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Abstract 

Reading is one of the most common computer interaction activities and also one of the 

most fundamental means of knowledge acquisition. With the development of 

computing technologies and the growing popularity of e-Learning platforms, 

understanding human attention and comprehension through reading behaviors has the 

potential to become an important means to enhance the learning experience and 

effectiveness. 

Eye gaze pattern is known to play an important role in the study of reading behaviors 

since reading can be considered as a task where visual processing and sensorimotor 

control takes place in a highly structured visual environment [79]. Many studies have 

shown that eye movement and eye behavior during reading is closely related to 

cognitive human mental states, such as comprehension and attention [81][88][89].  

There are two main drawbacks in current state-of-the-art research on comprehension 

and attention detection based on eye gaze patterns. First, many of them use expensive 

and intrusive devices, like the electrooculography systems, to track the eye movement, 

or detect the user’s mental state as ground truth, through the use of 

electroencephalography (EEG) devices. Second, numerous methods study how lexical 

and linguistic variables affect the eye gaze behavior during reading. These methods 

therefore rely on the availability of linguistic analysis of the reading materials.  

Addressing the limitations mentioned above, we conduct experiments with human 

subjects and do an in-depth study of eye gaze patterns related to the change of 

comprehension level and attention level during reading.  Both Tobii eye tracker and 

off-the-shelf webcam are used to capture the eye gaze signals based on which the eye 

gaze features are extracted. By adopting machine learning algorithms, we conduct 

feature evaluation and compare the classification performance with different kinds of 

eye gaze features. From the investigation, we have a better understanding of relation 

between the studied human mental states, i.e. comprehension and attention, and certain 

eye gaze patterns. We also find that the features extracted based on accurate eye gaze 

location on the screen captured by Tobii eye tracker contribute more to the 

comprehension and attention level detection during reading. 

In order to recognize human mental states, input signals reflecting human mental 

states need to be acquired and processed. Under traditional KVM (keyboard-video-
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mouse) settings, input signals are mostly tied to keyboard and mouse dynamics. One 

can deduce some information about human mental states and affects from keyboard 

[12][111] and mouse [110][123], but the accuracy is not particularly high. Thanks to 

the popularity of interactive social networking applications, the webcam has become a 

de facto device. Recent research in video processing and machine learning has 

demonstrated that human affects can be recognized via webcam video, noticeably via 

human facial features [127]. Inspired by previous research, we look into other 

modalities, i.e. facial expressions and mouse dynamics, for attention detection during 

reading. A two-level facial feature extraction approach is proposed to represent the 

static and dynamic states of the facial expressions of the subjects.  Similarly, the mouse 

dynamic features are extracted from the captured log mouse events and evaluated for 

reading attention detection. 

To evaluate our method, we apply machine learning techniques to build up user-

independent models to recognize human attention and comprehension level on reading 

tasks. We compare the performances of models built on single modality and multiple 

modalities. The findings suggest that the multimodal approach outperforms the 

unimodal approach in our studies. The results also demonstrate that eye gaze pattern 

and facial expressions show more potential in predicting attention level than the mouse 

dynamics, which may be caused by the rare usage of mouse as an input device in the 

reading task.  
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Introduction 
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1.1 Background and Motivation 

1.1.1 Understanding Reading Behaviors through Eyes 

The development of computer technologies has made digital devices and environments, 

such as mobile phones and tablet computers, an alternative media for presenting text. 

As one of the most common computer interaction activities and also one of the most 

fundamental means of knowledge acquisition, reading is a task that frequently happens 

in people’s daily life. In this context, understanding reading behaviors is vital to detect 

human mental state and enhance the interaction experience.  

In the same way as a human teacher might observe his/her students to gauge their 

reading behaviors, it is easy to see how good understanding of reading behaviors 

through computers would be helpful for intelligent digital platforms to assist the users. 

Although there has been much research on reading behavior analysis in the past 

decades, eye gaze behaviors obtain the most interest in understanding reading behaviors 

considering that reading is a task where visual processing and sensorimotor control 

takes place in a highly structured visual environment [79].  In general, eye movements 

during reading can be categorized into saccades and fixations, which alternately occur 

during reading [81]. A saccade is a fast movement of the eye, which is usually in a 

direction parallel to that of the text. A fixation is the maintaining of the visual eye gaze 

on a single location. The purpose of a saccade is to locate a point of interest on which 

to focus, while processing of visual information takes place during fixations. The 

studies of the eye movement patterns shed light on the relation between reading 

behaviors, reading contexts and the reader’s mental states. For example, previous 

research has demonstrated that readers who are experiencing difficulty in processing 

 

Figure 1-1. The EOG systems (left) [131] and head-mounted eye 

trackers (right) [132] are intrusive devices widely used to sense the eye 

movements.  
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the visual information tend to make more fixations and the fixation duration becomes 

longer [47][84][82]. Moreover, under these circumstances, readers often make 

backwards or regressive saccades, to re-read the materials and get a better 

comprehension of the text [50]. 

There are many kinds of devices used in the state-of-the-art research on reading 

behavior analysis through eye movements. Many of them are intrusive devices, which 

may be uncomfortable to the users. For example, electrooculography (EOG) systems  

(as shown in the left picture in Figure 1-1) are used for eye movement data recording 

in many studies [18][7]. The eye can be modeled as a dipole with its positive pole at 

the cornea and its negative pole at the retina. Assuming a stable corneo-retinal potential 

difference, the eye is the origin of a steady electric potential field. The electrical signal 

that can be measured from this field is called the electrooculogram (EOG) [18]. When 

using the EOG systems, several skin electrodes are placed around the users’ eyes and 

forehead. Head-mounted cameras (as shown in the right picture in Figure 1-1) are also 

used in video-based eye trackers to track the eye gaze locations. Although the head-

mounted eye tracker detects the eye gaze location with high accuracy, they are usually 

expensive and complicated with cameras installed on the frame, which is not 

convenient for pervasive applications [30][108]. 

In contrast, non-intrusive and low-cost devices are attracting more and more 

attention in the research of human-computer interaction. Remote commodity eye 

trackers are becoming commonplace in eye movement studies for their high reliability, 

easy usability and relatively low cost. One of the advantages of using remote eye 

trackers is that they are reasonably precise and also non-intrusive. The precise eye gaze 

location information is very important in understanding reading behaviors in different 

contexts. There are a growing number of researchers using remote eye trackers to 

analyze the users’ reading behaviors. For example, there has been research on eye 

movement analysis while reading a web page [9] and evaluating the list of ranked 

results of WWW search engines [32] using the Tobii eye trackers. Compared with using 

devices which restrain the user’s head and neck movements, using the remote eye 

trackers tends to result in behaviors that are more “normal” [22]. Although these studies 

explored web reading or searching behaviors by analyzing the eye gaze data captured 

by eye trackers, their aims are to investigate how the design of the webpage or the 

feedback provided to the user during the web-reading process affects the reading pace 

or pattern, instead of understanding human mental states from the eye gaze behaviors. 
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In addition to understanding reading behaviors through eye movement patterns, 

there are numerous methods studying how lexical and linguistic variables affect the eye 

movement patterns during reading [86][47][85]. The basic idea is to find out how the 

eye movement patterns are affected by the word’s lexical properties, such as length and 

frequency, the word’s meaning and the sentence context. These methods usually 

involve complicated word and semantic pre-processing, which is considerably time 

consuming. Moreover, they often need to rely on linguistic analysis of the specific 

materials. However, with the increasing amount of information available in the digital 

environment, it is likely that more efficient approaches for reading behavior 

understanding will be developed in the future.  

1.1.2 Detecting Affects during Reading 

Nowadays, the widespread use of computer technologies and social networks has 

made reading one of the most common and important activities in human-computer 

interaction. A report in 2014 said that 21% of American adults reported that they had 

read an e-book in the past year  and this number was still increasing [57]. The shift of 

reading from printed to digital materials is more obvious in education. An increasing 

number of individuals, corporations, and institutions are turning to e-Learning as they 

recognize its effectiveness and convenience. Therefore, the development of intelligent 

e-Learning platforms which could be aware of the user’s mental states is of much 

interest to both computer science and education. Given how e-Learning platforms 

involves much reading, it is easy to see how a good understanding of reading behavior 

and successful detection of human mental states would be helpful for intelligent e-

Learning platforms, to provide help to the user, or to adjust the material to improve the 

learning effectiveness. In other contexts, detecting human affects during reading is also 

valuable to explore the level of enjoyability and the usefulness of the conveyed 

information. 

The automatic detection of human affect is not a new topic. Since the concept of 

“Affective Computing” was proposed almost 20 years ago, it has attracted great interest 

in the domain of computer science. Human affect understanding is one of the leading 

topics in affective computing since affect is a fundamental component of human 

expression and communication [130]. The fact that computers could be aware of human 

affect will significantly facilitate human-computer interaction. 
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In affective computing, the emotional state of the user can be measured through 

his/her physiological and behavioral signals. The physiological signals sensed from 

different parts of human body have been demonstrated to be promising for exploring 

human affect. Autonomic measurements can be used to objectively detect emotion-

related physiological responses of autonomic nervous system (ANS), such as skin 

conductance responses (SCRs) and heart rate variability (HRV). However, the ANS 

responses are considered not representative or reliable to reflect some emotional state. 

There are also inconsistent findings across studies on the mapping between ANS 

response and emotions [65]. Neurophysiologic measurement based on 

electrophysiological and neuroimaging techniques, such as functional magnetic 

resonance imaging (fMRI) and magnetoencephalography (MEG) can detect a wide 

range of dynamics of the emotional state by directly accessing the fundamental 

structure in the brain from which an emotional state emerges [71], and hence, clearly 

provide a direct and comprehensive means for emotion recognition.  Nevertheless, the 

high cost and immobility of fMRI and MEG prevents them from being used for 

practical emotion recognition systems in the real life.  

In recent years, electroencephalography (EEG) recording devices have been 

developed to become more cost-effective and mobile with increased practicability and 

less physical restriction [17], and so they have become more widely used for emotion 

recognition. However, there are two drawbacks of using EEG for affect detection. First, 

the devices used to record EEG are quite intrusive, since they need to be pasted or worn 

on the subject’s head during the whole signal recording process [8][125]. Second, the 

EEG signal has poor spatial resolution and high susceptibility to noise. These make it 

impractical to use physiological signals for affect detection in daily interaction 

scenarios.  

Comparatively speaking, understanding human affect from the behavioral signals is 

promising for pervasive applications. In human-computer interaction, various 

modalities can be involved when human express themselves and communicate with 

each other. Under these circumstances, it is essential to take into consideration of the 

contexts of the applications because the modalities and sensors that need to be involved 

in human affect interpretation vary with different applications. For example, speech 

text [49] and vocal tones [130] have been demonstrated to be informative for emotion 

expression. These two channels are available and reliable in contexts in which speaking 

is an appropriate form of communication.  
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In other contexts where human-computer interactions are accomplished in relatively 

silent environments, vision-based technologies are widely used in human behavior 

analysis and affect detection. Since the webcam has become a common piece of 

equipment, there has been much development of computer vision technologies that are 

based on webcam signals. By adopting proper technologies, human affects can be 

recognized effectively from webcam video [41].  

Facial expression is a crucial channel that has been widely investigated for affect 

detection with vision systems. Previous research proposed many effective methods to 

encode human facial expressions from the original face images [72][97][120]. Many 

efforts have been made to study facial expression to successfully infer basic human 

affects like happiness, sadness, anger, fear, surprise and disgust [27]. These have also 

been extended to the recognition of fatigue [48], embarrassment [48], and pain [5]. 

Moreover, high-level mental states like agreeing, disagreeing, interested, thinking, 

concentrating, unsure, and adult attachment have been investigated as well in previous 

research [126]. Facial expression recognition, being a powerful technique, also finds its 

application in understanding the student engagement in a classroom [3]. Cognitive 

engagement is found to have close relationship with a person’s cognitive abilities, 

including focused attention, memory, and creative thinking in learning [4].  

The eyes and their movements, as one of the most salient features of the human face, 

play an important role in expressing a person’s emotions and cognitive processes. The 

importance of the eye movements to the individual’s perception of the visual world is 

widely acknowledged. For reading in particular, the visual contents are mainly texts 

and the eye movements can usually be classified into several typical eye gaze patterns, 

such as saccades and fixations. A fair amount of work has been carried out to analyze 

the reader’s mental state through the eye gaze patterns. For example, it is found that 

readers who are experiencing difficulty in processing the visual information tend to 

make more fixations and the fixation duration becomes longer [47][84][82]. Moreover, 

under these circumstances, readers often make backwards or regressive saccades, to re-

read the materials and get a better comprehension of the text [50].  

To recognize the eye gaze patterns, it is crucial to obtain the eye gaze locations on 

the reading interface. Nowadays, the availability of commodity eye trackers has led to 

much work that uses eye gaze localization to detect human mental states during reading. 

For example, researchers have studied the eye gaze patterns under human mind 

wandering [88], boredom and disengagement [24] with the use of eye trackers. 
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However, these studies did not thoroughly investigate eye gaze behaviors. In [88], the 

reading behaviors were measured mainly via fixations to detect mindless reading. In 

[24], the disengagement of the user was predicted by simply detecting when he/she 

looked away from the screen for an extended period of time. However, the 

characteristics of some typical eye gaze behaviors that are supposed to play important 

roles in mental state detection, such as the rate of eye blinks, the patterns of eye 

fixations and eye saccades, were not studied in this research. 

The trend to adopt gaze-aware systems in daily human-computer interaction and 

social interaction is growing with the availability of the equipment [38]. Compared to 

eye trackers, off-the-shelf webcams are cheaper and more versatile, which give them 

more potential for pervasive applications. A great number of efforts have been put on 

vision-based eye detection and eye tracking in the past few years. The proposed 

technologies efficiently deal with the problem of identifying the eyes with large 

variability of appearance and dynamics [124][115][39]. However, effective eye gaze 

estimation that uses only a single camera and a single light source is still challenging. 

It has been demonstrated that the use of single camera and single light usually 

constrains gaze estimation in head variant scenarios [34][99]. 

In digital reading environments, readers usually need to use the input and output 

devices to accomplish the reading tasks. The signals captured by various input devices 

often bears information that reflects the reader’s mental states. Under traditional KVM 

(keyboard-video-mouse) settings, input signals are mostly tied to keyboard and mouse 

dynamics. One can deduce some information about human affect from the keyboard 

[12][111] and the mouse [110][123], but the accuracy is not particularly high.  

Since there are so many potential modalities involved in human-computer 

interaction, choosing the useful information is an important issue. Some previous work 

relied on a single modality to detect certain affects. For example, facial expression is 

widely studied to infer basic human emotion [27] and high-level mental states 

[48][3][4]. Unimodal affect detection achieves good performance when the modality 

has a strong correlation with the target affects. Nevertheless, existing research [94][73] 

suggest that it is beneficial to integrate multimodal information to recognize human 

affects automatically. Since different modalities convey different information to reflect 

human affects, the advantage of taking account of multiple aspects of human behaviors 

is obvious. Researchers have showed that learning from more than one modality 

achieved better classification than that with individual modality [98][36].  To date, 
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much work has been done in the study of fusing multimodal information. For instance, 

research has been done to detect basic emotions by integrating visual cues, including 

facial expression, body gesture and head movement etc., [37][35][76]. However, the 

research on multimodal human affect detection and behavior understanding during 

reading is still in the early stage. 

1.2 Study Overview 

As one of the most common activities in human-computer interaction, reading not only 

plays a role in information transformation, but also provides cues to understand the 

readers’ mental states. With the development of computer science and the widespread 

use of digital media, the research on reading behavior understanding and mental state 

detection is attracting more and more interest. Since reading is a complex cognitive 

process, the reader’s comprehension level and attention level are critical mental states 

raised in the reading tasks. This thesis proposes effective methods of predicting the 

reader’s comprehension level and attention level in the common reading tasks. To gain 

comprehensive understanding of the relation between the target mental states and the 

human behaviors, we conduct systematic human behavior analysis based on multiple 

modalities collected using non-intrusive devices. 

1.2.1 Detecting Reading Comprehension from Eye Gaze 

Although there has been a certain degree of success reported in existing research on 

reading behavior understanding and mental state detection, there are still significant 

challenges, such as the aforementioned constraints of using intrusive devices, 

conducting content-based eye movement analysis, and building user-dependent model. 

This thesis attempts to address these issues by introducing user-independent models for 

reading comprehension level detection through eye movement analysis. We obtain in-

situ data, by inviting human subjects to carry out experiments in reading a variety of 

English articles while recording their eye movements with a non-intrusive remote eye 

tracker, which does not require the reader to bear or wear special devices or sensors. 

The difficulty level of the articles is varied so as to induce different levels of 

comprehension with the users.  

The recorded eye gaze data is firstly denoised and subsampled for preprocessing. 

The preprocessed data is thoroughly analyzed to identify three typical eye gaze 
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behaviors, which are eye blink, eye fixation and eye saccade. We construct features that 

will be used to describe these behaviors within a given time period of reading. In 

addition to the behavior-based features, we also adopt gaze-based features to capture 

the general characteristics of the unfiltered eye gaze positions, including the kurtosis 

and skewness of the eye gaze data. Finally, we incorporate some features that are meant 

to capture the context of the reading task through combining basic information on the 

read article and the overall task.  

Our goal of this study is to produce a set of resilient user-independent models, which 

are universal to different users and able to accommodate new unseen users, to predict 

the reading comprehension level. We analyze the performance of our method in 

different real-use situations with the extracted features, and we explore different ways 

of building the user-independent model, in particular running prediction models that 

consider different lengths of available eye gaze segments for recognition. This 

evaluation gives us a sense of the confidence levels we can expect of our prediction 

with respect to the length of available data segment. We also investigate the indicative 

eye gaze features on different datasets. These eye gaze features represent the eye 

movement patterns during reading. The set of features that contribute to the 

comprehension level detection may change in different contexts. To explore this 

problem, we apply machine learning techniques to identify a subset of useful features 

capable of assisting in the determination of human comprehension level for each model 

mentioned above. Our findings reveal the consistency of the contribution of the eye 

gaze features for models built with different segment granularity. 

1.2.2 Multimodal Reading Attention Detection 

Apart from the level of comprehension, the level of attention is another critical 

cognitive mental state involved in the reading task. It is common to observe the 

attention drift away from the task at hand to off-task thoughts because of the task itself 

or the environment [52][53]. In the learning context, detecting the reader’s attention 

level during reading can help to compensate for the negative effects on the performance 

of the reading task and potentially provide necessary feedback to the reader in time.  

 Our study on reading comprehension detection and much existing research [13][28] 

shows the important role played by eye gaze pattern in reflecting human cognitive 

mental states. Although in some cases, considering eye gaze pattern alone can lead to 

promising performance for affect detection, a large number of previous studies on 
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affective computing demonstrate the advantage of fusing the information expressed by 

different modalities over considering single modality. In the digital reading 

environments, readers usually need to use various input and output devices to 

accomplish the reading tasks. The behavioral signals generated by the input devices 

often reflect the reader’s mental states. We, therefore, propose a multimodal approach 

for attention level detection in reading with ubiquitous hardware available in most 

computer systems, namely, webcam and mouse.  

We invite human subjects to carry out experiments in reading English articles while 

being subjected to different kinds of distraction to induce them into different levels of 

attention. During the experiment, a webcam installed on the monitor is used to record 

the subjects’ frontal face view non-intrusively, and a C++ program run at the 

background to capture and log mouse events. We investigate the data obtained from 

each modality for feature extraction and evaluation before building a user-independent 

model for the attention level detection.  

Based on the video clips recorded by the webcam, we present a two-level facial 

feature extraction approach in our work: frame-level and segment-level. 66 facial 

landmarks are tracked to extract 26 frame-level facial features. After performing frame-

level facial feature extraction, we extract three kinds of segment-level facial features 

based on the frame-level facial feature vectors reflecting different statistical behaviors. 

Each segment is composed of a good number of frames. The first set of segment-level 

features derived from the 26 frame-level facial features is calculated as the mean value 

of the features of the embedded frames. The second set of segment-level features is 

computed based on moving windows representing the overall change of each frame-

level feature in a given time period.   The third set of segment-level features calculates 

the change of the whole face in the video clip with respect to the neutral face, which is 

defined as the face in the first frame of the video clip.  

We extract eye gaze features from the webcam videos by eye gaze tracking and eye 

gaze behavior recognition. In this study, we analyze three kinds of eye gaze behaviors 

for reading attention detection, including eye blink, eye fixation and eye saccade. 6 

landmarks associated with the contour of each eye are identified. We establish the eye 

geometry, namely, the eye openness, the relative horizontal position and vertical 

position of the eye gaze based on the landmark positions. Eye openness is employed in 

the detection of the eye blink, whereas temporal changes in the horizontal and vertical 

positions of the eye gazes are adopted in the detection of eye fixation and saccadic 
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movements. After the three different eye gaze behaviors have been identified from the 

sequence of eye gaze positions, we construct 9 statistical features that will be used to 

describe these three behaviors and predict the attention level for each video clip. 

Mouse dynamics have been shown to provide indicative information for affect 

detection in various research [110][123]. In this study, we attempt to relate mouse 

dynamics with human reading attention level, by analyzing typical mouse dynamics, 

including mouse click, mouse movement and mouse scrolling. Similar to facial 

expression recognition, we process raw mouse events to establish mouse dynamics over 

time. We then extract features representing mouse dynamics for each segment to align 

with the segment in the video clip. This enables signal fusion among the different 

modalities, namely, mouse signals and webcam signals. 

Our work extracts an initial set of 80 facial features, 9 eye gaze features and 7 mouse 

features, which is too many to be effective for practical real-time recognition, especially 

for facial features. After extracting the set of potentially useful features, feature 

selection is conducted to remove non-indicative features, which is known to improve 

classification performance in pattern recognition and machine learning applications. 

We adopt the wrapper method for feature selection which is reported to outperform 

filter method by considering the relationship between different features and selecting 

one feature subset that is the best for the chosen classifier [106]. We adopt the best first 

search approach for the efficiency, based on the Linear Support Vector Machine (SVM) 

for classification. This filtering step is very efficient in reducing the set of potential 

facial features from 80 down to 11. After initial feature selection in trimming down the 

feature set to a manageable size, we can explore different feature combinations via an 

exhaustive search for the optical feature set to build up our attention level recognition 

model. We end up with 7 top facial features, 5 top eye gaze features and 3 top mouse 

dynamics as the best combination for the attention level detection. 

We evaluate our multimodal attention detection approach by building user-

independent models based on the combined dataset of all subjects. We compare the 

classification performance of our multimodal approach with the performance produced 

using only a single modality. The results illustrate that the multimodal models perform 

better than the single modality ones, achieving higher correct classification rate (CCR) 

and F-measures. Moreover, we explore the contribution of each individual modality by 

conducting three more experiments based on (a) combined facial and eye gaze features, 

(b) combined facial and mouse features, and (c) combined eye gaze and mouse features. 
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We find that they achieve a performance between that achieved by single component 

modalities and that achieved by the full set of modalities.  

1.3 Thesis Aims and Outline 

The aims of this thesis, as outlined in the overview, are as follows: 

 To investigate the detection of comprehension level based on a commonly 

occurring task, i.e. reading, by investigating the eye gaze behavior with non-

intrusive devices. 

 To identify indicative features that are effective in describing specific eye gaze 

behaviors and build user-independent models to recognize the level of 

comprehension on various lengths of available eye gaze data for a human in 

reading tasks. 

 To propose a multimodal approach to the detection of attention level during 

reading through human facial features, eye gaze features and mouse dynamic 

with off-the-shelf devices. 

 To represent the facial expressions, eye gaze behaviors and typical mouse 

dynamics properly, and explore the useful features of each modality for the 

attention level detection. 

 To compare the performance of the unimodal and multimodal user-independent 

models for the attention level detection for a deeper analysis of the different 

modalities. 

The reminders of this thesis will cover the following material: 

Chapter 2 provides the literature reviews that describe the background information 

for the work introduced in this thesis. More specifically, it reviews the research efforts 

on eye gaze behavior analysis, gaze estimation, and human affect and mental state 

detection for reading.  

Chapter 3 explores comprehension level detection for reading based on eye gaze 

behavior analysis. The eye gaze features are extracted and evaluated to build user-

independent models for reading comprehension level detection on various lengths of 

available eye gaze data. 



  

13 

 

Chapter 4 proposes a multimodal approach to attention level detection in reading 

based on facial expressions, eye gaze behaviors, and mouse dynamics. The performance 

of unimodal classification and multimodal classification is also discussed. 

Chapter 5 introduces other contributions we have made that are related to or beyond 

the scope of this thesis. 

Chapter 6 concludes the whole thesis and plans for the future research. 
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Literature Review  
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This chapter begins with a review of relevant topics of eye gaze behaviors, including 

vision-based eye gaze estimation, fixation identification, and gaze movement studies in 

reading. This is followed by the review of affect and mental state detection in reading. 

The purpose of this chapter is to provide an understanding of the prior research in the 

fields of gaze analysis and multimodal affect and mental state detection, especially in 

reading. 

2.1 Eye Gaze Behaviors in Reading 

Reading is one of the most common computer interaction activities and also one of the 

most fundamental means of knowledge acquisition. As a complex cognitive task, 

reading involves attention level, comprehension ability, visual interest, oculomotor 

processing constraints. From a mechanical view point, reading can be considered as a 

task where visual processing and sensorimotor control takes place in a highly structured 

visual environment [79] which is a symbolic and abstract source of information. In the 

past decades, a great number of studies have been done on understanding reading 

behaviors and related human mental states based on the eye gaze patterns. To 

successfully identify the eyes and measure the eye movement, many efforts have also 

been made to propose solid eye-tracking technologies in different contexts. 

2.1.1 Eye Movements in Reading 

Human behaviors are often better reflected by studying human-oriented signals. In 

reading tasks, the eye is the essential sensory organ involved, besides the brain. In 

particular, the eye is known to play an important role in reading by researchers, in 

addition to the more obvious electroencephalogram (EEG) signal, oriented from the 

human brain. Towards an eye tracker, it is capable of detecting the location of the eye 

gaze on the screen, which in turn can be processed into eye movement information.  

Many research conclusions have been drawn on eye movements in reading in the 

domain of psychology and computer science. In general, eye movements during reading 

can be categorized into saccades and fixations, which alternately occur during reading 

[81]. A saccade is a fast movement of the eye, which is usually in a direction parallel 

to that of the text. It is from left to right for western languages or right to left in some 

others. It is from top to bottom for Chinese in some cases. A fixation is the maintenance 

of the visual eye gaze on a single location. The purpose of a saccade is to locate a point 
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of interest on which to focus, while processing of visual information takes place during 

fixations. Humans typically alternate saccades and fixations in daily life. 

The eye movements when reading silently differ from those when reading aloud. 

The research we introduce in this chapter is for silent reading. When reading English, 

the length of a saccade can be as short as a single word or can span across multiple 

sentences of paragraphs. The average saccade length is 7-9 letter space for readers of 

English and other alphabetic writing system [100]. The number of letters traversed by 

saccades is relatively invariant when the same text is read at different distance, even 

though the letter spaces subtend different visual angles [67]. Although most of the 

saccades in reading English are made from left to right, about 10-15% of the saccades 

are regressions, which are right-to-left eye movements along the line of the reading 

contents. The length of the regressions is important information to tell the reader’s 

reading behaviors and mental states. Specifically speaking, the short regressive 

saccades may be necessary for preceding the reading efficiently after too long saccades. 

The longer regressions usually occur when the readers have difficulty understanding 

the text. In such cases, good readers are found to be able to relocate their eyes to the 

part of text causing the difficulty, whereas poor readers engage in more backtracking 

through the text [68]. Moreover, the readers tend to have shorter saccades and more 

regressions when the text gets more difficult [83]. 

During fixations, the eye stays relatively steady for a period ranging from 60 to 

500ms [59]. Although there is a large variation in the duration of individual fixations, 

fixations tend to focus on long content words rather than short function words [40]. 

Previous research shows that the frequency and length of the word can also affect the 

duration of the fixation on the word, with the gaze duration on longer or low frequency 

words being lengthier than that on shorter and high frequency words [81]. Readers who 

are experiencing difficulty in processing the visual information tend to make more 

fixations and the fixation duration becomes longer [47][84][82]. Moreover, under these 

circumstances, readers often make backwards or regressive saccades, to re-read the 

materials and get a better comprehension of the text [50].  

There has been much research on reading behavior and associated eye gaze 

behaviors [81][59][47][84][82]. Studies have shown that eye movement and eye 

behavior during reading is closely related to human comprehension and attention 

[81][88][89]. Some efforts were make on detecting human mental state during reading 

by eye tracking. Reichle et al. [88] used eye tracker to monitor the gaze location of four 
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subjects to detect mindless reading and investigate the relation between the reading 

behavior and comprehension. The reading behaviors are measured mainly via fixations. 

Although they demonstrated the feasibility of detecting mindless reading from some 

fixation features, they had not investigated the performance of their method in real-use 

situations. Rodrigue et al. [89] studied the attention level during reading using EEG and 

eye tracking. They worked on a small number of only three subjects and performed a 

10×10-fold-cross-validation with four selected eye gaze features for classification. 

They achieved an average classification accuracy lower than 70% in a well-controlled 

setting with the use of eye gaze features, and their method is not evaluated on unseen 

new users. 

In addition to eye movements, eye blinks have also been studied in conjunction with 

human cognition. There are three main types of eye blink: reflex blinks, voluntary 

blinks and endogenous blinks [101]. Reflex blinks are caused by foreign bodies 

invading the eye, and voluntary blinks result from a conscious decision. Endogenous 

blinks are usually triggered by some aspects of information processing, and it has been 

shown that endogenous blinks occurring during reading and speaking reflect changes 

of attention and changes in thought processes [102]. Prior research has made use of the 

eye blinks as an indicator for fatigue detection. Divajak et al. [25] used eye dynamics 

and blinks to estimate human fatigue in computer use. They reported that primary eye 

fatigue indicators include the frequency and duration of blinks as well as the speed of 

eye closure. Dynamic Bayesian network have also been used to relate fatigue with eye 

movement patterns such as fixation occurrence and fixation saccade ratio, as well as 

facial expressions and head movements [48]. 

2.1.2 Gaze Estimation and Eye Tracking 

The release of modern commercial eye trackers facilities precise eye gaze estimation 

and eye tracking in many research domains. Among the many kinds of eye trackers, 

optical eye trackers are favored for being non-intrusive and inexpensive. In optical eye 

trackers, the light, typically infrared, is reflected from the eye, and sensed by a video 

camera or some other specially designed optical sensors. Despite the convenience of 

using eye trackers, gaze estimation and eye tracking by using the webcam alone attracts 

much interest and achieves great success in the past few years.  

Gaze estimation methods can mainly be categorized into feature-based and 

appearance-based methods. Feature-based methods infer the gaze point by extracting 
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local features from the eye regions, such as the location of eye corners and the eye 

contours. Appearance-based methods (e.g. [60][61]) detect and track eyes directly 

based on the image of the eye regions without explicitly extracting the eye features. 

Current gaze estimation methods are mostly feature-based methods. The two types of 

existing features-based methods are model-based (geometric) (e.g. [43][119]) and the 

interpolation-based (regression-based) (e.g. [16][66]). 

Compared to the eye tracking systems based on stereo vision, light source, or 

multiple cameras, using single webcam to estimate gaze and track eyes is work with 

great challenges. Many factors including the variations of eye-camera distance, head 

pose and glass occlusion should be taken into consideration when building the gaze 

model. In this case, most of the studies on gaze estimation rely on data-driven methods 

to learn the mapping from gaze features into gaze point, and these methods generally 

rely on massive training data. Huang et al. [46] prepared a large dataset called 

TabletGaze for gaze learning, which contains over 100 thousand images. Zhang et al. 

[128] constructed a convolution neural network to recognize the gaze angle from the 

MPIIGaze dataset, which consists of over 200 thousand images. Xu et al. [122] 

presented TurkerGaze, which collects large-scale gaze data through crowdsourcing. 

Krafka et al [55] developed a convolutional neutral network (CNN) to model gaze from 

the face and eye regions of 1.5 million frames. Similarly, Zhang et al. [129] presented 

a CNN to learn gaze model using only the full face images. 

Instead of using real images, Wood et al. [118] leveraged graphical rendering 

techniques to generate a million realistic eye images for gaze angle estimation. 

However, results in [55] show that gaze model calibrated by user-specific data can 

markedly outperforms the user-independent counterpart, meaning that it is still hard to 

overcome individual differences by simply learning from large-scale data. Lu et al. [62] 

synthesized user-specific training samples for unseen head poses from images under a 

certain reference head positions. However, the computer-generated data may not fully 

coincide with the real user-specific data. 

An alternative is to collect user-specific data implicitly through interactions. Sugano 

et al. [103] applied the saliency map of video frames to estimate the gaze points 

according to the eye appearances. Wang et al. [113] proposed to minimize the overall 

difference between the estimated fixations and the saliency map. However, the 

consistency between image saliency and real gaze locations can be affected by the 

semantics and complexity of visual stimuli. 
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The use of mouse and keyboard as cues to gaze has also been investigated. Sugano 

et al. [104] used the mouse-click locations as ground truth to update the gaze model. 

Similarly, Papoutsaki et al. [74] presented a browser-based eye tracker that learns from 

mouse-clicks and mouse movements. To ensure consistency between gazes and 

interactions, Huang et al. [42] identified the temporal and spatial alignments between 

keypresses, mouse-clicks, and the gaze signals. These methods achieve impressive 

performance, but they are all based on the desktop platform. They also require sufficient 

well-aligned data from user interactions, which can be slow to acquire, which therefore 

limits their applicability. 

2.1.3 Identifying Fixation from Eye-Tracking Data 

Identifying different eye movement behaviors from the eye-tracking data is critical in 

gaze-based research and applications. This process mainly involves identifying fixation 

and saccade. Fixation identification is considered as a convenient method of 

minimizing the complexity of the eye-tracking data while retaining its most essential 

characteristics for the purposes of understanding cognitive and visual processing 

behavior. Salvucci et al. [90] classified the existing fixation identification algorithms 

can be into five categories with respect to their spatial and temporal characteristics. 

According to the spatial characteristics, there are three primary types of algorithms: 

velocity-based, dispersion-based and area-based.  

Velocity-based algorithms emphasize the velocity information in the eye-tracking 

data, taking advantage of the fact that fixation points have low velocities and saccade 

points have high velocities. It is notable that with a constant sampling rate, velocities 

are simply distances between sampled points and thus we can ignore the temporal 

component implicit in velocities. Velocity-threshold fixation identification (I-VT) is a 

velocity-based method that the simplest to understand and implement. I-VT begins by 

calculating point-to-point velocities for each point in the eye-tracking data. Each 

velocity is computed as the distance between the current point and the next (or previous) 

point. I-VT then classifies each point as a fixation or saccade point based on a simple 

velocity threshold: if the point's velocity is below threshold, it becomes a fixation point 

otherwise it becomes a saccade point. 

Dispersion-based algorithms emphasize the dispersion (i.e., spread distance) of 

fixation points, under the assumption that fixation points generally occur near one 

another. Dispersion-threshold identification (I-DT) is one of the most widely used 
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dispersion-based method. It utilizes the fact that fixation points tend to cluster closely 

together because of their low velocity. I-DT identifies fixations as groups of 

consecutive points within a particular dispersion, or maximum separation [117]. 

Dispersion-based identification techniques often incorporate a minimum duration 

threshold of 100-200ms to help alleviate equipment variability. The I-DT algorithm 

uses a moving window that spans consecutive data points checking for potential 

fixations. The moving window begins at the start of the eye-tracking data and initially 

spans a minimum number of points, determined by the given duration threshold and 

sampling frequency. I-DT then checks the dispersion of the points in the window by 

summing the differences between the points' maximum and minimum x and y values. 

If the dispersion is below the dispersion threshold, the window represents a fixation. In 

this case, the window is expanded (to the right) until the window's dispersion is above 

threshold. The final window is registered as a fixation at the centroid of the window 

points with the given onset time and duration. This process continues with window 

moving to the right until the end of the eye-tracking data is reached. It is notable that I-

DT algorithm requires two parameters: the dispersion threshold and duration threshold. 

Sometimes, it is necessary to do experimental analysis and consider the task processing 

demands to determine the parameters. 

Area-based algorithms identify points within given areas of interest (AOIs) that 

represent relevant visual targets. In contrast to the velocity-based and dispersion-based 

methods, area-of-interest fixation identification (I-AOI) identifies only fixations that 

occur within specified target areas. The target areas are rectangular regions of interest 

that represent units of information in the visual field. These target areas, generally used 

in later analyses like tracing, keep identified fixations close to relevant targets. I-AOI 

also utilizes a duration threshold to help distinguish fixations in target areas from 

passing saccades in those areas.  

If considering the temporal characteristics of whether the algorithm uses duration 

information, and whether the algorithm is locally adaptive. We can find that I-VT 

doesn’t have these temporal characteristics. In contrast, I-DT have both the temporal 

characteristics and I-AOI is only duration sensitive. The comparison of the three kinds 

of algorithms shows that velocity-based and dispersion-based algorithms both fare well 

and provide approximately equivalent performance. However, area-based algorithms 

are too restrictive and can generate deceptive results that bias later analyses. Second, 
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the use of temporal information can greatly facilitate fixation identification of eye-

tracking data.  

2.2 Affect Detection for Reading 

Recent advances in miniature hardware have accelerated human-computer interaction 

research, in enabling the computer to interact better with human. Affective computing 

research [19][77] had gained tremendous momentum in recent years, demanding 

computers to understand human affects or emotions and to react accordingly in 

enhancing user experience. In order to recognize human affects, input signals reflecting 

human affects need to be acquired and processed. Under traditional KVM (keyboard-

video-mouse) settings, input signals are mostly tied to keyboard and mouse dynamics. 

One can deduce some information about human affect from the keyboard [12][111] and 

the mouse [110][123], but the accuracy is not particularly high. 

Webcam has become a de facto device thanks to the popularity of interactive social 

networking applications. A human can oftentimes deduce the emotion of a person 

sitting in front of a webcam to a certain degree of accuracy. Recent research in video 

processing and machine learning has demonstrated that human affects and mental states 

can be recognized via webcam video, noticeably via human facial features [127] and 

eye gaze behaviors [44]. Though there has been work on mind detection based on facial 

features and body gestures, research on mental state detection in reading is still limited 

in the aspects of feature recognition. There is also much work on reading behavior and 

the associated eye gaze behaviors [47][59][81]. Studies have shown that eye movement 

and eye behavior during reading is closely related to human comprehension and 

attention [81][88][89]. However, there are three main drawbacks in current state-of-

the-art research works. First, many of them used intrusive devices, like the 

electrooculography systems, to track the eye movement, or detect the user’s mental 

state as ground truth, through the use of electroencephalography (EEG) devices. 

Second, numerous methods studied how lexical and linguistic variables affect the eye 

gaze behavior during reading instead of performing a thorough analysis on the eye gaze 

pattern for a more ubiquitous and efficient affect or mental state detection. They need 

to rely on linguistic analysis of the materials being read by the human. Third, some 

other work designed user-dependent models for the affect or mental state detection 

which might not be able to accommodate unseen new users in practical applications, 
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since it is often not practical to ask a new user to strain up the model before actually 

using it. We believe that reading tasks form a major category of computer usage for 

many users, especially for laymen and students, to warrant more systematic 

investigation. 

In human computer interaction research, one would often exploit the expressive 

power resulted from multimodal interaction [69], in which the intention of a user is 

jointly specified by a plurality of input interaction modalities or signals representing 

the user. It could be effective in combining and fusing input signals acquired from the 

keyboard, the mouse and the webcam. In this thesis, we investigate the detection of 

human attention level when users are carrying out reading tasks based on a multimodal 

approach with ubiquitous hardware, namely, the webcam and the mouse, without 

relying on sophisticated devices such as head-mount devices, electrocardiogram 

devices or heart-beat belts for additional modalities. The webcam is capable of 

returning a stream of video frames, which is analyzed for eye gaze behavior 

recognition, face recognition and then temporal change in facial expression. The mouse 

is capturing its movement and clicking events, indirectly modeling the user activities 

of moving down a page for reading. For simplicity, we do not consider keyboard 

dynamics, since users in general do not utilize the keyboard in reading tasks. 

The eye is found to play an important role in reading, which is also proven in our 

experiments. Human cognition detection in reading has become an important research 

topic since reading is not only a remarkable human skill but also a good sample case to 

study the working of internal processes of the human mind and the external stimuli on 

the generation of complex human actions. However, human can get distracted when 

reading [1], for instance, by Instant Messaging [29]. It is therefore important to 

recognize the human attention level when formulating feedback for interactive 

applications to enhance user experience. Human reading cognition detection can 

contribute in applications such as e-Learning by predicting the readers’ mental state 

through their external behavior and brain activity during the reading process. 

The major source of inputs that can closely reflect human reading cognition rests 

with video streams, often captured via the webcam. Facial expression analysis based 

on webcam video stream has been applied to analyze cognitive states, psychological 

states, social behaviors, and social signals [23]. Most recent research on facial 

expression analysis has been focused on basic emotions, or prototypic emotions, 

including happiness, sadness, surprise, anger, disgust and fear [26]. These have also 
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been extended to the recognition of fatigue [48], embarrassment [48], and pain [5]. 

Cognitive states, like agreeing, disagreeing, interested, thinking, concentrating, unsure, 

and adult attachment have been investigated [126]. Human mental states can be 

recognized effectively from webcam video [41]. Facial expression recognition, being a 

powerful technique, also finds its application in understanding the student engagement 

in a classroom [3]. Cognitive engagement is found to have close relationship with a 

person’s cognitive abilities, including focused attention, memory, and creative thinking 

in learning [4]. 

Human behaviors are often better reflected by human-oriented signals. In reading 

tasks, the eye is the essential sensory organ involved, besides the brain. In particular, 

the eye is known to play an important role in reading by researchers, in addition to the 

obvious electrocardiogram signal, oriented from the human brain. In general, eye 

movements during reading can be categorized into saccades and fixations, which 

alternately occur during reading [81]. A saccade is a fast movement of the eye, which 

is usually in a direction parallel to that of the text. A fixation is the maintaining of the 

visual eye gaze on a single location. The purpose of a saccade is to locate a point of 

interest on which to focus, while processing of visual information takes place during 

fixations. Previous work has found that fixations tend to focus on long content words 

rather than short function words [40]. The frequency and length of the word can also 

affect the duration of the fixation on the word, with the gaze duration on longer or low 

frequency words being lengthier than that on shorter and high frequency words. In 

addition to eye movements, eye blinks have also been studied in conjunction with 

human cognition. Prior research has made use of the eye blinks as an indicator for 

fatigue detection. Divajak et al. [25] used eye dynamics and blinks to estimate human 

fatigue in computer use. They reported that primary eye fatigue indicators include the 

frequency and duration of blinks as well as the speed of eye closure. Techniques have 

been developed to accurately capture eye gaze behaviors from webcam videos [43] 

rather than relying on the use of proprietary external devices, such as Tobii [114]. It is 

also possible to derive human mental states from eye gaze behaviors, such as stress 

level [44]. 

Despite the simplicity of the mouse in tracking movement and clicking events, it has 

been found to deliver interesting signals indicating user anxiety [123], or for stress 

detection [111]. It is in general useful for e-Learning environments [110]. Like mouse 

dynamics, keystroke dynamics has been studied to correlate human behavior [12]. 
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Keystroke dynamics is particular useful in the analysis of writing tasks which rely 

primarily on keyboard activities. Reading tasks are more challenging, since the 

keyboard is often not well-utilized, and the mouse is only used to a limited extent. 

The area of multimodal interaction research was pioneered by the seminal “Put-

That-There” system [14], augmenting video for location recognition and audio for 

command recognition. Multimodal interfaces process two or more combined user input 

modes, for instance, speech and gesture, in a coordinated manner with multimedia 

system output, aiming to recognize naturally occurring forms of human language and 

behavior [69]. Human-smart environment can be built based on combined modalities 

of deictic gestures, symbolic gestures and voice [20]. 

There have been much research works on understanding the relationship between 

human cognitive states such as attention and comprehension and human behaviors 

during reading [78][87]. Efforts have been made into the detection of human mental 

state from different modalities in the non-instructive manners. Huang et al. [41] inferred 

interest and boredom from facial expression. Li et al. [58] detected reading attention 

from mouse dynamics and facial expression. Although facial expression is an important 

channel for mental state detection, the privacy issue concerned with capturing the 

human face still poses certain limitation on its applicability in the real world. The mouse 

is a very common tool to be used as a movement tracking and event selection device. 

Researchers have found that it is able to encode interesting signals indicating user 

anxiety [123] or stress [111]. The mouse log can in general provide useful information 

for e-Learning environments [107]. Huang et al. [42] exploited the alignment between 

mouse-click and eye movement for gaze learning. Similar pattern describing the 

coordination between mouse and gaze has also been investigated for mental stress 

detection [44]. These studies were basically done in specific contexts where the mouse 

is used frequently as a key input device. However, using the mouse log in the context 

of reading tasks would be challenging, since the mouse is oftentimes used to quite a 

limited extent, primarily in the scrolling bar to move around in the article. 
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Affective computing has become an important area in human-computer interaction 

research. Techniques have been developed to enable computers to understand human 

affects or emotions, in order to predict human intention more precisely and provide 

better service to users.  
In this chapter, we investigate the detection of the level of reading comprehension 

as a useful form of human affect, which could be useful in intelligent e-Learning 

applications. Specifically, we focus on the eye gaze behaviors, in the form of eye gaze 

signal captured by a commodity eye tracker (Tobii eye tracker). We invite human 

subjects to carry out experiments in reading articles of different difficulties to induce 

different levels of comprehension. Machine learning techniques are applied to identify 

useful features to recognize when the readers are experiencing difficulties in 

understanding their reading material, leading to a lower level of comprehension.  

A user-independent model that is able to identify different levels of user 

comprehension is built. We find that our approach is able to achieve a performance 

improvement of over 30% above baseline, translating to more than 50% reduction in 

detection error. It is found to be quite robust in catering for new unseen users. Finally, 

we explore different ways of building the user-independent model, in particular running 

prediction models with respect to different length of available eye gaze segments for 

recognition. We further investigate the performance demonstrated by the various 

models. 

3.1 Introduction 

Reading is one of the most common computer interaction activities and also one of 

the most fundamental means of knowledge acquisition. In the same way as a human 

teacher might observe his/her students to gauge their level of understanding, it is easy 

to see how a good understanding of reading behavior and successful detection of 

reading difficulty would be helpful for intelligent e-Learning platforms, to provide help 

to the user, or to adjust the material to improve the learning effectiveness. 

Recent advances in hardware and sensors have enabled new modes of sensing 

signals from users and made these sensing technologies more accessible to the general 

public. Kinect and Leap Motion are among these common commodity devices that are 

able to capture human body gestures and finger gestures for game playing and for the 

development of interesting human-driven applications. Likewise, commodity eye 
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tracking sensors have become more readily accessible in recent years. There are games 

and augmented reality applications built based on those eye trackers. It is not 

inconceivable to imagine that more and more consumer computing devices of the future 

may be equipped with sensors of this kind. 

There has been much research on reading behavior and the associated eye gaze 

behaviors [81][59][47][84][82]. Studies have shown that eye movement and eye 

behavior during reading is closely related to human comprehension and attention 

[81][88][89]. However, there are three main drawbacks in current state-of-the-art 

research. First, many of them used intrusive devices to track the eye movement like the 

electrooculography systems, or detect the user’s mental state through the use of 

electroencephalography (EEG) devices. Second, numerous methods studied how 

lexical and linguistic variables affected the eye gaze behavior during reading instead of 

doing a thorough analysis on the eye gaze pattern for a more ubiquitous and efficient 

affect detection. They need to rely on linguistic analysis of the materials being read by 

the human. Third, many other works designed user-dependent model for the affect 

detection which might not be able to accommodate new unseen users in practical 

applications, since it is often not practical to ask a new user to train up the model before 

actually using it. 

In this chapter, we attempt to address the three limitations mentioned above. We 

make use of a commodity eye tracker to track the eye movement, without making much 

intrusion into the reader, in bearing or wearing special devices or sensors. We make use 

of commonly available English articles without analyzing their content in details to 

build up the model. Finally, we build user-independent models to cope with new unseen 

users. In order to build up the model, we invite human subjects to carry out experiments 

in reading a variety of articles while recording their eye movements with a commodity 

eye tracker. The difficulty level of the articles is varied so as to induce different levels 

of understanding or comprehension with the users. The captured eye movement data is 

analyzed to identify specific eye gaze behaviors, and eye movement features are 

extracted to describe these behaviors. We then apply machine learning techniques to 

identify a subset of useful features that are capable of assisting in the determination of 

human comprehension level. Our goal is to produce a set of resilient user-independent 

models, which are universal to different users and able to accommodate new unseen 

users. 



  

28 

 

Our work demonstrates the feasibility of determining a useful and interesting human 

affect, namely, reading comprehension level. It could find various applications in the 

real world. For instance, an affectively-aware learning system could automatically ramp 

up the difficulty of the reading materials if it senses that the reader is not being 

adequately challenged enough. Similarly, an affectively-aware e-reader could suggest 

books for its reader based on the understanding of his/her comprehension levels of 

similar works based on past reading history and pattern. An e- Learning platform could 

also change the presentation paradigm of the materials, in much the same way as an 

attentive teacher adapts to perceived student attentiveness in the classroom by adjusting 

the teaching method and content delivery. 

The rest of this chapter is organized as follows. In Section 3.2, we describe our 

method of comprehension level detection based on the identification of eye gaze 

behaviors and the extraction of useful features to describe these behaviors. Section 3.3 

describes the experimentation with human subjects carrying out reading tasks, and the 

data collection process. We then evaluate the effectiveness and accuracy of our models 

in Section 3.4 under many different situations. Finally, we conclude this chapter briefly 

in Section 3.5. 

3.2 Eye Gaze Behavior Recognition and Feature 

Extraction 

In this section, we analyze the eye gaze behaviors captured by a commercial eye tracker 

in order to detect the level of comprehension of a user when reading an article. In the 

subsequent subsections, we will describe the actual feature extraction mechanisms 

based on the stream of eye movement signals captured by the eye tracker. We also 

present the mechanism to select the set of useful features and finally the means by which 

we classify the level of human comprehension when reading an article. The overall 

processing mechanism is depicted in Figure 3-1.  

3.2.1 Identifying Eye Gaze Behaviors 

The eye gaze data used in this work is captured by the Tobii X1 Light Eye Tracker, 

which is marketed for “consumer” use. The eye tracker represents the position of each 

eye as a timestamped sequence in terms of (x, y) screen coordinates, which are 

normalized to [0, 1] if the eye gaze detection is effective. Occasionally, the eye tracker 
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may lose track of the eye, when the person is moving the head rather rapidly sideway 

or back and fro, or when the person turns his/her head around, or also for eye blinks. 

The output value for any unrecognized eye position is given a special value of (-1, -1). 

There are two challenges in working with the raw eye gaze data. First, the eye tracker 

occasionally fails to detect one eye, when the eyesight of the reader moves out of the 

effective recording area. The eye tracker reports a normal pair of screen coordinates for 

the detected eye, while the position of the other eye is reported as (-1,-1) due to noise. 

It sometimes fails to detect both eyes, usually when the reader moves his/her head too 

violently and the positions of both eyes would be reported as (-1,-1). While we may 

still be able to extrapolate the position of a missing eye, there is a risk that the failure 

to detect may be due to some other unforeseeable situations. Further, we notice that 

these erroneous positions take up less than 5% of the data instances. We thus decide to 

discard them in our study, since we already obtained sufficient amount of data. 

Second, the sampling rate of the Tobii X1 light eye tracker is not a constant [107]. 

This has been reported in previous work and in our pilot study, we observed that the 

sampling rate varies between 20 to 30Hz. To facilitate the data analysis and pattern 

recognition processes in the next stage, the eye gaze data is down-sampled to 15 Hz 

using linear interpolation. A median filter, which has been shown to be effective in 

preserving the characteristics of the original signal without introducing signal artifacts 

 

Figure 3-1. System components. 
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[18], is then applied to the down-sampled eye gaze signal to further remove noisy 

artifacts. The window size of the median filter is set to be 120 ms, which is small enough 

to retain short pulses indicating eye gaze movements. 

After preprocessing, the resultant denoised, subsampled eye gaze data can be 

represented as a sequence 𝐸 of eye position vectors: 

𝐸i = [𝑒𝑙𝑥𝑖
, 𝑒𝑙𝑦𝑖

, 𝑒𝑟𝑥𝑖
, 𝑒𝑟𝑦𝑖

] 

where 𝑒𝑙𝑥𝑖
, 𝑒𝑙𝑦𝑖

 are the normalized x and y coordinates of the gaze location of the left 

eye of the 𝑖𝑡ℎ item in the sequence, as captured by the eye tracker, and 𝑒𝑟𝑥𝑖
, 𝑒𝑟𝑦𝑖

 are the 

corresponding coordinates for the right eye. For most human, both left and right eyes 

will be moving together. We therefore would like to simplify the representation by 

computing the mean value of the coordinates of the left and right eyes. The eye gaze 

feature vectors can then be simplified into a sequence 𝐸𝐺 of eye gaze vectors: 

𝐸𝐺𝑖 = [𝐸𝐺ℎ𝑖
, 𝐸𝐺𝑣𝑖

] 

where 𝐸𝐺ℎ𝑖
 is the horizontal component of the eye gaze location of the 𝑖𝑡ℎ item in the 

sequence, defined as the average of 𝑒𝑙𝑥𝑖
 and  𝑒𝑟𝑥𝑖

 for the same item, and 𝐸𝐺𝑣𝑖
 is the 

corresponding vertical component, defined as the average of 𝑒𝑙𝑦𝑖
 and  𝑒𝑟𝑦𝑖

. 

3.2.1.1 Detecting eye blinks 

Given the eye gaze sequence, 𝐸𝐺, eye blinks can be easily detected by identifying the 

moments in which 𝐸𝐺ℎ  and 𝐸𝐺𝑣  are both equal to -1. The duration of the blink is 

defined as the length of the sequence of consecutive eye blink points. In previous 

research work, an eye blink is defined as the eyelid closure for a duration of 50 to 500 

ms [93]. We follow the convention to discard eye closures which are shorter than 50 

ms and longer than 500 ms as in relevant research. An inspection shows that eye 

closures that are shorter than 50 ms are usually due to noise from the eye tracker which 

occasionally fails to track the position of the eye, and those longer than 500 ms are due 

to failures from the eye tracker, or momentary human reflection or a taking a break to 

rest via the closure of both eyes. 

3.2.1.2 Detecting eye fixations 

Eye fixations are defined to be periods in which the gaze remains stationary on a 

specific location. However, the inherent error present in the eye tracker makes detecting 
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fixations from the eye gaze signal more than simply looking for periods during which 

the eye coordinates do not change. 

To determine the extent of the inherent sensor error, a pilot experiment was carried 

out with 3 subjects (age: 22-28 years, M = 24.7, SD = 2.5). Subjects were asked to sit 

at a normal distance away from the screen and fix their gaze on a single word displayed 

in the center of the screen for 10 seconds. The recorded eye gaze signal gives us the 

error of the eye tracker, which was measured to be around 1% of the potential range of 

the horizontal component of the eye gaze signal, or 𝐸𝐺ℎ𝑟𝑎𝑛𝑔𝑒
. This is then used as the 

fixation amplitude threshold 𝜏𝐹𝐴. We adopt a method which is similar with I-VT [90] 

to identify fixations. Since our processed eye gaze data has constant sampling rate, the 

calculation of point-to-point velocities for each point of the eye gaze data is simply the 

calculation of distance between the sampled points. Defining 𝐷𝑖  as the Euclidean 

distance between successive gaze locations 𝐸𝐺𝑖  and 𝐸𝐺𝑖+1 , a vector 𝐹  can then be 

constructed from 𝐸𝐺, where: 

𝐹𝑖 = {
1,        𝐷𝑖 < 𝜏𝐹𝐴

0,        𝐷𝑖 ≥ 𝜏𝐹𝐴
 

This gives us a binary vector in which elements with a value of 1 correspond to the 

moments when the eye gaze could be considered to be stationary. Since it has been 

found that fixations are rarely less than 100 ms and usually in the range of 200 to 400 

ms [90], we label fixations as continuous sequences that last for longer than 100 ms but 

shorter than 500 ms. Too long a potential fixation may indicate abnormal situation or 

sometimes erroneous situation. We would like to filter out those relatively uncommon 

scenarios to clean up the data stream, by removing the outliers that could have affected 

the statistical measures that we compute as the potential features. 

3.2.1.3 Detecting eye saccades 

 

Figure 3-2. Changes in horizontal component of eye gaze. 
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Once the eye blinks and fixations have been identified, the sequences in between the 

fixations are considered for saccadic eye movements. 

Given the nature of the task, we classify the eye saccades into three categories: line-

change saccades, forward saccades and regressive saccades. Figure 3-2 shows an 

example. Line-change saccades involve large, fast eye movements that coincide with 

moments when the reader finishes reading one line and the eye jumps to the beginning 

of the next line. Forward saccades follow the direction of the text (left to right in our 

case of English text) during normal reading. Regressive saccades, on the other hand, go 

against the flow of the text when the eye position moves back to re-read previously-

read content. 

Previous work using intrusive electrooculography (EOG) [18] has found that the 

horizontal component is sufficient for identifying saccadic behaviors when reading 

English. Our saccade detection algorithm similarly uses the horizontal component 𝐸𝐺ℎ 

of the eye gaze position to identify the different saccadic types. 

We use a two-level saccade detection algorithm that first identifies line-change 

saccades. The definition of line-change saccades and typical reading behavior suggests 

that these saccades can be identified by looking for eye movements that span over a 

threshold corresponding to the end of a line and the beginning of the next line of text. 

Figure 3-2 illustrates the horizontal component of the eye gaze signal 𝐸𝐺ℎ  as a 

function of time. It can be seen that the signal experiences periodic fall-off “cliffs” 

when the eye gaze switches from the far right of the page (closer to 1) to the left edge 

(closer to 0). It gives us periodic “peaks” and “valleys” which correspond to line-change 

saccades. 

In order to perform analysis on the signal for line-change saccades, we define two 

thresholds: 𝜏𝑝𝑒𝑎𝑘, corresponding to the maximum value of the eye gaze signal before 

the fall-off “cliff”, and 𝜏𝑣𝑎𝑙𝑙𝑒𝑦, corresponding to the minimum value of the eye gaze 

signal right after the fall-off “cliff”. Line-change saccades are then defined as eye gaze 

movements that start at positions greater than (to the right of) 𝜏𝑝𝑒𝑎𝑘 and end with a 

position smaller than (to the left of) 𝜏𝑣𝑎𝑙𝑙𝑒𝑦. 

The two thresholds,  𝜏𝑝𝑒𝑎𝑘  and 𝜏𝑣𝑎𝑙𝑙𝑒𝑦 , are determined empirically through an 

experiment with 4 subjects (age: 21-30 years, M = 25.3, SD = 3.5). The subjects are 

asked to read English articles presented on a LCD monitor with a resolution of 1680 x 

1050. The gaze data from both eyes is then visualized onto images of the screen display, 
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which allows us to observe the trajectory of the eye movements. We would like to 

reduce the likelihood that we mistakenly label regressive saccades as line-change 

saccades by carefully selecting the thresholds. The best performance of the algorithm 

(with 100% recall and 100% precision) is achieved when we select 𝜏𝑝𝑒𝑎𝑘 = 0.6 and 

𝜏𝑣𝑎𝑙𝑙𝑒𝑦 = 0.3 and these values would therefore be adopted in our experiments. 

The second level of the saccade detection algorithm distinguishes between forward 

and regressive saccades. Previous research [100] has shown that saccadic eye 

movements during reading usually span a distance of about 7 to 9 letters, equivalent to 

about 2 degrees of visual angle, with duration between 10 to 100 ms. 

We define the saccade amplitude 𝑆𝑎𝑚𝑝 as: 

𝑆𝑎𝑚𝑝 = ∑ |𝐸𝐺ℎ𝑖
− 𝐸𝐺ℎ𝑖−1

|

𝐸𝐺∈𝑠

 

where 𝑆 is a saccade, 𝐸𝐺 are the eye gaze points composing the saccade 𝑆, 𝐸𝐺ℎ𝑖
 and 

𝐸𝐺ℎ𝑖−1
 are the horizontal components of temporally successive gaze points. 

Given the saccade amplitude, and knowing that normal reading activities generate 

saccades that span approximately 2 degrees of the visual angle, we can use the arc 

length formula to calculate the required amplitude that would be expected if this 

saccade resulted from the subject’s reading activity. We therefore define the saccade 

amplitude threshold 𝜏𝑆𝐴 as: 

𝜏𝑆𝐴 =  
𝜋𝑑𝐸𝐺ℎ𝑟𝑎𝑛𝑔𝑒

90𝑊𝑎𝑟𝑡𝑖𝑐𝑙𝑒
 

where 𝑑  is the distance from the eyes to the screen, 𝐸𝐺ℎ𝑟𝑎𝑛𝑔𝑒
 is the range of 𝐸𝐺ℎ , 

𝑊𝑎𝑟𝑡𝑖𝑐𝑙𝑒 is the width of the article as displayed on the screen. 

According to the hardware setup in our experiment, 𝑊𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 31.5 𝑐𝑚, and on 

average, 𝑑 = 60 𝑐𝑚 and 𝐸𝐺ℎ𝑟𝑎𝑛𝑔𝑒
= 0.68. This leads to the setting of 𝜏𝑆𝐴 = 0.045. 

Since a full line of text has on average 73 characters in our setup, a saccade that spans 

7 to 9 characters would give us saccades ranging between 0.065 to 0.084. Combining 

this with the calculated 𝜏𝑆𝐴 gives us the experimental parameter settings of 𝜏𝑆𝐴𝑚𝑖𝑛
=

0.045, 𝜏𝑆𝐴𝑚𝑎𝑥
= 0.084. 

The use of the amplitude threshold allows us to detect a potential saccade, but not 

its direction. Given a candidate saccade 𝑆 with 𝑛 eye gaze points, we identify the first 

and last eye gaze points 𝐸𝐺1 and 𝐸𝐺𝑛. The horizontal components allow us to recognize 
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the direction of saccade. Thus, the saccade can be classified as forward or regressive 

saccade: 

𝑆 = {

𝑓𝑜𝑟𝑤𝑎𝑟𝑑       𝑖𝑓  𝜏𝑆𝐴min
≤ 𝑠𝑎𝑚𝑝 ≤ 𝜏𝑆𝐴max

 and 𝐸𝐺ℎ1
< 𝐸𝐺ℎ𝑛

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒   𝑖𝑓  𝜏𝑆𝐴min
≤ 𝑠𝑎𝑚𝑝 ≤ 𝜏𝑆𝐴max

 and 𝐸𝐺ℎ1
> 𝐸𝐺ℎ𝑛

𝑛𝑜𝑛 − 𝑠𝑎𝑐𝑐𝑎𝑑𝑖𝑐       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Once again, we would like to clean up the saccadic stream for outliers. Saccadic 

segments which are shorter than 20 ms and longer than 200 ms are discarded, assuming 

an average angular saccade speed of 20 degrees/second [95]. 

Figure 3-3 illustrates an example of identified eye gaze behaviors given the eye gaze 

positions in both x (horizontal) and y (vertical) dimensions. The eye blinks, fixations, 

forward, regressive and line-change saccades are illustrated. Given the horizontal 

component 𝐸𝐺ℎ and vertical components 𝐸𝐺𝑣 of the eye gaze positions, we consider 

changes in both dimensions as a whole. We use the notation 𝑭 to indicate a fixation, 𝑩 

to indicate an eye blink, 𝑭𝑺 to mean a forward saccade, 𝑹𝑺 a regressive saccade, and 

𝑪𝑺 for a line-change saccade. A blink is easily identified for a period of non-eye-

detection. A line-change saccade is reflected by backward changes in both x and y 

dimensions in a sequence of eye gaze points, whereas a regressive saccade is reflected 

by backward changes in x dimension. 

3.2.2 Features Describing Eye Gaze Behaviors 

Once the different eye gaze behaviors have been identified from the eye gaze points, 

we construct the features that will be used to describe these behaviors.  

 

Figure 3-3. Identifying eye movement patterns. 
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The objective of our work is to automatically detect when the user is having 

difficulty with a text, with a reduced level of reading comprehension. Given this 

ultimate objective, we consider the eye gaze behaviors within a given time period of 

reading.  

For each saccade type, we define 6 different useful features measuring the saccades 

more precisely. In particular, we measure the mean and standard deviation of the 

metrics of interest for each saccade type, namely, the amplitude (defined in terms of the 

screen distance covered in the saccade), the duration and the speed. Given three types 

of saccades, three interesting metrics and two statistical measures, this gives rise to 18 

potentially useful features. Finally, we are also interested in the global manifestation of 

each type of saccadic behavior throughout the period of the article reading task. We 

measure the number of saccades of each type over the window 𝑊𝐸𝐺 that spans over the 

duration of each individual article reading task. This gives us a final list of 21 features. 

Table 3-1 depicts those 21 features useful in describing the saccadic eye behavior 

adopted in building our comprehension level recognition model. 

We extract features to describe fixations in a similar manner. These include the rate 

of fixation normalized by the window 𝑊𝐸𝐺, i.e. the time spent in reading the article. 

We also calculate the mean and standard deviation of the duration of the fixations, as 

Table 3-1. Features describing saccadic eye behaviors. 

Feature Meaning Formulation 

𝑠1𝐹𝑆
, 

𝑠1𝑅𝑆
, 𝑠1𝐶𝑆

 

𝑠2𝐹𝑆
, 

𝑠2𝑅𝑆
, 𝑠2𝐶𝑆

 

Distance covered 

by saccades 

Average (𝑠1) and standard deviation (𝑠2)  of 

amplitude (screen distance) covered by forward, 

regressive and line-change saccades 

𝑠3𝐹𝑆
, 

𝑠3𝑅𝑆
, 𝑠3𝐶𝑆

 

𝑠4𝐹𝑆
, 

𝑠4𝑅𝑆
, 𝑠4𝐶𝑆

 

Duration of 

saccades 

Average (𝑠3) and standard deviation (𝑠4)  of 

duration of forward, regressive and line-change 

saccades 

𝑠5𝐹𝑆
, 

𝑠5𝑅𝑆
, 𝑠5𝐶𝑆

 

𝑠6𝐹𝑆
, 

𝑠6𝑅𝑆
, 𝑠6𝐶𝑆

 

Speed of 

saccades 

Average (𝑠5) and standard deviation (𝑠6)  of 

speed of forward, regressive and line-change 

saccades 

𝑠7𝐹𝑆
, 

𝑠7𝑅𝑆
, 𝑠7𝐶𝑆

 
Rate of saccades 

Number of forward, regressive and line-change 

saccades in window 𝑊𝐸𝐺 
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well as the interval between successive fixations. Table 3-2 details the 5 fixation-related 

features used in our work. 

We compute 5 eye blink features. They are extracted by calculating the rate of blink 

normalized by the window 𝑊𝐸𝐺, the mean and standard deviation of the duration of the 

eye blinks, and the interval between successive blinks. Table 3-3 shows the list of eye 

blink features. 

Table 3-2. Features describing fixations. 

Feature Meaning Formulation 

𝑓1, 𝑓2 
Duration of 

fixations 

Average (𝑓1) and standard deviation (𝑓2)  

of duration of fixations 

𝑓3, 𝑓4 
Interval between 

fixations 

Average (𝑓3) and standard deviation (𝑓4)  

of elapsed time between successive 

fixations 

𝑓5 Rate of fixations Number of fixations in window 𝑊𝐸𝐺 

 

Table 3-3. Features describing eye blinks. 

Feature Meaning Formulation 

𝑏1, 𝑏2 
Duration of eye 

blinks 

Average (𝑏1) and standard deviation (𝑏2) of 

the duration of eye blinks 

𝑏3, 𝑏4 
Interval between 

eye blinks 
Average (𝑏3) and standard deviation (𝑏4)  of 

elapsed time between successive eye blinks 

𝑏5 Rate of eye blinks Number of eye blinks in window 𝑊𝐸𝐺 

 

Table 3-4. Features describing eye movements. 

Feature Meaning Formulation 

𝑒1, 𝑒2 
Variation of eye 

movements 

Kurtosis (𝑒1) and skewness (𝑒2) of 

horizontal component of eye gaze 

locations captured by eye tracker 

 

Table 3-5. Contextual features. 

Feature Meaning Formulation 

𝑐1 
Reading 

speed 

Number of lines in article segment, divided 

by time 

𝑐2 
Repetition 

rate 

Number of line-change saccades divided by 

actual number of lines 
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In addition to the behavior-based features, we also adopt gaze-based features to 

capture the general characteristics of the unfiltered eye gaze positions. These include 

the kurtosis and skewness of the horizontal component of the 𝐸𝐺ℎ signal, as shown in 

Table 3-4. 

Finally, we incorporate some features that are meant to capture the context of the 

reading task through combining basic information on the read article and the overall 

task. These are the per-line reading speed and the repetition rate of reading, as shown 

in Table 3-5. 

3.3 Experimentation and Data Collection 

The evaluation for our model for detecting the level of reading comprehension involves 

reading tasks in a real-world setup. The experiment subjects read the article in a full-

screen mode, as depicted in Figure 3-4. Different pre-selected articles of different levels 

of difficulty are used to induce varying levels of comprehension on the subjects. Note 

that even though the level of difficulty is roughly related to the level of comprehension, 

it does vary across different persons. A hard article could be hard to comprehend for 

someone, but perhaps just medium for another. An easy article may also take some 

 
 

Figure 3-4. Experimental Setup. 
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weak readers much effort to understand. So we rely on experiment subjects to report 

their level of comprehension when reading a specific article. The eye gaze tracking logs 

for individual subjects are recorded in real-time during the experiment, and pre- and 

post-surveys are used for further data collection about the subject. 

3.3.1 Participants and Experiment Setup 

We recruit 10 subjects (age 20-33 years, M = 24.6, SD = 4.2) for this experiment. All 

of the experiment subjects are undergraduate or graduate students, four of them are 

female. They are all non-native English speakers, and their “mother tongue” is either 

Mandarin Chinese or Cantonese Chinese. A pre-experiment survey revealed that they 

are all comfortable with using the computer, and are able to read and write in English, 

though there is some variation in the level of comfort and their grasp of the language. 

The experiment is performed within a standard laboratory environment, as shown in 

Figure 3-4. The experimental setup consists of a 22-inch flat LCD screen with 

resolution of 1680 × 1050 pixels for displaying the English article and a commercial 

Tobii X1 eye tracker mounted under the monitor facing the subject for eye gaze tracking. 

Paging is done either via the keyboard or the mouse, depending on the user’s preference. 

The subjects are seated about 60 cm away in front of the monitor and are free to move 

their head or body throughout the experiment, though they are requested to avoid 

violent body movements. 

3.3.2 Experiment Design 

In order to induce different levels of reading comprehension in this experiment for all 

the subjects, we make use of English articles from standardized sources that are widely 

used worldwide to evaluate English reading comprehension ability. Specifically, we 

pick articles from the reading comprehension material pools of the GRE (Graduate 

Record Examination), TOEFL (Test of English as a Foreign Language), and CET-4 

(College English Test Band 41). TOEFL is widely used for undergraduate and graduate 

admissions of non-native speakers to English-speaking colleges and universities. GRE 

is required by many graduate schools in the US and Canada as an admission criterion. 

CET-4 is used for calibrating the level of English ability for university students in China, 

being also a common admission criterion to graduate schools. Two articles were chosen 

                                                 
1 CET-4 is an English test used to evaluate the English ability of Chinese undergraduates in China. Most participants are 

sophomores or juniors. All the reading materials used in the reading comprehension of this test are chosen from English 

publications. 
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from each of the three tests, and the length of each article was constrained to be around 

500 words. To make sure that the subjects were focused on the reading task and 

attempted to understand the article as much as possible, a post-reading guarding 

procedure was imposed. Before the reading task began, the subjects were told that they 

should give a detailed explanation of each paragraph of the article to the experiment 

instructor after finishing reading each article. Moreover, to guide the subjects to do a 

precise report of the level of comprehension for each article and to minimize the 

potential inconsistency among subjects, we showed them the self-report guidelines with 

our required levels of reading comprehension before the experiment. The guidelines 

provide them with criteria for their judgement with which to determine the level. After 

reading all the articles, the subjects were presented a survey to write down some 

feedback about the setting of the experiment and provide further suggestion. 

Considering the background and English level of our subjects, we expect them to 

have a reasonable understanding of the TOEFL articles, while the GRE would be 

considered to be difficult, and the CET-4 should pose no difficulty to them. Post-

experiment surveys confirmed that the subjects indeed did find that the articles were of 

different levels of difficulty and they did experience varying levels of comprehension. 

In general, our experimental subjects also found the setup of the experiment to be 

comfortable and non-intrusive. 

The subjects were informed in advance about the eye gaze tracker and that their gaze 

movements were being recorded during the experiment. To minimize the impact of the 

ordering effects commonly occurring in HCI experiments, the order of the articles was 

randomized so each subject would be presented with the articles at different levels of 

difficulties following one of the different permutations. The subjects were not 

constrained for reading time, but they were asked to read the article thoroughly so as to 

fully comprehend it, as much as possible. Immediately after reading each article, the 

subjects were required to label their perceived level of comprehension as “low”, 

“medium” or “high” while their memory was still fresh. 

3.3.3 The Dataset 

After the experiment, the collected eye gaze data is visually inspected to ensure that it 

is usable. In a few cases, large degree of body movements and askew sitting postures 

from the subject results in eye tracker failure for prolonged periods of time. Reading 

activity segments that exhibit this kind of phenomena are removed from the dataset. 
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 The final dataset contains 41 instances, corresponding to 41 article-reading 

activities. The total length of the dataset is 228 minutes. According to the subjects’ self-

report labeling, of the 41 instances, 9 (22.0%) instances were labeled as “high level of 

comprehension”, 17 (41.4%) as “medium level of comprehension”, and 15 (36.6%) as 

“low level of comprehension”. Even though the “medium” class is slightly dominating 

the other two, we still consider this to be a reasonably well-mixed dataset since the 

deviation from the completely even distribution (33.3%) is not too far. 

The baseline of the dataset is 41.4% since the bottom line for random guessing is to 

output the label of the largest class to achieve the “best” result. Various user-

independent models for comprehension level detection are built based on this dataset 

and evaluated in the following sections. 

3.4 Feature Selection and Model Evaluation 

In this section, we evaluate our reading comprehension detection system by building 

user-independent models based on the dataset, as well as various partitioning of the 

dataset based on different temporal segmentations on the reading data. In classification 

research, a user-independent model is usually not as accurate as a user-dependent model, 

especially for classifying phenomena that are heavily dependent upon individual 

characteristics of the subject. However, their appeal is that they are more applicable in 

practice, being universally applicable to all users. Once trained, a user-independent 

model can be used for any new user, whereas its user-dependent counterpart, in contrast, 

would require new data to be collected and the model to be re-trained for each 

individual new subject. This places a heavier burden upon the deployability of such 

systems, especially in real-usage scenarios. Therefore, in this section, we build up 

different user-independent models based on different experimental settings and 

evaluate our approach for recognition performance. 

3.4.1 Evaluation on Reading the Whole Article 

3.4.1.1 Feature evaluation and selection 

Based on the process described in Section 3.2.2, 35 eye gaze features are extracted from 

the reading activity data. These include 21 saccade features, 5 fixation features, 5 eye 

blink features, 2 eye movement features, and 2 contextual features. The duration of the 

window 𝑊𝐸𝐺 is set to be the duration of reading the whole article. 
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Our initial set of features contains 35 features, which are likely too many to be 

effective for practical real-time recognition. Therefore, after extracting the set of 

potentially useful features, feature selection is conducted to remove non-indicative 

features to improve classification performance. 

We adopt the wrapper method for the feature selection, which is reported to 

outperform the filter method [106]. The wrapper method considers the selection of a 

set of features by comparing different feature combinations to identify a subset that is 

best for the chosen classifier. Unlike the filter method, the wrapper method is able to 

take into consideration interactions between different features rather than ranking each 

of the features on their own. We make use of the Linear Support Vector Machine (SVM) 

for classification and its error rate to indicate the performance of a feature subset. We 

adopt the best first searching approach which searches the space of attribute subsets by 

greedy hill climbing augmented with a backtracking facility, with a comparison 

window of 5 consecutive non-improving search nodes to determine the set of potential 

features. This strikes a balance between computational efficiency and effectiveness of 

features selected. 

We analyze how the feature evaluator ranks all the features by conducting a 10-fold-

cross-validation evaluation. The number of training sets that each of the features is 

selected in the cross-validation for classification is used to measure the degree of 

importance of the features. 

Table 3-6 shows the top 10 most indicative features, together with the number of 

partitions (in 10-fold cross-validation) in which they are found to be of potential 

contribution in recognition. Unsurprisingly, the most indicative features are the reading 

speed and the rate of the forward saccades. This makes sense, as people who are having 

difficulties in understanding the reading material will tend to slow down and have 

longer fixation [81]. They also tend to make more regressive saccades and repeatedly 

read sections of the text more often, which is also evidenced by the fact that the 

repetition rate is selected as one of the most indicative features, and regressive saccades 

feature heavily dominates among the top 10 most useful features as well. 

We note that some of the top 10 ranked features are actually indicative only for a 

small number of training partitions instead of being useful across the board and they 

may not always work synergistically together. Some of them may still be useful when 

combined with other features. 
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To select the best feature subset, we run the feature selection algorithm with the 

same feature evaluator to yield a subset which would be the most effective. Having 

trimmed the set of potentially useful features from 35 to 10, we explore the different 

combinations of subsets of features drawn from the list of 10 potentially useful features. 

Again, we make use of SVM for classification and adopt 10-fold cross-validation. 

Finally, there are 6 important features that together give us the best performance. This 

list of features selected in building the user-independent model is illustrated in Table 

3-7. 

Table 3-6. Top 10 indicative features. 

Feature Description 
Number of indicative training 

sets (10-fold cross-validation) 

𝑐1 Per-line reading speed 10 

𝑠7𝐹𝑆
 Rate of forward saccades 8 

𝑒2 Skewness of eye 

movements 
4 

𝑠3𝑅𝑆
 Average duration of 

regressive saccades 
3 

𝑒1 Kurtosis of eye movements 3 

𝑐2 Repetition rate 2 

𝑓5 Rate of fixations 2 

𝑠3𝐹𝑆
 Average duration of 

forward saccades 
2 

𝑠6𝑅𝑆
 Standard deviation of 

duration of regressive saccades 
2 

𝑓4 Standard deviation of 

elapsed time between fixations 
2 

 

Table 3-7. Final set of selected features. 

Feature Description 

𝑐1 Reading speed 

𝑠7𝐹𝑆
 Rate of forward saccades 

𝑒2 Skewness of eye movements 

𝑐2 Repetition rate 

𝑓5 Rate of fixations 

𝑠3𝐹𝑆
 Average duration of forward saccades 
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3.4.1.2 User-independent model 

We would like to evaluate the performance of the user-independent model built. The 

gold standard in evaluating the effectiveness of user-independent models is the leave-

one-subject-out cross-validation test. From the set of n = 10 subjects, we train the user-

independent model using the data from n  1 = 9 subjects and test the model on the left-

out subject. We repeat the experiment n times, each time leaving out a different subject, 

and the average performance for the 10 experiments is reported. 

Table 3-8 presents the confusion matrix for the leave-one-subject-out 

comprehension level detection experiment on the 10 subjects and 41 instances. Table 

3-9 illustrates the classification performance of the classifier, averaged over 10 subjects. 

Table 3-8. Confusion matrix for comprehension detection. 

  Comprehension level 

Ground truth 

High Medium Low 

High 7 2 0 

Medium 3 11 3 

Low 0 3 12 

 

Table 3-9. Leave-one-subject-out comprehension detection. 

                Performance 

Comprehension level 

Precision Recall F-measure 

High 0.70 0.78 0.74 

Medium 0.69 0.65 0.67 

Low 0.80 0.80 0.80 

Overall 0.73 0.73 0.73 

 

Table 3-10. Normalized confusion matrix. 

  Comprehension level 

Ground truth 

High Medium Low 

High 0.78 0.22 0 

Medium 0.18 0.64 0.18 

Low 0 0.20 0.80 
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Table 3-10 provides further details with the confusion matrix normalized by the ground 

truth, giving us a better picture of the relative performance. 

From Table 3-8, we can compute the correct classification rate (CCR) as defined to 

be the proportion of the correctly classified instances over all the instances. This CCR 

is found to be 73.2%, which is significantly higher than the baseline of 41.4%, with an 

improvement of 31.8%, achieving 54.2% error reduction. Table 3-9 indicates that we 

are able to perform well with an overall F-measure of 0.73. The performance of each 

individual class indicates that we are able to achieve a high precision as well as a high 

recall, without having to sacrifice one metrics for the other. In fact, we can achieve a 

precision and a recall up to 0.8 and even the worst recall stands at 0.65, far much better 

than the baseline performance of 41.4%. We are able to recognize very well low level 

of comprehension for probably difficult articles, and comparatively not that well for 

medium ones. This is perhaps the low level of comprehension is often associated with 

lengthy reading with many regressive saccades, making it easier to detect. For the 

medium one, it is somewhere in between, making it more prone to being misclassified. 

This becomes more evidenced when we normalize Table 3-8 to produce Table 3-10, 

which shows that most of the errors come from misclassifying relatively similar 

comprehension classes, i.e. conflating low and medium and medium with high. There 

Table 3-11. All-subject-included comprehension detection. 

Performance 

Comprehension level 

Precision Recall F-measure 

High 0.69 1.00 0.82 

Medium 0.82 0.53 0.64 

Low 0.76 0.87 0.81 

Overall 0.77 0.76 0.74 

 

Table 3-12. Normalized confusion matrix. 

Comprehension level 

Ground truth 

High Medium Low 

High 1.00 0 0 

Medium 0.23 0.53 0.24 

Low 0 0.13 0.87 
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are no errors in which the classifier erroneously classifies an instance into an extreme 

class, i.e. confusing low with high and vice versa. 

According to our study, most of the eye gaze behaviors and their corresponding level 

of reading comprehension are intuitive and follow common sense. For example, 

compared with “high” level comprehension, when the comprehension level is “low”, 

the subjects tend to read more slowly, have more fixations, and have more backward 

saccades. These behaviors suggest that the subjects spend more time processing the 

information during reading and often need to read repeatedly to have a better 

understanding of the reading contents. These behaviors can be reflected from the 

features of 𝑐1 (Reading speed), 𝑓5 (Rate of fixations), and 𝑐2 (Repetition rate). We also 

find the value of 𝑠3𝐹𝑆
 (Average duration of forward saccades) becomes smaller and 

𝑠7𝐹𝑆
 (Rate of forward saccades) increases when the comprehension level is “low”. 

These phenomena are consistent with the changes of the eye fixation behaviors. 

It is notable that among the three groups of eye gaze features, eyep blink features 

neither appear among the top ranked features nor are they selected for the classification. 

This is despite the fact that blink frequency and duration have been widely reported to 

be useful for human affect or behavior detection, such as visual engagement 

measurement [70], fatigue detection [25], activity recognition [18], etc. This would 

suggest that there is no obvious relationship between eye blinks and the human 

comprehension of reading material, at least as perceived by the user. There has been 

research demonstrating that blink rate is unreliable as a measure of the difficulty of the 

reading task when the difficulty is varied by introducing glare conditions or auditory 

distractions [11][10]. Our work seems to further confirm this conclusion by 

demonstrating that eye blinks are also not particularly helpful when the difficulty of the 

reading task is varied by the reading materials. 

To have a better understanding of the influence of the used features to the 

performance of our method, we further evaluate our method in two other cases. First, 

we use all the 35 features presented in Table 3-1 to Table 3-5 in Section 3.2.2 to build 

a user-independent model for the reading comprehension detection. By running a leave-

one-subject-out cross-validation test, a CCR of 56.1% is achieved. This performance is 

higher than the baseline (41.4%) by 14.7%, but lower than the performance of the user-

independent model built on the selected features (as presented in Table 3-7) by 17.1%. 

There may be two reasons for this result. First, some of the 35 features are not helpful 
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for the classification, and even do harm to it because of the ambiguous patterns across 

the data. For example, we find the value of the feature 𝑏5 (Rate of eye blinks) is not 

consistent with the level of comprehension at all across the data. Instances labeled as 

“high” level and “low” level comprehension both have 𝑏5 with big value. According to 

our observation, the big 𝑏5 value can be cause by both the eye fatigue during reading 

and the “low” level reading comprehension. As a result, the different physical 

conditions of the subjects make 𝑏5  a useless feature for the comprehension level 

detection in reading. Second, 35 features are too many to use in our study considering 

our small dataset, which contains only 41 instances. It is easy to cause overfitting 

problem in the machine learning process. 

Second, instead of selecting features based on the whole dataset as we did in 

previous studies, we evaluate our method by doing feature selection only on the training 

set and testing on the test set. We do a leave-one-instance-out cross-validation to 

evaluate our method. In each round of the evaluation, one of the 41 instances is left out 

for testing and the rest of the 40 instances are used for training. We adopt the wrapper 

method for the feature selection on the training set by conducting a 10-fold-cross-

validation evaluation. The selected set of features are used to build the model and tested 

on the left-out instance. We finally get an average CCR of 68.3%, which is higher than 

the baseline by 26.9%. Although the performance slightly drops by 4.9% from that of 

the user-independent model built on the features in Table 3-7, it shows the robustness 

of our model built with a harsher machine learning process and in a more real-use 

situation. By analyzing the selected features, we find 𝑐1 (Reading speed) and 𝑓5 (Rate 

of fixations) are the most frequently selected features, which is not surprising. 

According to the performance of our method with different evaluation approaches, 

we further improve the importance of doing feature selection for the comprehension 

level detection in reading. 

3.4.1.3 Absence of new unseen users 

In our evaluation, we assume the setting of leave-one-subject-out for recognition 

performance to cater for new unseen users. However, it is also common in real-use for 

the model to be used by one or more dedicated users. One would expect that the 

accuracy in those scenarios to be higher. In this evaluation, we keep all subjects in the 

10-fold cross-validation and compare the performance with the leave-one-subject-out 
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setting. We repeat the experiment in Section 3.4.1.1 by including all subjects together. 

The performance is depicted in Table 3-11 and Table 3-12. 

We can observe from the two tables that there is a bit of improvement across the 

board for all the metrics. Table 3-13 summarizes the key performance metrics between 

the two sets of experiments and two types of models. Despite the small improvement 

observed, it actually is far more encouraging. It does demonstrate that our approach is 

very robust, delivering good performance even for new unseen users based on training 

data from a small number of subjects (n  1 = 9). Thus, our research work represents a 

good initial attempt to reading comprehension detection based on the eye movement 

patterns captured by a commodity eye tracker. 

3.4.2 Evaluation on Incremental Length of Segments 

Our previous evaluation demonstrates the effectiveness of our method in 

recognizing user comprehension level from the gaze behaviors when they read an 

article. However, in real-use situations, it is more interesting and useful that a prediction 

can be made well before the user finishes reading the entire article. This is useful in 

providing real-time feedback to an HCI or e-Learning application in order to tailor its 

presentation or interaction to the user comprehension level. In such cases, only the 

beginning segment of the reading eye gaze data is available. We therefore conduct a 

performance evaluation based on various incremental lengths of available eye gaze data. 

This evaluation can shed lights on the confidence levels of our prediction with respect 

to the length of available data segment.  

Each of the 41 instances of reading a whole article is of different lengths, some 

subjects take as little as 2 minutes in reading a possibly easy article, but some subjects 

take as much as 14 minutes in reading a difficult GRE article. In this experiment, we 

will progressively perform recognition on the comprehension level based on various 

lengths of eye gaze data. Figure 3-5 shows the length information of our instances. The 

x-axis shows the range of the length, and the y-axis indicates the number of instances 

that satisfies the corresponding length condition. For example, all of the 41 instances 

Table 3-13. CCR improvement for existing users. 

Evaluation method CCR F-measure 

Leave-one-subject-out 73.2% 0.73 

All-subjects-included 75.6% 0.74 
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are longer than 1 minute and only 1 instance is longer than 14 minutes. It can be seen 

that around half of our instances are over 5 minutes, with a median length of 5.22 

minutes.  

Since our features reflect the temporal attributes of eye gaze behaviors, we foresee 

that these features may be sensitive to the length of eye gaze data available. The 

implication of the features on the performance can vary as their granularity. For 

instances, the fixation duration in a half minute segment may indicate the time spent on 

each word, or the reading speed. However, the fixation duration of reading the entire 

article can provide a cue to the total time of being distracted. The number of line-change 

saccades in short segments would also be small. 

In this study, we perform the leave-one-subject-out evaluation as usual. We first 

build up a user-independent model for each left-out subject. Instead of performing 

recognition on the instances of the left-out subject, we perform recognition based on 

prefix segments, i.e. segments starting from the beginning of the reading tasks, of 

various lengths drawn from the instances of the left-out subject. Thus, all instances will 

be evaluated based on prefix segments of the first minute. Almost all instances will be 

evaluated based on prefix segments of the first two minutes and so on. There will be 

fewer and fewer instances to be evaluated when the segment length grows. The total 

number of individual testing prefix segments conforms to the frequency depicted in 

Figure 3-5. Though the testing segments are of varying lengths, each user-independent 

model built is based on the full-length instances reading the whole article. We thus call 

this evaluation the “entire article” model approach (Modelarticle), and its performance 

is depicted as the green dashed line in Figure 3-6. 

 

Figure 3-5. Distribution of the length of our dataset. 
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Recently, Pasqual et al. [75] proposed a template-matching-based approach in 

predicting the endpoints of mouse movements based on classifiers with incremental 

granularity. In their real-time recognition application for the mouse movement 

endpoints, it is necessary to make a prediction based on partially collected data, without 

knowing when the data sequence will become complete. They adopted a template based 

approach with fixed-length training mouse trajectories for matching and achieved 

reasonable performance. Inspired by this study, we hypothesize that constructing a set 

of classifiers with the same granularity as the testing segments may be conducive to the 

recognition of the short instances, since both training and testing instances will exert 

similar impacts on the features, especially features that are more well-defined for longer 

instances, such as line-change saccades. We thus explicitly build user-independent 

models based on prefix segments from training instances of the same length as the 

testing segments in order to perform the evaluation. As such, our user-independent 

models built for segments of different lengths resemble templates. We call this 

evaluation the “segment” model approach (Modelsegment). Its performance is illustrated 

as the red solid line in Figure 3-6. 

We therefore compare two types of models: (1) a model learnt from the data of the 

entire article, Modelarticle and (2) a model learnt from the data prefix with a 

corresponding length as the testing segment, Modelsegment. We will perform full cross-

validation on all the instances in our dataset for both models. The only difference is that 

Modelsegment is trained on the prefix segments according to the length of the testing data 

in each epoch. 

 

Figure 3-6. Correctly classified rate vs. length of testing prefix segments. 
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Figure 3-6 shows the performances of Modelarticle and Modelsegment on the 

incremental length of the testing prefix segments, i.e. the beginning stage of reading 

each article. As predictions in the early stage of reading are of particular interest to us, 

we evaluate with a finer granularity on the length of the prefix segments in intervals of 

every half minute. Since the number of testing segments decreases when the length 

increases, the granularity of the length for testing is reduced beyond 5 minutes. Both 

models adopt the identical feature set as presented in Table 3-7, and the CCR is 

calculated from the leave-one-subject-out cross-validation for user-independent models. 

Key performance CCR metrics are given in numerical values for more accurate 

comparison. From the figure, we can observe that the performances of both models 

fluctuate for the short testing segments and gradually flat out given sufficient amount 

of data. 

Although fluctuations exist with short length data (1~3 minutes), we can generally 

conclude that the performance of Modelarticle rises as the length of testing data increases, 

whereas Modelsegment suffers from a higher variability. It is encouraging that given the 

testing segments with length longer than 5 minutes, both Modelarticle and Modelsegment 

perform rather stably and they fully converge when testing segments become longer 

than 10 minutes. In addition, they can deliver an accuracy of over 63.4% accuracy given 

sufficient length of testing segments (at least 5 minutes). Consider the performance 

when more data is available, i.e. for testing segments of length 5 minutes or longer. For 

Modelarticle, decreasing the testing segment length from the entire article (73.2%) to 

only 5 minutes (63.4%) results in a 9.8% drop. However, such a decrease in data 

availability has only a modest impact on Modelsegment, just a slight decrease by 2.5% 

for a relatively poor performance for 10-minute segments. On the other hand, consider 

the performance when not much data is available, i.e. segments of length less than 5 

minutes. Reducing the length from 5 minutes to 3 minutes results in significant 

performance drops by 29.3% for Modelsegment (from 73.2% to 43.9%) and by 24.4% for 

Modelarticle (from 63.4% to 39.0%). This shows that our method can yield a relatively 

confident prediction as long as the available reading data is more than 5 minutes. 

However, the performance is not as high, as well as fluctuates with inadequate eye gaze 

data. We may need to rely on other learning mechanism for a better prediction for those 

situations. 

Inspecting from the data, when the testing segment is shorter than 5 minutes, it is 

interesting to note that that Modelsegment outperforms Modelarticle for majority cases 
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(except for “1min”). More importantly, Modelsegment makes a marked improvement for 

the short length segments in general. Notably the use of Modelsegment (56.8%) can 

produce a much higher accuracy for “0.5min” over Modelarticle (35.1%). This 

corroborates our hypothesis that building the classifiers with the corresponding length 

of the testing data is rather conducive to the recognition. However, the decrease of 

Modelsegment for “1min” also reveals a risk that it is not stable enough. This may be 

because that the feature set adopted in Modelsegment is suitable for the entire length of 

article, but not for the short segments. Further discussion on the proper feature set for 

short segments will be provided in the next section, when we perform more extensive 

evaluation along another dimension. 

In summary, with sufficient user eye gaze data (≥5 minutes) our method can 

consistently achieve satisfactory accuracy (around 70%). However, for applications 

that need to make predictions in the early stage of reading (≤1 minute), the standard 

classifiers built for entire articles would need to be supplemented with additional 

classifiers specifically trained on shorter prefix segments following a similar approach 

as Modelsegment. 

3.4.3 Evaluation on Short Segments 

Our results in Figure 3-6 highlight the challenge of making prediction in the very early 

stage of reading. It will be versatile if the reader’s comprehension level can be predicted 

within a short period, e.g. 1~2 minutes. It can enable the continuous prediction of 

reading comprehension, which facilitates the instantaneous feedback to the readers in 

applications, such as e-Learning. We need to tackle with the difficulties. This section 

is dedicated to further study on the relevant issues of the comprehension recognition 

from and for short segments.  

Given the finding that the model learnt from the corresponding length of segments 

(Modelsegment) can outperform the model learnt from the entire segment (Modelarticle) in 

the previous section, we focus on the investigation of learning of Modelsegment in this 

section. As shown in Figure 3-6, there is a performance fluctuation in the early stage (≤2 

minutes) of prediction with short testing segments. It might well be due to the 

inappropriateness of the feature set selected in building the models. This section further 

evaluates the proper feature sets for short segments of length 0.5, 1, and 2 minutes. The 

design of these lengths of segment is in line with those in the previous section. More 

importantly, it is in accordance with the reading behaviors. A close scrutiny of our data 
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reveals that 0.5 minutes is a lower bound to ensure the subject to finish reading one line 

and it also allows our gaze features to capture useful information. On the other hand, the 

shortest time for the subjects to finish reading one article is between 1 and 2 minutes. 

As a result, we focus the study on the segment of length within 2 minutes.  

We first segment the original dataset (named as GazeDataArticle) according to the 

lengths of interest, namely, 2 minutes, 1 minute, and 0.5 minutes. The derived datasets 

are defined as GazeData2min, GazeData1min and GazeData0.5min. Table 3-14 shows the 

number and percentage (in the parentheses) of instance in each class in the datasets. 

Compared with the original dataset, the number of instances in “Low” level of 

comprehension increases significantly in all three derived datasets, whereas that for 

“High” level of comprehension only increases at a much slower pace. Thus “Low” 

becomes the largest class, and “High” becomes an even smaller class. This can be 

explained by the fact that subjects generally spend more time on articles that are 

difficult for them to understand. Dividing the data for each article into segments of 

equal length would create a greater increase of segments for long instances due to 

“Low” level of comprehension. From Table 3-14 we can see that the baseline of the 

derived datasets (> 50%, due to “Low”) is much higher than that of GazeDataArticle 

(41.4%, due to “Medium”). 

Table 3-14. Data distribution of the derived datasets. 

Class 

Dataset 

High Medium Low Total 

GazeDataArticle 9 (22.0%) 15 (41.4%) 17 (36.6%) 41 (100%) 

GazeData2min 10 (10.4%) 36 (37.5%) 50 (52.1%) 96 (100%) 

GazeData1min 24 (11.5%) 78 (37.5%) 106 (51.0%) 208(100%) 

GazeData0.5min 52 (12.0%) 162 (37.5%) 218 (50.5%) 432(100%) 

 

Table 3-15. Leave-one-subject-out comprehension detection based on derived 

datasets. 

Dataset 

CCR 

GazeData 

Article 

GazeData 

2min 

GazeData 

1min 

GazeData 

0.5min 

Baseline 41.4% 52.1% 51.0% 50.5% 

FeatureSetArticle 73.2% 68.8% 67.3% 62.5% 

FeatureSetOptimal 73.2% 75.0% 73.6% 74.1% 
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We evaluate our method of reading comprehension detection based on each of the 

derived datasets of all the subjects’ data. To investigate whether the optimal feature set 

FeatureSetArticle due to the dataset GazeDataArticle still works on the derived datasets, 

we run the leave-one-subject-out cross-validation with FeatureSetArticle based on each 

dataset. For comparison, we also find out the optimal set of features for each of the 

derived datasets. Specifically, from the reading activity data of each dataset, we extract 

the 35 eye gaze features and adopt wrapper method to evaluate the features through 10-

fold cross-validation with SVM as before. The optimal set of features (defined as 

FeatureSetOptimal) is selected to build the user-independent model for the 

comprehension detection. The performance obtained from both methods is depicted in 

Table 3-15. It can be seen that the performance drops for the derived datasets based on 

the optimal feature set FeatureSetArticle for the original full article dataset. The shorter 

the segments, the more the performance drop. As the segments become shorter, the 

feature sets would be affected to a certain degree, and there would be a higher degree 

of mismatch between the features in FeatureSetArticle with those needed by the derived 

datasets, and this degree of mismatch would magnify with shorter segments. However, 

when we are free to adopt the best feature set for each derived datasets, we discover 

that the performance with FeatureSetOptimal is much better than that adopting 

FeatureSetArticle, which is not surprising. However, it is interesting to note that 

adopting the best feature sets for the individual derived datasets outperforms adopting 

the best feature set for the original dataset. 

One might suspect that this is due to both increase in the number of training 

instances, as well as the change in data distribution. To make a fair comparison among 

different datasets, it is reasonable to keep the data distribution and the baseline the same 

across all the datasets. Therefore, we perform a random sampling on the datasets and 

maintain the class distribution as that of GazeDataArticle, so as to produce data 

Table 3-16. Data distribution of the random sampled datasets. 

Class 

Dataset 

High Medium Low Total 

GazeDataArticle 9 (22.0%) 15 (41.4%) 17 (36.6%) 41 (100%) 

GazeData2min 10 (21.7%) 19 (41.3%) 17 (37.0%) 46 (100%) 

GazeData1min 24 (21.6%) 46 (41.4%) 41 (37.0%) 111 (100%) 

GazeData0.5min 52 (21.4%) 101 (41.6%) 90 (37.0%) 243 (100%) 
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distribution of “Low”, “Medium”, and “High” roughly equal to 36.6%, 41.4%, and 

22.0% as presented in Section 3.3.3. More specifically, since there is relatively little 

data labeled as “High” level of comprehension, we preserve all the “High” data and 

perform a random sampling on the “Medium” and “Low” data of each subject. In doing 

so, we guarantee that the derived datasets contain data from each subject and each class. 

Table 3-16 presents the data distribution after sampling. The baseline of each generated 

datasets is almost the same with that of GazeDataArticle, so is the data distribution. 

In Section 3.4.1, we conclude that there are 6 important features, i.e. FeatureSetArticle 

(see Table 3-7), adopting which can produce the best-performing model for the original 

dataset GazeDataArticle. However, we understand that the optimal feature set can vary 

as the length of training segments, as indicated in Table 3-15. In other words, the 6 

features in FeatureSetArticle may not be suitable to depict the indicative eye gaze 

behaviors for the short length segments. We thus perform a study similar to that in Table 

3-15 for the random sampled datasets, preserving the data distribution and baseline, but 

with less data. 

To investigate the effective feature set for comprehension detection from the short 

segments with different lengths, we conduct feature selection analysis as presented in 

Section 3.4.1. We extract the 35 eye gaze features from each segment and build the 

Table 3-17. Performance of classification of each group of models with the best 

feature set. 

Model GazeData2min GazeData1min GazeData0.5min 

1 84.8% 66.7% 67.9% 

2 73.9% 82.0% 76.5% 

3 84.8% 82.9% 80.7% 

4 73.9% 80.2% 78.2% 

5 87.0% 73.9% 80.7% 

6 91.3% 80.2% 79.8% 

7 89.1% 85.6% 80.7% 

8 84.8% 78.4% 84.4% 

9 80.4% 85.6% 77.0% 

10 87.0% 77.5% 74.9% 

Average 83.7% 79.3% 78.1% 

Std 5.6% 5.4% 4.2% 
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user-independent models. Wrapper method with SVM is used for feature ranking 

through 10-fold cross-validation. We use the CCR of leave-one-subject-out cross-

validation as the evaluation metric. The feature set for each model that gives the highest 

performance in the cross-validation is selected. Since the dataset are produced through 

random sampling, we repeat the random sampling and feature selection on each dataset 

for 10 times to evaluate the average or expected performance. 

Table 3-17 presents the CCRs on GazeData2min, GazeData1min and GazeData0.5min 

based on the corresponding optimal feature sets. We notice that the average performance 

on the sampled datasets outperforms that of the derived datasets in Table 3-15. The 

recognition performance on GazeData2min achieves the highest accuracy, attaining 80% 

Table 3-18. Selected features from the derived datasets. 

Feature Description 2min 1min 0.5min 

𝑐1 Per-line reading speed 8 10 10 

𝑠3𝐹𝑆
 Average duration of forward saccades 4 10 3 

𝑐2 Repetition rate 5 8 0 

𝑠4𝐹𝑆
 

Standard deviation of duration of forward 

saccades 

6 4 0 

𝑠6𝑅𝑆
 Standard deviation of speed of regressive 

saccades 

3 3 0 

𝑠7𝐹𝑆
 Rate of forward saccades 0 8 8 

𝑠3𝑅𝑆
 Average duration of regressive saccades 4 0 5 

𝑒1 Kurtosis of eye movements 5 0 4 

𝑓2 Standard deviation of duration of fixations 3 0 0 

𝑠4𝑅𝑆
 Standard deviation of duration of regressive 

saccades 

0 6 0 

𝑠7𝑅𝑆
 Rate of regressive saccades 0 5 0 

𝑠5𝑅𝑆
 Average speed of regressive saccades 0 4 0 

𝑠2𝐹𝑆
 

Standard deviation of amplitude covered by 

forward saccades 

0 0 6 

𝑓5 Rate of fixations 0 0 5 

𝑒2 Skewness of eye movements 0 0 4 

𝑠1𝐹𝑆
 

Average amplitude covered by forward 

saccades 

0 0 3 

𝑠5𝐹𝑆
 Average speed of forward saccades 0 0 3 
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in the 10 iterations. We believe that the eye gaze features presented in this study are 

useful for comprehension detection with eye gaze data at different granularity and is 

quite robust across models. Although the use of the best feature set would lead to a high 

CCR, it is inapplicable for real-use scenarios, since it is infeasible to perform feature 

selection for unseen datasets. However, these results give us a sense of the best 

performance that we can achieve based on segments with particular lengths. 

We proceed to find out one set of features that can represent the important features 

for the dataset so that it can be adopted for real-use scenario. We call this the indicative 

feature set. Making the observation that a more important feature is more likely to be 

included in the optimal feature set, we consider the features that have been frequently 

selected (≥3 times over 10 iterations as in Table 3-17) as indicative and construct the 

feature set with these indicative features for recognition with different lengths of data. 

Table 3-18 shows the indicative feature sets for GazeData2min, GazeData1min, and 

GazeData0.5min, i.e. FeatureSet2min, FeatureSet1min, and FeatureSet0.5min. The number 

of iterations for each dataset that a feature is selected is presented. Different shading is 

used to highlight feature selected by different number of datasets. 

Inspecting from the selected features in Table 3-18, Per-line reading speed (𝑐1) and 

Average duration of forward saccades (𝑠3𝐹𝑆
) contribute to all three datasets. Since these 

two features are closely related to the reading speed, it implies that the reading speed 

seems to be indicative of comprehension level across different granularity of segments. 

We also see that there are some features shared by two datasets, including the features 

describing saccades (𝑠4𝐹𝑆
, 𝑠7𝐹𝑆

 ,𝑠3𝑅𝑆
, 𝑠6𝑅𝑆

), repetition rate (𝑐2) and variation of eye 

movements (𝑒1). It is interesting that features related to repetitive reading behaviors are 

more favorable for the datasets with longer lengths (GazeData2min and GazeData1min), 

but not in GazeData0.5min. This is probably due to the fact that those repetitive features 

become more stable with longer segments and would be more indicative to the 

recognition. The optimal feature set for GazeData0.5min consists of a number of features 

never selected in other datasets. This indicates that such gaze features may not be reliable 

to capture indicative patterns in short segments. This further corroborates our hypothesis 

that models with different segment granularity should be associated with their 

corresponding feature sets in order to attain good performance. 

Upon selecting the best feature sets for models with different segment granularity, 

we would like to study whether those feature sets would be able to produce comparable 
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performance for the models that they were not initially intended for. Table 3-19 shows 

the performance of the evaluation across different feature sets and data sets. From the 

table, we can see that each indicative feature set achieves the best performance on the 

corresponding data set. This is reflected as the diagonal and that it dominates the rows 

and the columns. Compared with the results in Table 3-17, which indicates a possibly 

upper bound on performance, due to the use of the best feature sets for individual 

iterations, using the indicative feature sets as a representative across all 10 iterations 

only causes a slight drop of the overall performance. It is encouraging that these 

identified indicative feature sets for the individual derived datasets can lead to a 

performance quite close to the upper bound, and these indicative feature sets become 

practical choice for building applications under real-use scenarios.  

3.5 Summary 

In this chapter, we propose the method of using eye movements as a modality to 

recognize scenarios in which humans have difficulty with reading material. Our method 

uses only consumer-grade devices, namely, a commercial optical eye tracker, together 

with some very basic information gathered from the article and the overall reading task. 

We identify eye movement behaviors from the stream of eye gaze locations captured 

by the eye tracker. We extract features to describe these behaviors. We then adopt 

machine learning techniques to model the captured data and build user-independent 

models that are capable of recognizing the comprehension level for new unseen users.  

We conduct our experiments via reading tasks, in which the subjects are induced to 

different levels of comprehension by exposure to articles of varying difficulties. We 

explore the comprehension detection based on eye gaze data with different lengths of 

eye gaze segment available for recognition. Through feature selection methods, we 

Table 3-19. Cross-model evaluation of indicative feature sets. 

Dataset 

Feature set 

GazeData 

Article 

GazeData 

2min 

GazeData 

1min 

GazeData 

0.5min 

FeatureSetArticle 73.2% 70.2% 70.2% 69.4% 

FeatureSet2min 70.7% 80.0% 75.4% 74.6% 

FeatureSet1min 68.3% 74.8% 75.9% 74.7% 

FeatureSet0.5min 68.3% 76.3% 75.4% 77.8% 
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identify the most indicative features for the models to achieve reasonable results. We 

also look into the features to figure out the relation between human comprehension 

level and eye gaze behaviors under different contexts.  
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Chapter 4  

A Multimodal Approach to Attention 

Level Detection in Reading 
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The last chapter presents a study on comprehension detection based on gaze behaviors 

extracted from an infrared-based eye tracker. However, such specialized equipment for 

eye tracking with a high resolution is not likely to be available for the majority people. 

Besides, there are different interaction signals, such as mouse dynamics and facial 

expressions, which can be indicative of human mental states and can be captured non-

intrusively. We therefore investigate a multimodal approach to attention detection in 

reading based on off-the-shelf devices in this chapter.  

Specifically, we investigate human attention level detection in reading by using 

ubiquitous hardware available in most computer systems, namely, webcam and mouse. 

Information from multiple input modalities, including facial expressions, eye gaze 

movements and mouse dynamics, is fused together for feature extraction and effective 

human attention detection. We invite human subjects to carry out experiments in 

reading articles when being imposed upon different kinds of distraction to induce them 

into different levels of attention. Machine learning techniques are applied to identify 

useful features to recognize human attention level by building up user-independent 

models. We also analyze the similarity of different modalities by investigating their 

contributions to the attention level detection. Our results indicate performance 

improvement with multimodal inputs from webcam and mouse over that of a single 

device. We believe that our work has revealed an interesting affective computing 

direction with potential applications in e-Learning. 

4.1 Introduction 

Recent advances in miniature hardware have accelerated human-computer interaction 

research, in enabling the computer to interact better with human. Affective computing 

research [19][77] had gained tremendous momentum in recent years, demanding 

computers to understand human affects or emotions and to react accordingly in 

enhancing user experience. In order to recognize human affects, input signals reflecting 

human affects need to be acquired and processed. Under traditional KVM (keyboard-

video-mouse) settings, input signals are mostly tied to keyboard and mouse dynamics. 

One can deduce some information about human affect from the keyboard [12][111] and 

the mouse [110][123], but the accuracy is not particularly high. 

Webcam has become a de facto device thanks to the popularity of interactive social 

networking applications. A human can oftentimes deduce the emotion of a person 
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sitting in front of a webcam to a certain degree of accuracy. Recent research in video 

processing and machine learning has demonstrated that human affects and mental states 

can be recognized via webcam video, noticeably via human facial features [127] and 

eye gaze behaviors [44]. Though there has been work on mind detection based on facial 

features and body gestures, research on cognition detection in reading is still limited in 

the aspects of feature recognition. There is also much work on reading behavior and the 

associated eye gaze behaviors [47][59][81]. Studies have shown that eye movement 

and eye behavior during reading is closely related to human comprehension and 

attention [81][88][89]. 

In human-computer interaction research, one would often exploit the expressive 

power resulted from multimodal interaction [69], in which the intention of a user is 

jointly specified by a plurality of input interaction modalities or signals representing 

the user. It could be effective in combining and fusing input signals acquired from the 

keyboard, the mouse and the webcam. In this chapter, we investigate into the detection 

of human attention level when users are carrying out reading tasks based on a 

multimodal approach with ubiquitous hardware, namely, the webcam and the mouse, 

without relying on sophisticated devices such as head-mount devices, 

electrocardiogram devices or heartbeat belts for additional modalities. The webcam is 

capable of returning a stream of video frames, which is analyzed for eye gaze behavior 

recognition, face recognition and then temporal change in facial expression. The mouse 

is capturing its movement and clicking events, indirectly modeling the user activities 

of moving down a page for reading. For simplicity, we do not consider keyboard 

dynamics, since users in general do not utilize the keyboard in reading tasks. 

We invite human subjects to carry out experiments in reading English articles, while 

recording the multimodal interaction data. Changes in human subject attention level are 

induced via the imposing of various levels of distraction during reading. We apply 

machine learning techniques to identify useful features that assist in the determination 

of human attention level. Unlike in some other recent work relying on user-dependent 

models, we decide to build up the resilient user-independent model, which is more 

universal to different users, including unseen new users. Our results indicate that by 

combining the webcam and mouse inputs, there is a significant improvement in 

attention recognition over the use of a single modality alone. Our work demonstrates 

the feasibility of determining an interesting human affect, namely, attention level. It 

could find various applications in e-Learning. For instance, animation and sound effects 
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could be useful to attract teacher attention when a student starts to lose attention when 

learning. Change in materials presentation paradigm would be helpful, in a similar way 

as a teacher adapting to changes in perceived student attentiveness inside the classroom. 

Human physiological signals [31] could also be integrated into the framework with 

respect to human stress level during e-Learning.  

The rest of this chapter is organized as follows. Chapter 4.2 describe our recognition 

framework based on webcam video processing and mouse dynamics analysis, as well 

as the associated machine learning techniques. Chapter 4.3 explains the experimental 

setups and the experimentation with human subjects carrying out reading tasks. We 

then evaluate the effectiveness and accuracy of our method in section 4.4. Finally, we 

conclude this work briefly in Chapter 4.5. 

4.2 Multimodal Architecture 

In this chapter, we employ multimodal interaction recognition approach to detect the 

attention level of a user when reading an article. There are three input modalities in our 

study: facial features captured and returned by a webcam in the form of a video clip, 

 

Figure 4-1. Multimodal recognition framework. 
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eye gaze behavior extracted from the webcam video clip, and the mouse dynamics 

captured by a mouse logger program. In the subsequent subsections, we will describe 

the actual feature extraction mechanisms for the three modalities, followed by the way 

to select the set of useful features. The overall mechanism is depicted in Figure 4-1. 

4.2.1 Facial Features  

A two-level facial feature extraction approach is adopted in our work: frame-level 

and segment-level, as depicted in Figure 4-1. We perform feature extraction in each 

frame of a video clip and generate a set of frame-level facial feature vectors. We divide 

each video clip for an experimental subject carrying out a task into smaller units called 

segments. Each segment is composed of a good number of frames. Based on the frame-

level facial feature vectors, segment-level feature extraction consolidates and generates 

a single segment-level feature vector to represent the whole segment. Before we 

perform frame-level feature extraction, we must first be able to recognize and track the 

human face in the video. Instead of performing face recognition from scratch for 

individual video frames, we adopt the face tracking approach. Once a face is recognized 

in a frame, we assume delta movement of the face in the subsequent frames. This can 

be achieved by computing for the facial landmarks and then their displacement across 

frames. Only in the event when the face loses track due to excessive movement (often 

due to large degree of head rotation) then the face needs to be recognized from scratch. 

To perform frame-level facial feature extraction, we apply Constrained Local 

Models (CLM) [91] to track 66 facial landmarks from the video clips. This model is 

trained on the CMU Multi-PIE Face database [33], which contains over 750,000 images 

from 337 people. However, it fails to track some of the mouth movements, such as 

mouth corner depression. Thus, the Supervised Descent Method [121] is adopted to 

 

Figure 4-2. Facial landmark tracking via CLM. 
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validate and optimize the 2D landmark locations. During CLM optimization, the 2D 

and 3D landmarks and other global and local parameters are adjusted iteratively until 

the face fitting regression model converges. Removing the rigid transformation from 

the acquired 3D shape compensates for the influence of out-of-plane rotation and 

produces the aligned 3D landmarks. Figure 4-2 indicates our usage of CLM to track the 

66 facial landmarks. 

We follow a standard approach to extract facial features, referred to as Action Units 

(AUs) [109]. We calculate the normalized distances and angles between the 

corresponding facial landmarks, which represent the direction and intensity of the facial 

movements, by extending AUs with only discrete intensity levels. 

Table 4-1 summarizes the descriptions and measurements of the 20 facial features 

(𝑓1 to 𝑓20) that we calculate from the 66 aligned 3D facial landmarks. Observing that 

the head orientation and position also play an important role in facial expression 

representation, we augment our feature list with 6 more head-oriented features (𝑓21 to 

𝑓26). The first three features measure head orientation with respect to x, y and z axes in 

the webcam coordinate system. The remaining three features measure head position, 

with the face center position represented in the 2D image coordinate and the size of the 

face, revealing the distance between the face and the screen. 

From our pilot study, we discover that variations in both head movement and 

lighting condition (e.g., heterogeneous illumination and camera exposure) have posed 

significant challenges for the appearance-based features, especially with elderly people 

with natural wrinkles. As a result, we move away from texture- and color-based features 

to geometry-based features which are more resilient to variation to movement and 

illumination. This has significantly enhanced the robustness of our model in real-usage 

situations in the presence of uncontrollable environmental variations. The use of 

geometric facial features has effectively mitigated the noise arising from the textural 

and appearance channels. 

After performing frame-level facial feature extraction, we extract three kinds of 

segment-level facial features based on the frame-level facial feature vectors reflecting 

different statistical behaviors. The first behavior that we are interested in is the average 

frame inside the segment. The second behavior is the variation of frames contained 

within the segment over a moving window. The third behavior is the variation with 

respect to an anchor frame.  



  

65 

 

We hope that this three-way representation of the frame statistical variations suffices 

in providing us with a good sense of the macro-behavior of the user, while is simple 

Table 4-1. Facial features extracted from video. 

Feature Meaning Formulation 

𝑓1,2,3,4 
Inner and outer brow 

movement 

Distance between eye brow corner and the corresponding 

eye corners (left & right) 

𝑓5,6 Eye brow movement 
Distance between eye center and the corresponding brow 

center 

𝑓7,8 Eye lid movement 
Sum of distance between corresponding landmarks on the 

upper and lower lid 

𝑓9 Upper lip movement 
Distance between landmark 33 of nose bottom and 

landmark 51 of mouth outer contour 

𝑓10,11 Lip corner puller 
Distance between mouth corner and the corresponding 

eye outer center 

𝑓12 Eye brow gatherer Distance between inner eye brow corners 

𝑓13 Lower lip depressor 
Distance between landmark 8 of face contour and 

landmark 57 of mouth outer contour 

𝑓14 Lip pucker Perimeter of the mouth outer contour 

𝑓15 Lip stretcher Distance between the mouth corners 

𝑓16 
Lip thickness 

variation 

Sum of distance between corresponding points on the 

outer and inner mouth contours 

𝑓17 Lip tightener 
Sum of distance between corresponding points on upper 

and lower mouth outer contour 

𝑓18 Lip parted 
Sum of distance between corresponding points on upper 

and lower mouth inner contour 

𝑓19 Lip depressor Angle between mouth corners and lip upper center 

𝑓20 Cheek raiser Angle between nose wing and nose center 

𝑓21,22,23 Head orientation Head orientation in 3D coordinate 

𝑓24,25,26 Head position Face center position in 2D image coordinate and face size 
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enough without introducing too many features to begin with. In our experiments, we 

select segments of length of 1 minute each. 

The first set of segment-level features derived from the 26 frame-level facial features 

in Table 4-1 is calculated as the mean value of the features. For each feature 𝑓𝑖, we 

compute for each segment containing 𝑆  frames the average feature values of all 𝑆 

frames inside the segment. For notational convenience, we denote this set of segment-

level features as 𝑓𝑖_𝑚𝑒𝑎𝑛, where 𝑓𝑖 (i  [1,26]) is the corresponding frame-level facial 

feature. Altogether, there are 26 features in this set. 

The second set of segment-level features is computed based on moving windows of 

size 𝑊 (we select 𝑊 = 15 based on the frame rate of 15 in our experiment). The frames 

in the segment are divided into units of 𝑊  frames each. For each feature 𝑓𝑖 , the 

difference in feature values between the first frame in the window and the last frame in 

the window is computed. Then we compute the mean and standard deviation of the set 

of 𝑆/𝑊 feature value differences for each feature over the segment. We denote this set 

of segment-level features as 𝑓𝑖_𝑤𝑖𝑛𝑑𝑜𝑤_𝑚𝑒𝑎𝑛  and 𝑓𝑖_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑑  for the 

corresponding frame-level feature 𝑓𝑖. There are a total of 52 features in this set. 

The third set of segment-level features is computed based on a special anchor frame. 

In particular, we adopt the face in the first frame of the video as the neutral face and 

consider changes in face in other frames with respect to this neutral face (i.e., delta 

face). In this third set of features, we consider the face as a whole instead of individual 

features. As a result, we compute one single value for the face in each frame with 

respect to the anchor frame (first frame) for the neutral face. We treat those 26-element 

feature vectors for each frame as a unit, and compute the Euclidean distance between 

the feature vector of frame 𝐹𝑗  and that of first frame 𝐹1 . This will give us 𝑆 − 1 

Euclidean distances for a segment of size S. Finally, we compute the mean and standard 

deviation of those 𝑆 − 1 distances to result in only 2 global features. These two features 

are denoted as 𝑓𝑎𝑐𝑒_𝑚𝑒𝑎𝑛 and 𝑓𝑎𝑐𝑒_𝑠𝑡𝑑. 

4.2.2 Eye Gaze Features 

As illustrated in Figure 4-1, we extract eye gaze features from the webcam videos 

by eye gaze tracking and eye gaze behavior recognition. In this section, we analyze 

three kinds of eye gaze behaviors for reading attention detection, including eye blinks, 

eye fixations and eye saccades. Before this can be done more precisely, we need to 
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estimate the position of the pupil center of each eye, as well as extracting some other 

useful eye landmarks. 

As presented in the last subsection, the face CLM consists of 66 facial landmarks. 

Out of them, we identify 6 landmarks associated with the contour for each eye. This is 

depicted in Figure 4-3a, inclusive of 4 around the eye in red circles and 2 at the corners 

of the eye in green circles with red border. In order to accurately describe the eye gaze 

behaviors, it is crucial to properly locate the pupil center, which often cannot be 

detected from the appearance information of the eye region in unconstrained situations, 

reflected by the facial landmarks. Furthermore, the low resolution in the video, as well 

as light reflections on glasses and cornea usually makes the region of the pupil and its 

periphery almost unobservable. To address these issues, instead of attempting to 

identify the pupil from individual frames, we apply the CLM based on the eye [43] to 

track the key pupil center and 8 other eye landmarks with good salient features on the 

iris contour and eye lid corners across frames, making use of the temporal consistency 

property. This is depicted in Figure 4-3a in the form of green circles. Note that the 2 

landmarks at the eye lid corners (green circles with red border) both serve among the 

66 facial landmarks (facial features in Section 4.2.1) as well as among the 9 eye 

landmarks (eye gaze features in Section 4.2.2). 

Based on the 6 landmarks identified from the face and 9 landmarks from the eye 

CLMs (a total of 13 landmarks), we can compute the 6 key eye landmark distances, 𝑑1 

to 𝑑6, in Figure 4-3b accordingly. From these landmark distances for each eye, we 

would like to establish the eye geometry, namely, the eye openness, the relative 

horizontal position and vertical position of the eye gaze. Eye openness is employed in 

the detection of the eye blinks, whereas temporal changes in the horizontal and vertical 

positions of the eye gazes are adopted in the detection of eye fixations and saccadic 

movements. 

 

(a)  facial and eye landmarks            (b) key eye landmark distances 

Figure 4-3. Eye landmarks and features. 
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We first recognize eye blinks according to the value of 𝑑5 + 𝑑6 of each eye, which 

represents the eye openness as shown in Figure 4-3a. As in previous studies, an eye 

blink is defined as eyelid closure for a duration of 50 to 500 ms [93]. Given the eye 

openness of each frame in a video segment, eyelid closure events can be easily detected 

by identifying the moments when the eye openness value of each eye goes down to 0. 

The sequences of eyelid closure events with duration shorter than 50 ms or longer than 

500 ms are discarded as noise, which may be caused by the occasional tracking failure 

of the eye CLM or the turning away of the subject’s head. The remaining eyelid closure 

event sequences are considered as eye blinks. The duration of the eye blink is the length 

of corresponding eyelid closure sequence. 

Upon identifying eye blinks, we need to classify the remaining eye gaze behaviors 

into eye fixations and saccades, namely, whether the eye gaze is focused on a word for 

mental processing, or moving for reading. To distinguish fixations and saccades, we 

analyze the horizontal and vertical movements of both eyes. For each eye, we compute 

the relative eye gaze position within the eye, independent on the actual coordinates of 

the eye in the frame. These relative horizontal and vertical eye gaze positions for an eye 

are computed as 
𝑑1

𝑑1+𝑑2
 and 

𝑑3

𝑑3+𝑑4
 in each frame. As illustrated in Figure 4-3a, the 

movements of the eyes over a temporal period can be analyzed from the eye gaze 

position sequence. Considering that for most human, both left and right eyes move 

together, we thus simplify the representation of eye gaze position by computing the 

mean value of the eye gaze positions of the left and right eyes. 

The eye gaze position sequence can then be represented as 𝐸𝐺 = < 𝐸𝐺1, … , 𝐸𝐺𝑘 > 

of 𝑘 eye gaze points:  

𝐸𝐺𝑖 = [𝐸𝐺ℎ𝑖
, 𝐸𝐺𝑣𝑖

]                                          

where 𝐸𝐺ℎ𝑖
 is the horizontal component of the eye gaze position of the 𝑖𝑡ℎ item in the 

sequence, defined as the average of the horizontal positions of the two eyes, and 𝐸𝐺𝑣𝑖
 

is the corresponding vertical component, as the average of the vertical positions. The 

movement of the eye gaze is measured as the Euclidean distance between the 

corresponding eye gaze points in the eye gaze sequence 𝐸𝐺. 

Eye fixations are defined to be periods in which the eye gaze remains stationary on 

a specific location. However, due to the inherent error of the eye CLM model and head 

movement, detecting fixations from the eye gaze signal 𝐸𝐺 becomes more than simply 
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looking for periods during which the eye gaze positions do not change. To determine 

the extent of noises on fixation detection, a pilot study was carried out to analyze the 

samples of gaze fixation on a single word. The eye gaze position sequences were 

calculated and the eye gaze movements between successive frames were analyzed to 

estimate the potential impact of noises. Let us define 𝑚𝑒𝑎𝑛𝑀𝑂𝑉𝐸and 𝑠𝑡𝑑𝑀𝑂𝑉𝐸 as the 

mean and standard deviation of the eye gaze movements detected by the eye CLM 

model between successive frames for the periods of eye fixation. To filter the noise 

exerted on the eye gaze signal, we define 𝜏𝐹𝐴 as the fixation amplitude threshold, where 

    𝜏𝐹𝐴 = 𝑚𝑒𝑎𝑛𝑀𝑂𝑉𝐸 + 3 ∗ 𝑠𝑡𝑑𝑀𝑂𝑉𝐸                        

Define 𝐷𝑖 as the eye gaze movement between successive eye gaze points 𝐸𝐺𝑖 and 

𝐸𝐺𝑖+1, a vector 𝐹 can then be constructed from 𝐸𝐺, where 

     𝐹𝑖 = {
1,        𝐷𝑖 < 𝜏𝐹𝐴

0,        𝐷𝑖 ≥ 𝜏𝐹𝐴
                                   

This gives us a binary vector in which elements with a value of 1 correspond to the 

moments when the eye gaze could be considered to be stationary. Since it has been 

found that fixations are rarely less than 100 ms and usually in the range of 200 to 400 

ms [90], we label fixations as continuous stationary sequences that last for longer than 

100 ms but shorter than 500 ms. Once the eye blinks and eye fixations have been 

identified, the sequences in between the fixations with duration shorter than 200 ms are 

Table 4-2. Eye gaze features adopted. 

Feature Meaning Formulation 

𝑒1 Blink rate Number of eye blinks per minute 

𝑒2,3 Blink duration 
Mean (𝑒2) and standard deviation (𝑒3) 

of the eye blink durations 

𝑒4 Fixation rate Number of fixations per minute 

𝑒5,6 
Fixation 

duration 

Mean (𝑒5) and standard deviation (𝑒6)  

of the fixation durations 

𝑒7 Saccade rate Number of saccades per minute 

𝑒8,9 
Saccade 

duration 

Mean (𝑒8) and standard deviation (𝑒9) 

of the saccade durations 
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considered as saccadic eye gaze movements as defined in [96]. The duration of a 

fixation and a saccade is the length of the corresponding eye gaze sequence. 

After the three different eye gaze behaviors have been identified from the sequence 

of eye gaze positions, we construct the 9 statistical features that will be used to describe 

these three behaviors as shown in Table 4-2. 

According to our observation of the eye gaze behaviors, the eye fixation is very 

indicative of the human attention level. It is notable that a reader tends to have long 

fixations while paying high attention to reading. This implies the reader makes efforts 

to process the information from the reading materials. In contrast, short fixations 

happen when the reader’s attention level is low. The fixation rate is also important. 

Readers at low attention level usually read repeatedly until they fully understand the 

reading materials, which results in a high fixation rate. Besides eye fixations, eye blinks 

and saccades may also contribute to our research problem. Previous studies [25] have 

shown that eye blinks are correlated with human cognition, such as fatigue. Eye 

saccades can reflect the reading speed, which is closely related to the attention level. 

4.2.3 Mouse Dynamics Features 

Mouse dynamics have been shown to provide indicative information for affect 

detection in various research works [110][123]. In this section, we attempt to relate 

mouse dynamics with human reading attention level, by analyzing typical mouse 

dynamics, including mouse click, mouse movement and mouse scrolling. Similar to 

facial expression recognition, we process raw mouse events to establish mouse 

dynamics over time. We then extract features representing mouse dynamics for each 

segment to align with the segment in the video clip. This enables signal fusion among 

the different modalities, namely, mouse signals and webcam signals. 

As depicted in Figure 4-1, we pre-process the mouse activity log to clean extreme 

data values that may be due to noise. We then extract mouse patterns and then compute 

the actual features reflecting the mouse dynamics at the segment granularity. For 

instance, we compute the total distance traveled by the mouse by summing up the 

individual Euclidean distances traveled throughout the segment for each pair of 

sampled mouse coordinates. Similarly, each pair of mouse coordinates indicates a 

mouse moving direction and the change in mouse movement direction is computed as 

the absolute difference in angle between the directions indicated by two consecutive 

pairs of mouse coordinates. Mouse scrolling features are computed based on the log of 
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scrolling events, each of which occurs when the wheel is scrolled one discrete step. 

Consecutive scrolling events occurring within 1 second are considered to belong to the 

same scroll when the scroll step size is computed. The set of features extracted for 

mouse dynamics is depicted in Table 4-3, which can be categorized into three types: 

mouse click (𝑚1), mouse movement (𝑚2,3), and mouse scrolling (𝑚4,5,6,7), generated 

from the three mechanical components of the mouse (button, trackball and scroll wheel). 

We notice that mouse direction is an important feature in demonstrating the 

“roughness” of the user. A conscious user would normally move the mouse in relatively 

straight lines without many changes in directions. Rapid directional changes often 

indicate confusion or restlessness. An increase in number of scrolling steps indicates 

relatively fast article reading, implying generally a higher level of attention. 

4.2.4 Feature Selection and Classification 

After extracting the set of potentially useful features, feature selection needs to be 

conducted to remove non-indicative features and to improve classification performance 

in pattern recognition and machine learning applications. In our work, we have 

extracted an initial set of 80 facial features, 9 eye gaze features and 7 mouse features, 

too many to be effective for practical real-time recognition, especially for facial features. 

We adopt the wrapper method for feature selection which is reported to outperform 

filter method by considering the relationship between different features and selecting 

Table 4-3. Mouse features adopted. 

Feature Meaning Formulation 

𝑚1 Mouse click Number of mouse clicks 

𝑚2 Mouse distance 
Distance traveled by the mouse in pixels over the 

screen 

𝑚3 Mouse direction 
Amount of change in direction encountered by 

the mouse in angle 

𝑚4,5 
Mouse scroll 

count 

Number of scrolls and number of changes in 

scroll direction (up and down) 

𝑚6 
Mouse scroll 

step size 
Number of discrete steps per scroll 

𝑚7 
Mouse scroll 

speed 

Average speed of mouse scrolls (step size over 

time period of scroll) 
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one feature subset that is best for the chosen classifier [106]. We adopt the best first 

searching approach for its efficiency, based on the Linear Support Vector Machine 

(SVM) for classification. This filtering step is very efficient in reducing the set of 

potential facial features from 80 down to 11. In other words, many of the original 80 

features would not contribute much to the recognition task, manifested by the fact that 

recognition performance is not affected upon their removal. The list of potentially 

useful facial features is depicted in Table 4-4. 

In Table 4-4, the ranking indicates the relative importance of the single feature 

contributing to recognition. It is simply computed as the percentage of training sets that 

the feature is selected for classification. Note that features in pair form are often of 

similar values and would often contribute similarly towards recognition, so that one of 

them would suffice and the better one would be selected, e.g., left eyebrow movement 

(𝑓5 ranked 3𝑟𝑑) edges out right eyebrow movement (𝑓6 ranked 5𝑡ℎ). The second-ranked 

feature 𝑓16 on lip thickness also highly correlates with the first ranked feature 𝑓14 on lip 

pucker, so that the use of 𝑓16 suffices. It also subsumes other top-ranked lip features 

such as 𝑓9 and 𝑓11, and eventually 𝑓10. Some features may rank high when used alone, 

but not compatible with other features in a way that putting them together may actually 

lower the accuracy. That is why a simple regression-like algorithm in eliminating weak 

features may not always work, and backtracking is needed in the heuristic feature 

selection approach. There are only 9 features for eye gaze and 7 features for mouse 

dynamics, making initial feature selection unnecessary. 

Table 4-4. Potential facial features for consideration. 

Ranking Feature 

1 𝑓14_𝑚𝑒𝑎𝑛 

3 𝑓5_𝑤𝑖𝑛𝑑𝑜𝑤_𝑚𝑒𝑎𝑛 

6 𝑓10_𝑚𝑒𝑎𝑛 

8 𝑓7_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑑 

13 𝑓𝑎𝑐𝑒_𝑠𝑡𝑑 

17 𝑓7_𝑤𝑖𝑛𝑑𝑜𝑤_𝑚𝑒𝑎𝑛 

20 𝑓1_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑑 

25 𝑓𝑎𝑐𝑒_𝑚𝑒𝑎𝑛 

26 𝑓3_𝑤𝑖𝑛𝑑𝑜𝑤_𝑚𝑒𝑎𝑛 

32 𝑓13_𝑚𝑒𝑎𝑛 

35 𝑓24_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑑 
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After initial feature selection in trimming down the set to a manageable size, we can 

explore different feature subset combinations via an exhaustive search for the most 

impressive feature set to build up our attention level recognition model. We end up with 

7 top facial features, 5 top eye gaze features and 3 top mouse dynamics as the best 

combination, as depicted in Table 4-5. 

4.3 Experiments for Data Collection 

We invite experimental subjects to conduct experiments to validate our multimodal 

approach to attention detection for reading tasks in a real-world setup. The subject is 

reading an article in full screen, using the mouse to navigate through the article. This is 

depicted in Figure 4-4.  

In order to induce different attention levels for experimental subjects when reading, 

different types of vocal stimuli are applied to distract the subjects. Subjects would need 

to self-report their level of attention to serve as ground truth for classification. The 

subjects’ facial expressions and mouse dynamics are both recorded in real time during 

Table 4-5. Final set of features adopted. 

Facial feature Attribute 
Eye 

gaze 
Attribute 

Mouse 

dynamics 
Attribute 

𝑓14_𝑚𝑒𝑎𝑛 lip pucker 𝑒5 
fixation 

duration 
𝑚6 

scroll step 

size 

𝑓5_𝑤𝑖𝑛𝑑𝑜𝑤_𝑚𝑒𝑎𝑛 
eye brow 

movement 
𝑒4 

fixation 

rate 
𝑚3 

mouse 

direction 

𝑓7_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑑 
eye lid 

movement 
𝑒8 

saccade 

duration 
𝑚2 

mouse 

distance 

𝑓𝑎𝑐𝑒_𝑠𝑡𝑑 whole face 𝑒1 blink rate   

𝑓7_𝑤𝑖𝑛𝑑𝑜𝑤_𝑚𝑒𝑎𝑛 
eye lid 

movement 
𝑒2 

blink 

duration 
  

𝑓1_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑑 

inner 

eyebrow 

movement 

    

𝑓24_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑡𝑑 head position     
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the experiment. The subjects are also required to do a pre-experiment survey and post-

experiment survey for information collection and labeling. 

4.3.1 Participants and Experiment Setup 

We have recruited 6 subjects aged between 22 and 30, averaging 25.5. Two are 

undergraduates and four are graduates, whereas four are female and two are male. 

According to the pre-experiment survey, all subjects are skilled in using computer and 

capable of reading in English though their English ability varies. All are non-native 

speakers; the native language of two subjects is Mandarin while that of the other four 

subjects is Cantonese. This dictates the choice of the distracting vocal stimuli used in 

the experiments. Although they share the common written Chinese characters, the two 

dialects differ enough that speaker in one dialect without proper training or sufficient 

immersion would have much difficulty in understanding the other. 

The experiment is carried out in a common office environment in the CHI Lab. As 

shown in Figure 4-4, the standard setup of the experiment consists of a 22-in flat LCD 

screen with a resolution of 1680  1050 pixels for displaying the articles to read, a 

common webcam fixed on the top of the display to record the subjects’ face and upper 

body, and a common wired mouse. All the devices are non-intrusive to the subjects. 

The light in the room is adjusted to be suitable for reading and is maintained stable 

 

Figure 4-4. Experimental Setup. 
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throughout the experiment. The subjects are seated about 60 cm away in front of the 

display. 

Data collection programs run on the computer displaying the article for reading. 

Both the content shown on the screen and the webcam vision are recorded by a free-

trial version of the software Camtasia, capturing the two video streams at a frame rate 

of 15 per second onto the hard disk. We develop a C++ program to capture and log 

mouse events to determine mouse dynamics, including mouse click, mouse scrolling 

and mouse movement, together with their timestamps. Mouse click and scroll events 

are logged when they occur, and mouse coordinate is sampled at a rate of approximately 

15 per second for mouse movement. The program is run concurrently and the 

timestamped information is stored in the hard disk for temporal alignment. 

4.3.2 Experiment Design 

In our experiment, each subject is required to read three different English articles 

chosen from TOFEL (Test of English as a Foreign Language) reading comprehension 

materials. We decide to select articles from TOFEL because the topic, length and 

difficulty of the articles are proper for our non-native speaker subjects in this reading 

experiment. The time spent on reading is not constrained. In this study, a reading 

session refers to the particular experiment in which one subject reads one TOEFL 

article. To make sure that the subjects really read the articles with a reasonable amount 

of efforts instead of just killing time, they are required to write a short summary of at 

least 50 words after finishing reading the article in each session. 

In the first set of sessions, the subjects read in a quiet environment without anything 

to distract them. To induce different levels of attention on the subjects, we choose two 

kinds of vocal stimuli to distract the subjects on purpose during reading in the second 

and third set of sessions. One of the vocal stimuli is heavy metal music which carries a 

“high information-load” and supposedly to be able to impair performance significantly 

in reading comprehension task [6]. The other vocal stimuli are sound recording of 

famous funny talk shows that the reader would very likely be interested in. Considering 

the different native languages of our subjects, we choose Mandarin and Cantonese talk 

shows for the subjects based on their native language. By doing this we make sure that 

all the subjects can understand the contents of the talk shows easily even in the 

background, so as to distract them. 
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At the end of each session, the subjects label their level of attention throughout the 

reading tasks with “low”, “medium” or “high” on a per minute basis. Prior to the 

labeling, the subjects were shown a document of guidelines of doing self-reports of the 

level of reading attention, which provides them with criteria to make a precise decision 

of the self-reports and avoids the potential inconsistency among subjects. To help the 

subjects remember the reading process and their mental state so that to make a reliable 

labeling of the level of attention, they are displayed with video clips of the screen and 

their face recorded during the reading task minute by minute and they label immediately 

after watching each minute. It has been demonstrated recently that watching video clips 

and giving a label for the entire video is a more impressive approach for labeling than 

giving continuous labels while watching video clips [116]. 

4.3.3 The Dataset 

We have to perform pre-processing to the video clips since there are occasional 

instances with subjects showing only a partial face, caused by inappropriate sitting 

position of the subject. As our facial expression model depends on the key landmarks 

throughout the face, a partial face without the mouth would not be useful. We thus 

remove those occasional corrupted video data. The amount of such bad data only 

contributes to less than 10% of the total data. Finally, we are able to collect data of a 

length of 147 minutes for all the six subjects (about 25 minutes per subject). 

We next establish the ground truth and baseline from the dataset for evaluation 

purpose. According to the attention level labeled by our subjects, 35.4% of the data is 

labeled as “high”, 34.7% of the data is labeled as “medium” and 29.9 % of the data is 

labeled as “low”. This is a set of very well-mixed data, since the three classes are 

roughly equally represented without much skewness. 

The baseline of the dataset is 35.4%, since the bottom line for random guessing in 

classification is to output the label of the largest class for a “best” result. This baseline 

of a dataset is widely used to evaluate the classification performance of an algorithm. 

In this chapter, we build up user-independent models for attention detection based on 

this dataset. 



  

77 

 

4.4 Results and Analysis 

In this section, we evaluate our multimodal attention detection approach by building 

user-independent models based on the combined dataset of all subjects. In classification 

research, a user-independent model is usually not as accurate as a user-dependent model, 

but is more applicable in practice. The former can be built easily but the latter has to be 

built for each individual subject and the amount of data needed for training the classifier 

will be much larger. User-independent models can be applied to new users, but user-

dependent models cannot. We build up user-independent models and evaluate our 

approach in this section. 

We compare the classification performance of our multimodal approach with the 

performance produced by using only a single modality. The results illustrate that the 

multimodal models perform better than the single modality ones, achieving higher 

correct classification rate (CCR) and F-measures  

4.4.1 Attention Detection with Facial Features  

Our first evaluation is concentrated on the use of facial features extracted from the 

webcam video to recognize attention level in reading tasks. There are a total of 80 

extracted facial features across three categories, trimmed down to 11 via the wrapper 

approach upon adopting the Linear Support Vector Machine (SVM) with 10-fold cross-

validation to classify the dataset. 

From the set of 11 potential facial features, we attempt different subset combinations 

and select 7 producing the best performance, as shown in Table 4-5. We can see that 

features describing the change of frame-level feature vectors are mostly chosen. This 

indicates that the magnitude of the change of facial expression of specific areas on the 

face varies with the level of attention of the subjects. Within all the selected features, 

the change of eyebrow position and eyebrow movement are particularly important 

when compared with other features. 

Since we are building user-independent models, the gold standard in evaluating the 

effectiveness is the leave-one-subject-out cross-validation test. From the set of n 

subjects, we train the user-independent model with dataset from 𝑛 − 1 subjects and test 

the model on the left-out subject. We repeat the experiment n times by leaving out a 

different subject and the average performance is reported. The confusion matrix 
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normalized by the ground truth and the performance matrix for classification are shown 

in Table 4-6 and Table 4-7.  

From Table 4-6 and Table 4-7, it can be observed that the average CCR for the three 

classes is 68.7%, and this is significantly higher than the baseline of 35.4% with an 

improvement of 33.3% (doubling the accuracy). It can also be seen that most of the 

errors come from misclassifying as the neighboring attention level class, i.e., low  

medium and medium  high. Only very few errors are due to misclassification of 

extreme classes between low  high. Similarly, we are able to achieve a high precision 

as well as a high recall, without having to sacrifice one metrics for the other. The 

resultant F-measure is also as high as 0.7, close to the CCR. 

4.4.2 Attention Detection with Eye Gaze Features 

We believe that the 9 eye gaze features will not contribute equally to the attention level 

classification. To explore the most indicative set of eye gaze features, we compare the 

classification performance with different combination of eye gaze features and find out 

5 useful eye gaze features, as shown in Table 4-5. Those 5 eye gaze features are 𝑒1, the 

rate of eye blinks, 𝑒2 , the average blink duration, 𝑒4, the rate of eye fixations, 𝑒5, the 

average fixation duration, and 𝑒8, the average saccade duration. It is worth noticing that 

features representing all three kinds of eye gaze behaviors analyzed in this work are 

Table 4-6. Normalized confusion matrix for facial feature model. 

Classified as 

Ground truth 

Low Medium High 

Low 0.73 0.21 0.06 

Medium 0.19 0.69 0.12 

High 0.07 0.29 0.64 

Table 4-7. Classification performance for facial feature model. 

Performance 

Attention Level 

Precision Recall F-measure 

Low 0.75 0.73 0.74 

Medium 0.60 0.69 0.64 

High 0.76 0.64 0.69 
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selected in the subset. It indicates that there is a strong correlation between the eye gaze 

behaviors and the level of attention in our reading task. Moreover, the top two ranked 

features are both eye fixation features, which validates our findings that eye fixation is 

critical to the attention level detection in our work. According to Table 4-5, none of the 

eye gaze features representing the standard deviation of the eye gaze behaviors (𝑒3, 𝑒6 

and 𝑒9) is selected. It perhaps implies that the eye gaze behavior patterns are quite stable 

with a certain attention level. We build a user-independent model based on eye gaze 

features alone and perform the leave-one-subject-out cross-validation test. The 

confusion matrix normalized by the ground truth and the performance matrix for 

classification are shown in Table 4-8 and Table 4-9. 

As shown in Table 4-8 and Table 4-9, the average CCR for the three classes is 

58.5%, which is higher than the baseline by 23.1% with only 5 features. Similar to the 

facial feature model, the CCR of the low class is better than that of the medium class, 

while the high class is still the one with biggest misclassifying errors. Although the 

errors still mainly come from misclassifying between low  medium and medium  

high as in the facial feature model, we note that the error to misclassify high as low 

becomes bigger than the facial feature model. It means the eye gaze behaviors analyzed 

in this study do not correspond that well with the level of attention as with facial 

expressions. This may sound intuitive, since the facial expression carries inherently 

Table 4-8. Normalized confusion matrix for eye gaze feature model. 

Classified as 

Ground truth 

Low Medium High 

Low 0.77 0.19 0.04 

Medium 0.39 0.53 0.08 

High 0.27 0.30 0.43 

Table 4-9. Classification performance for eye gaze feature model. 

Performance 

Attention Level 

Precision Recall F-measure 

Low 0.56 0.77 0.65 

Medium 0.54 0.53 0.53 

High 0.76 0.43 0.55 
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richer information than the eye gaze alone. Nevertheless, the eye gaze features still 

contribute a lot to the attention level classification, despite its relatively small amount 

of features and landmarks required. Finally, the average recall and precision for the 

three classes are 0.57 and 0.62 respectively, whereas the average F-measure is 0.57, 

consistent with the CCR and somewhat lower than those performances based on facial 

features.  

4.4.3 Attention Detection with Mouse Dynamics 

There are only 7 mouse dynamics features but not all of them contribute well to the 

classification process. We therefore explore different subsets of feature combinations 

for mouse dynamics and we land on 3 useful mouse features for classification as shown 

in Table 4-5. Those useful features are 𝑚6, the amount of scrolling steps, 𝑚3 and 𝑚2, 

the amount of changes in mouse direction and total distance that the mouse travels. In 

our experiment, we observe that the mouse click events are not indicative at all. This is 

because most subjects only use the mouse scrolling button to navigate up and down the 

article, instead of clicking on the scroll-bar in the application window in this reading 

task. The distance traveled and direction changed for the mouse come up as important 

features contributing to the classification of the attention level. The mouse click events 

would be more useful when writing tasks are studied, so would keyboard dynamics be. 

Table 4-10. Normalized confusion matrix for mouse dynamics model. 

Classified as 

Ground truth 

Low Medium High 

Low 0.44 0.31 0.25 

Medium 0.29 0.43 0.28 

High 0.23 0.29 0.48 

Table 4-11. Classification performance for mouse dynamics model. 

Performance 

Attention Level 

Precision Recall F-measure 

Low 0.48 0.44 0.46 

Medium 0.43 0.43 0.43 

High 0.44 0.48 0.46 
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In any case, the selected features demonstrate that the mouse trajectory is indicative for 

attention level classification. The normalized confusion matrix on classification and its 

accuracy based on mouse dynamic features is depicted in Table 4-10 and Table 4-11. 

According to Table 4-10 and Table 4-11, the average CCR for the three classes is 

around 44.9%, which is not as good as the performance of the facial feature model and 

the eye gaze feature model. When compared with the baseline of 35.4%, there is still 

an improvement of 9.5%, even with as few as 3 mouse features. Although the 

improvement is not as impressive when compared with those of facial features, the 

result is already acceptable with just 3 features. We believe that the lack of useful 

information about the mouse dynamics during the reading task drags the classification 

performance to a certain extent. It can also be observed that there are more classification 

errors across extreme classes, i.e., low  high. This is perhaps due to the fact that 

mouse dynamics do not correspond that well with the attention level as with facial 

features and eye gaze features. Nevertheless, the recall and precision metrics and the F-

measures for the three classes remain stable at about 0.45, similar to the CCR. 

4.4.4 Attention Detection with Multimodalities 

We have already observed good recognition with the unimodal models based on facial 

features and acceptable recognition based on eye gaze behaviors and mouse dynamics 

in our study. We now adopt the multimodal model by combining the features of all the 

modalities. There are a total of 15 features in this multimodal recognition study as  

shown in Table 4-5. We build user-independent models based on SVM and apply 10-

fold cross-validation in the evaluation. As before, we employ the challenging leave-

one-subject-out cross-validation experiment over the n subjects. The confusion matrix 

normalized by the ground truth and the performance matrix for classification are shown 

in Table 4-12 and Table 4-13. 

From the two tables, the average CCR for the three classes is found to be 75.5%, an 

improvement of 40.1% over the baseline, with the accuracy of one class going up to 

81%. Although the classification performance based on mouse dynamics is much lower 

than that one based on facial features or eye gaze features, the overall performance has 

been improved compared with individual performance, when the three modalities are 

combined. The classification errors across neighboring classes and especially the 

extreme classes of low  high have all been reduced when compared with the use of 
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features of single modality. It is also worth noticing that the performance of the medium 

class improves dramatically compared with the eye gaze feature model and the mouse 

dynamics model. When we look at the recall and precision metrics, they show a similar 

pattern as that of CCR with a comparable F-measure. In summary, we believe that our 

selected features of different modalities contribute to the attention level detection in 

reading in a synergic way. 

4.4.5 Contributions by Individual Modalities 

We can attain different performance based on features generated from each individual 

input modality. From Section 4.4.1 to 4.4.3, it is easily seen that facial features produce 

the best performance, followed by eye gaze features and finally mouse features. 

However, in terms of computational cost, the reverse is true. This is the rationale behind 

the choice of a proper multimodality feature set to yield a good enough recognition rate. 

In this section, we proceed to analyze more deeply the individual contribution by each 

modality and see which combinations would produce a better integrative performance. 

We conduct three more experiments based on (a) combined facial and eye gaze 

features, (b) combined facial and mouse features, and (c) combined eye gaze and mouse 

features. From there, we would be able to identify the contribution by individual 

modality more precisely. The corresponding confusion matrices for the three 

combinations are summarized in Table 4-14. It can be seen that they exhibit 

Table 4-12. Normalized confusion matrix for multimodal model. 

Classified as 

Ground truth 

Low Medium High 

Low 0.81 0.13 0.06 

Medium 0.12 0.76 0.12 

High 0.11 0.20 0.68 

Table 4-13. Classification performance for multimodal model. 

Performance 

Attention Level 

Precision Recall F-measure 

Low 0.79 0.81 0.80 

Medium 0.71 0.76 0.74 

High 0.77 0.68 0.72 
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intermediate performance with respect to those for single component modalities and 

the one for the full set of modalities, as compared with those in the previous tables. The 

precision/recall metrics show a similar pattern as in the previous experiments and are 

thus omitted. 

For comparison, we report the CCR for these combinations, alongside those of the 

individual feature sets. We also compute the improvement in CCR performance for 

each combination. This improvement indirectly measures the “synergic” effect between 

the two feature sets. It is conceivable that a higher synergic effect is more preferred. 

The results are depicted in Table 4-15. 

We can observe from Table 4-15 that facial features integrate well with mouse 

features to produce a best improvement of 16% in terms of CCR performance, whereas 

the other two combinations only produce about 10% improvement. This observation 

yields a slightly different conclusion based on absolute performance alone, which 

suggests that the model based on facial features combined with eye gaze features 

performs the best at 73.5% against 72.8% for facial features combined with mouse 

features. Nevertheless, this higher performance is attained at the expense of adopting 

the higher cost eye gaze feature set than the lower cost mouse feature set. 

Table 4-14. Normalized confusion matrix for multimodal models. 

Facial + eye gaze Low Medium High 

Low 0.79 0.15 0.06 

Medium 0.25 0.73 0.02 

High 0.11 0.20 0.68 

Facial + mouse Low Medium High 

Low 0.83 0.12 0.06 

Medium 0.22 0.69 0.10 

High 0.16 0.18 0.66 

Eye gaze + mouse Low Medium High 

Low 0.83 0.15 0.02 

Medium 0.37 0.49 0.14 

High 0.18 0.27 0.55 
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Let us make a simplifying assumption that all feature sets are somewhat synergic to 

one another, in order for us to take a glance on the contributions by the individual 

modalities. In other words, we assume that the models would not have a negative impact 

on one another when combined. The synergic effect is much higher than the 

interference effect. We can then attempt to break down for the individual contributions 

based on a simple additive model as shown in Figure 4-5. This provides us with a glance 

on the individual contribution to the overall performance. The more performance that 

can be “explained” by the overlapping part of two models, the more “similar” are the 

two sets of features and the higher possibility that the two models are making similar 

classification. As a result, there would be less additional improvement incurred in the 

multimodal model. Finally, it can be seen that any of the three models alone would 

produce an accuracy of close to 40%, which accounts for more than half of the 

attainable performance for the three models. Actually, this already represents the 

majority of the performance for the mouse feature model. This is a pretty high degree 

of “similarity” among the three individual models. Also, the “similarity” between facial 

feature model and eye gaze feature model is relatively high and this is understandable, 

as both come from the same video captured by the webcam. 

Table 4-15. CCR improvement for individual modalities. 

A+B CCRA+B CCRA CCRB ΔA ΔB Δ 

facial+eye gaze 73.5% 68.7% 58.5% 4.8% 15.0% 9.9% 

facial+mouse 72.8% 68.7% 44.9% 4.1% 27.9% 16.0% 

eye gaze+mouse 62.6% 58.5% 44.9% 4.1% 17.7% 10.9% 

 

 

Figure 4-5. Improvement breakdown against models. 



  

85 

 

4.4.6 Performance for Existing Users 

So far in all our evaluations, we assume the setting of leave-one-subject-out for 

recognition performance to cater for unseen new users. It is also common in reality that 

the model is used by an existing user. One would expect that the accuracy will be 

higher. In our next experiment, we keep all subjects in the 10-fold cross-validation and 

compare the performance with the leave-one-subject-out setting as presented in Table 

4-16. We observe a bit of improvement in terms of CCR. On the other hand, this small 

improvement also demonstrates that our approach is very robust, in delivering good 

performance even for unseen new users based on training data from just a small number 

of subjects (𝑛 − 1 = 5). Table 4-17 and Table 4-18 provide more information of the 

recognition performance of the multimodal model with 10-fold cross-validation. 

Compared with Table 4-12 and Table 4-13, we observe that there are improvements of 

the CCR for each class, and the misclassifying errors between neighboring classes and 

extreme classes are further decreased. Thus, our research represents a good initial 

Table 4-16. CCR improvement for existing users. 

Model Facial Eye gaze Mouse Multimodal 

Leave-one-subject-out 68.7% 58.5% 44.9% 75.5% 

All-subjects-included 70.1% 61.2% 45.6% 78.9% 

Table 4-17. Normalized confusion matrix for existing users.  

Classified as 

Ground truth 

Low Medium High 

Low 0.83 0.13 0.04 

Medium 0.10 0.82 0.08 

High 0.09 0.20 0.70 

Table 4-18. Classification performance for existing users. 

Performance 

Attention Level 

Precision Recall F-measure 

Low 0.83 0.83 0.83 

Medium 0.72 0.82 0.77 

High 0.84 0.70 0.77 

 



  

86 

 

attempt to attention detection based on ubiquitous devices and a small number of 

features extracted from webcam videos and mouse activities. 

4.5 Summary 

In this chapter, we propose to recognize human attention level via the use of ubiquitous 

equipment loaded with most computers, namely, the mouse and the webcam. We 

extract facial features and eye gaze features from the videos captured by the webcam, 

as well as mouse dynamics due to mouse usage. We adopt machine learning techniques 

to model the captured data and build user-independent models capable of recognizing 

the attention level for unseen new users. We conduct our experiments via the reading 

tasks, with which the subjects are induced to different levels of attention, through the 

use of different vocal stimuli to distract them. Our results based solely on the webcam 

(i.e., facial features and eye gaze features) indicate good performance, and those solely 

on the simplistic mouse still achieve improvement over the baseline. We also 

demonstrate that combining the three sets of features together is giving us the best 

performance, whereas only 15 important features need to be utilized. Based on the 

evaluation results, we proceed to analyze more deeply the individual contribution by 

each modality and see which combinations would produce a better integrative 

performance. 
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In addition to the studies on the detection of comprehension and attention in reading as 

described in the previous chapters, there are some related projects arising over the 

course of my Ph.D. study. This chapter first depicts a cross-modal interaction system, 

which inspires us to understand how people perceive visual cues and interact with 

computing systems.  

Motivated by our studies on multimodal affect detection in reading, we then present 

a cross-modal technique for stress detection from the coordination patterns between 

gaze and click. Compared to the simple aggregation of features or classification results 

from multiple modalities, we see that the detailed temporal and spatial alignments 

between gaze and click can be indicative of human mental state, and investigating such 

cross-modal patterns can enhance our understanding of human behaviors during 

interactions.  

Finally, as mobile devices become ubiquitous, this chapter presents our study on 

gaze estimation on smartphones. Without relying on any specialized equipment, we 

propose a simple and effective technique, which leverages the reflection of the screen 

on the cornea for gaze estimation. It gives a promising performance and we see the 

great potential for in-situ analysis of gaze and reading behaviors on mobile devices. 

5.1 CalliPaint 

CalliPaint, a system for cross-modal art generation that links together Chinese ink brush 

calligraphy writing and Chinese landscape painting. We investigate the mapping 

between the two modalities based on concepts of metaphoric congruence, and 

implement our findings into a prototype system. A multi-step evaluation experiment 

with real users suggests that CalliPaint provides a realistic and intuitive experience that 

allows even novice users to create attractive landscape paintings from writing. 

Comparison with a general-purpose digital painting software suggests that CalliPaint 

provides users with a more enjoyable experience. Finally, exhibiting CalliPaint in an 

open-access location for use by casual users without any training shows that the system 

is easy to learn. 
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5.1.1 Methodology 

Figure 5-1 illustrates the framework of the system. Essentially, the system performs a 

multidimensional mapping from Chinese calligraphy to Chinese ink paintings. When 

the user writes a character on the writing interface, a vision-based writing mechanics 

recognition model captures the stroke sequence and mechanics (pressure and speed) of 

the writing through a Microsoft Kinect depth camera. The character recognition model 

then matches the stroke sequence to a written character inside the vocabulary 

dictionary. If the written character is in the dictionary, the multidimensional mapping 

model then executes the mapping between character and image on physical, semantic 

and spatial levels. Finally, an image of the written object in the image dictionary that 

accords with the mapping rules will be selected to be the generated image and displayed 

in the painting. For coherence, if the character is traditionally associated with any 

allegorical aspects, global changes of existing objects will also be introduced into the 

painting based on the semantic mapping rules. 

The following subsections present the details of the mapping process. We first 

introduce the vocabulary dictionary, which determines the objects supported by the 

system..Next, we cover the tri-level mapping from written character to object image. 

We finally describe the image dictionary, which determines the appearance and 

variation of the objects in the scene. 

5.1.1.1 A vocabulary from characters to images 

The main idea behind CalliPaint is the “translation”, so to speak, of a written character 

on a virtual parchment or writing surface into a pictorial image of the object that it 

represents in a scene. Since the focus of our system is not to perform a deep semantic 

 

Figure 5-1. Framework of the CalliPaint System. 
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understanding of a written sentence or phrase, we use a simple 1-1 mapping of character 

to object, as defined by a pre-set dictionary. 

To populate our dictionary, we collected a set of 128 well-known Chinese landscape 

paintings to serve as a representative sample of their genre2. We then enumerated and 

analyzed the objects depicted in these paintings.  We found that though the paintings 

exhibit much complexity, the number of object types that they contained was relatively 

constrained: indeed, a small set of 17 object “types” is sufficiently rich (with variations) 

to fully characterize all objects in 90% of those paintings. For the remaining 10%, this 

set covers over 80% of all objects (Figure 5-2). Some of these objects also carry 

significant meanings or popularly understood symbolisms. 

Given these findings, we incorporated these 17 objects into a pre-set dictionary for 

our system. These 17 objects are: mountain, river, tree, human, house, bird, land, boat, 

sun, moon, cloud, plum, bridge, bamboo, chrysanthemum, pine and willow.  

5.1.1.2 A tri-level mapping from written character to object image 

A character written on the CalliPaint writing surface is mapped into an object, and then 

the object’s pictorial representation. This mapping of the character to an object is done 

on three levels: mechanical, semantic and spatial. The principles behind the mapping 

on each level are governed by rules of metaphoric congruence, conventions and 

physical properties.  

                                                 
2 These paintings are from the Song (960-1279) (21%), Yuan (1271-1368) (17%), Ming (1368-1644) 

(27%) and Qing (1644-1912) (35%) Dynasties, regarded as periods of high productivity in the 

development of Chinese landscape painting [1, 8] 

 

Figure 5-2. Coverage of objects in each painting by the set of 17 object 

types in the CalliPaint dictionary. 
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The physical level mapping of CalliPaint links the mechanics of the written character 

with the appearance of the pictorial image. To arrive at an intuitive mapping between 

writing a character and drawing an image, we draw upon concepts in metaphorical 

congruence, which has been demonstrated by research in neuroscience to produce 

pleasing results in the processing of multi-modal sensory input in the brain [64][80], 

and deployed in MelodicBrush, which links Chinese calligraphy with music generation 

[51]. Among the physical mechanics that are used to write a calligraphic character using 

a soft brush, two of the most easily controlled and understood are the “firmness” of the 

stroke, which is roughly indicated by the pressure exerted upon the brush, and the speed 

with which the stroke is made. On the pictorial aspect, the most obvious characteristics 

of a given image are its level of detail, as defined by the granularity and the number of 

the strokes that make up the image, and its sharpness. 

Given these writing mechanics, we hypothesize that there exists some correlation 

between the pressure and speed of the writing and the level of detail and sharpness of 

the painted objects. To test this hypothesis, we invited 12 subjects aged 21–30 to 

participate in experiments to map the writing mechanics to the appearance of the image. 

The results of the experiment show that a high pressure of writing is perceived as 

positively correlated to the level of detail in the image. In contrast, there is no clear 

correlation between the pressure of writing and the level of sharpness of the image, as 

the experiment subjects were as likely to correlate writing with a heavy hand with a 

blurred image as with a sharp one. It can also be seen that there is a clear correlation 

between the speed of writing and the sharpness of the image. In other words, most 

people associate writing quickly with a blurred image. In contrast, the correlation 

between speed of writing and image sharpness is quite ambiguous. 

Our experiment therefore corroborates our hypothesis of the types of linkage 

between the writing mechanics of a written character and the appearance of the 

perceived associated image. Given these results, CalliPaint maps the pressure of writing 

to the level of detail of the image, and the speed of writing to the sharpness. 

At the semantic level, the physical object is identified and inserted into the scene. 

The contextual level deploys the motifs and allegorical aspects of the objects in the 

painting, and allows certain objects to induce a change in the global picture. An obvious 

case is “sun” and “moon”, which do not normally appear in the sky at the same time. 

Therefore, the writing of one will remove the other from the scene. Other examples are 

taken from common allegories in Chinese culture – such as certain plants (e.g., plum, 
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orchid, chrysanthemum and pine), which symbolize different seasons, and hence are 

not allowed to appear together. 

The third level of our cross-modal mapping links the size and position of the written 

character with the spatial position and the image size of the object in the scene. 

In our investigations of the representative set of 128 paintings, we observe that the 

composition of these paintings usually consists of three parts: the background, 

midground and foreground. The upper part of the scene usually contains objects that 

are distant and lofty, such as the sky, clouds and mountains. The midground usually 

contains mountains and lakes. The foreground is usually in the lower third of the canvas 

and depicts objects that are close to the viewer, such as trees and animate objects. 

CalliPaint uses these principles of composition to map the size and the vertical 

coordinate of the written character to the spatial location of the image in the scene. 

Objects in the foreground occlude those in the background, as governed by the physical 

laws of optics, based on their vertical coordinate values. To allow for more diversity in 

the appearance of the objects, the physical size of the written character for inanimate 

objects (e.g. mountains and trees) is also mapped to the size of the image object. 

The spatial mapping between written characters and the image representations of 

the objects allows users to construct their artwork without needing to be too concerned 

about the order in which the objects are placed into the picture, or with how newly 

placed objects should interact with the rest of the scene. 

5.1.1.3 A dictionary of image variations 

The image dictionary of the objects supported in CalliPaint is based upon the results of 

the object identification step and the metaphorical congruence mapping of the writing 

mechanics. At this stage, our primary focus is on facilitating and maximizing control 

and usability for the user. To that end, we built a core image library by selecting one 

reference image from a real painting in the public domain to represent each object in 

our dictionary. Each reference image is then further preprocessed with image editing 

software to achieve the desired effect corresponding to three levels of granularity both 

for writing pressure (light, normal and hard), and writing speed (slow, normal and fast).  

5.1.2 System Interface and Implementation 

The objective of CalliPaint’s writing component is to enable the creation of a 

computer representation of the written calligraphy, and to capture the writing 
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mechanics for painting generation. To achieve this objective, CalliPaint borrows from 

previous approaches [45] that use the Microsoft Kinect depth camera to capture the 

writing mechanics of a user writing with a normal calligraphic brush, and to repurpose 

an ordinary LCD display panel as a writing surface.  

Figure 5-3 shows the setup of our system. The Kinect depth camera captures the 

position and movement of a user and the position of the brush used. If the stroke 

sequence is recognized as a character, the strokes fade out and are replaced by the 

corresponding image. Non-recognized stroke sequences also fade out; here, the lack of 

a replacement image serves as user feedback. In addition to the recognition of 

characters as they are written, our system also provides three editing functions: delete, 

move and resize, which offers users more control over their painting. 

5.1.3 Evaluation 

The usability and functionality of CalliPaint was evaluated through two experiments. 

The first assesses CalliPaint as a tool for self-expression and education. The second 

assesses CalliPaint as a tool for entertainment in an unconstrained, unguided scenario. 

The first experiment is carried out in a supervised/guided environment and consists 

of 4 stages with 10 subjects. The first stage evaluates the writing interface of the system. 

The second stage assesses the learnability, controllability and ease of use. A third stage 

investigates the ability of the system to create aesthetically-pleasing pictures. 

Conclusions drawn from these three stages are mainly from statistical analysis. For the 

sake of brevity, the details are not shown here. The fourth and final stage evaluate the 

degree to which the system supports and facilitates creativity. After that, the subjects 

were asked to complete an assessment form rating various aspects of the system on a 

scale from 1 to 5 (as in Table 5-1), and to participate in a post-experiment interview. 

 

Figure 5-3. The System Interface for Callipaint. The writing mechanics are 

captured by the Kinect. The brush strokes are generated in real-time and 

converted to images. 
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Finally, two external experts in Chinese painting and design, respectively, evaluated 

the artwork created by the subjects.  

The subjects’ overall impression of CalliPaint was unanimously positive. All found 

the experience enjoyable. In the post-experiment feedback assessment, the subjects 

rated the overall experience an average of 3.9. The interface and the tool were found 

intuitive and the functions interesting and easy to use. Specifically, the effectiveness of 

the control functions was noted by the experiment subjects – most (70%) of them felt 

that the control functions was the most useful feature of CalliPaint, since it allowed 

them to achieve a fine-grained control over the graphical effects intuitively through 

controlling their writing style and mechanics. Many experiment subjects wanted to 

continue using the system after the experiment was over, and some bystanders asked if 

they could try to create their own artwork. 

In contrast to the multistage experiment, which demonstrates that CalliPaint can be 

successfully used by novices with a minimum of training and guidance, the objective 

of the second experiment is to ascertain the potential of CalliPaint to be used by people 

without any training or guidance at all. For this experiment, we exhibited the system in 

a high-traffic student activity room in a local university for one week, during which it 

was available to numerous undergraduates and graduate students. No training or help 

was given except for a short introductory video playing in a loop on an accompanying 

display, a printout of the characters contained in the dictionary with the correct stroke 

order for each character, and a note stating the purpose of this display, informing users 

that their activities would be recorded for research, and inviting the reader to try it out. 

This experiment shows that CalliPaint can be learned even without explicit training, 

by casual passers-by, and through experimentation and trial and error. Similarly to the 

Table 5-1. Evaluation Feedback Results from Subjects in the Guided / Supervised Experiment. 

Dimension of Evaluation Lowest rating (1) stands for: Highest rating (5) stands for: Average 

Overall Experience Not enjoyable Extremely enjoyable 3.9 

Realism of interface Artificial, contrived Feels like the real thing 4.1 

Realism of writing tool Artificial, contrived Feels like the real thing 4.3 

Effectiveness in encouraging correct and 

standard practices of writing 
Not helpful Helpful 3.7 

Ease of use (pressure control) Difficult Easy 3.9 

Ease of use (speed control) Difficult Easy 3.7 

Attractiveness of copy of real artwork Ugly Attractive 4.0 

Attractiveness of self-generated artwork Ugly Attractive 3.7 

Effectiveness in facilitating creativity Not helpful Helpful 4.4 
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guided experiments, we noted that in most of the cases where the user had difficulty 

with the system, the problems were usually caused by incorrect writing practices (e.g. 

wrong stroke sequence). In quite a few instances, students collaborated in figuring out 

the controls or “debugging” each other’s mistakes. 

5.1.4 Summary 

This work presented CalliPaint, a Kinect-based novel digital system that generates 

Chinese ink painting from Chinese calligraphy. Images corresponding to the written 

characters are generated through a cross-modal mapping between the two art forms on 

both semantic level and mechanical level. Experimental evaluation with real users 

proved the intuitiveness, controllability, usability and potential to support creativity of 

our system. More details can be found in: 

Jiajia Li , Grace Ngai, Stephen C.F. Chan, Kien A. Hua, Hong Va Leong, Alvin Chan. 

“From Writing to Painting: A Kinect-Based Cross-Modal Chinese Painting Generation 

System”. Proceedings of the 22nd ACM International Conference on Multimedia. 57-

66 (MM’14). 

5.2 StressClick 

Stress sensing is valuable in many applications, including online learning 

crowdsourcing and other daily human-computer interactions. Traditional affective 

computing techniques investigate affect inference based on different individual 

modalities, such as facial expression, vocal tones, and physiological signals or the 

aggregation of signals of these independent modalities, without explicitly exploiting 

their inter-connections.  In contrast, we focus on exploring the impact of mental stress 

on the coordination between two human nervous systems, the somatic and autonomic 

nervous systems. Specifically, we present the analysis of the subtle but indicative 

pattern of human gaze behaviors surrounding a mouse-click event, i.e. the gaze-click 

pattern. Our evaluation shows that mental stress affects the gaze-click pattern, and this 

influence has largely been ignored in previous work. We, therefore, further propose a 

non-intrusive approach to inferring human stress level based on the gaze-click pattern, 

using only data collected from the common computer webcam and mouse. We 

conducted a human study on solving math questions under different stress levels to 

explore the validity of stress recognition based on this coordination pattern. 
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Experimental results show the effectiveness of our technique and the generalizability 

of the proposed features for user-independent modeling. Our results suggest that it may 

be possible to detect stress non-intrusively in the wild, without the need for specialized 

equipment. 

5.2.1 Construct a Gaze-Click Dataset 

In this study, we build a dataset that reliably captures human interactive behavior in 

stress and non-stress conditions under conditions that are comparable. According to 

previous research, recursive mental math calculation [2][63][105][111] and time 

pressure [54][112] are effective in inducing cognitive stress. We therefore select a math 

calculation task for evaluation. 

We recruited 20 subjects (13 males, aged 20-33) for our study. In the experiment, 

the subjects are asked to calculate the results of math expressions and choose the correct 

answers by clicking. Our experiment looks at two distinct states: calm and stress. The 

calm session involves twenty 1-digit addition and subtraction questions. This is 

adjusted to 2-digit math for the stress session. To ensure the difficulty of the task, the 

numeric difference between the results of the two expressions is constrained to be no 

more than 10. To further induce stress, a countdown time bar is added to the bottom of 

the interface during the stress sessions. If the subject fails to answer within the allotted 

time, the interface advances automatically to the next question. Our experiment 

contains several sessions and there are 25 questions per session. Each subject is asked 

to report his/her level of stress on a 9-point scale at the end of each session. The 

score>=5 were annotated as “stress” and the rest as “calm”. 

During the experiment, a standard off-the-shelf webcam placed on the top center of 

the monitor is used to capture the visual signal (resolution 640×480; 30fps) and a 22” 

monitor at 1680×1050 resolution displays the math interface in full screen mode. 

Removing the questions that the subjects fail to answer (<5%) in time gives us a total 

of 3818 click points over all subjects. 

5.2.2 Gaze-Click Pattern Extraction and Evaluation 

Our method uses a standard webcam to capture video of the user’s head and shoulders. 

To ensure that we can accurately deduce the gaze behavior of the subject from this 

video, we employ the Supervised Descent Method (SDM) [121] to track the facial 

landmarks and the eye CLMs [92] to track the eye landmarks from the frames of the 

video stream, respectively. These landmarks are then piped as input to a two-layer 
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feature extraction mechanism. The first layer continuously extracts six eye features 

from the changes of the eye-related landmarks. The second layer is triggered by each 

mouse-click event, whereupon it extracts eight gaze-click features (Table 5-2) based on 

the eye feature signals in the 3-second time window surrounding the click.  

Our evaluations on the features indicate that the gaze behaviors surrounding a 

mouse-click event show a certain degree of connection with the changes of mental 

stress. Although the connection appears slightly ambiguous between an individual 

gaze-click feature and the human stress level, it can be indicative for discriminating 

stress and calm given a proper model exploring the relation with multiple features. 

In order to fully investigate the generalizability of the proposed features, we model 

stress from the eight gaze-click features by adopting the random forest algorithm [15]. 

For the within-subjects evaluation, we build a user-dependent model for each individual 

subject and use 10-fold cross-validation for evaluation. The final performance is the 

average performance across all folds. The between-subjects study employs leave-one-

subject-out cross-validation, testing on each subject in turn. For reference, we provide 

Table 5-2. Description and mental state implication of gaze-click patterns extracted from the eye 

features and used in this work. All features are calculated relative to a given mouse click. 

Index Feature description Mental state implication 

𝑔1 Existence of a fixation in the 0.5s period preceding a click  

𝑔2 Duration of the fixation corresponding to a click 

𝑔3 
Reaction Latency –  

duration of time in which eye remains fixated after the corresponding mouse click 
Reaction latency of moving to the next task 

𝑔4 
Click Latency –  

duration of time between gaze moving away from target and corresponding mouse click 

“Hastiness” of the user in locating the next 

target. 

𝑔5 Max gaze velocity between the fixation corresponding to the mouse click and the fixation before it. 

𝑔6 Duration between the fixation corresponding to the mouse click and the fixation before it. 

𝑔7 Max gaze velocity between the fixation corresponding to the mouse click and the fixation after it. 

𝑔8 Duration between the fixation corresponding to the mouse click and the fixation before it. 

 

Table 5-3. Performance comparison of click-level detection between user- 

dependent and independent models. 

 

User-Dependent Model User-Independent Model 

CCR 65.72 (51.05) 60.27 (51.1) 

F1 0.66 (0.36) 0.60 (0.35) 

AUC 0.70 (0.5) 0.63 (0.5) 

Numbers in parentheses denote the baseline performances. The performance is the 

weighted average results across different subjects, whose values may have slight 

difference from the average, due to the differences of data amount of subjects. 
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the baseline performance given by a naïve classifier that predicts the majority class in 

the training set. Table 5-3 summarizes the performance comparisons of both user- 

dependent and independent models to the baselines. Weighted average of correct 

classification rate (CCR), F1-measure, and area under the receiver operating 

characteristic curve (AUC) across subjects are used as performance metrics. The 

comparison shows that our models significantly outperform the naïve classifiers.  

In addition, we introduce a 2nd-layer classifier to recognize session-level stress by 

constructing 3 features based on the click-level predictions mentioned above. (1) 

number of StressClicks, (2) number of clicks being considered, and (3) the ratio of 

StressClicks to the total number of clicks. Given the simplicity of the 2nd-layer features, 

a logistic classifier [21] is used for stress detection from multiple clicks. Table 5-4 

summarizes the performances of the user- dependent and independent models for the 

session-level prediction. It is very encouraging that the session-level user-independent 

model (F1=0.79) outperforms the user-dependent model (F1=0.74), given enough click 

data. Furthermore, as expected, session-level user- dependent and independent models 

outperform their click-level counterparts, with 8.31% and 20.23% CCR improvements, 

respectively. 

5.2.3 Summary 

This study presents a technique that aims to non-intrusively detect user stress through 

the gaze-click pattern. Using a series of multi-user experiments, we empirically 

demonstrate the impact of stress on the gaze-click pattern, which has been largely 

ignored in previous work. We also propose the cross-modal gaze-click features for 

stress recognition and investigate their effectiveness in both user- dependent and 

independent studies. Our results show that not only is it feasible to detect user stress 

Table 5-4. Performance comparison of session-level detection between user- 

dependent and independent models. 

 User-Dependent Model User-Independent Model 

CCR 74.0 (49.35) 80.5 (50.0) 

F1 0.74 (0.33) 0.79 (0.33) 

AUC 0.73 (0.5) 0.89 (0.5) 

Numbers in parentheses denote the baseline performances. 
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through non-intrusively collected data, but also that our proposed features are 

generalizable across different users. For more information, see: 

Michael Xuelin Huang, Jiajia Li, Grace Ngai, Hong Va Leong. “StressClick: Sensing 

Stress from Gaze-Click Patterns”. Proceedings of the 24th ACM International 

Conference on Multimedia. 1395-1404 (MM’16). 

5.3 ScreenGlint 

Gaze estimation has widespread applications in HCI and numerous other domains. 

However, little work has explored the gaze estimation on the smartphone platform. This 

study presents ScreenGlint that exploits the glint (reflection) of the screen for gaze 

estimation using the unmodified camera.   

To understand the gaze learning based on the screen glint and the related human 

behaviors, we first conducted a user study on common postures of the smartphone use 

with 6 subjects. From this study, the normal range of the face-to-screen distance is 

found to be around 20~40 cm. We also investigate the impact of illumination and 

distance on the size of the glint. We find that the glint generally appears smaller in a 

brighter environment and grows bigger as the increase of the pupillary distance, i.e. the 

decrease of the face-to-screen distance. 

Based on this finding, we design an experiment to evaluate ScreenGlint in different 

face-to-screen distances. A dataset of 18 subjects was collected for our performance 

study. An in-depth evaluation is given and the impact of head pose variations is 

discussed. ScreenGlint achieves an overall angular error of 2.44º without head pose 

variations, and 2.94º with head pose variations. Our technique compares favorably to 

the state-of-the-art, indicating that the glint of the screen is an effective and practical 

cue to gaze estimation on the smartphone platform. Therefore, it opens a new venue for 

the gaze-aware applications, especially in the reading contexts. The system is described 

in the following publication: 

Michael Xuelin Huang, Jiajia Li, Grace Ngai, Hong Va Leong. “ScreenGlint: A 

Practical Cue to Gaze Estimation on Smartphones”. To appear in Proceedings of the 

34th CHI Conference on Human Factors in Computing Systems (CHI’17).  
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Chapter 6  

Conclusions and Future Work 
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This chapter draws conclusions on the thesis, and points out some possible research 

directions related to the work in this thesis. 

6.1 Conclusions 

Reading is one of the most commonly occurring tasks in HCI. This thesis focuses on 

the detection of comprehension level and attention level in reading. We address three 

challenges. First, we conduct detection in a non-intrusive manner. This is difficult 

because many human signals can only be precisely measured using specialized 

equipment. For example, observing detailed eye movements needs electrooculography 

(EOG) systems, and sensing complex brainwave signals requires 

electroencephalography (EEG) devices. Second, we perform a thorough study on eye 

gaze patterns in a ubiquitous and efficient fashion, without relying on the analysis of 

the lexical and linguistic variables. Third, we propose reliable methods with good 

generalizability. Some related research explores user-dependent models for affect 

detection. Those techniques may not be able to accommodate unseen users, and training 

a user-specific model may oftentimes be impractical in real-use situations.  

This thesis investigates the reading comprehension detection based on the analysis 

of eye gaze behaviors.  We use a commercial eye tracker to capture the sequential gaze 

locations, from which we extract feature representation of gaze behaviors and 

understand its indicativeness for comprehension detection in reading. Our approach is 

effective to identify when the readers are experiencing difficulties in understanding 

their reading material. Overall, our approach is able to achieve a performance 

improvement of over 30% above baseline, translating to more than 50% reduction in 

detection error. It is also found to be robust for new unseen users.  

Our contributions of this work can be summarized as:  

 We investigate the detection of comprehension level based on a commonly 

occurring task, i.e. reading;  

 We identify good features that are effective in describing specific eye movement 

behaviors when readers are exhibiting different levels of comprehension during 

the reading task;  

 We apply machine learning techniques to build user-independent models to 

recognize the level of comprehension in reading tasks;  
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 We conduct experiments with human subjects to evaluate the accuracy of our 

approach in various context.  

As a follow-up study of the gaze behaviors in reading comprehension using 

specialized eye tracker, we investigate a multimodal approach to the detection of human 

attention level in reading using only off-the-shelf devices. Specifically, we use webcam 

to capture facial expressions and eye movements, and mouse for mouse dynamics. 

Signals from these modalities are fused together for human attention level detection. 

Our results indicate performance improvement with multimodal inputs from webcam 

and mouse over that of a single modality. 

Our contributions of this work can be summarized as:  

 We investigate human attention level detection based on a most commonly 

occurring task, i.e., reading, without the use of sophisticated or intrusive devices;  

 We adopt multimodal input processing to extract human facial features, eye 

gaze features and mouse dynamics;  

 We apply machine learning techniques to build up user-independent models to 

recognize human attention level in reading tasks;  

 We conduct experiments with human subjects to evaluate the accuracy of our 

approach. We believe that our work opens up a useful approach for interesting 

future user-computer interaction applications, for instance, in e-Learning. 

6.2 Limitations 

This thesis investigates multimodal comprehension and attention detection during 

reading. The experimental results are promising, however, there are still some 

limitations of the related studies. 

First, the studies need to be extended to bigger datasets with more subjects. Our 

current datasets are quite small (41 instances of 10 subjects for comprehension 

detection and 147 instances of 6 subjects for attention detection) and all the subjects are 

students. Considering the machine learning algorithms adopted in the studies, training 

sets are critical to build robust and effective models. On the other hand, the diversity of 

subjects is also important, otherwise we risk building methods that work only on 

specific groups of people. Previous research [56] has demonstrated that visual scene 

processing changes with age. People in different age groups have their own focus of 
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visual attention and visual behaviors. It will be interesting and meaningful to investigate 

how the reading comprehension and attention are related with other human factors. Our 

methods can be improved to be more ubiquitous for real use applications by addressing 

these issues. 

Second, the methods proposed in this thesis can be continuously studied and 

improved. Our current research focuses on comprehension and attention detection 

during reading English articles which are all text-based, which is one of the most 

commonly used reading materials. The human behaviors investigated in this thesis are 

also based on the article reading tasks. However, there are various kinds of reading 

materials, such as websites, comics and paintings, used in real life, and human 

behaviors while processing different reading materials may change accordingly. To 

apply our methods to other reading scenarios may require further study on the reading 

behaviors and extracting other helpful features not mentioned in this thesis, such as 

salient region coordinates and eye gaze transitions. 

Another issue that is worth noticing is deeper understanding of the reason behind 

the human behaviors. In our studies, we adopted the useful features selected by feature 

selection algorithms. However, investigating the unselected features may give us more 

inspiration to understand the research problems. We find we ignored some factors 

which cause the failure of some features that are supposed to be useful. For example, 

to some extent, the feature of rate of eye blink doesn’t help in the reading 

comprehension detection because of the eye fatigue. The mixture of the human mental 

states or affects and the physical conditions of subjects should be considered in current 

and future studies. 

6.3 Future Work 

6.3.1 Transfer/Customization of User-Independent Models 

In this thesis, we make efforts to extract features that reflect the commonality between 

different users without figuring out the difference between the users’ behavior patterns. 

In the future, we would like to study transfer or customization of user-independent 

models for specific users. The prediction of the specific user will be the weighted 

average of the predictions of other users’ models. The weightings should be assigned 

according to the similarity between behavior patterns of the users. We expect such 
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models to require less user-specific data than pure user-dependent models. We also 

intend to study the improvement of performance as a function of increasing user data, 

and to employ machine learning methods such as online learning for this task. 

6.3.2 User-Dependent Affect Detection in Reading 

This thesis focuses on building user-independent models for the affect detection in 

reading, which makes our methods work for unseen new users. We foresee, however, 

that the user-dependent model may achieve better performance for the consistency of 

individual user’s behavior patterns during the task. In the future, we would like to study 

the improvement by means of user-dependent models, upon collecting a larger dataset. 

6.3.3 Extended Study to Other Contexts 

In addition to the affect detection in the reading tasks, we would like to expand our 

scope of investigation to other language-based interaction tasks, such as writing and 

editing, which, together with reading, makes up a large proportion of computer usage, 

especially in the workforce. This would likely mean the use of other modalities, such 

as keyboard and mouse dynamics, and necessitate a multimodal approach. 
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