

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

PHYSICAL BEHAVIOR BASED DEBUGGING:
TEST AND FAULT LOCALIZATION ON

CYBER-PHYSICAL SYSTEMS

ENYAN HUANG

M.Phil

The Hong Kong Polytechnic University

2017

The Hong Kong Polytechnic University

Department of Computing

Physical Behavior Based Debugging: Test and Fault
Localization on Cyber-Physical Systems

Enyan Huang

A thesis submitted in partial fulfilment of the requirements

for the degree of Master of Philosophy

January 2017

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

Enyan Huang (Name of student)

iii

Abstract

The rapid growth of control cyber-physical systems (control-CPS) complexity ne-

cessitates the use of fault localization tools to locate cyber subsystems’ bugs. Many

mainstream fault localization tools need large number of labeled (“correct” or

“faulty”) execution traces as their inputs. To prepare the traces, for most control-CPSs

(particularly those large or without complete/accurate models), assertions designed

by domain experts are used. This approach is best-effort: often heavily subjective and

ad-hoc. To make the approach more principled and systematic, we exploit the state-

of-the-art hybrid systems modeling and stability theories to propose a new approach.

Empirical evaluations upon commercial-product-grade large control-CPS platform

show that our proposed approach achieves significant improvements (42% ≥ 300%

improvement in accuracy, recall, and latency medians) over the existing approach.

v

Acknowledgement

First of all, I would like to express my deepest gratitude to my supervisor, Dr. Qixin

Wang for his patient guidance throughout my entire study. He teaches me how to do

academic research from the very beginning when I have no experience. He helps

me shape serious research attitude and thorough methodology, which are extremely

important when doing research. He provides me with the essential guidance and

knowledge which is the most relevant to my research topic. I may not complete my

study without his supervision.

Next, I would like to thank many of my colleagues who help me a lot during my

study. They are Dr. Yao Chen, Dr. Feng Tan, Mr. Zhijian He, Mr. Yanming Chen and

Mr. Zhaoyan Shen. They share their valuable experiences with me which save me

much time and effort.

I would like to thank Prof. Lui Sha from University of Illinois Urbana-Champaign

and Dr. Shan Lu from The University of Chicago who give me advice for my work.

I would also like to thank Dr. Yuhong Wang and Ms. Ling Chen from Department of

Civil and Environmental Engineering. They give me precious opportunities to work

with real project, from which I learnt a lot.

Last I would like to thank all my friends in The Hong Kong Polytechnic University. I

have had a happy time here with all of you and I am lucky to live with you for the

six years of study in Hong Kong.

vii

Contents

1 Introduction 1

1.1 Demand . 1

1.2 Control Systems . 2

1.3 Hybrid Automata . 3

1.4 Unmanned Aerial Vehicles (UAVs) . 5

1.4.1 System Dynamics of Quadcopters 5

1.5 Contributions of the Thesis . 10

2 Related Work 13

2.1 Related Work in the Domain of Control 13

2.2 Related Work in the Domain of Software Engineering 15

2.2.1 Tarantula . 15

2.2.2 Crosstab . 16

2.2.3 BP Neural Network-based (BPNN) Approach 18

2.3 Related Work in Cross Domains . 20

3 A Hybrid Systems Based Approach to Prepare Traces for Control-CPS

Cyber Subsystem Fault Localization 21

3.1 Overview . 21

3.2 Formal Definition of Hybrid Automata 21

3.3 Physical Traces Divergence Bound Existence 23

3.4 Proposed Approach . 30

3.4.1 Summary and Intuition of the Theory 30

3.4.2 Heuristics and Specifications of Proposed Approach 32

3.4.3 Rigorous Definitions of Step 4 and 9 35

ix

4 Evaluation and Results 37

4.1 Overview . 37

4.2 A Simple Example: Thermostat Control-CPS 37

4.2.1 System Model of Thermostat 37

4.2.2 Thermostat Physical Traces Divergence Bound 39

4.3 Evaluation on Ardupilot Autopilot Software 43

4.3.1 ArduPilot . 44

4.3.2 Bug Injection . 45

4.3.3 Fault Localization Tools . 47

4.3.4 Trials and Diagnosis . 48

4.3.5 Results . 50

4.3.6 Discussion on Failure of BPNN Fault Localization Method . . . 55

4.3.7 Threats to Validity . 56

5 Conclusions and Suggestions for Future Research 59

5.1 Conclusion . 59

5.2 Suggestions for Future Research . 60

Bibliography 63

x

List of Figures

1.1 Example hybrid automaton: thermostat (quoted from [Che16b]). Note

as oven temperature x is the only concerned physical state, the physical

state vector is 1-dimensional and is hence simply represented by scalar x. 4

1.2 Inertial frame (in dash) and body frame (in solid), note the two arms

of UAV are parallel to x
B

, y
B

axes . 6

1.3 The moments of inertia of the quadcopter (quoted from [Bea08]) . . . 9

2.1 Example of Tarantula Technique (quoted from [JH05]) 16

2.2 Sample Coverage Data and Execution Results (quoted from [WQ09]) . 20

3.1 Approach Heuristics. Dark shaded area is I. 31

4.1 Example Hybrid Automata: Thermostat. Note as oven temperature

x is the only concerned physical state, the physical state vector is 1-

dimensional and is hence simply represented by scalar x. 38

4.2 Periodical Trace Behavior of Thermostat 41

4.3 Box-plots [16e] of diagnoses quality metrics. X-axes: execution traces

preparation approach and fault localization tool combination; PA: our

proposed approach; W2: Way-2 approach; TA: Tarantula; CR: Crosstab;

NN: BP Neural Networks. Y-axes: respective diagnoses quality metric

statistics. Bar in each box is the median of the data, box ends are 1st

and 3rd quartile of the data, whisker ends are min/max of the data,

outliers are dots outside the whiskers. 50

4.4 Medians of accuracy and recall over the length of the report. X-axes:

length of the report; PA: our proposed approach; W2: Way-2 approach;

TA: Tarantula; CR: Crosstab. Y-axes: respective medians of all subjects. 53

xi

4.5 Fault diagnosis quality evolution over execution trace length. X-axes:

length of each execution trace (unit: seconds of emulation time). Y-axes:

median of accuracy (left figure), recall (middle figure), and latency

(right figure) of all subjects. 54

xii

List of Tables

2.1 Notations used in Crosstab . 18

4.1 Most Representative Residual Bug Types [Nat+13] 46

4.2 Bugs Injected into ArduPilot . 47

4.3 Fig. 4.3 PA vs W2 Comparisons Trustworthiness 51

4.4 Fig. 4.5 PA vs W2 Comparisons Trustworthiness 54

xiii

1
Introduction

1.1 Demand

With the rapid growth of embedded computing, computer systems are inevitably

more tightly coupled with physical systems, resulting in the so-called cyber-physical

systems (CPS) [Sha+08]. Control-CPS is a major category of CPS, whose physical

subsystem is a control system. Typical examples of control-CPS include computer con-

trolled aircrafts, vehicles, robotics, smart buildings etc. [EG14][Mur+15][Zhe+15].

Nowadays control-CPS cyber subsystems can be extremely complex. For example,

ArduPilot [16c], a commercial-product-grade unmanned aerial vehicles (UAV) plat-

form, already has over 1.4 million lines of source code. Entirely relying on manually

efforts to locate bugs (i.e. fault localization) at such scale is grueling.

In fact, pure cyber system fault localization is a hot research area. Many fault

localization tools are proposed in the past decades [WD09]. Several major families of

fault localization tools need large set of labeled (as “correct” or “faulty”) 1 execution

traces to discover suspicious statements or source code blocks [WD09].

For control-CPSs, an execution trace has two parts: the execution cyber trace and the

execution physical trace. The former is the sequence of software statements executed;

and the latter is the corresponding physical subsystem’s state trajectory. To fault

1Unlike pure cyber systems, where a trace can often be discretely labelled as “pass” or “failing”,
for control-CPS, due to the ubiquitous existence of physical Gaussian noise and the use of robust
control designs, a faulty output from the cyber subsystem may not always lead to failure. Hence
we use the term “correct” or “faulty” trace in this paper.

1

localization tools, the input can only be the labeled execution cyber traces; but

the execution cyber traces’ labels are determined by the corresponding execution

physical traces’ correctness.

In current practice, the above fact leads to two ways to prepare execution traces for

control-CPS cyber subsystem fault localization. Way-1) If the formal model of the

control-CPS is known, we can use the model to generate predicted physical traces,

and compare them with execution physical traces, hence to label the execution

physical traces and the corresponding execution cyber traces. Way-2) However, for

most real-world control-CPSs, their complete and accurate models are rarely known:

often the models are partial, or too high level. We hence cannot expect correct

execution physical traces to fully match model generated predicted physical traces.

Thus Way-1 cannot work. Instead, we have to use assertions designed by domain

experts to judge execution physical traces’ (and hence the corresponding execution

cyber traces’) correctness. So far, this approach is still mainly best-effort, heavily

dependent on the designer’s subjective expertise and often problem specific. We need

more principled and systematic approaches.

1.2 Control Systems

Modern control theory [Bro91][SL91][FPE93] abstracts a physical system with a

vector of physical states x̨
def= (x1, x2, . . . , x

N

)T œ RN , where each element x
i

(where

i = 1, 2, . . ., N) is a scalar representing one of the physical states, and “T” means

matrix transpose. Strictly speaking x1, x2, . . ., x
N

are all functions of continuous

time t, respectively representing the corresponding physical state at time t. Let

ẋ
i

def= dx
i

/dt (where i = 1, 2, . . ., N), i.e. the derivative of x
i

(t) at time t; then

the continuous time domain dynamics of the physical system is described by a

differential equation

˙̨x def= (ẋ1, ẋ2, . . . , ẋ
N

)T = f(x̨), (1.1)

2 Chapter 1 Introduction

where f is a function RN ‘æ RN dependent on the physical system design. Exp. (1.1)

means the current rate and direction of change of physical state vector x̨ (i.e. ˙̨x) are

determined by the current physical state vector via function f . Note Exp. (1.1) as-

sumes the runtime targeted physical state vector (aka reference point) is determined

by x̨. For example, for an autopilot UAV, the pilot decision is made as per the UAV’s

current physical state vector. A specific model of UAV is given in Section. 1.4, which

is widely used by many autopilot softwares, including Ardupilot, which is our main

research target.

1.3 Hybrid Automata

A control-CPS consists of a physical subsystem of control and a cyber subsystem

of discrete computing. The classic model for control is the differential equation

based model of Exp. (1.1); and the classic model for discrete computing is automa-

ton [HU79]. By combining the two models, hybrid automaton [AHH93][AHH96]

naturally arises as a generic modeling tool for control-CPS.

A hybrid automaton is a generalization of an automaton. An automaton can be

described by a graph, with nodes and edges respectively representing discrete states

and events of a cyber system. In a hybrid automaton, the nodes are expanded.

Each node is now associated with a continuous time domain differential equation

of Exp. (1.1), which describes the dynamics of a physical subsystem. In this way,

hybrid automata can describe both the discrete cyber subsystem and the continuous

physical subsystem of a control-CPS.

Focusing only on the components relevant to this thesis, a simplified formal repre-

sentation of a hybrid automaton A is a tuple of (L, E , x̨, I, fl, l0, act, inv, grd, rst),

where a set L of nodes, aka locations, are connected by a set E of directional edges,

aka jumps or transitions. A jump can be denoted by a tuple (l, lÕ), where l, lÕ œ L are

1.3 Hybrid Automata 3

respectively the source and destination locations of the jump. x̨ œ RN is the physical

state vector, its set of valid initial values is denoted as I.

The other components for A (i.e. fl, l0, act, inv, grd, rst) respectively define current

location, initial location, x̨’s dynamics, constraints, jump conditions, and new values

after jumps. The rigorous definitions is presented in Section 3.2. For now, in the

following, we use an example (see Fig. 1.1) to illustrate the concepts of the various

hybrid automaton components.

Fig. 1.1 gives an example hybrid automaton model of the thermostat control-CPS,

which automatically heats an oven to maintain oven temperature x in range [◊l, ◊h]

(0 < ◊l < ◊h). There are two locations in the hybrid automaton: lheat for heating and

Fig. 1.1: Example hybrid automaton: thermostat (quoted from [Che16b]). Note as oven
temperature x is the only concerned physical state, the physical state vector is
1-dimensional and is hence simply represented by scalar x.

lcool for cooling. The initial oven temperature is v0 œ I (where the valid initial value

set I = [◊l, ◊h]) and the oven is initially set to location l0 = lheat.

In location lheat, the heater is on, thus sets the outside temperature to ◊H > ◊h.

This causes the oven temperature to rise at a speed proportional to inside-outside

temperature difference. Thus the physical state vector dynamics at lheat is ẋ =

≠c(x ≠ ◊H). Coefficient c is a constant dependent on the type of gas in the oven and

the oven wall material.

In location lcool, the heater stops, hence the oven temperature drops at a speed

proportional to inside-outside temperature difference (assuming outside temperature

is 0). Thus the physical state vector dynamics at lcool is ẋ = ≠cx.

4 Chapter 1 Introduction

Location lheat has a constraint: oven temperature x must not rise over ◊h, i.e. x 6 ◊h.

When x reaches ◊h, guard condition [x = ◊h] is triggered and the jump to lcool

happens. As oven temperature x retains its old value (i.e. ◊h) immediately after the

jump, the new value assignment action is not explicitly drawn in Fig. 1.1.

In contrast, location lcool also has a constraint: oven temperature must not drop

below ◊l, i.e. x > ◊l. When x reaches ◊l, guard condition [x = ◊l] is triggered and

the jump to lheat happens. As oven temperature x retains its old value (i.e. ◊l)

immediately after the jump, the new value assignment action is not explicitly drawn

in Fig. 1.1.

1.4 Unmanned Aerial Vehicles (UAVs)

UAV is an abbreviation for “Unmanned Aerial Vehicle”. It is an aircraft with no pilot

on board. A UAV can either fly while controlled by a pilot on ground, or it can fly

fully autonomously based on pre-programmed flight plan.

UAVs have broad usage in military, civilian and academic domains. According to

the different configurations of actuators and sensors, UAVs can be classified into

different types. One of the most common configuration is quadcopter, which uses

four vertical motors and propellers to lift the body up. A model of quadcopter will

be presented in the next section to show how quadcopter control-CPS works.

1.4.1 System Dynamics of Quadcopters

Before deriving the quadcopter dynamics, we need to introduce two different frames

in which we operate. This will simplify the model expressions and the states can be

easily converted between two frames through transformation matrix. The “inertial

frame” is defined as the common frame we use on the ground, where the x-axis

1.4 Unmanned Aerial Vehicles (UAVs) 5

points to the north, y-axis points to the east, and z-axis points to the opposite

direction to the gravity. The origin of inertial frame can be arbitary fixed point on

the earth. For example, most quadcopters use GPS signals to acquire their position

information, thus the origin is the point on the earth whose latitude and longitude

are both 0°, and altitude is 0m. The “body frame” is defined by the quadcopter itself.

The x-axis and y-axis point to two arms of the quadcopter, and z-axis points to the

direction of the motors. The origin of body frame and inertial frame should be the

same fixed point on the earth, thus any vector expressed in the body frame can

be converted to a vector in the inertial frame through only rotation and vice versa.

(Fig. 1.2)

Fig. 1.2: Inertial frame (in dash) and body frame (in solid), note the two arms of UAV are
parallel to xB , yB axes

To convert states from body frame to inertial frame and vice versa, we need a trans-

formation matrix R such that if v̨ is a vector in body frame, Rv̨ is the corresponding

6 Chapter 1 Introduction

vector in inertial frame. Reversely, if v̨Õ is a vector in intertial frame, R≠1v̨Õ is the

corresponding vector in body frame. Clearly R is only related to the orientation of

the quadcopter, i.e. roll(„), pitch(◊) and yaw(Â). The matrix can be derived by

using Euler angle conversion:

R =

S

WWWWWU

c
„

c
Â

≠ c
◊

s
„

s
Â

≠c
Â

s
„

≠ c
„

c
◊

s
Â

s
◊

s
Â

c
◊

c
Â

s
„

+ c
„

s
Â

c
„

c
◊

c
Â

≠ s
„

s
Â

≠c
Â

s
◊

s
„

s
◊

c
„

s
◊

c
◊

T

XXXXXV
(1.2)

where c
„

means cos(„) and s
„

means sin(„).

The physical states of a quadcopter is usually expressed by a 12-element vector:

x̨ =
5
x y z u v w „ ◊ Â Ê

x

Ê
y

Ê
z

6T
(1.3)

where x, y, z are the UAV’s position in inertial frame, u, v, w are the UAV’s linear

velocity in body frame, „, ◊, Â are the UAV’s orientation in inertial frame, Ê
x

, Ê
y

, Ê
z

are the UAV’s angular velocity in body frame.

The linear acceleration of quadcopter is mainly due to thrust, gravity and friction.

To simplify our model, we will ignore friction in this part, then we have

m

S

WWWWWU

ẍ

ÿ

z̈

T

XXXXXV
=

S

WWWWWU

0

0

≠mg

T

XXXXXV
+ RT

B

(1.4)

1.4 Unmanned Aerial Vehicles (UAVs) 7

where m is the mass of quadcopter and T
B

is the thrust in body frame. Thrust comes

from the rotation of motors and the it is proportional to the square of the motor

speed (denoted by s
i

):

T
B

= k
m

4ÿ

i=1

S

WWWWWU

0

0

s2
i

T

XXXXXV
(1.5)

The rotation of motors also contributes torques to the quadcopter. For all quad-

copters, two of the propellers are spinning clockwise and the other two are spinning

counterclockwise (see Fig. 1.2), so the total torque applied (in body frame) on the

quadcopter can be expressed as:

·
B

=

S

WWWWWU

k
l

(≠s2
1 + s2

3)

k
l

(s2
2 ≠ s2

4)

k
b

(≠s2
1 + s2

2 ≠ s2
3 + s2

4)

T

XXXXXV
(1.6)

where k
l

and k
b

are some constants.

In body frame, we can compute the angular acceleration from torque by Euler’s

equation:

˙̨Ê =

S

WWWWWU

Ê̇
x

Ê̇
y

Ê̇
z

T

XXXXXV
= I≠1(·

B

≠ Ę̂ ◊ (IĘ̂)) (1.7)

where I is the inertia matrix of the quadcopter. We model the quadcopter as a sphere

in the center (the control board and battery) with mass M and radius R, and four

8 Chapter 1 Introduction

Fig. 1.3: The moments of inertia of the quadcopter (quoted from [Bea08])

point masses (the motors) of mass m at the end of each rod with length l.(Fig. 1.3)

Therefore, I can be expressed in terms of M , m, R and l:

I =

S

WWWWWU

2MR

2
5 + 2l2m 0 0

0 2MR

2
5 + 2l2m 0

0 0 2MR

2
5 + 4l2m

T

XXXXXV
(1.8)

From all the equations above, we can finally derive the quadcopter dynamics:

1.4 Unmanned Aerial Vehicles (UAVs) 9

S

WWWWWU

ẋ

ẏ

ż

T

XXXXXV
= R

S

WWWWWU

u

v

w

T

XXXXXV
(1.9)

S

WWWWWU

u̇

v̇

ẇ

T

XXXXXV
= R≠1

S

WWWWWU

0

0

≠g

T

XXXXXV
+

S

WWWWWU

0

0

k
m

(s2
1 + s2

2 + s2
3 + s2

4)/m

T

XXXXXV
(1.10)

S

WWWWWU

„̇

◊̇

Â̇

T

XXXXXV
= R

S

WWWWWU

Ê
x

Ê
y

Ê
z

T

XXXXXV
(1.11)

S

WWWWWU

Ê̇
x

Ê̇
y

Ê̇
z

T

XXXXXV
= I≠1(

S

WWWWWU

k
l

(≠s2
1 + s2

2 + s2
3 ≠ s2

4)

k
l

(≠s2
1 ≠ s2

2 + s2
3 + s2

4)

k
b

(≠s2
1 + s2

2 ≠ s2
3 + s2

4)

T

XXXXXV
≠ Ę̂ ◊ (IĘ̂)) (1.12)

Note the model above is a simplified version, which aims to present the idea of how

the quadcopter is controlled by the speed of four motors. In real world and most

simulation environment, the dynamics will be much more complicated.

1.5 Contributions of the Thesis

In this thesis, we aim to address the demand mentioned in section 1.1. By exploiting

state-of-the-art hybrid systems modeling and stability theories [GST12][Tab09][AHH93],

we aim to propose a more principled and systematic approach to prepare control-CPS

execution traces for the cyber subsystem fault localization.

1. We discover a mildly generic execution physical traces clustering property for

hybrid systems.

10 Chapter 1 Introduction

2. Based on the above clustering property, we propose a more principled and sys-

tematic execution traces preparation approach for control-CPS cyber subsystem

fault localization.

3. We evaluate our proposed approach on a commercial-product-grade control-

CPS, comparing against the current practice of Way-2 approach. Results

show that our proposed approach achieves significant improvements (42% ≥

300% improvement in accuracy, recall, and latency medians) over the Way-2

approach (see Fig. 4.3) for two of the three mainstream fault localization tools

evaluated.

1.5 Contributions of the Thesis 11

2
Related Work

Although control-CPS cyber subsystem fault localization is a long existing problem,

few existing solutions systematically exploit and integrate cross-domain knowledge.

Most solutions tend to focus on either the control or computer science/engineering

perspective.

2.1 Related Work in the Domain of Control

In the domain of control, fault diagnosis in dynamic systems is a research topic which

has been studied for decades. We have mature methods to handle sensing/actuating

errors, parameter errors, control formulae mismatches [PFE00][Ger98][CW84], and

robust/adaptive control demands [LW12][HC10]. There are four major families of

the fault diagnosis approaches [Gao+15a][Gao+15b]:

1. model-based methods: In model-based methods, we need to know the model of

the system, which can be acquired from either physical principles or system

identification technique. By comparing the predicted output and the measured

output, we can find faults in the system if the outputs are inconsistent. There

are a bunch of fault detection methods in this category to locate the faults such

as the parity relation approach [Mir79]. Some of the model-based methods

can also isolate the faults, such as structure residual fault isolation [Ger88].

2. signal-based methods: In signal-based methods, we try to find faults by extract-

ing and analyzing features of the signals. Abnormal patterns in the signals can

13

be discovered if the system contains faults. Researchers have proposed a num-

ber of features which are helpful for fault diagnosis, such as the covariance of

the sensing signals [Sam+08]. Some well-known diagnostic algorithms include

fast dynamic time warping (fast DTW) and correlated kurtosis (CK) [HD14].

3. knowledge-based methods: In knowledge-based methods, we want to know

whether the system behavior is consistent over time. Such knowledge can

be learned by analyzing the running history of the system through some

machine learning technique. An advantage of knowledge-based methods is

that they do not require any prior knowledge of the system model or the signal

patterns. These methods mainly utilize the tools in other domains such as

qualitative trend analysis (QTA) [MRV07] and principal component analysis

(PCA) [Z+13].

4. hybrid and active methods: The last category contains the methods which

combine different techniques together. For example, model-based method and

data-driven method (knowledge-based) are integrated together to diagnose

chemical reactors in [She+14]. Lastly, a special family of fault diagnose

methods are so-called “active”, which diagnose the faults by significantly

changing the configuration and behavior of the system. An example of active

method can be found in [Che+14].

These methods, however, usually focus on continuous time domain components of

the control-CPS, typically the physical subsystem.

14 Chapter 2 Related Work

2.2 Related Work in the Domain of Software

Engineering

In the domain of computer science/engineering, software fault localization is a

hot research topic for long time. Major families of tools include program spec-

trum analysis [Hon+15][Luc+14][DLZ05][JH05][RR03][Har+00][Ern+01], sta-

tistical analysis [B L+16][Won+08][Lib+05][Liu+06], machine learning based

analysis [WQ09][BLL07][BE04], program slicing [Wei09][LW87][KL88][AH90],

data mining based analysis [Cel+08][Li+06], and program state based debug-

ging [Zh02][Zel02][ZGG06][Ors+06]. All of these tool families focus on computer

science/engineering perspective, and rely on assertions designed by domain experts

to bring in control domain knowledge. The approach to design such assertions

are mostly best-effort. The first three families of tools heavily depend on large

number of labeled execution traces as inputs, hence are included in the evaluation

in Section 4.3. We select one fault localization methods in each of these families,

and we give a brief introduction here to these methods.

2.2.1 Tarantula

Given a program to debug, Tarantula[JH05] runs many test cases (by varying inputs)

on the program. Each run of test case is labeled as success/failure and the source

code execution trace is logged. Tarantula assigns “suspiciousness value” to each

coverage entity e of the program source code (a “coverage entity” can be a line of

code, a block of code, a function, etc.), using the following formula:

suspiciousness(e) =
failed(e)

totalfailed

passed(e)
totalpassed

+ failed(e)
totalfailed

(2.1)

2.2 Related Work in the Domain of Software Engineering 15

where failed(e) is the number of failed test cases executing e, totalfailed is the

number of all failed test cases, passed(e) is the number of passed test cases executing

e and totalpassed is the number of all passed test cases.

Tarantula will sort the coverage entities according to the suspiciousness value, so

the programmer can look for the fault from the one with highest suspicious value.

An example is given in Figure 2.1 to illustrate how Tarantula works.

Fig. 2.1: Example of Tarantula Technique (quoted from [JH05])

2.2.2 Crosstab

Similar to Taratula, the Crosstab (a.k.a. cross-classification table) method[Won+08]

also assigns suspiciousness value to each coverage entity but with different calcu-

lation approach. Crosstab analyzes the relationship between the execution of a

coverage entity and the successfulness of test cases using Chi-square test. Let the

null hypothesis be

16 Chapter 2 Related Work

H0: Program execution is independent of the coverage of e.

The Chi-square statistic is

‰2(e) = (N
CF

(e) ≠ E
CF

(e))2

E
CF

(e)

+ (N
CS

(e) ≠ E
CS

(e))2

E
CS

(e)

+ (N
UF

(e) ≠ E
UF

(e))2

E
UF

(e)

+ (N
US

(e) ≠ E
US

(e))2

E
US

(e) (2.2)

where

E
CF

(e) = N
C

(e) ◊ N
F

N
(2.3)

E
CS

(e) = N
C

(e) ◊ N
S

N
(2.4)

E
UF

(e) = N
U

(e) ◊ N
F

N
(2.5)

E
US

(e) = N
U

(e) ◊ N
S

N
(2.6)

(2.7)

The N -related notions are defined in Table 2.1.

If ‰2(e) is large, it indicates that the coverage of e have some impact on the suc-

cessfulness of test cases. We also need to know whether such impact is positive

2.2 Related Work in the Domain of Software Engineering 17

Tab. 2.1: Notations used in Crosstab

N total number of test cases
N

F

total number of failed test cases
N

S

total number of passed cases
N

C

(e) number of test cases covering e

N
CF

(e) number of failed test cases covering e

N
CS

(e) number of passed test cases covering e

N
U

(e) number of test cases not covering e

N
UF

(e) number of failed test cases not covering e

N
US

(e) number of passed test cases not covering e

(executing e leads to passed test cases) or negative (executing e leads to failed test

cases), by introducing a new statistic Ï(e):

Ï(e) =
N

CF

(e)/N

F

N

CS

(e)/N

S

(2.8)

If Ï(e) > 1, the coverage of e is more related to the failed test cases. If Ï(e) < 1, the

coverage of e is more related to the passed test cases. Finally the Crosstab method

defines the suspiciousness value ’(e) as:

’(e) =

Y
_______]

_______[

‰

2(e)
NF

if Ï(e) > 1

0 if Ï(e) = 1

≠‰

2(e)
NS

if Ï(e) < 1

(2.9)

2.2.3 BP Neural Network-based (BPNN) Approach

This fault localization method[WQ09] is based on a back-propagation (BP) neural

network. Intuitively, this method uses the result of test cases as the training data, and

localizes the faulty entities by feeding “virtual test cases” into the trained network.

18 Chapter 2 Related Work

Let m be the number of coverage entities and n be the number of test cases. BPNN

first label all the coverage entities as e1, e2 and so on. For each test case, BPNN

constructs an m ◊ 1 vector c. The value of each entry in the vector c
i

is either 0 (if

e
i

is not covered in the test case) or 1 (if e
i

is covered in the test case). Totally n

vectors are constructed, one for each test case. These n vectors are the input to the

BP neural network.

As for the structure of the network, the author uses a three-layer network with 3

neurons in the hidden layer and 1 neuron in the output layer. The transfer function

of each neuron is the standard sigmoid function y = 1/(1 + e

≠x).

The network is trained by all n test cases. For each test case, the input is the

constructed vector c as mentioned above, and the output is 0 if the test case is passed

or 1 if the test case is failed. BPNN uses the BP algorithm to train the network: the

constructed inputs are firstly fed in the network to generate the output, and the error

between the actual output and the expected output is calculated and propagated

back. During the back-propagation process, the weights on the connections of

neurons are adjusted to reduce the error. Bayesian regularization[BW09] is used

to mitigate the overfitting problem during the training process. (Overfitting is a

common problem in machine learning caused by overly emphasizing matching

training data. It harms the predictive power of learnt model.) Figure 2.2 illustrates

how the sample inputs and outputs are constructed.

After the network is trained. A set of m virtual test cases are constructed. Each

test case in the set only covers one coverage entity so the representing vector e

contains exactly one 1 and all remaining entries are 0s. By feeding the vectors to the

trained network, we can get m outputs. This approach then uses the outputs as the

suspiciousness values of each coverage entity.

2.2 Related Work in the Domain of Software Engineering 19

Fig. 2.2: Sample Coverage Data and Execution Results (quoted from [WQ09])

2.3 Related Work in Cross Domains

Due to the recent advancement of hybrid systems theory, some cross-domain solu-

tions start to emerge. But these solutions typically require accurate known model of

the control-CPS [DPS97], or the behavior of program can be modeled with precise

logic/automata [WSM02][MSW00]. Also, these solutions typically model faults as a

mode or threshold in the automata [Zha+05][NB07][MB99], which is not generic

or practical enough to describe all program bugs.

There are works on metamorphic testing [ZXC16], which aims to discover generic

output trace features to label “faulty” traces. In this sense, this paper is a step toward

metamorphic testing in control-CPS using the state-of-the-art hybrid systems domain

knowledge.

There are also works on hybrid automata trace convergence and stability [GST12],
however, they do not discuss how to exploit these features for debugging pur-
poses.

20 Chapter 2 Related Work

3
A Hybrid Systems Based
Approach to Prepare Traces for
Control-CPS Cyber Subsystem
Fault Localization

3.1 Overview

From the previous discussion, we see the urgent demand on control-CPS debugging

tools, but little work has been done in this area. Under this circumstance, we

propose a new approach to locate faults in the cyber subsystems, based on our

discovery of the existence of physical trace divergence bound. In this chapter, we

will first introduce our theorem with complete proof. We will next propose our fault

localization approach based on the theorem.

3.2 Formal Definition of Hybrid Automata

Before formally introducing our approach, we need to dig into the hybrid automata a

bit further. First, some more details on the state vector x̨. Without loss of generality,

in this chapter, we further require that the elements of x̨ are ordered s.t. time

continuous physical states are listed first. Formally, x̨ can be rewritten as

x̨ = (y̨T, z̨T)T, (3.1)

21

where y̨ = (x1, x2, . . . , x
Ncont)T, z̨ = (x

Ncont+1, x
Ncont+2, . . ., x

N

)T, and ’n œ {1, . . . , Ncont},

physical state x
n

is always continuous over time. In addition, We denote [[x̨]] as the

valid value range of x̨, hence I ™ [[x̨]].

Besides L, E , x̨ and I mentioned in Section 1.3, other components of hybrid automa-

ton A(L, E , x̨, I, fl, l0, act, inv, grd, rst) include the following.

fl œ L indicates the current location. fl is a function of time t. l0 œ L is the initial

location for fl.

Function act assigns to each location l œ L an activity, which describes the continuous

time domain dynamics of x̨ at l. Typically, act(l) is a differential equation of form

Exp. (1.1).

Function inv maps each location l œ L to a set of assertions that x̨ must satisfy

when at l. We denote the set of valid values of x̨ that satisfy inv(l) as [[inv(l)]], note

[[inv(l)]] ™ [[x̨]].

Function grd assigns each jump (l, lÕ) œ E a guard, i.e. a condition on x̨ to trig-

ger jump (l, lÕ). We denote the set of valid values of x̨ that satisfy grd((l, lÕ))

as [[grd((l, lÕ))]], note [[grd((l, lÕ))]] ™ [[x̨]]. For convenience, we denote [[grd(l)]] def=
t

’(l,lÕ)œE [[grd((l, lÕ))]].

Function rst assigns each jump (l, lÕ) œ E a set of tuples of (v̨, v̨Õ), where v̨ œ

closure([[inv(l)]]) fl [[grd((l, lÕ))]] and v̨Õ œ [[inv(lÕ)]], here the “closure” operator gets the

closure of a set. (v̨, v̨Õ) œ rst((l, lÕ)) iff physical state vector x̨’s value can be reset

from v̨ immediately before the jump to v̨Õ immediately after the jump. We also say v̨

is mapped by (l, lÕ) to v̨Õ. Also, iff jump (l, lÕ) happens, fl changes from l to lÕ. Note

different from [AHH96], in this chapter we assume v̨Õ is unique for a given v̨ in a

given rst((l, lÕ)). For a given v̨, multiple tuples may exist in rst((l, lÕ)); e.g., (v̨, v̨Õ) and

22 Chapter 3 A Hybrid Systems Based Approach to Prepare Traces for Control-CPS Cyber

Subsystem Fault Localization

(v̨, v̨ÕÕ) (where v̨Õ ”= v̨ÕÕ) may coexist in rst((l, lÕ)). In each occurrence of the jump, x̨’s

new value is nondeterministically chosen from all valid candidates.

Function syn is for hybrid automata composition, which is irrelevant to this chapter.

Interested readers can refer to [AHH96] for further details. syn assigns each jump

(l, lÕ) œ E a synchronization message (which can be null) to define causal relations

between jumps. The details are unimportant for this paper. Usually we add character

‘!’ in front of a synchronization message to indicate once the corresponding jump is

triggered, the message is sent; while add character ‘?’ in front of a synchronization

message to indicate once this message is received, the corresponding jump is trig-

gered (this means a jump can be triggered by its guard condition and/or by receiving

a synchronization message).

3.3 Physical Traces Divergence Bound Existence

(Acknowledgement: The mathematical analysis in this section is the result of a joint

effort led by Dr. Yao Chen of our group.)

In this section, we will introduce a theorem which proves the existence of physical

traces divergence bound, which is the foundation of our debugging approach. To

formally describe the theory, we denote ‹̨
n

(n œ {1, . . . , N}) as the nth dimension of

vector ‹̨ œ RN . For example, as per Exp. (3.1), x̨
n

(n œ {1, . . . , Ncont}) represents a

scalar physical state that is always continuous over time. Denote B
n

(n œ N+) as

the unit ball in Rn. Given a œ R, b̨ œ Rn (n œ N+), and set S1, S2 ™ Rn, we define

aS1
def= {‹̨ œ Rn : ÷µ̨ œ S1 s.t. ‹̨ = aµ̨}, define b̨ + S1

def= {‹̨ œ Rn : ÷µ̨ œ S1 s.t. ‹̨ =

b̨ + µ̨}, and define S1 + S2
def= {‹̨ œ Rn : ÷µ̨1 œ S1 and µ̨2 œ S2 s.t. ‹̨ = µ̨1 + µ̨2}. We

denote boundary(S) as the boundary of a set S [16d]. Finally, a K-function f(a) is

an increasing function for a > 0 and f(0) = 0. With the above notations, we propose

Theorem 1.

3.3 Physical Traces Divergence Bound Existence 23

Theorem 1 (Physical Traces Divergence Bound Existence) Given a hybrid automa-

ton A(L, E , x̨, I, fl, l0, act, inv, grd, rst) satisfying feature F1≥F4:

F1 ’l œ L, activity act(l) is a differential equation ˙̨x = f
l

(x̨), where f
l

(x̨) is continuous,

differentiable, well defined on RN , and ÷0 < F1 < F2 s.t. ’x̨ œ RN , ||f
l

(x̨)|| 6 F2

and ||dfl(x̨)
dx̨

|| 6 F2, and ’x̨ œ boundary([[inv(l)]]), F1 6 ||f
l

(x̨)||.

F2 ’(l, lÕ) œ E , the jump (l, lÕ) can only happen when x̨ penetrates the boundary of

[[inv(l)]], i.e. reaching the boundary non-tangentially and outward closure([[inv(l)]]).

F3 ’l œ L, the boundary of [[inv(l)]] is partitioned into one or several maximal connected

regions, denote this set of partition(s) as P(boundary([[inv(l)]])).

F3.1 Each partition P œ P(boundary([[inv(l)]])) has a unique feasible jump (l, lÕ) œ E .

The jump is feasible at every v̨ œ P , and maps v̨ to a unique new value v̨Õ œ

[[inv(lÕ)]]. Such mappings of all partitions in P(boundary([[inv(l)]]) collectively

define a function, denoted as �
l

(v̨) : boundary([[inv(l)]]) ‘æ
t

’l

ÕœL[[inv(lÕ)]].

F3.2 ÷� > 0, ’P1, P2 œ P(boundary([[inv(l)]])) and P1 ”= P2, we have ’v̨1 œ P1 and

’v̨2 œ P2, ||v̨1 ≠ v̨2|| > �.

F3.3 For each partition P œ P(boundary([[inv(l)]])), suppose its unique jump is (l, lÕ) œ

E . Suppose v̨ œ P is uniquely mapped by (l, lÕ) to v̨Õ œ [[inv(lÕ)]]. Then ÷ K-function

BÕ(·), s.t. for any sufficiently small Á > 0 (see footnote 1), ’‹̨ œ (v̨ + ÁB
N

) fl P ,

‹̨ is uniquely mapped by (l, lÕ) to ‹̨ Õ œ v̨Õ + BÕ(Á)B
N

in [[inv(lÕ)]].

F4 A is nonzeno and nonblocking.

Then given time interval [0, T], ÷K-function B(·) s.t. for any physical state vector

trajectory x̨(t) (t œ [0, +Œ)) starting from initial value v̨0 œ I ≠ boundary([[inv(l0)]]),

we have the following. For any sufficiently small Á > 0, a trajectory x̨Õ(t) (t œ [0, +Œ))

starting from initial value v̨Õ0 œ v̨0+ÁB
N

shall have ||y̨(t)≠y̨Õ(t)|| 6 B(Á) (’t œ (0, T)),

where y̨ is the continuous physical states portion of x̨ (see Exp. (3.1)). We call B(·) the

physical traces divergence bound.

1This means ÷Á̄ > 0, s.t. ’Á œ (0, Á̄) the corresponding claim holds.

24 Chapter 3 A Hybrid Systems Based Approach to Prepare Traces for Control-CPS Cyber

Subsystem Fault Localization

Proof: For A, due to F1, F2, F3.1, F4, given x̨(t0) = v̨0 and initial location

‡(0), then trajectory x̨(t) (’t œ [t0, +Œ)) is determined. Denote this trajectory

as �(t, t0, v̨0, ‡(0)).

In case �(t, t0, v̨0, ‡(0)) sequentially visits location ‡(0), ‡(1), ‡(2), . . ., we de-

note the corresponding jump time instances as �1(t0, v̨0, ‡(0)), �2(t0, v̨0, ‡(0)),

. . .. Due to F4, �1(t0, v̨0, ‡(0)) < �2(t0, v̨0, ‡(0)) < For a given trajectory

x̨(t) = �(t, t0, v̨0, ‡(0)), for convenience, we also refer to the kth (k = 1, 2, . . .)

jump time instance (if it exists) �
k

(t0, v̨0, ‡(0)) as t
k

. Note we assume trajectory is

right continuous over time, i.e. x̨(t) = x̨(t+) (’t œ [t0, +Œ)). Therefore, jump is

considered to happen between t≠
k

and t
k

. Particularly, there is no jump during t0

and t+
0 . Hence t1 > t0 if there is a t1 after all.

For �(t, t0, v̨0, ‡(0)) (t œ [t0, +Œ)), if its kth (k = 1, 2, . . .) jump exists, we also

define the jump-from state and jump-to state as �≠
k

(t0, v̨0, ‡(0)) and �+
k

(t0, v̨0, ‡(0)).

Note if x̨(t) = �(t, t0, v̨0, ‡(0)), then x̨(t+
k

) = x̨(t
k

) = �
‡(k≠1)(x̨(t≠

k

)), and y̨(t+
k

) =

y̨(t
k

) = y̨(t≠
k

) (see Exp. (3.1)).

Furthermore, given t0 ™ R and v0 ™ RN , we define

�(t,t0,v0, ‡(0)) def= {�(t, t0, v̨0, ‡(0)) : t0 œ t0, v̨0 œ v0},

�
k

(t0,v0, ‡(0)) def= {�
k

(t0, v̨0, ‡(0)) : t0 œ t0, v̨0 œ v0},

�≠
k

(t0,v0, ‡(0)) def= {�≠
k

(t0, v̨0, ‡(0)) : t0 œ t0, v̨0 œ v0},

�+
k

(t0,v0, ‡(0)) def= {�+
k

(t0, v̨0, ‡(0)) : t0 œ t0, v̨0 œ v0}.

We define trajectory �Õ(t, t0, v̨0, ‡(0)) as the value of x̨(t) starting from x̨(t0) = v̨0,

location ‡(0), and only under the control of differential equation ˙̨x = f
‡(0)(x̨). We

3.3 Physical Traces Divergence Bound Existence 25

also define �Õ(t,t0,v0, ‡(0)) with �Õ(t, t0, v̨0, ‡(0)), using the same way we define

�(t,t0,v0, ‡(0)) with �(t, t0, v̨0, ‡(0)).

We need the following lemmas to start proving Theorem 1.

Lemma 1 (quoted from [Ari06]) If f
‡(0)(x̨) and df‡(0)(x̨)

dx̨

are both bounded, then

for any t > t0 and initial value v̨0, ÷ K-function ”(·) s.t. for any sufficiently small

Á > 0, �Õ(t, t0, v̨0+ÁB
N

, ‡(0)) ™ �Õ(t, t0+ÁB1, v̨0+ÁB
N

, ‡(0)) ™ �Õ(t, t0, v̨0, ‡(0))+

”(Á)B
N

.

Lemma 2 (quoted from [Che16a]) Given F1≥F4 of Theorem 1, given x̨(t) = �(t, t0, v̨0, ‡(0)),

if jump time instance t1 exists after all, then ÷ K-function ”(·) s.t. for any sufficiently

small Á > 0, we have

�≠
1 (t0, v̨0 + ÁB

N

, ‡(0)) ™ x̨(t≠
1) + ”(Á)B

N

,

�1(t0, v̨0 + ÁB
N

, ‡(0)) ™ t1 + ”(Á)B
N

.

Lemma 3 Given the same condition as Lemma 2, ÷ K-function ”(·) s.t. for any

sufficiently small Á > 0, we have

�≠
1 (t0 + ÁB1, v̨0 + ÁB

N

, ‡(0)) ™ x̨(t≠
1) + ”(Á)B

N

,

�1(t0 + ÁB1, v̨0 + ÁB
N

, ‡(0)) ™ t1 + ”(Á)B
N

.

Proof: Note hybrid automaton A is time invariant. Based on Lemma 2, we derive

Lemma 3. ⌅

Now back to the proof of Theorem 1.

26 Chapter 3 A Hybrid Systems Based Approach to Prepare Traces for Control-CPS Cyber

Subsystem Fault Localization

Given T > 0, given trajectory x̨(t) = �(t, t0, v̨0, ‡(0)) (t œ [t0, +Œ)), where v̨0 œ

I ≠ boundary([[inv(‡(0))]]) and ‡(0) = l0, let us first assume x̨(t) jumps (K ≠ 1) > 0

times on [t0, t0 + T), and jumps on [T, +Œ).

According to Lemma 2, ÷ K-function ”̃1(·) s.t. for sufficiently small Á > 0,

�≠
1 (t0, v̨0 + ÁB

N

, ‡(0)) ™ x̨(t≠
1) + ”̃1(Á)B

N

,

�1(t0, v̨0 + ÁB
N

, ‡(0)) ™ t1 + ”̃1(Á)B1.

Due to F3.3, ÷ K-function ”̂1(·) s.t.

�
‡(0)(�≠

1 (t0, v̨0 + ÁB
N

, ‡(0))) ™ x̨(t+
1) + ”̂1(Á)B

N

.

Denote ”1
def= max{”̃1, ”̂1}, then ”1(·) is K-function, and

�+
1 (t0, v̨0 + ÁB

N

, ‡(0)) ™ x̨(t+
1) + ”1(Á)B

N

,

�1(t0, v̨0 + ÁB
N

, ‡(0)) ™ t1 + ”1(Á)B1.

Apply Lemma 3 to the above formulas, ÷ K-function ”̃2(·) s.t. for sufficiently small

Á > 0,

�≠
2 (t0, v̨0 + ÁB

N

, ‡(0)) ™ x̨(t≠
2) + ”̃2(Á)B

N

,

�2(t0, v̨0 + ÁB
N

, ‡(0)) ™ t2 + ”̃2(Á)B1.

Due to F3.3, ÷ K-function ”̂2(·) s.t.

�
‡(1)(�≠

2 (t0, v̨0 + ÁB
N

, ‡(0))) ™ x̨(t+
2) + ”̂2(Á)B

N

.

3.3 Physical Traces Divergence Bound Existence 27

Denote ”2
def= max{”̃2, ”̂2} and repeat the above process, we finally will have ’k œ

{1, . . . , K}, ÷ K-function ”
k

(·) s.t. for sufficiently small Á > 0,

�+
k

(t0, v̨0 + ÁB
N

, ‡(0)) ™ x̨(t+
k

) + ”
k

(Á)B
N

,

�
k

(t0, v̨0 + ÁB
N

, ‡(0)) ™ t
k

+ ”
k

(Á)B1.

Denote ”
def= max{”

k

}K

k=1, then ”(·) is a K-function, and for sufficiently small Á > 0,

’k œ {1, . . . , K},

�+
k

(t0, v̨0 + ÁB
N

, ‡(0)) ™ x̨(t+
k

) + ”(Á)B
N

, (3.2)

�
k

(t0, v̨0 + ÁB
N

, ‡(0)) ™ t
k

+ ”(Á)B1. (3.3)

’· œ (t0, T), suppose for trajectory x̨(t), the current location fl(·) = ‡(k) (k œ

{1, . . . , K ≠ 1}). We conduct the following discussions.

Case A): · is not a jump time instance for x̨(t).

As A is nonzeno, we have t
k

< · < t
k+1.

Based on Exp. (3.3), we have for sufficiently small Á > 0, any trajectory x̨Õ(t) started

from (t0, v̨Õ0, ‡(0)), where v̨Õ0 œ v̨0 + ÁB
N

, should jump to location ‡(k) and next to

‡(k + 1) at tÕ
k

and tÕ
k+1 respectively. tÕ

k

and tÕ
k+1 are sufficiently close to t

k

and t
k+1.

Hence tÕ
k

< · < tÕ
k+1, i.e. during [tÕ

k

, ·], x̨Õ(t) is traveling in ‡(k). Meanwhile, during

[t
k

, ·], x̨(t) is also traveling in ‡(k).

Due to Exp. (3.3), |tÕ
k

≠ t
k

| 6 ”(Á).

If tÕ
k

6 t
k

, then due to F1, ||x̨Õ(t
k

) ≠ x̨Õ(tÕ
k

)|| 6 F2”(Á). Due to Exp. (3.2), ||x̨Õ(tÕ
k

) ≠

x̨(t
k

)|| 6 ”(Á). Hence ||x̨Õ(t
k

) ≠ x̨(t
k

)|| 6 (F2 + 1)”(Á). Due to Lemma 1, ÷ K-

28 Chapter 3 A Hybrid Systems Based Approach to Prepare Traces for Control-CPS Cyber

Subsystem Fault Localization

function ”̌(·) s.t. ||x̨Õ(·)≠ x̨(·)|| 6 ”̌((F2 +1)”(Á)). Correspondingly ||y̨Õ(·)≠ y̨(·)|| 6

”̌((F2 + 1)”(Á)). If tÕ
k

> t
k

, using the same way we can still prove ||y̨Õ(·) ≠ y̨(·)|| 6

”̌((F2 + 1)”(Á)).

Case B): · is a jump time instance for x̨(t). Suppose · = t
k

(k œ {1, . . . , K ≠ 1}).

For any trajectory x̨Õ(t) with initial value v̨Õ0 œ (v̨0 +ÁB
N

)fl (I ≠boundary([[inv(l0)]])),

where Á > 0 is sufficiently small. Due to Exp. (3.2)(3.3), x̨Õ(t) should have at least

K jumps on [t0, +Œ), respectively close to x̨(t)’s K jumps. Suppose the kth jump

time instances and jump-to locations are respectively tÕ
k

and ‡Õ(k) (k = 1, . . . , K).

As per Exp. (3.2), ‡Õ(k) = ‡(k). Also, let us denote x̨Õ(t)’s current location as flÕ(t).

Case B.1): If tÕ
k

6 t
k

. As Á is sufficiently small, hence ”(Á) is sufficiently small. Due

to this, Exp. (3.3), and nonzenoness of A (see F4), during [tÕ
k

, t
k

], x̨Õ(t)’s current

location flÕ(t) is always in ‡(k), and |tÕ
k

≠ t
k

| 6 ”(Á). Due to F1 and Exp. (3.2)

||x̨(·) ≠ x̨Õ(·)|| = ||x̨(t
k

) ≠ x̨Õ(t
k

)|| 6 (F2 + 1)”(Á). Therefore ||y̨(·) ≠ y̨Õ(·)|| 6

(F2 + 1)”(Á).

Case B.2): if tÕ
k

> t
k

. As Á is sufficiently small, hence ”(Á) is sufficiently small. Due

to this, Exp. (3.3), and nonzenoness of A (see F4), during [t
k

, tÕ
k

), x̨Õ(t)’s current

location flÕ(t) is always in ‡(k ≠ 1) and x̨(t)’s current location fl(t) is always in ‡(k).

Due to Exp. (3.2), ||y̨Õ(tÕ
k

) ≠ y̨(·)|| 6 ”(Á). Due to continuity y̨Õ(tÕ
k

) = y̨Õ(tÕ≠
k

). Due

to F1 and Exp. (3.3), ||y̨Õ(·) ≠ y̨Õ(tÕ
k

)|| = ||y̨Õ(·) ≠ y̨Õ(tÕ≠
k

)|| 6 F2”(Á). Therefore

||y̨(·) ≠ y̨Õ(·)|| 6 (F2 + 1)”(Á).

Summarizing Case A and B, K-function B(Á) def= max{”̌((F2 + 1)”(Á)), (F2 + 1)”(Á)}

is the wanted bound function.

Finally, for the case where K ≠ 1 > 0 and x̨(t) does not jump on [T, +Œ), we can

follow the same way of proof (imagine t
K

= +Œ). For the case where K ≠ 1 6 0,

x̨(t) does not jump on [t0, T), we can still follow the same way of proof (now only

need to use Lemma 1).

3.3 Physical Traces Divergence Bound Existence 29

In summary, the theorem holds. ⌅

3.4 Proposed Approach

In this section, we aim to address the demand proposed in Section 1.1, i.e. finding a

more principled and systematic approach to prepare execution traces for control-CPS

cyber subsystem fault localization. The hope lies in the powerful tool of hybrid au-

tomata. With hybrid automata, we can now holistically model and analyze the cyber

and physical aspects of control-CPSs. Generic properties derived from the analysis

shall help us find the wanted approach. In case the model is incomplete/inaccurate,

we assume the generic properties still sustain, and empirically validate our proposed

approach.

3.4.1 Summary and Intuition of the Theory

In the last section, we gives a solid proof of the existence of physical traces di-

vergence bound, which is inspired by the state-of-the-art hybrid system stability

research [GST12]. In this section, we would like to get rid of most of the mathe-

matical parts and express the theory in a more intuitive way. This should help the

readers see how the theory can help to build our approach.

Intuitively, we find a reasonably generic property for any hybrid automaton A(L, E ,

x̨, I, fl, l0, act, inv, grd, rst). If A satisfies certain mild constraints, its physical state

vector trajectories started from close-by initial values shall stay close forever. This

intuition is illustrated by the cluster of trajectories 1 ≥ 4 and 5 ≥ 8 in Fig. 3.1. We

can summarize Theorem 1 to the following sketch as readers’ convenience.

Sketch of Theorem 1 Given a hybrid automaton A, if

30 Chapter 3 A Hybrid Systems Based Approach to Prepare Traces for Control-CPS Cyber

Subsystem Fault Localization

Fig. 3.1: Approach Heuristics. Dark shaded area is I.

F1 in each location (i.e. node), the physical state vector x̨(t) dynamics are continuous,

differentiable, and bounded;

F2 jump (i.e. transition) only happens when the x̨(t) deterministically violates current

location’s constraints;

F3 a location can have several constraints for x̨(t);

F3.1 when x̨(t) deterministically violates a constraint, there is always another unique

location to jump to, and a unique new value for x̨(t) in the jump-to location;

F3.2 constraints are well separated, i.e. for x̨(t) there are no borderline values, at

which an arbitrarily small deviation from x̨(t) can lead to violating a different

constraint;

F3.3 a sufficiently small deviation (see footnote 1 in Section 3.3) from x̨(t) leads to a

same jump, and a similar new value for x̨(t) in the jump-to location;

F4 A is nonzeno, i.e. jumps cannot happen subsequently with 0 time interval; and A is

nonblocking, i.e. x̨(t) can go on forever once started.

Then given time interval [0, T], there is a bound B(·) s.t. for any two physical state

vector trajectories x̨1(t) and x̨2(t), if their initial values x̨1(0), x̨2(0) are sufficiently

close (denote the distance as Á), and neither is on the borderline of any constraints (i.e.

small deviations from x̨1(0) or x̨2(0) will not violate any constraint), then distance

between x̨1(t) and x̨2(t) are bounded by B(Á) throughout (0, T). We call B(·) the

physical traces divergence bound.

3.4 Proposed Approach 31

Note the thermostat control-CPS example in Section 1.3 can help us better under-

stand F3.2 and F3.3. As per Fig. 4.1, at location lheat, an arbitrarily small deviation

Á > 0 of initial value, say from x(0) = v0 to x(0) = v0 + Á cannot change the con-

straint that temperature trajectory x(t) will hit: ◊h. Upon hitting the ◊h constraint,

the execution of the hybrid automaton always switches to location lcool with the

same (hence similar) new temperature value x(t) = ◊h.

3.4.2 Heuristics and Specifications of Proposed Approach

In a narrow sense, the execution/predicted physical trace of a control CPS is just the

execution/predicted physical state vector trajectory. In the following, we shall use

the two terms interchangeably. Intuitively, if two executions started from close-by

physical state vector initial values are both correct, the physical traces should satisfy

Theorem 1; otherwise, at least one of the executions is faulty. This inspires us to

propose the following control-CPS execution traces preparation heuristics.

If a control-CPS’s hybrid automaton model A(L, E , x̨, I, fl, l0, act, inv, grd, rst)

satisfies feature F1≥F4 of Thoerem 1, then the execution physical traces’ divergence

should be bounded by B(Á) as described by Theorem 1. Therefore, we can sample

the physical state vector’s initial value set I in a clustered pattern, as shown in

Fig. 3.1. That is, we sample I clusters of initial values, with J samples per cluster.

According to Fig. 3.1, within a sampling cluster, distances of physical state vector

initial values are within Á, thus distances of the trajectories of these physical state

vectors should be bounded by B(Á). This is illustrated by the cluster of trajectory

1 ≥ 4 and trajectory 5 ≥ 8 in Fig. 3.1. Any pair of trajectories exceeding the distance

bound means at least one of them is wrong, e.g. as illustrated by the cluster of

trajectory 9 and 10 in Fig. 3.1. In case we cannot tell exactly which one is wrong, we

label both as “faulty”. We conjecture this pessimistic practice acceptable when I ∫ J ,

32 Chapter 3 A Hybrid Systems Based Approach to Prepare Traces for Control-CPS Cyber

Subsystem Fault Localization

and the conjecture is corroborated by our large-scale empirical study (see Chapter 4).

The intuition is as follows. Fault localization tools are the most useful for the stage

of debugging residual bugs [Nat+13], i.e. bugs overlooked by best-effort manual

debugging. As “overlooked” bugs, residual bugs rarely emerge. Correspondingly,

in the residual bug debugging stage, of all I clusters of traces, only few cluster(s)

may contain faulty trace(s). Even if we label all traces in those(that) cluster(s) as

“faulty”, as I ∫ J , the number of false positives is still limited and likely to be better

than a subjective and ad-hoc approach.

In case a complete and sound hybrid automaton model A that satisfies feature

F1≥F4 of Theorem 1 is unavailable, which is common for a real-world control-CPS,

we conjecture the above heuristics can still work. The rationale is that man-made

control-CPSs are intentionally designed not to become chao systems [HSD12], where

infinitesimal deviation from initial value can cause drastic trace differences. Thus in

control-CPSs, borderline behaviors violating F1≥F4 of Theorem 1, though possible,

are statistically rare under sufficiently random sampling. Thus we can imagine a

hidden Theorem 1-complying hybrid automaton model Ã still exists; and regard

violation of Theorem 1 as faults. Results of our evaluation in Chapter 4 give important

empirical evidence for the correctness of the conjecture.

We formally specify the above heuristics into the following approach steps. Note

rigorous definitions of Step 4 and 9 contain too much math and the we put the

details into a separate section.

Step 1) Given a control-CPS implementation, confirm if this control-CPS has a

hybrid automaton model A = (L, E , x̨, I, fl, l0, act, inv, grd, rst). If not, go to Step

7.

Step 2) Confirm if hybrid automaton model A satisfies feature F1≥F4 of Theorem 1.

If cannot confirm, go to Step 7.

3.4 Proposed Approach 33

Step 3) As per Theorem 1, a physical traces divergence bound B(Á) exists. Try to

find this bound, i.e. the closed-form B(Á). If this fails, go to Step 7.

Step 4) We randomly sample I œ Z+ vectors {p̨
i

}I

i=1 uniformly distributed in the

valid initial value set I (but excluding all borderline values for location constraints);

then for each p̨
i

, we randomly sample J œ Z+ (J π I) vectors in its Á

2 vicinity

(where Á > 0 is sufficiently small, see footnote 1 in Section 3.3), denote them as

{v̨i,j}J

j=1. Thus for given i, v̨i,js (j = 1, . . ., J) are in Á distance to each other.

Step 5) For each v̨i,j (i œ {1, . . . , I}, j œ {1, . . . , J}), we set physical state vector

x̨’s initial value to v̨i,j and run the control-CPS for T seconds (where T > 0 is

a pre-configured constant) to get an execution physical trace x̨i,j(t) (t œ [0, T]).

Meanwhile, we also log the execution cyber trace, denoted as cybtrc(i, j), and label

it as “correct” for now.

Step 6) For each i œ {1, . . . , I}, for each pair of execution physical traces x̨i,j(t)

and x̨i,¸(t) (where j, ¸ œ {1, . . . , J} and j ”= ¸; t œ [0, T]), if their distance ever

exceeds B(Á) during (0, T), then Theorem 1 is violated, we label both cybtrc(i, j)

and cybtrc(i, ¸) as “faulty” (note the cyber traces were labeled “correct” by default in

Step 5). Go to Step 10.

Step 7, 8) Respectively the same as Step 4 and 5.

Step 9) For each i œ {1, . . . , I}, for each pair of execution physical traces x̨i,j(t)

and x̨i,¸(t) (where j, ¸ œ {1, . . . , J} and j ”= ¸; t œ [0, T]), if their distance ever

becomes statistically too separated during (0, T) (see Section 3.4.3 for rigorous

definitions on “statistically too separated”), then we consider a violation of the

hidden Theorem 1-complying hybrid automaton model Ã happens, and label both

cybtrc(i, j) and cybtrc(i, ¸) as “faulty” (note the cyber traces were labeled “correct”

by default in Step 8). Go to Step 10.

34 Chapter 3 A Hybrid Systems Based Approach to Prepare Traces for Control-CPS Cyber

Subsystem Fault Localization

Step 10) The End.

For convenience, we call the above Step 1≥10 our “proposed approach” in the

following.

3.4.3 Rigorous Definitions of Step 4 and 9

Step 4) We uniformly sample I œ Z+ vectors in I≠boundary([[inv(l0)]]). Denote each

sample as p̨
i

(i = 1, . . . , I). For each p̨
i

, we define an ‘̨-hyper-cube as C(̨‘, p̨
i

) def= {v̨ œ

RN : ’n œ {1,. . .,N}, |v̨
n

≠ p̨
i,n

| 6 ‘̨n
2 }, where ‘̨ œ (R+)N is a pre-configured vector;

‘̨
n

, v̨
n

, p̨
i,n

are respectively the nth dimension of ‘̨, v̨ and p̨
i

. Furthermore, ‘̨ satisfies

||̨‘|| 6 Á, where Á is a sufficiently small real number. We then uniformly sample

J œ Z+ vectors from C(̨‘, p̨
i

) fl I, and denote each sample as v̨i,j (j = 1, . . . , J). As

||̨‘|| 6 Á, for the given p̨
i

, the cluster of vectors {v̨i,j}J

j=1 are all within Á distance to

each other.

Step 9) For each i œ {1, . . . , I}, for each j, ¸ œ {1, . . . , J} and j ”= ¸, compute

the nth dimension divergence ratio “i,j,¸

n

(where n œ {1, . . . , Ncont}) as “i,j,¸

n

def=

max

tœ[0,T]
Ó

|x̨i,j

n

(t) ≠ x̨i,¸

n

(t)|/|x̨i,j

n

(0) ≠ x̨i,¸

n

(0)|
Ô

.

We pick a statistical confidence percentile – (as per convention, we pick – =

95%). For each dimension n œ {1, . . . , Ncont}, we estimate the –-th percentile of all

observed “i,j,¸

n

(i œ {1, . . . , I}, j, ¸ œ {1, . . . , J}, and j ”= ¸) as the estimated bound

for the nth dimension divergence ratio, denoted as �̂
n

.

We label cybtrc(i, j) (i œ {1, . . . , I}, j œ {1, . . . , J}) as “faulty” if ÷n, ¸ (n œ

{1, . . . , Ncont}, ¸ œ {1, . . . , J}, and j ”= ¸) s.t. “i,j,¸

n

> �̂
n

; and as “correct” oth-

erwise.

3.4 Proposed Approach 35

4
Evaluation and Results

4.1 Overview

In this chapter, we will show two use cases of our proposed approach. The first

use case demonstrates how to apply our approach for control-CPS with known

model, which is a thermostat to maintain the temperature in an oven within a

certain range. In the second use case, we conduct experiments on a widely used

control-CPS, Ardupilot, which is an open source controller for UAVs. We evaluate our

approach by injecting bugs in to the source code, and locating the faults using three

fault localization tools. We compare our approach with currently commonly used

Way-2 approach (see 1.1), and the result shows our approach achieves significant

improvements.

4.2 A Simple Example: Thermostat Control-CPS

4.2.1 System Model of Thermostat

In this section, we will re-visit the thermostat control-CPS and see how our proposed

approach can be applied to debug such system. Fig. 4.1 gives an example hybrid

automaton model of the thermostat control-CPS, which automatically heats an oven

to maintain oven temperature x in range [◊l, ◊h] (0 < ◊l < ◊h).

37

Fig. 4.1: Example Hybrid Automata: Thermostat. Note as oven temperature x is the only
concerned physical state, the physical state vector is 1-dimensional and is hence
simply represented by scalar x.

There are two locations in the hybrid automaton: lheat for heating and lcool for

cooling. The initial oven temperature is v0 and the oven is initially set to location

lheat.

In lcool, the heater stops, hence the oven temperature drops at a speed proportional

to inside-outside temperature difference (assuming outside temperature is 0), i.e.

act(lcool) is ẋ = ≠cx. In lheat, the heater is on, turning the outside temperature to

◊H > ◊h, hence the oven temperature rises at a speed proportional to inside-outside

temperature difference, i.e. act(lheat) is ẋ = ≠c(x ≠ ◊H). Coefficient c is a constant

dependent on the type of gas in the oven and the oven wall material.

In lcool, oven temperature must not drop below ◊l, i.e. inv(lcool) is x > ◊l. When x

reaches ◊l, grd(lcool) is triggered, which is denoted in Fig. 4.1 as [x = ◊l] :, and the

jump to lheat takes place. As oven temperature x retains its old value immediately

after the jump, rst((lcool, lheat)) is not explicitly drawn in Fig. 4.1. In contrast, in lheat,

oven temperature must not rise over ◊h, i.e. inv(lheat) is x 6 ◊h. When x reaches ◊h,

grd(lheat) is triggered, which is denoted in Fig. 4.1 as [x = ◊h] :, and the jump to lcool

takes place. As oven temperature x retains its old value immediately after the jump,

rst((lheat, lcool)) is not explicitly drawn in Fig. 4.1.

38 Chapter 4 Evaluation and Results

4.2.2 Thermostat Physical Traces Divergence Bound

(Acknowledgement: The mathemetical analysis of this sub-section is the result of a

joint effort led by Dr. Yao Chen of our group.)

Let x(t) (t > t0) denote the oven temperature (i.e. the only physical state interested

in this control-CPS) trajectory. When current location is lheat and lcool, based on the

corresponding differential equation given in Fig. 4.1, the dynamics of x(t) (t > t0) is

respectively

x(t ≠ t0) = x(t0)e≠c(t≠t0) + ◊H(1 ≠ e≠c(t≠t0)), (4.1)

x(t ≠ t0) = x(t0)e≠c(t≠t0). (4.2)

Correspondingly, given initial oven temperature v0 œ [◊l, ◊h], in lheat (lcool), the time

needed to reach ◊h (◊l) is respectively

tø(v0) = 1
c

ln
◊H ≠ v0

◊H ≠ ◊h
(4.3)

t¿(v0) = 1
c

ln
v0

◊l
. (4.4)

Particularly, we denote

Tø
def= tø(◊l) = 1

c
ln

◊H ≠ ◊l
◊H ≠ ◊h

(4.5)

T¿
def= t¿(◊h) = 1

c
ln

◊h
◊l

. (4.6)

Let �(t, t0, v0, lh) (t > t0) be the oven temperature trajectory starting from time t0,

initial temperature v0 œ [◊l, ◊h], and location lh in the hybrid automaton of Fig. 4.1.

Suppose x1(t) = �(t, t0, v0
1, lh) and x2(t) = �(t, t0, v0

2, lh), where without loss of

generality, we assume

◊l 6 v0
1 6 v0

2 6 ◊h. (4.7)

4.2 A Simple Example: Thermostat Control-CPS 39

Furthermore, let Á
def= v0

2 ≠ v0
1 > 0. In the following we assume

Á < min{◊h ≠ ◊l
◊h

(◊H ≠ ◊h), ◊h ≠ ◊l
◊H ≠ ◊l

(◊H ≠ ◊h)}. (4.8)

Then we have the following lemma.

Lemma 4 Suppose t1 and t2 are respectively the first time instances that x1(t) and x2(t)

hits ◊h, then under Assumption (4.7)(4.8), we have t2 6 t1 and t1 ≠ t2 < min{Tø, T¿}.

Proof: Due to Exp. (4.4), we get t1 = 1
c

ln
◊H≠v

0
1

◊H≠◊h
, t2 = 1

c

ln
◊H≠v

0
2

◊H≠◊h
. As v0

1 6 v0
2, we have

t2 6 t1.

Á = v0
2 ≠v0

1 < ◊h≠◊l
◊h

(◊H ≠◊h) ∆ v0
2 ≠v0

1 < ◊h≠◊l
◊h

(◊H ≠v0
1) … ◊H≠v

0
1

◊H≠v

0
2

< ◊h
◊l

… 1
c

ln
◊H≠v

0
1

◊H≠v

0
2

<

1
c

ln ◊h
◊l

… t1 ≠ t2 < T¿.

Á = v0
2 ≠ v0

1 < ◊h≠◊l
◊h≠◊l

(◊H ≠ ◊h) ∆ v0
2 ≠ v0

1 < ◊h≠◊l
◊H≠◊l

(◊H ≠ v0
1) … ◊H≠v

0
1

◊H≠v

0
2

< ◊H≠◊l
◊H≠◊h

…
1
c

ln
◊H≠v

0
1

◊H≠v

0
2

< 1
c

ln ◊H≠◊l
◊H≠◊h

… t1 ≠ t2 < Tø.

⌅

As per the Thermostat hybrid automaton (see Fig. 4.1), once x2 (x1) hits ◊h for the

first time, it will start cooling as per Exp. (4.2), until x2 (x1) hits ◊l. Denote the time

instance as tÕ
2 (tÕ

1). Then tÕ
2 = t2 + T¿ (tÕ

1 = t1 + Tø). Right after tÕ
2 (tÕ

1), x2 (x1) will

start heating as per Exp. (4.1), until x2 (x1) hits ◊h. Denote the time instate as tÕÕ
2

(tÕÕ
1). Then tÕÕ

2 = tÕ
2 + Tø = t2 + T¿ + Tø (tÕ

1 = tÕ
1 + Tø = t1 + T¿ + Tø). Right after tÕÕ

2

(tÕÕ
1), the above period restarts.

Apparently

40 Chapter 4 Evaluation and Results

Fig. 4.2: Periodical Trace Behavior of Thermostat

t1 ≠ t2 = tÕ
1 ≠ tÕ

2 = tÕÕ
1 ≠ tÕÕ

2. (4.9)

Also, as per Lemma 4, t2 6 t1, t1 ≠ t2 < T¿ ∆ t1 < tÕ
2, and t1 ≠ t2 = tÕ

1 ≠ tÕ
2 < Tø ∆

tÕ
1 < tÕÕ

2. Therefore, we have

t2 6 t1 < tÕ
2 6 tÕ

1 < tÕÕ
2 6 tÕÕ

1. (4.10)

Thus the periodical behaviors of the pair x2 and x1 are shown in Fig. 4.2. Due to the

periodicity, we only need to analyze one period, e.g. [t1, t1 + T¿ + Tø = tÕÕ
1] of x2 and

x1 (see Fig. 4.2), to fully understand them (note the behaviors of x2 and x1 during

[t0, t1] are the same as those during [tÕÕ
1 ≠ (t1 ≠ t0), tÕÕ

1]).

According to Fig. 4.2, the period of [t1, tÕÕ
1] has four patitions: [t1, tÕ

2], [tÕ
2, tÕ

1], [tÕ
1, tÕÕ

2],

and [tÕÕ
2, tÕÕ

1]. Use Exp. (4.1)(4.2), we can respectively get that |x1(t) ≠ x2(t)| 6

c◊h|t1 ≠ t2| (’t œ [t1, tÕ
2]), |x1(t) ≠ x2(t)| 6 c(◊H + ◊h)|t1 ≠ t2| (’t œ [tÕ

2, tÕ
1]), |x1(t) ≠

4.2 A Simple Example: Thermostat Control-CPS 41

x2(t)| 6 c(◊H ≠ ◊l)|t1 ≠ t2| (’t œ [tÕ
1, tÕÕ

2]), and |x1(t) ≠ x2(t)| 6 c(2◊H ≠ ◊l)|t1 ≠ t2|

(’t œ [tÕÕ
2, tÕÕ

1]).

Meanwhile, as per Exp. (4.4), |t1 ≠ t2| = 1
c

ln
◊H≠v

0
1

◊H≠v

0
2

= 1
c

ln(1 + Á

◊H≠v

0
2
) 6 1

c

Á

◊H≠v

0
2
6

1
c

Á

◊H≠◊h
(as v0

2 6 ◊h).

Therefore, ’t > t0, we have

|x1(t) ≠ x2(t)| 6 c(◊H + max{◊h, ◊H ≠ ◊l})|t1 ≠ t2|

6 (2◊H + ◊h ≠ ◊l)
Á

◊H ≠ ◊h

def= B(Á). (4.11)

B(Á) in (4.11) is the bound that we aim to find. Note the bound B(Á) only has to

be valid for “sufficiently small” Á > 0. Assumption (4.8) automatically holds if our

“sufficiently small” means at least smaller than the right hand side of (4.8). ⌅

For example, given a thermostat conforming to this model with parameters c = 0.01,

◊H = 50, ◊h = 30, ◊l = 20, we can calculate

Á < min{◊h ≠ ◊l
◊h

(◊H ≠ ◊h), ◊h ≠ ◊l
◊H ≠ ◊l

(◊H ≠ ◊h)}

= min{30 ≠ 20
30 (50 ≠ 30), 30 ≠ 20

50 ≠ 20(50 ≠ 30)}

= 20
3 . (4.12)

Thus for any two initial states v0
1, v0

2 such that |v0
1 ≠ v0

2| 6 20
3 , the divergence bound

exists. Let Á = 1 < 20
3 , we have

42 Chapter 4 Evaluation and Results

|x1(t) ≠ x2(t)| 6 (2◊H + ◊h ≠ ◊l)
Á

◊H ≠ ◊h

= (2 ◊ 50 + 30 ≠ 20) 1
50 ≠ 30

= 5.5. (4.13)

Suppose we have an implementation of the thermostat according to the model,

the temperature divergence should not go above 5.5K if the initial temperature

difference is within 1K. If some physical trajectories violate this property, we

can confidently assert the implementation contains faults. By inspecting which

statements are covered in these violative test cases, we may locate the faults by using

fault localization tools.

4.3 Evaluation on Ardupilot Autopilot Software

To evaluate our proposed approach, we notice that execution traces preparation

approaches must be used along with fault localization tools. There are many families

of mainstream fault localization tools (see Section 2). Among them, three families

demand large number of randomly sampled and labeled execution traces: program

spectrum analysis, statistical analysis, and machine learning based analysis. Typically,

a fault localization tool from these three families intakes a large number of labeled

execution traces of a program; and outputs a ranked list of program entities in

decreasing order of their likelihood of being buggy, aka suspiciousness values. The

list, aka diagnosis, is then used to guide manual debugging.

Given a diagnosis D = (d1, d2, . . . , d
m

) and the set F of all buggy entities of the

program, we define several diagnosis quality metrics. The accuracy metric measures

the percentage of buggy entities contained in a diagnosis, i.e. |{d
i

: d
i

œ F}|/m. The

recall metric measures the percentage of reported buggy entities of all buggy entities,

4.3 Evaluation on Ardupilot Autopilot Software 43

i.e. |{d
i

: d
i

œ F}|/|F |. The latency metric measures the number of entities one

has to examine before reaching the first truly buggy one, assuming the entities are

examined in their listed order. The latency metric can be defined as min{i : d
i

œ F}.

A high quality diagnosis shall have high accuracy, high recall, and low latency.

To empirically evaluate our proposed execution traces preparation approach, we

compare our proposed approach against the Way-2 approach in preparing execution

traces of a commercial-product-grade large control-CPS (note the Way-1 approach is

impractical for most real-world control-CPSs, see Section 1.1). We feed the prepared

traces to fault localization tools; and compare the generated diagnoses. Particularly,

we compare two aspects. The effectiveness aspect concerns the quality, i.e. accuracy,

recall, and latency of the diagnoses. The efficiency aspect concerns the length of

execution traces needed for achieving good quality diagnoses.

Our evaluation shall answer the following research questions (RQs):

RQ1 How our proposed approach impacts accuracy?

RQ2 How our proposed approach impacts recall?

RQ3 How our proposed approach impacts latency?

RQ4 How do the trace lengths impact diagnoses quality?

4.3.1 ArduPilot

We choose ArduPilot [16c] as our target control-CPS for evaluation. ArduPilot is an

open source platform for UAVs. It is successfully used in many commercial products,

including 3DRobotics [16a] and Aeromao [16b], and represents the state-of-the-art

of consumer UAV control-CPSs.

44 Chapter 4 Evaluation and Results

The ArduPilot cyber subsystem is mostly written in C++. It consists of over

1,400,000 lines of code from more than 9,600 source files; and its total size is

over 380MB. We focus on cyber subsystem modules responsible for waypoint navi-

gation and position/attitude control. The waypoint navigation module breaks the

route from source end to destination end into consecutive line segments, the vertices

of these line segments are called way points. Position/attitude control maneuvers the

UAV from one way point to the next-hop way point. These modules alone contain

over 3,000 lines of code.

ArduPilot’s distribution includes a physical subsystem simulator: the software in

the loop (SITL) simulator. As this simulator is a well-known and widely used

ArduPilot physical subsystem simulator, we reasonably assume it is bug-free. With

this simulator serving as the physical subsystem, we can run ArduPilot emulations: by

connecting the actual authentic/buggy-ArduPilot cyber subsystem to this simulator.

We call this emulation set-up authentic/buggy-ArduPilot SITL emulation set-up.

Execution physical traces of our emulation are the trajectories of the physical state

vector x̨. For ArduPilot UAV, x̨ is a 6-dimension-tuple. The 6 dimensions respectively

represent the UAV’s current x-location (i.e. longitude location), y-location (i.e.

latitude location), altitude, and pitch, roll, yaw angles. The valid initial value set I for

x̨ is respectively [0, 111.3km], [0, 111.3km], [0.4km, 0.5km], [≠20¶, 20¶], [≠20¶, 20¶],

[0¶, 360¶) for the 6 dimensions of x̨.

4.3.2 Bug Injection

Following common practice in the field [Foo+15][LH06][Hut+94], we inject bugs

into the authentic ArduPilot cyber subsystem to create buggy versions for evalua-

tion. Using injected bugs, we are able to control the type and location of bugs in

system, so as to evaluate fault localization results precisely. This decision, however,

4.3 Evaluation on Ardupilot Autopilot Software 45

Tab. 4.1: Most Representative Residual Bug Types [Nat+13]

Type Description
MFC Missing Function Call
MVIV Missing Variable Initialization using a Value
MVAV Missing Variable Assignment using a Value
MVAE Missing Variable Assignment using an Expression
MIA Missing IF construct Around statements
MIFS Missing IF construct plus Statements
MIEB Missing IF construct plus statements plus ELSE Before statements
MLC Missing AND/OR Clause in branch condition
MLPA Missing small and Localized Part of the Algorithm
WVAV Wrong Value Assigned to Variable
WPFV Wrong Variable used in Parameter of Function call
WAEP Wrong Arithmetic Expression in Parameter of function call

presents threats to the generalization of our evaluation results, which we discuss in

Section 4.3.7.

As our proposed approach mainly deals with residual bugs (i.e., bugs overlooked

by best-effort manual debugging, see Section 3.4.2), to make our evaluation as

close to real-world scenario as possible, the types of our injected bugs are se-

lected from Tab. 4.1, which lists 12 most common types of residual bugs in the

field [Nat+13][DM06]. The specific injected bugs are listed in Tab. 4.2.

By injecting bugs into the authentic ArduPilot cyber subsystem, we create 47 buggy

versions of ArduPilot. Among these, 35 versions are 5-bug-versions, i.e. each version

contains 5 bugs randomly picked (as per uniform distribution) from Tab. 4.2; and 12

versions are 1-bug-versions, i.e. each version contains respectively one bug listed

in Tab. 4.2. By default, all these 47 buggy versions has UAV hovering configuration

enabled. By merely disabling the hovering configuration, we create another 47 buggy

versions.

We call the combination of a buggy cyber subsystem and the corresponding physical

subsystem (or physical subsystem simulator) a subject. In total, we have 94 subjects

for our evaluation.

46 Chapter 4 Evaluation and Results

Tab. 4.2: Bugs Injected into ArduPilot

Type Bug Location: Function.Line Bug Description
WVAV pos_to_rate_xy.845 “multiply” becomes “divide”
MVAV clac_leash_length.999 an assignment deleted
WVAV pos_to_rate_z.365 assigned value negated
MVAE pos_to_rate_z.360 an assignment deleted
MVAE pos_to_rate_z.378 an assignment deleted
WPFV pos_to_rate_xy.798 swapped parameter x, y
MLPA get_stopping_point_z.287 wrong expression used
MLPA get_stopping_point_z.289 wrong expression used
WVAV advance_wp_target_along_track.610 an assignment deleted
MVAV calculate_wp_leash_length.794 an assignment deleted
MFC set_wp_origin_and_destination.487 immediate function return
MVIV calc_slow_down_distance.1232 initialization deleted

4.3.3 Fault Localization Tools

To mitigate bias introduced by a specific fault localization tool, we employ three

classic fault localization tools: Tarantula (TA) [JH05], Crosstab (CR) [Won+08], and

BP Neural Network (NN) [WQ09]. The three tools are representatives from three

major fault localization tool families, respectively the program spectrum analysis tool

family, the statistics analysis tool family, and the machine learning based analysis

tool family. Other families of fault localization tools are not selected as they do not

heavily depend on large number of labeled execution traces (see Section 2).

In our evaluation, we consider program entities at the level of basic blocks (i.e. a

block of code that has no branch). Unless otherwise noted, we refer to “basic blocks”

simply as “blocks” in the following. We also assume a programmer only has the

man-power to examine the top 10 blocks in turn in a diagnosis to pinpoint the bugs.

That is, we restrict all diagnoses to list only 10 items.

4.3 Evaluation on Ardupilot Autopilot Software 47

4.3.4 Trials and Diagnosis

Given a subject and an execution traces preparation approach, we call the complete

process from preparing execution traces of the subject to getting the 3 diagnoses

(respectively using TA, CR, and NN) a trial. Our evaluation is empirical and statis-

tical: it runs a Monte Carlo of many trials. To further randomize our Monte Carlo

evaluation, we run 4 trials on each given subject: 2 using our proposed execution

traces preparation approach, and 2 using the Way-2 approach.

For a trial using the Way-2 approach, we randomly sample 4000 initial values (as per

uniform distribution) from the valid initial value set I for ArduPilot UAV physical

state vector x̨ (see Section 4.3.1 last paragraph). Using the 4000 initial values, we

respectively run the subject 4000 times, retrieving 4000 execution traces. For a trial

using our proposed approach, we randomly sample I = 1000 clusters of J = 4 initial

states from I for x̨ (see Step-7 in Section 3.4 on how to uniformly distribute the

random samples: the sampling cluster size is ±11.13m, ±11.13m, ±10m, ±5¶, ±5¶,

±10¶ respectively for the 6 dimensions of x̨). Using the I ◊ J = 4000 initial values,

we also respectively run the subject 4000 times, retrieving 4000 execution traces.

For each trial, the emulated subject execution time is T = 120sec. The emulated

ArduPilot control duty-cycle is 40ms. The physical state vector logging period is

every 300ms of emulation time. So every execution trace logs 120 ◊ 1000/300 = 400

physical state vector values.

Traces in a trial are then labeled as per Step 9 in Section 3.4, in case our proposed

approach is used; or by checking if they satisfy a set of assertions proposed by a

panel of domain experts, in case the Way-2 approach is used. The panel consists of

three domain experts: two have PhD degrees and over 15 and 9 years of experiences

in control systems and CPS R&D respectively; two have over 2 years of ArduPilot

development experiences. The panel proposes the following assertions.

48 Chapter 4 Evaluation and Results

A1 Flight’s deviation from the straight line linking the current and next waypoints

is bounded by 10m.

A2 Pitch and roll angle fluctuation during flight is bounded by ±52¶.

A3 Velocity along x-location, y-location, and altitude axes are respectively bounded

by ±47.2m/sec, ±47.2m/sec, ±68.35m/sec.

A4 Angular velocity along pitch, roll, and yaw are respectively bounded by ±1.3rad/sec,

±1.3rad/sec, ±6.28rad/sec.

A5 Overshoot from a fixed reference point (i.e. the targeted physical state) should

decrease along time.

Note the ranges listed in A1≥A4 are derived from 267 emulation hours of the

authentic-ArduPilot SITL emulation set-up.

Next, the labeled traces are fed to the 3 fault localization tools respectively to

produce three diagnoses.

In total, we ran 94◊4 = 376 trials, using 376◊4000 = 1504000 traces from 1504000◊

120/3600 = 50133.33 emulation hours of ArduPilot, and produced 94 ◊ 4 ◊ 3 = 1128

fault diagnoses. This gives us 1128/2 = 564 pairs of diagnoses to compare, where

each pair are produced using the same subject and fault localization tool but with

different execution traces preparation approaches. These pairs provide a good

collection of data points for us to statistically analyze the differences introduced by

the execution traces preparation approaches.

4.3 Evaluation on Ardupilot Autopilot Software 49

(a) 1-bug subjects (b) 5-bug subjects (c) all Subjects
Accuracy

(d) 1-bug subjects (e) 5-bug subjects (f) all subjects
Recall

(g) 1-bug subjects (h) 5-bug subjects (i) all subjects
Latency. Note when data set size is an even number, median
is the average of the middle two data points, hence .5 latency
median is possible.

Fig. 4.3: Box-plots [16e] of diagnoses quality metrics. X-axes: execution traces preparation
approach and fault localization tool combination; PA: our proposed approach; W2:
Way-2 approach; TA: Tarantula; CR: Crosstab; NN: BP Neural Networks. Y-axes:
respective diagnoses quality metric statistics. Bar in each box is the median of the
data, box ends are 1st and 3rd quartile of the data, whisker ends are min/max of
the data, outliers are dots outside the whiskers.

4.3.5 Results

In this section, we report the results of our evaluations, with the aim of answering

the research questions R1≥R4 (see the beginning of Section 4.3).

RQ1 (Diagnosis Accuracy): Fig. 4.3(a)≥(c) compare the diagnoses accuracy statis-

tics (in form of box-plots [16e]) for 1-bug subjects, 5-bug subjects, and all subjects

50 Chapter 4 Evaluation and Results

Tab. 4.3: Fig. 4.3 PA vs W2 Comparisons Trustworthiness

metric subjects TA CR NN
p-value es p-value es p-value es

accuracy
1-bug 8.08e-4 0.59 1.37e-4 0.70 0.35 8.02e-2
5-bug 1.81e-9 0.73 2.35e-13 0.94 0.50 7.59e-17

all 3.20e-11 0.56 1.74e-15 0.76 0.45 1.26e-2

recall
1-bug 8.08e-4 0.59 1.37e-4 0.70 0.35 8.02e-2
5-bug 1.81e-9 0.73 2.35e-13 0.94 0.50 7.59e-17

all 2.84e-11 0.62 1.05e-15 0.78 0.41 3.46e-2

latency
1-bug 7.76e-3 -0.37 5.25e-4 -0.64 0.26 -1.56e-1
5-bug 1.51e-4 -0.41 1.14e-11 -0.90 0.34 -5.11e-2

all 8.94e-6 -0.33 5.90e-14 -0.74 0.24 -6.94e-2

respectively. According to the figures, our proposed execution traces preparation

approach significantly raises diagnoses accuracy for the TA and CR fault localization

tools.

The figures also show that most trials using NN fault localization tool fail to report

any buggy block in the diagnoses, no matter using our proposed approach or the

Way-2 approach to prepare execution traces. A plausible explanation is that neural

networks are sensitive to false positive/negative labeling of training sets. Hence NN

suits Way-1 approach more, where traces can have nearly zero false labels. But as

explained in Section 1.1, Way-1 approach is impractical for control-CPSs, hence is

not included in our comparison evaluation.

To quantify the trustworthiness of Fig. 4.3’s comparisons, we run the Wilcoxon

signed rank test [Coh13] on all PA vs W2 comparisons in Fig. 4.3(a)≥(c). This

is a paired non-parametric difference test, which estimates the probability, aka p-

value, that the comparison differences are only by chance. We also compute the

Cohen’s d [Woh+00] as effect size (es) to estimate the magnitude of the comparison

differences.

The “accuracy” rows of Tab. 4.3 report the p-values (column p-value) and the effect

sizes (column es) for all PA vs W2 comparisons in Fig. 4.3(a)≥(c). The results

(p-value π 0.05) confirm that our proposed execution traces preparation approach

4.3 Evaluation on Ardupilot Autopilot Software 51

(i.e. PA) significantly improves the TA and CR diagnoses accuracy. Cohen’s d statistics

(es > 0.4) also reveal that the improvements’ magnitude on TA and CR diagnoses

are medium to large.

Answer to RQ1: In our evaluation, compared to the Way-2 approach, our proposed

execution traces preparation approach significantly and substantially increases the

accuracy of TA and CR fault localization diagnoses.

RQ2 (Diagnosis Recall): Similarly, Fig. 4.3(d)≥(f) compare the diagnoses recall

statistics. Following the same analysis workflow, we derive the following answer to

RQ2.

Answer to RQ2: In our evaluation, compared to the Way-2 approach, our proposed

execution traces preparation approach significantly and substantially increases the

recall of TA and CR fault localization diagnoses.

We restrict the length of the diagnoses report to 10 in all the figures we reported

above. To mitigate the possible bias introduced by the length of the report, we

use Fig. 4.4 to show how the median accuracy, recall, and latency of diagnoses

evolve over the length of the diagnoses report. Since the accuracy and recall of NN

is constantly poor for both approaches (PA and W2), we exclude the NN result in

this figure. We can see the proposed approach (PA) can always achieve a better

performance regardless the length of the suspect list, when the length of the suspect

list varies from 1 to 15.

RQ3 (Diagnosis Latency): Also similarly, Fig. 4.3(g)≥(i) compare the diagnoses

latency statistics. Following the same analysis workflow, we derive the following

answer to RQ3.

52 Chapter 4 Evaluation and Results

(a) Tarantula (b) Crosstab
Accuracy

(a) Tarantula (b) Crosstab
Recall

Fig. 4.4: Medians of accuracy and recall over the length of the report. X-axes: length of
the report; PA: our proposed approach; W2: Way-2 approach; TA: Tarantula; CR:
Crosstab. Y-axes: respective medians of all subjects.

Answer to RQ3: In our evaluation, compared to the Way-2 approach, our proposed

execution traces preparation approach significantly and substantially reduces the

latency of TA and CR fault localization diagnoses.

Note the following. First, if a diagnosis has accuracy of 0, i.e., no block reported

by the diagnosis is actually buggy, we designate the diagnosis’ latency to be 10, as

the programmer needs to use up his/her 10 item man-power. Second, in latency

comparison, the smaller the latency the better (whereas for accuracy and recall, the

bigger the better). Thus for “es” statistics, a more negative magnitude means more

improvement. However, for “p-values”, still a p-value π 0.05 means the comparison

is trustworthy.

4.3 Evaluation on Ardupilot Autopilot Software 53

Fig. 4.5: Fault diagnosis quality evolution over execution trace length. X-axes: length of
each execution trace (unit: seconds of emulation time). Y-axes: median of accuracy
(left figure), recall (middle figure), and latency (right figure) of all subjects.

Tab. 4.4: Fig. 4.5 PA vs W2 Comparisons Trustworthiness

metric TA CR
p-value es p-value es

median accuracy 5.81e-3 7.78 5.86e-3 7.20
median recall 5.86e-3 7.32 5.66e-3 6.89

median latency 5.81e-3 -5.89 5.86e-3 -6.78

RQ4 (Overall Efficiency): Since the effectiveness of NN is constantly poor for

both approaches (PA and W2), suggesting NN may be unsuitable for control-CPS

debugging, we exclude the NN data from the overall efficiency study.

Fig. 4.5 shows how the median accuracy, recall, and latency of diagnoses evolve

over the length of the execution traces used. Two things are immediately noticeable

from the figure. First, medians resulted from our proposed approach are far better

than those from Way-2 approach, even when the execution traces are as short as

15sec. Second, the medians tend to stabilize once the execution traces are longer

than 30sec, and the improvement achieved by Way-2 approach from using longer

execution traces is not enough to beat our proposed approach. Furthermore, the

trustworthiness of Fig. 4.5 is supported by the p-value and es data listed in Tab. 4.4.

Answer to RQ4: In our experiment, compared to the Way-2 approach, our proposed

execution traces preparation approach can use shorter execution traces to achieve

better quality TA and CR diagnoses.

54 Chapter 4 Evaluation and Results

4.3.6 Discussion on Failure of BPNN Fault Localization

Method

In our experiment result, a notable phenomenon is that the performance of the

BPNN fault localization method is constantly poor for accuracy, recall and latency.

As Neural Network is currently one of the most popular machine learning methods,

and it has many significant applications in various areas, it is worth to discuss why it

fails to localize the bugs in our experiments. In the original paper[WQ09] which

proposed this method, it actually produced satisfactory fault localization report, so

we believe the concept of BPNN is feasible. However, in our experiment, the labelling

of execution traces is not absolutely accurate due to the nature of Cyber-Physical

systems, so there are significant numbers of mislabelling execution traces as the

training data of the Neural Network. In the original paper, BPNN is used to debug

pure cyber systems so the labelling of each test case is almost perfect, and the Neural

Network is fed by much higher-quality training data. This may be the main reason

of the result difference between our experiment and the original experiment.

There are some other reasons of the poor performance of BPNN fault localization

method is our experiment. For example, training a Neural Network is a much more

complicated optimization problem than other machine learning models such as

linear regression, so it requires a larger data size. The data size is determined by

the actual number of layers and neurons in the network. For example, in computer

vision, the MNIST dataset[LeC98] is a set of handwritten digits which is used by

many researchers to train different models. It contains 60000 training images and

10000 test images. In our experiment, there are only 8000 test cases in each subject,

which may be not enough to train a useful model to localize the bugs.

The conclusion is that BPNN-based fault localization method may not be suitable

in our experiment, because currently we cannot acquire enough and high-quality

labelled execution traces as the data to train the network. However, it is still possible

4.3 Evaluation on Ardupilot Autopilot Software 55

to locate faults in control CPS by means of other machine learning based methods.

Additionally, we aim to find more accurate execution trace labelling methods in our

future research.

4.3.7 Threats to Validity

In this section, we outline possible threats to the validity of our study and show how

we mitigate them.

Construct: We evaluated the effectiveness of our proposed approach and Way-2

approach based on fault localization quality. While fault localization is an impor-

tant application that needs our proposed approach, other automatic debugging

applications, e.g., automated program repair, may also benefit from our proposed

approach.

Also, we did not evaluate the Step 4≥6 branch of our proposed approach, because i)

the validity of this branch is already supported by Theorem 1; ii) most control-CPSs

used in real-world cannot satisfy conditions set in Step 1≥3, hence will not use the

Step 4≥6 branch.

Internal: We endeavored to minimize threats to internal validity of our evalu-

ation. We designed the experimental protocol to strictly follow recommended

guidelines [AB11] to achieve statistically significant results. Most analysis results

show high statistical significance, hence support soundness of the evaluation. We

have also reviewed all our source code and tested the implementation on a simple

thermostat control-CPS [Che16b] before conducting the evaluations.

External: Main threat to external validity is the representativeness of our evaluation

subjects. Bugs used in this study are injected instead of original, and the types of

bugs injected are mainly mutation of expressions (like multiplication to division)

56 Chapter 4 Evaluation and Results

instead of logical bugs (like mutating the condition in IF statements). However, the

injected bugs are carefully selected from representative residual bugs reported by

well recognized studies [Nat+13], so as to make the subjects as close to real-world

cases as possible. This helps reducing the threat.

Also, fault localization tools used in the evaluation play a major role in the evaluation

results. To reduce the threat of bias caused by a specific tool, we used three classic

tools from different families and compared their results.

Due to time limits, the evaluation was conducted only on the ArduPilot control-CPS.

More evaluations using other real-world control-CPSs as subjects would help us

further reduce the threat.

4.3 Evaluation on Ardupilot Autopilot Software 57

5
Conclusions and Suggestions for

Future Research

5.1 Conclusion

Control-CPS is growing rapidly nowadays. Autonomous cars and UAVs undoubtedly

change many people’s lifestyle in the recent years. Thanks to the development in the

areas of modern control theory, signal processing and sensing technology, we are

able to design very advanced models with countless useful functionalities. As the

cyber subsystems become larger and more complex, testing and debugging become

more and more important in the development cycle to guarantee the implementation

indeed meets the design requirements. However, there are only a few works focusing

on testing and debugging control-CPS cyber subsystems and the common practice is

still quite subjective and brute-force.

By exploiting the state-of-the-art hybrid systems modeling and stability theories, in

this research, we propose a principled and systematic approach to prepare execution

traces for control-CPS cyber subsystem fault localization. We evaluated our proposed

approach on a commercial-product-grade large control-CPS platform. The evaluation

results show that that our proposed approach significantly improves the existing

best-effort approach.

59

5.2 Suggestions for Future Research

In this research, we propose a new approach to prepare execution traces for control-

CPS cyber subsystem fault localization. This new approach can be extended in

various dimensions for future research.

First, in this research, we pick the confidence percentile – = 95% for control-CPS

with unknown hybrid automaton model. The confidence percentile will determine

the number of traces labelled as “faulty” and it will influence the final fault local-

ization result. It is possible to find a systematic method choosing the confidence

percentile by further studying the control-CPS. For example, we can refer to the

historical data of similar systems if such data is available.

Second, as mentioned in Section 4.3.7, the evaluation was conducted only on the

ArduPilot control-CPS. Experiments on different platforms can be conducted in the

future to support our proposed approach. We have explored some existing open

source control-CPS libraries like ROS and AUTOSAR, and evaluations on these

platforms can be a part of future work.

Last but not least, we suggest further theoretical research on control-CPS, especially

dealing with complicated systems with unclear system dynamics. Specifically, we

wonder whether it is possible to find the divergence bound without clearly knowing

the model. For example, in the previous example of thermostat, the divergence

bound is

(2◊H + ◊h ≠ ◊l)
Á

◊H ≠ ◊h
(5.1)

60 Chapter 5 Conclusions and Suggestions for Future Research

It turns out that the divergence bound is independent of c, which means we can find

the bound without knowing c. It shows the possibility that we can get the divergence

bound even for more complicated system with unknown parameters. Actually similar

ideas have been proposed in some other areas such as adaptive control [ÅW13] and

probabilistic model checking [KNP02]. It is possible to migrate the ideas to help us

improve the accuracy of labelling physical traces.

5.2 Suggestions for Future Research 61

Bibliography

[16a] 3D Robotics. https://3dr.com/, 2016 (cit. on p. 44).

[16b] Aeromao. http://www.aeromao.com/, 2016 (cit. on p. 44).

[16c] ArduPilot Mega -Home. http://www.ardupilot.co.uk, 2016 (cit. on pp. 1,
44).

[16d] Boundary (topology). https://en.wikipedia.org/wiki/Boundary%5F(topology).
2016 (cit. on p. 23).

[16e] Box plot. https://en.wikipedia.org/wiki/Box%5Fplot. 2016 (cit. on p. 50).

[AB11] Andrea Arcuri and Lionel Briand. „A Practical Guide for Using Statistical Tests to
Assess Randomized Algorithms in Software Engineering“. In: Proc. of the 33rd
Intl. Conf. on Software Engineering (ICSE’11) (2011), pp. 1–10 (cit. on p. 56).

[AH90] Hiralal Agrawal and Joseph R. Horgan. „Dynamic Program Slicing“. In: Proc. of
the ACM SIGPLAN’90 Conf. on Programming Language Design and Implementation
(June 1990), pp. 246–256 (cit. on p. 15).

[AHH93] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. „Automatic Symbolic
Verification of Embedded Systems“. In: RTSS (1993), pp. 2–11 (cit. on pp. 3,
10).

[AHH96] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. „Automatic Symbolic
Verification of Embedded Systems“. In: IEEE Trans. on Software Engineering
22(3):181-201 (Mar. 1996) (cit. on pp. 3, 22, 23).

[Ari06] Julien Arino. Fundamental Theory of Ordinary Differential Equations. Lecture
Notes of Dept. of Mathematics. Univ. of Manitoba, Fall 2006 (cit. on p. 26).

[ÅW13] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation,
2013 (cit. on p. 61).

[B L+16] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. „A learning-to-
rank based fault localization approach using likely invariants“. In: Proceedings
of the 25th International Symposium on Software Testing and Analysis (2016),
pp. 177–188 (cit. on p. 15).

[BE04] Yuriy Brun and Michael D. Ernst. „Finding Latent Code Errors via Machine
Learning over Program Executions“. In: Proc. of the 26th Intl. Conf. on Software
Engineering (May 2004), pp. 480–490 (cit. on p. 15).

63

https://3dr.com/
http://www.aeromao.com/
http://www.ardupilot.co.uk
https://en.wikipedia.org/wiki/Boundary%5F(topology)
https://en.wikipedia.org/wiki/Box%5Fplot

[Bea08] Randal Beard. „Quadrotor Dynamics and Control Rev 0.1“. In: (2008) (cit. on
p. 9).

[BLL07] Lionel C. Briand, Yvan Labiche, and Xuetao Liu. „Using Machine Learning to
Support Debugging with Tarantula“. In: Proc. of the 18th IEEE Intl. Symp. on
Software Reliability (Nov. 2007), pp. 137–146 (cit. on p. 15).

[Bro91] William L. Brogan. Modern Control Theory (3rd Ed.) Prentice Hall, 1991 (cit. on
p. 2).

[BW09] Frank Burden and Dave Winkler. „Bayesian regularization of neural networks“.
In: Artificial Neural Networks: Methods and Applications (2009), pp. 23–42 (cit.
on p. 19).

[Cel+08] Peggy Cellier, Mireille Ducasse, Sebastien Ferre, and Olivier Ridoux. „Formal
Concept Analysis Enhances Fault Localization in Software“. In: Proc. of the 4th
Intl. Conf. on Formal Concept Analysis (Feb. 2008), pp. 273–288 (cit. on p. 15).

[Che+14] Ziqiang Chen, Feng Lin, Caisheng Wang, Yi Le Wang, and Min Xu. „Active
diagnosability of discrete event systems and its application to battery fault
diagnosis“. In: IEEE Transactions on control systems technology 22.5 (2014),
pp. 1892–1898 (cit. on p. 14).

[Che16a] Yao Chen. A Note on Hybrid Systems Traces Distances. http://www.comp.polyu.

edu.hk/%7Ecsqwang/research/techreports.html. 2016 (cit. on p. 26).

[Che16b] Yao Chen. Hybrid Automata Tutorial: Analysis of Thermostat Hybrid Automaton.
http://www.comp.polyu.edu.hk/%7Ecsqwang/research/tutorials.html.
2016 (cit. on pp. 4, 56).

[Coh13] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge,
2013 (cit. on p. 51).

[CW84] Edward Y. Chow and Alan S. Willsky. „Analytical Redundancy and the Design
of Robust Failure Detection Systems“. In: IEEE Trans. on Automatic Control
AC-29(7):603-614 (1984) (cit. on p. 13).

[DLZ05] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. „Lightweight Defect
Localization for Java“. In: Proc. of the 19th European Conf. on Objective-Oriented
Programming (July 2005), pp. 528–550 (cit. on p. 15).

[DM06] J.A. Duraes and H. Madeira. „Emulation of Software Faults: A Field Data Study
and A Practical Approach“. In: IEEE Trans. on Software Engineering 32(11):849-
867 (Nov. 2006) (cit. on p. 46).

[DPS97] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. „Failure and Fault
Analysis for Software Debugging“. In: Proc. of the 21st Intl. Computer Software
and Applications Conf. (Aug. 1997), pp. 515–521 (cit. on p. 20).

[EG14] Christian von Essen and Dimitra Giannakopoulou. „Analyzing the next genera-
tion airborne collision avoidance system“. In: International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (2014), pp. 620–635
(cit. on p. 1).

[Ern+01] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. „Dy-
namically Discovering Likely Program Invariants to Support Program Evolution“.
In: IEEE Trans. on Software Engineering 27(2):99-123 (Feb. 2001) (cit. on p. 15).

64 Bibliography

http://www.comp.polyu.edu.hk/%7Ecsqwang/research/techreports.html
http://www.comp.polyu.edu.hk/%7Ecsqwang/research/techreports.html
http://www.comp.polyu.edu.hk/%7Ecsqwang/research/tutorials.html

[Foo+15] King Chun Foo, Zhen Ming (Jack) Jiang, Bram Adams, et al. „An Industrial Case
Study on the Automated Detection of Performance Regressions in Heteroge-
neous Environments“. In: Proc. of the 37th Intl. Conf. on Software Engineering -
Vol. 2 (ICSE’15) (2015), pp. 159–168 (cit. on p. 45).

[FPE93] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. „Feedback Control
of Dynamic Systems“. In: Addison-Wesley Publishing Company, Nov. 1993 (cit.
on p. 2).

[Gao+15a] Zhiwei Gao et al. „A Survey of Fault Diagnosis and Fault-Tolerant Techniques
Part I: Fault Diagnosis with Model-Based and Signal-Based Approaches“. In:
IEEE Trans. on Ind. Electronics ((preprint) 2015) (cit. on p. 13).

[Gao+15b] Zhiwei Gao et al. „A Survey of Fault Diagnosis and Fault-Tolerant Techniques
Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches“.
In: IEEE Trans. on Ind. Electronics ((preprint) 2015) (cit. on p. 13).

[Ger88] Janos J Gertler. „Survey of model-based failure detection and isolation in
complex plants“. In: IEEE Control systems magazine 8.6 (1988), pp. 3–11 (cit. on
p. 13).

[Ger98] Janos Gertler. Fault Detection and Diagnosis in Engineering Systems. CRC Press,
May 1998 (cit. on p. 13).

[GST12] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid Dynamical
Systems: Modeling, Stability, and Robustness. Princeton Univ. Press, 2012 (cit. on
pp. 10, 20, 30).

[Har+00] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu Yi. „An
Empirical Investigation of the Relationship between Spectra Differences and
Regression Faults“. In: Journal of Software Testing, Verification and Reliability
10(3):171-194 (Sept. 2000) (cit. on p. 15).

[HC10] Naira Hovakimyan and Chengyu Cao. L1 Adaptive Control Theory: Guaranteed
Robustness with Fast Adaptation. SIAM, 2010 (cit. on p. 13).

[HD14] Liu Hong and Jaspreet Singh Dhupia. „A time domain approach to diagnose
gearbox fault based on measured vibration signals“. In: Journal of Sound and
Vibration 333.7 (2014), pp. 2164–2180 (cit. on p. 14).

[Hon+15] Shin Hong, Byeongcheol Lee, Taehoon Kwak, et al. „Mutation-Based Fault
Localization for Real-World Multilingual Programs (T)“. In: Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on (2015),
pp. 464–475 (cit. on p. 15).

[HSD12] Morris W. Hirsch, Stephen Smale, and Robert L. Devaney. Differential Equations,
Dynamic Systems, and an Introduction to Chaos (3rd Ed.) Academic Press, Mar.
2012 (cit. on p. 33).

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Apr. 1979 (cit. on p. 3).

[Hut+94] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. „Experi-
ments of the Effectiveness of Dataflow- and Controlflow-based Test Adequacy
Criteria“. In: Proc. of the 16th Intl. Conf. on Software Engineering (ICSE’94)
(1994), pp. 191–200 (cit. on p. 45).

Bibliography 65

[JH05] James A Jones and Mary Jean Harrold. „Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique“. In: Proc. of the 20th IEEE/ACM Intl.
Conf. on Automated Software Engineering (2005), pp. 273–282 (cit. on pp. 15,
16, 47).

[KL88] Bogdan Korel and Janusz Laski. „Dynamic Program Slicing“. In: Information
Processing Letters 29(3):155-163 (Oct. 1988) (cit. on p. 15).

[KNP02] Marta Kwiatkowska, Gethin Norman, and David Parker. „PRISM: Probabilistic
symbolic model checker“. In: International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation. Springer. 2002, pp. 200–204
(cit. on p. 61).

[LeC98] Yann LeCun. „The MNIST database of handwritten digits“. In: http://yann.lecun.com/exdb/mnist/
(1998) (cit. on p. 55).

[LH06] Chao Liu and Jiawei Han. „Failure Proximity: A Fault Localization-based Ap-
proach“. In: Proc. of the 14th ACM SIGSOFT Intl. Symp. on Foundations of
Software Engineering (SIGSOFT’06/FSE-14) (2006), pp. 46–56 (cit. on p. 45).

[Li+06] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. „CP-Miner: Finding
Copy-Paste and Related Bugs in Large-Scale Software Code“. In: IEEE Trans. on
Software Engineering 32(3):176-192 (2006) (cit. on p. 15).

[Lib+05] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.
„Scalable Statistical Bug Isolation“. In: Proc. of the 2005 ACM SIGPLAN Conf.
on Programming Language Design and Implementation (June 2005), pp. 15–26
(cit. on p. 15).

[Liu+06] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P. Midkiff. „Statistical
Debugging: A Hypothesis Testing-Based Approach“. In: IEEE Trans. on Software
Engineering 32(10):831-848 (Oct. 2006) (cit. on p. 15).

[Luc+14] Lucia Lucia, David Lo, Lingxiao Jiang, Ferdian Thung, and Aditya Budi. „Ex-
tended comprehensive study of association measures for fault localization“. In:
Journal of Software: Evolution and Process 26.2 (2014), pp. 172–219 (cit. on
p. 15).

[LW12] Eugene Lavretsky and Kevin Wise. Robust and Adaptive Control: With Aerospace
Applications, Advanced Textbooks in Control and Signal Processing. Springer, Nov.
2012 (cit. on p. 13).

[LW87] James R. Lyle and Mark Weiser. „Automatic Program Bug Location by Program
Slicing“. In: Proc. of the 2nd Intl. Conf. on Computer and Applications (June
1987), pp. 877–883 (cit. on p. 15).

[MB99] P. J. Mosterman and G. Biswas. „Diagnosis of Continuous Valued Systems in
Transient Operating Regions“. In: IEEE Trans. on Systems, Man, and Cybernetics
-Part A 29(6):554-565 (1999) (cit. on p. 20).

[Mir79] Leonid Alekseevich Mironovskii. „Functional diagnosis of linear dynamic sys-
tems“. In: Avtomatika i Telemekhanika 8 (1979), pp. 120–128 (cit. on p. 13).

[MRV07] Mano Ram Maurya, R Rengaswamy, and V Venkatasubramanian. „A signed
directed graph and qualitative trend analysis-based framework for incipient
fault diagnosis“. In: Chemical Engineering Research and Design 85.10 (2007),
pp. 1407–1422 (cit. on p. 14).

66 Bibliography

[MSW00] Cristinel Mateis, Markus Stumptner, and Franz Wotawa. „Modeling Java Pro-
grams for Diagnosis“. In: Proc. of the 14th European Conf. on Artificial Intelligence
(Aug. 2000), pp. 171–175 (cit. on p. 20).

[Mur+15] Anitha Murugesan, Sanjai Rayadurgam, Michael W Whalen, and Mats PE Heim-
dahl. „Design Considerations for Modeling Modes in Cyber–Physical Systems“.
In: IEEE Design & Test 32.5 (2015), pp. 66–73 (cit. on p. 1).

[Nat+13] Roberto Natella, Domenico Cotroneo, Joao A. Duraes, and Henrique S. Madeira.
„On Fault Representativeness of Software Fault Injection“. In: IEEE Trans. on
Software Engineering 39(1):80-96 (Jan. 2013) (cit. on pp. 33, 46, 57).

[NB07] S. Narasimhan and G. Biswas. „Model-Based Diagnosis of Hybrid Systems“.
In: IEEE Trans. on Systems, Man and Cybernetics -Part A 37(3):348-361 (2007)
(cit. on p. 20).

[Ors+06] Alessandro Orso, Shrinivas Joshi, Martin Burger, and Andreas Zeller. „Isolat-
ing relevant component interactions with JINSI“. In: Proceedings of the 2006
international workshop on Dynamic systems analysis (2006), pp. 3–10 (cit. on
p. 15).

[PFE00] Ron J. Patton, Paul M. Frank, and Robert N. Clark (Eds.) Issues of Fault Diagnosis
for Dynamic Systems. Springer, 2000 (cit. on p. 13).

[RR03] Manos Renieris and Steven P. Reiss. „Fault Localization with Nearest Neighbor
Queries“. In: Proc. of the 18th IEEE Intl. Conf. on Automated Software Engineering
(ASE) (Oct. 2003), pp. 30–39 (cit. on p. 15).

[Sam+08] Paraskevi A Samara, George N Fouskitakis, John S Sakellariou, and Spilios D
Fassois. „A statistical method for the detection of sensor abrupt faults in aircraft
control systems“. In: IEEE Transactions on Control Systems Technology 16.4
(2008), pp. 789–798 (cit. on p. 14).

[Sha+08] Lui Sha et al. „Cyber-Physical Systems: A New Frontier“. In: IEEE SUTC (2008),
pp. 1–9 (cit. on p. 1).

[She+14] Nida Sheibat-Othman, Nassim Laouti, Jean-Pierre Valour, and Sami Othman.
„Support vector machines combined to observers for fault diagnosis in chem-
ical reactors“. In: The Canadian Journal of Chemical Engineering 92.4 (2014),
pp. 685–695 (cit. on p. 14).

[SL91] Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control. Prentice
Hall, 1991 (cit. on p. 2).

[Tab09] Paulo Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, 2009 (cit. on p. 10).

[WD09] W. Eric Wong and Vidroha Debroy. „A Survey of Software Fault Localization“.
In: Tech. Report UTDCS-45-09 (Nov. 2009) (cit. on p. 1).

[Wei09] Mark Weiser. „Program Slicing“. In: IEEE Trans. on Software Engineering SE-
10(4):352-357 (July 2009) (cit. on p. 15).

[Woh+00] Claes Wohlin, Per Runeson, Martin Host, et al. Experimentation in Software
Engineering: An Introduction. Kluwer Academic Publishers, 2000 (cit. on p. 51).

Bibliography 67

[Won+08] W. Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. „A Crosstab-Based Statistical
Method for Effective Fault Localization“. In: Proc. of the 1st Intl. Conf. on Software
Testing, Verification and Validation (Apr. 2008), pp. 42–51 (cit. on pp. 15, 16,
47).

[WQ09] W. Eric Wong and Yu Qi. „BP Neural Network-Based Effective Fault Localization“.
In: Intl. Journal of Software Engineering and Knowledge Engineering 19(4):573-
597 (2009) (cit. on pp. 15, 18, 20, 47, 55).

[WSM02] Franz Wotawa, Markus Stumptner, and Wolfgang Mayer. „Model-Based De-
bugging or How to Diagnose Programs Automatically“. In: Proc. of the 15th
Intl. Conf. on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems: Developments in Applied Artificial Intelligence (June 2002),
pp. 746–757 (cit. on p. 20).

[Z+13] Yu Zhang, Chris Bingham, Michael Gallimore, et al. „Fault detection and diagno-
sis based on extensions of PCA“. In: Advances in Military Technology 8.2 (2013),
pp. 27–41 (cit. on p. 14).

[Zel02] Andreas Zeller. „Isolating Cause-Effect Chains from Computer Programs“. In:
Proc. of the 10th ACM SIGSOFT Symp. on Foundations of Software Engineering
(Nov. 2002), pp. 1–10 (cit. on p. 15).

[ZGG06] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. „Locating Faults through
Automated Predicate Switching“. In: Proc. of the 28th Intl. Conf. on Software
Engineering (May 2006), pp. 272–281 (cit. on p. 15).

[Zh02] Andreas Zeller and Ralf hildebrandt. „Simplifying and Isolating Failure-Inducing
Input“. In: IEEE Trans. on Software Engineering 28(2):183-200 (Feb. 2002) (cit.
on p. 15).

[Zha+05] Feng Zhao, Xenofon Koutsoukos, Horst Haussecker, Jim Reich, and Patric Che-
ung. „Monitoring and Fault Diagnosis of Hybrid Systems“. In: IEEE Trans. on
Systems, Man, and Cybernetics - Part B: Cybernetics 35(6):1225-1240 (Dec. 2005)
(cit. on p. 20).

[Zhe+15] Xi Zheng, Christine Julien, Miryung Kim, and Sarfraz Khurshid. „Perceptions on
the state of the art in verification and validation in cyber-physical systems“. In:
(2015) (cit. on p. 1).

[ZXC16] Zhi Quan Zhou, Shaowen Xiang, and Tsong Yueh Chen. „Metamorphic Testing
for Software Quality Assessment: A Study of Search Engines“. In: IEEE Trans.
on Software Engineering 42(3):264-284 (Mar. 2016) (cit. on p. 20).

68 Bibliography

Bibliography 69

	Cover
	Title Page
	CERTIFICATE OF ORIGINALITY
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Demand
	1.2 Control Systems
	1.3 Hybrid Automata
	1.4 Unmanned Aerial Vehicles (UAVs)
	1.4.1 System Dynamics of Quadcopters

	1.5 Contributions of the Thesis

	2 Related Work
	2.1 Related Work in the Domain of Control
	2.2 Related Work in the Domain of Software Engineering
	2.2.1 Tarantula
	2.2.2 Crosstab
	2.2.3 BP Neural Network-based (BPNN) Approach

	2.3 Related Work in Cross Domains

	3 A Hybrid Systems Based Approach to Prepare Traces for Control-CPS Cyber Subsystem Fault Localization
	3.1 Overview
	3.2 Formal Definition of Hybrid Automata
	3.3 Physical Traces Divergence Bound Existence
	3.4 Proposed Approach
	3.4.1 Summary and Intuition of the Theory
	3.4.2 Heuristics and Specifications of Proposed Approach
	3.4.3 Rigorous Definitions of Step 4 and 9

	4 Evaluation and Results
	4.1 Overview
	4.2 A Simple Example: Thermostat Control-CPS
	4.2.1 System Model of Thermostat
	4.2.2 Thermostat Physical Traces Divergence Bound

	4.3 Evaluation on Ardupilot Autopilot Software
	4.3.1 ArduPilot
	4.3.2 Bug Injection
	4.3.3 Fault Localization Tools
	4.3.4 Trials and Diagnosis
	4.3.5 Results
	4.3.6 Discussion on Failure of BPNN Fault Localization Method
	4.3.7 Threats to Validity

	5 Conclusions and Suggestions for Future Research
	5.1 Conclusion
	5.2 Suggestions for Future Research

	Bibliography

