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Abstract 

Digital halftoning is a technique originally proposed to render a gray scale image 

with binary value pixels. It is able to shift the quantization noise to the high frequency 

band. Accordingly, the quantization noise can be removed through the lowpass 

filtering effect of human visual systems to make a binary image visually identical to 

the original gray level image. Digital halftoning was successfully extended to render 

color images and it has been widely used in printing applications nowadays. However, 

its application in other areas is still limited. The objective of this work is to explore 

possible applications of digital halftoning in areas other than printing. This thesis 

reports some findings that we had and some contributions that we made during our 

study. In particular, the focus will be on the application of digital halftoning in (1) 3D 

profilometry and (2) reversible color to grayscale conversion.     

Digital fringe projection technique has been widely used in commercial 3D depth 

map acquisition in the past decades due to its simplicity, reliability and flexibility. 

When it is used, fringe patterns are projected onto the object for evaluating its depth 

information. Phase-shifting sinusoidal patterns are popular patterns used in digital 

fringe projection. To support real-time measurement and get rid of the luminance 

nonlinearity of a projector, the binary defocusing method has been proposed to replace 

sinusoidal patterns with binary patterns. In its practical realization, the binary patterns 

should be good approximations of the sinusoidal patterns and contain only high 

frequency approximation errors. Since the projector is defocused, the patterns 

projected onto the object are blurred and the high frequency approximation error can 

be removed to some extent. Obviously, halftoning can be applied to produce binary 

fringe patterns based on the target sinusoidal fringe patterns. 
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From signal processing point of view, the binary fringe patterns used in binary 

defocusing method can be considered as 1-bit quantization outputs of sinusoidal fringe 

patterns. Obviously, the projected fringe patterns impact the measurement quality 

directly and hence it is a good move to improve the quality of a quantized fringe 

pattern by increasing its quantization levels. By making use of the fact that a digital-

light-processing projector can actually project color patterns via three different 

channels simultaneously, we proposed a method to project octa-level fringe patterns at 

no extra cost as compared with projecting binary fringe patterns. Accordingly, while 

the measurement performance can be improved, the advantages of binary defocusing 

can be maintained. In other words, it still supports real-time measurement and does 

not need to handle the luminance nonlinearity of a projector. A framework for 

optimizing octa-level fringe patterns to support this projection method was also 

proposed in this work. 

The extent of defocusing plays a critical role in determining the quality of the 

defocused fringe patterns.  In real situations, it is impossible to control it precisely and 

hence the fringe patterns should make their performance robust to it. To respond to 

this issue, conventional fringe pattern generation schemes optimize halftone patterns 

under different conditions (e.g. different patch sizes and different defocusing extent) 

and then, from the optimized results, pick the one which is the most robust to 

defocusing conditions. This pick-the-best-from-the-available approach is passive to 

some extent and makes the optimization effort grow in multiples. 

To provide flexibility and reduce effort, the optimization processes of recent 

binary fringe pattern generation schemes are generally patch-based by making use of 

the property that a sinusoidal fringe pattern is periodic. In general, they optimize one 

single halftone patch to make its defocused output close to a patch of a sinusoidal 
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fringe pattern and then tile it repeatedly to construct all full-size fringe patterns. We 

have three observations on this common strategy as follows: (1) The distortion of the 

tiling result with respect to an ideal sinusoidal fringe pattern is periodic and contains 

strong harmonics, which affects the measuring performance remarkably. (2) The 

fringe period is bound to be an integer multiple of 3. (3) It introduces extra constraint 

for the optimization process.      

To solve all these problems, we proposed a framework for generating aperiodic 

octa-level fringe patterns based on optimized patches. The produced fringe patterns 

can significantly lower the noise floor and suppress the harmonic distortion in the 

constructed depth map. Accordingly, the achieved depth measuring performance can 

be significantly improved. Special care is also taken during the optimization of the 

patches in our framework such that the depth measuring performance is robust to the 

variation of fringe period and defocusing extent. 

Though conventional fringe pattern generation schemes formulate the pattern 

generation as an optimization problem, the problem is generally solved by iteratively 

refining an initial estimate due to its unaffordable complexity. This strategy cannot 

guarantee a global optimum in terms of an objective function. When the refining step 

is not flexible, the solution can be biased to the initial estimate and its performance 

can be far from the optimal. Besides, a poor initial estimate can easily guide the 

optimization process to reach a poor local optimum at the end. In view of this, a better 

initial estimate and a flexible refining scheme would definitely be helpful to get better 

fringe patterns.  

By fulfilling these two demands and extending the idea of our previous work, we 

further developed a novel method to generate patch-based octa-level fringe patterns 

for improving the measuring performance of a 3D surface measuring system. 
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Specifically, the optimized patches can be flexibly and seamlessly tiled to form octa-

level fringe patterns. As compared with the fringe patterns generated with our 

previously proposed method, their produced depth maps contain no harmonic 

distortion along any direction instead of just one single direction.  

Reversible color-to-grayscale conversion (RCGC) aims at embedding the 

chromatic information of a full color image into its grayscale version such that the 

original color image can be reconstructed in the future when necessary. Conventional 

RCGC algorithms tend to put their emphasis on the quality of the reconstructed color 

image, which makes the color-embedded grayscale image visually undesirable and 

suspicious. As an output of this study, a novel RCGC framework that emphasizes the 

quality of both the color-embedded grayscale image and the reconstructed color image 

simultaneously is proposed. Its superiority against other RCGC algorithms is mainly 

achieved by developing a color palette that fits into the application and exploiting 

error diffusion to shape the quantization noise to high frequency band. The improved 

visual quality of the color-embedded grayscale image makes the image appears as a 

normal image. It does not catch the attention of unauthorized people and hence the 

embedded chromatic information can be protected more securely. 

The color palette used in the proposed RCGC framework is critical to the 

conversion performance. To fit into the application, we proposed a palette generation 

algorithm to generate an image-dependent palette that bears two properties. First, 

palette colors are sorted and indexed according to their luminance values such that the 

index plane looks closely to the luminance plane of the original color image. Second, 

consecutive colors in the palette form a three-dimensional enclosure in the color space 

to cover as many pixel colors that have the same luminance values as the involved 

palette colors as possible. Theoretically, with the halftoning technique, any specific 
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color inside the enclosure can be rendered with the palette colors that form the 

enclosure.  

The aforementioned palette generation algorithm was further improved in an 

extended study. The idea comes from two observations. First, halftoning does not 

work properly when the region having the color to be rendered is very small in the 

image and the color is very different from the available palette colors. Second, from 

mean square error point of view, using a palette color directly to replace a pixel color 

can be more efficient than rendering it with halftoning.  

While our first proposed palette generation algorithm concerns whether a color 

can be rendered with halftoning in ideal situations, the improved palette generation 

algorithm considers whether a color can be effectively rendered in practical situations. 

We proposed a measure to estimate the effectiveness and appropriateness of using 

halftoning to render a specific color in a spatial region. The measure is incorporated 

into the objective function to optimize the color palette. As a result, the color palette 

can work with our proposed RCGC framework in a better way and achieve a better 

RCGC performance.   

In this thesis, we present some ideas for the applications of digital halftoning in 

3D profilometry and reversible color to grayscale conversion. As a tool of noise 

shaping, digital halftoning can be applied in different areas. We expect there will be 

more novel application ideas coming in future.  
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Chapter 1.  

Introduction 

1.1 Overview 

Digital halftoning [1, 2] is a technique originally proposed to render a gray scale 

image with binary value pixels. It is basically a noise shaping technique used to shift 

the quantization noise to the high frequency band when reducing the number of gray 

levels of an image. Since our human visual system behaves as a low pass filter, the 

quantization noise can be removed. It makes a binary image visually identical to the 

original gray level image. 

Digital halftoning was successfully extended to render color images and it has 

been widely used in printing applications nowadays. However, its application in other 

areas is still relatively very limited. The objective of this work is to explore possible 

applications of digital halftoning in areas other than printing. This thesis reports some 

findings that we had in our recent studies and some contributions that we made during 

our studies. In order not to diversify the issues to be discussed, the focus of the thesis 

will be on the application of digital halftoning in (1) 3D profilometry and (2) 

reversible color to grayscale conversion.     

3D shape measurement, which is also named as 3D surface sensing or 3D 

reconstruction, aims to detect the depth information of an object. 3D shape 

measurement has a variety of applications including vehicle guidance, geometry 

checking, industrial monitoring, etc. Among various types of 3D shape measurement 
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methods, the application of optical structured light [3] tends to be a simple yet 

accurate way to obtain the depth information. Optical structured light methods, also 

known as active triangulation, can be implemented with a well-calibrated 

measurement system that is equipped with one or more digital projectors and a high-

speed camera. This measurement system has several advantages: 1) its 

implementation is easy and cheap; 2) the whole measurement scheme can be well 

controlled by a computer without the need of human supervision; and 3) the 

measurement accuracy is high. Consequently, structured light system is one of the 

most successful methods for commercial use.  

Given a structured light measurement system, the fringe patterns projected onto 

the object being measured directly impact on the measurement quality. On the other 

hand, the measurement speed is bounded by the frame rate of a projector. To release 

the measurement speed bottleneck, binary fringe patterns were proposed to replace 

grayscale fringe patterns in 1992 [4] under the belief that a defocused projector can 

remove the difference between a binary fringe pattern and a grayscale fringe pattern. 

Since the introduction of this binary defocusing method, various studies [5–24] have 

been presented in the literature to improve the quality of binary fringe patterns. 

The major concern of using binary fringe patterns is how to eliminate the phase 

errors introduced by the quantized fringe patterns. In Chapter 3, we proposed a 

method to project octa-level fringe patterns at no extra cost as compared with 

projecting binary fringe patterns [25]. By increasing the actual number of intensity 

levels of the projected fringe patterns, the quantization noise floor is efficiently 

reduced without sacrificing the advantages of binary fringe patterns.  

In order to increase the flexibility and to reduce the development effort of the 

fringe patterns, advanced fringe pattern generation algorithms [6, 10, 18, 23] are 
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generally patch-based in a way that small patches are optimized and then tiled to form 

the final full-size fringe patterns. The noise of their tiling results is periodic and the 

consequence is that severe harmonic distortion exists in their measurement results. In 

Chapter 4, we proposed a tiling method to construct aperiodic patch-based octa-level 

fringe patterns and an optimization method to produce patches for supporting the 

tiling method [26]. Some other weaknesses of conventional pattern generation 

algorithms were also considered in our proposal such that they can be alleviated to a 

large extent.   

In Chapter 5, we extend the idea proposed in [26] from one dimension to two 

dimensions such that the harmonic distortion can be suppressed in both horizontal and 

vertical directions. We also propose a better optimization algorithm by improving 

both the way to get an initial estimate and the way to search for a better estimate.  

Reversible color-to-grayscale conversion (RCGC) aims at representing a full 

color image as a grayscale image without discarding its chrominance information so 

that the color image can be recovered in future. Sometimes, due to some practical 

constraints, we are forced to deliver or present an image in grayscale temporarily but 

we need the color information in future.  RCGC is also useful in scenarios where we 

need to protect the chrominance information from being revealed to unauthorized 

users [27–31]. 

 Various RCGC algorithms have been proposed since the introduction of RCGC 

in 2006 [32], and they can be categorized into Subband embedding (SE) based and 

Vector Quantization (VQ) based algorithms. In both approaches, chrominance 

information is embedded into the luminance plane of the color image to produce the 

color-embedded grayscale image. When necessary, the embedded chrominance 

information is extracted to recover the color image. The key of success is to minimize 
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the distortion in both the color-embedded grayscale image and the recovered color 

image.  

SE-RCGC algorithms [32–37] embed the chrominance information into the 

luminance plane of an image by replacing some high frequency luminance bands with 

the downsampled chrominance planes. It introduces visible pattern noise in the color-

embedded grayscale image and blurs the recovered color image. VQ-RCGC 

algorithms [27–31] color-quantizes a color image under a constraint that the index 

plane is close to the luminance plane of the image, and then embeds the color palette 

into the index plane. Since the constraint is not easy to fulfill, conventional VQ-based 

algorithms tend to emphasize the quality of the recovered color image more. Even so, 

visible artifacts such as color shift and false contour can generally be found in their 

recovered color images. 

To tackle the weaknesses of VQ-based algorithms, in Chapter 6 we proposed a 

novel VQ-based RCGC framework that emphasizes both the quality of the color-

embedded grayscale image and the recovered color image [38]. By incorporating the 

error diffusion technique [39] and developing a tailor-made color palette to support 

the use of the error diffusion technique, our algorithm developed under the proposed 

framework can significantly improve the quality of the color-embedded grayscale 

image and the recovered color image simultaneously. 

In the aforementioned proposal, we assume that any colors in a color image can 

be ideally rendered with a halftoning technique. In Chapter 7, we consider the 

practical constraints of halftoning in rendering a color and propose a new palette 

generation algorithm accordingly. When working under the framework proposed in 

Chapter 6, the newly generated palette is able to further improve the quality of the 
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color-embedded grayscale image and the recovered color image remarkably in terms 

of both subjective and objective criteria. 

1.2 Contribution of this work 

In this thesis, the application of digital halftoning techniques in (1) 3D 

profilometry and (2) reversible color to grayscale conversion has been extensively 

discussed. The following contributions reported in this thesis are claimed to be 

original. 

1) We proposed a novel framework that measures 3D objects with octa-level 

fringe patterns instead of binary fringe patterns. It lowers the noise floor of a 

measurement result while maintaining all advantages offered by a system that uses 

binary fringe patterns (Chapter 3). 

2) We proposed a patch optimization algorithm that optimizes patches for 

supporting random tiling along a specific direction (Chapter 4). It also removes some 

limitations of conventional patch-based fringe patterns and proactively improves the 

robustness of the fringe patterns to defocusing extent. 

3) We proposed a patch optimization algorithm that optimizes patches for 

supporting random tiling along any directions (Chapter 5). Optimized patches can be 

used to construct fringe patterns without two-dimensional harmonic distortion.  

 4) We proposed a better approach to produce an initial estimate and a better 

strategy to avoid being easily trapped in local minimums when optimizing a patch.  

(Chapter 5) 

5) We proposed a novel VQ-based RCGC framework that significantly improves 

the output image quality of both the color-embedded grayscale image and the 
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recovered color image by shifting the noise to the high frequency bands of both 

images simultaneously with a halftoning technique (Chapter 6).  

6) We proposed a tailor-made color palette generation algorithm that produces 

color palettes for supporting the VQ-based RCGC framework mentioned in 5). It 

takes the halftoning process to be performed in RCGC into account when optimizing 

the color palette (Chapter 6).  

7) We proposed a tailor-made color palette generation algorithm that produces 

color palettes for supporting the VQ-based RCGC framework mentioned in 5). It 

takes the practical constraint of a halftoning process into account when optimizing a 

color palette (Chapter 7).  

1.3 Organization of the thesis 

This thesis consists of 8 Chapters and it is organized as follows. 

Chapter 1 is a brief introduction of the work discussed in this thesis. 

Chapter 2 provides a brief review of the background knowledge on which the 

present work is based. It covers various issues relevant to digital halftoning, 3D shape 

measurement and reversible color-to-grayscale conversion.  

Chapters 3, 4 and 5 present our work in 3D profilometry. Some ideas and 

methods are proposed to generate octa-level fringe patterns for improving the 

accuracy of 3D shape measurement. Chapter 3 introduces the idea of octa-level fringe 

pattern generation and shows how it can improve measurement accuracy while 

maintaining the advantages of using binary fringe patterns. Chapter 4 presents a 

patch-based octa-level fringe pattern generation algorithm that alleviates the harmonic 

distortion in phase domain and removes some limitations of patch-based fringe 

patterns. Chapter 5 extends the idea discussed in Chapter 4 to further suppress 
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harmonics in both horizontal and vertical directions. It also provides a method to 

reach a better optimization result by generating a better initial estimate and adopting a 

more flexible strategy in the optimization. 

Chapters 6 and 7 are dedicated to presenting our work in reversible color-to-

grayscale conversion. Chapter 6 presents a VQ-based RCGC algorithm that makes use 

of a halftoning technique and a matched color palette to significantly improve the 

quality of color-embedded grayscale images and recovered color images. Chapter 7 

provides an optimization algorithm for generating a color palette to further improve 

the performance of the RCGC algorithm proposed in Chapter 6. 

The thesis is concluded in Chapter 8 with a summary of the work that was done 

in this project. Future possible extensions of the present work are also discussed in 

this final Chapter. 
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Chapter 2.  

A comprehensive literature review 

2.1 Introduction 

The objective of this work is to explore possible applications of digital halftoning 

in areas other than printing. In particular, our focus is on the application in 3D 

profilometry and reversible color to grayscale conversion. Accordingly, this Chapter 

provides some background information of digital halftoning, 3D profilometry and 

reversible color to grayscale conversion. It also reviews some state-of-art works that 

are relevant to our present works. 

2.2 Digital halftoning 

Digital halftoning aims to render a grayscale image by distributing binary dots in 

a way that its visual appearance is as close to the original as possible [1, 2]. 

Traditionally, digital halftoning has been widely applied in bi-level devices such as 

black-and-white printers and fax machines. A number of digital halftoning methods 

have been discussed in the literature. Among them, error diffusion [39–41] is widely 

used because it can provide good halftones with a reasonable computational cost. In 

general, digital halftoning algorithms can be categorized into two classes: amplitude 

modulation (AM) halftoning and frequency modulation (FM) halftoning. AM 

halftoning converts a continuous image to a binary one by varying the size of printed 

dots arranged along a regular grid, and FM halftoning produces halftones by varying 
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the density of fixed-size printed dots spatially. There are also hybrid halftoning 

algorithms in which both dot density and dot size are used to render the gray levels in 

a spatial region of the image. 

In general, FM halftoning produces isolated dots and the halftoning outputs can 

support a higher spatial resolution. As our human visual system (HVS) actually 

behaves as a spatial low pass filter, FM halftoning tends to modulate the quantization 

noise to the high frequency band so that the halftone dots are not visible to human 

beings. Accordingly, the so-called blue noise model is used as the statistical model to 

describe the ideal noise characteristics of a halftoning result. A halftoning result 

having this noise characteristic is visually pleasant and made up with aperiodic 

dispersed-dot dither patterns. 

 Ordered dithering [42], which is introduced by Bayer, is one of the simplest 

ways to generate blue-noise halftones. However, the most popular blue noise 

halftoning technique is error diffusion. The original version of error diffusion 

algorithm was proposed by Floyd's and Steinberg's [39]. It is an adaptive method that 

quantizes image pixels one by one in a raster scanning order. After a pixel’s intensity 

is quantized, the quantization noise is diffused to its neighbour pixels. Dot diffusion 

[43] is a variety of error diffusion which is suited to parallel computation. Direct 

binary search (DBS) [44] is an iterative algorithm that tries to minimize the perceived 

error between the original continuous-tone image and the halftoning output based on a 

given HVS model.  

Multiscale error diffusion (MED) is an iterative method proposed in [45], and 

then significantly improved in [46]–[48]. The idea of feature preserving was presented 

in [47] and the method is called feature preserving multiscale error diffusion (FMED). 

and it has been proved that feature preserving multiscale error diffusion (FMED) can 
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preserve features of the original grayscale image in spatial domain faithfully and 

adjust the noise characteristics of its halftoning outputs in spectral domain flexibly [48, 

49].  

2.2.1 Ordered dithering 

Introduced by Bayer [42], ordered dithering is a simple screening method to 

generate blue noise halftone. Ordered dithering compares the grayscale image with a 

2D threshold array called Bayer kernel. Bayer kernel is a group of optimal threshold 

array of different sizes. The smallest 2×2 kernel is given as: 

                       𝑀! =
0 2
3 1   (2.1) 

A larger Bayer kernel can be calculated by 

            𝑀!!! =
4𝑀! 4𝑀! + 2𝐸!

4𝑀! + 3𝐸! 4𝑀! + 𝐸!
   (2.2) 

where 𝐸! is N×N unit matrix. 

8×8 Bayer kernel or 16×16 Bayer kernel is commonly used in halftoning. The 

kernel tiles itself to match the image size, and the image intensity values are 

compared to the tiled threshold array to generate the final halftone. 

2.2.2 Error diffusion 

Error diffusion was introduced by Floyd and Steinberg [39]. The algorithm 

processes the image in a raster scanning order in which pixels are scanned from left to 

right and top to bottom. For each pixel, the algorithm performs thresholding and the 

quantization error of that pixel is diffused to its neighbours with a casual filter. The 

block diagram of error diffusion is given in Figure 2-1. 
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Figure 2-1 The block diagram of error diffusion 

As shown in Figure 2-1, the intensity value of pixel (m,n), say 𝑥!,!, is modified 

by the weighted errors diffused from some previously processed neighbouring pixels 

to produce 𝑢!,!. 𝑢!,! is then quantized to either 0 or 1 as 𝑏!,!. The quantization error 

between 𝑢!,!  and 𝑏!,!  is diffused to pixel (m,n)’s neighbouring pixels. 

Mathematically, the process can be formulated as 

𝑢!,! = 𝑥!,! − ℎ!,!𝑒!!!,!!!(!,!)∈Ω   (2.3) 

𝑏!,! = 𝑄 𝑢!,! =    0       𝑖𝑓   𝑢!,! < 0.5 
1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (2.4) 

𝑒!,! = 𝑏!,! − 𝑢!,!  (2.5) 

where Ω is the support region of the diffusion filter and ℎ!,! is the (𝑘, 𝑙)th coefficient 

of the diffusion filter. The coefficients of the diffusion filter suggested by Floyd and 

Steinberg [39] is 

ℎ = 0 ∗ 7
3 5 1 /16 (2.6) 

where * marks the current pixel position. Floyd and Steinberg’s method [39] is 

referred to as standard error diffusion. Its halftoning outputs generally suffer from 

artifacts such as worm-like texture, pattern noise and directional hysteresis. The 

output quality can be improved by using some other diffusion filters such as [40, 41], 

or serpentine scanning order [1]. There are some other remedial solutions. Examples 
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are as follows. Kolpatzik and Bouman [50] optimized the error diffusion system based 

on the weighted mean square error. Adaptive error diffusion [51]  adjusts the error 

diffusion filter along with the processing pixels to minimize local errors. Li [52] 

proposed to preserve edge information in the error diffusion halftone.  

Tone-dependent error diffusion (TDED) was introduced in [53], and it has 

recently been improved by Fung and Chan [54, 55]. The idea of TDED is to adjust 

both the filter weights and the quantization threshold according to the input pixel 

intensity value. The filter coefficients and the quantization threshold for each grey-

level are optimized offline to minimize the perceived error under a particular HVS 

model. 

Standard error diffusion can be applied directly to color halftoning by processing 

different color channels separately. However, since the information among color 

channels is usually correlated, various improvements have been made to diffuse 

vector quantization noise directly [56–60].  

2.2.3 Multiscale error diffusion 

Since standard error diffusion uses a fixed scanning order and a casual diffusion 

filter, its halftoning outputs unavoidably suffer from artifacts such as worm-like 

texture, pattern noise and directional hysteresis. Although a number of remedial 

solutions have been proposed (e.g. [40], [41] and [50]–[55]), the shortcomings of 

error diffusion were still not resolved. 

A brand-new alternative method, called multiscale error diffusion (MED), was 

proposed in [45], and hereafter improved by Chan’s group [46, 47]. The concept of 

MED is to replace the fixed scanning order by an undetermined order. By doing so, a 

non-casual diffusion filter can be used to diffuse a quantization error and hence 
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directional hysteresis can be removed. Although MED is capable to generate high 

quality blue noise halftones, its high computation complexity prevents it from some 

real-time applications. 

MED is basically an iterative algorithm. In each iteration cycle, it searches a 

pixel to assign a dot and then diffuses the quantization error to the pixel’s neighbors. 

In Katsavounidis’s algorithm [45], the search is carried out as follows. Repeatedly, it 

divides the image into 4 non-overlapped regions and selects the brightest region 

among them until a pixel is located. This searching strategy is referred to as maximum 

intensity guidance in [46]. The intensity value of the located pixel is quantized to 1 

(the maximum intensity value) and its error is diffused with a non-causal filter. The 

search-and-quantize-and-diffuse step is repeated until the total energy of the 

processing output is equivalent to that of the given image. 

In [46], Chan modified the above algorithm by dividing image into nine 

overlapped regions. This modification eliminates the blocking artifacts. Chan also 

solved the error leakage problem caused by the error diffusion process proposed in 

[45]. The idea of feature-preserving MED (FMED) was proposed in [47]. Instead of 

using the maximum intensity guidance to locate a pixel for placing a new dot, FMED 

exploits extreme intensity guidance to avoid the bias caused by only assigning white 

dots (dots whose intensity values are 1). Conceptually, minority dots in a local region 

provide features in the region and should be placed first because they probably stand 

for critical information. A simple trick is also introduced in [47] to further reduce the 

boundary effect. It has been proved that FMED can generate high quality halftones by 

preserving spatial features and achieving desired noise characteristics. Since FMED is 

used in the development of one of our contributions represented in this thesis, the 

details of FMED are briefly summarized as follows. 
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Without loss of generality, we assume that the input image X is of size 2!×2! 

and all its pixel intensity values are bounded in [0,1], where 0 and 1 are the minimum 

and the maximum intensity values respectively. To start the process, an error plane 

denoted as E is initialized to be X. The intensity values of pixels (m, n) of X, E and B 

are, respectively, denoted as 𝑥!,! , 𝑒!,! and 𝑏!,!, where B is the halftoning output of 

FMED. 

Step 1: Search a pixel in E according to extreme intensity guidance. The search starts 

with the error image E as the region of interest. Then the region of interest is 

divided into nine overlapped sub-regions and the sub-region with the largest 

sum of its all pixel intensity is selected to be the new region of interest. This 

step is repeated until a particular sub-region of a particular size is reached. If 

the average energy of this sub-region is large than 0.5, it is marked as a bright 

local region and the subsequent search in this local region follows minimum 

intensity guidance policy instead. Otherwise, it is marked as a dark local 

region and the subsequent search sticks to the original maximum intensity 

guidance policy. Eventually a particular pixel location is reached. Suppose its 

pixel location is (i, j). 

Step 2: If the sub-region is marked as a bright local region, assign a black dot to (i, j) 

(𝑏!,! = 0 ). Otherwise a while dot is assigned (𝑏!,! = 1 ). The produced 

quantization error 𝑏!,! − 𝑒!,! is diffused to pixel (i, j)’s neighbour pixels in E as: 

       𝑒!,! =
           0                                                  𝑖𝑓   𝑚,𝑛 = (𝑖, 𝑗)

𝑒!,! − 𝑏!,! − 𝑒!,! 𝑑!,!ℎ!!!,!!! /𝑠      𝑖𝑓  (𝑚 − 𝑖,𝑛 − 𝑗) ∈ Ω 

 (2.7) 

    where 

       𝑑!,! =    0                 if   pixel 𝑚,𝑛  has been assigned a dot
1                                                 otherwise                       

 (2.8) 
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     and    𝑠 =  𝑑!,!ℎ!!!,!!!(!!!,!!!)∈Ω  (2.9) 

            Note that Ω is the filter support of a non-casual diffusion filter h and s is a 

normalizing factor that makes available coefficients in the diffusion filter sum 

to 1. 

 

These two steps are repeated until the sum of all pixels of E is bounded in 

absolute value by 0.5. Note that the total number of iterations is bounded by the total 

number of pixels in the input image. 

A significant advantage of FMED is that the noise characteristics of the 

generated halftones can be well controlled by the non-casual diffusion filter. For 

example, ideal blue noise characteristics can be achieved with the diffusion filter 

proposed in [48], while green noise characteristics can be achieved with the diffusion 

filter suggested in [49, 61]. 

2.3 Fringe projection 3D shape measurement 

3D shape measurement aims to detect the depth information of an object so that 

its 3D model can be reconstructed with a computer. It has been widely used in 

applications such as character rigging, surface topography, robot controls, facial 

animation, and machine vision, etc. Generally, 3D shape measurement can be 

categorized as contact and non-contact. Due to its simplicity, flexibility and accuracy, 

non-contact 3D shape measurement has been widely discussed in the literature and 

has attracted a number of commercial investments.  

A non-contact measurement system can be either active or passive. An active 

system sends one or more reference signals onto the surface of object to carry out a 

measurement while a passive system does not. In the work presented in this thesis, our 
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focus is on active measurement methods that project structured light signals. A 

realization example of such an active measurement system is shown in Figure 2-2. 

This method is referred to as Fringe Projection Profilometry (FPP). 

 

Figure 2-2 Optical geometry of an active 3D measurement system 

Two most famous FPP techniques are Fourier Transform Profilometry (FTP) [62, 

63] and Phase Shifting Profilometry (PSP) [64]. In either technique, a projector is 

required to project fringe patterns onto the surface of the measured object and the 

resulting fringe patterns are captured by a high-speed camera. The depth of the object 

can then be evaluated based on the phase shift of the fringes caused by the shape of 

the object. FTP and PSP are different in their ways to calculate the phase map. FTP 

projects one fringe pattern only while PSP projects at least three fringe patterns with 

fixed phase differences. As expected, the measure speed of FTP is faster than PSP. 

However, PSP approaches are less influenced by the environmental noise because the 

additive and multiplicative interferences can be eliminated by division and subtraction 
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operations. Both approaches face the same practical problem that precise sinusoidal 

patterns are difficult to produce due to the luminance nonlinearity of a digital 

projector. 

2.3.1 Phase shifting profilometry 

In PSP [65], at least three sinusoidal fringe patterns are needed. The method that 

exploits three fringe patterns is referred to as three-step phase shifting method. It can 

be easily extended to N-step phase shifting method for any value of N larger than 3. 

In general, the larger the value of N, the higher the spatial sampling rate can be 

achieved and it results in higher accuracy but lower measurement speed. 

In three-step phase shifting method, the three sinusoidal fringe patterns have a 

phase shift of 2π/3 from each other. After being projected to the surface of an object, 

the reflected fringe patterns are captured with a high-speed camera. Let the three 

captured fringe patterns be denoted as 𝐼! for k∈{1,2,3}. Their intensity values at pixel 

𝑥,𝑦  are given as: 

𝐼!(𝑥,𝑦) = 𝐴(𝑥,𝑦)+𝑀(𝑥,𝑦)𝑐𝑜𝑠 𝜑 𝑥,𝑦 − 2𝜋/3      (2.10) 

𝐼! 𝑥,𝑦 = 𝐴(𝑥,𝑦)+𝑀(𝑥,𝑦)𝑐𝑜𝑠 𝜑 𝑥,𝑦    (2.11) 

𝐼!(𝑥,𝑦) = 𝐴(𝑥,𝑦)+𝑀(𝑥,𝑦)𝑐𝑜𝑠(𝜑 𝑥,𝑦 + 2𝜋/3)   (2.12) 

where 𝐴(𝑥,𝑦) is the average intensity, 𝑀(𝑥,𝑦) denotes the amplitude of intensity 

modulation, and 𝜑 𝑥,𝑦  symbolizes the pixel-wise phase to be solved. By solving the 

three equations, a pixel-wise phase map can be obtained as: 

𝜑 𝑥,𝑦 = tan!!( 3 !! !,! !!! !,!
!!! !,! !!! !,! !!! !,!

)   (2.13) 

𝜑 𝑥,𝑦  is a wrapped phase ranging in [-π, π]. Therefore, an unwrapping 

algorithm [65] is need to eliminate the 2π discontinuities. In a well-calibrated 
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measurement system, the unwrapped phase is linearly proportional to the depth 

information of the object. 

Since a projector generally suffers from luminance nonlinearity, gamma 

correction [66] is required before its practical usage. 

2.3.2 Binary defocusing method 

PSP algorithms have two disadvantages. First, the accuracy is limited due to the 

luminance nonlinearity of digital projectors. Second, the measurement speed is 

limited because at least three grayscale fringe patterns must be projected in sequence 

to complete one single measurement. In order to tackle the two drawbacks, the idea of 

binary defocusing was introduced [4]. 

 The fundamental concept of binary defocusing is that a blurred binary fringe 

pattern can appear as a grayscale sinusoidal fringe pattern when it is projected by a 

defocused projector. There is no luminance nonlinearity issue when a binary pattern is 

projected. Moreover, binary patterns can be easily generated by toggling on and off 

the LED. In other words, the pulse width modulation procedure used in the digital 

micromirror device (DMD) of a digital projector can be bypassed. As a result, the 

frame rate could be increased sharply to the order of kHz. The blurring effect of a 

defocused projector acts as a low-pass filter to remove the high frequency harmonics 

of a quasi-sinusoidal binary pattern. However, two new issues are introduced by 

binary defocusing algorithms: 1) the error introduced by high-order harmonics; and 2) 

the reduction in depth measurement range. 

2.3.2.1 Squared binary fringe patterns 

As presented in [4], [16], squared binary fringe patterns are the simplest quasi-

sinusoidal binary patterns and they can be obtained by thresholding grayscale 
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sinusoidal fringe patterns. Figure 2-3 shows how a squared binary pattern can be used 

to approximate a sinusoidal after being blurred. 

 
(a) 

 
(b) 

 
(c) 

Figure 2-3 (a) a squared binary pattern; (b) the blurred squared binary pattern; (c) the cross-

section of (b). 

Squared binary pattern is sensitive to the defocusing level. One can observe that 

the signal shown in Figure 2-3(c) is actually not sinusoidal due to the inappropriate 

blurring factor used in the simulation. Huge phase error can be introduced if the 

defocusing level is not ideal. Unfortunately, it cannot be controlled precisely in 

practical situations. 

2.3.2.2 Pulse width modulation-based binary fringe patterns 

After the introduction of squared binary method (SBM), endeavours have been 

made to conquer the challenges of binary defocusing method. A sequence of 

algorithms adopted the idea of pulse width modulation (PWM) to improve SBM. For 
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example, Ayubi et al. proposed a technique based on sinusoidal pulse width 

modulation (SPWM) [17]. SPWM is a famous technique used in power electronics to 

generate sinusoidal signal by filtering binary signals. SPWM is capable to shape the 

third and higher order harmonics further away from the fundamental frequency. 

Therefore, the quantization noise is easier to be eliminated by low-pass filtering. 

An improved idea called Tripolar SPWM was proposed in [8]. Tripolar SPWM 

works along with a four-step phase shifting algorithm, which is insensitive to its even-

order harmonics. Based on this observation, the author argued to selectively suppress 

the odd-order harmonics only, as the even-order harmonics have no impact on phase 

error. This method works better than SPWM when the defocusing level and fringe 

period are selected ideally.  

Optimal pulse width modulation (OPWM) was presented by Wang and Zhang 

[15]. OPWM selectively eliminates some undesired harmonic frequencies by inserting 

different types of notches in a conventional binary square wave. A non-linear 

optimization is required to reach the solution. A comparison study on SBM, SPWM 

and OPWM was reported in [5].  

Zuo et. al. [6, 7] manipulate the 3rd harmonic of a PWM signal in intensity 

domain. They demonstrated that the 3rd harmonic of a PWM signal does not affect the 

phase measurement in equation form.  

2.3.2.3 Halftoning-based binary fringe patterns 

Based on a 1D modulation scheme, PWM-based binary fringe algorithms cannot 

handle harmonics efficiently especially when the fringe period is small. In such a case, 

the fundamental frequency is very high and it is difficult to be separated from the 

harmonics. As a matter of fact, binary fringe patterns are 2D images. In view of this, 

digital halftoning techniques, which are basically 2D noise shaping techniques, could 
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be efficient alternatives. With halftoning, the quantization noise can be shaped in both 

horizontal and vertical directions. It makes the noise of the produced binary fringe 

patterns easier to be filtered away by the blurring effect. 

Based on the aforementioned idea, algorithms were proposed to improve the 

quality of binary fringe patterns. For examples, ordered dithering [42] was adopted to 

generate binary fringe pattern in [12], [13], and error diffusion [39] was exploited in 

[21]. Figure 2-4 shows a binary fringe pattern generated with error diffusion. It can be 

found that intensity values vary along both horizontal and vertical directions. The 

quantization noise is shaped in both directions. 

 

Figure 2-4 Binary fringe pattern obtained by error diffusion 

 2.3.2.4 Binary fringe pattern optimization 

Although halftoning techniques can directly help improving the quality of binary 

fringe patterns, the performance is still far from optimal. There remain several 

challenges and an optimization process is required. First, as shown in eqn. (2.13), the 

final phase map is not a linear function of the fringe patterns. Second, the phase map 

should be robust to the blurring extent since it is difficult to control the defocusing 

level precisely in practical situations. A direct application of a halftoning algorithm 

cannot guarantee that the halftoning result is optimal and hence an optimization 

process is necessary.   
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Taken the halftones obtained by ordered dithering or error diffusion as initial 

estimate, several optimization algorithms have been proposed. For example, a genetic 

technique is exploited in [21] to realization the optimization. Since the optimization is 

offline, 10,000 iterations are allowed in the genetic optimization. 

Dai and Zhang [12] proposed to optimize the binary fringe patterns by 

minimizing the resultant phase error directly. Since the phase map is directly 

correlated to the depth information, the optimization is considered as a proactive 

optimization. 

Although Dai’s method can efficiently reduce phase errors, its performance is 

sensitive to the defocusing level. The method fails to obtain a good phase map when 

the focal lens of projector is not ideally set. To tackle this problem, optimization 

based on the quality of fringe patterns was proposed in [11], [23]. These methods tend 

to minimize the intensity error between the halftone and a target sinusoidal fringe 

pattern. The optimized binary patterns are close to sinusoids and hence they are more 

robust to defocusing. As the phase information is not optimized directly, the 

optimization is classified as a passive optimization. 

In addition, Dai et. al. proposed an optimization algorithm in [10] to utilize the 

symmetry and periodicity of a sinusoidal fringe pattern. Instead of optimizing the 

whole fringe pattern, a small patch is built and tiled to formulate a binary fringe 

pattern. Let x-direction be the direction of the sinusoidal variation in a fringe pattern 

and y-direction be the direction orthogonal to x-direction. A common patch-based 

optimization framework is briefly reviewed as follows: 

Step 1: Patch formation. A patch is defined as a dimension of 𝑆!×𝑆!, where 𝑆! = 𝑇
2 

is fixed to half of the fringe period T, and 𝑆! varies from 2 to 10 to formulate 

patches of different sizes. 
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Step 2: Patch initialization. Generate an initial patch by assigning 0 or 1 (the 

minimum or the maximum intensity value) to its pixel values randomly. 

Step 3: Patch optimization. Process the initial patch by mutating every pixel in the 

patch in a raster scanning order. Once a mutation is done, tile the updated 

patch to form a full-size fringe pattern and compute the difference between the 

blurred full-size pattern and the ideal sinusoidal fringe pattern. The mutation 

that minimizes the difference is kept, and the others are discarded. The 

objective function can be formulated as: 

min
!

 𝐽 = argmin! 𝐼! − 𝐺⊗ 𝐵 !  (2.14) 

where B is the tiled binary pattern, G symbolizes a Gaussian low-pass filter 

that simulates the defocusing effect, . ! denotes the Frobenius norm, and ⊗ 

is the 2D convolution operator.  

Step 3 is an iterative step that mutates pixels one by one iteratively under the 

termination criteria is satisfied: 

 𝐽(!) − 𝐽(!!!)
𝐽(!) < 0.01%  (2.15) 

where 𝐽(!) is the objective value J obtained after the ith iteration cycle. 

Step 4: Patch variation. Repeat Step 2 and 3 for a number of times so that a number 

of good patch candidates are generated. 

Step 5: Patch dimension mutation. Modify 𝑆! to another value and repeat step 2 to 4. 

Hence, patch candidates of different dimensions are generated. 

Step 6: Patch Selection. The best patch is selected from the good patch candidates 

based on the following two criteria: 1) the resultant phase error is not sensitive 

to different defocusing levels; and 2) the resultant phase error is consistently 

small. 
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Step 7: Fringe pattern construction: Once the best patch is determined, binary fringe 

patterns can be generated by tiling the best batch together. 

Based on this patch-based optimization framework, some improvements have 

been introduced. For examples, the proposal in [23] modifies the objective function 

shown in eqn. (2.14) by removing the 3rd harmonics because the 3rd harmonics do not 

impact the phase measurement. In [18], the objective function is modified by taking 

both mean square error (MSE) and structural similarity index measure (SSIM) into 

account. Besides, in its pixel mutation process, pixels are visited group by group, 

rather than one by one. 

Patch-based fringe pattern generation algorithms can significantly reduce the 

optimization effort. However, since the final fringe patterns are constructed by tiling 

the patch, it introduces severe harmonic distortion to the measured depth map. A 

solution is required to address this issue. 

2.3.3 Summary of binary defocusing methods 

In short, binary defocusing technique is capable to implement real-time 3D 

measurement and its performance is not impacted by the luminance nonlinearity of a 

projector. However, the use of binary fringe patterns introduces noise into the 

measurement and hence degrades the measurement accuracy. Though remedial 

solutions such as [6], [8], [10]–[12], [15], [17], [18], [21] and [23] have been 

proposed to increase the accuracy, there is still room for further improvement.  Its 

sensitivity to defocusing extent and fringe frequency is another issue. Patch-based 

fringe pattern generation algorithms such as [10] and [23] can reduce the optimization 

effort, but the tiling results carries strong harmonic distortion and it can affect the 

measurement performance seriously. 
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2.4 Reversible color-to-grayscale conversion 

Reversible color-to-grayscale conversion (RCGC) aims at solving the problem of 

representing a full color image as a grayscale image without discarding its 

chrominance information. The idea of RCGC was firstly proposed by Queiroz and 

Braun [32] to tackle the problem of how to recover a color image from a grayscale 

image.   

State-of-art RCGC algorithms can be categorized into Subband embedding (SE) 

based RCGC [32–37] and Vector Quantization (VQ) based RCGC [27–31]. Both of 

them try to compress the chrominance information of a color image significantly so 

that it can be embedded into a grayscale image. There are two significant issues to be 

resolved: 1) how to retain the chrominance information under a large compression 

ratio, and 2) how to avoid obvious visual artifacts in the grayscale image in which the 

chrominance information is embedded.  

Since RCGC involves information embedding, a naive approach is to compress 

the chromatic information and then embed it as binary data into the grayscale version 

with a reversible watermarking algorithm such as [67]–[69]. However, this approach 

does not provide a good performance in practical situations because the color 

information of a natural image increases with the image size and it is too rich for a 

reversible data-hiding algorithm to handle. For example, even after a 4:2:0 

chrominance subsampling process [70] is performed, the average entropy of the 

chrominance content of the color images in the Kodak true color image set [71] is 2.9 

bits per pixel (bpp), which still significantly exceeds the capacity of state-of-art 

reversible data hiding algorithms, and hence a further compression is required. The 

chromatic quality of the reconstructed color image can be degraded remarkably at a 
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high compression ratio. Dedicated RCGC algorithms are hence needed to address this 

specific issue. 

2.4.1 Subband embedding-based RCGC 

Subband embedding-based RCGC is a kind of RCGC algorithms in which the 

chromatic information of the original color image is extracted, downsampled and 

embedded in the high frequency bands of the luminance plane of the original image. 

The hidden chromatic information can be extracted from the corresponding frequency 

bands to reconstruct the color image later. The flowchart shown in Figure 2-5 shows 

the working principle of SE-based RCGC.  

 

Figure 2-5 Flowchart of SE-based RCGC algorithm 



 27 

The first SE-based RCGC was proposed by Queiroz and Braun in 2006 [32]. In 

their approach, the color image is transformed into a luminance-chrominance color 

space such as YUV or CIELAB. The separated luminance plane Y is then divided into 

four subbands via a one-level Discrete Wavelet Transform (DWT). The four subbands 

are named low-pass, vertical high-pass, horizontal high-pass and diagonal high-pass 

bands respectively. The dimension of each subband is only half of that of Y. 

Accordingly, chrominance planes U and V are downsampled by 2 along each 

direction and then used to replace subbands vertical high-pass and horizontal high-

pass respectively. The color-embedded grayscale image is obtained by inverse DWT 

of the modified subbands.  

Queiroz and Braun also discussed the impact of printing to this color-embedded 

grayscale image. Descreening, warping, misregistration and blurring problems may be 

encountered when printing and scanning a color-embedded grayscale image. To 

handle these obstacles, they proposed to modify the embedding scheme as follows: 

Step 1. Transform the color image to YUV color space to obtain luminance plane Y 

and chrominance planes U and V. 

Step 2.  Decompose chrominance planes U and V to four planes U+, U-, V+ and V- as 

follows. 

𝑈! = (𝑈 > 0)  (2.16) 

𝑈! = (𝑈 < 0)  (2.17) 

𝑉! = (𝑉 > 0)  (2.18) 

𝑉! = (𝑉 < 0)  (2.19) 

Step 3.  Transform Y with a two-level DWT to get seven frequency subbands in 

frequency domain. 

𝑌 → (𝑆! , 𝑆!!, 𝑆!!, 𝑆!!, 𝑆!!, 𝑆!!, 𝑆!!)  (2.20) 
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Step 4.  Replace four subbands with downsampled chrominance planes as follows. 

𝑆!! ← 𝑈!,  𝑆!! ← 𝑈!,  𝑆!! ← 𝑉!,  𝑆!! ← 𝑉!                    (2.21) 

The subband replacement process is summarized in Figure 2-6. 

Step 5.  Take inverse DWT to obtain the color-embedded grayscale image. This image 

is ready to be printed or faxed.  

 

The recovery of the color image is the reverse of the above steps. During the 

reconstruction, chrominance planes U and V are obtained by 

𝑈 =  𝑆!! − 𝑆!!    (2.22) 

𝑉 =  𝑆!! − 𝑆!!    (2.23) 

and then upsampled to the size of Y with bilinear interpolation.  

 

 

Figure 2-6 Substitution of high frequency band 

The idea in [32] was further studied afterwards. Ko et. al. [34] changed the 

transform to Discrete Wavelet Package Transform (DWPT).  They investigated to 

find out the subbands of the minimal amount of luminance information. Accordingly, 

the chrominance information is inserted into the less informative subbands to reduce 

the loss of luminance information. 
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The chromatic information may be distorted due to the blurring effect of a 

scanning process. In [35], this problem was tackled by using redundant representation 

of color information. Specifically, Discrete Cosine Transform (DCT) was applied, and 

a theoretical study was made to determine bounds for guiding people on how many 

subbands into which to embed the chrominance.  

After being embedded into the luminance plane, the chromatic information is 

visible as textures in the color-embedded grayscale image. These textures form a 

highly visible regular pattern in a smooth region because the chromatic information in 

a smooth region is spatially identical. To alleviate this problem, Horiuchi et. al. [36] 

presented a modification that partly preserves the high frequency luminance 

information to reduce the distortion. They also showed a practical application of their 

approach in color information security. 

2.4.2 Vector quantization-based RCGC 

Vector quantization-based RCGC algorithms tend to reduce chromatic 

redundancy with color quantization. In generally, a color-quantized image is visually 

close to the original color image, and the number of colors in the palette can be 

adjusted flexibly. As long as the index plane looks like the luminance plane of a color 

image, it can be interpreted as the grayscale version of the image. Figure 2-7 shows 

the basic working principle of a VQ-based RCGC algorithm. 
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Figure 2-7 Flowchart of VQ-based RCGC algorithm 

In [28], Chaumont proposed to generate a color palette by simultaneously 

minimizing (1) the difference between the color-quantized image and the original 

image, and (2) the difference between the index image and the luminance plane of the 

original image. The optimization is performed iteratively in a two-step loop as in a 

conventional fuzzy c-mean algorithm [72].  

A fast method was presented in [33] to re-order the indexes of palette colors 

according to a function of their color differences and luminances. The color palette is 

obtained with the popular k-mean clustering method [73]. After index reordering, the 

color palette is compressed to reduce the bits to be embedded.  
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Tanaka et. al. introduced a method in [30]. They modified the progress of k-mean 

clustering by inserting a luminance constraint in each iteration cycle. This constraint 

forces the index value of a color close to the color’s luminance value. Accordingly, 

the index image can be similar to the luminance plane of the original image. 

The algorithm presented in [31] is an improved version of [27] in a way that the 

number of colors can be adaptively determined. In this algorithm, the color palette is 

extracted by fuzzy c-mean clustering [72], where the number of colors is determined 

by the range of existing luminance values in the original image. After the color palette 

is obtained, the color index is re-ordered by a layer-scanning algorithm. The re-

ordering algorithm is a heuristic algorithm that minimizes the errors of both the color-

quantized color image and the index image. Finally, the color palette is translated into 

a bit sequence, protected by a secret key, and embedded into the index image by the 

least significant bit (LSB) substitution method. 

Current VQ-based algorithms generally concern more on the quality of the 

recovered color image. The color-embedded grayscale image, which is basically the 

index plane of a color quantization result, can deviate from the luminance plane of the 

original image remarkably. Besides, their recovered color images generally suffer 

from color shift and false contour due to its limited number of palette colors.  

In the field of color quantization, halftoning techniques have been exploited to 

alleviate the false contour and color shift in a color-quantized image [74–76]. 

However, to our best knowledge, halftoning has never been exploited in RCGC to 

improve the visual quality of the recovered color image, not to mention using 

halftoning in the way that we introduce in this thesis to shift the noise around the 

color-embedded grayscale image and the recovered color image.    
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We note that there are palette generation algorithms (e.g. [75]) proposed to 

support quantizing a color image with halftoning. However, these algorithms do not 

take RCGC into account and their generated palettes cannot be used in RCGC. It is 

because, in these palettes, the index value of a palette color is not linearly correlated 

with its luminance value. Without this property, it is impossible for an index plane to 

appear as the luminance plane of the color image.  

2.4.3 Summary of RCGC algorithms 

In short, state-of-art RCGC algorithms can be classified into either SE-based or 

VQ-based algorithms. SE-based algorithms replace high frequency subbands with 

downsampled chrominance planes. The constructed grayscale image is generally 

blurred since the high frequency luminance content is removed. Besides, the 

embedded chrominance information appears as visible pattern noise in smooth regions 

of the recovered color image. VQ-based algorithms train a color palette with a 

conventional clustering algorithm and then color-quantize a color image with the 

palette to generate an index plane that appears as a grayscale image. Without the help 

of halftoning, there are generally color shift and false contour in the recovered color 

images. Moreover, the index image generated by a VQ-based RCGC algorithm is 

usually far away from the luminance plane of the original image. 

Though halftoning has been proposed to work with color quantization to improve 

the quality of a color quantized image and this factor has been taken account to 

develop color palette, it has never been exploited in RCGC to improve the conversion 

performance and no dedicated color palette generation algorithm has been proposed to 

support RCGC. RCGC demands a luminance constraint that was not concerned by 

any conventional color palette generation algorithm before. 
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Chapter 3.  

Real-time 3D shape measurement with octa-level 

fringe patterns 

3.1 Introduction 

Chapters 3, 4 and 5 survey the application of halftoning in 3D shape 

measurement. As mentioned in Chapter 1, binary defocusing algorithms were 

designed to break the speed bottleneck of 3D shape measurement. However, 

quantization noise is introduced as the grayscale fringe patterns are replaced by binary 

images. To address the impact of quantization noise, halftoning algorithms have been 

applied to this area since 2012 [13], but simply application of state-of-art halftoning 

algorithms is far from optimal. The following three chapters are devoted to a 

framework of generating octa-level fringe patterns and further optimization with 

respect to harmonics in phase domain that has never been addressed in the literature. 

This Chapter is organized as follows. In Section 3.2, we formulate the definition 

of octa-level fringe patterns that simulate the grayscale sinusoidal fringe patterns and 

explain why these fringe patterns can help improve quality without loss of 

measurement speed. Then, in Section 3.3, we present an optimization process to 

further improve the measurement quality. In particular, this optimization is a variant 

of the patch-based optimization described in [10]. In Section 3.4, simulation and 

experiment results are provided to evaluate the performance of the proposed 
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algorithm. In Section 3.5, experiment results are presented. Finally, a summary is 

given in Section 3.5. 

3.2 Generation of octa-level fringe patterns 

A commercial single chip DLP projector generates full color images by either 

placing a color wheel or using three individual color light sources. In either approach, 

three gray level images respectively pass through three color channels (R, G and B) in 

turns to formulate a full color image. Accordingly, one can produce three different 

binary patterns, one for each channel, for the projector to project a color halftone 

image X. The luminance channel of X, say L, can be obtained by 

                               𝐿 = 0.299𝐵! + 0.587𝐵! + 0.114𝐵!                     (3.1) 

where 𝐵! ,𝐵!  and 𝐵!  are the binary patterns for channel R, G and B respectively. 

Let 𝐵! 𝑥,𝑦 ,  where c∈{R,G,B}, be the intensity value of pixel (𝑥,𝑦) of pattern 

𝐵! . Since  𝐵! 𝑥,𝑦 ∈{0,1} for all c, there are altogether 2! = 8 possible intensity 

levels in L. In other words, if we project the color fringe image X onto the object and 

extract the luminance plane of the color image captured by the camera, it will be 

equivalent to projecting an octa-level fringe pattern onto the object directly.  

Note that the actual luminance value associated with a particular color can vary 

among different projectors in practical situations. However, they can be measured 

easily though a simple experiment before doing 3D measurements. Eqn. (3.1) can 

then be adjusted accordingly.  

Figure 3-1 illustrates an example which provides a binary fringe pattern, a color 

halftone fringe pattern and an octa-level fringe pattern that is actually the luminance 

plane of the color halftone fringe pattern. The octa-level fringe pattern can be 

considered as a quantization result of a grayscale sinusoidal pattern obtained with a 
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non-uniform 8-level quantizer. Its quantization noise is much lower than a binary 

pattern 

 
(a) 

 
(b) 

 
(c) 

Figure 3-1 (a) a binary fringe pattern that simulates sinusoidal fringe pattern; (b) an color 

binary fringe pattern that simulates the same pattern; (c) luminance plane of (b). 

As compared with binary fringe patterns, the only disadvantage of octa-level 

fringe patterns is that more preparation effort is required to develop the patterns since 
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it involves the manipulation of three binary planes. However, fringe pattern 

development is a one-time process and it is done off-line. In practice there is no extra 

cost for subsequent measurements once the fringe patterns are developed.   

Accordingly, octa-level fringe patterns offer the following advantages: 

1) Real-time measurement can be supported, as the frame rate can be as high as 

in the case when binary defocusing technique is used (up to 667 Hz).   

2)  It is not impacted by projector non-linearity, as only the minimum and 

maximum intensity levels are used in each color channel.  

3)  No color-shifting calibration is needed, as there is no restriction on the exact 

intensity values of the 8 luminance levels. It is different from the case when 

full-color fringe patterns are used [77].  

4)  Higher accuracy can be achieved, as octa-level instead of binary fringe 

patterns are projected.   

3.3 Optimization of octa-level fringe patterns 

An octa-level fringe pattern can be simply acquired by quantizing a sinusoidal 

fringe pattern 𝐼  using a non-uniform quantizer. However, the quantization noise 

remains a problem although it has been decreased by increasing the number of 

quantization levels. In previous studies of binary fringe pattern generation, halftoning 

algorithms such as error diffusion [39] and Bayer dithering [42] were applied to shape 

the quantization noise. In principle, these halftoning algorithms can also be extended 

to generate octa-level fringe patterns with a non-uniform quantizer. However, we 

found that a simple extension of these halftoning algorithms is not able to produce 

good octa-level fringe patterns. We hence designed an optimization process that is 
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similar to Direct Binary Search (DBS) [78] to optimize an octa-level fringe pattern. 

The idea stems from the fact that DBS is a powerful halftoning method to produce 

high-quality halftones by mutating and swapping pixel values one by one.  

Consider the case that one wants to generate octa-level fringe patterns 𝑆! for 

𝑘∈{1,2,3} to approximate sinusoidal fringe patterns 𝐼! with a defocused projector. As 

𝐼!, 𝐼! and 𝐼!  are shifted versions of each other, all we need is actually to generate an 

octa-level pattern S to approximate a sinusoidal fringe pattern I. To achieve this goal, 

one can generate three binary patterns, say 𝐵!∗ , 𝐵!∗and 𝐵!∗ , by minimizing the 

following cost function: 

        𝐵!∗,𝐵!∗,𝐵!∗ = argmin{!!,!!,!!}  𝐽 
= argmin{!!,!!,!!} 𝐼 − 𝐺

(!)⊗ 𝑆          (3.2) 

where 𝑆 is constructed with binary pattern 𝐵!  for c∈{R,G,B} with eqn.(3.1), 𝐺(!) 

symbolized a 𝑡×𝑡 Gaussian low-pass filter that simulates the defocusing effect. The 

coefficients of the Gaussian filter are given as: 

                              𝐺(!) 𝑥,𝑦 = !
!!"

𝑒!
(!!!!!)
!!!                                          (3.3) 

where σ is the standard deviation of Gaussian distribution which is often set to t/3 to 

simulate the blurring effect of a defocused projector [10–12, 23, 79], t  is the filter 

size where a larger t symbolizes more defocused projector and vice versa.  

The optimization is a NP-hard problem as 𝐵!  is not continuous. Moreover, 𝑆 is 

an 8-level pattern instead of a binary pattern so we cannot simply switch on/off pixel 

values when doing a search. To solve this problem, we proposed a patch-based 

optimization algorithm that is modified from [10]. Its detailed procedure is given as 

below: 
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Let P be a color patch of size Nx×Ny, where Nx is fixed to be half of the fringe 

period of the target sinusoidal pattern. P(x,y) denotes the color of pixel (x,y) in 

patch P. A color is represented as a vector belonging to set 

Ω={(r,g,b)|r,g,b∈{0,1}}, where r, g  and b are the values of the red, green and 

blue components of the color.  

Step 1:  Patch initialization:  

Initialize color patch P by randomly assigning a color in Ω for each of its 

pixel.  

Step 2:  Patch optimization:   

Step 2.1: Raster scan the patch and process the patch pixels one by one as 

follows. For each patch pixel, replace its color with each one of the 8 colors in 

Ω to form a new patch P’, tile patch P’ to construct a color pattern Y the size 

of which is the same as that of 𝐼, split the three primary color channels of Y to 

construct an octa-level pattern 𝑆 with eqn. (3.1), update patch P to be the patch 

that provides the minimum value in eqn. (3.2) among the eight tested patches. 

Step 2.1 is completed when the whole patch is scanned once. 

Step 2.2:  If the total improvement in step 2.1 is larger than 0.01% in terms of  

𝐼 − 𝐺(!)⊗ 𝑆 , go back to step 2.1. Otherwise the most updated P is the 

optimal patch of size Nx×Ny. 

Step 3:  Fringe pattern generation:  

Construct a full-size octa-level fringe pattern by tiling the optimized color 

patch and then extracting the luminance plane of the tiling output. This pattern 

forms fringe pattern 𝐼!. The other two octa-level fringe patterns, namely 𝐼! and 

𝐼!, can be obtained by shifting 𝐼! spatially by −2𝜋/3 and 2𝜋/3, respectively. 
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In our realization, by changing Ny from 4 to 10, we optimized color patches of 

different sizes with the above procedures. For each patch, a set of octa-level fringe 

patterns can be derived. In all available sets of octa-level fringe patterns, the best set 

is selected based on the criteria that its achieved phase root mean square error is small 

and stable in different defocusing levels.  Specifically, phase root mean square error is 

defined as 

            ∆𝜑(!) = !
!"

(𝜑 𝑥,𝑦 − 𝜑!(!) 𝑥,𝑦 )!!
!!!

!
!!!                  (3.4) 

where 𝜑 𝑥,𝑦  is the phase obtained by projecting grayscale sinusoidal fringe patterns 

and can be calculated with eqn. (2.13), 𝜑!(!) 𝑥,𝑦  is the phase obtained by projecting 

octa-level fringe patterns with a defocused projector that is simulated with a t×t 

Gaussian filter, and M×N is the size of a full-size fringe pattern. In formulation, 

𝜑!(!) 𝑥,𝑦  is computed as 

   𝜑!(!) 𝑥,𝑦 = tan!!(
! !(!)⨂!! !,! !!(!)⨂!! !,!

!!(!)⨂!! !,! !!(!)⨂!! !,! !!(!)⨂!! !,!
)         (3.5) 

where 𝐺(!)⨂𝑆! 𝑥,𝑦   denotes the intensity of pixel 𝑥,𝑦  of 𝐺(!)⨂𝑆! for 𝑘∈{1,2,3}. 

To guarantee that the optimized patches can provide a stable performance in 

different defocusing levels, the best patch selection is formulated as: 

                   𝑃!"#$ = argmin! ∆𝜑(!)!"
!!!            (3.6) 

The optimization is time-consuming, but once the optimal patch is determined, 

patterns of different sizes can be easily generated by tiling the patch. 
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3.4 Performance evaluation 

The performance of the proposed algorithm is evaluated in this Section. Firstly, 

in Section 3.4.1, the parameters for generating the octa-level fringe patterns used in 

our evaluation are provided. Secondly, in Section 3.4.2, some state-of-art binary 

defocusing algorithms used for comparative studies are introduced. Finally, in Section 

3.4.3, the evaluation results are provided and analyzed. 

3.4.1 Simulation parameters 

Simulation was carried out to evaluate the phase error performance of the 

proposed defocused octa-level fringe patterns. While optimizing the octa-level fringe 

patterns, the defocusing effect was modeled as a 5×5 (i.e. t=5 in eqn. (3.3)) Gaussian 

low-pass filter, with its standard derivation equal to 1/3 of its size. In our first 

simulation, fringe period is fixed to be 60 pixels. In the other simulations, the 

performance achieved with various fringe periods and different defocusing levels are 

thoroughly analyzed.  

To convert a phase map to a depth map of an object, it may be necessary to 

unwrap the phase map. In all our simulations, Goldstein's branch-cut unwrapping 

algorithm [65] was exploited for this purpose. 

3.4.2 Algorithms used for comparison 

To our best knowledge, at the moment, we are the only research group that 

proposes generating octa-level fringe patterns for 3D measurement. There is no octa-

level fringe pattern generation algorithm for comparison.  
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Accordingly, several binary defocusing algorithms [10–12] were selected to 

serve as references for comparison. In particular, opt-p [12] is an algorithm that 

optimizes binary fringe patterns by minimizing the resulting phase error with respect 

to the phase map that can be achieved with the ideal continuous tone sinusoidal fringe 

patterns. opt-i  [11] optimizes binary fringe patterns by minimizing their errors from 

the ideal grayscale sinusoidal fringe patterns in the intensity domain. bpatch [10] is a 

patch-based method that utilizes the symmetry and periodicity of a grayscale 

sinusoidal fringe pattern in the optimization. In our simulations, all these algorithms 

were realized using the same parameters as described in their corresponding papers.  

There are some other algorithms for generating binary fringe patterns. That only 

the aforementioned algorithms (opt-p, opti-i and bpatch) are selected for comparison 

is because they adopt two-dimensional modulation techniques to produce fringe 

patterns. Their performance is theoretically better as compared with the algorithms 

that generate patterns with 1D modulation techniques (e.g. [5], [8], [15] and [17]).  

Besides, since the fringe patterns of opt-p, opti-i and bpatch are generated with 

an optimization scheme, they outperform the fringe patterns generated with the 

algorithms that do not have an optimization step (e.g.[4], [13] and [16]). In short, opt-

p, opti-i and bpatch are good representatives of the state-of-art binary fringe pattern 

generation methods exploited in 3D measurement.  

3.4.3 Simulation results 

In the first simulation, phase maps were derived with the fringe patterns obtained 

with various algorithms.  From each of them, a cross-section of the absolute phase 

error along the x-direction is extracted and plotted in Figure 3-2. The x-direction 
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corresponds to the direction of the sinusoidal variation in a fringe pattern. The plot 

covers three fringe periods. The absolute phase error is formulated as: 

                ∆𝜑(𝑥,𝑦) = 𝜑 𝑥,𝑦 − 𝜑′ 𝑥,𝑦      (3.7) 

where 𝜑! 𝑥,𝑦  is the 𝑥,𝑦 th pixel of the pixel-wise phase map obtained by 

projecting defocused binary fringe patterns or octa-level fringe patterns while 𝜑 𝑥,𝑦  

is that obtained by projecting ideal sinusoidal fringe patterns.  

 

Figure 3-2 Absolute phase error of method opt-i, opi-p, bpatch, and the proposed 

From Figure 3-2, one can see that the proposed patterns produce very small phase 

error with little fluctuation as compared with the binary patterns. Another observation 

is that the phase errors of bpatch and the proposed patterns are periodic, which is due 

to their patch-based characteristics.  

In practical situations, it may not be possible for one to control the defocusing 

level of a projector precisely. Therefore, in the second simulation, we evaluated the 

performance of the four methods under different defocusing conditions. Fringe 

patterns of various fringe periods were involved in this simulation. The performance 

is measured in terms of phase root mean square (rms) error, which is defined in eqn. 

(3.4).  
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The different defocusing levels are simulated with Gaussian filters of sizes 5×5, 

7×7, 9×9, 11×11 and 13×13 pixels (i.e. 𝐺(!) for t =5, 7, 9, 11 and 13) respectively. 

Their standard derivations are one third of their filter sizes. As a reminder, we note 

that all patterns were optimized based on the assumption that the Gaussian filter is of 

size 5×5, so some evaluation conditions are different from the assumption made 

during the optimization of the fringe patterns. Figure 3-3 shows the performance 

curves of different patterns.  

 

    
  (a)  (b) 

     
 (c)  (d) 

Figure 3-3 Simulated phase rms errors with different fringe patterns under different 

defocusing levels when fringe period is (a) 30, (b) 60, (c) 90 and (d) 120 pixels. 

From Figure 3-3, one can see that the proposed octa-level patterns are more 

robust than binary patterns whatever the fringe period is. The performance of the 

proposed patterns is always better and its advantage is more significant when the 

defocusing level is low. We note that stronger defocusing implies more low-pass 

filtering effect, and hence more high frequency noise can be removed. Accordingly, 
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performance of the defocused binary patterns can be closer to the target sinusoidal 

pattern. This explains why all binary patterns perform better when the defocusing is 

stronger. In real situation, defocusing cannot be too strong because it lowers the local 

spatial contrast and hence the noise immunity as well. By increasing the number of 

luminance levels, the proposed octa-level fringe patterns can approximate sinusoidal 

patterns well even at a very low defocusing level. 

The third simulation is for evaluating the performance of the proposed fringe 

patterns in measuring a cone-like object. The fringe period is 30 pixels. The 

defocusing process is again modeled as a 5×5 Gaussian filter with standard derivation 

equal to 5/3 in this simulation. Figure 3-4 shows the results of measuring a cone with 

the proposed octa-level patterns and the binary patterns obtained with opt-i. By 

comparing their phase errors shown in Figure 3-4(g) and Figure 3-4(h), one can see 

the significant improvement achieved by the proposed octa-level fringe patterns. In 

fact, the maximum phase error is reduced from 0.2211 to 0.0403 rad. 
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(a)  
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f)  

 
(g) 

 
(h)  

Figure 3-4 Simulation results for measuring a cone. (a) object, (b) projected view of a 

sinusoidal fringe pattern, (c) projected view of a defocused binary pattern (opt-i), (d) 

projected view of a defocused octa-level fringe pattern (the proposed), (e) phase map obtained 

with opt-i, (f) phase map obtained with the proposed octa-level fringe patterns, (g) phase error 

of (e), (h) phase error of (f). 
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3.4.4 Experimental results 

Besides simulation, we set up a real 3D shape measurement system to evaluate 

the proposed 3D measuring method. The system consists of a digital-light-processing 

projector (Texas MP723) and a CCD camera (Canon 400D). The size of a projected 

fringe pattern is 1024×768 pixels. The fringe period is 18 pixels. The reference plane 

is placed around 0.5 meters away from the projector. Goldstein's branch-cut 

unwrapping algorithm [65] was applied to obtain unwrapped phase information. 

Figures 3-5 (a) shows our experiment system, and figures 3-5 (b), (c) and (d) illustrate 

one of the captured fringe patterns of grayscale sinusoidal fringe patterns, binary 

fringe patterns and octa-level fringe patterns, respectively. 

Figure 3-6 shows how our octa-level fringe patterns increase the number of 

quantization levels. With a slight defocused projector, one can observe the signal of 

bpatch [10] includes several quantization levels but the signal of the proposed octa-

level fringe pattern (named cpatch hereafter) is smooth enough to a sinusoidal signal. 

Figures 3-7 (a) and (b) show, respectively, the depth maps of a paper airplane 

obtained with three-step phase-shifting sinusoidal fringe patterns and the proposed 

octa-level fringe patterns. Figures 3-8 (b) and (c) show, respectively, the depth maps 

of a jug with the same fringe patterns. One can observe that the measure quality of the 

proposed algorithm is approaching the grayscale phase-shifting algorithm. By 

considering that no gamma calibration is required and real-time realization is feasible 

when the proposed method is used, the proposed fringe pattern is useful in real world 

measurement systems. 
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Figure 3-5 (a) our experiment system; one of the captured images of (b) 

grayscale fringe patterns, (c) binary fringe patterns and (d) octa-level fringe paterns. 
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     (a) 

 

Figure 3-6 Improvement of quantization levels by the proposed octa-level fringe patterns  

 

 
     (a) 

 
(b) 

 

Figure 3-7 (a) depth map of a paper airplane obtained with sinusoidal fringe patterns and (b) 

depth map of a paper airplane obtained with our proposed octa-level patterns.  
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(a) 

  

 
(b) 

 
(c) 

 

Figure 3-8 (a) picture of a jug; (b) depth map obtained with sinusoidal fringe patterns and (c) 

depth map obtained with our proposed octa-level patterns.  
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3.5 Summary 

In this Chapter, a framework of generating octa-level fringe patterns is presented. 

With the help of a defocused projector, octa-level fringe patterns can achieve the same 

measurement speed and ease the calibration demand during measurements as binary 

fringe patterns do. In contrast, the quality of octa-level fringe patterns is much higher 

than binary fringe patterns because of the increased quantization levels. We 

demonstrated the advantages of the proposed method as compared with the binary 

fringe projection methods in both simulation and experimental results. The work 

described in this chapter was published in [25] and contributed to the publication of 

[26]. 

For the sake of reference, the method used in this Chapter to generate octa-level 

fringe patterns is referred to as cpatch hereafter.   
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Chapter 4.  

Removing the harmonic distortion introduced by 

patched-based fringe patterns 

4.1 Introduction 

In Chapter 3, we present how to generate octa-level fringe patterns that can 

significantly reduce the noise floor of binary defocusing fringe patterns. The resultant 

fringe patterns are patch-based, which is similar to those produced in bpatch [10]. 

Although patch-based optimization is computationally efficient, it tends to generate 

periodic fringe patterns that carry periodic noise patterns in intensity domain. The 

periodic noise in intensity domain eventually affects the corresponding phase map 

constructed for the object being measured. As shown in Figure 3-2, periodic phase 

error can be found in the phase maps generated with the fringe patterns produced with 

bpatch and cpatch (i.e. the proposed octa-level fringe pattern generation method 

introduced in Chapter 3). The periodic phase error introduces regular patterns and 

contributes strong harmonic noise in the final depth map. 

To get an optimized halftone pattern the performance of which is robust to the 

amount of defocusing, conventional methods optimize halftone patterns under 

different conditions (e.g. different patch sizes [10], [23] and [25]) and then, from the 

optimized results, pick the one which is the most robust to defocusing conditions. 

This pick-the-best-from-the-available approach is passive to some extent and makes 

the optimization effort grow in multiples. 
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Though three fringe patterns are required to realize a three-step phase-shifting 

algorithm in 3D measurement, conventional patch-based binary fringe pattern 

generation methods generally optimize only one single patch and then tile it to form a 

full-size fringe pattern. The other two full-size fringe patterns are obtained by shifting 

the tiling results by ±2T/3 pixels, where T is the fringe period. In a digital pattern, the 

shift must be an integer and hence the fringe period is bound to be an integer multiple 

of 3. This arrangement also introduces a harder constraint for the optimization process 

to optimize a patch. 

In this Chapter, we proposed a different optimization framework which generates 

multiple patches for tiling so that the periodicity of phase error can be effectively 

suppressed. The contribution of this work includes: 

1) It is able to generate aperiodic fringe patterns the produced phase error of 

which carries almost no harmonic distortion in the direction along which the 

fringe patterns provide a sinusoidal magnitude variation. 

2) It is capable to generate multilevel fringe patterns of arbitrary fringe period. 

3) It releases a constraint for the optimization and theoretically it is able to 

achieve a better optimization result. 

4) It takes proactive action to find optimized patches that are robust to 

defocusing extent.   

The organization of this Chapter is as follows. In Section 4.2, we formulate an 

alternative objective function that allows us to achieve the aforementioned 

contributions by optimizing it. The realization of the optimization is presented in 

Section 4.3. Simulation and experimental results for performance evaluation are 

provided in Section 4.4. Finally, a brief summary is given in Section 4.5. 
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4.2 Formulation of the optimization problem 

Obviously, we need 3 octa-level fringe patterns, say L1, L2 and L3, to approximate 

sinusoidal fringe patterns S1, S2 and S3 respectively with the defocusing method such 

that the approximation error in phase domain is minimized. Besides the minimum 

error criterion, we would also like to achieve the following criteria:  

1.  The approximation performance is not sensitive to amount of defocusing.  

2.  The octa-level fringe patterns of any desirable sizes can be flexibly and easily 

constructed on site whenever necessary. 

3.  The octa-level fringe patterns carry no low frequency harmonics and noise.    

To achieve these goals, we propose to optimize two sets of three octa-level patch 

patterns, each of which is constructed with 3 binary patch patterns based on the color 

to luminance conversion defined in Chapter 3, by taking all the aforementioned 

criteria into account. Once they are obtained, by randomly tiling the two sets of patch 

patterns spatially, one can construct three aperiodic octa-level fringe patterns of any 

desirable size whenever necessary to do 3D shape measurement.  

The success relies on how to optimize the two groups of octa-level patch patterns 

such that they can seamlessly connected to each other. Let 𝑃(!,!) be the kth octa-level 

patch pattern of set s∈{0,1}, where k∈{1,2,3}. In our approach, for each k, we tile 

patch patterns 𝑃(!,!) and 𝑃(!,!) as shown in Figure 4.1 to form an octa-level pattern, 

𝑃!, in which all possible neighboring combinations of 𝑃(!,!) and 𝑃(!,!)are included, 

and then optimize 𝑃!  for k∈{1,2,3} together to minimize a cost function. Note that 

the occurrences of connection combinations  𝑃(!,!)𝑃(!,!), 𝑃(!,!)𝑃(!,!), 𝑃(!,!)𝑃(!,!) and  

𝑃(!,!)𝑃(!,!)  are identical in 𝑃!  and hence there should be no bias to favor a particular 

connection combination after the optimization.   
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Figure 4-1 A circular connected octa-level pattern with two octa-level patches for 

optimization. 

Let H be a Gaussian low pass filter that models the defocusing effect of a 

projector. The phase map obtained with the defocused octa-level fringe patterns 𝑃! for 

k∈{1,2,3} is given as 

  𝜑!(!) 𝑥,𝑦 = tan−1( 3 !(!)⨂𝑆1 𝑥,𝑦 −!(!)⨂𝑆3 𝑥,𝑦
2!(!)⨂𝑆2 𝑥,𝑦 −!(!)⨂𝑆1 𝑥,𝑦 −!(!)⨂𝑆3 𝑥,𝑦

)    (4.1) 

where 𝐺(!)⨂𝑆! 𝑥,𝑦  denotes the intensity value of the (x,y)th pixel of 𝐺(!)⨂𝑆! for 

k=1,2,3. The approximation error in phase domain can hence be defined as  

∆𝜑(!) = !
!"

(𝜑 𝑥,𝑦 − 𝜑!(!) 𝑥,𝑦 )!!
!!!

!
!!!                  (4.2) 

where M×N is the size of 𝑃!, ∆𝜑(!) is actually the phase root mean square (rms) error 

achieved with the fringe patterns when the defocusing process can be modeled as a 

Gaussian low-pass filter defined in eqn. (3.3). It is considered as a good measurement 

of approximation quality in [6], [10]–[12], [18], [23], [25] and [80]. 

Different amount of defocusing should be taken into account during the 

optimization such that the approximation performance can be robust to it. In this 

work, we model slight defocusing and severe defocusing, respectively, with a 5×5 

Gaussian filter and an 11×11 Gaussian filter with their standard derivations equal to 
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1/3 of their sizes. Octa-level patterns 𝑃! for k∈{1,2,3} are then optimized in parallel 

to minimize cost function  

𝐽 = ∆𝜑(!) + ∆𝜑(!!)                               (4.3) 

The two defocusing levels serve as the upper and the lower bounds of a range of 

defocusing levels. By taking them into account when defining objective function 

(4.3), the optimization considers both the phase rms error and the robustness to 

defocusing levels. In contrast to those conventional fringe pattern generation methods 

(e.g. [6], [10], [18] and [23]) that adopt the pick-the-best-from-the-available approach 

to passively tackle the robustness issue, we optimize patches proactively to solve the 

problem.   

Recall that 𝑃! is constructed with patch patterns as  shown in Figure 4.1 and 

𝑃(!,!) is actually the luminance plane of a color patch whose red, green and blue 

channels (denoted as 𝐵!(!,!),  𝐵!(!,!) and 𝐵!(!,!) hereafter) are all bi-level patches. 

Optimizing  𝑃!  for k∈{1,2,3} is hence equivalent to solving the following 

optimization problem: 

   min !! !,! ,!! !,! ,!! !,!
!"# !∈ !,! !"# !∈{!,!,!}

𝐽            (4.4) 

subject to the constraints that 𝑃!  is constructed with 𝑃(!,!) for s=1,2 as shown in 

Figure 4-1 and that 

           𝑃(!,!) = 0.299𝐵! !,! + 0.587𝐵! !,! + 0.114𝐵! !,!         (4.5) 

Notably, the optimization procedures are different from other patch-based 

optimization schemes (c.f. [6], [10], [18], [23] and cpatch) as follows: 
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1) We develop two sets of patches instead of one single patch such that one can 

construct full-size fringe patterns with them to eliminate periodic phase error 

and improve measurement quality. 

2) We explicitly optimize three different patches belonging to each set while the 

conventional approaches optimize only one single patch and then shift it by 

±1/3 period to generate the other two patches, which removes the constraint 

that the fringe period must be an integer multiple of 3.  

3) We explicitly take different defocusing conditions into account when 

constructing the objective function (in eqn. (4.3)) for optimization so that the 

optimized patterns are automatically robust to defocusing extent. 

4.3 Realization of the optimization 

Let 𝐶(!,!)for k∈{1,2,3} and s∈{1,2} be 6 color patches of size Nx×Ny each, 

where Nx is fixed to be the fringe period of the target sinusoidal pattern. 𝐶 !,! (𝑥,𝑦) 

denotes the color of pixel (x,y) in patch 𝐶(!,!). A color is represented as a vector 

belonging to set Ω={(r,g,b)|r,g,b∈{0,1}}, where r, g and b are the binary values of the 

red, green and blue components of the color. Octa-level patch 𝑃(!,!)is the luminance 

plane of 𝐶(!,!). 

Step 1.  Initialization of 𝑃(!,!): Generate grayscale sinusoidal fringe patterns S1, S2 

and S3 of size 8Nx×5Ny each. Serpentine scan Sk for k∈{1,2,3} separately. 

For each scanned pixel, quantize its intensity value to the nearest luminance 

value of the colors in Ω and then diffuse the quantization error with the 

diffusion filter suggested in [39]. Note the quantization is a vector 

quantization and this octa-level error diffusion scheme is shown in Figure 4-
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2. After the last pixel is processed, chop two connected Nx×Ny segments 

from the quantization result of Sk to form the initial versions of 𝑃(!,!) and 

𝑃(!,!) respectively. 

 

Figure 4-2 Scheme of octa-level error diffusion 

Step 2. Refining 𝑃(!,!): Fix 𝑃(!,!) as its most updated version in this step. Raster scan 

patches 𝑃(!,!) for all k in parallel at the same pace and process their pixels 

sequentially according to the scanning order. Assume that the pixel location 

being scanned is (x,y). Let 𝑃(!,!)(𝑥,𝑦) be the luminance value of the (x,y)th 

pixel of 𝑃(!,!). Since 𝑃(!,!) is an octa-level pattern for each k, there are 

83=512 possible value combinations of 𝑃(!,!)(𝑥,𝑦) for k∈{1,2,3}. For each 

combination, construct a candidate patch set Λ={𝑃(!,!)|k=1,2,3}, in which all 

other pixels of 𝑃(!,!) remain the same as the most updated 𝑃(!,!), and tile 

𝑃(!,!)∈Λ with the fixed 𝑃(!,!) as shown in Figure 4-1 to form a set of fringe 

patterns 𝑃!, 𝑃! and 𝑃!. Among all 512 candidate sets of {𝑃(!,!)|k=1,2,3}, the 

one used to construct the fringe patterns that minimizes J is the newly 

updated set of 𝑃(!,!) for all k. It continues until all pixels are scanned and 

processed. 

Step 3.  Refining 𝑃(!,!): Do step 2 again but exchange the roles of 𝑃(!,!) and 𝑃(!,!). 
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Step 4. Termination analysis: If the total improvement in steps 2 and 3 is larger than 

0.01% in terms of J, go back to step 2. Otherwise the most updated 𝑃(!,!) 

and 𝑃(!,!) are considered as the optimal patches. 

Step 5.  Finalizing Fringe patterns: Randomly tile optimized patches 𝑃(!,!) and 𝑃(!,!) 

horizontally to form a patch row and then repeat the patch row vertically to 

form full-size octa-level fringe patterns Lk for k∈{1,2,3} under the condition 

that L1, L2 and L3 share the same random tiling pattern. 

The optimization is time-consuming, but it is offline. Once the optimal patches 

𝑃(!,!)  and 𝑃(!,!)  are determined, fringe patterns of different sizes can be easily 

generated by randomly tiling the patches. 

4.4 Performance evaluation 

This Section provides some simulation results and experimental data for 

evaluating the performance of the fringe pattern generation method presented in this 

Chapter. 

4.4.1 About the simulations 

Simulation was carried out to evaluate the phase error performance of the 

proposed defocused octa-level fringe patterns. Different from the previous 

optimization algorithms [10–12, 18, 21, 23, 25], the fringe patterns developed with 

the approach introduced in this Chapter is not optimized for a particular defocusing 

level. Instead, the objective function of the optimization is defined based on two 

defocusing levels which serve as the bounds of a range of defocusing levels.  
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During the optimization process in our simulation study, these two defocusing 

levels were simulated with a 5×5 Gaussian low-pass filter and an 11×11 Gaussian 

low-pass filter, with their standard derivations equal to 1/3 of their sizes. Weighting of 

the two terms are set to be equal. The optimization process terminates once the 

marginal improvement in one iteration cycle is smaller than 0.01% in terms of cost 

function (4.3).  

Octa-level fringe patterns of various fringe periods are generated to evaluate the 

performance. In particular, patterns of fringe periods that are not integer multiply of 

three are also generated. Fringe patterns of these periods cannot be generated by 

conventional patch-based optimization algorithms [6, 10, 18, 23, 25].  

Several representative binary defocusing algorithms [10–12] as well as the 

method discussed in Chapter 3 [25] were implemented for comparison. They are 

referred to as opt-p [12], opt-i [11], bpatch [10] and cpatch [25] in this Section. All 

these algorithms were implemented using the same parameters as suggested in their 

corresponding papers. 

In our simulations, the defocusing process was modeled as a 5×5 Gaussian filter 

with its standard derivation equal to 5/3 unless else specified. Accordingly, fringe 

patterns opt-p, opt-i, cpatch were optimized for this defocusing condition while fringe 

patterns bpatch and the proposed were optimized to handle various defocusing 

conditions as in their original designs. 

4.4.2 Simulation results 

In the first simulation, the phase maps obtained with various algorithms were 

derived and their mean absolute phase errors were plotted in Figure 4-3. The period of 
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the target sinusoidal fringe pattern is 60 pixels, and the plot covers two fringe periods. 

The mean absolute phase errors are computed as  

∆𝜑 !(𝑥) =
!
!!

𝜑 𝑥,𝑦 − 𝜑′ 𝑥,𝑦!             (4.6) 

where 𝜑 𝑥,𝑦  and 𝜑′ 𝑥,𝑦  are, respectively, the (x,y)th pixel values of phase maps 𝜑 

and 𝜑′, and 𝐾!is the total number of pixels along y-direction. Phase maps 𝜑 and 𝜑′ 

are, respectively, obtained when grayscale fringe patterns and the evaluated fringe 

patterns are used. Mean absolute phase error is more reliable as it is less fluctuated.   

As shown in Figure 4-3, the phase errors achieved with octa-level fringe patterns 

(cpatch and the proposed) are reduced significantly as compared with those achieved 

with binary fringe patterns (opt-p, opt-i and bpatch). As compared with cpatch, the 

mean absolute phase error of the proposed fringe patterns is aperiodic.  

 

Figure 4-3 Mean absolute phase errors achieved with opt-i, opi-p, bpatch, cpatch and the 

proposed 
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Figure 4-4 Power spectral densities of the phase errors associated with opt-i, bpatch, cpatch 

and the proposed 

For further evaluating the harmonics in phase domain, Figure 4-4 shows the 1D 

power spectral densities of the phase errors achieved with different fringe patterns. 

The spectrum associated with opt-p is not included because it is similar to the one 

associated with opt-i. 

The total noise energy of opt-i is the largest. Strong harmonic distortion can be 

found in the plots of bpatch and cpatch due to their patch-based optimization 

schemes. In contrast, the phase errors associated with opt-i and the proposed are more 

like white noise. The noise floor of ours is much lower than opt-i and bpatch.  

Figure 4-5(a) shows the performance achieved with the evaluated fringe patterns 

in terms of phase rms error when their fringe periods vary from 30 to 120 pixels. Note 

that the fringe periods of other evaluated fringe patterns must be an integer multiple of 

3 while the proposed method do not have this limitation. One can see that the 

proposed fringe patterns perform well consistently when the fringe period changes. As 

expected, octa-level fringe patterns (cpatch and the proposed) perform better than 
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binary ones (opt-i, opi-p, bpatch). The difference between cpatch and the proposed 

fringe patterns shows the advantage of using fringe patterns with less harmonic 

distortion. 

The same set of fringe patterns evaluated to produce Figure 4-5(a) were also 

evaluated under different defocusing conditions to investigate whether their 

performances are robust to defocusing. In our study, different amount of defocusing is 

achieved by filtering the fringe patterns with a t×t Gaussian filter with its standard 

derivation equal to t/3, where t∈{7,9,11}. The simulation results shown in Figures 4-

5(b)-(d) verify that the performance of the proposed fringe patterns is robust to 

defocusing. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-5  Simulated phase rms errors achieved with different fringe patterns of 

different fringe periods when the defocusing level is  simulated by a Gaussian filter of size (a) 

5×5, (b) 7×7, (c) 9×9, or (d) 11×11 pixels 
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(a) 

 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

 
(d) 

 
(g) 

Figure 4-6  Simulation results for measuring an object. (a) 3D plot of the object; (b) ideal 

unwrapped phase map; and unwrapped phase maps obtained with (c) proposed, (d) cpatch, (e) 

bpatch, (f) opt-i and (g) opt-p. 

We also evaluated the algorithms by projecting the fringe patterns onto a 

complex 3D object. The simulation results are shown in Figure 4-6. In the simulation, 

the common fringe period of all fringe patterns is 60 pixels, and Goldstein's branch 

cut unwrapping algorithm [65] was exploited to obtain unwrapped phase information. 

The defocusing process is modeled as a 5×5 Gaussian filter with standard derivation 

equal to 5/3. Obviously, the unwrapped phase maps obtained with octa-level fringe 

patterns are more accurate. Note that the gain is at no cost to a certain extent as only a 
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binary pattern is manipulated in each color channel. After suppressing the harmonic 

distortion, the unwrapped phase map obtained with our fringe patterns can preserve 

the parallel ridges much better than the one obtained with cpatch. 

4.4.3 Experimental results 

We also set up a real 3D shape measurement system to evaluate the proposed 

algorithm. The system consists of a digital-light-processing projector (Texas MP723) 

and a CCD camera (Canon 400D). The size of a projected fringe pattern is 1024×768 

pixels. The fringe period is 18 pixels. The reference plane is placed around 0.5 meters 

away from the projector. Goldstein's branch cut unwrapping algorithm [65] was 

applied to obtain unwrapped phase information. 

The object to be measured is shown in Figure 4-7(a). Figure 4-7(b) illustrates the 

ideal depth map which was obtained by grayscale nine-step phase-shifting algorithm 

[81]. To tackle the gamma nonlinearity of the projector, active gamma correction [66] 

was done before the grayscale sinusoidal patterns were projected. No gamma 

correction is needed for projecting binary or octa-level fringe patterns. 

Figures 4-7(c), (d), (e) and (f) show, respectively, the depth maps (unit in cm) 

obtained with bpatch, opt-i, cpatch and the proposed aperiodic octa-level fringe 

patterns. All are similar to the depth map obtained with ideal sinusoidal fringe 

patterns (shown in Figure 4-7(b)). However, their depth rms errors are, respectively, 

0.0324 cm, 0.0334 cm, 0.0252 cm and 0.0175 cm. The proposed fringe patterns 

perform better than binary patterns. Remind that no gamma calibration for the 

projector is required and real-time realization is feasible when the proposed method is 

used.  
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To evaluate the improvement of harmonic elimination, we conducted another 

experiment and plotted the power spectral densities of the phase errors associated with 

bpatch, cpatch and the proposed fringe pattern cpatch1D in Figure 4-8. It can be 

clearly noticed that bpatch and cpatch produced severe harmonics but cpatch1D did 

not. 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

Figure 4-7 Experimental results for measuring a jug: (a) object and the depth maps obtained 

with (b) sinusoidal fringe patterns, (c) bpatch, (d) opt-i, (e) cpatch, and (f) the proposed fringe 

patterns. 
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         (a) 

 

 
(b) 

 
          (c) 

Figure 4-8 Power spectral densities of the phase errors associated with (a) the proposed fringe 

pattern cpatch1D , (b) bpatch, and (c) cpatch. 

 

4.5 Summary 

In this Chapter, we propose a framework for generating aperiodic octa-level 

fringe patterns for real time 3D shape measurement and an algorithm to optimize 

patches that can be used to support the proposed tiling method. As compared with 

conventional patch-based frameworks, it is able to produce fringe patterns of arbitrary 

fringe period and higher gray-level resolution without introducing harmonic 

distortion. The achieved depth measuring performance can be significantly improved 
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and is also robust to fringe period and defocusing extent. The gain is almost at no cost 

because a measuring system exploiting the proposed octa-level fringe patterns shares 

the same advantages with the systems using binary fringe patterns. This work was 

published in a journal paper [26]. 

For the sake of reference, the method used to generate octa-level fringe patterns 

is referred to as cpatch1D hereafter.   
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Chapter 5.  

Improving octa-level fringe patterns by 2D tiling 

optimization and multiscale error diffusion 

5.1 Introduction 

Conventional patch-based fringe pattern generation methods tile patches regularly 

to produce full-size fringe patterns, which introduces strong harmonic distortion to the 

depth map of the measured object in 3D measurement. In Chapter 4, we address this 

issue and reduce the harmonic distortion along a specific direction significantly. 

However, harmonic distortion can still be found in the other orthogonal direction. 

Another observation is that, though conventional fringe pattern generation 

methods formulate the pattern generation as an optimization problem, the problem is 

generally solved by iteratively refining an initial estimate due to its unaffordable 

complexity. The solution is generally not the global optimum but a local optimum in 

terms of an objective function. If the refining step is not flexible, the solution will be 

biased to the initial estimate and its performance can be far from the optimal. In view 

of this, a better initial estimate and a flexible refining scheme would definitely be 

helpful to get better fringe patterns.      

This Chapter presents a novel method to generate patch-based octa-level fringe 

patterns for improving the measuring performance of a 3D surface measuring system. 
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As compared with the octa-level fringe pattern generation method proposed in 

Chapter 4, its contributions include: 

1.  A new method is proposed to optimize patches such that they can be flexibly and 

seamlessly tiled to form octa-level fringe patterns the achieved phase error of 

which contains almost no harmonic distortion along any direction.  

2.  A new approach is proposed to get a better initial estimate of the fringe patterns 

for further refinement such that fringe patterns of better noise characteristics can 

be obtained after the optimization process.  

3.  A more flexible and efficient approach is proposed to refine the fringe patterns 

such that the optimization process can converge faster to a solution of better noise 

characteristics. 

The organization of this Chapter is as follows. In Section 5.2, we propose a 

modified feature-preserved multiscale error diffusion (FMED) technique for 

generating initial octa-level fringe patterns with desired noise characteristics. In 

Section 5.3, we extend the tiling idea of Section 4.3 into the two-dimensional space 

and design a dedicated 2D tiling pattern for optimization. In Section 5.4, we introduce 

a fast convergence optimization that can dramatically increase the efficiency of octa-

level fringe pattern generation. Simulation and experimental results for performance 

evaluation are given in Section 5.5. Finally, a brief summary is provided in Section 

5.6. 

5.2 Initial fringe pattern generation for optimization 

Conventional binary defocusing methods (e.g. [10]–[12], [18], [21], [23], [25] 

and [26]) first generate initial binary fringe patterns and then refine them to produce 
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the final binary fringe patterns for approximating sinusoidal patterns. This two-stage 

process is also adopted to develop octa-level fringe patterns in our work in Chapters 3 

and 4.  

Obviously, the initial fringe patterns play a significant role in reaching the final 

optimization result because the optimization step is imperfect in a way that it can only 

provide local optimum solutions. Conventionally, halftoning methods such as error 

diffusion [39] and Bayer dithering [42] are exploited to obtain the initial fringe pattern 

(e.g. [11], [12], [21] and [26]), or patches are randomly assigned initial values(e.g. 

[10], [23] and [25]). None of these approaches can provide ideal initial fringe patterns. 

For instance, error diffusion [39] diffuses the quantization error to a pre-defined 

direction with a fixed causal diffusion filter and hence causes directional hysteresis 

[1,10, 11].  

The subsequent refinement step cannot guarantee a globally optimized 

approximation result. It implies that the approximation performance of the final octa-

level fringe patterns is initial-estimate dependent.  In general, we can expect that a 

better initial estimate can lead to a better final fringe pattern. In view of this, a 

modified version of feature-preserving multiscale error diffusion (FMED) is adopted 

here to generate our initial octa-level patterns as FMED has already been proven to be 

good at producing binary and multi-level halftoning results that possess ideal noise 

characteristics [47–49].  

Let 𝐼! for k∈{1,2,3} be the sinusoidal fringe patterns used in three-step phase 

shifting profilometry and 𝐿!  be the corresponding octa-level fringe pattern that 

approximates 𝐼!. Without loss of generality, we assume that 𝐼! is scaled and offsetted 

such that its minimum and maximum are, respectively, 0 and 1. Fringe patterns 𝐿! for 

k∈{1,2,3} are generated separately. For each k, an error image 𝐸! is initialized to be 
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𝐼! at the beginning. Pixels of 𝐿! are then picked iteratively to determine their intensity 

values until all pixel values of 𝐿! are determined. The steps in each iteration cycle are 

as follows: 

 1) Select a pixel in 𝐿! via the extreme error intensity guidance (EEIG) based on the 

most updated 𝐸! . One may refer to Section 2.2.3 for the details of EEIG 

(Section 2.2.3). Let the selected pixel position be (m,n).   

 2) Quantize 𝐸!(𝑚,𝑛) to the nearest intensity value in  

        Ψ = {0.299𝑟 + 0.587𝑔 + 0.114𝑏|𝑟,𝑔, 𝑏 ∈ 0,1 }    (5-1) 

and assign the quantized value to 𝐿!(𝑚,𝑛). 

 3) Update 𝐸! by diffusing the quantization error, which is 

            𝑄(𝑚,𝑛) = 𝐸! 𝑚,𝑛 − 𝐿!(𝑚,𝑛),  (5-2) 

to the neighborhood of  𝐸!(𝑚,𝑛) with an adaptive non-causal diffusion filter as 

follows. 

        𝐸! 𝑖, 𝑗 =
0

𝐸! 𝑖, 𝑗 + ! !!!,!!! ∙! !,! ∙! !,!
!

   if 𝑖, 𝑗 = 𝑚,𝑛
if 𝑖 −𝑚, 𝑗 − 𝑛 ∈ Ω     (5-3) 

where  

           𝑓 𝑝, 𝑞 =
0.0717
0

0.1783
    
if  𝑝 = 𝑞 = 1
if  𝑝 = 𝑞 = 0
if  |𝑝|+ |𝑞| = 1

      (5-4) 

is a filter coefficient of a non-causal filter whose support is Ω={(p,q) | p,q∈{-1, 

0, 1}}, 

           𝐷 𝑖, 𝑗 = 0
1     if 𝐿! 𝑖, 𝑗

′s value has been determined
else

    (5-5) 

and 

          𝐾 = 𝑓 𝑖 −𝑚, 𝑗 − 𝑛 ∙ 𝐷 𝑖, 𝑗(!!!,!!!)∈Ω      (5-6) 
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When K=0, a filter with a larger support window is exploited as suggested in 

[48] to allow the algorithm to proceed.  

 

The constructed octa-level fringe patterns 𝐿!  are good estimates of 𝐼!  for 

k∈{1,2,3} indeed. Some simulation results will be provided in Section 5.5 to verify 

this fact.  

If we do not opt for patch-based octa-level fringe patterns, we can directly use 𝐿! 

for k∈{1,2,3} as the initial estimate to start an iterative optimization process. 

However, since we aim for patch-based fringe patterns, we extract patches from 𝐿! to 

construct patch-based initial fringe patterns for optimizing the patches. The details 

will be discussed in the following sections. 

5.3 Formulation of the optimization problem 

Patch tiling tends to produce regular and periodic patterns that introduce 

harmonic distortion. To solve this problem, special care is taken during the 

optimization in cpatch1D [26] to make sure that a tiling output is aperiodic along a 

specific direction. In this Section, we extend the idea to further improve the 

optimization objective function such that both horizontal and vertical periodicity can 

be avoided when tiling the optimized octa-level patches. 

Let  𝑃(!,!) be the kth octa-level patch of set s∈{0,1}, where k∈{1,2,3}. Each patch 

is of size 𝑁!×𝑁!, where 𝑁! is the period of the target sinusoidal patterns and 𝑁! is an 

integer value. In this approach, for each k, we tile patches 𝑃(!,!) and 𝑃(!,!) as shown in 

Figure 5-1 to form an octa-level pattern 𝑃!  and then optimize 𝑃!  for k∈{1,2,3} 

simultaneously to minimize an objective function.  
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The pattern 𝑃! shown in Figure 5-1 bears two important properties:  

1)  The occurrence of 𝑃(!,!) and 𝑃(!,!) is identical in pattern 𝑃!  The optimization 

does not favor one particular group of patches.  

2)  The occurrences of all possible horizontal and vertical connection combinations 

between any two patches randomly and independently picked from {𝑃(!,!) | 

s=0,1} are identical. There is no bias to favor a particular connection 

combination during the optimization,  

The two properties guarantee that the optimized patches can be seamlessly connected 

to each other when they are tiled horizontally and vertically. 

 

Figure 5-1 2D circular connected octa-level pattern 𝑃!  with two octa-level patches for 

optimization 

To make the approximation performance robust to amount of defocusing, the 

objective function to be minimized in the optimization is selected as 
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                        𝐽 = ∆𝜑(!) + ∆𝜑(!!)        (5.7) 

where  

  ∆𝜑(!) = !
!"

(𝜑 𝑥,𝑦 − 𝜑!(!) 𝑥,𝑦 )!!
!!!

!
!!!     (5.8) 

is the phase rms error achieved when the amount of defocusing can be modeled as the 

filtering effect of Gaussian filter 𝐺(!) . In eqn. (5.8),  𝑀×𝑁  is the size of  𝑃! , 

(= 8𝑁!×8𝑁! for the pattern shown in Figure 5.1) and 𝜑!(!) is the phase map obtained 

when the sinusoidal fringe patterns are replaced with the octa-level fringe patterns 

defocused by filter 𝐺(!). 

Here, we note that, in formulation, objective function (5.7) and its supporting 

function (5.8) are identical to the objective function used in the fringe pattern 

generation method proposed in Chapter 4 (eqn. (4.3)) and its corresponding 

supporting function (eqn. (4.1)). However, the way that we construct the octa-level 

fringe patterns for being optimized is different in the two approaches. This difference 

introduces different constraints in the optimization and hence leads to different 

optimization results. 

In summary, our optimization problem to be solved is formulated as 

     min𝑃 𝑠,𝑘  for 𝑠∈ 1,2 ,𝑘∈{1,2,3} 𝐽     (5.9) 

subject to the constraints that 𝑃!  is constructed with 𝑃(!,!) for s=1,2 as shown in 

Figure 5-1 and that 

   𝑃(!,!) = 0.299𝐵!(!,!) + 0.587𝐵!(!,!) + 0.114𝐵!(!,!)    (5.10) 

where 𝐵!(!,!) , 𝐵!(!,!)  and 𝐵!(!,!)   are three 𝑁!×𝑁!  binary patterns representing the 

intensity variations in color channels R, G and B respectively. 
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5.4 Realization of the optimization 

When solving an optimization problem to develop a binary or octa-level fringe 

pattern, conventional algorithms generate an initial estimate of the pattern and then 

refine it iteratively to get a sub-optimal solution. The adjustment is realized by 

replacing the current pixel value with the ‘best’ value that is determined through an 

exhaustive search among all possible pixel values. This process is very time-

consuming. Besides, the non-flexible static scanning order adopted in each refinement 

iteration cycle makes the final solution easily trapped in a sub-optimal local minimum 

that is very close to the initial estimate. Patch-based algorithms (e.g. [6], [10], [18], 

[23], [25] and [26]) alleviate the computation efficiency a bit by downsizing the 

problem to a problem that optimizes a single patch. However, the trapping issue is 

even severe in such a case and a number of patches must be tested before the ‘best’ 

patch is reached. When the same approach is exploited to optimize an octa-level 

fringe pattern, it is more complex because it involves manipulation of three binary 

fringe patterns. 

In this Section, we propose to adjust pixels according to a necessity-oriented 

order instead of a location-oriented order. The introduced flexibility and adaptability 

make the optimization converge much faster and avoid being trapped in a local 

optimum before exploring sufficient possibilities. This optimization algorithm is 

referred to as necessity oriented optimization (NOO) and its details are as follows: 

Step 1.  Initialization of 𝑃(!,!) for s∈{1,2}:  

Generate three octa-level patterns 𝐿!  for k∈{1,2,3} to approximate 

three sinusoidal fringe patterns with the FMED-based technique presented 

in Section 5.2. Chop two connected Ny×Nx segments from each of them to 
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form initial patches 𝑃(!,!)for s∈{1,2}. 𝑃!  is then constructed with 𝑃(!,!) 

and 𝑃(!,!) as shown in Figure 5-1. 

 

Step 2.  Refining 𝑃(!,!) for s∈{1,2} based on a necessity-oriented strategy: 

As shown in Figure 5-1, 𝑃! can be partitioned into 64 blocks of size 

Ny×Nx and each of them is either patch 𝑃(!,!) or 𝑃(!,!). Accordingly, these 

blocks are divided into two groups based on the criterion whether they are 

𝑃(!,!) or 𝑃(!,!). Once a pixel in a patch is adjusted, all the blocks in the 

same corresponding group will be affected.  

Let 𝑃!(𝑚,𝑛)  be the (m,n)th block of 𝑃!  for 0≤m,n<8 and 

𝑃! !,! 𝑝, 𝑞 ≡ 𝑃! 𝑚𝑁! + 𝑝,𝑛𝑁! + 𝑞  be the (p,q)th pixel in block 

𝑃!(𝑚,𝑛). In formulation, the grouping can be done based on the index of a 

block and it is given as 

Λ! = {(𝑚,𝑛)|0 ≤ 𝑚,𝑛 < 8 and 𝑃! !,!  is  𝑃(!,!)}   for s∈{1,2} (5.11) 

For a specific patch combination, the contribution of the (i,j)th pixels of 

patches 𝑃(!,!), 𝑃(!,!) and 𝑃(!,!) to absolute phase error ε is roughly given as 

  𝜀 𝑖, 𝑗; 𝑠 = 

 𝜑 𝑚𝑁! + 𝑖,𝑛𝑁! + 𝑗 − 𝜑!!(𝑚𝑁! + 𝑖,𝑛𝑁! + 𝑗)
!!!,!!(!,!)∈Λ!

  

  (5.12) 

We sort triplets in set 𝑇 = { 𝑖, 𝑗; 𝑠 |0 ≤ 𝑖 < 𝑁! , 0 ≤ 𝑗 < 𝑁! 𝑎𝑛𝑑 𝑠 ∈

1,2 } according to the value of 𝜀 𝑖, 𝑗; 𝑠  in descending order and then pick 

the triplets from the sorted triplet sequence one by one. When triplet 

𝑖, 𝑗; 𝑠  is picked, the (i,j)th pixels of patches 𝑃(!,!) for k=1,2,3 are adjusted 



 78 

simultaneously. The picking stops when 𝜀 𝑖, 𝑗; 𝑠 <𝜀 𝑖! , 𝑗!; 𝑠! /10, where 

𝑖! , 𝑗!; 𝑠!  is the first triplet in the sorted sequence. 

Assume that the currently picked triplet is 𝑖′, 𝑗′; 𝑠′ . Since 𝑃 !′,! (𝑖 ′, 𝑗 ′) 

is an octa-level value, there are altogether 83=512 possible value 

combinations of 𝑃 !′,! (𝑖′, 𝑗′)  for k∈{1,2,3}. For each combination, 

construct a candidate set of patches 𝑃(!′,!),  𝑃(!′,!) and  𝑃(!′,!) (denoted as  

𝑃(!′,!)
! ,  𝑃(!′,!)

!  and  𝑃(!′,!)
!  respectively) in which we have 𝑃(!′,!)

! (𝑖, 𝑗)  = 

𝑃 !′,! (𝑖, 𝑗) for all 𝑖, 𝑗 ≠ 𝑖 ′, 𝑗 ′ ,  and update fringe patterns  𝑃! for all k by 

replacing blocks 𝑃! !,!  with 𝑃(!′,!)
!  for (𝑚,𝑛) ∈ Λ!′.  

Among all 512 candidate sets of patches, the one used to construct the 

fringe patterns that minimize J is selected to be the most updated 𝑃(!′,!),  

𝑃(!′,!) and  𝑃(!′,!). 

 

Step 3.  Terminate the iteration under the following criterion: 

Go back to step 2 if the total improvement in step 2 is larger than 

0.01% in terms of J. Otherwise the most updated 𝑃(!,!)  and 𝑃(!,!)  for 

k∈{1,2,3} are considered as the optimal patches. 

 

Step 4.  Generating the final octa-level fringe pattern: 

Randomly tile optimized patches 𝑃(!,!)  and 𝑃(!,!)  horizontally and 

vertically to form full-size octa-level fringe patterns 𝐿!′  for k∈{1,2,3} 

under the condition that  𝐿!′ , 𝐿!′   and  𝐿!′   share the same random tiling 

pattern. This step can be done on site to cater for different systems. 
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5.5 Performance evaluation 

This Section provides some simulation results and experimental data for 

evaluating the performance of the fringe pattern generation method presented in this 

Chapter. 

5.5.1 Evaluation of initial octa-level fringe pattern 

As described in Section 5.2, modified FMED is applied to generate initial fringe 

patterns in this work. The quality of the obtained initial fringe patterns is evaluated 

here. 

Figures 5-2(a) and (b) show two octa-level fringe patterns and their corresponding 

noise spectra. They were respectively produced with the error diffusion method used 

in cpatch1D[55] and the proposed FMED-based method to approximate a sinusoidal 

fringe pattern whose period is 60 pixels. From their corresponding noise spectra 

shown in Figures 5-2(a) and (b), one can see that the former carries serious harmonic 

distortion while the latter does not. Besides, most of the noise in the fringe pattern 

shown in Figure 5-2(b) is high frequency noise, which can actually be removed by the 

defocusing process when the fringe pattern is projected onto an object during 

measurement. In fact, by modeling the defocusing process as a 5×5 Gaussian filtering 

process, the intensity rms errors of the defocusing outputs of the fringe patterns shown 

in Figure 5-2(a) and (b) are, respectively, 0.0115 and 0.0077 with respect to the 

grayscale sinusoidal pattern. The octa-level fringe pattern produced with the proposed 

FMED-based approach is obviously superior. 
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(a) (b) (c) 

Figure 5-2 Preliminary octa-level fringe patterns obtained with different methods and their 

noise spectra: (a) error diffusion-based [21, 26] and (b) FMED-based. The magnitudes of all 

components in both spectra are normalized with respect to the strongest component in error 

diffusion-based approach’s spectrum for easier comparison. The color bar shown in Figure 5-

2(c) is shared by both spectra to map magnitude values into colors. 

5.5.2 Evaluation of convergence speed 

The proposed necessity-oriented patch-based fringe pattern optimization scheme 

can speed up the optimization process besides improving its optimization result.  

Figure 5.3 shows the difference in convergence speed when adopting the raster-

scanned ordering used in [10]–[12], [18], [21], [23], [25] and [26] instead of the 

necessity-oriented ordering in step 2 of NOO. Each curve in the plot shows how the 
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value of the objective function defined in eqn.(5.7) decreases with number of 

iterations in our simulation.   

The simulation data are obtained under the condition that the fringe period is 60 

pixels and the patch size is 20×60 pixels. The convergence speed is much faster when 

the necessity-oriented ordering is used. In 5300 iterations, the faster approach can 

achieve the performance that the slower one achieves after 16,000 iterations. 

 

Figure 5-3 Impacts of different ordering schemes on convergence speed 

5.5.3 Simulation results 

Simulations were carried out to evaluate the performance of the octa-level fringe 

patterns proposed in this Chapter (referred to as cpatch2D hereafter.). The 

performance was measured in terms of the phase error achieved with the defocused 

fringe patterns. Binary fringe patterns generated with bpatch [10], as well as the octa-

level fringe patterns proposed in Chapters 3 and 4 (i.e. cpatch [25]  and cpatch1D [26] 

respectively) were also realized for comparison. All these algorithms were 

implemented using the same parameters as described in their corresponding papers. 
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Figure 5-4 Normalized noise spectra of the phase maps associated with bpatch, cpatch, 

cpatch1D and cpatch2D. 

 

The first simulation was for investigating whether the proposed method could 

effectively eliminate harmonic distortion in their phase maps two dimensionally. In 

the simulation, all fringe patterns were of size 1024×768 pixels and the fringe period 

of the target sinusoidal fringe patterns to be approximated was 60 pixels. Figure 5-4 

shows the normalized amplitude noise spectra of the phase maps achieved by bpatch, 

cpatch, cpatch1D and cpatch2D under the ideal defocusing condition (i.e. the 

assumed defocusing level in the optimization schemes). The magnitudes of the 

components in all 4 plots are normalized with respect to the strongest component in 

all 4 plots for easier comparison. The advantage of the proposed patterns is obvious in 

the plots. The outstanding regular peaks in the plot of bpatch reflect that there are 

strong harmonic components in its phase error. The situation is gradually improved by 

cpatch and cpatch1D. Cpatch1D can only handle the horizontal periodicity in a tiled 
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fringe pattern, so there are still vertical harmonic components. In contrast, the 

harmonic distortion in both directions is almost eliminated in the phase map achieved 

by cpatch2D. 

Figure 5-5 shows a cross-section of an ideal sinusoidal fringe pattern along the x-

direction and the corresponding cross sections of the defocused patterns of cpatch1D 

and cpatch2D. Only cpatch1D and cpatch2D are compared here as bpatch and cpatch 

are not designed to handle the harmonic distortion of a tiled fringe pattern. One can 

see that the cpatch2D fringe pattern is closer to the ideal sinusoidal signal after 

defocusing. This superiority is achieved with the proposed necessity-oriented 

optimization scheme and the better initial patterns used in the optimization scheme. 

Note that both cpatch1D and cpatch2D attempt to minimize the phase error achieved 

by the fringe patterns instead of the approximation error between an octa-level fringe 

pattern and the target sinusoidal fringe pattern. Theoretically, when phase-domain 

optimization is adopted, the resultant fringe patterns are not necessary to be ideally 

sinusoidal as long as the phase error is minimized under a specific defocusing 

condition [11]. However, the lower the approximation intensity difference, the more 

robust to the defocusing extent the measuring performance is [11]. This advantage 

helps cpatch2D to perform better in real experiments when the defocusing condition 

cannot be controlled perfectly. 
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Figure 5-5 Cross-sections of defocused fringe patterns cpatch1D and cpatch2D. The 

defocusing is simulated with a 5×5 Gaussian filter with a standard deviation of 5/3. 

 

Figure 5.6 shows some plots for quantitative comparison. The results were 

achieved with the evaluated fringe patterns in various defocusing conditions. One can 

see that cpatch, cpatch1D and cpatch2D outperform bpatch. This is expected because 

octa-level fringe patterns are better than binary fringe patterns. Since cpatch1D and 

cpatch2D proactively suppress harmonic distortion, they are able to achieve smaller 

phase rms error than cpatch. By comparing cpatch1D and cpatch2D, one can notice 

that phase rms errors of the two are similar when the extent of defocusing is slight. 

However, cpatch2D performs better when the defocusing extent is sufficiently large 

(e.g. the blurring effect can be modeled with Gaussian filter 𝐺(!) where t>9). By 

considering that cpatch2D can eliminate harmonic distortion in all directions as 

shown in Figure 5-4, cpatch2D is the best of the four algorithms. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 5-6 Simulated phase rms errors achieved with different fringe patterns of different 

fringe periods when the defocusing levels are simulated by Gaussian filters of sizes (a) 5×5, 

(b) 9×9, (c) 11×11 and (d) 13×13. 

Figure 5-7 shows some simulation data for measuring a complex three-

dimensional surface. In this simulation, the fringe period of all fringe patterns was 60 

pixels, and Goldstein's branch cut unwrapping algorithm [65] was exploited to acquire 

the unwrapped phase. The defocusing process was modeled as a 5×5 Gaussian low-

pass filter with standard derivation equal to 5/3.  



 86 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5-7 Simulation results for measuring an object. (a) 3D plot of an object. (b) ideal 

unwrapped phase map of (a); and unwrapped phase maps obtained with (c) bpatch, (d) 

cpatch, (e) cpatch1D and (f) cpatch2D. The horizontal and the vertical dimensions are x- and 

y-dimensions respectively in (b)-(f). 
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In Figure 5-7, we can observe that the object is flooded in the noise in bpatch’s 

result. The harmonic distortion in cpatch’s and cpatch1D’s results provides 

misleading messages as a set of false parallel ridges are mixed with the true ones. In 

contrast, the object surface can be reported more faithfully in our result. As a matter 

of fact, the corresponding phase rms errors of Figures 5-7(c), (d), (e) and (f) are, 

respectively, 0.0221, 0.0089, 0.0048 and 0.0042 (in rad). 

5.5.4 Experimental results 

A real 3D shape measurement system was set up to verify the performance of the 

proposed technique. The system consists of a DLP projector (Texas MP723) and a 

charge-coupled-device (CCD) camera (Canon 600D). The size of a projected fringe 

pattern is 1024×768 pixels. The reference board was placed around 50 cm away from 

the projector. Throughout the experiment, Goldstein's branch-cut unwrapping 

algorithm [65] was applied to obtain unwrapped phase information for constructing 

the depth map. When continuous-tone phase-shifted fringe patterns were used, active 

gamma correction [66] was applied to reduce the impact of gamma nonlinearity of the 

projector. 

In the first experiment we measured a flat black board 50 cm away from the 

projector. The ground truth is obtained by measuring the board with the continuous-

tone nine-step phase-shifted fringe pattern [81]. When binary or octa-level fringe 

patterns were projected, we adjusted the focal lens of the projector to change the 

defocusing levels such that corresponding data can be obtained to verify their 

robustness to defocusing levels. The phase rms errors achieved are illustrated in 

Figure 5-8.  
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(a) 

 
(b) 

Figure 5-8 Experimental phase rms errors obtained with (a) a slightly defocused projector and 

(b) a more defocused projector when different fringe patterns are used. 

As expected, due to the existence of environmental noise, the phase rms error 

measured in real experiments is higher than that achieved in simulations.  Although it 

is true, one can still see in Figure 5-8 that the phase rms errors of octa-level fringe 

patterns (cpatch, cpatch1D and cpatch2D) are smaller than that of binary patterns 

(bpatch) due to the increase of gray levels. When the projector is slightly defocused, 

the performance of cpatch1D and cpatch2D is similar. However, when the projector is 

more defocused, cpatch2D outperforms cpatch1D. This observation confirms that 

cpatch2D is more robust to defocusing. 

Another experiment was conducted to measure a real object. For octa-level fringe 

patterns (cpatch, cpatch1D and cpatch2D), only the luminance plane is captured in 

the camera. The phase information of the object is constructed by comparing the 

phase map of the reference board and the phase map of the object. The final depth 

map is established according to the unwrapped phase information of the object.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5-9 Images captured when different fringe patterns are projected onto a measured 

object. (a) no projection, (b) bptach, (c) cpatch, (d) cpatch1D and (e) cpatch2D.  
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(a) (b) (c) 

  

 

 
(d) (e)  

Figure 5-10 Experimental results for measuring a jug object when fringe period = 18 pixels. 

Depth maps obtained with (a) nine-step grayscale sinusoidal fringe patterns, (b) bptach, (c) 

cpatch, (d) cpatch1D and (e) cpatch2D. 

   
(a) (b) (c) 

  

 

 
(d) (e)  

Figure 5-11 Experimental results for measuring a jug object when fringe period = 30 pixels.. 

Depth maps obtained with (a) nine-step grayscale sinusoidal fringe patterns, (b) bptach, (c) 

cpatch, (d) cpatch1D and (e) cpatch2D. 
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Figure 5-9 shows the captured grayscale images when different fringe patterns 

were projected onto the surface of the object. Their corresponding constructed depth 

maps are illustrated in Figure 5-10 and Figure 5-11 where different fringe periods are 

applied. 

The depth map obtained with the nine-step phase-shifted algorithm [81] is used 

as the reference for comparison and it is shown in Figure 5-10(a) and Figure 5-11(a). 

Figures 5-10(b), (c), (d) and (e) show, respectively, the depth maps obtained with 

bpatch, cpatch, cpatch1D and cpatch2D. The depth map shown in Figures 5-10 

adopted fringe patterns of fringe period = 18 pixels where depth map shown in 

Figures 5-11 applied fringe patterns of fringe period = 30 pixels. Compared with 

Figures 5-10, one can observe stripes in Figures 5-11, which are introduced by 

gamma non-linearity of the experiment system. The corresponding depth rms error in 

the depth maps in Figures 5-11 are, respectively, 0.1133, 0.0671, 0.0583 and 0.0240 

cm. Note that no gamma calibration for the projector is required when these fringe 

patterns were projected. 

5.6 Summary 

In this Chapter, we propose a method to generate high quality octa-level fringe 

patterns for real time 3D shape measurement. By adopting better approaches to 

formulate the optimization problem, produce initial fringe pattern estimates for 

optimization and refine the fringe patterns during the optimization process, the 

developed fringe patterns can achieve a better measuring performance. Specifically, 

the phase map produced with the optimized fringe patterns contains almost no 

harmonic distortion along any direction and little low frequency noise. Though the 
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optimization is carried out in the phase domain, the generated fringe patterns are close 

to ideal sinusoidal patterns after being defocused, which makes them robust to 

defocusing extent in real world situations. Moreover, the optimization process is 

much faster than the one used in the state-of-art octa-level fringe pattern generation 

algorithm [25, 26]. The work described in this Chapter was accepted to be published 

in Optical Lasers Engineering in 2017. 
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Chapter 6.  

Application of halftoning in reversible color-to-

grayscale conversion 

6.1 Introduction 

Both Chapters 6 and 7 are dedicated to investigating how halftoning can work 

with color quantization to realize reversible color-to-grayscale conversion (RCGC) 

effectively. Reversible color-to-grayscale conversion (RCGC) aims at embedding the 

chromatic information of a full color image into its grayscale version such that the 

original color image can be recovered in the future when necessary. Conventional 

RCGC algorithms tend to put their emphasis on the quality of the recovered color 

image, which makes the color-embedded grayscale image visually undesirable and 

suspicious.  

This Chapter presents a novel RCGC framework that emphasizes the quality of 

both the color-embedded grayscale image and the recovered color image 

simultaneously. Its superiority against other RCGC algorithms is mainly achieved by 

developing a color palette that fits into the application and exploiting error diffusion 

to shape the quantization noise to high frequency band. The improved quality of the 

color-embedded grayscale image makes the image appears as a normal image. It does 

not catch the attention of unauthorized people and hence the embedded chromatic 

information can be protected more securely. 

Chapter 6 is organized as follows. In Section 6.2, we propose the framework of 

our proposed RCGC algorithm. In Section 6.3, a tailor-made color palette is designed 
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for supporting our RCGC algorithm. Section 6.4 shows how the palette works with 

halftoning in RCGC. In Section 6.5, we show how to embed the color palette in the 

index image without degrading the image quality. In Section 6.6, a matched method 

for suppressing visible halftoning artefacts is introduced. Simulation results for 

performance evaluation are provided in Section 6.7. Finally, a summary is given in 

Section 6.8. 

6.2 Framework of the proposed RCGC algorithm 

The proposed RCGC algorithm is based on color quantization. However, unlike 

those conventional algorithms [27–31], it makes use of the error diffusion technique 

[39] to shift the quantization noise to high frequency region such that the noise can be  

less visible to human eyes. This noise shaping effect makes significant contributions 

to the performance of the proposed method. On one hand, it allows us to put more 

effort on improving the quality of the grayscale image as human can tolerate more 

high frequency noise in the recovered color image. On the other hand, besides the 

visual quality, the objective quality of the recovered color image can also be 

guaranteed as its high frequency quantization noise can be removed by low-pass 

filtering.  

Let C is the original color image to be processed and 𝐶(𝑖, 𝑗) denotes the color of 

its pixel (𝑖, 𝑗). Without loss of generality, 𝐶(𝑖, 𝑗) is represented as a vector in (r,g,b) 

format, where r, g and b are the intensity values of the red, green and blue 

components of the color and they are normalized to be in [0,1]. A color palette is first 

derived based on image C to bear a property that the color index value of a palette 

color is highly correlated with the luminance value of the palette color. The details of 

its derivation are provided in Section 6.3. 
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After obtaining the color palette, the color image C is processed with luminance-

constrained color quantization and vector error diffusion as shown in Figure 6-1(a). In 

particular, the process scans the image with serpentine scanning and processes the 

scanned pixels one by one. 𝐶′(𝑖, 𝑗), 𝐶(𝑖, 𝑗) and 𝐸!(𝑖, 𝑗) are all intermediate processing 

results each of which represents a color. 𝑌(𝑖, 𝑗) is the luminance value of color  

𝐶′(𝑖, 𝑗). In the work presented in this Chapter, the luminance value of a color in (r,g,b) 

format is computed as 0.299r +0.587g+0.114b  as in the commonly used RGB-to-YUV 

conversion [70] that is defined as 

           
𝑦
𝑢
𝑣
=

0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.1

𝑟
𝑔
𝑏

    (6.1) 

Based on 𝑌(𝑖, 𝑗) and the pre-derived palette, color  𝐶′(𝑖, 𝑗) is quantized to 𝐶(𝑖, 𝑗), 

a particular palette color whose corresponding color index value is denoted as 𝐼!(𝑖, 𝑗). 

𝐸! 𝑖, 𝑗 = 𝐶 ′ 𝑖, 𝑗 − 𝐶(𝑖, 𝑗) is actually the color quantization error. It will be diffused 

to the not-yet-processed neighboring pixels of pixel (𝑖, 𝑗) in C. After processing all 

pixels, the index plane composed of 𝐼!(𝑖, 𝑗)  for all (𝑖, 𝑗) forms the resultant grayscale 

image. The details of how luminance-constrained color quantization works with error 

diffusion to provide color to grayscale conversion result will be provided in Section 

6.4. 

The color palette can be converted to bit sequence, secured with a private key 

and embedded into the grayscale image or stored separately with it. The details of 

how to embed the palette in the grayscale image will be described in Section 6.5.  
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(a)  

 

(b) 

 

(c) 

Figure 6-1 Block diagrams of (a) color-to-grayscale conversion, and color image 

reconstruction (b) without and (c) with halftoning artifacts suppression 

When necessary, pixel values of the grayscale image are used as indices to fetch 

palette colors to reconstruct the color image as shown in Figure 6-1(b). An optional 

nonlinear low-pass filtering can be further applied to remove the high frequency noise 

in the recovered color image as shown in Figure 6-1(c). The details of the optional 

noise removal scheme will be discussed in Section 6.6. 
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6.3 Color palette generation 

To fit into our application, the developed palette should bear two properties. 

First, palette colors should be sorted according to their luminance values and indexed 

in a way that their luminance values are roughly proportional to their index values. 

This allows the index plane to appear as a grayscale image. Second, consecutive 

colors in the palette should form a three-dimensional enclosure in the color space to 

cover as many pixel colors 𝐶(𝑖, 𝑗) that have the same luminance values as the 

involved palette colors as possible. Theoretically, with the halftoning technique, any 

specific color inside the enclosure can be rendered with the palette colors that form 

the enclosure as long as the smooth region having the color to be rendered is large 

enough in image C. 

There are a number of studies on how to generate a color palette based on a given 

color image, such as k-mean clustering [73], fuzzy c-mean clustering [72], median-cut 

[82] and octree decomposition [83]. Some studies also make an assumption that 

halftoning will be carried out in color quantization [74, 75, 84]. However, none of 

them is developed to have the aforementioned properties because their palettes are 

optimized to provide a high quality color-quantized image and no reversible grayscale 

image is involved. A tailor-made palette is hence developed as follows to fit into our 

application.  

Figure 6-2(a) shows the RGB color cube in RGB color space. All pixel colors 

that appear in color image C should be in the RGB cube. To derive our palette, we 

stand the cube on the black vertex (0,0,0), with the white vertex (1,1,1) directly above 

it, as show in Figure 6-2(b). This can be accomplished by rotating the cube about the 

b-axis by π/4 and then about the r-axis by θ=arcsin ( 2/3), where θ is the angle 
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between the achromatic axis (aligned with the line from (0,0,0) to (1,1,1) in the RGB 

cube shown in Figure 6-2(a)) and the r-, g- or b- axis. 

After the rotations, a color in (r,g,b) format is mapped to (𝑥,𝑦, 𝑧) format as: 

         
𝑥
𝑦
𝑧
=

1 0 0
0 cos𝜃 − sin𝜃
0 sin𝜃 cos𝜃

cos !
!

− sin !
!

0

sin !
!

cos !
!

0
0 0 1

𝑟
𝑔
𝑏

       (6.2) 

where z∈[0, 3] provides the achromatic information of the color and (x,y) forms a 

vector that provides the chromatic information of the color. For reference purpose, we 

denoted a color in (r,g,b) format as 𝑝 and its representation in (x,y,z) format as 

𝑝′ = 𝑇𝑝, where T is the transformation matrix given in eqn. (6.2). 

Without loss of generality, we assume that a palette is consisted of 256 colors 

and they are indexed from 0 to 255. To determine the kth palette color, we collect all 

pixel colors the luminance values of which are in the range of 𝐵! 𝑘 = max (0, !!!
!""
) 

and 𝐵! 𝑘 = max (0, !!!
!""
), project them onto the two-dimensional x-y plane as shown 

in Figure 6-2(b), compute their signed magnitudes of a selected primary color 

component, and find out the one which gets the maximum. In our derivation, six 

primary color components including red (R), yellow (Y), green (G), cyan (C), blue 

(B) and magenta (M) are considered. Figure 6-2(c) provides an example that shows 

how to compute the signed magnitude of a pixel color’s primary red component after 

it is transformed and projected onto the x-y plane, where 𝑝′!" = (𝑥,𝑦) is a vector 

formed by the components x and y of 𝑝′ = 𝑇𝑝. 

The pixel color having the maximum signed magnitude of a selected primary 

color component is the outermost pixel color in Ω! = {𝑝 |𝑝 ∈ color image 𝐶  and  

𝐵! 𝑘 < luminance of 𝑝 ≤ 𝐵! 𝑘 } in terms of the distance from the z-axis along a 

specific direction. To make every six contiguous palette colors form an enclosure to 
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enclose more pixel colors in Ω!  as possible, when picking the primary color 

component for deriving the kth palette color, we pick the six chromatic vertices (i.e. R, 

Y, G, C, B and M) in the RGB cube in turns as k increases. In formulation, the kth 

palette color  𝑐!  is given as 

      𝑐! = argmax!∈Ω! 𝑝′!" ∙ 𝑢!"#(!,!)      for k=0,1…255                (6.3) 

where ∙  is the dot product operator, mod(k,6) means k modulo 6, and 𝑢!  for i=0,1…5 

are the unit direction vectors shown in Figure 6-2(c). 

With this arrangement, the kth palette color is the outermost color from the origin 

of the x-y plane along a specific direction among all image pixel colors whose 

luminance values belong to [𝐵! 𝑘 ,𝐵! 𝑘 ] as shown in Figure 6-3. Besides, every 6 

consecutive palette colors form an enclosure that contains almost all image pixel 

colors that have the same luminance levels with the palette colors. The enclosure may 

not be able to enclose all image pixel colors, but those outside the enclosure are very 

close to the enclosure boundary. That means, for any given image pixel color 𝑝, we 

can use 6 palette colors to render it and their luminance errors from 𝑝 are bounded in    

[-2/255, 3/255].  

This capability cannot be achieved with conventional color palettes even though 

error diffusion is used to render 𝑝. It is because there may not be palette colors having 

similar luminance levels and there can be a lot of image pixel colors far outside the 

enclosure formed with the palette colors having similar luminance levels (e.g. the 

enclosure in red) as shown in Figure 6-3.  
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(a) 

 

 

(b) 

 

(c) 

Figure 6-2 Different domains for palette generation:  (a) RGB color cube in rgb space, (b) 

transformed RGB color cube in xyz space and (c) the x-y plane used to derive a palette color 
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Figure 6-4 shows the consequences of using two palettes of different properties to 

reconstruct a color image. As shown in Figure 6-4(b), even though error diffusion is 

exploited, there can be serious color shift in the recovered color image if the used 

palette does not have the aforementioned properties. 

In general, we can design a palette that uses d consecutive palette colors to form 

an enclosure to enclose image pixel colors whose luminance levels are in 

𝑚𝑎𝑥 0, (𝑘 − !
!
+ 1)/255 ,𝑚𝑖𝑛 1, (𝑘 + !

!
+ 1)/255 . It can be achieved by using 

d different unit direction vectors  𝑢!  alternately when determining the kth palette color 

with eqn.(6.3). For comparison, we developed three palettes for Figure 6-4(a) under 

three different settings (d=3, 6 and 9). Figure 6-5 shows the enclosures formed with 

the three palettes when k=100. One can see that a triangle can leave many pixel colors 

outside while using a dodecagon instead of a hexagon helps little to enclose more 

pixel colors. In view of this, we select d=6 in our realization.   

Though the palette generation process seems to be complicated, it can be realized 

easily as the involved projection and transformation are simple and the chromatic 

vertices of the RGB cube only contain component values 0 and 1. After 

simplification, eqn. (6.3) can be rewritten as 

𝑐! = argmax!∈Ω! 𝑣!"#(!,!)
2 −1 −1
−1 2 −1
−1 −1 2

𝑟!
𝑔!
𝑏!

    for k =0,1…255  (6.4) 

where      

𝑣! = 1 0 0
𝑣! = 1 1 0
𝑣! = 0 1 0
𝑣! = 0 1 1
𝑣! = 0 0 1
𝑣! = 1 0 1

      (6.5) 

are six unit vectors and [𝑟!,𝑔!, 𝑏!] is pixel color 𝑝 in (𝑟,𝑔, 𝑏) format. 
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In case Ωk is empty for a particular k, palette color 𝑐!  for that index value k is 

determined as 

      𝑐! = argmax!∈!!′ 𝑝′!" ∙ 𝑢!"#(!,!)         for k =0,1…255          (6.6) 

where Ω!′ = {𝑝|𝑝 ∈  surface of the RGB color cube and 𝐵! 𝑘 ≤  luminance of    

𝑝 < 𝐵! 𝑘 }. It is image independent and hence can be precomputed. 

Unlike other VQ-based RCGC algorithms [27–31], the proposed palette 

generation algorithm is not an iterative algorithm. The whole palette can be 

determined by scanning the image once and hence it is able to support real-time 

applications. 

  
  
  

 

Figure 6-3.  An example showing how 6 consecutive palette colors in our palette form an 

enclosure to cover most image pixel colors having similar luminance levels. The palette is 

developed based on the image shown in Figure 6-4(a). 
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(a) (b) (c) 

Figure 6-4.  Results of using different palettes in the proposed RCGC algorithm to 

reconstruct a color image: (a) original, (b) a palette obtained with fuzzy clustering [72] and (c) 

the proposed palette.  

   
(a) (b) (c) 

Figure 6-5.  Enclosures formed with d palette colors when the proposed palette is 

developed under different settings: (a) d=3, (b) d=6, and (c) d=12. The data is obtained for 

k=100 and the palettes are developed for the image shown in Figure 6-4(a).  
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6.4 Luminance-constrained color quantization and error 

diffusion 

In our realization of RCGC, luminance-constrained color quantization and error 

diffusion are performed with the color palette generated in Section 6.3. The feasibility 

of luminance-constrain color quantization relies on the palette property that a palette 

color’s index value is roughly proportional to its luminance value.  

For any input color 𝐶 ′ 𝑖, 𝑗 , its luminance value 𝑌(𝑖, 𝑗) is computed and then used 

to confine a subset of the palette colors to one of which we can quantize 𝐶 ′ 𝑖, 𝑗 . In 

particular, the selected subset of palette colors is given as 

        Γ = {𝑐!| = 5 ≤ 𝑘 − 255𝑌(𝑖, 𝑗) ≤ 6 𝑎𝑛𝑑 𝑘 ∈ [0,255]}    (6.7) 

Unlike conventional color quantization algorithms that search for the best color 

from 256 palette colors, the proposed algorithm only searches at most 12 palette 

colors. It significantly reduces the realization effort and bounds the maximum 

luminance distortion of a pixel. 

As CIEL*a*b* color space is device independent and perceptually uniform, we 

select the Euclidean distance in CIEL*a*b* space as the quantization criterion.  In 

formulation, we have 

     𝐶 𝑖, 𝑗 = argmin!!∈Γ 𝑇!"#!!"#(𝐶′ 𝑖, 𝑗 )− 𝑇!"#!!"#(𝑐! 𝑖, 𝑗 )    (6.8) 

where 𝑇!"#!!"#(. ) is the transform from rgb color space to CIEL*a*b* color space 

and ||•|| denotes the L2 norm. The index value of 𝐶 𝑖, 𝑗  is denoted as 𝐼! 𝑖, 𝑗 . 

After quantizing 𝐶 ′ 𝑖, 𝑗 , its quantization error 

             𝐸! 𝑖, 𝑗 = 𝐶 ′ 𝑖, 𝑗 − 𝐶(𝑖, 𝑗) (6.9) 

is diffused to pixel 𝑖, 𝑗 ’s neighboring pixels. The diffusion affects the original colors 

of its neighboring pixels. It explains why, when processing pixel (𝑖, 𝑗), we color-
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quantize 𝐶 ′ 𝑖, 𝑗  instead of 𝐶 𝑖, 𝑗 . Specifically, after taking all the color errors 

introduced by the processed neighbors into account, pixel 𝑖, 𝑗 ’s color is modified to 

be 

          𝐶 ′ 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 + 𝐸! 𝑖 −𝑚, 𝑗 − 𝑛 ℎ(𝑚,𝑛)(!,!)∈Φ       (6.10) 

at the moment we process pixel (𝑖, 𝑗), where  Φ ={(m,n) |m=0,1 and n=-1,0,1} is the 

support of the diffusion filter H and ℎ(𝑚,𝑛) is the (m,n)th  coefficient of filter H for 

(m,n)∈ Φ. In our realization, the standard diffusion filter [39] is adopted. This 

diffusion filter is commonly used in binary halftoning. The diffusion process is 

performed in channels r, g and b separately. 

6.5 Color palette embedding 

For applications where color information needed to be protected, the palette can 

be embedded into the grayscale image (i.e. the index plane 𝐼!) with encryption. It is 

also helpful to reduce the bit overhead. Conventional VQ-based RCGC algorithms 

[27–31] adopt the least significant bit substitution (LSB) method [85] to embed the bit 

sequence of the color palette. The same method is adopted here for the same purpose.  

In particular, the whole palette is rearranged to form a bit sequence of length L. 

The index plane is then partitioned into L non-overlapped blocks. From each block, a 

pixel is selected to carry a bit from the bit sequence. A pseudo-random number 

generator (PRNG) with a secret key is applied to select the pixels into which the 

palette information is embedded. 

Embedding the bit sequence into the index image will introduce some noise. The 

index plane is sensitive to noise because two colors of adjacent indexes can be very 

different. Therefore, we take the palette-embedding process into account during the 
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color-to-grayscale conversion to minimize its distortion to the conversion output. For 

pixels that are not selected to carry the palette information, they are processed as 

mentioned before. For those are selected, they are color-quantized differently as 

follows: 

      𝐶 𝑖, 𝑗 = argmin!!∈Γ! 𝑇!"#!!"#(𝐶′ 𝑖, 𝑗 )− 𝑇!"#!!"#(𝑐! 𝑖, 𝑗 )        (6.11) 

where s∈{0,1} is the value of the bit embedded and 

           Γ! = {𝑐!| = 𝑚𝑜𝑑 𝑘, 2 = 𝑠  and  𝑐! ∈ Γ}      for s=0,1   (6.12) 

As the error introduced by palette-embedding will be diffused with the 

quantization error to the neighboring pixels, its spectrum will also be shaped and its 

impact on the visual quality of the output images can be minimized.  

Palette extraction is easy with the secret key. The secret key allows us to locate 

the pixels that carry the embedded information and their least significant bits form the 

bit sequence for us to reconstruct the palette.  

The basic idea of the method used here stems from the ±1 LSB embedding 

algorithm [85]. This algorithm is widely applied in image steganography. According 

to the investigation in [31], this method is simple and efficient enough to protect the 

color information from being acquired by unauthorized people without a security key. 

Since we are not doing watermarking, whether the embedded information can stand 

for attacks is not the issue.  

6.6 Halftoning artifacts suppression 

Figures 6-6(a) and 6-6(d) show, respectively, 𝐼! , the color-embedded grayscale 

image produced with the proposed algorithm, and 𝐶 , the color image directly 

reconstructed by using 𝐼!  as the index plane and the palette embedded in 𝐼! . As 
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shown in Figure 6-6(d), there is no artifact such as color shift and false contour in 𝐶, 

and its visual quality is already good at a reasonable viewing distance. The error 

diffusion step shifts the quantization noise to high frequency band such that the noise 

can be removed by the low-pass filtering effect of human eyes. However, the high 

frequency noise can still be visible when we get too close to view the image. A 

descreening scheme is hence applied to alleviate this problem. 

At first glance, bilateral filtering [86] seems to be good for handling the situation 

as it is designed to preserve sharp edges and remove noise simultaneously. However, 

our simulation results show that it does not work properly in this scenario. After error 

diffusion, the quantized luminance value of a pixel can shift -5 to 6 levels from the 

original. As the grayscale of a pixel is used as an index to determine the color of the 

pixel, a minor luminance difference among adjacent pixels can lead to a significant 

chrominance difference. Pixels on the same side of an edge may not have similar 

chromatic values and hence bilateral filtering does not work properly. 

In our solution, an edge-aware low-pass filter is used to remove the noise as 

follows:  

Step 1:  Apply Canny edge detector [87] to the color-embedded grayscale image to 

get a binary edge map of the image. 

Step 2:  Label different regions according to the edge map. 

Step 3:  Derive a spatial-variant low-pass filter 𝐹(!,!) for pixel (i,j) as 

𝐹 !,! 𝑚,𝑛 =

𝐴𝑒!
!!!!!
!! if pixels 𝑖, 𝑗  and 𝑚,𝑛  are in the same region

𝐴𝜇𝑒!
!!!!!

!! 𝑒𝑙𝑠𝑒
             

   for   |m|,|n|≤4 (6.13) 
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where 𝐹 !,! 𝑚,𝑛  is the 𝑚,𝑛 !! filter coefficient of filter 𝐹(!,!), σ controls 

the cut-off frequency of the filter, A is a normalization factor that makes the 

weights in the kernel sum to one, and µ∈[0,1] is a controlling parameter 

that controls the contribution of the pixels from different regions. 

Specifically, µ=1 means that the edge information is ignored and the 

filtering is linear, and µ=0 means that pixels not in the same region with the 

pixel being processed are ignored. 

Step 4:  Apply filter 𝐹(!,!)  to the chromatic channels of the reconstructed color 

image as follows. 

𝑎∗ 𝑖, 𝑗 = 𝐹 !,! 𝑚,𝑛 𝑎∗ 𝑖 +𝑚, 𝑗 + 𝑛
! , ! !!

 

𝑏∗ 𝑖, 𝑗 = 𝐹 !,! 𝑚,𝑛 𝑏∗ 𝑖 +𝑚, 𝑗 + 𝑛
! , ! !!

 

  for   all (i,j)  (6.14)
  

where  and  are, respectively, the (i,j)th pixels of channels a* 

and b* of color image 𝐶 in CIEL*a*b* color space. 

Note that the luminance channel is not filtered so as to preserve the texture 

information of the image. The block diagram shown in Figure 6-1(c) shows the 

reversion of our reversible color-to-grayscale conversion when halftone artifacts 

suppression is exploited. The final reconstructed color image is 𝐶. 

Figure 6-6 illustrates step-by-step how 𝐶  is reconstructed with 𝐼! . Figure 6-6(b) 

is the edge map acquired from the index image shown in Figure 6-6(a). As a 

reference, Figure 6-6(c) shows an edge map obtained with the original image. One 

can see that most of the edges can be successfully extracted based on 𝐼! . It is hence 

reliable to utilize the edge information in nonlinear low-pass filtering.  

a*(i, j) b*(i, j)
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(a) 
 

(d) 

 
 

(b) 
 

(e) 

 
 

(c) 
 

(f) 

Figure 6-6 Recovering color image from our color-embedded grayscale image: (a) color-

embedded grayscale image 𝐼! ; (b) edge map obtained with (a); (c) edge map obtained with 

the original image C; (d) color image obtained before non-linear low-pass filtering; (e) color 

image obtained after nonlinear low-pass filtering; (f) original color image. 

Figures 6-6(d), (e) and (f) show 𝐶, 𝐶 and the original image C respectively. On 

their left upper corners, the enlarged versions of the regions enclosed in black boxes 

are displayed for better inspection. One can see that the high frequency impulse noise 
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in 𝐶 can be efficiently reduced after filtering, while the texture information in the 

original image is preserved. 

6.7 Performance evaluation 

This Section provides some simulation results and experimental data for 

evaluating the performance of the RCGC algorithm presented in this Chapter. 

6.7.1 Parameters used in simulation 

In Section 6.6, a descreening process is suggested to suppress the artifacts caused 

by the halftoning process of our RCGC algorithm. There are two parameters for 

controlling the spatial-variant low-pass filter 𝐹(!,!) used in the descreening process. In 

particular, parameter σ controls the cut-off frequency of low-pass filtering, and 

parameter µ controls the contribution of the pixels from different regions. These two 

parameters were experimentally trained based on the 24 true-color images in Kodak 

set [71] by minimizing objective function: 

                     𝐽! = 𝐶 − 𝐶 !               (6.15) 

where 𝐶 and 𝐶 are, respectively, the original color image and the recovered color 

image after filtering. Figure 6-7 shows how  𝐽! changes with σ and µ. It is found that 

𝐽!  reaches its minimum at σ=1.22 and µ=0.7. All subsequent simulation results 

reported in this Chapter were obtained with these settings. However, as shown in 

Figire 6-7, 𝐽! is actually insensitive to σ and µ when σ∈[0.8,2.0] and µ∈[0.2,1.0]. 

Hence, some other settings of σ and µ can also be used to achieve the same 

performance. 

 



 111 

 

Figure 6-7 The plot of objective function  𝐽! vs. σ and µ 

6.7.2 State-of-art RCGC algorithms used in comparison 

Several other RCGC algorithms, including Queiroz’s [35], Ko et al.’s [34],  

Horiuchi et al.’s [36], Tanaka et al.’s [30] and Chaumont et al.’s [31], were also 

realized for comparison. Among them, the first three are SE-based RCGC algorithms 

while the others are VQ-based RCGC algorithms. When realizing Queiroz’s [35], a 

4×4 DCT was applied, and the highest 6 frequency bands were used to embed the 

duplicated color planes in YUV color space. When realizing Ko et al.’s [34], a four-

level wavelet packet transform was implemented, and the two subbands with 

minimum amount of information were used to embed color. Accordingly, two 

chromatic planes were subsampled by four in each direction to fit the size of the high 

frequency blocks. In the realization of Horiuchi et al.’s [36], one-level discrete 

wavelet transform was applied and the chroma information was downsampled by 16 

in each direction. For all the three SE-based RCGC algorithms, bilinear kernel was 



 112 

applied for upsampling when reconstructing a color image. When realizing Chaumont 

et al.’s [31], the number of palette colors is determined adaptively as suggested in 

[31]. As for the other VQ-based RCGC algorithms including [30] and ours, the palette 

size was fixed to be 256.  

6.7.3 Simulation results 

Two sets of testing color images are used. One is the Kodak set [71] that includes 

24 color images of size 768×512 or 512×768. The other one includes 12 images 

shown in Figure 6-8. They are available from 'Miscellaneous’ image set of the USC-

SIPI Image Database [88]. Each of them is of size 512×512.  

 

 

 

 
Figure 6-8  Test image set 2 

 

6.7.3.1 Impact on palettes 

Figure 6-9 shows the color palettes developed in different VQ-based RCGC 

algorithms ([30], [31] and ours) for test images ‘powder’, ‘ape’ and ‘woman’. One 

can easily find that the palette colors in the palettes of [30] and [31] are more biased 

in hue, while ours are more scattered in the color space. Moreover, in Chaumont et 



 113 

al.’s palette [31], similar colors are usually assigned similar index values, while the 

proposed palette crawls colors of different hues in turns.  

Our palette generation method picks pixel colors of similar luminance levels and 

then selects the outermost ones in the x-y plane as palette colors. As a consequence, 

for rich color images such as Powder and Ape, the created palette contains colors near 

R, Y, G, C, B and M color vertices in turns as shown in Figure 6.9. Figure 6-10 

provides another view of the picture by showing the distributions of all our palette 

colors in the x-y plane for different testing images. 

The advantage of this arrangement is that most pixel colors in the image can be 

enclosed by some palette colors of similar luminance levels. By exploiting the error 

diffusion technique, the proposed RCGC algorithm is able to render much more than 

256 colors and preserve the spatial texture of an image.  
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Figure 6-9  Palettes generated with different RCGC algorithms for test images Powder, Ape 

and Woman.  



 115 

 
Figure 6-10  Distributions of image pixel colors and our palette colors in x-y space for 

different test images in Kodak image set. Green dots and blue dots denote the image pixel 

colors and the palette colors respectively. 

6.7.3.2 Subjective comparison 

Figures 6-11 and 6-12 show, respectively, the color-embedded grayscale images 

and the recovered color images of test image Woman obtained with various evaluated 

RCGC algorithms for visual evaluation.  

As shown in the two figures, we may observe the artifacts introduced by the 

state-or-art RCGC algorithms as described in Section 2.4. In particular, image 

blurring is a common issue of SE-based algorithms [34–36] because some texture 

information is discarded to make room for embedding the color information. 

Moreover, the embedding process gives rise to another issue that serious pattern noise 

can appear in the color-embedded grayscale images as shown in Figures 6-11(a) and 

(b). This pattern noise is comparatively less severe in Horiuchi et al.’s output [36] 

(shown in Figure 6-11(c)) because it preserves some texture information at the cost of 
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chromatic information. However, the pattern noise is still visible in the neck and the 

forehead.   

When inspecting the recovered color images of SE-based algorithms [34–36], 

one can see color shift in some local regions (e.g.  pearl necklaces in Figures 6-12(a) 

and 6-12(b), and the skin and lip in Figure 6-12(c)). Figure 6-12(b) is obviously 

blurred as compared with the original test image shown in Figure 6-13. Figure 6-12(a) 

actually does not preserve original texture details properly. One can see in Figure 6-

12(a) that the eye and the ear on the left are seriously distorted by local high 

frequency noise. 

In contrast, state-of-art VQ-based RCGC algorithms [30, 31] have some different 

issues. Theoretically, VQ-based algorithms can achieve good mean square error 

(MSE) performance since their palettes are optimized by clustering algorithms to 

minimize the quantization error. However, without the help of noise shaping, the 

limited number of palette colors generally results in false contour and color shift. As 

shown in Figures 6-12(e) and 6-12(f), one can easily see the color shift on the lip and 

the false contours on the face.  

Another issue of conventional VQ-based RCGC algorithms is that there is no 

linear relationship between the index value and the luminance value of a palette color. 

One can observe that the color-embedded grayscale image in Figure 6-11(f) is very 

different from the ground truth. Tanaka et al.’s result [30] looks better as shown in 

Figure 6-11(e) since it introduces a lightness constraint into the clustering process 

when optimizing its color palette. However, false contour can still be easily observed. 

By exploiting the error diffusion technique, the proposed algorithm is able to 

render much more than 256 colors and preserve the spatial texture of an image. As 

shown in Figure 6-12(d), our recovered color image is sharp and there is no color shift 
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or saturation loss. The noise carried in the recovered color image is high frequency 

noise that is invisible from a reasonable distance. One can also see from Figure 6-

11(d) that our color-embedded grayscale image is very close to the ground truth, 

which increases the security of the hidden color information, as a visually normal 

grayscale image does not alert people.  

Figures 6-14 and 6-15 provide the simulation results of another test image for 

inspection and similar observations can be obtained. One can find severe pattern noise 

in Figures 6-14(a)-(c), false contours in Figures 6-14(e)-(f), color noise or blurring at 

the edges in Figures 6-15(a)-(c), and color shift in Figures 6-15(e)-(f). From this set of 

simulation results, we have an extra observation that the performance of Tanaka et 

al.’s [30] is poor when handling this test image. The additional lightness constraint 

adopted in its palette generation scheme makes the palette difficult to handle wide-

spread colors and hence the color shift in the recovered color image can be very 

severe.  
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Figure 6-11 Color-embedded grayscale images obtained with various algorithms (Test image: 

Woman) 

 

 
(a) Queiroz’s [35] 

 

 
(b) Ko et al.’s [34] 

 

 
(c) Horiuchi et al.’s [36] 

 

 
(d) Proposed 

 

 
(e) Tanaka et al.’s [30] 

 

 
(f) Chaumont et al.’s [31] 
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Figure 6-12 Recovered color images obtained with various algorithms (Test image: Woman) 

 

 

(a) Queiroz’s [35] 

 

 

(b) Ko et al.’s [34] 

 

 

(c) Horiuchi et al.’s [36] 

 

 
(d) Proposed 

 

 
(e) Tanaka et al.’s [30] 

 

 
(f) Chaumont et al.’s [31] 
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(a) Original (b) Luminance plane of 
original 

Figure 6-13. Ground truth for Figures 6-11 and 6-12 (Test image: Woman) 
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Figure 6-14 Color-embedded grayscale images obtained with various algorithms (Test image: 

Hats) 

 

 

 

 

 

 

 

 

 

 

 
(a) Queiroz’s [35]  (b) Ko et al.’s [34]  (c) Horiuchi et al.’s [36] 

 

 

 

 

 

 
(d) Ours (e) Tanaka et al.’s [30] (f) Chaumont et al.’s [31] 
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Figure 6-15 Recovered color images obtained with various algorithms (Test image: Hats) 

 

6.7.3.3 Objective comparison 

The objective of RCGC algorithm is to produce high quality color-embedded 

grayscale image that allows one to reconstruct high quality color image. In view of 

this, the quality of both the color-embedded grayscale image and the recovered color 

image should be taken into account when measuring the performance of the evaluated 

RCGC algorithms.  

 

 

 

 

 

 
(a) Queiroz’s [35]  (b) Ko et al.’s [34]  (c) Horiuchi et al.’s [36] 

 

 

 

 

 

 
(d) Ours (e) Tanaka et al.’s [30] (f) Chaumont et al.’s [31] 
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In particular, we measure the color-embedded grayscale images in terms of 

PSNR, SSIM [89] and HVS-PSNR [90], and measure the recovered color images in 

terms of CPSNR, CSSIM [91], HVS-PSNRColor, CIEL*a*b* color difference 𝛥𝐸, and 

s-CIELAB distance ∆𝐸!!!"#$%& [92, 93]. 

CPSNR is defined as  

𝐶𝑃𝑆𝑁𝑅 = −10𝑙𝑜𝑔!" !
!!" 𝐶 − 𝐶 !

                        (6.16) 

where M×N is the image size. CIEL*a*b* color difference 𝛥𝐸  is the Euclidean 

distance between two images in CIEL*a*b* color space: 

𝛥𝐸 = (𝐿!∗ − 𝐿!∗ )! + (𝑎!∗ − 𝑎!∗)! + (𝑏!∗ − 𝑏!∗)!                        (6.17) 

where 𝐿!∗ , 𝑎!∗ and 𝑏!∗ are the components of 𝐶 and 𝐿!∗ , 𝑎!∗  and 𝑏!∗ are the components of 

𝐶 in CIEL*a*b* color space. 

HVS-PSNRColor is an extension of HVS-PSNR for evaluating the quality of a 

recovered color image. It is defined as: 

𝐻𝑉𝑆 − 𝑃𝑆𝑁𝑅!"#"$ = 10𝑙𝑜𝑔!"
!!"

!!⨂!!! !                      (6.18)    

where 𝐹!  specifies the CSF model that simulates our human visual system [1], and ⊗ 

symbolizes the 2-D convolution operation.  

For assessments that involve human visual system model (HVS-PSNR, HVS-

PSNRColor, ∆𝐸!!!"#$%& and CSSIM), we consider two cases where the resolutions are, 

respectively, 100 and 150 dpi with a fixed viewing distance of 20 inches. 

The performances shown in Tables 6-1 and 6-2 are, respectively, based on the 

simulation results obtained with testing image sets 1 and 2. Note that the parameters µ 

and σ for the nonlinear low-pass filtering module used in our algorithm is trained with 

testing image set 1 only. The data shown in Table 6-2 hence reflect whether the 

parameters can also work properly with images that do not involved in the training. 
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The findings based on the data reported in both tables are consistent, so we may 

consider that the obtained parameters µ and σ are universally valid. 

As far as the quality of the color-embedded grayscale image is concerned, the 

proposed and Horiuchi et al.’s algorithms [36] perform more or less equally well in 

terms of these measures and they are respectively the best in terms of PSNR and SSIM. 

Ko et al. [34] performs best in terms of HVS-PSNR for 150 dpi because it produces 

regular high frequency texture which cannot be observed at a far view distance. It 

matches our findings in Figure 6-11 and 6-14. 

As for the recovered color images, the proposed algorithm gets leading scores in 

most assessments except CPSNR. As we have indicated before, VQ-based algorithms 

[30, 31] tend to achieve good CPSNR performance because their palette is designed to 

minimize mean squared error. In terms of the scores, among all the algorithms, our 

algorithm and Chaumont et al.’s algorithm [31] can both reconstruct color images of 

higher quality. However, by considering that there are false contours and color shift in 

its recovered image as shown in Figure 6-12(f) and Figure 6-15(f) and the quality of 

its color embedded grayscale image is very poor as shown in Figure 6-11(f) and 

Figure 6-14(f), Chaumont et al.’s algorithm is actually inferior to our algorithm. 
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Table 6-1 Performance of RCGC algorithms for Kodak image set [71] 

 

Table 6-2 Performance of RCGC algorithms for 'Miscellaneous’ image set [88] 

As a final remark, we note that the proposed algorithm takes 0.0156 bit per pixel 

(bpp) to carry the embedded palette that carries the chromatic information in Figure 6-

Method 
PSNR 
(dB) 

 

Color-embedded 
Grayscale Image 

Recovered  
Color Image 

SSIM 

dpi=100 dpi=150 

CPSNR 
(dB) 𝛥𝐸 

dpi=100 dpi=150 

HVS-
PSNR 
(dB) 

HVS-
PSNR 
(dB) 

HVS-
PSNRColor 

(dB) 
CSSIM ΔES-CIELAB 

HVS-
PSNRColor 

(dB) 

CSSIM ΔES-CIELAB 

Queiroz’s  
[35] 31.64 0.976 40.92 43.85 31.84 2.80 36.78 0.877 1.75 38.09 0.889 1.63 

Ko et al.’s 
[34] 

32.82 0.989 42.88 46.67 32.13 4.46 36.05 0.838 3.43 37.01 0.848 3.27 

Horiuchi et 
al.’s [36] 33.20 0.997 39.19 43.66 29.53 3.12 33.69 0.927 1.49 36.02 0.952 1.21 

Tanaka et 
al.’s [30] 

28.07 0.986 29.79 31.19 33.07 3.45 34.78 0.874 2.55 35.51 0.879 2.44 

Chaumont et 
al.’s [31] 

16.72 0.643 17.92 18.47 37.79 1.90 39.94 0.962 1.02 40.99 0.968 0.92 

Proposed 35.87 0.988 41.54 44.01 32.71 2.97 38.04 0.963 0.79 41.24 0.968 0.58 

 

Method 
PSNR 
(dB) 

 

Color-embedded 
Grayscale Image 

Recovered  
Color Image 

SSIM 

dpi=100 dpi=150 

CPSNR 
(dB) 

 

𝛥𝐸 

 

dpi = 100 dpi = 150 

HVS-
PSNR 
(dB) 

HVS-
PSNR 
(dB) 

HVS-
PSNRColor 

(dB) 
CSSIM ΔES-CIELAB 

HVS-
PSNRColor 

(dB) 

CSSIM ΔES-CIELAB 

Queiroz’s   
[35] 29.89 0.962 39.59 43.12 28.68 8.52 30.32 0.716 3.11 31.22 0.747 2.85 

Ko et al.’s  
[34] 

30.26 0.980 41.18 46.06 29.88 7.69 31.42 0.823 2.51 32.18 0.856 2.19 

Horiuchi et 
al.’s [36] 35.95 0.999 40.87 43.24 29.06 7.83 30.97 0.841 2.32 31.99 0.877 1.96 

Tanaka et 
al.’s [30] 

31.31 0.974 32.75 33.56 33.24 5.17 34.85 0.874 1.92 37.22 0.886 1.78 

Chaumont et 
al.’s [31] 

16.03 0.627 16.96 17.35 34.41 5.19 36.85 0.919 1.48 38.32 0.929 1.34 

Proposed 35.95 0.986 41.33 43.51 31.47 5.43 36.45 0.956 0.97 39.52 0.964 0.72 

 



 126 

12(d). In fact, this figure is inversely proportional to the image size in terms of 

number of pixels. When one uses the naive approach that compresses the chromatic 

information directly and then embeds it as binary data into the grayscale image with a 

general data hiding algorithm, the chromatic information has to be compressed at a 

compression ratio of 1026.  

 

6.8 Summary 

A novel VQ-based RCGC algorithm that emphasizes the quality of both the 

color-embedded grayscale image and the recovered color image is presented in this 

Chapter. The improved quality of the images is mainly achieved by developing a 

color palette that fits into the application and exploiting error diffusion to shape the 

quantization noise to high frequency band. Simulation results show that the 

performance of the proposed algorithm is superior to conventional RCGC algorithms 

subjectively and objectively in terms of different metrics. This work has been 

published as a journal paper in [38]. 
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Chapter 7.  

Optimizing color palettes for the proposed reversible 

color-to-grayscale conversion framework 

7.1 Introduction 

In Chapter 6 we proposed a framework of VQ-based RCGC algorithms in which 

a halftoning technique is exploited to improve the quality of both the recovered color 

image and the color-embedded grayscale image. To support the operation of RCGC, a 

tailor-made color palette is generated based on the given image to bear two critical 

properties. First, there is a linear relationship between the index value and the 

luminance value of a palette color. Second, every six consecutive palette colors form 

an enclosure in the color space to cover as many image pixel colors as possible. The 

first property allows one to represent the luminance plane of an image with an index 

plane while the second property allows one to render any colors in the image with 

palette colors with the help of halftoning techniques.  

The simulation results shown in Section 6.7 are encouraging, but we found that 

for some rich color test images there can be some halftoning artifacts in their 

recovered color images. That inspires us to think about whether it is possible to 

develop an even better palette to replace the one developed in Chapter 6. In this 

Chapter, a new color palette generation algorithm is proposed. In contrast to the color 

palette generation algorithm proposed in Chapter 6, it considers whether a pixel color 

in the image can be rendered in practical situations instead of ideal situations. When it 
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optimizes the palette, the contribution of a specific pixel color is weighted according 

to the extent that it can be effectively rendered with the palette colors by halftoning.  

Chapter 7 is organized as follows. In Section 7.2, we present a method to prepare 

an initial color palette for further optimization. In Section 7.3, we formulate the 

palette generation problem as an optimization problem. Section 7.4 shows how the 

optimization is realized with simulated annealing while Section 7.5 shows how the 

new color palette is incorporated into the framework to realize RCGC.  Simulation 

results for performance evaluation are provided in Section 7.6. A brief summary is 

provided in Section 7.7. 

7.2 Initial color palette generation 

In contrast to other VQ-based RCGC algorithms [27–31], the proposed RCGC 

algorithm adopts a color palette that is developed in the CIELAB space. It is because 

the components of a color in CIELAB space closely match human perception of 

lightness and color difference. When a color image is represented in RGB format, a 

conversion between the RGB space and the CIELAB space (with D65 white point) 

[94] is required such that the palette can be defined and the color-to-grayscale 

conversion can be carried out in the CLELAB domain. Hereafter, all colors referred in 

this Chapter are represented in CIELAB format and the luminance of a color is 

defined to be the value of its luminance component in CIELAB space. 

Without loss of generality, we assume that the palette size is 256. Accordingly, the 

CIELAB color space is divided into 51 layers along the luminance direction in 

CIELAB space equally as  

ℒ! =  𝑐 !""
!""

𝑘 ≤ luminance of color 𝑐 < !""
!""

(𝑘 + 1)     for k=0:50     (7.1) 
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Here we note that the luminance of a color in CIELAB space is bounded in 

[0,100]. From each layer ℒ!, five colors are selected to be palette colors. By including 

the absolute white color (the one whose luminance component is 100) as one of the 

palette colors, there are totally 51×5+1=256 palette colors. For the sake of reference, 

we define layer ℒ!" as the extra layer that only contains the absolute white color.  

 

Figure 7-1 (a) The CIELAB color space; (b) collapsed layer ℒ!" (i.e. ℒ!"! ); (c) the distribution 

of all colors of testing image Parrot in ℒ!"!   and their convex hull obtained with [95].  

 

Let I be the color image to be processed and 𝐼(𝑖, 𝑗) be the color of its pixel (𝑖, 𝑗). 

𝐼(𝑖, 𝑗) is a vector in a form of {𝐿∗(𝑖, 𝑗),𝑎∗(𝑖, 𝑗), 𝑏∗(𝑖, 𝑗)}, where 𝐿∗(𝑖, 𝑗), 𝑎∗(𝑖, 𝑗) and 

𝑏∗(𝑖, 𝑗) denote, respectively, the luminance and chrominance values of pixel (𝑖, 𝑗) in 

CIELAB format. All pixels of image I can be classified into 52 sets according to their 

luminance as follows.  

 Λ! = 𝐼 𝑖, 𝑗 𝐼 𝑖, 𝑗 ∈ ℒ!      for k=0:51 (7.2) 
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Except set Λ!", the maximum luminance difference among the pixels in each set 

is bounded to be 500/255≈1.96 (<2% of the full scale), which is negligible to a certain 

extent. The luminance difference among the pixels in  Λ!" is 0. 

One of the desired goals of VQ-based RCGC is to replace a pixel’s color with a 

palette color whose index value is close to the luminance value of the pixel. It 

introduces an incentive to set up a constraint that the five palette colors in ℒ!   are 

trained based on the colors of the pixels in Λ! only because their luminance values are 

similar. This approach also provides a side benefit of reducing the complexity of 

palette generation as it turns the original palette generation task into 51 separate 

small-scale palette generation tasks.  

Consider the case that we are going to train five palette colors for layer ℒ!   based 

on the colors of the pixels in Λ! for a specific k. By ignoring the luminance difference 

of the pixels in Λ!, one can collapse the space of layer ℒ!   into a two-dimensional 

space with mapping 

𝑓 𝐿∗,𝑎∗, 𝑏∗ = (𝑎∗, 𝑏∗)    (7.3) 

where 𝐿∗, 𝑎∗ and 𝑏∗ are the three CIELAB components of a color in ℒ!  . This further 

simplifies the palette generation task by reducing the space dimension from 3 to 2. 

We note that the mapping result is a color with its luminance removed. The collapsed 

space of layer ℒ! is referred to as ℒ!!  hereafter. 

After the mapping, the color of each pixel in Λ! can be represented as a point of 

coordinates (𝑎∗, 𝑏∗) in ℒ!! . As an example, Figure 7-1(b) shows the collapsed space of 

layer ℒ!" (i.e. ℒ!"! ) and Figure 7-1(c) shows the distribution of f(I(i,j)) in ℒ!"!  for all 

I(i,j)∈Λ! when I is the testing image Parrot. Based on the distribution of f(I(i,j)) in 

ℒ!"! , a convex hull can be obtained with the convex hull generation algorithm 
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proposed in [95]. The convex hull forms an enclosure as shown in Figure 7-1(c). In 

theory, any color inside the enclosure can be rendered by mixing dots of the colors 

corresponding to the vertices of the convex hull [2]. Hence, if there is no limit on the 

palette size, we can make all colors corresponding to the vertices as the palette colors 

for layer ℒ!" as halftoning allows us to render an image with dot density modulation 

[2]. 

In our approach, the number of palette colors in ℒ!!  is limited to be 5, so a convex 

hull of 5 vertices is expected. It is rare to happen that the convex hull obtained at this 

stage has less than 5 vertices. However, when it happens, we cluster f(I(i,j)) in ℒ!!  

according to their distances to the vertices, pick the vertex associated with the cluster 

having the most number of f(I(i,j)) and split it into two vertices by introducing some 

small random amount of perturbation. The process repeats until we have a convex hull 

of 5 vertices.  

When the convex hull has more than 5 vertices, its vertices are reduced with an 

iterative algorithm as follows. In each iteration cycle, we search along the boundary 

of the convex hull in ℒ!!  to find out a pair of neighboring vertices based on a measure 

to be defined and then replace them with a new vertex. The new vertex is the 

intersection of the two straight lines extended from the sides each of which has one of 

the replaced vertices as its end point. The measure is referred to as selectability index 

and it is defined as  𝑆! = 𝑤! + ℎ!, where w is the distance between the two vertices 

and h is the distance of the intersection point from the side connecting the two 

vertices.  

We test all neighboring vertices and the pair having the lowest selectability index 

value are selected to merge as mentioned above. Figure 7-2 shows how the merging is 

carried out to reduce the vertices of a convex hull in an iteration cycle.  
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Figure 7-2 Reducing the vertices of a convex hull by merging 2 vertices to 1 

The merging results in a larger convex hull that fully covers the original convex 

hull and hence it guarantees that all colors in the image are still inside the updated 

convex hull after the merging. The merging step repeats until a 5-point convex hull is 

obtained.  

The vertices of the resultant 5-point convex hull can be selected to form five 

palette colors for layer ℒ!  after assigning a luminance component 𝐿∗ = 

500(k+0.5)/255 to them. However, we found that the performance of the resultant 

palette is suboptimal. It is because this approach concerns too much on whether all 

colors in the image can be rendered by halftoning. In order to make the resultant large 

convex hull covers all colors in the image, its vertices are located far away from the 

center region of the convex hull. Accordingly, colors in the center region cannot be 

directly represented with the palette colors defined by the vertices. In the following 

section, we will show how to release the cover-all-colors constraint to improve the 

color palette. 
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  (a)  (b) 

Figure 7-3   5-point convex hulls that have different properties: (a) covering all training colors 

and (b) not covering all training colors 

7.3 Formulation of palette optimization 

Let 𝑣!.! for m=1,2…5 be the luminance-removed palette colors for layer ℒ!  and 

ℰ! be the convex hull of  {𝑣!.!|𝑚 = 1,2… 5} in ℒ!! . For the sake of presentation, we 

refer to the members in Λ!! ={𝑓(𝐼(𝑖, 𝑗))| 𝐼(𝑖, 𝑗)∈Λ!} as the training colors as they are 

used to train 𝑣!.!’s.  Figures 7-3(a) and 7-3(b) show, respectively, the case when the 

convex hull of  𝑣!.! for m=1,2…5 covers all training colors and the opposite case.   

On one hand, we want to enclose all training colors in ℰ! as shown in Figure 7-

3(a) such that they can be rendered with a halftoning technique in RCGC. On the 

other hand, we want to reduce the mean square error between the training colors and 

their closest palette colors such that, if possible, we can use palette colors to represent 

them directly. To achieve this goal, 𝑣!.! should be the center of a cluster of training 

colors and then ℰ! does not enclose all training colors as shown in Figure 7-3(b). The 

two objectives are mutually contradictory. In our approach, we proposed two separate 

objective functions accordingly and then jointly optimize them to make a balance 

between these two factors.  
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 When halftoning is applied, the color in a spatial region of an image is rendered 

by mixing pixels of the palette colors properly in the region. Though in theory any 

color inside ℰ! can be rendered correctly with a halftoning technique, the size of the 

spatial region casts a physical constraint on its realization. As an example, if there is a 

single pixel with outstanding color in a smooth region, it is impossible to mix pixels 

of different colors to render its color and we can only assign the closest palette color 

to that pixel. In general, the smaller the size of a homogeneous color region, the more 

difficult its color can be rendered with a halftoning technique.  

In view of this factor, we introduce a measure to evaluate to what extent a pixel 

shares its color with its neighboring pixels in a local region of 5×5 pixels as follows.   

𝐻 𝑖, 𝑗 = !
!"

𝑃 !,! (𝑖!, 𝑗′)
!!!! ,|!!!!|!!

                (7.4) 

where 

𝑃(!,!) 𝑖!, 𝑗′ =   1 𝑖𝑓 𝐼 𝑖, 𝑗 − 𝐼 𝑖′, 𝑗′ < 𝜌
0 𝑒𝑙𝑠𝑒

        (7.5) 

In our realization, threshold parameter 𝜌 is selected to be 2.3 based on the well 

accepted rule that two colors are visually indistinguishable when their difference in 

CIELAB domain is less than 2.3 [96].  

𝐻 𝑖, 𝑗 ∈ {𝑑/25|𝑑 = 1,2… 25} is bounded in (0,1]. A smaller value of 𝐻 𝑖, 𝑗  

implies that pixel (i,j) shares its color with fewer pixels in its local region and hence it 

is more difficult to render its color with halftoning techniques. In that case, it is more 

desirable to have a palette color which is close to 𝐼 𝑖, 𝑗  such that we can reduce the 

visual color shift of pixel (i,j) even though halftoning does not work properly. On the 

contrary, a color shared in a large region can be easily rendered with a halftoning 

technique and hence it is less critical to make a palette color close to it. Since 𝐻 𝑖, 𝑗  
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reflects the effectiveness of using halftoning to render a specific color, it can be used 

to weight the contribution of individual training colors when defining the first 

objective function for optimizing the palette colors.  In formulation, we have 

𝐽!" =   
𝑓(𝐼 𝑖, 𝑗 )− 𝑣!.! !

𝐻 𝑖, 𝑗
!(! !,! )∈ℰ!
!(!,!)∈!!,!

!

!!!

 

(7.6) 

where   Ω!,!={c|c∈ℰ! and 𝑐 − 𝑣!.! ≤ 𝑐 − 𝑣!.!  for n=1,2…5} for m=1,2…5. 

Note that only the training colors inside ℰ! are taken into account in objective 

function  𝐽!". It is because, from theoretical point of view, training colors outside ℰ! 

cannot be faithfully rendered by mixing palette colors. To take them into account, 

another objective function is introduced as follows.    

𝐽!"# = 𝜘 𝑓 𝐼 𝑖, 𝑗 ,ℰ!
!

! ! !,! ∉ℰ!
! !,! ∈!!

 

  (7.7) 

where 𝜘(𝑓(𝐼 𝑖, 𝑗) ,ℰ!)  denotes the shortest distance of 𝑓 𝐼 𝑖, 𝑗  from ℰ! . 

𝜘(𝑓(𝐼 𝑖, 𝑗 ),ℰ!) provides a measure of the visual color error between 𝐼 𝑖, 𝑗  and the 

closest color that can be rendered with 𝑣!.!for m=1,2,…5 in ideal situation.  

The two objective functions try to minimize the visual color errors of the pixels 

inside and outside ℰ!  respectively. A compromise can be made by minimizing a joint 

objective function defined as  

𝐽 = 𝐽!" + 𝜇𝐽!"#     (7.8) 
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where 𝜇 is a weighting factor that controls the contribution of each objective. The 

optimal luminance-removed palette colors for layer ℒ!  are the elements of the set 

{𝑣!.!|𝑚 = 1,2… 5} that minimizes objective function J.  

7.4 Realization of palette optimization 

Objective function J is a non-linear function since classification is required to 

judge whether  𝑓(𝐼 𝑖, 𝑗 ) is in ℰ! and whether 𝑓(𝐼 𝑖, 𝑗 ) is in Ω!,! for all m=1,2,…5. 

In our solution, simulated annealing is exploited to minimize J. The vertices of the 5-

point convex hull obtained with the approach discussed in Section 7.2 are used as the 

initial estimates of 𝑣!.! for m=1,2…5. Accordingly, we have 𝐽!"#=0 in the initial state 

and Figure 7-3(a) shows the situation of such a state.   

Simulated annealing is a double-loop iterative algorithm that simulates an 

annealing process [97]. In the outer loop, temperature T is gradually reduced with  

                                  𝑇!!! = 𝛼𝑇!                       (7.9) 

where 𝑇! is the temperature in the pth loop iteration cycle and 𝛼 is a constant used to 

achieve cooling. For each temperature 𝑇!, a fixed number of iterations are carried out 

to search for a better estimate of 𝑣!.!. Specifically, in each iteration cycle, for each m, 

a new estimate of 𝑣!,! is determined as  

                                  𝑣!.!! = 𝑣!.! + 𝛾!,!𝑟          (7.10) 

where 𝑟  is a random 2D perturbation vector whose magnitude is bound in (0,1] and   

𝛾!,! = min 𝑣!.! − 𝑣!.!! , 𝑣!.! − 𝑣!.!! , 𝑣!.! − !
! 𝑣!.!!

!!!   ×0.1 

 (7.11) 
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where   𝑣!.!! =
𝑣!.!!! 𝑖𝑓 𝑚 < 5
𝑣!.! 𝑖𝑓 𝑚 = 5    (7.12) 

and   𝑣!.!! =
𝑣!.!!! 𝑖𝑓 𝑚 > 1
𝑣!.! 𝑖𝑓 𝑚 = 1 (7.13) 

Once the new set of estimates is determined, its cost is evaluated with objective 

function (7.8). The new set of estimates will be accepted if the cost can be reduced. 

Otherwise the new set of estimates can only be accepted when the following test is 

passed. 

                          𝑟𝑎𝑛𝑑 0,1 ≤ 𝑒
!!!
!!!!                          (7.14) 

where 𝑟𝑎𝑛𝑑(0,1) is a real-time random value generator that outputs a uniformly 

distributed random number in the interval (0,1), ΔJ is the increment in cost and 

𝐾!=0.001. This arrangement allows some uphill moves so that it is possible to escape 

from a local minimum. The most recently accepted set of 𝑣!.! estimates will be 

carried forward to the next iteration cycle.  

Simulated annealing terminates when no new estimate is accepted for more than a 

pre-determined consecutive number of iterations. The best set of 𝑣!.! estimates that 

achieve the lowest cost throughout the course are selected to be the five palette colors 

for layer ℒ! . The vertices are sorted and re-indexed such that the direction angle of  

𝑣!.! − 𝑣!.!!!!,!…!   is larger for  a larger value of index m. 

We note that palette colors for different layers can be separately optimized in 

parallel. Once they are determined, the final 256-color palette is obtained as follows. 

  
𝑝!!!! = !"" !!!!!!

!"" ,𝑎 𝑣!.! , 𝑏(𝑣!.!)      for    0 ≤ 𝑘 ≤ 50, 1 ≤ 𝑚 ≤ 5
𝑝!"# = 100,0,0

      

 (7.15) 
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where 𝑝!  is the nth palette color of the 256-color palette, 𝑎 𝑣!.!  and 𝑏 𝑣!.!  denote, 

respectively, the 𝑎∗ and 𝑏∗ compoments of 𝑣!.!.  

7.5 Working under our proposed framework 

Once the optimal color palettes are acquired, color quantization and error 

diffusion can work together to realize RCGC. Let C be the color image to be 

processed. Figure 7-4 shows the operation flows of the RCGC process and the color 

image reconstruction process. Specifically, the RCGC method scans the color image 

C with serpentine scanning and processes it pixel by pixel. Assume that the current 

pixel being processed is (𝑖, 𝑗). After extracting the luminance component of color 

𝐶! 𝑖, 𝑗 , which is denoted as 𝐿! 𝑖, 𝑗 in Figure 7-4, 𝐶! 𝑖, 𝑗  is quantized to 

𝐶 𝑖, 𝑗 = 𝑝!!!!     (7.16) 

where 

𝜅 =  !""!"" ∙ 𝐿
! 𝑖, 𝑗         (7.17) 

𝜂 = argmin!!!,!…! 𝑓(𝐶′ 𝑖, 𝑗 )− 𝑓(𝑝!!!!) if 𝜅 < 51
1 if 𝜅 = 51

  (7.18) 

The quantization noise 

           𝐸! 𝑖, 𝑗 = 𝐶! 𝑖, 𝑗 − 𝐶 𝑖, 𝑗                  (7.19) 

is then diffused to its neighbor pixels using Floyd's diffusion filter [39]. The diffusion 

is performed in channels  𝐿∗, 𝑎∗ and 𝑏∗ separately. 

The index of the palette color assigned to replace 𝐶! 𝑖, 𝑗  is given by  

      𝐼! 𝑖, 𝑗 = 5𝜅 + 𝜂                                      (7.20) 
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After the conversion, the index plane also serves as a 256-level grayscale version 

of the original image C. When necessary, the color palette can also be embedded into 

𝐼! 𝑖, 𝑗  with the approach similar to that described in Section 6.5.  

To recover the color image, the palette is first extracted from 𝐼!. Though a simple 

table-lookup process, a preliminary color image 𝐶 can be obtained. The halftoning 

artifacts suppression process discussed in Section 6.6 can further be applied to  𝐶 to 

remove the impulse noise introduced by halftoning. The final reconstructed color 

image 𝐶 is then obtained. 

 

 
(a) 

 
(b) 

Figure 7-4 Operation flows of (a) color-to-grayscale conversion and (b) color image recovery 
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7.6 Performance evaluation 

This Section provides some simulation results for evaluating the performance of 

the proposed RCGC algorithm when it works with the palettes produced with the 

palette generation algorithm proposed in this Chapter.   

7.6.1 Parameters used in simulation 

Some parameters are required for optimizing a palette with simulated annealing 

when realizing the color palette generation algorithm proposed in this Chapter. Their 

values were selected as follows in our simulation. As suggested in [97], the value of α 

in eqn. (7.9)  is set to 0.9 and the number of iterations in each temperature is fixed to 

50. The initial temperature 𝑇! is set to be 𝑇! = −0.05𝐽!/𝐾!log!(0.1), where 𝐽! is the 

initial cost evaluated with eqn. (7.8). By setting so, the chance of accepting a 5% 

increase in cost J is 10% at the initial stage.  Controlling parameter 𝛾!,! is adaptively 

determined for each {k,t} as in eqn. (7.11). The rule is set to keep the order of the 

vertices of a convex hull unchanged under a perturbation.  

7.6.2 Simulation results 

Some state-of-art RCGC algorithms including Xu and Chan’s algorithm [38] (the 

one proposed in Chapter 6), Queiroz’s [35], Ko et al.’s [34],  Horiuchi et al.’s [36], 

Tanaka et al.’s [30] and Chaumont et al.’s [31] were also evaluated in our simulations 

for comparison. Two sets of test images were exploited. One is the Kodak set that 

includes 24 color images [71]. The other one includes 10 color images that are 

available in [98].  They are shown in Figure 7-5 for reference. 
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Figure 7-5  Second set of test images 

7.6.2.1 Subjective study 

Figures 7-6 and 7-7 show, respectively, the color-embedded grayscale images 

and the recovered color images obtained with various RCGC algorithms when the test 

image is House. For better inspection, a marked region of each image shown in 

Figures 7-6 and 7-7 is enlarged and displayed in Figures 7-8 or 7-9. 

The findings from the simulation results are similar to those obtained in Chapter 

6, For examples, one can notice regular pattern noise in the smooth regions of the 

color-embedded grayscale images produced with SE-based RCGC algorithms (See 

Figures 7-8(e), (f) and (g)) and luminance distortion in the color-embedded grayscale 

images produced with traditional VQ-based RCGC algorithms (See Figures 7-8(d) 

and (h)). In contrast, Figures 7-8(b) and (c) are extremely similar to the original.  
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In Figures 7-9(d) and (h), we can observe that the recovered color images of 

Tanaka et al.’s [30] and Chaumont et al.’s [31] have some false contours (see the red 

wall under sunshine). There is also severe color shift in Figure 7-9(h). For the color 

images recovered with SE-based algorithms, one can find the artifacts caused by 

downsampling the chrominance planes and removing the high frequency content of 

the luminance plane. For example, there are aliasing artifacts along the sharp straight 

edges (e.g. the pipe) in Figure 7-9(e). Figures 7-9(f) and (g) are somehow blurred (e.g. 

the tree leaves) as compared with Figure 7-9(a) due to the loss of high frequency 

content caused by downsampling. Comparatively speaking, Figures 7-9(b) and (c) can 

preserve more texture.  

To allow an easier visual comparison between the algorithms proposed in 

Chapter 6 [38] and Chapter 7, we provide the recovered color images of another test 

image in Figure 7-10. Figure 7-11 shows some enlarged regions of Figure 7-10. As 

shown in Figure 7-11(b) and (c), the impulse noise in Figure 7-11(b) is much less than 

that in Figure 7-11(c). Unlike the palette developed in Chapter 6, the palette colors of 

the palette developed in Chapter 7 form a smaller enclosure in the color space. In 

consequence, a color inside the enclosure can be rendered with closer palette colors 

when halftoning is exploited. The hue fluctuation introduced by the halftoning process 

is smaller in a smooth region. With the help of the halftoning artifacts suppression 

process discussed in Chapter 6.6, the impulse noise can be significantly removed.  
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Figure 7-6 Color embedded grayscale images obtained with various algorithms. (Test image 

is House.) 

 
(a) Ground Truth 

 
(e) Horiuchi et al.’s [36] 

 
(b) proposed 

 
(f) Queiroz’s [35] 

 
(c) Chapter 6 [38] 

 
(g) Ko et al.’s [34] 

 
(d) Chaumont et al. [31] 

 
(h) Tanaka et al.’s  [30] 
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Figure 7-7 Recovered color images obtained with various algorithms (Test image is House.) 

 

 
(a) Ground Truth 

 
(e) Horiuchi et al.’s [36] 

 
(b) proposed 

 
(f) Queiroz’s [35] 

 
(c) Chapter 6 [38] 

 
(g) Ko et al.’s [34] 

 
(d) Chaumont et al.[31] 

 
(h) Tanaka et al.’s  [30] 
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Figure 7-8 Enlarged portions of Figure 7-6 

 
(a) Ground Truth 

 
(e) Horiuchi et al.’s [36] 

 
(b) proposed 

 
(f) Queiroz’s [35] 

 
(c) Chapter 6 [38] 

 
(g) Ko et al.’s [34] 

 
(d) Chaumont et al. [31] 

 
(h) Tanaka et al.’s  [30] 
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Figure 7-9 Enlarged portions of Figure 7-7 

 
(a) Ground Truth 

 
(e) Horiuchi et al.’s [36] 

 
(b) proposed 

 
(f) Queiroz’s [35] 

 
(c) Chapter 6 [38] 

 
(g) Ko et al.’s [34] 

 
(d) Chaumont et al.[31] 

 
(h) Tanaka et al.’s  [30] 
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Figure 7-10 Recovered color images obtained with various algorithms (Test image is Parrot.) 

 

 
(a) Ground Truth 

 
(e) Horiuchi et al.’s [36] 

 
(b) proposed 

 
(f) Queiroz’s [35] 

 
(c) Chapter 6 [38] 

 
(g) Ko et al.’s [34] 

 
(d) Chaumont et al.[31] 

 
(h) Tanaka et al.’s  [30] 
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Figure 7-11 Enlarged portions of Figure 7-10 

 

 
(a) Ground Truth 

 
(e) Horiuchi et al.’s [36] 

 
(b) proposed 

 
(f) Queiroz’s [35] 

 
(c) Chapter 6 [38] 

 
(g) Ko et al.’s [34] 

 
 (d) Chaumont et al.[31] 

 
(h) Tanaka et al.’s  [30] 
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7.6.2.2 Objective study 

The performance of various RCGC algorithms was also evaluated in terms of 

various objective measures. Tables 7-1 and 7-2 show, respectively, the evaluation 

results obtained based on the Kodak image set [71] and the test image set shown in 

Figure 7-5 [98]. While the other evaluated RCGC algorithms ([30], [31], [34]–[36] 

and [38]) consider the Y channel in YUV space as the luminance channel, the RCGC 

algorithm proposed in Chapter 7 considers the 𝐿∗ channel in CIELAB space as the 

luminance channel and uses it as the target to produce color-embedded grayscale 

image. For a fair comparison, when computing the luminance-oriented metrics of the 

algorithm proposed in Chapter 7, the computations are based the normalized 𝐿∗ values 

while the computations for other algorithms are based on the normalized Y values.  

Tables 7-1, 7-2 and 7-3 show the performance of various RCGC algorithms. For 

each metric, the scores of the best two algorithms are bolded while the score of the 

best one is underscored in the Tables for easier comparison. The algorithm proposed 

in Chapter 7 provides the best performance in terms of a lot of metrics. In general, 

both its produced color-embedded grayscale images and recovered color images have 

leading-good quality. As compared with the algorithm proposed in Chapter 6 [38], the 

average PSNR improvements for the Kodak image set , ‘Miscellaneous’ image set 

[88] and the additional test image set are, respectively, 1.29 dB, 5.88 dB and 1.24 dB. 

As for CPSNR, the average improvements for the three image sets are 4.14 dB, 1.85 

dB and 2.46 dB respectively.  
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Table 7-1 Average performance of RCGC algorithms for Kodak image set [71] 

Table 7-2 Performance of RCGC algorithms for  'Miscellaneous’ image set [88] 

  

Method 

Color-embedded  
Grayscale Image 

Recovered  
Color Image 

PSNR 
(dB) 

 
SSIM 

dpi=100 dpi=150 

CPSNR 
(dB) 𝛥𝐸 

dpi = 100 dpi = 150 

HVS-
PSNR 
(dB) 

HVS-
PSNR 
(dB) 

HVS-
PSNRColor 

(dB) 
CSSIM ΔES-CIELAB 

HVS-
PSNRColor 

(dB) 

CSSIM ΔES-CIELAB 

Queiroz’s 
[35] 31.64 0.976 40.92 43.85 31.84 2.80 36.78 0.877 1.75 38.09 0.889 1.63 

Ko et al.’s 
[34] 

32.82 0.989 42.88 46.67 32.13 4.46 36.05 0.838 3.43 37.01 0.848 3.27 

Horiuchi et 
al.’s [36] 33.20 0.997 39.19 43.66 29.53 3.12 33.69 0.927 1.49 36.02 0.952 1.21 

Tanaka et 
al.’s [30] 

28.07 0.986 29.79 31.19 33.07 3.45 34.78 0.874 2.55 35.51 0.879 2.44 

Chaumont et 
al.’s [31] 16.72 0.643 17.92 18.47 37.79 1.90 39.94 0.962 1.02 40.99 0.968 0.92 

Xu and 
Chan’s [38] 

35.87 0.988 41.54 44.01 32.71 2.97 38.04 0.963 0.79 41.24 0.968 0.58 

Proposed 37.16 0.991 43.53 46.85 36.85 1.78 42.10 0.987 0.52 44.97 0.990 0.38 

 

 

Method 

Color-embedded  
Grayscale Image 

Recovered  
Color Image 

PSNR 
(dB) 

 
SSIM 

dpi=100 dpi=150 

CPSNR 
(dB) 𝛥𝐸 

dpi = 100 dpi = 150 

HVS-
PSNR 
(dB) 

HVS-
PSNR 
(dB) 

HVS-
PSNRColor 

(dB) 
CSSIM ΔES-CIELAB 

HVS-
PSNRColor 

(dB) 

CSSIM ΔES-CIELAB 

Queiroz’s 
[35] 29.89 0.962 39.59 43.12 28.68 8.52 30.32 0.716 3.11 31.22 0.747 2.85 

Ko et al.’s 
[34] 

30.26 0.980 41.18 46.06 29.88 7.69 31.42 0.823 2.51 32.18 0.856 2.19 

Horiuchi et 
al.’s [36] 35.95 0.999 40.87 43.24 29.06 7.83 30.97 0.841 2.32 31.99 0.877 1.96 

Tanaka et 
al.’s [30] 

31.31 0.974 32.75 33.56 33.24 5.17 34.85 0.874 1.92 37.22 0.886 1.78 

Chaumont et 
al.’s [31] 

16.03 0.627 16.96 17.35 34.41 5.19 36.85 0.919 1.48 38.32 0.929 1.34 

Xu and 
Chan’s [38] 

35.95 0.986 41.33 43.51 31.47 5.43 36.45 0.956 0.97 39.52 0.964 0.72 

Proposed 41.83 0.997 49.21 54.32 33.32 3.54 36.71 0.945 0.96 39.61 0.964 0.64 
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Table 7-3 Average performance of RCGC algorithms for Additional image set [98] 

We examine the computation time for our palette optimization and the traditional 

fuzzy c-mean clustering method [72] in a notebook computer with Intel i7 CPU and 

Matlab environment. Note the program is not optimized. The image size is 768×512. 

The average time for 256 color palette generation is 51.277 seconds for the proposed 

algorithm, while it is 96.2 seconds for fuzzy c-mean clustering method [72]. 

Considering that our optimization can be operated in parallel in each segment, our 

algorithm is capable to achieve faster speed than traditional clustering method. 

7.7 Summary 

In Chapter 6, palettes are optimized under an assumption that any colors in an 

image can be rendered with a halftoning technique as long as they are enclosed by the 

palette colors in the RGB color space. As a matter of fact, this assumption is only 

Method 

Color-embedded  
Grayscale Image 

Recovered  
Color Image 

PSNR 
(dB) 

 
SSIM 

dpi=100 dpi=150 

CPSNR 
(dB) 𝛥𝐸 

dpi = 100 dpi = 150 

HVS-
PSNR 
(dB) 

HVS-
PSNR 
(dB) 

HVS-
PSNRColor 

(dB) 
CSSIM ΔES-CIELAB 

HVS-
PSNRColor 

(dB) 

CSSIM ΔES-CIELAB 

Queiroz’s 
[35] 30.73 0.961 40.49 47.75 30.33 5.40 32.72 0.766 2.82 33.66 0.799 2.51 

Ko et al.’s 
[34] 

30.94 0.999 42.11 49.63 31.69 4.70 34.00 0.850 2.15 34.88 0.887 1.81 

Horiuchi et 
al.’s [36] 35.21 0.999 41.08 45.45 29.75 4.98 32.62 0.843 2.18 34.04 0.884 1.78 

Tanaka et 
al.’s [30] 

33.35 0.985 34.74 35.40 30.59 4.55 33.59 0.821 2.71 34.81 0.835 2.52 

Chaumont et 
al.’s [31] 

18.64 0.688 19.82 20.39 34.50 3.24 36.61 0.904 1.60 37.77 0.921 1.42 

Xu and 
Chan’s [38] 

35.77 0.989 41.59 44.13 31.33 4.15 36.44 0.942 1.08 39.41 0.958 0.81 

Proposed 37.01 0.992 43.35 44.66 33.79 3.57 38.26 0.966 0.88 40.76 0.979 0.64 
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valid in ideal situations. In this Chapter, we take the practical constraint of halftoning 

into account and redefine a new objective function to optimize a color palette. A new 

VQ-based RCGC algorithm is then proposed under the framework proposed in 

Chapter 6. Simulation results show that the new RCGC algorithm can further improve 

the quality of both the color-embedded grayscale image and the recovered color 

image remarkably in terms of various objective and subjective metrics.     
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Chapter 8.  

Conclusions 

8.1 Summary of this work 

As a powerful noise shaping technique, digital halftoning [1, 2] can be used in 

various digital signal processing applications to reduce the impact of quantization 

noise on the quality of a quantized signal. Though there have already been 

tremendous studies on its applications in printing, studies on its applications in some 

other areas are relatively limited. This work is dedicated to studying its applications in 

3D profilometry and reversible color to grayscale conversion.   

Digital fringe projection technique has been widely used in 3D profilometry and 

binary defocusing method is one of the most effective and popular methods to realize 

it. By projecting defocused binary fringe patterns, a measurement system can support 

real-time measurements and solve the luminance nonlinearity problem of a projector. 

In Chapter 3, we proposed a framework to measure objects by projecting octa-level 

fringe patterns. It directly improves the measurement accuracy by increasing the 

intensity levels of a fringe pattern at no extra cost as compared with a system that 

projects binary fringe patterns. Three patch-based octa-level fringe pattern generation 

algorithms are proposed to support the framework. While the one introduced in 

Chapter 3 is a basic version, the two proposed in Chapters 4 and 5 were developed to 

address the harmonic distortion issue that comes with the use of patched-based fringe 

patterns. In particular, the former one gets rid of the harmonics along the direction of 

sinusoidal variation in a fringe pattern and the latter one aims at removing the 

harmonics along any directions. We also proactively solve some common weaknesses 
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of conventional patch-based binary fringe pattern generation algorithms (e.g. [6], [10], 

[18] and [23]). In consequence, the measurement performance achieved with the 

resultant fringe patterns is robust to the extent of defocusing and there is no length 

limitation of a fringe period. By exploiting a FMED-based halftoning technique to get 

initial estimates and improving the strategy to search a better estimate during the 

optimization of patches, optimized patches can seamlessly and randomly tiled to 

produce octa-level fringe patterns of ideal noise characteristics, which eventually 

improve the measurement accuracy significantly. 

Conventional reversible color-to-grayscale conversion algorithms [27–32, 34–37] 

generally concern more about the quality of recovered color images and hence their 

produced color-embedded grayscale images are usually visually distorted and 

suspicious. In Chapter 6, we proposed a VQ-based RCGC framework in which 

halftoning is exploited to shift the quantization noise of both color-embedded 

grayscale images and recovered color images to their high frequency bands. 

Consequently, it significantly improves their visual quality simultaneously. To 

support the operation of the framework, we proposed two color palette generation 

algorithms in Chapters 6 and 7 respectively. The former one takes the halftoning 

effect in an ideal situation into account while the latter one further takes the practical 

constraints of a halftoning process into account when optimizing a color palette. 

Under the proposed RCGC framework, two RCGC algorithms were developed. Each 

of them adopts one of the palettes developed with the two proposed palette generation 

algorithms. Both RCGC algorithms can effectively preserve the spatial features of the 

original image and eliminate visual artifacts such as pattern noise, false contour and 

blurring in their output images. By taking the practical constraint of a halftoning 

process into account, the algorithm proposed in Chapter 7 can remove the impulse 
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noise introduced by the halftoning process in a better way. Simulation results show 

that the performancne of both algorithms are better than conventional RCGC 

algorithms in terms of various objective measures.  

In short, this work presents several our contributions made to improve the 

accuracy of 3D shape measurement and the performance of reversible color-to-

grayscale conversion. The proposed techniques can accomplish significant 

improvement over many of the existing techniques.  

8.2 Future works 

Further extension of the present work is possible in several directions. Traditional 

fringe projection profilometry methods project fringe patterns on the object to be 

measured, capture the distorted fringe patterns that are determined by the distance of 

the surface of the object from the camera, and then construct a phase map based on 

the captured fringe patterns. A phase unwrapping process is required to turn the 

reconstructed phase map to the depth map of the object. There can be serious errors in 

phase unwrapping when the object has an abruptly changing height profile. Recently, 

proposals [99–101] have been made to encode markers in the projected fringe patterns 

to resolve the ambiguities in the fringe images in phase unwrapping. It is interesting 

to explore the feasibility of encoding markers in binary and octa-level fringe patterns 

and investigate the best encoding method for resolving the ambiguities effectively.  

Under the proposed VQ-based reversible color-to-grayscale conversion 

framework, the quality of color-embedded grayscale images and recovered color 

images highly relies on the exploited color palette. In the proposals suggested in 

Chapters 6 and 7, the number of palette colors is fixed and there is a one-to-one 

correspondence between the index value and the palette color. It anchors the color of 
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a pixel in the recovered color image and the luminance value of the corresponding 

pixel in the color-embedded grayscale image. This constraint makes it impossible to 

assign accurate grayscales and colors to the color-embedded grayscale image and the 

recovered color images respectively at the same time.  A possible way to alleviate this 

constraint is to re-index palette colors adaptively in the course of conversion. By 

doing so, the correspondence between index value and palette color is local. It should 

be helpful to further improve the quality of the images simultaneously.  

Digital halftoning can definitely be applied to some other possible application 

areas and it is worthwhile to explore each one of them. As a matter of fact, we also 

carried out two preliminary studies in this project to apply halftoning to block 

truncation coding [102] and liquid crystal display blacklight dimming [103]. In the 

first study, without either decreasing the compression ratio or increasing the 

realization complexity, we successfully improve the visual quality of an encoded 

image by removing the blocking artifacts. In the second study, we effectively suppress 

the false contours caused by the re-quantization process that is carried out to 

compensate for the backlight dimming. The results are encouraging and they suggest 

two other possible directions to carry out further studies.  
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