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Abstract

Android has become the most popular mobile operating system, and billions of Android

applications (apps) have been downloaded from the both official and various third-party

markets. Unfortunately, not all apps are benign or well designed, and understanding

the behaviours of Android apps is essential for analyzing and detecting malicious apps.

To achieve this goal, various static bytecode analysis and dynamic behavior analysis

approaches have been proposed. This thesis focuses on dynamic analysis because static

analysis could be impeded by the dynamic features of programming languages or the

protection mechanisms adopted by apps.

Although a number of dynamic analysis approaches have been proposed to monitor the

behaviours of Android apps and profile performance issues, the state-of-the-art methods

are limited in their ability to deal with the multiple-layer nature of Android, and thus they

cannot analyze and correlate an app’s behaviours in various layers and track its cross-layer

information leakage flow. In this thesis, we propose novel cross-layer dynamic analysis

mechanisms and develop efficient tools to inspect Android apps. More precisely, we

propose Malton, a novel on-device non-invasive analysis platform for the new Android

runtime, i.e., the ART runtime. Malton runs on real mobile devices and provides a

comprehensive view of malware’s behaviours by conducting multi-layer monitoring and

information flow tracking, as well as efficient path exploration. We have evaluated Malton

using real-world malware samples. The experimental results showed that Malton is more
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effective than the existing tools, with the capability to analyze sophisticated malware

samples and provide a comprehensive view of malicious behaviours of these samples.

Android malware are also becoming more and more sophisticated to evade detection

and analysis; one of the most popular techniques adopted by Android malware to protect

themselves is packing. Packing services were provided to protect benign apps from being

pirated, but Android malware authors also start to adopt packing services to protect the

malware from being detected and analyzed. Hence, we propose a novel adaptive approach

and develop PackerGrind, a new tool based on cross-layer inspection, to unpack Android

apps. Packing services (or packers) have been used by not only app developers to protect

their apps but also attackers to hide the malicious component and evade the detection.

Although there are a few recent studies on unpacking Android apps, it has been shown

that the evolving packers can easily circumvent them because they are not adaptive to

the changes of packers. PackerGrind can reveal the protection mechanisms of packers,

recover the Dex files with low overhead, and handle the evolution of packers.

In addition, to improve the efficiency of malware detection, there are various cloud-

based Android malware detection approaches proposed. These approaches obtain the

behaviors of Android apps on mobile devices, then upload the obtained information

to the server for malware detection, and obtain the detection result when detection

finishes. When we use these cloud-based detection mechanism, we need take the network

performance into account because, if we upload the behaviours of apps and download

detection results under poor network status, network traffic jam could be caused. However,

when we measure the network performance using existing mobile network measurement

apps, there are a set of factors (e.g., Android system architecture and implementation

patterns) that could affect the measurement results. We employ the cross-layer dynamic

analysis mechanism to conduct the first systematic study on the factors that could bias

the measurement results of network features. In particular, we identify new factors,
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revisit known factors, and propose a novel approach with new tools to discover these

factors in proprietary apps. We also develop a new measurement app named MobiScope

for demonstrating how to mitigate the negative effects of these factors and obtain the

accurate and stable network features. The extensive experimental results illustrate the

negative effects of various factors and the improvement in network measurement brought

by MobiScope.

Keywords: Cross-Layer Tracking; Android Profiling; Dynamic Analysis; Unpacking
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Chapter 1

Introduction

Android has become the most popular mobile operating system platform and billions

of Android applications (apps) have been downloaded from the official and third-party

markets. Understanding the behaviours of Android apps is essential for identifying

their malicious actions and locating their potential performance issues. For program

analysis, there are two common methodologies, static analysis [68, 167] and dynamic

analysis [118, 147].

1.1 Static Analysis

Static analysis on Android privacy leakage mainly focuses on permission and bytecode

without executing the apps [94, 198, 93]. For example, Stowaway [86] assigns detailed

permission to each API call and IPC Inspection [87] detects attacks through Android

permission system. These studies usually first use reverse engineering tools, such as

smali [102] and ded [83] to disassemble the APKs, and then conduct the analysis and

detection [92, 196, 197]. However, various protection techniques have been applied to

impede static analysis [123], such as packing, reflection and dynamic loading. Moreover,

since static analysis cannot obtain the dynamic behaviours of the Android apps, it
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is difficult for them to handle the dynamic features of programming languages and

locate potential performance issues. For instance, malware exploits various obfuscation

techniques to raise the bar of code comprehension [141], implements malicious activities

in native libraries to evade the inspection [197, 40, 159, 137], and leverages packing

techniques to hide malicious payloads [193, 182, 178].

1.2 Dynamic Analysis

A number of dynamic analysis approaches for Android apps have been proposed with

different purposes, such as malware analysis [82, 161, 192, 180] and Android performance

analysis [144, 145, 185]. However, they have several limitations in inspecting the dynamic

behaviors of apps. First, the majority of dynamic analysis [163, 79, 195, 105] lack of the

capability of cross-layer inspection, and thus provide incomplete view of apps’ behaviours.

For example, CopperDroid [163] monitors apps’ behaviours mainly through the trace of

system calls (e.g., sys sendto() and sys write()). Thus, it is hard to expose the execution

details in the Android framework layer and the runtime layer, due to the well-known

semantic gap challenge.

Second, most of the existing tools rely on emulators (e.g., DroidScope [180]) or

debugging techniques (e.g., ptrace) or modifying the old Android runtime (i.e., Dalvik

Virtual Machine, or DVM for short) to monitor malware behaviours (e.g., TaintDroid [82]).

Therefore, they become ineffective if the apps adopt anti-debug and anti-emulator

techniques [134, 166, 103, 108]. For example, in [43], 98.6% malware samples were

successfully analyzed on the real smartphone, whereas only 76.84% malware samples

were successfully inspected using the emulator. Moreover, the new Android runtime (i.e.,

the ART runtime) further limits the usage of some dynamic analysis tools.
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Since mobile devices usually have limited resources, there are various cloud-based

Android malware detection approaches proposed for improving the malware detection

efficiency [98, 199, 125, 187]. Although many measurement apps have been developed

and published in Google Play or Apple Store [14] for measuring the network performance,

the measurement results from apps may be not what users have expected because of two

reasons. Various factors could affect the measurement results, and not all app developers

are network measurement experts who are aware of such factors. For example, according

to RFC 2681 [42], the round-trip time (RTT) reported by an app is determined by the host

times, which include the timestamp just prior to sending the packet and that right after

receiving the response packet. In contrast, the network RTT is calculated using the wire

times, which refer to the time when the packet leaves the smartphone’s network interface

(NIC) and the time when the corresponding response packet arrives at the smartphone’s

NIC. It has been shown that the difference between host times and wire times cannot be

neglected [114]. Users could misunderstand the results from the mobile measurement apps

because their descriptions may be ambiguous. For example, although many apps claim to

be able to measure RTT, they refer to different time intervals, such as RTTs derived from

host times/wire times and time-to-first-byte with/without DNS resolution.

Besides profiling apps’ behaviors, dynamic analysis has been widely employed in

many applications, such as unpacking hardened apps [193, 182], locating performance

issues [114, 148, 96], etc. Unfortunately, the shortcomings in existing dynamic analysis

approaches limit their usages in these applications. For example, attackers utilize packers

to hide malware for evading the signature-based detection and impeding the investigation

of their malicious behaviours [47]. Although a few unpacking approaches have been

recently proposed to recover the Dex files from packed apps [193, 182], the latest version

of packers could easily evade those unpacking tools. The key issue lies in the one-pass

processing strategy adopted by the unpacking tools. We address this issue by proposing a
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novel adaptive unpacking approach based on our cross-layer dynamic analysis technique.

Knowing the performance of mobile network is important to many applications [21, 91].

For example, since mobile devices have limited computational resources, various cloud-

based malware detection systems have been proposed for improving the detection

efficiency. Such systems analyze the apps from the smartphone and send back the analysis

result. To quickly submit an app to the cloud-based analysis system, apps rely on network

measurement result to select the proper cloud server. Although many measurement apps

have been developed and published in Google Play or Apple Store [14], the measurement

results from apps may not be what users have expected because various factors could affect

the measurement results and not all app developers are network measurement experts

who are aware of such factors. Although a few recent studies pointed out some factors

(e.g., Dalvik virtual machine) that may affect the measurement [114, 148, 96], they

have several limitations, such as missing other important factors (e.g., implementation

patterns), conducting only coarse-grained analysis, and lack of evaluating off-the-shelf

measurement apps. We propose a new methodology based on our cross-layer dynamic

analysis technique to reveal the factors that affect the measurement results of such apps.

1.3 Our Work

We concentrate on designing and developing effective and efficient approaches to facilitate

dynamic behavior analysis of Android apps. Moreover, we apply our new techniques

to addressing several challenging problems, including cross-layer malware behavior

profiling, adaptive unpacking of hardened apps, and locating the factors that impact the

network performance measured by apps.
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1.3.1 Android Malware Analysis

First, we propose Malton, a novel on-device non-invasive analysis platform for the new

Android runtime, i.e., the ART runtime. Malton runs on real mobile devices and provides

a comprehensive view of malware’s behaviours by conducting multi-layer monitoring and

information flow tracking, as well as efficient path exploration. Second, we propose

a novel adaptive approach and develop PackerGrind, a new tool based on cross-layer

inspection to unpack Android apps. Finally, we conduct the first systematic study on

the factors that could bias the result from measurement apps and their descriptions

by leveraging the cross-layer analysis. In particular, we identify new factors, revisit

known factors, and propose a novel approach with new tools to discover these factors

in proprietary apps.

In this thesis, we propose Malton, a novel on-device non-invasive analysis platform for

the ART runtime. Compared with other systems, Malton has two important capabilities,

namely, a) multi-layer monitoring and information flow tracking, and b) efficient path

exploration, which provide a comprehensive view of malware behaviours. Moreover,

Malton does not need to modify malware’s bytecode for conducting static instrumentation.

To our best knowledge, Malton is the first system with such capabilities. Table 2.1 in

Chapter 2.2.1 illustrates the key differences between Malton and other systems.

Specifically, Malton inspects Android malware on different layers. It records the

invocations of Java methods, including sensitive framework APIs and the concerned

methods of the malware, in the framework layer, and captures stealthy behaviours, such

as dynamic code loading and JNI reflection, in the runtime layer. Moreover, it monitors

library APIs and system calls in the system layer, and propagates taint tags and explores

different code paths in the instruction layer. However, multi-layer monitoring is not

enough to provide a comprehensive view of malware behaviours, because malicious
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payloads could be conditionally executed. We deal with this challenge with the capability

to efficiently explore code paths. First, to trigger as many malicious payloads as

possible, we propose a multi-path exploration engine based on the concolic execution [66]

to generate concrete inputs for exploring different code paths. Second, to conduct

efficient path exploration on mobile devices with limited computational resources, we

propose an offloading mechanism to move heavy-weight tasks (e.g., solving constraints)

to resourceful desktop computers, and an in-memory optimization mechanism that makes

the execution flow return to the entry point of the interested code region immediately after

exiting the code region. Third, in case that the constraint solver fails to find a solution to

explore a code path, we equip Malton with a direct execution engine to forcibly execute

a specified code path. Since Malton requires the necessary human annotations of the

interested code regions, it is most useful in the human-guided detailed exploration of

Android malware.

We have implemented a prototype of Malton based on the binary instrumentation

framework Valgrind [126]. Since both the app’s code and the framework APIs are

compiled into the native code in the ART runtime, we leverage the instrumentation

mechanism of Valgrind to introspect apps and the Android framework. We evaluated

Malton with real-world malware samples. The experimental results showed that Malton

is able to analyze sophisticated malware samples, and provides a comprehensive view of

their malicious behaviours.

1.3.2 Android Unpacking

In this thesis, we also apply our methodology to solve other challenging issues that require

careful cross-layer analysis. We first propose a new adaptive approach, which employs an

iterative process, to recover the Dex files from packed apps, and develop a new system
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named PackerGrind to automate most steps in the process.

Our iterative process consists of three major tasks including (1) monitoring, which

captures how packed apps work, especially how it prepares the real code for execution,

and then generates tracking reports, based on which we can determine the data collection

points; (2) recovery, which collects the pieces of data in Dex files at the selected data

collection points and reconstructs Dex files; (3) analysis, which determines whether new

data collection points are needed to recover Dex files. Automating this process is not trivial

because we need to address two challenges:

• How to conduct cross-layer profiling of packed apps’ behaviours in a smartphone?

• How to effectively recover the Dex files of apps packed by different packers?

Resolving the first challenge needs a system that can perform cross-layer monitoring of an

app’s behaviours and run in real smartphones. Note that with the support of Android

framework, apps run in the runtime, which was the Dalvik Virtual Machine (DVM)

before Android 5.0 and became the new Android runtime (ART) afterward, and the

runtime is on top of the modified Linux. Packed apps usually exploit the features of

the Java language, Android framework, and native libs/instructions to hide the real code,

detect emulator, and prohibit debugging [166]. Existing dynamic analysis systems for

monitoring apps cannot address the first challenge, because they either rely on emulator

(e.g., Qemu) [180, 163] and debugging techniques [195, 181] or lack of the support of

cross-layer profiling [82, 163]. To tackle the second challenge, we propose and develop a

novel cross-layer monitoring component for PackerGrind. By exploiting dynamic binary

translation [126], it collects information from the runtime, the system, and the instruction

layers and runs in smartphones. Moreover, it supports both DVM and ART.

Existing unpackers for Android apps cannot fully address the second challenge because
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of their one-pass processing strategy. To address the second challenge, we first identify

basic Dex data collection points by scrutinizing how DVM and ART load and run

apps. Since different packers employ various protection methods to modify the code and

data in memory dynamically, PackerGrind provides detailed tracking reports as well as

suggested criteria to recognize the protection patterns. Moreover, PackerGrind conducts

static analysis on the Dex file obtained at each run to facilitate users to identify new

data collection points if needed. Although this step might need manual inspection, the

detailed information and scripts provided by PackerGrind could alleviate the workload.

PackerGrind also has built-in rules to automatically unpack apps protected by existing

packers accessible to us. After that, PackerGrind will re-run the packed app, collect Dex

data at selected collection points, and finally reconstruct the Dex file.

1.3.3 Android App Profiling

In addition, we conduct the first systematic study of the factors that could bias the result

from measurement apps and their descriptions. It is challenging to accomplish this study

because the measurement process involves intricate factors from apps, OS, and network

protocols. Moreover, it is difficult and time-consuming to understand how an app performs

the measurement, not to mention that most apps are proprietary.

We examine Android system, apps, and network protocols to identify new factors and

revisit known factors, and perform extensive experiments to quantify their effect. Android

system is selected because it has occupied more than 81% market share [72]. To discover

these factors in measurement apps, we develop two tools, namely AppDissector, a

static bytecode analyzer, and AppTracer, a dynamic trace analyzer. We also design

MobiScope, a measurement app for demonstrating how to mitigate the negative effects

of various factors.
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Furthermore, we construct enhanced descriptions for measurement apps to provide users

more information about what is measured by leveraging the static and dynamic analysis of

measurement apps. User studies have been performed to assess whether the original and

the enhanced descriptions make users understand what the apps measure.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces the related work.

Chapter 3 proposes a novel on-device non-invasive analysis platform for the ART runtime.

This platform can provide users a comprehensive view of the Apps’ behaviours in different

layers. Chapter 4 proposes an adaptive approach to unpack the packed Android apps, and

an unpacking tool is implemented based on this approach to unpack the packed malware

adaptively. Chapter 5 conducts the first systematic study of the factors that could bias

the result from measurement apps and their descriptions. A measurement app is also

implemented to demonstrate how to mitigate the negative effects of various factors in this

chapter. Finally, Chapter 6 makes a conclusion of this thesis and indicates future work.

The primary research outputs emerged from this thesis are as follows:

• Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu, “Malton: Towards On-

Device Non-Invasive Mobile Malware Analysis for ART”, in Proceedings of the 26th

USENIX Security Symposium (Security’17), Vancouver, BC, Canada, August 16-18,

2017.

• Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu, “Adaptive Unpacking

of Android Apps”, in Proceedings of 39th International Conference on Software

Engineering (ICSE’17), Buenos Aires, Argentina, May 20-28, 2017.

• Lei Xue, Xiaobo Ma, Xiapu Luo, Le Yu, Shuai Wang, and Ting Chen, “Is What
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You Measure What You Expect? Factors Affecting Smartphone-Based Mobile

Network Measurement”, in Proceeding of IEEE International Conference on Computer

Communications (INFOCOM’17), Atlanta, GA, USA, May 1-4, 2017.

• Lei Xue, Chenxiong Qian, and Xiapu Luo, “AndroidPerf: A Cross-layer Dynamic

Profiling System for Android”, in Proceedings of IEEE/ACM International Symposium

on Quality of Service (IWQoS’15), Portland, OR, USA, June 15-16, 2015.

• Lei Xue, Xiapu Luo, and Yuru Shao, “kTRxer: A Portable Toolkit for Reliable Internet

Probing”, in Proceedings of IEEE/ACM International Symposium on Quality of Service

(IWQoS’14), Hong Kong, China, May 26-27, 2014.
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Chapter 2

Literature Review

Being one of the most popular mobile operating systems, Android has occupied 81.7%

market share [33] and owned more than 2.9 million application (or simply apps) in Google

Play market [34]. Therefore, various approaches have been proposed to analyze Android

apps for either identifying potential performance issues or detecting malicious behaviours.

These analysis approaches can be divided into two major types, static analysis [68, 167]

and dynamic analysis [118, 147].

2.1 Static Analysis

Static analysis has been widely used for malware detection and security vulnerabilities

finding for a long time, such as Stowaway [86] that assigns detailed permission to each

API call and IPC Inspection [87] that detects attacks through Android permission system.

Most of the static analysis techniques are suitable for Java code and APK analysis.

They disassemble the APKs and reveal the malicious codes by reverse engineering tools

like smali [102] and ded [83]. Then the malicious behaviours are detected based on

the disassembled codes [92, 196, 197]. There are already many similar static analysis
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systems [94, 198, 93].

FlowDroid [48] is proposed to perform a highly precise taint flow static analysis

for each component in an Android application, and it builds the call graph based on

Spark/Soot [16], which conducts a flow insensitive points to analysis. IccTA [112]

also adopts the static taint analysis approach to track information leakage through inter-

component communication. IntelliDroid [172] is introduced as a generic Android input

generator that helps the dynamic analysis tools quickly identify and analyze malicious

behaviours through generating inputs specific to the dynamic analysis tools. The open-

source reverse engineering tool Androguard [78] can perform various operations on the

APK files and identify malicious and benign applications based on the static signatures. In

[57], a static analysis method is presented to specifically track two types of implicit control

flow, Java reflections and Android intents, which are frequently used in Android apps.

DroidNative [40] detects malware in either bytecode or native code through static analysis

of the native code and focuses on patterns in the control flow that are not significantly

impacted by obfuscations. AppIntent [183] can efficiently provide a sequence of GUI

manipulation related to the events leading to the data transmission, and it focuses on

determining whether the data transmission is user intended or not. SmartGen [200] is

proposed to expose the hidden malicious URLs to assist Android malware analysis through

selective symbolic execution.

However, none of these static analysis systems can obtain the dynamic data flow

and reconstruct runtime system view. Various effective protection techniques have

been applied to evade static analysis [123], such as packing, reflection and dynamic

loading. Moreover, static analysis techniques cannot obtain the dynamic behaviours of

the Android apps during their execution, hence these techniques do not adapt to analyzing

the performance issues of the Android apps.
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2.2 Android Malware Analysis

Currently, various dynamic approaches have been proposed to profile apps [144, 145, 185]

and monitor the behaviours of apps [82, 161, 192, 180]. However, these approaches are

limited in their ability to deal with the multiple-layer nature of Android, and thus cannot

uncover issues due to the underlying platform or poor interactions between different layers,

and identify the malicious behaviours in various layers.

Android malware analysis techniques can be generally divided into static analysis,

dynamic analysis, and the hybrid of static and dynamic analysis. Since Malton is a

dynamic analysis system, this section introduces the involved with related dynamic and

hybrid analysis. Interested readers please refer to [149, 162, 175] for more information on

static analysis of Android apps.

2.2.1 Dynamic and Hybrid Analysis

According to the implementation techniques, the existing (dynamic or hybrid) Android

malware analysis tools can be roughly divided into five major types: 1) tailoring

Android system [82, 79, 192, 161], 2) customizing Android emulator Qemu [180, 163],

3) modifying (repackaging) app implementation [81], 4) employing system tracking

tools [181], or 5) restricting by an app sandbox [52, 59].

We compare Malton with existing popular (dynamic or hybrid) Android malware

analysis tools, and show the major differences in Table 2.1. Please note that , , and

indicate that the tool can capture malware behaviours in the framework layer, the runtime

layer and the native layer, respectively. Besides, the shadow sector means partial support.

For example, of TaintART suggests that it can monitor partial framework behaviours.
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TaintDroid [82] conducts dynamic taint analysis to detect information leakage by

modifying DVM. It does not capture the behaviours in native layer because it trusts

the native libraries loaded from firmware and does not consider third-party native

libraries. While only a small percent of apps used native libraries when TaintDroid

was designed, recent studies showed that native libraries have been intensively used by

apps and malware [49, 137]. At the runtime layer, although TaintDroid can track taint

propagation in DVM, it neither monitors the runtime behaviours nor supports ART. Many

studies [79, 192, 194, 142, 150, 170, 155] have enhanced TaintDroid from different

aspects, but they do not achieve the same capability as Malton does. For example,

AppsPlayground [142] combines TaintDroid and fuzzing to conduct multi-path taint

analysis. Mobile-Sandbox [155] uses TaintDroid to monitor framework behaviours and

employs ltrace [13] to capture native behaviours.

To avoid modifying Android system (including the framework, native libraries, Linux

kernel etc.), a number of studies [141, 191, 37, 153, 54, 176, 58, 173, 140, 74, 35, 75, 101]

propose inserting the logics of monitoring behaviours or security policies into the Dalvik

bytecode of the malware under inspection and then repacking it into a new APK. Those

studies have three drawbacks in common. First, they can only monitor the framework

layer behaviours by manipulating Dalvik bytecode. Second, those approaches are invasive

that can be detected by malware. Third, malware may use packing techniques to prevent

such approaches from being repackaged [182, 193].

Based on Qemu, DroidScope [180] reconstructs the OS-level and Java-level semantics,

and exports APIs for building specific analysis tools, such as dynamic information tracer.

Hence, there is a semantic gap between the VMI observations and the reconstructed

Android-specific behaviours. Since it monitors the Java-level behaviours by tracing the

execution of Dalvik instructions, it cannot monitor the Java methods that are compiled

into native code and running on ART (i.e, partial support of framework layer). Moreover,
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DroidScope does not monitor JNI and therefore it cannot capture the complete behaviours

at runtime layer. CopperDroid [163] is also built on top of Qemu and records system

call invocations by instrumenting Qemu. Since it performs binder analysis to reconstruct

the high-level Android-specific behaviours, only a limited number of behaviours can

be monitored. In addition, it cannot identify the invocations of framework methods.

ANDRUBIS [117] and MARVIN [116] (which is built on top of ANDRUBIS) monitor

the behaviours of framework layer by instrumenting DVM, and logging system calls of

native code by VMI.

Monitoring system calls [181, 168, 130, 195, 105, 80, 155, 115, 46, 169] is widely

used in Android malware analysis because a considerable amount of APIs in upper layers

are eventually realized by systems calls. For instance, Dagger [181] collects system

call information through strace [17], recodes binder transactions via sysfs [18], and

accesses process details from /proc file system. One common drawback of system-call-

based techniques is the semantic gap between system calls with the behaviours of upper

layers, even though several studies [181, 130, 195] try to reconstruct high-level semantics

from system APIs. Besides tracing system calls, MADAM [80] and ProfileDroid [169]

monitor the interactions between user and smartphone. However, they cannot capture the

behaviours in runtime layer.

Both TaintART [161] and ARTist [53] are new frameworks to propagate the taint

information in ART. They modify the compiler dex2oat, which is provided along

with ART runtime to turn Dalvik bytecode into native code during app’s installation,

so that the taint propagation instructions will be inserted into the compiled code by the

modified dex2oat. They only propagate taint at runtime layer, and do not support

taint propagation through JNI or in native code. Moreover, they cannot handle the

packed malware, because such malware usually dynamically load the Dalvik bytecode

into runtime directly without triggering the invocation of dex2oat. CRePE [71] and
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DroidTrack [39] track apps’ behaviours at the framework layer by modifying Android

framework.

Boxify [52] and NJAS [59] are app sandboxes that encapsulate untrusted apps in a

restricted execution environment within the context of another trusted sandbox application.

Since they behave as the proxy for all system calls and binder channels of isolated apps,

they support the analysis of native code and could reconstruct partial framework layer

behaviours.

ARTDroid [73] traces framework methods by hooking the virtual framework methods

and supports ART. Since the boot image boot.art contains both the vtable and

virtual methods arrays that store the pointers to virtual methods, ARTDroid hijacks

vtable and virtual methods to monitor the APIs invoked by malware.

HARVESTER and GroddDroid [141, 35] support multi-path analysis. The former [141]

covers interested code forcibly by replacing conditionals with simple Boolean variables,

while the latter [35] uses a similar method to jump to interested code by replacing

conditional jumps with unconditional jumps. Different from Malton, they need to modify

the bytecode of malware.

2.2.2 Multi-path Analysis for Android

There are a few studies about multi-path analysis for Android. TriggerScope [88] is a

static symbolic executor that handles Dalvik bytecode. Similar to other static analysis

tools, it may run into trouble when handling reflections, native code, dynamic Dex loading

etc.. Anand et al. [44] proposed ACTEve that uses concolic execution to generate input

events for testing apps and offloaded constraint solving to the host. There are three major

differences between ACTEve and the path explorer of Malton. First, since ACTEve

17



instruments the analyzed app and the SDK, this invasive approach may be detected by

malware. Second, ACTEve does not support native code. Third, it does not apply the

in-memory optimization. ConDroid [152] also depends on static instrumentation, and

therefore has the same limitations as ACTEve.

Two recent studies [183, 120] propose converting Dalvik bytecode into Java bytecode

and then using Java PathFinder [45] to conduct symbolic execution in a custom-made

JVM. However, JVM cannot properly emulate the real device. Also, SmartGen [200]

conducts symbolic execution based on the ECG (Extended Control Graph) which is built

on the static analysis of APK files. Consequently, all these tools do not support the analysis

of native code.

To make concolic execution applicable for testing embedded software, Chen et al.’s

work [65] and MAYHEM [62] adopt similar offloading approach. However, they do not

apply the in-memory optimization and cannot be used to analyze Android malware. For

example, Chen et al.’s work coordinates the part on device and the part on host through

the Wind River Tool Exchange protocol which is designed especially for VxWorks.

EvoDroid [119] utilizes the evolutionary algorithm to generate test inputs automatically.

However, it focuses on UI testing and relies on static analysis to identify UI elements and

the call graph.

2.3 Android Unpacking

Although there are already many studies on code packing/unpacking, most of them focus

on x86 native codes [95, 60, 165, 151]. The unpacking techniques for x86 binaries

cannot be applied to packed Android apps because Android and the OSes running on

x86 CPU have different architectures and execution models [193, 182], let alone the
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different formats of their executables. For example, Android packers need to protect both

the Dex code and the native code if any, whereas traditional packers only hide native

code [95, 60, 165, 151].

Since mobile malware adopts packers to evade the detection, a few studies on

unpacking apps were proposed recently from both the academia [193, 182, 107] and the

industry [32, 2]. However, all of them adopt the one-pass strategy (i.e., dump the Dex data

at fixed points), and therefore they can be easily evaded by the latest packers. For example,

DWroidDump [107] only collects the Dex data in dvmDexFileOpenFromFd() when a Dex

file is mapped to memory by the runtime. DexHunter [193] and AppSpear [182] are

proposed to be a general unpacker by customizing Android runtime. DexHunter inserts

code in defineClassNative() to extract Dex files from memory. However, it may dump

invalid Dex files since packers can release the real code after this function. AppSpear

instruments the Dalvik interpreter to collect required data during method execution and

then reconstructs the Dex file. Unfortunately, AppSpear may also dump invalid data

because it relies on DVM’s parsing methods to collect Dex data. Note that packers could

make these methods return inaccurate results and use their own functions to parse Dex

files. Moreover, AppSpear does not support ART. In contrast, PackerGrind adopts an

iterative approach and conducts cross-layer monitoring so that it is adaptive to the changes

of packers. Experimental results show that it outperforms existing approaches. Also, it

supports both DVM and ART.

Existing cross-layer monitoring tools [169, 82, 180, 137] for Android cannot collect all

necessary information and fulfill the requirement for handling packed apps. For example,

ProfileDroid [169] cannot handle packed apps because it relies on apktool to conduct static

analysis. TaintDroid [82] neither supports ART nor collects information at the runtime,

system, and instruction layers. DroidScope [180] and NDroid [137] rely on Qemu, which

can be detected by packers [103].
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2.4 Android App Profiling

A number of systems have been designed to profile Android apps for different purposes,

such as identifying performance issues [15, 169], detecting malware [82, 142], modeling

energy consumption [185, 131], etc.. However, none of them can conduct cross-layer

analysis.

Google offers Traceview and dmtracedump to trace invoked functions and collect time

spent in each function [15]. Although the trace logs can be generated by including the

Debug class in an app or using DDMS, Google recommends to use the former to get more

precise results [15].

While some systems instrument apps and/or the system to locate performance issues,

they neither trace invoked functions nor collect information from the system and the

kernel, and thus they cannot reveal issues due to the underlying platform [189, 144, 145,

143]. For example, to measure user-perceived transaction, Panappticon instruments event

handlers, asynchronous call interfaces, and the interprocess communication mechanisms

to log events [189]. Similarly, AppInsight instruments apps for Windows Mobile to

identify the critical execution path for locating performance bottlenecks [144, 145, 143].

Some systems collect information from different sources to profile apps or model energy

consumptions [169, 138, 64, 185, 111, 131]. However, they neither track all function calls

at different layers nor perform the dynamic taint analysis, and thus cannot uncover issues

due to the poor interactions between different layers. For example, ProfileDroid collects

user-generated events through adb, system calls through strace, and network traffic through

tcpdump to profile apps [169]. ARO characterizes resource usage by correlating user input

events and network traffic [138]. QoE Doctor further correlates user interaction events,

network traffic, and RRC/RLC layer data through QxDM to diagnose apps QoE [64]. To
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estimate energy consumption, AppScope monitors an app’s hardware usage by probing

system calls relevant to hardware operations at the kernel level [185, 111]. Being a

fine-grained energy profiler, Eprof collects DVM level function calls and system calls by

modifying Android framework [131]. If an app has native components, Eprof requires to

link it with the Android gprof library [131].

Although VARI profiler can trace invoked functions in the DVM layer, system layer, and

kernel layer, it does not perform dynamic taint analysis and thus cannot track information

flow across different layers[157].

Many apps for mobile network measurement have been proposed [109, 128, 171, 91].

However, most of them conduct the measurement without considering the affecting

factors. Although a few studies pointed out some factors, there is a lack of a systematic

investigation on them. For example, studies on the effect of mobile network protocols and

WiFi on performance [99, 84, 77, 96, 158] neither examine the effect on measurement

apps nor take into account apps’ implementation patterns and Android architecture and

configurations. Note that all factors under our investigation have non-negligible impact on

the result of mobile network measurement.

The most closely related work is [114]. Different from ours, they only studied the effect

of DVM [114] and conducted coarse-grained analysis. For example, they attribute the

additional delay of HTTP-based RTT measurement to DVM and kernel, neglecting apps’

implementation patterns. Moreover, their analysis has two limitations that may bias their

results. First, they monitor packets using TcpDump, which will introduce obvious delay

as shown in Table 5.2. Second, they use the timestamps of wireless frames to approximate

the time when the request (or response) packet leaves (or reaches) the smartphone without

considering the contention of WiFi channel, which will also bring additional delay.

Recent studies on profiling app performance [64, 189, 144] aim at improving user
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experience rather than mobile network measurement. QoE Doctor [64] diagnoses the

user-perceived latency of Android apps by correlating user interaction events, network

traffic and RRC states. Panappticon [189] identifies the critical paths in user transactions,

and locates performance problems by capturing specified events at the user/kernel layers.

AppInsight locates performance bottlenecks through critical paths in user transactions.

However, it focuses on Windows mobile apps, and needs to modify the binaries [144].

22



Chapter 3

On-Device Non-Invasive Mobile
Malware Analysis for ART

3.1 Overview

It’s an essential step to understand malware’s behaviours for developing effective

solutions. Though a number of systems have been proposed to analyze Android malware,

these systems have been limited by incomplete view of inspection on a single layer.

What’s even worse, various new techniques including packing, anti-emulator and cross-

layer malicious payloads, employed by the latest malware samples further make these

systems ineffective. In this thesis, we propose Malton, a novel on-device non-invasive

analysis platform for the new Android runtime, i.e., the ART runtime. Malton runs on real

mobile devices and provides a comprehensive view of malware’s behaviours by conducting

multi-layer monitoring and information flow tracking, as well as efficient path exploration.

We have carefully evaluated Malton using real-world malware samples. The experimental

results showed that Malton is more effective than the existing tools, with the capability to

analyze sophisticated malware samples and provide a comprehensive view of malicious

behaviours of these samples.
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In summary, the following contributions are what we make in Malton.

• We proposed a novel Android malware analysis system, with the capability to provide

a comprehensive view of malicious behaviours. It employs two capabilities, i.e., multi-

layer monitoring and information flow tracking, and efficient path exploration, which

are not available on the existing systems.

• We implemented the system based on Valgrind and solved several technical challenges.

To engage the whole community, we plan to release the Malton system to the

community.

• We carefully evaluated Malton with real-world malware samples. The results

demonstrated the effectiveness of Malton in analyzing sophisticated malware.

The rest of this chapter is organized as follows. Chapter 3.2 introduces background

knowledge and describes a motivating example. Chapter 3.3 details the system design and

implementation. Chapter 3.4 reports the evaluation results.

3.2 Background

3.2.1 The ART Runtime

ART is the new runtime introduced in Android version 4.4, and becomes the default

runtime from version 5.0. When an app is being installed, its Dalvik bytecode in the

Dex file is compiled to native code1 by the dex2oat tool, and a new file in the OAT

format is generated including both the Dalvik bytecode and native code. The OAT format

is a special ELF format with some extensions.

The OAT file has an oatdata section, which contains the information of each class

1 Native code denotes the native instructions that could directly run with a particular processor.
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that has been compiled into native code. The native code resides in a special section with

the offset indicated by the oatexec symbol. Hence, we can find the information of a

Java class in the oatdata section and its compiled native code through the oatexec

symbol.

When an app is launched, the ART runtime parses the OAT file and loads the file into

memory. For each Java class object, the ART runtime has a corresponding instance of

the C++ class Object to represent it. The first member of this instance points to an

instance of the C++ class Class, which contains the detailed information of the Java

class, including the fields, methods, etc.. Each Java method is represented by an instance of

the C++ class ArtMethod, which contains the method’s address, access permissions, the

class to which this method belongs, etc.. The C++ class ArtField is used to represent

a class field, including the class to which this field belongs, the index of this field in its

class, access rights, etc.. We can leverage the C++ Object, Class, ArtMethod and

ArtField to find the detailed information of the Java class, methods and fields of the

Java class.

The Android framework is compiled into an OAT file named “system@framework@boot.oat”.

This file is loaded to the fixed memory range for all apps running on the device without

ASLR enabled [160].

3.2.2 A Motivating Example

We use the example in Listing 3.1 to illustrate the usage of Malton. In this example,

the method onReceiver() is a SMS listener and it is invoked when an SMS arrives. In

this method, the telephone number of the sender is first acquired (Line 39) for checking

whether the SMS is sent from the controller (Tel: 6223**60). Only the SMS from the

controller will be processed by the method procCMD() (Line 42). There are 5 types of
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Listing 3.1: A motivating example
1 public static native void readContact();
2 public static native void parseMSG(String msg);
3 private void readIMSI(){
4 TelephonyManager telephonyManager =
5 (TelephonyManager) getSystemService(
6 Context.TELEPHONY_SERVICE);
7 String imsi = telephonyManager.getSubscriberId();
8 // Send back data through SMTP protocol
9 smtpReply(imis);

10 }
11 private void procCMD(int cmd, String msg){
12 if(cmd == 1) {
13 readSMS(); // Read SMS content
14 } else if(cmd == 2) {
15 readContact(); // Read Contact content
16 } else if(cmd == 3) {
17 readIMSI(); // Read device IMSI information
18 } else if(cmd == 4) {
19 rebootDevice(); // Reboot the device
20 } else if(cmd == 5) {
21 parseMSG(msg); // Parse msg in native code
22 } else { // The command is unrconginized.
23 reply("Unknown command!");
24 }
25 }
26 public boolean equals(String s1, String s2) {
27 if(s1.count != s2.count)
28 return false;
29 if(s1.hashCode() != s2.hashCode())
30 return false;
31 for(int i = 0; i < count; ++i)
32 if (s1.charAt(i) != s2.charAt(i))
33 return false;
34 return true;
35 }
36 public void onReceiver(Context context, Intent intent){
37 String body = smsMessage.getMessageBody();
38 // Get the telephone of the sender
39 String sender = smsMessage.getOriginatingAddress();
40 // Check if the SMS is sent form the controller
41 if(equals(sender, "6223**60")) {
42 procCMD(Interger.parseInt(body), body);
43 }
44 ...
45 }

commands, each leads to a special malicious behaviour (i.e., Line 13, 15, 17, 19 and 21).

Reading contact and parsing SMS are implemented in the JNI methods readContact()

(Line 1) and parseMSG() (Line 2), respectively.

Existing malware analysis tools could not construct a complete view of the malicious

behaviours. For example, when cmd equals 3 (Line 16), IMSI is obtained by invoking

the framework API getSubscriberId() (Line 7), and then leaked through SMTP protocol

(Line 9). Although existing tools (e.g., CopperDroid[163]) can find that the malware reads
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IMSI and leaks the information by system call sys sendto(), they cannot locate the method

used to get IMSI and how the IMSI is leaked in detail, because sys sendto() can be called

by many functions (e.g., JavaMail APIs, Java Socket methods and C/C++ Socket methods)

from both the framework layer and the native layer. Malton can solve this problem because

it performs multi-layer monitoring.

When cmd equals 5, the content of SMS, which is obtained from the framework layer

(Line 37), will be parsed by the JNI method parseMSG() (Line 2) in the native code.

Although taint analysis could identify this information flow, existing static instrumentation

based tools (e.g., TaintART[161] and ARTist[53]) cannot track the information flow in the

native code. Malton can tackle this issue since it offers cross-layer taint analysis.

Moreover, as shown in the method procCMD() (Line 11), the malware performs

different activities according to the parameter cmd. Due to the low code coverage

of dynamic analysis, how to efficiently explore all the malicious behaviours with the

corresponding inputs is challenging. Malton approaches this challenge by conducting

concolic execution with in-memory optimization and directed sexecution. Furthermore,

we propose a new offloading mechanism to avoid overloading the mobile devices with

limited computational resources. Since some constraints may not be solved (e.g., the hash

functions at Line 29), we develop a directed execution engine to cover specified branches

forcibly.

3.3 Malton

In this section, we firstly illustrate the design of our approach, and then we detail the

implementation of Malton.
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Figure 3.1: The scenario of Malton.

3.3.1 Overview

Malton helps security analysts obtain a complete view of malware samples under

examination. To achieve this goal, Malton supports three major functionalities. First,

due to the multi-layer nature of Android system, Malton captures malware behaviours

at different layers. For instance, malware may conduct malicious activities by invoking

native code from Java methods, and such behaviours involve method invocations and data

transmission at multiple layers. The challenging issue is how to effectively bridge the

semantic gap when monitoring the ARM instructions.

Second, malware could leak private information by passing the data across multiple

layers back and forth. Note that many frameworks APIs are JNI methods (e.g.,

String.concat(), String.toCharArray(), etc.), whose real implementations are in native

code. Malton can detect such privacy leakage because it supports cross-layer information

flow tracking (Chapter 3.3.5).

Third, since malware may conduct diverse malicious activities according to different

commands and contexts, Malton can trigger these activities by exploring the paths

automatically (Chapter 3.3.6). It is not trivial to achieve this goal because dynamic analysis
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systems usually have limited code coverage.

Figure 3.1 illustrates the usage scenario of Malton. Malton runs in real Android devices

and conducts multi-layer monitoring, information flow tracking, and path exploring. After

running a malware sample, Malton generates logs containing the information of method

invocations, taint propagations at different layers and the result of concolic executions.

Based on the logs, we reconstruct the execution paths and the information flows for

characterizing malware behaviours.

Though Malton performs the analysis in multiple layers as shown in Figure 3.2, the

implementation of Malton in each layer is not independent. Conversely, different layers

share the information with each other. For example, the taint propagation module in

the instruction layer needs the information about the Java methods that are parsed and

processed in the framework layer.

Malton is built upon Valgrind [126] (V3.11.0) with around 25k lines of C/C++ codes

calculated by CLOC [5]. Next, we will detail the implementation at each layer.

3.3.2 Android Framework Layer

To monitor the invocations of privacy-concerned Java methods of the Android framework

and the app itself, Malton instruments the native code of the framework and the app.

Since the Dalvik code has been compiled into native instructions, we leverage Valgrind

for the instrumentation. The challenge here is how to recover and understand the semantic

information of Java methods from the ARM instructions, including the method name,

parameters, call stacks, etc. For instance, if a malware sample uses the Android framework

API to retrieve user contacts, Malton should capture this behaviour from the ARM

instructions and recover the context of the API invocation. To address this challenge,
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Figure 3.2: The overview of the system implementation.

we propose an efficient way to bridge the semantic gap between the low level native

instructions and upper layer Java methods.

Java Method Tracker To track the Java method invocations, we need to identify the entry

point and exit points of each Java method from the ARM instructions dynamically. Note

that the ARM instructions resulted from the Dalvik bytecode are further translated into

multiple IR blocks by Malton. An IR block is a collection of IR statements with one entry

point and multiple exit points. One exit point of an IR block could be either the conditional

exit statement (i.e., Ist Exit) or the next statement (i.e., Ist Next). We leverage the

APIs from Valgrind to add instrumentation at the beginning, before any IR instruction,

after any IR instruction, or at the end of the selected IR block. The instrumentation
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Figure 3.3: The example to parse the result of TelephonyManager.getDeviceId()

statements will invoke our helper functions.

To obtain the entry point of a Java method, we use the method information in the OAT

file. Specifically, the OAT file contains the information of each compiled Java method

(ArtMethod), including the method name, offset of the ARM instructions, access flags,

etc.. Malton parses the OAT files of both the Android framework and the app itself to

retrieve such information, and keeps it in a hash table. When the native code is translated

into the IR blocks, Malton looks up the beginning address of each IR block in the hash

table to decide whether it is the entry of a Java method. If so, Malton inserts the helper

function (i.e., callTrack()) at the beginning of the block to record the method invocation

and parse arguments when it is executed.

To identify the exit point of a Java method, Malton leverages the method calling

convention of the ARM architecture2. Specifically, the return address of a method is stored

in the link register (i.e., the lr register) when the method is invoked. Hence, in callTrack(),

Malton pushes the value of lr into the method call stack since lr could be changed during

the execution of the method. Malton also inserts the helper function (i.e., retTrack()) before

each exit point (i.e., Ist Exit and Ist Next) of the IR block. In retTrack(), Malton

compares the jump target of the IR block with the method’s return address stored at the

2 Comments in file /art/compiler/dex/quick/arm/arm lir.h
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top of the method call stack. If they are equal, an exit point of the method is found, and

this return address is popped from the method call stack.

Malton parses the arguments and the return value of the method after the entry point

and the exits point of the method are identified, respectively. According to the method

calling convention, the register r0 points to the ArtMethod object of current method, and

registers r1 − r3 contain the first three arguments. Other arguments beyond the first three

words are pushed into the stack by the caller. For example, when the framework method

sendMessageAtTime(Message msg, long uptimeMillis) of class android/os/Handler is

invoked, r0 points to the ArtMethod instance of the method sendMessageAtTime(),

r1 stores the this object and r2 represents the argument msg. For the argument

uptimeMillis, the high 32 bits are stored in the register r3 and the low 32 bits are pushed

into the stack. When the method returns, the return value is stored in the register r0 if the

return value is 32 bits, and in registers r0 and r1 if the return value is 64 bits.

Java Object Parser After getting the method arguments and the return value, we need to

further parse the value if it is not the primitive data. There are two major data types [9]

in Java, including primitive data types and reference/object data types (objects). For the

primitive types, which include byte, char, short, int, long, float, double and boolean, we

can directly get the value from registers and the stack. For the object, the value that we

obtain from the register or the stack is a pointer that points to a data structure containing

the detailed information of this object. Following this pointer, we get the class information

of this object, and then parse the memory of this object to determine the concrete value.

Figure 3.3 illustrates the process of parsing the Java object of the result of

TelephonyManager.getDeviceId(). According to its method shorty, we know that the return

value of this API is a Java object represented by an Object instance, of which the memory

address is stored in the register r0. Then, we can decide that the concrete type of this
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Table 3.1: Runtime behaviours related functions.

Behaviours Functions
Native code loading JavaVMExt::LoadNativeLibrary()

Java code loading

DexFile::DexFile()
DexFile::OpenMemory()
ClassLinker::DefineClass()

JNI invocation
artFindNativeMethod()
ArtMehod::invoke()

JNI reflection

InvokeWithVarArgs()
InvokeWithJValues()
InvokeVirtualOrInterfaceWithJValues()
InvokeVirtualOrInterfaceWithVarArgs()

Java reflection InvokeMethod()

object is java.lang.String. By parsing the results according to the memory layout of String

object, which is represented by the StringObject data structure, we can obtain the concrete

string “6534900622308366”. Currently, Malton parses the Java objects related to String

and Array. To handle new objects, users just need to implement the corresponding parsers

for Malton.

3.3.3 Android Runtime Layer

To capture stealthy behaviours that cannot be monitored by the Java method tracker in the

Android framework layer, Malton further instruments the ART runtime (i.e., libart.so).

For example, the packed malware may use the internal functions of the ART runtime to

load and execute the decrypted bytecode directly from the memory [193, 182]. Malicious

payloads could also be implemented in native code, and then invoke the privacy-sensitive

Java methods from native code through the JNI reflection mechanism. While the invoked

Java method could be tracked by the Java method tracker in the Android framework layer,

Malton tracks the JNI reflection to provide a comprehensive view of malicious behaviours,

such as, the context when privacy-concerned Java methods are invoked from the native

33



code. This is one advantage of Malton over other tools.

Table 3.1 enumerates the runtime behaviours and the corresponding functions in the

ART runtime that Malton instruments. Native code loading means that malicious code

could be implemented in native code and loaded into memory, where Java code loading

refers to loading the Dalvik bytecode. Note that Android packers usually exploit these

APIs to directly load the decrypted bytecode from memory. JNI invocation refers to all

the function calls from Java methods to native methods. This includes the JNI calls in

the app and the Android framework. JNI reflection, on the other hand, refers to calling

Java methods from native code. For instance, malicious payloads implemented in native

code could invoke framework APIs using JNI reflection. Java reflection is commonly used

by malware to modify the runtime behaviour for evading the static analysis [141]. For

example, framework APIs could be invoked by decrypting the method names and class

names at runtime using Java reflection.

3.3.4 System Layer

Malton tracks system calls and system library functions at the system layer. To track

system calls, Malton registers callback handlers before and after the system call invocation

through Malton APIs. For system library functions, Malton wraps them using the function

wrapper mechanism of Valgrind. In the current prototype, Malton focuses on four types

of behaviours at the system lever.

• Network operations. Since malware usually receives the control commands and sends

private data through network, Malton inspects these behaviours by wrapping network

related system calls, such as, sys connect(), sys sendto(), recvfrom(), etc..

• File operations. As malware often accesses sensitive information in files and/or
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Table 3.2: The taint propagation related IR Statements.

IR Statement Representation
Ist_WrTmp Assign a value (i.e., IR Expression) to a temporary.

Ist_LoadG Load a value to a temporary with guard.

Ist_CAS Do an atomic compare-and-swap operation.

Ist_LLSC Do an either load-linked or store-conditional operation.

Ist Put Write a value to a guest register.

Ist_PutI
Write a value to a guest register at a non-fixed

offset in the guest state.

Ist_Store Write a value to memory.

Ist_StoreG Write a value to memory with guard.

Ist_Dirty Call a C function.

dynamically loads malicious payloads from the file system, Malton records file

operations to identify such behaviours.

• Memory operations. Since packed malware usually dynamically modifies its own codes

through memory operations, like sys mmap(), sys protect(), etc., Malton monitors such

memory operations.

• Process operations. As malware often needs to fork new process, or exits when

the emulator or the debug environment is detected, Malton captures such behaviours

by monitoring system calls relevant to the process operations, including sys execve(),

sys exit(), etc..

Moreover, Malton may need to modify the arguments and/or the return values of system

calls to explore code paths. For example, the C&C server may have been shut down

when malware samples are being analyzed. In this case, Malton replaces the results of

the system call sys connect() to success, or replaces the address of C&C with a bogus one

controlled by the analyst to trigger malicious payloads. We will discuss the techniques

used to explore code paths in Chapter 3.3.6.
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Table 3.3: Taint propagation related IR expressions.

IR Expression Representation
Iex_Const A constant-valued expression.

Iex_RdTmp The value held by a VEX temporary.

Iex_ITE A ternary if-then-else operation.

Iex_Get Get the value held by a guest register at a fixed offset.

Iex_GetI Get the value held by a guest register at a non-fixed offset.

Iex_Unop A unary operation.

Iex_Binop A binary operation.

Iex_Triop A ternary operation.

Iex_Qop A quaternary operation.

Iex_Load Load the value stored in memory.

Iex_CCall A call to a pure (no side-effects) helper C function.

3.3.5 Instruction Layer: Taint Propagation

At the instruction layer, Malton performs two major tasks, namely, taint propagation and

path exploration. Note that accomplishing these tasks needs the semantic information in

the upper layers, such as the method invocations for identifying the information flow, etc..

To propagate taint tags across different layers, Malton works at the instruction layer

because the codes of all upper layers become ARM instructions during the execution.

Since these ARM instructions will be translated into IR statements [126], Malton performs

taint propagation on IR statements with byte precision by inserting helper functions before

the selected IR statements.

For Malton, there are 9 types IR statements related to the taint propagation, which are

listed in Table 3.2. For the Ist WrTmp statement, since the source value may be the

result of an IR expression, we also need to parse the logic of the IR expression for taint

propagation. The IR expressions that can affect the taint propagation are summarized in

Table 3.3. During the execution of the target app, Malton parses the IR statements and
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expressions in the helper functions, and propagates the taint tags according to the logic of

the IR statements and expressions.

Malton supports taint sources/sinks in different layers (i.e., the framework layer and

the system layer). For example, Malton can take the arguments and results of both Java

methods and C/C++ methods as the taint sources, and check the taint tags of the arguments

and the results of sink methods. By default, at the framework layer, 11 types of information

are specified as taint sources, including device information (i.e., IMSI, IMEI, SN and

phone number), location information (i.e., GPS location, network location and last seen

location) and personal information (i.e., SMS, MMS, contacts and call logs). Malton also

checks the taint tags of the arguments and results when each framework method is invoked.

In the system layer, Malton takes system calls sys write() and sys sendto() as taint sinks

by default, because the sensitive information is usually stored to files or leaked out of

the device through these system calls. As malware can receive commands from network,

Malton takes system call sys recvfrom() as the taint source by default. Note that Malton

can be easily extended to support other methods as taint sources and sinks in both the

framework layer and the system layer.

3.3.6 Instruction Layer: Path Exploration

Advanced malware samples usually execute malicious payloads according to the

commands received from the C&C server or the special context (e.g., date, locations, etc.).

To trigger as many malicious behaviours as possible for analysis, Malton employs the

efficient path exploration technique, which consists of taint analysis, in-memory concolic

execution with an offloading mechanism, and directed execution engine. Specifically, taint

analysis helps the analyst identify the code paths depending on the inputs, such as network

commands, and the concolic execution module can generate the required inputs to explore
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the interested code paths. When the inputs cannot be generated, we rely on the directed

execution engine to forcibly execute certain code paths. Since concolic execution [66] is a

well-known technique in the community, we will not introduce it in the following. Instead,

we detail the offloading mechanism and the in-memory optimization used in the concolic

execution module, and explain how the directed execution engine works.

Concolic Execution: Offloading Mechanism It is non-trivial to apply concolic

execution in analyzing Android malware on real devices, because concolic execution

requires considerable computational resources, resulting in unacceptable overhead on the

mobile devices. To alleviate this limitation, Malton utilizes an offloading mechanism that

moves the task of solving constraints to the resourceful desktop computers, and then sends

back the satisfying results to the mobile devices as inputs. Our approach is motivated by

the fact that the time consumption for solving constraints occupies the overall runtime of

concolic execution. For example, the percentage of time used to solve constraints is nearly

41% of the KLEE system, even after optimizations [61].

More precisely, when the malware sample is running in our system, Malton redirects

all the constraints to the logcat messages [12], which could be retrieved by the desktop

computer using the ADB (Android Debug Bridge) tool. Then, the constraint solver, which

is implemented based on Z3 [76], generates the satisfying inputs and feeds the inputs back

to Malton through a file. Since we may have multiple code paths that need to be explored,

this process could be repeated multiple times until the constraint solver pushes an empty

input file to the device for notifying Malton to finish path exploring.

Concolic Execution: In-memory Optimization To speed up the analysis, especially

when there are multiple execution paths, each of which depends on the special input,

we propose in-memory optimization to restrict concolic execution within the interested

code region specified by the analyst without repeatably running from the beginning of
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the program. By default, the analyst is required to specify the arguments or variables as

the input of the concolic execution, which will be represented as symbolic values during

concolic execution. For example, the analyst can select the SMS content acquired from

the method getMessageBody() (Line 37 in Listing 3.1) as the input. Moreover, the analyst

can select the IR statement that lets the input have concrete values as the entry point of the

code region, and choose the exit statement (i.e., Ist Exit) or the next statement (i.e.,

Ist Next) of the subroutine as the exit point of the code region.

Malton runs the malware sample until the exit point of the interested code region for

collecting constraints and generating new inputs for different code paths through an SMT

solver. Then, it forces the execution to return to the entry point of the code region through

modifying the program counter and feeds the inputs by writing the new inputs directly

into the corresponding locations (i.e., memories or registers). Moreover, Malton needs to

recover the execution context and the memory state at the entry point of the code region.

To recover the execution context, Malton conducts instrumentation at the beginning of

the code region, and inserts a helper function to save the execution context (i.e., register

states at the first iteration). After that, the saved register states will be recovered in the

later iterations. As Valgrind uses the structure VexGuestArchState to represent

the register states, we save and recover the register states by reading and writing the

VexGuestArchState data in the memory.

To recover the memory states, Malton replaces the system’s memory allocation/free

functions with our customized implementations to monitor all the memory allocation/free

operations. Malton can also free the allocated memory or re-allocate the freed memory.

Besides, Malton inserts a helper function before each memory store (i.e., Ist Store

and Ist StoreG) statement to track the memory modifications, so that all the modified

memory could be restored.
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Alternatively, the analyst can choose the target code region according to the method call

graph, or first use static analysis tool to identify code paths and then select a portion of the

path as the interested code region.

Directed Execution The concolic execution may not be able to explore all the code

paths of the interested code region, because the constraint solver may not find satisfying

inputs for complex constraints, such as float-point operations and encryption routines. For

the conditional branches with unresolved constraints, Malton has the capability to directly

execute certain code paths.

The directed execution engine of Malton is implemented through two techniques: a)

modifying the arguments and the results of methods, including library functions, system

calls and Java methods; b) setting the guard value of the conditional exit statement (i.e.,

Ist Exit). The guard value is the expression used in the Ist Exit statement to

determine whether the branch should be taken.

It’s straightforward to modify arguments and the return values of library functions and

system calls by leveraging Valgrind APIs. However, it’s challenging to deal with the Java

methods because there is no interface in Valgrind to wrap Java methods. Fortunately, we

have obtained the entry point and exit points of the compiled Java method in the framework

layer (Chapter 3.3.2). Hence, we could wrap the Java method by adding instrumentation

at its entry point and exit points. For example, to change the source telephone number of

a received SMS to explore certain code path (Line 41 in Listing 3.1), Malton can wrap

the framework API SmsMessage.getOriginatingAddress() and modify its return value to a

desired number at the exit points.

To set the guard value of the Ist Exit statement, we insert a helper function before

each Ist Exit statement and specify the guard value to the result of the helper function.
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In an IR block, the program can only conventionally jump out of the IR block at the

location of the Ist Exit statement (e.g., an if-branch in the program). The Ist Exit

statement is defined with the format “if(t) goto <dst>” in Valgrind, where t and

dst represent the guard value and destination address, respectively. By returning “1” or

“0” in the helper function, we let t satisfy or dissatisfy the condition for exploring different

code paths.

3.4 Evaluation

We evaluate Malton on real-world Android malware samples to answer the following

questions.

Q3.1: Whether Malton could capture more sensitive operations than the existing tools,

due to the multi-layer monitoring capability?

Q3.2: Whether Malton could analyze sophisticated malware samples, including the

packed ones, to provide a comprehensive view of malicious behaviours?

Q3.3: Whether the path exploration mechanism is effective and efficient?

3.4.1 Sensitive Behavior Monitoring

To answer Q3.1, we compare Malton’s capability of capturing sensitive behaviours

with CopperDroid [163] and DroidBox [79]. These two systems are implemented by

instrumenting Android emulator and modifying the Android framework, respectively.

Since CopperDroid’s website3 has just queued all our uploaded malware samples, we

cannot obtain the corresponding analysis results. Therefore, we downloaded the analysis

3 http://copperdroid.isg.rhul.ac.uk/copperdroid/reports.php

41



reports of 1, 362 malware samples that have been analyzed by CopperDroid. According

to their md5s, we have collected 512 samples, and run them using Malton and DroidBox,

respectively. The comparison results are listed in Table 3.4. The first column shows the

type of sensitive behaviours, and the following columns list the numbers and percentages

of malware samples that have been detected by each system due to the corresponding

sensitive behaviours. We can see that for all the sensitive behaviours Malton detected

more samples than the other two systems.

We further manually analyze the malware samples to understand why Malton

detects more sensitive behaviours in those samples than the other two systems.

First, Malton monitors malware’s behaviours in multiple layers, and thus it captures

more behaviours than the systems focusing on one layer. For instance, the

malware sample4 retrieves the serial number and operator information of the

SIM card through the framework APIs TelephonyManager.getSimSerialNumber() and

TelephonyManager.getSimOperator(), respectively. However, CopperDroid does not

support reconstructing such behaviours from system calls and DroidBox does not monitor

these framework APIs. Second, Malton runs on real devices, and hence it could circumvent

many anti-emulator techniques. For instance, the malware sample5 detects the existence

of emulator based on the value of android id and Build.DEVICE. If the obtained value

indicates that it is running in an emulator, the malicious behaviours will not be triggered.

Note that these samples were analyzed by CopperDroid before 2015 and it is likely that

their C&C servers were active at that time. However, not all C&C servers were still active

when Malton inspects the same samples. Hence, in the worst case, Malton’s results may

be penalized since the malware cannot receive commands.

4 md5: 021cf5824c4a25ca7030c6e75eb6f9c8

5 md5: a0000a85a2e8e458660c094ebedc0c6e
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Table 3.4: Comparison on the capability of capturing the sensitive behaviours of malware
samples.

Behavior CopperDroid DroidBox Malton
Personal Info 435 (85.0%) 135 (26.4%) 511 (99.8%)

Network access 351 (68.5%) 211 (41.2%) 445 (86.9%)

File access 438 (85.5%) 509 (99.4%) 512 (100%)

Phone call 52 (10.1%) 1 (0.2%) 59 (11.5%)

Send SMS 26 (5.1%) 15 (2.9%) 28 (5.5%)

Java code loading Na 509 (99.4%) 512 (100%)

Anti-debugging 4 (0.8%) Na 4 (0.8%)

Native code loading Na Na 160 (31.2%)

Summary Compared with existing tools running in the emulator and monitoring malware

behaviours in a single layer, Malton can capture more sensitive behaviours thanks to its

on-device and cross-layer inspection.

3.4.2 Malware Analysis

To answer Q3.2, we evaluate Malton with sophisticated malware samples by constructing

the complete flow of information leakage across different layers, detecting stealthy

behaviours with Java/JNI reflection, dissecting the behaviours of packed Android malware,

and identifying the malicious behaviours of hidden code.

Identifying Information Leakage Flow This experiment uses the sample in the

XXShenqi [8] malware family, which is an SMS phishing malware with package name

com.example.xxshenqi. When the malware is launched, it reads the contact information

and creates a phishing SMS message that will be sent to all the contacts collected. In

this inspection, we focused on the behaviour of creating and sending the phishing SMS

message to the retrieved contacts by letting the contacts be the taint source and the methods

for sending SMS messages be the taint sink. The detailed flow is illustrated in Figure 3.4.
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To retrieve the information of each contact, the malware first obtains the column

index and the value of the field id in step 1 and step 2 in Figure 3.46, respectively.

Then, a new instance of the class CursorWrapper is created based on id and uri

(com.android.contact), and this contact’s phone number is acquired through this

instance. After that, blank characters and the national number (“+86”) are removed

from the retrieved phone number in steps 8 and 9. In the method String.replace()7,

StringFactory.newStringFromString() and String.setCharAt() are invoked to create a new

string according to the current string and set the specified character(s) of the new string,

respectively. These two methods are JNI functions and implemented in the system layer.

For String.setCharAt(), Malton can further determine the tainted portion of the string at

the byte granularity. By contrast, TaintDroid does not support this functionality because

for JNI methods it lets the taint tag of the whole return value be the union of the function

arguments’ taint tags. After that, a phishing SMS message is constructed according to the

display name of a retrieved contact and the phishing URL through steps 10-13. Finally,

the phishing SMS is sent to the contact in step 14 and a message “send Message to Jeremy

1” is printed in step 15.

Summary By conducting the cross-layer taint propagation, Malton can help the analyst

construct the complete flow of information leakage.

Detecting Stealthy Behavior Identification Some malware adopts Java/JNI reflection

to hide their malicious behaviours. We use the sample in the photo38 malware family

to evaluate Malton’s capability of detecting such stealthy behaviours. Figure 3.5

demonstrates the identified stealthy behaviours, which are completed in two different

threads. The number in the ellipse and rectangle is the step index, and we use different

6 The number in each ellipse denotes the step index.

7 in /libcore/libart/src/main/java/java/lang/String.java

8 md5:8bd9f5970afec4b8e8a978f70d5e87ab
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colours (i.e., blue and red) for the numbers to distinguish two threads. The execution paths

are denoted by both the solid lines and dashed lines, and the solid lines further indicate

how the information is leaked. We describe the identified malicious behaviours as follows.

• The device ID is returned by the method TelephonyManager.getDeviceId() in step 1 and

step 2.

• A new thread is created to send the collected information to the malware author. In

step 3, a memory area is allocated by the system call sys mmap(), and the thread method

run() is invoked by the runtime through the JNI reflection function InvokeVirualOrInter-

faceWithJValues() in step 4. Next, the class android/telephony/SmsManager is defined

and initialized in step 5 and step 6. In step 7, the SmsManager object is obtained through

the static method SmsManager.getDefault().

• The malware sends SMS messages through Java reflection. Specifically, in step 8,

the malware obtains the object of the android.telephony.SmsManager class through

the Java reflection method Class.forName(). Then, it retrieves the method object

of sendTextMessage() using the Java reflection method Class.getMethod() in step 9.

Finally, it calls the Java method sendTextMessage() in step 10. This invocation goes

to the method InvokeMethod() in the ART runtime layer in step 11.

Summary Malton can identify malware’s stealthy behaviours through Java/JNI reflection

in different layers.

Dissecting Packed Android Malware’s Behaviors Since Malton stores the collected

information into log files, we can dissect the behaviours of packed Android malware by

analyzing the log files. As an example, Figure 3.6 shows partial log file of analyzing the

packed malware sample9, and Figure 3.7 illustrates the identified malicious behaviours

of this sample. Such behaviours can be divided into two parts. One is related to the

9 md5: 03b2deeb3a30285b1cf5253d883e5967
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01 Instrumentation.newApplication()
02       ClassLoader.loadClass("com.netease.nis.wrapper.MyApplication")
03 Application.init()
04 Application.attach() // Internal framework API
05       ContextWrapper.attathBaseContext() // Set the base context for this ContextWrapper.
06        ...; // Malicious behaviors 1
07       System.loadLibrary("nesec") // Load native library libnesec.so
08              FindClass( "com/netease/nis/wrapper/MyJni") // Find and define Class = "com/netease/nis/wrapper/MyJni"          
09              LoadNativeLibrary("/data/app/com.vnuhqwdqdqd.trarenren5-1/lib/arm/libnesec.so")  //  Load library libnesec.so
10       MyJni.load() // Invoke the JNI method MyJni.load()
11              InvokeVirtualOrInterfaceWithVarArgs()  // JNI reflection invocation. args: Method=Context.getPackageName()  
12              Context.getPackageName() // res: "com.vnuhqwdqdqd.trarenren5"
13              sys_open("data/data/com.vnuhqwdqdqd.trarenren5/.cache/classes.dex")  //  res: fd = 24
14              sys_write(fd = 24);            sys_close(fd = 24) // Write protected dex content to classes.dex
15              /* Open and initialize DexFile arg location="/data/user/0/com.vnuhqwdqdqd.trarenren5/.cache/classes.dex"  */
16             OpenMemory( ) // res: DexFileObj@0x06d541c8 The DexFile object is used to represented the dex file in Android runtime
17 Instrumentation.callApplicationOnCreate()          // arg: Application@0x12e05498
18 Application.onCreate() // Called when the application is starting, before the activity is created
19       IntentFilter.<init>("com.zjdroid.invoke") // Create an IntentFilter@0x12e4d848,
20        /* Register an Intent receiver dynamically */
21       ContextWrapper.registerReceiver() // arg:  IntentFilter@0x12e4d848   
22 Instrumentation.newActivity() // Initialize the new activity arg: Activity="v.v.v.MainActivity", res: Activity@0x12c79f08 
23       ClassLoader.loadClass("v.v.v.MainActivity") // Load Class="v.v.v.MainActivity", res: Class@0x13110808
24             DefineClass() // args: DexFileObj=0x06d541c8  Class="Lv/v/v/MainActivity;"
25       Class.newInstance()
26             Activity.init()
27 Instrumentation.callActivityOnCreate() // Create and display an activity
28             Activity.performCreate() // Create activity "v.v.v.MainActivity"
29                 ...; // Malicious behaviors 2
30             Activity.finish() // Close the activity for hiding
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Figure 3.6: The major information collected by Malton at function level. The names of
Android runtime functions and system calls are in black italics. We omit the information
of method arguments due to the limited space.

original packed malware (Lines 1-21), and the other is relevant to the hidden payloads of

the malware (Lines 22-30).

Once the malware is started, the class com.netease.nis.wrapper.MyApplication is

loaded for preparing for the real payload (Line 2). Then, the Android framework API

Application.attach() is invoked (Line 4) to set the property of the app context. After that,

the malware calls the Java method System.loadLibrary() to load its native component

libnesec.so at Line 7. Malton empowers us to observe that the ART runtime

invokes the function FindClass() (Line 8) and the function LoadNativeLibrary() (Line 9)

to locate the class com.netease.nis.wrapper.MyJni and load the library libnesec.so,

respectively.

After initialization, the malware calls the JNI method MyJni.load() to release and load

the hidden Dalvik bytecode into memory. More precisely, the package name is first

obtained through JNI reflection (Line 11 and 12). Then, the hidden bytecode is written
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Behavior of Class com.netease.nis.wrapper.MyApplication

Create new dex file classes.dex

Load dex file classes.dex and 
initialize new DexFile object

Get package name through JNI 
reflection invocation

Behavior of Class v.v.v.MainActivity

Get IMEI of the device

Create a new thread

Leak the IMEI by the new thread 
through network

Get IMEI of the device

Write the IMEI information into disk 
through the interfaces of class 
android.app.SharedPreferences.

Malicious behavior 1

Load native component 
libnesec.so

Call JNI method 
MyJni.load()

Malicious behavior 2

Anti dynamic analysis
Register receiver for Intent 

com.zjdroid.invoke

Figure 3.7: The behaviours reconstructed by Malton.

into the file “.cache/classes.dex” under the app’s directory (Line 13 and 14). After that,

a new DexFile object is initialized based on the newly created Dex file through the

runtime function DexFile::OpenMemory() (Line 16).

We also find that the packed malware registers an Intent receiver to handle the

Intent com.zjdroid.invoke at Line 19 and 21. Note that ZjDroid [32] is a

dynamic unpacking tool based on the Xposed framework and is started by the Intent

com.zjdroid.invoke. By registering the Intent receiver, the malware can detect the

existence of ZjDroid.

Finally, the app loads and initializes the class v.v.v.MainActivity in Line 23 to 26, and

the hidden malicious payloads are executed at Line 29. To hide itself, the malware also

calls the framework method Activity.finish() to destroy its activity (Line 30).
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Summary Malton can analyze sophisticated packed malware samples, and help the analyst

identify the behaviours of both the malware and its hidden code.

3.4.3 Path Exploration

To answer Q3.3, we first employ Malton to analyze the SMS handler of the packed

malware com.nai.ke. From the logs, we find that its SMS handler handleReceiver()

processes each incoming SMS by obtaining its address and content through methods

getOriginatingAddress() and getMessageBody(), respectively. If the SMS is not from

the controller (i.e., Tel: 1851130**14), it calls the method abortBroadcast() to abort the

current broadcast.

Effectiveness To explore all the malicious payloads controlled by the received SMS

message, we specify the code region between the return of the function getMessageBody()

and the return of handleReceiver() to perform in-memory concolic execution. We

set the result of getMessageBody() (i.e., SMS content) as the input of the concolic

execution. To circumvent the checking of the phone number of the received SMS message,

we trigger the malware to execute the satisfied code path by changing the result of

getOriginatingAddress() to the number of the controller.

However, we find that the constraint resolver cannot always find the satisfying input

due to the comparison between two strings’ hash values. Therefore, we use the directed

execution engine to force the malware to execute the selected code path. Eventually, we

identify 14 different code paths (or behaviours) that depend on the content of the received

SMS. The generated inputs and their corresponding behaviours are listed in Table 3.5.

This result demonstrated the effectiveness of Malton in exploring different code paths.

Efficiency Thanks to the in-memory optimization, when exploring code paths in the
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Table 3.6: The number of IR blocks executed for path exploration with and without in-
memory optimization.

Malware
With

Optimization
Without

Optimization
0710ef0ee60e1acfd2817988672bf01b 203k 26237k

0ced776e0f18ddf02785704a72f97aac 203k 26010k

0e69af88dcbb469e30f16609b10c926c 4k 16826k

336602990b176cf381d288b79680e4f6 13k 1908k

8e1c7909aed92eea89f6a14e0f41503d 7k 69968k

interested code region, Malton just needs one SMS and then iteratively executes the

specified code region for 14 times without the need of restarting the app for 14 times. To

evaluate the efficiency of the in-memory optimization, we record the number of IR blocks

to be executed for exploring each code path with/without in-memory optimization, and

list them in Table 3.5 (the last column). The result shows that the in-memory optimization

can avoid executing a large number of IR blocks. For example, when exploring the paths

decided by the command “df”, Malton only needs to execute 5k IR blocks with in-memory

optimization. Otherwise, it has to execute 22,970k IR blocks.

We also use another five malware samples, which have the SMS handler, to further

evaluate the efficiency of path explorer module. The average number of IR blocks to be

executed with and without in-memory optimization are listed in Table 3.6. The in-memory

optimization can obviously reduced the number of IR blocks to be executed.

Summary The path exploration module of Malton can explore code paths of malicious

payloads effectively and efficiently. The concolic execution engines generates the

satisfying inputs to execute certain code paths, and the directed execution engine forcibly

executes interested code paths when constraint resolver fails.
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Figure 3.8: Performance measured by CF-Bench.

3.4.4 Performance Overhead

To understand the overhead introduced by Malton, we run the benchmark tool CF-

Bench [25] 30 times on the smartphone (Nexus 5 running Android 6.0) under four different

environments, i.e., Android without Valgrind, Android with Valgrind, and Malton with and

without the taint propagation. Moreover, to compare with the dynamic analysis tools based

on Qemu, we also run CF-Bench inside the Qemu emulator, which runs on a Ubuntu 14.04

desktop equipped with Core(TM) i7 CPU and 32G memory.

The results are shown in Figure 3.8. There are three types of scores. The Java score

denotes the performance of Java operations, and the native score indicates the performance

of naive code operation. The overall scores is calculated based on the Java and the native

score. A higher score means a better performance.

From the Figure, we can find that Malton introduces around 16x and 36x slowdown to

the Java operations without and with taint propagation. However even if the app runs with

only Valgrind, there is 11x slowdown. That means Malton brings 1.5x-3.2x additional
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slowdown to Valgrind. Similarly, for the native operations, Malton introduces 1.7x-2.3x

additional slowdown when Valgrind is taken as the baseline. Overall, Malton introduces

around 25x slowdown (with taint propagation) to the app to be analyzed. Moreover,

because the Qemu [20] incurs around 15x overall slowdown, and the Qemu-based tools,

such as the taint tracker of DroidScope [180], usually incurs another 11x-34x additional

slowdown, Malton is more efficient compared with the existing tools based on the Qemu

emulator.

Summary As a dynamic analysis tool, Malton has a reasonable performance, and it is

more efficient than the existing tools based on the Qemu emulator.
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Chapter 4

Adaptive Unpacking of Android Apps

4.1 Overview

More and more app developers use the packing services (or packers) to prevent attackers

from reverse engineering and modifying the executable (or Dex files) of their apps. At

the same time, malware authors also use the packers to hide the malicious component and

evade the signature-based detection. Although there are a few recent studies on unpacking

Android apps, it has been shown that the evolving packers can easily circumvent them

because they are not adaptive to the changes of packers. In this thesis, we propose

a novel adaptive approach and develop a new system, named PackerGrind, to unpack

Android apps. We also evaluate PackerGrind with real packed apps, and the results show

that PackerGrind can successfully reveal the packers’ protection mechanisms and recover

the Dex files with low overhead, showing that our approach can effectively handle the

evolution of packers.

In summary, our major contributions include:

• We propose a new iterative process to unpack Android apps. This process as well as the

new system, named PackerGrind, is adaptive to the evolution of packers.
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• We design PackerGrind that automates most steps in the iterative process. It can

conduct cross-layer monitoring and Dex file recovering in real smartphones. Moreover,

it supports both DVM and ART. To our best knowledge, it is the first system that can

address the above two challenging research questions simultaneously.

• We implement PackerGrind with 21.3K lines of C/C++ code (not include Valgrind) and

2.5K lines of Python code, and compare it with the state-of-the-art unpacking tools with

real apps packed by popular packers. The results show that PackerGrind can unpack all

these apps with low overhead whereas DexHunter[193] recovered a few and Android-

unpacker[2] unpacked none.

The rest of this chapter is organized as follows. Chapter 4.2 introduces background

knowledge and a motivating example. Chapter 4.3 describes the basic Dex data collection

points. Chapter 4.4 details the design and implementation of PackerGrind and Chapter 4.5

reports the experimental results.

4.2 Background

4.2.1 Dex File

The bytecode of an Android app is contained in the Dex file which is a highly

structured data file consisting of different Dex data items [26](e.g., proto id item,

code data item). A Dex file has three major sections including header section, data

identifiers section, and data section. The header section includes a summary of the Dex

file (e.g., checksum, size, and offsets). The data identifiers section contains 6 identification

lists for defined classes, namely, string ids, type ids, proto ids, field ids,

method ids, and class defs, each of which contains multiple items. For example,

string id item contains the offset from the start of the Dex file to the corresponding
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string data item. The data section contains the information related to bytecode,

including map_list, type_list, class_data_items, code_data_items,

debug_info_items, encoded_array_items, and four annotation data items.

4.2.2 Android App Packing

Packers usually protect apps’ code from three aspects, namely, hiding Dex files, impeding

the dumping of Dex files in memory, and hindering the reverse-engineering of Dex files.

Hiding Dex files. Packers often use three approaches to hide Dex files. (1) Dex file

modification. Packed apps use native code to modify Dex files in the memory when the

app is running. For example, apps packed by Baidu packer in 2015 fill a special method

with valid instructions just before the method is called and erase them after execution.

PackerGrind can capture such behaviours and dump the correct instructions at the right

moment. (2) Dynamic class loading. Packers put the bytecode of selected functions in

separated Dex files, and load them when the functions are invoked. They even encrypt the

Dex files and decrypt them before loading the required classes. PackerGrind can dump

the Dex files after they are loaded because it traces the runtime’s functions. (3) Native

method. Packers could turn the selected Dex functions into native methods and then invoke

them through Java native interface (JNI) from the Dex file. Although PackerGrind is not

designed to reverse engineer the native code for regenerating the bytecode, it can still

provide useful information about the native methods thanks to its cross-layer monitoring

component.

Impeding the dumping of Dex files. Packers usually employ three approaches to prevent

unpackers from dumping the real code in memory. (1) Emulator detection. Since

many dynamic analysis systems rely on Android emulator, packers employ advanced

techniques [166] to determine whether a packed app is running in an emulator. If so,
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the app will exit. PackerGrind does not rely on the emulator. Instead, it exploits dynamic

binary translation [126] to perform cross-layer monitoring and recovers Dex files.

(2) Anti-debug. If an unpacker attaches to the packed apps as a debugger, it can monitor

the apps and obtain the Dex files. To impede such method, the packed apps often launch

multiple threads and let one thread attach to another using ptrace, because a process can

only be attached by one process. PackerGrind does not use this approach.

(3) Hooking. To prevent unpackers from accessing and dumping the Dex files in

memory, packed apps often hook the functions related to file and memory operations to

prohibit unpackers from using them. PackerGrind can disable these hooks.

Anti reverse-engineering of Dex files. Packers commonly employ various techniques

(e.g., obfuscation[70], etc.) to raise the bar for understanding the internal logics through

static code analysis. Handling them is out of the scope of PackerGrind.

4.2.3 A Motivating Example

Existing unpackers are not adaptive to the changes of packers, and hence can be easily

circumvented. In particular, they usually perform one-pass processing based on the

developer’s knowledge for obtaining the Dex files. Therefore, packers can modify their

behaviours accordingly to defeat such unpackers. We argue that unpackers should be

adaptive to the changes of packers by monitoring and learn their behaviours.

We use an app packed by Baidu packer (in DB-15) [55] as a motivating example. As

shown in Figure 4.1, the original code of onCreate() in MainActivity is replaced by those

at Line 23-26, and onCreate001() is empty and called between two JNI methods (i.e.,

A.d() and A.e()). By monitoring the packed app, we find that when A.d() is invoked, it fills

onCreate001() with correct instructions, which will be erased after A.e() is called.
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22 public void onCreate(Bundle bundle) { 
23   String str = "LXXX;->onCreate001(Landroid/os/Bundle;)V"; 
24   A.d(str);  
25   onCreate001(bundle);  
26   A.e(str);  
27 }  
28 private void onCreate001(Bundle savedInstanceState) { 
29 }  

Figure 4.1: onCreate() method of the app packed by the Baidu packer of DB-15.

The state-of-the-art unpackers (i.e, DexHunter [193] and AppSpear [182]) cannot

obtain the instructions in onCreate001() effectively. DexHunter collects the Dex data in

dvmDefineClass(). However, when this function is called, the correct instructions have

not been written to onCreate001() yet, and thus DexHunter misses them. Similarly,

AppSpear assumes that DVM’s parsing methods (e.g., dexGetCode()) always provide

expected results. However, in this example, dexGetCode() can only obtain the right

instructions of onCreate001() when it is invoked between A.d() and A.e(). In other words,

AppSpear cannot get the correct results if it misses the right moment. Since DexHunter

and AppSpear are implemented within the runtime, they cannot monitor packed apps’

behaviours at either the system or the instruction levels to determine the right moments.

PackerGrind can address this issue because it iteratively monitors packed apps at

different layers, facilitates the determination of collection points, and recovers the Dex

files. By analyzing the Dex file obtained in the first run, we can learn that the instructions

of onCreate001() are modified during the execution. According to the tracking report, we

know that A.d() is called before onCreate001() to fill the instructions and A.e() is invoked

after onCreate001() to erase them. Moreover, as shown in Figure 4.1, the parameters of

both method A.d() and A.e() are the name of onCreate001(). With such information, we

add a new collection point between A.d() and A.e(), and then PackerGrind can reconstruct

the correct Dex file automatically.
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Figure 4.2: The process from Dex file loading to method execution.

4.3 Basic Dex Data Collection Points

As shown in Figure 4.2, we divide the process from Dex files loading to method execution

into four phrases, namely, parsing Dex files, loading classes, resolving methods, and

executing methods. Consequently, we define four basic collection points for DVM and

ART, respectively.

4.3.1 Dalvik VM (DVM)

Parsing Dex Files. A Dex file can be loaded either from a file in storage through

openDexFileNative() or a memory space through openDexFile bytearray(). Both methods

will call dexFileParse() to parse the Dex file and return the structure DexFile to represent

this Dex file at runtime, as shown in Figure 4.2. Since DexFile is initialized according

to the Dex file header in dexFileParse(), we select dexFileParse() as the first Dex data

collection point.
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Loading Classes. A class can be loaded through Dalvik_dalvik_system_

DexFile_defineClassNative(). In this function, dvmDefineClass() is called to

load the class and return the structure ClassObject that contains the class’s information

(e.g., fields, methods, etc.). Moreover, the structure class def item is read from the

Dex file, and then the structure class data item is parsed from the Dex file according

to its offset in class def item. After that, ClassObject is initialized. Hence, we

choose dvmDefineClass() as the second Dex data collection point.

Resolving Methods. When loading a class, the class loader will resolve each

method to initialize ClassOject according to class data item. During

such resolution, the class loader first obtains DexMethod from the Dex file by

calling dexReadClassDataMethod(). Then, it creates a structure Method according

to DexMethod in LoadMethodFromDex(). During the initialization of Method,

dexCompareNameDexcriptorAndMethod() is called to check whether it is a finalize

method, and then dexGetCode() is invoked to fetch the code information from the Dex

file to populate Method. Since the symbols of inline functions and static functions

are not exported in libdvm.so, we choose dexCompareNameDexcriptorAndMethod()

rather than dexGetCode() as the third Dex data collection point.

Executing Methods. Native code can invoke Java methods through Java reflection

or JNI reflection using functions like dvmInvokeMethod(), dvmCallMethodA(), and

dvmCallMethodV(). Since they call dvmInterpret() for both fast-interpreter and portable-

interpreter, we select it as the fourth Dex data collection point.

4.3.2 Android Runtime (ART)

During the installation of an app, ART invokes the tool dex2oat to compile the Dex

file to the oat file, which is in ELF format but contains both the Dalvik bytecode and
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the compiled code. If an app without oat file is being launched, ART performs the same

action. ART can execute a method in the interpreter mode, which is similar to DVM, or the

compiled code mode. By default, if a method has compiled code, ART runs its compiled

code. Otherwise, ART interprets its Dalvik bytecode. If a packed app uses dex2oat

to compile Dex files containing real code into oat file, PackerGrind obtains the Dex file

according to the arguments passed to dex2oat.

For the methods executed in the interpreter mode, PackerGrind also has four basic Dex

data collection points.

Parsing Dex Files. Similar to DVM, DexFile represents the Dex file in runtime, which

contains the information of classes and methods. The class constructor of DexFile (i.e.,

DexFile()) will read the Dex file in memory and parse it similarly to dexFileParse() in

DVM. Therefore, we choose DexFile() as the first Dex data collection point.

Loading Classes. DefineClass() of class ClassLinker is used to load and parse each

class in the Dex file and return an instance of class Class to represent the class in runtime.

Hence, we select DefileClass() as the second Dex data collection point.

Resolving Methods. ART uses ArtMethod to represent each method of a class, and the

instance of ArtMethod for a method is initialized in LoadMethod(). Therefore, we take

it as the third Dex data collection point.

Executing Methods. Invoke() of the class ArtMthod in ART is invoked when a Java

method is called by Java reflection and JNI reflection. Hence, we select Invoke() as the

fourth Dex data collection point.
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Figure 4.3: The iterative process realized by PackerGrind.

4.4 PackerGrind

4.4.1 Overview

To be adaptive to the evolution of packers, PackerGrind adopts the iterative process shown

in Figure 4.3 to recover Dex files. This process consists of three tasks in each run. More

precisely, when running a packed app in smartphone, PackerGrind monitors its behaviours

from three layers including runtime, system, and instruction, and generates a tracking

report. At the same time, PackerGrind collects Dex data at specified collection points and

reconstructs Dex files by the end of each run. Then, it performs static analysis on the

recovered Dex files. Users determine whether new collection points are needed according

to the tracking report and the result of static analysis, because the basic data collection

points described in Chapter 4.3 may not be enough for PackerGrind to collect all data

of the original Dex file. We propose basic protection patterns in Chapter 4.4.5 to help

users determine additional collection points if needed. Based on these patterns, we have

identified all collection points for packers accessible to us as described in Chapter 4.5.

After adding the new collection points, PackerGrind will run the process one more time

and repeat this procedure until the Dex file is correctly recovered.

Figure 4.4 shows the architecture of PackerGrind. It consists of three components
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Figure 4.4: Architecture of PackerGrind.

for finishing the three tasks in the iterative process. The monitoring component

(Chapter 4.4.2) tracks the packed apps at three layers and generates the tracking report.

The recovery component (Chapter 4.4.4) automatically gathers Dex data at selected

collection points and reconstructs the Dex file. The analysis component (Chapter 4.4.5)

performs static analysis on the Dex file dumped at each run and determines whether new

data collection points are needed. We develop PackerGrind based on Valgrind [126] and

therefore it runs in a real smartphone instead of an emulator.

4.4.2 Monitoring

Runtime layer To locate the structure DexFile, which represents a Dex file in runtime,

and collect Dex data from the four basic data collection points (Chapter 4.3), PackerGrind

monitors the arguments and the returns of the selected functions in Table 4.1 using
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Table 4.1: Wrappers for tracking Dex and DVM related events.

Category Wrapped Functions Tracked Information

Dex Data

dexFileParse() Dex file parsing

dvmClassDefine() Class loading

dexCompareNameDescriptorAndMethod() Method resolution

dvmInterpret(), dvmMterpStdRun() Method execution

dvmCallJNIMethod() JNI invocation

dvmInvokeMethod() Java reflection

dvmCallMethodV(), dvmCallMethodA() JNI reflection

Native Module dvmLoadNativeCode() Native code loading

the function wrapping technique[126]. For example, by wrapping dexFileParse() with

the wrapper function dexFileParse wrapper(), we can obtain the arguments passed to

dexFileParse() and its return.

Table 4.1 lists two set of functions. One includes the functions related to the basic

Dex data collection points and the function dvmCallJNIMethod(), because some packers

use native code to modify Java methods through JNI. Moreover, it contains the functions

related to Java reflection and JNI reflection (i.e., dvmInvokeMethod(), dvmCallMethodV(),

dvmCallMethodA()), because they are used by some packers to invoke Java methods.

The other set has dvmLoadNativeCode() because it will be called when System.load() or

System.loadLibrary() is used to load native module. Since native modules allow packed

apps to release or modify the Dex data, we wrap dvmLoadNativeCode() to track such

behaviours.

System layer Packed apps can release and modify the Dex data in memory by calling

system library functions and system calls through its native module. Since such behaviours

cannot be monitored at the runtime layer, PackerGrind tracks them at the system layer

by wrapping memory management functions (e.g., allocation, free, mapping, etc.), file

operations (e.g., open, read, write, and close), and data movement functions (e.g.,
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memcpy(), strcpy(), etc.). It also traces the invocation of some system calls (e.g.,

sys map(), sys unmap() and sys protect()), because they can be used by packed apps to

allocate memory, release memory, and change memory access permissions, respectively.

PackerGrind maintains a surveillance memory list for the ranges of memory that may be

used to store the Dex data, and records the operations on them in tracking report.

PackerGrind also wraps some functions for special purposes. For example, some

packers adopt timeout mechanism for anti-unpacking (e.g., Ijiami). More precisely, if

the unpacking process takes a time longer than the packer’s timeout threshold, the app

crashes. To address this issue, we wrap the system call sys gettimeofday() to modify the

timestamps returned to the packer so that its timeout mechanism will not be activated.

Users can use PackerGrind to track more functions if necessary.

Instruction layer PackerGrind instruments store instructions to monitor operations for

modifying Dex files, because packed apps can write and modify Dex data in memory

directly through its native code instead of invoking memory copy or move functions.

PackerGrind skips system libraries, because no system library functions except memory

copy and move functions, which are wrapped at the system layer, will modify Dex files.

PackerGrind maintains a system library memory list for the memory regions of system

libraries, and uses it to determine whether an instruction belongs to system libraries.

To monitor memory modifications, PackerGrind inserts an intermediate representation

(IR) of function invocation statement before Ist StoreG and Ist Store statements

that are translated from packed apps’ native code by Valgrind [126]. In this IR statement,

the instruction tracking function will be called to check whether the target address is in

the surveillance memory list. If so, PackerGrind records the target address, operand value,

and instruction address in the tracking report.
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4.4.3 Tracking report

A tracking report contains three major types of information and its length depends on the

app’s execution time.

(1) Dex file. When a new Dex file represented by DexFile is found, PackerGrind parses

DexFile and records the memory information about the Dex file (e.g., Dex file header,

classes, methods and codes).

(2) Memory modification. PackerGrind maintains a Dex file list containing the memory

ranges of all Dex files in the runtime. When functions and instructions for memory

modification are identified, PackerGrind checks whether the target addresses are in the

memory range of a Dex file. If so, the modification information is written to the tracking

report. At the system layer, this information includes the invoked function, target address,

the Dex structure to which the target address belongs (e.g., Dex header field), and the value

written to the target address. At the instruction layer, this information includes instruction

address, instruction types (i.e., Ist StoreG and Ist Store), target address, target

address information, and the stored value.

(3) Method invocation. At the runtime layer and the system layer, the invocation and the

return of any wrapped function are logged into the tracking report with the parameters and

the return values.

4.4.4 Recovery

It collects the Dex data and reconstructs Dex files.

Dex data collection. In each run, PackerGrind starts collecting Dex data after a DexFile

is identified because it represents a Dex file. Once the Dex file is located through
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DexFile, PackerGrind initializes a shadow memory for storing the collected Dex data

items belonging to this Dex file, and then copies the data items to the shadow memory.

When a new Dex data item is collected, PackerGrind firstly checks whether the shadow

memory for this data item exists. If it does, PackerGrind copies this data item to the

shadow memory. Otherwise, PackerGrind creates a new shadow memory for this data

item, copies it to the shadow memory, and changes the corresponding offset to this item in

the shadow memory.

Dex file assembling. After collecting Dex data, PackerGrind assembles them into a

Dex file. Since a packer can release Dex data in discontinuous memory areas, there

will be more than one shadow memory allocated for storing the collected Dex data.

Therefore, PackerGrind allocates a continuous memory and assembles the collected Dex

data together to reconstruct Dex files. Specifically, PackerGrind performs a two-step

Dex file construction. First, it divides the collected Dex data items into different groups

according to their types. For example, PackerGrind groups all class def items

together to assemble class defs. After that, these groups of data will be put together

according to the Dex format. By doing so, PackerGrind can obtain the offsets of the Dex

data items and the sizes needed for such data structures.

Second, PackerGrind allocates a continuous memory region and copies the collected

data to it starting from their group offsets. For each data structure, PackerGrind updates

its members according to the offsets of the data structures. For example, when a

class_data_item is copied into the continuous memory region, we will update the

corresponding class def item.class data off. PackerGrind will recalculate the

meta-data of Dex header after all data structures are copied into the continuous memory

region to ensure the validity of Dex file. Eventually, PackerGrind dumps the memory

region and outputs the Dex file.
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4.4.5 Analysis

We analyze the dumped Dex file and the tracking report to achieve three purposes. First,

since packed apps usually use JNI methods (i.e., native code) to dynamically modify Dex

files in memory and the dumped Dex file may contain unexplored paths to JNI methods,

we conduct static bytecode analysis to look for such paths. Second, we inspect the tracking

report to determine whether new data collection points are needed. Third, we identify more

information about the discovered JNI methods from the result of cross-layer monitoring.

Static bytecode analysis. We employ IntelliDroid [172] to determine how to trigger the

JNI methods in the dumped Dex files through static analysis. Given an app and a set of

targeted JNI methods, IntelliDroid [172] can help us find the execution paths leading to

these methods as well as the corresponding input. Thus, we first extract JNI methods from

the Dex files and let them be the target methods, and then use IntelliDroid to look for the

execution paths leading to them with event handlers as the entry-points. After that, we

drive the app to execute the target JNI methods following the corresponding paths.

Tracking report analysis. We provide Python scripts to analyze the tracking report in

order to recognize the protection patterns and determine whether new collection points are

needed. By exploiting the insight that a portion P (e.g., Dex header, methods, etc.) of

a Dex file should be valid right before it is being used, we define four basic protection

patterns for P : (1) it is changed to valid value before its first use (FmT); (2) it is modified

to invalid value after its last use (TmF); (3) it is altered to valid value before being used

and turned to invalid after the use (FmTmF); (4) it is always valid (T). Although the

basic protection patterns are by no means comprehensive, they cover all packed samples

accessible to us. Users can define new patterns after studying the tracking report.

To recognize the protection patterns, we first collect the method invocation and the
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memory modification information from the tracking report. According to the target

address information of each modification operation M , we identify which portion of the

Dex file is modified by M . By checking the method invocation information, we determine

when the portion is used. Given each portion P , we regard its content as valid when it is

being used. A quick approach to detect invalid portions is applying static analysis to the

dumped Dex file and see whether there is any parsing error.

During the first run, PackerGrind collects Dex data at the basic data collection points,

and hence the dumped Dex file may include invalid portion. If so, we infer the protection

pattern and select new data collection points (i.e., when its content is valid). After that, we

execute PackerGrind again to collect more valid portions.

We use an app packed by Ali packer as an example to illustrate this process. Figure 4.5

shows the tracking report. At line 003, dvmLoadNativeCode() is called to load the native

library libmobisec.so. Then, the JNI method attachBaseContextIT(VL) of class

Lcom/ali/mobisecenhance/StubApplication is called by dvmCallJNIMethod() (line 005),

and it returns at line 017.

The information about the instruction layer modifications is from line 011 to line 016.

At line 011, “3759DC87” and “Executable” are the instruction address and the executable

permission of the address, respectively. “STORE” indicates the instruction type, which is

Ist Store at line 011. “a 0x375b654c” and “v 0x24” are the target address and the

stored value, respectively. “interfacesOff (pDexFile=0x05f44970 ClassIdx=5)” denotes

that the target address is the field interfacesOff of the 5th class in the Dex file, which

is represented by a Dexfile in memory address 0x05f44970. At line 11, the field

interfaceOff of the 5th classes (ClassIdx=5) in the Dex file is modified. From line 012

to 016, the class data items of 10 classes (from ClassIdx=0 to ClassIds=9) in the

Dex file are modified by the STORE (i.e., Ist Store) instruction. Finally, the class
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 1 public void onCreate(Bundle savedInstanceState) { 
 2   super.onCreate(savedInstanceState); 
 3   setContentView(C0000R.layout.main); 
 4   this.display = ((WindowManager) getSystemService("window")).getDefaultDisplay(); 
 5   this.mLibrary = GestureLibraries.fromRawResource(this, C0000R.raw.gestures); 
 6   if (!this.mLibrary.load()) { 
 7       finish(); 
 8   } 
 9   findViewById(C0000R.id.gestures)).addOnGesturePerformedListener(this); 
10 } 

(a) The original onCreate().

1 public void onCreate(Bundle savedInstanceState) { 
2   A.V(0, this, new Object[]{savedInstanceState}); 
3 } 

(b) The onCreate() in a packed app.

001 Invoke:dvmCallJNIMethod() pDexFile=0x05f41a90 mth: Lcom/baidu/protect/A; V(VILL) 
002               JNI_Reflection: Landroid/app/Activity; onCreate(VL) 
003               JNI_Reflection: Landroid/app/Activity; setContentView(VI) 
004               JNI_Reflection: Landroid/app/Activity; getSystemService(LL) 
005               JNI_Reflection: Landroid/view/WindowManagerImpl; getDefaultDisplay(L) 
006               JNI_Reflection: Landroid/gesture/GestureLibraries; fromRawResource(LLI) 
007               JNI_Reflection: Landroid/gesture/GestureLibraries$ResourceGestureLibrary; load(Z) 
008               JNI_Reflection: Landroid/app/Activity; findViewById(LI) 
009               JNI_Reflection: Landroid/gesture/GestureOverlayView; addOnGesturePerformedListener(VL) 
010 Return:dvmCallJNIMethod() pDexFile=0x05f41a90 mth: Lcom/baidu/protect/A; V(VILL) 

(c) Tracking report of A.V().

Figure 4.6: The method onCreate() before and after packing and the tracking report of
A.V().

GesturesDemoActivity is defined by dvmDefineClass() at line 018 and 019.

The tracking report shows that the class data items of all classes are filled

with valid values in the JNI method attachBaseContextIT(VL) before dvmDefineClass().

Since the runtime loads classes in dvmDefineClass() based on class data items,

the class data items’ contents are valid after calling attachBaseContextIT(VL). That

means, class data item follows the FmT protection pattern. Hence, we can collect

the Dex data after attachBaseContextIT(VL) returns. Since PackerGrind collects Dex data

when it is defined by dvmDefineClass() by default, the collected content is valid and no

more run is needed.
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Native method inspection. A packer can re-implement an app’s Java methods in the

native module, and then call them through JNI. Although PackerGrind is not designed

to reverse-engineer the native code for reconstructing the bytecode, it can still provide

useful information about the native methods thanks to its cross-layer monitoring capability.

More precisely, packed apps have to use JNI reflection (i.e., dvmCallMethodV() or

dvmCallMethodA()) to invoke Android framework APIs in Java. Since PackerGrind has

wrapped these functions, it can provide rich information about the native methods.

For example, Figure 4.6 shows the method onCreate() in the original app and that in the

app packed by Baidu. It shows that the method onCreate() has been re-implemented in

native code, which invokes Android framework APIs through JNI reflection. In other

words, after packing, the original implementation of onCreate() is replaced with the

invocation of the native method A.V(). From the tracking report of A.V() shown in

Figure 4.6(c), we can infer the original implementation of onCreate(). For example, the

method onCreate() of class android/app/Activity is invoked at Line 002. Correspondingly,

as shown in Figure 4.6(a), the method onCreate() of the MainActivity’s super class

(android/app/Activity) is invoked at Line 2. Note that other unpackers (e.g., [193, 182])

cannot profile such behaviours.

4.4.6 Implementation on ART

We adopt similar methods to monitor packed apps running in ART. Different from DVM

that provides only two functions to invoke a Java method in native code, ART provides

CallTYPEMethod() functions and CallStaticTYPEMethod() functions to call non-static

methods and static methods, respectively. TYPE indicates the type of the method’s return

value.

To call a native method through JNI, ART invokes the functions artInterpreterToCom-
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Table 4.2: Wrappers for tracking Dex and ART related events.

Category Wrapped Functions Tracked Information

Dex Data

DexFile.DexFile() Dex file parsing

ClassLinker.DefineClass() Class loading

ArtMethod.LoadMethod() Method resolution

ArtMethod.Invoke() Method execution

JniMethodStart()
JniMethodStartSynchronized()

JNI invocation

InvokeMethod() Java reflection

InvokeWithVarArgs()
InvokeWithJValues()
InvokevirtualOrInterfaceWithJValues()
InvokeVirtualOrInterfaceWithVarArgs()

JNI reflection

Native Module LoadNativeLibrary() Native code loading

piledCodeBridge() or art quick generic jni trampoline() depending on whether the native

method contains compiled code or not. Both of them eventually establish the JNI calling

environment according to the JNI call convention in ART. Before the execution of native

code, the functions JniMethodStart() or JniMethodStartSynchronized() will be called de-

pending on whether the native method is synchronized or not. We wrap these two functions

to track the invocation of JNI methods and get the name of JNI methods in ART.

Since ART is implemented in C++, all Dex data structures are stored in class objects.

We parse such class objects and recover Dex data structures from them. PackerGrind

currently supports the ART in Android 6.0 and it reuses the modules at the system layer

and instruction layer for DVM.
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4.5 Evaluation

We conduct extensive experiments to evaluate PackerGrind by answering the following

five questions.

Q4.1: Can PackerGrind be adaptive to the evolution of packers and identify their

protection mechanisms?

Q4.2: Can PackerGrind correctly recover Dex files?

Q4.3: Is PackerGrind better than other available unpackers?

Q4.4: Can PackerGrind facilitate the analysis of malware?

Q4.5: What is the overhead of PackerGrind?

4.5.1 Data Set

We use two sets of packed apps to evaluate PackerGrind. The first set has 480 packed

apps with ground truth. More precisely, we downloaded 40 randomly selected open-source

apps from F-Droid [23] and then uploaded them to 6 online commercial packing services

(Qihoo [139], Ali [41], Bangcle [56], Tencent [164], Baidu [55], Ijiami [100]) in Mar.

2015 (denoted as DB-15) and Mar. 2016 (denoted as DB-16) to construct 480 packed apps.

The second set consists of 200 packed malware samples from Palo Alto Networks[129].

These samples are packed by eleven packers including Ali [41], APKProtect [3], Baidu

[55], Bangcle [56], Ijiami [100], Naga [124], Qihoo [139], Tencent [164], LIAPP [156],

Netqin [127], and Payegis [132].

We conduct the experiments in both Android 4.4 with DVM and Android 6.0 with ART

on a Nexus 5 smartphone [11]. PackerGrind monitors the protection patterns of these
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Table 4.3: Protection mechanisms adopted by six packers in DB-15 and DB-16. The symbol
before (or after) “—” denotes whether a packer in DB-15 (or DB-16) uses the mechanism or not.

Packer Qihoo Ali Bangcle Tencent Baidu Ijiami
Dynamically

Release Dex
�—� �—� �—� ×—� �—� �—�

Dynamically

Modify Dex
×—� ×—� ×—� ×—� �—× �—�

Customized

Dex Parsing
×—� ×—× ×—× ×—× ×—× ×—�

Re-implement

Method
×—× ×—× ×—× ×—× ×—� ×—×

Anti-Debug

(e.g., ptrace)
×—× ×—× �—� ×—× ×—× ×—�

packed apps and recovers their Dex files.

4.5.2 Protection Mechanisms

Using PackerGrind, we reveal the protection mechanisms adopted by 6 packers, each

of which has two versions for DB-15 and DB-16, individually. As shown in Table 4.3,

packers are evolving with new techniques and hence unpackers should be adaptive to the

evolution. PackerGrind can unpack apps protected by all mechanisms except the Re-

implement Method.

All but Tencent packer of DB-15 release Dex files to memory dynamically. In DB-

16, all packers except Baidu dynamically modify selected structures in the Dex file. For

example, Ali packer changes the class data item of each class in the loaded Dex file

from invalid value to valid one before the class is defined. Moreover, Ijiami packer sets the

Dex file header with valid value before dexFileParse() is called, and changes it to invalid

value after using dexFileParse().
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Table 4.4: Number of runs required for determining all Dex data collection points.

Packer Qihoo Ali Bangcle Tencent Baidu
(DB-15)

Baidu
(DB-16)

Ijiami

Number
of runs

2 1 1 1 2 1 2

Qihoo packer and Ijiami packer of DB-16 use their own functions rather than the

standard runtime functions to parse certain structures of the Dex file. Qihoo packer invokes

the native code in its library libjiagu.so instead of dvmDefineClass() to load classes. Ijiami

packer parses the methods of the loaded classes again using the native code in its library

libexec.so, and changes the instruction offsets of those methods to valid values right before

dvmDefineClass() returns. Baidu packer of DB-16 re-implements all onCreate() functions

using native code with the same functionality. Bangcle packers uses ptrace() to protect

the app process from being attached by debugging tools while Ijiami packer of DB-16

periodically searches for the string “@com.android.reverse-” to detect ZjDroid [32].

Answer to Q4.1: PackerGrind is adaptive to the evolution of packers and can identify the

protection mechanisms adopted by various packers.

4.5.3 Recovering Dex Files

Number of runs required for determining all Dex data collection points Table 4.4

shows that PackerGrind needs one run for Ali, Bangcle, Tencent, and the new version

of Baidu packers (i.e., DB-16). It takes two runs to handle Qihoo, Ijiami, and the old

version of Baidu packers(i.e., DB-15). Once the Dex data collection points for a packer

are identified, PackerGrind can recover the Dex files in one run.

Qihoo. Since Qihoo packer parses the protected Dex file using native code in its library

libjiagu.so instead of standard functions, PackerGrind locates the first Dex file
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when dvmIntepret() is invoked (i.e., the fourth Dex data collection point). From the

tracking report, we notice that the class data off is changed to zero after its library

libjiagu.so is loaded. Since PackerGrind does not find the Dex file at other collection

points, we add a new data collection point right before dvmLoadNative() for the second

run, and then the correct Dex file is recovered.

22 public void onCreate(Bundle bundle) { 
23   String str = "LXXX;->onCreate001(Landroid/os/Bundle;)V"; 
24   A.d(str);  
25   onCreate001(bundle);  
26   A.e(str);  
27 }  
28 
29 private void onCreate001(Bundle savedInstanceState) { 
30   super.onCreate(savedInstanceState); 
31   setContentView(C0000R.layout.main); 
32   this.display = ((WindowManager)getSystemService("window")).getDefaultDisplay(); 
33   this.mLibrary = GestureLibraries.fromRawResource(this, C0000R.raw.gestures); 
34   if (!this.mLibrary.load()) {  
35     finish();  
36   }  
37  findViewById(C0000R.id.gestures)).addOnGesturePerformedListener(this); 
38 }  

Figure 4.7: Content of onCreate001() after the 2nd run.

Baidu. For the samples packed by the old version of Baidu packer (i.e., in DB-2015), we

find that the method onCreate001(), which is recovered after the first run, is empty. Hence,

we add a new data collection point after A.d() by analyzing the tracking report and the Dex

file recovered in the first run. In the second run, the Dex file is successfully recovered

(e.g., Figure 4.7).

Ijiami. After the first run, we observe that all instructions of the methods in the

MainActivity are zero. By analyzing the tracking report, we find that the packed apps

modify the instructions of Methods after method resolution. Moreover, the instructions

of Methods are different from those of the corresponding code item structure in Dex

file. Therefore, we add a new data collection point after dvmDefineClass() for the second

run, and then the Dex file is successfully recovered.
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Table 4.5: Difference between the original Dex file and recovered Dex file from the
samples of DB-15/DB-16 (⊕, � and � represent the recovered Dex file has additional
code, less code, and the same code compared with the original Dex file, respectively).

Packer Qihoo Ali Bangcle Tencent Baidu Ijiami
DB-15 � ⊕ ⊕ ⊕ ⊕ �
DB-16 � � ⊕ � ⊕� ⊕

Correctness of recovered Dex files We assess the correctness of recovered Dex files

from three aspects. First, we apply five popular static analysis tools, which can reverse-

engineer Dex files, to the recovered Dex files, because they adopt different verification

strategies to check Dex files. These tools include Baksmali [24], Dexdump [28], Dex2jar

[27], Jadx [30] and IDA Pro [29]. PackerGrind successfully recovers the Dex files of

almost all samples. The only exception comes from Dex2Jar when it handles the recovered

Dex files from Tencent samples (from DB-15). It failed to transform the Dalvik bytecodes

into java bytecodes due to Dex optimization conducted by DVM.

Second, we compare the difference between the original Dex files and the recovered

Dex files. We randomly select 60 packed samples (10 samples packed by each packer),

decompile the Dex files into Java codes, and then manually compare the decompiled Java

codes from the original Dex files and those from the recovered Dex files. The comparison

results are summarized in Table 4.5. The recovered Dex files are the same as the original

Dex files for Qihoo packer, Ijiami packer of DB-15, Ali packer of DB-16 , and Tencent

packer of DB-16.

Ali packer of DB-15 adds two classes to the original Dex files, each of which has one

field and three empty methods. It also inserts the invocation of “Exit.b(Exit.a())” to the

beginning of every Java method. Exit.a() just returns false and Exit.b() is empty. Tencent

packer of DB-15 adds two classes to each packed sample while Ijiami packer of DB-16

inserts five classes.
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For Bangcle packer, there are six additional classes and twelve additional classes

added to the packed samples of DB-15 and DB-16 respectively. In the main activity

class, a method named com sec plugin action APP STARTED() is inserted and invoked

at the beginning of the method smallemphonCreate(). Bangcle packer of DB-15

creates an intent named com.secneo.plugin.action.APP STARTED and broadcasts it in

com sec plugin action APP STARTED(). Bangcle packer of DB-16 further creates a new

monitoring thread in com sec plugin action APP STARTED(). Baidu packer of DB-15

adds two classes to each packed sample, and re-implements all the onCreate() methods

using the dynamic code modification technique. Baidu packer of DB-16 inserts one

additional class to each packed app but replaces the implementation of onCreate() methods

with native codes. Therefore, for these methods, the recovered Java code is less than the

original Java code.

Answer to Q4.2: PackerGrind can correctly recover all Dex code that are not removed

by packers as well as the additional classes/methods inserted by packers. Even for the

methods that are re-implemented in native code, PackerGrind can still recover useful

sematic information, based on which it is possible to regenerate the Dex code.

4.5.4 Comparison

While two recent tools, DexHunter and AppSpear, claimed to be general unpackers, only

DexHunter’s source code is available. Hence, we only compare PackerGrind , DexHunter

and Android-unpacker[2] using 30 randomly selected samples from six packers (i.e., 5

samples from each packer). We perform two-step checking on the correctness of recovered

Dex files. First, the Dex files can be disassembled by Baksmali. Second, we compare them

with the Dex files of the original apps. The failure in any step will lead to × in Table 4.6

indicating unsuccessful unpacking.
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Table 4.6: Comparison among Android-unpacker, DexHunter and PackerGrind.

Packer Qihoo Ali Bangcle Tencent Baidu Ijiami
Android-unpacker [2] × × × × × ×

DexHunter [193] × √ √ √ × ×
PackerGrind

√ √ √ √ √∗ √

Android-unpacker recovers Dex files by attaching to the app process through ptrace and

dumping Dex files in memory. However, it cannot be attached to packed apps with anti-

debugging capability. Moreover, for packers that dynamically release and modify Dex

files, Android-unpacker cannot obtain the valid Dex files because it does not know the

proper dumping moment.

PackerGrind can successfully recover all Dex files from six packers. We mark Baidu

samples with * because the Dex code in onCreate() of those samples has been re-

implemented in native code as detailed in Chapter 4.4.5. Although PackerGrind is not

designed to reverse-engineer native code, it can still provide very useful information about

the native method as explained in Chapter 4.4.5.

DexHunter cannot correctly recover the Dex files for samples from Qihoo, Baidu

and Ijiami. For Qihoo samples, the Dex files dumped by DexHunter only

contain stub classes instead of real code, such as com.qihoo.util.ConFiguration and

com.qihoo.util.StubApplication, because Qihoo packer uses its own functions instead of

runtime methods monitored by DexHunter to load classes. For Baidu samples, the Dex

files dumped by DexHunter cannot be disassembled because their Dex headers have

been modified by the packed apps. Hence, they cannot be recognized by de-compilers.

DexHunter also cannot recover the original Dalvik bytecodes of onCreate(). For Ijiami

samples, DexHunter cannot unpack them successfully due to the time-out checking

mechanism utilized by Ijiami. More precisely, the packed apps will check the existence
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of a long-running task, which exceeds a time threshold, and exit if found. Therefore, the

process of DexHunter will stop because its unpacking operations takes such a long time

that the packed app exits quickly.

Answer to Q4.3: PackerGrind outperforms other available unpacking tools (i.e., Android-

unpacker and DexHunter).

4.5.5 Unpacking Malware

We apply PackerGrind to 200 malware samples packed by eleven popular packers and

successfully recover all Dex files. By performing static analysis on these Dex files, we find

that malware often employed packers to hide the invocations of sensitive APIs requiring

permissions. Given a Dex file, we scan all sensitive APIs in it, and count how many

permissions are required according to the mapping between permissions and APIs from

PScout [50]. It is worth noting that many detection systems leverage sensitive APIs and

permissions to discover mobile malware [190, 51, 186, 175, 162].

Let Pp and Pr denote the number of permissions required by a packed app and its

recovered Dex file, respectively. We calculate the means of Pp and Pr for all malware

samples packed by a packer. The result listed in Table 4.7 shows that from the recovered

Dex files we find more evidences (i.e., sensitive APIs requiring certain permissions)

to explain why a malware sample needs certain permissions. For example, for Naga

samples, before unpacking, we cannot find any API invocation requiring the permissions

in the manifest (i.e., Pp = 0). Malware detection system may think that these samples

just overclaim the permissions without using them. In contrast, after unpacking, we

can identify API invocations that require 3 permissions in the manifest on average (i.e.,

Pr = 3). Let Ap and Ar indicate the number of sensitive API invocations in a packed

app and its recovered Dex file, respectively. We compute the means of Ap and Ar for all
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Figure 4.8: CF-Benchmark results.

malware samples packed by a packer. The result listed in Table 4.7 obviously indicates

that many more sensitive APIs can be found from the recovered Dex file. For example,

no sensitive API invocation is found in malware samples packed by Ijiami whereas on

average 45.88 sensitive API invocations can be found from the recovered Dex files.

Answer to Q4.4: PackerGrind can facilitate malware detection by exposing the hidden

malicious components.

4.5.6 Overhead

To evaluate the overhead introduced by PackerGrind, we run CF-Benchmark [25] 30 times

on Nexus 5 without Valgrind, with Valgrind, and with PackerGrind, respectively. The

scores of CF-Benchmark on the same smartphone without Valgrind serve as the baseline

for comparison. Figure 4.8 shows the results obtained in three scenarios, which include the

overall scores, the scores of Java operations, the scores of native operations. We can see

that Valgrind incurs 12.4 times slowdown and PackerGrind brings 17.6 times slowdown

on average compared with the baseline. Since PackerGrind is based on Valgrind, it is still

efficient because it is only 1.34 times slower than Valgrind. Compared with the dynamic
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analysis systems based on emulator that may introduce 11-34 times slowdown[180],

PackerGrind has acceptable efficiency.

Answer to Q4.5: PackerGrind introduces acceptable low overhead compared with that of

Valgrind and emulator-based dynamic systems.
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Chapter 5

Scrutinizing Smartphone-Based Mobile
Network Measurement Apps

5.1 Overview

Many apps have been developed to measure the performance of mobile networks.

Unfortunately, their measurement results may not be what users have expected, because

the results could be biased by various factors and the apps’ descriptions may confuse

users. Although a few recent studies pointed out several factors, they missed other

important factors and lacked fine-grained analysis on the factors and measurement apps.

Moreover, none has studied whether or not the descriptions of such apps will mislead

users. In this thesis, we conduct the first systematic study of the factors that could bias

the result from measurement apps and their descriptions. We identify new factors, revisit

known factors, and propose a novel approach with new tools to discover these factors

in proprietary apps. We also develop a new measurement app named MobiScope for

demonstrating how to mitigate the negative effects of these factors. Furthermore, we

construct enhanced descriptions for measurement apps to provide users more information

about what is measured. The extensive experimental results illustrate the negative effects
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of various factors, the improvement in performance measurement brought by MobiScope,

and the clarity of the enhanced descriptions.

With respect to performance measurement, our major contributions in this chapter are

summarized as follows:

• We conduct the first systematic study of the factors that could bias the result from

measurement apps by identifying new factors, revisiting known factors, and quantifying

the negative effects through extensive experiments.

• We propose a novel approach combining static bytecode analysis and dynamic trace

analysis, and develop practical tools to facilitate discovering these factors in apps.

• We develop MobiScope, a new measurement app that adopts various techniques to

mitigate those factors’ negative effects.

• We perform the first examination on the clarity of measurement apps’ descriptions, and

construct enhanced descriptions to inform users what is measured.

The rest of this chapter is organized as follows. Chapter 5.3 elaborates the classes of

factors. Chapter 5.4 details AppDissector and AppTracer for inspecting the factors.

Chapter 5.5 describes MobiScope. We present experiments in Section 5.6, and report user

studies in Chapter 5.7.

5.2 Background

5.2.1 Mobile Network Measurement

Recent studies demonstrated that the measurement result from the mobile measurement

apps may be biased [177, 114]. For example, the round-trip time (RTT) measured by

an app is not exactly the network RTT. According to RFC 2681 [42], the RTT reported
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Listing 5.1: RTT measurement code
1 /* Run HTTP ping measurement task */
2 public long Measurement() {
3 HttpRequestBase request;
4 ... // Initialize request
5 long startTime = System.currentTimeMillis();
6 HttpResponse response = httpClient.execute(request);
7 StatusLine statusLine = response.getStatusLine();
8 ... // Parse HTTP response
9 long duration = System.currentTimeMillis() - startTime;

10 return duration; // Return measurement result
11 }

by an app is determined by the host times, which include the timestamp just prior to

sending the packet and that right after receiving the response packet, whereas the network

RTT is calculated using the wire times, which refer to the time when the packet leaves

the smartphone’s network interface (NIC) and the time when the corresponding response

packet arrives at the smartphone’s NIC. Our previous work showed that the difference

between host times and wire times is not ignorable because of the delay noise introduced

by the device, such as context switch in operating system (OS), Dalvik virtual machine

(DVM) in Android system, etc. [177]. Recent study from Li et al. [114] validated our

observation and reported that the delay due to DVM and Linux kernel is around 2.4ms. As

another example, when measuring network capacity, the probing packets are expected

to be sent out back-to-back (i.e., zero spacing between probing packets) [188, 122].

Unfortunately, we observed that the delay noise from the device will notably enlarge the

spacing[177].

5.2.2 A Motivating Example

We use a real example to demonstrate how to determine whether an app is affected by

certain pitfall (e.g., P2 of HTTP ping in Section 5.3.1) by performing both static bytecode

analysis and dynamic trace analysis.

The code of the HTTP ping function is shown in Listing 5.1, where the Java method
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execute() in the class Android.net.http.AndroidHttpClient is invoked to

send an HTTP request and receive the corresponding response (i.e., line 6). Two

timestamps are recorded before and after the invocation of execute() (i.e., lines 5 and 9)

and they are used to calculate the RTT at Line 9. The two timestamps are obtained through

invoking the method System.currentTimeMillis() in Line 5 and Line 9, respectively.

Besides, the duration (i.e., RTT result) is also calculated in Line 9, and the RTT result

returns in Line 10.

However, the Java method execute() actually involves several steps, including

performing DNS lookup, creating socket, establishing a TCP connection, setting socket

options, sending the HTTP request, and receiving the corresponding HTTP response.

Since establishing the TCP connection requires one RTT, it will cost at least 2 RTTs for

finishing the method execute(). In other words, the code in Listing 5.1 is affected by the

pitfall and will lead to wrong RTT values.

5.3 Factors Affecting Measurement Results

We classify the factors that could bias the measurement into three categories,

namely implementation patterns (Section 5.3.1), Android architecture and configurations

(Section 5.3.2), and network protocols (Section 5.3.3). We identify new factors in

categories 1 and 2, including implementation patterns for HTTP/TCP based measurement,

monitoring and power management mechanisms in Android. Moreover, we revisit known

factors, including multiple-layer nature of Android in category 2 and mobile and WiFi

protocols in category 3. More precisely, in contrast to previous study [114], we conduct

a fine-grained analysis on the effect of each layer and examine the new Android runtime.

For category 3, we examine the protocols’ effect on the measurement result and suggest

solutions.
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Figure 5.1: An example of RTT measurement conducted on an Android smartphone. We
use dash-dot line to connect t2 and t2 k because the TCP SYN packet is sent by the kernel
but triggered by the function at the runtime layer. Similarly, the dash-dot line connecting
t3 k and t3 indicates that the TCP SYN/ACK packet is received by the kernel without
forwarding to the runtime layer but the system will notify the function at that layer.

We use the process of RTT measurement, one primitive measurement task[42], to

explain the effect of various factors. These factors have similar effect on the capacity and

throughput measurement, because they will introduce non-negligible time gap to back-to-

back packets used for measuring these metrics[122]. Note that although the effect of some

factors could be mitigated by using statistical algorithms (e.g., outlier detection) [128],

eliminating the effect of other factors requires app re-design or modification (e.g., those in

Section 5.3.1).

Figure 5.1 shows the measurement process with three stages, namely, (1) DNS lookup;

(2) TCP three-way handshaking; and (3) preparing and sending HTTP request 1 to a

remote web server, and receiving HTTP response 1. Figure 5.1 also depicts the multiple

layers of Android, including runtime, system (i.e., the user space of Android’s customized

Linux), kernel, and network interface (NIC). In Figure 5.1, ti denotes the timestamp

obtained at the runtime layer. ti S , ti K , and ti N (i=0. . . 9) represent the timestamps

recorded at system/kernel/NIC layer, respectively. According to RFC2681, ti, ti S , and

ti K are host times, referring to the timestamps acquired right before sending a request and

those obtained just after receiving the response at different layers. ti N is the wire time,

91



including the time when a packet leaves the NIC and the time when the response packet

arrives at the NIC.

5.3.1 Category 1: Implementation Patterns

Although various apps claim measuring the same metric (e.g., RTT), they may adopt

different implementation patterns that lead to different results. We summarize common

patterns used by apps for measuring RTT in Figure 5.2. Generally, an app first obtains a

timestamp (i.e., tStart), and then performs the measurement. Finally, it records another

timestamps (i.e., tEnd) and computes RTT as tEnd− tStart. Note that we only examine

HTTP (or TCP) based RTT measurement, because most measurement apps support them

and it is easy for users to find a web server for measurement, not to mention that HTTP is

widely used by various apps[184].

HTTP-based RTT measurement: H-P1 measures t3− t0 if resolving the destination’s IP

is required. Otherwise, it outputs t3−t2. More precisely, after tStart is gained, an instance

of URLConnection is created through openConnection() in the class java.net.URL.

Then, connect() in the class java.net.HttpURLConnection is called before getting

tEnd. Note that the Java method connect() calls the native method getaddrinfo() to

perform DNS lookup, and then invokes the native method connect() to create a TCP

connection.

H-P2 measures t5 − t0 if IP resolving is needed. Otherwise, it estimates t5 − t2.

Specifically, between getting tStart and tEnd, it employs execute() in the class org.

apache.http.client.HttpClient to send an HTTP HEAD request and receive

the corresponding HTTP response. Note that before sending an HTTP request and

receiving the HTTP response, execute() calls the native methods getaddrinfo() and

connect() to establish a TCP connection.
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Figure 5.2: Implementation patterns for HTTP-based and TCP-based RTT measurement.

H-P3 measures t5 − t2 using methods in the class java.net.Socket. The whole

process includes establishing the TCP connection, constructing an HTTP request, sending

the HTTP request, receiving the HTTP response, and parsing the HTTP response.

H-P4 estimates t5−t4, which is the correct network RTT measured by HTTP. To minimize

the difference between host time and wire time[42], tStart is captured just before sending

the request encapsulated in one packet, and tEnd is recorded right after receiving the first

packet of the response.
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TCP-based RTT measurement: T-P1 measures t3 − t0 if IP resolving is

required. Otherwise, it yields t3 − t2 or a much larger value depending on the

implementation of isReachable(). More precisely, after using getByName() in the class

java.net.InetAddress to resolve the IP, it invokes isReachable() in the same class

for checking whether the destination is reachable. According to official documentation [1],

isReachable() first uses ICMP to test the reachability, and returns to TCP (i.e., exploit TCP

three-way handshaking for RTT measurement) if ICMP method fails. Therefore, if ICMP

packets are dropped by a router, which is common in today’s Internet, the measured value

would be much larger than the real RTT. Although we find that the current implementation

of isReachable() does not realize the ICMP-based probing, it is not recommended to use

this method for measuring RTT in case the ICMP-based probing is realized in future

version.

T-P2 invokes two Java methods: InetSocketAddress() in the class java.net.

InetSocketAddress and connect() in the class java.net.Socket. Since the

former method will conduct DNS lookup, T-P2 measures t3− t0 if IP resolving is needed.

Otherwise, it outputs t3 − t2. To accurately measure network RTT, we suggest recording

tStart and tEnd right before and after invoking connect() to avoid the additional delay

due to DNS lookup, as shown in T-P3 in Figure 5.2(b).

5.3.2 Category 2: Android Architecture and Configurations

Multiple-layer nature of Android. Since apps run within its runtime, which is a Linux

process, packets sent from apps would be delayed at all layers. Since Android 5.0, the

default runtime is changed from the Dalvik virtual machine (DVM) to the new Android

runtime (ART) for better performance [4]. In particular, apps will be compiled into

native code before execution. Note that 51.6% Android devices are still using DVM [31].
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Although Li et al. found that DVM may introduce considerable delay [114], they neither

conduct fine-grained analysis on the delay caused by different layers nor study ART.

Monitoring mechanisms. Several monitoring mechanisms can be used in Android for

monitoring packets. libpcap captures packets in the kernel through BPF filter. Netfilter

allows users to register packet handlers and enables iptables to inspect packets that match

pre-specified rules. Using iptables, VpnService [19] allows apps to redirect traffic to a

tunnel. It has been employed to capture packets and conduct measurement [146]. All these

mechanisms will introduce additional delay if they inspect the measurement packets.

Power management. Android has an aggressive power management strategy but provides

a mechanism called wake locks [10] that empowers apps to keep the device awake.

These mechanisms have an indirect impact on measurement results because they affect

the parameters of PSM (Power Save Mode) adopted by WiFi interface, which invites

additional delay.

5.3.3 Category 3: Network Protocols

The effect of network protocols on measurement is mainly due to their state transitions,

because previous studies reveal that the state transitions will lead to noticeable delays [90,

148, 135]. We revisit these factors because to what extent it may bias the measurement

result remains unknown.

Cellular Network. The RRC (Radio Resource Control) protocol of cellular networks

influences power consumption and network performance [90, 148]. Typically, 3G has

three main RRC states (i.e., IDLE, FACH and DCH), while LTE has two main states (IDLE

and CONNECTED). Typically, packets transmitted by cellular interface in the DCH (3G)

or CONNECTED (LTE) state experience the shortest delay. Therefore, when the cellular
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interface is in the states other than DCH or CONNECTED, RTT measurement will suffer

from additional delays due to the state transition.

WiFi Network. PSM allows WiFi interfaces to sleep for an integer number of beacon

intervals (i.e., ListenInterval), and then wake up to detect the presence of its buffered

frames in the access point (AP) [96]. If no frames are detected, the interface continues to

sleep for ListenInterval beacon intervals. Otherwise, it wakes up to retrieve the buffered

frames one by one. When none of the buffered frames are left, the WiFi interface goes

back to sleep again. Pyles et al. found that different PSM algorithms lead to different

delays [135].

5.4 Is an App Affected by These Factors?

We combine static bytecode analysis and dynamic trace analysis to inspect whether an app

uses any implementation pattern in Figure 5.2, and whether it adopts any approaches to

mitigate the negative effect of the factors described in Chapter 5.3. We further develop

two tools (i.e., AppDissector and AppTracer) to facilitate this inspection. Given

a measurement app, AppDissector locates its measurement code and checks: (C1)

whether it uses native code to perform the measurement for avoiding the effect of runtime;

(C2) whether it employs VpnService to handle packets; (C3) whether it requests wake lock

and Wi-Fi lock to mitigate the effect of power saving mechanisms. AppTracer collects

information of method calls in Android framework, system libraries, and system calls to

construct the cross-layer method call graph and determine whether the app uses libpcap or

iptables.
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 1    long v20; 
 2    Socket v48; 
 3    v20 = System.currentTimeMillis(); 
        ... 
 4    v48 = v55.createSocket(); 
 5    v48.connect(v29, (HTTPing.timeout * 1000)); 
 6    v28 = v48.getInputStream(); 
 7    v40 = v48.getOutputStream(); 
        ... 
 8    v40.write(v23.getBytes()); 
 9    byte[] v5 = new byte[128]; 
10   int v38 = v28.read(v5); 
        ... 
11   double v64=(System.currentTimeMillis()-v20)/1000; 
12   this.sendMessage("text","Run-time:"+v64+"s"); 

Data dependency
Control flow

(a) Static bytecode analysis.

     ...  
 5  Invoke Socket:connect() 
       Invoke Posix:socket() 
       Return Posix:socket() 
       Invoke Posix:bind() 
       Return Posix:bind() 
       Invoke Posix:connect() 
       Return Posix:connect() 
 5  Return Socket:connect() 
     ... 
 8  Invoke PlainSocketOutputStream:write() 
       Invoke Posix:sendtoBytes() 
       Return Posix:sendtoBytes() 
 8  Return PlainSocketOutputStream:write() 
      ... 
10 Invoke PlainSocketInputStream:read() 
       Invoke Posix:recvfromBytes() 
       Return Posix:recvfromBytes() 
10 Return PlainSocketInputStream:read() 
      ... 

(b) Dynamic trace analysis.

Figure 5.3: A snippet of the static and dynamic analysis results of HTTPing.

5.4.1 Static Bytecode Analysis

Pre-processing. Given an app, AppDissector uses VulHunter[136] to its abstract

syntax trees(AST), inter-procedure control flow graph(ICFG), method call graph, and

system dependency graph, and utilizes IccTA [113] to find the target of each intent

because an app’s components can communicate through intents.

Then, we look for the entry of the measurement process. If the entry is a UI component,

we locate its callback functions from two sources, because they may start the measurement

process. First, we parse the layout file to find the callback functions because they can be

set in it. Second, since an app can get a UI component in code and register event listeners,

we first obtain the UI component’s ID and then enumerate all statements using this ID as

parameters. After that, we search the AST of each event listener to locate the callback

functions.

Locating measurement code. The measurement code includes the measurement

result related code for deriving the result and the measurement procedure related
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code for conducting the measurement. We first look for the former by locating the

variables/fields representing the measurement results and then performing backward

slicing and chopping [110]. More precisely, we conduct backward slicing to identify

the statements that influence the computation of measurement results. We perform the

depth-first traversal from the statement that gets the measurement results following the data

dependency relation. The traversal stops at local declaration statement because it defines a

new variable without depending on other statements. All statements on the paths are saved

in W . Then, we perform chopping to identify the statements that use the variables defined

in W . For each statement in W , we check the variable defined in it. If the variable is used

by another statement s, we add s into W . Finally, all statements in W are regarded as the

measurement result related code.

After that, we leverage the statements in W to look for the measurement procedure

related code. More precisely, we locate the first and the last statements without considering

local declaration statements, and then traverse the control flow graph to find the paths

between them. All statements on the paths are saved in W ′. We output the statements

in W and W ′, and regard the statements that are not included in W as the measurement

procedure related code.

We use HTTPing, whose code snippet is shown in Figure 5.3(a), as an example to

illustrate the procedure. In HTTPing, the measurement result v64 is calculated at line 11.

To know how this result is generated, we add line 11 into W and perform backward slicing

from it. The depth-first traversal stops at the local declaration statement (i.e., line 1). We

also add lines 1 and 3 to W . To know how the measurement result is used, we perform

chopping on each statement in W . As v64 used in line 12 (i.e., show user the measurement

result), we add line 12 into W . Finally, W contains lines 1, 3, 11, 12. We regard them as

the measurement result related code. Then, we traverse from line 3. The traversal stops at

line 12. Lines 3-12 are put in W ′. Since lines 4-10 are not included in W , we regard them
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as the measurement procedure related code.

C1: We traverse the ICFG from the entry of the measurement process to identify

statements invoking native methods that affect the measurement results. If found, we use

dynamic trace analysis to confirm whether the native methods perform the measurement

or not, because our static bytecode analysis module cannot handle native code currently.

C2: We check whether the app requests the permission BIND VPN SERVICE in

AndroidManifest.xml and invokes android.net.VpnService.establish() to create a

VPN interface. If so, the app uses VpnService.

C3: An app can keep the screen on by calling Window.addFlags() with

FLAG KEEP SCREEN ON or setting the attribute android:keepScreenOn to “true”

in the layout file. We look for them by inspecting the ASTs and the layout file. To lock the

Wi-Fi, the app must request WAKE LOCK permission and invoke WifiLock.acquire(). We

discover it by parsing the manifest file and checking the ASTs.

5.4.2 AppTracer: Dynamic Trace Analysis

It is non-trivial to design a tool running in smartphone to collect information about

method calls across layers. We accomplish it by developing AppTracer based on

Valgrind [126], whose architecture is shown in Figure 5.4. The tracers trace method

invocations and returns at the corresponding layers, and the trace analyzer generates the

control flow information based on the logs generated by the tracers.

DVM Runtime Tracer. The information of each invoked DVM function can be collected

from dvmMethodTraceAdd() if Android’s profiling framework is enabled [179]. Therefore,

the DVM runtime tracer wraps this function for tracing functions at the DVM layer.

When a measurement app is launched, we enable Android’s profiling framework, and
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Figure 5.4: Architecture of AppTracer

then the DVM runtime tracer collects the information of method invocation and return in

the wrapper function of dvmMethodTraceAdd().

ART Runtime Tracer. AppTracer supports ART. Since the functions

Trace::MethodEntered() and Trace::MethodExited() are called when each method is in-

voked and returned, respectively, the ART runtime tracer obtains the entering and exiting

events of the involved methods by wrapping both functions in libart.so and enabling

Android’s profiling framework.

System Tracer. It collects information about system library functions and system calls. By

using Valgrind to get the instruction level information and the addresses of all functions

in loaded libraries, it obtains the function invocation and return information by matching

function addresses and the target addresses of jump instructions. Since Valgrind can

obtain the number of each system call when it is invoked and returns, we maintain the

relationship between the number and the name of each system call to identify all system

calls involved.
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Enter    R   DatagramSocket.send()
       
Enter    S  sendto()
       
Enter    K  sys_sendto()
     
Enter    K  dev_hart_start_xmit()
    
Exit       K  dev_hart_start_xmit()
     
Exit       K  sys_sendto()
    
Exit       S  sendto()
    
Exit       R  DatagramSocket.send()

Action Function

DatagramSocket.send() {
  ...
  sendto() {
    ...
    sys_sendto(){
      ...
      dev_hart_start_xmit()
        ...
      }
  }
}

Tracing retult Invocation relationship

R:  Runtime      S:  System       K:  Kernel      N: NIC

Type

TN
TK

TS
TR

Figure 5.5: Example of reconstructing invocation relationship from tracing result.

Kernel Tracer. It utilizes the function graph tracer of ftrace to record the flow of every

function call in the kernel and then constructs the function call graph according to the

traces generated by the function graph tracer.

Trace Analyzer. It constructs the cross-layer control flow by exploiting the order of

entering and exiting a function, which are recorded by tracers at different layers. For

example, Figure 5.5 shows the tracing results generated by AppTracer. Since these

functions are not executed in parallel, we reconstruct the cross-layer dynamic control flow

as shown in the sub-figure on the right side of Figure 5.5 according to the entering and

exiting orders of all invoked functions at different layers.

With the cross-layer control flow, we further correlate it to the result of static analysis.

For example, from the dynamic analysis results of HTTPing shown in Figure 5.3(b),

we match Java methods in Figure 5.3(a) to JNI functions in libcore io Posix.cpp.

Therefore, by combining the results of static and dynamic analysis, we learn that the RTT

measured by HTTPing includes constructing TCP connection, sending HTTP request,

receiving HTTP response. In other words, it follows the H-P3 pattern in Figure 5.2.

To check whether an app uses iptables, AppTracer calls “iptables -L” to list all

Netfilter rules. Since libpcap captures packets through PF PACKET socket, AppTracer
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hooks the function socket() to monitor whether PF PACKET socket is created. If so,

AppTracer checks whether the socket is used for receiving packets. Based on the result,

AppTracer knows whether the app uses libpcap to capture packets.

5.5 MobiScope

We develop MobiScope to demonstrate how to mitigate the effects of the factors in

Chapter 5.3. To mitigate the effects of multiple layers (i.e., shorten the difference between

host time and wire time [42]), MobiScope’s two major modules (i.e., kping and kband

) are realized in kernel. Although installing kernel modules requires root privilege, we

develop them for users requiring highly accurate measurement results.

Using ICMP packets to measure RTT, kping first constructs an echo request packet

in kernel and stores it in the structure sk buff, and then sends it out by calling kernel

function dev hard start xmit(), which is the entry of the device driver [177]. It uses

ktime get ts() to obtain the sending timestamp with nanosecond resolution. kping

registers a Netfilter function to receive the echo reply packet. Before the measurement,

kping calls the function net enable timestamp() to enable sk buff timestamping so that

each packet’s arriving timestamp will be stored in the field tstamp of structure sk buff by

the NIC driver. To measure capacity or throughput, kband sends packet trains through

dev hard start xmit() and receives packets through another registered Netfilter function. It

records the timestamps by calling ktime get ts().

Although MobiScope uses Netfilter, we minimize its impact on the measurement by

taking two measures: first invoking functions in the device driver to send packets for

excluding the impact of Netfilter; second manipulating the Netfilter chains to register the

packet receiving function at the first position for mitigating the impact of other Netfilter
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Figure 5.6: The testbed.

rules.

To mitigate the effect of power management and NIC state transition, MobiScope

acquires WakeLock and WifiLock to keep the device and WiFi radio awake, respectively. It

also sends several packets before starting the measurement to assure that the WiFi state or

the RRC state is at the awake state and the DCH(3G)/CONNECTED(LTE) state, individually.

MobiScope also includes modules that realize patterns H-P4 and T-P3 for conducting

HTTP and TCP based RTT measurement at system layer.

5.6 Evaluation

5.6.1 Testbed

As shown in Figure 5.6, the smartphone communicates with an Apache2 web server via

a host. The host offers the smartphone two access methods, namely, USB tethering and

WiFi (i.e., an AP), and it uses Linux traffic control (TC) and netem to emulate various

capacity and additional delay. USB tethering offers stable wired connection with very low

latency. In contrast, WiFi channel may have variable and large delay due to contention and

signal variance. Hence, when examining factors except WiFi state transitions, we connect
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Figure 5.7: HTTP/TCP-based RTT measurement by different ping apps.

the smartphone to the host via USB tethering to avoid unexpected noise. Otherwise, we

use WiFi access. Besides collecting timestamps in Android, we also record the timing

information of packet transmissions at all possible vantage points in the testbed.

We have two smartphones: Samsung S3 with Exynos 4412 Quad and Murata M2322007

WiFi module, and LG Nexus 5 with Qualcomm MSM8974 Snapdragon 800 and Broadcom

BCM4339 WiFi module. The LG Nexus 5 runs either official Android 4.4 or Android 6.0

for DVM or ART. The Samsung S3 runs CM-11.0 (based on Android 4.4) or CM-13.0

(based on Android 6.0), because AOSP builds only support Nexus devices. The apps

under investigation including Fing, MobiPerf, Netalyzr, WiFi Speed Test, Internet Speed

Test, Ping&DNS, PingTools, he.net, HTTPing, and Httping Tool. These tools cover ten

different popular network measurement apps. Their implementation patterns identified by

our analysis are summarized in Table 5.1.

5.6.2 Effect of Factors in Category 1

In this experiment, we add 100ms delay to the USB connection between the smartphone

and the host. Then we run the measurement applications sequentially and repeat for 50

times. Thus each app returns 50 measurement results for comparison. The left subfigure
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of Figure 5.7 shows the results of HTTP ping from HTTPing, PingToos, Httping

Tool, and MobiScope. The right subfigure of Figure 5.7 illustrates the results of TCP

ping from Ping&DNS, PingTools, WiFi-Speed Test, and MobiScope. Since all

apps use the default ping to conduct ICMP ping, we compare it and MoboScope in

Section 5.6.5.

For HTTP ping, the results from HTTPing and PingTools are around twice of the

real RTT. It is because HTTPing and PingTools use the patterns H-P2 and H-P3

respectively. Hence, their results include the time for establishing TCP connection and

the time for sending request and receiving response. Although Httping tool claims

using HTTP request and response to measure RTT, its implementation is similar to pattern

T-P3 except that it sends HTTP request before getting tEnd. Therefore, its result is similar

to that from MobiScope but has larger variance.

For TCP ping, Ping&DNS and PingTools adopt patten T-P2 and WiFi Speed

Test follows pattern T-P1. Their results are similar to that from MobiScope. The reason

is we use the web server’s IP address instead of domain name so that apps do not need

to perform DNS lookup. In other words, they measure t3 − t2 in Figure 5.1. This also

explains why HTTPing and PingTools get the similar results.

Summary Implementation patterns may obviously bias the measurement result.

Developers had better describe the implementation patterns of apps to avoid confusing

the users.

5.6.3 Effect of Factors in Category 2

Measuring the delays at different layers. To profile the time for delivering a packet

across different layers, we construct a cross-layer method call graph using AppTracer,
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Figure 5.8: Time consumed for sending a UDP packet across different layers.

and then select methods as the entries of different layers. Note that we use the execution

time of an entry function to approximate the time used to deliver a packet at the

corresponding layer.

To minimize the noise due to timestamp acquiring functions, we get the timestamps

used for profiling a Java method from the system layer instead of the runtime layer.

More precisely, given a Java method, we obtain the timestamps right before and after

its execution by modifying dvmInterpret() (in libdvm.so) and ArtMethod.Invoke() (in

libart.so) for DVM and ART, respectively. Moreover, we invoke the Java method

through Java reflection so that this method will be called and returned in dvmInterpret()

or ArtMethod.Invoke(), individually. Then, at runtime and system layers, we acquire

timestamps through gettimeofday(). At kernel and device layers, we get them through

kernel function ktime get ts().

Delay due to Android Architecture. To profile the time consumed for delivering a UDP
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packet across different layers, we select DatagramSocket.send(), sendto(), sys sendto()

and dev hard start xmit() as the entries of runtime/system/kernel/NIC layer, as shown in

Figure 5.5. sys sendto() and dev hard start xmit() are kernel functions. The former is the

kernel implementation of sendto() while the latter delivers the packet to the NIC driver.

Moreover, the delays at runtime/system/kernel/NIC layer correspond to TR/TS/TK /TN in

Figure 5.5.

Figure 5.8 shows the CDF of the time consumed at different layers for sending a UDP

packet from apps to network. This experiment is repeated for 100 times. We can see

that the delays at the device, kernel and system layers are relatively stable and small. For

example, Figure 5.8(a) shows that 90% delays are less than 2.13us/10.78us/58.01us at the

device/kernel/system layers for Android 4.4. Similarly, Figure 5.8(b) illustrates that 90%

delays are less than 2.19us/13.07us/57.00us at the device/kernel/system layers for Android

6.0.

DVM and ART introduce longer delay than other layers, and their values are not stable.

Figure 5.8(a) demonstrates that in DVM 20% delays are less than 98.68us and 70% delays

are in the range of [98.68, 251.57] us. ART usually causes shorter delay than DVM.

Figure 5.8(b) shows that in ART 20% delays are smaller than 80.68us and 70% delays are

in the range of [80.68, 128.44] us. The unstable delays caused by the runtime maybe due

to the kernel’s process scheduling.

Delay due to monitoring mechanisms. We send UDP packets of [628, 1428] bytes from

the runtime layer or the system layer, and measure the throughput with/without certain

monitoring mechanisms. Table 5.2 shows that libpcap and Netfilter significantly degrade

the throughput due to additional delays.

Netfilter. We insert 10 string matching rules into iptables before conducting the

experiments. Table 5.2 shows that the Netfilter rules result in throughput degradation no
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matter the measurement is conducted at the runtime or the system layer. For example, in

LG Nexus 5 running Android 6.0, the throughput can achieve 136.40Mb/s and 215.37Mb/s

at the runtime and the system layer, respectively, if the 1428-byte packets are used.

However, if the Netfilter rules are applied, the throughput drops to 68.42Mb/s and

75.03Mb/s, individually.

Libpcap. Since Tcpdump uses Libpcap to capture packets, we turn it on or off for

getting the results with or without Tcpdump. Table 5.2 illustrates that Tcpdump also

brings obvious overhead to the packet transmission. For example, the throughput

measured by 1428-byte packets at the Android 4.4/6.0 runtime layer in LG Nexus 5

is 134.45/136.40Mb/s without Tcpdump, but the value drops to 75.21/77.41Mb/s when

Tcpdump is used. Its effect is less than that of Netfilter.

VpnService. We launch LocalVPN to measure the effect of VpnService. Since preliminary
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experiment shows that VpnService will significantly delay or drop packets, we only

evaluate the additional delay caused by it. More precisely, to emulate different network

conditions, we add [10,20,30] ms delay and use MobiScope to measure RTT 100 times.

Figure 5.9 shows that VpnService causes large additional delay to the results. The

differences between the mean values of the measurement results with/without VPN is

around 14ms.

Summary The cross-layer nature of Android brings non-negligible delay to the

measurement results for both DVM and ART. Note that packets sent across layers

experience different delays and conducting measurement in kernel suffers less delay.

Besides, the popular monitoring mechanisms also introduce obvious delay to the

measurement results. Note due to its close relation with Wifi state transition, the power

management experiment is put in the sub-chapter below.

5.6.4 Effect of Factors in Category 3

We run MobiScope to perform ICMP-based RTT measurement at the system layer with

different time intervals for estimating the delay due to the NIC state transition.

Delay due to cellular state transition. As shown in Figure 5.10, when the smartphone

connects to 3G network, the measured RTTs are substantially inflated when the

measurement interval exceeds 10s. Since there is no background traffic generated during

the measurement period, we can infer that the RRC state switches from DCH to IDLE

when the idle time exceeds 10s. Similarly, we can learn that the RRC transition from

IDLE to DCH consumes around 700 ms.

When the smartphone connects to an LTE network, Figure 5.10 illustrates that the

measured RTTs are increased by 200ms when the measurement intervals (i.e., idle
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time) become larger than 15s. Therefore, we can infer that the timeout value of the

CONNECTED state is 15s and the delay introduced by state switch from IDLE to

CONNECTED is more than 200ms. Figure 5.10 also shows that the state transition of

either LTE or 3G can cause significant delay to the measurement results, and the delay

resulted from 3G state transition is more than three times of the delay brought by LTE

state transition.

Delay due to WiFi state transition. We describe the result of sending packets and that of

receiving packets, individually.

Packet sending. Figure 5.11 shows the measured RTT with different measurement

intervals. For Samsung S3, the RTT values roughly center around 2ms, 6ms and 10ms,

which are separated at intervals of 50ms and 200ms. For Nexus 5, the RTT values roughly

center around 2ms, 5ms, 8ms, and 11ms. Moreover, they stay almost constant within a

range of measurement intervals, and abruptly increase when the interval reaches a certain

value (i.e., 50ms, 200ms, and 250ms). Both Samsung S3 and Nexus 5 devices have a state

transition when the measurement interval is 200ms.

By analyzing the captured 802.11 frames, we find that after 200ms of inactivity (i.e.,

ListenInterval=200ms) the WiFi interface goes to sleep. Therefore, if the measurement

interval exceeds 200ms, the WiFi interface goes to sleep after finishing an RTT

measurement and then wakes up for the next measurement. Before conducting a new

measurement after waking up, the WiFi interface needs some time to send a null data

frame (NDF) with power management bit set to 0 to retrieve frames buffered at the AP.

We can see that such additional time does not exist when measurement intervals are less

than 200ms. Moreover, the jumps at 50ms for Samsung S3 and both 50ms and 250ms

for Nexus 5 suggest other state transitions. Due to the lack of the WiFi driver’s source

code, we could just conjecture that they have proprietary PSM mechanisms, and we will
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investigate on it in future work.

For TCP ping, the tools Ping&DNS and PingTools adopt T-P2 implementation

pattern and WiFi Speed Test is implemented based on T-P1 pattern. As we represent

the web server in the test bed using IP address instead of domain name, the result of these

three tools are t3 − t2 as shown in Figure 5.1.

Packet receiving. Figure 5.12 shows the RTT values when the screen is on and off,

respectively. By analyzing the captured 802.11 frames, we find that the WiFi interface

adopts two different PSM schemes when the screen is on and off. Specifically, when the

screen is on, the WiFi interface wakes up with a time interval of 200ms to check buffered

packets in the AP. When the screen is off, such a time interval is 600ms.

Summary The NIC (i.e., 3G, LTE, WiFi) state transition can introduce obvious delays

to the measurement. LTE may cause less delay than 3G, and different WiFi chipsets have

different effects. Moreover, the effects are not the same when the smartphone is at different

status (i.e., screen on/off).

5.6.5 Evaluation of kping and kband

In this experiment, we connect the smartphone to a host via USB tethering and limit the

bandwidth to 100Mbs. Setting the server as the destination, we run kping and ping to

measure the RTT. Figure 5.13(a) shows that the RTTs measured by kping center around

0.3ms with an upper bound of 0.4ms whereas the RTTs measured by ping are highly

dispersed and fluctuated between 0.3ms and 1.3ms.

To evaluate the accuracy of capacity measurement, we run kband and iperf (native

program) on the smartphone, both of which send 1498-byte UDP packets to the server for

measurement. Moreover, to generate cross traffic, we run D-ITG [6] in the smartphone,
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which sends UDP packets through raw socket at the system layer. The rate of cross traffic

ranges from 0pkt/s to 8000pkt/s with an incremental step of 2000pkt/s. Figure 5.13(b)

shows the capacity measured by iperf and kband with varying cross traffic from the

smartphone to the server. We observe that when the volume of the cross traffic increases

both iperf’s and kband’s accuracy of capacity measurement decreases. However,

compared with iperf, kband is robust to cross traffic when measuring capacity. For

example, when the cross traffic reaches 8000pkt/s, kband can still achieve a high accuracy

with only 4.54% underestimation whereas iperf underestimates the capacity up to

49.54%.

Summary Conducting measurement in the kernel layer can obtain more accurate and

stable results. Moreover, it is more robust to cross traffic than the measurement at above

layers.
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Figure 5.13: Evaluation of kping and kband.

5.7 Examining Descriptions of Measurement Apps

Since ambiguous descriptions may confuse users what is measured, we construct enhanced

descriptions, each of which comprises a statement based on the static and dynamic analysis

and a figure showing how the measurement is performed. To evaluate the clarity of the
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official description and the enhanced one, we design questionnaires for 10 measurement

apps [14] and conduct user studies.

5.7.1 Questionnaire Design

Figure 5.14 shows a snippet of the questionnaire of a particular app. The figure shows how

the app actually conducts the measurement. The official description and the enhanced one

are presented in random orders unknown to respondents. In other words, DESC1/DESC2

could be the official one or the enhanced one. Such randomness is to avoid biased

result due to direct or indirect exposure of the official description. Note that the official

description is fetched from Google Play. For each description, we ask respondents whether

it is clear. They can only select one answer from “Abs YES”, “YES”, “Neutral”, “NO”,

“Abs NO”, resulting in integer scores from five to one, respectively. We recruit 29

respondents with knowledge of computer networks from three cities because without such

knowledge, a respondent may not understand the descriptions.

Apps Procedure of the ping task DESC1 Is DESC1 
clear? DESC2 Is DESC2 

clear? 

Ping&DNS 
 

 
Ping a server 
(via ICMP over 
IPv4 or IPv6 
and TCP), DNS 
lookup (with 
geographical 
lookup of IP 
addresses) 

□ Abs YES 
□ YES 
□ Neutral 
□ NO 
□ Abs NO 

Ping a server 
using TCP packets 
and the RTT 
result contains 
the time 
consumed to 
perform one DNS 
lookup and build 
one TCP 
connection 

□ Abs YES 
□ YES 
□ Neutral 
□ NO 
□ Abs NO 

Program

System

Kernel

Network Card

Remote Servers

ddNetwork Card

ssRRemRemRem eote Serververs

Net dard

ee SSSSSSSSSSSSSSSSSSSSeSeSeSerrrrrmmmmm tttttoteotootet
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artphone

DNS

Figure 5.14: A snippet of the questionnaire.

5.7.2 Result Analysis

We first investigate the clarity of official descriptions. For the 290 answers (10 answers

in each questionnaire), 25.8% (i.e., (13+62)/290) of them are “Abs YES”/“YES” (i.e., the
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respondents think that the official description is clear). 7.9% (i.e., 23/290) and 27.9% (i.e.,

81/290) of them are “Abs NO” and “NO”, respectively. For the enhanced descriptions,

71.7% (i.e., (97+111)/290) of the answers are “Abs YES”/“YES” and only 5.2% (i.e.,

(5+10)/290) of them are “Abs NO”/“NO”.

We contrast the official description with the enhanced one derived from static and

dynamic analysis. We find that the description of Httping Tool contradicts its

implementation because it claims to measure HTTP latency, but its implementation

measures the latency for establishing a TCP connection. The descriptions of most apps

are ambiguous due to limited details. For example, PingTools’s description only has

a simple sentence “ICMP, TCP and HTTP ping” without any details. Note that the result

of its HTTP ping could be twice of the result of its TCP ping, because it adopts H-P2 for

HTTP ping and T-P2 for TCP ping. Such a difference will confuse users. The description

of HTTPing, in our opinion, is the most accurate and complete. Although Netalyzr’s

description is simple, it clearly explains the meaning of each measurement result. That is

also a good practice.
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Chapter 6

Conclusion

6.1 Conclusion

Android has become the most popular mobile OS, and not all Android apps are benign

and well designed. Besides, static analysis could be easily impeded by the dynamic

features of programming languages or the protection mechanisms. In this thesis, we

focus on using dynamic analysis to identify the apps’ malicious actions and locate their

potential performance issues, and we have proposed a series of efficient dynamic analysis

approaches to monitor the behaviours of the target apps.

First, to assist Android security experts in analyzing potential malicious actions of

Android apps in various layers, we propose a novel on-device non-invasive analysis system

named Malton for the new Android runtime (i.e., ART). It provides a comprehensive view

of the Android malware behaviours, by conducting multi-layer monitoring and tracking,

as well as efficient path exploration. We have developed a prototype of Malton and the

evaluation with sophisticated real-world malware samples demonstrated the effectiveness

of our system.

Second, more and more malware authors start to employ packing techniques to hide
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the malicious code and impede static analysis, and the evolving app packers can easily

circumvent existing unpackers because they adopt a one-pass strategy and cannot monitor

the behaviours of the packers in multiple layers, and hence such unpacking tools are not

adaptive to the changes of packers. To address this challenging issue, we propose a novel

iterative process and develop PackerGrind to recover the Dex files from packed apps. With

the capability of conducting cross-layer tracking in real smartphones, PackerGrind can

effectively monitor the packing patterns and adapt to the evolution of packers for extracting

Dex files. Our extensive experiments with real packed apps illustrate the effectiveness and

efficiency of PackerGrind.

Moreover, we employ a cross-layer analysis methodology to locate the potential issues

that affect the measurement results of network performance. We conduct the first

systematic investigation on why the measurement result from apps may be not what users

have expected. First, we identify new factors, revisit known factors, and propose a novel

approach as well as two tools to discover these factors in proprietary apps. Moreover,

we perform extensive experiments to quantify the negative effects of these factors, and

develop MobiScope for demonstrating how to mitigate such effects. Second, we find that

the measurement apps’ descriptions may be ambiguous and perplexing to its users. We

construct enhanced descriptions to provide users more information on what is measured.

The user studies show the improvement of the enhanced descriptions. This research

sheds light on creating better mobile measurement apps and conducting expected network

measurement in apps.

6.2 Future Work

As we have done three major works related to cross-layer analysis of Android apps in this

thesis, future work also lies in the following directions.
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First, both Malton and PackerGrind are based on the Valgrind framework. Similar to

the anti-emulator techniques, malware could detect the existences of Valgrind and then

stop executing malicious payloads. For example, the malware could check the app starting

command or the time used to finish some operations. To address this challenge, for Malton

we could leverage the path exploration mechanism to explore code paths and trigger

conditionally executed payloads. For PackerGrind, we could change the return value of

selected APIs to hide the existence of PackerGrind, or insert additional IR statements to

modify the registers and force the app to execute forward. Nevertheless, it is an arms race

between the analysis tools and anti-analysis techniques.

Though the in-memory optimization of Malton significantly reduces the code required

to be executed, it is semi-automated because the entry point and the exit point of the

interested code region need to be specified by analysts. How to fully automate this process

is an interesting research direction that we will pursue. Besides, the direct execution needs

analysts to specify which branches should be executed directly. In our current prototype,

it simply ignores all possible crashes because the directly executed code path may access

invalid memory locations. Hence, advanced malware may be able to evade it by exploiting

this weakness. We will borrow some ideas from the X-Force [133] system in future work

to recover execution from crashes automatically.

Moreover, PackerGrind currently focuses on the operations related to Dex files. Packed

apps may hide the real code by modifying the compiled code in Oat files directly.

Moreover, if the packed apps load different code into the same memory and execute

them under different conditions, PackerGrind cannot decide which code is real. Since

PackerGrind can trace such modifications and monitor code execution, we will address

these issues by employing more semantic information in future work.

In addition, the code coverage is a concern for all dynamic analysis platforms, including
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Malton and PackerGrind. For Malton, we leverage the monkey tool to generate events,

and use the path exploration engine to explore different code paths. Even using the simple

monkey tool, Malton has demonstrated better results than the existing tools as shown in

Chapter 3.4.1. In future work, we will equip Malton with UI automation frameworks (e.g.,

[97]) to generate more directive events. PackerGrind can only recover the Dex data after

the methods of releasing the real code are invoked. The majority of the existing packers

execute such methods, which are usually JNI methods, when a packed app is launched

to avoid performance degradation. We also use the mechanisms of IntelliDroid [172] and

SmartGen [200] to trigger the execution of such methods. Since packers may delay the

execution of such methods after knowing the mechanism of PackerGrind, we will leverage

advanced input generator for Android [67, 121] to enhance PackerGrind in future work.

Also, Malton uses taint analysis to track sensitive information prorogation. But it cannot

track implicit information flow. We will enhance it by leveraging the ideas in systems

handling implicit information flows [104].

In addition, although we have employed the cross-layer analysis mechanism to identify

the impactors that affect the results of mobile measurement apps, we will use this

mechanism to address more challenging issues, such as power management, in future

work.

120



Bibliography

[1] Android developer reference. https://goo.gl/p3sMxA.

[2] Android-unpacker. https://github.com/strazzere/android-
unpacker.

[3] Apk protect. https://sourceforge.net/projects/apkprotect.

[4] ART and Dalvik. https://source.android.com/devices/tech/dalvik/.

[5] Cloc: Count lines of code. http://cloc.sourceforge.net/.

[6] D-itg. http://traffic.comics.unina.it/software/ITG/.

[7] Dalvik bytecode. https://source.android.com/devices/tech/
dalvik/dalvik-bytecode.html.

[8] The history of xxshenqi and the future of sms phishing. https://goo.gl/6Ds8NF.

[9] Java-basic datatypes. http://www.tutorialspoint.com/java/java_
basic_datatypes.htm.

[10] Keeping the device awake. https://goo.gl/Kb0QZE.

[11] LG Nexus 5. http://www.gsmarena.com/lg_nexus_5-5705.php.

[12] logcat command-line tool. https://developer.android.com/studio/
command-line/logcat.html.

[13] ltrace. https://ltrace.org/.

121



[14] The measurement tools under evaluation. https://goo.gl/MGtoAO.

[15] Profiling with traceview and dmtracedump. http://goo.gl/QZRXEW.

[16] Soot. http://sable.github.io/soot/.

[17] strace. http://sourceforge.net/projects/strace.

[18] Sysfs. https://www.kernel.org/doc/Documentation/
filesystems/sysfs.txt.

[19] Vpnservice. https://goo.gl/2tqRTm.

[20] Qemu. http://wiki.qemu.org/Main Page, 2013.

[21] Measuring broadband america mobile broadband services. https://goo.gl/3MmsSP,

2014.

[22] OWASP mobile top 10 risks. https://www.owasp.org/index.php/
OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks,

2014.

[23] F-Droid. https://f-droid.org/, 2015.

[24] Baksmali. https://github.com/JesusFreke/smali, 2016.

[25] CF-Bench. http://http://bench.chainfire.eu/, 2016.

[26] Dalvik executable format. https://source.android.com/devices/
tech/dalvik/dex-format.html, 2016.

[27] Dex2jar. https://github.com/pxb1988/dex2jar, 2016.

[28] Dexdump. https://developer.android.com/studio/command-
line/index.html, 2016.

[29] IDA Pro. https://www.hex-rays.com/products/ida/, 2016.

[30] Jadx. https://github.com/skylot/jadx, 2016.

122



[31] Platform versions dashboards. https://goo.gl/YRW9II, July 2016.

[32] ZjDroid. https://github.com/halfkiss/ZjDroid, 2016.

[33] 99.6 percent of new smartphones run android or ios. https://www.
theverge.com/2017/2/16/14634656/android-ios-market-
share-blackberry-2016, February 2017.

[34] Number of available android applications. https://www.appbrain.com/
stats/number-of-android-apps, June 2017.

[35] Adrien Abraham, Radoniaina Andriatsimandefitra, Adrien Brunelat, J-F Lalande,

and V Viet Triem Tong. Grodddroid: a gorilla for triggering malicious behaviors.

In Proc. MALWARE, 2015.

[36] Vitor Afonso, Antonio dBianchi, Yanick Fratantonio, Adam Doupé, Mario Polino,
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Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick

129



McDaniel. IccTA: Detecting inter-component privacy leaks in Android apps. In

Proc. ICSE, 2015.
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