

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

MINING CLUSTERS IN ATTRIBUTED GRAPHS

HE TIANTIAN

Ph.D

The Hong Kong Polytechnic University

2017

The Hong Kong Polytechnic University

Department of Computing

Mining Clusters in Attributed Graphs

HE Tiantian

A thesis submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

January 2017

I

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material that

has been accepted for the award of any other degree or diploma, except where due

acknowledgment has been made in the text.

HE Tiantian

II

ABSTRACT

Many real-world relational data can be modeled as graphs that contain vertices and

edges representing, respectively, data entities and their relationship. One of the most

important tasks is to discover graph clusters or communities, which are interesting

subgraphs in the graph data. To find such clusters in graph data, many computational

methods have been proposed. Most of the prevalent approaches discover graph clusters

taking into the consideration either different topological properties of the graph, e.g.,

density, and modularity, or vertex attributes. However, effective computational

approaches for discovering clusters in graphs, which consider both topology and

attribute as factors are not many. In this thesis, we propose to discover graph clusters

using the Attributed Graph, which contains a set of vertices, edges, and attributes that

are associated with vertices. Combining the edge structure with the attribute, it is

possible for a computational method to discover clusters in the attributed graph, taking

into the consideration edge structure and attributes. Based on the Attributed Graph, we

propose four different algorithms. Each of these four algorithms has their unique

characteristics and may address the existing challenges in graph clustering. To discover

interesting subgraphs in which vertices are inter-related, we propose an algorithm for

identifying interesting sub-graphs making use of both edge structure and the degree of

attribute association between pairwise vertices (MISAGA). MISAGA formulates the

task of discovering k sub-graphs as a constrained optimization problem and solves it by

identifying the optimal affiliation of sub-graphs for the vertices through an iterative

updating algorithm. In each of the interesting sub-graphs found by MISAGA, vertices

are densely connected and their attribute values are significantly associated, although

their attribute values might not be the same. As there are no very effective graph

clustering algorithms that are based on fuzzy set theory, we propose an algorithm for

discovering fuzzy structural patterns in attributed graphs (FSPGA). FSPGA adopts an

effective fuzzy clustering framework to allow overlapping clusters to be identified. As

the identified clusters in some real applications, e.g., functional modules in biological

III

graphs, need to be connected components, we further propose two more algorithms,

called EGCPI and TBPCI for identifying clusters of interest. Different from other

approaches, EGCPI formulates the task of discovering clusters in the attributed graph

as an optimization problem and tackles it with evolutionary clustering. It can identify

those sub-graphs in which vertices are densely connected as well as their attributes are

more similar. TBPCI identifies clusters utilizing local information of vertex

connectedness and the attribute association between pairwise vertices in attributed

graph. TBPCI may compute the optimal degree of boundedness between each pair of

vertices which may capture how strong the vertices can be considered as bounded

together. Then the clusters can be identified by grouping those vertices sharing degrees

of boundedness which are sufficiently strong. The proposed algorithms have been used

in different real-world applications, including community detection in social network

graphs and functional modules identification in biological network graphs. The

experimental results show these proposed algorithms outperform state-of-the-art

approaches.

IV

V

LIST OF PUBLICATIONS

Journal papers

[1] Tiantian He, Keith C. C. Chan, “Evolutionary graph clustering for protein complex

identification,” IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 2016, DOI: 10.1109/TCBB.2016.2642107.

[2] Tiantian He, Keith C. C. Chan, “MISAGA: An Algorithm for Mining Interesting

Sub-Graphs in Attributed Graphs,” IEEE Transactions on Cybernetics, 2017, DOI:

10.1109/TCYB.2017.2693558.

[3] Tiantian He, Keith C. C. Chan, “Discovering Fuzzy Structural Patterns for Graph

Analytics,” submitted to IEEE Transactions on Fuzzy Systems (2nd Round Review).

[4] Tiantian He, Keith C. C. Chan, “Measuring boundedness for protein complex

identification in PPI networks,” IEEE/ACM Transactions on Computational

Biology and Bioinformatics (2nd Round Review).

Conference papers

[5] Tiantian He, and Keith C.C. Chan, “Evolutionary community detection in social

networks,” in 2014 IEEE Congress on Evolutionary Computation (CEC), 2014, pp.

1496-1503.

VI

VII

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Professor Keith C. C.

Chan. All the time, he offers invaluable advice to my research by his high perspicacity

and keeps on encouraging me to overcome the obstacles in the study. Without his

considerate guidance and consistent inspiration, this thesis would not have been

completed.

I would like to express my thankfulness to Dr. Yang Liu, who always inspires me by

sharing his significant experience in academic and life. Also, I would like to thank all

my friends and colleges: Prof. Zhuhong You, Dr. Lun Hu, Dr. Xin Luo, Dr. Peiyuan

Zhou, Mr. Weimin Luo, Mr. Pengwei Hu, and Mr. Yanxing Hu for the constructive

suggestions and illuminating discussions in the last four years.

Special thanks to my parents for all the supports and sacrifices that you have made for

me. Your love to me sustained thus far. I would also like to thank my beloved wife Wei

Yu. To them, I dedicate this thesis.

VIII

IX

Contents

Certificate of originality ... I

Abstract ... II

List of publications .. V

Acknowledgements .. VII

1. Introduction .. 1

1.1. Motivation .. 2

1.2. Problem of clustering in attributed graphs ... 4

1.3. An overview of solutions ... 5

1.4. Thesis organization .. 7

2. Overview of the related work ... 9

2.1. Graph clustering algorithms ... 9

2.1.1. Topology-based graph clustering ... 9

2.1.2. Attribute-based graph clustering .. 10

2.1.3. Graph clustering using graph topology and attribute 11

2.2. Detecting graph clusters using computational intelligence 13

2.2.1. Evolutionary graph clustering .. 13

2.2.2. Fuzzy graph clustering ... 14

2.3. Graph clustering in real applications.. 15

2.3.1. Social community detection ... 15

2.3.2. Graph clustering in PPI networks .. 16

3. Technical preliminaries .. 20

3.1. Notation of the attributed graph ... 20

X

3.2. Attribute strength between pairwise vertices 20

4. MISAGA-an algorithm for mining clusters in attributed graphs by identifying

optimal cluster membership ... 25

4.1. Background .. 25

4.2. MISAGA in details ... 26

4.2.1. Mathematical preliminaries .. 26

4.2.2. The objective function for mining interesting sub-graphs 27

4.2.3. The iterative updating algorithm .. 30

4.2.3.1. Updating rule for C .. 30

4.2.3.2. Updating rule for D .. 31

4.2.3.3. Updating rule for B .. 32

4.2.4. Convergence analysis of the proposed updating rules 32

4.2.5. The stopping criterion .. 36

4.2.6. Summary of the algorithm ... 37

4.3. Experiment and analysis .. 38

4.3.1. Experimental set-up and performance metrics 38

4.3.1.1. Baselines for comparison ... 38

4.3.1.2. Experimental set-up ... 39

4.3.1.3. Data sets and descriptions .. 40

4.3.1.4. Performance metrics... 42

4.3.2. Experimental results using synthetics data 45

4.3.2.1. Performance on identifying sub-graphs 45

4.3.2.2. Scalability test .. 47

4.3.2.3. Sensitivity test of the parameter ... 48

4.3.3. Experimental results in real applications ... 50

4.3.3.1. Social community detection ... 50

4.3.3.2. Structural modules detection in PPI networks 51

4.3.4. Convergence of the objective value ... 53

4.3.5. Case study of the detected sub-graphs ... 54

4.4. Summary .. 56

5. FSPGA-mining clusters in the attributed graph using fuzzy optimization 57

XI

5.1. Background .. 57

5.2. FSPGA in details .. 59

5.2.1. Mathematical preliminaries .. 59

5.2.2. The objective function based clustering algorithm 60

5.2.3. The iterative updating algorithm .. 62

5.2.3.1. Updating rule for C .. 62

5.2.3.2. Updating rule for X .. 64

5.2.4. Summary of the algorithm ... 64

5.2.5. Determining the cluster affiliation ... 65

5.3. Experiment and analysis .. 66

5.3.1. Experimental set-up and evaluation metrics 66

5.3.1.1. Baselines for comparison ... 66

5.3.1.2. Experimental set-up ... 67

5.3.1.3. Data description and attribute similarity used by FSPGA . 68

5.3.1.4. Evaluation metrics .. 70

5.3.2. Experimental results using synthetic data .. 70

5.3.2.1. Evaluation of clustering quality ... 70

5.3.2.2. Scalability test .. 71

5.3.2.3. Sensitivity test of α ... 72

5.3.3. Experimental results in real data .. 73

5.3.3.1. Results in social community detection 73

5.3.3.2. Functional modules detection in biological graph data...... 74

5.3.4. Case study-overlapping rate versus clustering quality 75

5.4. Discussion .. 77

5.4.1. Comparisons between FSPGA and formal fuzzy clustering algorithms

 77

5.4.2. Computational complexity and space requirements of FSPGA 78

5.5. Summary .. 79

6. EGCPI-an evolutionary algorithm for identifying clusters in attributed graphs 80

6.1. Background .. 80

6.2. EGCPI in details ... 82

6.2.1. Mathematical preliminaries .. 82

XII

6.2.2. Construction of wG .. 83

6.2.3. Evolutionary graph clustering .. 84

6.2.3.1. Gene representation .. 85

6.2.3.2. Initialization ... 85

6.2.3.3. Reproduction .. 85

6.2.3.4. The fitness function .. 88

6.2.3.5. Summary remarks .. 90

6.2.4. Identifying protein complexes in found clusters 90

6.3. Experiment and analysis .. 92

6.3.1. Experiment set-up and performance evaluation 93

6.3.2. Performance analysis ... 96

6.3.3. The effect of parameter settings ... 98

6.3.4. Complexity of EGCPI .. 99

6.3.5. Biological significance of identified protein complexes 100

6.4. Summary .. 106

7. TBPCI-mining clusters in the attributed graph by computing the optimal degree

of boundedness ... 108

7.1. Background .. 108

7.2. TBPCI in details ... 110

7.2.1. Mathematical preliminaries .. 110

7.2.2. Finding optimal weights between pairwise vertices 112

7.2.2.1. Objective function and updating method 112

7.2.2.2. Convergence analysis ... 113

7.2.2.3. Stopping criterion for the optimization process 118

7.2.2.4. Summary of the optimization process 119

7.2.3. Identifying sub-graphs in the weighted graph 119

7.3. Experiment and analysis .. 120

7.3.1. Experimental set-up and evaluation measurement 121

7.3.2. Performance analysis ... 123

7.3.3. Convergence of optimization process .. 123

7.3.4. Function enrichment analysis between TCPCI and PCIA 124

XIII

7.3.5. Examples of protein complexes identified by TBPCI 126

7.4. Summary .. 129

8. Conclusion ... 130

8.1. Summary .. 130

8.2. Future work .. 131

References .. 133

XIV

XV

List of Figures

Fig. 1. Pseudo codes of MISAGA .. 37

Fig. 2. Four ground truth sub-graphs of Syn1k. Vertices of the four sub-graphs are

painted with different colors. ... 45

Fig. 3. Scalability comparison between MISAGA and other algorithms 47

Fig. 4. Sensitivity test of MISAGA using different α .. 48

Fig. 5. Sensitivity test of MISAGA using different k ... 49

Fig. 6. Convergence of objective value in different real-world data............................ 53

Fig. 7. The structure of a ground truth cluster in the data set of Ego-facebook.

MISAGA identifies all the vertices successfully. The structure identified by CESNA is

in the dashed circle. .. 54

Fig. 8. Pseudo codes of FSPGA ... 65

Fig. 9. Scalability test between different algorithms .. 71

Fig. 10. Sensitivity test of α ... 72

Fig. 11. NMI, Acc, FARI, and overlapping rate in social and biological datasets 76

Fig. 12. Evolutionary graph clustering ... 87

Fig. 13. Protein complex identification .. 89

Fig. 14. Sensitivity test of EGCPI using different settings of λ and OvMax 99

XVI

Fig. 15. The structure of DASH complex in CYC2008 database. The structure

identified by EGCPI completely matches that of the DASH complex. 105

Fig. 16. The structure of Arp2/3 Protein complex in MIPS/CORUM database. The

matched proteins identified by EGCPI are in the dashed circle................................. 106

Fig. 17. Pseudo codes of the optimization process .. 117

Fig. 18. Protein complex identification .. 118

Fig. 19. Curve on the variations of objective values .. 124

Fig. 20. The structure of Kornberg’s mediator (SRB) complex (MIPS ID: 510.40.20)

in the MIPS/CYGD database. The proteins successfully identified by TBPCI are

circled in the dashed line. ... 126

Fig. 21. The protein structure of PBAF complex (CORUM ID: 1238) in

MIPS/CORUM database. Proteins successfully identified by TBPCI are in the dashed

line. ... 127

XVII

List of Tables

Table 1 NMI, ACC and JS in Syn1k ... 46

Table 2 Experimental results in social network data .. 50

Table 3 Experimental results in PPI network data ... 52

Table 4 Associated attribute values in the detected social community 55

Table 5 NMI, ACC and FARI in Syn1k... 70

Table 6 NMI, ACC and FARI obtained from social network data 73

Table 7 NMI, ACC and FARI obtained from biological network data.......................... 74

Table 8 Statistics on the used data sets of ppi networks .. 91

Table 9 Parameter settings of different algorithms .. 93

Table 10 Results of f-measure and MMR obtained from BIOGRID datasets 94

Table 11 Experimental results of f-measure and MMR obtained from DIP Datasets ... 96

Table 12 Experimental results using weighted network data 101

Table 13 p-value test on protein complexes identified by different algorithms 103

Table 14 Ten matched protein complexes identified by EGCPI 104

Table 15 Parameter settings of different approaches ... 121

XVIII

Table 16 Experimental results of f-measure and MMR obtained from BIOGRID

datasets ... 122

Table 17 Experimental results of f-measure and MMR obtained from DIP datasets . 123

Table 18 Results of functional enrichment analysis obtained by tbpci and pcia 125

1

1. INTRODUCTION

Many real relational data can be modeled as graphs containing a set of vertices and

edges representing the data entities in the dataset and interconnection between the

entities. Compared with the random graphs in which vertices are connected with their

neighbors under nearly the same probability, graphs constructed based on real-world

data are not random and always possess some special hidden structures [33]. These

featured structures are sometimes called Community Structure [39]. In graph analytics,

typically one of most crucial tasks is to identify community structure containing a

number of graph clusters, or communities, which are interesting sub-graphs in which

vertices are cohesively inter-related. Such interesting sub-graphs might be named

particularly in a specific application. For example, in social network analysis, the

discovering of clusters of interest is called social community detection. Similarly, in

biological network data, e.g., protein-protein interaction (PPI) networks, the

identification of such interesting sub-graphs is named as the identification of functional

modules. How to discover such clusters in different types of graph data has drawn much

attention in the recent [33] [58]. To discover clusters in graphs, different information

can be utilized. Not surprisingly, most proposed approaches detect graph clusters

mainly using pre-specific topological properties of the graph, e.g., edge centrality [39],

modularity [76], and edge density. Hence, the graph constructed based on the data

contains only vertices and edges, which represent data entities and the inter-connections

between them. While, some other algorithms, discover these graph clusters using

attribute values associated with the vertices. The discovered clusters contain vertices

whose attribute values are more similar. Though effective methods to some extent, these

algorithms might overlook some interesting clusters as they do not take into

consideration various information stored in the graph data.

2

In this thesis, we attempt to combine both topology and attribute information that is in

the graph and address the challenges existing in the state-of-the-art. Hence, we propose

to discover clusters in the Attributed Graph, which contains vertices, unidirectional

edges, and attributes values, which represent the data entities, the inter-connections

between data entities, and features that may describe the entities, respectively.

The rest of this section is organized as the following. In Section 1.1, the challenges

existing in the state-of-the-art of graph clustering that may motivate us to propose more

effective computational methods are illustrated. In Section 1.2, what sub-graphs are

identified as clusters in attributed graphs is introduced. In Section 1.3, the algorithms

that may address the challenges are introduced. In Section 1.4, we give the organization

of the thesis.

1.1. Motivation

As mentioned, many real applications, such as social community detection, functional

module identification, and document segmentation, are trying to find meaningful

clusters in the graph constructed by different types of relational data. Thus, the

discovering of clusters in graphs has drawn much attention in the recent. And there have

been a number of approaches tackling this problem proposed. Most of these proposed

algorithms, e.g., CNM [17], BGLL [8], CPM [80], AP [35], Link-Com [1], SC [57], and

MMSB [2], may discover clusters in graphs mainly using the pro-specific topological

properties of the graph, e.g., edge density, and modularity.

There are some other algorithms which may discover graph clusters only using the

attribute values associated with the vertices. For examples, k-means [73], MAC [36],

and k-SNAP [95] can detect meaningful graph clusters based on the degree of

similarities computed based on the attribute values associated with the vertices.

3

Besides, there have been some attempts to detect clusters in the attributed graph. For

examples, SA-Cluster [112], Inc-Cluster [113], EDCAR [41], GBAGC [104], CESNA

[110], and Circles [74] may discover the clusters in which vertices are densely

connected and their attribute values are relatively more similar. Most of these

mentioned algorithms may discover disjoint graph clusters only.

Though these mentioned algorithms are effective to some extent, we find the following

challenges existing in graph clustering which may motivate us to develop more

effective and efficient algorithms.

First, though utilizing different techniques, most algorithms perform the task of

discovering clusters taking emphasis more either on some predefined topological

properties of the graph or on the similarity of attribute values associated with the

vertices. While algorithms that take into consideration both the aforementioned as

measures for cluster identification are not many. As a result, there might be some

meaningful graph clusters, e.g., social communities in a social network graph, protein

complexes in a PPI network graph that cannot be discovered.

Second, though some graph clustering algorithms can discover clusters taking into

consideration graph topology and attribute information, the attribute values associated

with vertices may not be fully utilized as they consider only those similar attribute

values rather than related ones. Hence, some interesting sub-graphs with vertices

possessing different but related attribute values may not be identified effectively.

Third, though some algorithms utilize both graph topology and attribute information to

identify clusters in a graph, strengths of topology and attributes values that may

determine the cluster membership may not be truly revealed. For example, FCAN [44]

may detect clusters by segmenting a data matrix in which each element represents the

4

strength of the relationship between pairwise data points. The entries of the data matrix

are obtained by adding the binary value and the degree of similarity representing the

connection and attribute similarity between pairwise vertices, respectively. This may

also degrade the quality of detected graph clusters.

Forth, most algorithms for detecting graph clusters are partition-based. In other words,

they cannot identify overlapping clusters in a given graph. These overlapping sub-

graphs might be more desirable in some graph data, e.g., communities in social

networks are sometimes overlapping.

Fifth, techniques that can be used for identifying clusters utilizing both topological

properties of the graph and attribute information still need developing. For example,

there are no effective fuzzy-based algorithms that can identify overlapping clusters in a

network graph.

1.2. Problem of clustering in attributed graphs

Different from clusters in graphs containing vertices and edges only, ones in attributed

graphs are discovered by taking into the consideration topological and attribute

properties. Therefore, how to define sub-graphs to be clusters of interest are the

premises of mining clusters in the attributed graph. There have been several measures

proposed to define what sub-graphs can be categorized into the clusters. For examples,

in model-based algorithms like the ones in [104], [110], and [74], clusters are defined

as those sub-graphs in which vertices share the maximum probabilities of being

connected and homogeneous attribute values being associated. In density-based

methods like the one in [41], clusters are defined as those sub-graphs in which vertices

have the relatively high density of inter-connections and homogeneous attribute values.

Though different names proposed in different works, sub-graphs which can be clusters

of interest can be identified by using measures concerning both topology and attribute

5

carried by the attributed graph. Hence, in this thesis, we are considering to define the

sub-graphs satisfying the following measure of interestingness to be clusters. A sub-

graph in an attributed graph is seen as a cluster if its vertices are densely connected and

attribute values associated with the vertices are inter-related. It should be noted that

inter-related attribute values may not be necessarily the same. Given this definition,

vertices in a cluster in the attributed graph are cohesively inter-related not only

topologically, but also characteristically. All the methods proposed in this thesis aim at

identifying such sub-graphs in the attributed graph as clusters, utilizing different

computational techniques.

1.3. An overview of solutions

Given the challenges also the motivations mentioned, we propose to perform the task

of mining graph clusters using the Attributed Graph. Apparently, the discovering of

clusters in an attributed graph is different from that in a traditional graph as attributes

are associated with vertices. To discover clusters in an attributed graph, the crucial task

is to identify the strength between pairwise vertices resulting from the associated

attributes. To fulfill the mentioned task, we propose to identify such strength using

different measures. One measure for quantifying the strength of attributes assigned to

pairwise vertices is called the degree of attribute homogeneity, which is based on the

Jaccard Similarity. The degree of attribute homogeneity becomes higher when there are

more similar attributes associated with pairwise vertices. The other we further propose

to use is a probabilistic measure which may identify patterns indicating pairwise

attributes are significantly associated. The discovery of significant associations

between pairwise attributes may filter out those unrelated attributes associated with

pairwise vertices. Utilizing these identified significantly associated attributes, one may

reveal the degree of attribute association between pairwise vertices. To obtain such

degrees, we propose to use either an information theoretic measure [73] or a cosine

6

similarity measure to compute the total degree of attribute association between pairwise

vertices. Combining with the edge structure, it is possible for a computational method

to discover clusters in the attributed graph, taking both edge structure and attributes into

the consideration.

After transferring a network graph to an attributed graph, we attempt to propose four

algorithms to discover clusters, utilizing both graph topology and attribute information.

These four algorithms may mine clusters in the attributed graph by making use of

different optimizing techniques.

First, we propose MISAGA, which is an algorithm for identifying interesting sub-

graphs in attributed graphs making use of both edge structure and the degree of attribute

association between pairwise vertices. MISAGA formulates the task of discovering

clusters as a constrained optimization problem and solves it by identifying the optimal

affiliation of sub-graphs for the vertices in the attributed graph through an iterative

updating algorithm.

Second, we propose FSPGA, which is an algorithm for detecting clusters in attributed

graphs making use of fuzzy clustering. FSPGA adopts an effective fuzzy clustering

framework to allow overlapping sub-graphs to be identified, which is very significant

in some of the real applications, e.g., community detection in social network analysis.

Third, we propose EGCPI, which is an efficient algorithm for the identification of

interesting sub-graphs based on evolutionary clustering. EGCPI formulates the task of

discovering clusters in the attributed graph as an optimization problem and tackles it

with evolutionary clustering. By using the edge structure and the degree of attribute

homogeneity measure, it can identify those sub-graphs in which vertices are densely

connected, as well as the attributes of vertices, are more similar.

7

At last, we propose TBPCI, which is an algorithm to identify clusters in attributed

graphs taking into the consideration both graph topology and significant attribute

associations. TBPCI identifies clusters utilizing local information of vertex

connectedness and the degree of attribute association between pairwise vertices in

attributed graph. TBPCI may compute the optimal degree of boundedness between each

pair of vertices which may capture how strong the vertices can be considered as

bounded together. Then the clusters can be identified by grouping those vertices sharing

degrees of boundedness which are sufficiently strong.

The proposed algorithms have been used in different applications, including community

detection in social networks and functional modules identification in biological network

graphs. The experimental results show these proposed algorithms outperform state-of-

the-art approaches.

1.4. Thesis organization

To illustrate how we address the challenges mentioned, we organize the rest of the thesis

as the following.

In Section 2, we present the overview of the previous works that are related to detecting

clusters in graphs. These related works are categorized based on their features, e.g.,

topology/attribute based clustering and graph clustering using the techniques of

computational intelligence. In addition, we introduce different real problems that can

be solved by those mentioned algorithms.

In Section 3, how to represent an attributed graph and how to determine the strength in

terms of attribute values between pairwise vertices are introduced. These mentioned

issues are used by the proposed algorithms in this thesis.

8

In Section 4, we present the reason why MISAGA is proposed at first. Then, how

MISAGA formulates mining clusters in the attributed graph as a constrained

optimization problem and how to solve the problem by using an effective iterative

updating algorithm are presented. In addition, the experiments that may test the

efficiency and effectiveness of MISAGA and other baselines are presented.

In Section 5, we present the background under which we propose the algorithm FSPGA

at first. Then, how FSPGA formulates the discovering of clusters in attributed graphs

as a fuzzy optimization problem, and the experiments which may test the efficiency and

effectiveness of FSPGA and the compared baselines are introduced.

In Section 6, we present the algorithm EGCPI, which is an evolutionary algorithm for

detecting clusters in the attributed graph. The background under which we propose the

algorithm, the details of EGCPI, and how to test the effectiveness of EGCPI and other

baselines, using the experiments related to the real application, i.e., protein complex

identification, are presented.

In Section 7, we present the algorithm TBPCI, which is an algorithm for identifying

interesting sub-graphs making use of local information on topology and associated

attribute values. The details of the proposed algorithm and how to test the effectiveness

of the proposed algorithm and other baselines, using the experiments related to the real

application, i.e., functional modules detection in biological graphs, are presented.

At last, in Section 8, we summarize the contributions of the thesis and propose future

works.

9

2. OVERVIEW OF THE RELATED WORK

To discover clusters in graphs, several algorithms have been proposed. Though different

computational methodologies might be utilized, these algorithms can be categorized

according to the specific properties that are considered, the techniques that are used,

and the particular field into which they are applied. In this section, the state-of-the-art

related to discovering clusters in graphs are introduced categorically.

2.1. Graph clustering algorithms

To detect meaningful clusters in the graph data, there have been several so-called graph

clustering algorithms proposed. These algorithms can be categorized based on the

information of graph data they utilize.

2.1.1. Topology-based graph clustering

Unsurprisingly, most algorithms detect graph clusters based on pre-specified topologies

or edge structures, such as the vertices being more densely connected within the same

cluster than those belong to other clusters. For example, in [39], an algorithm that

detects communities based on specific requirements on edge centrality is presented. In

[76], another measure, called modularity, which is defined as a function of the

differences in density within and between graph clusters and a null-graph (in which

vertices are connected randomly) is proposed. Based on it, several algorithms, such as

CNM [17] and BGLL [8], are developed to search for graph clusters based on the

optimization of modularity. In [40] and [34], the formalism of a random graph is

introduced. This formalism shows clusters smaller than a certain size cannot be detected

by these algorithms that detect for clusters based on modularity optimization. Though

there are some limitations, these modularity-based algorithms can detect graph clusters

in very large network graphs whose size is more than 1,000,000 vertices.

Besides modularity optimization, there are other algorithms that can detect graph

10

clusters based on other properties of the graph. In [80], for example, an algorithm is

proposed to detect graph clusters based on the concept of a clique using a clique

percolation method (CPM). In [35], a graph clustering method called affinity

propagation (AP) is proposed to detect clusters based on the similarities between cluster

centers and other vertices. In [1], a method is proposed to detect graph clusters by

introducing the concept of a link graph to facilitate optimization of edge densities. In

[57], given vertices in the same cluster may share similar edge structure, spectral

clustering is proposed to consider normalized cuts [89] for cluster identification. In

[107], a semi-supervised algorithm for detecting clusters in graphs is proposed. Besides

of making used of spectral techniques, the proposed algorithm also utilizes the prior

knowledge determining the cluster affiliation of some vertices to obtain a better result.

In [2] and [53], two approaches based on the Mixed Membership Stochastic

Blockmodels (MMSB) are proposed, respectively to detect graph clusters by optimizing

the posterior probability that a pair of vertices are actually connected. The higher the

probability, therefore, the greater the sub-graph density. There are some algorithms for

detecting graph clusters based on other techniques. In [108], a model based algorithm

called CoDa is proposed to detect communities in graphs. Modeling the discovering of

communities as identifying the community affiliations of each vertex, the best

affiliation can be identified by optimizing the posterior probabilities that are used to

represent the possibility that vertices belong to a community in a generative model.

There are also some graph clustering algorithms that can discover graph clusters based

on frequent patterns hidden in the graph, e.g., frequent sub-structure patterns [111]. For

example, in [94], an algorithm is proposed to discover graph clusters by grouping the

vertices sharing the predefined largest pattern of sub-structure.

2.1.2. Attribute-based graph clustering

Identification of clusters that is based solely on graph topologies does not take into

11

consideration attribute values associated with the vertices. In the case that such attribute

values are useful for the discovering and understanding of the sub-graphs identified,

many graph clustering algorithms cannot be used.

To consider attributes in graph clustering, some attempts have been made to make use

of the k-means algorithm [73] to group vertices with the higher similarity of attributes

into the same clusters. In [36], an algorithm (MAC) that is based on probabilistic

generative model is proposed for clustering vertices that are labeled with Boolean

attribute values. In [95], a graph summarization algorithm called k-SNAP is proposed

to detect graph clusters by grouping vertices into the same cluster according to a

similarity measure of the attribute values.

2.1.3. Graph clustering using graph topology and attribute

Those graph clustering algorithms that take into consideration either topological

properties of the graph or attributes associated to vertices are not very well suited for

the task of discovering meaningful clusters in the graph because they take more

emphasis either on graph topology or attributes associated with the vertices, but

overlook the other.

To consider both attributes and structures in graph clustering, several algorithms can be

used. In [112], SA-Cluster is proposed to detect graph clusters using a neighborhood

random walk model. Based on it, cluster membership of each vertex is determined at

the time that the transition matrix reaches steady-state. In [113], inc-Cluster is proposed

using the same random walk model as the SA-Cluster except that its efficiency is

improved using an incremental method to compute the transition matrix. In [41],

EDCAR is proposed to mine sub-graphs by grouping together vertices that are densely

connected and share similar attribute values. In addition to graph structures, these

algorithms are able to take into consideration vertex attributes. However, they are more

12

graph partitioning algorithms that are not developed to discover overlapping sub-graphs.

Thus, interesting graph clusters may sometimes be overlooked.

In addition to the above algorithms, some algorithms detect graph clusters by utilizing

generative models. In [104], a general Bayesian model for graph clustering (GBAGC)

is proposed to make use of a Bayesian generative model to estimate structural and

attribute similarity of pairwise vertices in each cluster. A number of disjoint graph

clusters are obtained after all parameters are estimated. In [110], an algorithm, called

CESNA, is proposed to make use of a statistical model to determine the posterior

probability that pairwise vertices are connected given particular edge structures and

attributes in a graph cluster. Cluster membership is determined when the posterior

probability is maximized. In [74], an algorithm called Circles is proposed to detect

clusters in social network graphs. By taking user profiles as attributes, Circles

determines cluster membership by estimating the similarity between user attributes and

those which are commonly observed in members of each cluster. The cluster

membership of a vertex is determined to be those that are predicted to have higher

similarities with other vertices in the same clusters. In [44], FCAN is proposed to

discover graph clusters in the complex network by using both link structure and relevant

content associated with vertices. FCAN may detect clusters by segmenting a data matrix

in which each element represents the strength of the relationship between pairwise data

points. The entries of the data matrix are obtained by adding the binary value and the

degree of similarity representing the connection and attribute similarity between

pairwise vertices, respectively.

Inspired by topic modeling [10], several topic-model-based approaches, such as Link-

PLSA-LDA [77], Relational Topic Model [18], iTopicModel [90], PL-DC [109] and

Block-LDA [11] can also be used to identify graph clusters mainly in document

13

networks with words as attributes of vertices and citations as edges of an attributed

graph. With these topic-model-based approaches, cluster membership is determined by

maximizing the probability that vertices in the same cluster labeled with the same topics.

However, due to rather high demand for computational resources, these topic-model-

based approaches are not developed to handle large attributed graphs [110].

2.2. Detecting graph clusters using computational intelligence

Besides those mentioned graph clustering algorithms, there have been several

algorithms which may detect graph clusters based on different techniques of

computational intelligence. Generally speaking, evolutionary computation and fuzzy

set theory have been used to develop the approaches to detecting clusters in graph data.

2.2.1. Evolutionary graph clustering

As the problem of graph clustering can be formulated as an optimization problem with

relatively clear objectives, evolutionary algorithms (EAs) have been used to tackle the

problem. Recently, there have been some effort to detect community structures using

genetic algorithms (GAs) and the approach has been shown to be very effective.

The first successful GA application for community detection is described in [96]. The

approach makes use of the modularity measure as the fitness function so that it can be

optimized. To eliminate communities with relatively lower modularity scores and

uniqueness at the end of each reproduction cycle, an information theoretical measure is

used to eliminate communities with relatively lower modularity scores and uniqueness.

As a result, the quality of the final communities detected can be enhanced.

Another GA developed to detect community structures was proposed in [59]. It takes

into consideration Silhouette Width [86], normalized cut [89] and the modularity

measure in a fitness function used to guide the evolutionary process. To facilitate the

14

exchange of community structures, this GA also makes use of a special crossover

operator. Even though the operator slows down the evolutionary process, it allows for

a greater diversity of community structures.

Other than detecting graph clusters using single-objective evolutionary algorithms,

multi-objective evolutionary algorithms can also be used for detecting graph clusters.

For example, a multi-objective GA for detecting communities is proposed in [81]. Other

than the modularity measure, the fitness of a community structure is evaluated based

also on the use of another benchmark called community fitness [60]. Partitioning of a

complex network has to allow both the two objectives to be optimized. Another

example of multi-objective EA for graph clustering is proposed in [61], which is called

MEAs-SN. MEAs-SN is a multi-objective evolutionary algorithm which can detect

social clusters with more intra-positive edges as well as more negative edges between

clusters. In [19], another evolutionary algorithm (DCRO) for detecting graph clusters

is proposed. Different from MEAs-SN, DCRO detects graph clusters based on an

efficient multi-objective evolutionary algorithm called Chemical reaction optimization

(CRO) [12].

Besides the above evolutionary algorithms, there have been some attempts to detect

graph clusters considering both network topology and attribute information. For

example, an evolutionary community detection algorithm, called ECDA [45], is

proposed to detect for communities in social networks by considering network

connections and attribute labeled to each pair of vertices.

2.2.2. Fuzzy graph clustering

Besides above approaches, algorithms based on fuzzy techniques can also be applied to

find graph clusters taking into consideration attributes associated to the vertices. For

example, the classical fuzzy c-means algorithm [9] can discover graph clusters by

15

grouping those vertices with similar attributes together. In addition, other fuzzy

clustering algorithms which are based on the fuzzy c-means model, such as relational

fuzzy c-means algorithm [43] and improved fuzzy c-means algorithm [54], can also be

used to detect clusters given the similarity of attribute values between pairwise vertices.

Though adopting different techniques to detect graph clusters, most existing

evolutionary algorithms for detecting graph clusters make use of various topological

properties of networks when performing their tasks. While, those fuzzy algorithms for

clustering in graphs mainly perform the task by taking into the consideration the

similarity of attribute values between pairwise vertices. Thus, they also can be seen as

graph clustering algorithms based on either graph topology or attribute values.

2.3. Graph clustering in real applications

As mentioned above, there are several real problems that can be solved as clustering in

graph data. Given the state-of-the-art, two dominant applications are always

investigated, including social community detection and functional module detection in

biological graphs. Based on the characteristics of the applications, algorithms that are

applied into real problems might be slightly different.

2.3.1. Social community detection

Social community detection is one of the most important applications of social network

analysis. Many algorithms are proposed to solve the problem of community detection

in social graphs. For examples, CoDa [108], Circles [74], ECDA [45] are three

algorithms for detecting communities in social graphs. Besides, algorithms like CNM

[17], BGLL [8], SA-Cluster [112], inc-Cluster [113], EDCAR [41], and CESNA [110]

can also be used for social community detection. It is said that, most graph clustering

algorithms are capable of performing the task of discovering meaningful communities

in social graphs.

16

2.3.2. Graph clustering in PPI networks

Recently, protein complex (functional module) identification in protein-protein

interaction networks has also drawn much attention due to its important role in the

understanding of cellular organizations and functions, such as replication, transcription

and the control of gene expression, etc. [46]. A protein complex is a biomolecule that

contains a number of proteins connecting with each other to perform cellular functions

[91]. Based on the definition of the protein complex, it is also a sub-graph of interest

existing in the PPI network graph. Due to the uniqueness of protein complex

identification, e.g., proteins in a protein complex are always connecting with each other,

algorithms for protein complex identification might not always the same to those

general graph clustering algorithms. Thus, the state-of-the-art for protein complex

identification should be investigated separately.

To identify protein complexes on a large scale, time-consuming laboratory experiments,

such as affinity purification (AP) followed by mass spectrometry (MS), have to be

performed [38], [46]. Though effective, AP/MS cannot be considered as an efficient

method as it requires a number of different steps to be carried out with different baits

every time [28].

To minimize the laborious trials-and-errors procedures, some attempts to identify

protein complexes computationally have recently been made [51] [62]. Most of these

computational methods are developed based on different graph clustering algorithms.

Due to some evidence of proteins in protein complexes tending to interact more with

each other, many algorithms for protein complex identification aim at identifying

densely connected sub-graphs by considering some graph properties, e.g., modularity

and density, as protein complexes [87], [97], [114]. For example, one of the most

popular graph clustering algorithms that are used for protein complex identification is

MCODE [13]. MCODE can identify sub-graphs that contain densely connected vertices

17

in a PPI network graph as protein complexes, by taking into consideration local

neighborhood density.

Other than MCODE, another graph clustering algorithm called the MCL algorithm [29]

has also been used for the identification of protein complexes. The MCL algorithm also

discovers densely connected sub-graphs except that it does so by making use of a

random-walk approach through simulating flow expansion and contraction [30] using

what are called expansion and inflation operators. A number of dense clusters can be

extracted from the incidence matrix of a PPI network graph when MCL achieves

convergence.

Another dense sub-graph identification algorithm, called RNSC [55] is proposed to

identify protein complexes in PPI network graphs through graph partitioning. RNSC

attempts to find an optimal set of partitions of a PPI network graph by employing

different cost functions that are defined in terms of edge density, cluster size, and

functional homogeneity. The graph partitions that are identified can correspond well

with protein complexes. An algorithm that is similar to the RNSC is proposed in [31].

The algorithm also attempts to find protein complexes by partitioning a PPI network

graph but it uses a minimum vertex-cut to identify cluster boundaries so that the vertices

in each graph partition tend to connect more with other vertices that are in the same

partition.

In [52], an algorithm called SPICi is proposed to identify protein complex by

considering the local density of a PPI network. Comparing with other density-based

graph clustering algorithms, SPICi can be shown to be a very fast algorithm for protein

complex identification. In [115], an algorithm called DCU is proposed to detect protein

complexes utilizing an uncertain graph model. DCU utilizes two measures when

identifying protein complexes. One of them is called the relative degree measure. It is

18

used to determine whether a protein belongs to a sub-graph. The other is called the

expected density measure. It is used to determine whether a dense sub-graph satisfies

with the minimum density to be identified as a protein complex.

Other than edge density, some graph clustering algorithms perform their tasks by

considering other graph properties and some of these algorithms have also been used

for protein complexes identification in PPI networks. For example, a graph clustering

algorithm called DPClus [3], can discover and refine graph clusters by keeping track of

cluster periphery. This DPClus algorithm is later improved to enhance computational

efficiency in another algorithm called IPCA [63]. IPCA finds graph clusters based on a

vertex distance and a density measure.

Another example of an algorithm that finds graph clusters based on graph properties

other than edge-density is CFinder [4]. CFinder identifies graph clusters based on clique

percolation and the graph clusters identified correspond well to known protein

complexes. Similar to CFinder, the CMC algorithm also finds graph clusters based on

the discovering of cliques [64]. By iteratively assigning weights which indicate the

reliability of interactions between proteins, CMC attempts to find cliques that have the

highest value of such weights. Other than CMC, another clique-based algorithm called

IPC-MCE is proposed in [65]. The algorithm takes each maximal clique identified as

the core of a protein complex. It then extends the core by including those “peripheral”

proteins that are determined to have a higher probability to connect to the core.

In [100], an algorithm called COACH is proposed to find protein complexes making

use of a different graph property, i.e. core-attachment. In [82], another core-attachment-

based algorithm called WPNCA is proposed. Different from COACH, WPNCA utilizes

a Pagerank-nibble algorithm to assign a weight to each interaction in a PPI network to

obtain a better performance.

19

Most graph clustering algorithms do not discover overlapping clusters and cannot be

used to identify overlapping protein complexes. There are some exceptions, however.

For example, an algorithm proposed in [116] can detect overlapping protein complexes

based on a generative network model. Another algorithm called ClusterONE [78] can

also do so using a measure called graph cohesiveness.

As there is some evidence of proteins belonging to the same protein complex

performing similar or related functions [101], there are also some attempts to identify

protein complexes that can take into consideration information about protein attributes

rather than topology only. For example, in [66], PCIFI identifies protein complexes

based on finding connected proteins that perform interdependent molecular functions.

In [67], another algorithm performs the task of protein complex identification by

simultaneously using PPI network data and gene expression data. In [47], an algorithm

called PCIA is proposed to identify protein complexes in PPI networks based on

network topology and attribute information. It makes use first of a measure of attribute

similarity followed by the use of the MCL algorithm to identify densely connected

clusters during the process. In [117], an algorithm called GMFTP, is proposed to

identify protein complexes based on measures of similarity between attribute values of

proteins. Given the experimental results presented, all the mentioned approaches have

shown their effectiveness in protein complex identification.

According to the experimental results shown in the related publications, all these

mentioned approaches have shown their effectiveness in one or several real applications

of detecting clusters in graphs. Given the challenges summarized in Section 1, we will

propose four different algorithms, i.e., MISAGA, FSPGA, EGCPI and TBPCI to

address them accordingly.

20

3. TECHNICAL PRELIMINARIES

To mine clusters, it is essential to construct an attributed graph given a set of data

containing data entities, inter-connections, and features describing the data entities, and

determine how strong inter-related the pairwise vertices are regarding of the attribute

values. In this section, the notations of the attributed graph and the determination of the

strength in terms of the attribute values between pairwise vertices are introduced.

3.1. Notation of the attributed graph

Given a set of relational data which contains vertices, edges, and a set of attributes

representing the data entities, relationship between entities and characteristics that may

describe the entities, it can be represented as an Attributed Graph, containing nV

vertices and nE edges, in which each vertex is associated with a set of attribute values,

the graph can be represented as G = (V, E, Λ), where the set of vertices, V, can be

denoted as, V= {vi | 1 ≤ i ≤ nV}, the set of edges, E, can be denoted as E = {eij | 1 ≤ i, j

≤ nV, i ≠ j}, and the set of attributes that is associated with each vertex can be denoted

as Λ where Λ = {atti | 1 ≤ i ≤ nΛ}. The algorithms proposed in this thesis will detect

clusters of interest by representing relational data as G.

3.2. Attribute strength between pairwise vertices

To discover clusters of interest in G, it is important to determine how strong a pair of

vertices are inter-related, according to the attribute values associated. To fulfill the task,

we propose two different measures to determine such strength between pairwise

vertices in the attributed graph.

One measure is called the degree of attribute homogeneity (θ), it is defined as

ji

ji

ij



 (1)

21

where Λi represents the set of attribute values associated with vertex vi in G. θ is a

Jaccard Similarity measure and ranges from 0 to 1. Apparently, θ becomes higher when

there are more homogeneous attributes values associated with both pairwise vertices in

G. Hence, θ may determine how similar the attribute values associated with pairwise

vertices.

The other measure is called the degree of attribute association (φ). φ can be obtained

following a two-step approach. First, patterns of significant associated attribute values

in G can be obtained by making use a statistical measure. To illustrate how this can be

done, let us consider two attribute values, atti and attj. Let us use o(atti, attj) to denote

the frequency that atti and attj appears respectively in the attribute value sets of two

vertices which are connected. To denote the expected frequency that atti and attj are

connected in G, we use the notation e(atti, attj). We consider atti and attj as having a

significant interesting association with each other if o(atti, attj) is sufficiently different

from e(atti, attj). To determine if the difference is statistically significant, we make use

of the following test statistics

))
)(

1)((
)(

1)(,(

),(),(
),(

E

j

E

i
ji

jiji

ji

n

atto

n

atto
attatte

attatteattatto
attattdiff








 (2)

where o(atti+) represents the frequency that attribute value atti is associated with any

connecting vertices. In [20], [21] and [48], this measure is shown to approximately

follow the Standard Normal distribution. One may, therefore, decide that atti and attj

are significantly associated with each other at a 95% confidence level if diff(atti, attj) is

greater than 1.96. Otherwise, they can be considered not significantly associated with

each other. With this measure, those attribute values that are not sufficiently relevant

are filtered out. Although two attribute values are different, they might be significantly

22

relevant if diff between them is larger than some threshold.

Having obtained the significantly associated patterns in attribute values, one may

determine the degree of attribute association between two vertices, say vi and vj, by

using appropriate measures. In this thesis, we mainly using two different measures tow

compute φ between pairwise vertices in G. One method for computing φ is based on an

information theoretic measure [73]. Let attik and attjm denote a pair of associated

attribute values belonging to the attribute sets of vi and vj respectively. Let Pr(attik, attjm)

denotes the probability that attik and attjm are connected in G. Let Pr(attik) and Pr(attjm)

denote the probability that attik and attjm are associated with the connected vertices

respectively, then the total degree of attribute association between vi and vj is defined

as





k m jmik

jmik

jmikji
attatt

attatt
attattvvr

)Pr()Pr(

),Pr(
log),Pr(),((3)

It should be noted that the magnitude of r(vi, vj) increases with the number of

associations between attribute values and the relative magnitude of the probabilities

which reflect the degree of association between them. As those attribute values that are

not significantly associated with each other has been filtered out, we only consider

relevant and interesting attribute values. For the purpose of normalization, MISAGA

computes an entropy measure as follows:

 
k m

jmikjmikji attattattattvvH),Pr(log),Pr(),((4)

Given (3) and (4), φ between the vertices vi and vj can be obtained as

23

),(

),(

ji

ji

ij
vvH

vvr
 (5)

Using the above computational method, φij can be interpreted as the information

redundancy of the attribute values that are associated with vi and vj. After normalization,

the magnitude of φij ranges from 0 to 1. A greater value of that means that the attribute

values of the pair of vertices, vi and vj are more strongly associated with each other, and

so, their being members in the same group may reflect more interesting patterns.

The other method for computing φ is based on cosine similarity, given all diffs between

two vertices, vi and vj we can determine whether pairwise attributes values are

significantly associated as (6) shows:



 


otherwise

attattdiffif
aadiff

jmik

jmik
,0

96.1),(,1
),((6)

Once whether or not a combination of attributes values is significantly associated has

been decided, we can compute φ between each pair of vertices in G

ji

k m

jmik

ij

attattdiff



),(

 (7)

A higher value of φ means a higher proportional pairwise combination of significantly

associated attribute values existing between two vertices. And it is concluded that the

two vertices have a stronger association when considering their attribute information.

By utilizing the θ measure and φ measure, the proposed algorithms in this thesis may

determine how strong the pairwise vertices are inter-related in G when considering the

attribute values associated. Combining with the edge structure, the proposed

approaches may discover meaningful clusters taking into the consideration both graph

24

topology and attribute information in the attributed graph data.

25

4. MISAGA-AN ALGORITHM FOR MINING CLUSTERS IN ATTRIBUTED

GRAPHS BY IDENTIFYING OPTIMAL CLUSTER MEMBERSHIP

4.1. Background

As mentioned before, clusters in graphs can be seen as interesting sub-graphs. In this

section, an algorithm for identifying interesting sub-graphs in attributed graphs,

MISAGA, is proposed. Taking into the consideration both edge structure and

significantly associated attribute values of pairwise vertices in the attributed graph,

MISAGA identifies interesting sub-graphs by formulating it as a constrained

optimization problem and solves it by identifying the optimal affiliation of sub-graphs

for the vertices in the attributed graph. MISAGA has been tested with several large-

sized real graphs and is found to be potentially very useful for various applications.

The identification of interesting sub-graphs utilizing both graph topology and attribute

information has been a widely accepted scenario. There have been several algorithms

proposed to solve the problem taking into consideration edge structure and attribute

information. For examples, SA-Cluster [112] and Inc-Cluster [113] are two random-

walk-based algorithms that can detect disjoint clusters in the attributed graph utilizing

both connections and similar attribute values between pairwise vertices. EDCAR [41]

is proposed to mine sub-graphs by grouping together vertices that are densely connected

and share similar attribute values. GBAGC [104], CESNA [110], Circles [74] are three

model-based algorithms for detecting clusters in the attributed graph. Link-PLSA-LDA

[77], Relational Topic Model [18], iTopicModel [90], PL-DC [109] and Block-LDA [11]

are approaches to partition relational data into clusters utilizing the topic models [10].

All these mentioned methods have shown to be effective.

Having reviewed most algorithms for sub-graphs identification in attributed graphs, we

have the following findings that may motivate us to propose a more effective approach.

First, algorithms that consider both graph topology and attribute information are not

26

many. As mentioned in Section 1, most graph clustering algorithms utilize pre-specified

topologies or attribute information. Second, almost all the algorithms utilize attribute

similarity when detecting clusters. Thus, relevant attribute values which are different

are overlooked within the clustering process. This may miss some interesting sub-

graphs hidden in the attributed graph. Third, the efficiency of the state-of-the-art needs

improving to deal with large graphs. For examples, those topic-model-based approaches

are not able to segment large attributed graphs [110].

To address the mentioned challenges, we propose MISAGA (Mining Interesting Sub-

graphs in Attributed Graph Algorithm). MISAGA performs its tasks by using a

statistical measure that identifies attribute values that have interesting associations with

each other. If the attribute values of a pair of vertices have interesting associations, then

a measure called the degree of attribute association is computed. With such measures,

the problem of discovering interesting sub-graphs is formulated and solved as a

constrained optimization problem, MISAGA can find an optimal sub-graph

arrangement by taking into consideration both edge structure as well as the attribute

values associated with each vertex by so doing.

For performance evaluation, MISAGA is tested with both synthetic and real data sets

including social and PPI network data. The experimental results are verified against

known ground-truth data. The findings show that the sub-graphs discovered by

MISAGA can be very meaningful.

4.2. MISAGA in details

4.2.1. Mathematical preliminaries

Given an attributed graph containing nV vertices and nE edges, in which each vertex is

associated with a set of attribute values, MISAGA models the attributed graph as G =

(V, E, Λ), which has been shown in Section 3.

27

Given G, MISAGA constructs an adjacency matrix Y of dimensions, nV by nV, to

represent the connections between vertices in G so that an entry, yij, in Y has the value,

1, if vi and vj are connected and, 0, if they are not.

After obtaining Y which is used for representing the edge information of G, MISAGA

uses another nV-by-nV matrix, A, to represent the mutual strength in terms of attribute

values associated with the pairwise vertices. Here, each entry of A, say aij, is obtained

by using the φ measure shown in (2), (3), (4), and (5). Hence, A can be named as

attribute-association matrix. Using Y and A, MISAGA searches for an optimal solution

to a constrained optimization problem that considers both edge structure and attribute

association for the mining of interesting sub-graphs as clusters in attributed graphs.

Having obtained the adjacency matrix Y and the attribute-association matrix A,

MISAGA will detect sub-graphs existing in G by utilizing the information in the above

two matrices. In this section, how MISAGA formulates the mining of sub-graphs as an

optimization problem and how MISAGA solves the problem is illustrated.

4.2.2. The objective function for mining interesting sub-graphs

To formulate the sub-graph identification problem as an optimization problem, let us

define k to be the number of interesting sub-graphs in G that is to be identified. Given

k, we first introduce two nV-by-k auxiliary matrices, D and B, which represent the

strength that each vertex belongs each of the k sub-graph, taking into consideration

structure and attribute associations, respectively. With D and B, we can introduce a sub-

graph membership matrix C, which has the dimension of nV by k. Each element of C,

say cij, indicates the strength of membership for vertex i to belong to sub-graph j so that

the larger the value of cij, the greater the affinity between vertex i and sub-graph j.

Given the adjacency matrix Y, the attribute-association matrix, A, the auxiliary

28

matrices D and B, and the sub-graph membership matrix C, MISAGA attempts to

maximize the following objective function:

0,0,0

2

1

)()1()(

maximize

222222







 



BDC

eCeDCBCBDC

ABCYDC

21

TT

TT

tosubject

trtrO

FFFFFF




 (8)

where (i) |C|2F, |D|2F, and |B|2F are the F-norm of matrices C, D, and B, which are used

respectively to smooth the variables in these matrices, (ii) |DCT|2F, and |BCT|2F are the

F-norm of the products of D and the transpose of C, and B and the transpose of C,

respectively, (iii) α is a parameter that is used to adjust the relative weighting between

edge density and attribute association to be considered when MISAGA searches for the

optimal C, (iv) e1 and e2 are k-by-1 and nV-by-1 vectors in which all elements are set to

1, (v) |Ce1-e2|2F is an l2-norm which is used to regulate the aggregation of the variables

in each row of C so that they can be approximated by 1, which can be used conveniently

when comparing the strength of sub-graph affiliation between different vertices. (vi) λ

is a non-negative factor which is used to control the effects of the regulation term

mentioned in (v). By utilizing the proposed objective function, MISAGA possesses the

following advantages when used to identify interesting sub-graphs in attributed graphs.

First, by introducing the two auxiliary matrices D and B, MISAGA can identify

interesting sub-graphs by taking into consideration both graph topology and attribute

association between the pairwise vertices in a graph. To explain how MISAGA

determines the sub-graph membership of the vertices, let us consider the first two terms

of the objective function: tr(CTYD) and tr(CTAB).

These terms are used to aggregate the strength of the topology and attribute association

29

of all sub-graphs respectively. Each element in tr(CTYD) is used to aggregate the total

number of edges within a sub-graph, given the values of the entries in C and D.

tr(CTYD) can be optimized only when all the vertices can be assigned to appropriate

sub-graphs in which they are connected by more intra-edges. In other words, the

corresponding entries in C and D, say cij and dij, which are used to represent sub-graph

membership, and the structural strength for vertex i to belong to sub-graph j, should be

relatively high when vertex i are connected by relatively more vertices in sub-graph j.

In the case of tr(CTAB), it aggregates the total degree of associations between pairwise

vertices within each sub-graph. tr(CTAB) can be optimized only when all the vertices

are assigned to the sub-graphs in which the degrees of attribute association between the

pairwise vertices are high.

Given the objective function as shown in (8), MISAGA attempts to find a sub-graph

membership matrix C, that can be used to assign each vertex into a sub-graph in such a

way that it is more connected to and shares a higher degree of attribute association with

the other vertices in the same sub-graph. If such an optimal sub-graph assignment can

be found, the optimization process adopted by MISAGA can find corresponding

optimum values in the entries for this vertex in D and B and as a result, the

corresponding element in C, which is used to represent the sub-graph membership

between that vertex and that sub-graph is also at its optimum.

However, one may notice that tr(CTYD) and tr(CTAB) also increase when the variables

in D, B, and C simply increase. Thus, we use |DC|2F, and |BC|2F to penalize improper

variations of the variables in D, B, and C so that, only when the elements of D, B, and

C are assigned with appropriate values, the objective function O can be maximized. In

such case, C contains the membership of the most interesting sub-graphs in each of

which vertices are densely connected and their attribute values are significantly

30

associated.

The other advantage that the optimization process adopted by MISAGA is that, by using

the penalty term λ|Ce1-e2|2F, the aggregation of each row in C can be controlled to be

around 1 and this can make comparison of the strength of sub-graph affiliation between

different vertices and the extracting of overlapping sub-graphs to be more convenient.

With these advantages, therefore, when an optimal value for the proposed objective

function can be determined, the sub-graphs found by MISAGA can take both edge

structure and attribute association into consideration at the same time.

4.2.3. The iterative updating algorithm

The proposed objective function is a constrained quadratic function. It is non-convex

to C, D, and B simultaneously, but it is convex to C, D, or B when keeping the other

two matrices unchanged. Based on this property, a series of updating rules for

optimizing (8) can be obtained.

4.2.3.1. Updating rule for C

Let βij be the Lagrange multipliers for the constraints cij ≥ 0. The Lagrange function L

for C is

)(),(CββC
TtrOL  (9)

where β = [βij] is the matrix of Lagrange multipliers for the non-negativity of C. Based

on the KKT condition for constrained optimization, we have the following

0

0)1(










β

0Cβ

βCeCeBCBDCDeeABYD
C

T

11

TTT

12




L

 (10)

31

where “ₒ” means the Hadamard product of two matrices with the same dimension.

Based on (10), we have the element-wise equation system for each element in C

0

0

0)(])1([







ij

ijij

ijijij

c









CeCeBCBDCDeeABYD
T

11

TTT

12

 (11)

Given the first equation in (11), we have

ijijij  )(])1([CeCeBCBDCDeeABYD
T

11

TTT

12 (12)

Using (12) to replace βij in the equation of Hadamard product, we have the iterative

updating rule for C

ij

ij

ijij cc
)(

))1((

CeCeBCBDCD

eeABYD
T

11

TT

T

12









 (13)

4.2.3.2. Updating rule for D

Let γij be the Lagrange multipliers for the constraints dij≥0, hence the Lagrange function

L for D is

)(),(DγγD
TtrOL  (14)

where γ = [γij] is the matrix of Lagrange multipliers for the non-negativity of D. Based

on the KKT condition, we have

0

0










γ

0Dγ

γDCDCYC
D

T




L

 (15)

32

Given the equation system (15), the element-wise updating rule for D can be derived

ij

ij

ijij dd
)(

)(

DCDC

YC
T 




 (16)

4.2.3.3. Updating rule for B

Let ηij be the Lagrange multipliers for the constraints bij≥0, hence the Lagrange function

L for B is

)(),(BηηB
TtrOL  (17)

where η = [ηij] is the matrix of Lagrange multipliers for the non-negativity of B. Based

on the KKT condition, we have

0

0)1(










η

0Bη

ηBCBCAC
B

T




L

 (18)

Given the equation system (18), the element-wise updating rule for B can be derived

ij

ij

ijij bb
)(

])1[(

BCBC

AC
T 





 (19)

While keeping other matrices unchanged, these updating rules will guide C, D, and B

to identify the local optima in each iteration, respectively.

4.2.4. Convergence analysis of the proposed updating rules

To prove the convergence of the algorithm, we may make use of one property of an

auxiliary function that is also used in the proof of the Expectation-Maximization

33

algorithm [32]. The property of the auxiliary function is described as the following. If

there exists an auxiliary function satisfying the conditions that Q(x, x’) ≤ F(x) and Q(x,

x) = F(x), then F is non-decreasing under the updating rule that

),(maxarg '1 xxQx
x

t  (20)

The equality F(xt+1) = F(xt) holds only when x is a local maximum of Q(x, x’). By

iteratively updating x according to (20), F will converge to the local maximum xmax =

argmaxxF(x). By defining an appropriate auxiliary function for O, we may show the

convergence of (8).

First, we may prove the convergence of the updating rule (13). Let cij be any element

in C, Ocij be the partial of (8) that is related to cij, Ocij(c
’
ij) be the partial objective value

of (8) that is related to cij when cij is equal to some value, say c’
ij. Since the updating

rule for C is element wise, it is sufficient to show Ocij is non-decreasing according to

the updating rule (13). To prove this, we define the following auxiliary function for Ocij:

2')(
2

)(
)(),(t

ijijt

ij

ijt

ijijcc

t

ijij cc
c

ccOOccQ
ijij





CeCeBCBDCD

T

11

TT 
 (21)

where O’
cij is the first order partial derivative relevant to cij. Although the auxiliary

function is defined in (21), we need to prove it satisfies the aforementioned conditions.

Apparently, Q(c, c) = Ocij(c). Hence, the left we need to prove is Q(c, ct
ij) ≤ Ocij(c). To

prove this, we compared Q(c, ct
ij) shown in (21) with the Taylor expansion of Ocij near

to ct
ij

2''')(
2

1
)(t

ijijc

t

ijijccc ccOccOOO
ijijijij

 (22)

34

where O’
cij and O”

cij are the first and second order partial derivatives relevant to cij. Note

that

 

 
jj

ij

c

ij

ij

c

c

O
O

c

O
O

ij

ij

T

11

TT

T

12

T

11

TT

eeBBDD

eeeCeCBCBDCDABYD

















1
)(

)1(

2

2
''

'

 (23)

Using (23) to replace the relevant terms in (22), we can see that if Q(cij, c
t
ij) ≤ Ocij(cij),

the following inequality must hold

 
jj

ct

ij

ij

ij
O

c

T

11

TT

T

11

TT

eeBBDD

eCeCBCBDCD












1
2

1

2

1

2

)(
''

 (24)

Therefore, to show Q(cij, c
t
ij) ≤ Ocij(cij), it is equivalent to show

 
jj

t

ijij c T

11

TTT

11

TT
eeBBDDeCeBCBDCD  )((25)

Since cij, dij and bij are non-negative, we have

jj

t

ijjj

t

ijjj

t

ij

l

lj

t

il

l

lj

t

il

l

lj

t

il

ij

ccc

ccc

)()()(

)()()(

)(

T

11

TT

T

11

TT

T

11

TT

eeBBDD

eeBBDD

eCeBCBDCD













 (26)

Up to here, Q(c, ct
ij) ≤ Ocij(c) has been proved thus (18) is an auxiliary function for Ocij.

Next, we will define the auxiliary functions regarding to the updating rules (16) and

(19). Similarly, let Odij and Obij be the partial of (8) relevant to dij and bij and Odij(d
’
ij)

35

and Obij(b
’
ij) be the partial objective values when dij and bij equal to d’

ij and b’
ij,

respectively. Since the updating rules for D and B are also element wise, it is sufficient

to show that Odij and Obij are non-decreasing according to the updating rules (16) and

(19). Let the following be the auxiliary functions regarding to Odij and Obij:

2'

2'

)(
2

)(
)(),(

)(
2

)(
)(),(

t

ijijt

ij

ijt

ijijbb

t

ijij

t

ijijt

ij

ijt

ijijdd

t

ijij

bb
b

bbOObbQ

dd
d

ddOOddQ

ijij

ijij











BCBC

DCDC

T

T

 (27)

Since the proof for the above functions to be auxiliary functions regarding dij and bij is

similar to that for cij, we don’t show the proof in detail due to the space limitation.

Having obtained the auxiliary functions for cij, dij and bij, now we can show the

convergence of (8) using the updating rules (13), (16) and (19). According to (20), we

have

ij

ijt

ij

t

ijij
c

t

ij cccQc
ij)(

))1((
),(maxarg1

T

11

TT

T

12

eCeBCBDCD

eeABYD










 (28)

The above result is same to the updating rule (13). Since (21) is an auxiliary function,

Ocij is non-decreasing when cij is updated according to (28) or (13). This is equivalent

to say that O is non-decreasing when cij is updated according to (13) for cij is any

element of C.

Similarly, we have

36

ij

ijt

ij

t

ijij
b

t

ij

ij

ijt

ij

t

ijij
d

t

ij

bbbQb

dddQd

ij

ij

)(

])1[(
),(maxarg

)(

)(
),(maxarg

1

1

BCBC

AC

DCDC

YC

T

T

















 (29)

The above results are same to the updating rules (16) and (19). Since (27) are auxiliary

functions, Odij and Obij are non-decreasing when dij and bij are updated according to (16)

and (19). This is equivalent to say that O is non-decreasing when dij and bij are updated

according to (16) and (19), respectively. Since O is non-decreasing when C, D, and B

are updated according to (13), (16) and (19), O will finally converge to the local optima.

4.2.5. The stopping criterion

As C, D, and B are iteratively updated, the objective value converges to the local optima

asymptotically. Simultaneously, the variation of the three matrices, C, D, and B

becomes less evident as the elements in each matrix are approximate to the magnitudes

which lead the objective value to local optima. Thus, we may use the following stopping

criterion to terminate the optimization process and MISAGA may obtain matrices C, D,

and B that lead O to converge approximately.

 

F

ii 1
CC (30)

where Ci stands for the sub-graph membership matrix after the ith iteration of updating,

τ represents the predefined tolerance which the Frobenius norm of the difference of C

between two iterations should satisfy. When τ is set to be a relatively small value,

MISAGA may obtain a sub-graph membership matrix C which is very approximate to

the optimal.

37

4.2.6. Summary of the algorithm

Having obtained the updating rules for C, D, and B and the stopping criterion for the

optimization process, now we may describe the details of MISAGA. Based on the

aforementioned description, the proposed algorithm can be summarized as the pseudo

codes shown in Fig. 1. As it is seen in the figure, there are not many parameters that

need to be input. After the parameter of weight justification α, maximum number of

iteration max_iteration, tolerance for improvement τ, penalty factor λ and the number

of sub-graphs k are determined, MISAGA will iteratively update the strength matrices

C, D, and B till the variation of C between each two iterations is less than τ or the

objective function converges to the local maxima. After the optimization process is

terminated, MISAGA obtains the sub-graph membership matrix C, which contains the

Algorithm 1-MISAGA

Input: Y, A, α, max_iteration, τ, λ, k

Output: C, D, B

Randomly initialize C, D, B;

C=C./[(Ce1e1
T];

for count=1: max_iteration

 Fixing D and B

update C according to (13);

 Fixing C

update D according to (16);

 update B according to (19);

 if (|Ci - Ci-1|F<τ)

 compute objective value according to (8);

 break;

 end if

end for

return C, D, B;

Fig. 1. Pseudo codes of MISAGA

38

optimal or approximately optimal membership between each vertex and k sub-graphs.

Given C, MISAGA can identify the best sub-graph membership for each vertex in the

attributed graph.

4.3. Experiment and analysis

To evaluate the effectiveness of MISAGA, we performed a number of experiments

using both synthetic and real-world datasets. In this section, we describe the details of

the data sets that we used. We also explain how experiments and what criteria we used

to evaluate performance.

4.3.1. Experimental set-up and performance metrics

4.3.1.1. Baselines for comparison

Compared with other approaches for sub-graph detection, MISAGA has many desirable

features and it would be interesting to find out how much these features make MISAGA

better. For such a purpose, we have selected a number of popular algorithms for

performance benchmarking. They include Affinity Propagation clustering (AP),

Spectral clustering (SC), k-means clustering, Multi-Assignment Clustering (MAC),

CESNA, Relational topic model (RTM) and ECDA. One of the reasons why they are

selected is that they are relatively more popular algorithms and have all been used

effectively to discover sub-graphs in various network graphs. Also, they are

representatives of the three categories of topology-based, attribute-based and topology-

and-attribute based algorithms respectively.

For example, AP and SC are sub-graph identification algorithms that mainly consider

topological structures of a graph when performing graph clustering. These two

algorithms can discover interesting sub-graphs with sizes that can be very different from

those methods that perform graph clustering based on modularity optimization, e.g.,

CNM and BGLL. For our experiments, we used the SC that makes use of the

39

normalized cut in graph clustering. For sub-graph identification algorithm that are

based on attribute values, k-means clustering and MAC are used as to cluster vertices

based on the similarity of the attribute values associated with them.

For graph clustering algorithms that consider both graph topologies and attribute values,

we used CESNA, RTM and ECDA. As most effective algorithms taking into

consideration both graph topology and attribute values are model-based, we selected

CESNA and RTM, which utilize generative models and topic models, respectively.

While, ECDA performs its tasks using an evolutionary graph clustering algorithm. The

three approaches are therefore very different even though they all take both topologies

and attribute values into consideration.

For performance benchmarking, the algorithms above were not re-implemented. The

source code or executables made available by the authors were used in our experiments.

All experiments were conducted under the same environment which included a

workstation with 4-core 3.4GHz CPU and 16GB RAM.

4.3.1.2. Experimental set-up

Other than ensuring that the algorithms we used for benchmarking purposes are tested

with the original code written by the authors in the same computing environment, the

parameters that are required for these algorithms to run are set in such a way that either

the default settings as recommended by the authors are used or that they are tuned by

trials to find the best settings.

Specifically, the AP, CESNA and ECDA algorithms do not require input parameters to

be set by the users. For these algorithms, the default settings as recommended and

implemented by the authors were used. For algorithms, including SC, k-means, MAC,

and RTM, which require parameters to be manually input into the system, we tried as

40

many different settings as we can, to obtain the best results for performance

benchmarking. For example, SC requires that the parameter of sigma and the number

of clusters (k) be set by the users before it can run. To find a better set of parameters,

we tried SC using different sigma and k settings from 1 to 10 and from 10 to 200

respectively. The settings that give the best performance of SC are recorded and

presented in our performance analysis report below.

For MISAGA, we tried different settings of the parameter, λ, that is required for the

algorithm to work. λ was set in our experiments to 10-1, 100, 10 and 102 and we found

that MISAGA performed well when λ was set to 10-1 or 100. Thus, all the experimental

results of MISAGA shown in this manuscript were obtained when λ was set to these

values. As for the other parameters, we set α to 0.5, maximum iterations to 300, and τ

to 1e-9. As for k, it is set to be the same as the other algorithms, k-means, MAC and

RTM. All the algorithms, including MISAGA, were executed 10 times in each set of

data to obtain average results.

4.3.1.3. Data sets and descriptions

For performance evaluations, we used both synthetic and real datasets with known

ground truth. We used synthetic data to test the effectiveness and efficiency of different

algorithms and we used the real data sets to test the robustness of the different

algorithms. The data sets that we used are described below.

Ego-facebook. The Ego-facebook [74] data set is social network data that is constructed

based on a number of sub-networks extracted from facebook.com. As such, interesting

ground truth sub-graphs that represent social circles are known and can be used for

evaluation. In this dataset, there are 4039 vertices each of which represents a facebook

user. These vertices are connected by 88234 edges that represent the friendship between

users and for each vertex, a total of 1283 attribute values, which represent the profile

41

of the user are associated with the vertex that represents the user.

Caltech. This is a set of social network data which is constructed based on the

friendship relationship extracted from the California Institute of Technology. The social

network users in Caltech can be segmented into different classes based on the house

affiliation according to the college’s dorm system [98]. There are 769 vertices

representing 769 social network users, and 16656 edges representing the friendship

between users. A total of 53 attribute values that represent the user profiles is associated

with the vertex that represents the user.

Rice. This is a set of online social network data which is constructed based on the

friendship relationship among students studying at the Rice University. There are

altogether 4087 vertices representing students and 184828 edges representing the

friendship between students represented as vertices. The student profile, which is made

up of 74 attributes, is considered the set of attribute values that is associated with each

vertex. The ground-truth communities of this data set have been identified based on

dormitory residence [98].

Villa. This is another set of online social network data which was constructed based on

the friendship relationship obtained from the University of Villanova. There are

altogether 7772 vertices representing different users and 314989 edges representing the

friendship between users. For each vertex, a set of 140 attribute values that represent

the profile of the user is made associated with the vertex. The ground truth communities

for this data set have been identified.

Krogan [56]. This is a set of protein-protein interaction (PPI) network data related to

Saccharomyces cerevisiae. It is constructed based on known interactions between

proteins. In Krogan, there are 2674 vertices representing proteins, 7075 edges

42

representing interactions between them and a set of 3064 attribute values representing

GO terms [5], associated with each protein, that represents the properties and functions

of each protein. Interesting sub-graphs in this set of data represent known protein

complexes that can be found in a CYC2008 database [83]. In other words, the ground-

truth sub-graphs of this set of PPI network is known.

DIP [105]. This is another set of PPI network data which are constructed based on the

interactions between proteins. In this dataset, there are 4579 vertices representing

proteins, 20845 edges representing interactions between proteins and 4237 attribute

values associated with each protein representing biological properties and functions.

Like the Krogan dataset, the ground-truth sub-graphs for this DIP data set are also

known.

Syn1k. This is a set of synthetic data which is generated based on the rule that the

probability of intra-sub-graph edges is higher than that of inter-sub-graph edges and

that vertices in the same interesting sub-graph are more related to each other than those

that are not. For this data set, we used 1000 vertices that are divided into 4 ground truth

communities, 9900 edges, and 50 attribute values are made to associate with each vertex.

The above datasets are used to test the effectiveness of MISAGA and other algorithms.

In addition, to test the scalability of MISAGA, we have generated several additional

synthetic datasets ranging in size from 5,000 to 100,000 for our experiments.

4.3.1.4. Performance metrics

For the purpose of performance evaluation, we used three evaluation measures,

including the Normalized Mutual Information (NMI), the Average Accuracy (Acc) [85]

and the Mean Jaccard Similarity (JS) [110] measures. All of them are widely used for

evaluating the validity of detected sub-graphs or graph clusters.

43

The NMI measures the overall accuracy of the matches between sub-graphs that are

detected and those that are considered “ground truth”. It is defined as

))Pr(log)Pr(),Pr(log)Pr(max(

)Pr()Pr(

),Pr(
log),Pr(

**

,

*

*

*

*

 






i j

jjii

CC ji

ji

ji

CCCC

CC

CC
CC

NMI (31)

where Pr(Ci, Cj
*) denotes the probability that vertices are in both the detected sub-graph

i and the ground truth sub-graph j, and Pr(Ci) denotes the probability that a vertex is

found to exist in detected sub-graph, i. The NMI considers both the size of each

discovered sub-graphs and the ground-truth sub-graphs by computing a fraction ratio

between the sub-graphs that are identified and those that are available in the ground-

truth database. If the NMI measure is high, it means that the sub-graphs detected match

well with the ground-truth sub-graphs.

Contrary to the NMI, the Acc measure evaluates individually detected sub-graphs. It is

defined as

  
c

i

i
CCf

C

C
Acc , (32)

where |Ci| means the size of a detected sub-graph, and f(.) stands for a particular

mapping function between a detected sub-graph i and the ground truth. For our purpose,

we define f(.) to be the maximum overlap between detected sub-graph i and a ground-

truth sub-graph. As a result, Acc evaluates the best matching of each detected sub-graph.

A higher value of Acc therefore means that each detected sub-graph has a better match

with the ground truth. The higher the Acc is, the more effective the algorithm can be

considered to be. Given its definition, Acc emphasizes more on the discovered sub-

44

graphs when evaluating.

The Mean Jaccard Similarity (JS) measures the average degree of agreement between

the detected and ground-truth sub-graphs that share the highest Jaccard Similarity with

them. It is defined as

















j

i

i

j

C

CC

ji

C

CC

ji

C

CCS

C

CCS

JS
2

),(max

2

),(max

 (33)

where (i) S(Ci
*, Cj) denotes the Jarccard Similarity between the ground-truth, Ci

*, and

detected sub-graph, Cj, (ii) |C| and |C*| denote the number of discovered sub-graphs,

and that of ground-truth clusters, respectively. JS is a harmonic mean of the bi-

directional Jaccard Similarity measure computed between the discovered and the

ground truth sub-graphs. It first computes the arithmetic mean of the sum of the best

Jaccard Similarity between each sub-graph and one particular sub-graph in the ground-

truth database. Then, it does the same between each ground-truth sub-graph and one

discovered sub-graph. JS is then determined by aggregating the above two arithmetic

means using the weights of 0.5 for each. JS can evaluate the quality of discovered sub-

graphs by considering the proportion of overlap between them and the ground truth sub-

graphs without being affected by the sizes of sub-graphs identified and those that are

known to be ground-truth.

Even though they all can be considered as measures of the differences between detected

and ground-truth sub-graphs, the NMI, Acc and JS, do not measure exactly the same

aspects. In fact, what they measure can be considered as complementary. It is for this

reason that all three measures are adopted as part of our evaluation criteria.

45

Besides directly comparing the performance obtained by MISAGA and other

algorithms in our experiments, we also carried out some statistical tests to determine

whether the performance obtained by MISAGA is significantly better than that obtained

by other baselines. For this purpose, we used the single-sided z-test to determine

whether MISAGA is significantly better than other baselines at the 95% confidence

level.

4.3.2. Experimental results using synthetics data

4.3.2.1. Performance on identifying sub-graphs

For performance evaluation, we used a set of synthetic graph data containing 1000

vertices, 9900 edges and 50 attributes, to test the effectiveness of all different algorithms

in discovering interesting sub-graphs. The community structure of the synthetic dataset

is shown in Fig. 2. As mentioned above, the synthetic data are generated by assuming

that the probability of vertices within the same sub-graph to be connected with other

vertices to be higher than that of the probability between sub-graphs. For the purpose

of our experiment, the data set Syn1k was generated by setting the probability of intra-

Fig. 2. Four ground truth sub-graphs of Syn1k. Vertices of the four

sub-graphs are painted with different colors.

46

sub-graph connections to be 0.05 and the probability of inter-sub-graph connections to

be 0.01.

The performance of MISAGA and other algorithms on the synthetic data set Syn1k with

respect to NMI, Acc and JS is given in Table 1. As the table shows, MISAGA performs

relatively better than other algorithms. When NMI measure is considered, the NMI

obtained by MISAGA is better than RTM, CESNA, MAC, k-means, ECDA, SC and AP

by 25%, 26%, 34%, 44%, 266%, 329% and 547%, respectively. When Acc is considered,

MISAGA outperforms MAC, CESNA, k-means, RTM, AP, SC and ECDA by 8%, 18%,

20%, 25%, 34%, 68%, and 114%, respectively. When comparing performance using JS,

MISAGA is better than MAC, CESNA, RTM, ECDA, SC, k-means and AP by 16%,

33%, 39%, 102%, 203%, 378% and 3464%, respectively. With the z-test, MISAGA is

found to be better than any other baselines at a 95% confidence level when their

discovered sub-graphs are evaluated by NMI. When evaluated by Acc and JS, the

performance obtained by MISAGA is significantly better than all the baselines, except

with MAC. These experimental results show that MISAGA can be very effective with

the discovering of interesting sub-graphs.

TABLE 1 NMI, ACC AND JS IN SYN1K

 Syn1k

Approach NMI Acc JS

AP 0.152* 0.747* 0.028*

SC 0.232* 0.528* 0.329*

k-means 0.691* 0.835* 0.209*

MAC 0.745* 0.926 0.86

CESNA 0.792* 0.845* 0.748*

RTM 0.797* 0.797* 0.717*

ECDA 0.272* 0.466* 0.493*

MISAGA 0.995 0.999 0.998

The symbol * means the experimental performance obtained by MISAGA is

significantly better than that obtained by a baseline algorithm at the 95%

confidence level. The statistical test used in the experiment is single-sided z-

test.

47

4.3.2.2. Scalability test

In order to find out how MISAGA can scale up when data set size increases, a series of

synthetic data of sizes ranging from 5000 to 100,000 were generated using the same

probabilities of 0.05 and 0.01 for intra- and inter-sub-graph vertex connections as is

with Syn1k. Given these generated data, the scalability of MISAGA was studied in a

number of experiments involving different data sets. The results obtained were

compared with those obtained with CESNA, RTM, and SC. As MISAGA and these

algorithms are iterative in nature, the comparison is made based on the average

execution time of each iteration. The results are shown in Fig. 3.

The results show that MISAGA scales up well when compared with CESNA, RTM,

and SC. Even with the data sets containing as many as 100,000 vertices, MISAGA was

able to complete each iteration in the optimization process in around 1 second and this

is slightly faster than CESNA. However, when comparing the number of iterations that

is required for the two algorithms to complete the sub-graph discovery tasks, it should

be noted that CESNA needed at least 300 iterations whereas MISAGA converges much

below 300. Given this to be the case, MISAGA is more computationally efficient.

When compared with RTM and SC, the computation time used by them was much more

Fig. 3. Scalability comparison between MISAGA and other algorithms

48

demanding than MISAGA. When the data set size was increased to 10,000, RTM and

SC was already not being able to cope. The computation time required was intolerable.

4.3.2.3. Sensitivity test of the parameter

As described in Section 3.2, for MISAGA to performs its tasks, it requires the setting

of a parameter α. The parameter is used to adjust the weight between edge density and

attribute association for interesting sub-graph discovery. How the parameter may affect

the performance of MISAGA can be investigated in several sensitivity tests using the

data set Syn1k.

In our experiment, α was set to different values from 0 to 1, with an increment of 0.2,

and MISAGA was used under these different settings to try to discover interesting sub-

graphs. The performance was measured with NMI, Acc and JS and the results are shown

in Fig. 4. It is seen that when α was set to 0, which means that only the attribute values

are considered in the sub-graph detection process, and when it is set to 1, which means

that only the edge structures are considered, the performance of MISAGA is affected

negatively. When setting α to the value between 0.4 and 0.6, MISAGA obtains very

good results with most data sets. Given these results, we set α to be 0.5 in all our

experiments so that both attribute values and edge structures are considered equally

Fig. 4. Sensitivity test of MISAGA using different α

49

important by MISAGA.

In addition, to investigate how the settings of k, the total number of sub-graphs to be

identified, may affect the performance of MISAGA, we used it to discover interesting

sub-graphs in Syn1k by varying k from 2 to 20, with an increment of 2. The interesting

sub-graphs identified were then evaluated by NMI, Acc and JS and the results are shown

in Fig. 5. As shown in the figure, MISAGA performs the best according to NMI, Acc,

and JS when k is configured appropriately (the best k for Syn1k is 4). Compared with

the results of Acc, the NMI and JS as obtained by MISAGA seems to be more sensitive

to the settings of k. This is because NMI and JS are two evaluation metrics which

consider the extent of overall matching between discovered sub-graphs and the ground

truth. An inappropriate setting of k might degrade the performance of MISAGA when

its performance is measured by NMI and JS. As Acc mainly considers the best matching

between a discovered sub-graph and a ground truth subgraph, MISAGA can obtain

robust results using different settings of k.

With the results measured using NMI, Acc and JS, we can conclude that we can use

MISAGA to discover interesting sub-graphs for real world applications using different

values of k. However, we recommend that k can be either manually set between 2 and

nV/2 or done automatically by using the techniques described in [16], [72], and [99].

Fig. 5. Sensitivity test of MISAGA using different k

50

4.3.3. Experimental results in real applications

4.3.3.1. Social community detection

The social communities in a social network can be considered interesting sub-graphs in

a social network graph. The identification of such social communities is important to

social network analysis. For performance evaluation of MISAGA, we used four sets of

real social network data, including Ego-facebook, Caltech, Rice and Villa as testing data

sets. All these data sets have known ground-truth communities that have been verified

in the previous work and for this reason, performance of the different algorithms can

be more objectively compared.

The experimental results of NMI, Acc and JS obtained with these data sets are

summarized in Table 2. As the table shows, MISAGA performs more robustly than

other algorithms. For the data set Caltech, MISAGA outperforms SC, AP, and RTM by

49%, 62% and 64% when they are evaluated by NMI. When Acc is considered,

MISAGA is better than AP, CESNA, and SC by 6%, 27%, and 30%, respectively. When

evaluated by JS, MISAGA surpasses ECDA, CESNA, and SC by 6%, 27%, and 54%,

respectively.

For the data set Ego-facebook, MISAGA surpasses, RTM by 14%, AP by 16% and SC

by 19% in NMI. When Acc is considered, MISAGA outperforms SC by 30%, AP by

TABLE 2 EXPERIMENTAL RESULTS IN SOCIAL NETWORK DATA

Data set Caltech Ego-facebook Rice Villa

Approach NMI Acc JS NMI Acc JS NMI Acc JS NMI Acc JS

AP 0.279* 0.458 0.066* 0.58* 0.416* 0.049* 0.139* 0.257* 0.019* 0.178* 0.441* 0.057*

SC 0.305* 0.375* 0.167* 0.569* 0.447* 0.107* 0.242* 0.455 0.066* 0.191* 0.492* 0.032*

k-means 0.176* 0.268* 0.131* 0.385* 0.276* 0.077* 0.055* 0.174* 0.044* 0.2* 0.381* 0.042*

MAC 0.106* 0.209* 0.081* 0.37* 0.257* 0.086* 0.024* 0.138* 0.056* 0.109* 0.325* 0.045*

CESNA 0.221* 0.384* 0.203 0.399* 0.384* 0.196 0.114* 0.222* 0.109* 0.336* 0.633 0.285

RTM 0.277* 0.23* 0.135* 0.592* 0.39* 0.161* 0.114* 0.195* 0.065* 0.375* 0.417* 0.102*

ECDA 0.156* 0.202* 0.242 0.353* 0.234* 0.105* 0.056* 0.147* 0.053* 0.245* 0.389* 0.169*

MISAGA 0.453 0.487 0.257 0.675 0.582 0.203 0.368 0.429 0.222 0.495 0.69 0.203

51

40%, and RTM by 49%, respectively. When evaluated by JS, MISAGA outperforms

CESNA, RTM and SC by 4%, 26% and 90%, respectively.

For the data set Rice, MISAGA outperforms SC, AP and CESNA by 52%, 165% and

223% when they are evaluated by NMI. MISAGA also ranks the second best in Acc.

When evaluated by JS, MISAGA outperforms CESNA, SC and RTM by 104%, 236%

and 242% respectively.

For the data set Villa, MISAGA is better than RTM, CESNA and ECDA by 32%, 47%

and 102% when NMI is considered. MISAGA ranks the second best evaluated by JS,

following CESNA. When Acc measure is considered, MISAGA is better than CESNA,

SC, and AP by 9%, 40% and 56% respectively.

In evaluating the performance of the different algorithms using the z-test, we can see

that MISAGA outperforms most algorithms in most datasets. For examples, in the case

of the NMI in all the datasets, MISAGA is statistically significantly better. When

evaluated by Acc, MISAGA is also significantly better than most baselines in all the

datasets, except AP in Caltech, SC in Rice, and CESNA in Villa. When evaluated by JS,

MISAGA is statistically significantly better than any other baselines, except CESNA in

Caltech, Ego-facebook, and Villa. Given such results obtained by the z-test, it is

concluded that MISAGA is significantly more robust when used to discover meaningful

sub-graphs in social network graphs. The experimental results also indicate that the

interesting sub-graphs detected by MISAGA are consistently better matched with the

ground-truth than the other algorithms.

4.3.3.2. Structural modules detection in PPI networks

Structural modules in biological networks, such as protein complexes in PPI network

graphs can be considered interesting sub-graphs of the larger biological network graphs.

52

To further test the effectiveness of MISAGA, we used two sets of PPI network data in

our experiments. They included the Krogan and DIP. These data sets were chosen as

the ground-truth sub-graphs, which correspond to known protein complexes, could be

found. Performance data based on NMI, Acc and JS were obtained from the experiments.

The results obtained with these two data sets are shown in Table 3.

As shown in the table, MISAGA obtains better performance than most of the other

algorithms regarding of what performance measure are used. For the Krogan set, for

example, MISAGA outperforms ECDA, k-means and AP by 6%, 11% and 15%,

respectively, when evaluated by NMI. It surpasses AP, ECDA and SC by 6%, 39% and

53% when evaluated by Acc. When evaluated by JS, MISAGA outperforms AP, ECDA

and SC by 45%, 59% and 89%, respectively.

For data set of DIP, MISAGA outperforms ECDA, MAC, and k-means by 4%, 5% and

15% when evaluated by NMI. When the detected sub-graphs are evaluated by Acc,

MISAGA ranks the second best among all the algorithms. In the case that it is evaluated

by JS, MISAGA performs better than other algorithms. MISAGA outperforms AP,

ECDA, k-means by 6%, 57% and 70%, respectively. These results show that MISAGA

is also very effective in identifying meaningful functional modules in protein-protein

TABLE 3 EXPERIMENTAL RESULTS IN PPI NETWORK DATA

Data Set Krogan DIP

Approach NMI Acc JS NMI Acc JS

AP 0.385* 0.187 0.168* 0.263* 0.117 0.138

SC 0.347* 0.129* 0.129* 0.174* 0.038* 0.038*

k-means 0.398 0.128* 0.12* 0.274 0.078* 0.086*

MAC 0.363* 0.114* 0.103* 0.3 0.062* 0.077*

CESNA 0.203* 0.025* 0.018* 0.122* 0.015* 0.011*

RTM 0.225* 0.054* 0.042* 0.157* 0.032* 0.029*

ECDA 0.416 0.142* 0.153* 0.303 0.058* 0.093*

MISAGA 0.441 0.198 0.244 0.316 0.113 0.146

53

interaction networks.

According to the z-test, the performance of MISAGA is also statistically significantly

better than most baselines in the case of the biological graphs. NMI, Acc, and JS

obtained by MISAGA are significantly better than those obtained by most baselines,

except only five cases. Given the relatively robust performance of MISAGA with social

network and PPI network data, we demonstrate that MISAGA can be a useful algorithm

for mining interesting sub-graphs as clusters.

4.3.4. Convergence of the objective value

To find out if MISAGA can converge in a finite number of iterations, variations of the

values of the objective functions were considered in different experiments. For

experimentation, we randomly selected one execution of MISAGA when each set of

real data is run and the variations of the values of the objective function are recorded as

shown in Fig. 6. From it, it can be seen that the objective function of MISAGA can

achieve approximate convergence within 200 iterations. As the improvement of each

iteration become less evident, we may take the objective values after 200 iterations as

the approximately convergent ones.

Fig. 6. Convergence of objective value in different real-world data

54

4.3.5. Case study of the detected sub-graphs

Besides evaluating the detected sub-graphs with the use of different objective measures

such as NMI, Acc, and JS, we also investigated into the details of some of the interesting

sub-graphs detected by MISAGA. In particular, we have looked into the details from

the aspects of both edge structure and attribute values associated with these sub-graphs.

For example, in the dataset, Ego-facebook, one sub-graph identified by MISAGA

completely matches with the community that is in the ground truth database. The

structure of this community is shown in Fig. 7. Simultaneously, CESNA also identified

this community, but the structure was not entirely identical (see the sub-graph inside

the dashed circle in Fig. 7). Having checked each attribute value that is associated with

each vertex in this community, we found that, even though two vertices in the sub-graph

are connected, their respective attribute values are not exactly the same. Among the

vertices in this sub-graph, only 15 out of over 1,200 attribute values that are associated

Fig. 7. The structure of a ground truth cluster in the data set of Ego-facebook.

MISAGA identifies all the vertices successfully. The structure identified by CESNA

is in the dashed circle.

55

with them. And these attribute values are not always the same. If a similarity measure

is computed based on the attribute values, these vertices would probably not be

considered to be in the same sub-graphs. Using MISAGA, however, we found 20 pairs

of attribute values that are significantly associated with each other but not the same.

For the purpose of discussion, we listed 8 pairs of them in Table 4.

Although the real user profiles are anonymized, we can infer that this social community

might be related to a community of individuals that were friends of a school or

university. As shown in the table, significant associations exist between different some

attribute-value pairs. For example, “School 64” and “Hometown 935”, “School 1040”

and “Hometown 935” between the “School” and “Hometown” attributes are found to

be significantly associated. Such associations are expected as students from the same

school may be friends and communicate more with each other if they are also from

same district location. As another example, “School 1040” and “Year 64” being

significantly associated may indicate that users in this community tend to communicate

with others who entered the school in the same year. In addition, MISAGA has also

discovered that there are significant interesting associations between users coming from

the same school.

TABLE 4 ASSOCIATED ATTRIBUTE VALUES IN THE DETECTED SOCIAL COMMUNITY

education;school;id;anonymized feature# 1040 education;school;id;anonymized feature 1040

education;school;id;anonymized feature 52 education;school;id;anonymized feature 52

education;school;id;anonymized feature 52 education;school;id;anonymized feature 52

education;school;id;anonymized feature 1040 education;year;id;anonymized feature 64

education;school;id;anonymized feature 1040 hometown;id;anonymized feature 935

education;year;id;anonymized feature 64 hometown;id;anonymized feature 935

education;school;id;anonymized feature 52 location;id;anonymized feature 128

location;id;anonymized feature 128 location;id;anonymized feature 128

#: The user profile data are processed as anonymized attributes to protect the privacy. In the table,

each row contains a pair of associated attribute values. Associated attribute values might be different

from each other.

56

Instead of requiring that vertices in the same sub-graph share mostly the same attribute

values, MISAGA is able to discover attribute values that are not the same but are

associated with each other statistically significantly. The determination of sub-graph

membership based on edge structure and such attribute association is the reason why

MISAGA can better identify social communities.

4.4. Summary

In this section, a novel algorithm, that is called MISAGA, for mining interesting sub-

graphs in attributed graphs is presented. MISAGA performs its tasks by considering

both the edge structure and the attribute values that are associated with each vertex. By

computing a degree of association for vertices that are statistically significantly

associated with each other, MISAGA formulates and solves the problem of discovering

interesting sub-graphs in an attributed graph as a constrained optimization problem.

MISAGA has been tested with different sets of synthetic and real data. It is found

MISAGA is effective in finding optimal or near-optimal solutions. For future work,

how MISAGA can be enhanced to allow different vertices to belong to different sub-

graph with different degrees of freedom will be interesting. In addition, it can also be

enhanced to deal with attributed graphs with structures that change with time. The

discovering of the dynamics of the changes will allow prediction of future structures to

be made.

57

5. FSPGA-MINING CLUSTERS IN THE ATTRIBUTED GRAPH USING FUZZY

OPTIMIZATION

5.1. Background

Sub-graphs in which vertices are cohesively inter-related are clusters or communities

in the graph. These clusters are structural patterns hidden in the graph data. In this

section, an algorithm for discovering fuzzy structural patterns, FSPGA, is proposed.

FSPGA performs the task of clusters discovery as a fuzzy optimization problem which

takes into consideration both graph topology and attribute values. FSPGA has been

tested with both synthetic and real-world graph data sets and is found to be efficient

and effective at detecting clusters in attributed graphs. FSPGA is a promising fuzzy

algorithm for structural pattern detection in attributed graphs.

Recently, there have been several graph clustering algorithms proposed to detect

clusters in graphs utilizing both edge structure and attribute information. Several

examples have been listed in Section 2.

In addition, fuzzy pattern analysis, such as fuzzy clustering has been drawn much

attention because the feature of “soft membership” that is possessed by the algorithms

based on fuzzy techniques may lead one to detect more interesting sub-structures in

different types of data. Besides of the classical fuzzy c-means algorithm [9], there are

several algorithms based on the fuzzy c-means model, such as relational fuzzy c-means

[43], fuzzy c-regression models [49], possibilistic fuzzy c-means models [84], and

interval-based fuzzy model [92], which have been proposed for data clustering. And

there are several fuzzy clustering algorithms proposed to solve specific clustering

problems, such as motion detection [79] and linguistic analysis in web documents [22].

Among those proposed algorithms, FCAN [44] is the one that utilizes fuzzy techniques

to detect clusters in complex network data. FCAN may detect clusters by segmenting a

data matrix in which each element represents the strength of the relationship between

58

pairwise data points. The entries of the data matrix are obtained by adding the binary

value and the degree of similarity representing the connection and attribute similarity

between pairwise vertices, respectively. Though effective to some extent, FCAN may

not truly identify the strengths of topology and attributes values that may determine the

cluster arrangement within the clustering process.

Given the prevalent works of clustering in graph data and fuzzy clustering algorithms,

we have the following findings that may motivate us to develop a more suitable

algorithm. First, most of the graph clustering algorithms detect clusters based on

topological properties only, or the attribute information is not fully utilized, just like the

work presented in [44]. Second, most of the approaches cannot detect overlapping

clusters, which might be more desirable in some graph data, e.g., communities in social

networks are sometimes overlapping. Last but the most, currently, there are no effective

fuzzy algorithms for clustering in attributed graphs.

To overcome the mentioned challenges, we propose FSPGA, an algorithm for

discovering fuzzy structural patterns in the forms of clusters in attributed graphs.

FSPGA performs its tasks by formulating the identification of clusters in attributed

graphs as a constrained optimization problem that takes into the consideration edge

structure and attribute. FSPGA may identify the optimal membership arrangement that

is determined by both edge structure and attribute information between vertices and

clusters. By adopting the fuzzy sets theory, FSPGA may detect overlapping clusters in

the attributed graph.

For performance evaluation, FSPGA is tested with both synthetic and real data sets

including social and biological network graphs. The experimental results are verified

against known ground-truth data. It is found that FSPGA obtains a better performance

in both efficiency and effectiveness, compared with state-of-the-art graph clustering

59

algorithms and fuzzy clustering algorithms. Given the performance, FCDAG is a very

promising fuzzy based algorithm for overlapping clustering in attributed graph data.

5.2. FSPGA in details

5.2.1. Mathematical preliminaries

Given an attributed graph containing nV vertices and nE edges, in which each vertex is

associated with a set of attribute values, FSPGA models the attributed graph as G = (V,

E, Λ), which has been shown in Section 3.

Given the vertices and edges in G, we use an adjacency matrix M of dimensions, nV by

nV, to represent the connections between vertices in G so that an entry, mij, in M has the

value, 1, if vi and vj are connected and, 0, if they are not.

Besides the topological information, we also use another nV-by-nV matrix A, to

represent the pairwise relationship in terms of attributes between vertices in G. Hence,

each entry in A, say aij, can be obtained by any measure that may evaluate how similar

or related the vertices vi and vj are, given the attribute values associated with them. Here

we assume that aij should be nonnegative and a higher magnitude of it means vi and vj

are more related, given the attribute values associated with the two vertices.

Given adjacency matrix M and pairwise relationship matrix A, we use the following

augmented matrix to represent the mutual information between any pair of vertices in

G













A0

0M
Y

)1(


 (34)

where the parameter α is used to adjust the bias between edge structure and attribute

similarity. The data matrix Y has the dimension of 2nV by 2nV, the mutual information

60

between pairwise vertices are located in the diagonal blocks of Y, while entries in other

blocks are all zero-valued. Utilizing Y, FSPGA may perform the task of clusters

detection in G.

5.2.2. The objective function based clustering algorithm

FSPGA performs the task of community detection using Y. To find optimal cluster

membership for the vertices in G that takes into the consideration edge structure and

attribute, FSPGA is considering to use an objective function to evaluate the overall

quality of detected clusters.

To formulate the objective that is adopted by FSPGA, we firstly introduce an auxiliary

matrix having the dimension of 2nV-by-k, X, where k is the number of the clusters to

seek. FSPGA uses X to represent strength in terms of structure and attributes that a

vertex belongs to a cluster. Specifically, the first nV-by-k entries are used for

representing the structural strength that a vertex belongs to a cluster, and the last nV-by-

k entries are used for representing the strength in terms of attributes that a vertex

belongs to a cluster. Let xij be an element in X. The value of xij indicates either the

structural strength or that in terms of attributes that vertex i belongs to cluster j,

according to the subscripts of the element. Given the properties of X, it can be used to

represent the overall strength that each vertex belongs to a cluster as X uses different

blocks to consider the strength regarding structure and attribute, respectively. The

aggregation of such strength can be obtained if an appropriate method can be used.

Then, we introduce the cluster membership matrix C, which has the dimension of nV

by k. Each element of C, say cij, indicates the strength of membership that vertex i

belongs to cluster j. Apparently, a higher value of cij means vertex i belongs to cluster j

more possibly.

Given Y, auxiliary matrix X, and cluster membership matrix C, we propose FSPGA to

61

formulate the cluster detection in the attributed graph as the following objective

function to be optimized

 
21

222

,0,0

,

2

1
)(

maximize

eCeCX

CCS

XCXCYXS

TTT

TT









 

tosubject

trO
FFF (35)

where (i) |C|2F, and |X|2F are the matrix Frobenius norms of C and X, which are used to

smooth the variables in these matrices, (ii) |XCT|2F is the matrix Frobenius norm of the

product of X and the transpose of C. (iii), e1 and e2 are k-by-1 and nV-by-1 vectors, in

which all elements are 1’s. With the use of the proposed objective function, FSPGA can

have the advantage that it can discover graph clusters by taking into consideration both

edge structure and attribute information between vertices in the graph.

By introducing the auxiliary matrix X, the cluster membership that is identified by

FSPGA takes into consideration both edge structure and attribute information between

pairwise vertices in G. Let us take the first term in (35) to explain how FSPGA

determines the cluster membership. Having noted that tr(STYX) aggregate the strength

of structure and attribute of all clusters, tr(STYX) increases much only when C and X

allocate those vertices with more intra-edges and more similar attributes into the same

cluster. Hence, variations of X may lead the corresponding cluster membership to

variate accordingly. From the above description, X considers the strength of both

structure and attribute simultaneously, (35) can be optimized when appropriate X and

C is found. In other words, the best cluster arrangement that is in C is identified when

(35) achieves convergence. Under such an arrangement of clusters, vertices with more

intra-edges and inter-related attribute values lean to the same cluster more. Since the

existence of X, those vertices with either relatively fewer intra-edges or lower inter-

62

relation of attribute values may be assigned with lower magnitudes of strength. Only

when elements in C and X are assigned with appropriate values, the objective function

O can be maximized. Then, C forms the optimal cluster arrangement.

5.2.3. The iterative updating algorithm

The proposed objective function is a constrained quadratic function. Based on KKT

condition for constrained optimization problems, we may find the corresponding rules

to iteratively update the matrices C, and X to search the local optima.

5.2.3.1. Updating rule for C

Let γij and λi be the Lagrange multipliers for the constraints of cij ≥ 0 and Σjcij = 1. The

Lagrange function L for C is

 21)(),(eCeλCγγC
T  TtrOL (36)

where γ = [γij] and λ = [λi] are Lagrange multipliers for the constraints of the non-

negativity of C and the sum-to-1 of variables in each row of C. Based on the KKT

condition for constrained optimization, we have

21

1

0

0)1(

eCe

γ

0Cγ

λeγXCXCAXMX
C

T

21














TL


 (37)

where (i) “ₒ” means the Hadamard product of two matrices with the same dimension,

(ii) X1 and X2 are two block matrices obtained by dividing X between row nV and nV+1.

Based on (37), we have the following element wise equation system

63

 







j

ij

ij

ijij

iijijij

c

c

1

0

0

0)(])1([









XCXCAXMX
T

21

 (38)

Given the first equation in (38), we have

ijiijij  )(])1([XCXCAXMX
T

21
 (39)

Using (39) to replace βij in the equation of Hadamard product, we have the iterative

updating rule for C

ij

iij

ijij cc
)(

))1((

CXCX

AXMX
T

21







 (40)

In the above equation, one more unknown, λi, needs to be determined for the updating

of the variables in C. Given the constraint that the sum of each row of variables is one

(see Equation (38)), we have

 




j ij

iij

ijc 1
)(

))1((

CXCX

AXMX
T

21 
 (41)

Given Equation (41), λi can, therefore, be solved as




























j ij

ij

j ij

ij

ij

i c

c

)(

1
)(

))1((

CXCX

CXCX

AXMX

T

T

21 

 (42)

Using the value of λi to replace the corresponding variable in (40), the iterative updating

64

rule, which is under the fuzzy clustering framework for C, can be obtained. With such

an updating rule, the sum of each row in C is constrained to be 1 within the optimization

procedure. As a result, a vertex in G may belong to more than one cluster due to the

considerations of fuzzy cluster boundaries.

5.2.3.2. Updating rule for X

Let γij be the Lagrange multipliers for the constraints xij≥0, hence the Lagrange function

L for X is

)(),(XγγX
TtrOL  (43)

where γ = [γij] is the matrix of Lagrange multipliers for the non-negativity of X. Based

on the KKT condition, we have

 

0

0







ij

ijij

ijij

x









XCXCYS
T

 (44)

Given the equation system (44), the element-wise updating rule for X can be derived

ij

ij

ijij xx
)(

)(

XCXC

YS

T 
 (45)

5.2.4. Summary of the algorithm

Given the description from 5.2.1 to 5.2.3, FSPGA can be summarized as the pseudo

codes shown in Fig. 8. Once the number of clusters k, the adjust parameter α, maximum

number of iteration and the minimum tolerance, τ are determined, FSPGA will

automatically search for the optimal matrix of cluster membership, C in a finite number

of iterations. After FSPGA is stopped according to the terminal condition, the obtained

C can be seen as the approximately optimal cluster arrangement.

65

5.2.5. Determining the cluster affiliation

Having obtained the cluster membership for each vertex, FSPGA needs to determine

the cluster affiliation for the vertices. Here, FSPGA may determine whether vertex vi

belongs to cluster j according to the following inequality

k

k
cij

11 



 (46)

where k is the number of clusters and β is a positive real number that is used to

determine the extent of overlapping between identified clusters in the attributed graph.

Here, β is a global parameter which is used to determine if each vertex, say vi, belongs

to cluster j after the optimization process. In addition, it should be noted that β is used

only for the case of vertices whose degrees of cluster membership are not the highest

for that vertex and FSPGA can discover disjoint clusters in an attributed graph when β

Algorithm 2-FSPGA

Input: Y, α, max_iteration, τ, k

Output: C, X

Randomly initialize C, X;

C=C./(Ce1e1
T);

for count=1: max_iteration

 Fixing X

update λ and C using (42) and (40);

 Fixing C

Update X using (45);

 if (|Ci - Ci-1|F<τ)

 compute objective value using (35);

 break;

 end if

end for

return C, X;

Fig. 8. Pseudo codes of FSPGA

66

is set to zero. Given this setting, it should be noted that it becomes more possible for

more vertices to be assigned only to those clusters with the highest cluster membership

and the extent of overlapping between detected clusters becomes smaller when β is set

to a relatively high value. Hence, β can be adjusted according to the demand of

overlapping in different attributed graph data and the variations of β won’t change the

number of clusters.

5.3. Experiment and analysis

In this section, we describe the details of the data sets that we used. We also explain

how experiments and what criteria we used to evaluate performance.

5.3.1. Experimental set-up and evaluation metrics

5.3.1.1. Baselines for comparison

To show the desirable features of FSPGA, we selected a number of graph clustering

algorithms to compare with FSPGA. These algorithms include Affinity Propagation

clustering (AP), Spectral clustering (SC), CoDa, Fuzzy c-means clustering (FCM),

improved Relational Fuzzy c-means clustering (iRFCM), CESNA, Relational topic

model (RTM) and ECDA. Selecting these algorithms as baselines is because they are

either the latest algorithms or classical ones and have all been used effectively to detect

clusters in various network graphs. Specifically, AP, SC and CoDa may detect graph

clusters that take different topological properties of network graph data. For our

experiments, we used the SC that makes use of the normalized cut in graph clustering.

FCM may detect graph clusters making use of information of similarity between

pairwise vertices in G. Therefore, we used the information in Λ as the input that is used

to compute the similarity between pairwise vertices for FCM. As iRFCM is a version

of FCM that can be used to discover graph clusters, we tested it using the same data as

FSPGA uses. Algorithms like CESNA, RTM and ECDA are ones taking into

consideration both graph topologies and attribute values. RTM has been shown to be a

67

very effective topic-model based approach to segment relational data. CESNA performs

graph clustering using a generative process that determines cluster membership of a

vertex by computing an estimate of the joint probability based on structure and vertex

attributes. ECDA performs its tasks using an evolutionary graph clustering algorithm.

For performance benchmarking, we used the source code or executables made available

by the authors. All the experiments were conducted under the same environment which

included a workstation with 4-core 3.4GHz CPU and 16GB RAM.

5.3.1.2. Experimental set-up

To ensure that the algorithms we used in the experiment may obtain a robust

performance, we tested them using the parameters in such a way that either the default

settings as recommended by the authors are used or that they are tuned by trials to find

the best settings.

Specifically, the AP, Coda, and ECDA algorithms do not require input parameters to be

set by the users. For these algorithms, the default settings as recommended and

implemented by the authors were used. For algorithms, including SC, FCM, iRFCM,

and RTM, which require parameters to be manually input into the system, we tried as

many different settings as we can, to obtain the best results for performance

benchmarking. For example, SC requires that the parameter of sigma to be set by the

users before it can run. To find a better set of parameters, we tried SC using different

sigma from 1 to 10. The settings that give the best performance of SC are recorded and

presented in our performance analysis report below. As for the number of clusters, k,

we set it for those algorithms that need k as a predefined parameter, including, SC, FCM,

iRFCM, CESNA, and RTM, to be equal to the number of ground truth clusters that are

used for benchmarking.

68

For FSPGA, we set β to 0 when FSPGA discovers structural patterns in those datasets

whose ground-truth clusters are disjoint. We set β to 3 for all those datasets whose

ground-truth clusters overlap with each other. As for the other parameters, we set α to

0.5, maximum number of iterations to 300. As for k, it is set to be the same as the other

algorithms, which is equal to the number of ground-truth clusters in each of the datasets.

All the algorithms, including FSPGA, were executed 10 times to obtain statistical

averages for the performance measures.

5.3.1.3. Data description and attribute similarity used by FSPGA

For performance evaluations, we used both synthetic and real datasets with known

ground truth. We used synthetic data to test the effectiveness and efficiency of different

algorithms and we used the real-world data sets to test the robustness of the different

algorithms regarding different applications. The real data sets that we used are mainly

categorized into two classes, including social network graph data and biological

network graph data.

The data sets Twitter, Ego-facebook, and Googleplus [74] are obtained from real social

networking sites. The vertices, edges and attributes in these data sets represent users of

the social networks, friendship between users and user profiles, respectively. The detail

information on Ego-facebook dataset has been shown in Section 4.3.1.3. The Twitter

data set is constructed based on a number of social circles extracted from twitter.com.

For this data set, we have 2511 vertices, 37154 edges, and 9067 attribute values.

Googleplus is another set of online social network data which was constructed based

on the sub-networks from plus.google.com. There are 7856 vertices, 321268 edges, and

2024 attribute values in the data set. The ground truth social communities for this data

set have been identified. There are 132, 191, and 91 ground truth clusters which are

used for benchmarking the identified clusters from datasets Twitter, Ego-facebook, and

Googleplus, respectively.

69

Krogan [56], DIP [105], and BioGrid [93] are three sets of biological data that are

constructed based on known interactions between proteins related to Saccharomyces

cerevisiae. In these three data sets, the vertices, edges, and attribute values represent the

proteins, protein-protein interactions and GO terms [5], respectively. The detail

information on datasets of Krogan and DIP has been shown in Section 4.3.1.3. As for

BioGrid dataset, there are 5640 vertices, 59748 edges, and 4286 attribute values. These

three data sets have the ground-truth data stored in CYC2008 database [83] and there

are 200 ground-truth clusters. Compared with those social network graph data used,

Krogan, DIP and BioGrid, are sparser. Using these two types of data allows us to find

out how robust the algorithms are when used with different types of graphs.

Syn1k is a set of synthetic data which is generated based on the rule that the probability

of intra-cluster edges is higher than that of inter-cluster edges and that vertices in the

same cluster are more related to each other than those that are not. The detail

information on Syn1k has been shown in Section 4.3.1.3. It should be noted that, the

ground truth clusters of all the real data sets overlap with each other to some extent.

Specifically, the overlapping rates between pairwise ground truth clusters in datasets

Twitter, Ego-facebook, and Googleplus are 0.00193, 0.00113, and 0.01913, respectively.

And that in Krogan, DIP, and BioGrid, it is 0.0004.

The above datasets are used to test the effectiveness of FSPGA and other algorithms. In

addition, to test the scalability of FSPGA, we have generated several additional

synthetic datasets ranging in size from 5,000 to 100,000 for our experiments.

To determine the strength between pairwise vertices in terms of attribute values that are

used by FSPGA, we use the degree of attribute association method which can be

obtained using (3), (4), and (5). Having obtained the degrees of interrelationship in

terms of attribute values, we use them to construct A that is used by FSPGA.

70

5.3.1.4. Evaluation metrics

For performance evaluation, we are considering different evaluation measures which

are widely used for evaluating graph clustering algorithms and fuzzy clustering

algorithms. For measures used for validating graph clusters, we used the Normalized

Mutual Information (NMI), and the Average Accuracy (Acc) [85]. There are a number

of measures for fuzzy clustering validity, such as Beni Index [106], Earth Mover’s

Distance [6], and several fuzzy Rand-Index-based measures [7]. In our experiments, we

selected Fuzzy Adjusted Rand Index (FARI) [7] for evaluating the graph clusters

discovered by different algorithms.

5.3.2. Experimental results using synthetic data

5.3.2.1. Evaluation of clustering quality

For performance evaluation, we used a set of synthetic graph data containing 1000

vertices to test the effectiveness of all different algorithms. As mentioned above, the

synthetic data are generated by assuming that the probability of vertices within the same

cluster to be connected with other vertices to be higher than that of the probability

between clusters. For our experiment, the data set Syn1k was generated by setting the

probability of intra-cluster connections to be 0.05 and the probability of inter-cluster

connections to be 0.01.

TABLE 5 NMI, ACC AND FARI IN SYN1K

 Syn1k

Approach NMI Acc FARI

AP 0.152 0.747 0.01

CoDa 0.116 0.43 0.097

SC 0.232 0.528 0.277

FCM 0.732 0.871 0.674

iRFCM 0.718 0.739 0.677

CESNA 0.792 0.845 0.813

RTM 0.797 0.797 0.683

ECDA 0.272 0.466 0.203

FSPGA 0.992 0.998 0.995

71

The performance of FSPGA and other algorithms on the synthetic dataset Syn1k with

respect to NMI, Acc and FARI is given in Table 5. As the table shows, FSPGA performs

better than other algorithms. No matter which of NMI, Acc, or FARI is considered,

FSPGA may outperform all the compared baselines in dataset Syn1k. These

experimental results show that FSPGA can be very effective with the discovering of

clusters in the synthetic attributed graph.

5.3.2.2. Scalability test

To find out how FSPGA can scale up when data set size increases, a series of synthetic

data of sizes ranging from 5000 to 100,000 were generated using the same probabilities

of 0.05 and 0.01 for intra- and inter-cluster vertex connections as is with Syn1k. Given

these generated data, the scalability of FSPGA was studied in a number of experiments

involving different data sets. The results obtained were compared with those obtained

with CESNA, RTM and iRFCM and AP. As FSPGA and these algorithms are iterative

in nature, the comparison is made based on the average execution time of each iteration.

The results are shown in Fig. 9.

The results show that FSPGA scales up well when compared with RTM and iRFCM

and AP. Even with the data sets containing as many as 100,000 vertices, FSPGA was

Fig. 9. Scalability test between different algorithms

72

able to complete each iteration in the optimization process in around 1 second and this

is slightly faster than CESNA. However, when comparing the number of iterations that

is required for the two algorithms to complete the cluster discovery tasks, it should be

noted that CESNA needed at least 300 iterations whereas FSPGA converges much

below 300. Given this to be the case, FSPGA is more computationally efficient.

When compared with AP, RTM, and iRFCM, the computational time used by them is

much more than FSPGA did. It should be noted that we did not obtain the results of

scalability test of RTM or iRFCM when the size of synthetic data is larger than 10,000

as they were crushed under that situation. And the computational time of AP is also

intolerable when the data size is larger than 25,000.

5.3.2.3. Sensitivity test of α

As described in Section 5.2, for FSPGA to performs its tasks, it requires the setting of

a parameter α. The parameter is used to adjust the bias between edge density and

strength in terms of attribute within the process of cluster identification. How the

parameter may affect the performance of FSPGA can be investigated in several

sensitivity tests using the data set Syn1k.

Fig. 10. Sensitivity test of α

73

In our experiment, α was set to different values from 0 to 1, with an increment of 0.2,

and FSPGA was used under these different settings to detect clusters. The performance

was measured with NMI, Acc and FARI and the results are shown in Fig. 10.

It is seen that when α was set to 0, which means that only the attribute values are

considered, and when it is set to 1, which means that only the edge structure is

considered, the performance of FSPGA is affected negatively. When setting α to the

value between 0.4 and 0.6, FSPGA obtains very good results. Given these results, we

set α to be 0.5 in all our experiments so that both attribute values and edge structures

are considered equally important by FSPGA.

5.3.3. Experimental results in real data

5.3.3.1. Results in social community detection

Social communities are important structural patterns in social graphs. The identification

of such communities is important to social network analysis. For performance

evaluation of FSPGA, we used three sets of social network data, including Twitter, Ego-

facebook, and Googleplus. All these data sets have known ground-truth communities

that have been verified in previous work. Given the fact that the number of ground truth

clusters is known, for those algorithms which need to set the number of clusters (k), we

set it to be the number of known ground truth clusters in each dataset.

TABLE 6 NMI, ACC AND FARI OBTAINED FROM SOCIAL NETWORK DATA

 Twitter Ego-facebook Googleplus

Approach NMI Acc FARI NMI Acc FARI NMI Acc FARI

AP 0.5982nd 0.4793rd 0.123 0.5282nd 0.416 0.1941st 0.355 0.273 0.095

CoDa 0.5843rd 0.471 0.1823rd 0.5243rd 0.5023rd 0.133rd 0.373 0.3753rd 0.079

SC 0.493 0.305 0.094 0.52 0.447 0.126 0.33 0.296 0.081

FCM 0.08 0.09 0.016 0.28 0.208 0.056 0.128 0.181 0.031

iRFCM 0.535 0.37 0.172 0.315 0.282 0.074 0.266 0.318 0.054

CESNA 0.572 0.5281st 0.169 0.483 0.6231st 0.118 0.422nd 0.472nd 0.1053rd

RTM 0.028 0.099 0.014 0.227 0.167 0.061 0.023 0.151 0.019

ECDA 0.529 0.385 0.1842nd 0.322 0.234 0.099 0.3953rd 0.341 0.1222nd

FSPGA 0.6411st 0.5132nd 0.2411st 0.5791st 0.5882nd 0.172nd 0.4891st 0.5191st 0.1491st

74

The experimental results of NMI, Acc, and FARI obtained with these datasets are

summarized in Table 6. As the table shows, FSPGA performs more robustly than other

algorithms. When the identified clusters are evaluated by NMI, FSPGA outperforms all

the other algorithms in all the three social network datasets. When evaluated by Acc,

FSPGA ranks the best in Googleplus, and second best in Twitter, and Ego-facebook,

respectively. When the identified clusters are evaluated by FARI, FSPGA outperforms

the other algorithms in the case of Twitter, and Googleplus, and ranks second best in

Ego-facebook. In total, the above results obtained from social network data show that

the social communities detected by FSPGA better match with the ground-truth when

compared with the others.

5.3.3.2. Functional modules detection in biological graph data

Structural modules in biological networks, such as protein complexes in protein-protein

interaction (PPI) network graphs can be considered as another important application of

cluster detection in attributed graphs.

To further test the effectiveness of FSPGA, we used three sets of PPI network data in

our experiments. They included the data sets Krogan, DIP and BioGrid. These data sets

were chosen as the ground-truth, which correspond to known protein complexes, could

TABLE 7 NMI, ACC AND FARI OBTAINED FROM BIOLOGICAL NETWORK DATA

 Krogan DIP BioGrid

Approach NMI Acc FARI NMI Acc FARI NMI Acc FARI

AP 0.6921st 0.1873rd 0.11 0.6882nd 0.1172nd 0.098 0.109 0.016 0.003

CoDa 0.6882nd 0.1992nd 0.2981st 0.463 0.0683rd 0.045 0.299 0.035 0.017

SC 0.609 0.079 0.026 0.588 0.047 0.009 0.5453rd 0.032 0.0873rd

FCM 0.454 0.078 0.115 0.49 0.06 0.1383rd 0.444 0.0482nd 0.073

iRFCM 0.342 0.055 0.058 0.444 0.049 0.091 0.355 0.0463rd 0.045

CESNA 0.484 0.055 0.027 0.425 0.026 0.063 0.449 0.026 0.049

RTM 0.578 0.037 0.169 0.6143rd 0.025 0.1842nd 0.6222nd 0.021 0.1942nd

ECDA 0.631 0.142 0.2292nd 0.299 0.058 0.016 0.145 0.026 0.043

FSPGA 0.6773rd 0.2021st 0.1913rd 0.7121st 0.1291st 0.2671st 0.7551st 0.1251st 0.3721st

75

be found and some of the known protein complexes are overlapping. Performance data

based on NMI, Acc and FARI were obtained from the experiments. The results obtained

with these two data sets are shown in Table 7.

As shown in the table, FSPGA obtains better performance than all the other algorithms

regardless of performance measures used. When the evaluation measure, Acc is

considered, FSPGA outperforms all the baselines in all three datasets. When NMI is

considered, FSPGA ranks the best in the case of DIP and BioGrid, and third with

Krogan. When the discovered clusters are evaluated by FARI, FSPGA outperforms all

other algorithms with DIP and BioGrid, and ranks third with Krogan.

As the objective function used by FSPGA considers pairwise relationship between any

pair of vertices in terms of edge structure and attribute information, the relative

weighting between how much each of these two factors should be considered can be

adjusted dynamically during the optimization process. The fuzzy cluster membership

matrix C obtained by FSPGA can find k clusters in which vertices share similar

weighted structure with each other. This represents, in other words, the optimized

weighted aggregation of intra-cluster connections and attribute relativity. This feature

allows FSPGA to group unconnected but related vertices to be taken into consideration

based on attribute relativity. Moreover, as FSPGA allows fuzzy cluster membership to

be considered within the optimization process, thereby making it possible for FSPGA

to find overlapping clusters as fuzzy structural patterns in an attributed graph. These

features are the reasons why FSPGA can obtain a more robust performance with both

overlapping and non-overlapping clustering.

5.3.4. Case study-overlapping rate versus clustering quality

To find out what impact the parameter β can have on the quality of clusters, FSPGA is

tested with all real datasets, using β from 0.1 to 4, with a 0.1 increment. The clusters

76

obtained under different settings of β are evaluated using NMI, Acc, and FARI. The

results are shown in Fig. 11 (a) - (c). Together with the overlapping rate of ground truth

clusters of each real dataset, the impact of β on the quality of overlapping clustering

were studied in detail.

The variations of NMI, Acc, and FARI are shown in Fig. 11 (a)-(c). As it is shown in the

figures, the magnitudes of different clustering validity measures share similar variations.

As the value of β becomes larger than a particular value, the clustering quality does not

improve by much. In Fig. 11 (d), it should be noted that the extent of overlapping in all

the datasets decreases and approximates to zero as β becomes larger and larger. Given

these results, it should be noted that β needs to be adjusted for FSPGA to discover

clusters with different extent of overlapping.

It is mentioned in 5.2.5 that β is used to constrain the number of vertices that can belong

 (a) (b)

 (c) (d)

Fig. 11. NMI, Acc, FARI, and overlapping rate in social and biological datasets

77

to more than one cluster. As a result, each vertex in an attributed graph is probably

assigned to the cluster with the greatest degree of cluster membership when β is set to

be high enough. As a result, the clustering quality of FSPGA would be approximately

the same as with crisp clustering. Given the fact that the overlapping rate of most

datasets are relatively low, e.g., 0.00193 in Twitter, 0.00113 in Ego-facebook, and

0.0004 in biological datasets, the clustering quality is better when β is set higher, e.g.,

2.5 to 3.5 in Twitter, Ego-facebook, and biological datasets. Using relatively large β,

discovered clusters are mostly disjoint and the overall overlapping rate is therefore

similar to that of the ground truth clusters (see Fig. 11 (d)).

However, when β is set between 2.5 and 3.5, it may degrade the quality of clusters

discovered in Googleplus. This is because this data set has a relatively high overlapping

rate. E.g., the Acc decreases when β is set larger than 2.5.

Given these characteristics of β, it is necessary for one to adjust the setting. However,

FSPGA performs robustly when β is set between 2 and 3.5 and this is why β is set to 3

in our experiments.

5.4. Discussion

5.4.1. Comparisons between FSPGA and formal fuzzy clustering algorithms

With the above features, FSPGA can be considered different from such popular fuzzy

clustering algorithms as the fuzzy c-means algorithm (FCM), and the relational fuzzy

c-means algorithm (iRFCM). With the objective function that it uses, FSPGA can

determine, dynamically, the degrees of cluster membership based on both the edge

structure and attribute information of vertices. Compared with algorithms such as

iRFCM which adjust global bias between M and A, FSPGA may identify meaningful

clusters which other algorithms may miss.

78

Also, while existing fuzzy clustering algorithms minimize dissimilarity between data

entities and cluster centers, FSPGA takes into consideration the edge structure and

attribute relativity within each cluster. By so doing, FSPGA can identify clusters in

which the weighted aggregation of intra-cluster connections and degrees of attribute

relativity between any pair of vertices is optimized. These features are some of the

reasons why FSPGA may perform better than other algorithms we used for comparison.

5.4.2. Computational complexity and space requirements of FSPGA

As the computational complexity of FSPGA is dependent mainly on the iterative

updating of C and X, the complexity of the process of determining these matrices are

considered here.

Let nV and k be the number of vertices in the graph and the number of clusters in an

attributed graph. It should be noted that k << nV in practice. According to Equation (40),

for updating each element in C, say cij, it approximates the order of O((2k+2)nV). Hence

updating all elements in C approximates the order of O(k(2k+2)nV
2). According to

Equation (42), updating each element in λ follows the order of O(k). This is because the

computational components in the numerator and denominator are the same as those in

(40). As a result, updating λ follows the order of O(knV). According to Equation (45),

the updating of each element in X approximates the order of O((k+2)nV). Hence

updating all the elements in X follows the order of O(2k(k+2)nV
2).

Given the complexity of updating variables in C and X, FSPGA is an algorithm with

complexity of O(n2). In other words, FSPGA is more efficient than the spectral-based

clustering algorithms since their computational complexity follows the order of O(n3).

In fact, as the augmented matrix Y is always very sparse, theoretically, FSPGA should

run faster than those algorithms, such as Affinity Propagation (AP), that also have the

complexity of O(n2). The scalability test shown in Fig. 9 also supports the analysis here.

79

Regarding the space requirement of FSPGA, it should be noted that FSPGA does not

require much memory space when performing the task of discovering fuzzy structural

patterns in the attributed graph. This is because FSPGA only stores those non-zero

elements in the augmented matrix Y. For example, one synthetic data set used in our

experiment contains 100,000 vertices, but there are about 30,000,000 elements in Y

which are larger than zero. Compared with the full memory space for 100,0002,

30,000,000 is only 0.3% of the full space. Given the analysis here and the scalability

test shown in Fig. 9, FSPGA can be used for discovering fuzzy structural patterns in

large attributed graphs.

5.5. Summary

In this section, FSPGA, which is an algorithm for discovering fuzzy structural patterns

in the form of clusters in the attributed graph, is proposed. Compared with prevalent

algorithms that take different properties of an attributed graph, including topology,

attribute, and both of the aforementioned, FSPGA may find an optimal arrangement of

clusters for vertices in an attributed graph by formulating the task as a fuzzy constrained

optimization problem. As the adoption of fuzzy set theory when determining the cluster

membership, FSPGA can detect overlapping clusters, while most of the prevalent

algorithms cannot. The experimental results presented in this paper show that FSPGA

may perform robustly and efficiently in different types graph data, compared with the

classical, latest graph clustering algorithms, and fuzzy clustering algorithms. In future,

we will intend to further improve the efficiency of FSPGA and develop a version of

FSPGA that may discover hierarchical structural patterns in attributed graphs.

80

6. EGCPI-AN EVOLUTIONARY ALGORITHM FOR IDENTIFYING

CLUSTERS IN ATTRIBUTED GRAPHS

6.1. Background

As mentioned in Section 2, sometimes the task of mining clusters in some special

network graphs needs treating particularly, e.g., protein complex identification in PPI

network graphs. Such sub-graphs are always assumed to be connected components

hidden in the attributed graph. Algorithms like MISAGA, and FSPGA need to combine

with post-processing techniques for extracting connected components to ensure a better

performance in such biological graphs. To develop more effective approaches that can

be used in such attributed graphs, we propose two algorithms in Section 6 and 7. Given

the experimental results that have been obtained, both two algorithms show their

effectiveness in the task of sub-graph mining and outperform most state-of-the-art

approaches. They are very promising methods for the given task.

To perform the task of discovering protein complexes in the PPI network graph, there

have been several algorithms proposed. Among these methods, ones that consider both

network topology and attribute information are few. For example, PCIFI [66] can

identify protein complexes through searching sub-graphs in which proteins perform

interdependent molecular functions. In [67], another algorithm may identify protein

complexes in the PPI network graph utilizing gene expression data. In [117], an

algorithm called GMFTP, is proposed to identify protein complexes based on measures

of similarity between attribute values of proteins.

Based on most approaches that are proposed to identify protein complexes in PPI

networks, we find that both topological and attribute information is very effective for

identifying protein complexes, although there are not too many methods taking into the

consideration both of the two types of information. We also find that most algorithms

identify protein complexes by finding a number of clusters with some particular

81

properties that are optimized. Hence, sometimes the process of protein complex

identification can be seen as an optimization problem. For such an optimization

problem, we propose to tackle it with a novel approach based on an evolutionary

algorithm called Evolutionary Graph Clustering for Protein Complex Identification

(EGCPI). The advantages with the use of an evolutionary algorithm are that it does not

have to work under linear constraints like those found in the typical numerical

optimization problem. It can also discover multiple solutions and can be used to handle

big data efficiently and effectively as it can be implemented in parallel.

Given a PPI network, EGCPI constructs an Attributed Graph by annotating attributes

to each protein, based on the GO database which is constructed in Gene Ontology (GO)

project [5]. To discover protein complexes, EGCPI assigns a weight to each edge in the

graph, according to the degree of topological similarity which quantifies the proportion

of common neighboring proteins shared by two interacting proteins. This transforms a

PPI network graph G into a weighted graph denoted as wG.

Given a wG, EGCPI first finds a number of graph clusters in which the proteins are

densely connected. It does so by optimizing an objective function that is defined in

terms of the overall degree of topological similarity between connecting proteins in

each cluster. After the identification of these dense graph clusters, EGCPI then makes

use of a degree of attribute homogeneity measure to determine how similar the attribute

values are between each pair of connecting proteins within each graph cluster. Based

on the degree of attribute homogeneity, a breadth-first search strategy is then used to

search for sub-graphs, within each graph cluster, that consist of proteins with similar

attribute values. These sub-graphs are, therefore, relatively dense and their vertices

share similar attribute values and they correspond well to the characteristics of many

protein complexes in real life.

82

In order to evaluate the performance of EGCPI, we have tested it with different real

data sets. The experimental results show that EGCPI performs well in terms of the

number of accurately identified protein complexes that match with known protein

complexes. We believe that EGCPI has great potential as an effective protein complex

identifier.

6.2. EGCPI in details

Given a PPI network graph, EGCPI performs the task of protein complex identification

in several steps. First, it models the PPI network graph using the notation (G) shown in

Section 3. Second, a weighted Attributed Graph (wG) is then constructed by EGCPI.

Given G, EGCPI determines a weight to each edge in the graph based on the degree of

topological similarity. With all the weights for the edges determined, G is transformed

into a wG. Given wG, an evolutionary algorithm is then used to identify graph clusters

within which protein are densely connected by maximizing the overall degree of

topological similarity in each cluster. Given the graph clusters, a breadth-first search

strategy is used to search for subgraphs in each graph cluster based on the homogeneity

of the attribute values associated with the connecting vertices. These subgraphs, whose

vertices share similar attribute values and are relatively dense, are found to correspond

well with protein complexes in real life.

6.2.1. Mathematical preliminaries

A PPI network can be represented as an attributed graph that contains nV vertices that

represent proteins and nE edges that represent interactions between proteins. As we can

obtain information about the attributes of each protein in a PPI network from the GO

database, a set of attribute values can be considered as associating with each vertex in

a PPI network graph so that this graph becomes an attributed graph. For our application,

Λ contains three subsets, Λp, Λf, Λc corresponding to the attribute values of biological

processes, molecular functions, and cellular components, respectively. Biological

83

processes is concerned with the biological objectives a protein is involved in. Molecular

functions is concerned with the biochemical activities performed by a protein and

cellular components is concerned with the location where a protein is most active in a

cell. Thus, the PPI network graph can be represented using the notation in Section 3, G

= (V, E, Λ), where V represents the set of vertices, E represents the set of edges and Λ

represent the set of attribute values for proteins in G.

In order to explain how the above notations are used, let us assume that we are given a

protein with Uniprot ID [102], Q08683, then the attributes in terms of the GO terms can

be obtained. It should be noted that not all attribute information available about the

protein is used in our experiments with the proposed algorithm because some of them

may contain information about protein complex membership.

Other than avoiding the inclusion of these attribute values, it is noteworthy that the

domains of the attributes are allowed to contain different values, i.e., it is possible that

for any vertex in G, |Λv
p|≠|Λv

f|≠|Λv
c|. In addition, there is no requirement of EGCPI for

any of the attributes of any vertex to have any value at all. Furthermore, there is also no

requirement for the attribute value sets of two interacting proteins to have the same

number of values for degree of attribute homogeneity to be determined.

6.2.2. Construction of wG

Given G, EGCPI makes use of a degree of topological similarity (σ) measure to weight

each pair of interacting proteins according to how much they are connected. It is defined

as

ijji

ijji

ij
eee

eee









 (47)

84

where ei+ is the set of vertices that are connected to vi, eij equals to 1 if there is an

interaction between vi and vj. σ evaluates the extent that a protein pair is connected to

each other when considering the network topology.

The magnitude of σ ranges from 0 to 1. A higher value means that vi and vj are more

highly connected. After a weight is determined for each edge in G, a weighted

Attributed PPI network Graph (wG) is obtained. EGCPI then proceeds to try to find

dense graph clusters using wG.

6.2.3. Evolutionary graph clustering

EGCPI identifies dense graph clusters using an evolutionary algorithm (EA). EAs have

been shown to be very efficient at dealing with problems, such as NP-Complete

problems that can otherwise be hard to tackle [14]. Recently, EAs have been used for

graph clustering [45]. However, they have not been used for protein complex discovery

in PPI networks. For EGCPI, an EA is used for the purpose of finding graph clusters

that are more densely connected within a cluster than outside. This is because proteins

in protein complexes are more densely connected in clusters as well.

Given a wG represented and encoded in a chromosome, the EA that EGCPI makes use

of searches for an optimal solution based on a single-criterion objective function

defined in terms of the weights in a wG. Like other EAs, EGCPI evolves an optimal

graph clustering arrangement in several steps. To begin, a number of chromosomes is

first initialized and their fitness values computed based on the weights of the graphs.

Based on these fitness values, a particular number of coupled individuals are then

selected for reproduction, which consists of both crossover and mutation.

Chromosomes with lower fitness values will then be eliminated from the population

after each generation of descendants are reproduced. The steps of selection and

reproduction are then repeated.

85

6.2.3.1. Gene representation

EGCPI uses a straight-forward representation [50] to encode a graph clustering

arrangement in a chromosome which has a length equal to the total number of vertices,

nV, in the graph. Assuming that S stands for the number of clusters in the wG and that

S can be different in different chromosomes, then we can represent the case of the ith

vertex in the wG being in the jth cluster as the ith gene containing the allele j.

6.2.3.2. Initialization

Since the straight-forward representation is used in EGCPI, the initial number of

clusters, S must be determined before the initialization. Here S is a randomized

parameter decided by the algorithm before each initialization of a chromosome. In the

case of EGCPI, S is not to exceed a maximum value of nV/2.

According to the typical approach of initializing a chromosome, a randomized cluster

ID is assigned to each vertex. However, total randomness may result in long

convergence time. To avoid the problem, EGCPI initializes a population of

chromosomes with a different process that consists of the following steps: (i) S nodes

is first selected randomly as the initial clusters, (ii) for each vertex v, with e connections

(e>0), a cluster ID among S’ is assigned to it, where |S’|≤S and S’ is the set of cluster

IDs to which vertices connected to v are possibly assigned; (iii) all the vertices without

any connection are assigned to one of S clusters randomly. These three steps are iterated

p times, where p is the size of the population. With this approach of initialization, p

different ways of partitioning the vertices in wG into different numbers of clusters can

be generated.

6.2.3.3. Reproduction

The reproduction process consists of both crossover and mutation. Traditionally, the

uniform crossover operator which swaps alleles between two selected parent

chromosomes is adopted by many EAs. However, EGCPI adopts a crossover operator

86

modified from the standard uniform crossover. In addition to the popular mutation

operator that randomly changes the allele of a gene, EGCPI also makes use of a Self-

Variation (SV) operator to introduce variation to a population of chromosomes.

As part of the crossover, instead of allowing all chromosomes to be selected for

reproduction, EGCPI allows only a proportion of the chromosomes to be randomly

selected and this proportion is set arbitrarily to 30%. This means that the best 30% of

the chromosomes in the population can be candidates for reproduction only.

After selection, EGCPI performs crossover by first selecting one parent as a template.

The cluster IDs of the other parent then replace all the alleles in the template which

share the same gene positions with its cluster member according to the crossover rate.

After crossover, each member of the selected cluster can then be selected for mutation

based on the mutation rate. With these steps above, EGCPI generates a new descendant.

Although the fitness of the population is incrementally improved as new populations

are continually generated, it takes a rather long time for the evolution process to

converge. This is especially the case with large data set size. To tackle the problem,

EGCPI adds an additional reproduction operator, called Self-Variation (SV). The main

task of SV is to relocate a vertex to a cluster within which vertices share relatively higher

weights with it, based on the current graph clustering arrangement. In other words, a

vertex should belong to a cluster that shares connections of higher weights with it

because connections of higher weights might lead to a higher probability of identifying

protein complexes in the cluster. To achieve the expected goal, we use a two-dimension

matrix to complete the stage of SV: Given all nodes in a network and all clusters, the

matrix VC[nV][S] is defined to represent the weight between a vertex and a cluster. For

an element in VC, say vcij, it equals to zero if there is no connection between node i and

other nodes in cluster j. Otherwise, it means some number of connections with a

87

magnitude of aggregated weight bridge node i and other nodes cluster j. Given VC[nV][S],

Self-Variation is completed like the follows: For a vertex vi in cluster j, EGCPI firstly

computes its expected weight E(dvic) between vi and each cluster, E(dvic) is defined as:

  



S

v

ijij

cv

i

i w

vcvc
dE

1

 (48)

where wvi is the total weights of interactions whose one endpoint is vi. Once E(dvic) is

obtained, EGCPI determines whether or not vi should be relocated to a new cluster by

Algorithm 3-Evolutionary Clustering

Input: G

Output: A set of clusters C={ci, 1≤i≤nC}

generate σ for each interaction according to (47);

construct weighted Attributed PPI network Graph

(wG);

population initialization;

done = false;

while (done == false) {

for (i = 0; i < maxdescendant; i ++) {

 crossover;

 Self-Variation;

 insertion of individual;

 elimination;

}

if(terminal-condition) {

 done = true;

}

else {

 if(re-initialization) {

 population initialization

 }

}

}

return C;

Fig. 12. Evolutionary graph clustering

88

computing the largest difference of the real weight and the expected weight between vi

and each cluster, and this difference is defined as:

  cvik
k i

dEvcdiff  maxmax (49)

If diffmax≠j, vi will be moved to cluster diffmax, otherwise vi will not be relocated. After

the completion of SV, those clusters which possess relatively lower weight might be

eliminated and the quality of clusters produced by crossover can be improved. Using

the SV stage, EGCPI can find optimal dense clusters in wG in a less time.

6.2.3.4. The fitness function

Every time when EGCPI initializes the population or reproduces a new-birthed

individual, the fitness value of each chromosome is computed and the highest fitness

value is seen as the population fitness. In order to find partitions in which clusters

possess more weight of intra-interactions but less that of inter-connections between

clusters, we use a measure called Independence of Cluster (IoC) to evaluate a cluster

that is partitioned by each individual in the population. And this measure is defined as










ij

ikj

i

Cv

jk

Cvv

jk

C
w

w

IoC
,

 (50)

where ci is the ith cluster in a partition, wjk is the weight that is assigned to interaction

ejk in wG, the numerator and the denominator stand for the total weight of intra-

interactions and that of all interactions connecting proteins in ci. Once the IoC values

of all clusters partitioned by an individual are obtained, we can evaluate the fitness of

the individual by using the following objective function:

89





S

i

C

V

V

wG i

i IC
n

n
IoC

1

 (51)

where nVi and nV represent the total number of vertices in cluster i and wG, respectively.

IoCwG evaluates to what extent the independence is if a cluster is compared to another

and it ranges from 0 to 1. Apparently, the higher IoCwG is, the more independent from

other ones a cluster is. Therefore, IoCwG helps to diminish the interdependence between

any two clusters.

Algorithm 4-Protein complex identification

Input: A set of clusters C

Output: A set of protein complexes PC

for each cluster ci {

 generate θ for each interaction in ci;

 for each vertex vi {

 find θmax;

 create a new protein complex r;

 create a new link list Pvisiting;

 Pvisiting = Pvisiting∪vi;

 Pvisiting = Pvisiting∪vj;

 while(|Pvisiting|>0){

 vk = head of Pvisiting;

 Pvisiting- vk;

 r = r∪vk;

 search vm: neighbors of vk;

 if(θkm≥λ×θmax){

 Pvisiting = Pvisiting∪vm;

 }

 }

 if(Ovr≤OvMax){

 PC = PC∪r;

 }

 }

}

return PC;

Fig. 13. Protein complex identification

90

6.2.3.5. Summary remarks

Based on what has been illustrated from 6.2.3.1 to 6.2.3.4, the evolutionary algorithm

is summarized as the pseudo codes shown in Fig. 12. When the phase of evolutionary

clustering is finished, EGCPI obtains an individual containing optimal cluster

arrangement for each protein in the wG. These clusters can be represented as C={ci,

1≤i≤nC}, where nC stands for the number of clusters.

6.2.4. Identifying protein complexes in found clusters

After using the above EA in wG, EGCPI obtains a set of clusters from the best

individual in a population. In this stage, EGCPI performs a further extraction of

subgraphs as protein complexes in each cluster. Rather than detecting protein

complexes based on network topology, EGCPI identifies protein complexes by taking

into consideration attribute homogeneity between pairwise proteins because proteins

within each found cluster are already densely connected. Before searching protein

complexes, EGCPI computes the degree of attribute homogeneity (θ) between each pair

of connected proteins, using (1) in Section 3. θ determines how similar the attribute

values are between each pair of connecting proteins within the cluster. It ranges between

0 and 1. A higher θ means there are more functional attributes performed by both of the

connected proteins so that EGCPI tends to form protein complexes by searching such

protein pairs in each graph cluster. After EGCPI uses the θ measure to weight all

connected vertices, EGCPI uses a breadth-first search (BFS) method to form protein

complexes in each cluster. First, it selects an interaction of a vertex with the highest θ,

θmax, and incorporates both of the two connected vertices vi and vj into a seed set for

forming a protein complex; second, based on θmax, EGCPI searches all the neighboring

vertices and incorporates those which satisfy the minimum threshold of θ. In EGCPI,

this threshold is defined as

91










otherwiser

ifvr
vseedr

kmm

k

max
):(


 (52)

where vk stands for a vertex in the seed set and vm is a vertex connecting to vk. In other

words, only vertices sharing connections with θ which is higher than λ×θmax can be

incorporated into the seed set. The searching in the second step will be terminated till

there is no new vertex added to the seed set. When the above search in a cluster is

finished, EGCPI forms a protein complex using the proteins in the seed set. EGCPI will

stop forming protein complexes till it traverses all vertices in the cluster. As using the

above search strategy may produce some protein complexes whose sizes are small,

EGCPI discards those identified protein complexes including fewer than 3 proteins.

To reduce the redundancy of proteins in the identified protein complexes, EGCPI

computes an overlapping score between an identified protein complex and protein

complexes in the identified set. The overlapping score is defined as:

I

I

r
PCr

PCr
Ov




 max (53)

where r and PCI stand for an identified protein complex after once of the search and

any other protein complex that is in the identified set, respectively. Then EGCPI uses a

threshold OvMax to exclude those identified protein complexes whose overlapping

TABLE 8 STATISTICS ON THE USED DATA SETS OF PPI NETWORKS

Data Set nV nE nΛ

Collins 1620 9064 2042

Gavin 1430 6531 2107

Krogan-Core 2674 7075 3064

DIP-Scere 4579 20845 4237

DIP-Hsapi 2434 3053 7031

nV, the number of proteins; nE, the number of interactions; nΛ, the number of attributes.

92

scores are higher than the threshold. In order to explain this BFS method in detail, we

give the pseudo codes in Fig. 13.

6.3. Experiment and analysis

For performance testing, EGCPI has been tested with five sets of real PPI network data.

They include: (i) Collins [23], (ii) Gavin [37], (iii) Krogan-Core [56], (iv) DIP-Scere

[105] and (v) DIP-Hsapi [105]. Datasets (i), (ii) and (iii), which can be collected from

the BioGRID database [93], are concerned with yeast Saccharomyces cerevisiae. In our

experiments, the data we used are collected from version 3.2.118 of the BioGRID

database. Compared with Collins, Gavin, and Krogan-Core, DIP-Scere, which is also

related to Saccharomyces cerevisiae, has a much larger data set size. Unlike the other

data sets, DIP-Hsapi, is collected from human beings. Both the two DIP datasets are

collected from the 2013 version of the DIP database [105]. The properties of these five

datasets are shown in Table 8.

For all the five data sets, the protein attribute information required for the construction

of the PPI network graphs were obtained from the January 2016 version of the GO

database [24]. As mentioned above, the GO terms of the cellular components which

may provide information about the protein complexes that a protein belongs to are not

included in the experimental data sets.

To evaluate the performance of different protein complex identification algorithms, we

compared the protein complexes identified with known protein complexes in

Saccharomyces cerevisiae as contained in January 2016 version of the CYC2008 [83]

and MIP/CYGD [75] [42] databases. There are 408 and 255 known protein complexes

for Saccharomyces cerevisiae in the CYC2008 and MIP/CYGD databases respectively.

Following the work completed in [78], we used the known protein complexes in these

databases for performance evaluation. After removing protein complexes that are made

93

up of fewer than 3 proteins, we have obtained a total of 296 distinct protein complexes

in the two databases for performance evaluation.

For the evaluation of protein complexes in the data set, DIP-Hsapi, we compared the

protein complexes identified by different computational approaches with the known

ones contained in the MIPS/CORUM [75] [88] database and there are altogether 1466

known protein complexes that are made up of three or more proteins in MIPS/CORUM.

6.3.1. Experiment set-up and performance evaluation

For performance evaluation, EGCPI were compared with different algorithms,

including GMFTP, MCL, DPClus, IPCA, CFinder, COACH, SPICi and ClusterONE.

We used these 9 algorithms to identify protein complexes in the five datasets described

above. Algorithms like MCL, DPClus, IPCA, CFinder COACH, SPICi and

ClusterONE identify protein complexes in PPI networks based only on network

topologies. Attribute information that is made available are not considered by these

algorithms. As algorithms like MCL, SPICi and ClusterONE can be used with weighted

PPI network data, we also used them to identify protein complexes in the weighted PPI

network data that are used by EGCPI. As GMFTP considers both network topology and

functional attributes when identifying protein complexes, it is provided with exactly the

same attribute information as we provided for EGCPI. For the above algorithms to

perform their tasks, the settings of the parameters for each of them are given in Table 9.

When using EGCPI to find graph clusters, the population size is set to 100, and the

TABLE 9 PARAMETER SETTINGS OF DIFFERENT ALGORITHMS

Approach Parameter Approach Parameter

ClusterONE s=3, density=auto (default setting) GMFTP K=1000 (default setting)

MCL inflation = 1.8 (default setting) SPICi minimum cluster size = 3

DPClus CPin=0.5, din=0.6 (default setting) IPCA S=3, P=2, Tin=0.4/0.9

CFinder k=3 COACH W=0.225 (default setting)

EGCPI λ=0.7/0.8, OvMax=0.7/0.8/0.9

94

crossover rate is set to 0.6 for evolutionary clustering. We ran the EA for 30 generations

before it was required to return the best partition of graph clusters. The reason why the

maximum number of generations is set to 30 is because we found that the EA used in

EGCPI could usually achieve the best results within around 30 generations. For λ, it

TABLE 10 RESULTS OF F-MEASURE AND MMR OBTAINED FROM BIOGRID DATASETS

Data Set Approach # Coverage f-measure MMR

Precision Recall f-measure

Collins

EGCPI 236 1160 0.67 0.54 0.61st 0.292nd

GMFTP 203 1160 0.59 0.47 0.523rd 0.283rd

ClusterONE 203 1293 0.54 0.45 0.49 0.25

DPClus 203 1185 0.53 0.44 0.48 0.26

MCL 282 1620 0.4 0.49 0.44 0.26

SPICi 120 973 0.68 0.34 0.45 0.2

IPCA 499 1160 0.48 0.66 0.552nd 0.331st

COACH 245 1114 0.51 0.48 0.49 0.27

CFinder 114 1160 0.7 0.32 0.44 0.2

Gavin

EGCPI 298 1150 0.66 0.56 0.61st 0.271st

GMFTP 172 917 0.64 0.42 0.52nd 0.223rd

ClusterONE 243 1268 0.4 0.37 0.38 0.19

DPClus 217 1107 0.41 0.36 0.38 0.19

MCL 177 1430 0.39 0.27 0.33 0.14

SPICi 126 907 0.54 0.27 0.36 0.15

IPCA 695 1124 0.36 0.61 0.463rd 0.252nd

COACH 324 1052 0.43 0.46 0.44 0.223rd

CFinder 98 1124 0.56 0.2 0.29 0.11

Krogan-Core

EGCPI 526 1442 0.53 0.65 0.591st 0.321st

GMFTP 299 1411 0.41 0.49 0.44 0.283rd

ClusterONE 242 1071 0.48 0.42 0.453rd 0.23

DPClus 497 1758 0.25 0.5 0.33 0.26

MCL 514 2674 0.2 0.42 0.27 0.22

SPICi 233 1239 0.38 0.36 0.37 0.19

IPCA 701 1140 0.41 0.67 0.512nd 0.32nd

COACH 349 1056 0.49 0.53 0.512nd 0.27

CFinder 115 1140 0.49 0.21 0.3 0.14

#: The number of protein complexes identified. Coverage: The number of distinct proteins in the

identified protein complexes.

95

was set to 0.7 or 0.8. As for OvMax, it was set to 0.7, 0.8 or 0.9 to obtain a better

performance.

For other algorithms, their parameters were set following the recommendations of the

authors or modified as many times as possible to obtain a better performance. For

example, different settings of Tin in IPCA have been proposed. In [103], it was set to

0.9 and in [68], it was set to 0.4 to obtain best results. For our experiments, we, therefore,

used both these two settings to obtain a better performance. Another example is the

parameter setting of CFinder. As there are no recommended settings for the size of the

clique, we tried different values of k, from 3 to 50, and found that CFinder performed

better when k was set to 3.

For the purpose of performance evaluation, we used two measures. One is the f-measure

which can be taken as a measure that determines the overall accuracy of the identified

protein complex. The f-measure can be defined as follows:

FNTP

TP
recall

FPTP

TP
precision

recallprecision

recallprecision
measuref












,

2

 (54)

The f-measure is determined by the value of precision and recall. TP is the number of

identified protein complexes whose matching rates are equal to or larger than a

particular threshold O’. In our experiments, we set the threshold to 0.2, which is

recommended in [69]. FP is the number of identified protein complexes whose

matching rates are less than the threshold O’. FN is the number of known protein

complexes that are not matched by any identified protein complex. The other measure

we used to determine the quality of identified protein complexes is the Maximum

Matching Rate (MMR) [78]. Unlike the f-measure, it needs a predefined threshold to

96

evaluate the identified protein complexes, MMR offers a natural way to measure how

accurately the identified protein complexes can represent a benchmarking set. Based on

the features of f-measure and MMR, these two evaluation criteria are complementary to

each other.

6.3.2. Performance analysis

The experimental results of f-measure and MMR obtained by different algorithms have

been summarized in Table 10 and 11. As the table shows, EGCPI obtains best f-measure

in all the five data sets. Although EGCPI doesn’t always obtain the best performance

on Precision or Recall, but it makes a better compromise between the two measures so

that the results of f-measure obtained by EGCPI are better than those done by other

approaches. Given the results of f-measure, it is said the overall accuracy of protein

TABLE 11 EXPERIMENTAL RESULTS OF F-MEASURE AND MMR OBTAINED FROM DIP DATASETS

Data Set Approach # Coverage f-measure MMR

Precision Recall f-measure

DIP-Scere

EGCPI 441 2787 0.48 0.64 0.551st 0.322nd

GMFTP 517 2509 0.28 0.60 0.383rd 0.33rd

ClusterONE 335 1368 0.35 0.42 0.383rd 0.19

DPClus 856 2973 0.15 0.54 0.24 0.26

MCL 691 4579 0.12 0.32 0.18 0.18

SPICi 394 2055 0.24 0.39 0.3 0.18

IPCA 1602 2142 0.23 0.8 0.36 0.371st

COACH 853 1952 0.27 0.7 0.392nd 0.322nd

CFinder 192 2143 0.3 0.2 0.24 0.13

DIP-Hsapi

EGCPI 489 1241 0.37 0.13 0.21st 0.051st

GMFTP 187 806 0.31 0.04 0.07 0.02

ClusterONE 201 710 0.29 0.04 0.08 0.02

DPClus 563 1644 0.19 0.09 0.12 0.051st

MCL 549 2434 0.17 0.07 0.1 0.042nd

SPICi 194 863 0.35 0.05 0.09 0.02

IPCA 289 515 0.56 0.12 0.192nd 0.051st

COACH 151 492 0.63 0.07 0.133rd 0.033rd

CFinder 111 515 0.5 0.04 0.08 0.02

97

complexes identified by EGCPI is better than prevalent algorithms. When evaluated by

the MMR measure, EGCPI also performed robustly in all the data sets. As the table

shows, in the datasets of Gavin, Krogan-Core, and DIP-Hsapi, EGCPI ranks the first

and it holds the second-best place in Collins and DIP-Scere. Given such results, it is

concluded that the protein complexes identified by EGCPI may more accurately

represent the known protein complexes in the benchmarking sets. As for the number of

identified protein complexes and the coverage, EGCPI covered relatively more proteins

when detecting protein complexes in each set of data, but it did not identify a large

number of protein complexes. Together with the results of f-measure and MMR, it is

seen that EGCPI is not an algorithm that obtains better experimental results by

increasing the number of identified protein complexes.

To investigate whether other algorithms can obtain a competitive performance if they

are used with the same weighted PPI network data, we compared the experimental

performance obtained by those algorithms which can deal with weighted network data,

including ClusterONE, MCL, and SPICi with that obtained by EGCPI. The results are

summarized in Table 12. As the table shows, the performance of ClusterONE, MCL and

SPICi is improved to some extent, but EGCPI still outperforms these three algorithms

even when they use the weighted network data generated by the degree of topological

similarity. Obtaining such results shows taking into consideration both topology and

attribute makes EGCPI outperform those algorithms considering network topology only.

In total, EGCPI’s performance on the task of protein complex identification is very

promising. It obtains better results in both MMR and f-measure in most data sets.

Therefore, EGCPI can perform better when it treats the task of protein complex

identification as an optimization problem which takes into consideration both attribute

information and topology of a PPI network.

98

6.3.3. The effect of parameter settings

As described before, there are two parameters in EGCPI, λ and OvMax determining the

results of identified protein complexes. In order to investigate how these parameters,

impact the results of protein complex identification, we executed EGCPI to identify

protein complexes in the five data sets with λ and OvMax changing from 0.1 to 1.0,

using a 0.1 increment. After collecting the identified protein complexes using different

combinations of λ and OvMax, we evaluate them with Precision, Recall, f-measure and

MMR. Here we take the variations of the above measures obtained in the data set

Krogan-Core as an example (Fig. 14). As the surfs shown in Fig. 14 (a) and Fig. 14 (c),

Precision and f-measure share an analogous trend when λ and OvMax change. Simply

setting λ and OvMax to the values near to 0 or 1 may not obtain satisfying results. For

example, EGCPI may obtain a relatively low Precision when λ is set to 0.2, no matter

how to configure OvMax. When using a small λ, EGCPI may incorporate more proteins

with lower degree of attribute homogeneity so that the protein complexes may not well

match the known protein complexes. Although Precision and f-measure are relatively

higher when λ and OvMax are set very near to 1, EGCPI cannot identify those protein

complexes including more proteins so that some biological significance of the identified

protein complexes is missing. Given such concerns, appropriate settings of λ and

OvMax are essential to the experimental performance of EGCPI.

As Fig. 14 (b) and Fig. 14 (d) show, Recall, and MMR share the similar variations under

different combinations of λ and OvMax. Using higher λ and OvMax, EGCPI may

identify more protein complexes in the PPI network, so that it is possible for EGCPI to

identify more protein complexes in the benchmarking set and higher Recall can be

obtained. Since each identified protein complex including fewer proteins as λ and

OvMax are set as higher values, its MMR is consequently larger than that of the

identified protein complex including more proteins. Since we desire an approach that

99

can accurately identify protein complexes including relatively more proteins, in general,

we recommend to let EGCPI perform the task of protein complex discovery when λ and

OvMax are set between 0.6 and 0.9. EGCPI may obtain a robust performance when λ

and OvMax are appropriately configured in that range. This is also the reason why we

used the parameter settings for EGCPI which are shown in Table 9 in our experiments.

6.3.4. Complexity of EGCPI

To determine the efficiency of EGCPI, we analyze the complexity of EGCPI and

recorded the execution time when it performed the task of protein complex

identification. Here we mainly focus on the complexity of the evolutionary clustering

as it is the dominant part of EGCPI. Unlike other algorithms, the complexity of EGCPI

can be considered separately for initialization and reproduction. When EGCPI

initializes a population of p individuals for a PPI network containing nV vertices and nE

edges, for each chromosome which can be randomly initialized to contain S clusters, it

(a) (b)

(c) (d)

Fig. 14. Sensitivity test of EGCPI using different settings of λ and OvMax

100

performs its tasks requiring O(2p(nE+S)), to construct the chromosomes and compute

their fitness values. For reproduction, if d descendants are produced for each generation,

and if the rate of crossover is r, EGCPI works under the complexity of O(nVr) and it

takes O(2nE+nV(4+r+S)+2S), for mutation and the computation of fitness. For the whole

reproduction process, therefore, the complexity is O(d(2nE+nV(4+r+S)+2S)). If EGCPI

takes g generations to achieve convergence, the complexity is of

O(2p(nE+S)+dg(2nE+nV(4+r+S)+2S)). Since 2p and dg are much smaller than nE and

nV, we can assume that the two are equal to a constant, c. So, the complexity of EGCPI

is approximately of O(c(3nE+SnV)). But as reproduction progresses, the complexity

should be much lower than this estimation since the operations for SV (i.e.,

O(nE+nV(S+2))) decrease tremendously as the evolutionary clustering goes on. In our

experiment, we ran EGCPI on a workstation with 4 CPU (3.5GHz) and 16GB RAM.

The total time consumption for evolutionary graph clustering in the largest dataset DIP-

Scere was less than 3.5 seconds and that EGCPI reproduced individuals of each

generation costing less than 0.15 second when we used the settings of EGCPI

mentioned in Section 6.3.1. Given the complexity analysis and time-consumption

recorded in the experiment, EGCPI can be seen as an efficient algorithm for protein

complex identification.

6.3.5. Biological significance of identified protein complexes

Besides evaluating EGCPI by f-measure and MMR, we also investigated whether there

was something biologically significant in the identified protein complexes.

To perform the investigation, we used GO::TermFinder [15] to make a functional

enrichment analysis. Provided by SGD [25], GO::TermFinder is a web-based service

that can be used for searching significant shared GO terms in the proteins of an

identified protein complex. In our analysis, we set different thresholds of p-value from

1E-2 to 1E-15. In other words, those GO terms whose p-values are equal to or lower

101

than the threshold may be identified as significant GO ones. Not all these protein

complexes whose proteins share significant GO terms are known ones that can be found

in databases such as MIPS/CYGD and CYC2008, but they can be considered as

candidates of real protein complexes due to their statistical significance revealed by the

functional enrichment analysis. Having obtained the p-value of each protein complex,

we recorded the ratio that the identified protein complexes containing at least one GO

term with the p-value lower than different thresholds in each GO category.

Besides analyzing the protein complexes identified by EGCPI, we also performed the

TABLE 12 EXPERIMENTAL RESULTS USING WEIGHTED NETWORK DATA

Data Set Approach # Coverage f-measure MMR

Precision Recall f-measure

Collins

EGCPI 236 1160 0.67 0.54 0.6 0.29

ClusterONE 181 1207 0.59 0.44 0.5 0.26

MCL 302 1620 0.4 0.52 0.46 0.28

SPICi 94 819 0.79 0.31 0.44 0.18

Gavin

EGCPI 298 1150 0.66 0.56 0.6 0.27

ClusterONE 156 950 0.6 0.37 0.46 0.2

MCL 202 1430 0.44 0.36 0.39 0.17

SPICi 83 532 0.75 0.25 0.37 0.13

Krogan-

Core

EGCPI 526 1442 0.53 0.65 0.59 0.32

ClusterONE 222 1007 0.5 0.42 0.46 0.25

MCL 581 2674 0.2 0.48 0.29 0.24

SPICi 65 435 0.86 0.22 0.35 0.13

DIP-Hsapi

EGCPI 489 1241 0.37 0.13 0.2 0.05

ClusterONE 229 775 0.31 0.05 0.09 0.02

MCL 644 2434 0.17 0.08 0.11 0.05

SPICi 37 148 0.73 0.02 0.04 0.01

DIP-Scere

EGCPI 441 2787 0.48 0.64 0.55 0.32

ClusterONE 243 919 0.52 0.44 0.48 0.21

MCL 903 4579 0.13 0.46 0.2 0.23

SPICi 44 235 0.7 0.11 0.19 0.07

In the experiment shown in this table, ClusterONE, MCL and SPICi identified protein complexes

using weighted PPI network graphs that are generated based on the degree of topological similarity

measure.

102

same p-value test on the protein complexes identified by GMFTP, MCL, IPCA and

ClusterONE. GMFTP has been proved to be a very effective method which takes into

consideration both network topology and functional attributes. MCL, IPCA, and

ClusterONE are also proved to be effective methods considering network topology to

identify protein complexes in the PPI network. Selecting the above approaches to

compare with EGCPI is because all of them obtained robust performances in the five

sets of data. Those approaches which did not perform robustly were not considered in

the p-value test. The results of p-value test of EGCPI, GMFTP, MCL, IPCA and

ClusterONE are presented in Table 13. As the table shows, the proportion of protein

complexes with significant GO terms identified by EGCPI is higher than that of other

algorithms, especially when the threshold of p-value is tightened (e.g., p-value<1E-15).

This means EGCPI can identify more protein complexes with shared significant GO

terms, compared with other approaches. Despite some of those identified protein

complexes are not the known protein complexes currently, they have a higher

possibility to be identified as real protein complexes through laboratory experiments in

future. Based on the results of p-value test, it is seen that EGCPI is a promising approach

to protein complex discovery.

Moreover, we also enumerate a number of matched protein complexes identified by

EGCPI and select several protein complexes to make an analysis of both topology and

GO information.

In Table 14, we enumerate 10 matched protein complexes identified by EGCPI. As the

table shows, known protein complexes including more proteins like RSC complex,

Mitochondrial ribosomal complex (small unit), Anaphase-promoting complex and

PBAF complex can be successfully identified by EGCPI. Meanwhile, protein

complexes including fewer sub-units such as Cytoplasmic exosome complex and

103

Arp2/3 Complex can be detected by the proposed approach, too. Given such results, it

is seen that EGCPI is effective for identifying protein complexes with different sizes.

In data set Krogan-Core, DASH complex was identified successfully by EGCPI. The

structure stored in the CYC2008 database is shown in Fig. 15. It is noticed that proteins

except P69850 and P69852 connect to each other densely. Due to this topological

feature, P69850 and P69852 might be excluded from the protein complex by some

algorithms based on network topology. For examples, CFinder, which is based on clique

TABLE 13 P-VALUE TEST ON PROTEIN COMPLEXES IDENTIFIED BY DIFFERENT ALGORITHMS

Data Set Approach <1E-15 <1E-10 <1E-5 <1E-2

Collins EGCPI 36.86% 60.59% 87.29% 94.91%

GMFTP 31.53% 59.6% 85.71% 94.09%

MCL 15.6% 28.72% 70.21% 83.69%

IPCA 30.7% 50.3% 78.4% 90.2%

ClusterONE 25.6% 48.8% 78.8% 93.1%

Gavin EGCPI 42.62% 63.09% 86.91% 95.64%

GMFTP 31.4% 51.74% 82.56% 92.44%

MCL 22.59% 33.33% 64.97% 80.79%

IPCA 14.9% 37.7% 72.9% 92.8%

ClusterONE 20.9% 31.7% 60.5% 90.1%

Krogan-Core EGCPI 32.13% 46.19% 74.52% 89.54%

GMFTP 18.39% 35.45% 63.88% 69.23%

MCL 8.37% 14.79% 43.17% 70.82%

IPCA 14.6% 28.4% 67.6% 88.7%

ClusterONE 21.9% 38% 68.2% 88.4%

DIP-Scere EGCPI 33.56% 52.15% 82.54% 94.56%

GMFTP 14.2% 26.26% 54.28% 78.99%

MCL 8.17% 11.43% 32.56% 62.95%

IPCA 3.9% 15.2% 58.1% 91.5%

ClusterONE 15.5% 26.9% 60.6% 85.1%

DIP-Hsapi EGCPI 22.49% 50.1% 93.66% 99.79%

GMFTP 16.04% 39.04% 84.49% 97.33%

MCL 9.29% 25.87% 71.22% 87.07%

IPCA 1.4% 18% 92% 100%

ClusterONE 9.5% 33.8% 84.6% 99%

104

percolation, also identified DASH complex successfully, but P69850 and P69852 were

excluded from the complex because of their lower connectivity, compared with other

proteins in the complex. MCL identified all the proteins of DASH complex, but the

identified structure involved a superfluous protein, Q12374 into the complex.

Compared with other algorithms, EGCPI can identify complexes successfully may be

due to the following reasons. First, it utilizes an evolutionary clustering approach to

locating proteins sharing with a higher degree of topological similarity in a cluster. Then,

the BFS method is used to form the protein complex not only based on topology but

also the degree of attribute homogeneity between two connected proteins. For example,

TABLE 14 TEN MATCHED PROTEIN COMPLEXES IDENTIFIED BY EGCPI

Protein complex mr Subunits (Uniprot ID)

Cytoplasmic exosome

complex

0.9 P46948,P25359,P53859,P53256,Q12277,P38792,Q05636,Q08162,Q08285,

P48240

RSC complex 0.94 P38781,Q12406,Q02206,Q06168,P25632,P53330,P38210,Q9URQ5,P53236

,Q06639,P32832,Q05123,Q03124,P32597,Q07979,Q06488,P43609

Mitochondrial ribosomal

complex (small subunit)

0.81 P53733,P10663,P47150,P21771,P38175,P10662,Q01163,P02381,P53305,Q

02608,P36056,P12686,P32902,Q02950,P17558,Q03201,P27929,P47141,P3

8796,P28778,P19955,P40496,P33759,Q45TY3,O75012,Q03799,Q03246,Q0

3976,P38120,P53292,P42847

TFIID complex 0.86 Q03750,P11747,P35189,P46677,P38129,Q12030,P50105,Q12297,P23255,Q

03761,P53040,Q05027,Q05021,Q04226

mRNA cleavage and

polyadenylation specificity

factor complex

0.93 P36104,P35728,P39927,P29468,Q06224,Q06632,Q12102,P32598,Q01329,

P45976,Q08553,P42073,P42841,Q06102,P53538

DASH complex 1.0 P69852,P69851,P69850,P36131,P53168,Q12248,P36162,Q03954,P35734,P

53267

Anaphase-promoting

complex

0.8 P14724,Q12440,Q04601,P09798,Q08683,P53068,Q12157,P40577,Q12379,

P38042,P53886,Q12107,P16522,P26309,P53197

Nuclear exosome complex 1.0 P46948,P25359,P53859,P38801,P53256,Q12277,P38792,Q05636,Q08162,

Q08285,Q12149,P48240

PBAF Complex 0.634 O96019,Q68CP9,Q86U86,P51532,Q12824,Q92922,Q8TAQ2,Q969G3,Q96

GM5,Q92925,Q6STE5

Arp2/3 Complex 0.875 P61160,P61158,O15143,O15144,O15145,P59998,O15511

mr, matching rate between the identified protein complex and the known protein complex; Uniprot

IDs of matched proteins are in bold font.

105

there are 21 GO terms and 16 GO terms annotated to P36131 and P69852 as attributes

values, respectively. 16 GO terms are shared by the two proteins so that degree of

attribute homogeneity between them is 0.76, which is relatively high. Given this reason,

P69852 is treated as a member of the identified protein complex by EGCPI. Taking into

consideration attribute homogeneity when identifying protein complex makes EGCPI

find more proteins with homogeneous attributes and improve its accuracy of protein

complex identification.

In DIP-Hsapi, EGCPI successfully identified Arp2/3 Complex. The structure of Arp2/3

complex is shown in Fig. 16. As the figure shows, Arp2/3 complex is a typical star

structure that O15144 connects all the other proteins in the protein complex. The

identified protein complex successfully matched all the proteins in the known complex,

but Q92747 was incorrectly incorporated into Arp2/3 complex. By investigating the GO

terms annotated to Q92747 and O15144, we found that more than 60 percent of the

attributes of Q92747 were also associated to O15144. As a result, EGCPI treated

Fig. 15. The structure of DASH complex in CYC2008 database. The structure

identified by EGCPI completely matches that of the DASH complex.

106

Q92747 as a member of the identified protein complex because Q92747 performs

similar functions to those of O15144. Given the “incomplete” status of Arp2/3 complex

and the similar functional attributes performed by Q92747 and O15144, there is a high

possibility that Q92747 is confirmed as a member of Arp2/3 complex in future through

laboratory-based experiments.

6.4. Summary

In this section, a novel approach to protein complex identification, EGCPI is proposed.

EGCPI constructs a weighted PPI network Graph by assigning interactions with

weights according to the degree of the topological similarity measure. Based on the

evolutionary strategy that can form the optimal clusters with vertices that are densely

connected in the PPI network graph, a breadth-first search method is then used to further

partition each cluster and discover protein complexes with proteins sharing high degree

Fig. 16. The structure of Arp2/3 Protein complex in MIPS/CORUM

database. The matched proteins identified by EGCPI are in the dashed circle.

107

of attribute homogeneity. The experimental performance proves that EGCPI using

evolutionary graph clustering can obtain better results when identifying known protein

complexes. In future, we will attempt to improve the efficiency of EGCPI, develop

some evolutionary approaches which can discover overlapping protein complexes in

the PPI network.

108

7. TBPCI-MINING CLUSTERS IN THE ATTRIBUTED GRAPH BY

COMPUTING THE OPTIMAL DEGREE OF BOUNDEDNESS

7.1. Background

In this section, we present a novel approach, called TBPCI, to identify clusters based

on the concept of a measure of boundedness. Such a measure is defined as an objective

function of a Jaccard Index-based connectedness measure which takes into

consideration how much two proteins within a network are connected to each other, and

an association measure which takes into consideration how much two connecting

proteins are associated based on their attributes. Based on the above two measures, the

objective function is derived from capturing how strong the vertices can be considered

as bounded together and the objective value is therefore referred as the aggregated

degree of boundedness. To identify interesting sub-graphs, TBPCI computes the degree

of boundedness between all possible pairwise vertices. Then, TBPCI uses a Breadth-

First-Search method to determine whether a vertex pair should be incorporated into the

same sub-graph. TBPCI has been used in the application of protein complex

identification and tested with several real data sets and the experimental results show it

is an effective approach for identifying clusters in the attributed graph.

To perform the task of protein complex identification in PPI network graphs, there have

been several algorithms proposed. Among these methods, ones that consider both

network topology and attribute information are not many. In [66], a method that

identifies protein complexes based on finding clusters in which proteins perform similar

functions is proposed. In [67], another algorithm is proposed to simultaneously consider

PPI network data and gene expression data in the protein complex identification process.

In [47], an algorithm called PCIA is proposed to identify protein complexes in PPI

networks based on network topology and attribute information. It makes use first of a

measure of attribute similarity followed by the use of the MCL algorithm to identify

109

densely connected clusters during the process. In [117], an algorithm called GMFTP, is

proposed to identify protein complexes using the generative model by also considering

both network topology and attribute information. The effectiveness of these algorithms

shows that protein complexes can be more accurately identified when both topology

and attribute information are considered.

Different from the state-of-the-art, TBPCI identifies interesting clusters as protein

complexes in the PPI network graph based on information available about both

attributes of the proteins and topology of their connections. Unlike traditional

approaches, such as those based on graph partitioning, clique percolation, etc., the

problem of protein identification is formulated as an optimization problem.

Given a PPI network graph, TBPCI performs its tasks by firstly computing the Degree

of Connectedness (σ) which is defined to be between each pair of proteins in the PPI

network. σ quantifies the extent that two proteins are similar based on the topology of

the network. A higher value of σ can be interpreted as a higher degree of similarity

between the local topology of the network that the proteins are in.

In addition to considering topology, TBPCI also measures how much the attribute

values of two proteins are associated with each other. The measure, which we call, the

Degree of Attribute Association (φ) is used to measure the strength of attribute

correlation between each pair of proteins. The higher φ is, the stronger the attribute

correlation between two proteins is.

After obtaining σ and φ for each pair of proteins in the PPI network, by representing the

network in the form of a graph, TBPCI uses an iterative method to obtain an optimal

weighted graph (W), each element of which measures how strong a pair of proteins can

be bounded together. We name the entry in W as Degree of Boundedness (w) between

110

pairwise proteins. Using a Breadth-First-Search method in W, TBPCI can find graph

clusters that have more tightly bound in a sense. These graph clusters are then

considered to represent protein complexes. Given the experimental results obtained,

TBPCI is shown to be a very promising method for mining meaningful clusters, when

it is used in some of the real applications, e.g., protein complex identification in PPI

network graphs.

7.2. TBPCI in details

7.2.1. Mathematical preliminaries

Given a PPI network containing nV proteins and nE interactions, it is represented as G

= (V, E, Λ), where 1) V represents as the vertex set of the PPI network; 2) E represents

as the edge set of the PPI network; 3) Λ is the set attribute values for proteins in G and

it contains three subsets, Λp, Λf, Λc. They represent the sets of attributes of biological

processes, molecular functions and cellular components, respectively.

It is also noted that the number of attributes from different domains that are associated

with a vertex, say vi, might be different. In general, |Λi
p|≠|Λi

f|≠|Λi
c| for each vertex in G.

Even sometimes the number of attributes from a particular domain might be equal to

zero because the attribute information is missing or removed. As for different vertices,

say vi and vj, the attributes from the same domain are always different, i.e. |Λi
p|≠|Λj

p|,

|Λi
f|≠|Λj

f| or |Λi
c|≠|Λj

c|. TBPCI will perform the task of protein complex discovery using

the given PPI network data G.

TBPCI needs to obtain the Degree of Connectedness and Degree of Attribute

Association, σ and φ for pairwise proteins in the PPI network before identifying protein

complexes. The information on σ and φ can be easily obtained by TBPCI, based on the

data in G.

111

The Degree of Connectedness (σ) quantifies the extent that the common connected

proteins are shared by two pairwise proteins, say vi and vj. It is defined as a Jaccard

index similarity method:

ijji

ijji

ij
eee

eee









 (55)

where 1) ei+ is the set of edges that connect vi and others; 2) the symbol |. | means the

cardinality of a given set; 3) eij is equal to 1 if vi and vj are connected in G. For each

element in σ, say σij, it ranges between 0 and 1. A higher value of that means vi and vj

share more common connected vertices in G. This indicates a higher similarity between

vi and vj from the structure perspective.

Recently, some algorithms for protein complex identification, such as approaches

proposed in [26], [27], [70], [71], are proposed based on identifying protein complexes

whose proteins perform the homogeneous functions. Having deeply looked into

different sets of real PPI network data, we found that those proteins with functional

homogeneity belong to the same protein complexes was not always the truth. Let the

molecular function positive regulation of transcription from RNA polymerase II

promoter (GO:0045944) be an example. In some real PPI network data, such as the one

described in [105], the number of proteins that perform the above molecular function is

250. Apparently, it is a relatively high number. As a result of using functional similarity

as the measure of identifying protein complexes, these 250 proteins might be located in

the same complex. Therefore, a probable outcome of such a grouping method is a lower

rate of identification. Moreover, there is another observed fact that some known protein

complexes are constituted of proteins which perform very different functions. For

example, one protein with ID P50874 of nuclear origin recognition complex (GO:

0005664) performs very different functions, compared with other proteins in that

112

protein complex. As a result, those algorithms based on functional homogeneity

probably cannot identify such protein complexes whose proteins perform different

functions. Given such observed facts, to measure the correlation between pairwise

proteins from the property of attribute information, TBPCI computes the degree of

attribute association (φ) using (2), (6), and (7).

After obtaining all the values of φ, TBPCI uses values of θ when the corresponded σ is

larger than 0. TBPCI makes use of two matrices, S and A to store the obtained values

of σ and φ between pairwise vertices in G. TBPCI considers to find optimal weights for

those pairwise vertices with a larger-than-zero σ when identifying protein complexes in

a PPI network. The found weight measures how strong two pairwise proteins can be

bounded together.

7.2.2. Finding optimal weights between pairwise vertices

7.2.2.1. Objective function and updating method

Given the obtained information on S and A and the PPI network data G, TBPCI attempts

to seek optimal weights that may quantify the strength that each pair of proteins can be

considered as bounded together. Such weight is named as Degree of Boundedness (w).

To complete the task, TBPCI formulates the following optimization problem:

   

10,10

,

),(
22







FW

AFWSWW

FWWWtrWWtrFW

AS

T

A

T

S

tosubject

O

Maximize

FF




 (56)

where 1) W is the matrix in which the variables represent the Degree of Boundedness

between pairwise vertices, 2) F is the matrix in which the variables represent the weight

between pairwise vertices when the attribute association is considered only, 3) the

symbol “◦” means the Hadamard product of two matrices, 4) α is a parameter that is

113

used to constrain the effect of attribute association within the optimization process. The

objective value of (56) aggregates the Degree of Boundedness that each pair of vertices

in G with a larger-than-zero σ. Apparently, those pairwise vertices with relatively higher

values of σ and φ should be assigned larger ws. However, obtaining appropriate Degrees

of Boundedness between all possible pairwise vertices cannot be achieved immediately.

In order to obtain optimal Degrees of Boundedness, TBPCI uses an iterative method

that constantly updates the values in W and F till the objective function achieves

convergence. The updating methods for W and F used by TBPCI are

   

 

   

 

  FAWΔF

ΔFF

ΔFFΔWF

W

WWWΔW

ΔWW

ΔWWΔWW

F

A

AS

2

)(
)(

10

22

)(
)(

10

:





































b
otherwise

if
f

keeping

a
otherwiseη

ifη
w

keeping

ij

ijij

ij

ij

ijij

ij

 (57)

where η and δ are the step lengths for each iteration of updating for W and F,

respectively. By alternatively updating W and F following the rules (57a) and (57b),

the objective function in (56) will be lead to the convergence of the local optima.

7.2.2.2. Convergence analysis

Whether the proposed objective function is convergent is essential for TBPCI to

identify protein complexes in the PPI network. Here we will give a detailed proof for

the convergence of the objective function (56), using the updating method in (57). First,

the proposed objective function is proved to be convergent without constraint. And then,

we will proof that the objective function is also convergent when the box constraints,

i.e. 0≤W≤1 and 0≤F≤1 are used by identifying the relationship of convergence between

the above two types of constraints.

114

For the proof of convergence of (56) by updating W following the rule in (57a), it is

equivalent to show that, keeping F unchanged, O(Wt+1, F)≥O(Wt,F) after updating W

following (57a) in each iteration. Since the updating rule is elementwise, it is sufficient

to show for any element wij, O(wij) is non-decreasing, under the updating rule in (57).

Therefore, we have

 
ij

t

ij

t

ij

t

ij

t

ij

w

wwOwO

WWW AS 22

)()(1








 (58)

Here we assume that the step length η is a small positive scalar which is smaller than 1

and near to zero. Hence, we can conclude that wij
t+1 is near to wij

t, after the updating.

To investigate the local information near to wij
t, we use the Taylor series expansion to

rewrite O with respect to wij as

 
21

2

2
11)(

2

1
)()(),(t

ij

t

ij
t

ij

t

ij

t

ijt

ij

t

ij

t

ij

t

ij ww
w

O
ww

w

O
wOwwO 









 

 (59)

Since wij
t+1 is near to wij

t, the value of (59) can be seen as an approximant of (56) after

updating wij from iteration t to t+1. If the sum of the latter two components in (59) is

non-negative, we can verify that O is non-decreasing when updating wij according to

(57a). Because wij is any element in W, it also means O is finally convergent with

respect to W. It is noted that (59) can also be written as

 
 22

2

2
1

2

1
)(),(t

ij
t

ij

t

ijt

ij

t

ij

t

ij

t

ij w
w

O
w

w

O
wOwwO 









  (60)

By replacing △wij, first-order and second-order partial derivative of O, the last two

components can be written as

115

 
 

 

    




















































22

2

2
2

2

22

2

2

22

2

1

2

1

ijij

t

ij

t

ij

t

ij
t

ij

t

ijt

ij w

O

w

O
w

w

O
w

w

O

1SWWW AS

 (61)

Hence the sum of last two components in (59) is equal to the product of two scalar

shown in (61). Obviously, the first scalar is non-negative. According to our assumption

that the step length η is a small positive scalar which is smaller than 1 and near to zero,

and sij≤1, we conclude η2 is smaller than η and [S-1]ijη
2+η>0. Thus, we have

 
0)(

2

1
)()(),(21

2

2
11 









  t

ij

t

ij
t

ij

t

ij

t

ijt

ij

t

ij

t

ij

t

ij ww
w

O
ww

w

O
wOwwO (62)

This means O(wij
t+1) is non-decreasing and O(wij

t+1)= O(wij
t) only when O converges

to the local optima. Next, we will show the proposed objective function can also achieve

its local optima when the box-constraint 0≤W≤1 is active. Based on the KKT condition,

when (56) is convergent with respect of W, we have the following


































0
)0(

0

010

0
)1(

1

t

ij

t

ij

ij

t

ij

ij

t

ij

t

ij

ij

ww

O
w

w

O
w

ww

O
w

 (63)

It is apparent that (56) is convergent when wij satisfies the second case in (63) since its

first order partial derivative at wij is zero and we have proved that it is convergent when

W is updated following (57a). Hence, it is essential to investigate whether (56) is

convergent when wij achieves the upper or lower boundary. Assume wij is any element

in W and it equals to 1, the first-order partial derivative of (56) about wij at 1 is larger

than zero. This indicates (56) achieves its local optima when wij>1. We also assume that

116

there is another point w’
ij, that is within the constrained area, near to wij and leads (56)

to a larger objective value. Based on the above assumptions, we have

 

     01)1(

)(
2

1
)()(),(

''

2'

2

2
''














ijijijij

ijij

ij

ijij

ij

ijijij

ww

ww
w

O
ww

w

O
wOwwO

AW1S 

 (64)

It is noted that (w’
ij-1) < 0. Thus, the above inequality holds only when the second

component is smaller than zero. But, by comparing the second component of the

inequality with the first order partial derivative of (56) about wij, we have

     
ijijijijij w AA W1SW1S   21 ' (65)

As we have assumed that the first-order partial derivative of (56) about wij at 1 is larger

than zero, the result obtained in (64) contradicts to the assumption. Therefore, for the

first case in (63), (56) converges with respect to wij=1. As wij is any element in W, (56)

is convergent with respect to W.

For the case that wij at the lower boundary, we have the following assumptions before

proving its convergence: wij is any element in W and it equals to 0, the first-order partial

derivative of (56) about wij at 0 is smaller than zero. This indicates that (56) achieves

its local optima at somewhere wij <0. We also assume that there is another point w’
ij,

that is within the constrained area, near to wij and leads (56) to a larger objective value.

Based on the above assumptions, we have the following

 
0

2

1
)(),(

2'

2

2
'' 









 ij

ij

ij

ij

ijijij w
w

O
w

w

O
wOwwO (66)

As w’
ij>0, the second order partial derivative of (56) about wij=0 is non-positive, (66)

holds only when the first-order partial derivative of (56) about wij at 0 is larger than

117

zero. But this contradicts to the assumption that the first-order partial derivative of (56)

about wij at 0 is smaller than zero. Therefore, for the third case in (63), (56) converges

with respect to wij=0. As wij is any element in W, (56) is convergent with respect to W.

In a word, following the updating rule for W in (57a), the objective function in (56)

will converge to its local optima with respect to W.

As the proof of convergence of (56) following the updating rule for F is very similar to

that of W, we don’t present the proof in detail. The updating rule for F in (57) ensures

the objective function in (56) is non-decreasing and it can achieve its local optima when

the box constraint 0≤F≤1 is active. Therefore, by keeping one vector of variables

unchanged and updating the other, we have

),(...),(),(),(*110100  FWFWFWFW OOOO (67)

Algorithm 5

Seeking optimal Degree of Boundedness

Input: S, A, α, η, δ, τ, MaxIteration

Output: W, F

Randomly initialize W and F;

Compute objective value

t←1;

do

{ oW←W;

 update W←W+η△W according to rule (57a);

 update F←F+δ△F according to rule (57b);

 compute objective value;

 t←t+1;

}while((W-oW)T(W-oW) >θ and t< MaxIteration);

return W, F;

Fig. 17. Pseudo codes of the optimization process

118

This non-decreasing updating will stop till the objective function (56) converges to the

local optima O(W*, F*).

7.2.2.3. Stopping criterion for the optimization process

As the rate of updating becomes lower as W and F approach to W* and F*, we use the

following criterion to determine whether the optimization process stops at after a certain

number of iterations:

 )()(11 tttt
WWWW

T
 (68)

where τ is a positive number to tighten or loose the minimum rate of updating W that

satisfies the stopping condition.

Algorithm 6

Protein complex identification

Input: G, W

Output: Protein complex set

reconstruct W according to G;

for each vertex vi in W{

 create linked list visiting and visited;

 find hwi;

 if(hwi>0){

 add vi to visiting;}

 while(visiting ≠ Φ){

 vj←head of visiting;

 delete vj from visiting;

 add vj to visited;

 search vk: neighbors of vj;

 if(Wjk ≥ hwi){

 add vk to visiting;}}

if(|visited|>0){

 create protein complex PCi;

 if(MaxOSPCi<MaxOS){

add PCi to Protein complex set;}}}

return Protein complex set;

Fig. 18. Protein complex identification

119

7.2.2.4. Summary of the optimization process

Based on the above description on finding the optimal Degree of Boundedness between

each pair of proteins in the PPI network, the approach can be summarized as the pseudo

codes shown in Fig. 17.

7.2.3. Identifying sub-graphs in the weighted graph

Having obtained the optimal W, TBPCI sets all those variables in W to 0 if the

corresponding vertices in G are not connected. After that, W can be considered to be a

weighted graph with each element (wij) in it representing the strength that vertex vi and

vj are bounded together. wij is larger than zero when there is an edge between vi and vj

in G and they have a certain degree of boundedness. A higher value of wij means a

higher boundedness that vi and vj can be grouped together. TBPCI uses W to complete

the task of identifying protein complexes in the PPI network.

Given W, TBPCI performs a further search of graph clusters as protein complexes. To

perform the task of protein complex identification, TBPCI uses a Breadth-First-Search

(BFS) method to form protein complexes by selecting each protein in the PPI network

as a seed. First, it selects an edge with the highest weight hwi, that connects the seed in

W, and incorporates both of the two connected vertices vi and vj into a set for forming

a protein complex; second, based on the weight of the selected edge, TBPCI searches

all the neighboring vertices and incorporates those which satisfy the minimum threshold

of w. In TBPCI, this threshold is defined as:










otherwisePC

hwwifvPC
vseedPC

kmm

k


):((69)

where vk stands for any vertex in the set and vm is any vertex connecting to vk. In other

words, λ is used to tighten or loose the minimum w. Only vertices sharing connections

with ws that are not lower than λ×hwi can be incorporated into the complex set so that

120

all the proteins in the complex are tightly bounded to each other. The searching in the

second step will be terminated till there is no new vertex added. When the above search

is finished, TBPCI forms a protein complex constituted by the connected vertices

selected in the searching phase. To reduce the redundancy between the identified protein

complexes, TBPCI uses another measure, Maximum Overlapping Score to finally

determine whether the identified protein complex should be incorporated into the set of

identified protein complexes. And the Maximum Overlapping Score is defined as:

SI

SI

OS
PCPC

PCPC
Max




 max (70)

where PCI and PCS stand for the identified protein complex and any protein complex

in the complex set, respectively. When MaxOS is larger than some threshold, TBPCI will

not incorporate the identified protein complex into the identified complex set. A lower

threshold of MaxOS used by TBPCI means there are fewer same proteins formulating

each protein complex in the identified set. TBPCI will stop forming protein complexes

till it traverses all vertices in W. In order to explain this BFS method in detail, we give

its pseudo codes in Fig. 18. It also should be noted that any method which can

effectively extract connected components in the weighted graph can be used to discover

protein complexes in the weighted graph constructed by TBPCI.

7.3. Experiment and analysis

For performance testing, TBPCI has been tested with five sets of real world PPI network

data: Collins [23], Gavin [37], Krogan [56], DIP-Scere [105], and DIP-Hsapi [105].

The detail information on these datasets have been summarized in Section 6.3.

For the experiments, the attributes information on the proteins were obtained from GO

database [24]. As what has been mentioned, all GO terms in cellular components which

121

may infer a particular protein belongs to some complex (es) have been excluded.

For performance evaluation using the four sets of data related to yeast Saccharomyces

cerevisiae, we compared the protein complexes identified by different algorithms with

the known protein complexes as contained in the CYC2008 [83] and the MIP/CYGD

[42] [75] databases. The known protein complexes in these two databases were both

collected in March 2013. Altogether, there are 408 known protein complexes in

CYC2008 and 255 known protein complexes in MIP/CYGD database. After merging

the data in the two databases, a total of 296 different known protein complexes

containing more than 2 proteins were available for our use for performance analysis.

For the DIP-Hsapi data set, the protein complexes identified in it by each algorithm

were compared with known protein complexes in the MIPS/CORUM [88] database

which contain a total of 1466 different protein complexes.

7.3.1. Experimental set-up and evaluation measurement

For performance evaluation, TBPCI were compared with a number of different

algorithms, including PCIA, MCL, GMFTP, RNSC, MCODE, CFinder, CMC and

COACH. When testing these algorithms, we either used the default parameter settings

recommended by the authors or tried as many different settings as we can to obtain the

best performance with different algorithms. For the case of TBPCI, we set α= 0.9,

η=δ=0.05 τ=1e-6 and MaxIter = 100. For λ and MaxOS, they are set within the range

TABLE 15 PARAMETER SETTINGS OF DIFFERENT APPROACHES

Approach Parameter Approach Parameter

TBPCI Experiment Trials PCIA inflation=1.8, μ=0.7 (default setting)

MCL inflation = 1.8 (default setting) GMFTP K=1000 (default setting)

RNSC N/A CFinder K=3

MCODE VWP=0.2 (default setting) COACH Experiment Trials

CMC Experiment Trials

N/A: There is no parameters needed to be set.

122

from 0.1 to 1 with a 0.1 increment while the performance was being tuned. The detailed

settings of parameters for all different algorithms are listed in Table 15.

For performance comparison, we mainly used two different measures, f-measure, and

Maximum Matching Rate (MMR), which have been defined in Section 6.3. Based on

their definitions, f-measure and MMR can be seen to complement each other.

Besides evaluating the experimental results by f-measure and MMR, we also used

GO::TermFinder [15] to perform functional enrichment analysis on the protein

complexes identified by TBPCI. This analysis helps to evaluate the biological

significance of the protein complex identified by TBPCI. Some of the results of the

TABLE 16 EXPERIMENTAL RESULTS OF F-MEASURE AND MMR OBTAINED FROM BIOGRID DATASETS

Data Set Approach # Coverage Precision Recall f-measure MMR

Collins

TBPCI 392 1194 0.599 0.642 0.62 0.32

PCIA 416 1607 0.368 0.591 0.453 0.303

GMFTP 203 1088 0.596 0.473 0.527 0.283

MCL 282 1620 0.401 0.493 0.442 0.259

MCODE 111 862 0.775 0.357 0.489 0.208

RNSC 353 1480 0.365 0.544 0.437 0.309

CFinder 114 1160 0.702 0.319 0.438 0.196

CMC 200 1067 0.545 0.443 0.489 0.265

COACH 245 1114 0.51 0.481 0.495 0.176

Gavin

TBPCI 404 1191 0.619 0.607 0.613 0.247

PCIA 378 1417 0.315 0.438 0.366 0.216

GMFTP 172 843 0.643 0.421 0.509 0.228

MCL 177 1430 0.395 0.278 0.336 0.145

MCODE 66 602 0.682 0.167 0.268 0.099

RNSC 307 1258 0.322 0.402 0.358 0.221

CFinder 98 1124 0.561 0.2 0.295 0.115

CMC 391 946 0.263 0.392 0.315 0.203

COACH 324 1052 0.43 0.46 0.445 0.219

Krogan

TBPCI 863 2083 0.453 0.762 0.547 0.342

PCIA 1022 2633 0.158 0.583 0.248 0.332

GMFTP 299 1376 0.413 0.492 0.449 0.282

MCL 514 2674 0.2 0.422 0.272 0.224

MCODE 75 552 0.693 0.2 0.31 0.109

RNSC 751 2142 0.169 0.5 0.253 0.298

CFinder 115 1140 0.496 0.213 0.298 0.139

CMC 869 1100 0.236 0.592 0.337 0.287

COACH 349 1056 0.494 0.536 0.514 0.275

#: The number of protein complexes identified. Coverage: The number of distinct proteins in the

identified protein complexes.

123

analysis are presented in the following sections.

7.3.2. Performance analysis

 The results of the different experiments performed using the different data sets and

algorithms are presented in Table 16 and 17 in terms of the values of the f-measure and

MMR. As shown in the Table, according to the f-measure, TBPCI performed the best in

all the five data sets. When evaluated with MMR, TBPCI also obtains a consistently

good performance. In terms of the number of identified protein complexes and coverage,

it is noted that TBPCI records a relatively higher coverage while maintains a smaller

number of identified protein complexes when compared with the other algorithms.

7.3.3. Convergence of optimization process

 It is shown earlier that the objective function (56), that TBPCI uses may achieve local

optima by iteratively updating W and F based on (57a) and (57b). In performing the

experiments, the variations of the objective values were tracked. In all experiments

using different data sets, it was noted that the objective values exhibit similar changing

trends. In Fig. 19, the curve showing the changes in objective value which obtained

TABLE 17 EXPERIMENTAL RESULTS OF F-MEASURE AND MMR OBTAINED FROM DIP DATASETS

Data Set Approach # Coverage Precision Recall f-measure MMR

Dip-Scere

TBPCI 1405 3307 0.348 0.836 0.491 0.349

PCIA 1497 4445 0.117 0.636 0.198 0.328

GMFTP 514 2509 0.286 0.605 0.388 0.305

MCL 691 4579 0.124 0.327 0.18 0.184

MCODE 60 756 0.383 0.082 0.135 0.046

RNSC 1376 3772 0.094 0.522 0.16 0.284

CFinder 192 2143 0.302 0.205 0.244 0.129

CMC 1389 1763 0.184 0.736 0.295 0.353

COACH 854 1952 0.275 0.697 0.395 0.32

Dip-Hsapi

TBPCI 754 1822 0.336 0.184 0.237 0.067

PCIA 706 2179 0.189 0.108 0.138 0.063

GMFTP 187 806 0.31 0.044 0.077 0.024

MCL 549 2434 0.171 0.074 0.103 0.044

MCODE 61 273 0.459 0.019 0.038 0.008

RNSC 730 1847 0.148 0.086 0.109 0.059

CFinder 111 515 0.505 0.042 0.077 0.019

CMC 149 403 0.537 0.061 0.109 0.027

COACH 151 492 0.629 0.073 0.131 0.029

124

from the data set Collins is displayed. As seen in the figure, TBPCI could approach a

convergent objective value within a number of iterations. This also means that the

updating rate of W becomes less evident as the number of iterations increases. When

the updating rate is less than the predefined threshold or TBPCI achieves the maximum

number of iterations, the W obtained can be considered as optimal Degrees of

Boundedness between pairs of proteins in a PPI network.

7.3.4. Function enrichment analysis between TCPCI and PCIA

Besides evaluating TBPCI using the f-measure and MMR, we have also tried to find out

whether there was something biologically significant in the identified protein

complexes. To do so, we used GO::TermFinder [15] to make a functional enrichment

analysis. Provided by SGD [25], GO::TermFinder is a web-based service that can be

used for searching significant shared GO terms in the proteins of an identified protein

complex. To perform more detailed analysis, we used different thresholds of p-values

when analyzing the identified protein complexes. In other words, those GO terms

whose p-values are equal to or lower than the threshold may be identified as significant

ones.

To compare the performance between the approaches that make use of attributes

information when they identify protein complexes in the PPI network, we also used

Fig. 19. Curve on the variations of objective values

125

GO::TermFinder to analyze the protein complexes identified by PCIA, which has been

proved to be a very effective approach to protein complex identification. It should be

noted that not all the proteins in these protein complexes share significant GO terms

that are known and can be found in databases such as MIPS/CYGD, CYC2008, and

MIPS/CORUM. In such cases, they can be considered as candidates of real protein

complexes due to their statistical significance revealed by the function enrichment

analysis. The results of functional enrichment analysis on the protein complexes that

are identified by TBPCI and PCIA are summarized in Table 18.

As the table shows, the protein complexes identified by TBPCI obtain a much better

performance on the functional enrichment analysis. This means that there are many

more protein complexes identified by TBPCI that have higher possibility to be real

protein complexes that are yet to be confirmed, although TBPCI doesn’t perform better

with the f-measure or MMR, just like MMR in the case of DIP-Scere.

Based on the results of functional enrichment analysis, we can conclude that TBPCI is

a very promising approach for protein complex identification.

TABLE 18 RESULTS OF FUNCTIONAL ENRICHMENT ANALYSIS OBTAINED BY TBPCI AND PCIA

Data Set Approach ≤1.0E-10 ≤1.0E-5 ≤1.0E-2

Collins TBPCI 197(50.26%) 330(84.18%) 369(94.13%)

PCIA 107(25.72%) 266(63.94%) 334(80.29%)

Gavin TBPCI 288(71.29%) 379(93.81%) 399(98.76%)

PCIA 98(25.92%) 198(52.38%) 268(70.89%)

Krogan TBPCI 347(40.21%) 679(78.68%) 789(91.43%)

PCIA 118(11.55%) 336(32.88%) 604(59.09%)

DIP-Scere TBPCI 651(46.33%) 1126(86.11%) 1318(93.8%)

PCIA 158(10.55%) 424(28.32%) 848(56.65%)

DIP-Hsapi TBPCI 325(43.1%) 663(87.93%) 743(98.54%)

PCIA 135(19.12%) 484(68.56%) 610(86.4%)

X (Y%): the number of identified protein complexes that share significant GO terms under a

particular threshold and the proportion of protein complexes sharing significant GO terms in the total

protein complexes identified by each algorithm.

126

7.3.5. Examples of protein complexes identified by TBPCI

We select several protein complexes identified by TBPCI to determine how the

consideration of both topology and attribute information may allow interesting protein

complexes to be identified.

One example of protein complex that is identified by TBPCI is Kornberg’s mediator

(SRB) complex (MIPS ID 510.40.20). This protein complex was identified by TBPCI

in the data set Krogan. Its structure is shown in Fig. 20. 16 proteins out of 20 that are

the same as known protein complexes were successfully identified. For other

approaches, which also identified protein complexes similar to the SRB complex, such

as CMC and COACH, missed some proteins have fewer interactions, such as Q99278,

with other proteins. MCODE was not able to successfully identify this protein complex.

Fig. 20. The structure of Kornberg’s mediator (SRB) complex (MIPS ID:

510.40.20) in the MIPS/CYGD database. The proteins successfully

identified by TBPCI are circled in the dashed line.

127

Although proteins like Q99278 may share fewer interactions with other proteins in the

SRB complex, we find that it has a relatively high Degree of Attribute Association with

other proteins. Hence, the Degree of Boundedness assigned by TBPCI is appropriate

for Q99278 to be identified as a member of the SRB complex.

It should be noted that two proteins, Q08278 and P19263 were not correctly identified

by TBPCI as they share relatively lower Degree of Connectedness and Attribute

Association with other identified proteins. Hence, they are assigned with lower degrees

of Boundedness by TBPCI and may therefore not satisfy the threshold of λ to be

incorporated into the complex. As for the other two proteins, P25453 and P35189, they

are not connected to any protein in the SRB complex and are therefore not identified

by TBPCI.

Fig. 21. The protein structure of PBAF complex (CORUM ID: 1238)

in MIPS/CORUM database. Proteins successfully identified by TBPCI

are in the dashed line.

128

When considering both topology and attribute information of a PPI network, TBPCI

may find an appropriate Degree of Boundedness that can be used to quantify the

relationship and identify those proteins with fewer interactions with other proteins such

as Q99278 as a member of some protein complex.

Another example of an identified protein complex is discovered in DIP-Hsapi. In that

data set, TBPCI successfully identified the PBAF complex (CORUM ID: 1238). The

structure of the PBAF complex is shown in Fig. 21. Seven out of nine proteins in the

PBAF complex were detected by TBPCI. What is interesting about the structure of the

PBAF complex is O96019. Based on the interactions obtained from the dataset DIP-

Hsapi, it should be noted that it is disconnected from all other proteins in PBAF. Given

such a reason, TBPCI did not treat it as a member of the PBAF complex.

The protein Q9P2D1 is also worthy of notice as TBPCI identified it as a member of the

PBAF complex. In fact, it shares relatively high Degrees of Connectedness and

Attribute Association with other proteins in the PBAF complex and it is the only protein

that interacts with Q92922 which is a member of the PBAF complex but shares no

interactions with other proteins. Given the structure and Attribute between Q9P2D1 and

other proteins in PBAF complex, we can conclude that Q9P2D1 is possible to be

verified as a member of the complex in future laboratory-based experiments.

As for the other missing protein, Q8TAQ2, we find that it is very different from other

proteins in the PBAF complex from both the structural and attributional perspectives.

This indicates that Q8TAQ2 has fewer interactions with other proteins and its attributes

are not well-related to those of the other proteins. Hence, the Degrees of Boundedness

computed by TBPCI are smaller than the others in the PBAF complex and Q8TAQ2

was excluded from the complex by TBPCI.

129

Based on the identified protein complex and the known PBAF complex, it can be said

that TBPCI might identify the two missing proteins if there is more evidence showing

that Q8TAQ2 and O96019 are related to other proteins in PBAF, either from the

topological or the attributional perspectives.

7.4. Summary

In this section, a novel approach to mining sub-graphs in the attributed graph, TBPCI

is proposed. TBPCI considers seeking appropriate Degrees of Boundedness between

pairwise vertices in attributed graph by taking both topology and attribute information

into the consideration. Based on the optimization strategy that can find the optimal

Degrees of Boundedness that may quantify the strength that pairwise vertices can be

bounded together, a Breadth-First-Search method is then used to search sub-graphs in

the weighted graph that is constructed based on the found Degrees of Boundedness.

TBPCI has been used to identify sub-graphs in the PPI network graphs. The

experimental performance proves that TBPCI using such an optimization strategy can

obtain better results when identifying known protein complexes. In future, we will

attempt to improve the efficiency of TBPCI, develop some approaches discovering

overlapping protein complexes in the PPI network.

130

8. CONCLUSION

8.1. Summary

In this thesis, we propose to use Attribute Graph to model the relational data and to

perform the task of discovering clusters, or communities which are interesting sub-

graphs in which vertices are cohesively inter-related. Aiming at addressing the

challenges existing in the state-of-the-art of the graph clustering algorithms, we propose

four different algorithms, which utilize different techniques but take into consideration

attribute and topology, to detect meaningful clusters in the attributed graph. To identify

an optimal cluster arrangement, we propose to use MISAGA, which may formulate the

task of cluster detection as a constrained optimization problem and solve it by using an

iterative updating method, to find clusters in the attributed graph. As some clusters,

might be overlapping, e.g., social communities in social graphs, and functional modules

in biological graphs, we propose FSPGA, which formulates the task of cluster detection

as a fuzzy optimization problem and allows vertices to belong to more than one cluster,

to detect interesting sub-graphs in the attributed graph. Then, we propose EGCPI, which

is an evolutionary algorithm for cluster detection in the attributed graph. EGCPI tackles

the problem of cluster detection with evolutionary clustering. It can identify those sub-

graphs in which vertices are densely connected, as well as the attributes of vertices, are

more similar. At last, we propose TBPCI, which is able to identify clusters in the

attributed graph utilizing the local information on the vertex connectedness and

associated attributes values. By identifying the optimal degree of boundedness between

pairwise vertices and grouping those vertices sharing higher boundedness, TBPCI may

discover clusters in which vertices are densely connected and their attribute values are

significantly associated.

To show the effectiveness and efficiency of these proposed algorithms, we have tested

them with different types of attributed graph data, including synthetic graphs, social

131

graphs, and biological graphs, and compared them with the state-of-the-art approaches

to graph clustering. These proposed algorithms outperform most state-of-the-art

approaches in most of the testing datasets, according to the experimental results related

to different evaluation metrics, such as overall accuracy and efficiency. These proposed

algorithms may well address the challenges mentioned in the thesis and they are

effective for mining meaningful clusters in the attributed graph.

8.2. Future work

In future, we attempt to improve the proposed approaches from the following aspects.

As the size of graph data is increasing tremendously, traditional algorithms for mining

clusters might not be capable of the intractable task. Based on the current approaches

proposed, we attempt to develop several computationally efficient algorithms for

discovering clusters in very big attributed graphs. Specifically, we will propose more

efficient updating methods for those approaches based on iterative optimization, i.e.,

MISAGA, FSPGA, and TBPCI. We will try to propose parallel methods for sub-space

search for those algorithms based on natural computation, i.e., EGCPI. Moreover, we

attempt to propose incremental versions of the proposed algorithms to deal with the

real-world problem, e.g., clustering in streaming attributed graph data.

As the proposed algorithms mainly consider those objective functions evaluating the

overall quality of the discovered clusters rather than find clusters based on the graph

hierarchy, we attempt to propose novel versions of the proposed algorithms which may

discover clusters taking into the consideration both topological and attribute hierarchy

hidden in the attributed graph.

Besides identifying clusters with vertices which are topologically and characteristically

interrelated, approaches that can search for the information representing the detected

132

clusters within the clustering procedure, might be desirable. Apparently, obtaining such

representative information may better explain the meaning of the found clusters in the

attributed graph. Hence, we aim to develop more methods that can discover clusters in

the attributed graph by taking into the consideration latent factors that may represent

the meaning of each cluster.

Given the features of the proposed algorithms and the state-of-the-art, how to identify

the interdependency between graph topology and attribute values in the attributed graph

is a challenging task. Rather than concerning both as the combinatorial factors within

the clustering procedure, we attempt to propose adaptive methods that may

automatically determine the dominant factors taking effect on the cluster membership,

which might tremendously improve the efficiency and effectiveness of detecting

clusters in the attributed graph.

As the current version of the proposed algorithms mainly try to find clusters in a static

graph, we attempt to develop extended versions of the proposed algorithms to discover

clusters in dynamical graph data, which contain a series of graphs changing along with

the time stamp. Such extensions may significantly improve the impact of the proposed

algorithms.

133

REFERENCES

[1] Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal multiscale

complexity in networks,” Nature, vol. 466, pp. 761-764, Aug. 2010.

[2] E. M. Airoldi, et al., “Mixed Membership Stochastic Blockmodels,” J. Mach.

Learn. Res., vol. 9, pp. 1981-2014, Sep. 2008.

[3] M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya,

“Development and Implementation of an Algorithm for Detection of Protein

Complexes in Large Interaction Networks,” BMC Bioinformatics, vol. 7, no. 1,

article 207, 2006.

[4] B. Adamcsek, G. Palla, I. J. Farkas, I. Derenyi, and T. Vicsek, “CFinder: Locating

Cliques and Overlapping Modules in Biological Networks,” Bioinformatics, vol.

22, no. 8, pp. 1021-1023, 2006.

[5] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.

Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-

Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.

Rubin, and G. Sherlock, “Gene Ontology: Tool for the Unification of Biology,”

Nature Genetics, vol. 25, no. 1, pp. 25-29, 2000.

[6] D. T. Anderson, A. Zare, and S. Price, “Comparing Fuzzy, Probabilistic, and

Possibilistic Partitions Using the Earth Mover’s Distance,” IEEE Trans. Fuzzy Syst.,

vol. 21, no. 4, pp. 766-775, Aug. 2013.

[7] D. T. Anderson, J. C. Bezdek, M. Popescu, and J. M. Keller, “Comparing Fuzzy,

Probabilistic, and Possibilistic Partitions,” IEEE Trans. Fuzzy Syst., vol. 18, no. 5,

pp. 906-918, Oct. 2013.

[8] V. D. Blondel, et al., “Fast unfolding of communities in large networks,” J. Stat.

Mech., vol. 2008, no. 10, pp. P10008, Oct. 2008.

134

[9] J. C. Bezdek, R. Ehrlich, W. Full, “FCM: the fuzzy c-means clustering algorithm,”

Computers and Geosciences, vol.10, no. 2-3, pp. 191-203, 1984.

[10] D. Blei, “Probabilistic topic models,” Commun. ACM, vol. 55, no. 4, pp. 77-84,

2012.

[11] R. Balasubramanyan, and W. W. Cohen, “Block-LDA: Jointly modeling entity-

annotated text and entity-entity links,” in Proc. SIAM Int. Conf. Data Mining, 2011,

pp. 450-461.

[12] S. Bechikh, A. Chaabani, and L. B. Said, “An efficient chemical reaction

optimization algorithm for multiobjective optimization,” IEEE Trans. Cybern., vol.

45, no. 10, pp. 2051-2064, Oct. 2015.

[13] G. Bader, and C. Hogue, “An Automated Method for Finding Molecular

Complexes in Large Protein Interaction Networks,” BMC Bioinformatics, vol. 4,

article 2, 2003.

[14] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms, 1st ed. Oxford, UK: Oxford Univ.

Press, 1996.

[15] E. I. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein, J. M. Cherry, and G. Sherlock,

“GO::TermFinder—Open Source Software for Accessing Gene Ontology

Information and Finding Significantly Enriched Gene Ontology Terms Associated

with a List of Genes,” Bioinformatics, vol. 20, no. 18, pp. 3710-3715, 2004.

[16] A. Bertoni, and G. Valentini, “Model order selection for bio-molecular data

clustering,” BMC Bioinformatics, vol. 8, no. 2, pp. S7, 2007.

[17] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very

large networks,” Phys. Rev. E, vol. 70, no. 6, pp. 066111, Dec. 2004.

[18] J. Chan, and D. Blei, “Relational topic models for document networks,” in Proc.

135

12th Int. Conf. Artificial Intel. Stat., 2009, pp. 81-88.

[19] H. Chang, Z. Feng, and Z. Ren, “Community detection using dual-representation

chemical reaction optimization,” IEEE Trans. Cybern., vol. PP, no. 99, pp. 1-14,

2016.

[20] K. C. C. Chan, A. K. C. Wong, and D. K. Y. Chiu, “Learning sequential patterns

for probabilistic inductive prediction,” IEEE Trans. Systems, man and cybernetics,

vol. 24, no. 10, pp. 1532-1547, Oct. 1994.

[21] J. Y. Ching, A. K. C. Wong, and K. C. C. Chan, “Class-dependent discretization for

inductive learning from continuous and mixed-mode data,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 17, no. 7, pp. 641-651, Jul. 1995.

[22] I. Chiang, C. C. Liu, Y. Tsai, and A. Kumar, “Discovering latent semantics in web

documents using fuzzy clustering,” IEEE Trans. Fuzzy Systems, vol. 23, no. 6, pp.

2122-2134, Dec. 2015.

[23] S. R. Collins, P. Kemmeren, X. Zhan, J. F. Greenblatt, F. Spencer, F. C. P. Holstege,

J. S. Weissman, and N. J. Krogan, “Toward a comprehensive atlas of the physical

interactome of saccharomyces cerevisiae,” Molecular&Cellular Proteomics, vol.

6, pp. 439-450, Mar. 2007.

[24] E. Camon, M. E. Camon, M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen,

D. Binns, N. Harte, R. Lopez, and R. Apweiler, “The Gene Ontology Annotation

(GOA) Database: Sharin Knowledge in Uniprot with Gene Ontology,” Nucleic

Acids Research, vol. 32, no. Suppl. 1, pp. D262-D266, 2003.

[25] J. M. Cherry, C. Adler, C. Ball, S. A. Chervitz, S. S. Dwight, E. T. Hester, Y. Jia, G.

Juvik, T. Roe, M. Schroeder, S. Weng, and D. Botstein, “SGD: Saccharomyces

Genome Database,” Nucleic Acids Research, vol. 26, no. 1, pp. 73-79, 1998.

[26] F. M. Couto, M. J. Silva, and P. M. Coutinho, “Measuring Semantic Similarity

136

between Gene Ontology Terms,” Data Knowledge Eng., vol. 61, no. 1, pp. 137-

152, 2007.

[27] F. M. Couto, M. Silva, and P. M. Coutinho, “Semantic Similarity over the Gene

Ontology: Family Correlation and Selecting Disjunctive Ancestors,” in Proc. ACM

Int’l Conf. Information and Knowledge Management (CIKM ’05), pp. 343-344,

2005.

[28] T. Deisboeck, and J. Y. Kresh, Complex systems Science in BioMedicine, Springer,

2006.

[29] S. v. Dongen, “Graph Clustering by Flow Simulation,” PhD thesis, Univ. of Utrecht,

The Netherlands, 2000.

[30] S. v. Dongen, “A Cluster Algorithm for Graphs,” Technical Report, R 0010, CWI,

2000.

[31] X. Ding, W. Wang, X. Peng, and J. Wang, “Mining Protein Complexes from PPI

Networks Using the Minimum Vertex Cut,” Tsinghua Science and Technology, vol.

17, no. 6, pp. 674-681, 2012.

[32] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data

via the EM algorithm,” Journal of Royal Statistics Society, vol. 39, pp. 1-38, 1977.

[33] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486, no.3-5, pp.

75-174, Feb. 2010.

[34] S. Fortunato, and M. Barthelemy, “Resolution limit in community detection,” Proc.

Nat. Acad. Sci. U.S.A., vol. 104, no. 1, pp. 36-41, Jan. 2007.

[35] B. J. Frey, and D. Dueck, “Clustering by passing messages between data points,”

Science, vol. 16, pp. 972-976, Feb. 2007.

[36] M. Frank, et al., “Multi-assignment clustering for boolean data,” J. Mach. Learn.

137

Res., vol. 13, pp. 459-489, Feb. 2012.

[37] A. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau, L.J.

Jensen, S. Bastuck, B. Dumpelfeld, A. Edelmann, M. Heurtier, V. Hoffman, C.

Hoefert, K. Klein, M. Hudak, A. Michon, M. Schelder, M. Schirle, M. Remor, T.

Rudi, S. Hooper, A. Bauer, T. Bouwmeester, G. Casari, G. Drewes, G. Neubauer,

J.M. Rick, B. Kuster, P. Bork, R.B. Russell, and G. Superti-Furga, “Proteome

survey reveals modularity of the yeast of the yeast cell machinery,” Nature, vol.

440, pp. 631-636, 2006.

[38] A. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.

M. Rick, A. Michon, C. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic,

H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A.

Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. Heurtier, R. R. Copley, A. Edelmann,

E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin,

B. Kuster, G. Newbauer, and G. Superti-Furga, “Functional Organization of the

Yeast Proteome by Systematic Analysis of Protein Complexes,” Nature, vol. 415,

pp. 141-147, 2002.

[39] M. Girvan, and M. E. J. Newman, “Community structure in social and biological

networks,” Proc. Nat. Acad. Sci. U. S. A., vol. 99, no. 12, pp. 7821-7826, Jun. 2002.

[40] R. Guimera, M. Sales-Pardo, and L. A. N. Amaral, “Modularity from fluctuations

in random graphs and complex networks,” Phys. Rev. E, vol. 70, no. 2, pp. 025101,

Aug. 2004.

[41] S. Gunnermann, et al., “Efficient mining of combined subspace and subgraph

clusters in graphs with feature vectors,” in Proc. PAKDD, 2013, pp.261-275.

[42] U. Güldener, M. Münsterkötter, G. Kastenmüller, N. Strack, J. van Helden, C.

Lemer, J. Richelles, S. J. Wodak, J. García-Martínez, J. E. Pérez-Ortín, H. Michael,

138

A. Kaps, E. Talla, B. Dujon, B. André, J. L. Souciet, J. De Montigny, E. Bon, C.

Gaillardin, and H. W. Mewes, “CYGD: The Comprehensive Yeast Genome

Database,” Nucleic Acids Research, vol. 33, no. suppl. 1, pp. D364-D368, 2005.

[43] R. J. Hathaway, J. W. Davenport, and J. C. Bezdek, “Relational duals of the c-

means clustering algorithms,” Pattern Recog., vol. 22, no. 2, pp.205-212, 1989.

[44] L. Hu and K. C. C. Chan, “Fuzzy Clustering in a Complex Network Based on

Content Relevance and Link Structures,” IEEE Trans. Fuzzy Systems, vol. 24, no.

2, pp. 456-470, Apr. 2016.

[45] T. He, and K. C. C. Chan, “Evolutionary community detection in social networks,”

in Proc. CEC, 2014, pp. 1496-1503.

[46] Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S. Adams, A. Millar, P. Taylor,

K. Bennett, K. Boutilier, L. Yang, C. Wolting, I. Donaldson, S. Schandorff, J.

Shewnarane, M. Vo, J. Taggart, M. Goudreault, B. Muskat, C. Alfarano, D. Dewar,

Z. Lin, K. Michalickova, A. R. Willems, H. Sassi, P. A. Nielsen, K. J. Rasmussen,

J. R. Andersen, L. E. Johansen, L. H. Hansen, H. Jespersen, A. Podtelejnikov, E.

Nielsen, J. Crawford, V. Poulsen, B. D. Sorensen, J. Matthiesen, R.C. Hendrickson,

F. Gleeson, T. Pawson, M. F. Moran, D. Durocher, M. Mann, C. W. V. Hogue, D.

Figeys, and M. Tyers, “Systematic Identification of Protein Complexes in

Saccharomyces cerevisiae by Mass Spectrometry,” Nature, vol. 415, pp. 180-183,

2002.

[47] L. Hu, and K. C. C. Chan, “Utilizing both topological and attribute information for

protein complex identification in PPI networks,” IEEE/ACM Trans. Computational

Biology and Bioinformatics, vol. 10(3), pp 780-792, May 2013.

[48] S. J. Haberman, “The Analysis of Residuals in Cross-Classified Tables,”

Biometrics, vol. 29, pp. 205-220, 1973.

139

[49] R. J. Hathaway, J. C., Bezdek, “Switching regression models and fuzzy clustering,”

IEEE Trans. Fuzzy Systems, vol. 1, no. 3, pp. 195-204, 1993.

[50] Y. Hong, S. Kwong, H. Xiong, and Q. Ren, “Genetic-guided semi-supervised

clustering algorithm with instance-level constraints,” in Proc. 10th Annu. Conf.

Genetic and evolutionary computation, 2008, pp. 1381–1388.

[51] J. Ji, A. Zhang, C. Liu, and X. Quan, “Survey: Functional module detection from

protein-protein interaction networks,” IEEE Trans. Knowledge and Data

Engineering, vol. 26, no. 2, pp. 261-277, 2014.

[52] P. Jiang, and M. Singh, “SPICi: a fast clustering algorithm for large biological

networks,” Bioinformatics, vol. 26, no. 8, pp. 1105-1111, Apr. 2010.

[53] B. Karrer, and M. E. J. Newman, “Stochasitc blockmodels and community

structure in networks,” Phys. Rev. E, vol. 83, no. 1, pp. 016107, Jan. 2011.

[54] M. A. Khalilia, J. Bezdek, M. Popescu, and J. M. Keller, “Improvements to the

relational fuzzy c-means clustering algorithm,” Pattern Recog., vol. 47, no. 12,

pp.3920-3930, 2014.

[55] A. D. King, N. Przulj, and I. Jurisica, “Protein Complex Prediction via Cost-Based

Clustering,” Bioinformatics, vol. 20, no. 17, pp. 3013-3020, 2004.

[56] N. J. Krogan, et al., “Global Landscape of Protein Complexes in the Yeast

Saccharomyces cerevisiae,” Nature, vol. 440, no. 7084, pp. 637-643, 2006.

[57] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17,

no. 4, pp. 395-426, Dec. 2007.

[58] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of algorithms

for network community detection,” in Proc 19th Int. conf. World Wide Web, 2010,

pp. 631-640.

140

[59] M. Lipczak, and E. Milios, “Agglomerative genetic algorithm for clustering in

social networks,” in Proc. 11th Annu. Conf. Genetic and evolutionary computation,

2009, pp. 361-362.

[60] A. Lancichinetti, S. Fortunato, and J. Kertesz, “Detecting the overlapping and

hierarchical community structure in complex networks,” New Journal of Physics,

vol. 11, no. 3, pp. 033015, Mar. 2009.

[61] C. Liu, J. Liu, and Z. Jiang, “A multiobjective evolutionary algorithm based on

similarity for community detection from signed social networks,” IEEE Trans.

Cybern., vol. 44, no. 12, pp. 2274-2287, Dec. 2014.

[62] X. Li, M. Wu, C. K. Kwoh, and S. K. Ng, “Computational approaches for detecting

protein complexes from protein interaction networks: a survey,” BMC Genomics,

vol. 11(1) article 1, 2010.

[63] M. Li, J. Chen, J. Wang, B. Hu, and G. Chen, “Modifying the DPClus Algorithm

for Identifying Protein Complexes Based on New Topological Structures,” BMC

Bioinformatics, vol. 9, no. 1, article 398, 2008.

[64] G. Liu, L. Wong, and H. N. Chua, “Complex Discovery from Weighted PPI

Networks,” Bioinformatics, vol. 25, no. 15, pp. 1891-1897, 2009.

[65] M. Li, J. Wang, J. Chen, and Z. Cai, “Identifying the overlapping complexes in

protein interaction networks,” International Journal of Data Mining and

Bioinformatics, vol. 4, no.1, pp. 91-108, 2010.

[66] W. W. M. Lam, and K. C. C. Chan, “Discovering Functional Interdependence

Relationship in PPI Networks for Protein Complex Identification,” IEEE Trans.

Biomedical Eng., vol. 59, no. 4, pp. 899-908, Apr. 2012.

[67] M. Li, X. Wu, J. Wang, and Y. Pan, “Towards the Identification of Protein

Complexes and Functional Modules by Integrating PPI Network and Gene

141

Expression Data,” BMC Bioinformatics, vol. 13, no. 1, article 109, 2012.

[68] G. Liu, C. H. Yong, H. N. Chua, and L. Wong, “Decomposing PPI Networks for

Complex Discovery,” Proteome Science, vol. 9, no. Suppl. 1, article S15, 2011.

[69] M. Li, T. Yu, X. Wu, J. Wang, F. Wu, and Y. Pan, “C-DEVA: detection, evaluation,

visualization and annotation of clusters from biological networks,” BioSystems, vol.

150, pp. 78-86, 2016.

[70] W. Lord, R. D. Stevens, A. Brass, and C. A. Goble, “Semantic Similarity Measures

as Tools for Exploring the Gene Ontology,” in Proc. Pacific Symp. Biocomputing,

2003, pp. 601.

[71] Z. Lei and Y. Dai, “Assessing Protein Similarity with Gene Ontology and Its Use

in Subnuclear Localization Prediction,” BMC Bioinformatics, vol. 7, no. 1, article

491, 2006.

[72] U. V. Luxburg, Clustering Stability, Now Publishers Inc., 2010.

[73] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms,

Cambridge, UK: Cambridge Univ. Press, 2003.

[74] J. McAuley, and J. Leskovec, “Discovering social circles in ego networks,” ACM

Trans. Knowl. Discov. Data, vol. 8, no. 1, article 4, 2014.

[75] H. W. Mewes, D. Frishman, U. Guldener, G. Mannhaupt, K. Mayer, M. Mokrejs,

B. Morgenstern, M. Munsterkotter, S. Rudd, and B. Weil, “MIPS: A Database for

Genomes and Protein Sequences,” Nucleic Acids Research, vol. 30, no. 1, pp. 31-

34, 2002.

[76] M. E. J. Newman, “Modularity and community structure in networks,” Proc. Nat.

Acad. Sci. U. S. A., vol. 103, no. 23, pp. 8577-8582, Jun. 2006.

[77] R. Nallapati, et al., “Joint topic models for text and citations,” in Proc. 14th ACM

142

Int. Conf. Kowl. Discov. Data Mining, 2008, pp. 542-550.

[78] T. Nepusz, H. Yu, and A. Paccanaro, “Detecting overlapping protein complexes in

protein-protein interaction networks,”, Nat. Methods, vol. 9, pp. 471-472, 2012.

[79] T. M. Nguyen, and Q. M. J. Wu, “Dynamic fuzzy clustering and its application in

motion segmentation,” IEEE Trans. Fuzzy Systems, vol. 21, no. 6, pp. 1019-1031,

Dec. 2013.

[80] G. Palla, et al., “Uncovering overlapping community structure of complex

networks in nature and society,” Nature, vol. 435, pp. 814-818, Jun. 2005.

[81] C. Pizzuti, “A multiobjective genetic algorithm to find communities in complex

networks,” IEEE Trans. Evol. Comput., vol. 16, no. 3, pp. 418-430, Jun. 2012.

[82] W. Peng, J. Wang, B. Zhao, and L. Wang, “Identification of protein complexes

using weighted pagerank-nibble algorithm and core-attachment structure,”

IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 12, no. 1, pp.

179-192, Jan./Feb. 2015.

[83] S. Pu, et al., “Up-to-date catalogues of yeast protein complexes,” Nucleic Acids

Res., vol. 37, no. 3, pp. 825-831, Feb. 2009.

[84] N. R. Pal, K. Pal, and J. M. Keller, “A possibilistic fuzzy c-means clustering

algorithm,” IEEE Trans. Fuzzy Systems, vol. 13, no. 4, pp. 517-530, 2005.

[85] G. Qi, C. C. Aggarwal, and T. Huang, “Community detection with edge content in

social media networks,” in Proc. IEEE 28th Int. Conf. Data Engineering, 2012, pp.

534-545.

[86] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis,” J. Computational Appl. Math., vol. 20, pp. 53-65, Nov. 1987.

[87] J. Ren, J. Wang, M. Li, and L. Wang, “Identifying protein complexes based on

143

density and modularity in protein-protein interaction network,” BMC Systems

Biology, vol. 7, no. 4, article 1, 2013.

[88] A. Ruepp, B. Brauner, I. Dunger-Kaltenbach, G. Frishman, C. Montrone, M.

Stransky, B. Waegele, T. Schmidt, O. N. Doudieu, V. Stümpflen, and H. W. Mewes,

“CORUM: The Comprehensive Resource of Mammalian Protein Complexes,”

Nucleic Acids Research, vol. 36, no. suppl. 1, pp. D646-D650, 2008.

[89] J. Shi, and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.

[90] Y. Sun, et al., “itopicmodel: information network-integrated topic modeling,” in

Proc. IEEE 9th Int. Conf. Data Mining, 2009, pp. 493-502.

[91] V. Spirin, and L. A. Mirny, “Protein Complexes and Functional Modules in

Molecular Network,” Proc. Nat’l Academy of Sciences, USA, vol. 100, no. 21, pp.

12123-12128, 2003.

[92] L. Silva, R. Moura, A. M. P. Canuto, R. H. N. Santiago, and B. Bedregal, “An

interval based frame work for fuzzy clustering applications,” IEEE Trans. Fuzzy

Systems, vol. 23, no. 6, pp. 2174-2187, Mar. 2015.

[93] C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers,

“BioGRID: A General Repository for Interaction Datasets,” Nucleic Acids

Research, vol. 34, no. Suppl. 1, pp. D535-D539, 2006.

[94] M. Seeland, T. Girschick, F. Buchwald, “Online structural graph clustering using

frequent sub-graph mining,” in Proc. ECML-PKDD, 2010, pp. 213-228.

[95] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for graph

summarization,” in Proc. of the 2008 ACM Int. Conf. Management of Data, pp.

567-580, 2008.

[96] M. Tasgin, A. Herdagdelen, and H. Bingol, “Community detection in complex

144

networks using genetic algorithms,” in Proc. Eur. Conf. Complex Systems, 2006,

pp. 57.

[97] A. H. Y. Tong, B. Drees, G. Nardelli, G. D. Bader, B. Brannetti, L. Castagnoli, M.

Evangelista, S. Ferracuti, B. Nelson, S. Paoluzi, M. Quondam, A. Zucconi, C. W.

V. Hogue, S. Fields, C. Boone, and G. Cesareni, “A combined Experimental and

Computational Strategy to Define Protein Interaction Networks for Peptide

Recognition Modules,” Science, vol. 295, no. 5553, pp. 321-324, 2002.

[98] A. L. Traud, et al., “Comparing community structure to characteristics in online

collegiate social networks,” SIAM Rev., vol. 53, no. 3, pp. 526-543, Aug. 2011.

[99] G. Valentini, “Clusterv: a tool for assessing the reliability of clusters discovered in

DNA microarray data,” Bioinformatics, vol. 22, no. 3, pp. 369-370, 2006.

[100] M. Wu, X. Li, C. Kwoh, and S. Ng, “A Core-Attachment Based Method to

Detect Protein Complexes in PPI Networks,” BMC Bioinformatics, vol. 10, no. 1,

article 169, 2009.

[101] Y. Wang, R. Wang, X. Zhang, and L. Chen, “Establishing protein functional

linkage in a systematic way,” Lect. Notes Oper. Res., vol. 7, pp. 75-88, 2007.

[102] C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C. Barker, B. Boeckmann,

S. Ferr, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, R. Mazumder,

C. O’Donovan, N. Redaschi, and B. Suzek, “The universal protein resource

(UniProt): an expanding universe of protein information,” Nucleic acids research,

vol. 34, D187-D191, 2006.

[103] J. Wang, G. Chen, B. Liu, M. Li, and Y. Pan, “Identifying Protein Complexes

from Interactome Based on Essential Proteins and Local Fitness Method,” IEEE

Trans. NanoBioscience, vol. 11, no. 4, pp. 324-335, Dec. 2012.

[104] Z. Xu, et al., “Gbagc: a general bayesian framework for attributed graph

145

clustering,” ACM Trans. Knowl. Discov. Data, vol. 9, no. 1, article 5, 2014.

[105] I. Xenarios, et al., “DIP, the Database of Interacting Proteins: A Research Tool

for Studying Cellular Networks of Protein Interactions,” Nucleic Acids Research,

vol. 30, no. 1, pp. 303-305, 2002.

[106] L. Xie, and G. Beni, “A validity measure for fuzzy clustering,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 13, no. 8, pp. 841-847, Aug. 1991.

[107] L. Yang, et al., “A unified semi-supervised community detection framework

using latent space graph regularization,” IEEE Trans. Cybern., vol. 45, no. 11, pp.

2585-2598, Nov. 2015.

[108] J. Yang, J. McAuley, and J. Leskovec, “Detecting Cohesive and 2-mode

Communities in Directed and Undirected Networks,” in Proc. 7th ACM Int. Conf.

Web Search and Data Mining, 2014, pp. 323-332.

[109] T. Yang, et al., “Combining link and content for community detection: a

discriminative approach,” in Proc. 15th ACM Int. Conf. Kowl. Discov. Data Mining,

2009, pp. 927-936.

[110] J. Yang, J. McAuley, and J. Leskovec, “Community detection in networks with

node attributes,” in Proc. IEEE 13th Int. Conf. Data Mining, 2013, pp. 1151-1156.

[111] X. Yan, and J. Han, “gspan: Graph-based substructure pattern mining,” in Proc.

IEEE 2nd Int. Conf. Data Mining, 2002, pp. 721-724.

[112] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on

structural/attribute similarities,” in Proc. VLDB, 2009, pp. 718-729.

[113] Y. Zhou, H. Cheng, and J. X. Yu, “Clustering large attributed graphs: an

efficient incremental approach,” in Proc. IEEE 10th Int. Conf. Data Mining, 2010,

pp. 689-698.

146

[114] X. Zhang, R. Wang, Y. Wang, and J. Wang, “Modularity optimization in

community detection of complex networks,” Europhysics Letters, vol. 87, no. 3,

pp. 38002, 2009.

[115] B. Zhao, J. Wang, M. Li, F. Wu, and Y. Pan, “Detecting protein complexes

based on uncertain graph model,” IEEE/ACM Trans. Computational Biology and

Bioinformatics, vol. 11, no. 3, pp. 486-497, May/Jun. 2014.

[116] X. Zhang, D. Dai, and X. Li, “Protein Complexes Discovery Based on Protein-

Protein Interaction Data via a Regularized Sparse Generative Network Model,”

IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 9, no. 3, pp.

857-870, May/June 2012.

[117] X. Zhang, D. Dai, L. Ouyang, and H. Yan, “Detecting overlapping protein

complexes based on a generative model with functional and topological properties,”

BMC Bioinformatics, vol. 15, article 186, 2014.

