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Abstract

Recent advances of network technology provide a great convenience for data commu-

nication. A key problem of data communication on the Internet is to transmit data

from a sender to its receiver safely, without being eavesdropped, illegally accessed or

tampered. Steganography, which is the art or science that hides secret message in an

appropriate multimedia carrier including text, image, audio, or video [1], provides an

effective solution. Unlike cryptography which emphasizes protecting the information

security by making messages illegible, steganography intends to conceal the fact that

a secret message is being sent and thus will not raise an opponents suspicion. Owing

to this benefit, steganography plays a crucial role in many important applications such

as military and commercial communications.

In contrast to steganography, steganalysis aims to reveal the presence of secret mes-

sages embedded in digital medias [80]. This technique tries to make the steganography

disable by determining whether a given carrier signal has hidden message, estimating

the amount of hidden message, or, if possible, recovering the hidden message. For this

nature, steganalysis is usually used as a measure to evaluate the security performance

of steganographic algorithms.

Natural images, which denote various photographs of typical environment we live

in, are the most popular image files on the internet. Natural images are highly non-

random, showing structural richness and strong local correlations. In this thesis, we

focus on improving the performance of steganography and steganalysis by exploring

these two properties of natural images. Following this idea, we investigate steganogra-
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phy and steganalysis from the following two aspects:

For steganography, we improve its undetectability via selecting suitable natural cov-

er images. Natural images have rich and complex structures, which provide steganogra-

phier enough space to hide secret messages. Unlike most existing works focusing on

designing data embedding algorithms to preserve the structure of natural images, this

work aims to improve the performnace of steganographic algorithms by selecting suit-

able natural cover images. A novel measure, which is only determined by the probability

distribution of images, is proposed to analyze their hiding abilities. Based on statistical

models of natural images, we prove that the proposed measure is an upper bound of

the Kullback-Leibler (KL) divergence, a theoretical measure of steganographic security,

both for spatial domain images and compressed domain images. With the measure,

we investigate what properties that intrinsically make the stego images undetectable.

Our conclusion is that the undetectability of the stego image relates to three factors:

the entropy of the statistical model to represent the image, the energy of varying pix-

els across the image, and the number of nonzero DCT coefficients to reconstruct the

image.

For steganalysis, we improve its detection ability by modeling natural images with

Convolutional Neural Networks (CNN). Natural images have strong spatially local cor-

relation. This local correlation is distorted when secret messages are embedded, making

it different from the normal correlation in natural images. Due to this fact, we propose

to use CNN for image steganalysis. A unified model have been designed from two

aspects. For the first, different from existing CNN based steganalytic algorithms that

use a predefined highpass kernel to preprocess input images, we integrate the highpass

filtering operation into the proposed network by building a content suppression sub-

network. Highpass kernels in this subnetwork are adaptively updated in the network

training, allowing more powerful discriminative features come into the subsequent net-

work than that of CNN models with a predefined kernel. For the second, we propose

a novel subnetwork to actively preserve and further strengthen the weak stego signal
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generated by secret messages based on residual learning, making the whole network

capture the difference between cover images and stego images. Theoretically, we prove

that the residual learning can preserve the weak stego signal for the deep model with

any depths. Extensive experiments demonstrate that the proposed network can detect

the state of the art steganography with better accuracy than previous methods when

cover images and their stego images are paired in training and testing. We further

discuss the proposed method in more general case and analyze the limitation of a CNN

model with batch normalization layers for image steganalysis.

Empirical validations have demonstrated that the performance of steganography

and steganalysis can be improved with appropriate natural image statistical models.

Our future work will focus on two aspects: design advanced steganographic algorithms

based on CNN models; develop CNN models without batch normalization layers to

detect steganography in more general case and further extend them into the compressed

domain image.

Keywords: Steganography, steganalysis, image selection, convolutional neural net-

work.
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Chapter 1

Introduction

1.1 Steganography and Steganalysis: Definition and

Theoretical Formulation

Fig.1.1 shows the general idea of image steganography and steganalysis. For steganog-

raphy, the sender hides the message m in the cover image X. By applying the message

embedding algorithm Emb(X,m, k) and the key k on X, the stego image Y is gener-

ated and then passed to the receiver. By applying the message extraction algorithm

Ext(Y, k) and key k on Y , the receiver can recover the secret message m. In the figure,

the stego image Y and cover image X denote the images with and without hidden in-

formation, respectively. During the communication, the sender and the receiver should

pledge that any intended observer in the channel cannot differentiate Y from X. For

steganalysis, however, it represents some observers in the communication channel that

attempt to discriminate the stego image Y against the cover image X. Further, ste-

ganalysis needs to estimate the amount of hidden message or even recover the hidden

message. In this thesis, we only consider the basic requirement that a steganalyzer

should determine whether an image contains secret messages or not.

Modern researchers formulate the steganography and steganalysis as a prisoner

escaping problem [32], which is shown as Fig.1.2. Assume Alice and Bob are two

1



( , , )Emb X km ( , )Ext Y k

Key k Key k 

Channel 

Message m Message m 

Cover X Stego Y 

Steganalysis 

Figure 1.1: Schematic illustration to steganography and steganalysis.

prisoners, they want to find methods to escape the jail. Since Alice and Bob are not

in the same room, the only way then can communicate with each other is to write

messages in the paper. A policeman named Wendy checks every paper they have

written. In order to communicate with each other, Alice and Bob use a key shared by

themselves to add secret messages into their paper. Alice and Bob succeed if they can

exchange the information and do not arouse Wendy’s suspicion. In this model, Alice

and Bob play the role of steganographier, while Wendy acts as a steganalyzer.

Figure 1.2: Prisoners escaping model of steganography

2



1.2 Motivation of Addressing Steganography and

Steganalysis from Natural Image Structures

The rapid development of social media has resulted in a huge amount of image data

in our daily lives. Meeker in her “state of the internet” report indicated that more

than 3 billion images are uploaded to Facebook, Instagram, Flickr, Snapchat, and

WhatsApp every day 1. Fig.1.3 shows the total number of uploaded images for 5 hot

social network platforms from 2005 to 2015. Facebook in a white paper also revealed

that more than 250 billion images have been uploaded by its users 2. Among all

uploaded images, most of them are the natural images, for example the human beings,

animals, buildings, environmental scenes, etc. Such huge amount of natural images

provide steganographiers and steganalyzers almost infinite materials for applying image

steganography and image steganalysis.

Figure 1.3: Daily Number of Photos Shared on Select Platforms, Global, 2005-2015
[116].

Natural images have their own properties that make them especially suitable for

steganography and steganalysis. On one hand, natural images are highly non-random

and have rich structures, including edges, textures, points, etc. These rich structures

1http://www.kpcb.com/internet-trends
2http//www.businessinsider.com/facebook-350-million-photos-each-day-2013-9
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are often hard to be accurately modeled, which provides enough space for hiding secret

messages. On the other hand, adjacent pixels in natural images are not independent,

they have strong spatially local correlations. These local correlations would be changed

when secret messages are embedded, making them different from natural ones. This

change could provide steganalyzer information to discriminate natural cover images

and their stego versions. However, there are few works that use these properties to

design steganographic and steganalytic algorithms.

Because of the proliferation of natural images in the internet and their good prop-

erties, the primary focus of this thesis is to improve the performance of steganography

and steganalysis based on the statistics of natural images. For steganography, we want

to investigate what kinds of natural images that are suitable for message hiding and

propose to improve the performance of steganography by cover image selection. For

steganalysis, we propose to use convolutional neural networks to mine local correlations

in natural images, thus improve the detection ability of steganalysis.

1.3 Proposed Framework

In the dissertation, we propose to improve the performance of steganography and ste-

ganalysis by mining structures of natural images. Fig.1.4 shows the research framework

of our work. The techniques are designed and built from two aspects: 1) selecting suit-

able natural cover images to improve the undetectability of steganography; 2) modeling

natural images with CNN to improve the detection ability of steganalysis:

1.3.1 Selecting Suitable Natural Cover Images to Improve the

Undetectability of Steganography

Although extensive efforts focus on designing message embedding algorithms to avoid

the stego images being distinguished from normal ones in the research of steganogra-

phy, what properties that intrinsically determine the hiding ability of an image and

4
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Figure 1.4: Proposed research framework.

make the steganography undetectable remain unclear. To handle the problem, this

work proposes a new measure to analyze the hiding ability of cover images. Based on

the information theoretic metric for steganography, the KL divergence, we derive the

proposed measure between the cover image and the stego image. Unlike some existing

measures that depend on the embedding operations or steganalytic methods, the pro-

posed measure is only determined by the probability distribution of natural images.

This advantage indicates that the measure is independent of any specific steganograph-

ic algorithms and steganalytic techniques. Another feature of the proposed measure is

well founded by steganographic theory. We prove that, both for probability distribu-

tions of spatial domain images and compressed domain images, the proposed measure

could bound the KL divergence. Consequently, the KL divergence is forced to decrease

when the proposed measure becomes small, leading to a securer steganography. With

the proposed measure, we further analyze the properties of cover images with good

hiding ability. Our conclusion is that the security of a cover image relates to three

factors: the entropy of the model to represent the image, the energy of varying pix-

els across the image, and the number of nonzero DCT coefficients to reconstruct the

image. These properties enable us to select securer cover images on the internet for

steganography.
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1.3.2 Modeling Natural Images with CNN to Improve the De-

tection Ability of Steganalysis

Natural images have strong local correlations among image pixels. These correlations,

however, are distorted when secret message are embedded. CNN models are powerful

to capture various correlations in natural images. This work proposes to improve the

detection ability of steganalysis with CNN. We propose a novel CNN model by de-

signing two newly designed subnetworks: the adaptive content suppression subnetwork

and the residual learning subnetwork. For the adaptive content suppression subnet-

work, it aims to adaptively reduce the influence of image content and thus increase the

Signal-to-Noise Ratio (SNR) between the stego signal generated by message embedding

and the noise signal of image content. For the residual learning subnetwork, it is to

preserve the stego signal when it propogates in the network, making the whole model

capture the difference between cover images and stego images. Theoretical analysis

indicates that residual learning can preserve and even improve the discrimination of

cover images and stego images for the CNN model with any depths. Experimental

results demonstrate that the proposed model can effectively detect the state of the art

steganography when cover images and their stego images are paired in training and

testing.

1.4 Organization of the Dissertation

The rest of this thesis is organized as follows.

• In Chapter 2, we introduce some background knowledge about steganography and

steganalysis, including definitions and techniques. Several theoretical metrics of

steganography and steganalysis are also described. We introduce some basics

about natural images statistics at the end of this chapter.

• In Chapter 3, we improve steganographic security by selecting suitable natural
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cover images. The KL divergence and two statistical models for natural images

are used for the analysis purpose. Properties of cover image that intrinsically

affect the undetectability of steganography are discussed in this chapter.

• In Chapter 4, we propose a unified CNN model for image steganalysis. By incor-

porating adaptive content suppression and residual learning, the proposed model

can detect modern adaptive steganographic algorithm with better performances

than previous methods when cover images and their stego images are paired in

training and testing. We also discuss the limitation of a CNN model with batch

normalization layers for image steganalysis.

• In Chapter 5, we give conclusions and possible future directions of this work.
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Chapter 2

Literature Review

In this chapter, we review technical details of various steganographic techniques. Ac-

cording to the data embedding operations, we classify existing techniques into three

main categories: LSB based steganography, quantization based steganography, and

content adaptive steganography. Steganographic algorithms in the transform domain

are introduced in the same section. Meanwhile, the counterpart of steganography, ste-

ganalysis, is also described in this chapter. In order to analyze steganography in theory,

we introduce several validation metrics based on the information theoretical steganog-

raphy. To overcome the computational difficulty of the theoretical security measure, we

review several alternative methods to evaluate steganographic security. At the end of

this chapter, we review some basics about the statistics of natural images and introduce

two representative models for their description.

The rest of this chapter is organized as follows. In section 2.1, we review the

technical details of steganographic algorithms and further analyze their pros. and cons.

In section 2.2, we briefly review the techniques of steganalysis. In section 2.3, we review

the theoretical foundation of steganography and introduce several existing methods

to evaluate steganographic security. In section 2.4, we introduce some background

knowledge about natural images.
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2.1 Steganography

Since the first information hiding workshop was hold in 1996, techniques of stegano-

graphic algorithms has developed a lot over the past two decades. Here we chronolog-

ically list the key developing points of steganography:

• 1984: Simmons in [32] proposed the prisoner escaping problem, becoming the

general formulation of modern steganography;

• 1985: Barrie Morgan and Mike Barney designed two c0(see zeros) systems [39]

with the advent of personal computer, which were considered as two first stegano-

graphic algorithms in digital era;

• 1992: Charles Kurak and and John Mchungh proposed the least significant bit

(LSB) [17] for hiding messages in digital images. The LSB method is funda-

mentally important for modern steganography for its practicability, and mostly

important, it was the simplest algorithm satisfying all the three requirements of

a secure stegosystem at that time;

• 1996: the first information hiding workshop opened, where many terminologies,

such as cover signal, stego signal, message embedding, were defined. The work-

shop also clarified the differences between steganography, digital watermarking

and fingerprinting [88];

• 1998: Cachin defined the security of a stegosystem in terms of the information

theory [33], providing a solid theoretic basis for the research on steganography.

We will introduce this definition and the information theoretic steganography at

the end of this chapter;

• 1998: Kawaguchi proposed the first content adaptive steganography, the bit plane

complexity steganography (BPCS) [28], which took the limitations of HVS to

achieve high embedding capacity. Meanwhile, the matrix embedding steganogra-

phy was introduced by Crandall [84];
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• 2001: Quantization index modulation (QIM) steganography was proposed by

Chen [12]. At the same year, Shi descried the reversible steganography [119],

a new data hiding scheme requiring that the original data should be losslessly

recovered;

• 2006: Younhee Kim proposed the modified matrix embedding steganography.

This method extends the matrix embedding algorithm that more than one pix-

els/coefficients can be changed. This new method paves the way for the devel-

opment of modern steganography, i.e. content adaptive steganography based on

the channel coding. Following Kim’s work, Fridrich proposed the framework of

the wet paper coding [49].

• 2011: Tomas Filler proposed a novel method to minimize the additive distortion

function with the Syndrome-Trellis Codes (STC) [96]. This method now becomes

the best choice for steganographiers to embed secret messages once the distortion

value for each pixel/coefficient is defined.

In recent years, steganography based on STC becomes the the mainstream for its

efficiency and high undetectability. Based on this framework, the only work that a

steganographier does is to develop novel distortion function. In the following sections,

we review various steganographic algorithms in details.

2.1.1 LSB based Steganography

LSB steganography LSB steganography is one of extensively used technique capa-

ble of hiding large secret message in a cover image without introducing severe percep-

tible distortions [96]. In fact, LSB is the simplest case of Weber’s law - it just takes

the least modifications to the cover image. LSB directly replaces the least significant

bits of randomly selected pixels in the cover image with the message bits [111]. The

selection of image pixels is controlled by a secrete key to make the message unreadable
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Figure 2.1: Schematic illustration to the LSB steganography

to some intenders. The basic description of the LSB steganography is shown as follows:

yi = 2bxi/2c+mi (2.1)

where xi, yi,mi represent the i-th message bit, the i-th selected pixel value before

embedding, and that after embedding, respectively. In general, the messages embedded

into the cover image are compressed and encrypted. In this case, the binary message

bits are assumed to be approximate a uniform distribution, e.g. Pm(m = 0) = Pm(m =

1) = 1/2, where Pm(m = 0) and Pm(m = 1) represent the probabilities of binary

message bit 0 and 1.

Since the least signification bits of a cover image are replaced by the message bits,

whose distribution is an uniform distribution, the LSB technique enforces that pixels

with adjacent values are equally distributed, called pair of value (PoV) phenomenon

[10]. The PoV denotes that the histograms of two adjacent pixel values in the LSB

stego image are equally high to each other. This phenomenon was utilized by many

researcher to design steganlytic tools for message detection. For example, Westfeld in

[10] proposed χ2 statistics to analyze the existence of LSB embedding:
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2
, O2n and O2n+1 denote the occurrence

times of pixels whose values are equal to 2n and 2n + 1 respectively. Γ(·) denotes

the Gamma function. In the Eq.(2.2), the value of p is roughly equal to the proba-

bility of message embedding. Experiments prove that the χ2 statistic can attack LSB

steganography very accurately if the message bits are embedded into a continuous re-

gion. Despite the χ2 attack, several improved algorithms were proposed to overcome

its limitation. For example, Fridirch’s RS steganalysis [45] and weighted stego [44],

Dumitrescu’s simple pair analysis (SPA) [89] and recently hypothesis testing theory

based method [83] can reliably attack the LSB steganography even though message

bits are hidden in randomly selected locations.

LSB Matching Steganography In order to avoid the PoV phenomenon, Sharp

[103] proposed an improved version of LSB steganography, the LSB matching (LSBM).

Unlike the LSB steganography directly replaces the LSB with the message bits, LSBM

works in this way: if the LSB matches the message bit, no operation is done, otherwise

LSBM randomly adds +1 or -1 to the current pixel according to a secret key.

yi =

 xi, mod(xi, 2) = mi

xi ± 1,mod(xi, 2) 6= mi

(2.3)

Compared with LSB method, LSBM does not generate the PoV phenomenon,

thus achieve better security. Generalizing Sharp’s work, Fridrich further proposed ±k

steganography [47]. The method is similar to LSB matching but embeds more message

bits at one pixel. In addition, she proposed the stochastic modulation based steganog-

raphy [43]. Instead of hiding message bits into pixels according to uniform distribution,
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this method embeds the message by adding a weak noise with arbitrary distribution.

The detection accuracy is decreased when the sender embeds messages by simulating

the noised generated by digital devices. Mielikainen in [57] utilized the redundancy be-

tween the message bits and the LSB of cover images to hide secret messages, achieving

a higher embedding efficiency than LSBM.

Adaptive LSB steganography Currently, the developments to the LSB steganog-

raphy fall in two directions. The first direction is to hide the messages bit by preserving

the statistical properties of the cover image. Sallee’s model based (MB) steganography

[77] follows this idea. Before embedding, MB firstly estimates the conditional distri-

bution between the deterministic variables (MSB, maximal significant bits) and the

indeterministic variables (LSB). Then, the algorithm embeds the messages according

to the estimated distribution. Another typical example is Fridrich’s stochastic modu-

lation based steganography [43], which embeds the message bits into the message by

adding a noise signal with arbitrary distribution. Based on this method, the sender

can embed the messages into cover images with a distribution similar to the natural

noise. The second direction is the content adaptive LSB. For example, both Yang’s

method [18] and Luo’s method [112] embeds the messages at the locations in which

the difference between two neighborhood pixels is large. Since these locations are often

at the edges, highly textured and cluttered regions, they are too complex to be mod-

eled by off the shelf mathematical tools. Meanwhile, the distribution of LSB at these

locations also approximates a uniform distribution. These factors greatly increase the

security of the steganography.

2.1.2 Quantization based Steganography

Quantization is a frequently used technique to decrease the size of digital images for effi-

cient transmission. Inevitably, information loss and artificial distortions are introduced

during this process. The quantization based steganography is to embed the message
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bits into the cover image by alternating the quantizer itself or the quantization table.

Since quantization is an information reduction mapping, the security can be enhanced

if the alternations to the cover images are lost in the quantization operation.

Quantization index modulation QIM is the first approach to embed the message

in image quantization. In [12], Chen generalized the message embedding as a super-

channel model. In the following figure, m is the original secret message, x is the cover

signal, e is the encrypted secret message, s is the stego signal, y is the received signal,

m̂ represents the recover secret message.

m ENC

x

Channel DEC m̂
e s y

Super-channel

Figure 2.2: Equivalent super-channel model for information embedding. The composite
signal is the sum of the host signal, which is the state of the super-channel, and a host-
dependent distortion signal

Based on the channel model as Fig.2.2, one can take information-embedding prob-

lems as power-limited communication over a super-channel with a state that is known

at the encoder. QIM embeds the message bit 0 or 1 by using different quantizers:

yi = Qm(xi) =

 ∆bxi/∆ + 1/2c, if m = 0

∆bxi/∆c+ ∆/2, if m = 1
(2.4)

where ∆ denotes the quantization step. As proved by author from information theory,

QIM methods are provably better than additive spread spectrum and generalized LSB

against bounded perturbation and in-the-clear attacks. Therefore, they are also widely

used in digital watermarking for its robustness against noise attacks. However, a fatal

defect of QIM method is it makes the histogram of stego image sparser than the cover
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image. This phenomenon become quantization step ∆ is large. The remedy is to use

a dither modulation during message embedding:

yi = Qm(xi + di)− di (2.5)

where di is the dither signal uniformly distributed in [−∆/4,∆/4] and determined

by a key shared by senders and receivers. Compared to the original method, QIM

with dither modulation successfully avoid the histogram sparsity phenomenon without

decreasing the robustness or sacrificing advantages over the spread spectrum method

and LSB steganography.

Quantized table modulation Unlike QIM embeds the message in the spatial do-

main, the quantization table modulation (QTM) [15] is to hide the message by changing

the JPEG quantization table and then modify the middle-frequency DCT coefficients

for message embedding.

Figure 2.3: Schematic illustration to the QTM steganography

In the Fig.2.3, the table on the left side is the original JPEG quantization table,

while the right side one is the modified quantization table. The reason for choos-

ing middle-frequency DCT coefficients is that they are the tradeoffs to both achieve

invisibility and security.

Some researchers have generalized the quantization based steganography in the

framework of channel selection. The advantage of this framework is it can significantly

increase the security by embedding message bits into pixels or DCT coefficients hard to
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be discriminated from the quantization noise and the embedded bits when the image

is quantized.

2.1.3 Content Adaptive Steganography

Currently, the content adaptive steganography becomes the mainstream of modern

steganography. According to the development of this approach, it can be clearly clas-

sified into two stages. In the first stage, the content adaptive steganographies achieve

high embedding capacity and security by embedding message bits into some busy re-

gions such as textures or clutters. Their success lies in the fact that our visual system

is insensitive to the changes in those busy regions. However, as the development of ste-

ganalysis, many tools can easily attack these approaches even though they are secure to

HVS. Therefore, in the second stage, distortion minimization (DM) based steganogra-

phy becomes popular for its high security to various steganalysis tools. Different from

early content adaptive steganography, DM is to hide the message bits into positions

secure to various detection algorithms.

BPCS. The first content adaptive steganography is BPCS proposed by Kawaguchi

in [28]. Before message embedding, BPCS firstly defines a complexity measure for each

bit plane of a region:

α =
k

The maximum possible B −W changes in the region
(2.6)

where k is the total length of black-and-white border in the binary region, which

equals to the summation of the number of color-changes along the rows and columns

in a region. In Fig.2.4, the α values of pure white or black regions are 0, while the

regions as Wc and Bc give the largest value, α = 1.

To embed secret message, BPCS searches the regions P with large α value and

replaces the original pixel bits with the message bits. In order to achieve high em-
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Figure 2.4: Low α regions and high α regions. In the figure, B and W denote the image
with same pixel value(lowest and largest).

bedding capacity, the method transforms the informative regions, whose α values are

small, with a conjugation operation:

P ∗ = P ⊕Wc (2.7)

where ⊕ designates the bit-wise exclusive OR operation. By computation, the conju-

gation operation has following properties:

(P ∗)∗ = P (2.8)

α(P ∗) = 1− α(P ) (2.9)

After this transformation, BPCS embeds the message bits into both MSB and LSB of

regions with large α value. Experiments proved that BPCS can hide large amount of

messages but leads to small visual artifacts.

Pixel value differencing. Pixel value differencing (PVD) proposed by Wu [24] is

another typical content adaptive steganography using the limitation of HVS. The com-

plexity in PVD is defined as the difference between two neighboring pixels. The larger

the difference is, the higher the complexity it achieves. Generally, there are four steps

for PVD steganography:

• Divide the image into non-overlapping two pixel blocks;

• Use a random key to visit all the blocks; compute the difference value and classify
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it into a number of contiguous ranges;

• Replace the original difference value with the message bits;

• Pixel value inversion.

The absolute difference between two neighboring pixels could be any value in [0,255].

Before embedding, [0,255] is divided into several continuous intervals. A typical divid-

ing scheme is [0,7], [8,23], [24,55], [56,87], ..., where the lengthes of the intervals are 8,

16, 16, 32, 64, 128, which implies 3, 4, 4, 5, 6 bits can be replaced by the messages.

Then PVD computes the difference between two neighoring pixels, 50, 65 in the figure

and the difference is 15. Checking the dived intervals, we find 15 fall into [8,23], indi-

cating 4 message bits can be hidden into the selected pixels. Selecting four bits from

the message, PVD replaces the original difference value with the message bits. The

message bits embedded into two selected pixels according to the mapping function:

(ĝi, ˆgi+1) =

 (gi − ceilingm, gi+1 + floorm), if mod(d, 2) 6= 0

(gi − floorm, gi+1 + ceilingm), if mod(d, 2) = 0
(2.10)

where {(gi, gi+1), (ĝi, ĝi+1)}, d, d′ are the neighboring pixels, the difference values before

and after message embedding, m = d − d′ and celilingm = dm/2e, floorm = bm/2c.

The purpose of Eq.(2.10) is to adjust the difference value d to the value d′ corresponding

to binary messages.

Similar to PVD, Zhang in [113] posed a multiple-base notational system steganogra-

phy. Both PVD and Zhang’s method utilize the limitation of HVS, but Zhang’s method

embeds the messages into a busy region whose variance is large. Following the idea

of PVD, Luo and Yang proposed two edge adaptive steganography by hiding the bits

into highly different pixels with LSBM. Currently, the content adaptive steganography

steps from HVS security to statistical security. The key to content adaptive approach

is to find appropriate hiding positions and a reversible process to encode and decode
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the messages. In the following section, we discuss this approach.

Channel coding based steganography For content adaptive steganography, both

senders and receivers should have complete knowledge about the positions for message

hiding. However, the channel coding based steganography can make receivers correctly

decode the messages even though they do not have any knowledge about these embed-

ding positions. Matrix embedding, proposed by Crandall in [33], is the first channel

coding steganography to hide message bits by changing at most one bit.

Assume x is the LSBs of the pixels or quantized DCT coefficients, H is a binary

matrix, y is the LSBs with hidden messages, m represents the message string. For

matrix encoding, it hides the message string m by solving the following optimization

problem:

y =

 x, if Hx = m

x′, if Hx 6= m
(2.11)

the constraint is:

s.t. distHamming(x,x
′) =

∑
i

(xi ⊕ x′i) ≤ 1 and Hy = m (2.12)

In many applications, the Hamming (7,3) binary matrix H in liner error-correcting

codes (ECC) is used for encoding:

1 0 1 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

 
 

  
 
 

H

Figure 2.5: The Hamming (7,3) ECC encoding matrix

Once the message string m is embedded into the cover image x, a receiver can decode

the message by applying a binary matrix multiplication, m = Hy. Except for Hamming
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codes, there exist many other codes in channel coding theory, such as BCH codes [87],

syndrome trellis code [96], etc.

The matrix embedding steganography requires at most one bit can be changed

during message hiding. Kim in [115] relaxed this constraint and proposed modified

matrix embedding (MME). In MME, t ≥ 1 bits can be changed during embedding:

y =

 x, if Hx = m

x′, if Hx 6= m
(2.13)

where the constraint is relaxed that t bits can be modified:

s.t. distHamming(x,x
′) =

∑
i

(xi ⊕ x′i) ≤ t and Hy = m (2.14)

where ⊕ denotes the xor operator. For each bit, a distortion function is defined when

it is changed:

d(xi, yi) = 1− δ(xi − yi) (2.15)

where δ(·) represents the delta function. Then MME can be formulated as a distortion

minimization problem:

y = min D(x,y) s.t. Hy = m (2.16)

where the total distortion D(x,y) =
∑

i d(xi, yi). Current researches on channel coding

based steganography focus on the design of H, the design of distortion function D,

how to solve effectively the optimization problem as Eq.(2.16). The syndrome trellis

coding (STC) proposed by Fridrich have successfully solved the optimization problem

as Eq.(2.16) when the distortion is additive. STC liberates the researcher to focus on

the design of distortion function, making the DM framework become mainstream.
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2.1.4 Steganography in the Transform Domain

Unlike spatial domain steganography that directly hides message bits into image pixels,

steganography in the transform domain changes the transformed coefficients to realize

message hiding. These transformed coefficient can be the DCT coefficient for the

JPEG image [50, 65, 66] or the wavelet coefficient for the JPEG2000 image [68, 78].

In general, the transform domain steganography can be divided as the following two

main categories:

Random embedding approach This approach hides secret message bits into the

randomly selected nonzero coefficients. The main advantage of this approach is that

it can hide information efficiently. Jsteg [61] directly extends the LSB steganography

to JPEG images , which changes the LSB of DCT coefficients to embed message bit-

s. Outguess [75] is similar to Jsteg, but it adds some additional bits to adjust the

histogram of DCT coefficients to avoid distortion. With matrix embedding, F5 [11]

randomly select one nonzero coefficient for changing, achieving high embedding effi-

ciency than Jsteg and Outguess. In order to eliminate the shrinkage phenomenon in

F5, Fridrich proposed the non-shrinkage F5 (nsF5) [50] method based on the wet paper

coding. Although the random embedding approach is efficient to hide message, they

are easy to be attacked by detection algorithms.

Adaptive embedding approach Different from random embedding approach that

hides message bits in a random manner, adaptive embedding methods hide messages

into coefficients that are hard to be attacked. By heuristically defining a distortion

function for each coefficient, the adaptive embedding approach uses STC to embed

messages into coefficients with low distortion value. Following this idea, Holub in [107]

proposed a universal distortion function based on the wavelet transform. The method

forces that DCT coefficients to be embedded are the ones that lead to least changes in

the wavelet domain. Guo in [65-66] proposed a distortion function based on the idea
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of uniform embedding. The method defines the DCT coefficient with low distortion

value if message embedding can result in a more uniform distribution. Compared with

random embedding approach, the adaptive embedding approach is securer for message

hiding, thus becomes the main research topic in the compressed domain steganography.

2.2 Steganalysis

The aim of steganography is to hide messages into cover signal to avoid being detect-

ed, while steganalysis from an opponent’s perspective, is the art of deterring covert

communications while avoiding affecting the innocent ones [80]. Its basic requirement

is to determine whether a secret message is hidden in the testing medium. According

to the knowledge they use, the technique can be roughly classified as specific method

and universal method, which are introduced as follows.

2.2.1 Specific Steganalysis

Specific steganalysis fully utilizes full knowledge of a targeted steganographic algorithm

to discriminate the cover image and the stego image. In general, there are two methods

for specific steganalysis for the spatial domain images.

Embedding sensitive statistics based method This method constructs statis-

tical quantities that are sensitive to a given message embedding algorithm for the

discrimination of covers and stegos. By using the PoV phenomenon of LSB replace-

ment embedding, the χ2 steganalysis detects LSB steganography by calculating the χ2

statistical quantity of digital images. In [45], a discrimination function in RS steganal-

ysis, which is defined to capture the smoothness of a group of image pixels, divides

image pixels into three groups. With the flipping operation, the RS method can find

the number change of two groups and then determines whether the input image is a

cover or a stego. The WS steganalysis [44] transforms each pixel into its weighted

stego version by LSB flipping. The weighted average of image pixels is utilized to

discriminate covers and stegos and further determine the size of embedded message.
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The SPA steganalysis [89] extracts several multisets of sample pairs based on the finite

state machine for hidden message detection and the message length estimation.

Hypothesis testing based method This method formulates the message detection

to a hypothesis testing problem. The key of the method is to find a good probability

model for natural images. Cogranne [82] used a zero-mean Gaussian distribution to

model the noise during the acquisition. Based on the probability model, the paper

proposed an Asymptotically Uniformly Most Powerful (AUMP) test to maximize the

detection power for the LSB matching steganography. In [81], a new probability func-

tion is proposed to model the distribution of quantized DCT coefficients. Based on the

hypothesis testing framework, the algorithm can reliably detect the Jsteg steganogra-

phy.

In summary, the specific steganalysis is only effective for the targeted steganography.

It cannot be generalized for other steganographic algorithm, which limits its application

in practice.

2.2.2 Universal Steganalysis

In contrast to specific steganalysis needing strong prior knowledge, universal steganal-

ysis detects hidden message in which no prior knowledge is provided [13]. Instead

of using the knowledge about a specific steganographic method, they transform the

steganalysis into a general binary classification problem.

Wavelet feature based method This method takes high order moments of wavelet

coefficients as the feature vector for message detection. Farid in [35] proposed to use

the regression vector between each wavelet coefficient and its neighborhood coefficients

as the training feature. A Fisher linear discriminant (FLD) is learned based on the

extracted feature, which is utilized to discriminate natural images and their stego

versions. Following this work, Lyu [92] combined the higher order statistics of the

wavelet coefficient and a SVM classifier to detect various steganographic algorithms.
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In [70], Goljan et al. proposed to extract higher order absolute moment of wavelet

coefficients, called the Wavelet Absolute Moment (WAM), to attack the LSB matching

steganography.

Co-occurrence matrix based method In recent years, an increasing number of

universal algorithms tend to use the co-occurrence feature because of its low extraction

cost and high discriminability. For instance, Zou et al. in [27] extracted the Markov

transition matrix from the error prediction image and trained a support vector ma-

chine for classifying the cover images and stego images. Pevny and Fridrich in [101]

further developed the SPAM feature which showed promising performance for additive

steganography. In the last four years, Fridrich and her group proposed several excellent

steganalysis schemes such as rich model methods [46, 106] are developed based on var-

ious higher order co-occurrence matrices. Currenly, the rich model based steganalysis

becomes an effective choice to attack both spatial domain steganography and transform

domain steganography.

Convolutional neural network (CNN) based method Several pioneering works

have been proposed to use deep CNN to attack content adaptive steganography. Unlike

the rich model method that utilizes handcrafted features, CNN based methods directly

learn effective features from input images to classify covers and stegos. In [94], Tan

and Li presented a stacked convolutional auto-encoder to detect the presence of secret

message. In this network, three processing units extract features from input images

and a three-layer fully connected neural network maps the extracted features into their

labels. For each processing unit, it contains a convolutional layer, a maximum pooling

layer and a sigmoid activation layer. The network shows better performance than the

traditional SPAM [101], but it is worse than the rich model method. Qian et al. in

[117] proposed a different CNN architecture consisting of five convolutional layers, in

which each layer is followed by an average pooling layer and a nonlinear activation

layer. To better distinguish cover images and stego images, the paper proposed to
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use Gaussian rather than sigmoid as the activation function. Even though Qian’s net-

work is inferior to the rich model method, the performance gap between CNN and

the rich model has been narrowed from 14% (Tan and Li’s network) to 2% − 5%. To

further improve the accuracy of CNN for steganalysis, Xu et al. [34] designed a new

CNN model incorporating the domain knowledge of steganography and steganalysis.

By taking absolute values to outputs of the first convolutional layer and applying the

tanh activation function to the first two convolutional layers, the network improves the

modeling ability to input images and prevents overfitting. Because of these modifica-

tions, Xu’s network achieves competitive performances with the rich model method on

S-UNIWARD and HILL. After trying numerous experiments for CNN with different

structures, Pibre et al. [67] found a CNN model that first surpasses the rich model

method on S-UNIWARD at 0.4 bit-per-pixel (bpp). Pibre’s network has two convolu-

tional layers but no pooling layers. This feature makes the model able to preserve the

information generated by message embedding when the data goes through the whole

network. The reported detection error rate to 0.4 bpp S-UNIWARD is 7.4%, which

is greatly smaller than rich model’s 20%. Compared with other universal steganalytic

methods, the CNN based method shows excellent performances in attacking various

content adaptive steganography. This makes the method becomes increasingly hot in

recent two years.

2.2.3 Steganalysis for JPEG Images

Same to the spatial domain case, steganalysis for JPEG images can also be divided into

specific methods and universal methods. Specific methods make full knowledge of the

embedding details of the targeted JPEG steganography for accurate detection. The chi-

square [10] steganalysis utilized the PoV character to attack the Jsteg steganography.

For OutGuess, the message embedding increases the blockiness, which is utilized for

hidden message detection [41]. By directly estimating cover-image histogram from the

stego image, Fridrich [48] successfully attacked F5 steganography. Universal methods
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extract steganalytical features from the JPEG images and then train a binary classifier

to distinguish the cover images and the stego images. Different steganalytical features

for JPEG images are used for detection, e.g. 548-dimentional PEV features [100], 144-

dimensional LIU features [79] and 8000-dimentional DCTR features [105]. With the

extracted features, a binary classifier, support vector machine or ensemble classifier,

is trained and used to discriminate the covers and the stegos. Recently, Ker [2] and

Li [30] proposed to use clustering rather than classification to identify the suspected

steganographier. The advantage of universal method is that it requires less or no prior

knowledge on the embedding details of steganography.

2.3 Validation Metrics

In this section, we introduce several validation metrics to evaluate the security of

steganographic algorithms. We follow the model proposed by Cachin in [84], where

Alice and Bob are the message sender and receiver, while Wendy is an passive adver-

sary who has perfect read-only access to the public channel. Following the approach of

information theory, the knowledge of covertext and stegotext are captured by proba-

bilistic models and Wendy’s task of detecting hidden messages is viewed as a problem

of hypothesis testing.

During communication, Alice operates in one of two modes. In first case, Alice

is inactive and sends an innocent message containing no hidden information, called

covertext and denoted by C. it is generated according to a distribution PC known to

Eve. In the second case, Alice is active and sends stegotext S with distribution denoted

by PS. The stegotext is computed from an embedding function F and contains an

embedded message E intended for Bob. The message is a random variable drawn from

a message space ε.

Definition. Fix a covertext distribution C and a message space ε. A pair of

algorithms (F ,G )is called a stegosystem if there exist random variables K and R
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as described such that for all random variables E over ε with H(E) > 0, it holds

I(E; Ê) > 0. Where Ê is the random variable received by receivers, H(E) > 0 and

I(E; Ê) > 0 are entropy and mutual information:

H(X) = −
∫
x∈X

PX(x)logPX(x)dx (2.17)

I(X;Y ) = H(X)−H(X|Y ) (2.18)

A stegosystem is called ε-secure (against passive adversaries) if:

D(PC ||PS) = −
∫
PC log

PC
PS

dP ≤ ε (2.19)

where PC is the probability distribution of covertext, PS represents the probability

distribution of stegotext, D(PC ||PS) is the KL divergence between two distributions.

Remarks

1. When ε = 0, the system is called perfectly secure. In this case, Wendy cannot

discriminate the PC and PS. This makes the observer have no information about the

presence of hidden message.

2. The condition in the definition of a stegosystem, I(E; Ê) > 0 implies that a stegosys-

tem indeed transmits useful information to Bob;

3. The model assumes that the covertext in current transmission that is not known to

Eve. He only has the knowledge of the distribution PC .

4. The purpose of steganography is to design sophisticated data embedding algorithms

to make D(PC ||PS) as small as possible.

The KL divergence provides fundamental security measure for steganography. How-

ever, it can hardly be applied in practice because of two reasons. For the first, for a
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given steganographic algorithm, it is often hard to obtain accurate PC and PS for

the cover signal and its corresponding stego signal. For the second, there is no close

expression for D(PC ||PS), making the calculation to the KL divergence difficult. To

handle this difficulty, there are four alternative methods to measure the security of

steganographic algorithms:

Detection Error This approach utilizes a steganalytic algorithm to predict the label

of many test images. In general, the detection algorithm will generate two types of

errors. The first error is the false alarm PFA, which is the error of mistaking a cover

image as a stego image. The second error is the miss detection PMD, which denotes

the error of classifying a stego image to a cover image. To measure the security of

steganography, the detection error PE takes the minimal total error with equal priors

for evaluation:

PE = min
PFA

PFA + PMD(PFA)

2
(2.20)

Large PE indicates the steganographic algorithm is hard to be detected. Currently,

the detection error is most frequently used method to evaluate the performance of

steganography. The main limitation of this evaluation measure is that it cannot rep-

resent the true security of steganography. According to the information processing

theorem, any extraction of features in steganalysis results in the lose of information.

In addition, different classification algorithms in steganalysis also leads to different

detection accuracies.

Receiver Operating Characteristic (ROC) curve Kharrazi in [74] proposed to

use the ROC curve the evaluate the detectability of different steganographic algorithms.

ROC actually draws the curve of the true positive (TP) rate against the false positive

(FP) rate at different thresholds. For steganography, TP rate measures the case that

a stego image is correctly classified as stego; while FP rate measures the case that a

cover image is mistaken as stego. The area under ROC curve reflects the detectability
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Figure 2.6: Schematic illustration to ROC curve. The area under the curve indicates
the detectability of a steganographic algorithm. The smaller the area is, the harder
the algorithm to be deected.

of steganographic algorithms: if the area is small, the algorithm is hard to be detected.

Fig.2.6 demonstrates three cases of the ROC curve. Compared with detection error,

ROC curve can provide more information when the detection algorithm varies.

Maximum Mean Discrepancy To overcome practical difficulties coming from esti-

mating the KL divergence, Pevny in [99] proposed to use the mean maximum discrep-

ancy (MMD) to benchmark steganography. MMD calculates the difference between

the cover image and the stego image in a given feature space as:

MMD [F ,X,Y] = sup
f∈F

(
1

D

D∑
i=1

f(xi)−
D∑
i=1

f(yi)

)
(2.21)

where X = {x1, ..., xD}, Y = {y1, ..., yD} represents D cover images and their corre-

sponding stego images, F denotes the feature space. The selection of feature space

heavily determines the accuracy of MMD. In practice, various steganalytic features are

adopted as F . Although MMD proves to be numerically stable even for high dimen-

sional feature space, the feature extraction inevitably loses useful information. This

defect limits its further application for the evaluation of steganographic security.
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Steganographic Fisher Information Ker in [4] proposed to use the local quadratic

term of the KL divergence, i.e. steganographic fisher information, to measure the

security of steganographic algorithms. In the asymptotic behavior, the KL divergence

can be expanded as:

DKL (P (0)||P (λ)) ∼ 1

2
Iλ2 +O(λ3) (2.22)

where λ denotes the payload size, I represents the Fisher information of the distribution

P (λ) around zero. Ker used I to measure the security of steganography. According to

the paper, algorithms with low I are more secure than those with high I. The Fisher

information is effective for measuring steganographic security. However, the estimation

of I is too expensive and unstable to be applied for the security evaluation. In chapter 5,

we have derived analytic expressions for the steganographic Fisher information, which

is used to analyze what the properties of cover images that can affect steganographic

security.

2.4 Natural Images

Natural images, often refer to photographs of our typical environment we live in, are

the most popular image files on the internet. Fig.2.7 shows some typical examples of

natural images and non-natural images (e.g. cartoon image, synthesized image, noise

image). Compared to these non-natural ones, natural images seem more “acceptable”

to our human beings. Many researches on the Human Visual System (HVS) [5, 9, 21]

support this phenomenon that neural representations of our visual cortex have similar

statistical regularities in natural images. In statistics, natural images have several

distinctive properties that make them different from other kinds of images.

• Scale invariance. The property states that the statistical properties of an en-

semble of natural images is independent of their sizes. This indicates that some

key image statistics do not change even though their scales are changed. Several
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Figure 2.7: Demonstration of non-natural images and natural images.

works [8, 19, 20] found that the power spectrum of natural images approximately

follow the power low S(k) ∝ 1/k2−η, where k denotes the spatial frequency, η is a

small constant. The form of spectrum S(k) remains same when spatial frequency

k is changed, which provides a strong evidence for scale invariance.

• Structural richness. Natural images have many different kinds of structures.

These structures could be the lower order histograms and correlations among

neighborhood pixels, or some higher order regularities which should be repre-

sented by various image patterns [25, 118]. Many mathematical models have

been proposed to describe the structures, such as the Gaussian Mixture Mod-

el [26], the Markov Random Field (MRF) [90], Field of Expert model [93] etc.

These models, however, can not fully represent the rich and complex structures

in natural images, thus provide space for applying image steganography.

• Local correlation. Adjacent pixels of a natural image are not independent, they

are strongly correlated with each other. Many evidences [53, 116] show that

natural images are highly redundant, mainly because of strong correlations among

neighborhood pixels. For steganalysis, this local correlation can be used to find

abnormal relationships caused by message embedding.
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For many applications including image compression, denoising, steganography or

steganalysis, we need models to describe the distribution of natural images. In the

following part, we will introduce several representative examples for modeling the dis-

tribution of natural images.

2.4.1 Gaussian Mixture Model

Gaussian Mixture Model (GMM) [26] is a simple but effective probability model to

describe the distribution of natural images in the spatial domain. In mathematics, this

model can be viewed as a special case to the mixture model that:

p(x) =
N∑
i=1

αiN(x;µi,Σi) (2.23)

where x denotes a small patch in natural images. (αi,µi,Σi)
N
i=1 represent the parame-

ters of the GMM, where αi ≥ 0 and
∑N

i=1 αi = 1. This model is widely used in natural

image modeling because GMM can approximate any continuous probability function

with enough number of components. In addition, parameters of GMM can be efficiently

learned by the Expectation Minimization (EM) algorithm. For natural images, Zoran

in [26] found that GMM with a small number of components can compete any other

state of the art models such as Principal Component Analysis (PCA), Independent

Component Analysis (ICA) or the Gaussian Scale Mixture (GSM) [59]. This result

demonstrates the effectiveness of GMM for modeling natural images.

2.4.2 Convolutional Neural Network

CNN has achieved a great success in many image related tasks [6, 62, 63], indicating its

superior capacity to capture the structure of natural images. Fig.2.8 shows a typical

example of CNN. In general, a CNN model contains three basic layers:
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Figure 2.8: Schematic illustration of a typical CNN model. It contains basic building
blocks, including convolution, nonlinear mapping, pooling, etc.

• Convolution layer. This layer is to use one or several filters with small size (3×3,

5 × 5 or 7 × 7) to convolve the input images, generating different feature maps

for subsequent processing. These filters are not fixed but can be automatically

learned by the back-propagation algorithm. Thus, well learned filters can extract

different correlations in natural images for more accurate modeling.

• Nonlinear mapping layer/activation layer. This layer is to transform the input

feature map through nonlinear functions, such as sigmoid, tanh, or ReLU. The

nonlinear mapping layer is important, since a neural network with any number of

layers is equal to the one with just one layer if there is no nonlinear mapping. In

addition, nonlinear mapping makes the CNN extract more complex correlations

in natural images.

• Pooling layer. This layer is to reduce dimensionality of input feature maps,

making the extracted features compact. Furthermore,large distance correlations

in natural images can be captured by pooling the feature map into a small size.

These basic operations indicate that a CNN model has powerful ability to model

various correlations in natural images. Different from mathematical models such as

GMM that explicitly give the analytical distribution, CNNs implicitly represent these

correlations through various neural network architectures.
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Chapter 3

Selecting Natural Cover Images for

Steganography

3.1 Overview

Natural images have rich and complex structures. These structures are usually hard

to be accurately modeled, providing enough space for message hiding. Existing work

on steganography focus on designing data embedding algorithms to preserve the struc-

tures of natural images. In this work, we turn to in investigate what kinds of struc-

tures/images that make the steganography undetectable and improve undetectability

of steganography by selecting suitable natural cover images. To address this problem,

we propose a new measure based on the KL divergence between covers and stegos to

evaluate the hiding ability of a natural images. Experiments on standard datasets

validate that, under standard steganalytic methods, the cover image with good hid-

ing ability can improve the performance of various steganographic algorithms. With

the proposed measure, we further analyze the properties that intrinsically make stego

images undetectable.
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3.2 Background and Motivation

There are several interesting works reported that if an appropriate cover image is

selected, it will be more difficult to detect the existence of secret image and thus the

security of steganography can be largely improved. Sajedi [37] observed that complex

cover images, which contains many noisy, textured and cluttered regions, are generally

securer for data hiding than those smooth and flat images. Kermani et al. [72] validated

that the texture information is of great importance in evaluating the hiding ability of

the cover image. Kodovsky et al. [55] discussed how the texture, spatial frequency

and the quality of cover images influence the steganographic security. Sajedi [37]

proposed to use steganalytic features to evaluate the embedding capacity of a cover

image. Kharrazi et al. [74] investigated whether the steganographic security can be

improved by using different measures to select cover images, such as the image quality,

the number of pixel changes, the mean square error, etc. Penvy et al. [99] presented

the Maximum Mean Discrepancy measure, which is calculated in image feature spaces,

to benchmark steganographic schemes. Although several kinds of image features have

been reported to be related to the hiding ability of the corresponding image, what

properties that intrinsically determine the hiding ability of an image and make the

steganography undetectable remain unclear.

To handle this problem, we propose a new measure to evaluate the hiding ability

of the cover image. The main characteristic of the proposed measure is that it is

independent of data embedding algorithms, making the analysis for the steganographic

security purely from the properties from cover images possible. In theory, we also prove

that the proposed measure is an upper bound for the KL divergence both for the spatial

domain images and the transformed domain images. This conclusion indicates that

the undetectability of steganographic algorithms is improved when a cover image with

small measure value is selected for message hiding. Based on the proposed measure,

we have analyzed what properties that intrinsically determines the undetectability of
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steganography.

The rest of the chapter is organized as follows. In section 3.3, we introduce the pro-

posed measure to evaluate the hiding ability of cover images. Extensive experimental

results are reported in section 3.4 to validate the effectiveness of the proposed measure

and the properties of cover images that make steganography undetectable is discussed.

The chapter is concluded in section 3.5.

3.3 General Framework

In this section, we focus on selecting appropriate cover images to hide secret messages.

Fig.3.1 shows the process of cover images selection for steganography. We present

a new measure to evaluate the hiding ability of each cover images. Furthermore, the

relationship between the proposed measure and the KL divergence is also derived, both

in spatial domain or in compressed domain.

Several important notations used in this chapter are listed in Tab.3.1.

Image set Ranked image set

Data embedding

Emb(x,m,k)

Message m

Key k

Steganography

Cover image

Measure calculation

Cover Image Selection

Figure 3.1: Schematic display of the process of cover image selection for steganography.
Images with good hiding abilities are selected for hiding secret messages.
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Table 3.1: Notations used in this chapter.

Notations Descriptions
x The cover image
y The stego image
z The message vector
α The message embedding rate
Is The image patch in the spatial domain
Ic The DCT coefficient in the compressed domain
ai The i-th coefficient of the Gaussian Mixture Model (GMM)
µi The i-th mean vector in the GMM
Σi The i-th covariance matrix in the GMM
σ The scale of the Laplace distribution
M The proposed measure

3.3.1 Proposed Measure

The security of a stegosystem is defined as the KL divergence between the cover image

and the stego image [84]:

DKL(P ||Q) = EP

[
ln
P

Q

]
, (3.1)

where P and Q are the probability distribution of the cover image x and the stego

image y respectively, EP [·] represents the expectation with respect to P . The KL

divergence measures the discrepancy between two probability distributions. It is used

as a theoretical model for analyzing many aspects relating to steganographic security.

For example, Ker in [3] used the KL divergence to derive a Q-factor to benchmark

binary steganalysis methods. With the KL divergence, Fridrich evaluated how image

quantization [51], image scaling [54] affect the security of steganographic algorithms.

Even though the KL divergence is a theoretical model for security evaluation of

a stegosystem, it cannot directly be used to evaluate the hiding ability of a cover

image. This is because the KL divergence is not only determined by the distribution of

cover images but also dependent on the data embedding algorithms. Moreover, direct

estimation to the KL divergence is proved to be quite challenging [8].

The measure M we propose to evaluate the hiding ability of a cover image x is
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calculated as following:

M(x) = tr (J(P (x))) , (3.2)

where tr(·) represents the trace of a matrix, J(P (x)) is the Fisher information matrix

of the probability distribution P (x) of cover image x:

J(P (x)) = EP

[(
∂lnP (x)

∂x

)(
∂lnP (x)

∂x

)T]
, (3.3)

where AT represents the transpose operator to the matrix A. In the next two subsec-

tions, we will prove that the following proposition holds for the distributions of spatial

domain images and compressed domain images:

Proposition 1 assume message embedding in steganography can be modeled as:

y = x + αz, (3.4)

where y represents the stego image with distribution Qα(y). z represents the message

vector, which is mutually independent with x. α represents the message embedding rate.

The message vector z is assumed to be a random vector with Gaussian distribution

N (0, I), where I denotes the identity matrix. Then we have:

DKL(P (x))||Qα(y))) ≤ c · Mα2, (3.5)

where c is a constant.

Following the general assumption in most of steganography works[52, 97, 98], the

stego signal is modeled as the noise with Gaussian distribution in the analysis.
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3.3.2 Proposition Proof for the Spatial Domain Images

In this subsection, we prove the proposition for spatial domain images. Among proba-

bility distributions, the GMM shows surprisingly strong performance in modeling the

statistics of natural images [26]. Furthermore, any continuous distribution function

can be approximated by the GMM [23]. Therefore, we use the GMM to approximate

the probability distribution of a given image in the spatial domain:

p(Is) =
N∑
i=1

aiN (Is;µi,Σi), (3.6)

where Is denotes the patch of the cover image in the spatial domain, N represents the

number of components in GMM, ai is the i-th coefficient of the GMM model, where

ai > 0 and
∑N

i=1 ai = 1. The Gaussian distribution N (Is;µi,Σi) is parameterized by

the expectation µi and the covariance matrix Σi:

N (Is;µi,Σi) =
exp

(
−1

2
(Is − µi)TΣ−1i (Is − µi)

)
(2π)d/2|Σi|1/2

, (3.7)

where d is the dimension of Is, and | · | denotes the determinant of a matrix. In our

paper, each patch Is is centralized by by subtracting its mean Is before learning the

parameters of the GMM. Therefore, we have µi = 0 and Eq.(3.7) becomes:

N (Is; 0,Σi) =
1

(2π)d/2|Σi|1/2
exp

(
−1

2
ITs Σ−1i Is

)
, (3.8)

For GMM, the formula of the proposed measure M is (see Appendix A):

M =

∫
Is

∑N
i=1

∑N
j=1 γiγjI

T
s Σ−1i Σ−1j Is∑N

k=1 γk
dIs, (3.9)

where γi is defined as:

γi = aiN (Is; 0,Σi) (3.10)
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The KL divergence between the cover image with the probability p(Is), and its

stego version with the probability qα(Is), can be written as:

DKL (p(Is)||qα(Is)) = H (p(Is), qα(Is))−H (p(Is)) , (3.11)

where H (p(Is), qα(Is)) denotes the cross entropy between the cover image and its stego

image:

H (p(Is), qα(Is)) = −
∫
Is

p(Is)ln (qα(Is)) dIs, (3.12)

and H (p(Is)) denotes the entropy of the cover image:

H (p(Is)) = −
∫
Is

p(Is)ln (p(Is)) dIs, (3.13)

Eq.(3.11) could be rewritten as:

DKL (p(Is)||qα(Is)) = H (p(Is), qα(Is))−H(qα(Is))

+H(qα(Is))−H (p(Is)) , (3.14)

when the embedding rate α is small, the first term on right side of Eq.(3.14) can be

rewritten as (see Appendix B):

H (p(Is), qα(Is))−H(qα(Is)) = εα2 + o(α2), (3.15)

where ε is:

ε = −

∫
Is

[∑N
i=1 γiI

T
s Σ−2i Is

]
ln
(∑N

i=1 γi

)
dIs

2
, (3.16)

For the second term on the right side of Eq.(3.14), it can be rewritten as (see Appendix

C):

H (qα(Is))−H(p(Is)) =Mα2 + o(α2), (3.17)
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we can further prove that (see Appendix D):

2ε ≤ K̃s · M, (3.18)

where K̃s is a constant depending on the number of GMM componentsN , the maximum

value of γ, and the eigenvalue of all inverse covariance matrices {Σ−1i }Ni=1 (see Appendix

C). With Eq.(3.14), Eq.(3.15) and Eq.(3.17), we can obtain that:

DKL (p(Is)||qα(Is)) = (M+ ε)α2 + o(α2), (3.19)

Combining Eq.(3.18) and Eq.(3.19), then:

DKL (p(Is)||qα(Is)) ≤

(
1 +

K̃s

2

)
· Mα2 + o(α2), (3.20)

SinceM is positive, it follows that o(α2) ≤Mα2 when α is small. Then Eq.(3.20) can

be rewritten as:

DKL (p(Is)||qα(Is)) ≤

(
1 +

K̃s

2

)
· Mα2 +Mα2

=

(
2 +

K̃s

2

)
· Mα2 (3.21)

The proposition for the GMM model is proved.

3.3.3 Proposition Proof for the Compressed Domain Images

Many works show that DCT coefficients are best approximated by the Laplacian dis-

tributions [86]. It becomes the dominant choice to model the distribution of DCT

coefficients which balances simplicity of the model and fidelity to the empirical da-

ta [29]. In this subsection, we derive the proposed measure and prove its theoretical
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effectiveness based on the Laplacian distribution.

The probability density function of a Laplacian distribution for DCT coefficients

can be written as:

p(Ic) =
1

2σ
exp

(
−|Ic|
σ

)
, (3.22)

where Ic denotes the value of a DCT coefficient, σ is a positive parameter. When

adding a Laplace distributed DCT coefficient Ic with a Gaussian distributed random

variable N (0, α2), the coefficient then follows a new distribution qc(Ic), called the

Normal-Laplace distribution [60]:

qα(Ic) =
1

2σ
exp

(
α2

2σ2

)[
eIc/σΦ

(
−σIc + α2

σα

)
+e−Ic/σΦ

(
σIc − α2

σα

)]
, (3.23)

where Φ(x) represents the cumulative distribution function (cdf) of a standard normal

distribution:

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt, (3.24)

For Eq.(3.23), it can be approximated as the following equation when α is small (see

Appendix E):

qα(Ic) ≈
1

2σ
exp

(
α2

2σ2
− |Ic|

σ

)
(3.25)

= p(Ic)exp

(
α2

2σ2

)
,

For the Laplace distribution, M has a close expression:

M =

∫ +∞

−∞

(
∂ln(p(Ic))

∂Ic

)2

p(Ic)dIc =
1

σ2
, (3.26)

Similar to the Eq.(3.11), the KL divergence between p(Ic) and qα(Ic) can be written
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as:

DKL(p(Ic)||qα(Ic)) = H(p(Ic), qα(Ic))−H(p(Ic)), (3.27)

where H(p(Ic), qα(Ic)) denotes the cross entropy between p(Ic) and qα(Ic):

H(p(Ic), qα(Ic)) = −
∫ +∞

−∞
p(Ic)ln (qα(Ic)) dIc, (3.28)

Substituting Eq.(3.22) and Eq.(3.25) into Eq.(3.28), we can obtain:

H(p(Ic), qα(Ic)) = −
∫ +∞

−∞
p(Ic)ln (p(Ic)) dIc

= −
∫ +∞

−∞
p(Ic)ln

(
p(Ic)exp

(
α2

2σ2

))
dIc

= H(p(Ic))−
α2

2σ2

∫ +∞

−∞
p(Ic)dIc

= H(p(Ic))−
α2

2σ2
, (3.29)

Thus, the DKL(p(Ic)||qα(Ic)) can be simplified as:

DKL(p(Ic)||qα(Ic)) = H(p(Ic), qα(Ic))−H(p(Ic))

≤ |H(p(Ic), qα(Ic))−H(p(Ic))|

=
α2

2σ2
, (3.30)

Since M = 1/σ2, then:

DKL(p(Ic)||qα(Ic)) ≤Mα2, (3.31)

43



Figure 3.2: Sample images in BOSSbase ver 1.01.

Figure 3.3: Sample images in MIR Flickr.

3.4 Experiments

This section presents three experiments conducted to assess the effectiveness of the

proposed measure. In the first experiment, we numerically validate the Eq.(3.5) for the

GMM model and the Laplace distribution. The effectiveness of the proposed measure

is demonstrated for the spatial domain images and compressed domain images in the

second and the third experiments respectively.

Two datasets are used in our experiment. The first dataset is the BOSSbase ver 1.01

dataset [76], which is a standard dataset for evaluating steganographic algorithms. The

dataset consists of 10,000 grayscale natural images with the size of 512×512. Fig.3.2

shows several sample images of the dataset.

In order to apply the proposed measure to the real images in the social network, we

choose the MIR Flickr [71] as the second dataset. The dataset is a collection of 25,000

JPEG images from the Flickr website which are redistributable for research purposes

and represent a real community of users in the image content. Fig.3.3 demonstrates

several sample images in the MIR Flickr dataset.

For parameter setting of GMM, we set N , i.e. the number of components, as 100.

The covariance matrices {Σi}Ni=1 and the coefficients {ai}Ni=1 in GMM are learned by

the efficient online Expectation Minimization (EM) method [85]. 10,000 centralized

image patches with the size of 5 × 5 are uniformly sampled from a given image for
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learning the parameters of the GMM model. Since the proposed measure cannot be

calculated directly, we use its empirical estimation M̃ to approximate the measureM

:

M̃ =
1

K

K∑
k=1

∑N
i=1

∑N
j=1 γ

k
i γ

k
j(∑N

i=1 γ
k
i

)2 (Iks )TΣ−1i Σ−1j I
k
s , (3.32)

where Iks denotes the k-th patch sampled from Eq.(3.7) using the method introduced

in [29], γki is defined as:

γki =
ai

(2π)d/2|Σi|1/2
exp

(
−(Iks )TΣ−1i I

k
s

2

)
, (3.33)

The number of random samples K used for measure estimation is set to 10,000. Al-

gorithm 1 gives the procedure to estimate the proposed measure for spatial domain

images.

Algorithm 1: Measure estimation for spatial images

Input : Cover image Is
Output: Estimated measure M̃

1 Decompose cover image Is into 10,000 patches with the size of 5× 5
2 Use the online EM algorithm to estimate the parameters of GMM, and gives

the distribution of Is

p(Is) =
N∑
i=1

aiN (Is;µi,Σi)

3 Calculate the measure for Is according to:

M̃ =
1

K

K∑
k=1

∑N
i=1

∑N
j=1 γ

k
i γ

k
j(∑N

i=1 γ
k
i

)2 (Iks )TΣ−1i Σ−1j I
k
s

For Laplace distribution, the parameter σ is estimated by σ̃:

σ̃ =
1

N

N∑
i

|Ici − µIc|, (3.34)

where Ici represents the i-th DCT coefficient, µIc is the expectation of {Ici}Ni=1. Since
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only AC components are used for steganography, all DC components are set to 0.

Based on the estimated σ̃, the measure for JPEG images is calculated as:

M̃ =
1

σ̃2
, (3.35)

Algorithm 2 gives the procedure to estimate the proposed measure for JPEG

images.

Algorithm 2: Measure estimation for JPEG images

Input : JPEG cover image Ic
Output: Estimated measure M̃

1 Get the DCT coefficients of the cover image Ic
2 Estimate the parameter Laplace distribution using the formula:

σ̃ =
1

N

N∑
i

|Ici − µIc|

3 Calculate the measure for the JPEG image Ic as:

M̃ =
1

σ̃2

3.4.1 Demonstration of Theoretical Results

In this experiment, we demonstrate the derived inequalities on the BOSSbase and the

MIR Flickr. For each dataset, five images ranging from visually complex to simple are

selected for demonstration. The measure M is calculated according to Eq.(3.32) and

Eq.(3.35) for spatial domain images and compressed domain images respectively. For

stego images, we firstly generate random messages according to Gaussian distribution

N (0, α2I). Then these messages are added to the pixels or the DCT coefficients of cover

images, which generated stego images following the assumption in the proposition.

The distributions of five BOSSbase cover images and five MIR Flickr images are

estimated by the GMM model. For the BOSSbase images, the patch size is set to 5×5;
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Figure 3.4: The comparison of the scores of the proposed measure and the KL di-
vergence for the BOSS dataset. The solid blue curves reflect the value of proposed
measure M, and dotted red curve show the value of DKL(P ||Qα)/α2.

while the patch size of MIR Flickr images is set to 8× 8 in order to make the setting

consistent with the size of a basic compression block of JPEG. Assume a cover image

x (x can be a spatial domain image or JPEG image) among ten selected images has a

distribution:

p(x) =
N∑
i=1

aiN (x; 0,Σi), (3.36)

According to the result in Appendix B, the distribution of its stego image is:

qα(x) =
N∑
i=1

aiN (x; 0,Σi + α2I), (3.37)

Since the KL divergence between p(x) and qα(x) cannot be calculated directly, we use

the empirical estimation to approximate the DKL(p(x)||qα(x)):

D̂KL(p(x)||qα(x)) =
1

L

L∑
i=1

ln

(
p(xi)

qα(xi)

)
, (3.38)

where L denotes the number of samples used for estimation, xi is the i-th patch sampled
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Figure 3.5: The comparison of the scores of the proposed measure and the KL diver-
gence for the MIR-Flickr dataset. The solid blue curves reflect the value of proposed
measure M, and dotted red curve show the value of DKL(P ||Qα)/α2.

from p(x). In the experiment, α is chosen as a small value, 0.1. The final estimated

D̂KL(p(x)||qα(x)) is the averaging result of ten times running of Eq.(3.38).

Experimental results are shown as Fig.3.4 and Fig.3.5. It is easy to find that,M is

always larger than DKL(p||qα)/α2, validating the correctness of the proved inequalities.

Additionally, a cover image with smallM leads to a small KL divergence, which further

demonstrates the effectiveness of the proposed measure.

3.4.2 Cover Image Selection for Steganography in Spatial Do-

main

In this experiment, we conduct the proposed measure on the BOSSbase. For steganog-

raphy, four state-of-the-art algorithms are used for performance evaluation: Least Sig-

nificant Bit Matching revisiting (LSBM-r) [58], Edge Adaptive steganography (EA)[112],

Highly Undetectable steGanOgraphy (HUGO) [102] and the Spatial UNIversal WAvelet

Relative Distortion (S-UNIWARD) [107]. For steganalysis, the Spatial Rich Model (S-
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RM) based steganalysis is selected for its excellent performances in attacking many

steganographic algorithms. In our implementation, 5,000 randomly selected images in

BOSSbase are used for training SRM based ensemble classifier [56] and the rest 5,000

images are for testing. The security performance is evaluated by the detection error

PE:

PE =
1

2
(PMD + PFA) (3.39)

where PMD is the miss detection probability and PFA represents the false alert proba-

bility. We use this evaluation standard because it is widely used in modern steganalysis

[54].

Before evaluation, the proposed measureM for each image in the test set is calcu-

lated according to Eq.(3.32). Then all these images are sorted in an ascending manner.

To prove the effectiveness of the proposed measure, we select the first r cover images

with high hiding ability, where r is chosen as 10, 100, 1,000 and 5,000 (whole test set).

The prediction error is the average of ten times running based on Eq.(3.39).

For the experiment, we evaluate security performances of four different stegano-

graphic algorithms based on the SRM steganalysis. The purpose is to investigate how

the detection error PE changes if top secure images are selected as the covers. Higher

detection error indicates securer cover images and the vice versa. The experiment is

conducted on different payloads, where the payload is defined as the division between

the length of hidden messages and the dimension of the cover image, bit-per-pixel (bp-

p). Random binary messages are embedded to the cover images according to different

steganographic algorithms. We follow the general settings to the payload in image

steganography. Fig.3.6 shows the detection error curves. Experimental results show

that, when the first 10 secure images are selected as covers, the detection errors are

high for four steganographic algorithms at five different payloads.

Observing experimental results as Fig.3.6, we can find that the detection error in-
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(c) HUGO
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(d) S-UNIWARD

Figure 3.6: Average detection errors PE for LSBM-r, EA, HUGO and S-UNIWARD.
Four different settings are investigated: first 10 images, first 100 images, first 1,000
images, the whole test dataset. Here, first r represent r highest ranked images according
to the proposed measure.

creases monotonously as the measure value decreases, for all steganographic algorithms.

This fact proves that the proposed measure successfully reflects the security level of a

cover image. To further verify the effectiveness of the measure, we use a parametric

model to approximate the curve of detection error:

PE = 0.5− pα (3.40)

where α is the parameter, α ≥ 0. p represents the payload and in our experiment,
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0 ≤ p ≤ 0.4. By taking derivatives on both sides of Eq.(5.40), we get:

dPE = −αpα−1dp (3.41)

Table 3.2: Estimated α for four steganographic algorithms. The dataset with 5000
represents the whole test set.

Algorithms 10 100 1000 5000

LSBM-r 0.788 0.606 0.559 0.542

EA 1.361 1.214 1.007 0.694

HUGO 2.410 1.785 1.429 0.974

S-UNIWARD 3.609 2.231 2.002 1.714

According to this equation, the detection error drops slowly as the increase of p when

α is large and p is near to zero. Therefore, a good steganographic algorithm should

have an error curve with large α to make it immune to data embedding. The fitted

parameters to the curve are listed in Tab.3.2. Results as this table show that α of four

steganographic algorithms systematically increases to be a larger one if more secure

images are chosen as covers.

We also compare the proposed measure with several other cover image selection

methods. Three measures, the mean square error based cover selection (MSE-sel),

number of pixel changes based cover selection (Change-sel) and the local prediction

error based cover selection (Local-sel), are chosen for comparison. Details about these

algorithms are introduced in [73]. We choose these methods because they achieve

promising performances in improving steganographic security. Tab.3.3 shows detection

errors of four steganographic algorithms for the first 10 selected images at 0.2 bpp

payload. The results prove that the proposed measure outperforms all other three

measures. Mostly important, the detection error is near to random guessing if messages

are hidden in the images selected by the proposed measure, which is meaningful for

practical application.
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Table 3.3: Detection errors for other measures: MSE-sel, Change-sel and Local-sel. All
schemes select the first 10 secure images according to their measures. The payload is
chosen as 0.2 bpp.

Algorithms MSE-sel Change-sel Local-sel M

LSBM-r 10.5% 12.8% 25.4% 30.0%

EA 21.0% 19.4% 38.0% 44.7%

HUGO 35.5% 31.7% 43.8% 48.2%

S-UNIWARD 33.6% 35.9% 45.2% 49.3%

3.4.3 Cover Image Selection for Steganography in Compressed

Domain

In this experiment, we conduct the proposed measure for MIR Flickr JPEG images.

Three steganographic algorithms are used for evaluation: JPEG steganography [61]

(Jsteg), nsF5 steganography [50] and JPEG UNInversal WAvelet Relative Distortion

(J-UNIWARD) steganography [107]. The payload is set to 0.1 bit per AC coefficient

(bpac), where random binary messages are embedded to the JPEG images according

to three steganographic algorithms. For steganalysis, the recently proposed Discrete

Cosine Transform Residual (DCTR)[105] based steganalysis is used for detection. Sim-

ilarly to the experiment in spatial domain, Eq.(5.39) is chosen for performance eval-

uation. 20000 images from MIR Flickr are used for training DCTR based classifier

and the rest images are used for testing. Since GMM can approximate any probability

distribution, we also use the GMM model to approximate the probability distribu-

tion of DCT coefficients. The parameter setting follows the first experiment for MIR

Flickr images. The GMM based measure and Laplace distribution based measure are

compared in this experiments.

Tab.3.4 shows the results, the performance of three algorithms is obviously improved

if good hiding ability images are selected for steganography. In addition, the Laplace

based measure outperforms the GMM based measure, which demonstrates that Laplace
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Table 3.4: Detection errors for Jsteg, nsF5 and J-UNIWARD with 0.1 bpac, MIR Flickr
dataset.

Methods Mode 10 100 1000 5000

Jsteg
Laplace 38% 32.6% 28.6% 25.4%

GMM 36% 31.5% 28.5% 25.4%

nsF5
Laplace 36.5% 31.5% 29.1% 21.5%

GMM 33% 30.4% 28.3% 21.5%

J-UNIWARD
Laplace 50% 48% 46.5% 44.8%

GMM 47.5% 46% 45.4% 44.8%

distribution is more suitable than the GMM model to calculate the proposed measure

for JPEG images.

In feature space, images with excellent hiding ability are hard to be discriminated

from their stego versions. In order to observe discriminability between cover images

and their stegos in feature space, we extract SRM features of 500 best images and

500 worst images. Then Principle Component Analysis (PCA) is used to project high

dimensional SRM features into 2 dimensional vectors. The results are shown as Fig.3.7.

Obviously, SRM features of best cover images and their stegos are mixed with each

other, while they can be easily discriminated for the worst case.

As we known, the larger the number of secret bits to be embedded, the easier

the stego-image is detected by steganalysis algorithms. The maximal secure payload

[52] that refers to the hiding capacity is obtained when the stego-image degradation

becomes detectable. Thus, the maximal secure payload can be used as a criterion to

evaluate the hiding ability of cover images.

To prove the effectiveness of the proposed measure, we select 100 cover images with

top hiding ability, medium hiding ability and low hiding ability images, respectively. To

find the secure payload of three kinds of images, we increase the size of hidden messages

from 0 to a maximum value on the constraint that the detection rate is less than

60%. This maximum value is regarded as the secure payload. The classifier used for

detection is trained based on 1,000 randomly selected images and their corresponding
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Figure 3.7: 2-D representations for SRM features from cover image and their stego
image. Each cover image is embedded by random message using HUGO, with payload
0.4 bpp. SRM features of first 500 cover images and last 500 cover images, ranked by the
measure M, are extracted and projected onto 2-D. (a) Visualization on 2-D principal
component plane for SRM features of first 500 cover images; (b) Visualization on 2-D
principal component plane for SRM features of last 500 cover images.

stego images.

Table 3.5: The average value of maximal secure payload for three steganographic al-
gorithms.

Methods Top 100 Medium 100 Low 100

Jsteg 0.063 bpAC 0.029 bpAC 0.010 bpAC

nsF5 0.073 bpAC 0.035 bpAC 0.014 bpAC

J-UNIWARD 0.203 bpAC 0.115 bpAC 0.042 bpAC

On MIR Flickr image dataset, the average value of maximal secure payload capac-

ities according to three popular steganographic algorithms for the images with high,

middle, and low hiding ability are shown in Tab.3.5. From this table, we can find the

maximum secure payloads are improved if good hiding ability images are selected as

cover images, which also evidence the effectiveness of the proposed measure.
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3.4.4 What Makes the Stego Image Undetectable ?

To investigate what properties of cover images determine steganographic security in

spatial domain, in this section, we introduce two variable factors: entropy variable

factor and energy variable factor. Assume the image is modeled by the GMM as Eq.

(3.6), the entropy variable factor S is defined as Eq.(3.42), and the energy variable

factor E is defined as Eq.(3.43):

S = −
L∑
i=1

ailn(ai) (3.42)

E =
L∑
i=1

aitr (Σi) (3.43)

In Fig.3.8 and Fig.3.9, we demonstrate several sample images with different values

of these two variable factors, including: entropy variable factor and energy variable

factor. From Fig.3.8, we can find the image with low value of entropy variable factor is

less clustered, less textured, and highly redundant than the image with high value of

the same factor. This result is consistent with the definition of entropy variable factor

in Eq.(3.42), which is used to measure the disorder of the coefficient in the GMM

model. To the image with high value of energy variable factor, it is obviously that

the image is highly cluttered and highly textured than the image with low value of the

same factor. Furthermore, the intensity of different patches in high value image changes

more than that of the other images. By taking the definition of energy variable factor

in Eq.(3.43) into consideration, we believe that the energy variable factor, compared

with the entropy variable factor, is more relevant with the diversity of the intensity in

different patches.

To further investigate the effect of these two variable factors on the proposed mea-

sure, we calculate the Pearson correlations and corresponding p-values. From the

results in Tab.3.6, both factors show a significant medium negative correlation with
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Table 3.6: Pearson correlations and partial correlations between the proposed measure
and two variable factors investigated on an image-by-image basis.

Methods Pearson correlation Partial correlation

Terms S E S E

r -0.3686 -0.5157 -0.1077 -0.4184

p < 0.001 < 0.001 < 0.001 < 0.001

the proposed measure, which are in line with our expectations. We find there exists

a positive correlation between two variable factors. Accordingly, we also compute the

partial correlations between one variable factor and the proposed measure with another

factor as a control variable. Partial correlation coefficients and corresponding p-values

are also listed in Tab.3.6. All of the variables showed significant correlations, though

not always strong ones. It ensures that both entropy and energy variable factors are

effective to make the spatial domain stego image undetectable.

(a) High S (b) Low S

Figure 3.8: Sample images with low and high values of entropy variable factor S.

For the compressed domain images, another variable factor based on the DCT

coefficients is introduced here. The nonzero DCT coefficient ratio is defined as the ratio

between the number of non-zero DCT coefficients to all number of DCT coefficients:

C =
n1

n0

(3.44)
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(a) High E (b) Low E

Figure 3.9: Sample images with low and high values of energy variable factor E.

where n1 denotes the number of non-zero DCT coefficients, n0 is the total number of

DCT coefficients.

(a) High C (b) Low C

Figure 3.10: Sample images with different values of nonzero DCT coefficient ratio C.

Fig.3.10 demonstrates two sample images with low or high values for the nonzero

DCT coefficient ratio. The image with high C also possesses high value on the proposed

measure in compressed domain, and vice versa. To provide a sense of C for the pro-

posed measure, we also correlate image-by-image C with the proposed measure. The

correlation is significant with a negative correlation coefficient of -0.663 (p < 0.001).

To any image, when the number of non-zero DCT coefficients increases, the variance of
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the corresponding Laplacian distribution will also increase, which is the inverse of our

proposed measure. Therefore, the observed negative correlationship between C and

the proposed measure is easy to understand. Overall, these results can support that

the nonzero DCT coefficient ratio can be used to explain what makes the compressed

domain stego image undetectable.

Fig 3.11 demonstrates several sample images evaluated by the proposed measure,

including high hiding ability, middle hiding ability and low hiding ability images.

High hiding

 ability

Middle hiding 

ability

Low hiding 

ability
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Figure 3.11: Demonstration for the images with high, middle and low hiding ability.
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3.5 Summary

This chapter aims to improve steganography security by selecting the cover images

with good hiding ability. We propose a novel measure based on information theoretic

model of steganography, the KL divergence. We demonstrate the effectiveness of the

proposed measure by testing on various steganography and steganalysis techniques in

both spatial domain and compressed domain. We conclude that:

• The cover images selected by the proposed measure improve the performance of

steganography techniques obviously.

• The proposed measure outperforms other existing cover image selection tech-

niques.

• The cover images selected by the proposed measure have the common statistic

character: for spatial domain images, the entropy of the GMM coefficients is high;

for transform domain images, the number of nonzero DCT coefficients is high.

These observations explain why the cover images with complex texture, cluttered

visual content, and low spatial redundancy, are recognized as the images with

good hiding ability by the previous works. It also indicates that the proposed

model could be considered as the generalization of the existing hiding ability

measure.
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Appendix A

According to Eq.(3.3), the Fisher information matrix of GMM model is:

J(p(Is)) = Ep(Is)

[(
∂ln p(Is)

∂Is

)(
∂ln p(Is)

∂Is

)T]
, (3.45)

Based on the Eq.(3.6), we can derive that:

∂ln p(Is)

∂Is
=

1∑N
i=1 γi

N∑
i=1

∂γi
∂Is

, (3.46)

where γi = aiN (Is;µi,Σi). For γi, we can derive that:

∂γi
∂Is

== −γiΣ−1i Is, (3.47)

Combining Eq.(3.46) and Eq.(3.47), Eq.(3.45) can be written as:

J(p(Is)) = Ep(Is)

∑N
i=1

∑N
j=1 γiγjΣ

−1
i IsI

T
s Σ−1j(∑N

i=1 γi

)2
 , (3.48)

Since M is the trace of J(p(Is)), we can conclude that:

M = Ep(Is)

∑N
i=1

∑N
j=1 γiγjI

T
s Σ−1i Σ−1j Is(∑N

i=1 γi

)2
 , (3.49)

Rewrite Eq.(3.49) into integral form, Eq.(3.9) can be derived.
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Appendix B

For GMM, qα(Is)is the result of convolving p(Is) and the distribution of message z. It

is easy to find that qα(Is) has the expression:

qα(Is) =
N∑
i=1

aiN (Is; 0,Σi + α2I), (3.50)

With Eq.(3.50) and the distribution of p(Is), the difference between H(qα(Is)) and

H(p(Is), qα(Is)) can be written as:

H(p(Is), qα(Is))−H(qα(Is))

=

∫
Is

(
N∑
i=1

γi − γi(α)

)
ln

(
N∑
i=1

γi(α)

)
dIs, (3.51)

where γi = aiN (Is; 0,Σi), while γi(α) is defined as:

γi(α) = aiN (Is; 0,Σi + α2I), (3.52)

when α is small, γi − γi(α) can be expanded as:

γi − γi(α) = aiN (Is; 0,Σi)− aiN (Is; 0,Σi + α2I)

=
−ai

(2π)d/2|Σi|1/2
(ηi(α)− ηi) + o(α2), (3.53)

where ηi and ηi(α) are:

ηi = exp

(
−I

T
s Σ−1i Is

2

)
, (3.54)

η(α)i = exp

(
−I

T
s (Σi + α2I)

−1
Is

2

)
, (3.55)
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For η(α)i, we use the Taylor expansion:

η(α)i = exp

(
−I

T
s (Σi + α2I)

−1
Is

2

)

= exp

(
−
ITs
(
Σ−1i − α2Σ−2i

)
Is

2

)
+ o(α2)

= exp

(
−I

T
s Σ−1i Is

2

)
exp

(
α2ITs Σ−2i Is

2

)
+ o(α2)

= exp

(
−I

T
s Σ−1i Is

2

)(
1 +

α2

2
ITs Σ−2i Is

)
+ o(α2)

= ηi

(
1 +

α2

2
ITs Σ−2i Is

)
+ o(α2), (3.56)

In this derivation, two approximations are used:

(
A+ α2B

)−1
= A−1 − α2A−1BA−1 + o(α2), (3.57)

ex = 1 + x+ o(x), (3.58)

where A and B are two invertible matrices, x is a small value. Combining Eq.(5.51),

Eq.(5.53) and Eq.(5.56), we have:

H(p(Is), qα(Is))−H(qα(Is))

= −α
2

2

∫
Is

(
N∑
i=1

γiI
T
s Σ−2i Is

)
ln

(
N∑
i=1

γi(α)

)
dIs + o(α2)

= −α
2

2

∫
Is

(
N∑
i=1

γiI
T
s Σ−2i Is

)
ln

(
N∑
i=1

γi

)
dIs + o(α2), (3.59)

Thus the expression of ε is:

ε = −1

2

∫
Is

(
N∑
i=1

γiI
T
s Σ−2i Is

)
ln

(
N∑
i=1

γi

)
dIs, (3.60)
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Appendix C

For the difference between H(qα(Is)) and H(p(Is)), we consider the following limit H ′:

H ′ = lim
α→0

H(qα(Is))−H(p(Is))

α2
, (3.61)

According to our assumption, the message vector has a Gaussian distribution and the

stego image is the result of adding Gaussian distributed message onto the cover image.

Based on the De Bruijn’s Identity [99] in information theory, we can conclude that:

lim
α→0

H(qα(Is))−H(p(Is))

α2
= tr (J(p(Is))) ≡M, (3.62)

Thus,

H ′ = lim
α→0

H(qα(Is))−H(p(Is))

α2
=M, (3.63)

With the Taylor theorem, the difference between H(qα(Is)) and H(p(Is)) can be ex-

panded as:

H(qα(Is))−H(p(Is)) =Mα2 + o(α2), (3.64)
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Appendix D

Before proving the conclusion, we assume that the probability distribution of the cover

image p(Is) is continuous and bounded. Then, we have:

0 < max
Is,i

γi ≤ R, (3.65)

where R is a finite positive value. Since p(Is) is bounded, the eigenvalue of any Σ−1i

is bounded. Further, the pixel value of natural images cannot be infinitely large, thus

the eigenvalue of any Σ−1i cannot approach to infinity. Based these observations, we

conclude that:

0 < σmin < σmax ≤ νσmin, (3.66)

where σmin and σmax denotes the maximum and minimum eigenvalue among all covari-

ance matrices {Σ−1i }Ni=1 respectively, ν is a finite constant larger than 1.

For ε, it can be rewritten as the following equation:

2ε = −
∫
Is

(
N∑
i=1

γiI
T
s Σ−2i Is

)
ln

(
N∑
i=1

γi

)
dIs

= −
∫
Is

(∑N
i=1 γiI

T
s Σ−2i Is

)(∑N
j=1 γj

)
ln
(∑N

i=1 γi

)
(∑N

j=1 γj

) dIs, (3.67)

For any x, the inequality x ≤ |x| always holds, then:

2ε ≤ |2ε|

=

∫
Is

(∑N
i=1 γiI

T
s Σ−2i Is

)(∑N
j=1 γj

)
ln
(∑N

i=1 γi

)
(∑N

j=1 γj

) dIs, (3.68)
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Since xlnx ≤ x2 for any x > 0, we have:

2ε ≤
∫
Is

(∑N
i=1 γiI

T
s Σ−2i Is

)(∑N
j=1 γj

)2(∑N
j=1 γj

) dIs, (3.69)

With the Holder’s inequality:

2ε ≤
∫
Is

(∑N
i=1 γiI

T
s Σ−2i Is

)(∑N
j=1 γj

)
(∑N

j=1 γj

) dIs

·max

(
N∑
i=1

γi

)

≤ NR

∫
Is

(∑N
i=1 γiI

T
s Σ−2i Is

)(∑N
j=1 γj

)
(∑N

j=1 γj

) dIs

= NR

∫
Is

(∑N
i=1

∑N
j=1 γiγjI

T
s Σ−2i Is

)
(∑N

j=1 γj

) dIs, (3.70)

For the proposed measure M, its expression is:

M =

∫
Is

(∑N
i=1

∑N
j=1 γiγjI

T
s Σ−1i Σ−1j Is

)
(∑N

j=1 γj

) dIs, (3.71)

If we choose a constant Ks as:

Ks ≥
σmax
σmin

≥ 1, (3.72)

We consider the following difference:

D = Ks

N∑
i,j=1

γiγjI
T
s Σ−1i Σ−1j Is −

N∑
i,j=1

γiγjI
T
s Σ−2i Is, (3.73)
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Eq.(3.73) contains two terms T1 and T2:

T1 = (Ks − 1)
N∑
i=1

γ2i I
T
s Σ−2i Is, (3.74)

T2 =
N∑
i=1

N∑
j 6=i

γiγjI
T
s Σ−1i

(
KsΣ

−1
j − Σ−1i

)
Is, (3.75)

Since Ks > 1 and Σ−1i is symmetric positive definite matrix, then for any nonzero

vector Is:

T1 = (Ks − 1)
N∑
i=1

γ2i I
T
s Σ−2i Is > 0, (3.76)

For T2, it is easy to verify that, for any nonzero vector Is:

γiγjI
T
s Σ−1i

(
KsΣ

−1
j − Σ−1i

)
Is > 0, (3.77)

This conclusion is true because for any nonzero vector Is, the following inequality

holds:
KsI

T
s Σ−1j Is

ITs Σ−1i Is
≥ Ksσ

j
min||UjIs||2

σimax||UiIs||2
=
Ksσ

j
min

σimax
> 1, (3.78)

where σjmin and σimax denotes the minimum and the maximum eigenvalue of Σ−1j and

Σ−1i respectively, Ui and Uj are the orthogonal matrices whose columns are eigenvectors

of Σ−1j and Σ−1i . Eq.(3.78) indicates that KsΣ
−1
j − Σ−1i is a positive definite matrix.

Since Σ−1i is positive definite, γi and γj are positive values, then it is easy to prove

that, for any nonzero vector Is:

T2 =
N∑
i=1

N∑
j 6=i

γiγjI
T
s Σ−1i

(
KsΣ

−1
j − Σ−1i

)
Is > 0, (3.79)
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Thus D is a positive value. Then we conclude that:

2ε ≤ (KsM) ·NR = K̃s · M, (3.80)

where K̃s = KsNR. The conclusion is proved.
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Appendix E

There is an analytical relationship between the cumulative distribution function Φ(x)

of normal distribution and the error function erf(x):

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
, (3.81)

For erf(x), it can be expanded as an infinite Burmann series [100]:

erf(x) =
2√
π

(
sgn(x)

√
1− e−x2

) ∞∑
k=0

cke
−kx2 , (3.82)

where ck are real coefficients and c0 =
√
π/2, sgn(x) denotes the sign function. When

x is very large, the series can be approximated as:

erf(x) ≈ 2√
π

(sgn(x) · 1) c0 = sgn(x), (3.83)

Thus, Φ(x) can be approximated:

Φ(x) ≈ 1

2

[
1 + sgn

(
x√
2

)]
=

1

2
[1 + sgn(x)] , (3.84)

For the Normal-Laplace distribution qc(Ic), its expression is:

qc(Ic) =
1

2σ
exp

(
α2

2σ2

)[
eIc/σΦ

(
−σIc + α2

σα

)
+e−Ic/σΦ

(
σIc − α2

σα

)]
, (3.85)

when α is small compared to Ic, then:

Φ

(
−σIc + α2

σα

)
≈ Φ

(
−Ic
α

)
≈ 1

2
[1 + sgn(−Ic)] , (3.86)
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Φ

(
σIc − α2

σα

)
≈ Φ

(
Ic
α

)
≈ 1

2
[1 + sgn(Ic)] , (3.87)

Combining Eq.(3.85), Eq.(3.86) and Eq.(3.87), the conclusion is proved:

qc(Ic) ≈
1

2σ
exp

(
α2

2σ2

)
exp

(
−|Ic|
σ

)
=

1

2σ
exp

(
α2

2σ2
− |Ic|

σ

)
, (3.88)
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Chapter 4

Modeling Natural Images with

Convolutional Neural Network for

Steganalysis

4.1 Overview

Natural images show strong correlations in adjacent pixels. As analyzed in section

2.4.2, these local correlations can be effectively modeled by CNNs. Because of this

advantage, we propose to use CNN to address image steganalysis in this chapter. In

order to reliably detect steganography, we design a novel CNN model for steganaly-

sis from two aspects. For the first, different from existing CNN based steganalytic

algorithms that use a predefined highpass kernel to preprocess input images, we inte-

grate the highpass filtering operation into the proposed network by building a content

suppression subnetwork. Highpass kernels in this subnetwork are adaptively updated

in the network training, allowing more powerful discriminative features come into the

subsequent network than that of CNN models with a predefined kernel. For the second,
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we propose a novel subnetwork to actively preserve and further strengthen the weak

stego signal generated by secret messages based on residual learning, making the whole

network capture the difference between cover images and stego images. Theoretically,

we prove that the residual learning can preserve the weak stego signal for the deep

model with any depths. Extensive experiments demonstrate that, when cover images

and stego images are paired in training and testing, the proposed network can detect

the state of the art steganography with much performances than previous methods.

We further discuss the proposed method in general cases and analyze the limitation of

batch normalization for image steganalysis.

4.2 Background and Motivation

Designing effective features that are sensitive to message embedding is key to steganal-

ysis. Traditional methods use handcrafted features to detect steganography. However,

the feature design is a difficult task which needs the domain knowledge of steganog-

raphy and steganalysis. Recently, several interesting works have been proposed to

detect steganography based on deep convolutional neural network models. Compared

with traditional methods that extract handcrafted features, CNN based steganalysis

directly learns effective features using various network architectures for discriminating

cover images and stego images. Tan and Li [94] first proposed to detect the presence

of secret messages based on a deep stacked convolutional auto-encoder network. Qian

et al. in [117] proposed a model for steganalysis using the standard CNN architecture

with Gaussian activation function. Xu et al. [34] designed a new CNN structure with

tanh activation function and absolute operation after the first convolutional layer. Pi-

bre et al. [67] presented a novel CNN model featured that the network is greater in

height (the number of kernels in each convolutional layer) than in depth and no pool-

ing is involved. Couchot et al. [42] proposed a CNN model for steganalysis by using

convolutional kernels with very large size.
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Preprocessing input images is a crucial step for steganalysis. The purpose of pre-

processing is to suppress image content so that the Signal-to-Noise-Ratio (SNR) 1 is

largely increased. A limitation of existing CNN based steganalysis is that they only

use a predefined highpass kernel to preprocess the input image. This feature would

limit the subsequent network to capture effective features to discriminate cover images

and stego images, which is harmful for detecting steganography.

Although steganalysis can be formulated as a classification problem, detecting cover

images and stego images is actually different from the classical binary classification.

Steganalysis is special in the fact that it is to classify cover images and those stego

images that are the results of adding weak stego signal into the cover images. This

characteristic requires that CNN models for steganalysis should preserve the weak

signals when input stego images propagate the network. Qian et al. [52] utilized

the Gaussian non-linearity rather than the Sigmoid function to better preserve the

discriminability between cover images and stego images. Xu et al. [34] used the

absolute value of feature maps in early layers to improve modeling the difference of

cover images and stego images in the subsequent network for steganalysis. To avoid

the discriminative information lost in a very deep network, Pibre [67] and Couchot [42]

proposed novel CNN architectures with small number of layers for steganalysis. These

techniques can partially handle the difficulty of steganalysis in a CNN model, but how

to preserve and even strengthen the discriminability of cover images and stego images,

especially for a deep network, is a problem waiting to be solved.

To address these difficulties, this paper proposes a unified CNN for steganalysis.

On one hand, unlike previous methods that separately preprocess the input image and

extract features for classification, we integrate the highpass filtering operation into

the proposed network by building a content suppression subnetwork. The highpass

kernels in the subnetwork is adaptively updated in the network training, allowing

more powerful discriminative features come into the subsequent network than that

1Here, “signal” is the weak stego signal generated by message embedding, “noise” denotes the
content of a cover image.
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of CNN models with a predefined kernel. To the best of our knowledge, this is the

first CNN model that unifies image preprocessing and feature learning in a whole

network for steganalysis. On the other hand, we propose a novel learning scheme to

actively preserve the weak stego signal generated by secret message by incorporating

residual learning [62] in our network. This learning scheme has demonstrated superior

performance than previous CNN based steganalytic methods. In theory, we have proved

that shortcut connections in residual learning can effectively preserve the weak stego

signal for the network with any depths.

The rest of this paper is organized as follows. In section 4.3, we introduce the

content suppression for image steganalysis. In section 4.4, we describe the advantage

of CNN model and explain the rationality of residual learning for image steganalysis.

In section 4.5, we introduce the proposed network model. In section 4.6, we validate

the effectiveness of the proposed model on several states of the art steganographic

algorithms. In section 4.7, we discuss several characteristics of the proposed network.

The paper is finally closed with the conclusion in section 4.8.

4.3 Adaptive Content Suppression

Steganographic algorithms embed secret messages into cover images by modifying their

pixels slightly, i.e. they change each pixel by ±1. Under this case, it is hard to find

a statistical model to capture the difference between cover images and stego images

because the stego signal generated by secret messages is too weak. To address this

difficulty, instead of modeling natural images directly, modern methods turn to extract

the noise component of images by filtering original images with various highpass kernels

[49].

Traditional steganalytic algorithms suppress image content using predefined high-

pass kernels before feature extraction. Lyu and Farid [92] proposed to get the noise

component by decomposing images with wavelet-like kernels. Pevny et al. [101] ex-
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tracted the SPAM feature along four axes by using pixel difference kernels. To better

capture various dependencies among pixels, Fridrich et al. [46] proposed the rich model

steganalysis which unites a large number of predefined submodels. For the CNN based

steganalysis, the KV kernel [34, 94, 117] is used to preprocess input images.

However, these predefined kernels may not be optimal for content suppression. To

demonstrate this case, we calculate the following distance:

d = ||k ∗ Ic − k ∗ Is||2/(R · C) (4.1)

where k is the kernel for content suppression, Ic and Is represent the cover image and

the stego image respectively. R and C denote the row and the column of the image.

Tab.4.1 gives average d calculated by the predefined KV kernel and the adaptively

learned kernel of our model, based on 10,000 BOSSbase images [76] and S-UNIWARD

steganography [107] at 0.4 bit-per-pixel (bpp) payload. We can find that the adaptively

learned kernel has a large d than that of the predefined kernel. This indicates that the

proposed content suppression subnetwork can extract better discriminative information

than a predefined kernel for image steganalysis. In section 4.6, we will use experiments

to demonstrate that adaptive content suppression can obviously improve the detection

accuracy of the proposed model for detecting steganography.

Table 4.1: Average d with different kernels.

Kernel type Predefined Adaptive

d 0.3048 0.3074

4.4 Convolutional Neural Network for Steganalysis

In this section, we introduce the convolutional neural network for image steganalysis.

Firstly, we explain why CNN models are suitable for image steganalysis. Then, we

point out the difficulty of training a deep CNN model for discriminating cover images
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and stego images. Finally, we verify that residual learning can effectively overcome this

difficulty.

4.4.1 Advantages of Using CNN for Image Steganalysis

In recent years, CNN has achieved a great success for many image related tasks. A

series of breakthroughs have been made for discriminative learning, including image

classification [6, 62, 63], image denoising [108], and image super-resolution [16]. In

addition, several recent works show that CNN models are successfully applied for gen-

erative learning, including real image generation [38], image rendering [64] and texture

synthesis [31]. These successes indicate that CNN can not only extract effective features

for discriminating different images but also provide a good description for representing

real images. All the evidences show that CNN can well describe the distribution of

natural images. These results motivate us to use CNN for image steganalysis, since its

purpose is to discriminate the “natural” images (cover images) against the “unnatural”

images contaminated by embedded secret messages (stego images). The following three

characteristics of CNN models further demonstrate that they are suitable for the task

of image steganalysis:

• Convolutional kernels in CNN models can exploit the strong spatially local cor-

relation present in input images. This local correlation among image pixels is

distorted when secret messages are embedded, making it different from the cor-

relation in natural images. The difference between natural images and distorted

images can be effectively captured by CNN models;

• The convolution operation is actually to sum image pixels in a local region, which

would accumulate the weak stego signal of this region to be a large value. This

may lead to stego images be more easily detected against cover images;

• Nonlinear mappings in CNN models make them able to extract rich features for
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classifying cover images and stego images. These features, which are automati-

cally learned by updating the network, can hardly be designed by hand.

Although CNN models are suitable for image steganalysis, in the following part, we

will show that training a deep CNN model to classify cover images and stego images

is difficult.

4.4.2 Difficulty of Training a Deep CNN for Image Steganal-

ysis

Training deep convolutional neural networks is difficult. A deep CNN model may suffer

the feature diminishing problem [31] when the input data propagates the network

forwardly. It may also suffer the gradient vanishing problem when the error signal

is back-propagated [114]. For image steganalysis, the feature diminishing becomes a

major problem. This indicates that the weak stego signal added to a cover image

would be attenuated as it travels the whole CNN model, making the later network

hardly capture effective features to discriminate cover images and stego images. To

illustrate this phenomenon, we perform a mathematical derivation as follows. Assume

we have a cover image x and its stego version y, where the stego image y can be

represented as:

y = x + s (4.2)

where s denotes the stego signal generated by message embedding. Generally, CNN can

be abstracted as a typical model as Fig.4.1(a). In this abstracted form, the mapping

Hi(x) (i = 1, 2, · · ·, n) could be a convolutional layer, a nonlinear activation layer, a

pooling layer or their combinations. By feeding x and y into a typical CNN model, we

obtain their outputs:

Zn
t (x) = Hn(· · ·H2(H1(x))) (4.3)
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Mapping H1(·) Mapping H2(·) Mapping Hn(·) Input Output 

Mapping H1(·) Input Mapping H2(·) 

(a). Network without shortcut connections 

Mapping Hn(·) Output 

(b). Network with shortcut connections 

Figure 4.1: Network without and with shortcut connections. (a). A typical CNN
model can be abstracted as a network with cascaded building blocks. (b). A residual
learning network can be abstracted as a network with cascaded building blocks, where
each building block has a shortcut connecting its input and output.

Zn
t (y) = Hn(· · ·H2(H1(y))) (4.4)

Compared with the cover image x, the stego signal s is often very weak. Therefore, we

iteratively use Taylor expansion for Zn
t (y) and get the following result:

Zn
t (y) = Zn

t (x) +

(
n∏
i=1

F (i)(x)

)
s +O(||s||2) (4.5)

where O(||s||2) is the expansion remainder, F (i)(x) is:

F (i)(x) =


H ′i(x), i = 1

H ′i(· · ·H1(x)), i < 1 ≤ n

(4.6)

In above equation, H ′i(x) denotes the derivative of the mapping Hi(x):

H ′i(x) =
∂Hi(x)

∂x
(4.7)

In a CNN model, each element fi in the derivative matrix F (i)(x) satisfies the following

inequality:

|fi| ≤ 1 (4.8)
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where p, q represents the row index and the column index of F (i)(x) respectively. We

explain this result for each basic operation in a CNN model:

• For a convolutional layer, fi actually relates to the sum of image pixels multiplied

by weights in a convolutional kernel. To ensure the stability of learning CNN

models, existing methods initialize convolutional kernels with small weights (e.g.

Gaussian random values with zero mean and 0.01 standard derivation) and set

learning rate for parameter updating to a small value. These settings ensure that

elements in convolutional layers are small during the learning phase. In addition,

the size of a convolutional kernel in CNN models is often small. Consequently,

fi of a convolutional layer is small and Eq.(8) can be satisfied in most cases;

• For a nonlinear activation layer, fi in F (i)(x) is ensured to be smaller than 1.

This is because for existing activation functions, e.g. the sigmoid, tanh or ReLU,

their slopes are smaller than 1 anywhere.

• For a pooling layer, either the average pooling or the maximum pooling does not

increase the absolute value of each element in a feature map Hi(x), thus Eq.(4.8)

is satisfied.

With the property as the Eq.(4.8),
∏n

i=1 F
(i)(x) decays exponentially as n increases.

This will make the difference between x and y very small for large n. Under this case,

the CNN model can hardly discriminate cover images and stego images. The result

explains why CNN models that can better detect steganography have very small depths

[34, 67]. However, deep neural networks have more powerful representation ability than

the shallow ones [69].

An exception of Eq.(4.8) is the batch normalization [91] in CNN models. Recently,

this operation becomes an effective technique in CNN models to improve their conver-

gence speed. For a batch normalization layer, F (i)(x) is a diagonal matrix in which

each diagonal element is equal to the inverse of the variance of input data in the corre-

sponding dimension. Therefore, |fi| could be larger than 1 if the variance of the data in
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a mini-batch is small. Nevertheless, for a CNN model with batch normalization layers,

it can not pledge that
∏n

i=1 F
(i)(x) does not decay in deep layers since the value |fi| is

determined by the variance of input data.

4.4.3 Rationality of Residual Learning for image Steganalysis

Residual learning was originally proposed by He et al. in [62]. The main feature of

residual learning is that a shortcut path connects the input and the output of Hi(x)

in a CNN model. According to the introduction in [62], this shortcut connection can

enforce a CNN model to fit the residual part of a function to be approximated, mak-

ing the network be optimized easily. For image steganalysis, a network with shortcut

connections (the model as Fig.4.1(b) shows) can effectively overcome the feature di-

minishing phenomenon. Same to the analysis as Fig.4.1(a), we feed the cover image x

and its stego image y into the network as Fig.4.1(b) and obtain their outputs:

Zn
s (x) = Rn(· · ·R2(R1(x))) (4.9)

Zn
s (y) = Rn(· · ·R2(R1(y))) (4.10)

where Ri(x) denotes:

Ri(x) = Hi(x) + x, 1 ≤ i ≤ n (4.11)
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Similarly, we perform the Taylor expansion for Eq.(9):

Zn
s (y) = Zn

s (x) +

[
n∏
i=1

[
1 +H ′i(F

(i)
R (x))

]]
s +O(||s||2) (4.12)

where F
(i)
R (x) is:

F
(i)
R (x) =


x, i = 1

Ri−1(x) i = 2

Ri−1(· · ·R1(x)), i > 2

(4.13)

Unlike the case as Fig.4.1(a), the coefficient matrix of the stego signal s,
∏n

i=1

[
1 +H ′i(F

(i)
R (x))

]
,

does not exponentially decays as the depth increases. To better understand the advan-

tage of the network with shortcut connections, we factorize Zn
s (x) and Zn

s (y) when n

is 2. For Zn
s (x), we have:

Z2
s (x) = R2(R1(x)) = x +H1(x) +H2(H1(x) + x) (4.14)

For Zn
s (y), we iteratively use Taylor expansion and obtain:

Z2
s (y) = R2(R1(y))

= R2(R1(x)) + [R′2(R1(x)) ·R′1(x)] s +O(||s||2)

= x +H1(x) +H2(H1(x) + x) + s + [H ′1(x)] s

+ [H ′2(H1(x) + x)] s + [H ′2(H1(x) + x) ·H ′1(x)] s

+O(||s||2)

(4.15)

We compared the factorization Eq.(4.15) with Eq.(4.5), and find two advantages of the

network with shortcut connections:

• The coefficient matrix for the stego signal s does not decay as the network’s

depth increases. Unlike the Eq.(4.5), the coefficient matrices for s in Eq.(4.15),
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i.e. s, [H ′1(x)] s, [H ′2(H1(x) + x)] s, are always kept to be no larger than order one,

independent of network’s depth. Actually, this is a general case for any depth.

This property ensures that the stego signal s does not decays as the network’s

depth increases;

• The difference between cover images and stego images does not decay as the

network’s depth increases. By checking Eq.(4.15), we find that each term of x

is accompanied with a corresponding term of s, i.e. s for x, [H ′1(x)] s for H1(x),

and [H ′2(H1(x) + x)] s for H2(H1(x) + x). This property ensures a non-decaying

SNR between the stego signal s and the image content x when the depth n is

large, which is beneficial for discriminating cover images and stego images.

To summarize, we have explained the rationality of residual learning for image

steganalysis. We will introduce the proposed model in the following section.

4.5 Proposed Network Model

4.5.1 Network Architecture

Fig.4.2 shows the overall architecture of the proposed network model. The network

contains the content suppression sub-network, the residual learning sub-network and

the classification sub-network. Each sub-network has its own role in information pro-

cessing of the overall model, which are introduced in the following parts.

The content suppression sub-network is to extract the noise component of input

cover/stego images. Three 5 × 5 kernels rather than one are used to filter the input

image, aiming to capture more dependencies among pixels. To pledge that the sub-

network indeed extracts noise components, each of three kernels is initialized by a
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highpass kernel, i.e. the KV kernel:

KV =
1

12



−1 2 −2 2 −1

2 −6 8 −6 2

−2 8 −12 8 −2

2 −6 8 −6 2

−1 2 −2 2 −1


(4.16)

The residual learning subnetwork is to extract effective features for steganalysis. In

the residual learning sub-network, 64 filters with the size of 7× 7 are used to convolve

the the noise components generated by the content suppression sub-network. Following

the convolutional layer is a batch normalization layer, a ReLU activation layer [109]

and a max pooling layer2. Then, the network uses two kinds of blocks to process the

data: the residual learning (ResL) block and the dimension increasing block. A ResL

block consists of two convolutional layers, each of which is also followed by a batch

normalization layer and a ReLU layer (i.e. two cascaded “Conv+BN+ReLU” blocks).

The size of convolutional kernels in the block is 3×3 and the number of kernels is equal

to the number of input feature map (details about the block are described in [62]). A

shortcut path connects the input and the output of the block, acting as the identical

mapping. For a dimension increasing block, the only difference to a ResL block is that

the number of feature maps is doubled and each feature map is down-sampled for the

output. In general, there are several ResL blocks before a dimensional increasing block

in the residual learning sub-network. We use Fig.3 to represent feature maps followed

by several ResL blocks to make the figure of overall network compact. For economical

considerations [62], a bottleneck version for residual learning and dimension increasing

is developed for very deep networks. Different from the non-bottleneck version with

two convolutional layers, a bottleneck version has three convolutional layers [62].

In general, there are several ResL blocks before a dimensional increasing block in the

2The batch normalization and ReLU are not shown in the figure.
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Figure 4.2: The proposed network for image steganalysis. In the content suppression
sub-network, three kernels initialized by a KV filter is used to extract the noise com-
ponent of input images. In the residual learning sub-network, the residual learning
(ResL) block and dimension increasing block are used to extract effective features for
discriminating cover/stego images. The classification sub-networks maps features into
binary labels. p@q × q denotes p convolutional kernels with the size of q × q.

residual learning stage. We use Fig.4.3 to represent feature maps followed by several

ResL blocks to make the figure of overall network compact.

 ResL blocks 
1n

64  
feature maps 

64 feature maps 

64 feature maps 

 ResL block 

 ResL block 

1n blocks 

Figure 4.3: Feature maps followed by several ResL blocks.

A classification sub-network maps extracted features into binary labels. Two output

nodes, which corresponds to the label of cover and stego, are fully connected to the

feature map that are averaged pooled in the residual learning sub-network.

4.5.2 Network Training

Parameters of the proposed network are learned by minimizing the softmax loss func-

tion:

L(xi, θ) = −
K∑
k=1

1{yi = k} · log

(
eoi,k(xi,θ)∑K
k=1 e

oi,k(xi,θ)

)
(4.17)
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where θ denotes the parameters of the network, including weight matrices W and the

bias vectors b. K is the number of labels, where K = 2 in our model. yi is the label

of xi, 1{·} is the indicator function. oi,k(xi, θ) represents the output of the network for

the sample xi. W and b of the network parameter θ are updated by the mini-batch

stochastic gradient descending (SGD):

W(t+ 1) = W(t)− α 1

N

∑
i∈B

∂L(xi, θ)

∂W
(4.18)

b(t+ 1) = b(t)− α 1

N

∑
i∈B

∂L(xi, θ)

∂b
(4.19)

where N is the size of a mini-batch B, α is the learning rate.

4.6 Experiments

This section is to validate the effectiveness of the proposed network model. The dataset

used for validation is the BOSSbase 1.01 [76], which is a standard database for evalu-

ating steganography and steganalysis. The original BOSSbase contains 10,000 natural

images with the size of 512× 512. Following the setting in [34, 67], each image in the

dataset is cropped into 4 non-overlapping 256× 256 in our experiments. Therefore, we

have a cropped BOSSbase with 40,000 images.

In the residual learning sub-network and the classification sub-network, weight ma-

trices W are initialized by a zero mean Gaussian distribution with the standard deriva-

tion 0.01 and biases vectors b are initialized to zeros. The momentum and the weight

decay in two sub-networks are set to 0.9 and 0.0001 respectively. Following the setting

in [62], the learning rate α of W and b starts from 0.001 and is divided 10 every 50

training epoches. The purpose of dividing the learning rate is to make the network

escape the error plateaus. For the content suppression sub-network, all three highpass

kernels are initialized as the KV kernel. The learning rate of this subnetwork is set as
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follows:

αc(t) =


α0, p > 0.1 bpp

α0/t, p ≤ 0.1 bpp

(4.20)

where α0 is a predefined value. In our experiment, α0 is set to 0.0001. p denotes the

payload for message embedding, t represents the number of training epoch. We will

explain this setting in the discussion section. The size of mini-batch SGD, N , is set to

10, which indicates that 10 paired cover images and their stego versions are for training

and testing. In following experiments, we use the batch mean and batch variance as

parameters for the batch normalization layer, both in training phase and testing phase.

The number of training epoch is set to 200. All experiments are tested on the Nvidia

Tesla K80 platform.

4.6.1 Demonstration of Adaptive Content Suppression

In this experiment, we investigate the effect of adaptive content suppression for image

steganalysis. The proposed model is compared with and a baseline network that has

fixed highpass kernels in the content suppression sub-network. To make the result

comparable, highpass kernels in the baseline network are set to the KV filter. Same

to the first experiment, [n1, n2, n3, n4] of both networks are set to [2, 2, 1, 1]. We use S-

UNIWARD stegnography [107] with the payload 0.4 bit-per-pixel (bpp) for validation.

30,000 randomly selected cover images from the cropped BOSSbase and their stegos are

used as the training set. The rest 10,000 images and their stegos are used for testing.

Fig.4.4 shows the training error curve or testing error curve for the rich model

steganalysis, the baseline network and the proposed network. In this figure, we find

that the proposed network outperforms the baseline network. The performance im-

provement is indicated in three folds. For the first, both the training error and the

testing error of our network are smaller than the baseline network. For the second, our

network converges in a faster speed than the baseline network. For the third, the gap
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Figure 4.4: Performance comparisons for the rich model method, the proposed network
and the baseline network on the S-UNIWARD steganography at 0.4 bpp. This figure
only shows the training error and the testing error of the first 100 training epoches.
The finally converged detection error rates for the baseline network and the proposed
network are 3.16% and 1.47% respectively.

between the training error and the testing error of our network is much smaller than

that of the baseline network. All these results demonstrate that an adaptively learned

content suppression sub-network can improve the performance obviously.

4.6.2 Performance Comparisons with Prior Arts

We conduct a comprehensive experiment to demonstrate the effectiveness of the pro-

posed network. We compare the proposed network with the classical Spatial Rich

Model based steganalysis (SRM) [46] and its select-channel-aware version, the maxSR-

Md2 steganalysis [95]. SRM based steganalysis first extracts many handcrafted features

that are sensitive to message embedding and combine them into a long feature vector

for classification. An ensemble classifier [56] is trained based on the extracted features

and is used for predicting the label of an input image. The maxSRMd2 steganaly-

sis is similar to the SRM method but pay more attention on image pixels with high

embedding probabilities. This steganalytic method is specifically designed for adap-
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Table 4.2: Detection error rates of SRM, maxSRMd2 and the proposed network on
four steganographic algorithms.

Steganography Detection algorithm 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp

WOW

SRM + ensemble 40.15% 31.33% 24.76% 20.08% 15.76%

maxSRMd2 + ensemble 30.12% 22.84% 17.98% 15.20% 12.93%

The proposed network 11.54% 3.59% 1.42% 0.92% 0.67%

S-UNIWARD

SRM + ensemble 40.38% 32.54% 25.51% 20.70% 16.21%

maxSRMd2 + ensemble 35.63% 28.04% 22.35% 18.84% 15.13%

The proposed network 12.61% 4.08% 2.13% 1.47% 1.15%

HILL

SRM + ensemble 43.71% 36.47% 29.39% 23.57% 20.22%

maxSRMd2 + ensemble 37.26% 30.17% 25.71% 21.63% 17.45%

The proposed network 12.94% 5.65% 3.37% 2.17% 1.31%

MiPOD

SRM + ensemble 40.68% 33.25% 26.12% 22.26% 18.38%

maxSRMd2 + ensemble 37.51% 29.26% 24.19% 20.38% 16.39%

The proposed network 11.28% 4.41% 2.42% 1.26% 0.62%

tive steganography. Four states of the art steganographic algorithms, including the

Wavelet Obtained Weights steganography (WOW) [104], S-UNIWARD, the HIgh-pass

Low-pass Low-pass steganography (HILL) [14] and the Minimizing the Power of Op-

timal Detector steganography (MiPOD) [110], are used for validation. Same to the

setting in previous two experiments, 30,000 randomly selected images and their stegos

are for training the model, the rest 10,000 and their stegos are for testing. Tab.4.2

gives the detection error rates of the proposed network. The results demonstrate that

our network achieves much lower detection error rates than the rich model based ste-

ganalysis over all settings.

4.7 Discussions

4.7.1 Rationality of the Proposed Network When Training

Images and Testing Images are Paired

In this section, we will demonstrate that the basic building unit “Conv+BN+ReLU” is

suitable for paired image steganalysis. We also provide experimental evidence to verify
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the fact that the combination of the unit “Conv+BN+ReLU” and residual learning

can effectively overcome feature diminishing phenomenon.

The configuration “Conv+BN+ReLU” is a standard block in residual network.

This standard setting is effective for image steganalysis in paired case. To illustrate this

claim, we provide mathematical analysis here. Assume we feed the network with a cover

image x and its stego image y, where y = x + s. For the block “Conv+BN+ReLU”,

the outputs of the cover image and the stego image are:

xop = ReLU

(
Wx− µ

σ

)
= max

(
Wx− µ

σ
, 0

)
(4.21)

yop = ReLU

(
Wy − µ

σ

)
= max

(
W(x + s)− µ

σ
, 0

)
(4.22)

where xop and yop represent the output of cover image and stego image in paired

case respectively. µ denotes the mean value of all pixels in x and y, σ represents its

variance. For simplicity, we have omitted the bias term and the scaling term in the

batch normalization layer. For µ, we write it as the follows:

µ =
1

2
E [Wx + Wy] = E [Wx] +

1

2
E [Ws] (4.23)

where E[·] denotes the expectation operator. For Eq.(4.21) and Eq.(4.22), we consider

the expectation of batch normalization layer’s outputs:

E

[
Wx− µ

σ

]
= E

[
Wx− E [Wx] + 1

2
E [Ws]

σ

]
= −E [Ws]

2σ
(4.24)

E

[
Wy − µ

σ

]
= E

[
Wx + Ws− E [Wx] + 1

2
E [Ws]

σ

]
=
E [Ws]

2σ
(4.25)

Either the sign of E [Ws] is positive or negative, on average, the cover image x and

stego image y distributed across 0. This property makes elements in the cover feature

88



0 1 5 10 15 19 20
0

0.1

0.2

0.3

0.4

0.5

0.75

1

1.25

1.5

Index of ReLU layers

di
st

 

 

Trained proposed network
Randomly initialized proposed network

Figure 4.5: Feature map difference between disti cover images and stego images at
different layers.

map and elements in the stego feature map be easily separated after the ReLU layer.

For a mini-batch with several cover images and their stegos, the above analysis is also

applicable.

In order to demonstrate that the residual learning combined with the block “Con-

v+BN+ReLU” can overcome the feature diminishing, we take the following experiment.

For each layer in the proposed network, we calculate the Euclidean distance between

the feature maps of cover images and stego images:

disti =
1

MiDi

∑
j

||fi(xj)− fi(yj)|| (4.26)

where Mi and Di denote the number of feature maps and its dimension at the i-th

layer. fi(xj) and fi(yj) represents the feature map of the j-th cover image xj and its

stego image yj. Eq.(4.26) actually measures the disciminability between cover images

and stego: a large distance indicates that x and y can be easily classified while a small

distance indicates they are hard to be classified. We calculate disti for each layer of a

randomly initialized proposed network and a trained proposed network based on 40,000
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cover images and their S-UNIWARD stegos. The network with the best configuration,

i.e. [n1, n2, n3, n4] is set to [2, 2, 1, 1] and the total number of convolutional layers is

20, is used for demonstration. Fig.4.5 reports the distance for the output in each

ReLU layer in the trained network and the randomly initialized network. The distance

is calculated on the cropped BOSSbase dataset and the S-UNIWARD steganography

at 0.4 bpp. The figure has shows two interesting results. First, disti has almost no

changes between the first layer and the last layer for a randomly initialized network.

The result is consistent with mathematical analysis in section 4.4. Second, although

vibrates disti through the network, the trained network enlarges the distance as the

network goes deeper. This result indicates that the well trained network can not only

overcome the feature diminishing phenomenon but even improve the discriminability

between cover images and stego images, when the cover image and the stego image are

paired.

4.7.2 Performance Analysis When Testing Images are not Paired

In previous, we have theoretically prove the of rationality of residual learning for ste-

ganalysis when cover image x and its stego y are paired into the network. However,

in our experiment, we find the detection error rate is greatly increased if the test im-

ages are not paired. The result is shown as Tab.4.3. In this section, we will provide

mathematical analysis and experimental evidence to explain this result.

Table 4.3: Detection error rates for paired case and unpaired case.

Steganography Paired case Unpaired case

S-UNIWARD at 0.4 bpp 1.47% 27.61%

Batch Normalization for Natural Image Classification

Batch normalization is a standard technique that is widely used in image classification

CNN models. Training a deep neural network model is often difficult not only because
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of the gradient vanishing/exploding but also because the distribution of data changes

in different layers, which is called the “internal covariate shift” phenomenon. Batch

normalization is such a technique that can relieve this phenomenon, by introducing

several simple operations to the input data:

µB ←
1

m

m∑
i=1

Ii (4.27)

σ2
B ←

1

m

m∑
i=1

(Ii − µB)2 (4.28)

Îi =
Ii − E [Ii]√
σ2
B + ε

(4.29)

Ioi = γÎi + β (4.30)

where B = {I1,...m} denotes the input data in a mini-batch, µB and σB represent the

mean and variance of the mini-batch B respectively. ε is a small constant to avoid zero

dividing, γ and β are the parameters. With these operations, the output data Ioi in the

mini-batch is distributed with fixed mean and variance at any depth after the batch

normalization. Thus, deviations to the mean and variance can be eliminated by the

batch normalization, which makes the network overcome the “internal covariate shift”.

Batch Normalization for Image Steganalysis

For image steganalysis, the batch normalization plays a different role as it plays in

natural image classification. Based on Eq.(4.24) and Eq.(4.25), we find that batch

normalization actually forces the cover image and stego image to be distributed into

opposite side of the batch mean in paired learning case. Thus, the batch normalization

not only normalize the input data, but also can discriminate cover images and their

stegos to some extent. However, the model would fail to predict the label of unpaired

input images in the testing phase. To analyze this phenomenon, we first substitute µ
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in Eq.(4.21) and Eq.(4.22) with Eq.(4.23) and then rewrite them as follows:

xop =

[
Wx− E

(
Wx + 1

2
Ws

)]
σ

◦ H
[

Wx− E(Wx + 1
2
Ws)

σ

]
(4.31)

yop =

[
W(x + s)− E

(
Wx + 1

2
Ws

)]
σ

◦ H
[

W(x + s)− E(Wx + 1
2
Ws)

σ

]
(4.32)

where ◦ represents the pointwise product, H(·) is Heaviside step function:

H(x) =

 1, x ≥ 0

0, x < 0
(4.33)

For the unpaired case, outputs of the “Conv+BN+ReLU” block are not same to

above equations. Assume the block is fed with a cover image x and a stego image y′,

where y′ = x′ + s and x′ 6= x. For the “Conv+BN+ReLU” block, outputs of x and y′

are:

xou =

[
Wx− 1

2
E (W(x + x′ + s))

]
σ′

◦ H
[

Wx− 1
2
E (W(x + x′ + s))

σ′

]
(4.34)

you =

[
W(x′ + s)− 1

2
E (W(x + x′ + s))

]
σ′

◦ H
[

W(x′ + s)− 1
2
E (W(x + x′ + s))

σ′

]
(4.35)

where xou and you represent the output of cover image and stego image in unpaired

case respectively, σ′ represent the variance of Wx + Wy′. The expected outputs of of

x and y′ after the batch normalization layer are:

E

[
Wx− 1

2
E (W(x + x′ + s))

σ′

]
=

1

2σ′

[
E (W(x− x′))− 1

2
E (Ws)

]
(4.36)

E

[
W(x′ + s)− 1

2
E (W(x + x′ + s))

σ′

]
=

1

2σ′

[
E (W(x′ − x)) +

1

2
E (Ws)

]
(4.37)
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Figure 4.6: Histogram of elements in Ws and W(x− x′). The feature map after
the content suppression subnetwork is extracted and the steganographic algorithm S-
UNIWARD at payload 0.4 bpp is used for demonstration.

Compared with the paired case, on average, the expected output of batch normaliza-

tion layer in Eq.(4.36) and Eq.(4.37) not only depends E [Ws] but also E [W(x− x′)].

Fig.4.6 has shown the distribution of elements in W(x− x′) and Ws. We find that

the amplitude of secret message Ws is smaller than W(x− x′). Consequently, the

output of the “Conv+BN+ReLU” block is dominated by cover images x rather than

the secret message s in unpaired case. This characteristic leads to two direct results:

(1). the path pattern selected by ReLU layer is largely determined by cover images;

(2). the amplitude of the “Conv+BN+ReLU” output is largely determined by cover

images. Both results make the feature map generated by the unpaired case significantly

different from the feature map generated by the paired case.

For a network with many “Conv+BN+ReLU” blocks, the difference W(x− x′)

propagates through the whole network and finally makes the prediction incorrect. Ac-

tually, the output of cover image and stego image after several “Conv+BN+ReLU”

blocks can be in an iterated form. For paired case:

xopn+1 =
fpcn+1

σn+1

◦ H
[

fpcn+1

σn+1

]
(4.38)
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yopn+1 =
fpsn+1

σn+1

◦ H
[

fpsn+1

σn+1

]
(4.39)

fpcn+1 = Wn+1x
op
n −

1

2
E (Wn+1x

op
n + Wn+1y

op
n ) (4.40)

fpsn+1 = Wn+1y
op
n −

1

2
E (Wn+1x

op
n + Wn+1y

op
n ) (4.41)

where xopn and yopn represent the output of cover image and stego image after n−th

“Conv+BN+ReLU” blocks in paired case, Wn denotes the convolution kernel and σn

is the variance. For unpaired case:

xoun+1 =
fucn+1

σ′n+1

◦ H
(

fucn+1

σ′n+1

)
(4.42)

youn+1 =
fusn+1

σ′n+1

◦ H
(

fusn+1

σ′n+1

)
(4.43)

fucn+1 = Wn+1x
ou
n −

1

2
E [Wn+1x

ou
n + Wn+1y

ou
n ] (4.44)

fusn+1 = Wn+1y
ou − 1

2
E [Wn+1x

ou
n + Wn+1y

ou
n ] (4.45)

where xoun and youn represent the output of cover image and stego image after n−th

“Conv+BN+ReLU” blocks in unpaired case.

We expand the Eq.(4.38) and Eq.(4.39) after two “Conv+BN+ReLU” blocks:

xop2 =
W2(W1x− E

[
W1x + 1

2
W1s

]
)

σ2σ1
◦ H

(
fpc1
σ1

)
◦ H

(
fpc2
σ2

)
− E

(
W2(W1x− E

[
W1x + 1

2
W1s

]
)

σ2σ1
◦ H

(
fpc1
σ1

))
◦ H

(
fpc2
σ2

) (4.46)

xou2 =
W2(W1x− 1

2
E [W1(x + x′ + s)])

σ2σ1
◦ H

(
fuc1
σ1

)
◦ H

(
fuc2
σ2

)
− E

(
W2(W1x− 1

2
E [W1(x + x′ + s)])

σ2σ1
◦ H

(
fuc1
σ1

))
◦ H

(
fuc2
σ2

) (4.47)

Observing the expanded equation, we find that xou2 is different from xop2 in three as-
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Figure 4.7: Testing error vibrates a lot if fixed parameters are used in batch normaliza-
tion layers. The proposed model with 20 convolutional layers is used for demonstration.
The tested steganographic algorithm is S-UNIWARD at payload 0.4 bpp.

pects: (1). the term W(x′ − x) exists in xou2 , it does not decay as the number of

“Conv+BN+ReLU” block increases; (2). the feature map fuc1 is different from fpc1 ,

which also make fuc2 different from fpc2 ; (3). H(fuci ) is different from H(fpci ), i ∈ {1, 2}.

Furthermore, the product of several H(fuci ) accumulates the difference and finally make

the output completely different from the output in the paired case. Similar result can

be found for yop2 and you2 . Therefore, we can conclude that, for a network with many

“Conv+BN+ReLU” blocks, it would give a poor detection result for the unpaired

testing samples, when batch parameters are used in the batch normalization layer.

The performance of a network with batch normalization layers vibrates greatly if

fixed µ and σ are used in the testing phase. The phenomenon is depicted in Fig.4.7. For

the fixed parameter case, the output of a cover image x after two “Conv+BN+ReLU”

blocks is:

xo2 =
W2(W1x− µ1)

σ1σ2
◦ H

(
fo1
σ1

)
◦ H

(
fo2
σ2

)
− µ2

σ2
◦ H

(
fo2
σ2

)
(4.48)
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where µ1, µ2, σ1, σ2 are fixed parameters of the batch normalization layer, fo1 and fo2 are

defined as:

fo1 = W1x− µ1 (4.49)

fo2 = W2x
o
1 − µ2 (4.50)

Actually, the discrimination of a cover image and a stego image depends on the stego

sigal s. However, s is generally small. Thus, inaccurate estimation to parameters

µ1, µ2, σ1, σ2 will modify the output value xo1, foi , and H(foi /σi). These accumulated

modifications may surpass the stego sigal s, and finally make an incorrect prediction.

4.8 Summary

This chapter introduced a unified convolutional neural network for image steganalysis.

The proposed network has two improvements over previous CNN based steganalytic

methods. On one hand, our network unifies image preprocessing and feature learning

in a whole model. On the other hand, we proposed a novel subnetwork to actively

preserve the weak stego signal based on residual learning. Experimental results and

theoretical analysis have shown that the network has following main contributions.

• Adaptive content suppression can improve the detection accuracy. We analyzed

that this content suppression subnetwork can also increase the network’s conver-

gence speed.

• Residual learning can effectively overcome the feature diminishing phenomenon

in image steganalysis. In theory, we prove that either the weak stego signal or the

difference between cover images and stego images does not decay as the depth

of the network increases. Experimental results show that a well trained network

can further enlarge the difference, thus obviously improve the detection accuracy

to modern adaptive steganography.

96



• We analyzed the rationality of the proposed network when training images and

test images are paired. We explained why there is a great performance loss when

the test image are unpaired.

Current network shows promising performances on detecting spatial domain steganog-

raphy when images are paired. We also analyzed the limitation of batch normalization

for image steganalysis. In future works, we will develop CNN models to detect stego

images without the batch normalization layer and further extend them into the com-

pressed domain images.
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Chapter 5

Conclusions and Future Work

This dissertation presents a series of studies to improve the performance of steganogra-

phy and steganalysis based on natural image structures. In the chapter, we summarize

the work presented in the thesis and discuss the future work.

5.1 Conclusions

Image steganography and steganalysis attract increasing interests because of its great

potentials in military and commercial applications. Due to huge amounts of digital

images in the internet, we are motivated to improve the performance of steganography

and steganalysis by exploring the structures of natural images. Following this idea, the

dissertation explores natural image structures for steganography and steganalysis from

following two aspects:

1) Improving the undetectability of steganography by selecting suitable natural

cover images. By taking the structural richness of natural images, this work aims to

investigate what properties that make stego images undetectable and select suitable

cover images to improve the undetectability of steganography. Based on statistical

models of natural images, theoretically, we have derived a measure, which proves to

be an upper bound of the Kullback-Leibler divergence between cover images and stego

images. This measure, which is only determined by the distribution of images, is
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used to analyze what properties of cover images that intrinsically affect steganographic

security. With this measure, we conclude that the undetectability of the stego image

relates to three factors: the entropy of the statistical model to represent the image, the

energy of varying pixels across the image, and the number of nonzero DCT coefficients

to reconstruct the image.

2) Improving the detection ability of steganalysis by modeling natural images with

convolutional neural networks. Based on the property that CNNs have superior ability

to capture correlations in natural images, this work proposed a novel CNN model for

image steganalysis. By unifying image preprocessing and feature learning in a whole

network, the model can adaptively suppress the image content so that the signal-to-

noise ratio is increased. By incorporating residual learning in a novel subnetwork, the

model can preserve the weak stego signal generated by message embedding at any

depth. With these two improvements, the proposed can learn effective features for

steganalysis when cover images and stego images are paired in training and testing.

5.2 Future Work

Though we have made progresses on using natural image structures for steganography

and steganalysis, it is still far from perfect. A lot of work can be done to further

improve the performance of steganography and steganalysis. In future, we can extend

the work from the following two directions:

5.2.1 Design New Steganographic Algorithms based on Con-

volutional Neural Networks

Modern methods usually formulate steganography as a distortion minimization prob-

lem. To hide secret messages in images, they first define a distortion value for each

image pixel/coefficient to represent its detectability. Then, hiding messages with least

detectability is transformed to a problem of finding pixels/coefficients with minimal
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distortions. All existing distortions in modern steganography are defined by hand.

However, designing an effective distortion function proves to be a difficult task which

need strong domain knowledge of steganography and steganalysis. To address this

difficulty, in future, we could use a neural network model to automatically learn the

distortion function that make existing steganalysis disable. The main advantage of

this approach is that the difficulty of designing of distortion function is significantly

reduced. In addition, the function space is enlarged that complex relationships among

pixels/coefficients can be utilized to define the distortion function.

5.2.2 Develop New Convolutional Neural Networks for Image

Steganalysis without Batch Normalization Layers

For image steganalysis, a CNN model with batch normalization layers is easily over-

fitted and sensitive the variation of parameters. These phenomenons are mainly due

to the nature of the task: image steganalysis is to discriminate the cover image and

the stego image which is the addition of weak stego signal and the cover image. The

addition nature makes CNN models with batch normalization layers easily capture the

difference between cover images and stego images in paired training, but fail to discrim-

inate them when testing images are not paired. Weak stego signals make the difference

between covers and stegos be very small, thus a slight variation to parameters of batch

normalization layers would result in a great performance loss. To address these diffi-

culties, in future, we will propose new CNN model without batch normalization layers

for image steganalysis and further extend it to compressed domain images.
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