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Abstract

The thesis is mainly concerned with two fields: coherent feedback control for lin-

ear quantum systems and two-strategy evolutionary game theory. Three topics are

considered:

1. Design mixed linear quadratic Gaussian (LQG) and H∞ coherent feedback

controllers for linear quantum systems.

2. Develop a new classical strategy model to solve the problem that defectors

always dominate cooperators in a static two-strategy game.

3. Generalize the classical game theory into the quantum domain and state the

advantages of quantum strategies over classical strategies.

For topic 1, a class of closed-loop linear quantum systems is formulated in terms

of quantum stochastic differential equations (QSDEs) in quadrature form, where

both the plant and the controller are quantum systems. Under this framework, the

mixed feedback control problem is synthesized. After proving a general result for

the lower bound of LQG index, two methods, rank constrained LMI method and

genetic-algorithm-based method, are proposed for controller design. A passive sys-

tem (cavity) and a non-passive one (degenerate parametric amplifier, DPA), used as

numerical examples, demonstrate the effectiveness of these two proposed algorithms.

Furthermore, the superiority of genetic algorithm (GA) is verified by the comparison

between the numerical results of two proposed methods.

vii



For topic 2, by adding tags to the game players, a class of classical two-strategy

evolutionary model with finite population is proposed in Chapter 4. Tags represent

different characteristics of individuals in the game, and each player can choose how

many tags she/he expresses in the game. When an individual expresses more tags,

she/he will obtain higher probability to have common tags, which will make proba-

bilistically higher payoff. Nevertheless, the players should also pay for the expressed

tags, the cost of expressed tags increases with its numbers arising. Upon this model,

the evolutionary dynamics and stationary distributions of infinite time are synthe-

sized. Finally, three kinds of feasible strategies for C-strategy individual invading

into D-strategy population are obtained from numerical examples.

Topic 3 is presented in Chapter 5. Upon the standard classical memory-one Iter-

ated Prisoner’s Dilemma (IPD) game, the classical zero-determinant (ZD) strategies

in Press and Dyson (2012) is introduced. Then a class of two-strategy evolution-

ary game theory, named quantum zero-determinant (ZD) strategies, is attained by

generalizing the classical ZD strategies into the quantum domain. Three kinds of

numerical examples are given, which illustrate that the quantum zero-determinant

strategies have significant advantage over the classical zero-determinant strategies.

Meanwhile, when both players choose quantum zero-determinant strategies, it is the

same as the classical case, which are named quasi-classical zero-determinant (ZD)

strategies.
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Chapter 1

Introduction

1.1 Background

1.1.1 Quantum optimal control theory

With the rapid development of quantum technology in recent years, more and more

researchers are paying attention to quantum control systems, which are an important

part in quantum information science. On the other hand, it is found that many

methodologies in classical (namely non-quantum) control theory, can be extended

into the quantum regime (Bouten et al., 2007; Doherty and Jacobs, 1999; Doherty

et al., 2000; Hamerly and Mabuchi, 2013; James et al., 2008; Wang and James, 2015;

Zhang et al., 2012). Meanwhile, quantum control has its special features absent in the

classical case, see e.g. Wiseman and Milburn (2010), Wang et al. (2013), Zhang and

James (2011) and Zhang and James (2012). For example, a controller in a quantum

feedback control system may be classical, quantum or even mixed quantum/classical

(James et al., 2008). Generally speaking, in the quantum control literature, the

feedback control problem in which the designed controller is also a fully quantum

system is often named as “coherent feedback control”.

Optimal control, as a vital concept in classical control theory (Zhou et al., 1996),

has been widely studied. H2 and H∞ control are the two foremost control methods

in classical control theory, which aim to minimize cost functions with specific forms
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from exogenous inputs (disturbances or noises) to pertinent performance outputs.

When the disturbances and measurement noises are Gaussian stochastic processes

with known power spectral densities, and the objective is a quadratic performance

criterion, then the problem of minimizing this quadratic cost function of linear sys-

tems is named as LQG control problem, which has been proved to be equivalent to

an H2 optimal control problem (Zhou et al., 1996). On the other hand, H∞ control

problem mainly concerns the robustness of a system to parameter uncertainty or

external disturbance signals, and a controller to be designed should make the closed-

loop system stable, meanwhile minimizing the influence of disturbances or system

uncertainties on the system performance in terms of the H∞ norm of a certain trans-

fer function. Furthermore, the mixed LQG (or H2) and H∞ control problem for

classical systems has been studied intensively during the last three decades. When

the control system is subject to both white noises and signals with bounded power,

not only optimal performance (measured in H2 norm) but also robustness specifica-

tions (in terms of an H∞ constraint) should be taken into account, which is one of

the main motivations for considering the mixed control problem (Zhou et al., 1994);

see also Campos-Delgado and Zhou (2003), Doyle et al. (1994), Khargonekar and

Rotea (1991), Neumann and Araujo (2004), Qiu et al. (2015), Zhou et al. (1996) and

Zhou et al. (1994) and the references therein.

Very recently, researchers have turned to consider the optimal control problem of

quantum systems. For instance, H∞ control of linear quantum stochastic systems is

investigated in James et al. (2008), three types of controllers are proposed. Nurdin

et al. (2009) proposes a method for quantum LQG control, for which the designed

controller is also a fully quantum system. In Zhang and James (2011), direct coupling

and indirect coupling for quantum linear systems have been discussed. It is shown

in Zhang et al. (2012) that phase shifters and squeezers can be used in feedback loop

for better control performance. Nevertheless, all of above papers mainly focus on the
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vacuum inputs, while the authors in Hamerly and Mabuchi (2013) concern not only

the vacuum input, but also the thermal input. They also discussed how to design both

classical and non-classical controllers for LQG control problem. Besides, because of

non-linear and non-convex constraints in the coherent quantum controller synthesis,

Harno and Petersen (2015) uses a differential evolution algorithm to construct an

optimal linear coherent quantum controller. Notwithstanding the above research,

to our best knowledge, there is little research on the mixed LQG and H∞ coherent

control problem for linear quantum systems, except Bian et al. (2015).

Similar to the classical case, in mixed LQG and H∞ quantum coherent control,

LQG and H∞ performances are not independent. Moreover, because the controller

to be designed is another quantum-mechanical system, it has to satisfy additional

constraints, which are called “physical realizability conditions” (James et al., 2008;

Zhang and James, 2012). For more details, please refer to Section 3.2.

1.1.2 Classical game theory

Game theory is the study of mathematical models of multi-person decision problems

in some conflict situation. It was developed in the 1930’s and then firstly formalized

in von Neumann and Morgenstern (1944). Now, game theory has been widely used

to illuminate economic, logical, political, psychological and biological phenomena.

Games can be divided into two types, cooperative game and non-cooperative

game (Myerson, 1997). A game is cooperative if the players are able to form binding

commitments externally enforced, while a game is non-cooperative if players cannot

form alliances or if all agreements need to be self-enforcing. Cooperative game theory

provides a high-level approach, since it focuses on predicting which coalitions will

form, the joint actions that groups take and the resulting collective payoffs, whereas

the non-cooperative game theory focuses on predicting individual players’ actions

and payoffs. Thus, the non-cooperative game theory is more general and we mainly
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focus on non-cooperative games in this thesis.

When considering a non-cooperative game, Nash Equilibrium (NE) is one of

the foundational concepts. The Nash Equilibrium is a solution concept of a non-

cooperative game involving two or more players in which each player is assumed to

know the equilibrium strategies of the other players, and no player has anything to

gain by changing only his or her own strategy (Osborne and Rubinstein, 1994).

Prisoner’s Dilemma (PD) is a standard example of a game analyzed in game

theory that shows why two completely “rational” individuals might not cooperate,

even if it appears that it is in their best interests to do so. However, it has been

proved that the Nash Equilibrium of a traditional Prisoner’s Dilemma game is mu-

tual defection, which is not the globally best strategy. Therefore, more and more

researchers turn to focus on repeated/iterated Prisoner’s Dilemma (IPD), and further

the evolution of cooperation, in order to design some kinds of strategies and succeed

to achieve cooperation. Please see Axelrod and Hamilton (1981), Axelrod (1984),

Kendall et al. (2007), Nowak and Sigmund (1993), Nowak et al. (2004), Nowak

(2006), Press and Dyson (2012) and Rubinstein (1986). Moreover, in the standard

evolutionary model of the repeated/iterated Prisoner’s Dilemma, two important is-

sues, evolutionary game dynamics and evolutionary stable strategies (ESS), are also

been widely studied (Binmore and Samuelson, 1992; Fudenberg and Harris, 1992;

Ficici and Pollack, 2000; Hofbauer and Sigmund, 2003; Nowak et al., 2004; Schaffer,

1988; Taylor and Jonker, 1978; Hilbe et al., 2013, 2014; Pan et al., 2015).

1.1.3 Quantum game theory

With the recent interest in quantum computing and quantum information theory,

there is necessity to extend the classical game theory into the quantum domain, and

hence study the effect of quantum superposition and entanglement on the agents’

optimal strategies.

4



In the quantum game theory, there are three main differences from the classical

game theory: 1. superposed initial states; 2. quantum entanglement of initial states;

3. superposition of strategies to be used on the initial states. Thus, the quantum

game theory is very different to the classical game theory, and may be useful in

studying quantum communication, which can be considered as a game where the

objective is to maximize effective communication. Inspired by quantum game theory,

some researchers have tried to apply this theory in some traditional areas, see e.g.,

Piotrowski and Sladkowski (2001), Pakula et al. (2006).

Several results on quantum game theory have been obtained. For example, a

simple coin game is considered in Meyer (1999), while a player with quantum super-

position could certainty win against a classical player. Eisert et al. (1999) generalized

the classical prisoners’ dilemma to a kind of general two-strategy quantum games be-

tween two game players, with the superior performance of the quantum strategies if

entanglement is present. Furthermore, Benjamin and Hayden extend the result in

Eisert et al. (1999) to the multi-player games in Benjamin and Hayden (2001). Mar-

inatto and Weber (2000) studies a quantum approach for static games while Iqbal

and Toor (2002b) considers the repeated quantum games. There are also results

for quantum game theory, by combining the game theory definitions and methods

with quantum properties and applications, see e.g. Du et al. (2002), Iqbal and Toor

(2001), Iqbal and Toor (2002a) and Li et al. (2001) and the references therein.

Inspired by classical zero-determinant (ZD) strategies, developed in Press and

Dyson (2012), and upon the above successful results with extension of classical strate-

gies to the quantum domain, a class of quantum zero-determinant strategies could be

considered. Moreover, we may expect that the quantum zero-determinant strategies

will have advantages over the classical zero-determinant strategies.
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1.2 Summary of contributions of the thesis

The original contributions of this thesis are as follows.

• A mixed LQG and H∞ coherent feedback control problem has been studied,

while most of the present literatures (except the conference paper Bian et al.

(2015)) only focus on LQG or H∞ control problem separately. For a typical

quantum optical system, there exist quantum white noise as well as finite energy

signals (like lasers). Quantum white noise can be dealt with by LQG control,

while finite energy disturbance can be better handled by H∞ control. As a

result, it is important to study the mixed control problem. A general result for

the lower bound of LQG index is proved, which is the extension of Theorem

4.1 in Zhang et al. (2012). The genetic-algorithm-based method is proposed

to design a coherent controller for this mixed problem. In contrast to the

numerical algorithm proposed in the earlier conference paper (Bian et al., 2015),

the new algorithm is much simpler and is able to produce better results, as

clearly demonstrated by numerical studies in Chapter 3.

• By adding tags to express the characteristics of the game players, a novel

model of classical two-strategy repeated/iterated game in finite populations

is proposed. The players’ payoffs are affected by the numbers of common

tags, as described: when an individual express more tags, it will obtain higher

probability to have common tags, which will yield probabilistic higher payoff.

Nevertheless, the players should also pay for the expressed tags, the cost of

expressed tags increases with its numbers arising. The effects are subject to the

interaction rate r(x) and the penalty parameter δ. Since the transition matrix

of each time step is a Markov matrix, the stationary distribution, as well as

the evolutionary dynamics, are discussed. Three kinds of feasible strategies for
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C-strategy individual invading into D-strategy population are obtained from

the numerical examples, which also indicate the effectiveness of the proposed

model.

• Upon two-player Iterated Prisoner’s Dilemma (IPD), the classical zero-determinant

(ZD) strategies, developed in Press and Dyson (2012) are extended into the

quantum domain, yielding a class of quantum zero-determinant strategies.

Three kinds of quantum zero-determinant strategies are chosen as the strategy

for one player in the two-player IPD game. The effectiveness of the proposed

quantum zero-determinant strategies are demonstrated by numerical results.

Furthermore, the advantages and features of quantum ZD strategies over clas-

sical ZD strategies are indicated in the game, between one player (with quantum

ZD strategies) and another player (with classical/quantum ZD strategies).

1.3 Organization of the thesis

The thesis is structured as follows.

• Chapter 2 reviews the preliminary knowledge of linear quantum systems firstly.

Two representation forms of linear quantum systems, annihilation-creation op-

erator representation and amplitude-phase quadrature representation, are pre-

sented. Then physical realizability conditions in terms of QSDEs are stated,

followed by Direct coupling, which is used in numerical simulations. Secondly,

some basic concepts and terminologies of game theory are reviewed. The defi-

nitions of static games and Nash Equilibrium (NE) are introduced. Upon the

original Prisoner’s Dilemma (PD) and its general form presented in Subsection

2.2.2, the Iterated Prisoner’s Dilemma (IPD) is discussed at last.

• Chapter 3 focuses on a mixed LQG and H∞ coherent feedback control prob-
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lem for linear quantum systems. A general model of linear quantum composite

plant-controller systems and corresponding physical realizability conditions are

presented. Then the mixed LQG and H∞ coherent feedback control problem

is formulated in terms of the close-loop system. Two different algorithms,

rank constrained LMI method (Bian et al., 2015) and genetic-algorithm-based

method are proposed to solve the mixed problem. The numerical results (sub-

ject to a passive cavity and a non-passive DPA) illustrate the effectiveness of

the proposed algorithms, and demonstrate the advantage of the GA method

over the rank constrained LMI method.

• Chapter 4 states a kind of classical evolutionary game theory in terms of players

with tags. The standard classical evolutionary game model in finite populations

is presented firstly. By adding tags to game players to describe their character-

istics, we synthesize the evolutionary dynamics and stationary distributions for

the new model. Finally, three classes of numerical examples are chosen to do

the simulations, indicating the effectiveness of the proposed model, while get-

ting the feasible strategies. Moreover, the comparison between strategy factors

is also presented.

• Chapter 5 generalizes the classical game theory into the quantum domain.

Firstly, the standard classical Iterated Prisoner’s Dilemma (IPD) is introduced.

Upon two-player memory-one iterated game, a kind of classical strategies,

named zero-determinant (ZD) strategies, is presented. Then the general proto-

col of a two-player quantum game is reviewed. Depending on the quantum game

theory, we synthesize a class of quantum zero-determinant strategies. At last,

the effectiveness of the quantum ZD strategies, as well as their advantages over

the classical ZD strategies are illustrated by numerical simulations. Further-

more, it is interesting that when both two players use quantum strategies, the
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quantum ZD strategies degenerate to the classical ones (named quasi-classical

ZD strategies).

• Chapter 6 concludes the whole thesis and plans for the future work.
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Chapter 2

Preliminaries of linear quantum

systems and iterated game theory

in finite populations

This chapter has two sections. The first section mainly concerns basic concepts

and results of linear quantum systems. Firstly, we introduce two kinds of representa-

tions for an open linear quantum system, namely annihilation-creation operator form

and amplitude-phase quadrature form. Then physical realizability conditions are re-

viewed, which are necessary for a class of stochastic differential equations to represent

the dynamics of a meaningful physical system. Direct coupling is also introduced for

the use of Chapter 3. We give brief introductions of traditional game theory in the

second section. Firstly, the definitions of static games and Nash Equilibrium (NE)

are given. Then we introduce a famous kind of games, Prisoner’s Dilemma (PD),

and the canonical form of Prisoner’s Dilemma, as well as some conditions. For the

use of Chapter 4, we introduce the Iterated Prisoner’s Dilemma (IPD) and state the

reason for considering it.
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2.1 Linear quantum systems

2.1.1 Operator representation of linear quantum systems

An open linear quantum system G consists of N quantum harmonic oscillators a =

[a1 · · · aN ]T interacting with Nw-channel quantum fields. Here, aj is the annihilation

operator of the jth quantum harmonic oscillator and a∗j is the creation operator.

They satisfy canonical commutation relations (CCR): [aj, a
∗
k] = δjk, and [aj, ak] =

[a∗j , a
∗
k] = 0 (j, k = 1, ..., N), where the asterisk ∗ indicates Hilbert space adjoint or

complex conjugation. Such a linear quantum system can be specified by a triple of

physical parameters (S, L,H) (Gough and James, 2009).

In this triple, S is a unitary scattering matrix of dimension Nw. L is a vector of

coupling operators defined by

L = C−a+ C+a
# (2.1)

where C− and C+ ∈ CNw×N . H is the Hamiltonian describing the self-energy of the

system, satisfying

H =
1

2
ă†∆(Ω−,Ω+)ă (2.2)

where Ω− and Ω+ ∈ CN×N with Ω− = Ω†− and Ω+ = ΩT
+.

The annihilation-creation operator representation for linear quantum stochastic

systems can be written as the following quantum stochastic differential equations

(QSDEs)

dă(t) = Ăă(t)dt+ B̆dB̆in(t), ă(0) = ă0

dy̆(t) = C̆ă(t)dt+ D̆dB̆in(t),
(2.3)

where Bin(t) =
∫ t

0
bin(τ)dτ and bin(t) describes the Nw-channel input field be-

fore interaction, y̆(t) is the system output B̆out(t) and Bout(t) describes the Ny-

channel output field after interaction. The correspondences between system matrices
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(Ă, B̆, C̆, D̆) and parameters (S, L,H) are as follows

Ă = −1

2
C̆[C̆ − iJN∆(Ω−,Ω+), B̆ = −C̆[∆(S, 0),

C̆ = ∆(C−, C+), D̆ = ∆(S, 0),

(2.4)

where i =
√
−1 is the imaginary unit and Ny = Nw.

2.1.2 Quadrature representation of linear quantum systems

In addition to annihilation-creation operator representation, there is an alternative

form, amplitude-phase quadrature representation, where all the operators are observ-

ables (self-adjoint operators) and all corresponding matrices are real, so this form

is more convenient for standard matrix analysis software packages and programmes

(Bian et al., 2015; Zhang et al., 2012).

Firstly, denote qj = (aj + a∗j)/
√

2 as the real or amplitude quadrature, and pj =

(−iaj + ia∗j)/
√

2 as the imaginary or phase quadrature. It is easy to show these two

quadratures satisfy the CCR [qj, pk] = iδjk and [qj, qk] = [pj, pk] = 0 (j, k = 1, ..., N).

By defining a coordinate transform

x := Λnă, w := Λnw b̆in, y := Λny y̆, (2.5)

where

Λn =
1√
2

[
I I
−iI iI

]
n×n

(2.6)

is a unitary matrix, we could get

dx(t) = Ax(t)dt+Bdw(t), x(0) = x0

dy(t) = Cx(t)dt+Ddw(t),
(2.7)

where n = 2N , nw = 2Nw, ny = 2Ny are positive even integers, and x(t) =

[q1(t) · · · qN(t) p1(t) · · · pN(t)]T is the vector of system variables, w(t) = [w1(t) · · · wnw(t)]T
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is the vector of input signals, including control input signals, noises and disturbances,

y(t) = [y1(t) · · · yny(t)]T is the vector of outputs. A, B, C and D are matrices in

Rn×n, Rn×nw , Rny×n and Rny×nw , respectively. The correspondences between the

coefficient matrices of two different representations are

A = ΛnĂΛ†n, B = ΛnB̆Λ†nw ,

C = ΛnyC̆Λ†n, D = ΛnyD̆Λ†nw .
(2.8)

Remark 2.1. For simplicity in calculation, we usually do a permutation to obtain

x(t) = [x1(t) · · · xn(t)]T = [q1(t) p1(t) · · · qN(t) pN(t)]T , and similarly for w(t),

y(t) and corresponding matrices (Zhang et al., 2012). In the rest of this Chapter and

Chapter 3, we focus on the quadrature form after this permutation.

Assumption 2.1. We give some assumptions for the quantum system (2.7) (Bian

et al., 2015; James et al., 2008; Nurdin et al., 2009).

1. The initial system variable x(0) = x0 is Gaussian.

2. The vector of inputs w(t) could be decomposed as dw(t) = βw(t)dt + dw̃(t),

where βw(t) is a self-adjoint adapted process, w̃(t) is the noise part of w(t), and

satisfies dw̃(t)dw̃T (t) = Fw̃dt, where Fw̃ is a nonnegative Hermitian matrix. In

quantum optics, w̃(t) is quantum white noise, and βw(t) is the signal, which in

many cases is L2 integrable.

3. The components of βw(t) commute with those of dw̃(t) and also those of x(t)

for all t > 0.

2.1.3 Physical realizability conditions of linear QSDEs

The QSDEs (2.7) may not necessarily represent the dynamics of a meaningful phys-

ical system, because quantum mechanics demands physical systems to evolve in a

unitary manner. This implies the preservation of canonical commutation relations
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x(t)xT (t)−(x(t)xT (t))T = iΘ for all t > 0, and also another constraint related to the

output signal. These constraints are formulated as physically realizability conditions

of quantum linear systems in James et al. (2008).

A linear noncommutative stochastic system of quadrature form (2.7) is physically

realizable if and only if

iAΘ + iΘAT +BTw̃B
T = 0, (2.9a)

B = ΘCTdiagNy(F ), (2.9b)

D = Iny , (2.9c)

where Tw̃ = 1
2
(Fw̃−F T

w̃ ), the first equation determines the Hamiltonian and coupling

operators, while the others relate to the required form of the output equation.

2.1.4 Direct coupling

There are also some additional components in quantum systems, such as direct cou-

pling, phase shifter, ideal squeezer, etc. Interested readers could refer to e.g. Zhang

and James (2011), Zhang and James (2012), Zhang et al. (2012). Depending on the

need of this thesis, we just briefly introduce the direct coupling.

In quantum mechanics, two independent systems G1 and G2 may interact by

exchanging energy directly. This energy exchange can be described by an interaction

Hamiltonian Hint. In this case, it is said that these two systems are directly coupled.

When they are expressed in the annihilation-creation operator form,

dă1(t) = Ă1ă1(t)dt+ B̆12ă2(t)dt,

dă2(t) = Ă2ă2(t)dt+ B̆21ă1(t)dt,

where the subscript 1 means that corresponding terms belong to the system G1, and

similar for subscript 2. B12 and B21 denote the direct coupling between two systems,
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and satisfy the following relations

B12 = −∆(K−, K+)[,

B21 = −B[
12 = ∆(K−, K+),

where K− and K+ are arbitrary constant matrices of appropriate dimensions.

Definition 2.1. For a quantum linear system in the annihilation-creation operator

form which is defined by parameters (C−, C+,Ω−,Ω+, K−, K+), there will have the

following classifications:

1. If all “plus” parameters (i.e. C+, Ω+ and K+) are equal to 0, the system is

called a passive system;

2. Otherwise, it is called a non-passive system.

For example, consider a optical cavity system taken from Section VII of James

et al. (2008). The dynamics of the cavity is described by Eq. (2.10).

dx (t) = −γ
2
I2x (t) dt−√κ1I2dv(t)−√κ2I2dw (t)−√κ3I2du(t),

dy(t) =
√
κ2I2x(t)dt+ I2dw(t)

(2.10)

with parameters γ = κ1 + κ2 + κ3, κ1 = 2.6, κ2 = κ3 = 0.2.

For this open system, it can be seen that K− = K+ = 0. By Eqs. (2.7) and

(2.8), it is clearly that Ă = A = −1.5I2, B̆ = B = −
√

0.2I2, C̆ = C =
√

0.2I2 and

D̆ = D = I2. Therefore, by Eq. (2.4), we could easily calculate that:

C− =
√

0.2, C+ = 0, Ω− = 1.4, Ω+ = 0,

and the corresponding Hamiltonian H = 0.7(aa+ a∗a∗).

Consequently, as C+ = Ω+ = K+ = 0, by Definition 2.1, this example (optical

cavity) is a passive system. Similarly, it is easy to verify that the example 2 (DPA)

in Section 3.4 is a non-passive system.
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2.2 Brief introduction of game theory

In this section, we introduce some basic terminologies and ideas of game theory.

2.2.1 Static games and Nash Equilibrium (NE)

Game theory attempts to mathematically model a situation where agents interact

(Flitney and Abbott, 2002). The agents in the game are called players, their possible

actions are called moves or actions, and a prescription that specifies the particular

move to be made in all possible game situations is called a strategy. The utility to a

player of a game’s outcome is a numerical measure of the desirability of that outcome

for the player, and a payoff matrix gives numerical values to the players’ utility for

all the game outcomes.

Static games are also called simultaneous-move games, which mean that the play-

ers choose actions simultaneously, after that the players receive payoffs that depend

on the combination of actions just chosen. In this Subsection, we only discuss static

games.

Generally speaking, classical game theory consists of two parts: cooperative game

and non-cooperative game. In this thesis, we mainly focus on the non-cooperative

game.

Definition 2.2. (Cheng and Liu, 2015) A normal non-cooperative game is a triple

G = (N,S, c), where

1. N = {1, 2, . . . , n} is the set of players. That is, there are n players named as

1, 2, . . . , n in the game.

2. Si = {1, 2, . . . , ki} is the strategy set of the player i, i = 1, . . . , n. That is, the

player i has ki different strategies (or actions). The Cartesian product of Si,

denoted as S =
∏n

i=1 Si, is called the profile of the game.
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3. cj(s) : S → R is called the payoff function of the player j, which means how

much the player j can get from the game, j = 1, . . . , n. Putting them together,

we have c = {c1, . . . , cn}.

For non-cooperative games, the Nash Equilibrium (NE) is the most important

concept, which is considered as the “solution” to non-cooperative games.

Definition 2.3. (Gibbons, 1992) In a normal non-cooperative game G, a profile s =

(s∗1, . . . , s
∗
n) ∈ S is called a Nash equilibrium, if for each player j, s∗j is the player j’s

best response to the strategies specified for the other n−1 players (s∗1, . . . , s
∗
j−1, s

∗
j+1, . . . , s

∗
n),

i.e.

cj(s
∗
1, . . . , s

∗
j−1, s

∗
j , s
∗
j+1, . . . , s

∗
n) > cj(s

∗
1, . . . , s

∗
j−1, sj, s

∗
j+1, . . . , s

∗
n), ∀sj ∈ Sj, j = 1, . . . , n.

That is, s∗j solves

max
sj∈Sj

cj(s
∗
1, . . . , s

∗
j−1, sj, s

∗
j+1, . . . , s

∗
n).

L C R

T

M

B

(0, 4) (4, 0) (5, 3)

(4, 0)

(3, 5)

(0, 4)

(3, 5)

(5, 3)

(6, 6)

T

M

B

L C R

(0, 4) (4, 0) (5, 3)

(0, 4)(4, 0) (5, 3)

(6, 6)(3, 5)(3, 5)

Figure 2.1: A example to show how to calculate the Nash Equilibrium (NE).

To be more concrete, we now look at a simple example. Consider a normal-form

game shown in Figure 2.1, where T , M , B denote the row player’s strategies, and L,

C, R are strategies for the column player. A brute-force approach to finding a game’s

Nash equilibrium is simply to check whether each possible combination of strategies

satisfies condition (NE) in Definition 2.3. In a two-player game, this approach begins
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as follows: for each player, and for each feasible strategy of that player, determine

the other player’s best response to that strategy. The right figure in Figure 2.1 does

this for the game in the left figure in Figure 2.1, by underlining the payoff to player

j’s best response to each of player i’s feasible strategies. For instance, if the column

player were to play C, then the row player’s best response would be T , since 4 exceeds

0 and 3, so the row player’s payoff of 4 in the (T,C) cell is underlined.

A pair of strategies satisfies condition (NE) if each player’s strategy is the best

response to the other’s, i.e., if both payoffs are underlined in the corresponding cell.

Thus, the cell (B,R) in Figure 2.1 is the only strategy pair that satisfies (NE),

indicating that this strategy pair is the unique Nash equilibrium of the game.

2.2.2 Prisoner’s Dilemma (PD)

The Prisoner’s Dilemma (PD), named by Albert W. Tucker (Tucker, 1950; Straffin,

1980), is a standard example of games analyzed in game theory that shows why two

completely “rational” individuals might not cooperate, even if it appears that it is

in their best interests to do so. It is presented as follows (Poundstone, 1992).

Two members of a criminal gang are arrested and imprisoned. Each prisoner

is in solitary confinement with no means of communication with the other. The

prosecutors lack sufficient evidence to convict the pair on the principal charge. They

hope to get both sentenced to a year in prison on a lesser charge. Simultaneously,

the prosecutors offer each prisoner a bargain. Each prisoner is given the opportunity

either to: betray the other by testifying that the other committed the crime, or to

cooperate with the other by remaining silent. The offer is:

1. If A and B each betrays the other, each of them serves 2 years in prison,

2. If A betrays B but B remains silent, A will be set free and B will serve 3 years

in prison (and vice versa),
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3. If A and B both remain silent, both of them will only serve 1 year in prison

(on the lesser charge),

as shown in Figure 2.2, where the first entry in the parenthesis for prisoner A and

the second number for prisoner B.

Silent

(-1, -1) (-3, 0)

(0, -3) (-2, -2)

Betray

Silent

Betray

Prisoner B

Prisoner A

Figure 2.2: The illustration of Prisoner’s Dilemma (PD).

It is assumed that prisoners A and B only focus on their own prison sentences,

and their decision will not affect their reputation in the future. Then it is clear to see

that, prisoner A will serve less years in prison when prisoner A betrays prisoner B

than cooperates with prisoner B (since: 0 < 1, 2 < 3), and similar to prisoner B. So

the only possible outcome for two purely rational prisoners is betraying each other,

corresponding to the cell (−2,−2). Furthermore, we notice that the cell (−2,−2) is

the unique Nash equilibrium of PD, which can be calculated depending on Definition

2.3.

The structure of the traditional Prisoner’s Dilemma can be generalized from its

original prisoner setting. Suppose that the two players are represented by Alice

and Bob, respectively. Each player can choose one of two strategies, “Cooperate”

(corresponding to “Silent” in original PD) or “Defect” (corresponding to “Betray”

in original PD), which can be expressed in Table 2.1.

Table 2.1 shows the payoff matrix for a general Prisoner’s Dilemma, where the

first entry in the parenthesis denotes the payoff of the player Alice and the second

number for the payoff of the player Bob. When Alice and Bob cooperate (corresponds
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Table 2.1: Payoff matrix of the Canonical Prisoner’s Dilemma.

Player: Bob
Strategy: C Strategy: D

Player:
Alice

Strategy: C (R, R) (S, T)
Strategy: D (T, S) (P, P)

to strategy C), each player earns a payoff R (Reward). If one defects (corresponds

to strategy D), the defector gets an larger payment T (Temptation), and the naive

cooperator gets S (“Sucker’s” payoff). However, if both of them defect, then both

get a meager payment P (Punishment).

Moreover, to be a PD game in the strong sense, the following two inequality

conditions must be held.

1. T > R > P > S guarantees that the Nash equilibrium of the game is mutual

defection, where T > R and P > S imply that defection is the dominant

strategy for both of them, while R > P implies the mutual cooperation is

superior to mutual defection.

2. 2R > T + S makes mutual cooperation the globally best outcome.

2.2.3 Iterated Prisoner’s Dilemma (IPD)

It is clearly that the Canonical Prisoner’s Dilemma discussed in Subsection 2.2.2 is

a type of static games, and its unique Nash equilibrium is the cell (P, P ) (i.e. both

two players choose defection), which is not the globally best strategy.

If two players play Prisoner’s Dilemma game more than once in succession and

they remember previous actions of their opponent and change their strategy accord-

ingly, the game is called Iterated (or repeated) Prisoner’s Dilemma (IPD).

Definition 2.4. (Gibbons, 1992) Given a static game G,
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1. G(T ), named as finitely repeated game, if G is played T times, with the

outcomes of all preceding plays observed before the next play begins.

2. If the game G is played infinitely, we have an infinitely repeated game.

When we consider the Nash equilibrium of a finitely repeated game, there is an

important result shown in Lemma 2.1.

Lemma 2.1. (Gibbons, 1992) If the static game G has a unique Nash equilibrium,

then for any finite time T , the finitely repeated game G(T ) has a unique subgame-

perfect outcome: the Nash equilibrium of G is played in every stage.

By Lemma 2.1, it is easily obtained that, in every period of a finitely repeated

Prisoner’s Dilemma, the Nash equilibrium is each player chooses strategy D. When

a game goes on indefinitely, if there is a future period in which one player’s action

is C, then this player can punish the other player by choosing strategy D instead of

C in the next period (Osborne, 2004). This fact suggests that an infinitely repeated

game may be a suitable model which captures the idea that cooperation may be

sustained by “punishment” strategies when players interact repeatedly.

Consequently, for classical game theory, we consider an infinitely repeated/iterated

Prisoner’s Dilemma game consisting of multiple, successive plays by the same oppo-

nents in Chapter 4. Opponents may now condition their play on their opponent’s

strategy insofar as each can deduce it from the previous play. However, we give each

player only a finite memory of previous play (Press and Dyson, 2012; Hauert and

Schuster, 1997). It has been proved that, for any strategy of the longer-memory

player, shorter-memory player’s score is exactly the same as if the longer-memory

player had played a certain shorter-memory strategy. For the detailed proof and

recent results on memory-one and long-memory strategies, interested readers could

refer to Appendix A in Press and Dyson (2012), as well as Hilbe et al. (2017).
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Chapter 3

Mixed LQG and H∞ coherent

feedback control for linear
quantum systems

In this chapter, we focus on a mixed LQG and H∞ coherent feedback control problem.

Firstly, for a class of open linear quantum systems, a quantum controller is designed

to form the closed-loop system. We also derive the specific physical realizability

conditions, which are necessary for coherent feedback control problems. Secondly,

we discuss both the LQG and H∞ control problems for the closed-loop system,

as well as the synthesis of the mixed coherent feedback control problem. We also

prove a general result for the lower bound of the LQG index, which is an extension

of Theorem 4.1 in Zhang et al. (2012). Then two algorithms, rank constrained

LMI method (Bian et al., 2015) and genetic-algorithm-based method, are proposed

for the mixed problem. Finally, we test the two proposed algorithms by means of

a passive system (cavity) and a non-passive one (degenerate parametric amplifier,

DPA). The numerical results illustrate the effectiveness of the proposed algorithms.

Furthermore, the genetic-algorithm-based method is much simpler and is able to

produce better results, as clearly demonstrated by numerical studies.

23



3.1 Formulation of linear quantum systems

In this section, we firstly formulate the QSDEs for a closed-loop system, in which both

the plant and controller are quantum systems. We also propose physical realizability

conditions for the controller.

3.1.1 Composite plant-controller system

P

K

u

v
w

zl
z∞

Hinty

bvk1
bvk2

Figure 3.1: Schematic of the closed-loop plant-controller system.

Consider the closed-loop system as shown in Figure 3.1. The quantum plant P

is described by QSDEs in the quadrature form (Bian et al., 2015),

dx(t) = Ax(t)dt+B0dv(t) +B1dw(t) +B2du(t),

dy(t) = C2x(t)dt+D20dv(t) +D21dw(t),

dz∞(t) = C1x(t)dt+D12du(t),

zl(t) = Czx(t) +Dzβu(t),

(3.1)

where A, B0, B1, B2, C2, D20, D21, C1, D12, Cz and Dz are real matrices in Rn×n,

Rn×nv , Rn×nw , Rn×nu , Rny×n, Rny×nv , Rny×nw , Rn∞×n, Rn∞×nu , Rnl×n, Rnl×nu respec-

tively, n, nv, nw, nu, ny are positive even numbers, and n∞, nl are positive integers.

x(t) = [x1(t) · · · xn(t)]T is the vector of self-adjoint possibly noncommutative system
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variables; u(t) = [u1(t) · · · unu(t)]T is the controlled input; v(t) = [v1(t) · · · vnv(t)]T

and w(t) = [w1(t) · · · wnw(t)]T contain quantum white noises and signal inputs.

z∞(t) = [z∞1(t) · · · z∞n∞ (t)]T and zl(t) = [zl1(t) · · · zlnl (t)]T are controlled outputs

which are used for H∞ and LQG performance, respectively.

The purpose is to design a coherent feedback controller K to minimize the LQG

index and the H∞ norm of the closed-loop system simultaneously, and K has the

following form

dξ(t) = Akξ(t)dt+Bk1dBvk1(t) +Bk2dBvk2(t) +Bk3dy(t),

du(t) = Ckξ(t)dt+ dBvk1(t),
(3.2)

where ξ(t) = [ξ1(t) · · · ξnk(t)]T is a vector of self-adjoint variables, and matrices Ak,

Bk1, Bk2, Bk3, Ck have appropriate dimensions.

Assumption 3.1. Similarly with Assumption 2.1, we give additional assumptions

for the plant and controller in Figure 3.1.

1. The inputs w(t) and u(t) have the decompositions: dw(t) = βw(t)dt + dw̃(t),

du(t) = βu(t)dt+ dũ(t), where the meanings of βw, βu and w̃, ũ are similar as

those in Assumption 2.1;

2. The controller state variable ξ(t) has the same order as the plant state variable

x(t);

3. v(t), w̃(t), bvk1(t) and bvk2(t) are independent quantum noises in vacuum state;

4. The initial plant state x(0) and controller state ξ(0) satisfy the following re-

lations: x(0)xT (0) − (x(0)xT (0))T = iΘ, ξ(0)ξT (0) − (ξ(0)ξT (0))T = iΘk,

x(0)ξT (0) − (ξ(0)xT (0))T = 0, where Θk means a matrix Θ with appropriate

dimension for the controller K.
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By the identification βu(t) ≡ Ckξ(t) and ũ(t) ≡ bvk1(t), the closed-loop system is

obtained as

dη(t) = Mη(t)dt+Ndw̃cl(t) +Hβw(t)dt,

dz∞(t) = Γη(t)dt+ Πdw̃cl(t),

zl(t) = Ψη(t),

(3.3)

where η(t) = [xT (t) ξT (t)]T denotes the state of the closed-loop system, βw(t) is the

disturbance, while w̃cl(t) = [vT (t) w̃T (t) bTvk1(t) bTvk2(t)]T contains all quantum white

noises. The coefficient matrices are

M =

[
A B2Ck

Bk3C2 Ak

]
,

N =

[
B0 B1 B2 0

Bk3D20 Bk3D21 Bk1 Bk2

]
,

H =

[
B1

Bk3D21

]
, Γ =

[
C1 D12Ck

]
,

Π =
[
0 0 D12 0

]
, Ψ =

[
Cz DzCk

]
.

3.1.2 Physical realizability conditions

For the plant P introduced in the previous subsection, we want to design a controller

K which is also a quantum-mechanical system. Hence from James et al. (2008) and

Zhang et al. (2012), Eq. (3.2) should also satisfy the following physical realizability

conditions

AkΘk + ΘkA
T
k +Bk1diagnvk1/2(F )BT

k1

+Bk2diagnvk2/2(F )BT
k2

+Bk3diagnvk3/2(F )BT
k3 = 0, (3.4a)

Bk1 = ΘkC
T
k diagnu/2(F ). (3.4b)
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3.2 Synthesis of mixed LQG and H∞ coherent feed-

back control problem

For the system given in Section 3.1, we firstly present the standard LQG and H∞

control problem separately. For the LQG index, we prove a general result for the

lower bound of it. On the other hand, since it is general difficult to derive a general

result for lower bounds of H∞ index, we get a simple example to calculate it, by

using algebraic Riccati equations (James et al., 2008). At last, the mixed LQG and

H∞ control problem is discussed.

3.2.1 LQG control problem

LQG control problem, i.e. Linear Quadratic Gaussian control problem, is an optimal

control problem about designing a controller to minimize the quadratic cost function

of the system which is disturbed by additive Gaussian white noise. With the closed-

loop system (3.3), we associate a quadratic performance index

J(tf ) =

∫ tf

0

〈zTl (t)zl(t)〉dt, (3.5)

where the notation 〈·〉 is standard and refers to as quantum expectation (Merzbacher,

1998).

Remark 3.1. In classical control,
∫∞

0
(x(t)TPx(t) + u(t)TQu(t))dt is the standard

form for LQG performance index, where x is the system variable and u is the control

input. However, things are more complicated in the quantum regime. By Eq. (3.2),

we can see that u(t) is a function of both ξ(t) (the controller variable) and bvk1(t)

(input quantum white noise). If we use u(t) in Eq. (3.2) directly, then there will

be quantum white noise in the LQG performance index, which yields an unbounded

LQG control performance. On the other hand, by Eq. (3.5), the LQG performance
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index is a function of x(t) (the system variable) and ξ(t) (the controller variable).

This is the appropriate counterpart of the classical case.

Generally, we always focus on the infinite horizon case tf →∞. Therefore, as in

Nurdin et al. (2009), assume that M is asymptotically stable, by standard analysis

methods, we have the infinite-horizon LQG performance index as

J∞ = lim
tf→∞

1

tf

∫ tf

0

〈zTl (t)zl(t)〉dt = Tr(ΨPΨT ), (3.6)

where P is the unique symmetric positive definite solution of the Lyapunov equation

MP + PMT +
1

2
NNT = 0. (3.7)

Problem 3.1. The LQG coherent feedback control problem is to find a quantum con-

troller K of Eq. (3.2) that minimizes the LQG performance index J∞ = Tr(ΨPΨT ).

Here P is the unique solution of Eq. (3.7), and coefficient matrices of controller

satisfy the physical realization conditions (3.4).

When considering minimizing LQG performance index, firstly we want to know

the minimum. But in general, it is too complicated to get theoretical results. We

choose the orders of plant and controller to be 2. In this case, because CT
z Cz and

DT
z Dz are both 2-by-2 positive semi-definite real matrices, we denote

CT
z Cz =

[
c1 c2

c2 c3

]
, DT

z Dz =

[
d1 d2

d2 d3

]
, Ck =

[
ck1 ck2

ck3 ck4

]
, (3.8)

where all parameters in these matrices are real scalars.

The following result is an extension of Theorem 4.1 in Zhang et al. (2012).

Theorem 3.1. (The lower bound of LQG index) Assume that both the plant and

the controller defined in Subsection 3.1.1 are in the ground state, then the LQG
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performance index

J∞ >
c1 + c3

2
+ d2(ck1ck3 + ck2ck4),

where c∗ and d∗ come from the matrices in Eq. (3.8).

Proof. Since zl = Czx+Dzβu = Czx+DzCkξ, we could easily get

〈zTl zl〉 = 〈(Czx+DzCkξ)
T (Czx+DzCkξ)〉

= 〈xTCT
z Czx〉+ 〈ξTCT

k D
T
z DzCkξ〉

+ 〈xTCT
z DzCkξ〉+ 〈ξTCT

k D
T
z Czx〉,

(3.9)

where

x =

[
q
p

]
=

1√
2

[
1 1
−i i

] [
a
a∗

]
, ξ =

[
qk
pk

]
=

1√
2

[
1 1
−i i

] [
ak
a∗k

]
.

Then we have

〈xTCT
z Czx〉 =

1

2
〈[a a∗]

[
1 −i
1 i

] [
c1 c2

c2 c3

] [
1 1
−i i

] [
a
a∗

]
〉

=
1

2
〈[a a∗]

[
c1 − c3 − 2ic2 c1 + c3

c1 + c3 c1 − c3 + 2ic2

] [
a
a∗

]
〉

=
1

2
〈(c1 + c3)a∗a+ (c1 + c3)aa∗

+ (c1 − c3 − 2ic2)aa+ (c1 − c3 + 2ic2)a∗a∗]〉

= 〈(c1 + c3)a∗a+
c1 + c3

2
〉,

(3.10)

where the last equality follows from our assumption that the plant are in the ground

state, and [a, a∗] = 1⇒ aa∗ = 1 + a∗a. The second term of equation (3.9) becomes

〈ξTCT
k D

T
z DzCkξ〉

= 〈[qk pk]
[
ck1 ck3

ck2 ck4

] [
d1 d2

d2 d3

] [
ck1 ck2

ck3 ck4

] [
qk
pk

]
〉

= 〈[qk pk]
[
e1 e2

e2 e3

] [
qk
pk

]
〉

= 〈e1q
2
k + e3p

2
k + e2(qkpk + pkqk)〉,

(3.11)
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where e1 = d1c
2
k1 + d3c

2
k3 + 2d2ck1ck3, e3 = d1c

2
k2 + d3c

2
k4 + 2d2ck2ck4, e2 = d1ck1ck2 +

d3ck3ck4 + d2(ck1ck4 + ck2ck3).

While qk =
ak+a∗k√

2
and pk =

−iak+ia∗k√
2

, we get

q2
k =

1

2
[a2
k + (a∗k)

2 + 2a∗kak + 1],

p2
k = −1

2
[a2
k + (a∗k)

2 − 2a∗kak − 1],

qkpk + pkqk = −i[a2
k − (a∗k)

2],

and

〈ξTCT
k D

T
z DzCkξ〉

= 〈e1

2
[a2
k + (a∗k)

2 + 2a∗kak + 1]

− e3

2
[a2
k + (a∗k)

2 − 2a∗kak − 1]− e2i[a
2
k − (a∗k)

2]〉.

(3.12)

Since both the plant and the controller are in the ground state, all terms con-

taining a, a∗, ak and a∗k are 0; and the plant state x commutes with the controller

state ξ, so the third and fourth terms of equation (3.9) are also 0. By substituting

(3.10) and (3.12) into (3.9), we obtain

〈zTl zl〉 =
c1 + c3

2
+
e1 + e3

2

=
d1(c2

k1 + c2
k2) + d3(c2

k3 + c2
k4) + 2d2(ck1ck3 + ck2ck4)

2

+
c1 + c3

2
.

(3.13)

Consequently, all square terms are not less than 0, so J∞ > c1+c3
2

+ d2(ck1ck3 +

ck2ck4). The proof is completed.

Remark 3.2. Sometimes for simplicity, we could choose a coefficient matrix Dz

satisfying d2 = 0, then the lower bound of the LQG index becomes J∞ > c1+c3
2

, which
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is a constant, independent of the designed controller. This is consistent with the

result in Zhang et al. (2012).

Meanwhile, it is easy to see that physical realizability conditions (3.4) of the

coherent controller K are polynomial equality constraints, so they are difficult to

solve numerically using general existing optimization algorithms. Hence sometimes

we reformulate Problem 3.1 into a rank constrained LMI feasibility problem, by

letting the LQG performance index J∞ < γl for a prespecified constant γl > 0. This

is given by the following result.

Lemma 3.1. (Relaxed LQG problem (Nurdin et al., 2009)) Given Θk and γl > 0, if

there exist symmetric matrix PL = P−1, Q and coefficient matrices of the controller

such that physical realizability constraints (3.4) and following inequality constraints[
MTPL + PLM PLN

NTPL −I

]
< 0,

[
PL ΨT

Ψ Q

]
> 0,

Tr(Q) < γl

(3.14)

hold, then the LQG coherent feedback control problem admits a coherent feedback

controller K of the form (3.2).

3.2.2 H∞ control problem

H∞ control problem mainly concerns the robustness of a system to parameter un-

certainty or some external disturbance signals, a controller is designed to make the

closed-loop system stable and minimizes the influence of disturbances on the system

performance. For linear systems, the H∞ norm can be expressed as follows

‖T‖∞ = sup
ω∈R

σmax[T (jω)] = sup
ω∈R

√
λmax(T ∗(jω)T (jω)) (3.15)
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where σmax is the largest singular value of a matrix, and λmax is the largest eigenvalue

of an Hermitian matrix.

Since we consider the H∞ control problem for the closed-loop system (3.3), and

only βw part contains exogenous signals while the others are all white noises, we

interpret βw → z∞ as the robustness channel for measuring the H∞ performance,

and our objective to be minimized is

‖Gβw→z∞‖∞ = ‖Dcl + Ccl(sI − Acl)−1Bcl‖∞

= ‖Γ(sI −M)−1H‖∞.
(3.16)

Problem 3.2. The H∞ coherent feedback control problem is to find a quantum con-

troller K of form (3.2) that minimizes the H∞ performance index ‖Gβw→z∞‖∞, while

coefficient matrices Ak, Bk1, Bk2, Bk3 and Ck of the controller satisfy constraints

(3.4).

Similarly to the LQG case, we proceed to relax Problem 3.2 into a rank con-

strained LMI feasibility problem, i.e. let ‖Gβw→z∞‖∞ < γ∞ for a prespecified con-

stant γ∞ > 0, then we get the following lemma.

Lemma 3.2. (Relaxed H∞ problem (Zhang and James, 2011)) Given Θk and γ∞ >

0, if there exist Ak, Bk1, Bk2, Bk3, Ck and a symmetric matrix PH such that physical

realizability constraints (3.4) and following inequality constraintsMTPH + PHM PHH ΓT

HTPH −γ∞I 0
Γ 0 −γ∞I

 < 0,

PH > 0

(3.17)

hold, then the H∞ coherent feedback control problem admits a coherent feedback con-

troller K of the form (3.2).

We want to know the lower bound of the H∞ performance index. It is in general

difficult to derive the minimum value of the H∞ index analytically, here we just

present a simple example. We begin with the following remark.
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Remark 3.3. By referring to James et al. (2008), there exists an H∞ controller of

form (3.2) for the quantum system (3.1), if and only if the following pair of algebraic

Riccati equations

(A−B2E
−1
1 DT

12C1)TX +X(A−B2E
−1
1 DT

12C1)

+X(B1B
T
1 − γ2

∞B2E
−1
1 BT

2 )X

+ γ−2
∞ CT

1 (I −D12E
−1
1 DT

12)C1 = 0

(3.18)

and

(A−B1D
T
21E

−1
2 C2)Y + Y (A−B1D

T
21E

−1
2 C2)T

+ Y (γ−2
∞ CT

1 C1 − CT
2 E
−1
2 C2)Y

+B1(I −DT
21E

−1
2 D21)BT

1 = 0

(3.19)

have positive definite solutions X and Y , where DT
12D12 = E1 > 0, D21D

T
21 = E2 > 0.

We consider a simple example. The system equations are

dx(t) = −1

2

[
0.89 0

0 0.91

]
x(t)dt−

√
0.5

[
1 0
0 1

]
dv(t)

−
√

0.2

[
1 0
0 1

]
dw(t)−

√
0.2

[
1 0
0 1

]
du(t),

dy(t) =
√

0.5

[
1 0
0 1

]
x(t)dt+

[
1 0
0 1

]
dv(t) + δ

[
1 0
0 1

]
dw(t),

dz∞(t) =
√

0.2

[
1 0
0 1

]
x(t)dt+

[
1 0
0 1

]
du(t),

where δ is a very small positive real number.

There has no problem to calculate the first Riccati equation (3.18). For the second

one (3.19), denote Y =

[
y1 y2

y2 y3

]
, we get

[
( 0.2
γ2∞
− 0.5

δ2
)(y2

1 + y2
2)− (0.89− 2

√
0.1
δ

)y1 [( 0.2
γ2∞
− 0.5

δ2
)(y1 + y3)− (0.9− 2

√
0.1
δ

)]y2

[( 0.2
γ2∞
− 0.5

δ2
)(y1 + y3)− (0.9− 2

√
0.1
δ

)]y2 ( 0.2
γ2∞
− 0.5

δ2
)(y2

2 + y2
3)− (0.91− 2

√
0.1
δ

)y3

]
= 0.

(3.20)
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Notice that, since δ is very small, 0.89− 2
√

0.1
δ

, 0.9− 2
√

0.1
δ

and 0.91− 2
√

0.1
δ

are negative.

From the (1,2) term in Eq. (3.20), we make a classification: y2 = 0 or y2 6= 0.

1. y2 = 0: Since (1,1) and (2,2) terms are 0, we get

y1 = 0 or y1 =
0.89− 2

√
0.1
δ

0.2
γ2∞
− 0.5

δ2

,

y3 = 0 or y3 =
0.91− 2

√
0.1
δ

0.2
γ2∞
− 0.5

δ2

.

2. y2 6= 0: From the (1,2) term we get

y1 + y3 =
0.9− 2

√
0.1
δ

0.2
γ2∞
− 0.5

δ2

.

After doing the calculation that the (1,1) term minus the (2,2) term, and sub-

stituting y1 + y3 into it, we get

y1 + y3 = 0.

This contradicts the above equation.

Consequently, if the equation (3.20) has a positive definite solution Y , it must

satisfy 0.2
γ2∞
− 0.5

δ2
< 0, implying the condition that γ∞ >

√
0.4δ.

3.2.3 Mixed LQG and H∞ control problem

Upon the above derivations, we find that when we consider H∞ control, we intend to

design a quantum controller K to minimize ‖Γ(sI −M)−1H‖∞, which depends on

matrices M , H and Γ, but these three matrices only depend on controller matrices

Ak, Bk3 and Ck. Then we use physical realizability constraints to design other

matrices Bk1 and Bk2 to guarantee the controller is also a quantum system, but
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these will affect the LQG index, which depends on M , N , Ψ, so further depends on

all matrices of the controller. That is, the LQG problem and the H∞ problem are

not independent.

According to the above analysis, we state the mixed LQG and H∞ coherent

feedback control problem for linear quantum systems.

Problem 3.3. The mixed LQG and H∞ coherent feedback control problem is to find

a quantum controller K of form (3.2) that minimizes LQG and H∞ performance

indices simultaneously, while its coefficient matrices satisfy the physical realizability

constraints (3.4).

Lemma 3.3. (Relaxed mixed problem (Bian et al., 2015)) Given Θk, γl > 0 and

γ∞ > 0, if there exist Ak, Bk1, Bk2, Bk3, Ck, Q, and symmetric matrices PL = P−1,

PH such that physical realizability constraints (3.4) and inequality constraints (3.14)

and (3.17) hold, where P is the solution of equation (3.7), then the mixed LQG and

H∞ coherent feedback control problem admits a coherent feedback controller K of the

form (3.2).

3.3 Algorithms for mixed LQG and H∞ coherent

feedback control problem

In this section, the coherent feedback controllers for mixed LQG and H∞ problems

are constructed by using two different methods, the rank constrained LMI method

and genetic-algorithm-based method.

3.3.1 Rank constrained LMI method

In Lemma 3.3 for the mixed problem, clearly, constraints (3.14) and (3.17) are non-

linear matrix inequalities, and physical realizability conditions (3.4) are non-convex

constraints. Therefore, it is difficult to obtain the optimal solution by existing opti-
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mization algorithms. By referring to Bian et al. (2015), Nurdin et al. (2009), Scherer

et al. (1997), we could translate these non-convex and non-linear constraints to linear

ones.

Firstly, we redefine the original plant (3.1) to a modified plant as follows

dx(t) = Ax(t)dt+Bwdw̃cl(t) +B1βw(t)dt

+B2βu(t)dt,

dy′(t) = [dBT
vk1(t) dBT

vk2(t) dyT (t)]T

= Cx(t)dt+Dwdw̃cl(t) +Dβw(t)dt,

dz∞(t) = C1x(t)dt+D∞dw̃cl(t) +D12βu(t)dt,

zl(t) = Cz(t) +Dzβu(t),

(3.21)

where Bw = [B0 B1 B2 0], C = [0 0 CT
2 ]T , D = [0 0 DT

12]T , D∞ = [0 0 D12 0]

and Dw =

 0 0 I 0
0 0 0 I
D20 D21 0 0

. Correspondingly, the modified controller equations

become the following form

dξ(t) = Akξ(t)dt+Bwkdy
′(t),

βu(t) = Ckξ(t)
(3.22)

with Bwk = [Bk1 Bk2 Bk3]. It can be easily verified that the closed-loop system still

has the same form as (3.3).

Assumption 3.2. For simplicity we assume PH = PL = P−1.

We proceed to introduce matrix variables Ξ, Σ, X, Y , Q ∈ Rn×n, where X, Y

and Q are symmetric. Then define the change of controller variables as follows

Â := ΞAkΣ
T + ΞBwkCX + Y B2CkΣ

T + Y AX,

B̂ := ΞBwk,

Ĉ := CkΣ
T ,

(3.23)
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where ΣΞT = I −XY .

By using (3.23), LQG inequality constrains (3.14) can be transformed to (3.24)

below.AX +XAT +B2Ĉ + (B2Ĉ)T ÂT + A Bw

Â+ AT ATY + Y A+ B̂C + (B̂C)T Y Bw + B̂Dw

BT
w (Y Bw + B̂Dw)T −I

 < 0,

 X I (CzX +DzĈ)T

I Y CT
z

(CzX +DzĈ) Cz Q

 > 0,

Tr(Q) < γl.

(3.24)

Similarly, H∞ inequality constraints (3.17) become (3.25) below.
AX +XAT +B2Ĉ + (B2Ĉ)T ÂT + A ∗ ∗

Â+ AT ATY + Y A+ B̂C + (B̂C)T ∗ ∗
BT

1 (Y B1 + B̂D)T −γ∞I ∗
C1X +D12Ĉ C1 0 −γ∞I

 < 0.

(3.25)

It is clear that the above matrix inequalities are linear, so they can be easily

solved by numerical algorithms.

From (3.23), we can obtain Ck = ĈΣ−T , Bwk = Ξ−1B̂, and Ak = Ξ−1(Â −

ΞBwkCX − Y B2CkΣ
T − Y AX)Σ−T . After substituting Ak, Bwk and Ck into (3.4)

and introducing new variables Ξ̃ = ΞJNζ , Ãk = ΞAk, B̃ki = ΞBki, i = 1, 2, 3, physical

realizability constraints (3.4) become

(−ÂΣ−T + (B̃k3C2 + Y A)XΣ−T + Y B2Ck)Ξ̃
T

+ Ξ̃(ÂΣ−T − (B̃k3C2 + Y A)XΣ−T − Y B2Ck)
T

+
3∑
i=1

B̃kiJnvki/2B̃
T
ki = 0, (3.26a)

B̃k1 − Ξ̃CT
k Jnvk1/2 = 0. (3.26b)
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We get the following result for the mixed LQG and H∞ coherent feedback control

problem.

Lemma 3.4. Given Θk, γl > 0 and γ∞ > 0, if there exist matrices Â, B̃k1, B̃k2, B̃k3,

Ĉ, X, Y , Ξ̃, Σ, Ξ, Ck such that the LMIs (3.24), (3.25) and equality constraints

(3.26) hold, then the mixed LQG and H∞ coherent feedback control problem admits

a coherent feedback controller K of the form (3.2).

Algorithm 3.1. (Rank constrained LMI method (Bian et al., 2015))

Firstly, introduce 13 basic matrix variables: M1 = Â, M2 = B̃k1, M3 = B̃k2,

M4 = B̃k3, M5 = Ĉ, M6 = X, M7 = Y , M8 = Ξ̃, M9 = Σ, M10 = Ξ, M11 = Ck,

M12 = Ǎ = ÂΣ−T , M13 = X̌ = XΣ−T . And define 18 matrix lifting variables:

Wi = B̃kiJNvki (i = 1, 2, 3), W4 = Y B2, W5 = B̃k3C2 + Y A, W6 = Ξ̃CT
k , W7 = Ξ̃X̌T ,

W8 = ǍΞ̃T , W9 = Y X, W10 = W4W
T
6 , W11 = W5W

T
7 , W12 = W1B̃

T
k1, W13 = W2B̃

T
k2,

W14 = W3B̃
T
k3, W15 = ΞΣT = I − Y X, W16 = ǍΣT = Â, W17 = X̌ΣT = X,

W18 = CkΣ
T = Ĉ.

By defining

V = [I ZT
m1,1

· · · ZT
m13,1

ZT
w1,1
· · · ZT

w18,1
]T

= [I MT
1 · · · MT

13 W
T
1 · · · W T

18]T ,
(3.27)

we could let Z be a 32n × 32n symmetric matrix with Z = V V T . It is clear that

Zmi,wi = Zmi,1(Zwi,1)T .

Meanwhile, because of relations between these 31 variables, we require the matrix
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Z to satisfy the following constraints

Z ≥ 0,

Z0,0 − In×n = 0, Zw7,1 − Zm8,m13 = 0,

Z1,x6 − Zm6,1 = 0, Zw8,1 − Zm12,m8 = 0

Z1,x7 − Zm7,1 = 0, Zw9,1 − Zm7,m6 = 0,

Zw1,1 − Zm2,1Jnvk1/2 = 0, Zw10,1 − Zw4,w6 = 0,

Zw2,1 − Zm3,1Jnvk2/2 = 0, Zw11,1 − Zw5,w7 = 0,

Zw3,1 − Zm4,1Jnvk3/2 = 0, Zw12,1 − Zw1,m2 = 0,

Zw4,1 − Zm7,1B2 = 0, Zw13,1 − Zw2,m3 = 0,

Zw5,1 − Zm4,1C2 − Zm7,1A = 0, Zw14,1 − Zw3,m4 = 0,

Zw6,1 − Zm8,m11 = 0, Zw15,1 − Zm10,m9 = 0,

Zw16,1 − Zm12,m9 = 0, Zw17,1 − Zm13,m9 = 0,

Zw18,1 − Zm11,m9 = 0, Zw15,1 − I + Zw9,1 = 0,

Zm1,1 − Zw16,1 = 0, Zm6,1 − Zw17,1 = 0,

Zm8,1 − Zm10,1Jnξ/2 = 0, Zm5,1 − Zw18,1 = 0,

(3.28)

and moreover, Z satisfies a rank constraint, i.e. rank(Z) 6 n.

Then, we use Zm1,1, [Zm2,1 Zm3,1 Zm4,1], Zm5,1, Zm6,1, Zm7,1 to replace Â, B̂,

Ĉ, X, Y in LMI constraints (3.24) and (3.25), and convert physical realizability

conditions (3.26) to

− Zw8,1 + ZT
w8,1

+ Zw11,1 − ZT
w11,1

+ Zw10,1 − ZT
w10,1

+ Zw12,1 + Zw13,1 + Zw14,1 = 0, (3.29a)

Zm2,1 − Zw6,1JNvk1 = 0. (3.29b)

We have transformed the mixed problem to a rank constrained problem, which

could be solved by using Toolbox: Yalmip (Lofberg, 2004), SeDuMi and LMIRank
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(Orsi et al., 2006).

Remark 3.4. The above LMI-based approach solves a sub-optimal control problem

for the mixed LQG and H∞ coherent feedback control. Once a feasible solution is

found by implementing Algorithm 3.1, we then know that the LQG index is bounded

by γl from above, and simultaneously, the H∞ index is bounded by γ∞ from above.

3.3.2 Genetic algorithm

Genetic algorithm is a search heuristic that mimics the process of natural selection

in the field of artificial intelligence. This heuristic (sometimes called metaheuristic)

is routinely used to generate useful solutions to optimization and search problems.

Genetic algorithm belongs to the larger class of evolutionary algorithms, which get

solutions using techniques inspired by natural evolution, such as inheritance, muta-

tion, selection, and crossover, etc. Genetic algorithm is a useful method for controller

design, see e.g., Campos-Delgado and Zhou (2003); Neumann and Araujo (2004);

Pereira and Araujo (2004). In the field of quantum control, genetic algorithm meth-

ods are applied to design quantum coherent feedback controllers, see e.g., Zhang

et al. (2012) and Harno and Petersen (2015).

We briefly introduce the procedures of genetic algorithm as follows.

Algorithm 3.2. (Genetic algorithm)

Step 1 : Initialization for the population (the first generation), by using random

functions, and binary strings denote controller parameters we want to design;

Step 2 : Transform binary strings to decimal numbers, and calculate the results of

these parameters;

Step 3 : After obtaining coefficient matrices of the controller, we restrict one of

the LQG or H∞ indices in an interval, then minimize the other index (the
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fitness function in our problem). Since the lower bounds of these two indices

can be calculated a priori, see Subsections 3.2.1 and 3.2.2, the above-mentioned

interval can always be found. By the above procedure we get the best individual

and corresponding performance index in this generation;

Step 4 : Perform the selection operation, for yielding new individuals;

Step 5 : Perform the crossover operation, for yielding new individuals;

Step 6 : Perform the mutation operation, for yielding new individuals;

Step 7 : Back to Step 2, recalculate all parameters and corresponding best fitness

function result for new generation;

Step 8 : At the end of iterations, compare all best results of every generation, and

get the optimal solution.

Remark 3.5. Algorithm 3.2 does not minimize both LQG and H∞ performance

indices simultaneously. More specifically, as can be seen in Step 3, one of the indices

is first fixed, then the other one is minimized. This procedure is repeated as can be

seen from Step 7. Therefore, Algorithm 3.2 is an iterative minimization algorithm.

In our problem, because the coherent feedback controller K to be designed is

a quantum system, it can be described by the (S, L,H) language introduced in

Subsection 2.1.1. With this, physical realizability conditions are naturally satisfied.

As a result, we apply the genetic algorithm to find K by simultaneously minimizing

the LQG and H∞ performance indices directly.

3.4 Numerical simulations and comparisons

In this section, we give two examples to illustrate the methods proposed in the

previous section.
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3.4.1 Numerical simulations

Example 1: This example is taken from Section VII of James et al. (2008). The plant

is an optical cavity resonantly coupled to three optical channels.

The dynamics of this optical cavity system can be described by following equa-

tions

dx (t) = −γ
2
I2x (t) dt−√κ1I2dv(t)−√κ2I2dw (t)−√κ3I2du(t),

dy(t) =
√
κ2I2x(t)dt+ I2dw(t),

dz∞(t) =
√
κ3I2x(t)dt+ I2du(t),

zl(t) = I2x(t) + I2βu(t)

(3.30)

with parameters γ = κ1 + κ2 + κ3, κ1 = 2.6, κ2 = κ3 = 0.2. In this example, v(t) is

quantum white noise, while w(t) is a sum of quantum white noise and L2 disturbance

(See Assumption 2.1 for details). Therefore, there are two types of noises in this

system. LQG control is used to suppress the influence of quantum white noise, while

H∞ control is used to attenuate the L2 disturbance.

Example 2: In this example, we choose a DPA as our plant. For more details

about DPA, one may refer to Leonhardt (2003). The QSDEs of DPA are

dx (t) = −1

2

[
γ − ε 0

0 γ + ε

]
x (t) dt−√κ3

[
1 0
0 1

]
dv(t)

−√κ1

[
1 0
0 1

]
dw (t)−√κ2

[
1 0
0 1

]
du(t),

dy(t) =
√
κ3

[
1 0
0 1

]
x(t)dt+

[
1 0
0 1

]
dv(t),

dz∞(t) =
√
κ2

[
1 0
0 1

]
x(t)dt+

[
1 0
0 1

]
du(t),

zl(t) =

[
1 0
0 1

]
x(t) +

[
1 0
0 1

]
βu(t)

(3.31)

with parameters γ = κ1 + κ2 + κ3, κ1 = κ2 = 0.2, κ3 = 0.5, ε = 0.01.
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According to Theorem 3.1, it is easy to find that lower bounds of the LQG index

for both two examples are 1.

Firstly, we focus on the LQG performance index, and design two different types

of controllers to minimize it by using the genetic algorithm. The results are shown

in Table 3.1. For each case, we list two values obtained.

Table 3.1: Optimization results only for LQG index.

plant controller J∞ (LQG index)

Cavity
Passive Controller

1.0005
1.0000

Non-passive Controller
1.0006
1.0003

DPA
Passive Controller

1.0003
1.0000

Non-passive Controller
1.0002
1.0000

Remark 3.6. J∞ in Table 3.1 is the LQG performance index defined in Eq. (3.6).

In Theorem 3.1, a lower bound for J∞ is proposed. This lower bound is obtained

when both the plant and the controller are in the ground state, as stated in Theorem

3.1. In Table 3.1 above there are two systems, namely the optical cavity and DPA.

For both of them, the lower bound in Theorem 3.1 satisfies d2 = 0 and c1 = c3 = 1.

Therefore, J∞ > 1. From Table 3.1 we can see that our genetic algorithm finds

controllers that yield the LQG performance which is almost optimal. And in this

case, as guaranteed by Theorem 3.1, both the plant and the controller are almost in

the ground state.

Secondly, similarly to the LQG case, we focus on the H∞ index and design con-

trollers to minimize the objective, getting the following Table 3.2. For each case, we

list two values obtained.

Remark 3.7. Table 3.2 is for H∞ performance index. For the cavity case, actually

43



Table 3.2: Optimization results only for H∞ index.

plant controller ‖Gβw→z∞‖∞ (H∞ index)

Cavity
Passive Controller

0.0134
0.0050

Non-passive Controller
0.0196
0.0075

DPA
Passive Controller

0.0070
0.0044

Non-passive Controller
0.0057
0.0045

it can be proved analytically that the H∞ performance index can be made arbitrarily

close to zero. On the other hand, by Remark 3.3, H∞ index has a lower bound
√

0.4δ.

However, for the DPA studied in this example, δ = 0, that is, the lower bound for H∞

index is also zero. The simulation results in Table 3.2 confirmed this observation.

From above results we could see, if we only consider one performance index,

either LQG index or H∞ index, there are no significant differences between passive

controllers and non-passive controllers, both of which can lead to a performance

index close to the minimum.

In what follows, we apply two methods to the mixed control problem, to see

whether we could make two performance indices close to the minima simultaneously.

The results are shown in Table 3.3 and Table 3.4, respectively.

3.4.2 Comparisons of results

After getting numerical results shown in Tables 3.3 and 3.4, and doing comparison

between the two proposed methods, we state the advantages of Algorithm 3.2:

1. Instead of single LQG or H∞ optimal control for linear quantum systems in

other literatures, the two proposed algorithms deal with the mixed LQG and

H∞ problem.
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Table 3.3: Optimization results by rank constrained LMI method.

plant
constraints results
γ∞ γl ‖Gβw→z∞‖∞ (H∞ index) J∞ (LQG index)

Cavity
(γ = κ1 + κ2 + κ3,

κ1 = 2.6,
κ2 = κ3 = 0.2.)

0.1 2.5 0.039900 1.014555
0.1 N/A 0.058805 1.039487
N/A 2.5 0.134558 1.000577
N/A 3 0.423970 1.379587
2.8 3 0.444119 1.270835

DPA
(γ = κ1 + κ2 + κ3,
κ1 = κ2 = 0.2,

κ3 = 0.5, ε = 0.01.)

0.3 2.5 0.172385 1.175277
0.5 3 0.447274 1.080976
N/A 3 0.468007 1.149859
1 5 0.647468 1.374547

Table 3.4: Optimization results by genetic algorithm.

plant controller
results

‖Gβw→z∞‖∞ (H∞ index) J∞ (LQG index)

Cavity
(γ = κ1 + κ2 + κ3,

κ1 = 2.6,
κ2 = κ3 = 0.2.)

Passive Controller
0.003574 1.008917
0.078977 1.000619
0.146066 1.000009

Non-passive Controller
0.071270 1.009303
0.089383 1.002099
0.123066 1.000283

DPA
(γ = κ1 + κ2 + κ3,
κ1 = κ2 = 0.2,

κ3 = 0.5, ε = 0.01.)

Passive Controller
0.428312 1.004787
0.449534 1.000124

Non-passive Controller
0.364979 1.009691
0.387734 1.007164

Passive Controller
+ Direct coupling

0.039183 1.000079
0.042960 1.000002

2. Algorithm 3.1 relaxes two performance indices by introducing γl and γ∞. When

they are small, it will be quite difficult to solve the problem by Algorithm 3.1.

But Algorithm 3.2 is able to minimize the two performance indices directly.

3. The solution of the differential evolution algorithm in Harno and Petersen

(2015) involves a complex algebraic Riccati equation. On the contrary, all

parameters of our Algorithm 3.2 are real. It might be easier to be solved by

current computer softwares such as Matlab.
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4. The numerical results showed that there seems to be a trend between these

two indices, that sometimes one increases, while another decreases.

5. For a passive system (e.g. cavity), both the passive controller and the non-

passive controller could let LQG and H∞ indices go to the minima simultane-

ously, see Table 3.4.

6. For a non-passive system (e.g. DPA), neither the passive controller nor the non-

passive controller can let these two indices go to the minima simultaneously.

But when a direct coupling is added between the plant and the controller, we

could use genetic algorithm to design a passive controller to minimize these

two indices simultaneously, which is not achieved by the rank constrained LMI

method, see Table 3.4.

7. Actually, the rank constrained LMI method could not be used to design specific

passive controllers, or non-passive controllers, while this can be easily achieved

using genetic algorithm, by setting all “plus” terms equal to 0.

8. Finally, from numerical simulations, the genetic algorithm often provides better

results than the rank constrained LMI method. Both LQG and H∞ indices are

quite close to the minima, i.e. 1 for LQG index and 0 forH∞ index, respectively.

This means that by using these two methods to design a quantum controller

K for the quantum plant P, we can succeed to minimize the influences on the

closed-loop system, when there contain both external signals and quantum

white noises. Furthermore, the genetic algorithm can do better than the rank

constrained LMI method in minimizing these influences.
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Chapter 4

Adaptive interaction diversity

stabilizes the evolution of
cooperation

The purpose of this chapter is to investigate the evolutionary game dynamics and sta-

bility in finite populations. Firstly, the standard game dynamics in finite populations

is introduced, where each player has a choice between two strategies, cooperation (C)

and defection (D). Secondly, we propose a model to investigate how tag-induced in-

teraction diversity affects the evolution of cooperation. Finally, several examples are

used for demonstration. Result that cooperation can get stabilized is confirmed, as

has been reported in previous studies, as well as our study gives the root cause for

the coexistence of cooperation and interaction diversity. Furthermore, the stationary

distribution illustrates the effectiveness of the proposed method.

4.1 Standard evolutionary model in finite popula-

tions

In a one-shot two-strategy Prisoner’s Dilemma game, two players simultaneously

choose either to cooperate or to defect. As introduced in Subsection 2.2.2, it can be

easily checked to defect is the best choice for the rational player who always attempt
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to pursue the possible maximal payoff. In the well-mixed populations of infinite size,

different scenarios may arise, which provides us opportunity to choose strategies that

allow cooperators to defeat and invade defectors successfully. We first introduce the

standard game dynamics in finite populations (Nowak et al., 2004).

Consider a well-mixed population of finite size (= N). Two strategies are feasible

to individuals, Cooperation (C) and Defection (D). The corresponding payoff matrix

for the row player is


C D

C a b

D c d

. (4.1)

The evolutionary dynamics is formulated by a Moran process with frequency-

dependent fitness. The payoffs of strategies C and D are, respectively, given by

pc =
i− 1

N − 1
a+

N − i
N − 1

b,

pd =
i

N − 1
c+

N − i− 1

N − 1
d,

(4.2)

where i denotes the number of individuals using strategy C. The term (i−1)/(N−1)

is the probability that an individual with strategy C meets another player also using

strategy C, and a is its payoff in this interaction. Following similar logic, other terms

can easily obtained.

The parameter w ∈ [0, 1] measures to which extent on the contribution of the

payoff to fitness, we get the fitness of a cooperator and a defector as follows

fi = 1− w + wpc,

gi = 1− w + wpd.
(4.3)

At each time step, an individual is chosen for reproduction proportional to its

fitness. An offspring is produced and replaces another randomly chosen individual,
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so the population number N is constant over the evolutionary process. With the

probability it randomly adopts strategy C or D, in which case we say a mutation

occurs. For small mutation rate, at every step, the number of cooperators increase

by one, fall by one, or stay the same. Other possibility happens with negligible

probabilities. The probabilities of adding and reducing a cooperator in the population

are ifi/[ifi + (N − i)gi] and [(N − i)gi]/[ifi + (N − i)gi], respectively. Based on the

Kolmogrov forward equation, we can get

Pi,i+1 =
ifi

ifi + (N − i)gi
N − i
N

,

Pi,i−1 =
(N − i)gi

ifi + (N − i)gi
i

N
,

Pi,i = 1− Pi,i+1 − Pi,i−1.

(4.4)

The process has two absorbing states, i = 0 and i = N . If the population has

reached either of those states, then it will stay there forever. We denote xi as the

probability of ending up in state i = N when starting in state i, and get

xi = Pi,i+1xi+1 + Pi,i−1xi−1 + Pi,ixi, (4.5)

with boundary conditions x0 = 0 and xN = 1.

By denoting ρC as x1, i.e. the probability that a single cooperation mutant

invades and takes over the population of otherwise defectors, we obtain the the

fixation probability as

ρC =
1

1 +
N−1∑
k=1

k∏
i=1

gi
fi

. (4.6)
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4.2 Synthesis of finite-population evolutionary dy-

namics with tags

In this section, we formulate a kind of new evolutionary model, in which tags are

added to individuals to express their characteristics. At each time step, every indi-

vidual can choose the shown number of its tags, which will affect its payoff directly.

Then we derive the evolutionary dynamics of the new model. In terms of the tran-

sition matrix of the Markov chain, stationary distribution can be calculated.

4.2.1 Evolutionary dynamics analysis with tags

In the evolutionary game, the population is well-mixed, and individuals interact

with everyone else. The interactions are characterized by the simplified Prisoner’s

Dilemma game. We consider variation in the capacity of expressing different numbers

of tags in the evolutionary game. Each individual possesses different numbers of

tags. When a pair of individuals express the same number of tags, there will be an

interaction between them. When they express different numbers of tags, there will

be no interaction between them. When an individual possesses more tags, it will

obtain higher probability to have common tags, which will make probabilistically

higher payoff. Nevertheless, the players should also pay for the expressed tags. The

cost of expressed tags increases with its numbers arising. Interested readers should

also refer to Riolo et al. (2001).

The interaction outcome is dependent on their strategic behaviors. When both

are cooperators, they each get the benefit b− c. When both are defectors, they get

zero payoff each. When a cooperator meets a defector, the former gets the payoff −c,

while the later reaps the payoff b. Similarly with payoff matrix (4.1), the interaction
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outcome matrix is shown as follows


C D

C b− c −c

D b 0

, (4.7)

which is called donation game, where both b and c are positive real number, satisfying

the condition b > c > 0 (Nowak et al., 2004).

Firstly, we consider the case that a single individual with tags using strategy C

invades the population of D-strategy individuals with tags.

We denote M as the total number of tags. x > 0, y > 0 are the numbers of

expressed tags for C-strategy players and D-strategy players, respectively. It is clear

that x, y and M are positive integers, and x, y ∈ [1,M ]. k denotes the numbers of

common tags between C-strategy and D-strategy players, so max{0, x + y −M} ≤

k ≤ min{x, y,M}.

When there are k common tags, we derive the payoff equations as follows

pc = r(
x

M
)i(b− c) + r(

k

M
)(N − i)(−c)− δx,

pd = r(
k

M
)ib+ r(

y

M
)(N − i)0− δy,

(4.8)

where function r(∗) represents the interaction rate between two individuals, depend-

ing on the proportion of common-tags’ numbers in the total tags’ numbers, and δ

is a penalty parameter for expressing the cost of each shown tag. N is the total

population number, and i denotes the number of individuals using strategy C, which

is the same as in Eq. (4.2).

We use exponential functions to specify the contribution of the game to fitness,

shown as

fi = eβpc , gi = eβpd ,
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where β is the intensity of selection, which measures how much payoff contributes to

fitness.

Based on Eq. (4.6), the fixation probability that a single C-strategy individual

invades an N -number population of D-strategy individuals (the number of common

tags between these two types of players is k), is given by

ρkC→D =
1

1 +
N−1∑
l=1

l∏
i=1

gi
fi

. (4.9)

As has been introduced above, k ∈ [max{0, x + y −M},min{x, y,M}], and the

probability of k common tags between C-strategy players (with expressed tags x)

and D-strategy players (with expressed tags y) is

pk =

(
y
k

)(
M−y
x−k

)(
M
x

) . (4.10)

Upon Eqs. (4.9) and (4.10), it can be easily derived that the transition rate of

N -number D-strategy individuals by a single C-strategy individual is

ρC→D =

min{x,y,M}∑
k=max{0,x+y−M}

pkρkC→D. (4.11)

Similarly, it is easily to derive the transition rates of ρC→C , ρD→D and ρD→C . In

summary, we could use a set of uniform symbols to express all these four issues, as

shown in the following theorem.

Theorem 4.1. For a two-strategy finite-population evolutionary game with tags, the

transition rate of N-number Y-strategy individuals (namely residents) by a single

X-strategy individual (namely mutant) is given by

ρX→Y =

min{x,y,M}∑
k=max{0,x+y−M}

pkρkX→Y , (4.12)
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where x, y are corresponding numbers of expressed tags for X-strategy player and

Y-strategy player, respectively. M is the total number of tags, k is the number of

common tags between mutant (X) and resident (Y).

The functions pk and ρkX→Y use the same form as in Eqs. (4.10) and (4.9), by

replacing Eq. (4.8) with

pX = r(
x

M
)i(b− c)sx + r(

k

M
)(N − i)(bsy − csx)− δx,

pY = r(
k

M
)i(bsx − csy) + r(

y

M
)(N − i)(b− c)sy − δy,

(4.13)

where

sx, sy =

{
1 Player X,Y use Strategy C,

0 Player X,Y use Strategy D.
(4.14)

Proof. By referring to strategy symbols sx and sy in the Eq. (4.14), there are four

cases, corresponding to sx = 1 or 0 and sy = 1 or 0. It can be easily verified that

when sx = 1 and sy = 0, i.e. a mutant uses strategy C and residents use strategy

D, Eq. (4.12) is equal to Eq. (4.11), as well as the other three transition rates. The

proof is completed.

4.2.2 Synthesis of stationary distribution

In this finite-population evolutionary model with tags, the transition matrix T has

the following form,



C1 D1 · · · CM DM

C1 ρC1→C1 ρC1→D1 · · · ρC1→CM ρC1→DM

D1 ρD1→C1 ρD1→D1 · · · ρD1→CM ρD1→DM

...
...

... · · · ...
...

CM ρCM→C1 ρCM→D1 · · · ρCM→CM ρCM→DM

DM ρDM→C1 ρDM→D1 · · · ρDM→CM ρDM→DM


. (4.15)
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Notice that this is a 2M × 2M matrix, and we use the traditional symbols (i.e. row

and column numbers) to express it, as below



C1 D1 · · · CM DM

C1 ρ1,1 ρ1,2 · · · ρ1,2M−1 ρ1,2M

D1 ρ2,1 ρ2,2 · · · ρ2,2M−1 ρ2,2M

...
...

... · · · ...
...

CM ρ2M−1,1 ρ2M−1,2 · · · ρ2M−1,2M−1 ρ2M−1,2M

DM ρ2M,1 ρ2M,2 · · · ρ2M,2M−1 ρ2M,2M


2M×2M

. (4.16)

By Theorem 4.1, we could calculate the non-diagonal transition rates in the

transition matrix (4.16). Meanwhile, the individuals with the same number of tags,

which use the same strategy, will not invade into each others. Therefore, by the

method in Hauert et al. (2007) and Pacheco et al. (2015), the diagonal numbers are

determined as

ρj,j = 1−
2M∑

i=1,i 6=j

ρi,j, j ∈ {1, 2, · · · , 2M}.

As a result, the transition matrix T has the form



C1 D1 · · · CM DM

C1 1−∑2M
i=2 ρi,1 ρ1,2 · · · ρ1,2M−1 ρ1,2M

D1 ρ2,1 1−∑2M
i=1,i 6=2 ρi,2 · · · ρ2,2M−1 ρ2,2M

...
...

... · · · ...
...

CM ρ2M−1,1 ρ2M−1,2 · · · 1−∑2M
i=1,i 6=2M−1 ρi,2M−1 ρ2M−1,2M

DM ρ2M,1 ρ2M,2 · · · ρ2M,2M−1 1−∑2M−1
i=1 ρi,2M


.

(4.17)

It is clear that in the transition matrix T , the sum of each column is equal to

1, which means (4.17) is a transition matrix of a Markov chain, and the normalized
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eigenvector associated with the eigenvalue 1 of T provides the stationary distribution.

For more details, please refer to Fudenberg and Imhof (2006) and Imhof et al. (2005).

4.3 Numerical simulations and analysis of results

In this section, a numerical model with population number N = 20 is used for the

numerical simulation. Meanwhile, we set β = 0.1, b = 1 and c = 0.3. Then the

payoff matrix (4.7) is


C D

C 0.7 −0.3

D 1 0

.
Furthermore, since the transition matrix T in (4.17) is 2M × 2M , for the purpose of

simulation, we set M = 10.

In a one-shot two-strategy game, defectors have higher fitness, so defectors always

dominate over cooperators in any mixed populations. In the evolutionary model with

tags, we consider different examples, by changing the interaction rate r(x) and the

penalty parameter δ, so as to obtain some cases in which C-strategy individuals get

higher stationary probability than D-strategy players, i.e. cooperators have higher

probability than defectors.

It is clear that the interaction rate r(x) should obey conditions

r(x) ∈ [0, 1], x ∈ [0, 1];

r(0) = 0; r(1) = 1.

We choose three types of interaction rate r(x), shown in the Eq. (4.18) and
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Figure 4.1.

r1(x) = x, x ∈ [0, 1]

r2(x) =

{
2x2, x ∈ [0, 1

2
]

1− 2(1− x)2, x ∈ [1
2
, 1]

r3(x) = 1−
√

1− x2. x ∈ [0, 1]

(4.18)
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Figure 4.1: Three types of interaction rate r(x).

4.3.1 Evolutionary dynamics

According to Eq. (4.17), we obtain the transition matrix T once the interaction rate

r(x) and the penalty parameter δ are fixed. Since we mainly focus on the probability

that C-strategy individuals invade the D-strategy population, we select the odd rows

and even columns of the transition matrix T to compose a new matrix TCD, as below

TCD =



D1 D2 · · · DM

C1 ρC1→D1 ρC1→D2 · · · ρC1→DM

C2 ρC2→D1 ρC2→D2 · · · ρC2→DM

...
...

... · · · ...

CM ρCM→D1 ρCM→D2 · · · ρCM→DM


. (4.19)
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(a) The invasion plots by using r1(x)

(b) The invasion plots by using r2(x)

(c) The invasion plots by using r3(x)

Figure 4.2: The evolutionary dynamics for no penalty (δ = 0) and large penalty
(δ = 1).

Figure 4.2 shows the transition rate with respect to three different interaction

rates and two different penalty parameters, where the capital letter, C or D, along
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the x-axis, denotes the invading mutant’s behavioral strategy, while the one along the

y-axis denotes the invaded residents’ behavioral strategy. The coordinate values in

x-axis and y-axis denote the numbers of expressed tags for corresponding individuals,

and the coordinate value in z-axis denotes the transition rate. Figure 4.2 indicates

that, when there is no penalty (i.e. δ = 0), or the penalty is very large (e.g. δ = 1),

the trends of transition rates subject to different interaction rates r(x) are quite

similar.

The dynamical scenarios are easily understandable. When there is no penalty

(δ = 0), both the fitness of invading mutant with strategy C and invaded resident

with strategy D are determined by the interaction rate r(x). It is well known that

defectors always have higher fitness and dominate over cooperators without tags.

Therefore, the cooperators express more tags, they will get higher interaction rates,

meanwhile, the less tags defectors express, the less probabilities that cooperators

play games with defectors, causing the transition rate to increase, as shown in left

three figures in Figure 4.2.

When the penalty parameter is very large (δ = 1), the penalty cost is the sig-

nificant factor of payoffs, while the interaction rate is negligible. Thus the highest

value occurs in the point that defectors express most tags and cooperators express

least tags, in which defectors have the highest interaction rate with other defectors

and the lowest interaction rate with cooperators. The phenomena are shown in right

three figures in Figure 4.2.

Moreover, we set a appropriate penalty parameter δ = 0.2 and get the evolution-

ary dynamics in Figure 4.3, where the meanings of x-axis, y-axis and z-axis are the

same as in Figure 4.2. It is easily seen that, for appropriate sets of interaction rate

r(x) and penalty parameter δ, the evolutionary dynamics is quite different.

For the directly proportional function r1(x), its ratio is constant. When defec-

tors express certain number of tags, larger numbers of expressed tags for cooperators
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(a) The invasion plot by using r1(x) (b) The invasion plot by using r2(x)

(c) The invasion plot by using r3(x)

Figure 4.3: The evolutionary dynamics for δ = 0.2.

cause higher penalty costs (subject to δ), which is more noticeable than higher inter-

action rates (subject to r(x)), thus the transition rates from cooperators to defectors

generally decrease, shown in Figure 4.3(a). Then we consider the interaction rate

r2(x), whose slope increases firstly and then decreases. Figure 4.3(b) shows that

the transition rates increase firstly, since the effect of transition rate is higher than

that of penalty. Nevertheless, with the slope of interaction rate r2(x) decreasing,

the effect of penalty cost becomes more significant and the transition rates go down.

Besides, the interaction rate r3(x) is similar to the part of r2(x) in x ∈ [0, 1
2
]. There-

fore, the invasion plot in Figure 4.3(c) is similar to the part of that in Figure 4.3(b),

where both expressed-tag numbers of C-strategy mutant and D-strategy resident are

in [1, 5].
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4.3.2 Stationary distribution

Based on the analysis in Subsection 4.2.2, we study the stationary distribution of

C-strategy mutant invading into D-strategy residents, which was obtained from the

transition matrix TCD in (4.19). This stationary distribution provides both the rela-

tive evolutionary advantage of each strategy, and the stationary fraction of cooper-

ative acts (Pacheco et al., 2015).

As shown in Subsection 4.3.1, we know that both appropriate interaction rate

r(x) and penalty parameter δ have significant effect on the transition rates, when

a single C-strategy mutant invades D-strategy population. We want to verify how

r(x) and δ affect the stationary distribution in long iterative time, as well as whether

C-strategy individuals could have higher proportion in the stationary distribution.

For this goal, we continue to calculate the stationary distributions, subject to six

different values of penalty parameter δ = 0, 0.1, 0.2, 0.3, 0.5, 1 and three interaction

rates r1(x), r2(x), r3(x) in Eq. (4.18), respectively.

For r1(x):

Figure 4.4 indicates the fraction of the N strains in the long run. In Figure 4.4,

blue solid line denotes cooperator and orange dashed line for defector. The abscissa

value represents how many tags individuals express, while the ordinate value denotes

the fraction of strains.

From Figure 4.2(a) in Subsection 4.3.1, it is clear that when there is no penalty

(i.e. δ = 0), the transition rate only depends on interaction rate r1(x), which is a

directly proportional function. Thus the fraction of defector is always higher than

that of cooperator, as well as arises monotonically with the number of expressed

tags increasing, shown in the first figure in Figure 4.4. When penalty parameter δ

becomes large, the penalty cost becomes higher, until the effect of penalty is more

noticeable than that of interaction rate and the stationary distributions of strains
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Figure 4.4: The stationary distributions for interaction rate r1(x).

decrease monotonically.

Since we focus on the transition from defectors to cooperators, we want to search

for a kind of gaming strategy, and by using this strategy, the value of stationary

distribution for cooperator could be higher (or higher in part) than the value for

defector. From Figure 4.4 we notice that, when penalty parameter δ is larger than a

point (around 0.3), the cooperator has higher overall stationary distribution.

61



For r2(x):
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Figure 4.5: The stationary distributions for interaction rate r2(x).

We use interaction rate r2(x) and get the stationary distributions in terms of six

different penalty parameters δ, as shown in Figure 4.5, where the meanings of x-axis

and y-axis are the same as in Figure 4.4.

Similar to the evolutionary dynamics in Figure 4.3(b), when the penalty parame-

ter δ is appropriate (e.g. δ = 0.3), there are two local maximum point in the station-
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ary distribution of cooperator. The reason is that: when the number of expressed

tags is few, the value of interaction rate r2(x) increases very slowly. If cooperators

express more tags, they will obtain very small increasing of payoffs, which is less

significant than the penalty caused by the larger number of tags, so the stationary

distribution decreases. However, the slope of interaction rate r2(x) rises more steeply

in the middle, yielding the payoffs from interaction to increase. Thus the station-

ary distribution goes up until it reaches an inflection point. Then the stationary

distribution decreases again, while the slope of interaction rate r2(x) becomes small.

Furthermore, which one of these two local maximum is the global maximum,

depends on the specific parameter values. It is clearly seen from Figure 4.5, when

δ = 0.2, the second local maximum is also the global maximum, while for δ = 0.5,

the stationary distribution reaches the global maximum when cooperators express 1

tag.

For r3(x):

Figure 4.6 shows the stationary distributions by using interaction rate r3(x).

Similar to the above analysis, since the slope of interaction rate r3(x) is small initially

and increases monotonically, the stationary distribution of cooperators decreases in

the beginning, and turns to increase when the payoffs from interaction become more

noticeable.

Nevertheless, from Figure 4.6 we notice that, there is a significant advantage of

interaction rate r3(x), the stationary fraction of cooperators is always higher than

defectors. Inspired by this, we consider the overall cooperation level as a function of

penalty parameter δ.

We set penalty parameter δ ∈ [0, 1] and use three different interaction rates r(x),

plot the overall cooperation level in Figure 4.7, where the abscissa value represents the

value of penalty parameter δ, while the ordinate value denotes the overall cooperation

level. The dashed line means that the cooperation level is 0.5.
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Figure 4.6: The stationary distributions for interaction rate r3(x).

From Figure 4.7, it is clear that in the range of δ ∈ [0, 1], the cooperation level by

using interaction rate r1(x) increases monotonically, while that with interaction rate

r2(x) has a maximum (approximate 0.688). The cooperation level with interaction

rate r3(x) also has a maximum (approximate 0.646), when δ ≈ 0.3. We want to search

for the value of stationary distribution for cooperator higher (or higher in part) than

the value for defector, i.e. the strategy sets that cooperation level is larger than 0.5.
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Figure 4.7: The cooperation level as a function of penalty parameter δ.

It is easily verified that there are three kinds of strategies: interaction rate r1(x) with

δ > 0.3, interaction rate r2(x) with δ > 0.2, and interaction rate r3(x) with almost

all δ ∈ [0, 1].

4.3.3 Analysis of results

We have used three different interaction rates r(x) shown in Figure 4.1 with different

penalty parameters δ as numerical examples, to do simulations and get the stationary

distributions in Figures 4.4 - 4.6, as well as the cooperation level in terms of both r(x)

and δ, shown in Figure 4.7. After analyzing these numerical results in Subsection

4.3.2, we summarize the conclusion as follows.

1. We have introduced a new kind of strategy for classical iterated game theory

in finite population by adding tags to the cooperators and defectors, and have

derived the transition rate of N-number Y-strategy population by a single X-

strategy individual, see Theorem 4.1.

2. For the new kind of finite-population evolutionary game theory model, we have

focused on the case that a C-strategy mutant invades the D-strategy residents,

and analyzed the evolutionary dynamics, as well as the stationary distributions.
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In Subsection 4.3.1 and 4.3.2, the numerical results indicate the effectiveness

of the proposed model.

3. Both the interaction rate r(x) and penalty parameter δ are the important

factors of the new model. When there is no penalty (i.e. δ = 0), or the penalty

is very large (e.g. δ = 1), the transition rates and stationary distributions are

mainly determined by one factor, interaction rate r(x) or penalty parameter

δ, respectively. By contrast, if both of them are set appropriate, they all

have significant effect on transition rates and stationary distributions, which is

illustrated by numerical results.

4. The numerical results demonstrate that the stationary distributions are quite

different by using different rates r(x) and parameters δ. We have set six values

of δ and obtained the corresponding stationary distributions for three inter-

action rates r(x), respectively. Result that cooperation can get stabilized is

confirmed, as shown in Figure 4.7. Furthermore, we give the analyses and root

causes for the numerical phenomena.

5. Finally, three kinds of feasible solutions are given: interaction rate r1(x) with

δ > 0.3, interaction rate r2(x) with δ > 0.2, and interaction rate r3(x) with

almost all δ ∈ [0, 1]. Consequently, for a given example, we could succeed to

get the feasible solutions, by choosing a suitable function r(x) and parameter

δ.
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Chapter 5

Quantum Iterated Prisoner’s

Dilemma game and its

zero-determinant strategies

In this chapter, we study a quantum two-player iterated game. Firstly in Section

5.1, a model of two-player Iterated Prisoner’s Dilemma (IPD) game is introduced, in

which the strategies used by two players are classical. By Press and Dyson (2012),

there exist strategies whereby one player can enforce a unilateral claim to an unfair

share of rewards. Secondly, by replacing the classical strategies with the quantum

strategies, the game theory is generalized into the quantum domain. We state the

principle and methods for the quantum strategy in Section 5.2. Then we consider a

kind of two-player quantum/quantum-classical Iterated Prisoner’s Dilemma games.

Finally in Section 5.3, three kinds of quantum strategies are chosen for numerical

studies. The numerical results demonstrate the effectiveness of the proposed quan-

tum zero-determinant (ZD) strategies. Furthermore, the differences and advantages

of the proposed quantum zero-determinant (ZD) strategies over the classical zero-

determinant (ZD) strategies are also indicated in the numerical simulations.
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5.1 Classical Iterated Prisoner’s Dilemma and zero-

determinant strategies

In Chapter 4, we considered a classical iterated game with tags where a C-strategy

individual invades the N-number D-strategy population, and focused on the station-

ary distribution in a long time. In principle, in every generation, there are many

games only occurred between two chosen individuals (determined by the number of

shown-tags). If we consider the standard classical game without tags, the games will

occur between every two individuals, yielding the iterated 2 × 2 game, where the

Iterated Prisoner’s Dilemma (IPD) game is a notable example.

It is generally assumed that there exists no simple ultimatum strategy whereby

one player can enforce a unilateral claim to an unfair share of rewards. However,

it has been proved in Press and Dyson (2012) that such strategies unexpectedly do

exist. We introduce the principle of this type of game theory and these corresponding

strategies firstly.

In Section 2.2, we discussed the general memory-one game. Firstly, the four

outcomes of the previous move are labeled 1, 2, 3, 4 for the respective outcomes

xy ∈ (CC,CD,DC,DD), where C and D denote cooperation and defection. Then

we set the player X’s strategy to be ~p = [p1, p2, p3, p4]T , the probabilities for coop-

erating under each of the previous outcomes, and the Y’s strategy is analogously

~q = [q1, q2, q3, q4]T for outcomes seen from Y’s perspective, that is, in the order of

yx ∈ (CC,CD,DC,DD). Consequently, the outcome of this play is determined by

a product of probabilities, as shown in Figure 5.1.

In Figure 5.1, X and Y denote the two players, C and D are the strategies for

player X and Y respectively. piqj, pi(1−qj), (1−pi)qj and (1−pi)(1−qj) are the cor-

responding probabilities for the choice of current strategies xy ∈ (CC,CD,DC,DD)

subject to the previous move outcomes, where i, j ∈ 1, 2, 3, 4 and pi, qj are described
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Figure 5.1: The two-player memory-one game.

as before. For example, if both players X and Y chose strategy C in the previous

move, then in the current move, the probability that player X chooses strategy C is

p1 and the probability that player Y chooses strategy C is q1. So the probabilities

that the players X and Y choose strategy D are (1 − p1) and (1 − q1), respectively.

Thus, the probabilities of strategies (CC,CD,DC,DD) in this move depending on

the strategy CC in previous move is [p1q1, p1(1− q1), (1− p1)q1, (1− p1)(1− q1)]T .

By the principle shown in Figure 5.1, ~p and ~q imply a Markov matrix whose

stationary vector ~v, combined with the respective payoff matrices, yields an expected

outcome for each player. With rows and columns of the matrix in player X’s order,

the Markov transition matrix M(~p, ~q) from one move to the next is shown in (5.1).

M(~p, ~q) =


p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)
p2q3 p2(1− q3) (1− p2)q3 (1− p2)(1− q3)
p3q2 p3(1− q2) (1− p3)q2 (1− p3)(1− q2)
p4q4 p4(1− q4) (1− p4)q4 (1− p4)(1− q4)

 (5.1)

It is clear to see that the sum of every row in the matrix M is equal to 1, so M has

a unit eigenvalue, yielding that the matrix M ′ ≡M−I is singular. Consequently, the
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stationary vector ~v of the Markov matrix, or any vector proportional to it, satisfies

~vTM = ~vT , or ~vTM ′ = 0. (5.2)

Besides, applying Cramer’s rule to the matrix M ′ yields

Adj(M ′)M ′ = det(M ′)I = 0, (5.3)

where Adj(M ′) is the adjugate matrix of the matrix M ′. Eqs. (5.2) and (5.3) imply

that every row of Adj(M ′) is proportional to ~vT . We denote cij = (−1)i+jdet(M ′
īj) as

the algebraic cofactor of M ′
ij, where M ′

ij is the entry in the i-th row and j-th column

of matrix M ′, M ′
īj means the 3× 3 matrix from M ′ by deleting the i-th row and j-th

column. Then we get

Adj(M ′) =


c11 c21 c31 c41

c12 c22 c32 c42

c13 c23 c33 c43

c14 c24 c34 c44

 .

Therefore, by denoting ~vT = [v1, v2, v3, v4] and choosing the fourth row of matrix

Adj(M ′), we obtain

[v1, v2, v3, v4] ∝ [c14, c24, c34, c44].

Moreover, the determinants det(M ′
īj) are unchanged if we add the first column of M ′

into the second and third columns.

Since

M ′ = M − I =


−1 + p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)
p2q3 p2(1− q3)− 1 (1− p2)q3 (1− p2)(1− q3)
p3q2 p3(1− q2) (1− p3)q2 − 1 (1− p3)(1− q2)
p4q4 p4(1− q4) (1− p4)q4 p4q4 − p4 − q4

 ,

for an arbitrary vector ~f = [f1, f2, f3, f4]T , we can calculate the dot product of ~f and
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~v as follow

~v · ~f = ~vT ~f = [v1, v2, v3, v4]


f1

f2

f3

f4



= det


−1 + p1q1 p1(1− q1) (1− p1)q1 f1

p2q3 p2(1− q3)− 1 (1− p2)q3 f2

p3q2 p3(1− q2) (1− p3)q2 − 1 f3

p4q4 p4(1− q4) (1− p4)q4 f4



= det


−1 + p1q1 −1 + p1 −1 + q1 f1

p2q3 −1 + p2 q3 f2

p3q2 p3 −1 + q2 f3

p4q4 p4 q4 f4


:= D(~p, ~q, ~f).

What is noteworthy about this formula for ~v · ~f is that it is a determinant whose

second column,

~̃p := [−1 + p1,−1 + p2, p3, p4]T , (5.4)

is solely under the control of the player X; whose third column,

~̃q := [−1 + q1, q3,−1 + q2, q4]T , (5.5)

is solely under the control of the player Y; and whose fourth column is simply ~f .

Meanwhile, in the order of the strategies xy ∈ (CC,CD,DC,DD), the player X’s

payoff vector and Y’s are ~SX = [R, S, T, P ]T and ~SY = [R, T, S, P ]T , respectively.

Thus in the stationary state, their respective scores are

sx =
~v · ~SX
~v ·~1

=
D(~p, ~q, ~SX)

D(~p, ~q,~1)
,

sy =
~v · ~SY
~v ·~1

=
D(~p, ~q, ~SY )

D(~p, ~q,~1)
,

(5.6)

where ~1 is the vector with all component 1. The denominators are needed because
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~v has not previously been normalized to have its components sum to 1 (as required

for a stationary probability vector).

It can be easily verified that the scores sx and sy in Eq. (5.6) depend linearly

on their corresponding payoff vectors SX and SY , the same is true for any linear

combination of scores, yielding

αsx + βsy + γ =
D(~p, ~q, α ~SX + β ~SY + γ~1)

D(~p, ~q,~1)
. (5.7)

By Eq. (5.7), we can see that both players X and Y have the possibility of choosing

unilateral strategies that will make the determinant in the numerator vanish. More

precisely, if player X chooses the strategy ~̃p = α ~SX + β ~SY + γ~1, or player Y chooses

the strategy ~̃q = α ~SX + β ~SY + γ~1, the determinant in the numerator of Eq. (5.7)

vanishes and a linear relation between these two scores sx, sy,

αsx + βsy + γ = 0 (5.8)

will be enforced, which are called zero-determinant (ZD) strategies (Press and Dyson,

2012).

By using ZD strategies, we will analyze how player X can deterministically set

her opponent Y’s score, independently of his strategy or response. However, it is

important that not all zero-determinant strategies are feasible, with probabilities ~p

and ~q all in the range [0, 1], and whether they are feasible in any particular instance

depends on the particulars of the application.

Case 1 (X unilaterally sets Y’s score (Press and Dyson, 2012)):

Based on the above analysis, it is clear to see that using ZD strategies allows

player X to unilaterally set player Y’s score. To this goal, player X only needs to

play a fixed strategy satisfying

~̃p = β ~SY + γ~1, (5.9)
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that is, set α = 0 in Eq. (5.8).

Then we get

~̃p =


−1 + p1

−1 + p2

p3

p4

 =


βR + γ
βT + γ
βS + γ
βP + γ

 = β ~SY + γ~1,

which are solved by eliminating the nuisance parameters β and γ, yielding the pa-

rameters p2 and p3 in terms of p1 and p4, as shown in Eq. (5.10) below:

p2 =
(T − P )p1 − (T −R)(1 + p4)

R− P ,

p3 =
(P − S)(1− p1) + (R− S)p4

R− P .

(5.10)

Furthermore, we can calculate player Y’s score, which is

sy =
P (1− p1) +Rp4

(1− p1) + p4

. (5.11)

Since there are conditions T > R > P > S and p1, p2, p3, p4 ∈ [0, 1] for all Iterated

Prisoner’s Dilemma, it is readily verified that the Eq. (5.10) has feasible solutions

whenever p1 → 1− and p4 → 0+. In this case, p2 → 1− and p3 → 0+.

In Eq. (5.11), there is a weighted average of P and R with weights (1− p1) and

p4, we see that all scores P 6 sy 6 R (and no others) can be forced by the player

X. It means that the player X can set the player Y’s score to any value in the range

from the mutual noncooperation score to the mutual cooperation score by her own

strategy ~p, independent of the player Y’s strategy ~q. A consequence is that the player

X can “spoof” any desired fitness landscape for the player Y that she wants, thereby

guiding his evolutionary path.

Case 2 (X tries to set her own score (Press and Dyson, 2012)):

On the other side, could the player X set her own score by herself? In the ZD
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strategies, let the parameter β = 0 and the player X uses a strategy with

~̃p = α ~SX + γ~1, (5.12)

which is equivalent to

~̃p =


−1 + p1

−1 + p2

p3

p4

 =


αR + γ
αS + γ
αT + γ
αP + γ

 = α ~SX + γ~1.

Then we use the analogous calculation as in case 1 to get

p2 =
−(P − S)p1 + (R− S)(1 + p4)

R− P ,

p3 =
−(T − P )(1− p1)− (T −R)p4

R− P .

(5.13)

Since T > R > P > S and p1, p2, p3, p4 ∈ [0, 1], it is easily verified that p2 > 1

and p3 6 0, i.e. this strategy only has one feasible solution, namely the strategy

~p = [1, 1, 0, 0]T (means that the player X always cooperate or never cooperate).

Consequently, the player X can not use the ZD strategies to unilaterally set her own

score in the Iterated Prisoner’s Dilemma game.

5.2 Analysis of quantum two-player zero-determinant

strategies

In this section, the game theory is generalized into the quantum domain. Firstly,

the quantum two-player strategies are introduced. Then, similarly with the classical

zero-determinant strategies, we synthesize the quantum zero-determinant strategies,

which are used in the subsequent numerical simulations, yielding the properties of a

certain quantum ZD strategy and its advantages.
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5.2.1 Quantum strategies subject to quantum states

The physical model considered for a quantum two-player game consist of three ele-

ments (Eisert et al., 1999).

1. A source of two bits, one bit for each player;

2. A set of physical instruments that enables the player to manipulate her or his

own bit in a strategic manner;

3. A physical measurement device which determines the players’ payoff from the

state of the two bits.

Furthermore, all these three ingredients, the source, the players’ physical instruments,

and the payoff physical measurement device are assumed to be perfectly known to

both players.

The quantum formulation for the two-player game proceeds by assigning the

possible outcomes of the classical strategies C and D to two basis vectors |C〉 and

|D〉 in the Hilbert space of a one-qubit system, namely

|C〉 =

[
1
0

]
, |D〉 =

[
0
1

]
.

At each instance, the state of the game is described by a vector in the tensor product

space which is spanned by the game basis |CC〉, |CD〉, |DC〉 and |DD〉, where the

first entry refers to the player X’s qubit and the second for the player Y.

Figure 5.2 illustrates the general protocol of a quantum two-player game, where

the initial states of both players X and Y are |C〉. The unitary operator Ĵ which

is known to both two players is used to entangle their qubits. The strategies are

executed on the two-player game’s initial state |ψ0〉 = Ĵ |CC〉. Strategic moves of

the player X and the player Y are associated with unitary operators ÛX and ÛY ,
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respectively. A disentangling operator Ĵ† is applied prior to making measurement

on the final state |ψf〉, and the payoff is subsequently computed from the classical

payoff matrix.

ÛX

ÛY

Ĵ Ĵ†

|C〉

|C〉
|ψ0〉 |ψf〉⊗

Figure 5.2: The general protocol of a two-player quantum game.

Remark 5.1. For fair games, Ĵ must be symmetric with respect to the interchange

of the two players.

Therefore, the final state can be calculated by

|ψf〉 = Ĵ†(ÛX ⊗ ÛY )Ĵ |ψ0〉 = Ĵ†(ÛX ⊗ ÛY )Ĵ |CC〉. (5.14)

Because quantum mechanics is a fundamentally probabilistic theory, the only

strategic notion of a payoff is the expected payoff (Eisert et al., 1999). By the quan-

tum measurement theory (Wiseman and Milburn, 2010), the probabilities getting the

choice of current strategies xy ∈ (|CC〉, |CD〉, |DC〉, |DD〉) subject to the previous

move outcomes (determined by |ψf〉) are calculated as

pCC = |〈ψf |CC〉|2, pCD = |〈ψf |CD〉|2,

pDC = |〈ψf |DC〉|2, pDD = |〈ψf |DD〉|2.
(5.15)

Thus, the player X’s expected payoff sx is given by

sx = RpCC + SpCD + TpDC + PpDD. (5.16)
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Similarly, the player Y’s expected payoff sy is

sy = RpCC + TpCD + SpDC + PpDD. (5.17)

Without loss of generality (Eisert et al., 1999; Flitney and Abbott, 2002), the

entangling operator Ĵ is chosen as

Ĵ = exp(i
γ

2
σ̂ ⊗ σ̂), (5.18)

where i =
√
−1 be the imaginary unit, σ̂ is a unitary 2×2 matrix, the real parameter

γ ∈ [0, π
2
] determines the degree of entanglement. Specifically, γ = 0 means that there

has no entanglement and it degenerates to the classical case, while γ = π
2

implies the

maximal entanglement (i.e. |ψ0〉 is a maximally entangled state).

It has been proved in Benjamin and Hayden (2001) that, it is sufficient to restrict

the strategic space to the two-parameter set of all unitary 2× 2 matrices,

Û(θ, φ) =

[
eiφ cos θ

2
sin θ

2

− sin θ
2

e−iφ cos θ
2

]
,

with θ ∈ [0, π] and φ ∈ [0, π
2
], where φ = 0 means the classical strategies and φ 6= 0

implies the quantum strategies. Thus, we choose the strategic move operators ÛX

and ÛY as, respectively,

ÛX(α, ϕ) =

[
eiϕ cos α

2
sin α

2

− sin α
2

e−iϕ cos α
2

]
,

ÛY (β, ψ) =

[
eiψ cos β

2
sin β

2

− sin β
2

e−iψ cos β
2

]
.

(5.19)

It is clear that 0 6 α, β 6 π and 0 6 ϕ, ψ 6 π
2
.

By referring to the classical case introduced in Section 5.1, in the order of the

respective previous outcomes xy ∈ (|CC〉, |CD〉, |DC〉, |DD〉), the two-player quan-

tum strategies are set as ~p = [α1, α2, α3, α4;ϕ]T and ~q = [β1, β2, β3, β4;ψ]T for the

players X and Y, respectively.
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Remark 5.2. Generally speaking, for different outcomes xy ∈ (|CC〉, |CD〉, |DC〉, |DD〉),

there are 8 parameters for each player’s strategy, i.e.

~p = [α1;ϕ1, α2;ϕ2, α3;ϕ3, α4;ϕ4]T , ~q = [β1;ψ1, β2;ψ2, β3;ψ3, β4;ψ4]T .

For simplicity, we assume ϕ1 = ϕ2 = ϕ3 = ϕ4 := ϕ, ψ1 = ψ2 = ψ3 = ψ4 := ψ,

yielding the strategies ~p = [α1, α2, α3, α4;ϕ]T and ~q = [β1, β2, β3, β4;ψ]T .

Finally, for better understanding, we give a simple example. If the previous

outcome is xy = |CC〉, the player X’s strategy is ÛX(α1, ϕ), while ÛY (β1, ψ) is the

player Y’s strategy, then we calculate the state

|ψf〉 = Ĵ†(ÛX(α1, ϕ)⊗ ÛY (β1, ψ))Ĵ |CC〉.

The probabilities pCC , pCD, pDC and pDD are given by Eq. (5.15).

5.2.2 Synthesis of quantum zero-determinant strategies

Firstly, we choose two different types of the entangling operator Ĵ subject to

σ̂1 =

[
0 1
1 0

]
, σ̂2 =

[
0 1
−1 0

]
, (5.20)

and set γ = π
2
, which means we only concern the case of maximal entanglement. By

Eq. (5.18), we could get

Ĵ1 =
1√
2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1

 , Ĵ2 =
1√
2


1 0 0 i
0 1 −i 0
0 −i 1 0
i 0 0 1

 . (5.21)

The probabilities pCC , pCD, pDC and pDD can be calculated by Eq. (5.15). Similar

to Eq. (5.1), the transition matrices are given by
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For σ̂1:

M1 =


cos2 α1

2
cos2 β1

2
cos2(ϕ+ ψ) (sin α1

2
cos β1

2
cosψ − cos α1

2
sin β1

2
sinϕ)2

cos2 α2

2
cos2 β3

2
cos2(ϕ+ ψ) (sin α2

2
cos β3

2
cosψ − cos α2

2
sin β3

2
sinϕ)2

cos2 α3

2
cos2 β2

2
cos2(ϕ+ ψ) (sin α3

2
cos β2

2
cosψ − cos α3

2
sin β2

2
sinϕ)2

cos2 α4

2
cos2 β4

2
cos2(ϕ+ ψ) (sin α4

2
cos β4

2
cosψ − cos α4

2
sin β4

2
sinϕ)2

(cos α1

2
sin β1

2
cosϕ− sin α1

2
cos β1

2
sinψ)2 (sin α1

2
sin β1

2
+ cos α1

2
cos β1

2
sin(ϕ+ ψ))2

(cos α2

2
sin β3

2
cosϕ− sin α2

2
cos β3

2
sinψ)2 (sin α2

2
sin β3

2
+ cos α2

2
cos β3

2
sin(ϕ+ ψ))2

(cos α3

2
sin β2

2
cosϕ− sin α3

2
cos β2

2
sinψ)2 (sin α3

2
sin β2

2
+ cos α3

2
cos β2

2
sin(ϕ+ ψ))2

(cos α4

2
sin β4

2
cosϕ− sin α4

2
cos β4

2
sinψ)2 (sin α4

2
sin β4

2
+ cos α4

2
cos β4

2
sin(ϕ+ ψ))2

 .
(5.22)

For σ̂2:

M2 =


cos2 α1

2
cos2 β1

2
cos2(ϕ+ ψ) (cos α1

2
sin β1

2
cosϕ− sin α1

2
cos β1

2
sinψ)2

cos2 α2

2
cos2 β3

2
cos2(ϕ+ ψ) (cos α2

2
sin β3

2
cosϕ− sin α2

2
cos β3

2
sinψ)2

cos2 α3

2
cos2 β2

2
cos2(ϕ+ ψ) (cos α3

2
sin β2

2
cosϕ− sin α3

2
cos β2

2
sinψ)2

cos2 α4

2
cos2 β4

2
cos2(ϕ+ ψ) (cos α4

2
sin β4

2
cosϕ− sin α4

2
cos β4

2
sinψ)2

(sin α1

2
cos β1

2
cosψ − cos α1

2
sin β1

2
sinϕ)2 (sin α1

2
sin β1

2
+ cos α1

2
cos β1

2
sin(ϕ+ ψ))2

(sin α2

2
cos β3

2
cosψ − cos α2

2
sin β3

2
sinϕ)2 (sin α2

2
sin β3

2
+ cos α2

2
cos β3

2
sin(ϕ+ ψ))2

(sin α3

2
cos β2

2
cosψ − cos α3

2
sin β2

2
sinϕ)2 (sin α3

2
sin β2

2
+ cos α3

2
cos β2

2
sin(ϕ+ ψ))2

(sin α4

2
cos β4

2
cosψ − cos α4

2
sin β4

2
sinϕ)2 (sin α4

2
sin β4

2
+ cos α4

2
cos β4

2
sin(ϕ+ ψ))2

 .
(5.23)

It is easily verified that for both M1 and M2, the sum of every row is equal to 1, so

both of them are Markov transition matrices, and have a unit eigenvalue.

Therefore, we could do the similar derivation as in Section 5.1. Let ~v1 and ~v2 be

the stationary vectors of the Markov transition matrices M1 and M2, respectively.

The function D(~α, ~β, ϕ, ψ, ~f) are defined as

D(~α, ~β, ϕ, ψ, ~f) = ~vi · ~f,

where ~vi ∈ (~v1, ~v2), ~f = [f1, f2, f3, f4]T is an arbitrary vector, ~α = [α1, α2, α3, α4]T

and ~β = [β1, β2, β3, β4]T .
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Furthermore, the respective scores of the players X and Y are

sx =
~vi · ~SX
~vi ·~1

=
D(~α, ~β, ϕ, ψ, ~SX)

D(~α, ~β, ϕ, ψ,~1)
,

sy =
~vi · ~SY
~vi ·~1

=
D(~α, ~β, ϕ, ψ, ~SY )

D(~α, ~β, ϕ, ψ,~1)
,

(5.24)

It is easy to see that the scores sx and sy in Eq. (5.24) depend linearly on their

corresponding payoff vector SX and SY . So we have

αsx + βsy + γ =
D(~α, ~β, ϕ, ψ, α ~SX + β ~SY + γ~1)

D(~α, ~β, ϕ, ψ,~1)
. (5.25)

Consequently, by choosing appropriate parameters and corresponding strategies,

we can also derive αsx + βsy + γ = 0, which are named quantum zero-determinant

(ZD) strategies.

5.3 Numerical simulations and analysis of results

In this section, three numerical examples are considered.

5.3.1 Numerical simulations

Example 1 (subject to operator σ̂1 in Eq. (5.20)):

By using σ̂1, we get the entangling operator Ĵ1 as shown in Eq. (5.21). Then

a game between the quantum strategy (the player X with ϕ 6= 0) and the classical

strategy (the player Y with ψ = 0) is considered.
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Since ψ = 0, the Markov transition matrix M1 in Eq. (5.22) becomes


cos2 α1

2
cos2 β1

2
cos2 ϕ (sin α1

2
cos β1

2
− cos α1

2
sin β1

2
sinϕ)2

cos2 α2

2
cos2 β3

2
cos2 ϕ (sin α2

2
cos β3

2
− cos α2

2
sin β3

2
sinϕ)2

cos2 α3

2
cos2 β2

2
cos2 ϕ (sin α3

2
cos β2

2
− cos α3

2
sin β2

2
sinϕ)2

cos2 α4

2
cos2 β4

2
cos2 ϕ (sin α4

2
cos β4

2
− cos α4

2
sin β4

2
sinϕ)2

cos2 α1

2
sin2 β1

2
cos2 ϕ (sin α1

2
sin β1

2
+ cos α1

2
cos β1

2
sinϕ)2

cos2 α2

2
sin2 β3

2
cos2 ϕ (sin α2

2
sin β3

2
+ cos α2

2
cos β3

2
sinϕ)2

cos2 α3

2
sin2 β2

2
cos2 ϕ (sin α3

2
sin β2

2
+ cos α3

2
cos β2

2
sinϕ)2

cos2 α4

2
sin2 β4

2
cos2 ϕ (sin α4

2
sin β4

2
+ cos α4

2
cos β4

2
sinϕ)2

 .
By calculating M ′

1 = M1 − I and adding the first column of det(M ′
1) into the third

column, we get

D(~α, ~β, ϕ, 0, ~f) = ~v1 · ~f

=det


cos2 α1

2
cos2 β1

2
cos2 ϕ− 1 (sin α1

2
cos β1

2
− cos α1

2
sin β1

2
sinϕ)2 cos2 α1

2
cos2 ϕ− 1 f1

cos2 α2

2
cos2 β3

2
cos2 ϕ (sin α2

2
cos β3

2
− cos α2

2
sin β3

2
sinϕ)2 − 1 cos2 α2

2
cos2 ϕ f2

cos2 α3

2
cos2 β2

2
cos2 ϕ (sin α3

2
cos β2

2
− cos α3

2
sin β2

2
sinϕ)2 cos2 α3

2
cos2 ϕ− 1 f3

cos2 α4

2
cos2 β4

2
cos2 ϕ (sin α4

2
cos β4

2
− cos α4

2
sin β4

2
sinϕ)2 cos2 α4

2
cos2 ϕ f4

 .
(5.26)

We notice that, the third column of the determinant in Eq. (5.26),

~̃p1 :=


cos2 α1

2
cos2 ϕ− 1

cos2 α2

2
cos2 ϕ

cos2 α3

2
cos2 ϕ− 1

cos2 α4

2
cos2 ϕ

 (5.27)

only depends on ~α and ϕ, i.e. solely under the control of the player X. Thus we could

use the quantum ZD strategies to do the simulations.

Case 1 (Whether the quantum-strategy player X could unilaterally set

the classical-strategy player Y’s score):

Let the parameter α in Eq. (5.25) be 0, and X chooses the strategy

~̃p1 =


cos2 α1

2
cos2 ϕ− 1

cos2 α2

2
cos2 ϕ

cos2 α3

2
cos2 ϕ− 1

cos2 α4

2
cos2 ϕ

 =


βR + γ
βT + γ
βS + γ
βP + γ

 = β ~SY + γ~1.
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By eliminating the nuisance parameters β and γ, the parameters α2 and α3 in terms

of α1, α4 and ϕ are shown as

cos2 α2

2
=

(T − P )(cos2 α1

2
− sec2 ϕ)− (T −R) cos2 α4

2

R− P ,

cos2 α3

2
=

(P − S)(sec2 ϕ− cos2 α1

2
) + (R− S) cos2 α4

2
+ (R− P ) sec2 ϕ

R− P .

(5.28)

Since T > R > P > S, 0 6 cos2 αi
2
6 1 and sec2 ϕ > 1, there is only one feasible

solution

cos2 α2

2
= 0

for the first equation of Eq. (5.28), while

cos2 α4

2
= 0,

cos2 α1

2
− sec2 ϕ = 0↔ cos2 α1

2
cos2 ϕ = 1.

(5.29)

By substituting (5.29) into the second equation of Eq. (5.28), we obtain

cos2 α3

2
= sec2 ϕ↔ cos2 α3

2
cos2 ϕ = 1.

That is, this case has only one feasible solution, given by α1 = α3 = 0, α2 = α4 =

π and ϕ = 0. Thus in this case, the quantum-strategy player X can not unilaterally

set the classical-strategy player Y’s score. (Actually, the feasible solution indicates

that the player X’s strategy degenerates to a classical strategy, because of ϕ = 0.)

Case 2 (Whether the quantum-strategy player X could unilaterally set

her own score):

Similarly, the player X sets the parameter β in Eq. (5.25) to be 0, and chooses

the strategy

~̃p1 =


cos2 α1

2
cos2 ϕ− 1

cos2 α2

2
cos2 ϕ

cos2 α3

2
cos2 ϕ− 1

cos2 α4

2
cos2 ϕ

 =


αR + γ
αS + γ
αT + γ
αP + γ

 = α ~SX + γ~1.
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For the simplicity of the derivation, we denote pi := cos2 αi
2

cos2 ϕ, where i =

1, 2, 3, 4. Then we can obtain

p2 =
(P − S)(1− p1) + (R− S)p4

R− P ,

p3 =
(T − P )p1 − (T −R)(1 + p4)

R− P .

(5.30)

By Eq. (5.10) and the derivation of case 1 in Section 5.1, Eq. (5.30) has feasible

solutions that p2 → 0+ and p3 → 1− subject to p1 → 1− and p4 → 0+, i.e.

cos2 α1

2
cos2 ϕ→ 1−, cos2 α2

2
cos2 ϕ→ 0+,

cos2 α3

2
cos2 ϕ→ 1−, cos2 α4

2
cos2 ϕ→ 0+.

Moreover, the player X’s score

sx =
P (1− p1) +Rp4

(1− p1) + p4

∈ [P,R].

A consequence is that the quantum-strategy player X can unilaterally set her own

score sx ∈ [P,R] in this case.

Example 2 (subject to operator σ̂2 in Eq. (5.20)):

By using σ̂2, we get the entangling operator Ĵ2 as shown in Eq. (5.21). Similarly

with Example 1, we consider a game between the quantum-strategy player X and

the classical-strategy player Y.

Since ψ = 0, the Markov transition matrix M2 in Eq. (5.23) becomes


cos2 α1

2
cos2 β1

2
cos2 ϕ cos2 α1

2
sin2 β1

2
cos2 ϕ

cos2 α2

2
cos2 β3

2
cos2 ϕ cos2 α2

2
sin2 β3

2
cos2 ϕ

cos2 α3

2
cos2 β2

2
cos2 ϕ cos2 α3

2
sin2 β2

2
cos2 ϕ

cos2 α4

2
cos2 β4

2
cos2 ϕ cos2 α4

2
sin2 β4

2
cos2 ϕ

(sin α1

2
cos β1

2
− cos α1

2
sin β1

2
sinϕ)2 (sin α1

2
sin β1

2
+ cos α1

2
cos β1

2
sinϕ)2

(sin α2

2
cos β3

2
− cos α2

2
sin β3

2
sinϕ)2 (sin α2

2
sin β3

2
+ cos α2

2
cos β3

2
sinϕ)2

(sin α3

2
cos β2

2
− cos α3

2
sin β2

2
sinϕ)2 (sin α3

2
sin β2

2
+ cos α3

2
cos β2

2
sinϕ)2

(sin α4

2
cos β4

2
− cos α4

2
sin β4

2
sinϕ)2 (sin α4

2
sin β4

2
+ cos α4

2
cos β4

2
sinϕ)2

 .
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By calculating M ′
2 = M2− I and adding the first column of det(M ′

2) into the second

column, we get

D(~α, ~β, ϕ, 0, ~f) = ~v2 · ~f

=det


cos2 α1

2
cos2 β1

2
cos2 ϕ− 1 cos2 α1

2
cos2 ϕ− 1 (sin α1

2
cos β1

2
− cos α1

2
sin β1

2
sinϕ)2 f1

cos2 α2

2
cos2 β3

2
cos2 ϕ cos2 α2

2
cos2 ϕ− 1 (sin α2

2
cos β3

2
− cos α2

2
sin β3

2
sinϕ)2 f2

cos2 α3

2
cos2 β2

2
cos2 ϕ cos2 α3

2
cos2 ϕ (sin α3

2
cos β2

2
− cos α3

2
sin β2

2
sinϕ)2 − 1 f3

cos2 α4

2
cos2 β4

2
cos2 ϕ cos2 α4

2
cos2 ϕ (sin α4

2
cos β4

2
− cos α4

2
sin β4

2
sinϕ)2 f4

 .
(5.31)

We notice that, the second column of the determinant in Eq. (5.31),

~̃p2 :=


cos2 α1

2
cos2 ϕ− 1

cos2 α2

2
cos2 ϕ− 1

cos2 α3

2
cos2 ϕ

cos2 α4

2
cos2 ϕ

 (5.32)

only depends on ~α and ϕ, i.e. solely under the control of the player X. Thus we could

use the quantum ZD strategies to do the simulations.

Case 1 (Whether the quantum-strategy player X could unilaterally set

the classical-strategy player Y’s score):

Let the parameter α in Eq. (5.25) be 0, and X chooses the strategy

~̃p2 =


cos2 α1

2
cos2 ϕ− 1

cos2 α2

2
cos2 ϕ− 1

cos2 α3

2
cos2 ϕ

cos2 α4

2
cos2 ϕ

 =


βR + γ
βT + γ
βS + γ
βP + γ

 = β ~SY + γ~1.

We use the same symbol pi = cos2 αi
2

cos2 ϕ, where i = 1, 2, 3, 4. Then we get

p2 =
(T − P )p1 − (T −R)(1 + p4)

R− P ,

p3 =
(P − S)(1− p1) + (R− S)p4

R− P .

(5.33)

It is noticed that Eq. (5.33) is same as Eq. (5.10). Consequently, in this case, the

quantum-strategy player X could unilaterally set the classical-strategy player Y’s
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score, where the player X’s strategy is

p1 = cos2 α1

2
cos2 ϕ→ 1−, p2 = cos2 α2

2
cos2 ϕ→ 1−,

p3 = cos2 α3

2
cos2 ϕ→ 0+, p4 = cos2 α4

2
cos2 ϕ→ 0+,

and the player Y’s score

sy =
P (1− p1) +Rp4

(1− p1) + p4

∈ [P,R].

Case 2 (Whether the quantum-strategy player X could unilaterally set

her own score):

The player X chooses β = 0 and the strategy is shown as

~̃p2 =


cos2 α1

2
cos2 ϕ− 1

cos2 α2

2
cos2 ϕ− 1

cos2 α3

2
cos2 ϕ

cos2 α4

2
cos2 ϕ

 =


αR + γ
αS + γ
αT + γ
αP + γ

 = α ~SX + γ~1.

By using pi(i = 1, 2, 3, 4) as above, we obtain

p2 =
−(P − S)p1 + (R− S)(1 + p4)

R− P > 1,

p3 =
−(T − P )(1− p1)− (T −R)p4

R− P 6 0.

(5.34)

The same as Eq. (5.13), Eq. (5.34) has only one feasible solution

p1 = cos2 α1

2
cos2 ϕ = 1, p2 = cos2 α2

2
cos2 ϕ = 1,

p3 = cos2 α3

2
cos2 ϕ = 0, p4 = cos2 α4

2
cos2 ϕ = 0,

i.e. α1 = α2 = 0, α3 = α4 = π and ϕ = 0. Therefore, the player X cannot use the

quantum ZD strategies to unilaterally set her own score.

Example 3 (quantum strategy vs quantum strategy):
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In this example, we consider the case that both two players choose quantum

strategies, which are achieved by setting ϕ = ψ = π
2
. Then the Markov transition

matrices in Eq. (5.22) and (5.23) become Eq. (5.35) and (5.36), respectively.

M1 =


cos2 α1

2
cos2 β1

2
cos2 α1

2
sin2 β1

2
sin2 α1

2
cos2 β1

2
sin2 α1

2
sin2 β1

2

cos2 α2

2
cos2 β3

2
cos2 α2

2
sin2 β3

2
sin2 α2

2
cos2 β3

2
sin2 α2

2
sin2 β3

2

cos2 α3

2
cos2 β2

2
cos2 α3

2
sin2 β2

2
sin2 α3

2
cos2 β2

2
sin2 α3

2
sin2 β2

2

cos2 α4

2
cos2 β4

2
cos2 α4

2
sin2 β4

2
sin2 α4

2
cos2 β4

2
sin2 α4

2
sin2 β4

2

 . (5.35)

M2 =


cos2 α1

2
cos2 β1

2
sin2 α1

2
cos2 β1

2
cos2 α1

2
sin2 β1

2
sin2 α1

2
sin2 β1

2

cos2 α2

2
cos2 β3

2
sin2 α2

2
cos2 β3

2
cos2 α2

2
sin2 β3

2
sin2 α2

2
sin2 β3

2

cos2 α3

2
cos2 β2

2
sin2 α3

2
cos2 β2

2
cos2 α3

2
sin2 β2

2
sin2 α3

2
sin2 β2

2

cos2 α4

2
cos2 β4

2
sin2 α4

2
cos2 β4

2
cos2 α4

2
sin2 β4

2
sin2 α4

2
sin2 β4

2

 . (5.36)

By adding the first column of det(M ′
1) or det(M ′

2) into the corresponding second

and third columns, we will get

~v1 · ~f = det


cos2 α1

2
cos2 β1

2
− 1 cos2 α1

2
− 1 cos2 β1

2
− 1 f1

cos2 α2

2
cos2 β3

2
cos2 α2

2
− 1 cos2 β3

2
f2

cos2 α3

2
cos2 β2

2
cos2 α3

2
cos2 β2

2
− 1 f3

cos2 α4

2
cos2 β4

2
cos2 α4

2
cos2 β4

2
f4

 ,

~v2 · ~f = det


cos2 α1

2
cos2 β1

2
− 1 cos2 β1

2
− 1 cos2 α1

2
− 1 f1

cos2 α2

2
cos2 β3

2
cos2 β3

2
− 1 cos2 α2

2
f2

cos2 α3

2
cos2 β2

2
cos2 β2

2
cos2 α3

2
− 1 f3

cos2 α4

2
cos2 β4

2
cos2 β4

2
cos2 α4

2
f4

 .
It can be easily verified that the second column and the third column for both

~v1 · ~f and ~v2 · ~f only depend on ~α or ~β, i.e. they are solely under the control of the

player X or Y. This property indicates that these two cases degenerate to the classical

ones, and can be solved by a derivation similar to that in Section 5.1. Therefore,

these kinds of strategies are named quasi-classical zero-determinant (ZD) strategies.
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5.3.2 Analysis of results

Based on the numerical results in Subsection 5.3.1, and the comparison between the

quantum zero-determinant strategies and the classical zero-determinant strategies,

we state the summary as follows.

1. A type of quantum two-player zero-determinant (ZD) strategies is constructed.

2. By choosing two different operators σ̂1 and σ̂2, two numerical examples indicate

the effectiveness of the proposed quantum zero-determinant strategies. More

specifically, a quantum-strategy player X could succeed to unilaterally set her

opponent’s or her own score, by choosing different parameters of the quantum

zero-determinant strategies.

3. It can be seen in Eq. (5.26) and (5.31) that, we could not obtain a column

which only depends on the control of the classical-strategy player Y, no matter

how we do linear transformation on columns. These results demonstrate the

advantage of the quantum zero-determinant strategies.

4. Finally, we considered the case of a game between two quantum-strategy play-

ers. As shown in Example 3, what is interesting is that the quantum zero-

determinant strategies degenerate to the classical zero-determinant ones. Thus

we name these kinds of quantum zero-determinant strategies as quasi-classical

zero-determinant (ZD) strategies.
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Chapter 6

Conclusions and future work

This chapter draws conclusions on the thesis, and points out some possible research

directions related to the work done in this thesis.

6.1 Conclusions

The focus of the thesis has been placed on two parts: coherent feedback control

problem for linear quantum systems and two-strategy evolutionary game theory.

Specifically, three research problems have been investigated in detail.

1. A mixed LQG and H∞ coherent feedback control problem for a linear quantum

system is considered. In this mixed control problem, LQG and H∞ perfor-

mances are not independent. Moreover, as the controller to be designed is

another quantum-mechanical system, the “physical realizability conditions”

should be satisfied, yielding the intricate polynomial matrix equality. A result

for the lower bound of LQG index is proved. To solve this mixed problem, we

propose two algorithms, rank constrained LMI method and genetic-algorithm-

based method, by which the feasible solutions are attained in numerical simu-

lations. Furthermore, the superiority of genetic algorithm (GA) is verified by

the comparison between the numerical results of these two proposed methods.
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2. In the static two-strategy game (e.g. Prisoner’s Dilemma), defectors have

higher fitness, thus in any mixed populations, defectors always dominate co-

operators. Therefore, we focus on a class of evolutionary game with finite

populations, and investigate a novel evolutionary model by adding tags to the

game players. Then for given numerical examples, the corresponding evolution-

ary dynamics and stationary distributions are synthesized. Finally, three kinds

of feasible strategies are obtained, yielding that C-strategy individual can suc-

ceed to invade into D-strategy population and cooperation can get stabilized.

Moreover, the stationary distributions state the effectiveness of the proposed

model.

3. To solve the problem that defectors always dominate cooperators in the static

two-strategy game, we present another model, by using quantum strategies.

Inspired by the classical zero-determinant (ZD) strategies in Press and Dyson

(2012), a class of two-player quantum zero-determinant (ZD) strategies is pro-

posed. Three kinds of numerical examples are given, which show that quantum

zero-determinant strategies have significant advantage over the classical zero-

determinant strategies. When a quantum-strategy player X plays a game with

a classical-strategy player Y, X could choose her own strategies to unilaterally

set her own score or Y’s score, whereas Y could never to do so. What’s interest-

ing is that, when both the players X and Y choose quantum strategy, it is the

same as the classical case, which are named as quasi-classical zero-determinant

(ZD) strategies.

6.2 Future Work

Related topics for the future research work are listed below.

1. In Chapter 3, the proposed mixed control problem is for continuous quantum
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systems, while the discrete system theory in both classical and quantum cases

has been developed in the literature. Therefore, in the future work, considering

the mixed LQG andH∞ feedback control problem for discrete quantum systems

is worthwhile and challenging. Moreover, the “physical realizable conditions”

may not always be reached by a practical Hamiltonian, so the conditions of

reaching physical realizability for a practical Hamiltonian will also be consid-

ered in the future.

2. For the classical evolutionary game theory with tags presented in Chapter 4,

it assumed that a game could only occurred between two players, with only

two strategies C (cooperation)and D (defection). But many results have been

attained for multi-strategy and multi-player game theory, respectively. Thus

in the future, investigating the multi-strategy/multi-player evolutionary game

theory with tags is meaningful and interesting.

3. Both Chapter 4 and Chapter 5 focus on seeking new kinds of strategies to

solve the problem that defectors always dominate cooperators in the static

two-strategy game, which inspires us to combine these two proposed strategies

together, so as to yield a class of quantum zero-determinant strategies with

tags. It will also be a topic of my future research.

4. Depending on the classical zero-determinant strategies, a kind of classical ex-

tortion strategy is investigated in Press and Dyson (2012). Similarly as this, it

is worthy to discuss potential results about quantum extortion strategy in the

future.
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