering 

both network topology and attribute information. The effectiveness of these algorithms 

shows that protein complexes can be more accurately identified when both topology 

and attribute information are considered. 

Different from the state-of-the-art, TBPCI identifies interesting clusters as protein 

complexes in the PPI network graph based on information available about both 

attributes of the proteins and topology of their connections. Unlike traditional 

approaches, such as those based on graph partitioning, clique percolation, etc., the 

problem of protein identification is formulated as an optimization problem. 

Given a PPI network graph, TBPCI performs its tasks by firstly computing the Degree 

of Connectedness (σ) which is defined to be between each pair of proteins in the PPI 

network. σ quantifies the extent that two proteins are similar based on the topology of 

the network. A higher value of σ can be interpreted as a higher degree of similarity 

between the local topology of the network that the proteins are in. 

In addition to considering topology, TBPCI also measures how much the attribute 

values of two proteins are associated with each other. The measure, which we call, the 

Degree of Attribute Association (φ) is used to measure the strength of attribute 

correlation between each pair of proteins. The higher φ is, the stronger the attribute 

correlation between two proteins is. 

After obtaining σ and φ for each pair of proteins in the PPI network, by representing the 

network in the form of a graph, TBPCI uses an iterative method to obtain an optimal 

weighted graph (W), each element of which measures how strong a pair of proteins can 

be bounded together. We name the entry in W as Degree of Boundedness (w) between 
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pairwise proteins. Using a Breadth-First-Search method in W, TBPCI can find graph 

clusters that have more tightly bound in a sense. These graph clusters are then 

considered to represent protein complexes. Given the experimental results obtained, 

TBPCI is shown to be a very promising method for mining meaningful clusters, when 

it is used in some of the real applications, e.g., protein complex identification in PPI 

network graphs. 

7.2. TBPCI in details 

7.2.1. Mathematical preliminaries 

Given a PPI network containing nV proteins and nE interactions, it is represented as G 

= (V, E, Λ), where 1) V represents as the vertex set of the PPI network; 2) E represents 

as the edge set of the PPI network; 3) Λ is the set attribute values for proteins in G and 

it contains three subsets, Λp, Λf, Λc. They represent the sets of attributes of biological 

processes, molecular functions and cellular components, respectively. 

It is also noted that the number of attributes from different domains that are associated 

with a vertex, say vi, might be different. In general, |Λi
p|≠|Λi

f|≠|Λi
c| for each vertex in G. 

Even sometimes the number of attributes from a particular domain might be equal to 

zero because the attribute information is missing or removed. As for different vertices, 

say vi and vj, the attributes from the same domain are always different, i.e. |Λi
p|≠|Λj

p|, 

|Λi
f|≠|Λj

f| or |Λi
c|≠|Λj

c|. TBPCI will perform the task of protein complex discovery using 

the given PPI network data G. 

TBPCI needs to obtain the Degree of Connectedness and Degree of Attribute 

Association, σ and φ for pairwise proteins in the PPI network before identifying protein 

complexes. The information on σ and φ can be easily obtained by TBPCI, based on the 

data in G. 
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The Degree of Connectedness (σ) quantifies the extent that the common connected 

proteins are shared by two pairwise proteins, say vi and vj. It is defined as a Jaccard 

index similarity method: 

ijji

ijji

ij
eee

eee
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where 1) ei+ is the set of edges that connect vi and others; 2) the symbol |. | means the 

cardinality of a given set; 3) eij is equal to 1 if vi and vj are connected in G. For each 

element in σ, say σij, it ranges between 0 and 1. A higher value of that means vi and vj 

share more common connected vertices in G. This indicates a higher similarity between 

vi and vj from the structure perspective. 

Recently, some algorithms for protein complex identification, such as approaches 

proposed in [26], [27], [70], [71], are proposed based on identifying protein complexes 

whose proteins perform the homogeneous functions. Having deeply looked into 

different sets of real PPI network data, we found that those proteins with functional 

homogeneity belong to the same protein complexes was not always the truth. Let the 

molecular function positive regulation of transcription from RNA polymerase II 

promoter (GO:0045944) be an example. In some real PPI network data, such as the one 

described in [105], the number of proteins that perform the above molecular function is 

250. Apparently, it is a relatively high number. As a result of using functional similarity 

as the measure of identifying protein complexes, these 250 proteins might be located in 

the same complex. Therefore, a probable outcome of such a grouping method is a lower 

rate of identification. Moreover, there is another observed fact that some known protein 

complexes are constituted of proteins which perform very different functions. For 

example, one protein with ID P50874 of nuclear origin recognition complex (GO: 

0005664) performs very different functions, compared with other proteins in that 
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protein complex. As a result, those algorithms based on functional homogeneity 

probably cannot identify such protein complexes whose proteins perform different 

functions. Given such observed facts, to measure the correlation between pairwise 

proteins from the property of attribute information, TBPCI computes the degree of 

attribute association (φ) using (2), (6), and (7). 

After obtaining all the values of φ, TBPCI uses values of θ when the corresponded σ is 

larger than 0. TBPCI makes use of two matrices, S and A to store the obtained values 

of σ and φ between pairwise vertices in G. TBPCI considers to find optimal weights for 

those pairwise vertices with a larger-than-zero σ when identifying protein complexes in 

a PPI network. The found weight measures how strong two pairwise proteins can be 

bounded together. 

7.2.2. Finding optimal weights between pairwise vertices 

7.2.2.1. Objective function and updating method 

Given the obtained information on S and A and the PPI network data G, TBPCI attempts 

to seek optimal weights that may quantify the strength that each pair of proteins can be 

considered as bounded together. Such weight is named as Degree of Boundedness (w). 

To complete the task, TBPCI formulates the following optimization problem: 
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where 1) W is the matrix in which the variables represent the Degree of Boundedness 

between pairwise vertices, 2) F is the matrix in which the variables represent the weight 

between pairwise vertices when the attribute association is considered only, 3) the 

symbol “◦” means the Hadamard product of two matrices, 4) α is a parameter that is 
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used to constrain the effect of attribute association within the optimization process. The 

objective value of (56) aggregates the Degree of Boundedness that each pair of vertices 

in G with a larger-than-zero σ. Apparently, those pairwise vertices with relatively higher 

values of σ and φ should be assigned larger ws. However, obtaining appropriate Degrees 

of Boundedness between all possible pairwise vertices cannot be achieved immediately. 

In order to obtain optimal Degrees of Boundedness, TBPCI uses an iterative method 

that constantly updates the values in W and F till the objective function achieves 

convergence. The updating methods for W and F used by TBPCI are 
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where η and δ are the step lengths for each iteration of updating for W and F, 

respectively. By alternatively updating W and F following the rules (57a) and (57b), 

the objective function in (56) will be lead to the convergence of the local optima. 

7.2.2.2. Convergence analysis 

Whether the proposed objective function is convergent is essential for TBPCI to 

identify protein complexes in the PPI network. Here we will give a detailed proof for 

the convergence of the objective function (56), using the updating method in (57). First, 

the proposed objective function is proved to be convergent without constraint. And then, 

we will proof that the objective function is also convergent when the box constraints, 

i.e. 0≤W≤1 and 0≤F≤1 are used by identifying the relationship of convergence between 

the above two types of constraints. 
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For the proof of convergence of (56) by updating W following the rule in (57a), it is 

equivalent to show that, keeping F unchanged, O(Wt+1, F)≥O(Wt,F) after updating W 

following (57a) in each iteration. Since the updating rule is elementwise, it is sufficient 

to show for any element wij, O(wij) is non-decreasing, under the updating rule in (57). 

Therefore, we have 
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Here we assume that the step length η is a small positive scalar which is smaller than 1 

and near to zero. Hence, we can conclude that wij
t+1 is near to wij

t, after the updating. 

To investigate the local information near to wij
t, we use the Taylor series expansion to 

rewrite O with respect to wij as 
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Since wij
t+1 is near to wij

t, the value of (59) can be seen as an approximant of (56) after 

updating wij from iteration t to t+1. If the sum of the latter two components in (59) is 

non-negative, we can verify that O is non-decreasing when updating wij according to 

(57a). Because wij is any element in W, it also means O is finally convergent with 

respect to W. It is noted that (59) can also be written as 
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By replacing △wij, first-order and second-order partial derivative of O, the last two 

components can be written as 
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Hence the sum of last two components in (59) is equal to the product of two scalar 

shown in (61). Obviously, the first scalar is non-negative. According to our assumption 

that the step length η is a small positive scalar which is smaller than 1 and near to zero, 

and sij≤1, we conclude η2 is smaller than η and [S-1]ijη
2+η>0. Thus, we have 
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This means O(wij
t+1) is non-decreasing and O(wij

t+1)= O(wij
t) only when O converges 

to the local optima. Next, we will show the proposed objective function can also achieve 

its local optima when the box-constraint 0≤W≤1 is active. Based on the KKT condition, 

when (56) is convergent with respect of W, we have the following 
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It is apparent that (56) is convergent when wij satisfies the second case in (63) since its 

first order partial derivative at wij is zero and we have proved that it is convergent when 

W is updated following (57a). Hence, it is essential to investigate whether (56) is 

convergent when wij achieves the upper or lower boundary. Assume wij is any element 

in W and it equals to 1, the first-order partial derivative of (56) about wij at 1 is larger 

than zero. This indicates (56) achieves its local optima when wij>1. We also assume that 
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there is another point w’
ij, that is within the constrained area, near to wij and leads (56) 

to a larger objective value. Based on the above assumptions, we have 
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It is noted that (w’
ij-1) < 0. Thus, the above inequality holds only when the second 

component is smaller than zero. But, by comparing the second component of the 

inequality with the first order partial derivative of (56) about wij, we have 
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As we have assumed that the first-order partial derivative of (56) about wij at 1 is larger 

than zero, the result obtained in (64) contradicts to the assumption. Therefore, for the 

first case in (63), (56) converges with respect to wij=1. As wij is any element in W, (56) 

is convergent with respect to W. 

For the case that wij at the lower boundary, we have the following assumptions before 

proving its convergence: wij is any element in W and it equals to 0, the first-order partial 

derivative of (56) about wij at 0 is smaller than zero. This indicates that (56) achieves 

its local optima at somewhere wij <0. We also assume that there is another point w’
ij, 

that is within the constrained area, near to wij and leads (56) to a larger objective value. 

Based on the above assumptions, we have the following 
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As w’
ij>0, the second order partial derivative of (56) about wij=0 is non-positive, (66) 

holds only when the first-order partial derivative of (56) about wij at 0 is larger than 



117 

 

zero. But this contradicts to the assumption that the first-order partial derivative of (56) 

about wij at 0 is smaller than zero. Therefore, for the third case in (63), (56) converges 

with respect to wij=0. As wij is any element in W, (56) is convergent with respect to W.   

In a word, following the updating rule for W in (57a), the objective function in (56) 

will converge to its local optima with respect to W. 

As the proof of convergence of (56) following the updating rule for F is very similar to 

that of W, we don’t present the proof in detail. The updating rule for F in (57) ensures 

the objective function in (56) is non-decreasing and it can achieve its local optima when 

the box constraint 0≤F≤1 is active. Therefore, by keeping one vector of variables 

unchanged and updating the other, we have 

),(...),(),(),( *110100  FWFWFWFW OOOO       (67) 

Algorithm 5 

Seeking optimal Degree of Boundedness 

Input:  S, A, α, η, δ, τ, MaxIteration 

Output: W, F 

 

Randomly initialize W and F; 

Compute objective value 

t←1; 

do 

{ oW←W; 

  update W←W+η△W according to rule (57a); 

  update F←F+δ△F according to rule (57b); 

  compute objective value; 

  t←t+1; 

}while((W-oW)T(W-oW) >θ and t< MaxIteration); 

 

return W, F; 

Fig. 17. Pseudo codes of the optimization process 
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This non-decreasing updating will stop till the objective function (56) converges to the 

local optima O(W*, F*).  

7.2.2.3. Stopping criterion for the optimization process 

As the rate of updating becomes lower as W and F approach to W* and F*, we use the 

following criterion to determine whether the optimization process stops at after a certain 

number of iterations: 
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where τ is a positive number to tighten or loose the minimum rate of updating W that 

satisfies the stopping condition.  

Algorithm 6  

Protein complex identification 

Input: G, W 

Output: Protein complex set 

reconstruct W according to G; 

for each vertex vi in W{ 

  create linked list visiting and visited; 

  find hwi; 

   if(hwi>0){ 

    add vi to visiting;} 

    while(visiting ≠ Φ){ 

       vj←head of visiting; 

       delete vj from visiting; 

       add vj to visited; 

       search vk: neighbors of vj; 

       if(Wjk ≥ hwi){ 

            add vk to visiting;}} 

if(|visited|>0){ 

  create protein complex PCi; 

  if(MaxOSPCi<MaxOS){ 

add PCi to Protein complex set;}}} 

return Protein complex set; 

Fig. 18. Protein complex identification 
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7.2.2.4. Summary of the optimization process 

Based on the above description on finding the optimal Degree of Boundedness between 

each pair of proteins in the PPI network, the approach can be summarized as the pseudo 

codes shown in Fig. 17. 

7.2.3. Identifying sub-graphs in the weighted graph 

Having obtained the optimal W, TBPCI sets all those variables in W to 0 if the 

corresponding vertices in G are not connected. After that, W can be considered to be a 

weighted graph with each element (wij) in it representing the strength that vertex vi and 

vj are bounded together. wij is larger than zero when there is an edge between vi and vj 

in G and they have a certain degree of boundedness. A higher value of wij means a 

higher boundedness that vi and vj can be grouped together. TBPCI uses W to complete 

the task of identifying protein complexes in the PPI network. 

Given W, TBPCI performs a further search of graph clusters as protein complexes. To 

perform the task of protein complex identification, TBPCI uses a Breadth-First-Search 

(BFS) method to form protein complexes by selecting each protein in the PPI network 

as a seed. First, it selects an edge with the highest weight hwi, that connects the seed in 

W, and incorporates both of the two connected vertices vi and vj into a set for forming 

a protein complex; second, based on the weight of the selected edge, TBPCI searches 

all the neighboring vertices and incorporates those which satisfy the minimum threshold 

of w. In TBPCI, this threshold is defined as: 
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where vk stands for any vertex in the set and vm is any vertex connecting to vk. In other 

words, λ is used to tighten or loose the minimum w. Only vertices sharing connections 

with ws that are not lower than λ×hwi can be incorporated into the complex set so that 
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all the proteins in the complex are tightly bounded to each other. The searching in the 

second step will be terminated till there is no new vertex added. When the above search 

is finished, TBPCI forms a protein complex constituted by the connected vertices 

selected in the searching phase. To reduce the redundancy between the identified protein 

complexes, TBPCI uses another measure, Maximum Overlapping Score to finally 

determine whether the identified protein complex should be incorporated into the set of 

identified protein complexes. And the Maximum Overlapping Score is defined as: 
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where PCI and PCS stand for the identified protein complex and any protein complex 

in the complex set, respectively. When MaxOS is larger than some threshold, TBPCI will 

not incorporate the identified protein complex into the identified complex set. A lower 

threshold of MaxOS used by TBPCI means there are fewer same proteins formulating 

each protein complex in the identified set. TBPCI will stop forming protein complexes 

till it traverses all vertices in W. In order to explain this BFS method in detail, we give 

its pseudo codes in Fig. 18. It also should be noted that any method which can 

effectively extract connected components in the weighted graph can be used to discover 

protein complexes in the weighted graph constructed by TBPCI.  

7.3. Experiment and analysis 

For performance testing, TBPCI has been tested with five sets of real world PPI network 

data: Collins [23], Gavin [37], Krogan [56], DIP-Scere [105], and DIP-Hsapi [105]. 

The detail information on these datasets have been summarized in Section 6.3. 

For the experiments, the attributes information on the proteins were obtained from GO 

database [24]. As what has been mentioned, all GO terms in cellular components which 



121 

 

may infer a particular protein belongs to some complex (es) have been excluded.  

For performance evaluation using the four sets of data related to yeast Saccharomyces 

cerevisiae, we compared the protein complexes identified by different algorithms with 

the known protein complexes as contained in the CYC2008 [83] and the MIP/CYGD 

[42] [75] databases. The known protein complexes in these two databases were both 

collected in March 2013. Altogether, there are 408 known protein complexes in 

CYC2008 and 255 known protein complexes in MIP/CYGD database. After merging 

the data in the two databases, a total of 296 different known protein complexes 

containing more than 2 proteins were available for our use for performance analysis.  

For the DIP-Hsapi data set, the protein complexes identified in it by each algorithm 

were compared with known protein complexes in the MIPS/CORUM [88] database 

which contain a total of 1466 different protein complexes. 

7.3.1. Experimental set-up and evaluation measurement 

For performance evaluation, TBPCI were compared with a number of different 

algorithms, including PCIA, MCL, GMFTP, RNSC, MCODE, CFinder, CMC and 

COACH. When testing these algorithms, we either used the default parameter settings 

recommended by the authors or tried as many different settings as we can to obtain the 

best performance with different algorithms. For the case of TBPCI, we set α= 0.9, 

η=δ=0.05 τ=1e-6 and MaxIter = 100. For λ and MaxOS, they are set within the range 

TABLE 15 PARAMETER SETTINGS OF DIFFERENT APPROACHES 

Approach Parameter Approach Parameter 

TBPCI Experiment Trials PCIA inflation=1.8, μ=0.7 (default setting) 

MCL inflation = 1.8 (default setting) GMFTP K=1000 (default setting) 

RNSC N/A CFinder K=3 

MCODE VWP=0.2 (default setting) COACH Experiment Trials 

CMC Experiment Trials   

N/A: There is no parameters needed to be set. 
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from 0.1 to 1 with a 0.1 increment while the performance was being tuned. The detailed 

settings of parameters for all different algorithms are listed in Table 15.  

For performance comparison, we mainly used two different measures, f-measure, and 

Maximum Matching Rate (MMR), which have been defined in Section 6.3. Based on 

their definitions, f-measure and MMR can be seen to complement each other.  

Besides evaluating the experimental results by f-measure and MMR, we also used 

GO::TermFinder [15] to perform functional enrichment analysis on the protein 

complexes identified by TBPCI. This analysis helps to evaluate the biological 

significance of the protein complex identified by TBPCI. Some of the results of the 

TABLE 16 EXPERIMENTAL RESULTS OF F-MEASURE AND MMR OBTAINED FROM BIOGRID DATASETS 

Data Set Approach # Coverage Precision Recall f-measure MMR 

 

 

 

Collins 

 

TBPCI 392 1194 0.599 0.642 0.62 0.32 

PCIA 416 1607 0.368 0.591 0.453 0.303 

GMFTP 203 1088 0.596 0.473 0.527 0.283 

MCL 282 1620 0.401 0.493 0.442 0.259 

MCODE 111 862 0.775 0.357 0.489 0.208 

RNSC 353 1480 0.365 0.544 0.437 0.309 

CFinder 114 1160 0.702 0.319 0.438 0.196 

CMC 200 1067 0.545 0.443 0.489 0.265 

COACH 245 1114 0.51 0.481 0.495 0.176 

 

 

 

Gavin 

 

TBPCI 404 1191 0.619 0.607 0.613 0.247 

PCIA 378 1417 0.315 0.438 0.366 0.216 

GMFTP 172 843 0.643 0.421 0.509 0.228 

MCL 177 1430 0.395 0.278 0.336 0.145 

MCODE 66 602 0.682 0.167 0.268 0.099 

RNSC 307 1258 0.322 0.402 0.358 0.221 

CFinder 98 1124 0.561 0.2 0.295 0.115 

CMC 391 946 0.263 0.392 0.315 0.203 

COACH 324 1052 0.43 0.46 0.445 0.219 

 

 

 

Krogan 

 

TBPCI 863 2083 0.453 0.762 0.547 0.342 

PCIA 1022 2633 0.158 0.583 0.248 0.332 

GMFTP 299 1376 0.413 0.492 0.449 0.282 

MCL 514 2674 0.2 0.422 0.272 0.224 

MCODE 75 552 0.693 0.2 0.31 0.109 

RNSC 751 2142 0.169 0.5 0.253 0.298 

CFinder 115 1140 0.496 0.213 0.298 0.139 

CMC 869 1100 0.236 0.592 0.337 0.287 

COACH 349 1056 0.494 0.536 0.514 0.275 

#: The number of protein complexes identified. Coverage: The number of distinct proteins in the 

identified protein complexes. 
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analysis are presented in the following sections. 

7.3.2. Performance analysis 

 The results of the different experiments performed using the different data sets and 

algorithms are presented in Table 16 and 17 in terms of the values of the f-measure and 

MMR. As shown in the Table, according to the f-measure, TBPCI performed the best in 

all the five data sets. When evaluated with MMR, TBPCI also obtains a consistently 

good performance. In terms of the number of identified protein complexes and coverage, 

it is noted that TBPCI records a relatively higher coverage while maintains a smaller 

number of identified protein complexes when compared with the other algorithms.  

7.3.3. Convergence of optimization process 

 It is shown earlier that the objective function (56), that TBPCI uses may achieve local 

optima by iteratively updating W and F based on (57a) and (57b). In performing the 

experiments, the variations of the objective values were tracked. In all experiments 

using different data sets, it was noted that the objective values exhibit similar changing 

trends. In Fig. 19, the curve showing the changes in objective value which obtained 

TABLE 17 EXPERIMENTAL RESULTS OF F-MEASURE AND MMR OBTAINED FROM DIP DATASETS 

Data Set Approach # Coverage Precision Recall f-measure MMR 

 

 

 

Dip-Scere 

 

TBPCI 1405 3307 0.348 0.836 0.491 0.349 

PCIA 1497 4445 0.117 0.636 0.198 0.328 

GMFTP 514 2509 0.286 0.605 0.388 0.305 

MCL 691 4579 0.124 0.327 0.18 0.184 

MCODE 60 756 0.383 0.082 0.135 0.046 

RNSC 1376 3772 0.094 0.522 0.16 0.284 

CFinder 192 2143 0.302 0.205 0.244 0.129 

CMC 1389 1763 0.184 0.736 0.295 0.353 

COACH 854 1952 0.275 0.697 0.395 0.32 

 

 

 

Dip-Hsapi 

 

TBPCI 754 1822 0.336 0.184 0.237 0.067 

PCIA 706 2179 0.189 0.108 0.138 0.063 

GMFTP 187 806 0.31 0.044 0.077 0.024 

MCL 549 2434 0.171 0.074 0.103 0.044 

MCODE 61 273 0.459 0.019 0.038 0.008 

RNSC 730 1847 0.148 0.086 0.109 0.059 

CFinder 111 515 0.505 0.042 0.077 0.019 

CMC 149 403 0.537 0.061 0.109 0.027 

COACH 151 492 0.629 0.073 0.131 0.029 
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from the data set Collins is displayed. As seen in the figure, TBPCI could approach a 

convergent objective value within a number of iterations. This also means that the 

updating rate of W becomes less evident as the number of iterations increases. When 

the updating rate is less than the predefined threshold or TBPCI achieves the maximum 

number of iterations, the W obtained can be considered as optimal Degrees of 

Boundedness between pairs of proteins in a PPI network.  

7.3.4. Function enrichment analysis between TCPCI and PCIA 

Besides evaluating TBPCI using the f-measure and MMR, we have also tried to find out 

whether there was something biologically significant in the identified protein 

complexes. To do so, we used GO::TermFinder [15] to make a functional enrichment 

analysis. Provided by SGD [25], GO::TermFinder is a web-based service that can be 

used for searching significant shared GO terms in the proteins of an identified protein 

complex. To perform more detailed analysis, we used different thresholds of p-values 

when analyzing the identified protein complexes. In other words, those GO terms 

whose p-values are equal to or lower than the threshold may be identified as significant 

ones.  

To compare the performance between the approaches that make use of attributes 

information when they identify protein complexes in the PPI network, we also used 

 

Fig. 19. Curve on the variations of objective values 
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GO::TermFinder to analyze the protein complexes identified by PCIA, which has been 

proved to be a very effective approach to protein complex identification. It should be 

noted that not all the proteins in these protein complexes share significant GO terms 

that are known and can be found in databases such as MIPS/CYGD, CYC2008, and 

MIPS/CORUM. In such cases, they can be considered as candidates of real protein 

complexes due to their statistical significance revealed by the function enrichment 

analysis. The results of functional enrichment analysis on the protein complexes that 

are identified by TBPCI and PCIA are summarized in Table 18.  

As the table shows, the protein complexes identified by TBPCI obtain a much better 

performance on the functional enrichment analysis. This means that there are many 

more protein complexes identified by TBPCI that have higher possibility to be real 

protein complexes that are yet to be confirmed, although TBPCI doesn’t perform better 

with the f-measure or MMR, just like MMR in the case of DIP-Scere.  

Based on the results of functional enrichment analysis, we can conclude that TBPCI is 

a very promising approach for protein complex identification.  

TABLE 18 RESULTS OF FUNCTIONAL ENRICHMENT ANALYSIS OBTAINED BY TBPCI AND PCIA 

Data Set Approach ≤1.0E-10 ≤1.0E-5 ≤1.0E-2 

Collins TBPCI 197(50.26%) 330(84.18%) 369(94.13%) 

PCIA 107(25.72%) 266(63.94%) 334(80.29%) 

Gavin TBPCI 288(71.29%) 379(93.81%) 399(98.76%) 

PCIA 98(25.92%) 198(52.38%) 268(70.89%) 

Krogan TBPCI 347(40.21%) 679(78.68%) 789(91.43%) 

PCIA 118(11.55%) 336(32.88%) 604(59.09%) 

DIP-Scere TBPCI 651(46.33%) 1126(86.11%) 1318(93.8%) 

PCIA 158(10.55%) 424(28.32%) 848(56.65%) 

DIP-Hsapi TBPCI 325(43.1%) 663(87.93%) 743(98.54%) 

PCIA 135(19.12%) 484(68.56%) 610(86.4%) 

X (Y%): the number of identified protein complexes that share significant GO terms under a 

particular threshold and the proportion of protein complexes sharing significant GO terms in the total 

protein complexes identified by each algorithm. 
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7.3.5. Examples of protein complexes identified by TBPCI 

We select several protein complexes identified by TBPCI to determine how the 

consideration of both topology and attribute information may allow interesting protein 

complexes to be identified.  

One example of protein complex that is identified by TBPCI is Kornberg’s mediator 

(SRB) complex (MIPS ID 510.40.20). This protein complex was identified by TBPCI 

in the data set Krogan. Its structure is shown in Fig. 20. 16 proteins out of 20 that are 

the same as known protein complexes were successfully identified. For other 

approaches, which also identified protein complexes similar to the SRB complex, such 

as CMC and COACH, missed some proteins have fewer interactions, such as Q99278, 

with other proteins. MCODE was not able to successfully identify this protein complex. 

 

Fig. 20. The structure of Kornberg’s mediator (SRB) complex (MIPS ID: 

510.40.20) in the MIPS/CYGD database. The proteins successfully 

identified by TBPCI are circled in the dashed line. 
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Although proteins like Q99278 may share fewer interactions with other proteins in the 

SRB complex, we find that it has a relatively high Degree of Attribute Association with 

other proteins. Hence, the Degree of Boundedness assigned by TBPCI is appropriate 

for Q99278 to be identified as a member of the SRB complex.  

It should be noted that two proteins, Q08278 and P19263 were not correctly identified 

by TBPCI as they share relatively lower Degree of Connectedness and Attribute 

Association with other identified proteins. Hence, they are assigned with lower degrees 

of Boundedness by TBPCI and may therefore not satisfy the threshold of λ to be 

incorporated into the complex. As for the other two proteins, P25453 and P35189, they 

are not connected to any protein in the SRB complex and are therefore not identified 

by TBPCI. 

 

Fig. 21. The protein structure of PBAF complex (CORUM ID: 1238) 

in MIPS/CORUM database. Proteins successfully identified by TBPCI 

are in the dashed line. 



128 

 

When considering both topology and attribute information of a PPI network, TBPCI 

may find an appropriate Degree of Boundedness that can be used to quantify the 

relationship and identify those proteins with fewer interactions with other proteins such 

as Q99278 as a member of some protein complex. 

Another example of an identified protein complex is discovered in DIP-Hsapi. In that 

data set, TBPCI successfully identified the PBAF complex (CORUM ID: 1238). The 

structure of the PBAF complex is shown in Fig. 21. Seven out of nine proteins in the 

PBAF complex were detected by TBPCI. What is interesting about the structure of the 

PBAF complex is O96019. Based on the interactions obtained from the dataset DIP-

Hsapi, it should be noted that it is disconnected from all other proteins in PBAF. Given 

such a reason, TBPCI did not treat it as a member of the PBAF complex.  

The protein Q9P2D1 is also worthy of notice as TBPCI identified it as a member of the 

PBAF complex. In fact, it shares relatively high Degrees of Connectedness and 

Attribute Association with other proteins in the PBAF complex and it is the only protein 

that interacts with Q92922 which is a member of the PBAF complex but shares no 

interactions with other proteins. Given the structure and Attribute between Q9P2D1 and 

other proteins in PBAF complex, we can conclude that Q9P2D1 is possible to be 

verified as a member of the complex in future laboratory-based experiments. 

As for the other missing protein, Q8TAQ2, we find that it is very different from other 

proteins in the PBAF complex from both the structural and attributional perspectives. 

This indicates that Q8TAQ2 has fewer interactions with other proteins and its attributes 

are not well-related to those of the other proteins. Hence, the Degrees of Boundedness 

computed by TBPCI are smaller than the others in the PBAF complex and Q8TAQ2 

was excluded from the complex by TBPCI. 
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Based on the identified protein complex and the known PBAF complex, it can be said 

that TBPCI might identify the two missing proteins if there is more evidence showing 

that Q8TAQ2 and O96019 are related to other proteins in PBAF, either from the 

topological or the attributional perspectives. 

7.4. Summary 

In this section, a novel approach to mining sub-graphs in the attributed graph, TBPCI 

is proposed. TBPCI considers seeking appropriate Degrees of Boundedness between 

pairwise vertices in attributed graph by taking both topology and attribute information 

into the consideration. Based on the optimization strategy that can find the optimal 

Degrees of Boundedness that may quantify the strength that pairwise vertices can be 

bounded together, a Breadth-First-Search method is then used to search sub-graphs in 

the weighted graph that is constructed based on the found Degrees of Boundedness. 

TBPCI has been used to identify sub-graphs in the PPI network graphs. The 

experimental performance proves that TBPCI using such an optimization strategy can 

obtain better results when identifying known protein complexes. In future, we will 

attempt to improve the efficiency of TBPCI, develop some approaches discovering 

overlapping protein complexes in the PPI network. 
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8. CONCLUSION 

8.1. Summary 

In this thesis, we propose to use Attribute Graph to model the relational data and to 

perform the task of discovering clusters, or communities which are interesting sub-

graphs in which vertices are cohesively inter-related. Aiming at addressing the 

challenges existing in the state-of-the-art of the graph clustering algorithms, we propose 

four different algorithms, which utilize different techniques but take into consideration 

attribute and topology, to detect meaningful clusters in the attributed graph. To identify 

an optimal cluster arrangement, we propose to use MISAGA, which may formulate the 

task of cluster detection as a constrained optimization problem and solve it by using an 

iterative updating method, to find clusters in the attributed graph. As some clusters, 

might be overlapping, e.g., social communities in social graphs, and functional modules 

in biological graphs, we propose FSPGA, which formulates the task of cluster detection 

as a fuzzy optimization problem and allows vertices to belong to more than one cluster, 

to detect interesting sub-graphs in the attributed graph. Then, we propose EGCPI, which 

is an evolutionary algorithm for cluster detection in the attributed graph. EGCPI tackles 

the problem of cluster detection with evolutionary clustering. It can identify those sub-

graphs in which vertices are densely connected, as well as the attributes of vertices, are 

more similar. At last, we propose TBPCI, which is able to identify clusters in the 

attributed graph utilizing the local information on the vertex connectedness and 

associated attributes values. By identifying the optimal degree of boundedness between 

pairwise vertices and grouping those vertices sharing higher boundedness, TBPCI may 

discover clusters in which vertices are densely connected and their attribute values are 

significantly associated. 

To show the effectiveness and efficiency of these proposed algorithms, we have tested 

them with different types of attributed graph data, including synthetic graphs, social 
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graphs, and biological graphs, and compared them with the state-of-the-art approaches 

to graph clustering. These proposed algorithms outperform most state-of-the-art 

approaches in most of the testing datasets, according to the experimental results related 

to different evaluation metrics, such as overall accuracy and efficiency. These proposed 

algorithms may well address the challenges mentioned in the thesis and they are 

effective for mining meaningful clusters in the attributed graph. 

8.2. Future work 

In future, we attempt to improve the proposed approaches from the following aspects. 

As the size of graph data is increasing tremendously, traditional algorithms for mining 

clusters might not be capable of the intractable task. Based on the current approaches 

proposed, we attempt to develop several computationally efficient algorithms for 

discovering clusters in very big attributed graphs. Specifically, we will propose more 

efficient updating methods for those approaches based on iterative optimization, i.e., 

MISAGA, FSPGA, and TBPCI. We will try to propose parallel methods for sub-space 

search for those algorithms based on natural computation, i.e., EGCPI. Moreover, we 

attempt to propose incremental versions of the proposed algorithms to deal with the 

real-world problem, e.g., clustering in streaming attributed graph data. 

As the proposed algorithms mainly consider those objective functions evaluating the 

overall quality of the discovered clusters rather than find clusters based on the graph 

hierarchy, we attempt to propose novel versions of the proposed algorithms which may 

discover clusters taking into the consideration both topological and attribute hierarchy 

hidden in the attributed graph. 

Besides identifying clusters with vertices which are topologically and characteristically 

interrelated, approaches that can search for the information representing the detected 
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clusters within the clustering procedure, might be desirable. Apparently, obtaining such 

representative information may better explain the meaning of the found clusters in the 

attributed graph. Hence, we aim to develop more methods that can discover clusters in 

the attributed graph by taking into the consideration latent factors that may represent 

the meaning of each cluster. 

Given the features of the proposed algorithms and the state-of-the-art, how to identify 

the interdependency between graph topology and attribute values in the attributed graph 

is a challenging task. Rather than concerning both as the combinatorial factors within 

the clustering procedure, we attempt to propose adaptive methods that may 

automatically determine the dominant factors taking effect on the cluster membership, 

which might tremendously improve the efficiency and effectiveness of detecting 

clusters in the attributed graph. 

As the current version of the proposed algorithms mainly try to find clusters in a static 

graph, we attempt to develop extended versions of the proposed algorithms to discover 

clusters in dynamical graph data, which contain a series of graphs changing along with 

the time stamp. Such extensions may significantly improve the impact of the proposed 

algorithms. 
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