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Abstract 

Recent years have seen a fast development of electric vehicles (EVs) in the 

market, which can be attributed to the economic, environmental, and social 

benefits that can be potentially contributed by EVs. Specifically, these benefits 

include reduced national dependency on oils, reduced greenhouse gas emissions 

and reduced air pollution. As the transportation section accounts for large 

proportion in total energy consumption, the rapid shift to electrification of 

transportation will considerably increase the electricity usage. Thus, the current 

power infrastructure, especially the distribution network system, will suffer from 

some critical issues caused by large-scale EV charging demand. These issues 

include but are not limited to equipment overload, severe voltage fluctuation, 

power system reliability and so on. The investment in new generation capacity and 

upgrades of power infrastructures such as substation and transmission power line 

capacity may be urgently needed. Nevertheless, EV charging demand can be 

regarded as a flexible load and thus can be aggregated and managed so as to reduce 

the negative impact as well as to benefit to the power system. Besides, aggregated 

EVs also have the potential ability to provide ancillary service to power systems 

via vehicle to grid implementation in the future. In this regards, this thesis 

evaluates the challenges and opportunities introduced by large-scale EV charging 

in power system and developing new method to utilize EV charging flexibility to 

benefit power system economic and secure operation. 

This thesis firstly focuses on power system distribution network operation 

planning, to hedge against negative impacts caused by large-scale random EV 

charging. The concept of an EV chargeable region is proposed to evaluate the 

distribution network EV hosting capacity, i.e., how much EV charging demand 

can be accommodated in a distribution network, within which the technical 

constraints of distribution network (e.g., voltage deviation) are guaranteed and EV 

owners’ charging requests are maximally ensured. To further accommodate 

uncertain EV charging demand, a two-stage robust active distribution network 

planning model is then proposed. The distributed generator investment, location, 

and size are optimized in the first stage and the active distribution network 
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operation feasibility in the worst-case scenario is checked in the second stage to 

prevent any constraint violations. Finally, a modified column-and-constraint 

generation algorithm is adopted to solve the distribution system operation and 

planning problems. Simulations on modified IEEE 123-node distribution network 

demonstrate the effectiveness of the proposed two models. 

Then this thesis proposes models for aggregated EV to provide ancillary service 

and bid in electricity market. To utilize the EV charging flexibility to benefit the 

grid, this thesis evaluates the potential ability of EVs in providing operating 

reserve, through optimizing day-ahead spinning reserve requirement with EV 

participation. Based on the probabilistic criteria, the cost of expected energy 

supplied by EV is formulated. The effects of EVs on system spinning reserve 

requirement quantification and unit commitment are comprehensively analyzed. 

At last, an information gap decision theory based EV scheduling method and 

bidding strategies are proposed. It aims at managing the revenue risk caused by 

the information gap between the forecasted and actual electricity prices. The 

proposed decision-making framework is used to offer effective strategies to either 

guarantee the predefined profit for risk-averse decision makers, or pursue the 

windfall return for risk-seeking decision makers considering the risks introduced 

by the electricity price uncertainty. 
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1. Introduction 

 

 

 

 

1.1 Backgrounds 

The ratio of automobiles to people has been climbing around the world for the 

past century. Taking USA for example, transportation uses nearly a third of the 

energy consumed annually (27.5 quads in 2014), 92% of which is provided by 

petroleum [1]. Oils can be easily transported and thus traded among countries as 

bulk cargo. The fuel price has a considerable impact on personal consumption and 

economy of the countries. Historically, economic downturns always coincided 

with a decrease of gasoline supply and increase of international oil price [2]. Thus 

having such an important sector of the economy so dependent on one type of fuel 

is an economic risk and regarded as a threat to national security. Besides, 

consumers appear to have little elasticity to gasoline prices, which further 

aggravate the economic risk. Actually, the cost of crude oil has fluctuated 

significantly, which has triggered several economic crisis in the last century. On 

the other hand, burning petroleum in conventional vehicles significantly 

contributes to total pollutant emissions [3]. Especially, vehicle usage usually 

occurs in urban areas making the population close to where people live, localizing 

the negative environmental effects in cities and residential areas. The 

transportation also accounts for a significant proportion of CO2 emissions, taking 

almost one third in USA as seen in Fig. 1.1. To control global warming caused by 

greenhouse effect, countries have achieved some agreement to reduce CO2 

emissions. The transportation sector should take responsibility in it.  

Electric vehicles have the potential to mitigate these issues. The usage of EVs 

can diversify the energy supply and reduce the importance of fuel in economies, 

so that the economic entities can better accommodate the fluctuation of the 

international oil price. Those fossil driven power generators are usually far from  
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Figure 1.1 Total U.S. Greenhouse Gas Emissions by Economic Sector in 2014 

[4] 

where people live and thus bring less pollution to people. Besides, with fast 

development of renewable energies, power generation becomes much more 

environmentally friendly, which provides an opportunity to widely adopt EVs 

from the point of environment protection. Electric vehicles are not a new idea. 

Electric vehicles experienced golden ages during late 19th century and early 20th 

century [5]. Later, EVs lose its position in automobile market during the past 

century due to technical and economic factors. Until late 20th century, things begin 

to change. Especially the global economic recession in the late 2000s led to 

increased calls for automakers to abandon fuel-inefficient vehicles, which were 

seen as a symbol of the excess that caused the recession, in favor of small vehicles, 

hybrid vehicles and electric vehicles. Then recent decades have witnessed a 

globally increasing interest in EVs. The reappearance of EVs in the market seems 

to be very substantively persistent, given the large numbers of companies 

developing EVs and their ambitions reflected from the huge investment on EVs. 

In the foreseeable future, EVs have large potential to dominate the automobile 

market [6]. A range of potential EVs’ market penetration rates have been projected 

for a number of regions and countries including North America, Australia, New 

Zealand, Denmark, Belgium, Sweden, Ireland and Netherlands, with the 

established EV development targets given in Table 1.1. 
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Table 1.1 Global EV Penetration Target 

Country EV uptake target Country EV uptake target 

North 

America 

52% by 2035;62% by 2050 

[7] 
Australia 65% by 2050 [8] 

New Zealand 2040 60% market share [8] Denmark 200,000 by 2020 

Belgium 30% by 2030 [9] Sweden 600,000 by 2020 [10] 

Ireland 
40% market share by 2030 

[10] 
Netherlands 200,000 by 2040  

 

With the widespread of EV adoption, power system utilities are facing lots of 

challenges due to large-scale EV charging demand in the grid operation in terms 

of power stability, power quality and top of that, power reliability. As EVs are 

connected to the low voltage distribution system, quantifying the potential impact 

of EV charging on electricity distribution network and developing new methods 

for accommodating large EV popularity should be regarded as major challenges. 

The distribution networks are usually radial, typically starting with the distribution 

substation including substation transformers. The electricity transmits along 

distribution lines to the sub-connection nodes. To avoid huge voltage drops caused 

by large load demands, voltage regulators (usually the shunt capacitors, step 

voltage transformers and the line drop compensators) are installed. The customers 

are connected to these utility feeders with the sub-distribution system through 

distribution transformers which transfer voltage down from distribution voltage to 

lower voltage. In the absence of any coordinating strategy, uncontrolled charging 

of EVs will result in some detrimental effects to distribution networks. A review 

of [9, 11, 12] indicates that the large-scale random EV charging demand will 

introduce significant impacts on the secure and economical operation of 

distribution networks. These negative influences mainly include, 

• Distribution network loss increase  

• Distribution network lines and substations overload 

• Voltage deviations 
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• Peak demand necessitating additional investment 

The distribution network loss on electric power lines and substations depends 

on both resistance/reactance values of distribution lines, and active/reactive power 

of electricity demands. The resistance and reactance of distribution networks are 

relatively large compared with that in transmission system and the EV charging 

demand arising as additional load will lead to huge economic loss in distribution 

system operation. It will either make some distribution network equipment 

overload or necessitate additional investment. Voltage deviation is one of the 

major issues caused by large-scale EV charging demand. Case study in [9] 

demonstrates that the voltage of residential distribution grid will drop very likely 

below 0.95 p.u. when the uncontrolled EV charging demand increase.  

Coordinated and smart charging control of EVs is the widely-accepted method 

to address these negative impacts. Charging behavior can be defined as a 

combination of the characteristics including travel starting and end time, charging 

duration, and charging decision [13]. The fact that an average vehicle is most of 

the time parking and connected to the grid makes an electric vehicle flexible 

regarding the charging time schedule, known as EV charging flexibility [14]. By 

rescheduling the EV charging demand, some benefits to power distribution 

networks can be achieved, which should include loss reduction, congestion 

avoidance, voltage profile improvement. These EV charging behavior can be 

defined as coordinated charging or smart charging [15-18]. Many researches in 

open literatures demonstrate that significant voltage drop in DN can be prevented 

via using optimal EV flexible charging strategy by properly rescheduling the EV 

charging demand [14, 19-21]. With distributed generators increasingly installed in 

distributed networks, coordination of EVs and DGs is receiving increased concerns 

in recent years. The integration of DGs introduces new challenges for distribution 

network operation and planning, largely because the design of distribution network 

relying on the assumption that power flow is unidirectional. Historically, the 

penetration of DGs was relatively small and therefore can be regarded as negative 

loads in system operation and planning. But the situation is changing with the 

increase of DG penetration. With more renewable energies penetrating into power 

systems, they will inevitably bring many uncertainties to distribution network 
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operation and planning. As such, the potentials of EVs to provide alternatives for 

accommodating more DGs and improving overall social warfare become attractive. 

Although EV charging flexibility can be well utilized to serve the grid, 

challenges to optimally dispatch these resources arise. EVs cannot be scheduled 

directly by the power system operators as EVs spread over a geographic span and 

EV drivers have their own travel patterns. In this regard, the concept of EV 

aggregator has been proposed by many researches for the sake of management of 

large number of EVs. It acts as an intermedia between EV owners and power 

systems by representing EV owners to interact with power system operators to 

participate in electricity market. Especially aggregated EVs can be used to provide 

operating reserve for power system through quickly interrupting EV charging and 

feeding energy back to the grid, known as V2G. However, the implementation of 

charging interruption and V2G will considerably affect user experience and travel 

behavior and lead to battery degradation, which prevent frequent action of such 

functions. Thus, they are more likely used for providing contingency reserve with 

less activations, i.e., to provide energy when high-capacity generation break down. 

For the sake of cost saving, power system spinning reserve requirement, 

traditionally provided by thermal generators, can be somewhat reduced.  

1.2 Purpose of the Thesis 

This thesis aims at analyzing the challenges and opportunities introduced by 

large-scale EV charging in power system and developing new method to utilize 

EV charging flexibility to benefit power system economic and secure operation. 

Thus, the purpose of the thesis involves two aspects: to evaluate the negative 

impact as well as the benefits to the grid and EV owners by introducing large scale 

EV penetration. Specifically, this thesis innovatively proposes the concept of EV 

chargeable region to evaluate distribution system electric vehicle hosting capacity 

and proposes the framework for distributed generator investment to further 

improve distribution network hosting capacity. Then this thesis analyzes the 

potential ability of aggregated EV charging in providing ancillary service and 

proposes risk based bidding strategy for EV aggregators in electricity market. 

Firstly, this thesis evaluates distribution network EV hosting capacity. It aims 

at addressing the negative impacts, such as voltage drop and equipment overload, 
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caused by large-scale EV charging demand, based on which the concept of EV 

chargeable region is proposed to estimate how much EV charging demand can be 

accommodated in a distribution network. The EV chargeable region dynamically 

varies according to distribution system operation conditions, such as constantly 

changing load and controllable resources. Generally, several goals should be 

achieved to find an optimal EV chargeable region, which should include 

maintaining distribution system security, satisfying EVs’ charging requirement, 

simplifying information exchange between EV owners and distribution system and 

managing EV charging uncertainties. 

Secondly, this thesis proposes a novel distributed generator investment 

framework considering EV and DG coordination. DG investment in distribution 

system is another alternative to address the aforementioned negative impact 

through locally supplying energy to owners. Especially the renewable distributed 

generators can be well coordinated with EV charging demand by utilizing the 

flexibility of EV charging demand, which can better reduce the total operation 

costs. This thesis proposes a robust optimization based DG investment framework 

to accommodate EV charging demand, which should hedge against various 

uncertainties including EV penetration level, conventional load increase, 

coordinated charging participation rate and daily output of renewable energies and 

EV charging demand. 

Thirdly, this thesis evaluates the potential ability of aggregated EV charging and 

discharging to provide operating reserve for power systems. Especially EVs are 

assumed to provide contingency reserve, i.e., to supply energy through charging 

interruption and vehicle to grid service when generator outage induced energy 

deficit happen. This thesis aims at executing comprehensive cost/benefit analysis 

to compare the reserve provision cost of thermal generators and EVs. Similar to 

expected energy not supplied, expected energy supplied by EV is formulated to 

quantify EVs’ provision of operating reserve. This thesis also systematically 

investigates the impacts of the EV penetration level and the compensation to EV 

owners on spinning reserve provision. 

Fourthly, this thesis proposes risk-based bidding strategies for EV aggregators 

to participate in electricity market. In the context of electricity market and smart 
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grid, the uncertainty of electricity prices due to the high complexities involved in 

market operation would significantly affect the profit and behavior of EV 

aggregators. To address electricity market price uncertainties, the thesis proposes 

an information gap decision theory based approach to optimize day-ahead 

scheduling of EV aggregators and bidding decisions. It focuses on the gap between 

predicted and actual variables. The IGDT-based risk management decision model 

is formulated according to the decision makers’ attitudes towards risk. Risk-averse 

decision makers tend to make robust decisions against high costs, while risk-taking 

decision makers tend to seek more benefits when the cost is low. 

 

1.3 Primary contributions 

To achieve the objectives of the research, the scientific contributions achieved 

in this thesis are summarized as follows:  

1. The thesis models EV charging demand and the uncertainties using data 

mining method. Previous works usually use Monte Carlo simulation method 

to generate user travel behaviour data from either the travel statistical results 

in travel survey reports or a self-defined distribution function of travel 

parameters [13, 15-19]. In comparison, this thesis obtains EV charging 

profile by directly sampling with the replication from raw vehicle travel data, 

which can better resemble the reality.  

2. The concept of “EV chargeable region” is innovatively proposed to evaluate 

the largest amount of EV charging demand under a DN node that will not 

lead to network constraint violations. The EV chargeable region 

optimization problem is formulated as a two-stage model, where the EV 

chargeable region and DN decision variables are optimized in the first stage 

and the feasibility of the DN worst-case scenario is checked in the second 

stage. This model not only guarantees the secure operation of DN, but also 

maximizes the EV hosting capacity for DN. Compared with the previous EV 

aggregator-oriented coordinated charging strategy method, the proposed 

model is user-friendly and enforceable for practical application. 

3. The framework of robust active distribution network planning against 
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uncertain EV charging demand and distributed generators is proposed. 

Security constraints of active distribution network, such as upper and lower 

bound of voltage and branch capacity, are imposed to enforce the feasibility 

of the planning strategy. A two-stage robust optimization formulation is 

established, where the first stage problem optimizes the sizing and sitting of 

distributed generation, and the second stage problem checks the feasibility 

of planning strategy in the worst realization of uncertainties of both 

uncertain EV charging demand and renewable distributed generators is 

proposed. 

4. EVs are innovatively considered in the determination of power system 

spinning reserve requirement. The costs of reserves from thermal generators 

and EVs as well as expected energy not supplied (EENS) are taken into 

account together to determine optimal spinning reserve requirement. The 

concept of expected energy supplied by EV (EESEV) is innovatively 

proposed in the study to quantify the expected energy supplied by EVs. The 

EVs’ capacity of interruptible charging demand and V2G service under both 

smart charging and immediate charging strategy is formulated.  

5. An information gap decision theory based day-ahead EV scheduling and 

bidding framework is proposed to take into consideration the electricity 

price. It enables EV aggregators to manage potential risks while pursuing 

the desired profit. Through ensuring a predetermined level of total profit, 

both robust and opportunistic scheduling strategies are made for negative 

and positive decision makers respectively. Compared with other risk 

management tool such as conditional value at risk, the proposed approach 

can effectively enable decision makers to secure the desired profit 

irrespective of the potential risks and reduces computation burdens. 

 

1.4 Organization of the Thesis 

The remainder of this thesis is organized as follows, 

Chapter 2 proposes the concept of an EV chargeable region to evaluate the 

distribution network EV hosting capacity, i.e., how much EV charging demand 
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can be accommodated in a distribution network, within which the technical 

constraints of distribution network (e.g., voltage deviation) are guaranteed and EV 

owners’ charging requests are maximally ensured. The optimization of the EV 

chargeable region is formulated as a two-stage robust optimization model with 

adjustable uncertainty set. The EV chargeable region and distribution network 

decision variables are optimized in the first stage and the feasibility in the real-

time worst-case scenario is checked in the second stage, considering the 

uncertainty of EV charging demand and distribution network active and reactive 

power. A modified column & constraint generation and outer approximation 

method is adopted to address the proposed problem. Simulations on an IEEE 123-

node DN demonstrate the effectiveness of the proposed model. 

Chapter 3 proposes a two-stage robust active distribution network planning 

model capable of accommodating uncertain large-scale EV charging demand. The 

distributed generator investment location and size are optimized in the first stage 

and the active distribution network operation feasibility in the worst-case scenario 

is checked in the second stage to avoid various constraint violations. The EV 

charging demand uncertainty is modeled using a data mining method based on raw 

data of vehicle travel behavior. Finally, a modified column-and-constraint 

generation algorithm is adopted to solve the proposed problem. Simulations on 

modified IEEE 123-node distribution network demonstrate the effectiveness of the 

proposed model. 

Chapter 4 proposes a novel model to optimize day-ahead spinning reserve 

requirement considering EVs’ contribution in providing operating reserve. Based 

on the probabilistic criteria, the cost of expected energy supplied by EV (EESEV) 

is formulated. The capacities of EV interruptible charging demand and vehicle to 

grid service are calculated respectively under the conditions of both immediate 

charging and smart charging strategies. The effects of EVs on system spinning 

reserve requirement quantification, unit commitment are comprehensively 

analyzed using IEEE reliability test system (RTS-96). Numerical results 

systematically demonstrate the effectiveness of EVs’ participation on the 

reduction of operation costs and the improvement of power system reliability.  
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Chapter 5 proposes an information gap decision theory based approach to 

manage the revenue risk of the EV aggregator caused by the information gap 

between the forecasted and actual electricity prices. The proposed decision-

making framework is used to offer effective strategies to either guarantee the 

predefined profit for risk-averse decision makers, or pursue the windfall return for 

risk-seeking decision makers. Day-ahead charging and discharging scheduling 

strategies of the EV aggregators are arranged using the proposed model 

considering the risks introduced by the electricity price uncertainty. The results of 

case studies validate the effectiveness of the proposed framework under various 

price uncertainties. 

Chapter 6 gives the conclusions and the discussion of the thesis. 
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2. Distribution Network Electric Vehicle 

Hosting Capacity Maximization: A Chargeable 

Region Optimization Model 

 

 

 

 

2.1 Introduction 

Smart/coordinated charging strategy of EVs is the commonly accepted method 

to improve voltage quality in distribution system [4-11]. Many researches in 

literatures show that significant voltage drop in distribution network can be 

avoided utilizing the flexibility of EV charging strategy by optimally rescheduling 

the EV charging demand [4-6]. Lots of implementation algorithms and models of 

smart/coordinated charging strategies are proposed to handle the voltage issues. [7] 

proposes a market mechanism for aptimal allocation of available charging capacity 

ensuring EV owners’ preferences on charging rates and distribution network 

voltage security. [8] develops a market based multi-agent control mechanism using 

remaining capacity of EV chargers for reactive voltage control, in which the 

iterative exchange of messages is not considered. A real-time smart load 

management strategy is developed in [9] for the coordination of EV charging based 

on real-time such as every 5 min, minimization of total operation cost at the same 

time complying with network operation requirement. A rolling multi-period 

optimization based EV charging optimization method is developed in reference 

[10], to avoid severe voltage deviations and equipment overload with the input 

data updated at each time step. A local control method for EV smart charging 

strategy in distribution network is developed. The advantage and disadvantage of 

centralized and local EV charging strategy are compared and discussed. 
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Moreover, considering the fact that the large number of EVs cannot be managed 

directly by the power system, the EV aggregator is thus proposed to manage a large 

number of EVs, which acts as an intermediary to communicate with power system 

operators so that the distribution network operation security can be ensured [12-

14]. [13] presents hierarchical decomposition model to minimize the total cost of 

dispatched generators and EV aggregators in the upper-level model and to present 

specific charging strategies in the lower-level model. However, using these 

methods, the basic assumption is that the EV aggregator obtains the privilege from 

EV owners to determine the schedule of EVs as long as the customers’ travel 

demand is satisfies. This implies that EV owners should report their required 

energy and daily departure time to the EV aggregator, which will create  

inconvenience for end users. Another problem is that demands for unexpected and 

urgent usage of EVs may not be satisfied, because EV aggregator can not obtain 

this information in advance by. Besides, it is uncertain whether complex 

communication facilities will be generated among the distribution network 

operators, EV aggregators, and EV owners in the distribution networks.  

To address these problems, EVs are firstly assumed charged randomly 

according to users’ requests. Then EV hosting capacity is maximized by finding 

out the largest admissible charging demand at each distribution network node that 

can be accommodated. Within the hosting capacity, the line capacity and DN 

voltage will not vary beyond the requirement. Outside of the hosting capacity, the 

EV charging demand may be postponed. The EV chargeable region problem is 

formulated as a two-stage optimization model, in which the EV chargeable region 

and distribution network decision variables are optimized in the first stage and the 

feasibility of the distribution network worst-case scenario is checked in the second 

stage. Using this model, not only the secure operation of distribution network is 

guaranteed, but also the EV hosting capacity for distribution network is maximized.  

The nomenclature of symbols used in this chapter are given as follows, 

Indices and Sets 

t/T  Index and set of time slots. 

k/K Index and set of the trips whose destination is home 

N
’ 

c,t Set of EV charging demand in all scenarios 
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γ/Γ Index and set of piecewise linearization approximation 

method, in which ΓDE, ΓAP, ΓRP
 represent set for PLA method of 

EV delayed charging demand, quadratic term of active and 

reactive power respectively 

j/J Index and set of distribution network nodes. 

c/C Index and set of EV charging equipment.  

r/R Index and set of reactive power support equipment, such as 

shunt capacitors and automatic voltage regulators. 

δ(j) Set of child nodes of distribution network node j. 

ΨEV/ΨRP(J) Set of EV charging equipment and reactive power support 

facilities under distribution network node j. 

 

Parameters 

Pch EV charging rate. 

t
arr 

k ,t
dep 

k  EV arrival and departure time at k. 

DTk Travel distance during the day at k. 

ECS Per-mile energy consumption. 

ηch Efficiency of EV charging demand. 

P
CH,S 

c,t,s  Aggregated charging demand at c,t in scenario s 

P
CH,AV 

c,t  Average aggregated EV charging demand at c,t.  

P
EV,max 

c,t  Maximum EV charging demand at c,t. 

K
PDF 

γ,c,t /B
PDF 

γ,c,t  Linearization approximation auxiliary coefficients for EV 

charging demand PDF function  

K
DE 

γ,c,t/B
DE 

γ,c,t Linearization approximation auxiliary coefficients for delayed 

EV charging demand 

pj,t/qj,t Active and reactive power load at j,t. 

rij/xij Resistance and reactance of DN line ij. 

V0 Voltage reference value.  

VST Voltage at distribution network substation. 

ζr Step value of shunt capacitor r. 

Q
AVR,AV 

r,t  Automatic voltage regulator average output at r,t. 

LCij Distirbution network line capacity at ij. 

ε Limitaiton of voltage fluctuation. 

λt Electricity price at t. 

P
CH,LB 

c,t  Lower bound of EV charging demand at c,t. 
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Λ
CH 

t /Λ
CH 

c  Uncertainty budget of EV charging demand at t and at c. 

p
LB 

j,t /p
UB 

j,t
 Lower and upper bound of active power at j,t. 

Λ
AP 

t /Λ
AP 

c
 Uncertainty budget of active power at t and at c. 

q
LB 

j,t /q
UB 

j,t
 Lower and upper bound of reactive power at j,t. 

Λ
RP 

t /Λ
RP 

c
 Uncertainty budget of reactive power at t and at c. 

Q
AVR,LB 

r /Q
AVR,UB 

r  Lower and upper bound of automatic voltage regulator output 

of r. 

 

Variables  

P
ch 

k,t  Per EV charging rate at k,t 

DEc,t
 Delayed EV charging demand at c,t. 

CCc,t Compensation cost for EV charging demand delay at c,t. 

P
CH 

c,t  Average EV charging demand c,t. 

P
Bound 

c,t
 EV chargeable bound at c,t. 

χc,t Actual EV charging demand at c,t. 

Pj,t/Qj,t Active and reactive power flow at j,t. 

P
QU 

j,t /Q
QU 

j,t  Quadratic term of active and reactive power flow at j,t. 

Vj,t Voltage at j,t. 

d
SC 

r,t  Integral variables for shunt capacitors at r,t. 

VP
CH 

c,t  Real-time EV charging demand at c,t. 

Vpj,t/Vqj,t Real-time active and reactive power at j,t. 

Q
AVR 

r,t  AVR output at r,t. 

P
W 

j,t /Q
W 

j,t  Real-time worst-case active and reactive power flow at j,t. 

P
QU,W 

j,t /Q
QU,W 

j,t  Quadratic term of real-time worst-case active and reactive 

power flow at j,t. 

V
W 

j,t  Worst-case real-time voltage at j,t. 

S
V 

j,t/S
PQ 

j,t  Slack variables of real-time voltage deviation requirement and 

distirbtion network line capacity limitation at j,t. 

 

2.2 EV Charging Demand Uncertainty 

2.2.1 EV Travel Behavior 

It is commonly known that location-varying and time-varying EV charging 

demand can be modeled based on EV owners’ travel behavior. Monte Carlo 

simulation method is mostly used to acquire EV owners’ travel behavior data on 
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the basis of travel survey reports, where the the charging demand of each vehicle 

and the parking duration can be estimated [22-24]. To model spatial-temporal 

dynamics of EVs’ charging demand, some other works use self-defined 

hypothetical distribution functions to randomly generat daily trip chains [25-27]. 

In contrast, the uncertainty of charging behavior in the proposed 

framework is modeled by sampling directly from the 2011 Raw Data of Travel 

Behavior, which is released by the Atlanta Regional Commission. It can be 

found in the ARC Metropolitan Travel Survey Archive[28]. This survey dataset 

includes totally 119,480 trips, which is collected within 3 months. For each 

trip, the information given by the data includes: arrival time, arrival location, 

departure time, departure location, trip distance, transit access mode, and so 

on. The large number of trips and the comprehensive record of each trip 

provide valuable assistance to model the uncertainty of EV charging demand. 

In this thesis, it is firstly assumed that EVs are charged once arriving home, 

and the each EV charging demnad can be formulated as 

ch arr arr

,

ch

, & & , ,ch depk CS
k t k k kch

DT E
P P if t t t t t t k K t T

P
              (2.1) 

where κ and Κ are the index and set of the trips whose destination is home. It will 

trigger the charging reaction. Pch
  denotes the fixed charging rate, randomly 

selected from the predefined charging power dataset with corresponding 

probability. DTΚ represents the total travel distance in the day, ECS represents the 

per-mile energy consumption, ηch
  is the efficiency of EV charging, and t

arr 

k  and t
dep 

k  

denote the EV arrival and departure time.  

Sampling with the replication method is proposed to model the aggregated 

charging demand under a distribution network node with Nk total EVs as well as 

to randomly select Nk samples from the EV charging demand database K. By 

summarizing them, one scenario of charging demand at each distribution network 

node is obtained. By repeating this procedure, various scenarios can be found, 

given as 

,

, ch

, , , , , ,
c s

CH S

c t s k t

k N

P P c C t T s S


                                 (2.2) 
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'
,

, ,

, , ,'

,

1
, ,

c t

CH AV CH S

c t c t s

s Nc t

P P c C t T
N 

                             (2.3) 

where P
CH,S 

c,t,s  represents the total charging demand under a distribution network node 

c in scenario s and P
CH,AV 

c,t  represens its average value, in which |·| denotes the 

Cardinality of the set. When the sample size S becomes large enough, the 

uncertainty of charging demand can be optimally modeled and the estimated 

cumulative distribution function can be thus obtained from the statistical results.  

2.2.2 Delayed EV Charging Demand 

In this subsection, the relationship between the EV chargeable region and the 

compensation cost of delayed charging energy is illustrated based on the statistical 

results of EV charging demand uncertainties. As discussed before, when the 

charging demand is larger than the chargeable region upper boundary, the 

excessive portion of the energy should be delayed, as follows:  

,max
,

, , 1
, , , , 1 , ,( ) ( ) , ,

EV
c t

Bound
c t c t

P
Bound

c t c t c t c t c t c t
P DE

DE P DE g d c C t T  





          (2.4) 

, , , , , ,( ) , , ,PDF PDF DE

c t c t c t c tg K B c C t T                  (2.5) 

where (2.4) describes the relationship between electric vehicle chargeable bound 

P
Bound 

c,t  and delayed charging energy DEc,t. χc,t represents the actual EV charging 

demand, and g(χc,t) represents the probability distribution function of χc,t. The PDF 

function is found from formulation in (2.5) using the PLA, rather than the exact 

distribution function, in which K
PDF 

γ,c,t  and B
PDF 

γ,c,t  are the auxiliary coefficients of 

linearization approximation. The PDF is actually the linearly estimated gradient of 

its CDF, obtained from the sampling results found in subsection IIA. It should be 

noted that the delayed energy is influenced not only by the chargeable bound but 

also by the charging demand increase due to the delayed energy of the last time 

interval, as shown in (2.4). Then, the delayed EV charging energy is acquired as 

the cumulative energy between the boundary and the maximum EV charging 

demand P
EV,max 

c,t . However, (2.4) and (2.5) are still difficult to solve due to the 

nonlinearity and the integral term of χc,t. To address this problem, the PLA method 

is used to find out the approximate linear term of (2.4) and (2.5). Finally, the EV 

charging demand can be given as:  
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, , , , , 1 , ,( ) , , ,DE Bound DE DE

c t c t c t c t c tCC K P DE B c C t T                  (2.6) 

,

, , , 1 , ,CH CH AV

c t c t c t c tP P DE DE   ,c C t T                        (2.7) 

, , , ,, , , , ,CH Bound

c t c t c t c tDE R CC R P R P R c C t T                        (2.8) 

where (2.6) are the linearization approximate versions of constraint (2.4) and (2.5). 

They are auxiliary constraints generated by the PLA, in which K
DE 

γ,c,t  and B
DE 

γ,c,t are the 

linearization approximation constant coefficients. Besides, (2.7) describes the 

actual charging demand considering the delayed charging energy, with the 

boundaries of the variables stated in (2.8).  

Some remarks on the EV chargeable region is given as follows: 

1) An EV controller should be invested at the distribution network node to 

interrupt the excessive charging demand outside of the chargeable region. 

2) The EV charging delay priority can be dependent on the EV charging urgent 

level, such as the remained EV charging demand. The EVs with larger SOC 

of the battery is suggested to be interrupted with higher priority, so that the 

urgent usage of EVs can be guaranteed to the maximum extend.  

3) EV onwers can reschedule their charging profiles according to their 

intentions. Electricity price based EV charging mode is considered and 

discussed in the case study. 

 

2.3 Mathematical Model 

2.3.1 Distribution Network Operation Constraints 

The complex distribution network power flow at each node j can be modeled 

using DistFlow equations from [29]: 

2 2

, ,

, , ,2
( ) ( ) ,

, ,
i t i t

j t i t ij j t

i j i j i t

P Q
P P r p j J t T

V  


                           (2.9) 
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2 2

, ,

, , ,2
( ) ( ) ,

, ,
i t i t

j t i t ij j t

i j i j i t

P Q
Q Q x q j J t T

V  


                        (2.10) 

2 2

, ,2 2 2 2

, , , , 2

,

2( ) ( ) , , ( ),
i t i t

j t i t ij i t ij i t ij ij

i t

P Q
V V r P x Q r x j J i j t T

V



           (2.11) 

where (2.9) describes the active power flow, (2.10) describes the reactive power 

flow, and (2.11) describes the voltage transmit along the branch. To handle the 

nonlinearity issues, the linear version of the DistFlow equations is presented and 

justified from [29, 30] by Baran and Wu, which is later adopted by lots of 

researchers [31-33]. The approximation method is proposed based on two 

assumptions. First, the nonlinear terms denoting the loss is much smaller than the 

branch power Pj, Qj and voltage terms V
2 

j , so that they can be neglected in the 

calculation of power flow. Second, the approximation of (Vj – V0)
2 = 0 is adopted. 

It is valid as long as the voltage deviation is always within the requirement and the 

quadratic terms of voltage can be replaced.  

Compared with the previous work involving a linear version of Distflow, the 

piecewise linearized Distflow is presented in this thesis, which is achieved by 

linearizing the quadratic terms of active power and reactive power so that the loss 

terms can be maintained. The set of power flow, taking into consideration 

linearization, EV charging demand, and reactive power facilities, can be 

characterized by the following constraints:  

, ,

, , , ,2
( ) ( ) ( )0

, ,
EV

QU QU

i t i t CH

j t i t ij j t c t

i j i j c j

P Q
P P r p P j J t T

V   


                  (2.12) 

, ,

, , ,2
( ) ( ) 0

QU QU

i t i t

j t i t ij j t

i j i j

P Q
Q Q x q

V  


                                                          

,

, , ,

( )

( ), ,
RP

SC AVR AV

r t r j t r t

r j

d V Q j J t T


                       (2.13) 

, , , ,2 2

, , 3

0 0

( ) , , ( ),
2

QU QU

ij i t ij i t i t i t

j t i t ij ij

r P x Q P Q
V V r x j J i j t T

V V


 
            (2.14) 

, , 1,j t STV V j t T                                                        (2.15) 

where constraints (2.12)–(2.14) are modified from constraints (2.9)–(2.11), where 

P
QU 

j,t Q
QU 

j,t  are used to estimate the quadratic terms of Pj,t Qj,t and the EV charging 

demand and the reactive power output of shunt capacitors and AVRs are taken into 
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consideration in calculating the power flow. The disposition of the quadratic terms 

of transmitting voltage is similar to that in the previous work, while the voltage in 

the , , 1,j t STV V j t T     denominator of the voltage drop terms is replaced by its 

reference value. It is acceptable as long as the loss term is much small. Anyway it 

is more accurate than neglecting the whole terms. The substation voltage is set as 

VST, defined by (2.15). The quadratic terms P
QU 

j,t Q
QU 

j,t  can be obtained using the PLA 

method according to the following auxiliary constraints: 

, , , , , , , , ,QU AP AP AP

j t j t j t j tP K P B j J t T                               (2.16) 

, , , , , , , , ,QU RP RP RP

j t j t j t j tQ K Q B j J t T                              (2.17) 

where K
AP 

γ,c,t  K
RP 

γ,c,t  and B
AP 

γ,c,t  B
RP 

γ,c,t  are the linearization approximation constant 

coefficients. The operation limitation constraints are given as 

2

, , , , ( ),QU QU

j t j t ijP Q LC j J i j t T                                  (2.18) 

,1 1 , ,j tV j J t T                                               (2.19) 

where (2.18) describes the distribution network branch active and reactive power 

limitation and (2.19) describes the voltage fluctuation limitation. 

2.3.2 EV Chargeable Region Optimization Model 

This subsection presentes a two-stage EV chargeable region optimization 

framework is. To maintain the distribution network voltage deviation within the 

requirement and to minimize the distribution network line loss, the coordination 

of shunt capacitors and automatic voltage regulators is commonly used. In practice, 

shunt capacitors cannot react continually and immediately based on the rapid 

fluctuation of demand and voltage in the distribution network, so that the automatic 

voltage regulators can respond immediately to the real-time distribution network 

status. Besides, the EV chargeable region is assumed to be optimized on a day-

ahead basis before the uncertainty is revealed. In this way, the real-time interaction 

and complex communication between the EV owners and the EV aggregators are 

avoided.  

In this regard, a two-stage robust optimization framework is proposed to find 

out the optimal EV chargeable region and distribution network decision variables, 
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hedging against any possible realization of uncertainty. The distribution network 

uncertainty contains EV charging demand and other active/reactive power loads. 

Therein, shunt capacitors, the chargeable region, and expected DN operation 

variables is regarded as the first-stage decision variables, served as “here-and-now,” 

which cannot be modified after the uncertainty is revealed, while the automatic 

voltage regulators and real-time power flow is regarded as the second-stage 

decision variables, served as “wait-and-see,” which will respond according to the 

uncertainties. It should be mentioned that both distributed generators and other 

schedulable loads in distribution system can be modeled as second-stage “wait-

and-see” variables and thus infuence EV chargeable region. But they are not taken 

into account, as this thesis focuses on the EV charging demand itself. Thus, the 

average operation cost is factored into the first-stage decision-making and the 

feasibility in the real-time worst-case scenario is checked during the second-stage 

decision-making, with the following formulation: 

, ,

,2

0

( )

QU QU

j t j t

t ij c t

t T ij L c C

P Q
min r CC

V


  


                       (2.20) 

s.t.       (2.6)–(2.8),(2.12)–(2.15),(2.16)–(2.17),(2.18)–(2.19) 

1 , 2 ,

, ,
( ) ( )

( ) 0
Bound SC

US c t WS r t

V PQ

j t j t
M P M d

t T j J

max min S S
 

 

                (2.21) 

The objective function (2.20) aim at minimizing total distribution network 

operation cost, where the first term denotes the total distribution network line loss 

and the second term denotes the compensation cost given to the EV owners due to 

the charging delay. Power flow constraints, active/reactive power quadratic term 

linearization, and the operation limitation are given in (2.6)–(2.8) and (2.12)–

(2.17), respectively in subsection IIIA. The relationship among EV charging 

demand delay, EV chargeable boundary, and the compensation cost is illustrated 

in (2.18)–(2.19). Constraints (2.21) are used to check the feasibility of the real-

time worst-case scenario, given the EV chargeable region and the operation status 

of shunt capacitors, where S
V 

j,t  and S
PQ 

j,t  represent the slack variables of voltage 

deviation constraints and distribution network line capacity deviation constraints. 

The distribution network operation is secure on the condition that all the slack 

variables are zero in all the scenarios. The uncertainty set ΩUS(·) in constraint 

(2.21) is defined as follows: 
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, 1( ) { :Bound

US c tP M   1 , , , ,[ , , ] ,CH CH CH

c t j t j t c t t

c C

M VP Vp Vq VP t T


      

, , , ,CH Bound

c t c tVP P c C t T                            (2.22) 

,

, , , ,CH CH LB

c t c tVP P c C t T                           (2.23) 

, ,CH CH

c t t

c C

VP t T


                                     (2.24) 

, ,CH CH

c t c

t T

VP c C


                                     (2.25) 

, , , ,LB

j t j tVp p j J t T                                   (2.26) 

, , , ,UB

j t j tVp p j J t T                                   (2.27) 

, ,AP

j t t

j J

Vp t T


                                       (2.28) 

, ,AP

j t j

t T

Vp j J
 

                                       (2.29) 

, , , ,LB

j t j tVq q j J t T                                  (2.30) 

, , , ,UB

j t j tVq q j J t T                                   (2.31) 

, ,RP

j t t

j J

Vq t T


                                        (2.32) 

, ,RP

j t j

t T

Vq j J
 

     ,                               (2.33)} 

where the uncertainty set ΩUS(·) containes three kinds of variables, i.e., EV 

charging demand, active power, and reactive power. As the EV charging demand 

and the active power and reactive power at each distribution node can not be 

precisely forecasted on a day-ahead basis, they are regarded as variables in the 

second-stage optimization in order to find the real-time worst-case scenario. 

Constraints (2.22)–(2.25) represent the uncertainty set of EV charging demand, 

(2.26)–(2.29) represent the uncertainty set of active power and constraints, and 

(2.30)–(2.33) represnet the uncertainty set of reactive power. In each set, the bound 

of the variables and the uncertainty budget at each time interval or at each 

distribution network node are defined respectively. It should be noticed that the 

uncertainty set ΩUS(·) is influenced by the first-stage variable EV chargeable 
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bound. The worst-case feasibility set  

ΩWS(·) of constraint (2.21) is listed as follows: 

, 2( ) { :SC

WS r td M 

, ,

2 , , , , , , , , , , ,[ , , , , , , , , , , ]W W QU W QU W W AVR CH V PQ

j t j t j t j t j t r t c t j t j t j t j tM P Q P Q V Q VP Vp Vq S S  

, ,

, ,

, , ,2
( ) ( ) 0

QU W QU W

i t i tW W

j t i t ij j t

i j i j

P Q
P P r Vp

V  


                                   

,

( )

, ,
EV

CH

c t

c j

VP j J t T


                                       (2.34) 

, ,

, ,

, , ,2
( ) ( ) 0

QU W QU W

i t i tW W

j t i t ij j t

i j i j

P Q
Q Q x Vq

V  


                                 

, , ,

( )

( ), ,
RP

SC W AVR

r t r j t r t

r j

d V Q j J t T


                       (2.35) 

, ,

, , , ,2 2

, , 3

0 0

( ) ,
2

W W QU W QU W

ij i t ij i t i t i tW W

j t i t ij ij

r P x Q P Q
V V r x

V V

 
                           

, ( ),j J i j t T                        (2.36) 

, , 1,W

j t STV V j t T                                                          (2.37) 

,

, , , , , , , , ,QU W AP W AP AP

j t j t j t j tP K P B j J t T                           (2.38) 

,

, , , , , , , , ,QU W RP W RP RP

j t j t j t j tQ K Q B j J t T                           (2.39) 

, ,

, , , , , ( ),QU W QU W PQ

j t j t j t ijP Q S LC j J i j t T                     (2.40) 

, ,1 , ,W V

j t j tV S j J t T                                                  (2.41) 

, ,

, , ,AVR LB AVR AVR UB

r r t rQ Q Q r R t T                                     (2.42) 

, ,

, , , ,, , , , ,QU W QU W V PQ

j t j t j t j tP Q S S R j J t T       ,                       (2.43)} 

where power flow in the real-time worst-case scenario is demonstrated by (2.34)–

(2.37). Different from the first-stage power flow in (2.12)–(2.15), EV charging 

demand, active power, and reactive power become variables which are quantified 

in uncertainty set (2.22)–(2.33) and the automatic voltage regulator is the real-time 

controllable variables with the bound defined in(2.42). The first-stage variable d
SC 

r,t  

is fixed in the real-time worst-case feasibility check. Quadratic terms of active and 

reactive power flow in the real-time worst-case scenario are linearized in (2.38)–
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(2.39). The constraints of voltage deviation requirement and distribution network 

power flow capacity limitation in the worst-case scenario are relaxed with 

variables S
V 

j,t and S
PQ 

j,t , as shown by (2.40)–(2.41). The boundaries of these variables 

are quantified by (2.43). It should be mentioned that the feasible region given by 

constraints (2.20)–(2.33) guarantees the secure and reliable distribution network 

operation. 

 

2.4 Solution Methodology 

2.4.1 Compact Formulation and Duality 

For simplicity, the compact formulation is written in this section as follows: 

min
1 2 3

T T

1 3
x ,x ,x

a x + b x                                  (2.44) 

s.t.         
2 1 3Ax + Bx +Cx c                                  (2.45) 

 
2, ( ) ( )

( ) 0
US WS

max min
 


1 2 1 2 1

T

z z x y,z ,z ,s x
d s                                    (2.46) 

( ) { , , }US   2 1 2 1 2 2x z z : Dz + Ex e Fz f                    (2.47) 

( ) { , , : } ,WS  1 1 2 1 1 2Gx y z z s x + Hy + Iz + Jz + Ks g   (2.48) 

By the characteristics, the first-stage variables consist of three groups; namely, 

,[ ]SC

r td
1

x  denotes the first-stage distribution network decision variable which 

influences second-stage DN operation status, ,[ ]Bound

c tP
2

x  denotes the one that 

influences the uncertainty set, and , , , , , , , ,[ , , , , , , , ]QU QU CH

j t j t j t j t j t c t c t c tP Q P Q V DE CC P
3

x  

represents other first-stage variables. Based on whether or not they are influenced 

by first-stage variables, the variables in the uncertainty set includes ,[ ]CH

c tVP
1

z  

and , ,[ , ]j t j tVp Vq2z , in which the bound of 
1z  is quantified by 

2x . The second-

stage slack variables are denoted as , ,[ , ]V PQ

j t j tS Ss  and the second-stage operation 

variables are given as 
, ,

, , , , , ,[ , , , , , ]W W QU W QU W W AVR

j t j t j t j t j t r tP Q P Q V Qy . 
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The optimization problem (2.44)–(2.48) is a two-stage optimization model, in 

which the first-stage master problem is described as (2.44)–(2.45) and the second-

stage subproblem is given as follows: 

2, ( ) ( )US WS

max min
 1 2 1 2 1

T

z z x y,z ,z ,s x
d s                                   (2.49) 

s.t. (2.47)-(2.48)                                        (2.50) 

Hence, (2.49)-(2.50) is formulated as a bi-level linear optimization program. 

Due to the strong duality of the linear program, the inner optimization problem is 

replaced by its dual problem so that (2.49) can be reformulated as a single-level 

bilinear program, given as follows: 

 ) (max 
1 2

T T

1 1 2
z ,z ,ψ

ψ (g -Gx ψ -Iz - Jz )                      (2.51) 

{ : , , }   T T +

DLΩ ψ H ψ 0 K ψ d ψ R , , ( )US1 2 2z z x      (2.52) 

where Ψ is the dual variable vector of the inner problem of (2.49)-(2.50). It should 

be mentioned that the second term of (2.51) is the bilinear term, due to the fact aht 

both Ψ and z1 z2 are variables. 

The single-level bilinear program (2.51)-(2.52) can be solved by either the big-

M linearization method or the OA method [34]. Although the exact optimal value 

can be found by the big-M method, the computational burden is largely dependent 

on the number of bilinear terms. As the uncertainty set in the proposed 

mathematical model is huge, the big-M method is low-efficient in computation, or 

even intractable to address these cases. Hence, the OA method is adopted in this 

thesis to cope with the bilinear problem.  

2.4.2 Solution Algorithm 

To handle the two-stage optimization problem with an adjustable uncertainty 

set, a two-level algorithm is presented. The outer level uses the C&CG method [35] 

to obtain x1, x2, x3 from the results of inner-level optimization, and the inner level 

adopts the OA algorithm [34] to address the bilinear problem. 

The outer-level C&CG algorithm is given as, 

Step 0: Initialization. Set outer-level iteration index 1k  , lower bound 
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OUTLB   , upper bound 
OUTUB   . Then, find a feasible solution 

* *

1, 1 2, 1( , , )k k k



   z z x . 

Step 1: Solve master problem defined as (12a)–(12b), taking into account the 

following constraints, where wk is the newly created variable vector at each 

iteration: 

, , ,( , , ) { , ,  CCG m m m * * *

1 2 2 m 1 2
z z x w x x :     

, , , }, 1,...,m m m m m k  * * *

1 1 2 2 2
x + Hw +(Iz / x )x + Jz gG       (2.53) 

Let 
* * *

, , ,( , , )k k k1 2 3
x x x  be the optimal solution. Set LBOUT  = 

* *

1, 3,k k

T T
a x +b x  

UBOUT  = 
* *

1, 1 3, 1k k 

T T
a x +b x . 

Step 2: Solve the subproblem (2.51)-(2.52). Let 
* *

1,k 2,k
(z ,z )  be the optimal 

solution. Check outer-level convergence. If UBOUT  – LBOUT <εCCG, stop. 

Otherwise, let k = k+1, go to step 1. 

Initialization

Solve Master 
Problem

Solve OA subproblem

Solve OA master 
problem

IN IN OAUB LB  

OUT OUT CCGUB LB  

Generate C&CG 
constraints

End

Subproblem

 

Figure 2.1 The framework of the EV chargeable region optimization algorithm. 
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The inner-level OA is given as, 

Step 0: Initialization. Fix the first-stage decision variables *

1x
*

2x . Set the 

inner-level iteration index 1j  , lower bound 
INLB   , upper bound 

INUB   . Find an initial 
* *

1, 2,,j jz z . 

Step 1: Solve the OA subproblem,  

 
* * * * * *

1 1, 2, 1 1, 2,( , , )j j j jS max T

ψ
x z z ψ (g -Gx - Iz - Jz )         (2.54) 

s.t.    DLψ Ω                                          (2.55) 

Let *
ψ  be the optimal solution. Set LBIN = 

* * *

1 1, 2,( , , )j jS x z z . 

Step 2: Linearize the bilinear term 

   ψ Iz Jz  at 
* * *

1, 2,( , , )j j jz z ψ , as 

follows: 

 j

   

            *T * *

1 2 1 2
L z z ψ ψ -Iz - Jz ψ -ψ Iz Jz    

 

         *T
ψ I z z J z - z                         (2.56) 

Step 3: Solve the OA master problem. Solve the linearized version of the 

second-stage problem, given as follows: 

 
* * *

1, 2,
,

, , ) maxj j j 
1 2

T

1
z ,z ,ψ β

U z z ψ ψ (g -Gx ) +β                  (2.57) 

s.t.           , 1,...,i j  i 1 2β L (z ,z ,ψ)                          (2.58) 

*

2, ( )US1 2z z x ，  DLψ Ω                               (2.59) 

Let 
* * *

1, 1 2, 1 1 1( , , , )j j j j   z z ψ β  be the optimal solution. Set UBIN = 

* * *

1, 1 2, 1 1( , , )j j j  U z z ψ . 

Step 4: Check inner-level convergence. If 
IN IN OAUB LB   , give the 

current solution. Otherwise, set j = j+1, go to Step 1. 

It should be noticed that the C&CG constraints are additionally added at each 

iteration, originally formulated as 
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, , , 1,...,m m m m k  * *

1 1 2
x + Hw + Iz + Jz gG          (2.60) 

However, the first-stage variable x1 is not contained in the constraints (2.60) and 

cannot be modified at each iteration. This is because x1, denoting the EV 

chargeable bound, influences the bound of the uncertainty set rather than the worst-

case scenario decision variables, which is different from the typical robust 

optimization. To address the problem, the auxiliary term ,m

*

2 2
x / x  is multiplied 

with the third term, and finally reformulated as (2.53). The general framework of 

the algorithm is illustrated as Fig. 2.1.  

 

2.5 Case Study 

In this section, the case studies are presented to demonstrate the proposed model 

based on the modified IEEE 123 node DN in this section. All the algorithms are 

implemented on MATLAB, taking Cplex as the MILP solver. The optimality gap 

is set as 10-3. 

 

Figure 2.2 Modified IEEE 123-node distribution network for DN operation. 
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2.5.1 Test System and EV Charging Uncertainty 

In the modified 123-node distribution network system, 12 distribution network 

nodes are connected with EV charging facilities and 6 distribution network nodes 

are connected with voltage regulator facilities, as shown in Fig. 2.2. The average 

distribution network peak load without consideration of the EV charging demand 

is set as 2.84 MW/1.53 MVAR. The average distribution network load at each of 

the 24 one-hour time intervals, compared with the peak load, is given as 0.64 0.645 

0.635 0.64 0.705 0.81 0.86 0.83 0.85 0.87 0.905 0.83 0.81 0.85 0.89 0.96 1 0.99 

0.94 0.91 0.87 0.8 0.72 0.66. The upper and lower boundaries of each distribution 

network active and reactive power are set as 1.2 and 0.8 of the average value, 

respectively. Without loss of generalities, the uncertainty budgets Λ
AP 

t Λ
AP 

j Λ
RP 

t Λ
RP 

j  

are set as 1.05 of the average value. The voltage violation requirement is given as 

[0.95 1.05]. The voltage at the substation node is given as 1.0125. The DN line 

loss fee is given as 0.1$/kWh.  

At each distribution network EV node, 50 EVs are assumed to arrive in one day. 

The EV charging power rate is given as 4 kW, 6 kW and 8 kW with the probability 

of 25%, 50% and 25%, respectively. The compensation cost of the EV charging 

delay is set as 0.1$/(kWh*h). The EV penetration level is defined as the ratio of 

total EV charging demand to distribution network demand during the day, with the 

formulation 

,

,

,

, ,

CH AV

c t

t T c C

CH AV

j t c t

t T j J t T c C

P

EVP
p P

 

   






 
                            (2.61) 

To effectively explain the proposed model, three cases with different charging 

modes and different EV penetration levels are proposed as follows: 

Case 1: Immediate charge; EV penetration: 16.82%. 

Case 2: Charging response to price; EV penetration:16.82%. 

Case 3: Charging response to price; EV penetration: 20.18%. 
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The sample size of nodal EV charging demand is set as 4000 to effectively 

model the uncertainty of the total EV charging demand under each distribution 

network node at each time interval. Then the estimated CDF of aggregated EV 

charging demand is obtained accordingly. Fig. 2.3 depicts the CDFs at two typical 

time intervals. Simulation results demonstrate that EV charging demand at t = 20 

is larger than the one at t = 17. Then the PDF is estimated from the gradient of 

CDF data, as depicted in Fig. 2.4. It should be noticed that the PDF and the CDF 

are estimated with discrete data rather than the exact distribution function, such 

that a piecewise linearized function can be used to model the EV charging demand 

uncertainty. 

 

Figure 2.3. Estimated CDF of EV charging demand during two typical periods. 
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Figure 2.4. Estimated PDF of EV charging demand during two typical periods.  

2.5.2 Optimal EV Chargeable Region 

This subsection shows the results of case 1. Two typical charging bounds are 

depicted with the various uncertainty intervals of EV charging demand in Fig. 2.5. 

The EV chargeable region is defined as the area that is lower than the chargeable 

bound. It can be observed that the EV charging demand can be completely met 

during most times of the day, when both the distribution network load and the EV 

demand are low. However, EV charging may be delayed in the period from hours 

16 to 22, when the distribution network voltage at some nodes will drop down out 

of the requirement if the EV charging demand is larger than the chargeable bound. 

By comparing the difference value between the chargeable bounds of node 6 and 

node 114, it can be found that the location of EV charging demand in the 

distribution network area has a considerable impact on hosting capapcity of EVs. 

Generally, more serious issues of voltage drop happen near the end of the 

distribution network, where the EV chargeable region is influenced and narrowed. 

It is well noticed that EV owners will respond to electricity price by 

rescheduling their charging profile. To demonstrate the effectiveness of the EV 

chargeable region in this demand response scenario, two assumptions are firstly 

presented: 1) half of the EV owners respond to the electricity price and make their 

EVs charge at the lowest electricity price; 2) the electricity price has a positive 

correlation with total distribution network demand. In this regard, EV charging 

20 40 60 80 100 120 140 160
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

EV charging demand [kW]

P
ro

b
a

b
ili

ty

 

 

PDF at t = 20

PDF at t = 17



 

31 

 

 

demand is modeled by sampling from the travel dataset with half of the charging 

demand shifting to the distribution network demand valley period. 
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Figure 2.5. Optimal EV chargeable region in case 1. 
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Figure 2.6. Optimal EV chargeable region in case 2. 

 

Fig. 2.6 depicts the EV charging demand uncertainty and the EV chargeable 

region of case 2 at two typical time intervals. The simulation results show that 
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more EV charging demand can be accommodated by the EV chargeable region 

compared with case 1 in Fig. 2.5. It is known that the demand response of EV 

charging demand helps to shift part of the distribution network load to the valley 

period, which will contribute to maintain the voltage profile in peak period. 

Nevertheless, Fig. 2.6 demonstrates that the network constraint deviation 

requirement can not necessarily be met, as EV charging demand is still random 

and uncontrolled. Especially if the EV penetration level in DN is increased, the 

distribution network will become more heavily loaded and the EV chargeable 

region will take on a more significant role in maintaining the voltage profile of the 

DN. To illustrate this point, Table 2.1 gives the simulation results for the three 

cases. The concept of EV chargeability in the distribution network is proposed to 

evaluate the general level of the EV chargeable region in different distribution 

network nodes, with its definition listed as, 

,

, ,
,

min( / )Bound CH AV

c t c t
c t

CB P P                           (2.62) 

By comparing the results of cases 2 and 3, it can be found that EV owners’ 

response to electricity price can not prevent the distribution network violation, 

especially when the EV charging demand is large. The proposed EV chargeable 

region method becomes more advantageous with the increase of EV penetration 

level in the distribution network. 

Table 2.1 Simulation Results of EV chargeable region optimization model 

Case Total cost ($) EV compensation cost ($) Chargeability 

1 515.51 30.28 0.884 

2 448.35 0.573 0.982 

3 492.60 4.568 0.707 

2.5.3 Optimization Procedure and Computation Efficiency  

In this subsection, the optimization procedure and computational burden are 

discussed to verify the proposed solution method. The simulation results at each 

iteration of case 1 are listed in Table 2.2, in which the final solution is shown with 

fold type. It is found that the objective value of subproblem is considerably 
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reduced in each iteration and the algorithm terminates in the third iteration when 

the objective value of subproblem meets the convergence criterion. The 

computation efficiency is given in Table 2.3. It can be found that the subproblem 

contributes more to the total computation time. It is that it takes several iterations 

to achieve the convergence of OA method for the bilinear subproblem. 

Table 2.2 Simulation Results of EV chargeable region optimization model at 

Each Iteration of Case 1 

Iteration 
Total 

cost ($) 

Loss cost 

($) 

compensation 

cost ($) 

Objective of 

SP ($) 

1 458.93 458.93 0 3.81*105 

2 513.31 482.57 30.74 5.99*103 

3 515.51 485.23 30.28 0.556 

 

Table 2.3 Computation Efficiency of Case 1 

Total (s) MP (s) SP (s) Iteration 

141 40 101 3 

 

2.5.4 Sensitivity Analysis  

In this subsection, sensitivity analysis of piecewise linearization approximation 

method is carried out to check the accuracy of the linearization approximation. The 

results under different segment numbers of piecewise linearized delayed EV 

charging demand are given in Table 2.4, where the simulation results of case 1 are 

shown with fold type. It can be concluded that the EV compensation cost and EV 

chargeability are affected by the number of segment of PLA model. It can be also 

noticed that the difference values between simulation results of k=13 and k=10 are 

small and the difference values among results of k=10, k=7 and k=4 are relatively 



 

34 

 

larger, which shows that the parameters in the PLA method is proper for this case. 

Similarly, the simulation results under different segment numbers of piecewise 

linearized Distflow are given in Table 2.5. It can be concluded that the difference 

values among different costs is smaller when the number of segment n increases. 

Hence, the PLA accuracy in modelling Distflow is within the acceptable range. 

 

Table 2.4 Simulation Results under Different Segment Number of Piecewise 

Linearized Delayed EV Charging Demand 

n* k* 
Total cost 

($) 

Loss cost 

($) 

compensation 

cost ($) 
Chargeability 

 13 515.88 486.48 29.40 0.8841 

10 10 515.51 485.23 30.28 0.8848 

 7 526.71 487.14 39.57 0.8863 

 4 533.98 487.85 46.13 0.8894 

* n denotes segment number of the piecewise linearized delayed EV charging demand. 

* k denotes segment number of the piecewise linearized Distflow 

 

Table 2.5 Simulation Results under Different Segment Number of Piecewise 

Linearized Distflow 

k n 
Total cost 

($) 

Loss cost 

($) 

compensation 

cost ($) 
Chargeability 

 16 495.31 467.54 27.77 0.8848 

 13 503.68 474.99 28.69 0.8848 

10 10 515.51 485.23 30.28 0.8848 

 7 552.58 519.65 32.93 0.8848 
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 4 --* -- -- -- 

* -- denotes infeasibility of optimization model. 
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Figure 2.7. Impact of EV penetration level on EV chargeability and 

compensation cost. 

 

In order to address the uncertainty of the EV population in the distribution 

network, a sensitivity analysis of the EV penetration level with EV immediate 

charging mode is carried out. Fig. 2.7 shows the impact of EV penetration level on 

the EV compensation cost and the chargeability. The simulation results show that 

with increased EV penetration level, the EV chargeability has a slow decrease at 

first and then a rapid decline when more EVs interact with the distribution network. 

This is because larger EV charging demand may lead to distribution network line 

overload. Under such conditions, EV charging demand delay is the only solution 

to avoid distribution network congestion. distribution network line capacity 

expansion planning will be suggested if the chargeability is too small to be 

accepted by EV owners. 
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2.6 Conclusions 

This chapter innovatively presentes the concept of “EV chargeable region” to 

evaluate the maximum amount of distribution network EV hosting capacity for 

each node. The uncertainty of EV charging demand is modeled by sampling from 

raw vehicle travel data. The EV chargeable region optimization problem is 

formulated as a two-stage optimization model, in which the EV chargeable region 

and distribution network decision variables are optimized in the first stage and the 

feasibility of the distribution network worst-case scenario is checked in the second 

stage. Mathematically, the framework is formulated as a two-stage robust 

optimization problem with an adjustable uncertainty set. A modified C&CG/OA 

method is used to solve the two-level problem. Case studies demonstrate the 

effectiveness of the proposed model in both immediate charging mode and 

charging demand response mode, considering different EV penetration levels.  

Using the proposed model, not only operating constraint deviation of 

distribution network is prevented, but also EV owners’ charging requests, 

including immediate charging and price-response charging, are guaranteed to the 

largest extent. EV owners’ daily report of charging demand to the EV aggregator 

may be waived, as the EV charging profile can be well rescheduled directly by the 

EV owners themselves. The urgent usage of EVs can be maximally met. Besides, 

communication of the proposed framework is simple and the only communication 

is to pass message of EV chargeable region from distribution network operator to 

each controller at distribution network node, which is unidirectional and occurs 

once a day. Overall, the proposed framework shows a high potential for practical 

applications. 
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3. Robust Distributed Generator Planning 

Accommodating Electric Vehicle Charging 

Demand 

 

 

 

 

3.1. Introduction 

Basically, distributed generator (DG) can be categorized into dispatchable 

distributed generator (DDG), e.g., gas turbines, micro-turbines, and non-

dispatchable distributed generator (NDG), e.g., wind and photovoltaic generations. 

The investment issue of DDG and NDG have been well discussed in [36-38] and 

[39-41], respectively. Compared with DDGs, NDGs are more cost-effective and 

environment-friendly, which seem to be a more prior choice for active distribution 

network. However, NDGs will introduce additional operation uncertainties to 

active distribution network as their generation capability highly depend on weather 

conditions. For a active distribution network with large number of EV users, the 

flexibility of EV charging demand can be utilized to coordinate with NDGs and 

offset their uncertainty. Some pioneer works have been done on coordinated 

dispatch and operation of EVs and NDGs [27, 42, 43]. To the best of the authors’ 

knowledge, the coordinated planning of NDGs and EVs, especially in active 

distribution network level, has not been systematically explored. Although the DG 

investment problem in active distribution network has been well studied in the 

literature [44, 45], high-level penetration of EVs would pose new challenges to 

this topic, such as new types of uncertainties. Different from uncertainties of 

NDGs, the uncertainties of EV mainly include the following three aspects: 1) EV 

penetration level, which is almost intractable due to the factors such as battery 

technology; 2) EV charging demand, which varies from day to day and is 

influenced by the EV owners’ travel behaviors; 3) Involvement of EV owners, 

which equals how many EV owners would like to reschedule their charging 
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demand according to electricity price, known as price-responsive charging mode.  

To hedge against the aforementioned uncertainties, various methodologies have 

been developed and applied to power system planning problems, where stochastic 

optimization and robust optimization are among the most efficient mathematical 

tools. Stochastic optimization models have been applied to power system planning 

problems for decades, such as power system expansion planning [46] and wind 

power allocation planning [47]. The distributions of uncertainties, which serve as 

the key input of stochastic optimization models, may not be able to be accurately 

depicted in the time scale of planning. Robust optimization method, however, is 

almost distribution-free and has received much attention especially in planning 

problems, whose recent applications can be found in transmission network 

expansion [48], optimal storage [49] and DG placement in Microgrid [50]. 

The framework of robust active distribution network planning against uncertain 

EV charging demand and NDGs is proposed in this chapter. Security constraints 

of active distribution network, such as upper and lower bound of voltage and 

branch capacity, are imposed to enforce the feasibility of the planning strategy. A 

two-stage robust optimization formulation is established, where the first stage 

problem optimizes the sizing and sitting of DGs, including DDGs and NDGs, and 

the second stage problem checks the feasibility of planning strategy in the worst 

realization of uncertainties. Particularly, the uncertainty realization of NDGs in the 

second stage depends on the corresponding planning strategy of NDGs, rendering 

a decision-dependent optimization formulation. Column-and-constraint 

generation (C&CG) methodology and big-M method are modified accordingly to 

solve proposed problem.  

The nomenclature of symbols used in this chapter are given as follows, 

Indices and Sets 

t/T  Index/set of time slots. 

j/J Index/set of distribution network nodes. 

κ/Κ Index and set of the trips whose destination is home, which will 

trigger the EV charging action. 

v/V Index/set of EV charging stations. 
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w/W Index/set of wind power generators. 

c/C Index/set of photovoltaic generators. 

g/G Index/set of dispatchable distributed generators. 

r/R Index/set of reactive power support facilities, i.e., shunt 

capacitors and automatic voltage regulators. 

Nv,t Set of EV charging demand in all sampled scenario in EV 

charging station v at t. 

δ(j) Set of child nodes of distribution network node j. 

s Index of feasibility checking scenarios 

  

Parameters 

t
arr 

κ ,t
dep 

κ  EV arrival time and departure time. 

Dκ Total EV travel distance during the day. 

ξ
PV,MO 

t  Ratio of hourly maximum output of PV generator to the 

investment capacity. ξ
PV,MO 

t  [0 1]  

, ,/CH CH

v t v tP P  Lower/upper bound of EV charging demand at v,t. 

,CH C

t

,/ CH C

t  

Lower/upper bound of the location-aggregated EV charging 

demand at time t. 

,CH T

v /
,CH T

v  

Lower/upper bound of time-aggregated EV charging demand at 

EV charging station v. 

c
WP 

w /c
PV 

c /  

c
DD 

g  

Installation cost of wind power generator, PV generator and 

dispatchable generator. 

βWP/βPV 

/βDD 

Capital recovery factors of wind power generator, PV generator 

and dispatchable generator. 

δWP/δPV/ 

δDD 

Minimum investment capacity of wind power generator, PV 

generator and dispatchable generator. 

ξ
WP 

t /ξ
PV 

t  Average output of wind power generator, and PV generator. ξ
WP 

t

/ξ
PV 

t  [0 1]  

ζ Yearly interest rate. 
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nWP/ nPV/ 

nDD/ 

Lifetime of wind power generator, PV generator and 

dispatchable generator. 

λ
EP 

t
 Electricity price. 

λDD Generation cost of dispatchable generators. 

ΦD Number of days in a year. 

rij/xij Resistance/reactance of distribution network branch ij. 

,
ˆ LD

j tP   Current Distribution network load at j,t. 

V0 Voltage reference value.  

UWP/UPV/

UDD 

Maximum investment number of wind power generator, PV 

generator and dispatchable generator. 

VSB
 Voltage at distribution network substation. 

LCij Capacity of distribution network branch ij. 

  

Variables 

XEV EV penetration rate during the planning horizon. 

XLD Conventional load increase rate during the planning horizon. 

XDS The rate of EV charging respond to electricity price. 

u
WP 

w /u
PV 

c /   

u
DD 

g  

Binary variable, with 1 to install wind power generator, PV 

generator, dispatchable generator. 

I
WP 

w /I
PV 

c /     

I
DD 

g  

Integer variable for installation capacity of wind power 

generator, PV generator, dispatchable generator. 

P
WP 

w,t / P
PV 

c,t /P
DD 

g,t  

Output of wind power generator, PV generator and 

dispatchable generator. 

Pj,t/Qj,t Active/reactive power flow at j,t. 

P
QU 

j,t /Q
QU 

j,t  Quadratic term of active/reactive power flow at j,t. 

P
LD 

j,t /Q
LD 

j,t   Active/reactive power load at j,t. 

Vj,t Voltage at j,t. 

Q
SVC 

r,t  Output of static voltage compensator at r,t. 
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P
CH 

v,t  EV charging demand at c,t. 

S
V,LB 

j,t /S
V,UB 

j,t  Slack variables for lower/upper bound of real-time worst-case 

voltage violation requirement at j,t. 

S
LC 

j,t  Slack variables for line capacity of real-time worst-case power 

flow at j,t. 
 

  

 

3.2. Uncertainties in Planning Problem 

3.2.1 Planning Uncertainty 

The uncertainties in this paper can be divided into two levels, namely the upper-

level planning uncertainty and the lower-level operation uncertainty. The upper-

level planning uncertainty is defined as the one caused by demand variation during 

the whole planning horizon, such as EV penetration level, distribution network 

load increase and EV owners’ price-responsive behavior, while the lower-level 

operation uncertainty is defined as the one caused by daily operation, such as the 

daily operation uncertainty of EV charging demand and the NDG output. The 

upper-level planning uncertainty is unpredictable and non-repetitive, especially 

considering the EVs are emerging participant in distribution network. It also 

remains uncertain how many EVs would respond to electricity price to determine 

their charging decisions. In this paper, we assume the planning uncertainties can 

be quantified with the upper and lower bounds according to practical experience, 

given as follows, 

[ , ]EV EV EV    , [ , ]LD LD LD    , [ , ]DS DS DS       (3.1) 

where XEV, XLD, XCC represent EV penetration level, distribution network load 

increase rate and EV owns’ price responsive rate, respectively. The overline and 

underline are used to represent the lower bound and upper bound respectively. 

For the lower-level operation uncertainty, lots of previous works use uncertainty 

budget constraints to model the uncertainty of renewable energy outputs for the 

input of robust optimization model. In this method, the worst-case scenario is 

usually obtained when the NDGs output keeps switching from the upper bound, 

lower bound or expected values in a day. However, it would be not suitable for 
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planning problems. As seen from the historical data, it is quite frequent that NDGs 

output at maximum or minimum output during the whole day. As the power system 

reliability is the major concern for a planning problem, the worst-case scenario is 

better to be selected as the maximum or minimum output, which is considerably 

depends on the investment capacities, 

, [0, ]WP WP WP

w t wP I ,
,

, [0, ]PV PV CA PV PV

c t t cP I      (3.2) 

where the lower bounds of the NDGs are set as zero and the upper bounds are set 

as the installation capacity. ξ
PV,MO 

t  denotes the ratio of hourly maximum output of 

PV generations with respect to its investment capacity. 

Aggregate nodal EV charging demand 

Determine individual EV charging demand

Start

All EVs?

End

All EV charging station?

k=k+1

v=v+1

Sampling from dataset 

Statistical analysis of EV charging demand

No

No

Yes

Yes

All scenarios?

No

Yes

l=l+1

 

Figure 3.1 Flowchart for modeling EV charging demand 

 

3.2.2 Modelling individual EV charging demand 

As EVs are emerging products, the future EV quantity increase and EV owners’ 

charging behavior remain considerably uncertain. Modelling the uncertainty of EV 

charging demand is quite different from the NDGs. This paper adopts data mining 

method to find out user travel behavior and then obtain the statistical information 

of EV charging demand, which can be further used to formulate polyhedral 

uncertainty set for robust optimization. Note that this kind of distribution-free 

uncertainty modelling method is suitable for the non-predictive EV charging 
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demand and the data mining method improves the accuracy in modelling 

uncertainty. The EV charging demand uncertainty is processed with the following 

three steps: 1) modelling EV owners’ travel behavior; 2) modelling individual EV 

charging behavior; 3) statistical analysis of EV charging demand. 

1) Modelling individual EV charging demand. In this mode, EVs are assumed 

to be plugged into grid and charged as soon as the last trip in a day ends and to be 

plugged out when the batteries are full. The charging duration is dependent on the 

accumulated mileage in a day. The charging load for each EV can be formulated 

as 

ch arr arr

,

ch

, & & , ,ch depk CS
k t k k kch

DT E
P P if t t t t t t k K t T

P



           (3.3) 

where κ and Κ are the index and set of the trips whose destination is home, which 

will trigger the charging action. P
ch 

υ  denotes the fixed charging rate, which can be 

randomly selected from the predefined charging power dataset with corresponding 

probability, and υ is the index of variously rated charging power. DTΚ is the total 

travel distance during the day, ECS is the per-mile energy consumption, ηch is the 

charging efficiency, and t
arr 

κ  and t
dep 

κ  are the EV arrival and departure time.  

2) Price-responsive charging mode. In this mode, EV owners are assumed to 

respond to electricity price by rearranging their charging profiles. To obtain proper 

EV charging profile, two assumptions are proposed: 1) EV owners respond to the 

electricity price by charging their EVs at the lowest electricity price and the 

batteries are fully charged before next trip begins; 2) the electricity price has a 

negative correlation with total active distribution network demand. In this regard, 

EV charging demand is reformulated by shifting the EV charging demand to the 

active distribution network demand valley period. The individual EV charging 

demand should be optimized as follows, 

arr

ch

,

[ , ]

min ,
dep

t t

t t t

f P

 

  


        (3.4) 

L

t taP b          (3.5) 

Subject to
arr

ch

,

[ , ] ch

,
dep

C

t ch

t t t

D E
P

P
 









       (3.6) 
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ch

,0 , ,ch

tP P t T             (3.7) 

where the objective function (3.4) is to minimize total charging cost for each EV, 

λt denotes electricity price at t and is assumed to have an inverse linear correlation 

with total active distribution network load. In (3.6), the EV charging demand, 

which is the total energy consumption during the day, should be guaranteed before 

departure. (3.7) describes the charging rate limitation. 

3.2.3 Statistical Analysis of EV Charging Demand 

The survey dataset [51] contains 119,480 trips in total, collected within 3 

months. For each trip, the information provided by the data includes: departure 

time, departure location, arrival time, arrival location, trip distance, transit access 

mode, etc. The large number of trips and the detailed record of each trip provide 

valuable assistance in modeling the uncertainty of EV charging demand. The 

flowchart for modelling EV charging demand profile is given in Fig. 3.1. By 

randomly sampling from travel database, a bunch of parameters [tarr,tdep,D] can be 

obtained. Then the EV charging profile can be acquired either by immediate 

charging strategy or price-responsive charging strategy, with the ratio related to 

XDS. Then the charging demand of all EVs under an active distribution network 

node is summarized and regarded as one scenario. By repeating this procedure, 

various scenarios can be obtained, given as 

, ,

ch ch

, , , , , , ,
IC PC
v l v l

CH

v t l t t

N N

P P P v V t T l L 

  

            (3.8) 

where P
CH 

v,t,l  denotes the aggregated charging demand under an active distribution 

network node v in scenario l at time t, summarized by all the EV charging demand 

in different charging strategies. N
IC 

v,l  and N
PC 

v,l  represent the set of EV immediate 

charging demand and price-responsive charging demand respectively. When the 

sample size L is large enough, the uncertainty of charging demand can be properly 

described. The average value of EV charging demand can be obtained by 

'
,

, , ,'

,

1ˆ , ,

v t

CH CH

v t v t l

l Nv t

P P v V t T
N 

         (3.9) 
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where 
,

ˆ CH

v tP  denotes the average value in the scenarios and |·| denotes the 

cardinality of the set. The corresponding confidence level can also be obtained, 

, , , , ,inf{ | Prob( ) }, ,CH CH

v t v t v t l v tP P t T v V            (3.10) 

, , , , ,sup{ | Prob( ) }, ,CH CH

v t v t v t l v tP P t T v V            (3.11) 

,

, ,inf{ | Prob( ) },CH C CH

t t v t l t

v V

P t T  


          (3.12) 

,

, ,sup{ | Prob( ) },CH C CH

t t v t l t

v V

P t T  


         (3.13) 

,

, ,inf{ | Prob( ) },CH T CH

v t v t l t

t T

P v V  


         (3.14) 

,

, ,sup{ | Prob( ) },CH T CH

v t v t l t

t T

P v V  


         (3.15) 

where ,

CH

v tP  and ,

CH

v tP  denote the lower and upper bound of EV charging demand 

under active distribution network node v at time t, ,CH C

t  and ,CH C

t  denote the 

lower and upper bound of the location-aggregated EV charging demand at time t 

with confidence interval α. ,CH T

v and ,CH T

v  denote lower and upper bound of the 

time-aggregated EV charging demand under active distribution network node v 

with confidence interval α. All these parameters are obtained as inputs of 

uncertainty set in the proposed planning model. 

 

3.3. Mathematical Formulation 

3.3.1 Deterministic Model 

In this section, a deterministic active distribution network planning (Det-P) 

model with EV charging demand integration is developed. Generally, the 

framework is to obtain the optimal NDG and DDG sitting and sizing by 

minimizing the summation of investment cost and operation cost assuming the 

prospective EV charging demand and the output of NDG are assigned with their 

expected value. The Det-P model is given as, 

min INV OPf f f         (3.16) 



 

46 

 

INV WP WP WP WP WP

w w w

w W

f c u I 


         

PV PV PV PV PV DD DD DD DD DD

c c c g g g

c C g G

c u I c u I   
 

      (3.17) 

, ,

,2

0

ˆˆ
ˆ( )

QU QU

j t j tOP D EM D EM WP

t ij t w t

t T ij L t T w W

P Q
f r P

V
 

   


         

, ,
ˆ ˆ( ) ( )D EM PV D DD EM DD

t c t t g t

t T c C t T g G

P P  
   

      (3.18) 

where, 

(1 ) (1 ) (1 )
, ,

(1 ) 1 (1 ) 1 (1 ) 1

WP PV DD

WP PV DD

n n n
WP PV DD

n n n

     
  

  

  
  

     
  (3.19) 

subject to, 

, ,

, , , ,2
( ) ( ) ( )0

ˆˆ
ˆ ˆ ˆ ˆ

ˆ
EV

QU QU

i t i t LD CH

j t i t ij j t v t

i j i j v j

P Q
P P r P P

V   


          

, , ,

( ) ( ) ( )

ˆ ˆ ˆ , ,
WP PV DD

WP PV DD

w t c t g t

w j c j g j

P P P j J t T
  

           (3.20) 

, ,

, , 2
( ) ( ) 0

ˆˆ
ˆ ˆ

QU QU

i t i t

j t i t ij

i j i j

P Q
Q Q x

V  


          

, ,

( )

ˆ ˆ , ,
RP

LD SVC

j t r t

r j

Q Q j J t T


        (3.21) 

, ,

, ,

0

ˆˆ( )
ˆ ˆ , , ( ),

ij i t ij i t

j t i t

r P x Q
V V j J i j t T

V



           (3.22) 

, , , , , ,
ˆ ˆ , , ,QU AP AP AP

j t j t j t j tP K P B j J t T              (3.23) 

, , , , , ,
ˆ ˆ , , ,QU RP RP RP

j t j t j t j tQ K Q B j J t T              (3.24) 

,
ˆ , ,WP WP WP WP WP

w t t w wP u I w W t T           (3.25) 

,
ˆ , ,PV PV PV PV PV

c t t c cP u I c C t T           (3.26) 

,
ˆ , ,DD DD DD DD

g t g gP u I g G t T          (3.27) 
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,WP WP

w

w W

u U


 ,PV PV

c

c C

u U



DD DD

g

g G

u U


                         (3.28) 

,
ˆ , 1,SB

j tV V j t T                                                             (3.29) 

,
ˆ , ,SVC SVC SVC

r r t rQ Q Q r R t T                                           (3.30) 

2

, ,
ˆˆ , , ( ),QU QU

j t j t ijP Q LC j J i j t T                                          (3.31) 

,
ˆ1 1 , ,j tV j J t T                                                             (3.32) 

where, the objective function (3.16) is to minimize the overall annual costs 

including investment and operation. The annual investment cost fINV in (3.17) 

consists of the installation cost of wind power generators, PV generators and DGs. 

The capital recovery factors βWP/βPV/βDD, defined in (3.19), are used for conversion 

from total investment cost to annual cost, where ζ denotes yearly interest rate and 

nWP/ nPV/ nDD are lifetime of each DG. The annual active distribution network 

operation cost saving fOP is given in (3.18), where the first term denotes the cost 

of active distribution network operation loss, the second and third terms denote the 

cost saving by wind power and PV generator investment, and the forth term 

denotes operation revenue/cost due to DG investment. Constraints (3.20)–(3.22) 

describe the active power flow, reactive power flow and voltage along the branch, 

considering the integration of the DG output and EV charging demand. The 

piecewise linearized Distflow model is proposed by linearizing the quadratic terms 

of active power and reactive power based on the DistFlow equations in [29, 30]. 

The axillary constraints (3.23)–(3.24) are used to estimate the quadratic terms of 

active and reactive power P
QU 

j,t Q
QU 

j,t , with piecewise linearization approximation 

(PLA) method, where K
AP 

γ,c,t K
RP 

γ,c,t and B
AP 

γ,c,t B
RP 

γ,c,t are the constant coefficients. In (3.25)

–(3.26), the output of distributed wind power generator and PV generator are 

described by its average statistical value. In (3.27), the output of DDG is limited 

by its investment capacity. The total installation number of DGs is limited by(3.28). 

The voltage of the substation is given in (3.29). The upper and lower limitation of 

static voltage compensator is given in (3.30). The active distribution network 

branch capacity limitation is described by (3.31). The nodal voltage constraint is 

given by (3.32). 



 

48 

 

3.3.2 Robust Optimization Based Feasibility Checking Constraints 

The proposed Det-P model determines an optimal planning solution from 

economic aspect, where the reliability of the distribution network operation is not 

considered. The basic idea of adding the feasibility checking constraints into the 

Det-P model is to make sure the distribution network always remains secure and 

reliable operation in any conditions of revealed uncertainties. The mathematical 

method of robust optimization is adopted aiming at defining and finding out a 

worst-case scenario, which is a set of parameters such that the distribution network 

operation security for any other scenarios can be guaranteed. Hence, the robust 

distribution network planning model becomes two-stage, where the first stage 

problem minimizes the total cost given the expected output of the uncertainties as 

defined in (3.16)-(3.32), and the second stage problem checks the feasibility of the 

first stage decision variables, discussed in details in this subsection.  

To guarantee the distribution network security and reliability, mathematically 

the distribution network constraint should not be violated. In this regard, we use 

non-negative slack variables to relax the constraints, with the robust optimization 

based feasibility checking model formulated as, 

, ,

, , ,( ) 0
I US II WS

V LB V UB LC

j t j t j t
M M

t T j J

max min S S S
 

 

      (3.33) 

where S
V,LB 

j,t  and S
V,UB 

j,t  denote the slack variables of voltage drop and voltage rise 

constraints and S
LC 

j,t  denotes the slack variables of distribution network line capacity 

limitation. 

The uncertainty set ΩUS is to quantify the uncertainties of four kinds of variables, 

i.e., EV charging demand, conventional load and wind power generator and PV 

generator. The uncertainty set ΩUS and the variables describing the uncertainty MI 

are defined as, 

{ :US IM   , , , ,[ , , , ]CH LD WP PV

I v t j t w t c tM P P P P  

 , , , , ,EV CH CH EV CH

v t v t v tP P P v V t T           (3.34) 

, ,

, ,EV CH C CH EV CH C

t v t t

v V

P t T


            (3.35) 

, ,

, ,EV CH T CH EV CH T

v v t v

t T

P v V


           (3.36) 
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, ,
ˆ , ,LD LD LD

j t j tP P j J t T           (3.37) 

(3.1)–(3.2)      (3.38) 

where constraints (3.34)–(3.38) describe the uncertainty budget of EV charging 

demand. Constraints (3.35) and (3.36) are uncertainty budget quantifying node and 

time-aggregated EV charging demand uncertainty. Constraint (3.37) describes the 

variation of conventional load. Constraints (3.38) represents the upper-level 

planning uncertainty and the boundary of NDG.  

The set ΩWS defines the distribution network power flow in worst-case scenario. 

The formulation of the worst-case distribution network power flow is similar to 

the deterministic power flow in the first-stage optimization. The major difference 

is from twofold. Firstly, the uncertainties in the second stage, i.e., the EV charging 

demand, the distribution network load, the output of wind generator and PV 

generator, become variables quantified by the uncertainty setΩUS, while they are 

parameters describing the expected values in the first stage. Secondly, the 

constraints of voltage lower bound, voltage upper bound and line capacity are 

relaxed with slack variables. Hence, the worst-case power flow set ΩWS and the 

second-stage variables M
 

II are given as, 

I II{ , :WS M M 
, ,

, , , , , , , , ,[ , , , , , , , , ]QU QU SVC V LB V UB LC

II j t j t j t j t j t r t j t j t j tM P Q P Q V Q S S S

, ,

, , , ,2
( ) ( ) ( )0 EV

QU QU

i t i t LD CH

j t i t ij j t v t

i j i j v j

P Q
P P r P P

V   


          

,

( ) ( ) ( )

, ,
W PV MT

WP PV DD

w c g t

w j c j g j

P P P j J t T
  

           (3.39) 

, ,

, , , ,2
( ) ( ) ( )0

, ,
RP

QU QU

i t i t LD AVR

j t i t ij j t r t

i j i j r j

P Q
Q Q x Q Q j J t T

V   


         

 (3.40) 

, ,

, ,

0

( )
, , ( ),

ij i t ij i t

j t j t

r P x Q
V V j J i j t T

V



                  (3.41) 

, , 1,SB

j tV V j t T          (3.41) 

, , , , , , , , ,QU AP AP AP

j t j t j t j tP K P B j J t T              (3.42) 

, , , , , , , , ,QU RP RP RP

j t j t j t j tQ K Q B j J t T              (3.43) 
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, , ,SVC SVC SVC

r r t rQ Q Q r R t T           (3.44) 

 , ,, , ,QU QU

j t j tP Q R j J t T          (3.45) 

,

, , 1 , ,V LB

j t j tV S j J t T            (3.37) 

,

, , 1 , ,V UB

j t j tV S j J t T            (3.46) 

2

, , , , , ( ),QU QU LC

j t j t j t ijP Q S LC j J i j t T                              (3.47) 

, ,

, , ,, , , ,V LB V UB LC

j t j t j tS R S R S R j J t T            (3.48) 

where constraints (3.39)–(3.41) describe the worst-case power flow, constraint 

(3.42) limits the substation voltage, constraints (3.43)–(3.44) (3.46) describe 

linearization of quadratic terms of active and reactive power in the worst-case 

scenario and constraint (3.45) describes the limitation of static voltage 

compensator output. The voltage upper and lower boundary limitations are given 

in (3.47) and (3.48). The line capacity limitation is given in (3.49). The slack 

variables are non-negative, described in (3.50). 

It should be noted that the upper bound and lower bound of MI are variables 

representing the upper-level planning uncertainty, which will make the problem 

intractable. Considering the fact that the distribution network constraints of voltage 

and line capacity will either reach the upper bound or the lower bound in worst-

case scenario, the robust optimization based feasibility checking model can be 

decomposed into the following categories. With each power flow, the input of EV 

penetration level and conventional load are given as, 

,EV EV LD LD      , if 1s      (3.49) 

,EV EV LD LD      , if 2s      (3.50)  

where the index s is used for counting the feasibility checking constraints. In other 

word, the feasibility checking constraints are written twice and (3.51) and (3.52) 

are interpreted as the input of the uncertainty set ΩUS for each feasibility checking 

constraint. The worst-case scenario s=1 describes power redundant case when the 

lower bound of distribution network load and the upper bound of NDG output are 

selected. In this condition, the power generated in distribution network is larger 
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than the demand. The worst-case scenario s=2 describes power insufficient case 

when the upper bound of distribution network load and the lower bound of NDG 

are selected. In this regard, the power generated in the distribution network is 

smaller than the demand. Thus, the voltage tends to reach its lower bound and the 

power flow tends to reach the line capacity. It should be also noted that some 

parameters in uncertainty set is a function of XDS, given as follows, 

, , , , , ,

, ,[ , , , , , ] ( )CH s CH s CH C CH C CH T CH T DS

c t c t t t c cP P g          (3.51) 

3.4. Solution Method 

3.4.1 Compact Formulation 

For simplicity, the compact formulation of model RP-I is written as follows, 

ˆ,
ˆmin T T

x y
a x + b y                                                 (3.52) 

s.t.         ˆ ˆ, Ax +By c Cx + Dy d                                 (3.53) 

| ( ) 0,
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.

s s s

s s
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s s s s

s s s s

s

max min s

s

s

R s

s t



  

   

 
  
 

   



T

v y ,z

s

x f z

+ G v H z g
x

I h

J v i z

Ex F y

y

(3.54)(3.55)(3.56)(3.57) 

where x represents integer vector of DG investment capacity, ŷ  represents 

continuous vector of active distribution network operation variables in base case, 

s is the index of feasibility check, ys represents continuous vector of active 

distribution network operation status in worst-case scenario s, zs represents the 

slack variables of active distribution network operation constraints, vs represents 

binary vector to indicate whether the upper or the lower bound of uncertainty is 

selected. The variables XEV, XLD in the uncertainty set can be assigned with their 

either lower or upper bound manually in different scenario s so that the value of is 

can be determined. 

The compact formulation (3.52)–(3.57) is formulated as a two-stage problem 

and thus can be rewritten separately as, 

Main problem (MP): (3.52)–(3.53) 
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Subproblem (SP):  

s s

smax min T

v y ,z

f z       (3.58) 

s.t. (3.55)–(3.57)      (3.59) 

Then the methodology for the main problem and the subproblem can be 

developed accordingly. 
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Figure 3.2. The framework of the active distribution network investment 

algorithm. 

 

3.4.2 Solution Methodology for Subproblem. 

Mathematically the SP problem is a bi-level mixed integer linear program 

(MILP) and can be solved by many methods such as the duality theory. In this 

study, the inner-level problem is replaced by its dual and the SP is formulated as a 

single-level bilinear program, which can be solved by either outer approximation 

method [34] or big-M method [35]. As OA may fail to find the global optimal 

solution, big-M method is adopted to solve subproblem. The compact formulation 

of the dual problem of subproblem is given as follows, 
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( .* )
s s

s s s T s T smaxO   
v ,ψ

c G v ψ hE λx     (3.60) 

s.t.  
s ssT T s T ψ I λ 0F       (3.61) 

s sT TH ψ f         (3.62) 

s s J v i        (3.63) 

s λ R         (3.64) 

where 
sT

ψ  and T
λ  are the dual vectors of (3.63) and (3.64) respectively and ‘.*’ 

in (3.60) is a Hadamard product. Then to linearize the bilinear term in the objective 

function, auxiliary variables and constraints are introduced to convert the problem 

into a MILP problem, as follows, 

)(
s s

s s T s sT TemaxO   
v ,ψ

Exc ψ h λ w     (3.65) 

s.t. 
s s s

Big BigM M  v w v      (3.66) 

( ) ( )s s s s s s s

Big BigM M     T T
G ψ 1 v w G ψ 1 v   (3.67) 

(3.61)–(3.64)      (3.68) 

where MBig is the positive parameter that is sufficient large compared to the bilinear 

term. Thus the problem is formulated as a MILP, which can be solved by 

commercial solvers such as Cplex and Gurobi. 

3.4.3 Solution Methodology for Main Problem 

Note that both the master problem, described with (12a)–(12b), and the 

subproblem, described with (3.65)–(3.68), are formulated as MILPs. Then the 

C&CG algorithm is adopted to solve the RP-I problem and named as Al, with 

details given as follows, 

Al: C&CG Algorithm 

Step 1: Set k = 1. 

Step 2: Solve (12a)-(12b) with axillary constraints as follows, 

   , ,s s

k

s s s

k s  s
+G v g IF y y hEx                                 (3.69) 
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Step 3: If |Os-0|<εA1 for all the scenario s, terminate. Otherwise, solve (15a)-

(15d) for scenario s. Otherwise, obtain the optimal solution 
1

s

kv , create axillary 

variable vector 
1

s

ky  and add the following constraints, 

, ,s s

k

s s s

k s  s
+G v g IF y y hEx                                (3.70) 

Update k= k+1 and go to step 2. 

In Al, εA1 represents the convergence gap and s

kv  is the parameter representing 

the identified uncertainty in worst-case scenario. In the C&CG algorithm, a 

number of additional constraints (3.70) are directly added into MP. Fig. 3.2 

illustrates the worst-case feasibility checking algorithm for the proposed model. If 

the SP in any scenario s is not feasible, the corresponding C&CG constraints will 

be generated and added to the main problem. The algorithm stops only when all 

the SPs in worst-case scenario are feasible. 

 

3.5. Case Study 

In this section, case studies are conducted to illustrate the proposed model using 

the modified IEEE 123-node distribution network. All the algorithms are 

implemented on MATLAB programmed with the toolbox YALMIP [52]. Cplex is 

used as the MILP solver, with the optimality gap set as 10-3. 

Table 3.1. Parameter Settings 

Parameter Value Parameter Value 

ε 0.05 λ
EM 

t  0.07$/MWh 

VSB 1.0 λDD 0.15$/MWh 

UWP/ UPV/ UDD 6/3/1 α 0.9 

δWP/δPV/δDD 0.1/0.05/0.1MWh /EV EV   1.0/1.5 

ηch 0.9 /LD LD   1.0/1.2 

P
ch 

υ  6 kW /DS DS   0.1/0.9 

Θ 50$/MWh MBig 1000 
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3.5.1 Test System 

In the modified 123-node active distribution network system, 6 nodes are 

connected with EV charging facilities and 6 nodes are equipped with static voltage 

compensators, as shown in Fig. 3.1. 50 EVs are assumed to arrive in a day at each 

active distribution network node with EV charging facility. The average active 

distribution network peak load without consideration of the EV charging demand 

is set as 2.84 MW/1.53 MVAR and the 24 one-hour load value at each of the 24 

one-hour time intervals, compared with the peak load, is given as 0.64 0.645 0.635 

0.64 0.705 0.81 0.86 0.83 0.85 0.87 0.905 0.83 0.81 0.85 0.89 0.96 1 0.99 0.94 

0.91 0.87 0.8 0.72 0.66. The DG investment costs are referred to [36] and other 

important parameters are given in Table 3.1. 

 

 

Figure 3.3. Modified IEEE 123-node distribution network for DN planning. 

 

3.5.2 Planning Schemes 

The proposed robust optimization based distribution network planning model 

determines the optimal sizing and siting of all kinds of DGs, hedging against any 

output uncertainties of EV charging demand and NDGs, with its final planning 
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scheme given in Table 3.2.  It can be observed that the total investment capacity 

of NDGs is larger than DDGs, which is mainly due to the general economic 

advantages of nearly zero operation costs. The wind power generator investment 

is preferably selected compared with the PV generators, as the wind power 

generators can provide energies during the whole day. It can also be found that the 

NDGs are located separately in the distribution network so that the energy can be 

locally supplied. In this way, the energy loss of distribution network is maximumly 

reduced and the voltage deviation can be reduced to the largest extent.  

The voltage profiles at node 75 in both power redundant worst-case scenario 

and power insufficient worst-case scenario are given in Fig. 3.3 and Fig. 3.4 

respectively. The power redundant scenario occurs when the NDG output is high 

and total distribution network load is low. In this condition, the distribution 

network voltage shows a significant rise from below 1.0 p.u. to above 1.0 p.u. The 

NDG investment capacity is well optimized to make sure the voltage deviation is 

within its upper boundary. The DDG is not committed on in this scenario. The 

power insufficient scenario occurs when the NDG output is low and total 

distribution network load is high. In this condition, the distribution network 

voltage tends to drop below 0.95 p.u., leading to the urgent demand of DDG 

investment. Fig. 3.5 shows that the DDG output help to maintain the voltage at 

0.95 p.u. Hence, it can be concluded that the investment capacity of NDGs is 

limited by the upper boundary of voltage and the investment capacity of DDGs is 

determined by the level of voltage drop in power insufficient worst-case scenario. 

Table 3.2 Planning Scheme of RP-I Model 

Location Type Size(MVA) Location Type Size(MVA) 

19 WP 0.7 51 PV 0.35 

42 WP 1.1 93 PV 0.15 

53 WP 1.9 114 DDG 0.5 

68 WP 1.5 Total WP 5.8 

87 WP 0.4 Total PV 0.5 

110 WP 0.2 Total DDG 0.5 
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Figure 3.4. Voltage profile at node. 75 in power redundant worst-case scenario 

 

Figure 3.5. Voltage profile at node 75 in power insufficient worst-case scenario 
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3.5.3 Impact of NDG curtailment 

The aforementioned model guarantees the distribution network operation 

security given any NDG output within its installed capacity. However, it is 

possible to curtail the excessive NDG output when the constraints violation 

happens, which may be practically implemented by command-driven electronic 

devices for NDG. To enable curtailment, [53] proposes the concept of admissible 

boundary of the wind power generators and PV generators, where the operation 

security is guaranteed as long as the NDG output is within the admissible boundary 

and the power out of boundary is curtailed. Hence the curtailment allowed 

distribution network planning model can be formulated by adding the following 

objective function and constraints into the original model, simplified as RP-II, 

RP-II: 

min INV OP CTf f f f        (3.73) 

,

, ,( , ) ( ) ( )CT WP PV WP WP WP PV CA PV PV PV

w c w w t t c c t

t T w W t T c T

f I I I R I R   
   

       (3.74) 

subject to 

,0 , ,WP WP WP

w t wR I w W t T          (3.75) 

,

,0 , ,PV PV CA PV PV

c t t cR I c C t T          (3.76) 

(3.17)-(3.53)       

where R
WP 

w,t  and R
PV 

c,t  denote the axillary variables, denoting admissible boundary of 

the wind power and PV generators and θ denotes the curtailment cost. Notice that 

the upper bound of NDG output should be replaced by R
WP 

w,t  and R
PV 

c,t , while the upper 

bounds of R
WP 

w,t  and R
PV 

c,t  are limited by the investment capacity. 

Fig. 3.6 compares the planning scheme of the NDG curtailment allowed model 

and the one without curtailment. It can be observed that the total investment 

capacities of wind power generators and PV generators increase while the capacity 
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of DDG remain the same when curtailment can be carried out. Consequently, the 

total revenue shows a slight increase, which is largely due to the profit brought by 

the wind power plant investment. The DG locations are not given due to space 

limitation, which are generally similar to the non-curtailment model. It is because 

the topology of the distribution network remains unchanged. For practical 

implementation, the curtailment cost θ can be regarded as a weighting factor and 

adjusted according to planners’ preference. 
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Figure 3.6. Planning schemes of NDG curtailment allowed model. 

3.5.4 Impact of Carbon Emission Cost 

To hedge against greenhouse effect, carbon emission is usually posed an 

additional cost, known as carbon emission cost. Especially in a planning problem 

for power system, the carbon emission cost should be considered in calculating the 

distribution operation cost. Hence, the following terms should be added to the 

original objective. 

, ,
ˆ ˆ( )CE D CE WP PV

w t c t

t T w W c C

f P P
  

         (3.77) 

where fCE denotes yearly cost saving due to exempting carbon emission 

punishment and λCE denotes the per MW carbon emission cost, set as 10% of the 

electricity price. 
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The impact of carbon emission cost on the DG investment schemes is compared 

in Fig. 3.7. It can be observed that the planning schemes in RP-I model remain the 

unchanged when the carbon emission cost is considered. It is because the 

renewable DG investment capacity is limited by the distribution system security, 

i.e., the voltage rise constraint, rather than the economic return of investment. 

When it comes to the RP-II model, the investment of renewable DGs is more 

preferable if carbon emission cost is considered, as seen from the slight increase 

of wind power generator and PV generator investment in Fig. 3.7. In this case, 

even though more renewable DG investment will cause energy waste, it helps to 

reduce the traditional energy consumption and thus exempt more costs due to 

carbon emission punishment. Besides, the DDG investment capacity is to improve 

distribution system reliability and thus not affected by the carbon emission cost. 
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Figure 3.8. Impact of EV penetration level on DG investment 

3.5.5 Impact of EV penetration level on DG investment 

The impact of EV penetration level on the DG planning scheme is evaluated in 

this subsection. The EV penetration level is defined as the ratio of total EV 

charging demand to total distribution network demand during the day, given as, 

,

, ,
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ˆ ˆ

CH

v t

t T v V
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j t v t

t T j J t T v V
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PT
P P

 
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




 
                                  (3.78) 

where PTEV denotes the EV penetration level. The total investment capacities of 

DGs of RP-I model are depicted in Fig. 3.8. It can be found that the DDG 

installation capacity has a constant increase with the increase of EV penetration 

level and the installation of wind power generators and PV generators demonstrate 

a slight increase. As the proposed model tried to find a planning scheme that is 

robust for any possible uncertainties, the worst-case operation scenario is always 

found that the large-scale EVs happen to be charged when the NDGs output at the 

lower bound. Thus, NDGs cannot contribute as much as DDGs to providing energy 

and guarantee secure distribution network operation against uncertain output of 

NDGs and large-scale EV charging demand, which illustrates the fact that the 

installed DDG capacity is more sensitive to the EV penetration level. 
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3.6. Conclusions 

This paper proposes a robust distribution network planning framework 

accommodating the uncertainty of renewables and large-scale EVs. Advanced 

modelling of EV charging demand is proposed using polyhedral uncertainty set 

and data mining method is adopted to obtain the statistical parameter for the output 

of uncertainty set. Case studies demonstrate the effectiveness of the proposed 

model and verify the proposed algorithm by determining the optimal DG sizing 

and siting with both models. Results demonstrate that the NDG investment 

capacity is limited by the distribution system voltage rise constraint violations. 

When the NDG curtailment is allowed, the investment capacity can be further 

increased, especially when the carbon emission tax is considered. The DDG 

investment demonstrates a considerable growth when the EV penetration level 

becomes even higher in distribution system.
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4. Power System Spinning Reserve 

Requirement Optimization considering Electric 

Vehicles’ participation 

 

 

 

 

4.1. Introduction  

Spinning reserve in power systems is known as the reserve capacity that is 

spinning, synchronized and ready to dynamically balance system load [54]. In 

order to withstand sudden outages of some generators and unforeseen fluctuations 

of the power system demnad and renewable energies [55, 56], the daily operation 

cost increases as additional generators are committed on and other cheaper 

generators operate smaller than  the optimal output to provide the spinning reserve. 

Considering the widely application, EVs’ potential ability of interrupting charging 

demand and providing V2G service when the power system contingency happen 

will benefit the secure and economic operation of power systems. However, the 

effluences of EVs on the quantification of spinning reserve requirement is still to 

be further discussed.  

To quantify the spinning reserve requirement, both deterministic and 

probabilistic criteria are developed to keep the power system operating within a 

given risk level.  The reserve set by deterministic criteria is dependent on the 

capacity of the largest online generator or the certain proportion of the daily peak 

load, which is quite easy to implement [57]. However, lots of system uncertainties 

and the stochastic nature of the component failures are not taken into account using 

the deterministic criteria. To overcome this problem, the probabilistic criteria have 

drawn lots of attentions due to its advantages on demonstrating the uncertainties 

of the availability of generators, the outages of transmission networks, generator 

response rate, and so on [58]. The loss of load probability, the expected energy not 
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supplied and the unit commitment risk are commonly presented as probabilistic 

criteria to estimate the power system SRR [54]. A market clearing process with 

bounded loss of load probability and EENS is proposed as additional linearized 

constraints of unit commitment formulation [59]. Market clearing models are 

presented in [60] to optimize the spinning reserve via adding the cost of energy 

deficit calculated by the value of lost load and EENS into the typical unit 

commitment problem. However, these spinning reserve optimization methods are 

based on the adjustification of unit commitment formulation, which needs 

complicated iterative processes and approximate calculation of the risk levels 

related to the reserve provision. To address this issue, a cost and benefit analysis 

model is proposed to optimize the SRR in an auxiliary optimization method before 

solving the unit commitment problem [61]. The advantage of this model is not only 

on the computation efficiency improvement by avoiding suboptimal solutions but 

also on the excellent compatibility with existing unit commitment problems.  

In modern power systems, the influences of various factors are considered in the 

quantification of the SRR. The uncertainty of high penetration of wind power [62] 

poses a great challenge to the optimization of the spinning reserve [63, 64]. Besides, 

other emerging impact factors such as carbon capture plants [65], customers’ 

choice on the reliability [66] and bidding uncertainties in the electricity market [67] 

are taken into consideration in optimizing the spinning reserve. To keep the power 

system adequacy, some other factors are considered to partly replace the spinning 

reserve including rapid start units, interruptible loads, voltage and frequency 

reductions, assistance from interconnected system, and so on [68]. These 

additional factors and spinning reserve act as operating reserve. In practice, hydro 

generation is regarded the most common fast start-up unit to provide operation 

reserve [69]. An energy based technique to assess spinning reserve requirements 

considering the aid of interconnected systems is proposed in [70]. The influences 

of interruptible load and demand response on spinning reserve quantification are 

analyzed in [71]. 

Considering the unique advantages of flexible charging load and V2G service, 

EVs can be an effective alternative resource to supply operating reserve in the 

power system under optimal compensation mechanism. With the large number of 
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application of EVs in the foreseeable future, the ability of EVs in providing 

ancillary service are attracting large attentions [72-76]. Among these studies, the 

optimal EV scheduling schemes or the optimal bidding strategies involved in 

energy and reserve market are acquired through maximizing the profit of EV 

aggregators. Especially, power system reserve provided by V2G service can help 

to mitigate the influences of wind power production uncertainty and facilitate the 

integration of wind power [77, 78]. EVs can also provide supplemental primary 

reserve and frequency regulations via V2G technology to enhance power system 

stability [79, 80]. 

A cost-efficiency based optimization model of day-ahead spinning reserve 

requirement optimization considering the integration of EVs is proposed. In the 

study, EVs participate in contingency reserve optimization and provide energy 

support through charging interruption and V2G service when energy deficit occurs 

because of generator outage. Similar to EENS, expected energy supplied by EV is 

formulated to quantify EVs’ ability in providing operating reserve. Comprehensive 

cost/benefit analysis is carried out to compare the reserve provision cost of thermal 

generators and that from EVs. It explicitly verifies the merits of EVs’ reserve 

provision such as the reduction of operation cost and the improvement of system 

reliability. The impacts of the EV penetration level and the compensation to EV 

owners on SRR allocation are systematically evaluated based on sensitivity 

analysis to provide useful information to future implementation and effectively 

bring the concept of V2G into practice.  

The nomenclature of Symbols used in this chapter is given as follows, 

Sets  

G Set of generators. 

T Set of hourly time intervals. 

TΔ  Set of intra-hour time intervals. 

V Set of electric vehicles. 

Vc Set of electric vehicle clusters. 

  

Parameters  

CBI Battery investment cost of V2G service. 

CComp Compensation cost paid to EV owners. 
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CInt Cost to interrupte EV charging demand. 

CV2G Cost to provide EV V2G service. 

CREV EV compensation rate. 

dDoD Depth of discharge. 

E
Coms 

v  Daily energy consumption of EV v. 

Lb, Ub Lower and upper boundaries of SRR in grid search-based SRR 

optimization methodology. 

LC Battery cycle life at a depth of discharge.  

NEV Number of EVs. 

nc Number of EVs in cluster c. 

ORRi,τ Outage replacement rate of unit i at time τ. 

Paver Average power system demand. 

P
CH 

t  Total EV charging demand at time t. 

P
D 

t  Power system demand without EV charging demand at time t. 

Pch,max Maximum charging power of each EV. 

PV2G,max Maximum V2G discharging limitation of each EV. 

P
min 

i  ,P
max 

i   Lower and upper limitation of power output of unit i. 

PLEV Penetration level of EVs in power system. 

R
up 

i  Short-term up-regulation reserve rate of unit i. 

RDi, RUi Hourly ramp-up and ramp-down ability of unit i. 

SEV,max EVs’ battery capacity. 

Sclus,min, 

Sclus,max 

Lower and upper limitations of equivalent state of charge of EV 

cluster c. 

S
clus,exp 

c  Expected  state of charge  when EV cluster c plugs out. 

t
arr 

v , t
dep 

v  Arrival and departure time of EV v. 

u
EV  

v,t,τ  Binary parameter with 1 indicating EV connected to the grid. 

u
CI 

t’,t, τ,u
CII 

t’,t, τ,u
CIII 

t’,t, τ Binary parameters with 1 indicating the state before, during and 

after contingency 

u
EV,del 

t’,t,τ  Binary parameter with 1 denoting EV reacting to contingency 

VOLL Value of lost load. 

α,β,γ Generator cost function coefficients. 

 t,  τ Period of each time interval,  t = 1 hour;  τ = 10 minutes. 

ηch EV charging efficiency. 

λi Expected failure rate of unit i. 

ξt Uncertainty parameter of EV behaviors. 

τ1 Time interval of post-contingency EV reaction. 

τ2 Time interval of power system contingency. 

ω Proportion of power system demand which is required to 
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4.2. Mathematical Model 

4.2.1 Formulation of Spinning Reserve Requirement 

As the model developed in [61], the SRR of each optimization period can be 

obtained using an auxiliary optimization method before conducting the unit 

commitment problem. Hourly SRR is separately determined for each time interval 

based on cost/benefit analysis. The inter-temporal constraints are not considered 

provide, known as load following reserve 

  

Variables  

EENSt Expected energy not supplied. 

EESEV
Int 

t  Expected energy supplied by EVs’ charging interruption. 

EESEV
V2G 

t  Expected energy supplied by EVs’ V2G service. 

ESj,t,ESjk,t Energy shift due to random event of single unit j outage and 

double units j and k outage. 

E
Ch 

v,t’ Total EV charging energy between the time EV responds to 

contingency and the time system recovers. 

E
Sup 

v,t’  Maximum supplementary recharging energy between the 

recovery of power system and the departure of EVs. 

E
Rem 

v,t’  Total energy remained in the EV battery when EVs provide V2G 

service. 

E
V2G,lim 

v,t  Energy of V2G limitation during contingency period.  

Pi,t Power output of unit i at time t. 

P
Int 

t  The power capacity of interruptible EV charging. 

P
V2G 

t  The power capacity of EV V2G service. 

P
EVR 

t  Total power capacity of operating reserve that EVs can provide.  

P
ch 

v,t,τ Charging power of EV v at time t, τ. 

P
total 

t    Total power system demand considering EVs charging demand. 

Paver Average power system demand. 

P
ch,clus 

c,t,τ  Equivalent charging power of EV cluster c at time t,τ. 

Prj,t,τ,Prjk,t,τ Probability of the random event of single unit j outage and 

double units j and k outage. 

r
req 

t  Spinning reserve requirement at time t. 

ri,t Spinning reserve provided by unit i at time t. 

S
clus 

c,t  Equivalent state of charge of EV cluster c at time t. 

u
G 

i,t  On and off status of unit i at time t. 
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in the optimization model [61, 63, 65]. After the hourly SRR is obtained, it is 

regarded as inputs of typical reserve-constrained unit commitment model. The 

major advantage of the model mainly is the cost and benefit analysis of reserve 

provision. It is beneficial and practical to evaluate the effects of EVs on spinning 

reserve requirement from the economic-efficiency aspect. Considering EVs, the 

SRR model is given not only to balance the cost of operating generation and the 

cost of EENS, but also to consider the cost of the energy supplied by EVs.  

The SRR model with the consideration of EVs can be formulated as, 

SRR OPER EENS EESEV
req

req req req reqmin ( ) ( ) ( ) ( )
t

t t t t
r

f r f r f r f r           (4.1) 

where, 

OPER

, ,

req 2 G

, , ,
,

( ) min
G
i t i t

t i t i t i t
u P

i G

f r P P u  


                        (4.2) 

EENS

req( )t tf r VOLL EENS                                  (4.3) 

        EESEV

req Int V2G

Int V2G( )t t tf r C EESEV C EESEV                 (4.4) 

subject to: 

D CH

, ( ) 0,i t t t

i G

P P P t T


                                (4.5) 

req

, 0,t i t

i G

r r t T


                                       (4.6) 

G max up

, , , ,min{ ( ), }, ,G

i t i t i i t i t ir u P P u R t T i G                     (4.7) 

G min

, , , ,i t i t iP u P t T i G                                   (4.8) 

G max

, , , , , ,i t i t i t i tP r u P t T i G                                 (4.9) 

G G

, 1 , , 1 , 1 , ,i t i i t i t i t iu RD P P u RU t T i G                       (4.10) 

The objective function (4.1) is to minimize the overall hourly cost with respect 

to the SRR r
 req 

t , which consists of the cost of operating generation f 
OPER(r

req 

t ), the 

cost of the expected energy not supplied f 
EENS(r

req 

t ) as well as the cost of the 

expected energy supplied by EV fEESEV(r
req 

t ). The generation operation cost defined 
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in (4.2) is the operation cost of generators to meet the demand and provide the 

amount of SRR r
req 

t . The cost of EENS defined in (4.3) is the expected 

compensation paid to the EV users due to the load shedding. The cost of EESEV 

represented in (4.4) consists of the cost of the EV charging demand interruption 

and the cost of implementing V2G. The interruption and V2G service cost is 

decomposed of compensation to EV owners for delayed charging and the battery 

degradation, where the details will be discussed in the next section. The constraint 

of power system balance at each period is given as (4.5). The limitations of the 

spinning reserve provided by generators are defined by (4.6) and (4.7). The 

limitations of power generation are given as (4.8) and (4.9), and the ramp-up and 

ramp-down limitation rates of each unit is given as (4.10). 

4.2.2 Formulation of EENS and EESEV 

EENS can be determined according to the installed capacity of generating units, 

the probability of forced outage of each generator, the amount of spinning reserve 

that each generator can provide and the load level [54]. It is determined by 

summing all the energy curtailment related to the probability of each contingency. 

When the EVs participate in the operating reserve, EENS, as well as EESEV 

should be formulated with the reduction of the shedding load due to the 

contribution of EVs. The formulation of EENS and EESEV is complex as EVs 

need some time to take actions. The power not supplied in contingency period is 

depicted in Fig. 4.1, where EENS and EESEV are presented by the areas in 

different colors. EV reaction time τ1 is defined as the time delay for EV aggregator 

to act. To fulfill the post-contingency dispatch of EVs, the aggregator should firstly 

obtain EV reserve dispatching commands from power system operator; at the same 

time obtain the information of each EV, such as state of charge and departure time; 

finally make decision on whether EV’s interruption and V2G energy should be 

conducted based on each EV’s urgency priority. Power system contingency time 

τ2 is defined as the time period before the contingency reserve is restored by the 

offline generators. The values of τ1 and τ2 are set based on the requirement of 

interruptible import and contingency reserve restoration, given in Reliability 

Standards for the Bulk Electric Systems of North America [81]. Then EENSt can 

be divided into EENS
Ⅰ 

t  and EENS
Ⅱ 

t , where EENS
Ⅰ 

t  is the expected energy not 

supplied during τ1 and EENS
Ⅱ  

t  represents the expected energy not supplied 
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between τ1 and τ2. Only EENS
Ⅱ 

t  is reduced because of the existence of the expected 

energy supplied by the interrupted energy of EV EESEV
Int 

t  and the expected energy 

supplied by V2G energy EESEV
V2G 

t . 
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Figure 4.1. Area for evaluating EENS, EESEVInt 
t  and EESEVV2G 

t  

 

To determine EENS and EESEV, the probability of capacity outage is firstly 

analyzed. The failed probability of a generator can be estimated as [54]， 

, 1 21 , , ,i

i iORR e i G


    
                      (4.11) 

where ORRi,τ is given as the outage replacement rate and demonstrates the 

probability that the generator i fails and has not yet replaced during time interval 

τ. Then the time-dependent probability of the random outage event can be 

determined by (4.12) and (4.13), 

G G

, , , , , , 1 2

,

(1 ), , , ,j t j t j i t i

i G i j

Pr u ORR u ORR j G t T     
 

          (4.12) 

G G G

, , , , , , , ,

, ,

(1 ),jk t j t j k t k i t i

i G i j k

Pr u ORR u ORR u ORR   

 

   

1 2, , , ,j k G t T                                        (4.13) 

where Prj,t,τ represents the probability of the random event of single unit j outage, 
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and Prjk,t,τ represents the random event of units j and k outage. It should b noticed 

that the outage events of more than two generators are not taken in account in the 

study. The energy shift with these contingency scenarios is given as,  

req D

, , ,( ), ,j t j t t j t tES P r r P j G t T                      (4.14) 

req D

, , , , ,( ), ,jk t j t k t t j t k t tES P P r r r P j G t T              (4.15) 

where ωP
D 

t  represents the proportion of demand which are required to provide, 

known as load-following reserves [82]. 

To simplify the expression of EENS and EESEV, a piecewise function g(x) is 

introduced and given as below: 

, if 0
( )

0, if 0

x x
g x

x


 


                                           (4.16) 

EENS with the consideration of EVs can be formulated as, 

t t tEENS EENS EENS Ⅰ Ⅱ                                 (4.17) 

where 

1 1, , , 1 , , , 1

,

( ) ( ) ,t j t j t jk t jk t

j G j G k G j k

EENS Pr g ES Pr g ES t T  
   

     Ⅰ
     (4.18) 

2

EVR

, , , 2( )t j t j t t

j G

EENS Pr g ES P 


 Ⅱ
      

2

EVR

, , , 2

,

( )jk t jk t t

j G k G j k

Pr g ES P 
  

        

1

EVR

, , , 1( )j t j t t

j G

Pr g ES P 


        

1

EVR

, , , 1

,

( ) ,jk t jk t t

j G k G j k

Pr g ES P t T 
  

                     (4.19) 

where the EENS
I 

t , defined in (4.18), can be determined by summarizing the 

expected energy deficit due to the single generator outage and two generator 

outage within EV reaction time τ1 respectively. Considering the fact that EENS is 

a polynomial function of time τ, EENS
Ⅱ 

t  cannot be obtained directly. To acquire 

EENS
Ⅱ  

t , the first and second terms of (4.19) represent EENS within system 

contingency time τ2, and the third and fourth terms of (4.19) represent EENS within 
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time τ1, both according to the assumption that EVs take action immediately after 

contingency. The capacity of the EVs’ provision of operating reserve P
EVR 

t  is 

calculated by the sum of the EVs’ interruptible charging demand P
Int 

t  and V2G 

capacity P
V2G 

t , given as, 

EVR Int V2G ,t t tP P P t T                                  (4.20) 

The formulations of the three parameters P
EVR 

t , P
Int 

t  and P
V2G 

t  are introduced in 

the next section. Similar to the formulation of EENS
Ⅱ 

t , EESEV
Int 

t  and EESEV
V2G 

t  

can be defined as, 

2

Int Int

, , , 2[min( , )]t j t j t t

j G

EESEV Pr g ES P 


       

2

Int

, , , 2

,

[min( , )]jk t jk t t

j G k G j k

Pr g ES P 
  

      

1

Int

, , , 1[min( , )]j t j t t

j G

Pr g ES P 


      

1

nt

, , , 1

,

[min( , )] ,I

jk t jk t t

j G k G j k

Pr g ES P t T 
  

              (4.21) 

2

V2G Int V2G

, , , 2[min( , )]t j t j t t t

j G

EESEV Pr g ES P P 


       

2

Int V2G

, , , 2

,

[min( , )]jk t jk t t t

j G k G j k

Pr g ES P P 
  

      

1

Int V2G

, , , 1(min( , )]j t j t t t

j G

Pr g ES P P 


      

1

Int V2G

, , , 1

,

[min( , )] ,jk t jk t t t

j G k G j k

Pr g ES P P t T 
  

     (4.22) 

where EESEV
Int 

t  and EESEV
V2G 

t  are derived from the supplied energy during the 

system contingency time τ2 which neglects EVs’ reaction time, as the first and 

second terms in (4.21) and (4.22), subtracts the excessive amount of supplied 

energy during EV reaction time τ1, as the third and fourth terms in (4.21) and (4.22). 

As the cost of interrupting the EV charging demand is much smaller than the cost 

of V2G service provision, the charging interruption will be preferentially carried 

out in practice. From practical point of view, the possible scenarios can be given 

as below: 
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1) If the spinning reserve exceeds the capacity loss of system contingency, no 

energy deficit occurs and no EVs take action; 

2) If the energy deficit is smaller than the EV interruptible capacity P
Int 

t , only part 

of charging energy is interrupted;  

3) If the energy deficit exceeds the interruptible capacity P
Int 

t  and smaller than the 

EV capacity P
EVR 

t , all the EV charging energy is interrupted and part of V2G 

service is conducted;  

4) If the energy deficit exceeds the EV capacity P
EVR 

t , all the EV charging capacity 

and all the V2G capacity are scheduled to support power system. Only in this 

case, energy not supplied occurs. 

Lb Ub, 1

req

t mr  , 2

req

t mr  , 3

req
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Figure 4.2. Illustration of the iterated grid search algorithm 

4.2.3 Optimization Methodology 

The proposed SRR optimization model is non-convex but unimodal and the 

system cost does not change continuously when an additional generator is turned 

on. The iterated grid search algorithm with three-grid points is used here to solve 

the problem [83], with the details given as Algorithm 1. In the algorithm, the 

interval [Lb Ub] is the first set that is large enough containing the optimal value of 

SRR in the first initialization step; then three points of SRR are obtained equably 

among the given interval in Step 5. According to the searched SRR, generation 

cost is firstly optimized in Step 6; then EENS and EESEV are obtained in Step 7; 

the total system cost is determined by summarizing all the costs at last in Step 8. 
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Comparing the results, a narrower interval [Lb Ub] is reset, as shown from Steps 

10-16. This process is also visually explained in Fig. 4.2, where I1 is determined 

as new optimization interval if fSRR(r
req 

t,m=1) is the smallest, I2 is determined as new 

optimization interval if  fSRR (r
req 

t,m=2) is the smallest, and I3 is determined as new 

optimization interval if  fSRR (r
req 

t,m=3) is the smallest. The optimal SRR is finally 

determined until Lb is close enough to Ub and used as inputs of reserve-

constrained unit commitment.  

Algorithm 1 Grid search-based spinning reserve optimization methodology  

1: Initialization: Set t=1, k=1. Set Ik=[Lb Ub] large enough to contain the 

optimal value of SRR 

2: for t =1 to 24 do 

3:   while Ub-Lb>ε 

4:     for m=1 to 3 do 

5:          Let r
req 

t,m =Lb+m/4*(Ub-Lb) 

6:          Optimize fOPER(r
req 

t,m ), as shown in (4.2), with constraints (4.5)-( 4.10) 

             to obtain u
G 

i,t Pi,t and ri,t 

7:          Calculate EENSt, EESEV
Int 

t  and EESEV
V2G 

t with (4.11)-( 4.22) 

8:      Calculate f 
EENS(r

req 

t,m ) and fEESEV(r
req 

t,m ) using (4.3)-( 4.4) and then calculate f 

SRR(r
req 

t,m ) using (4.1) 

9:       end for 

10:     If fSRR(r
req 

t,m=1)< fSRR (r
req 

t,m=2) & fSRR (r
req 

t,m=1)< fSRR (r
req 

t,m=3) Then 

11:         Let [Lb Ub]=[Lb fSRR (r
req 

t,m=1)] 

12:      Else if fSRR (r
req 

t,m=2)< fSRR (r
req 

t,m=1) & fSRR (r
req 

t,m=2)< fSRR (r
req 

t,m=3) Then 

13:         Let [Lb Ub]=[ fSRR (r
req 

t,m=1)  fSRR (r
req 

t,m=3)] 

14:      Else if fSRR (r
req 

t,m=3)< fSRR (r
req 

t,m=1) & fSRR (r
req 

t,m=3)< fSRR (r
req 

t,m=2) Then 

15:         Let [Lb Ub]=[ fSRR (r
req 

t,m=2)  Ub] 

16:     End if 

17:   End while 

18:   Set r
req 

t =1/2*(Ub-Lb) 

19: End for 

20: Reserve-constrained unit commitment 
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4.3. Operating Reserve Provided by EVs 

In this subsection, the operating reserve that is provided by EVs is 

mathematically modeled. EV travel behavior is firstly modeled. Then two different 

charging scheduling schemes are executed based on two typical charging strategies, 

namely immediate charging and smart charging strategy. The capacities of EV 

interruptible charging demand and V2G service are determined respectively. The 

costs to provide these two services consisting of the compensation to EV owners 

and battery degradation are formulated at last. It should be noticed that modeling 

the capacity and cost of EVs’ service aims at estimating day-ahead EVs’ capacity 

to provide operating reserve, so that the day-ahead SRR can be determined 

accordingly. The actual post-contingency schedule of EVs is dependent on the 

real-time EV status determined by the EV aggregator, which is out of the scope of 

this thesis. 

Set v = 1

v=Nv

v=v+1

Spinning reserve optimization model in section II

Obtain charging 

scheduling with (4.26)
Optimize charging 

scheduling with (4.27)-(4.34)

Caculate PEV interruptible charging demand capacity and V2G 

capacity using (4.35)-(4.43) and CInt and CV2G using (4.44)-(4.45)

Coordinated charging 

strategy

End

Start

arr dep

v vt t

Yes

No

No

Yes

Yes

No

Part I

Part II

Part III

Exchange values of             
arr arr

v vvt t

Find [                   ] in Sv that

                   

arr dep Coms

vv vv vvt t E

,arr dep arr dep

vv v v vvt t t t 

Obtain Set Sv= [                   ]using Monte 

Carlo simulation with (4.23)-(4.25)

arr dep Coms

v v vt t E

 

Figure 4.3. Flowchart of modeling operating reserve provided by EVs 
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4.3.1 EV Travel Behavior 

The EV travel data is derived from the national household travel behavior 

survey, released by the U.S. Department of Transportation Federal Highway 

Administration [84]. A statistical probability method is carried out to analyze the 

results of travel behaviors [22]. Segmented normal distribution functions are used 

to match the time that the EV first plugs out of the grid and the time that EV last 

plugs into the grid. The probability density functions fs(t) and fe(t) are respectively 

given in (4.23) with s = 8.92 and s= 3.24, (39) with e = 17.47 and e = 3.41. 
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The daily travel mileage is modeled based on a logarithmic normal distribution 

function as below with m = 2.98 and m =1.14 

2

m
m 2

mm

(ln )1
( ) exp[ ]

22

x
f x

x






                                  (4.25) 

The Monte Carlo simulation method is adopted to capture the travel behaviors 

of the vehicles according to the aforementioned probability density functions fs(t), 

fe(t) and fm(t). The energy consumption before the vehicles are plugged into the 

grid is estimated according to the travel mileage and per mile energy consumption. 

The Monte carlo simulation is modified to ensure that the arriving time t
arr 

v  is 

smaller than the departure time t
dep 

v , as shown in Part I in Fig. 4.3.  

Different EV charging strategies have different influences on the ability of EVs 

to provide the operating reserve at each time interval. Both typical immediate 

charging and smart charging strategies are taken into account in the study.  
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1) Immediate Charging: In this mode, EVs are assumed to be charged once they 

are plugged into the grid when the last trips end in a day. The charging duration 

depends on the travel mileage in the day. Based on the assumption that EVs can 

respond to the contingency in several minutes, the intra-hour index τ is used to 

formulate a more accurate model and set the interval as 10 minutes in the study. 

The EV charging load can be given as, 

Coms
EV arr

,max , ,

ch ch,maxch

, , Coms
EV arr

, ,

ch ch,max

, 1and

0, 0or

v
ch v t v

v t

v
v t v

E
P if u t t

P
P

E
if u t t

P














   


 
    



 , ,v V t T T      

(4.26) 

where u
EV  

v,t,τ  denotes the state if the EV is connected to the grid; Pch,max denotes the 

maximum charging power; E
Coms 

v  represents the daily energy consumption. After 

EV arrives, it is charged at the maximum rate Pch,max until the energy is full. 

2) Smart Charging: In the smart charging mode, the travel information of each 

EV, such as the travel time and the daily travel energy consumption, is collected; 

then the time and the amount of EVs’ charging demand are orderly obtained by 

the system operators or the EV aggregators to benefit the operation of power 

systems. Here, a smart charging demand optimization model is proposed to 

optimize the EVs’ charging demand at each period via minimizing the daily system 

load fluctuation. Considering the large quantity of EVs, a clustering method is used 

in this model to improve the computation efficiency. The EVs with similar pattern 

of travel time and the daily travel mileage can be classified into the same group, 

so that is can be scheduled as a whole. EV smart charging strategy has been 

attracting lots of attentions in smart grid. To conduct smart charging strategy, 

many studies choose the objective of charging cost minimization in electricity 

market [74] or generation cost minimization[78]. The objective is set as demand 

smoothing [27], which can be given as, 

total 2

co avermin ( )t

t T

f P P


                                 (4.27) 

where 
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total D ch,clus

, ,
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1000
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t t c t

c V T
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                           (4.28) 

total
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24
t

t T

P P
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 clus,max

clus arr dep

clus,min , , , [ , ]c t c c cS S S c V t t t                     (4.31) 
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ch,clus arr dep

, , 0, , , [ , ]c t c c cP c V T t t t                         (4.34) 

The objective defined in (4.27) is devoted to smoothing the daily system demand. 

The mathematical definitions of P
total 

t  and Pmean are given as (4.28) and (4.29) 

respectively. The equality constraint of EV charging energy of each cluster is 

shown as (4.30). The upper and lower limits of equivalent battery capacity of EV 

clusters are defined by (4.31). The basic travel demand requirement should be 

satisfied as the inequality (4.32). The constraints of charging power limitation and 

non-schedulable state are listed as (4.33) and (4.34), respectively. 

4.3.2 Capacity Estimation 

Once the EV charging demand at each period is obtained using either immediate 

charging strategy or smart charging strategy, the time-varying capacity of 

interruptible charging demand and V2G service can be determined based on the 

specific values of the EVs’ parameters, which include the charging demand, the 

arriving and departing time, energy remained in the EV battery, and so on [85].  

The capacity of interruptible charging demand depends not only on the charging 

demand itself, but also on whether the interrupted load can be recharged before 

EV’s departure. In other words, the charging energy during system contingency 

can be interrupted only if there is still enough time to recharge this amount of 
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energy between the recovery of system contingency and EV’s departure, which 

can be represented as, 

Ch Sup

, ' , '
Int

' CII EV,del

', , ', ,
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where 

Ch CII EV,del ch

, ' ', , ', , , ,( ) , , 'v t t t t t v t

t T T

E u u P v V t T  



 

               (4.36) 

Sup CIII EV ch

, ' ', , , , ch,max , ,( ) , , 'v t t t v t v t

t T T

E u u P P v V t T  



 

             (4.37) 

where E
Ch 

v,t’  is the amount of total charging energy between the time when EVs 

respond to contingency and the time when system recovers, E
Sup 

v,t’  represents the 

maximum amount of supplementary recharging energy between the time when 

power system recovers from contingency and the time when EV departs, the time 

index t’ is to show the time when the contingency occurs. The power system 

contingency is assumed to happen only at the beginning of each hour for simplicity. 

The definitions of the binary parameters u
CI 

t’,t, τ , u
CII 

t’,t, τu
CIII 

t’,t, τ and u
EV,del 

t’,t,τ   are defined as, 
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where u
CI 

t’,t, τ , u
CII 

t’,t, τ and u
CIII 

t’,t, τ are the binary parameters with 1 denoting before, during 

and after contingency, respectively, u
EV,del 

t’,t,τ     is the binary parameter with 1 denoting 

that the EVs are reacting to contingency, u
EV  

v,t,τ  is the binary parameter with 1 

indicating that EV is connected to the grid. The number 1000 is used to make the 

transition from kW to MW. 

The formulation of the V2G capacity is same as (4.35). However, the 
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discharging limitation and the energy remained in the battery of EVs when V2G 

occurs should be considered in the formulation of the V2G capacity as well, 

represented as, 
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where E
Rem 

v,t’  defined in (4.41) represents the total energy remained in the battery in 

EVs before carrying out V2G service, derived by summing the energy remained 

in the battery and the charged energy when EVs are connected to the grid before 

EVs respond to the contingency to provide V2G service, E
V2G,lim 

v,t  defined in (4.42) 

denotes the V2G energy limitation due to the limit of EVs’ V2G recharging power 

during EVs’ reaction period. 

4.3.3 Cost of EVs’ Service 

The EV owners should be compensated for the delay of charging which is 

caused by both the interruption and V2G. Also, discharging a battery to provide 

the V2G service will accelerate its degradation. Then the costs of interrupted 

charging demand CInt and V2G service CV2G can be respectively denoted as, 

Int CompC C                                                      (4.44) 

BI
V2G Comp

C EV,max DoD

1000C
C C

L S d
                            (4.45) 

where CComp is the per MWh cost of compensation paid to EV owners, and the 

second term of (4.44) is the per MWh investment cost of the battery degradation 

[27, 86], CBI is battery investment cost of V2G service, LC is the battery cycle life 

at a given depth of discharge; SEV,max is the battery capacity; dDoD is the depth of 
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discharge used in obtaining LC. Thus, LCSEV,maxdDoD denotes the overall energy that 

a battery can provide throughout its lifetime. 

 

4.4. Case Study 

The IEEE reliability test system (RTS -96) [87] is utilized to demonstrate the 

basic characteristics of the proposed EV-integrated SRR model. The test system 

consists of 26 units and the hydro generating units are not taken into consideration 

in any of the case studies. The unit cost data is obtained from [88]. The load of the 

system varies from 59% to 100% of 2700 MW peak load, without consideration 

of the EV charging demand. Other parameter settings are given in Table 4.1. The 

values of the parameters τ1 and τ2 are set based on the interruptible import 

requirement and contingency reserve restoration requirement in Reliability 

Standards for the Bulk Electric Systems of North America [81]. The details of the 

battery degradation cost can be referred to [27].  

 

Table 4.1. Parameter Settings 

Parameter Value Parameter Value 

τ1 1/6 h V 10000 

τ2 1 h VOLL 7500 $/MWh 

Lb 300 MW CComp 125 $/MWh 

Ub 500 MW CBI/ SEV,max 100 $/kWh 

Pch,max 4.5 kW dDoD 0.8 

PV2G,max 9 kW LC 1000 

ω 1% ε 1MW 

 

For the future practical application, two kinds of uncertainties should be taken 

into consideration: whether V2G service and smart charging strategy can be 

fulfilled. Thus six scenarios are tested in the study, as shown in Table 4.2. Total 

power system demand remains the same among Scenarios 1, 3 and 5 where 

Scenario 5 acts as benchmark for the other two scenarios. Similarly, the total 

demands of Scenarios 2, 4 and 6 are the same, and Scenario 6 is utilized as the 
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benchmark.  

 

Table 4.2. Scenarios of Case Study 

Scenario 1 2 3 4 5 6 

V2G 

service 
Enabled Enabled 

Not 

enabled 

Not 

enabled 

Not 

enabled 

Not 

enabled 

Charging 

interruption 
Enabled Enabled Enabled Enabled 

Not 

enabled 

Not 

enabled 

Charging 

strategy 

Immediate 

charging 

Smart 

charging 

Immediate 

charging 

Smart 

charging 

Immediate 

charging 

Smart 

charging 

 

4.4.1 Interruptible and V2G Capacity 

The interruptible and V2G capacity with both immediate and smart charging 

strategies available for contingency can be demonstrated in Fig. 4.4. Generally, the 

V2G capacity is much larger than the interruption capacity as most of the EVs 

connected on the grid have the ability to feed energy back to power system, while 

only small proportion of EVs which are in charging conditions has the ability to 

interrupt charging energy. The V2G capacity demonstrates great difference during 

the day and night as much more vehicles park at night. The interruption capacity 

varies a lot with different charging strategies. The energy charging is scheduled 

mostly at night under the smart charging strategy, and scheduled separately during 

the day under the immediate charging strategy.  
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Figure 4.4. Interruptible and V2G capacities with immediate and smart charging 

strategies. 

4.4.2 Economic Efficiency Analysis 

 

Figure 4.5. Optimization of SRR with regard to the total cost, generation cost, EENS 

cost and EESEV cost when t= 4h 
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Figure 4.6. Optimization of SRR with regard to the total cost, generation cost, EENS 

cost and EESEV cost when t=18h 

 

In order to demonstrate how the SRR is obtained with the proposed model, 

various hourly costs, i.e., total system cost, generation cost, EENS cost and 

EESEV cost with different SRRs are depicted in Figs. 4.5 and 4.6. Only two typical 

time intervals t = 4 h and t = 18 h are selected respectively indicating the lowest 

and highest the system demand during the whole day. The optimal SRR is acquired 

by reaching the minimization of the total cost, as shown in Figs. 4.5 and 4.6. The 
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demand would have larger SRR and larger system cost, through comparing the 

results depicted in Figs. 4.6 and Fig. 4.5. It can be also found that the SRR is 
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Table 4.3. Various Daily Costs of Different Scenarios 

Scenario 
Total cost 

($) 

Generation cost 

($) 

EENS cost 

($) 

EESEV cost 

($) 

1 8.2027×105 7.9674×105 2.2501×104 1.0300×103 

2 8.1988×105 7.9651×105 2.2303×104 1.0594×103 

3 8.5088×105 8.2818×105 2.2665×104 32.4850 

4 8.5041×105 8.2774×105 2.2643×104 28.4796 

5 8.5408×105 8.3051×105 2.3571×104 0 

6 8.5071×105 8.2786×105 2.2851×104 0 

 

Daily system operation costs can be obtained once the reserve-constrained unit 

commitment is determined. Various costs of the studied six scenarios are listed in 

Table 4.3. Comparing Scenarios 1 and 2 with Scenarios 5 and 6 respectively, the 

large reduction of the total costs solidly indicate the economic effectiveness of 

EVs’ aid in system operating reserve allocation. Particularly, the generation costs 

are considerably reduced from 8.3051×105 $ to 7.9674×105 $ under immediate 

charging strategy and from 8.2786×105 $ to 7.9651×105 $ under the smart charging 

strategy due to EVs’ contribution, and EENS costs also slightly decrease from 

2.3571×104 $ to 2.2501×104 $ in the immediate charging strategy and from 

2.2851×104 $ to 2.2303×104 $ in the smart charging strategy. On the other hand, 

the additional compensation costs and the battery costs that system operator should 

pay for EENS are relatively small, with 1.0300×103 $ and 1.0594×103 $ in the 

immediate and smart charging strategies respectively. It is because the frequency 

of activating EVs to provide energy is quite low. Thus EVs are very economically 

suitable to partly replace generators to provide contingency reserve. As the 

interruptible capacity is relatively smaller than the V2G capacity, the EVs’ system-

supporting effectiveness without V2G is considerably reduced by comparing 

various costs of Scenarios 3 and 4 with Scenarios 5 and 6 respectively. The results 

also demonstrate larger benefit brought by the utilization of smart charging 

strategy. However, the difference value between total costs of Scenarios 1 and 2 is 

diminished compared with that between Scenarios 5 and 6. It demonstrates that the 

economic advantage of smart charging strategy is weakened if EVs are required to 
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provide operating reserve. It is due to that EVs in immediate charging strategy can 

provide more operating reserves separately during most of the time intervals, as 

shown in Fig. 4.4 and thus helps to reduce the operating costs. Thus the necessity 

to shift the charging demand as smart charging is largely weakened. 

 

 

Figure 4.7. Unit commitment under various scenarios 

 

Figure 4.8. Scheduled spinning reserve under various scenarios 
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4.4.3 Scheduled Spinning Reserve, Unit Commitment and Reliability 

Unit commitment under various scenarios is demonstrated in Fig. 4.7, with “×” 

denoting committed-on unit, “○” denoting turned-off unit opposite the benchmark 

and “△”denoting turned-on unit opposite the benchmark. With regard to different 

charging strategies, Scenario 5 acts as the benchmark of Scenarios 1 and 3, while 

Scenario 6 acts as the benchmark of Scenarios 2 and 4. The index per unit 

represents the generation capacity, for instance, U400 demonstrates the unit with 

installed capacity of 400 MW. Once the unit commitment is determined, the 

scheduled hourly spinning reserve under various scenarios can be also obtained, 

as shown in Fig. 4.8. 

When EVs are supposed to provide operating reserve, especially V2G service is 

enabled in Scenarios 1 and 2, some units with relatively small capacity are turned 

off compared to the corresponding benchmarks. For example, U76 is turned off in 

the night and U12 is turned off during the day. Nevertheless, several units, e.g., 

U12 at t=16 h, 21 h and 22 h, are turned on to partly compensate the vacancy left 

by the turned-off units with larger capacity, e.g., U197. The amount of scheduled 

spinning reserve is thus considerably reduced, shown as Scenarios 1 and 2 in Fig. 

4.8. When system contingency happens, EVs can interrupt the charging demand 

and feed energy back to support the power system. Thus system operators do not 

need to schedule as much spinning reserve as before and some units can be turned 

off. 

 When only EV interruption is enabled, the support of EVs to power system is 

relatively small. In this condition, the unit commitment results are almost the same 

with benchmark and the amount of scheduled spinning reserve is just slightly 

smaller than the benchmark as shown in Scenarios 3 and 4 in Figs. 4.7 and 8, 

respectively. Under the immediate charging strategy in Scenario 3, the unit 

commitment is exactly the same with benchmark. However, the scheduled 

spinning reserve is smaller than the benchmark especially during the day. In this 

case, units with larger capacity, which are supposed to provide spinning reserve, 

are allowed to increase the outputs as the requirement of spinning reserve is 

reduced. Under the smart charging strategy, the interruptible EV capacity is very 
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large as most of EVs are charged together at night. Thus some units, e.g., U78 at t 

= 3 h, 4 h, 5 h and 6 h, are turned off and the scheduled spinning reserve at night 

is reduced, shown as Scenario 4 in Figs. 4.7 and 4.8 respectively.  

The effects of EVs on the power system reliability by interrupting charging 

demand and feeding energy back to power system when contingency happens are 

discussed here. Expected energy not supplied is regarded as one of the most 

important reliability assessment indices. The daily EENS values with different 

reactions of EVs and different charging strategies are listed in Table 4.4. It is 

demonstrated that the daily EENS is reduced in Scenarios 1-4 comparing with the 

benchmarks Scenarios 5 and 6, which proves that the reliability of power system 

is improved due to the assistance from EVs’ post-contingency support. Comparing 

with the obtained results of other scenarios, Scenarios 1 and 2 have smaller EENS, 

indicating that V2G service can help to improve system reliability even more. It 

can be also seen that the smart charging strategy has advantages on enhancing the 

reliability by comparing Scenarios 1, 3 and 5 with Scenarios 2, 4, and 6 

respectively. 

 

Table 4.4. EENS in Different Scenarios 

Scenario 1 2 3 4 5 6 

EENS(MWh/day) 1.5001 1.4869 1.5110 1.5095 1.5714 1.5234 

 

4.4.4 Discussions of Future Implementations 

In the previous sections, the effects of EVs on the spinning reserve allocation in 

various scenarios are analyzed, given the specific rewards to the EV users and the 

specific EV penetration level. However, for the practical implementation in the 

future, these two factors will greatly affect the performance and efficiency of EVs’ 

participation in operating reserve allocation. Sensitivity analysis of EV penetration 

level and compensation cost is conducted in this section.  

In order to address the uncertainty of EV population in the future, various case 

studies considering different EV penetration levels are fulfilled. The penetration 
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level of EV charging load can be defined as,  

PEV ch,max

PEV

aver

100%
N P

PL
P

                            (4.46) 

The daily average scheduled spinning reserve is defined as the average value of 

hourly spinning reserve in one day, to efficiently assess the degree of daily 

spinning reserve. The average scheduled spinning reserve in different EV 

penetration levels is depicted in Fig. 4.9. To make the figure clearer, Scenarios 5 

and 6 are not drawn here as the average scheduled spinning reserves in these 

scenarios are not affected by EV penetration level, with 464MW and 465MW 

respectively. The average scheduled spinning reserve decreases with the increase 

of EV penetration level, according to the numerical results of Scenarios 1-4 from 

Fig. 4.9. The V2G service highlights this characteristic, as shown in Scenarios 1 

and 2. Although the low penetration level demonstrates that EV charging energy 

is only a small proportion of the total load of the power system, it has considerable 

effects on power system spinning reserve allocation. It is because the EV 

interruptible and V2G capacity cannot be neglected compared with potential 

energy loss due to generation outage. 

 

Figure 4.9. Effects of EV penetration level on scheduled spinning reserve 
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of providing operating reserve in the future. The sensitivity analysis of 

compensation cost is to find out the potential ability and monetary space for system 

operators to reward the EV owners for their contributions. The index of 

compensation rate is defined as the ratio of the compensation cost to the scheduled 

generation marginal cost, given as, 

SRR

Comp

PEV

,

100%
1

24 t T i t

C
CR

f

P

 





,                         (4.47) 

where unit i is the marginal generator. 

Here the scheduled generation marginal cost is used to estimate the electricity 

price. The index of compensation cost is to roughly measure the degree of 

compensation from the view of users. The system total costs under various 

compensation rates with Scenario 1-4 are demonstrated in Fig. 4.10. The total costs 

of Scenarios 5 and 6, fixed as 8.5408×105 $ and 8.5071×105
 $, are not affected by 

the compensation rate, which are not depicted in Fig. 4.10. The total cost generally 

increases with the compensation cost in the studies. However, the increasing speed 

is reduced with the increase of compensation rate especially for Scenarios 1 and 2. 

When the compensation rate reaches 350, the system total costs of Scenarios 1 and 

3 get close to the cost of Scenario 5, 8.5408×105 $, and the costs of Scenarios 2 

and 4 are close to the cost of Scenario 6, 8.5071×105 $. At these points, the 

compensation to EV owners gets close to the value of VOLL, and EV can no longer 

contribute to reduce the SRR and total operation cost. It can be demonstrated from 

the figure that the compensation rate is very high, as EV owners will be rewarded 

with tens or hundreds of times of the normal electricity price. It can be concluded 

that the system operators have the ability to pay EV owners a large amount of 

rewards to motivate them to let their vehicles support the power system. Exact 

determination of the rewards will depend on further investigation in user 

willingness by e.g. questionnaire survey. The potential ability of power system 

operators to compensate EV owners considerably enhances the possibility to 

implement the proposed model in the future. 
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Figure 4.10. Effects of compensation rate on total cost 

 

4.5. Conclusions 

This chapter proposes a novel cost-efficiency based SRR optimization model 

considering EVs’ assistance in providing operating reserve. EESEV is 

innovatively proposed to quantify the expected energy supplied by EVs, with EV 

raction time taken into consideration. The optimal SRR is quantified based on the 

minimization of the total costs of generation operation, EENS and EESEV. 

Different charging strategies are considered in the determination of EV charging 

demand as well as EV interruptible and V2G capacities for reserve allocation 

purpose. Numerical case studies demonstrate the reduction of scheduled spinning 

reserve and the generation operation cost due to the support of EVs. Unit 

commitment is rescheduled and some generators could be turned off as EVs partly 

replace spinning reserve. The reliability of power system is also improved with 

EVs’ participation. The economic effectiveness of the proposed model will be 

significantly improved if V2G can be widely realized in the future. Furthermore, 

systematical sensitivity analysis implies that the amount of power system spinning 

reserve has a close relationship with EV penetration level and there exists abundant 

space to improve the compensation rate to motivate EV owners to provide power 
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system operating reserve. In general, the proposed model can have significant 

potential benefits for future practical applications.  
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5. Risk-Based Day-Ahead Scheduling of 

Electric Vehicle Aggregator Using Information 

Gap Decision Theory 

 

 

 

 

5.1. Introduction 

In recent years, the penetration of  electric vehicles (EVs) in electrical power 

systems has experienced a dramatic growth accompanying the development of 

battery technology and smart grids. As an environmentally friendly technology, 

the wide utilization of EVs would be helpful to reduce air pollutions and 

greenhouse gas emissions. In addition, the growing concern of energy security is 

also an important driving factor for the popularity of EVs. However a large number 

of EVs will produce considerable impacts on the secure and economic operation 

of existing power systems [89, 90]. With a large-scale application of EVs in the 

foreseeable future, smart charging of EVs becomes an emerging research focus. 

Various methodologies have been proposed to coordinate the charging and 

discharging scheduling strategies of EVs [91, 92]. 

It has been proven that the participation of EV aggregators in the electricity 

market has significant advantages in executing smart charging in comparison with 

individual EVs [93]. In practice, aggregators play a critical role as an intermediary 

between EV owners and distribution system operators [94], and represent clients 

to participate in the electricity market. The bidding and scheduling strategies of 

EV aggregators need to be investigated considering various uncertainties in the 

electricity market [95-98]. A stochastic optimization approach is employed to 

formulate the scheduling strategy of EV aggregators in both day-ahead and 

regulation markets [99]. It is illustrated that the deviations between day-ahead 

cleared bids and actual real-time energy purchases influence the profit and the 
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bidding strategy of the aggregator. A bi-level optimization model is proposed in 

[100] to consider both the aggregator’s minimum cost and the market clearing 

process, which assumes that EV aggregators have potential influences on the 

electricity market price. Stochastic portfolio management of the EV aggregator is 

fulfilled  to take into account the uncertainty of real-time prices, while involving 

overall scalability, driving needs and grid constraints as well [101]. 

Due to various sources of uncertainties in modern power systems, developing 

appropriate decision models to mitigate the high energy trading risks would be 

beneficial to different participants in the electricity market [102]. Risk 

management methods have been widely used as an important tool for the decision 

makers in electricity markets, such as conventional generators [103], wind-hydro 

generation companies (GENCOs) [104], large consumers [105], etc. Similarly, an 

EV aggregator’s exposure to the bidding and scheduling risk should be taken into 

consideration. Risk management based on a risk-aware scheduling approach is 

introduced into day-ahead scheduling and distributed real-time dispatch of EV 

charging [106], which could dramatically reduce the charging cost. Conditional 

value at risk (CVaR), a commonly used risk measurement method, has been 

incorporated into the formulation of an EV aggregator aiming to deal with the 

profit volatility of aggregators. It is applied for the management of risk in 

coordinating vehicle-to-grid (V2G) with energy trading for load-serving entities 

(LSEs) [107]. The profit of an LSE is maximized while its financial risk is 

maintained within an acceptable level using CVaR as a risk control measure. In 

[108], a CVaR based approach is proposed to optimize the  EV aggregator’s profit 

in day-ahead and balancing markets with the consideration of risk aversion. 

Optimal EV charging schedules can be obtained according to different risk-averse 

attitudes. 

An information gap decision theory (IGDT) based approach is proposed to 

optimize day-ahead scheduling of EV aggregators considering electricity price 

uncertainty. Theoretically, IGDT is a quantitative risk management and decision 

making model to take into account severe uncertainties involved in the decision 

making process [109]. It focuses on the gap between predicted and actual 

variables. The IGDT-based risk management decision model is formulated 
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according to the decision makers’ attitudes towards risk. Risk-averse decision 

makers tend to make robust decisions against high costs, while risk-taking decision 

makers tend to seek more benefits when the cost is low. IGDT has been introduced 

in various decision activities in power systems, including bidding strategies of 

GENCOs [110] and demand response retailers  [111], restoration decision making 

for distribution network [112] and multi-year transmission expansion planning 

[113], and so on. 

The application of IGDT is to control financial risk for decision makers, which 

is similar to other risk management models, such as CVaR [107, 108].  However, 

the ways to deal with risk by CVaR and IGDT are quite different from each other. 

For CVaR-based approaches, risk is measured as an extra cost and added to the 

objective function. Therefore, the weights of the sampled scenarios in stochastic 

optimization increase with the corresponding severity. The computation burden 

will exponentially increase when the number of scenarios increases. In contrast, in 

terms of IGDT-based approaches, risk is controlled by guaranteeing the profit or 

the cost as the predefined objective set by decision makers, then the maximum 

confidence interval is approximated. In other words, the IGDT approach can 

effectively enable decision makers to secure the desired profit irrespective of the 

potential risks. Notably, the IGDT-based formulation has no assumption on 

probability density distributions for the uncertain variables, therefore requiring 

relatively lower computation efforts.  

In the study, the initial scheduling of EV aggregators without risk measurement 

is modeled by a two-step formulation. In the first step, the information of 

individual driving pattern data is collected and aggregated to simplify the 

optimization model. In the second step, the profit of EV aggregators in the 

electricity market is maximized, satisfying the demand of each individual EV. The 

electricity price in the electricity market will be considerably fluctuating with high 

uncertainty [114], which is indeed challenging to electricity market participants to 

arrange proper bidding and scheduling strategies. To take such uncertainty into 

consideration, an IGBT based day-ahead scheduling framework for EV 

aggregators to manage potential risks due to electricity price uncertainty while 

pursuing the desired profit is proposed. Through ensuring a predetermined level of 

total profit, both robust and opportunistic scheduling strategies can be made for 
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negative and positive decision makers respectively. Case studies are conducted 

based on realistic market data. The risk management of the proposed model for the 

EV aggregator is comprehensively analyzed and discussed according to numerical 

study results. The performances of robust and opportunistic day-ahead scheduling 

strategies of the EV aggregator are compared with another scheduling strategy that 

does not consider the risks of electricity price, demonstrating the effectiveness and 

advantage of IGDT-based risk management. Furthermore, the after-the-fact 

analysis is conducted to verify the proposed model. 

The nomenclature of Symbols used in this chapter is given as follows 

Sets  

T Set of time intervals with index t. 

M Set of categories of electric vehicles with index m. 

Vm Set of EV of category m with index v. 

V
arr 

m,t  Set of EV of category m arriving at time t with index v
arr 

m,t . 

V
dep 

m,t  Set of EV of category m departing at time t with index v
dep 

m,t .  

( , )   Uncertainty sets of electricity price in the information gap decision 

theory. 

  

Parameters  

S
max 

m  Maximum magnitude of SOC for batteries of EV category m. 

P
max 

ch,m, P
max 

dch,m Maximum charging/discharging power of EV category m. 

E
max 

t  Maximum energy of EV aggregator at time t. 

P
max 

CH,t, P
max 

DCH,t Maximum charging/discharging power of EV aggregator at time 

t. 

arr
,m tv

Sl  Battery consumption due to daily travel for EVs belonging to arr

,m tV . 

uv,t Binary variables indicating the grid connection status of EV v at 

time t, 1 standing for on the grid, 0 off the grid.  

Earr,t Energy increase due to EVs arriving at time t. 

Edep,t Energy drop due to EVs departing at time t. 

CON Price of energy contracted with EV owners. 

BD EV battery degradation cost. 

CBI Battery investment cost of V2G service. 

EB Average EV battery capacity. 

LC EV battery cycle life. 

dDoD Depth of discharge 

t   Predictive electricity price at time t, and the corresponding vector. 
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CH,DCH Charging/discharging efficiency. 

C Covariance matrix of the price vector. 

 IGDT uncertainty index. 

fr Critical profit target for robustness function. 

fo Windfall profit target for opportunity function. 

Ecpm Energy consumption per mile. 

  

Variables  

Et , Energy content of EV aggregator at time t. 

PCH,t, Charging power of EV aggregator at time t 

PDCH,t, Discharging power of EV aggregator at time t 

PEV,t, Trading power of EV aggregator at time t. 

 Electricity market price vector. 

  

Functions  

α̂(Z, fr) Information gap decision theory robustness function. 

̂  (Z, fo) Information gap decision theory opportunity function. 

F(Z) Profit function of EV aggregator considering no risk 

fs(t)  Probability density function of the time when EVs first plug off 

the grid 

fe(t) Probability density function of the time when EVs last plug into 

the grid. 

fm(t) Probability density function of daily travel mileage of EVs. 

 

5.2. Deterministic EV Bidding Model 

5.2.1 Day-Ahead Bidding in Electricity Market 

An EV aggregator acts as a load-serving entity and manages a number of EVs 

at the local level. The aggregator represents EV owners to participate in the 

electricity market to purchase and/or sell energy, based on the statistical 

characteristics of EVs [96]. The framework of an EV aggregator participating in 

the electricity market is explicitly shown in Fig. 5.1, where charging and 

discharging schedules of individual EVs are coordinated in order to benefit both 

EV owners and power grids.  

In the study, a two-stage processing mechanism is adopted to keep the balance 



 

98 

 

between the supply and the demand of energy in the electricity market, as 

Australian Electricity market (AEM) [81]. The pre-dispatch schedule for each 

trading interval is determined day-ahead by the ISO. The local marginal price for 

each trading interval, however, is determined in the on-line dispatch process. The 

EV aggregator is supposed to arrange its energy schedule in the day-ahead pre-

dispatch process while the uncertainty of the electricity market price, which is 

cleared in the on-line dispatch process, should be also taken into consideration. 

The aggregator decides on the day-ahead scheduling at each time interval in the 

following day according to the battery capacity and charging/discharging ability 

of EVs connected to the grids as well as the electricity price. The electricity price 

is assumed to be not affected by the EV aggregator because its demand is relatively 

small compared to the other market participants. The EV aggregator aims to 

maximize its profit while satisfying the requirements from EV owners. This 

process can be formulated as a three-step approach in [115]. In the first step, 

statistical data of individual EVs are collected and aggregated. Then optimal 

charging and discharging strategies using these aggregated data are scheduled to 

achieve maximum profit in the second step and the actual dispatch plan is adjusted 

in the real-time market at last. The emphasis is given to the scheduling strategies 

for the day-ahead pre-dispatch process, while the real-time dispatch is not taken 

into consideration. 

 

 

Figure 5.1. The framework of EV aggregator participating in electricity market 
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5.2.2 Aggregation of Individual Driving Pattern Data 

First, the specific information of individual EVs is collected by the aggregators. 

Then EV aggregators assemble these individual energy demands for the sake of 

overall management, formulated as follows, 

 
max max

,

1 1

mVM

t m v t

m v

E S u v
 

                                (5.1) 

max max

CH, ch, ,

1 1

mVM

t m v t

m v

P p u v
 

                                  (5.2) 

max max

DCH, dch,m ,

1 1

mVM

t v t

m v

P p u v
 

                                (5.3) 

arr
,

arr
,

arr
,

max arr

arr, ,

1 1

( )
m t

m t

m t

VM

t m m tv
m v

E S Sl v
 

                     (5.4) 

       

dep
,

dep
,

max dep

dep, ,

1 1

m t

m t

VM

t m m t

m v

E S v
 

                                 (5.5) 

where max

tE  denotes the dynamic status of the maximum energy content of the EV 

aggregator which is also the sum of the maximum magnitude of SOC of individual 

EV batteries connected to the power system max

mS , 
max

CH,tP  and 
max

DCH,tP  denote the 

maximum charging and discharging ability of EV aggregators respectively, which 

depends on the sum of maximum charging power 
max

ch,mp  and discharging power 

max

dch,mp  of each EV on the grid. Earr,t represents the increase in energy content due 

to vehicles arriving at time t. The energy of each electric vehicle plugged into the 

power grid is the remaining value after the energy consumption in the day, shown 

in (5.4). Edep,t denotes the energy drop due to vehicle departures. The energy is 

assumed to be full when the vehicle leaves. 

5.2.3 Optimization of EV Aggregators 

The computation burden can be very heavy if each individual EV is dispatched 

directly by the system operators. Therefore an aggregated model is developed in 
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the study to condense individual driving pattern data into a simplified model, in 

analogy to a virtual battery with the total capacity, charging and discharging ability 

changing over time. In practice, the EV aggregator makes a long-term contract 

with EV owners. The price is fixed as a certain value, rather than catering for the 

fluctuation of daily electricity price. At the same time, the EV aggregator is granted 

the privilege to represent the EV owners to bid in the electricity market and thus 

schedule the EV charging and discharging. For V2G service, the aggregator should 

compensate the EV owners due to the battery degradation. The total profit of EV 

aggregators is formulated as follows,         

CON EV, EV, BD DCH,

1

max ( ) ( )
T

t t t t

t

F Z P P P  


               (5.6) 

s.t. 

 1 arr, dep, CH CH, DCH, DCH/t t t t t tE E E E P P t          (5.7) 

    0 TE E                                                               (5.8) 

       EV, CH, DCH,t t tP P P t                                                (5.9) 

max0 t tE E t                                                       (5.10) 

  
max

CH, CH,0 t tP P t                                                      (5.11)                              

 
max

DCH, DCH,0 t tP P t                                                     (5.12) 

where the decision variable set Z is defined by 

EV CH DCH= [ ]Z E P  P  P                                                 (5.13) 

The objective function defined in (5.6) consists of three components in total. 

The first one is the revenue of energy contracted with EV owners. The second part 

represents the scheduling cost/revenue in the electricity market. The third 

component denotes the cost returned to the EV owners for the compensation of the 

battery degradation due to V2G discharge. The battery degradation cost can be 

calculated according to [116-118]: 

 BI
BD

C B DoD

1000C

L E d
                                        (5.14) 
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where CBI denotes the battery investment cost; LC is the battery cycle life at a 

certain depth of discharge (DoD); EB is the average battery capacity; dDoD is the 

DoD used in determining LC. Thus, LCEBdDoD represents the overall energy 

throughput that a battery can provide during its lifetime and the number 1000 is 

used to make the transition from kWh to MWh. 

In the constraints, the energy content Et depends on the charging power PCH,t 

and the discharging power PDCH,t as well as the energy of arriving EVs Earr,t and 

the energy of departing EVs Edep, shown in (5.7).  Upper and lower limits of energy 

content Et, charging power PCH,t and discharging power PDCH,t  are represented in 

(5.10)-(5.12) respectively. 

 

5.3. IGDT Based Operation Strategy of EV Aggregator 

Electricity prices in the electricity market exhibit significant fluctuations due to 

various reasons. For instance, stochastic and intermittent renewable energy would 

introduce serious uncertainties [119], [120] and influence the electricity price to 

some extent [121]. The model described in Section II neglects the risks introduced 

by the electricity price uncertainty. The proposed model based on IGDT can 

effectively take risks and uncertainties into consideration. The robustness function 

and opportunity function, is proposed in this section for either risk-averse or risk-

seeking decision makers. 

5.3.1 Uncertainty Model 

Various models, including Energy-bound models, Minkowski-norm models and 

Fourier-bound models, are proposed to model the prior information about the 

uncertainty input in [109]. The ellipsoid-bound IGDT model is adopted, due to its 

emphasis on the variability and the relationship among different dynamic uncertain 

parameters compared with the other models [111, 112]. To implement the 

ellipsoid-bound IGDT model for EV aggregators, the nominal electricity prices 

and their correlations are forecasted and considered as model inputs. The 

uncertainty set Γ consists of uncertain prices in the electricity market, and is 

mathematically formulated as, 

1 2( , ) { : ( ) ( ) }, 0T C                       (5.15) 
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where   is the vector of nominal price time-series and C denotes covariance 

matrix between each parameter in the vector. ( , )   can be defined as a quadratic 

function. It specifies a range of uncertain prices, whose deviations beyond the 

nominal price   can be quantified by the uncertainty index α. The larger the value 

of α, the greater range of deviation is. The family of the sets can be interpreted as 

an information gap model of uncertainty [109].  

5.3.2 Optimization Framework 

Due to uncertainties of electricity price, EV aggregators could adopt either risk-

averse or risk-seeking strategies in scheduling their daily operation plan. The 

information gap decision theory can effectively account for these two attitudes, 

where different risk attitudes can be reasonably quantified by setting different 

profit targets. Risk-averse decision makers tend to set lower profit target that they 

can accept, while risk-seeking decision makers tend to set higher profit target that 

they want to pursue. Such decision processing can be represented by two functions: 

the robustness function denoting the immunity to fall, and the opportunity function 

denoting the desire to windfall profit. Both functions optimize the uncertainty 

index as below, 

r r
( , ),

ˆ( , ) max{ : min ( , ) }
UZ

Z f F Z f
  

  


               (5.16) 

o o
, ( , )

ˆ(Z, ) min{ : max ( , ) }
Z U

f F Z f
   

  


                (5.17) 

The robustness function ̂ α̂(Z, fr) defined in (5.16) is the greatest level of 

uncertainty corresponding to the guaranteed profit larger than the critical profit 

objective fr. The optimal scheduling strategy is derived via maximizing the 

immunity against failure while satisfying the critical survival-level performance. 

The robustness function value α̂ (Z, fr) can be comprehended as allowable 

deviations beyond the nominal value. This is consistent with pessimistic decision 

makers. The opportunity function ̂ (Z, fo) defined in (5.17) denotes the least level 

of uncertainty which should be acceptable to achieve the windfall profit objective 

as large as fo. The optimal scheduling strategy is calculated by minimizing the 

immunity against windfall return while achieving relatively high rewards. The 

opportunity function acts as the decision tool for optimistic decision makers, who 
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concern more about the maximum return when the price is desirable. In any case, 

the windfall reward fo is usually much greater than the critical reward fr.  

5.3.3 Robustness Function  

The robustness function is formulated as a bilevel optimization problem 

maximizing the uncertainty level in the upper level and minimizing the profit of 

an EV aggregator in the lower level, shown as follows, 

,
max

Z 
                                                             (5.18) 

   s.t.  

( , )
min ( , ) r
U

F Z f
  




                                                   (5.19) 

1 2( ) C ( )T                                                (5.20) 

0                                                                 (5.21) 

(5.7) - (5.12)                                                         (5.22) 

The robustness function is difficult to handle using traditional optimization 

approach. Lagrangian relaxation is used herein to simplify the lower level 

optimization. The minimum profit of an EV aggregator can be obtained and 

rewritten as, 

CON EV EV BD DCH
( , )

min ( , )= T

U
F Z P P P

  
   


                   (5.23) 

1 2s.t . ( ) C ( )T                               (5.24) 

Since the optimization is convex, Lagrange relaxation is adopted to simplify the 

problem, expressed as 

2 1

, CON EV EV BD DCH{( ) ( ( ) C ( ))} 0T TP P P                    (5.25) 

where  is the Lagrangian multiplier. The results can be obtained, 

EV

EV EV( )

T

T

C P

P CP


                                            (5.26) 

Substituting (5.26) into (5.23), the following function can be derived, 
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CON EV EV BD DCH EV EV
( , )

min (Z, )= ( )T T

U
F P P P P CP

  
    


        (5.27) 

Considering the uncertainty index α is positive, the negative sign is selected for 

the minimum of F(Z, ). The minimum profit should be at least equal to fr, given 

as, 

CON EV EV BD DCH EV EV= ( )T T

rf P P P P CP                     (5.28) 

Thus the robustness function in terms of the objective fr can be rewritten as  

CON EV EV BD DCH
r r

EV EV

( )
ˆ(Z, ) max ( ) max

( )

T

r

TZ Z

P P P f
f f

P CP

  
 

  
         (5.29) 

Thus the IGDT method is simplified to optimize the objective function defined 

in (5.29) with the constraints defined in (5.7) - (5.12) being satisfied as well. 

5.3.4 Opportunity Function 

Similar to the robustness function, the opportunity function is also formulated 

as a bilevel optimization problem minimizing the uncertainty level in the upper 

level and maximizing the profit of an EV aggregator in the lower level, shown as 

follows, 

,
min

Z 
                                                               (5.30) 

     s.t.  

( , )
max (Z, ) o
U

F f
  




                                                 (5.31) 

1 2( ) C ( )T                                                   (5.32) 

0                                                               (5.33) 

(7) - (12)                                                           (5.34) 

Lagrange relaxation method is used again to solve the nested optimization 

problem, similarly to the way of handling the robustness function.  The maximum 

profit can be formulated as, 

CON EV EV BD DCH EV EV
( , )

max (Z, )= ( )T T

U
F P P P P CP

  
    


              (5.35) 
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Considering the uncertainty index α is positive, the positive sign is selected for 

the maximum of (Z, )F  . The maximum profit should be at least equal to fo, given 

as, 

CON EV EV BD DCH EV EV= ( )T T

of P P P P CP                       (5.36) 

It is expected to reach the windfall profit fo. Let the maximum profit be equal to 

fo, the opportunity function can be formulated as, 

o CON EV EV BD DCH

EV EV

( )ˆ(Z, ) min ( ) min
( )

T

o o
TZ Z

f P P P
f f

P CP

  
 

  
            (5.37) 

The constraints defined in (5.7) - (5.12) need to be satisfied as well. 

 

5.4. Case Study and Discussions  

5.4.1 Case Description 

The proposed IGDT-based model for day-ahead scheduling of an EV aggregator 

is validated using practical market data. As EVs are usually parked at night in 

practice, the scheduling period is set as 12:00 AM to 12:00 AM of the following 

day and the dispatch interval is defined as one hour [122]. In our case study, the 

electricity price is forecasted using the method developed in [114]. The charging 

and discharging efficiency is specified as 0.90 and 0.91 respectively.  

A comprehensive survey on EVs and battery technology is represented in [123], 

where six categories of vehicles, including  goods-carrying vehicle (N1), large 

goods-carrying vehicle (N2), plug-in EV (PEV), extended-range EV (EREV), 

quadricycle-four wheels (L7e) and passenger vehicle (M1) and their technical 

parameters are summarized as  in Table I. The proportion of each vehicle type, the 

maximum magnitude of SOC for batteries max

mS , the maximum magnitude of 

charging power
max

ch,mp , discharging power 
max

dch,mp  and the energy consumption per 

mile Ecpm of each category of EVs are also listed in Table I. It is assumed in our 

case study that 100 000 EVs are managed by an aggregator in total.  The EV travel 

data needed in this case study is based on the national household travel behavior 

survey, conducted by the U.S. Department of Transportation Federal Highway 
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Administration [84]. For detailed EV charging demand modelling, please refer to 

the EV travel behavior in section 4.3.1. 

Table 5.1. Parameters of Electric Vehicles 

Parameters N1 N2 PEV EREV L7e M1 

Proportion 0.05 0.05 0.1 0.1 0.2 0.5 

max

mS (kWh) 23 85 8.2 17 8.7 29 

max

ch,mp  (kW) 3 10 3 3 3 3 

max

dch,mp  (kW) 1.5 5 1.5 1.5 1.5 1.5 

Ecpm 

(KWh/km) 
0.1854 0.5867 0.1562 0.2530 0.1122 0.1608 

 

5.4.2 EV Scheduling Results 

In the case studies, the proposed IGDT-based robustness index, i.e., the value 

of the robustness function defined by (16), and the opportunity index, i.e., the value 

of opportunity function defined by (17), are calculated based on real data. The 

profit target defined by the EV aggregator can be regarded as a critical input to 

measure both negative and positive attitudes towards risk or uncertainty. 

Therefore, different profit targets are given to explicitly analyze the effects of the 

risk attitude towards the EV charging/discharging schedule. The corresponding 

numerical results are displayed in Fig. 5.2. 

It can be seen from Fig. 5.2 that the robustness index increases from 0 to 2.128 

when the profit target fr decreases from $5842.7 to $1500. This is understandable 

as a lower profit target represents a preference towards risk, and thus permitting a 

higher uncertainty level. On the contrast, the opportunity index varies from 0 to 

1.658 when the windfall high reward is targeted from $5842.7 to $10500. A higher 

profit target represents a more risk-seeking attitude towards the risk, and needs a 

higher profitable price uncertainty level. It can be observed from Fig. 5.2 that if 

the robust profit target and the opportunity profit target are specified as $5842.7, 

both the robustness index and opportunity index are zero, as shown at point O Such 

a profit target is the same as the numerical solution to the neutral risk formulation 

according to (6)-(12). 
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Figure 5.2. Robustness and opportunity index for different profit targets 
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Figure 5.3. Robustness price curve and opportunity price curve  



 

108 

 

12:00 15:00 18:00 21:00 24:00 03:00 06:00 09:00
-40

-20

0

20

40

60

80

100

 Neutral risk scheduling

 Robustness scheduling

12:00

 

 

C
h
a
rg

in
g
 a

n
d
 d

is
c
h
a
rg

in
g
 p

o
w

e
r 

[M
W

]

Time [h]

 

Figure 5.4. Electric vehicle charging and discharging power rate by robust 

scheduling strategy 
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Figure 5.5. Electric vehicle charging and discharging power rate by opportunistic 

scheduling strategy  

For a certain robust profit target, given as fr = $3900, the robust price curve is 
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obtained for such a risk-averse attitude according to (26), and explicitly shown in 

Fig. 5.3. If the after-the-fact price falls below the robustness price curve, the final 

profit would not be less than $3900. Similarly, in terms of an opportunistic profit 

target, given as $8100, the opportunity price curve for such a risk-seeking attitude 

is achieved and depicted in Fig. 5.3. When the after-the-fact price is below the 

opportunity price curve shown in Fig. 5.3, the final profit has a chance to achieve 

$8100 or more. 

In the study, various risk-based day-ahead scheduling strategies of an EV 

aggregator are carried out under different predefined profit targets. A robust 

scheduling strategy of charging and discharging power with a profit target fr = 

$2700 is depicted in Fig. 5.4 while an opportunistic scheduling strategy with a 

profit target fo = $9900 is shown in Fig. 5.5. To benchmark the robust and 

opportunity strategies, the scheduling with no risk consideration is derived and 

also displayed in Figs. 5.4 and 5.5. As shown in Fig. 5.4, no discharge is arranged 

during the day for the robust scheduling. It indicates that the extreme risk-averse 

decision makers choose to abandon the benefit attained by discharging power due 

to its revenue fluctuation affected by price uncertainty. This is consistent with the 

behavior of the conservative users. On the other hand, for those who have positive 

attitudes towards risk, discharging power is dispatched more and contributes 

relatively more to the aggregator’s revenue, as depicted in Fig. 5.5. Such a 

scheduling method has a chance to acquire high return when the electricity price 

is beneficial to the aggregator, which is consistent with opportunistic decision 

makers. By setting allowable deviations beyond the nominal value of the daily 

revenue, the pessimistic decision makers tend to adopt the conservative strategies 

to maximize their profits while guaranteeing the survival-level performance. In the 

contract, the optimistic decision makers choose the opportunity functions as 

radical strategies by using relatively large predefined windfall reward. 

In order to compare the different robust and opportunistic scheduling strategies, 

the information gap between the estimated and actual prices is assumed to be zero. 

The expected profits are given in Fig. 5.6. It can be easily found that the maximum 

expected profit can be obtained using a neutral risk strategy.  The expected profits 

decrease with the degree of the robustness or opportunity. The difference between 

the expected value of the selected profit target and the maximum profit considering 
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no risk can be interpreted as robustness cost or opportunity cost. Theoretically, this 

is an unavoidable trade-off between the scheduling risk and expected profit. 

2 4 6 8 10
4.5

5.0

5.5

6.0

  

 

 

Robustness

Opportunity

Profit target [k$]

E
x
p

e
c
te

d
 p

ro
fi
t 

[k
$

]

 

Figure 5.6. Expected profit with no information gap between the estimated and 

actual prices against different profit targets. 

5.4.3 Sensitivity Analysis 

To further verify the proposed model, an after-the-fact analysis is conducted 

herein to evaluate different scheduling methods. Five typical price scenarios are 

generated to investigate the performance of the proposed model.  

Scenarios 1 and 2 are produced according to (26) with a robustness index of 

1.5343 and 0.9678 respectively. The price series in Scenario 3 is regarded as the 

nominal one. Scenarios 4 and 5 are generated with an opportunity index of 0.6662 

and 1.4698. Three scheduling strategies are systematically compared and the 

corresponding profits are shown in Table II. When the electricity price falls in the 

robust region as in Scenarios 1 and 2, the profit for the robust scheduling is the 

largest while the profit for opportunistic scheduling is the smallest. When the 

forecast price is perfectly realized, neutral risk scheduling performs the best. When 

the price falls in the opportunity region, such as Scenarios 4 and 5, EV aggregator 

would benefit more from the opportunistic scheduling than the other two 
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scheduling schemes. It is worth mentioning that the predefined critical target for 

robust scheduling is set as $2700, which is equal to the result in price Scenario 1. 

It is demonstrated that the predetermined target is guaranteed with the 

corresponding scheduling strategy under this price scenario. The predetermined 

desirable target for opportunity is $9900, equal to the result in Scenario 5. It 

indicates that the predefined target is achieved under the corresponding price 

scenario. 

 

Table 5.2 Profit Obtained by Different Immunity Functions Under Different 

Price Scenarios 

Price 

scenario 

Profit for robust 

scheduling ($) 

Profit for neutral risk 

scheduling ($) 

Profit for 

opportunistic 

scheduling ($) 

1 2700 2085 1224 

2 3623 3254 2736 

3 5419 5843 5498 

4 6670 7323 7416 

5 8267 9457 9900 

 

5.5. Conclusions 

This chapter develops an information gap decision theory based scheduling 

methodology for EV aggregators to consider different risk attitudes towards the 

uncertainty of electricity market prices. The proposed IGDT-based model provides 

an effective way for EV aggregators to pursue a predefined profit target through 

effective risk management. The robustness and opportunity functions are proposed 

in this model to assist EV aggregators to effectively align the desirability of 

different attitudes towards risk with their immunity to electricity price uncertainty. 

Based on the two functions, a variety of robust and opportunistic scheduling 

strategies can be derived to either guarantee a critical reward under unfavorable 

price scenarios or to capture a windfall profit under desirable price scenarios. The 

trade-off between the expected profit and potential risk is demonstrated under 

different scenarios of electricity price fluctuations through case studies. It is 
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convincing that the framework provides a new decision-support tool for EV 

aggregators of different preferences to uncertainties to manage their financial risk. 

Since the model does not require a probability distribution of electricity price 

uncertainty, the proposed model have an advantage to reduce the computation 

burden compared with traditional scenario based approaches, indicating a high 

potential for future practical applications.  
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6. Conclusions and Discussions 

 

 

 

 

6.1. Conclusions 

This thesis focuses on evaluating the challenges and opportunities introduced 

by large-scale EV charging in power system and developing new method to utilize 

EV charging flexibility to benefit power system economic and secure operation. 

All the optimization models are proposed to achieve two goals: to hedge against 

negative impact as well as to benefit the grid and EV owners. Specifically, this 

thesis evaluates distribution system electric vehicle hosting capacity, proposes 

framework for distributed generator investment for EV accommodation, analyzes 

the potential ability of aggregated EV charging in providing ancillary service and 

proposes bidding strategy for EV aggregators to participate in electricity market. 

The concept of “EV chargeable region” is innovatively proposed to evaluate the 

maximum DN EV hosting capacity for each node. The EV chargeable region 

optimization problem is formulated as a two-stage model, where the chargeable 

region and DN decision variables are optimized in the first stage and the feasibility 

of the DN worst-case scenario is checked in the second stage. Mathematically, the 

proposed framework is formulated as a two-stage robust optimization problem 

with an adjustable uncertainty set. With the aid of this model, not only operating 

constraint violation of DN is prevented, but also EV owners’ charging requests, 

i.e., immediate charging or price-response charging, are guaranteed to the largest 

extent. EV owners’ daily report of charging demand to the EV aggregator may be 

waived, as the EV charging profile can be well managed directly by the EV owners 

themselves. Thus, urgent usage of EVs can be maximally guaranteed. Besides, the 

communication mechanism of the proposed framework is simple and only needed 

to convey the information of EV chargeable region from the distribution network 

operator to EV charging controllers at distribution network nodes. Obviously, the 
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communication is unidirectional and operates once a day. Overall, the proposed 

framework demonstrates a high potential for practical applications. To 

accommodate more EV charging demand in distribution networks and to obtain 

financial revenue, a robust active distribution network planning framework 

considering the integration of renewables and large-scale EVs is further proposed. 

Two decision-dependent robust planning strategies are proposed based on 

advanced modelling of EV charging demand. The optimal DG sizing and sitting 

are determined that is robust against any realization of uncertainty of EV charging 

and distributed generation output as well as the uncertainty of EV owners’ 

willingness in participation in charging coordination. 

To evaluate EVs’ potential ability in providing ancillary service for power 

system, a novel cost-efficiency based SRR optimization model is proposed. The 

concept of EESEV is innovatively proposed to quantify the expected energy 

supplied by EVs, with EV reaction time taken into consideration. The optimal SRR 

is quantified based on the minimization of the total costs of generation operation, 

EENS and EESEV. Numerical case studies demonstrate the reduction of scheduled 

spinning reserve and the generation operation cost due to the support of EVs. The 

reliability of power system is also improved with EVs’ participation. The 

economic effectiveness of the proposed model will be significantly improved if 

V2G can be widely realized in the future. Furthermore, systematical sensitivity 

analysis implies that the amount of power system spinning reserve has a close 

relationship with EV penetration level and there exists abundant space to improve 

the compensation rate to motivate EV owners to provide power system operating 

reserve. To obtain better welfare for EV owners, an information gap decision 

theory based scheduling methodology is developed to consider different risk 

attitudes towards the uncertainty of electricity market prices. The proposed IGDT-

based model provides an effective way for EV aggregators to pursue a predefined 

profit target through effective risk management. The robustness and opportunity 

functions are proposed in this model to assist EV aggregators to effectively align 

the desirability of different attitudes towards risk with their immunity to electricity 

price uncertainty. Based on the two functions, a variety of robust and opportunistic 

scheduling strategies can be derived to either guarantee a critical reward under 

unfavorable price scenarios or to capture a windfall profit under desirable price 
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scenarios. The trade-off between the expected profit and potential risk is 

demonstrated under different scenarios of electricity price fluctuations through 

case studies. It is convincing that the framework provides a new decision-support 

tool for EV aggregators of different preferences to uncertainties to manage their 

financial risk. Since the model does not require a probability distribution of 

electricity price uncertainty, the proposed model have an advantage to reduce the 

computation burden compared with traditional scenario based approaches, 

indicating a high potential for future practical applications.  

 

6.2. Discussions 

Traditionally, it is the responsibility of power system to serve energy for its 

customers, with power quality and reliability guaranteed anytime. With the 

development of smart grid, demand side tends to contribute to power balance by 

adjusting its actual demand, known as demand response. Flexible electric vehicle 

charging demand, regarded as a specific type of demand response, is modeled and 

discussed in this thesis. Due to the lack of real data, some assumptions are made 

in the modelling of EV charging demand. As the EVs are emerging participant in 

electricity market, it remains uncertain how many EVs are willing to respond to 

electricity price, compromise their driving duties and even agree to feed energy 

back to the grid. In other words, it is not clear how much compensation the EV 

owners will accept to provide ancillary service and how much compensation the 

power system operators are willing to pay to lower the power supply costs. 

Although the sensitivity analysis is conducted with various scenarios in the thesis, 

the assumptions can be obviated once actual data is available. Another difficulty 

to implement the proposed models is the methodology to aggregate the 

geographically separate EV charging demand. Although EV aggregator is assumed 

to manage these load in the thesis, obstacles still exist to put the algorithm to 

practice. From the view of the authors, it is relatively easy to implement EV 

coordination in a distribution network and the similar EV charging management 

method has been put into practice in fact, while practical value of the aggregated 

EVs’ participation in electricity market and ancillary service still demand further 

investigation. Nevertheless, the potential possibility should be never neglected due 
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to its huge economic benefits. Besides, with more and more other demand response 

programs emerging, it should take into account the interaction between EVs and 

other demand response resources, especially the interaction with different relevant 

uncertain elements. Methodologies such as game theory are suggested to be 

introduced to estimate these influences. 

The optimization methodologies used in this thesis, e.g., robust optimization, 

have their inherent defect. Robust optimization addresses input uncertainty based 

on the assumption that uncertain parameters belong to a convex bounded 

uncertainty set and maximizing the minimum value of the objective over the 

uncertainty set, at the same time ensuring the feasibility for the constraints in the 

worst-case scenario. Specifically, the uncertainty set consists in confidence 

intervals and a budget-of-uncertainty constraint. Hence, the uncertain parameters 

are selected to construct the worst-case scenario, and thus is deemed too 

conservative for practical implementation. In this thesis, we allow the decision-

maker to control the degree of conservatism of the solution through proposing 

different cases to determine various optimization solutions from different attitudes 

of decision makers towards the robustness. For practical implementation, how to 

manage and control the robustness should be seriously estimated. Besides, the 

algorithms are generally two-stage and make every decision before the realization 

of the uncertainties. However, there are many optimization problems where only 

a subset of the decisions should be made before the realization of the uncertainty, 

but the remaining decisions can be made later after observing the realized 

uncertainties. Multi-period optimization models are supposed to find out a series 

of decisions at different points in time occurs. Thus, multi-period robust 

optimization is suggested to better handle uncertainty problem and control the 

robustness. 
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