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Abstract

In this thesis, a complex network perspective is taken to study the robustness of power

systems against cascading failure. By abstracting generators, loads, and substations as

nodes, and transmission lines as edges, a power system can be described by a network

representation, through which the topological characteristics can be examined. The

robustness of a power system is interpreted as its ability to resist cascading failure. In

order to investigate the relationship between the network topology and the robustness

performance, the key factor is to model the cascading failure processes appropriately.

This thesis aims to study the cascading failure mechanism in power systems and to

identify ways to enhance their robustness from a complex network perspective.

First, we propose a circuit-based power flow model for the simulation of cascad-

ing failures and the robustness assessment of power systems. Based on Kirchhoff’s

laws and the properties of network elements, and combined with a complex network

structure, this model is able to assess the severity of a blackout. The blackout size is

measured by the percentage of unserved nodes (PUN) caused by a failed component.

For each component chosen as an initially failed component, a value of PUN can be

found. Based on the PUN of each node, the percentage of non-critical links (PNL)

is used to measure a power system’s robustness quantitatively. Simulation results on

several real and synthesized networks show that connection having a short average

shortest path length can jeopardize a power system’s robustness.

Then, we model the dynamic propagation processes of cascading failures in power

systems beginning from a dysfunctioned component and developing eventually to a

v
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large-scale blackout. Observing that in several historical power blackout events, the

failure propagation profiles share a common pattern characterized by a relatively slow

initial phase followed by a sharp escalation of failure events, we further develop a

method for finding the time instants of failure events to complete the cascading fail-

ure modeling. The proposed circuit-based power flow model is adopted to derive the

overloading conditions, which determine the failure rates of the elements. A stochas-

tic method is then used to generate the uncertain failure time instants. The use of

stochastic method addresses the uncertainties in individual components’ physical fail-

ure mechanisms. Simulation results for the UIUC 150 Bus system show that the dy-

namic cascading failure profiles generated by this model contain the typical features

displayed in historical blackout data.

Finally, we present a study of cascading failure in power systems that are coupled

with cyber networks. In reality, the power network is linked to the cyber network for

control purposes, and the cyber network is powered by the power network. The failure

in one network can propagate to the other, and vice versa. Thus, we consider the failure

cascade in a coupled system (smart grid) comprising a power grid and a cyber network

caused by the attack of a cyber malware. The effects of power overloading, conta-

gion, and interdependence between a power grid and a cyber network are taken into

consideration in the model. Different coupling patterns and different cyber network

structures are compared to study their effects on the robustness of the coupled system.

Simulation results show that cyber coupling can intensify both the extent and rapid-

ity of power blackouts, and that the cyber network structure and the coupling patterns

affect the propagation of cascading failures in cyber-coupled power networks.
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Chapter 1

Introduction

1.1 Background

A complex system consisting of a large number of interacting elements can be rep-

resented and analyzed with a “graph” (network), whose entities are a set of “nodes”

and “edges”. In the graph representation, the elements are abstracted as nodes and the

interactions among the elements are abstracted as edges. Analyzed from a network

perspective, it is found that many real-world systems share some unified structural

characteristics.

The use of graph representation to solve real-world problems dates back to the 18th

Century. Königsberg was a town of former Prussia, whose land was divided into four

isolated parts by a river named Pregel. Seven bridges were constructed over the river to

connect the four lands, as shown in Fig. 1.1 (a). There was a debate among the citizens

of Königsberg: “if someone could walk through all the seven bridges and then return

to the starting point without going over any bridge for more than once”. This debate

had lasted for a long time, until mathematician Euler gave an answer to it in 1736. By

abstracting each part of land as a node and each bridge as an edge, Euler converted the

routing problem to a network description, as shown in Fig. 1.1 (b), and pointed out

that to realize the task in the debate, each node in the graph must have an even number

1



2 CHAPTER 1. INTRODUCTION

of edges connected to it.

Euler started the era of using graphs to analyze real-world systems, and since then,

graph theory continued to develop with a series of new findings and achievements, and

became an important discipline.

(a) (b)

Figure 1.1: The Königsberg seven-bridge problem. (a) Geographi-

cal representation of the seven bridges and the isolated lands. (b)

Corresponding network representation. Picture (a) is obtained from

https://www.britannica.com/topic/Konigsberg-bridge-problem. Picture (b) is ob-

tained from https://physics.weber.edu/carroll/honors/konigsberg.htm.

In the late 1950s, two Hungarian mathematicians, Paul Erdös and Alfréd Rényi in-

troduced an algorithm for generating random networks, which is regarded as a notable

milestone in the history of graph theory history. An Erdös and Rényi (ER) random net-

work is constructed by adding a specific number of links to a set of nodes randomly. A

Poisson node degree distribution is observed in ER random networks. For the follow-

ing more than forty years, ER random networks were the dominant networks on which

the majority of network dynamical studies were performed.

Although the ER random network is a popular model of connectivity, many later

empirical studies showed that most of the real-world networks are not completely ran-

dom. In 1969, Stanley Milgram conducted an experiment to test the average inter-

mediate friends that connect two randomly selected persons in the United States, i.e.,

the average shortest path length of the American social network. In this experiment,

Milgram randomly chose two persons from a town named Sharon and the city Boston
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as two targets. Further, he selected two groups of volunteers in Kansas and Nebraska

as start points. Milgram asked each volunteer to compose a letter to the two targeted

people and then send the letter to a friend. If the receiver was not either one of the two

targets, he would be asked to forward the letter to another friend of his. This forward-

ing process continued until the letter reached one of the two destinations. Milgram

reported the results in ref. [1] that although many folders were lost, for the success-

fully delivered letters, the average path length was only 5.2 hops. Such a phenomenon

where the average distance between two randomly selected people in the American

social network was so short was interpreted as “small-world” phenomenon.

With the emergence of computers, the World Wide Web (WWW) has become an

important information space, in which the documents are identified with URLs and in-

terconnected by hypertext links. By considering the URLs as nodes and the hyperlinks

as edges, the network can characterize the information connection relationship on the

WWW. In 1999, Réka Albert et al. [2] reported that the distribution of the number of

incoming hyperlinks and the distribution of the number of outgoing hyperlinks of the

URLs both follow a power law. The power-law distribution of the WWW network

connectivity was also validated by Huberman and Adamic [3]. As the power-law dis-

tribution property is independent of the network size [4], the network with power-law

node degree distribution is also termed as a scale-free network.

Empirical observations, which are noted first by people, usually lead to impactful

theoretical models for reproducing the features observed and explaining the forma-

tion mechanism of real systems. The small-world network model and the scale-free

network work model are two most popular examples. In 1998, Watts and Strogatz

introduced a model that can display small-world characteristic [5]. In Watts and Stro-

gatz’s work, they rewired the links in a regular ring network with probability p, and

found that the average shortest path length of the rewired network decreases drastically

even when p is very small. The resulting network having relatively short average path

length is now recognized as a small-world network.
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Although the small-world phenomenon is observed in this model, the power-law

distribution cannot be reproduced. Albert and Barabási introduced a growth network

model in 1999 [6], with new nodes being added in a preferential attachment manner.

Through mathematical derivation as well as computer simulation, they showed that

scaling emerges in their growing network whose node degree distribution follows a

power law.

The small-world and the scale-free network models invoked intense research in

the field of network science in the past two decades. New structural parameters that

can characterize the network features have been proposed [7]. Various dynamical pro-

cesses have also been simulated and investigated in some synthesized networks [8, 9].

It should also be noted that real-world systems are characterized by their own operating

properties and physical laws in addition to the basic structural properties. To maximize

the benefits of this new promising discipline, the next step is to apply the complex net-

work methodologies to real-world problems appropriately, with the due consideration

of the physical properties of the practical systems under study.

Many practical systems have been viewed and analyzed from a network science

perspective, such as the protein-protein network [10], the world stock market net-

work [11], the music network [12], and so on. Specifically, the power system is one

of today’s most important man-made infrastructures, whose safety and robustness are

of great significance to almost all human activities. A power system delivers elec-

tricity from the generating units to the consumers through a network of substations

and transmission lines. By representing the generators, consumers, transformers and

distribution stations as nodes and the transmission lines as edges, the power grid is

amenable to complex network analysis. Empirical studies on the topology of power

systems [13–19] are still in the initial stage, and detailed modeling considering the

electrical properties are necessary in order to find the intrinsic relationship between

the functionality and the structure.
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1.2 Motivation

It is widely known that the structure of a network influences its functional perfor-

mances. For example, the study in ref. [20] showed that the scale-free network is more

vulnerable to intentional attack while more resilient to random attack, compared with a

random network. In this thesis, cascading failure in a power system and the robustness

against repeated component failures are the key concerns related to functional perfor-

mance. The objective is to apply complex network theory to the analysis of power

systems, establishing a clear link between the specific aspects of operational perfor-

mance of the power grid and the network structure. As the power system is a huge

complex system, the relationship between the functionality and the structure is not as

simple as that between the “debate” and the “solution” in the Königsberg problem. To

achieve the objective, appropriate modeling is a crucial step. The choice of model-

ing approach and the level of complexity to be incorporated in the model should be

carefully considered. Oversimplified models may fail to describe the essential proper-

ties while overly complicated models would incur high analytical and computational

costs. Based on this cognition, three models with the following practical emphases are

proposed.

First, considering the objective electrical features of a power system, power flow

information is incorporated in the cascading failure simulation model. In this model,

the element failure is due to power flow overloading, and the power flow is governed

by Kirchhoff’s laws and the electrical properties of the network elements. This part of

the model is based on deterministic processes.

Second, considering the complexities and uncertainties, apart from power over-

loading, the failure of a component may also have multiple complex causes, including

production quality, temperature, and other environmental factors, which are not always

precisely deterministic. A model that combines power flow analysis and a stochastic

method to determine the time to the next failure is proposed to produce the time profiles
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of cascading failure propagation.

Third, the smart grid that takes advantage of information technologies is an in-

terdependent system, where the physical power network depends on a cyber network

for control while the cyber network is powered by the power network. Witnessing

the blackout in the Ukrainian power grid in 2015 that was caused by a cyber malware

attack [21], a model that can simulate the cascading failures in the interdependent net-

works is proposed to study the effects of cyber coupling.

Several metrics for indicating the robustness of a power system based on the simu-

lated cascading failure results with the above models are used to investigate the influ-

ences of network structure on its robustness.

1.3 Thesis Organization

This thesis is organized as follows.

Chapter 2 provides a literature review. Key results from complex network research,

the new requirements and challenges for power grids, and some recent works of apply-

ing complex network theories to power systems are reviewed.

Chapter 3 discusses the robustness assessment of power systems from a network

perspective. Based on Kirchhoff’s laws and the properties of network elements, and

combined with a complex network structure, a deterministic model is introduced to an-

alyze the severity of a blackout, measured by the percentage of unserved nodes (PUN)

caused by a failed component. To quantitatively measure a power system’s robustness,

the percentage of non-critical links (PNL) is used. Different network structures that

influence a power grid’s robustness are discussed.

Chapter 4 studies the dynamic processes of cascading failures. We propose a model

that gives a complete dynamic profile of the cascading failure propagation beginning

from a dysfunctioned component and developing eventually to a large-scale blackout.

In the model, we use the circuit-based power flow model introduced in Chapter 3 to
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derive the overloading conditions, and combine it with a stochastic model to describe

the uncertain failure time instants. The simulation results based on the model are

compared with the recorded data of historical blackouts.

Chapter 5 presents a preliminary study of the cascading failures in power systems

considering the cyber-coupling effects. In this chapter, a coupled system (smart grid)

comprising a power grid and a cyber network is considered. In the model, we take

into consideration the effects of power overloading, contagion, and interdependence

between a power grid and a cyber network on failure propagation in the coupled system

to investigate the cascading failures caused by the attack of cyber malwares. Different

coupling patterns and different cyber network structures are compared to study their

effects on the robustness of a smart grid.

The thesis concludes in Chapter 6, where major findings of the project are summa-

rized and some thoughts on the future works are presented.
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Chapter 2

Literature Review

In this chapter, some fundamental concepts of complex network theory and their ap-

plications to power systems are reviewed. A set of basic measures of network topol-

ogy, three classical network models, empirical studies of power networks, and several

power system models are discussed.

2.1 Measures of Network Topology

As artificial or natural networks are usually of large scale and with high complexity,

their characteristics need to be abstracted and quantified by computable measures. In

this section, several important measures that are most widely used in the field of com-

plex networks are reviewed, such as node degree, degree distribution, average path

length, and so on.

2.1.1 Node Degree

The degree of a node is a simple and basic measure for indicating the structural im-

portance of the node in a network. In an undirected network, the degree ki of node

i is defined as the total number of edges connecting to the node. In a directed net-

work where an edge can have two directions, the out-degree of a node is the number

9
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of its outward-directed edges, and the in-degree is defined as the number of its inward-

directed edges.

Usually, in a real-world complex network that contains a large number of nodes, the

degrees of different nodes vary over a wide range. In terms of the network topology, the

nodes with higher degrees usually have stronger impacts on the whole system and are

called the hubs of the network. Albert et al. [20] demonstrated that removing the high-

degree nodes destructs the network connectivity much more severely than removing

the same fraction of low-degree nodes from the network.

To show the overall properties of a network, several metrics have been proposed

by processing the degrees of all the nodes with statistical methods, such as the average

node degree, the node degree distribution and the node assortativity coefficient.

Average Node Degree

The average node degree 〈k〉 of a network is the average value of the degrees of all

the nodes of the network. Thus, 〈k〉 can be written as

〈k〉 =
1

N

N
∑

i=1

ki, (2.1)

where N is the total number of nodes in the network. The value of 〈k〉 characterizes the

network’s connection density, and a higher 〈k〉 means that the nodes are more densely

connected with each other.

Node Degree Distribution

The average node degree captures a specific topological property of a network, and

different networks with the same average node degree can have quite different topolo-

gies. The node degree distribution is used to capture another aspect of information

of the network topology. A network’s node degree distribution, denoted by P(k), is

defined as the probability that a randomly picked node has degree k. And P(k) can be

represented as follows:

P(k) = N(k)/N (2.2)
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Figure 2.1: Node degree distributions: (a) Power-law distribution; (b) Poisson distri-

bution.

where N(k) is the number of nodes having degree k.

The Poisson distribution and the power-law distribution are two most frequently

observed node degree distribution forms in real-world networks as well as in mathe-

matical network models. For a power-law distribution, the probability P(k) varies as a

negative power of k, i.e., P(k) ∼ k−γ, where γ is the power-law exponent. As shown

in Fig. 2.1(a), a network with a power-law degree distribution is heterogeneous, where

most nodes have a few edges while only a small portion of nodes occupy a large num-

ber of connections. For the Poisson distribution, the relation between P(k) and k can

be represented as P(k) ∼ e−λλ−k/k!, where λ is the average node degree of the network.

Figure 2.1(b) plots a Poisson distribution, where the peak of the curve appears when

k is around the average node degree. From Fig. 2.1(b), in a network with a Poisson

distribution, most of the nodes have the same degree, and there exists no network hub.

Such a network is homogeneous. In addition to the above two distributions, the ex-

ponential distribution in the form of P(k) ∼ e−λk has also been observed in some real

networks, for example, the power grid in North America [13].

Degree Assortativity Coefficient

In order to characterize the correlations between nodes with similar degree in the
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network, the assortativity coefficient r has been proposed [22]. The definition of r is

r =

m−1
∑

(i, j)∈M

kik j − [m−1
∑

(i, j)∈M

1

2
[ki + k j]]

2

m−1
∑

(i, j)∈M

1

2
[k2

i + k2
j ] − [m−1

∑

(i, j)∈M

1

2
[ki + k j]]

2

, (2.3)

where ki and k j are the degrees of the two nodes of edge (i, j), M is the set of edges in

the network, and m is the number of edges in M. Here, r characterizes the likely extent

to which the nodes with similar degree are connected by a link.

Also, r > 0 indicates that the network is assortative where high-degree nodes are

more likely to connect to high-degree nodes. On the other hand, r < 0 indicates that

the network is disassortative where low-degree nodes tend to connect to high-degree

nodes.

2.1.2 Shortest Path Length

The distance di j between node i and node j in an undirected and unweighted network

is defined as the number of edges along the shortest path connecting the two nodes.

In a network, there usually exist many paths that connect two nodes, among which

the shortest one is usually considered as the most dominant connection. For example,

the shortest path is often chosen for data transmission between two data centers in a

communication network, which is also identified as the min-delay path problem [23].

The shortest path concept can also be applied in transportation, robotics, and VLSI

design [24]. Several algorithms have been proposed to efficiently find the shortest path

between node pairs in a network, such as the Floyd-Warshall algorithm, the Johnson’s

algorithm, and so on [25].

In a network with N nodes, there exist 2N(N − 1) pairs of nodes in total, with

each node pair having a corresponding distance. The longest distance in the network

is termed the diameter. The average path length (or average shortest path length) of
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a network denoted by L is the average value of all the node pairs’ distances in the

network, i.e.,

L =
1

2N(N − 1)

∑

i, j

di j. (2.4)

Here, L measures how close the nodes are interconnected with each other in a

network. For example, in a social network of relatively large scale, the value of L is

very small. The experiment conducted by Milgram in 1969 showed that the average

distance of two randomly chosen persons in the American social network was less than

6. Later studies showed a 4 degree separation in 2012 [26] and a 3.5 degree separation

in 2016 [27] based on the online social network Facebook.

2.1.3 Betweenness Centrality

As the shortest path is often chosen as the preferred transportation route in delivery

networks, the nodes and edges that lie on the shortest path are more critical. Based

on the concept of shortest path, the node betweenness centrality (edge betweenness

centrality) has been proposed to characterize the centrality of a node (edge) in a net-

work [28]. Node i’s betweenness centrality is defined as the number of shortest paths

that pass through it, i.e.,

Bi =
∑

s,i,t

σst(i)

σst

, (2.5)

where σst is the total number of shortest paths between nodes s and t, and σst(i) is the

number of those paths that pass through node i.

Similarly, the betweenness of edge (i, j) is defined as

Bi j =
∑

(s,t),(i, j)

σst(i j)

σst

, (2.6)

where σst(v) is the number of shortest paths traversing edge (i, j).

The betweenness of a node (edge) measures how frequently a node (edge) stands

on the connection between other elements and can be applied to many practical prob-
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lems. For example, Newman and Girvan [29] made use of edge betweenness to detect

the underlying communities in a network. The nodes within the same community are

more closely interconnected compared with the nodes in different communities, and

the edges that connect different communities are usually with high values of between-

ness centrality. Based on this cognition, Newman and Girvan proposed a method to

remove a set of edges iteratively to split the network into different communities. For

each step, the edge to be removed is with the highest value of edge betweenness. The

authors then demonstrated the efficacy of this method in a variety of real networks with

known community structure.

2.1.4 Clustering Coefficient

The clustering coefficient of a node measures the connectivity among its neighbors.

For node i with degree ki, there exist at most ki(ki − 2)/2 possible connections among

its ki neighbors. Among these ki(ki − 2)/2 possible connections, Ei is the number of

links that actually exist. The clustering coefficient Ci of node i is defined as the ratio

between Ei and ki(ki − 2)/2, i.e.,

Ci =
2Ei

ki(ki − 1)
. (2.7)

To characterize the overall clustering level of a network, the average clustering

coefficient C of a network is used. Here, C is defined as the average value of the

clustering coefficient of all nodes, which can be written as

C =
1

N

N
∑

i=1

Ci. (2.8)

A network’s clustering coefficient ranges from 0 to 1. Clustering coefficients can

vary distinctly for different networks. A star network has a zero clustering coefficient,

and a fully connected network has a unity clustering coefficient. The clustering co-
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efficient of real-world social networks is relatively high. Thus, for a social network,

it is common that two friends of an individual are more likely to know each other as

well, and this feature is used for recommending new friends in online social platforms.

Moreover, the clustering coefficient of hierarchical networks can be quite low, such as

the power grid and the Internet [30].

2.2 Theoretical Topology Models

From some previous empirical studies, certain distinct features of real-world networks

were identified, for example, the small-world property of social networks and the

power-law degree distribution of the World Wide Web (WWW) network. These obser-

vations motivated the development of mathematical network models that can reproduce

the observed statistical features. The models offer plausible explanations for the for-

mation mechanisms of real networks and provide a platform for studying the dynamic

processes [31]. In this section, we review three most widely known network models:

the Erdös-Rényi (ER) random network, the Watts-Strogatz (WS) small-world network,

and the Barabási-Albert (BA) scale-free network.

2.2.1 ER Random Network

The ER random network, proposed by Erdös and Rényi in 1959 [32], is the first model

for generating an autonomously formed network. An ER random network can be gen-

erated as follows:

(1) First, take N isolated nodes.

(2) Then, for each pair of nodes, add an edge with probability p.

For an ER random network, when N is large enough, there are about pN(N − 1)/2

edges in total, and the average node degree is 〈k〉 = (N − 1)p ≈ N p. The node degree
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distribution of the ER random network can be expressed as follows:

P(k) = (〈k〉)k e−〈k〉

k!
. (2.9)

From equation (2.9), we can see that the node degrees of the generated ER random

network follow a Poisson distribution, indicating that the ER random network is a

homogeneous network.

Assuming that N ≫ 〈k〉 ≫ ln(N) ≫ 1, the ER random network’s average path

length Lrandom and clustering coefficient Crandom can be written as Lrandom ∼ ln(N)/ln(〈k〉)

and Crandom ∼ 〈k〉/N, respectively [33]. We can see that Lrandom and Crandom are both

very small and that increasing p lowers Lrandom and Crandom at different rates.

2.2.2 WS Small-world Network

Empirical studies showed that many large-scale real networks have short average path

length and maintain relatively large clustering coefficient. In 1998, Watts and Stro-

gatz [5] introduced a rewiring model to mimic the two features observed in many real

networks. Noticing that the ER random network exhibits a short average path length

and a low value of clustering coefficient and that the regular network has a high clus-

tering coefficient and a long average path length, they built interim networks between

the two kinds of networks.

In this model, the construction process begins with a regular ring network that

has N nodes, each node’s degree being a constant number k. Then, for each link in

the network, with probability p, one of its terminal nodes is reconnected to another

randomly selected node in the ring. The average path length L(p) and the clustering

coefficient C(p) are used to indicate the topological characteristics of the resulting

networks under different rewiring probabilities. When p = 0, the resulting network is

the regular ring network, and C(0) ≈ 3/4, L(0) ≈ N/2 〈k〉. When p = 1, the resulting

network is the ER random network, and C(0) ≈ 〈k〉 /N, L(0) ≈ ln(N)/ ln(〈k〉). Figure
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Figure 2.2: C(p)/C(0) and L(p)/L(0) decrease at different rates as p increases. Small-

world properties are shown in the interim networks. This figure is extracted from

Nature [5].

2.2 shows the values of C(p)/C(0) and L(p)/L(0) as p increases from 0 to 1. We can

see that when p is small, an interim network appears with the characteristics that the

clustering coefficient is almost as high as regular networks and that the average path

length decreases to a very low value. Such interim networks are called SW small-world

networks. Table 2.1 summarizes the average path length and clustering coefficient of

different network models when N ≫ 〈k〉 ≫ ln(N) ≫ 1.

Table 2.1: Average path length and clustering coefficient of different network models

Average Path Length Clustering Coefficient

Regular ring network N/2 〈k〉 3/4

WS small-world network close to ln(N)/ln(〈k〉) close to 3/4

ER random network ln(N)/ln(〈k〉) 〈k〉/N

2.2.3 BA Scale-free Network

As mentioned in Section 2.1.1, the degree distribution gives important clues about

the structure of a network. Both the ER random and WS small-world networks do

not display a power-law degree distribution which is widely observed in many real-
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world networks. To mimic the power-law degree distribution, Barabási and Albert [6]

proposed another network model, in which growth and preferential attachment are two

important rules in the formation of the network. The procedures for generating the

network are as follows:

(1) Start with m0 nodes, and at each step, a new node is added and connected to

m 6 m0 existing nodes.

(2) The probability Πi that the newly added node is connected to node i is propor-

tional to the degree of node i, denoted as ki, i.e., Πi = ki/
∑

j k j.

After t time steps, the above algorithm generates a network with m0+t nodes and mt

edges. When t is large enough, the network’s node degree distribution follows a power

law with exponent -3. When t continues to increase, this degree distribution remains

unchanged, and the scale-free property emerges. Thus, this network model is called

the BA scale-free network. The scale-free network is highly heterogeneous, where a

small fraction of nodes have a large number of connections while the majority of nodes

have only a few edges. The BA scale-free network model is a remarkable milestone in

the history of graph theory which aroused the interest of many researchers in the field

of applied mathematics and physics.

2.3 Empirical Study of Power Networks

The power grid is one of the most critical man-made infrastructures, whose opera-

tional performances influence almost all human activities today. In a power grid, the

generators, loads, and substations are interconnected by transmission lines, aiming at

transmitting electricity safely and efficiently among. Evolving with the development

of human society, the topology of power grids has become quite large and complex.

The topological characteristics of this huge and complex system have drawn much

attention. By abstracting the generators, transformers, and substations as nodes and

the transmission lines as edges, much research has been devoted to the study of the
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topologies of different regions’ power grids from a complex network perspective with

the aforementioned measures and models [15, 34]. This section reviews the results of

some empirical studies on the topological features of real power grids.

To measure how densely the substations are interconnected by the transmission

lines in a real power grid, the average node degree was used in much of the previous

study. Table 2.2 summarizes the results obtained from refs. [13,16,35–37]. From Table

2.2, we can see that all the average node degrees of networks fall in the range [2, 3],

indicating that the stations in real grids are not very densely connected. One possible

reason for the sparse connection is that the power grid is designed economically to

lower the cost of transmission lines. Another reason is related to the spatial constraint,

and the transmission lines could not be established arbitrarily to connect the elements

in the grid.

Table 2.2: Average node degree of different real power grids

Region Number of Nodes 〈k〉 Region Number of Nodes 〈k〉

North America 19.600 2.08 Belgium 53 2.18

West America 4941 2.67 Holland 36 2.11

North China 8092 2.23 Germany 445 2.51

Central China 2379 2.32 Italy 272 2.70

Spain 474 2.82 Romania 166 2.49

France 667 2.69 Greece 27 2.44

As the small-world property is one prominent feature observed in many kinds of

real networks, several studies have attempted to investigate whether the power grids

fall into the small-world network category. The average path length and the clustering

coefficient are two important parameters used to examine the small-world property of

a power grid. Compared with a random network of the same scale, the small-world

network has a similar average path length but a much larger clustering coefficient. Let

Crandom and Lrandom be the clustering coefficient and the average path length of an ER
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random network having the same number of nodes with the power grid. If a power

network satisfies C/Crandom ≫ 1 and L/Lrandom ≈ 1, we can say that the grid exhibits

the small-world property. Table 2.3 lists the values of L and C for different real grids,

and the corresponding values for the random network. From Table 2.3, we can see

that the Western American and French power grids exhibit the small-world property,

with C ≫ Crandom and L ≈ Lrandom. However, the other power networks in Table 2.3

cannot be classified as small-world networks as they have a relatively low clustering

coefficient.

Table 2.3: Clustering coefficient (C) and average shortest path length (L) of different

power networks

Region C C/Crandom L L/Lrandom

West America [37] 0.0800 148.045 18.7 2.159

North China [36] 0.0017 6.169 32 2.852

Center China [36] 0.0044 4.512 21.08 2.282

Italy [16] 0.1560 7.365 8.47 1.730

France [16] 0.2790 13.355 6.61 1.479

Spain [16] 0.3160 8.675 4.92 1.366

In terms of the node degree distribution, Albert et al. [13] reported that the Northern

American power grid follows an exponential distribution. The exponential node degree

distribution was also reported to be observed in the power networks in Italy [18], Eu-

rope [14, 35, 38] and Southern California [43]. However, not all power grids show

the exponential distribution. Pagani and Aiello [40] showed that the medium- and

low-voltage power network in Northern Netherlands follows a power-law distribution.

And even there exist disagreements for the same regions’ networks. For the North-

ern American network, Chassin and Posse [39] claimed that the topology could be

scale-free. Contributing to this controversy, Cotilla-Sanchez et al. [42] fitted the data

from the Northern American grid and the IEEE 300 Bus system and concluded that the
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Table 2.4: Fitted node degree distributions of different real power networks

Power grid region Cumulative degree distribution Fitted representation

North America [13] exponential P(k) = e−0.5k

Italy [18] exponential P(k) = 2.5e−0.55k

Europe [35] exponential P(k) = 2.5e−0.81k

Europe [14] exponential
P1(k) = e−0.56k

P2(k) = e−0.54k

Europe [38] exponential P1(k) = e−0.60k

North America [39] power-law
P1(k) = 0.84k−3.04

P2(k) = 0.85k−3.09

Northern Netherlands [40] power-law P(k) = k−1.49

Italy, France and Spain [16] other form –

New York [41] other form –

North America [42] other form –

two cases are neither scale-free nor small-world. Table 2.4 summarizes the best fitted

representations of the node degree distributions of different real power grids.

Up to now, no consensus has been reached on whether the real power grids share

uniform topological characteristics in terms of small-world and scale-free properties

[44]. We can thus conclude that there exist distinct differences between different real

power networks.

It has been demonstrated that there exists a strong correlation between the struc-

ture and the function of a network [45–48]. For example, in a social network, the

small-world connection enhances the contagion spreading process among people com-

pared with the regular connection. Such structure-function correlation can also exist

in power systems. In this thesis, the functional performance under study is related to

the robustness of the system, as the safe operation of a power system is of great impor-

tance today. Power blackouts indeed happened, each causing enormous economical
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loss as well as undue inconvenience. The 2003 blackout in North America and Canada

left about 50 million people in the dark and caused a loss of estimated 10 billion dol-

lars. The 2015 blackout in the Ukrainian power grid affected 80,000 customers for

six hours. One can see a summary of historical power blackouts in ref. [49]. Thus,

preventing disturbances in power systems has always been a prime goal of electrical

engineers and power companies.

It should be noted that the power grid is not constrained to adopt any typical net-

work topology. In other words, a power grid can be designed to optimize performance

by choosing appropriate structure. It is therefore very meaningful to explore the re-

lationship between the functional performance of a power grid and its structure, thus

providing useful hints to improve the functional performance via optimizing the struc-

ture [50, 51]. Having studied the empirical properties of the power grids’ topologies,

the next step is to carefully model the dynamics of power systems.

2.4 Models for Power System Analysis

An appropriate model is the key tool for exploring the relationship between the func-

tion and structure of a power network. This thesis focuses on the robustness property

and modeling of cascading failures in power systems. In this section, we review the

important models used in the field of complex networks and electrical engineering.

2.4.1 Static Model

One area of research falls in the category of static analysis of the structural vulner-

ability of power networks to attacks. In this kind of study, attacks refer to jointly

removing a fraction of elements (nodes or edges) from a power network, which can

destruct the connection of the network. Then, a comparison will be made between the

remaining network and the original network to indicate the severity of the damages



2.4. MODELS FOR POWER SYSTEM ANALYSIS 23

caused by the attacks. Several metrics have been proposed as the measures of the dam-

ages, for example, the global network connection efficiency [52] and the relative size

of the largest cluster of the network [13, 38]. In ref. [52], the global efficiency E(G)

was used to indicate the connection efficiency of network G. And E(G) is defined as

E(G) = 1
N(N−1)

∑

i, j∈G
1

di j
, where di j is the shortest path length between nodes i and j.

If E(G) becomes much lower after the attacks, the network is very vulnerable to these

attacks. The simulation results reported in ref. [52] showed that the power grid is very

vulnerable to intentional attacks and that the removal of only three targeted edges can

decrease E(G) dramatically. In ref. [38], the relative size of the largest connected com-

ponent S inf was used as a metric, based on which the authors drew the conclusion that

the Italian power grid is more robust than the French power grid under both intentional

attacks and random attacks.

In practical cases, a severe power blackout is usually the result of a series of fail-

ures successively taking place in the power network following the initial one or a few

failures [53–56]. The above structural vulnerability assessment models are limited to

static analysis, and are unable to capture the properties of the dynamic failure propa-

gation process in a power system. Witnessing this drawback, several dynamic models

were proposed for the cascading failure analysis of power networks. In the follow-

ing sections, we will review the dynamic models used for investigating the network

vulnerability and the failure cascade mechanisms.

2.4.2 Motter-Lai Model

Motter and Lai [57] proposed a model that simulates the cascading failure process in

power networks in a step-by-step process, where the dynamics of flows are taken into

consideration. By assuming that the energy is transmitted along the shortest paths in

power networks, load Li of node i is represented by the total number of shortest paths

that pass through it, i.e., the node’s betweenness. Each node has a maximum load limit
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called capacity. If the load of node i exceeds its capacity, it will fail instantly and be

removed from the network. Node i’s capacity Ci is set as follows:

Ci = (1 + α)Li(0), j = 1, 2, ...N, (2.10)

where α > 0 is a tolerance parameter, and Li(0) is the load of node i when the power

network is in the normal state.

In this model, before the initial failure, the capacities of the nodes are set based on

equation (2.10). Then, a single node is removed from the network as the initial fail-

ure. The removal changes the network topology and the distributions of shortest paths,

which may cause other nodes to be overloaded and failed. Such removal-redistribution

process continues until no overloaded nodes exist in the remaining network. The dam-

age caused by the failure cascade is quantified by the relative size of the largest con-

nected component, i.e., S in f = N′/N, where N and N′ are the numbers of nodes in

the largest component before and after the cascade, respectively. Based on this model,

the simulation results in the Western American power grid showed that attacking the

node with the largest load can damage the grid more severely compared with attacking

the node with the maximum degree or the node randomly chosen. However, the basic

assumption of power being transmitted along shortest paths is not fully consistent with

the physics of electric networks where topologies and impedances dictate the manner

in which power flows in the network.

2.4.3 Effective Efficiency Model

By assigning an effective efficiency to each edge in the power network, Crucitti et

al. [18] used a weighted network to analyze the power grid. The effective efficiency ei j

of edge (i, j) in the range [0, 1] characterizes how effectively its terminal nodes i and j

exchange electricity. The efficiency of a path is the sum of the effective efficiencies of

all the edges along the path. The path that has the highest efficiency between a pair of
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nodes in the network is chosen as the best path of the two nodes. The authors assumed

that the electricity transmitted between a source node and a targeted node flows along

the best path. Further, Li(t) is defined as the number of best paths passing through node

i at time t.

Instead of removing the overloaded elements as in the Motter-Lai model, Crucitti

et al. [18] used degraded effective efficiencies to characterize the effects of power over-

loading. Initially, the efficiencies of edges are set to be 1. If node i works within its

capacity Ci, its efficiency remains to be the same. If node i’s load Li(t) exceeds Ci, the

effective efficiencies of the edges that connect to node i will be degraded as follows:

ei j(t) =



























ei j(0)
Ci

Li(t)
, if Li(t) > Ci,

ei j(0), if Li(t) < Ci,

(2.11)

where ei j(0) is the initial efficiency of edge (i, j) and Ci is set based on equation (2.10).

In the effective efficiency model, the initially failed node is removed from the net-

work, which triggers the following iterative steps: (1) the distribution of the best paths

changes in the network, thus causing the load changes of other nodes; (2) new over-

loaded nodes may emerge, and instead of being removed, they degrade the efficiencies

of affected edges. These two steps iterate until the network enters a steady state. The

average efficiency of all the best paths in the network is used as an indicator to measure

the effects of the cascading failures. With this model, the authors concluded that the

failure of the most heavily loaded node can cause a catastrophic power outage to the

Italian power grid.

Though the Motter-Lai model and the effective efficiency model investigate the

cascading failures from a dynamic viewpoint, they fall short of only using topological

parameters to represent power flow in a power grid. Besides, the power flow redistribu-

tion algorithm used cannot capture the electrical properties of the power systems under

study. Similar improper algorithms were also used in ref. [58], where after a node fails,
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the load it carries will be dispatched to its neighbors and in ref. [59] where power flow

will be equally redistributed among the remaining lines after a line is removed.

2.4.4 AC/DC Model

To study the power flow distribution in power systems, the following two factors should

be considered. First, the amount of power that flows in a power network should be

determined by the actual variations of voltages and currents in the constituent elements

as well as the way they are connected. Second, the power flow distribution in the power

network must obey the relevant physical laws like Kirchhoff’s laws and Ohm’s law.

Based on these recognitions, in this section, we introduce the AC and DC power flow

models used in electrical engineering to compute the distribution of power flow in a

power network. We use the terms “node” and “bus” interchangeably in the following.

AC Power Flow Model

The power flow study is to obtain the voltage at each bus point and the current

through each transmission line in a power grid. In real power systems, an AC power

flow model is used to derive the alternative voltage and current information by solving

a set of nonlinear equations [60]. It is only applicable when the power system is in the

steady state with no transient changes in power consumption, power generation, and

frequency.

The voltage at bus i is denoted by Vi = |Vi| ∠θi, where |Vi| is the voltage amplitude

and ∠θi is the phase angle. Similarly, Vk = |Vk| ∠θk is the voltage at bus k. Further,

θik = θi − θk denotes the phase difference between nodes i and k. For a transmission

line (i, k) that connects nodes i and k, the current flowing though it can be calculated

as Iik = (Vi − Vk)(Gik + jBik), where Bik and Gik are the susceptance and conductance

of line (i, k), respectively.
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Thus, the power S ik injected to node i through transmission line (i, k) is

S ik = VkIik = Pik + jQik, (2.12)

where Pik is the active power, and Qik is the reactive power. Here, Pik and Qik can be

further written as follows:

Pik = |Vi|
2 Gik − |Vi| |Vk| (Gik cos θik + Bik sin θik), (2.13)

Qik = |Vi|
2 Bik + |Vi| |Vk| (Gik sin θik − Bik cos θik). (2.14)

For bus i, the externally injected power is denoted by S i = Pi − jQi, where Pi and

Qi are the real and reactive power. As the sum of the externally injected power and

the power injected to node i through the transmission lines is 0, for each node i in the

network, we have the following two equations:

Pi = −

N
∑

k=1

Pik =

N
∑

i=1

|Vi| |Vk| (Gik cos θik + Bik sin θik), (2.15)

Qi =

N
∑

k=1

Qik =

N
∑

k=1

|Vi| |Vk| (Gik sin θik − Bik cos θik), (2.16)

where Gii = −
∑

k,i Gik and Bii = −
∑

k,i Bik. If there is no transmission line between

nodes i and k, Gik and Bik are both 0.

For a power system with N nodes, there are 2N such nonlinear equations, solving

which the voltage information (the magnitude and phase angle) at each bus can be

derived. In the AC power flow problem, three kinds of buses are considered: load

buses, generator buses, and slack buses. It is assumed that for each load bus, the real

power and reactive power are given. For each generator bus, the voltage magnitude

and real power generated are given. Also, the voltage magnitude and voltage phase
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are given for the slack buses. With these known variables, several methods have been

proposed to solve the nonlinear equations, such as the Newton-Raphson method, the

Gauss-Seidel method, the Fast-decoupled-load-flow method, and so on [61].

DC Power Flow Model

Due to nonlinearity, the AC power flow model takes quite a long time to compute

a solution. Though accurate, the high computational cost of the AC power flow model

makes it infeasible to analyze large networks. By linearizing the equations in the AC

power flow model, a DC power flow model is often used instead. In the DC power

flow model, the following assumptions [62, 63] are made:

(1) The voltage magnitude at each bus is constant being 1 p.u.

(2) The resistance is much smaller compared with the reactance for each transmis-

sion line, so that it can be ignored.

(3) The phase difference θik between the two terminal nodes of a transmission line

(i, k) is very small so that sin θik ≈ θik and cos θik ≈ 0.

Equation (2.13) can be written as

Pik ≈ −Bik sin(θi − θk) ≈ −Bik(θi − θk). (2.17)

Thus, for each bus, there is one linear equation

Pi = −
∑

Pik =

N
∑

k=1

Bik(θi − θk). (2.18)

Equation (2.18) is also called the nodal equation of node i. By writing all the nodal

equations in a matrix form, we have

P = Bθ, (2.19)

where P =

[

P1 P2 · · · PN

]T

, θ =

[

θ1 θ2 · · · θN

]T

and B is a N × N matrix

containing the admittance of each transmission line of the power network.
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In order to have a solution, the real power consumed at each load node and the real

power generated by each generator node in the power grid should be given. As it is

assumed that there is no power loss in the DC power flow model, the sum of the power

consumed should be equal to the sum of the power generated. Thus, the externally

injected power of N − 1 nodes in the network and the voltage phase of one node as the

reference phase should be known.

It is worth mentioning that MATPOWER is a powerful Matlab toolbox designed

by Zimmerman et al. [64] to compute power flow using the AC and DC power flow

models.

The AC and DC power flow models are feasible for the long-term planning of

power systems as they are suitable for analyzing power systems in the steady state.

Besides, Dobson et al. [65] adopted the DC power flow model in the cascading fail-

ure simulation in power systems, known as the ORNL-Pserc-Alaska (OPA) model. In

the OPA model, when a failure occurs in the power grid and before the next failure,

the externally injected powers of all the nodes in the grid will be reassigned to new

values to balance the power in the network. The power reassignment plan is given by

minimizing
∑

i∈G |∆Pi|, where ∆Pi is the difference between the reassigned externally

injected power and the former externally injected power of node i. After the power

reassignment, the DC power flow model is used to derive power flows of all the re-

maining elements. Then, based on the newly updated power flow information, new

failures are determined. The OPA model is more practical for power system analysis,

but it still has some limitations. First, the optimal power dispatch method is usually

for long-term operation planning of power systems. In the OPA model, it requires

the power system to frequently change its power dispatch schedule. But during a fast

cascading failure process, the power system does not have the capability to achieve

such a delicate power balance plan so quickly in the network before the next failure.

In practice, the transient power rebalance after a failure should rely more on the auto-

matic control of power generation, as indicated in refs. [66, 67]. Second, even if the
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power system has the frequent and fast power redispatch ability in a cascading failure

process, it is more reasonable to adopt the plan for prohibiting failure cascade rather

than the method for minimizing
∑

i∈G |∆Pi| [68].

2.4.5 Synchronization Model

The DC and AC power flow models are suitable for analyzing the power systems that

operate in the steady state, where there are no transient load or frequency changes. For

practical operation of power networks, circuit variables associated with the nodes are

not constant values. When the power system is in the steady state, we assume that the

voltage phases of all the nodes are synchronized. When there is an abrupt change in

the power network, for example, in the event of failure of one element, the network can

experience non-synchronous oscillations before it enters the next steady state or it can

even become unstable. Instead of using constant values to describe the nodal variables,

Dörfler and Bullo [69] used a first order formula to describe the active power drawn

by a load node and a second order formula to describe the active power generated by a

generator node.

In the synchronization model, it is assumed that the power network is lossless.

Thus, based on equation (2.17) the power injected to node i through line (i, k) is Pik =

−aik sin(θi − θk), where aik = |Vi| |Vk| Bik.

For load node i, the active power Pi it draws consists of a constant term Pl,i and a

frequency-dependent term Diθ̇. Thus, Pi = −(Diθ̇i + Pl,i), where θi is the phase angle,

θ̇i is the frequency, and Di > 0 is the damping coefficient. Thus, the dynamics of node

i can be described by the following ordinary differential equation:

Diθ̇i + Pl,i = −

N
∑

k=1

aik sin(θi − θk). (2.20)

Based on the swing equation, −Miθ̈i − Diθ̇i + Pm,i is used to represent the active

power injected to the network by generator i, where Pm,i > 0 and Mi > 0 are the
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mechanical power input and inertia coefficient of generator i, respectively. Thus, the

power balance equation at node i can be written as a second order differential equation:

Miθ̈i + Diθ̇i = Pm,i −

N
∑

j=1

aik sin(θi − θk). (2.21)

Using the above set of differential equations, the synchronization problem in power

grids has been widely studied [69–75].

2.5 Summary

In this chapter, we provide a literature review on some basic concepts of complex

networks and power systems. In most previously reported work on applying com-

plex network theory to power system analysis, network parameters are directly used

to study power networks with either oversimplified or inconsistent assumptions of the

physical properties of electrical networks. In order to take advantage of the theoretical

achievements of this emerging discipline of complex networks, it is critical to employ

models that can describe the behavior of power systems realistically and accurately.

Thus, in the following three chapters, we propose power network models considering

electrical variables and physical laws, in addition to the network topology. With these

models, we further explore the relationship between the topological characteristics and

functional performances of a power system.
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Chapter 3

Assessing the Robustness of Power

Systems

In the previous chapter, we reviewed some basic concepts of complex networks and

their current applications to power systems. In this chapter, we study the robustness

assessment of power systems from a network perspective. Based on Kirchhoff’s laws

and the properties of network elements, and combining with a complex network struc-

ture, we propose a model that generates power flow information given the electricity

consumption and generation information. It has been widely known that large scale

blackouts are the result of a series of cascading failures triggered by the malfunc-

tioning of specific critical components. Power systems could be more robust if there

were fewer such critical components or the network configuration was suitably de-

signed. The percentage of unserved nodes (PUN) caused by a failed component and

the percentage of non-critical links (PNL) that will not cause severe damage are used

to provide quantitative indication of a power system’s robustness. We also propose a

new metric based on node-generator distance (DG) for measuring the accessibility of

generators in a power network which is shown to affect robustness significantly. The

influence of network structure and location of generators are explored through simula-

tions with the model.

33
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3.1 Introduction

Many researchers have tried to apply complex network theory to power systems, aim-

ing at gaining new insights into the power grid operation that would help enhance the

functionality of power systems.

In early studies [13,15,16,34,36,39], real data from power grid in different regions

were analyzed, with the objective of extracting structural characteristics of this man-

made infrastructure. Cotilla-Sanchez et al. [42] compared the structural and electrical

properties using the concept of “resistance distance” which is an important parameter

for measuring accessibility of nodes.

In addition, the functional properties of power grids, e.g., robustness, synchroniza-

tion and efficiency [74], were explored in the later study, among which robustness

has always drawn much attention. Static models were first used to study the grid’s

resilience to the failure of some specific nodes or lines [16, 38, 52].

Since many severe blackouts were caused by a series of complex dynamic pro-

cesses which were in turn triggered by some specific component’s failure, many re-

searchers began to use dynamic models to study cascading failures. In previous stud-

ies [58, 76, 77], each component in the system carries its load as well as its rated ca-

pacity. When some of the components break down, the power flow will redistribute in

the power system, and the components whose loads exceed their capacities will fail in

succession. Such cascading failure continues until all the remaining components can

work properly.

In dynamic models, deriving the load distribution in the network is the key issue.

Topological parameters were used to represent the loads of the elements in power sys-

tems in the previous work [13, 18, 57].

Power flow distribution in a power system is governed by electrical laws and com-

ponents’ properties. Analysis is either inadequate or inaccurate if it is based only on

network topology. In order to exploit complex network methods for producing practi-
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cally relevant results, better methods are needed [19]. The DC power model [60] has

been used to calculate the power flow in a power grid [19,77]. However, the DC power

flow model falls short of providing critical information about voltage values [78], let

alone giving a complete solution for voltages and currents in the network upon re-

balancing of power generated and consumed after a fault (component’s failure) occurs.

In this chapter, we first introduce a model that uses the concepts of complex net-

works and electrical laws to obtain the power flow information in the system in Sec-

tion 3.2. Then, the cascading failure process is described in Section 3.3. In order to

quantitatively describe a system’s robustness, two robustness parameters are proposed

in Section 3.4, i.e., the percentage of unserved nodes (PUN) caused by a component’s

failure and the percentage of non-critical links (PNL) that will not cause severe dam-

age. Section 3.5 shows robustness assessment results of some real power systems with

the method proposed. Many factors can influence a power system’s robustness, and

Section 3.6 specifically explores the influence of network structure, the locations of

generators. Simulation results show that, for a given set of numbers of generators, con-

sumers, and transmission lines, connections having short average shortest path length

can significantly reduce a power system’s robustness. To explore the effects of gen-

erators’ distribution in the grid, we propose, in Section 3.6, a new metric based on

node-generator resistance distance [79] (DG) for measuring the degree of accessibility

to generators of all consumers in a power network which is shown to affect robustness

significantly.

3.2 Basic Model

Our model for the power system is based on the admittance model proposed by Grainger

and Stevenson [60]. For a power system with n buses, the admittance model is written

as
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Figure 3.1: Transformer h connecting grids of varying voltages.
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, (3.1)

which is composed of Kirchhoff’s law equations for all nodes. Here, Vn and In are

the voltage and externally injected current at node n, respectively, Yi j is the admittance

of the transmission line connecting nodes i and j, and Yii = −
∑

j,i Yi j. If there is no

transmission line between nodes i and j, Yi j = 0. The values of Vn and In are in time

domain and can change with time, satisfying the constraints described by Equation 3.1

at any point of time. A time series of values of Vn and In describe dynamic behaviors

of a power system. Equation 3.1 can be used to analyze the operations of a power

system both in AC and DC. If the power system operates in AC and contains nonlinear

components, harmonics will be included in Equation 3.1.

Compared to models based on topological loads, where the loads carried by the

components in the grid are represented with topological parameters, and one most

used parameter is the betweenness of the nodes and edges [18,58], the above Grainger

and Stevenson model provides real power information of the grid. However, since this

model cannot perform load balance analysis and includes only a limited choice of types

of nodes, it cannot provide a realistic analysis of the grid. For example, the presence of

transformers cannot be adequately accounted for. In this chapter we introduce a more
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comprehensive model. Four kinds of nodes are considered in our model, namely, the

generation node, the consumer node, the distribution node and the transformer node.

(i) Consumer Nodes (Loads)

A consumer node i dissipates power, and at the circuit level, it sinks current Ii. The

nodal equation of node i can be written as

[

Yi1 · · · Yii · · · Yin

]

∗ V = Ii, (3.2)

where V =

[

V1 V2 · · · Vn

]T

.

(ii) Distribution Nodes

A distribution node j is a connecting node that neither produces nor consumes power.

Thus, we set I j = 0, i.e.,

[

Yi1 · · · Yii · · · Yin

]

∗ V = 0. (3.3)

(iii) Generation Nodes

A generation node k is a fixed voltage source. The current emerging from this node

depends on its own voltage, the power consumption of other nodes and the network

topology. The nodal equation is

[

0 · · · yk · · · 0

]

∗ V = Vk, (3.4)

where yk = 1, and Vk is the voltage of node k.
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(iv) Transformer Nodes

Transformer nodes connect the high-voltage grids with mid-voltage or low-voltage

grids, as shown in Fig. 3.1. Here, a is the winding turns ratio; VhL and VhR are the

voltages at node h’s input side and output side. In this study, we perform our analysis

in per unit (p.u.), and the base values at the two sides of h are set according to V2base =

Vbase/a and I2base = aIbase. Thus, the p.u. voltage values of node h can be represented

as VhL = VhR = Vh.

The nodal equation of node h is

[

Yh1 · · · Yhh · · · Yhn

]

∗ V = 0. (3.5)

Combining equations (3.2)–(3.5), we get the following power system equation:

A ∗ V = B, (3.6)

where

A =





























































































. . . · · ·

Yi1 · · · Yii Yi j Yik Yih · · · Yin

Y j1 · · · Y ji Y j j Y jk Y jh · · · Y jn

0 · · · 0 0 yk 0 · · · 0

Yh1 · · · Yhi Yh j Yhk Yhh · · · Yhn

· · ·
. . .





























































































,

B =

[

· · · Ii 0 Vk 0 · · ·

]T

,

and subscript i denotes a consumer node (load); j denotes a distribution node; k denotes

a generation node; h denotes a transformer node. Given the power consumption, the

generation information and the topology, the voltage of each node can be found using
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(3.6). Then, the currents flowing in the transmission lines can be calculated as

Ii j = (Vi − V j) ∗ Yi j. (3.7)

Remarks: Equation (3.6) is our basic model, which is derived from consideration

of circuit laws and hence realistically describes the behavior of the power network.

Furthermore, with the help of computation softwares, this model offers a convenient

means for studying the power grid from a complex network perspective, producing

results that are not obtainable from conventional circuit analysis. It should be noted

that, in a connected system, the power provided by the generators should always be

equal to the power consumed. When some changes occurs in a power system, the loads

should be balanced manually or automatically. The DC model [80, 81] compute the

power flow information when the externally injected power of each node is given. Once

some nodes fail and disconnect with the network in a cascading failure, their externally

injected power becomes 0, which causes the loads of the remaining system unbalanced.

Thus, before using DC model to derive the updated power flow information, loads of

the remaining nodes should be balanced. The DC model can not balance the loads

automatically, and an algorithm or control method for balancing loads should be added

if DC model is used for analyzing cascading failure process. The loads balancing

algorithm can have influence on cascading failure process. In our model, the generators

are modelled as voltage sources. The power emerging from this kind of nodes depends

on their own voltages, the power consumption of other nodes and the network topology.

The loads keep balanced automatically with Equation (3.6).

3.3 Cascading Failure Mechanism

When a link or node in the network breaks down, the structure of the power system

will change, causing power flow to redistribute in the system according to (3.6). The
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Figure 3.2: Flow chart of cascading failure.

nodes or links whose current loads exceed their capacities will fail successively. Thus,

cascading failure continues until all the remaining components of the network can

sustain their normal operation. Referring to Fig. 3.2, the cascading failure process can

be described as follows.

1. Initialization Settings: At the start of the simulation, the voltages at the genera-

tion stations, the currents sunk at the consumer nodes, the winding turns ratios

of the transformers and the admittances of the transmission lines need to be set.

In order to reduce the effects of other factors on robustness and for simplicity,

we set the voltages of generators at 1 p.u., nodes except generators each sinking
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1 p.u. of current, and the admittance of each transmission line at 11 p.u. Then,

with these initial values, we use (3.6) to obtain the initial power flow information

in the system, i.e., the voltage at each nodes, the currents flowing through each

link, and the load of each component. The node or link whose load exceeds its

capacity will be removed. A transmission line’s current loading is defined as

the current through it, and its capacity is 1 + α times of its initial value Ii j(0).

A node’s power loading is defined as Vi(0) ∗ Ioi(0), where Ioi(0) is the sum of

currents flowing out of node i, and its capacity is 1 + β times of its initial value

Vi(0) ∗ I0i(0). Here, α and β denote the safety margins of the lines and nodes

in the power grid, respectively. In reality, due to economic considerations, the

safety margins limited and will not be very high. In this simulation the safety

margins are set as α = 0.2 and β = 0.5.

2. Planting of Initial Failure: With a set of initial settings, one component is ran-

domly chosen as the first failed component, and it will be removed from the

network.

3. Cascading Iteration: The removal of a component changes the structure and the

operation of the power system. When an initial failure is planted, a series of

cascading iterations begins. First, connected subgraphs will be identified. For a

subgraph containing no generators, all the nodes in it are unserved nodes. For

a subgraph containing at least one generator, (3.6) is used to compute the actual

power flow distribution. The node or link that exceeds its capacity will be re-

moved. This procedure repeats until all existing nodes and links can sustain their

respective loadings. Then, we get the final balanced condition of the system.
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Figure 3.3: Simulation of cascading failure triggered by breakdown of transmission

line (77, 82) of IEEE 118 Bus. Squares are generators. Red nodes are unserved nodes.

3.4 Robustness Parameters

Robustness refers to the ability of a system to tolerate faults. For a power system,

robustness can be defined in terms of a measure that describes the ability of the system

in providing normal service to a critical percentage of clients under the condition that

some components of the system fail. It is important to define appropriate metrics that

can quantitatively indicate a power system’s robustness. In our study, a power system

is represented as an undirected graph W with n nodes and m links. Formally, a graph

W is {N,M}, where N is the set of all nodes and M is the set of all links. Also, G

represents the set of generators in W, and G ⊆ N.

In the field of power system analysis, the extent of unserved area is usually used to

measure the size of a blackout [82]. Here, we propose to use the fraction of unserved



3.4. ROBUSTNESS PARAMETERS 43

area caused by failure of a component to indicate the importance of that component.

Specifically we define PUN(i) as the percentage of unserved nodes caused by failure

of component i, i.e.,

PUN(i) =
nunserved(i)

n
, (3.8)

where nunserved(i) is the number of unserved nodes due to component i’s malfunctioning.

Unserved nodes are the nodes that are deprived of power in a blackout. As mentioned

previously in Section 3.3, unserved nodes are either nodes whose power loadings ex-

ceed their capacities or nodes that exist in a subgraph containing no generators. A

component that has a large PUN, upon failure, can seriously damage the network.

Conversely, a component with a small PUN will not have a significant influence when

it fails. Thus, a power system is more resilient to faults that occur in components hav-

ing small values of PUN, and we call this kind of components non-critical components.

If a power system is resilient to faults that occur in most of the components, i.e., most

of the components are non-critical, then we can say that the system is robust.

To measure the robustness of the whole system, we propose to use the percentage

of non-critical links (PNL) whose PUNs are smaller than a threshold to indicate the

ability of a network in tolerating faults. The PUN threshold is a specific percentage of

nodes in the power grid. We define PNL(threshold) as the percentage of non-critical

links for a given threshold, i.e.,

PNL(threshold) =
1

m

∑

i∈M

δ(i), (3.9)

where

δ(i) =























1,

0,

PUN(i) < threshold,

otherwise.

A large PNL means that the power system has a large portion of links whose fail-

ures will not lead to serious damages (i.e., the percentage of unserved nodes remains

larger than the threshold) to the grid, in other words the system can tolerate faults oc-
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Table 3.1: Average shortest path length (L), and percentage of generators (PG) of

networks

L PG

IEEE 118 Bus 6.33 8%

Northern European Grid 8.99 50%

curred a large percentage of components of the system. The power system with a large

PNL is robust.

3.5 Preliminary Study of Practical Systems

In this section, we present simulation results of robustness assessment of some real

power systems. The IEEE 118 Bus is a power flow test case offered in ref. [83] and

the Northern European Grid (NEG) data is obtained from ref. [70]. It should be noted

that, in our study, we set the voltages of generators at 1 p.u., nodes except generators

each sinking 1 p.u. of current; and the admittance of each transmission line to be 11

p.u. Also, the safety margins of nodes and links are set as α = 0.2 and β = 0.5.

The simulation software used here is Matlab, with the toolbox library [84] developed

by Lev Muchnik which provides the basic functions for the computation of complex

network parameters.

Figure 3.3 shows a cascading failure result triggered by malfunctioning of line

(77, 82). The rectangular nodes are generators, and the circle nodes are current sinks.

The unserved nodes caused by the malfunctioning of this line are colored red. From

Fig. 3.3, the PUN of this link is 7.6%, indicating that for the IEEE 118 Bus, the failure

of line (77, 82) can deprive 7.6% of the network from power.

Figure 3.4 shows the PUNs of all links in the IEEE 118 Bus and the Northern

European Grid. It can be observed that the roles of different links in the same power

system are prominently different, as they have different PUNs. From Fig. 3.4, the
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Figure 3.4: Simulation results of cascading failure and robustness assessment. (a) PUN

of each link in IEEE 118 Bus; (b) PUN of each link in Northern European Grid.
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Figure 3.5: Robustness assessment of IEEE 118 Bus and Northern European Grid.
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percentage of non-critical links of the Northern European Grid is larger than that of

the IEEE 118 Bus. In order to distinguish the robustness of the two systems, we plot

the PNLs of these two networks for different PUN thresholds. As shown in Fig. 3.5,

the PNLs of the Northern European Grid are always larger than those of the IEEE 118

Bus, for the threshold ranging from 0 to 0.33. This means that the Northern European

Grid is more robust than the IEEE 118 Bus.

The above result transpires a series of important questions. Why does the Northern

European Grid have better robustness than the IEEE 118 Bus? What are the factors that

affect a power system’s robustness and in what way do these factors influence a power

system’s robustness? Is there a consolidated metric that can conveniently measure the

robustness of a system? The answers to these questions will offer useful clues and

design guidelines for power engineers to construct more reliable power transmission

systems.

Table 3.1 lists the average shortest path length (L), and the percentage of generators

(PG) of the two networks. The metric L describes the structural characteristics of a net-

work, whereas PG gives information about power availability. The Northern European

Grid’s L is larger than the IEEE 118 Bus’, indicating that the nodes of the IEEE 118

Bus are more closely connected. The network structure can play an important role in

affecting the robustness of a power system. At the same time, the Northern European

Grid has a larger percentage of generators than the IEEE 118 Bus. The percentage of

generators is also an important factor. Many other factors can influence the robustness

of a power system as well, e.g., the locations of generators, the safety margins, and so

on. It should be noted that the robustness of the two systems as inferred from Fig. 3.5 is

the result of combined influence of these factors. In the next section, we will compare

the effects of various parameters systematically, aiming to develop an effective metric

that can be used to assess robustness.
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(a)

(b)

Figure 3.7: Topologies of power networks. (a) IEEE 118 Bus A; and (b) IEEE 118 Bus

B. Squares represent generators.

3.6 Network Properties and Robustness Assessment

In this chapter, we focus on network properties that determine the robustness of a net-

work. Specifically, we consider the network structure and the availability of generators

in a network. Our purpose is to derive effective guidelines that can be used by electri-

cal engineers to determine the network structure and generator distribution in order to

optimize robustness. Note that we do not consider component parameters, e.g., ratings

and safety margins, which can be considered as post-design parameters and be dealt

with separately after the desired network is constructed.
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Figure 3.8: Robustness assessment of IEEE 118 Bus. Buses A and B only differ in the

locations of generators, with Bus A having more decentralized distribution of genera-

tors.

3.6.1 Effect of Network Structure

Phadke et al. [85] pointed out that the graph of a power system is relevant to its effi-

ciency and robustness. Here, we investigate the influence of a grid’s topology on its

robustness. To study the effect of network structure, we generate networks of specific

structures for in-depth study. Small-world networks are one typical kind of networks

whose L is very small. Watts and Strogatz [5] showed that small-world connectivity

could have significant effects on the dynamics of networked systems. To verify the

effect of the connection with short L, we first study the robustness of small-world net-

works. For instance, we construct regular and small-world networks of similar scale

and identical percentage of generator nodes. Specifically, we generate a regular net-

work of 118 nodes with an average degree of 4. The small-world network is generated

by rewiring the links of the regular network with a probability q = 0.3. The percentage

of generators is 8%. In order to scale the effects of other factors such as locations of the

generators, we construct 100 realizations of the small-world network to get the average

results. Figure 3.6 shows that the PNLs of the regular network are much higher than
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Figure 3.9: Effects of small-world connectivity on robustness of power systems.

i

j

Figure 3.10: An example of electrical network.

those of the small-world network for PUN threshold ranging from 0.02 to 0.60.

In order to further explore the effect of the connection with short L, we generate 7

groups of networks with the link-rewiring probability q ranging from 0 to 0.6. Each

group contains 100 realizations, similar to the group with q = 0.3 mentioned above.

The group with q = 0 is essentially the regular network group. Table 3.2 lists the

averaged PNLs with three thresholds, along with L and PG of each group. We see

that as q increases, L decreases. In Fig. 3.9, we plot the relationship between PNL

and L. The lines are results derived from the 7 groups of synthesized networks listed
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Table 3.2: Average shortest path length (L), percentage of generators (PG) of networks

with different levels of small-world connectivity characterized by the link-rewiring

probability q. Their corresponding PNLs for threshold of PUN set at 10%, 30% and

40% are shown.

q L PG PNL(10%) PNL(30%) PNL(40%)

0.0 15.13 8% 0.75 1.00 1.00

0.1 5.56 8% 0.35 0.65 0.83

0.2 4.55 8% 0.22 0.41 0.74

0.3 4.03 8% 0.22 0.27 0.52

0.4 3.84 8% 0.19 0.21 0.41

0.5 3.68 8% 0.19 0.20 0.30

0.6 3.59 8% 0.18 0.19 0.29

in Table 3.2, and the dots are robustness assessment results of IEEE 118 Bus and

Northern European Grid. It is obvious that the value of PNL will be lower if the

system has a smaller value of L. In other words, short L connectivity deteriorates the

robustness of a power system. Hence, we can conclude that with equal percentage of

generator nodes, transmission lines, and same power consumption, the connection with

short L degrades a power system’s robustness significantly when the safety margins are

limited. This is consistent with the robustness assessment results for the IEEE 118 Bus

and the Northern European Grid, i.e., the one with shorter average shortest path length

is less robust.

Remarks: Several prior studies have focused on the influence of small-world con-

nectivity on the robustness of a power system. Mei et al. [63] drew a similar conclu-

sion that small-world networks are prone to cascading failure, while Quattrociocchi

et al. [86] reported that small-world networks were more readily recovered from fail-

ures, indicating that small-world networks are more robust. The main reason for the

discrepancies in these studies is that their assumptions are different. In ref. [86], no

constraints are imposed on the amount of flow that can be transported by any link, i.e.,

the capacities of the components are infinite and the cascading processes are not con-
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Figure 3.11: Effect of locations of generators. (a) IEEE 118 Bus; (b) Northern Euro-

pean Grid; (c) regular network; (d) small-world network. DG measures nodes’ distance

to generators. Higher DG means less decentralised distribution of generators.
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sidered. From a topological viewpoint, small-world networks have better connectivity

than regular networks. Thus, a small-world network is more readily repaired by adding

new links when the network decomposes. In reality, due to economic considerations,

the safety margins cannot be infinite. It should be noted that the conclusion derived in

our model is based on the condition that the capacities of the components of the power

system are limited.

3.6.2 Effect of Accessibility to Generators

Power grids of the same structure can also display distinct robustness performances.

We generate two power systems based on the IEEE 118 Bus, namely, IEEE 118 Bus

A and IEEE 118 Bus B. Figure 3.7 shows the graph layouts of these two systems,

where the red rectangle nodes are generators and the green circle nodes are consumers.

IEEE 118 Buses A and B share the same characteristics including network structure,

percentage of generators, and safety margins, but the generators in the two networks

are located differently. From Fig. 3.8, we see that the IEEE 118 Bus A is more robust

than the IEEE 118 Bus B. Thus, the locations of the generators affect the robustness of

the system.

In terms of generator distribution, the IEEE 118 Bus A is more decentralized than

the IEEE 118 Bus B. Theoretically, for a given number (percentage) of available gen-

erators, a decentralized distribution of generators permits most of the consumers in the

network to reach a power source within shorter distances. To transmit the same amount

of power from generators to consumers, highly decentralized locations of generators

can reduce the total “traffic” volume in the transmission lines as well as the distribution

nodes.

It is desirable to find a variable that quantitatively describes the location informa-

tion of the generators in a network. Here, we review the concept of resistance distance

of a power system proposed by Klein and Randić [79]. Essentially, the resistance
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distance between two nodes refers to the effective resistance between them.

Referring to Fig. 3.10, when calculating the effective resistance between nodes i

and j, we set node i as a voltage source with Vi, node j as a current sink with of I j and

all other nodes as distribution nodes with sink currents of 0. Using (3.6), V j can be

readily derived. The effective resistance between nodes i and j is defined by

Ri j =
Vi − V j

I j

. (3.10)

The minimum effective resistance of consumer node i to any nearest generator

represents its shortest distance to a power source. This is a measure of the distance over

which power is transmitted between the pair of nodes. Thus, the minimum effective

resistance of consumer i represents the accessibility to power sources of this node.

Specifically, we define the resistance distance of node i to its nearest generator, d(i), as

d(i) = min{Ris, s ∈ G}. (3.11)

For a given network structure, if the generators are evenly distributed and the per-

centage of generator nodes is adequately high, all consumers can reach a power source

within a short resistance distance, i.e., all nodes have ready access to a power source.

This will reduce the total power load imposed on the transmission lines, making the

system more robust. Here, we define average effective resistance (distance) to a near-

est generator of all consumer nodes (DG) as a measure of the accessibility to genera-

tors of all consumers, i.e.,

DG =
1

(n − g)

∑

i∈N\G

d(i), (3.12)

where N \ G is the set of nodes excluding the generator nodes, n is the total number

of nodes, and g is the number of generators in the network. Small DG indicates bet-

ter accessibility to power sources to generators. A network has a smaller DG if its

generators are more decentralized or has a sufficiently large number (percentage) of
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Table 3.3: DG and PG of IEEE 118 Bus A and B. Percentage of generators is fixed at

8% for comparison.

IEEE 118 Bus A IEEE 118 Bus B

DG (p.u.) 0.9977 1.5334

generators. Thus, in terms of basic network design, DG offers an effective measure of

accessibility to power, which is the combined effect of the distribution of generators

and the percentage of generators in a network. A large percentage of generator nodes

with decentralized locations will make DG small. It is obvious that a power system

could be very robust if there exist a large percentage of generator nodes. We therefore

focus on the influence of the locations of generators on a system’s robustness. Table 3.3

gives the DG values of IEEE 118 Buses A and B, with the percentage of generators

fixed at 8%. We see that the DG of IEEE 118 Bus A is smaller than that of Bus B,

which indicates that the generators in IEEE 118 Bus A are more decentralized than in

IEEE 118 Bus B.

We now study the effect of varying DG in the IEEE 118 Bus, Northern European

Grid, regular and small-world networks. For the IEEE 118 Bus system, a series of

tests are performed, with generators’ locations randomly chosen while keeping the

same structure and fixing the percentage of generators at 8%. Then, we sort the results

into five groups according to the values of DG. Ten test results are chosen in each

group, and we average their PNLs and DGs. Figure 3.11 (a) shows the PNLs with

different PUN thresholds for the IEEE 118 Bus. It is obvious that the value of PNL

drops significantly as DG increases. We then apply the same test procedure to assess

the Northern European Grid, regular network and small-world network. The regular

network is the same network generated in Section 3.6.1, and the small-world network

is generated by rewiring the links of the regular network with a probability of 0.3.

Figures 3.11(b), (c) and (d) show consistent results. Thus, the metric DG proposed here

is an effective design parameter for guiding the power engineers to choose appropriate
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locations for generators in a given network structure to achieve a more robust power

system.

It should be emphasized that our conclusion here has been drawn on the condi-

tion that the network structure is fixed. If the network structure is varied, small-world

connectivity may also make DG very small. In that case, a small DG does not neces-

sarily describe a decentralized distribution of the generators. In Section 3.6.1 we has

observed that small-world connectivity can degrade a power system’s robustness even

though the DG value is small. The reason for this is that small resistance distances

among nodes make the overall sensitivity of all components to a failure relatively high.

3.7 Summary

We assess the robustness of power systems using a model that is derived from con-

sideration of electrical laws and network connectivity. Taking into consideration the

properties of the components and their mutual effects, this model offers realistic as-

sessment of the power grid compared to other previously proposed complex-network

based models. We define effective robustness metrics to quantitatively describe a sys-

tem’s robustness. Our key conclusion is that the robustness of a power system can be

significantly affected by (i) the average shortest path length; and (ii) the consumers’

accessibility to generators.



Chapter 4

Modeling the Dynamic Propagation of

Cascading Failure

In the previous chapter, we used a deterministic model to quantify the robustness of

power systems in respect of cascading failures. In this chapter, we use a model to study

the dynamic failure propagation process, consisting of a sequence of failure events oc-

curring at specific time points. In this model, a circuit-based power flow model is used

to study the cascading failure propagation process, and a stochastic model is combined

to describe the uncertain failure time instants. The sequence of failures is determined

by voltage and current stresses of individual elements which are governed by deter-

ministic circuit equations, while the time durations between failures are described by

stochastic processes. Simulation results show that our model generates dynamic pro-

files of cascading failures that contain all salient features displayed in historical black-

out data. We further plot cumulative distribution of the blackout size to assess the

overall system’s robustness. We show that heavier loads increase the likelihood of

large blackouts and that small-world network structure would make cascading failure

propagate more widely and rapidly compared with a regular network structure.

57
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4.1 Introduction

The power distribution network is a complex and highly interconnected network, con-

sisting of power apparatus, protection equipment and control systems [87]. Protection

equipment is responsible for maintaining reliability through applying switching actions

of relays and circuit breakers. Relays are essential auxiliary components in transmis-

sion lines, generators, transformers, and other kinds of power apparatus. When a relay

detects an abnormal operating condition such as over-current and voltage dip, it will

switch off the affected component to remove the fault from the network, thereby pre-

venting further damages and hence ensuring the normal operation of the rest of the

system. The on/off states of relays determine the structure of the power network, thus

influencing the overall operational state of a power system. Normally the power grid is

designed to maintain its power distribution function even when a few elements are re-

moved [88]. However, when the power grid is under stressed conditions, for instance,

due to heavy loads and outages of equipment, the removal of some elements may lead

to huge disturbances and subsequent tripping of other elements, causing a possible

severe blackout [87].

The dynamic cascading failure process in a power grid can be viewed as a sequence

of tripping events, leading eventually to power outage affecting a very large area. It has

been observed that the 1996 Western North America blackouts [89], the 2003 North-

eastern America and Canadian blackouts [90] and other historical blackout data all

display a typical profile characterized by a relatively slow initial phase followed by

a sharp escalation of cascading failures. Such a universal form of dynamic profiles

strongly suggests that a common model can be used to describe the dynamic cascading

failure process.

The study of the dynamic propagation of cascading failures provides useful hints

for system vulnerability detection, robustness assessment and network control. Re-

cently, Chen et al. [91] used a generalized Poisson model, negative binomial model
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and exponentially accelerated model to generate the probabilities of the propagation

of transmission outages which fit the observed historical data. Dobson et al. [92, 93]

used branching processes to analyze the propagation of cascading failures in power

grids. Much of the previous work primarily applied data fitting methods to investigate

the statistical characteristics of power systems’ blackouts, but fell short of consider-

ing the essential electrical circuit operations or the impact of the network structure.

Moreover, cascading failures in power grids have also been studied in terms of the

sequential trippings of electrical elements in real networks. Among the many switch-

ing mechanisms of relays, overloading is the most prominent one and has been widely

studied [59,65,68,77,94,95]. In a cascading failure process, the failure of one element

leads to power flow redistribution in the grid, which can cause some other elements

to be overloaded. These overloaded electrical elements can then be tripped by their

relays, causing another round of failures until the remaining elements are all within

their respective operating limits.

Various of tripping sequence settings of the overloaded elements have been ex-

plored [18, 77, 94]. Typically, in each round of the cascading simulations, the power

flow distribution in the network is computed, and overloaded electrical elements are re-

moved at the same time. The actual time delays and dynamical profiles of the process

are not considered in this kind of models, making them unable to simulate the dynamic

propagation of a cascading failure. In order to show the dynamic profile, some previous

studies made the simple deterministic assumption that the duration for an overloaded

element to be tripped is equal to ∆t which is given by
∫ t+∆t

t
( f j(τ) − f̄ j)dτ = ∆o j, where

f j is the power flow of overloaded element j, f̄ j is the flow limit and ∆o j is a specific

threshold of that element [66, 96].

Considering the complexities and uncertainties in real power grids [97], a few re-

searchers turned to use probabilistic models to characterize the tripping events of the

elements in power grids [68, 95, 98]. For instance, Wang et al. [68] used a Markov

model to study cascading failures, where the trippings of the elements are regarded
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as state transitions, which are memoryless and probabilistic. In Wang et al.’s work,

the overloaded elements share one same tripping rate, which is much larger than the

natural failure rate of the electrical equipment. Alternatively, an overall state transition

probability can be determined by considering the maximum capacity of the failed ele-

ments and a random tripping process [95]. It is also shown [99] that a component will

experience more failures under heavy load conditions. The varying tripping rates for

elements under different extents of overloading stress have not been thoroughly con-

sidered in the aforementioned stochastic models. Study of essential collective behavior

of a power network must be pursued according to the governing physical laws which in

the case of power systems should involve circuit-based power flow equations [94] (see

Section 3.2). By suitably combining the power flow study with probabilistic methods

for describing inevitable uncertainties, the dynamic profile of cascading failure pro-

cesses can be realistically revealed, hence offering important predictive information

about the occurrence of large-scale blackouts.

In this chapter, we study the dynamics of cascading failure propagations in power

systems. First, we apply circuit-based power flow equations to determine the sequence

of failures in accordance to the extent of overloadings of individual components. In

order to describe the complete dynamic profile, we need to determine the time du-

rations between failures in the propagation sequence. Due to the complexities and

uncertainties of the involving physical failure mechanisms of the components (e.g.,

manufacturing quality, environmental factors, etc.), stochastic processes are used to

model the dynamic changes. Then, to study the collective behavior of the entire sys-

tem in terms of failure propagation in the whole network, an extended chemical master

equation (CME) model is used [100,101]. Based on the CME model, we show that the

failure propagation rate of the network is dependent on the sum of individual extents

of overloading of all elements in the network.

Simulation results show that the cumulative number of failed elements triggered by

some initial failures shows a universal growing pattern which is consistent with histor-
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ical blackout data. Thus, our model can offer insights into the mechanism of cascading

propagation in a power system as well as provide predictive information for the failure

spreading in the network. Our study also includes the effects of loading conditions and

network structure on the extent and rapidity of blackouts in power systems. The UIUC

150 bus system with different consumer load distributions and several types of network

structure are studied for comparison purposes. It is shown that heavy load conditions

increase the risk of large blackouts in the same power system, and that small-world

network structure is more prone to rapid propagation of cascading failures than the

regular structure.

4.2 Failure Mechanisms of Components

A power system is composed by various electrical stations connected by transmission

lines, and each station or transmission line is protected by protective equipment. In

this chapter, we model electrical stations as nodes and transmission lines as links, with

nodes being connected by links forming a power network [94]. Deterministic power

flow equations are used to generate the sequence of failures and their locations. A node

or link is a basic element of a power network. We refer to an element’s tripping event

as an element state transition (EST). The cascading failure propagation in a power

network can be viewed as a sequence of ESTs in the network. In this section, we

investigate the state transition behavior of a basic element, and in the next section, we

apply probabilistic theory to study the collective transition behavior of the network.

4.2.1 Time to Failure of a Basic Element

Let si(t) be the state of element i of a given network, and si(t) ∈ [0, 1], with si(t) = 0

corresponding to a connected element i at time t, and si(t) = 1 corresponding to a

removed (tripped or open-circuited) element i at time t, as shown in Fig. 4.1. Here,
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"0" connected "1" removed
(normal) (tripped)

λi(t)

µi(t)

Figure 4.1: Dynamic description of failure in terms of state transitions. State “0” is

the normal connected state; state “1” is the removed or tripped state. Arrows repre-

sent transitions between different states while self-loop arrows are not displayed in the

figure.

λi(t) is the rate of transition of node i going from state “0” to “1”, and µi(t) is the

transition rate from “1” to “0”. Then, the future state of an element is solely determined

by its present state and the transition rule. Suppose the present time is t, and dt is an

infinitesimal time interval. As si(t) ∈ {0, 1}, P{si(t + dt) = 1} and P{si(t + dt) = 0} can

be written separately as

P[si(t + dt) = 1] = P[si(t + dt) = 1 |si(t) = 0]P[si(t) = 0]

+ P[si(t + dt) = 1 |si(t) = 1]P[si(t) = 1]

P[si(t + dt) = 0] = P[si(t + dt) = 0 |si(t1) = 0]P[si(t) = 0]

+ P[si(t + dt) = 0 |si(t) = 1]P[si(t) = 1]

(4.1)

where P[si(t) = 1] and P[si(t) = 0] denote the probability that node i is in state “1”

and “0” at time t, respectively; P[si(t+dt) = 1 |si(t) = 0)] is the conditional probability

that given si(t) = 0 element i transits to state “1” in the time interval (t, t + dt); and

P[si(t + dt) = 0 |si(t) = 1)] is defined in a likewise manner. Using the state transition

rates shown in Fig. 4.1, P[si(t + dt) = 1 |si(t) = 0)] can be written as

P[si(t + dt) = 1 |si(t) = 0] = λi(t)dt. (4.2)
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Also, P[si(t + dt) = 0 |si(t) = 0)] is the probability that given si(t) = 0, element i

remains in state “0” in time interval (t, t + dt) (i.e., no state transition occurs). Thus,

we have

P[si(t + dt) = 0 |si(t) = 0] = 1 − λi(t)dt. (4.3)

Likewise, we have

P[si(t + dt) = 0 |si(t) = 1] = µi(t)dt, (4.4)

P[si(t + dt) = 1 |si(t) = 1] = 1 − µi(t)dt. (4.5)

4.2.2 State Transition Rates of Basic Elements

In this section, we discuss the physical meanings of element state transition rates λi(t)

and µi(t) in a fast cascading failure process. In statistical terms, an event rate refers to

the number of events per unit time. Specifically, λi(t) is the rate of element i becoming

disconnected in the network which is caused by either a natural equipment malfunction

or tripping by its protective equipment, i.e.,

λi(t) = λ
0
i (t) + λ1

i (i) (4.6)

where λ0
i
(t) is the equipment malfunctioning rate in the absence of loading stress and

its value is constant and derivable from past statistics [96]; and λ1
i (t) is the removal

or tripping rate by protective relays and is determined by the (over)-loading condition

and the capacity of element i.

Among the many tripping mechanisms of relays [102, 103], power overloading is

a dominant one. In this study, we focus on switching actions caused by overloading.

When the load of element i is within its capacity, it is assumed to work in the normal

condition and will not be removed or tripped by the protective relay, namely λ1
i (t) = 0.

However, when the element exceeds its capacity, there will be a short delay before
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it is finally removed. The tripping rate is relevant to the extent of overloading. In

other words, if there is a large overloading of element i, it will be tripped more rapidly

compared to the case of a light overloading [99]. Based on this assumption, we can

write λ1
i
(t) as

λ1
i (t) =



























ai

(

Li(t) − Ci

Ci

)

, if Li(t) > Ci

0, if Li(t) ≤ Ci

(4.7)

where Li(t) is the power loading of element i that can be found from the power flow

calculation, Ci is the capacity of that element, and ai is the basic unit rate (trippings

per second). For normal operating condition, λ1
i = 0. In a cascading failure process,

λ1
i
≫ λ0

i
[104]. Without loss of generality, we assume that λi(t) ≈ λ

1
i
(t) in our analysis

of cascading failures in power systems.

For the sake of completeness, we also allow a tripped or removed element to be

repaired, and hence be restored to its normal connected state. Thus, we define µi(t) as

the transition rate of element i going from state “1” to “0” as a result of repair actions

or self-healing ability of the power system. In practice, an element’s state cannot be

switched arbitrarily. Also, the time delay for recovering a tripped element should be

considered and can be included in the actual representation of µ(t). This recovery

process can be used to study the power restoration process after the power blackout. In

this chapter, we focus on analyzing the cascading failure process. Thus, considering

that not all elements could be repaired in a short time and an element cannot keep

changing its status frequently, we take µi(t) as 0 for a fast cascading process.

4.2.3 Power Flow Calculation

In addition to equation (4.7), power flow calculation is still needed for the analysis

of cascading failures. Several algorithms and tools are available for computing power

flows [64, 105]. The actual power system is a high-order complex nonlinear network,

and any abrupt change of network structure can change the power flow distribution,
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and at the same time cause large transients, oscillations, and bifurcations [106]. Using

our definition of state transition of elements, the tripping probability of each element

is an integration of the tripping rate (extent of overloading) with time. In this study,

we assume that the system can always reach a steady state when tripping occurs and

that the transient before the system reaches the next steady state is sufficiently short,

making accumulative effects negligible. As far as the propagation of cascading fail-

ures is concerned, it suffices to consider blackouts caused by overloading, ignoring the

nonlinear characteristics of the circuit elements and possible oscillatory behavior. In

Chapter 3, a circuit-based power flow model that can accurately track the load change

in a power network during a cascading failure has been developed . We adopt this

model in the study here.

4.3 Failure Propagation in the Network

A power network is represented as an undirected graph G consisting of m elements.

The state of G is defined as S = {s1, s2, ..., sm}, which is a vector containing the states

of all m elements. Network G can have 2m possible network states, and any state

transition of an element will lead to a network state transition of G.

The dynamic propagation of cascading failures in G is equivalent to the dynamic

evolution of S (t). Given the current state of the network, the network state transition

can be described by (i) the time of the next state transition; and (ii) identification of the

next element that will transit (be tripped).

4.3.1 Basics

First, we consider the network state transitions in an infinitesimal time interval dt. Sup-

pose S (t) = NS , which is a specific network state among the 2m possible states. Thus,

S (t + dt) is the network state after a duration of dt. Only those elements in state “0”
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may transit, leading to a network state transition. Let Ω0 be the set of elements in state

“0”, and Ω1 be the set of removed (tripped) elements. From elementary probability

theory, we have the following basic results:

1) o(dt) is the sum of the second and higher order terms of dt. Omitting o(dt), the

probability that no element undergoes a state transition after dt can be written as

P[S (t + dt) = NS |S (t) = NS ] =
∏

i∈Ω0

[1 − λi(t)dt)]

= 1 −
∑

i∈Ω0

λi(t)dt +
∑

x1 ,x2∈Ω0

λx1
(t)λx2

(t)(dt)2

−
∑

x1 ,x2,x3∈Ω0

λx1
(t)λx2

(t)λx3
(t)(dt)3 + · · ·

= 1 −
∑

i∈Ω0

λi(t)dt + o(dt) ≈ 1 −
∑

i∈Ω0

λi(t)dt

(4.8)

where x1, x2, · · · are the elements in Ω0.

2) The probability that only one element state transition (say element k) occurs

after dt, i.e., only element k transits, can be written as

P[S (t + dt) = MS |S (t) = NS ] = λk(t)dt
∏

i∈Ω0\{k}

[1 − λi(t)dt]

= λk(t)dt −
∑

x1∈Ω0\{k}

λk(t)λx1
(t)(dt)2

+
∑

x1 ,x2∈Ω0\{k}

λk(t)λx1
(t)λx2

(t)(dt)3 + · · ·

= λk(t)dt + o(dt) ≈ λk(t)dt

(4.9)

where x1, x2, · · · are the elements inΩ0 \{k} and MS denotes the network state that only

one of the “0”-state elements in NS becomes “1”.

3) The probability that two or more element state transitions occur after dt is given

by

P[S (t + dt) = RS |S (t) = NS ] = 0 (4.10)
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Figure 4.2: Time line of network state transitions.

where RS denotes the network state that two or more of the “0”-state elements in NS

become “1”. From equation (4.10), there is at most one element state transition at a

time.

4.3.2 Extended Gillespie Method

In this section, we derive S (t) using an extended Gillespie method [107], which was

used for analyzing coupled chemical reactions [100, 101].

As shown in Fig. 4.2, the state of the power system at t1 is NS , i.e., S (t1) = NS . Let

Q(τ) denote the probability that given S (t1) = NS , no transition occurs in (t1, t1 + τ),

i.e.,

Q(τ) = P[S (t1 + τ) = NS |S (t1) = NS ]. (4.11)

Similarly, Q(τ + dt) can be written as

Q(τ + dt) = P[S (t1 + τ + dt) = NS |S (t1) = NS ]

= P[S (t1 + τ + dt) = NS |S (t1 + τ) = NS ]Q(τ).

(4.12)

Given S (t1) = NS , power flow calculation can be performed, as described in Section

4.2.3, and λi(t1) can be derived based on the settings in Section 4.2.2. If no state

transition occurs during time interval (t1, t1+τ), we have S (t) = S (t1) and λi(t) = λi(t1)

for t ∈ (t1, t1 + τ). From (4.8), we get

P[S (t1 + τ + dt) = NS |S (t1 + τ) = NS ] = 1 −
∑

i∈Ω0

λi(t1)dt. (4.13)
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Thus, by putting (4.13) in (4.12), we get

Q(τ + dt) = Q(τ)(1 − λ∗(t1)dt), (4.14)

where λ∗(t1) =
∑

i∈Ω0
λi(t1). Furthermore, re-arranging (4.14) and taking the limit dt →

0, we get

dQ(τ)

dτ
= lim

dt→0

Q(τ + dt) − Q(τ)

dt
= −λ∗(t1)Q(τ),

⇒ Q′(τ) = −λ∗(t1)Q(τ).

(4.15)

The probability that nothing happens in zero time is one, i.e., Q(0) = P{S (t1) =

NS |S (t1) = NS } = 1. Then, the analytical solution of (4.15) is

Q(τ) = e−λ
∗(t1)τ. (4.16)

Let hi(τ, dt) denote the probability of the event that given S (t1) = NS , the next transition

occurs in the interval (t1 + τ, t1 + τ + dt) in element i. There are two conditions for this

event to occur. The first condition is that there is no state transition during (t1, t1 + τ).

The second condition is that a state transition occurs in element i during (t1+ τ, t1+ τ+

dt). Thus, hi(τ, dt) can be written as

hi(τ, dt) = P[S (t1 + τ + dt) = MS |S (t1 + τ) = NS ]Q(τ). (4.17)

Putting (4.9) and (4.16) in (4.17), we get

hi(τ, dt) = e−λ
∗(t1)τλi(t1)dt. (4.18)

Let H(τ, dt) denote the probability that the next transition occurs in the time interval
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(t1 + τ, t1 + τ + dt), given S (t1) = NS . It is readily shown that

H(τ, dt) =
∑

i∈Ω0

hi(τ, dt) = λ∗(t1)e−λ
∗(t1)τdτ. (4.19)

Further, let τ denote the time interval between two adjacent network state transitions,

and f (τ) denote the state transition probability density function (PDF):

f (τ) = lim
dt→0

H(τ, dt) − H(τ, 0)

dt
= λ∗(t1)e−λ

∗(t1)τ (4.20)

i.e.,

f (τ) = λ∗(t1)e−λ
∗(t1)τ. (4.21)

The accumulative probability density function that the next transition occurs before

time t1 + τ, given S (t1) = NS , can be written as

F(τ) = λ∗(t1)

∫ τ

0

e−λ
∗(t1)tdt = 1 − e−λ

∗(t1)τ. (4.22)

Note that one can also get F(τ) from F(τ) = 1 − Q(τ).

Equations (4.21) and (4.22) show that τ follows an exponential distribution and

that the network transition rate is λ∗(t1). Here, λ∗(t1) is the sum of the element state

transition rates of all the working elements in the network, and is determined by the

sum of the extents of overloading of all the overloaded elements. The time interval τ

is expected to be short when λ∗(t1) is large, i.e., the network state transition (cascading

process) occurs very rapidly. Thus, the physical meaning of λ∗(t1) can be interpreted

as the overloading stress of the entire power system.

In order to include this characteristic in our model, we take the following steps to

determine the time of the next network state transition, given S (t1) = NS :

1. A random number z1 is generated uniformly in (0,1).
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Figure 4.3: Relative probability for elements inΩ0 to be first tripped given S (t1) = NS .

2. Let F(τ) = z1, and τ is derived as

τ =
ln(1 − z1)

−λ∗(t1)
. (4.23)

4.3.3 Order of State Transition

A number of working elements (elements in Ω0) can possibly undergo state transition.

In our analysis presented in Section 4.3.1, we allow only one element to be removed

(tripped) at a time. Pfitzner et al. [108] pointed out that the order in which overloaded

lines are tripped influences the cascade propagation significantly. In this section, we

study the order in which element state transitions take place.

In our stochastic model, any overloaded element inΩ0 may be tripped first. From a

probabilistic viewpoint, the element with a higher hi(τ, dt) will more likely be tripped

first. Thus, we define the relative probability for element i (i ∈ Ω0) to be tripped first

as:

r fi =
hi(τ, dt)

H(τ, dt)
=
λi(t1)

λ∗(t1)
. (4.24)

where λ∗(t1) =
∑

i∈Ω0
λi(t1). Our model can incorporate this tripping order using the

following steps:

1. A random number z2 is generated uniformly in (0,1).

2. Suppose there are l overloaded elements inΩ0. With no loss of generality and for

ease of referral, let these overloaded elements be elements L1, L2, . . . , L j, . . . , Ll.
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Figure 4.3 shows the relative probability of an overloaded element in Ω0 to be

first tripped, given that S (t1) = NS .

3. The jth element in Ω0 is selected to be tripped according to

j−1
∑

k=0

λLk

λ∗
6 z2 <

j
∑

k=0

λLk

λ∗
, (4.25)

where λL0 = 0.

4.4 Cascading Failure Simulations and Parameters

In this section we describe the simulation algorithm and some important characteriz-

ing parameters of our model that are relevant to predicting the occurrence of power

blackouts.

4.4.1 Simulation Algorithm

Figure 4.4 shows the flow chart for simulating the cascading failure process which can

be summarized as follows:

1. Initial Settings: At the start of the simulation, all voltages at the power gen-

eration stations, currents flowing into the consumer nodes, admittances of the

transmission lines, and capacities of elements are set.

2. Initial Failure: An initial failure is planted by removing one element from the

network, which triggers the cascading failure process.

3. Iterative Process: Based on S (t), we remove the tripped elements from the net-

work, and keep all elements whose states is “0”. The remaining network may

be disconnected, forming so-called islands, due to the removal of the tripped el-

ements. For a disconnected sub-network (island) containing no generator node,
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Figure 4.4: Flow chart for simulating the dynamic propagations of cascading failures.

all elements within it would have no access to power and all power flows become

zero. All nodes in this sub-network are unpowered. Note that these elements are

not tripped, and their states are still “0”. Moreover, for a sub-network containing

at least one generator node, equation (3.6) can be used to compute the power

flow distribution in this sub-network. Power flows of all the “0”-state elements

in G can be computed, and the tripping rate of each element λi can be obtained

using (4.7). If all tripping rates are positive, we determine the next network state.

Specifically, we first determine the time of the next network state transition using

(4.23), and determine the element in Ω0 that will be tripped next. The network

state transition is determined using (4.25). Then, we update S (t) = S (t + τ), and
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iterate the process until all the transition rates are found to be zero (i.e., no over-

loaded elements). With no more overloaded elements in the network, no state

transition will occur and S (t) is a stable state. We can then end the simulation

and get the final network.

4.4.2 Parameter Settings and Metrics

The time of the initial failure is set as zero, and the time of the final network state tran-

sition (after which there are no overloaded elements in the network, and the network

state enters a stable point) is tfinal. Using the above algorithm, we can simulate the

dynamic profile of S (t) for power network G, from t = 0 to t = tfinal. For t > tfinal, S (t)

remains unchanged. The dynamic profile of S (t) is thus the dynamic propagation of

cascading failures in the network. In order to better represent and visualize the char-

acteristics of the dynamics of a cascading failure, we use the following metrics, which

are extracted from S (t).

We propose several metrics to investigate the cascading failure in a power system.

First, to characterize the propagation profile of a cascading failure in a power sys-

tem, the cumulative number of tripped elements at time t (NoTE(t)) is used. Here,

we take NoTE(t) as the number of “1”-state elements in S (t). Also, the number of

elements not served is another important metric used to measure the blackout size. As

the power grid’s operation depends on the connection of the elements, the tripping of

some elements in the network can disconnect the grid and island the consumer nodes

from the power sources. These nodes are being deprived of power, and are labelled

as unpowered nodes in our analysis. We use NoUN(t) to denote the number of cumu-

lative unpowered nodes at t. To find NoUN(t), we remove the tripped elements in G,

and identify all sub-networks in the remaining part of G. The consumer nodes that are

isolated from generators are all unpowered nodes.

Furthermore, during a cascading failure process, it is particularly important to track
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the growing rate of the number of failed or tripped elements, i.e., the frequency of re-

moval or tripping of overloaded elements. Specifically, any rapid increase in the fre-

quency of removal of overloaded elements is a precursor to an onset of a large blackout.

Thus, a metric that effectively gives the critical time from which tripping begins to take

place more rapidly is extremely relevant to prevention of power blackouts. This met-

ric, called onset time (tonset) here, can simply be defined as the time after which the

propagation rate of the cascading failure increases rapidly, as depicted in Fig. 4.5. In

other words, tonset is a critical time point before which remedial control and protection

actions should be applied to the power grid. After tonset, the power grid undergoes a

short phase of very rapid tripping of overloaded elements leading to large power black-

out within a very short time. To compute the onset time, we identify the maximum rate

of the growing profile by solving d2NoTE(t)/dt2 = 0, which gives t = tm as the time

point where the growing rate is highest. Assuming that the value of dNoTE(t)/dt at

t = tm is gm and the initial phase has a very slow growing rate, the onset time is simply

given by

tonset = tm −
NoTE(tm)

gm

(4.26)

In practice, we can use any handy algorithm to find tonset, for instance, by locating

the time instant where dNoTE(t)/dt starts to increase rapidly. Section 4.5.2 offers one

simple algorithm.

Finally, to characterize the general severity in the event of a possible blackout,

we use the following statistical metric. Suppose a large number of cascading failure

cases, initialized by failures of different elements in the network, are simulated. The

probability that the blackout size of a randomly picked case is larger than a chosen

threshold BS (Blackout Size) is given by

P[x(t) ≥ BS] =
n[x(t) ≥ BS]

n
(4.27)
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Figure 4.5: Typical propagation profile and onset time tonset. Maximum propagation

rate gm occurs at t = tm.

where x(t) can be NoTE(t) or NoUN(t), n is number of the total blackout cases simu-

lated, and n[x(t) ≥ BS] is the number of cases whose blackout size at t is larger than

BS. Based on (4.27), we can evaluate the cumulative blackout size distribution of a net-

work to reveal the probability (risk) of having a blackout of a specific level of severity

in a given network.

4.5 Application Case Study

In this section, we simulate cascading failures in the UIUC 150 Bus System using the

model proposed above. The UIUC 150 Bus is a power test case offered by Illinois

Center for a Smarter Electric Grid at UIUC [109]. It contains 150 buses and 217 links

that operate in 3 different voltage base values. We merge the parallel lines that connect

the same two buses into one link, resulting in 203 links in our simulation. We assume

that the current sinks of the consumer buses given in the UIUC 150 Bus are the normal

load demands of these consumers. The voltages of generators are all 1.04 p.u. based

on the data in the test case.

From the historical blackout reports [89,90], one can find that the tripped elements
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are mostly generators, transmission lines and transformers. Thus, in our simulation,

we set current limits for the transmission lines, transformers and the generators ac-

cording to Ci = (1 + α) ∗ Ii(normal), where Ii(normal) is the current flowing through a

transformer or a transmission line, or the total current flowing out of a generator under

normal load demand condition; α is the safety margin and is set to 0.2. The current

limits of other elements (consumer buses and distribution buses) are set to values that

are large enough to avoid tripping during a cascading failure.

4.5.1 Dynamics of Cascading Failure Propagation

We first study the failure spreading during a blackout process. Figure 4.6(a) shows the

profile of cumulative tripped elements of the blackout in the Western North American

system in July 1996 [89]. The blackout started from the failure of the 345 kV Jim

Bridger-Kinport line (the time of that initial failure is 0 in the figure). As shown in

the Fig. 4.6(a), NoTE grew very slowly, at the initial phase, until the failing of the

230 kV Brownlee-Boise Bench line at 1600 seconds after the initial failure. Then,

the cascading failure speeded up abruptly, and within 380 seconds, NoTE reached 33

from 6 at the end of the initial phase. Finally, the cascading failure settled at a final

state where 34 major elements were tripped, depriving 10% consumers of the Western

interconnection area from access to electrical power. Figure 4.6(b) shows the profile

of NoTE in another blackout of the same power system that occurred in August 1996.

The cascading failure was triggered by the failure of the 500 kV Big Eddy-Ostrander

line, and then continued with a sequence of tripping of elements. In almost the same

fashion, the cascading failure propagated slowly at the beginning, but 6000 seconds

later, the propagation rate accelerated sharply. The main propagation finished in 120

seconds. The 2003 American-Canada blackout [90] also showed a similar growing

pattern, with NoTE growing very slowly for the initial 4 hours and then accelerating

rapidly to its final state. The rapid increase in NoTE occurred in a few minutes, which
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Table 4.1: Simulation results for the cascading failure triggered by the failure of line

(2, 21)

Loading condition NoTE(tfinal) NoUN(tfinal) tfinal (s)

Normal loading 5 2 967

5% Load increase 25 36 3600

was a small fraction of the whole cascading period (0, tfinal).

In the following, we use the proposed stochastic model to simulate the dynamic

propagation of cascading failures triggered by the failure of one single line. First, we

simulate 100 different propagation profiles of the cascading failure process triggered

by the initial failure of line (2, 21), under a normal load demand condition and the

condition with 5% increase in load demands. Note that when the loading of the power

system is increased by 5% and S (t = 0) = 0, there are no overloaded elements, i.e.,

the 5% increase in load demands will not cause any outage in the power grid. From

the data of historical blackouts, the time duration of the failure propagation is usually

between 1 hour and 4 hours. In this simulation, we use a uniform ai for all the elements

in the UIUC 150 Bus system, and fit ai to make the averaged tfinal of the 100 simulated

results under the condition of 5% increase in load demands to be 3600 s. Thus, ai

is set as 0.035 s−1 in our simulation. Table 4.1 lists the averaged simulated values of

NoTE(tfinal), NoUN(tfinal) and tfinal. From Table 4.1, we see that under a normal load

demand condition, the failure of line (2, 21) will not cause severe disturbance to the

power system. When the network is stressed by heavier loads, the failure of the same

transmission line can lead to a large blackout in the power system.

Table 4.2 lists the sequence of the element tripping events in one simulated cas-

cading failure process under the condition of 5% increase in load demand. We plot

the profiles of NoTE and NoUN in Fig. 4.7(a), which display the same typical grow-

ing pattern as the historical blackout data. Using equation (4.21), the growth rate of

the cascading failure is determined by λ∗(t). Figure 4.7(b) shows the values of λ∗(t)
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Figure 4.6: Propagation profile of the Western North America power blackout in (a)

July 1996; (b) August 1996.
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Figure 4.7: Simulation of the dynamics of a cascading failure event in the UIUC 150

Power System caused by an initial failure of line (2, 21). (a) NoTE and NoUN; (b) λ∗.
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Table 4.2: Sequence of element tripping events

Sequence Number Time Unit/Line

1 0.000s Line (2, 21) is tripped.

2 220.035s Line (2, 14) is tripped.

3 1995.531s Line (108, 101) is tripped.

4 2104.394s Line (96, 102) is tripped.

5 2137.931s Line (8, 23) is tripped.

6 2187.153s Line (142, 101) is tripped.

7 2191.648s Line (3, 19) is tripped.

8 2195.871s Line (10, 25) is tripped.

9 2199.473s Line (144, 116) is tripped.

10 2199.971s Line (15, 17) is tripped.

11 2200.115s Line (9, 39) is tripped.

12 2203.461s Line (144,117) is tripped.

13 2204.694s Generator 1 is tripped.

14 2209.551s Line (88, 147) is tripped.

15 2211.713s Line (16, 26 ) is tripped.

16 2212.815s Generator 118 is tripped.

17 2213.497s Line (89, 26) is tripped.

18 2217.194s Line (114, 119) is tripped.

19 2214.603s Line (68, 85) is tripped.

20 2214.909s Line (137, 95) is tripped.

21 2215.02s Line (148, 95) is tripped.

22 2215.073s Line (65, 73) is tripped.

23 2215.649s Line (22, 29) is tripped.

24 2215.669s Line (6, 28) is tripped.

25 2217.261 Line (17, 21) is tripped.

26 2246.489s Line (69, 87) is tripped.

27 3817.977s Line (69, 70) is tripped.
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Figure 4.8: Simulation of failure propagations in UIUC 150 Bus power system with

initial tripping of line (2, 21) using the proposed model. (a)-(f) Six separate simulation

runs.
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Figure 4.9: Simulation of failure propagation initiated by (a) failure of line (2, 14) in

UIUC 150 Bus; (b) failure of line (34, 35) in UIUC 150 Bus; (c) failure of line (103,

105) in IEEE 118 Bus.
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throughout the simulated cascading process. Initially, the value of λ∗(t) is relatively

small, until the breakdown of some critical elements, its value increases very rapidly.

This means that the power network operates under a high overloading stress. When the

stress comes down again, the propagation slows down. The tripping of elements ceases

when λ∗(t) reduces to 0, and the network reaches its final condition. The consistency

of our simulated cascading failure process with the historical data verifies the validity

of our model in describing realistic blackout processes. The following two key issues

should be noted.

(1) We use stochastic methods to investigate the cascading failure propagation.

Our model takes into consideration the high complexities as well as uncertainties of

the involving mechanisms which can be investigated with probabilistic methods. The

tripping rates of the elements are related to the overloading extents of the correspond-

ing elements and the more heavily overloaded ones will be more likely to be tripped

first. Equations (4.23) and (4.25) incorporate these considerations. Thus, for the same

system and same initial failure, different simulations may yield different results due to

the stochastic nature of the model. Figure 4.7 is one particular simulation run of the

UIUC 150 Bus with initial failure of line (2, 21). Furthermore, Figs. 4.8 (a)-(f) show

results derived from 6 other simulation runs. From Fig. 4.8, we can see that these 6 sets

of results share the same characteristic profile, where the growing rate of the blackout

size is uneven and a relatively slow initial phase is followed by a sharp escalation of

cascading failures.

(2) From our simulations, we observe cascading failure patterns as shown in Fig.

4.7. Figures 4.9 (a) and (b) show the simulated cascading failure propagation in the

UIUC 150 Bus initiated by the failure of line (2, 14) and the failure of line (34, 35),

respectively. Figure 4.9 (c) shows the simulated cascading failure propagation in the

IEEE 118 Bus initiated by the failure of line (103, 105). It should be noted that not all

initial failures will generate such cascading failure profiles. In fact, the initial failure

of some elements will not cause further cascading failures at all. Another extreme case
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Table 4.3: Confidence intervals of tonset

Confidence Level Confidence Interval (sec)

90% (543, 3747)

95% (451, 4327)

99% (286, 5705)

is that initial failure of some crucially important element in the network will make all

other elements to be unpowered instantly. For instance, the initial failure arises from a

generator which is the only generating unit in its power network. Moreover, the failure

propagation profile shown in Fig. 4.7 is unique for power systems, which is determined

by the specific failure spreading mechanism. Such profile is not normally observed in

other failure spreading mechanisms, such as disease propagations in human networks,

rumor spreading on the Internet, and so on.

4.5.2 Blackout Onset Time

To evaluate tonset, we adopt an intuitive algorithm that locates the time point at which

NoTE begins to escalate rapidly. Suppose this time point is tk which corresponds to the

time when the kth element is tripped. The gradient of NoTE before this time point is

gi = (k−1)/tk, and the gradient of NoTE after this time point is gm = w/(tk+w−tk), where

w is an arbitrary additional number of elements tripped after the kth time point for the

purpose of computing the gradient. We compare the two gradients, and if gm > γgi,

where γ > 0, we accept this kth time point as the onset time.

We perform 10,000 simulations of cascading failures triggered by removal of line

(2, 21). In our algorithm, we use w = 10 and γ = 50 to find tonset of these 10,000 sim-

ulation runs and analyze the probability density function of tonset. From Fig. 4.10, we

see that there is a peak in the interval (1200 s,1400 s), implying that tonset is more likely

to be around 1300 s. Also, Monte Carlo method is applied to derive the confidence

interval of tonset for three different confidence levels, as listed in Table 4.3. It should
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Figure 4.10: Probability density function of tonset.

be noted that the tonset distribution shown in Fig. 4.10 is only valid for the cascading

failures in the UIUC 150 Bus power system with initial failure of line (2, 21). Dif-

ferent systems should have different tonset distributions, which should be derived from

computation on the specific power systems.

4.5.3 Effects of Heavy Load Demands

Another common characteristic of the three historical blackouts is that they all took

place in the hot summer when the power demand is high. In this section, we investi-

gate the overall influence of load demands on blackout risk of a power network. The

cumulative blackout size distribution is used to indicate the risk of severe power black-

outs of the power system.

Under a normal load demand condition, we simulate 10 profiles of cascading fail-

ure triggered by the failure of each line. Thus, we have altogether 2030 blackout

cases for the UIUC 150 Bus System. Then, we analyze the profile data of these 2030

blackouts. The cumulative distributions of NoTE(tfinal) and NoUN(tfinal) are plotted us-
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Figure 4.11: Cumulative blackout size distributions of UIUC 150 Power System.

Blackout size measured in (a) NoTE; (b) NoUN.
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ing equation (4.27). These simulations are repeated for the conditions that the load

demands are increased by various percentages. Figures 4.11(a) and (b) show the cu-

mulative distributions for NoTE(tfinal) and NoUN(tfinal) of the UIUC 150 Bus System

under several different load demand conditions. Specifically, all simulated cascading

failures will result in NoTE(t) > 0, as any cascading failure simulation has a tripped

element as initial failure. Thus, for BS threshold = 0, P[x(t) ≥ 0] = 1 where x(t) is

NoTE(t). We see that under a normal load condition, the probability of large black-

outs of the UIUC 150 Bus System is relatively low. However, when the load demands

are increased, the probability of large blackouts increase significantly. We also ob-

serve that the probability of having severe blackouts does not grow in linearly with the

growth of load demands. From Figs. 4.11(a) and (b), P[x(tfinal) ≥ BS] grows relatively

slowly relatively when the load demand increases by less than 5%, but more rapidly

when the load demand increases by 5% to 10%.

4.5.4 Effects of Network Structure

It has been shown that the network topology plays a significant role in determining the

dynamics of propagation and spreading of disease or information in networks [5]. It

is shown that the topological characteristics of many real-world power systems are not

uniform [15]. Thus, it is meaningful to investigate the relationship between network

structure and functional properties of power systems, and to identify better connectivity

styles.

Regular networks and small-world networks are used as test power systems for

comparison purposes. A regular network is generated with 150 nodes, each node’s

degree being 4. We allocate 30 generators in the regular network, whose voltages are

set as 1.04 p.u. The remaining nodes are consumer nodes, each sinking 0.3 p.u. of

current, and the admittances of all links in this network are set as 2 × 103 p.u. Then,

we generate 3 small-world networks by rewiring the links in the regular network with
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Figure 4.12: Cumulative blackout size distributions. (a) t = 100 s; (b) t = 500 s; (c)

t = 1000 s; (d) t = tfinal. “pbeta” is rewiring probability for generating small-world

networks.
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rewiring probabilities 0.1, 0.2 and 0.3 [5].

For each test network, we increase the consumers’ load demands by 5%, and then

simulate 10 profiles of the cascading failure initiated by the failure (removal) of each

line. We plot the cumulative blackout size distributions for the 4 networks based on

equation (4.27). Figure 4.12(d) shows the cumulative distribution of NoTN(tfinal), and

we see that the risk of large final blackouts is higher for small-world networks than

for regular ones. In order to show the speed of the propagations in these networks, we

plot the accumulative distributions of NoTE at different time points. Figures 4.12(a),

(b) and (c) show the cumulative distributions of NoTE at 100 s, 500 s and 1000 s,

respectively. For the same duration [0, t0], a higher value of P{NoTE(t0) ≥ BS} for

the same BS indicates a faster speed of cascading. From Fig. 4.12, we can conclusion

that the cascading failure propagates faster in small-world networks than in regular

networks.

4.6 Summary

In this chapter, we develop a model to investigate the dynamics of the cascading fail-

ure processes in power systems, combining deterministic power flow equations and

stochastic time duration descriptions. An extended chemical master equation method

is adopted to analyze the network failure dynamics. It has been verified that the

model produces propagation profiles that contain the key features displayed in his-

torical blackout data. We studied the UIUC 150 Bus system and a few important rep-

resentative network structures with the model, and identified the effects of heavy load

demands and network structure on the rapidity of propagation of possible blackouts.

We also develop metrics to evaluate the risk of large-scale blackouts in terms of cumu-

lative blackout size distributions. The model described in this chapter thus provides

predictive information for possible power blackout events in power systems.



Chapter 5

Modeling Cascading Failure in

Cyber-Coupled Power Networks

In the previous two chapters, we investigated cascading failure in uncoupled power

networks. In this chapter, we propose a model to investigate cascading failure prop-

agation in a coupled system (smart grid) that comprises a power grid and a coupling

cyber network. In this model, we take into consideration the effects of power overload-

ing, contagion and interdependence between the power grid and the cyber network on

failure propagations in the coupled system, and then use a stochastic method to gen-

erate the time intervals between failures, thus producing the dynamic profile of the

failure cascade caused by the attack of cyber malwares. We study several coupled

systems generated by coupling the UIUC 150 Bus System with cyber networks of

different structures and coupling patterns. Simulation results show that the dynamic

profile of the cascading failure in a coupled system displays a “staircase-like” pattern

which can be interpreted as a combined feature of the typical step propagation profile

triggered repeatedly by cyber attacks due to network coupling. Results also show that

cyber coupling can intensify both the extent and rapidity of power blackouts. More-

over, the cyber network structure and the coupling patterns affect the propagation of

the cascading failures in smart grids.

91
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5.1 Introduction

Smart grids are defined as electrical networks with integration of information and

communication technologies (ICT) to deliver electric power to the final consumers

more efficiently and securely [110]. A smart grid is a typical cyber-physical system

(CPS) [111], where the physical part is the power apparatus in the power grid and

the cyber part is for state monitoring, communications, and control of the physical

network. Coupling with cyber networks can make smart grids more efficient and intel-

ligent, at the same time it may bring new challenges by making power systems more

vulnerable to attacks from cyber networks [112–114].

As computers are in control of critical devices in today’s power systems at every

level [115], attacking power systems via spreading malware in computer networks may

cause severe damages or even catastrophic consequences. The Aurora Generator Test

conducted by Idaho National Laboratory demonstrated how a generator can be phys-

ically destroyed by a piece of codes [116]. Cyber malware can attack multiple points

of the physical network and may jeopardize the CPS [115]. The latest demonstra-

tion of a severe blackout caused by cyber attacks took place on December 23, 2015

in Ukraine [21], which was planted by a computer malware (called BlackEnergy) that

penetrated the computer network connected to the Ukrainian power system through an

infected file downloaded by the operator. BlackEnergy silently infected workstations

in the cyber network for several months, and then attacked the system by disconnect-

ing breakers of several substations, making monitoring stations go blind and blocking

the call centers. Finally, 80,000 customers were deprived of power for more than six

hours.

In the past two decades, numerous studies were devoted to the cascading failure

analysis in power systems, focusing mainly on the physical network. Having witnessed

the threats from cyber coupled attacks, power engineers and researchers are becoming

more aware of the importance of understanding the behavior of cyber coupled power
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systems. Future smart grids will certainly be heavily dependent on safe and efficient

operation of coupled power apparatus and communication networks. With this new

motivation, researchers have recently diverted attention to the smart grids’ vulnerabil-

ity assessment and mitigation methods to cyber attacks [117–120].

Abstracting the substations as nodes and the transmission lines as edges, the power

physical layer can be modeled as a network. Correspondingly, the cyber layer can also

be represented as a complex network, in which computers are nodes and the cyber con-

nections are edges. Considering the interdependence of these two networks (i.e., power

nodes provide power to the nodes in cyber layer, and the cyber nodes control the op-

eration of power nodes), the behavior of smart grids can be studied from a perspective

of interdependent complex networks [121–123].

Buldyrev et al. in 2010 [124] studied failures in interdependent networks with per-

colation theory and concluded that networks with a broader degree distribution were

more vulnerable. In percolation theory, all nodes in the network are deleted with a

probability, which can fragment the network. The nodes that belong to a giant cluster

are assumed to be able to function well, while the nodes in the remaining small clus-

ters become malfunctioned. Cai et al. in 2016 [125] analyzed the cascading failures

in power systems considering the interaction between power grids and communication

networks. Failure of a power element is determined by the time when it is overloaded

and the duration of data dispatching in the communication network. Rahnamay-Naeini

et al. in 2016 [126] modeled the number of failures in a power grid and the number

of failures in a communication network as two interdependent time series. Stochas-

tic methods are adopted to analyze the dynamical profiles of these time series. It has

been concluded in Rahnamay-Naeini et al.’s study that interdependence can make the

individually reliable systems behave unreliably as a whole. Although these prior stud-

ies focused on interdependent networks composed by the power network and the cyber

network, they fall short of taking into consideration the influence of computer malware

on the operation of power systems. In the Ukrainian case, for instance, the malware
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infection in the cyber network plays an important role in the cascading failure propa-

gation in smart grids. Our previous work [94] showed that the mechanism of failure

propagation in a power grid is very different from that of malware spreading in an in-

dividual cyber network [127]. However, for the smart grid where the physical layer

and the cyber layer are highly mutual dependent, the cascading failures can be highly

affected by the dynamics of computer malware spreading. Thus, the dynamic property

of malware spreading should be considered in cascading failures in the case of smart

grids.

In this chapter, we investigate the effects of cyber coupling on cascading failures in

smart power grids. First, the mechanism of failure spreading in the power system (due

to power overloading) and that in the cyber network (due to malware contagion) are

considered in the model, with emphasis on the interdependence of these two networks.

Then, based on the corresponding mechanisms, we combine the deterministic circuit-

based model and a stochastic method to describe the failure processes of the two kinds

of nodes in the coupled system in Section 5.2. Then, we introduce an algorithm to

simulate the cascading failures in the coupled system in Section 5.3. We simulate sev-

eral coupled systems and summarize key findings in Section 5.4. The coupled systems

are generated by coupling the UIUC 150 Bus System with cyber networks of various

structures and coupling patterns. Simulation results show that the failure propagation

pattern in a coupled system displays characteristics of both the power network and the

cyber network, and that cyber coupling can cause more severe damages to the power

system. The cyber network structure as well as the coupling pattern play crucial roles

in the propagation of the cascading failures in smart grids. Scale-free cyber networks

promote the failure spreading in the coupled system, and a higher average node degree

of the cyber network intensifies the spreading. Moreover, coupling of power nodes

with high-degree cyber nodes makes failure propagate faster compared to coupling

randomly or with low-degree nodes.
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5.2 Model Description

In this chapter, we consider a smart grid composed of a set of power apparatus and its

controlling network. The controlling network refers to the specific computer network

for controlling power systems, which is normally isolated from the wide area network

we use in other applications. In practice, firewalls and other security measures should

be designed and applied in these important networks. For simplicity, we consider a

coupled system A–B which is composed of two interdependent networks A and B, as

shown in Fig. 5.1. Network A is the power grid, where solid rectangular nodes in

Fig. 5.1 represent electrical buses in A and solid arcs represent transmission lines.

Network B is the cyber network, where white circular nodes represent computers in

the cyber network and dashed joining arcs represent the connections among the cyber

nodes. Clearly, nodes in A and nodes in B are interdependent. Precisely, the cyber

nodes control the operation of power nodes, while the power nodes provide power to

the cyber nodes. The interdependent relationships are depicted by the horizontal lines

in Fig. 5.1. In this chapter, we consider one-to-one coupling relation between the

nodes in A and the nodes in B, i.e., Ai ↔ Bi. Each pair of coupled nodes (Ai and Bi) are

called a node pair in the coupled system A–B. For the sake of maintaining generality,

we also consider nodes without corresponding coupling nodes in the other network.

For these nodes, there are no coupling effects. In Fig. 5.1, there are p power nodes, q

cyber nodes and m node pairs, where p ≥ m and q ≥ m. Usually the number of nodes

in the cyber network is far bigger than that of the power network, i.e., q≫ p.

In this chapter, we study the cascading failures in the coupled system A–B, which is

initiated by attacks of computer malwares. The cascading failure propagation in A–B

can be viewed as a sequence of state transitions of the nodes in the coupled system.

In the following subsections, we will define the states of nodes and describe their

corresponding state transitions.
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Figure 5.1: Coupled network consisting of a power network A and a cyber network B.

Solid rectangles represent electrical buses and solid arcs represent transmission lines

in A. White circles represent computers in the cyber network and dashed arcs represent

connections among the cyber nodes in B. Horizontal lines represent interdependence

between nodes in A and nodes in B.

5.2.1 Failure Mechanism of Power Elements

In this section, we introduce the mechanism of the electrical elements’ failures. Pre-

vious works have analyzed cascading failures in individual power systems. Data fit-

ting methods have been applied to study the failure propagation profiles in power sys-

tems in refs. [91, 93], regardless of the physical failure cascade mechanism in the net-

work. Considering the effects of power flow distribution in the failure propagation,

several models have been proposed to simulate the cascading failure propagations in

power systems, which can be classified under two categories: deterministic models and

stochastic models. In deterministic models [77,94], in each round of the cascading fail-

ure process, the power flow distribution in the network is computed, and overloaded

electrical elements are removed at the same time. To show the dynamic profile, Epp-

stein et al. [66] made the simple deterministic assumption that the duration for an over-

loaded element to be tripped is equal to ∆t which is given by
∫ t+∆t

t
( f j(τ)− f̄ j)dτ = ∆o j,

where f j is the power flow of overloaded element j, f̄ j is the flow limit and ∆o j is a
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Figure 5.2: State transition diagram of a node in power network A. Transitions between

state 0 and 2 are deterministic transitions, and those between 0 and 1 are stochastic

transitions.

specific threshold of that element. Considering the high uncertainties and complexi-

ties in power systems, stochastic models are used to investigate cascading failures in

power systems [68,95,98], but a mathematical formula that can describe the collective

behavior of the power network has not been derived.

In modeling the failure cascading in a power grid in this chapter, we first apply

deterministic power flow analysis to derive the power flow information and the over-

loading conditions of the electrical elements. Then, we adopt a stochastic method to

obtain the time durations between failures to simulate the failure propagations in the

network.

Let sAi
denote the state of a power node Ai. In our model, we consider three possible

states for a power node, i.e., sAi
∈ {0, 1, 2}. Specifically, sAi

= 0 is the normal state,

which corresponds to node Ai being connected and operating normally in the power

network; sAi
= 1 is the removed state, which corresponds to Ai being tripped by a

circuit breaker and removed from the power network; and sAi
= 2 is the unpowered or

“islanded” state, which corresponds to Ai being inaccessible to power sources due to

the removals of other failed elements in A. When Ai is in state 1 or 2, it is deprived of

power. Possible state transitions of Ai are shown in Fig. 5.2.

Depending on the nature of the transitions, they are either deterministic transitions
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or stochastic transitions, as shown in Fig. 5.2. The tripping (removal) of some ele-

ments in A can fragment the power network into several disconnected sub-networks.

When a sub-network containing no power source is created, a condition “con” is

said to be reached for all nodes in the sub-network. Under this condition, nodes

in the sub-network change their states from 0 to 2. This state transition, namely

sAi = 0
con
−−→ sAi = 2, is deterministic. Moreover, this state transition is caused by

and always accompanying the state transition (0 → 1) of another element in A, and

thus the transition time for this type of state transitions is not considered.

On the other hand, the time at which a stochastic state transition takes place is an

important consideration that would affect the dynamic profile of the cascading failure

propagation. Node Ai (in state 0) is tripped by its protective equipment with a certain

probability value when Ai is overloaded or when its coupled node Bi is infected by a

computer malware that can attack the power network by switching off circuit breakers

of Ai. The stochastic state transition of node Ai from state 0 to state 1 is represented by

a state transition channel T1, and is represented as:

T1 : sAi = 0→ sAi = 1. (5.1)

When node Ai has a coupled node Bi which works normally or does not have a

coupled node in network B, the state transition sAi = 0 → sAi = 1 is only caused

by overloading. In much of the prior work on modeling the switching actions of the

relays using Markov models [68] [95], transitions are determined by power loading

conditions and elements’ capacities. In real-time operation, as pointed out by Sun et

al. [99], an electrical component’s failure rate is not constant but varies with loading

conditions, and that a component will experience more failures under heavy loading

conditions. In order to incorporate these characteristics in our model, we describe the

state transition sAi = 0
λi(t)
−−−→ sAi = 1 as a stochastic process and define the tripping rate



5.2. MODEL DESCRIPTION 99

λi as

λi(t) =



























ai

(

Li(t) − Ci

Ci

)

, if Li(t) > Ci

0, if Li(t) ≤ Ci

(5.2)

where Li(t) is the power loading of component i , Ci is the capacity of that component,

and ai is the basic unit rate (trippings per second). Using (5.2), the power flow analysis

can be applied to derive λi(t). In this chapter, we adopt the method introduced in

Chapter 3 to compute the power flows in the power system, assuming that the power

system will reach a new steady state after an element fails. In this chapter, we do not

consider stability issues that have been studied in refs. [128, 129]. Thus, when Ai is

in state 0, and on the condition that its coupling node Bi is working normally or it has

no coupling nodes in network B, the probability that Ai transits from state 0 to 1 in an

infinitesimal time interval dt can be written as

T1 : P[sAi(t + dt) = 1 | sAi(t) = 0] = λi(t)dt. (5.3)

When Ai has a coupling node Bi in network B and Bi is infected by a computer

malware, Ai (in state 0) will have an extra chance to be removed from system due to

the action of malware. Thus, we assume that the malware will add an additional rate

ci(t) to the state transition rate λi. Thus, the probability that Ai transits from state 0 to

1 in an infinitesimal time interval dt when Bi is infected by computer malware can be

written as

T1 : P[sAi(t + dt) = 1 | sAi(t) = 0] = (λi(t) + ci(t))dt, (5.4)

where ci(t) represents the dependency of power node Ai on cyber node Bi.

State 1 and state 2 are fundamentally different states even though both correspond

to an unserved node. For state 1, the power node is removed due to it being tripped by

the protective relay upon power overloading. We use a stochastic method to describe

this process. However, for state 2, the power node has no access (finds no path) to
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power sources due to the tripping of other elements in the network. Though unserved,

it is not tripped and is still well connected. We use a deterministic method to describe

this process, and it depends on the tripping of other elements in the network. From the

network’s point of view, an element in state 1 is an open-circuit, changing the topology

of the network, whereas an element in state 2 has no impact on the network topology.

In a fast cascading failure process, we do not consider repair and anti-malware

actions. Thus, the corresponding transition rates are set as 0, i.e., dashed arrows in Fig.

5.2 are neglected.

5.2.2 Failure Mechanism of Cyber Nodes

Let sBi
denote the state of node Bi. We consider three different states for a cyber node

Bi, namely states 0, 1 and 2. Specifically, sBi
= 0 is the normal state, in which Bi

is working normally in the cyber network; sBi
= 1 is the state of being infected by a

computer malware; and sBi
= 2 is the shutdown state corresponding to node Bi being

shut down due to power outage. The difference between state 1 and state 2 is that when

a computer is infected (in state 1), it is able to infect its neighboring nodes, whereas

a shutdown computer (in state 2) is completely removed from the cyber network and

does not infect others. Figure 5.3 shows the state transition diagram of cyber node Bi.

All state transitions of Bi are stochastic transitions. Details of the transition process are

as follows.

When node Bi is in state 0, it can be infected by a computer malware through

connection with an infected neighbor. The malware diffusion can be modeled by a

stochastic process [127]. Here, we use describe Bi’s state transition as sBi
= 0

µi

−→ sBi
=

1, and refer to it as state transition channel T2:

T2 : sBi
= 0

µi

−→ sBi
= 1. (5.5)
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Figure 5.3: State transition diagram of a node in the cyber network B.

where µi is the rate of infection of node Bi and is defined as

µi(t) =
∑

j∈ΩBi

βi j, (5.6)

where ΩBi
is the set of all infected neighbors of node Bi and βi j is the rate at which in-

fected node B j (sB j
= 1) infects its neighbor Bi which is in state 0. For an infinitesimal

time interval dt, the probability that a state transition occurs through T2 can be written

as

T2 : P[sBi
(t + dt) = 1 | sBi(t) = 0] = µi(t)dt. (5.7)

When node Bi has a corresponding coupled power node Ai and sAi
∈ {1, 2}, it can no

longer provide power to its cyber node Bi, causing Bi to transit to state 2 (shutdown)

due to power outage. In practice, usually there exists backup power for computers

that perform crucial functions in controlling the power grid. Considering the limited

supporting time of the backup power units, in our model, we use stochastic transitions

to describe the state transitions for node Ai when sAi
∈ {1, 2}. Specific details are as

follows.

When sBi
= 0 and sAi

∈ {1, 2}, apart from state transition channel T2, another state
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transition channel T3 exists:

T3 : sBi
= 0

di

−→ sBi
= 2, (5.8)

where di(t) is the state transition rate which is determined by the dependence of node

Bi on its coupled power node Ai. In an infinitesimal time interval dt, the probability

that a state transition occurs through T3 can be written as

T3 : P[sBi
(t + dt) = 2 | sBi

(t) = 0] = di(t)dt, (5.9)

When sBi
= 1 and sAi

∈ {1, 2}, there is another state transition channel T4:

T4 : sBi
= 1

di

−→ sBi
= 2. (5.10)

In time interval dt, the probability that a state transition occurs through T4 can be

written as

T4 : P[sBi
(t + dt) = 2 | sBi

(t) = 1] = di(t)dt. (5.11)

When sAi
= 0, di(t) is 0.

Finally, as repair or anti-malware actions are not considered in a fast cascading

failure process, the corresponding transition rates can be set to 0, i.e., dashed arrows in

Fig. 5.3 are neglected. For clarity of the figures, self-loop arrows are not displayed in

Figs. 5.2 and 5.3.

5.3 Cascading Failure in Coupled Systems

The coupled system A–B contains p power nodes, q cyber nodes, and m node pairs in

total. Let S (t) denote the state of A–B, and S (t) = [sA1
, sA2
, · · · , sAp

, sB1
, sB2
, · · · , sBq

].

Suppose that there are mS (mS ≤ 3p+q) possible states for A–B. The cascading failure
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Table 5.1: State transition channel list of the coupled system at time t given that S (t) =

NS . All the l nodes which may transit and their corresponding transition rates are listed.

Possible transition channel T (1) T (2) T (3) ... T (n)

Transition rate r1 r2 r3 ... rn

process is the dynamic propagation profile of S (t) as the system state transits in time

among those mS different states.

5.3.1 State Transition of the Coupled Network

Suppose, at time t, the coupled network is in state S (t) = NS (NS is one specific system

state of the 3p+q possible states), and there are u nodes that may undergo a state transi-

tion. Each node of these u nodes can undergo a deterministic or stochastic transition,

depending on the current node state and the transition rule. For a deterministic transi-

tion, the transition rule is triggered when condition “con” is met, while for a stochastic

transition, the transition rule is described by a transition rate, as shown in Figs. 5.2

and 5.3. At time t, there are l (l ≤ u) nodes that will undergo a stochastic transition,

and each one will transit through a transition channel selected from T1, T2, T3, T4. For

instance, if cyber node Bi is in state 0 (i.e., sBi
= 0) at time t and is connected to an

infected neighbor, and at the same time its coupled power node is removed or unpow-

ered, then node Bi will have two state transition channels, namely, T2 and T3. Thus,

the total number of transition channels (say n) can be larger than l. In our algorithm,

we first identify condition “con”, and transit all power nodes meeting “con” to state

2 instantly. Then, all possible stochastic state transition channels of the coupled sys-

tem is listed in a state transition channel list, as shown in Table 5.1, where channel

T (i) ∈ {T1, T2, T3, T4}. Any node’s state transition through any one of the n transition

channels will lead to a state transition of the coupled network, i.e., change in S (t).

The cascading failure process can be viewed as a sequence of state transitions. We

only allow one element state transition at a time. That is, at most one state transition
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channel is chosen at a time. See Section 4.3.1 for a rigorous argument. In order to

simulate the dynamic propagation of S (t), we need to

1. find the time at which a state transition occurs; and

2. identify the corresponding transition channel through which the transition oc-

curs.

The following subsection explains the detailed process of finding transition time and

identifying the transition channel.

5.3.2 Stochastic Transition Processes

Let Q(τ) denote the probability that no state transition occurs in time interval (t, t + τ),

i.e., Q(τ) = P[S (t + τ) = NS |S (t) = NS ]. Then, Q(τ + dt) can be written as

Q(τ + dt) = P[S (t + τ + dt) = NS |S (t + τ) = NS ]Q(τ). (5.12)

Thus, we have

P[S (t + τ + dt) = NS |S (t + τ) = NS ] = (1 − r∗dt), (5.13)

where r∗ =
∑n

i=1 ri. Note that equation (5.13) is only valid when dt is infinitesimally

small (see Section 4.3.1). Substituting (5.13) into (5.12), we get

Q(τ + dt) = Q(τ)(1 − r∗dt). (5.14)

Re-arranging (5.14), as dt → 0 (i.e. dt is infinitesimal), we get

lim
dt→0

Q(τ + dt) − Q(τ)

dt
= Q

′

(τ) = −r∗Q(τ). (5.15)
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Thus, we can express Q(τ) as

Q
′

(τ) = −r∗Q(τ).

Note that in equations (5.13) through (5.15), the above differential equation is derived

by taking the limit dt → 0 and is valid for any τ. Solving the above differential

equation, we get

Q(τ) = Q(0)e−r∗τ. (5.16)

Since Q(0) = P[S (t) = NS |S (t) = NS ] = 1, we can derive the expression of Q(τ) as

Q(τ) = Q(0)e−r∗τ = e−r∗τ, (5.17)

which is the general solution for Q(τ) and remains valid for all τ. Let F(τ) denote the

probability that the next state transition occurs before time t + τ. Then, we get

F(τ) = 1 − Q(τ) = 1 − e−r∗τ. (5.18)

The probability density of τ can be found using equation (5.18) as

f (τ) = r∗e−r∗τ. (5.19)

From (5.18) and (5.19), we see that τ follows an exponential distribution. The state

transition rate r∗ of coupled system A–B is the sum of the transition rates of all the tran-

sition channels. As discussed in Section 5.2, r∗ includes the effects of overloading in

the power network, malware spreading in the cyber network, and the interdependence

between of two networks.

Suppose the next state transition occurs at time τ through transition channel Tk. To

include the property of exponential distribution of τ and the characteristic that the tran-
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sition channel with a higher rate will be more likely chosen, the following procedure

is used to determine the next state transition.

Two random numbers z1 and z2 are uniformly and independently generated in (0, 1).

Then, τ is generated from the following equation :

τ = F−1(z1) =
1

r∗
ln(

1

1 − z1

). (5.20)

And k is selected based on the following equation:

k−1
∑

j=0

r j

r∗
6 z2 6

k
∑

j=0

r j

r∗
. (5.21)

The dynamics of S (t) is a series of the state transitions introduced above begin-

ning with an initial failure (malware injection) until all state transition channels are

exhausted. Figure 5.4 shows the flow chart used in simulating the cascading failures in

the coupled system.

5.3.3 Simulation Flow Chart

• Initialization: The information of the coupled system A–B is set, including the

network structure of A and B, and the coupling between the nodes in A and

the nodes in B. In simulating the power failure propagation, the power flow

calculation is necessary. Thus, for the power network, the admittance of the

transmission lines, voltages of the generates, load demands of the consumers

and winding ratios of transformers should be given.

• Malware injection: In this study, we assume the cascading failures are caused

by cyber malware attacks. Thus, the initial trigger is the injection of a malware

in the cyber network. The time of malware injection is set as 0.

• Malware diffusion: In the case of cyber attacks, the malware can be designed to
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Figure 5.4: Simulation flow chart for cascading failures in the coupled system.

spread silently and harmlessly in the cyber network for a period of time in order

to get enough nodes infected. Here, we set td as the time period for the malware

diffusion before attack is launched to the power network, and in this time period,

only transition channels applied to the cyber network are relevant.

• Attack execution: After td, the malware will launch attack to the power system.

All possible transition channels may be selected. Iteration then proceeds as fol-

lows.

(a) The condition “con” will be checked against S (t), and the power nodes

meeting “con” are marked as state 2, i.e., the deterministic state transition

occurs. This kind of state transitions occurs instantly.

(b) Based on S (t) and equations (5.3)-(5.11), we update the list of possible
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state transition channels. The list contains the rates contributed by all the

failure spreading mechanisms in the coupled system, including power ele-

ments’ failure due to power overloading based on equation (5.2) where the

deterministic power flow analysis should be applied [94], cyber nodes’ in-

fection due to contagion based on equation (5.6), and the interdependencies

between the two different networks.

(c) If there is a state transition channel in the list, we use equations (5.20) and

(5.21) to select the next state of S (t) and return to step (a). If there is no

more transition channel in the list, cascading failure ceases to propagate

and the system is said to enter an absorbing state. We end the iteration and

record the time as tfinal.

5.4 Simulation Results and Discussions

In this section, we perform simulation experiments with the proposed model to study

the cascading failures in the coupled system and investigate the effects of cyber cou-

pling on the failure propagation process. We specifically aim to identify the key factors

and parameters that determine the extent and rapidity of power blackouts caused by cy-

ber attacks. Test networks are generated by coupling the UIUC-150 Bus System [109]

with cyber networks of different structures. The capacities of the generators, trans-

formers and the transmission lines in the power network are set as 1.2 times of their

respective current flows in normal operation. We also assume that the computer mal-

ware will execute attack once it infects a new cyber node, namely, td = 0. We introduce

two essential metrics for characterizing the extent of the failure, namely, percentage of

failed power nodes (PFPN) and percentage of failed cyber nodes (PFCN), which are

defined as follows:

PFPN(t) =
nunpowered(t) + nremoved(t)

p
, (5.22)
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Figure 5.5: Failure propagation in (a) cyber network showing smooth growth pattern;

(b) uncoupled power grid showing “step jump” pattern; (c) coupled system.
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PFCN(t) =
ninfected(t) + nshutdown(t)

q
, (5.23)

where nunpowered(t) and nremoved(t) represent the number of power nodes in state 1 and 2 at

time t, respectively. Similarly, ninfected(t) and nshutdown(t) are the number of cyber nodes

in state 1 and 2 at time t, respectively. Note that a large PFPN(t) (PFCN(t)) means that

a large total area of disconnected fragments of the power grid (cyber network) are out

of operation.

5.4.1 Failure Propagation Patterns in the Coupled System

First, we examine the failure propagation patterns in the power network, cyber network

and the coupled system. We first study the case where the coupled cyber network has

the same structure as the power grid. This allows a close examination of the failure

spreading patterns on the power network and the cyber network due to the different

spreading mechanisms. The parameters of the coupled network are set as follows:

• The cyber network and the power grid have the same size, i.e., p = q = 150;

• The failure rate in power system ai is 0.21 min−1, and the infection rate in the

cyber network βi j is 0.5 min−1;

• Interaction relationship between the two networks are ci(t) and di(t) that are set

as

ci(t) =























0.05 min−1, if sB1
= 1,

0 min−1, otherwise,

and

di(t) =























0.01 min−1, if sA1
= 1, 2,

0 min−1, otherwise.

We obtain the values of ai and βi j through data fitting in this chapter. For ai, we

get the value through setting the averaged tfinal of 100 simulations in the UIUC 150

Bus system as 5 hours, based on the practical observation that the durations of several
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Figure 5.6: Failure propagation patterns. (a), (d), (g): malware spreading in cyber

network with scale-free, random and regular structure, respectively; (b), (e), (h): power

node failure propagation in (uncoupled) power grid; (c), (f), (i): failure cascading

in the coupled system, with scale-free, random, regular cyber network, all showing

“multiple-step staircase” pattern.
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Figure 5.7: Comparison of the extents of cascading failures in power grid coupled with

cyber network of different topological structures.

Table 5.2: Comparison on severity of cascading failures between the isolated power

grid and the coupled system in terms of cascading failure extent denoted by PFPN(tfinal)

and average rate denoted by △t.

Test case PFPN(tfinal) △t (min)

Individual power system 0.47 7.25

Coupled system 1 0.37

historical cascading failures were around 1 to 5 hours [89, 90]. For setting βi j in the

cyber network, we need to clarify that different malwares (viruses) can have very dis-

tinct infection rates. In this chapter we adopt the values used in a previous study [130],

which models the combating virus spread in wireless sensor networks.

Figures 5.5 (a) and (b) show the dynamical profiles of cascading failures in the

cyber network (a computer malware infected B1 at t = 0) and the uncoupled power

system (node A1 removed at t = 0), respectively. From Fig. 5.5(b), we see that the

failure propagates very slowly in the uncoupled power network before t = 330 min

and that an abrupt increase of PFPN(t) occurs around t = 330 min, indicating that

numerous power nodes failed in a short time during the failure cascading process.
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Figure 5.8: Comparison of the extents of cascading failures in power grid coupled with

cyber network of different average node degrees.

Compared with the historical data recorded in the 2003 power blackout in the United

States and Canada [90] and two blackouts in July and August 1996 of Western North

America [89], the results in Fig. 5.5(b) show similar typical profiles of cascading

failures. According to equation (5.19), the growth rate of PFPN(t) is related to the sum

of the tripping rates, i.e., r∗ =
∑

λi in this case. This abrupt change around t = 330 min

is caused by the failure of some critical element in the power system leading to drastic

power flow changes. We view the process where one element’s state change causes

redistribution of the overall power flows in the whole network as a global process,

and this global process can cause a drastic increase of failure propagation rate in the

system. Figure 5.5(a) shows that PFCN(t) grows smoothly. According to equation

(5.19), the growth rate of PFCN(t) is related to the sum of the infection rates, i.e.,

r∗ =
∑

µi in this case. We view the process where the infected node only influences

its neighboring nodes as a local process, which cannot cause any drastic change in r∗.

Thus, PFCN(t) rises gradually. Clearly, the failure propagation patterns for the power

network and the cyber network are dependent on the spreading mechanisms.

Figure 5.5(c) shows the failure propagation in the coupled system initiated by a
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Figure 5.9: Spreading patterns in the coupled system under (a) strong attack with c(t) =

0.3 min−1; and (b) weak attack with c(t) = 0.01 min−1.
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computer malware injected at cyber node B1 at t = 0. The failure propagation in the

coupled system is the combined effect of the above two mechanisms as well as the

interactions between these two different networks. The propagation profile displays

another interesting feature: PFPN(t) has a multiple-step staircase like growing pattern,

clearly showing the typical step propagation pattern of cascading failures in the power

network being repeatedly triggered by cyber attacks. Table 5.4.1 lists the averaged

results of 100 repeated simulations of cascading failures in the individual power system

and the coupled system, respectively. Here, PFPN(tfinal) refers to the percentage of

failed power nodes in the final state, and △t is the average time interval when PFPN(t)

is increased by one per cent. It can be seen that the coupled system can have a larger

area of blackouts as well as a much faster failure spreading rate than the standalone

power network.

5.4.2 Effects of Cyber Network Structures

In this section, we investigate the influence of cyber network structure on the cascading

failure propagation in the coupled system. We generate cyber networks of three classic

typologies: scale-free (SF) network [6], random network [131] and regular network.

The average node degree of all these cyber networks are fixed at 6. The size of the

network is 1500. We use a random coupling pattern between the cyber network and

the power grid in this section, i.e., 150 cyber nodes are chosen randomly from the cyber

network to connect the power nodes. The infection rate βi j is set as 0.1 min−1.

Figure 5.6 shows the propagation profiles of cascading failures for three different

cyber network structures, organized in three sets of charts, namely Figs. 5.6(a), (b), (c);

Figs. 6(d), (e), (f); and Figs. 5.6(g), (h), (i). Specifically, Figs. 5.6(a), (d) and (g) show

the malware spreading in the different types of cyber networks. We see that the regular

cyber network has the slowest spreading rate with an almost linear growth profile. In

terms of the spreading rate, the scalefree network is the fastest and the regular network
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Figure 5.10: Extents of cascading failure in the coupled system under (a) strong attack

with c(t) = 0.3 min−1; and (b) weak attack with c(t) = 0.01 min−1.
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Table 5.3: Comparison on the effects of different cyber network topologies on cascad-

ing failures in the coupled networks.

Topology of synthesized cyber network PFPN(tfinal) △t (min)

Scale-free 1 0.32

Random 1 0.44

Regular 1 6.76

is the slowest. Figures 5.6(b), (e) and (f) show the growing profiles of PFPN(t) in

the uncoupled power system, which are similar to the typical profile shown earlier in

Section 5.4.1. Figures 5.6(c), (f) and (i) show the multiple-step staircase pattern in the

failure propagation profile of the power network coupled with the cyber network. This

again clearly shows the typical step propagation pattern of cascading failures in the

power network being repeatedly triggered by cyber attacks.

Table 5.3 shows the averaged PFPN(tfinal) and △t of 100 repeated simulations in

the above three different coupled systems, respectively. Furthermore, Fig. 5.7 shows

the averaged PFPN(t) and the deviations of a number of repeated simulations in the

three coupled systems: UIUC-150 Bus System coupled with cyber network of differ-

ent topological structures. Results show that when attacked by cyber malwares, the

power system coupled with scale-free cyber network displays the most severe cascad-

ing failure.

It has been shown that most of the cyber networks in the real world have a scale-

free structure. We evaluate the effect of the average node degree of the scale-free cyber

network on the vulnerability of the power system coupled with it. We generate four

scale-free networks of average node degree 2, 4, 6, and 8. Figure 5.8 reveals that if

the average node degree of a scale-free cyber network is higher, the system is more

vulnerable to attack with more failure transitions.
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5.4.3 Effects of Coupling Patterns

Finally, we analyze how the coupling patterns between the two interdependent net-

works influence the dynamic propagation of cascading failures in power networks.

Since the cyber network is normally much larger than the power network in terms of

the number of nodes (q≫ p), we consider the coupling of all power nodes with 10% of

cyber nodes in a one-to-one fashion. Three different coupling patterns are considered:

1. High-degree cyber coupling: Nodes in the cyber network are sorted in descend-

ing order of node degree, and the power nodes are sorted in ascending order

(which is immaterial as all power nodes are coupled), namely, deg(A1) ≤ deg(A2) ≤

· · · ≤ deg(Ap) and deg(B1) ≥ deg(B2) ≥ · · · ≥ deg(Bq), where deg(.) de-

notes degree of the node. Then, coupling is established by connecting Ai and

Bi (i = 1, 2, · · · p).

2. Random-degree-node coupling: Randomly choose p nodes out of the q cyber

nodes to connect the power nodes.

3. Low-degree cyber coupling: Similar to the first case, but with nodes in the cyber

network sorted in ascending order of node degree such that the power nodes are

coupled with low-degree cyber nodes.

Furthermore, in order to analyze how the coupling strength ci(t) influences the cascad-

ing failures, we study two cases: (1) strong attack with ci(t) set as 0.3 min−1; (2) weak

attack with ci(t) set as 0.01 min−1.

Figures 5.9(a) and (b) show the failure propagation patterns under strong and weak

attacks, respectively, for random-degree-node coupling. Under the strong attack con-

dition, PFCN(t) is close to PFPN(t), meaning that an infected cyber node can lead to

breakdown of power nodes very quickly (Fig. 5.9(a)). However, under weak attack

condition, as shown in Fig. 5.9(b), PFCN(t) and PFPN(t) are farther apart. In terms of
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failure spreading rates, we see that applying strong attack, the cascading failure incurs

more severe damage and occurs more rapidly.

Figure 5.10 shows the averaged PFPN(t) profiles and their deviations of a num-

ber of repeated simulation runs at several specific time points for the three coupling

patterns. From Fig. 5.10(a), under a strong attack condition (high coupling strength),

high-degree dis-assortative coupling leads to a more vulnerable coupled system, while

low-degree assortative coupling gives a more robust coupled system. However, under

a weak attack condition, as shown in Fig. 5.10(b), the effect of coupling patterns is

less significant.

5.5 Summary

The development of future smart grids is inevitably involving more computer control

and communication technologies. The coupling of power networks with other net-

works of computers and even future IoT (Internet of Things) will have a significant

impact on the safe and reliable operation of this important infrastructure. This chapter

presents a novel stochastic model to investigate the characteristics of cascading failures

in smart grids triggered by cyber malware attacks. Our study shows that cyber attacks

could incur much more severe damages to power networks and power blackouts could

occur much more rapidly when power networks are coupled with cyber networks. Our

findings also demonstrate the importance of understanding how coupling weakens ro-

bustness and the various factors that affect the extent and rapidity of cascading failure

propagation in coupled power networks.
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Chapter 6

Conclusions and Suggestions for

Future Work

In this chapter, we re-iterate the main contributions of the thesis and discuss some

potential topics for future research.

6.1 Main Contributions of the Thesis

In the past decades, complex network theory has developed into a new discipline pro-

ducing insightful results which are applicable to large real-world interconnected sys-

tems. From this newly emerged perspective, researchers have been inspired by the

topological universalities observed in real systems which were once too complicated

to handle. As one of the most critical man-made infrastructures, the power delivery

system and its robustness have drawn much attention from the academic and engineer-

ing communities. Although much previous work studied the topological characteristics

of real power grids, a clear link between the topology and the functional performance

has not been fully established.

In this thesis, we apply complex network theory to the robustness analysis of power

systems. The main objective is to investigate the relationship between the topology

123
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and the robustness performance of power systems. The robustness of a power system

is defined as the ability to sustain the initial failures of one or a few components in

the network. As the initial failure of some elements in a power network can trigger

a series of cascading failures, leading to a severe power outage, in this thesis, the

robustness of a power system is defined to quantify the ability of the power system

to withstand cascading failure. In order to make the analysis relevant to the practical

properties of power systems, the use of appropriate models is crucially important. In

this thesis, effective models have been built to study the cascading failure mechanism in

power systems targeting several important aspects of the observed failure propagation

profiles.

The main contributions of the thesis are summarized as follows.

1. A circuit-based model has been developed to simulate cascading failures in

power systems.

Instead of merely using topological parameters to investigate cascading failure in

a power system, a circuit-based power flow model has been introduced. The power

flow in the network is effectively represented by electrical variables, i.e., current and

voltage, and the power flow distribution algorithm is based on Kirchhoff’s laws and

the specific properties of network elements. The model is able to generate realistic

power flow information of the elements in the power system. Based on the power flow

information provided by this model, the cascading failure process can be simulated.

2. The robustness of a power system has been quantitatively studied.

The robustness performance refers to the ability of a system to tolerate distur-

bances. In a power system, some small initial disturbances at specific critical compo-

nents can grow into a large-scale power blackout through a series of cascading failures.

A power system could be more robust if there were fewer such critical components.

The following two metrics have been defined to quantify a power system’s robustness:

the percentage of unserved nodes (PUN) caused by a failed component and the per-

centage of non-critical links (PNL) that will not cause severe damage. PUN and PNL
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bridge the gap between the structure and the robustness of power networks. The ef-

fects of network structure and location of generators have been explored by assessing

the robustness of the IEEE 118 Bus, Northern European Grid and some synthesized

networks.

3. A model that can generate the dynamic propagation profiles of cascading failures

in power systems has been developed.

Based on the power flow information provided by the circuit-based power flow

model, a stochastic model has been used to describe the uncertain failure time instants.

With the time instants of failures found, this model is able to give a complete dynamic

profile of the cascading failure propagation beginning from a dysfunctioned component

and developing eventually to a large-scale blackout. The use of stochastic processes

here addresses the uncertainties in individual components’ physical failure mechanism

which may depend on manufacturing quality and environmental factors. Simulation

results have shown that this model can reproduce similar failure propagation profiles

with typical features displayed in historical blackout data. This consistency validates

that the proposed model can reveal the mechanism of failure propagation and occur-

rence of large-scale blackouts in power systems.

4. The cascading failure patterns in cyber-coupled power networks have been stud-

ied.

Witnessing that the power blackout in the Ukrainian power grid was caused by a

malware attack initiated from the cyber network, we have investigated the effects of

cyber coupling on the robustness of power systems. Considering the effects of power

overload, contagion, and interdependence between power grids and cyber networks, a

model for simulating cascading failures in the coupled system (smart grid) that com-

prises a power grid and a coupling cyber network has been proposed. We have shown

that cyber attacks can cause more extensive and rapid power blackouts. The specific

effects of the cyber network structure and the coupling patterns have also been dis-

cussed.
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6.2 Suggestions for Future Work

6.2.1 Consideration of the Oscillatory Process

In the cascading failure model proposed in Chapter 4, we assume that after the failure

of one element in the network, the power flow will converge to a new steady state very

rapidly. The time of the convergence process can be ignored and no failure is caused

by the oscillations during this period. However, in the real system, a host of possible

events can happen during this convergence period. For example, transients with high-

frequency oscillations can trigger the actions of the relays in the protection equipment

causing some elements to trip unexpectedly.

To take into full consideration the oscillatory process, the dynamics of the gener-

ators in a power grid should be described with appropriate differential equations. A

model that considers both the effects of power overloading in the steady state and the

effects of the transients during the convergence process can be established to better

characterize the cascading failure mechanism in power systems.

Further, the dynamic descriptions for renewable energy sources are quite different

from those for traditional ones. Thus, the effects of intermittent renewable energy

sources on cascading failure in large-scale networks can be investigated with specific

dynamic equations used for renewable generators in the model.

6.2.2 Detection of the Critical Elements

In Chapter 4, it has been shown that many real cascading failure cases share a prop-

agation profile where an initial slow failure growth phase is followed by an abrupt

acceleration phase and most of the component failures occur in a small fraction of the

time of the entire failure cascade process. The element that fails in the acceleration

point and the onset instant are critical. If the failure propagates to this point, a catas-

trophic cascading failure will soon occur. Thus, to detect the critical elements and to
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predict the onset time will be very meaningful for the purpose of system protection.

Before the onset time, the system operator still has enough time to take appropriate

actions to halt the failure cascade, for instance, to repair the previous failures that are

still in a small number or to island the network to mitigate the power overloading. The

detection of the critical elements deserves in-depth research.

6.2.3 Optimization of the Coupling Patterns

From the simulation results of cascading failures in the cyber-coupled network reported

in Chapter 5, it is clear that the coupling patterns between the nodes in the power

network and the nodes in the cyber network can have profound influences on cascading

failure. It will be meaningful to optimize the coupling pattern that helps resist the

failure propagating between the two networks.

6.2.4 Comparison of Different Failure Spreading Patterns

In Chapter 5, it has been shown that the propagation profile of the cascading failure in

a power system is quite different from that of malware spreading in a cyber network.

Our first explanation for the difference is that the failure spreading mechanisms in the

two kinds of networks are very different [132, 133]. For the power grid, failures are

caused by power overloading. Obeying Kirchhoff’s laws, the power flow distribution

is globally determined, and the failure of one element in the network can influence the

power flows of all the other elements. Thus, there exist critical nodes whose removal

can change the power flow distribution drastically and cause an abrupt jump of the

failure growth. Such kind of mechanism also exists in other delivery networks. For

example, in a communication network with a shortest-path-based routing algorithm,

removing one node from the network can change the shortest path distribution in the

whole network, thus influencing the traffic load of a large number of nodes. However,

for the malware spreading in a cyber network, one infected node can only influence its



128 CHAPTER 6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

neighboring nodes, termed as local effects. The failure under the local effects grows

smoothly. We can also find many other similar examples, like rumor spreading in

an online social network, evolutionary dynamics in the field of game theory, and so

on. Thus, it is of fundamental importance to verify the above hypothesis regarding the

global and local effects on spreading profiles and to examine whether these phenomena

also exist in other similar networks by performing in-depth analytical and empirical

studies.
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[79] D. J. Klein and M. Randić, “Resistance distance,” Journal of Mathematical

Chemistry, vol. 12, no. 1, pp. 81–95, Dec. 1993.

[80] M. Youssef, C. Scoglio, and S. Pahwa, “Robustness measure for power grids

with respect to cascading failures,” in Proc. International Workshop on Model-

ing, Analysis, and Control of Complex Networks, San Francisco, USA, 2011,

pp. 45–49.



138 BIBLIOGRAPHY

[81] A. Scala, S. Pahwa, and C. Scoglio, “Cascade failures and distributed generation

in power grids,” International Journal of Critical Infrastructures, vol. 11, no. 1,

pp. 27–35, 2015.

[82] B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole, “Evidence for

self-organized criticality in a time series of electric power system blackouts,”

IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 51, no. 9,

pp. 1733–1740, Sept. 2004.

[83] R. Christie. 118 bus power flow test case. [Online]. Available:

https://www.ee.washington.edu/research/pstca/pg tcaintro.htm

[84] L. Muchnik. Complex networks package for matlab. [Online]. Available:

http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html

[85] A. G. Phadke and J. S. Thorp, Computer Relaying for Power Systems. Chich-

ester, West Sussex, UK: John Wiley & Sons, 2009.

[86] W. Quattrociocchi, G. Caldarelli, and A. Scala, “Self-healing networks: redun-

dancy and structure,” PloS one, vol. 9, no. 2, p. e87986, Feb. 2014.

[87] S. H. Horowitz and A. G. Phadke, Power System Relaying. New York, USA:

Wiley, 2008.

[88] M. Rausand and A. Høyland, System Reliability Theory: Models, Statistical

Methods, and Applications. New York, USA: Wiley, 2004.

[89] “1996 system disturbances,” North American Electric Reliability Council, USA,

Tech. Rep., 2002.

[90] U.S.-Canada System Outage Task Force, “Final report on the August 14th black-

out in the United States and Canada,” US Dept. Energy and National Res.

Canada, Tech. Rep., 2004.

https://www.ee.washington.edu/research/pstca/pg_tcaintro.htm
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html


BIBLIOGRAPHY 139

[91] Q. Chen, C. Jiang, W. Qiu, and J. D. McCalley, “Probability models for esti-

mating the probabilities of cascading outages in high-voltage transmission net-

work,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1423–1431,

Mar. 2006.

[92] I. Dobson, B. A. Carreras, and D. E. Newman, “Branching process models for

the exponentially increasing portions of cascading failure blackouts,” in Proc.

39th IEEE Hawaii International Conference on System Sciences, Hawaii, USA,

2005, p. 64.

[93] I. Dobson, “Estimating the propagation and extent of cascading line outages

from utility data with a branching process,” IEEE Transactions on Power Sys-

tems, vol. 27, no. 4, pp. 2146–2155, Feb. 2012.

[94] X. Zhang and C. K. Tse, “Assessment of robustness of power systems from a

network perspective,” IEEE Journal on Emerging and Selected Topics in Cir-

cuits and Systems, vol. 5, no. 3, pp. 456–464, Sept. 2015.

[95] M. Rahnamay-Naeini, Z. Wang, N. Ghani, A. Mammoli, and M. M. Hayat,

“Stochastic analysis of cascading-failure dynamics in power grids,” IEEE Trans-

actions on Power Systems, vol. 29, no. 4, pp. 1767–1779, Apr. 2014.

[96] P. Rezaei, P. D. Hines, and M. J. Eppstein, “Estimating cascading failure risk

with random chemistry,” IEEE Transactions on Power Systems, vol. 30, no. 5,

pp. 2726–2735, May 2015.

[97] H. M. Merrill and A. J. Wood, “Risk and uncertainty in power system planning,”

International Journal of Electrical Power & Energy Systems, vol. 13, no. 2, pp.

81–90, Feb. 1991.

[98] R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, S. Mei, W. Wei, and L. Ding,

“Risk assessment of multi-timescale cascading outages based on markovian tree



140 BIBLIOGRAPHY

search,” IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 2887–2900,

Oct. 2016.

[99] Y. Sun, P. Wang, L. Cheng, and H. Liu, “Operational reliability assessment of

power systems considering condition-dependent failure rate,” IET Generation,

Transmission & Distribution, vol. 4, no. 1, pp. 60–72, Jan. 2010.

[100] D. T. Gillespie, “A general method for numerically simulating the stochas-

tic time evolution of coupled chemical reactions,” Journal of Computational

Physics, vol. 22, no. 4, pp. 403–434, Apr. 1976.

[101] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,”

Journal of Computational Physics, vol. 81, no. 25, pp. 2340–2361, Dec. 1977.

[102] K. Bae and J. S. Thorp, “A stochastic study of hidden failures in power system

protection,” Decision Support Systems, vol. 24, no. 3, pp. 259–268, Mar. 1999.

[103] F. Yang, A. S. Meliopoulos, G. J. Cokkinides, and Q. B. Dam, “Effects of pro-

tection system hidden failures on bulk power system reliability,” in Proc. 38th

IEEE North American Power Symposium, Carbondale, USA, 2006, pp. 517–

523.

[104] J. Chen, J. S. Thorp, and M. Parashar, “Analysis of electric power system dis-

turbance data,” in Proc. 34th IEEE Hawaii International Conference on System

Sciences, Hawaii, USA, 2001, p. 13.

[105] A. R. Bergen and V. Vittal, Systems Analysis. New York, USA: Tom Robbins,

2000.

[106] F. Milano, L. Vanfretti, and J. C. Morataya, “An open source power system

virtual laboratory: The psat case and experience,” IEEE Transactions on Edu-

cation, vol. 51, no. 1, pp. 17–23, Jan. 2008.



BIBLIOGRAPHY 141

[107] C. Zhan, C. K. Tse, and M. Small, “A general stochastic model for studying

time evolution of transition networks,” Physica A, vol. 464, pp. 198–210, Dec.

2016.

[108] R. Pfitzner, K. Turitsyn, and M. Chertkov, “Controlled tripping of overheated

lines mitigates power outages,” arXiv preprint:1104.4558, 2011.

[109] UIUC 150-bus system. [Online]. Available:

http://icseg.iti.illinois.edu/synthetic-power-cases/uiuc-150-bus-system/

[110] X. Yu and Y. Xue, “Smart grids: A cyber–physical systems perspective,” Pro-

ceedings of the IEEE, vol. 104, no. 5, pp. 1058–1070, May 2016.

[111] R. Baheti and H. Gill, “Impact of control technology,” IEEE Control Systems

Society, Tech. Rep., Mar. 2011.

[112] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber–physical system security for

the electric power grid,” Proceedings of the IEEE, vol. 100, no. 1, pp. 210–224,

Jan. 2012.

[113] C. Lu, R. Rajkumar, and E. Tovar, “Guest editorial special section on cyber-

physical systems and cooperating objects,” IEEE Transactions on Industrial In-

formatics, vol. 8, no. 2, pp. 378–378, May 2012.

[114] H. Gharavi, H.-H. R. Chen, and C. Wietfeld, “Guest editorial special section

on cyber-physical systems and security for smart grid,” IEEE Transactions on

Smart Grid, vol. 6, no. 5, pp. 2405–2408, Sept. 2015.

[115] D. M. Nicol, “Hacking the lights out,” Scientific American: Science News, Arti-

cles and Information, vol. 305, no. 1, pp. 70–75, Jul. 2011.

[116] M. Zeller, “Myth or reality – Does the Aurora vulnerability pose a risk to my

generator?” in Proc. 64th Annual Conference for Protective Relay Engineers,

College Station, USA, 2011, pp. 130–136.

http://icseg.iti.illinois.edu/synthetic-power-cases/uiuc-150-bus-system/


142 BIBLIOGRAPHY

[117] A. Srivastava, T. Morris, T. Ernster, C. Vellaithurai, S. Pan, and U. Adhikari,

“Modeling cyber-physical vulnerability of the smart grid with incomplete infor-

mation,” IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 235–244, Mar.

2013.

[118] R. Liu, C. Vellaithurai, S. S. Biswas, T. T. Gamage, and A. K. Srivastava, “An-

alyzing the cyber-physical impact of cyber events on the power grid,” IEEE

Transactions on Smart Grid, vol. 6, no. 5, pp. 2444–2453, Sept. 2015.

[119] D. Wei, Y. Lu, M. Jafari, P. M. Skare, and K. Rohde, “Protecting smart grid

automation systems against cyberattacks,” IEEE Transactions on Smart Grid,

vol. 2, no. 4, pp. 782–795, Dec. 2011.

[120] K. R. Davis, C. M. Davis, S. A. Zonouz, R. B. Bobba, R. Berthier, L. Garcia,

and P. W. Sauer, “A cyber-physical modeling and assessment framework for

power grid infrastructures,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp.

2464–2475, Sept. 2015.

[121] M. Vaiman, K. Bell, Y. Chen, B. Chowdhury, I. Dobson, P. Hines, M. Papic,

S. Miller, and P. Zhang, “Risk assessment of cascading outages: Methodologies

and challenges,” IEEE Transactions on Power Systems, vol. 27, no. 2, p. 631,

May 2012.

[122] J. Johansson and H. Hassel, “An approach for modelling interdependent infras-

tructures in the context of vulnerability analysis,” Reliability Engineering& Sys-

tem Safety, vol. 95, no. 12, pp. 1335–1344, 2010.

[123] V. Rosato, L. Issacharoff, F. Tiriticco, S. Meloni, S. Porcellinis, and R. Setola,

“Modelling interdependent infrastructures using interacting dynamical models,”

International Journal of Critical Infrastructures, vol. 4, no. 1-2, pp. 63–79,

2008.



BIBLIOGRAPHY 143

[124] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, “Catastrophic

cascade of failures in interdependent networks,” Nature, vol. 464, no. 7291, pp.

1025–1028, Apr. 2010.

[125] Y. Cai, Y. Cao, Y. Li, T. Huang, and B. Zhou, “Cascading failure analysis con-

sidering interaction between power grids and communication networks,” IEEE

Transactions on Smart Grid, vol. 7, no. 1, pp. 530–538, Jan. 2016.

[126] M. Rahnamay-Naeini and M. Hayat, “Cascading failures in interdependent in-

frastructures: An interdependent markov-chain approach,” IEEE Transactions

on Smart Grid, vol. 7, no. 4, pp. 1997–2006, Mar. 2016.

[127] V. Karyotis and M. Khouzani, Malware Diffusion Models for Modern Complex

Networks: Theory and Applications. San Francisco, California, USA: Morgan

Kaufmann, 2016.

[128] Y. Li, Y. Zhou, F. Liu, Y. Cao, and C. Rehtanz, “Design and implementation of

delay-dependent wide area damping control for stability enhancement of power

systems,” IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1831–1842, Jul.

2017.

[129] Y. Li, F. Liu, and Y. Cao, “Delay-dependent wide-area damping control for

stability enhancement of HVDC/AC interconnected power systems,” Control

Engineering Practice, vol. 37, pp. 43–54, Apr. 2015.

[130] S. Tang, “A modified SI epidemic model for combating virus spread in wire-

less sensor networks,” International Journal of Wireless Information Networks,

vol. 18, no. 4, pp. 319–326, Apr. 2011.
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