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Abstract

Urban Heat Island (UHI), widely acknowledged as an environmental phenomenon

where temperatures in urban areas are higher than the surrounding rural areas, is a

major problem in most of the metropolitan areas. Given the rapid urbanization, it is

likely to be a serious problem in the growing mega cities due to the adverse effect

on inhabitant health and increase of the energy consumption. To have more explicitly

understanding of this phenomenon, previous research mainly focused on two aspects:

• UHI intensity estimation and super-resolution reconstruction at a fixed time in-

stant, where thermal satellite images with very fine spatial and / or temporal

resolution covering a micro-scale of urban areas can rarely be obtained; and

• causative factorial analysis by studying correlation between thermal images and

the relevant factors (e.g. solar radiation, urban morphology, and anthropogenic

heat).

However, these studies are not capable to track the evolutionary process of the

UHIs continuously in both time and space domains. Thus, objectives of this thesis are

four-fold. The first objective is to conceptualize the UHI phenomenon as an object-

based behavior. The second attempts to model dynamic behaviors of UHIs in three

aspects (i.e., temperatures, areal extents, and locations). The third is to track the UHI

spatial behaviors over time. The last objective is to evaluate the effectiveness of the

model by computing with the near-surface thermal images.

This study presents the concept of UHI and describes the previous research prob-

lems in continuously tracking dynamic behaviors of UHIs. The study also designs an
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object-oriented dynamic model to reconstruct the evolutionary process of UHIs. Each

urban heat island is modeled as a spatiotemporal field-object with its own life-cycle,

and dynamic behavior of a UHI is defined by a series of filiations. For instance, areal

extent of UHI in two consecutive time instants can expand or contract. Further, the

study proposes six hierarchical graphs to track continuous changes of the three prop-

erties. Finally, several patterns can be defined and revealed from the results.

The developed model was implemented in an object-relational database and near-

surface air temperature data collected from automatic weather stations on an hourly

basis were applied into the model for the testing. Thematic and spatial behaviors of

UHIs were analyzed, covering six months of time. Results suggest that the model can

identify different behaviors and track complete life-cycles of UHIs effectively.

This study has made several contributions and impacts for GIS modeling commu-

nity. Interesting phenomena and evolutionary trends of UHIs in Guangzhou across

different seasons are revealed. It also develops the theory of object-oriented data

modeling systematically for tracking field geographical phenomena. In addition, this

study provides some new approaches for the researchers to study different types of

distributed spatial phenomena. The developed models can be used in urban planning

to assist in mitigating the UHI phenomenon for building a sustainable city.
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Chapter 1

Introduction

This chapter introduces the geographical phenomenon of an urban heat island, and the

concept of such phenomenon with the descriptions of its adverse effects and causative

factors. Furthermore, research objectives are introduced explicitly in four aspects fol-

lowed by the introduction of dissertation structure.

1.1 What is an Urban Heat Island?

For a smart city, people tackle wicked urban-related problems (e.g., traffic jams, in-

formation communication obstruction, and environmental pollution) by integrating in-

formation and communication technologies (ICT) in an urban version (Meijer et al.,

2016). Solving these problems require Big Data analytics through real-time data pro-

cessing to provide decision supports (Silva et al., 2017). In view of the environmental

pollution, Urban Heat Island (UHI) is one of the problems that arouse great attention

from the public, which is an environmental phenomenon where temperatures in ur-

ban areas are higher than its surrounding rural areas (Nichol et al., 2009; Unite States

Environmental Protection Agency, 2017b) (Figure 1.1). It is reported that annual tem-

perature difference between urban and rural areas is normally between 1 and 3 degrees

Celsius, and it can be reached as high as 12 degrees Celsius in the evening (Unite States

Environmental Protection Agency, 2017a).



2 Introduction

Fig. 1.1 Sketch of an urban heat island (From United States Environmental Protection
Agency, 2017).

With the increasing urbanization, many rural areas have gradually become urban-

ized, small and middle-sized cities expand to metropolises, and spatial-contiguous city

clusters merge into a mega city, which significantly affect the regional, city and micro-

scale climate. The UHI effect is one of the major environmental issues caused by

urbanization. Strong evidences suggest that this phenomenon can cause many adverse

impacts to society in terms of health risk (Ding et al., 2015; Kenney et al., 2014; Mora-

bito et al., 2012), public security (Cohn & Rotton, 2000; Field, 1992; Rotton & Cohn,

2004), and energy consumption (Fung, et al., 2006; Papakostas et al., 2010).

In addition to estimating the magnitude of the UHI intensity, researchers have ex-

plicitly studied their formation mechanisms and a consensus is reached that this phe-

nomenon is caused by (i) loosing of greenery area over urbanization (Chen et al., 2014;

Grover et al., 2015; Mariani et al., 2016; Susca et al., 2011); (ii) buildings blocking

ventilation corridors and accumulating heat (Allegrini et al., 2012; Bonamente et al.,
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2013); (iii) construction materials with low specific heat capacities which absorb solar

radiations or reflect solar radiations in density built areas (Phelan et al., 2015); and (iv)

the increasing number of vehicles and growing electricity consumption which produce

more anthropogenic heat (Chow et al., 2014; Lee et al., 2014; Quah & Roth, 2012).

1.2 Problem statements

The above discovered causative factors are mainly described in a coarse spatiotempo-

ral scope or even at a static time instant. The reason is that they mainly used remote

sensing images derived from satellites, which are with low temporal resolution and

coarse spatial resolution. For example, resolution of MODIS thermal images is 1 kilo-

meter, and resolutions of Landsat ETM+, ASTER, and Landsat TM are 60 meters, 90

meters, and 120 meters respectively. In addition, thermal resolution of the Landsat 8

is 100 meters. All of them are coarse for direct applications. Moreover, Landsat 8 has

a revisit frequency of 16 days, which is not able to track the changes of UHI instantly.

Therefore, many other studies have been devoted in the super-resolution reconstruction

of thermal images. Some of them focused on multi-spectral and/or multi-resolution

images for image fusion and some proposed machine learning approaches, e.g., vec-

tor support machines (Tonooka, 2005), and/or artificial neural networks (Zortea et al.,

2006). Instead of using satellite thermal images, an alternative approach may use tem-

perature data sets observed from meteorological stations to represent microscope of

temperature variations in urban areas. Thermal images can be derived by interpolating

the station data as contiguous of thermal surfaces if each set of data can be obtained at

the same time instant.

To better understand the dynamic evolutionary process of the UHI phenomenon

through both time and space, many studies tend to model the behaviors of each causative

factor from qualitative to quantitative description in a finer spatiotemporal resolution.

It is widely acknowledged that solar radiation and anthropogenic heat (i.e., thermal

emission from buildings, vehicular traffics, and latent heat from the human bodies)
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generate great amount of heat, and urban morphology (e.g. high rising buildings re-

flect the solar radiation) accumulates the heat fluxes. Following this, some studies

proposed a model to simulate solar radiation fluxes on both vertical and horizontal sur-

faces of 3D buildings at any given time instant (Liang et al., 2014; Liang et al., 2015),

and some studies developed a nation-wide database of hourly anthropogenic heating

for different seasons (Sailor et al., 2015). Even though these models can estimate heat

fluxes at a series of discrete time instants, they are not able to describe the evolutionary

trends of UHIs systematically over time.

In addition, there are many research questions related to the UHI effect, e.g., can

there be other causative factors that we have not noticed or discovered yet? To an-

swer this question, one problem shall be solved first: what are the evolutionary trends

of UHI in both spatial and thematic domains, described in a fine temporal scale for a

long-time period? The reason is that describing UHI at a static time instant may not

be able to find uncovered causative factors while tracking its continuous changes can

be able to. For instance, vehicles vary notably in different time and space, and heat

emission from vehicular flows in an urban area can be one of the most significant con-

tributors to the UHI phenomenon. Thus, understanding how it contributes to the UHI

effect requires continuous tracking of both UHIs and vehicular flows over fine spatio-

temporal resolutions. Obviously, tracking of UHI in terms of objects (i.e. causative

factors) on the earth surface (e.g., moving vehicles, buildings, or land uses) needs to

establish different models and each model should be customized. In contrast, tracking

of UHIs themselves can provide a total solution to understand evolution of UHI ex-

plicitly. When the above question is answered appropriately, possible causative factors

can be considered and determined through correlation analysis with the determined

evolutionary trends.

Two more questions can also be answered benefiting from continuous tracking of

UHIs: what are the UHI effects, and is urban planning effective for mitigating the

UHI phenomenon? For example, a recent study tracked micro heat islands in the ur-

ban area of Hong Kong continuously, and found that these heat islands had negative
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effects to the public health in view of the mortality (Goggins et al., 2012). In urban

planning, UHIs were also determined as an indicator for urban management and plan-

ning (Santos et al., 2017). No doubtfully, it requires tracking of UHIs over a long

time to observe whether UHIs have mitigated when the city is re-planned. Therefore,

motivation of this study is to develop a framework to instantly track the changes of

UHIs and determine their evolutionary trends in different spatial and temporal scales.

The framework is supposed to be used as an effective tool for researchers to have a

profound understanding of UHI.

This study proposes a feasible approach to model each UHI as a field-object since it

is a typical field geographical phenomenon, and changes of the UHI (e.g., temperature

changes, shape variations, and locational movements) can be viewed as dynamic be-

haviors of the object so that their changes can be tracked continuously over time. Under

this consideration, spatiotemporal data modeling can be an effective way to model all

the changes of UHIs. Even though many spatiotemporal data models have been pro-

posed, these previous models still lack the capacity to simultaneously track thematic

and spatial changes of the field phenomenon, and to track these changes persistently

over time.

1.3 Research objectives

Regarding the problem discussed above, this dissertation focuses on the modeling of

dynamic behaviors of UHIs, which can be used as an effective tracking tool for re-

vealing different causative factors of this phenomenon. In order to model different

behaviors of UHIs from their thematic property (temperatures) to spatial properties

(locations and areal extents), the study hypothesizes that each UHI is a field-object.

Instead of investigating the evolutionary process of UHIs in a coarse temporal reso-

lution (e.g., on a daily, weekly, or even monthly basis), this study aims to monitor

the micro-changes of UHIs in both spatial and temporal domains, i.e., to track instant

dynamic behavior of UHIs. The objectives of this study are organized as follows:
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1. to conceptualize each UHI as a phenomenon such that several types of the dy-

namic behaviors can be modeled according to the organized information of the

field property (i.e., areal extent, centroid of the extent, and UHI intensity sum-

marized from the temperatures within the extent);

2. to conceptualize each UHI as an field-object such that it can be changed inde-

pendently or interacted with each other by having dynamic behaviors at each

time instant through out the whole of its life-span;

3. to propose a spatiotemporal data model to track dynamic behaviors of all the

UHIs in both spatial and temporal domains simultaneously; and

4. to investigate the effectiveness of the model through an empirical test.

1.4 Dissertation structure

The rest of this dissertation is organized as follows. Chapter 2 reviews the work in

related to the problems as stated above. Chapter 3 shows a new conceptual model of

UHI such that UHIs can interact with each other, acting as field objects. Chapter 4

demonstrates six graphs in a hierarchical description granularity to continuously track

dynamic behaviors of UHIs over time. Chapter 5 shows the evaluation of the proposed

model in a case study. Finally, Chapter 6 discusses and concludes the thesis.



Chapter 2

Literature review in spatiotemporal

data modeling

2.1 Introduction

Dynamic behaviors of UHIs continuously occur in space over time (Buyantuyev & Wu,

2010; Kourtidis et al., 2015; Wu, et al., 2012). For example, lifespan of a UHI may

contain a series of snapshots, with the process of appearing, growing, shrinking, and

finally disappearing. There is a need of designing an effective model to describe its dy-

namic behaviors and track its evolutionary trends integrating with space and time. Spa-

tiotemporal data modeling, containing but not limited to three classes (i.e. field-based

data modeling, object-based data modeling, and event-based data modeling) (Bothwell

& Yuan, 2010; Goodchild et al., 2007; Miller & Bridwell, 2009), has been conducted

in several research disciplines, which provides an enlightening approach to develop an

adaptive data model for tracking the UHI phenomenon. For instance, fields were mod-

eled as zones so that moving objects associated with a specific location can reach the

boundary of the zone within a certain time period (Miller & Bridwell, 2009), and ob-

jects have several types of dynamic behaviors, which can be observed by their changes

and movements (Yuan & Hornsby, 2008).

Since this study attempts to conceptualize each UHI as a field-object and model
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dynamic behaviors of UHIs in a fine spatial and temporal resolution, this chapter re-

views the models used for monitoring of UHI related to the encountered problems as

discussed in the previous chapter. Literature review firstly investigates the most origi-

nal models that UHIs are viewed as static objects in Section 2.2. Hence, previous work

will be introduced from field data modeling in Section 2.3; object data modeling in

Section 2.4 and the necessity of combining of both modeling methods in Section 2.5.

Then, Section 2.6 mainly discusses spatial changes of field-objects as several types

of behaviors. More complex changes between different objects by having topological

associations are further investigated in Section 2.7. Lastly, Section 2.8 presents the

scientific originality and contribution of this study.

2.2 Static modeling of UHI

Most of the work in UHI consisted of correlating thermal intensity from static surface

temperature images with environmental indicators such as the land covers (Dousset &

Gourmelon, 2003; Lo et al., 1997; Stathopoulou & Cartalis, 2007) or social indica-

tors (Buyantuyev & Wu, 2010). There is a study to make use of data mining tech-

niques to establish patterns between land covers and temperatures (Rajasekar & Weng,

2009a). Recently, consideration has also been given to study the dynamic evolution

of UHI where UHI is defined as clusters of pixels, moving towards object-based anal-

ysis. For example, study in (Rajasekar & Weng, 2009b) estimated UHIs as Gaussian

functions and research in (Keramitsoglou et al., 2011) proposed an object-based image

analysis to reveal thermal pattern that thermal intensities of hotspots are strongly cor-

related to their extents. These models attempt to determine causative factors of UHIs

by correlation analysis at a static time instant. In another research direction, GIS tools

were used to study and visualize UHI causative factors such as ventilation (Wong &

Nichol, 2013). However conventional GIS data models and analytical tools lack the

capabilities to adequately handle massive multi-dimensional data (McIntosh & Yuan,

2005), which is vital to describe the changes of UHIs in different properties such as
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the areal extent, and the temperatures. They also fail to provide qualitative information

about the processes occurring within UHIs and trends that can take place over a long

period of time. Thus, spatiotemporal data modeling shall be used to model dynamic

behaviors of UHIs over time.

2.3 Field data modeling

Field-based data modeling usually models distributed phenomena such as continuous

surfaces. For example, study in (Miller & Bridwell, 2009) proposed a cost field which

is a function to assign measured values of movement impedance to every location so

that the impedance in every location can be differentiated. Then, a velocity field is cre-

ated to map velocities to all the locations in space. Hence, the minimum cost enclosed-

curves are obtained through an inverse velocity field, which can be viewed as variable

fields. In the field of UHI, anthropogenic heat fluxes were modeled as discrete grid

cells (Allen et al., 2011) and then refined to fields (i.e. enclosed polygons) (Lindberg

et al., 2013). However, the fields are also discrete without any internal associations

between each of them in space and time. Thus, this method can model geographical

phenomenon in a discrete time instant but with low capability to track the evolutionary

process because it is difficult to determine the relationship of the phenomenon in a

continuous time period based on field data modeling solely.

UHI can also be viewed as a typical field phenomenon that temperatures within its

extent can vary differently over time. However, this conceptualization and modeling

can only describe its spatial characteristics at a specific time instant and connecting

a series of fields over time as different status of an individual object needs a new

modeling method so that the fields can be associated logically.

2.4 Object data modeling

The GIS community has studied object-based data models to present dynamic geo-

graphical phenomena. The objective of these models is to describe the spatiotemporal
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behavior of objects observed in sequences of images. Geographical phenomena can

be defined as field objects corresponding to geo-objects with an internal structure de-

fined by variations of field-like properties within the boundary of the object (Goodchild

et al., 2007). Their dynamic is driven by their activities, events and processes, and can

be observed through changes and movements (Yuan & Hornsby, 2008). Such an ap-

proach works especially well with environmental phenomena such as UHI. The reason

is that all the discrete spatial properties (such as UHI phenomena) can be associated

with a time series relationship so that the relationship can be linked to the correspond-

ing objects. When there are a set of the objects, all the spatial related information can

be organized based on the objects.

Following this, an object shall contain information of space and it is identifi-

able, relevant of interest, and describable through designed characteristics as stated

in (Mattos et al., 1993). More specifically, an object can be described by static prop-

erties (such as object ID), structural characteristics (the object is modeled as a two-

dimensional field), and behavior characteristics (a method of moving according to de-

fined rules) (Worboys, 1994). The object-oriented data model normally requires the

integration of specific disciplinary knowledge for different applications such as remote

sensing theories for image classification (Aplina & Smith, 2011; Chen et al., 2012;

Gerçeka et al., 2011; Huang et al., 2012; Radoux et al., 2011), computer science tech-

nologies for 3D data visualization (Shi et al., 2003), and GIS methods for traveling

behavior disaggregation (Frihida et al., 2002). Considering the characteristics of spe-

cific geographic objects, some studies modeled the moving objects as points (Frihida

et al., 2002), objects as polylines (McKinney & Cai, 2002), and even track the attribute

changes of objects (Khaddaj et al., 2005). However, all these do not provide methods

for the association and areal change between fields. Thus, a comprehensive modeling

method which combines both field and object data modeling shall be considered.
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2.5 Field-object data modeling

A combination of the field-based and object-based data modeling, i.e., field-object

data modeling, provides a solution to the above problems. Research in (Kjenstad,

2006) conceptualized a geographic object as a UML class model PGOModel by in-

tegrating the extended core object-based model and the extended field-based model,

which contains three core elements, i.e., (1) PGObject which is a class of conceptu-

alized geographic object with m derived attributes and n degree of freedom so that

attributes are varying over n dimensional domains, (2) PGOAtom which is a class by

merging a number of attributes ValueSet (i.e. values of the PGObject class) with a

number of attributes ParameterSet (i.e. n parameters defining the PGObject class),

and (3) PGOFunction which is a relation aggregating the PGOAtom into a PGObject.

The model effectively simulated a glacier which has a clear extent at a particular time

and space (Kjenstad, 2006). However, tracking the field movement of the glacier in

a continuous time and space is not clearly stated in the model, which is an essential

functionality to track evolutionary process of the field-object. For example, a UHI can

be static in the original location, and a UHI can also shift away from its origin or have

an obvious displacement because of the changes of the extent.

Some advanced studies have investigated kinematic analysis to tackle this problem.

Work in (Bothwell & Yuan, 2010) proposed fluid kinematic concepts to present con-

tinuous fields of temperature by adapting a Eulerian system to measure the velocity

of fluid flow at each fixed time and location, and a Lagrangian system to track a fluid

region over time and space. The study enabled direct tracking of velocities of fluid

flows, and identified rapid moving regions of isotherms. However, this method is not

able to calculate displacement vectors of isotherms with complex shapes such as mul-

tiple concavities. To tackle this problem, further research in (Bothwell & Yuan, 2012)

proposed a simple displacement vector derived from grid data sets. This idea can be

used for tracking locational movements of UHIs. However, as a field-object, a UHI has

another vital characteristics, i.e., areal extent, since the changes of the areal extent (e.g.

expansion or contraction of the extent) and the associations between different extents
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Fig. 2.1 Representational framework (From McIntosh and Yuan, 2005).

(e.g. an extent associating with two UHIs leads to a splitting of the extent) can be used

as a direct indication to reflect the intensity changes and evolutionary process of UHIs.

Clearly, only relying on the field-object data modeling cannot track these changes.

2.6 Event-based data modeling for field-object

Event-based method models geographical phenomena or dynamic behaviors as event

properties or relationships associated with various spatiotemporal attributes (Peuquet

& Duan, 1995; Worboys, 2005), which can be achieved by spatiotemporal queries (Pul-

tar et al., 2010; Zaniolo, 2009). For instance, the dynamic behavior of a moving object

can be modeled as semantic events (e.g. departure, arrival, or unexpected destination)
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and abstracted as patterns from the event sequences (Hornsby & Cole, 2007). However,

topological transition of the field-object is not discussed. By contrast, study in (Jiang

& Worboys, 2009) defined basic and complex topological changes of field-objects be-

tween structured trees associated with the events classification, and hence presented

topological relationships between hollow field-objects and regions.

Another study in (Yuan, 2001) created a hierarchical framework of discrete field-

objects based on an event-based conceptual structure, in which a process presents a

spatiotemporal sequence of the status and an event aggregates the processes. However,

this work has not constructed spatiotemporal queries for knowledge discovery on pro-

cesses and events. Further study in (McIntosh & Yuan, 2005) proposed a framework

for moving objects which contains four definitions, i.e., zone, sequence, process, and

event as drawn in Figure 2.1:

• zone is an area of spatial contiguous grids meeting a designated threshold in a

snapshot;

• sequence is a set of zones meeting a threshold in consecutive time steps;

• process is a set of sequences that the geographical objects are related by splits or

merges; and

• event is at least one type of process during a consecutive time intervals.

This study also created six indices to model the events (i.e. status and behavior) of

objects in field characteristics and applied a nearest neighbor approach to query events

for similarity assessment.

To summarize, spatiotemporal models were developed for different environmental

phenomena such as precipitations (Yuan, 2001). Data were originally represented on

raster layers corresponding to different times, and entities were identified on each layer,

and models are event or process centred. Processes and events are spatiotemporal

objects defined with time attributes (e.g. starting and ending time), thematic attributes

and dynamic attributes describing movement (McIntosh & Yuan, 2005) and are linked
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to entities involved in the events. The data model can indeed combine both raster and

vector representations as thematic and kinematic data, which are computed from grid

points inside the entities (Bothwell & Yuan, 2010).

This dissertation will also propose a similar but more systematical behavior esti-

mation model particularly for the UHIs. For example, a UHI can also be modeled as

a series of zones along with a temporal domain so that a UHI can have one or sev-

eral sequences that each sequence meets the same behavior for the dynamic attribute.

However, this event-based approach does not involve in the topological transforma-

tion between zones neither, which is important to model a UHI having a complete life

span because UHIs can either continue (e.g. a zone continues by splitting part from its

origin) or destroy (e.g. a zone destroys by splitting itself as several parts) when topo-

logical transformation occurs. Thus, a further investigation in relationship between

field-objects is needed.

2.7 Relationship between field-objects

Topological relationships are defined by topological transitions of two objects in two

consecutive time steps. Spatiotemporal topological process involving single and sev-

eral entities was defined (Claramunt & Thériault, 1995). The definition establishes

three different categories to describe evolution:

• evolution of an individual object,

• functional relationships between several objects, and

• evolution of spatial structures between several objects as drawn in Figure 2.2.

In a more detailed level, evolution of a single object contains three types of processes:

• basic process for the representation of attribute variation while without spatial

changes (e.g. stability means the area remains unchanged);
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(a) Evolution of a single object.

(b) Functional relationships between entities.

(c) Evolution of spatial structures involving several entities.

Fig. 2.2 Typology of spatiotemporal processes (From Claramunt and Thériault, 1995).
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• transformation processes focusing on the changes of shape and size (e.g. expan-

sion describes growth of the area); and

• movement processes involving locational movement (e.g. displacement indi-

cates a polygon is moving without a change of area).

Furthermore, functional relationships involve:

• replacement processes which describe a sequence of objects that construct one

process or occupy the same location in space; and

• diffusion processes which transfer characteristics between two or more objects.

The third category concerns the topological changes that link to several objects. This

definition systematically describes area changes, topological transformations, and lo-

cational movements between one and several field objects. This dissertation will pro-

pose a similar but refined model for the behaviors of UHIs. For instance, stability can

also be viewed as a special type of areal change so that it can fall into the same group

with expansion and contraction.

A more complex taxonomy related to topological change operations (e.g. reincar-

nation) based on three identified states (i.e. existence, non-existence, and transition)

has been provided by (Hornsby & Egenhofer, 2000), which models each entity with

its own life-cycle. Similarly, study in (Renolen, 2000) introduced a behavioral mod-

eling framework where each spatiotemporal object experiences its generic behavior

as either alive or dead, and seven types of transition between two status: creation,

alteration, destruction, reincarnation, annexation, deduction, and reallocation. Several

studies applied this framework in different applications (Bothwell & Yuan, 2011; Guil-

bert & Lin, 2007; Nixon & Hornsby, 2010) where objects can merge or split leading to

the creation and destruction of new objects.

Inspired by the concept of generic behavior, study in (Bothwell & Yuan, 2011) pre-

sented a kinematic analysis to tackle a problem that modeling of topological changes

has not been established in (Bothwell & Yuan, 2012). The study mathematically quan-
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tified the internal changes of divergence (i.e. the fractional rate of area changes), rota-

tion (i.e. changes in orientation because of the changes of velocities), and deformation

(i.e. rate of the changed area) for globe water vapour transport, so as to propose six

spatiotemporal transition models:

• emergence that objects do not exist initially but appear later;

• dissipation that existing objects disappear forever;

• convergence that objects shrink in area;

• divergence that objects expand in area;

• merging that several objects join into an object; and

• splitting that several objects split from multiple ones.

In particular, study in (Guilbert & Lin, 2007) proposed a snake model to keep track of

the life-cycle of a cloud recorded as a polygonal boundary and presented topological

operations of cloud splitting, merging, apparition, and removing. Empirical exper-

iment suggests that the model can effectively detect topological changes of clouds;

while, it highly relies on complex algorithms.

Another research in (Nixon & Hornsby, 2010) modeled splitting and merging be-

havior of spatiotemporal objects in two ways, i.e., splitting may result in the continu-

ous existence of the original object or the replacement of new ones, and merging may

lead to the continuous existence of one of the original objects or the replacement of

a new one. However, other topological transformation operations for spatiotemporal

field-object with single attribute, such appearance of a new object versus disappear-

ance of an existing one that may be used for describing behavior of a UHI, are not

systemically modeled. These transformations were explicitly described (Del Mondo

et al., 2013), which presents spatiotemporal relationships in a graph to continuously

track changes of objects over time. Other transitions that affect the shape or thematic

attribute of a field-object are not systematically modeled, which can be established
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by developing some new graphs. Therefore, this dissertation will further develop the

topological transition models incorporating with similar generic behaviors as discussed

in (Renolen, 2000), which allow temporal UHIs have status transitions between alive

and dead through birth, reincarnation, and death.

Study in (Tang et al., 1996) summarized the object-oriented feature-based models

which not only can present topological relations among geometric elements but also

incorporate non-topological (i.e. semantic) relations among features. In the study, a

geographical feature is constructed by feature objects, each of which also contains a

geometric object. Associations between feature objects are built by semantic relations.

To describe more expressive concepts and more meanings than classical data models,

five abstraction mechanisms are also presented:

• classification maps the objects that share the same behavior and properties into

the same class;

• generalization generalizes a superclass that share similar types of objects, or the

common properties and operations;

• specialization creates object classes which are inherited from that in the higher

order;

• aggregation collects a set of objects in the subclass to form a parent object; and

• association groups similar object classes into a single set.

Essentially, all these abstraction mechanisms can be applied for abstracting useful in-

formation from UHIs that share a similar or the same characteristics in different gran-

ularities whenever all their behaviors can be tracked through designed groups. For

example, all the UHIs which cluster together in a high density and expand signifi-

cantly during a short time period can be extracted to draw a hotspot representing a

serious UHI.

To solve the geo-semantic conflict among different objects, a promising study pro-

posed a conceptual model of geographic spatiotemporal data based on the ontology
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theory which is a decomposition process of the recognized conceptual fields connect-

ing the real geographical world and the computer world (Li et al., 2013). The model

was denoted by a tuple containing five elements, i.e., a geographic ontology model, a

geographic entity object, a time set, a represented layer, and a hierarchical relationship.

This study will design smart strategies to avoid the geo-semantic conflict problem since

it may happen when determining specific dynamic behavior for each UHI.

This dissertation will also build topological transformations for UHIs so that UHIs

can merge and split as proposed in (Bothwell & Yuan, 2012). In addition, the study will

further specialize these transformations for different scenarios such as a specialization

proposed in (Tang et al., 1996) so that a split can be specialized as a splitting that a

UHI is destroyed by splitting itself into pieces and a separation that a UHI continues by

splitting one or several parts from its origin. Similar with the study in (Renolen, 2000)

that objects have generic behaviors either alive or dead, a UHI will also be modeled

as having different life statuses of alive or dead triggered by the expressed behaviors

(e.g. appear or disappear). According to the suggestion that emergence leads to the

appearance of objects from nonexistence (Bothwell & Yuan, 2012), a UHI will also be

considered to have several exist periods connected by non-exist periods so that a UHI

can be periodic, which is benefit for tracking a complete life-cycle of UHIs over a long

time period. This life-cycle modeling is an original contribution in spatiotemporal data

modeling.

2.8 Conclusion

Overall, traditional field-based and object-based models provide a new idea for the

UHI generalization but they still face the difficulty in modeling dynamic topological

transformation for fields. Kinematic analysis and event-based approach have already

established some practical methodologies for topological transformation but system-

atic modeling particularly for UHIs is still rare and elementary.

The objective of this study is to provide a novel object-oriented model where UHIs
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are seen as spatiotemporal objects with their own thematic and field attributes and their

relationships evolving through space and time. The purpose of this model is to extract

spatiotemporal processes of UHIs in their life-cycle so as to provide a qualitative de-

scription of the UHI behavior. It can be performed by extracting the dynamics of a UHI

during its whole lifetime through the analysis of a set of images automatically. Such

an approach requires the inclusion of the temporal dimension and the extension of the

2D raster model to a spatiotemporal model which can also support queries to retrieve

data according to dynamic phenomena of interest. This approach can also record the

processes of UHI properties in a spatiotemporal database which allows the retrieval

of UHI behavior through simple queries. Processes and events are stored and queried

directly in the database which can allow further analysis of the relationships between

UHI and the environment.



Chapter 3

Object-oriented modeling of urban

heat islands

3.1 Introduction

Since previously proposed spatiotemporal data models are not able to effectively model

dynamic changes of field geographical phenomena, this chapter will conceptualize

UHIs as field-objects so that each UHI can have several behaviors expressed over

time. UHIs are considered to have three types of behaviors in terms of the temperature

changes, locational changes, and area variations. For example, a UHI can become sig-

nificant because of the rising temperature difference between urban and rural areas. A

UHI may grow larger continuously when its areal extent is expanding, and it may also

have obvious displacement because location of the areal extent is moving away from

its origin.

Section 3.2 conceptualizes each UHI as a field-object so that its spatial and thematic

prosperities can change continuously over time. Five concepts related to the character-

istics extracted from a series of thermal images are also proposed. Section 3.3 models

thematic and locational behaviors of UHIs oriented on the extracted multiple zones of

each UHI from thermal images. Furthermore, Section 3.4 considers the distribution

variations of the temperatures within the zone to systematically model the behaviors.
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For example, the maximum temperature of each zone is used as the representative tem-

perature to model thematic behaviors. However, the set of the temperatures equaling

to the maximum temperature within the zone may be in a dense cluster so that the areal

extent of the cluster shall be too small to be representative enough. Thus, this section

proposes a core-oriented model to describe the spatial behaviors. Furthermore, Sec-

tion 3.5 models life-cycle of UHIs involving a long time period. Finally, Section 3.7

summarizes the findings.

3.2 UHI as a field-object

UHI can be defined as a climatological phenomenon since their temperatures are based

on long-term statistics. For example, global UHI data set provided by NASA (So-

cioeconomic data and applications center, 2017) is a set of long-term statistical data,

representing Land Surface Temperatures (LST) covering a time-span of 40 days from

July to August. However, detailed investigation of this phenomenon shall depend on

short-term analysis because its causative factors, as discussed in Chapter 1, are mostly

dynamic such that the characteristics of UHIs can change significantly in a short time

period. Thus, conceptualization of UHI will model its characteristics at a time instant,

and the research will use observed data (e.g. hourly temperature data) as a proxy for

both short-term analysis of UHI effects and long-term evolutionary trends.

There is a direct indication to measure the intensity of a UHI named as sensible

heat, which is certain amount of the heat causing temperature changes in the air (Mills

et al., 2016). However, measuring sensible heat of air accurately over the urban area

is a great challenge. The other measurable heat flux is latent heat, which is thermal

energy released or absorbed by human bodies or a thermodynamic system (Wikipedia

for latent heat, 2017). This heat flux is one of the anthropogenic heat fluxes, having

a small proportion of the total amount of the anthropogenic heat (Chow et al., 2014).

Another method to describe the intensity of UHI is to measure ambient temperatures,

which can be the land surface temperatures, near-surface air temperatures or the atmo-
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spheric boundary layer temperatures (Pal et al., 2016). Thus, a UHI is widely defined

as an environmental phenomenon where temperatures in urban areas are significantly

higher than in surrounding rural areas (Nichol et al., 2009).

Based on the above perception, a UHI can be conceptualized as a two-dimensional

field where its areal extent can expand, contract, or remain stable possibly because tem-

peratures warm up, cool down, or keep constant through continuous time and space.

Therefore, a UHI can be seen as a variable field whose thematic attribute is the temper-

ature measured in urban areas that are with certain degrees Celsius difference from a

reference temperature observed in rural areas at the same time. In this stage, other fac-

tors that influence temperature variation and thermal exchanges at different elevations

are not considered. Even though some studies indicated that UHI may be a localized

phenomenon which does not shift from its original location and the displacement is not

obvious (Hua & Wang, 2012; Jalan & Sharma, 2014), this study attempts to model its

locational behavior to reveal various movement trends. In addition, UHI movements

related to the areal extent are modeled. From the above conceptualization, a UHI can

be integrated as a field-object with four components:

• the first spatial component defined by a polygon delineating its extent;

• the second spatial component defined by a point to describe its location and

construct its moving trajectory;

• a thematic component which is the temperature intensity observed from the ther-

mal image and defined as a field variable; and

• a temporal component allowing the description of its life-cycle in consecutive

time instants.

On top of these, a UHI can go through spatiotemporal transformations describing

a change of status or its relationships with other UHIs. For instance, a UHI may split

into two UHIs or disappear when the temperature intensity decreases. This shows
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(a) Spatial and thematic prosperities of a UHI change
through time.

(b) UHI is with a magnitude higher than the referenced rural
temperature.

Fig. 3.1 Changes of the temperatures in a UHI triggers the change of its spatial extent
over time.

that topological transformation determined by thematic characters can also trigger the

transition of status its life-cycle.

Thematic and spatial properties of a geographical phenomenon can change simul-

taneously over time as shown in Figure 3.1a. For a UHI phenomenon, the changes

of temperatures (i.e. the thematic property) determine the shape and location changes
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(i.e. the spatial property). Intensity is generally a quantity over a unit, so that tempera-

ture may be measured in area-average or per-distance and considered as UHI intensity.

Recently, UHI intensity has been widely defined as the temperature difference between

urban and rural areas (Martin-Vide et al., 2015). This definition makes a UHI occur

as long as its temperatures are higher than the reference rural temperature, and spatial

extent of the UHI is deterministic. However, a UHI shall be at least with certain temper-

ature higher than the reference rural temperature to distinguish the peaks of intensity

and define several UHIs where there was only one before, which may create inclusions

between UHIs. For example, one study has suggested that micro heat islands in the

same urban area changed sensitively in short term, and had negative effects to the pub-

lic health (Goggins et al., 2012), which indicates that the study has allowed several

UHIs to occur in the same urban area. In this consideration, a UHI can be viewed as

an urban area where its internal temperatures are with a given temperature higher than

its reference rural temperature. Thus, a UHI can be formulated.

• An urban heat island is a two-dimensional urban area where its internal tem-

peratures are with a given temperature (i.e. magnitude) higher than its reference

rural temperature.

As shown in Figure 3.1b, a UHI exists during [t1, t2] since urban temperatures are at

least with given temperatures (i.e. magnitude) higher than reference rural temperatures.

In a wide temporal scale, a UHI can disappear and appear periodically because of the

fluctuation temperatures, acting as an object in different statuses. Thereby, a UHI can

be defined.

• An urban heat island is a field-object with four properties, i.e., temperature that

represents the UHI intensity, location that depicts the geographic location so that

a time series of locations can be used to represent its movement trajectory, zone

that describes a variable extent, and time that provides a temporal scale for the

description of the thematic and spatial evolution.

As such, a UHI can be characterized from a series of thermal images obtained at
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regular time interval. Following the definitions that have been introduced (McIntosh

& Yuan, 2005), several definitions related to the UHI are introduced.

• A zone is an enclosed extent region denoting the areal extent of a UHI at a

specific time instant.

• A sequence is a series of zones observed on consecutive images at a given loca-

tion. Such a sequence corresponds to the observation over a time range of a UHI

going through continuous change in shape.

• A transformation connects sequences together through a topological transforma-

tion such as a split or a merge. It occurs at a given time instant between two or

more UHIs.

• A transition connects two consecutive sequences of a UHI when it continues,

which possibly associates with transformation.

• A chain connects a series of zones in continuous sequences when temperature

changes in a single trend over a time period, e.g., continuously increasing or

decreasing.

• A queue connects a series of zones in continuous sequences when displacement

develops in a single trend, e.g., constantly moving or stopping.

3.3 Zone-oriented behavior modeling

The variations of the thematic and spatial properties can be caused by the changes of

ambient temperatures. Because of the air flows, thermal exchanges can lead to the

variation of shapes for the region, such as expanding, contracting, or still remaining

the same. Due to this reason, some air temperatures within the region may decrease

continuously, which can cause that the original region divides into two parts with fuzzy

boundaries, and finally splits into two independent hot-regions. In another scenario,

two regions are expanding continuously and getting closer with each other because
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the heat in the two regions are accumulating. At certain time instant, the two regions

may interact with each other and start the fusion processing with the thermal exchange

immediately. This could be a complicated air-dynamic process, either the two regions

merge together and become a large region or the larger region neutralizes the smaller

one and remains almost the same.

Based on the above reasoning, zones of UHIs can have either area changes or topo-

logical transformations. More specifically, a UHI may contract and split into several

ones when temperatures decrease, and several UHIs may also expand and merge to-

gether as a single one when temperatures increase. This section includes two categories

of areal change and thematic change in terms of spatial and thematic property changes.

For the ease presentation, let zi
n be a zone index by n at time instant ti in a spatial and

temporal domain.

3.3.1 Spatial behavior of the UHI

Filiations between zones can be refined into several possible relationships. Concerning

geometrical changes occurring within one UHI, filiations can be organized as:

• continuation when two zones zi�1
n and zi

n have a similar spatial extent;

• expansion from zone zi�1
n to zi

n where the geometry expands; and

• contraction from zone zi�1
n to zi

n where the geometry contracts.

As summarized in Figure 3.2, topological transformation can also appear associ-

ating with at least three zones at the same time. This study also adds two special

transformations as the following:

• splitting when one zone zi�1
n splits into two zones zi

m and zi
p;

• merging when two zones zi�1
m and zi�1

n merge into one zone zi
p;

• separation when one zone zi�1
n is associated to two zones zi

n and zi
m;

• annexation when two zones zi�1
n and zi�1

m are associated to a third zone zi
n;



28 Object-oriented modeling of urban heat islands

• appearance if a zone zi
n is not related to any zone at ti�1; and

• disappearance if a zone zi�1
n is not related to any zone at ti.

3.3.2 Thematic behavior of the UHI

Since the observed temperatures within the extent of a UHI can change differently, a

statistical indication is needed to represent the overall trend of the UHI thematic prop-

erty. Let {v j} be a set of thematic values within the boundary of the zone, and let si
n

denote the thematic indication obtained from {v j} and named as temperature for UHI

(denoted as un) at time instant ti. si
n can be the maximum, mean, median or mode value

of the observed data (Zhou et al., 2016), i.e., si
n 2 {max,mean,median,mode}. Each

indication has its own tendency to reveal different thematic change characteristics. For

instance, the maximum value reveals the most intense character of UHIs but the num-

ber of this value can be rather small and is not representative enough to describe the

overall evolutionary trend. Whereas, the mode value shall fully represent the over-

all thematic evolution trend even it may not be the highest intensity. To maintain the

unity and continuity of the thematic character, a specific thematic indication should be

used constantly during the whole life span of a UHI. Hence, new relationships between

zones based on the intensity can be represented as three qualitative descriptions:

• increasing when temperature si�1
n is higher than si

n;

• stationary when temperature si�1
n is almost the same as si

n;

• decreasing when temperature si�1
n is lower than si

n.

3.4 Core-oriented behavior modeling

In the previous section, all the filiations are determined by investigating the relations

between zones in two consecutive time instants. For example, two zones that have

significant overlapping in two continuous time instants can be viewed as the same UHI
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Fig. 3.2 Filiations between zones.

in two statuses. Hence, thematic behavior is determined by comparing the statistical

temperature (i.e. max, mean, median, or mode), and spatial behavior is assigned in

comparison of the two areas. However, determining the two zones as two consecutive

statuses of the same object is not credible if it meets three conditions simultaneously:

(i) temperatures in some areas of the zone equal to the statistical temperature, (ii) the

areas only take small proportion of the zone, (iii) and these areas are not located in

the overlapping area of the two zones. As drawn in Figure 3.3, two zones zi�1
a and

zi
b have significant overlapping and the maximum temperature of the zone is used as

the statistical temperature so that areas having the the maximum temperatures of 37

degrees Celsius at ti�1 and 36 degrees Celsius at ti are separated. It is more convincing

to state that the two zones are apparently touching with each other but substantially

have no association with each other.

Based on the above consideration, original strategy can potentially cause mislead-

ing determination of the thematic and spatial behaviors. Thus, this section considers

spatial distribution of statistical temperature and spatial filiations between zones to

model dynamic behaviors of UHIs. Furthermore, the locational behavior of the UHI is

also modeled. A study in (Guilbert & Moulin, 2017) proposed a core region to describe
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Fig. 3.3 Two zones apparently touch each other and essentially have no association
since their areas equaling to the maximum temperature are not in the overlapping area.

Fig. 3.4 Core is inside of the zone, which represents an extent of a set of the spatial
contiguous of the statistical temperatures.

complex landform of canyons, which is one of the most representative characteristics

for canyons. With the similar consideration, a zone can also have a representative core

region that temperatures within the core region are equal to the statistical tempera-

ture. As drawn in Figure 3.4, a core is an enclosed region in the zone that temperatures

within the region equal to the statistical temperature (i.e. the maximum temperature) of

36 degrees Celsius. For the ease of representation, a new concept of core is introduced

so that the core-oriented behavior modeling can be proposed in the followings.
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• A core is an internal area of the zone, which contains a set of the spatial contigu-

ous of the temperatures that are equal to or higher than the statistical tempera-

ture.

3.4.1 Spatial behavior of the UHI

Zone filiations were determined only based on spatial relationships between zones that

they have either overlapping or non-overlapping options (Zhu et al., 2016). How-

ever, examining only the spatial relationships (overlapping or non-overlapping) be-

tween zones to determine their filiations can be misleading. For instance, zones of

(zi�1,zi) that have significant overlapping were perceived as the same UHI, and hence

specific filiation can be further identified. However, thematic cores of both zones may

not locate in the overlapping region but are separated in the non-overlapping region of

each zone. Then, it is reasonable to say that they are only apparently overlapping and

they are not associated to the same UHI. For the other example, zones of (zi�1,zi) may

overlap with each other insignificantly while their cores are all located in the overlap-

ping region. In this case, it is convincing to state that these two zones belong to the

same object, having locational shifting. Therefore, spatial relationships between zones

and spatial distribution of thematic temperatures shall be considered simultaneously to

model filiations between zones.

When several UHIs interact with each other in the same spatiotemporal domain (i.e.

one city can have multiple UHIs simultaneously), it is crucial to firstly determine the

relationship between zones at two consecutive time instants to model their dynamic

behaviors, i.e., to list the sequences of zones in a temporal domain that belong to

the same UHI. According to the above the perception, relationship between zones are

essentially determined by topological relationships of cores between different zones.

Therefore, at least one core ri�1
n associating with the other one ri

n is the pre-condition

to build zone filiations. For a pair of spatially associated zones (zi�1
n ,zi

n), zone filiations

in view of area changes are thus organized as:

• expansion when ri�1
n associates with ri

n and geometry expands from zi�1
n to zi

n;
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• continuation when ri�1
n associates with ri

n and spatial extent of geometry is sim-

ilar from zi�1
n to zi

n; and

• contraction when ri�1
n associates with ri

n and geometry contracts from zi�1
n to zi

n.

At a time instant, UHIs alternatively have transformation or areal change (Zhu

et al., 2016). However, this study suggests that both can happen simultaneously in

two specific scenarios, i.e., separation and annexation when the zone still exists. The

reason is that deformation of the original zone zi�1
n in these two affiliations is not

interrupted even at a specific time instant when topological transformation occurs such

that area changes still can be determined as usual. For pairs of zones ({zi�1},{zi}),

topological transformations are refined as:

• splitting when one zone zi�1
n only spatially associates with two zones zi

p and zi
q;

• separation when ri�1
n associates with ri

n and zi�1
n also has spatial association with

zi
n and zi

p;

• merging when two zones zi�1
p and zi�1

q only spatially associate to one zone zi
n;

and

• annexation when ri�1
n associates with ri

n and two zones zi�1
n and zi�1

p are spatially

associated to one zone zi
n.

While, two special transformations may happen that either zi�1
n or zi

n cannot de-

termine any associations, leading to the creation of a new zone or destruction of an

existing zone:

• appearance when one zone zi
n has no association with any other zones at ti�1;

and

• disappearance when one zone zi�1
n is not related with any zones at ti.
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3.4.2 Thematic behavior of the UHI

The same as the zone-oriented approach, thematic temperature is needed to describe

evolution of the thematic property continuously for a long time period. In addition,

four statistical values can be used as the indices, i.e., the maximum, mean, median,

and mode values of a complete set of the thematic property values, all of which are

able to reveal the thematic characteristics in different aspects. Obviously, all the cores

meet the same condition that temperatures in the cores are equal to or higher than the

thematic temperature. When a pair of zones have been determined as the same object,

thematic behaviors hence can be qualitatively described as increasing, stationary, and

decreasing by comparing the thematic temperatures si�1
n and si

n.

Compared with the zone-oriented modeling, the core-oriented modeling describes

a more constrained area (i.e. moving from a zone to one or multiple cores of the zone)

for the spatial distributions of the statistical temperatures. Even there can be several

cores in a single zone, their thematic statistics are homogeneous since they all meet the

same statistical condition, which thus does not cause difficulties in the description of

the thematic behaviors.

3.4.3 Locational behavior of the UHI

It is widely acknowledged that movement of the objects will lead to the displacement

of their locations. Thus, locational behaviors can be represented by different displace-

ments of zones. An effective method to identify different displacements is to determine

topological relationships between zones. For example, a static UHI without any move-

ment means that their zones may coincide with each other, and a UHI significantly

moves far away from its origin would correspond to the disjoint of two zones at ti and

tt+1. In this situation, several types of topological relationships between zones have to

be refined and constructed.

Let zi
n denote the zone of a UHI un (n 2 {1, ...,m}) at the time instant ti. A study

proposed a Voronoi-based nine-intersection (V9I) model which includes a topological
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Fig. 3.5 Spatial relationship between a pair of zones (zi�1
n ,zi

n).

relation between two areas with a four-intersection (area, area) matrix (Long & Li,

2013). According to the needs of this study, spatial relationships between any two

zones in two time instants of the same spatial domain are summarized in Figure 3.5

and reorganized as:

• disjoint when zi�1
n does not connect with zi

n;

• touching when zi�1
n just contacts with zi

n;

• complete coincidence when zi�1
n completely overlaps with zi

n;

• partial coincidence when zi�1
n partially overlaps with zi

n;

• containing when zi�1
n includes zi

n; and
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• contained by when zi�1
n is inside of zi

n.

This study considers that a pair of zones (zi�1
n ,zi

n) have closer relations and have

more iterative behaviors when they are spatially closer with each other. Zones which

are stationary shall continuously stay at the same place without any locational displace-

ment while extent variation, such as expansion, contraction, or stabilization, is allowed.

A pair of zones can also have notable but insignificant locational displacement, allow-

ing them to have locational changes within certain distance. The last possibility is that

zones maintaining their spatial extent are moving away dramatically from their origins.

Based on the above idea from Section 3.4.1 that two zones have been determined as

two consecutive statuses of the same object, the two zones are thus conceptualized as:

• stopping when (zi�1
n ,zi

n) are containing, contained by, or complete coincidence;

• shifting when (zi�1
n ,zi

n) are touching, or partial coincidence; and

• moving when (zi�1
n ,zi

n) are disjoint.

3.5 UHI life-cycle modeling

Establishing the periodicity would be much helpful not only to understand mechanisms

of the UHI periodicity but also to reveal the thematic and spatial trends of UHIs over

a longer temporal domain (i.e., monthly, seasonal, or even yearly). In a long temporal

scale, a UHI can disappear and appear periodically because of the periodic declining

and raising of the temperatures. For example, a UHI appears and disappears period-

ically at the same place for five days (Zhu et al., 2016), which can be the same UHI

having a periodical evolution trend. As a notable contribution to the UHI, anthro-

pogenic heat flux also has an obvious periodical pattern in both spatial and temporal

domains (Smith et al., 2009).

Corresponding to this phenomenon, a UHI can have active and inactive statues in

its life-cycle or it can be dead if it disappears for good, and the time span of each statue

(either active or inactive) can be named as a period. As shown in Figure 3.6, a UHI
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Fig. 3.6 Complete life-cycle of a UHI.

conceptualized as a field-object contains three periods, in which the inactive period

has a head-to-tail ligation to two active ones, and the UHI is dead with the destruction

of the second period. In this scenario, appearance of a UHI can indicate a special

transition of awaken given the condition that it was active before. Thus, a period can

be described by a series of behaviors continuously in a temporal domain in an either

constant or inactive state. Particularly, each inactive statue corresponds to an empty

period. Obviously, a UHI can have statue transitions between active and inactive if it

has the periodicity, and it has two different time periods connecting with each other:

• the active period is a series of sequences that a UHI starts from creation and

stops at destruction connected by transitions of area changes of the zones; and

• the inactive period is an empty sequence that a UHI temporally disappear, which

connects two active periods in between.

An active period of a UHI can start from appearance, splitting, merging, sepa-
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ration into zones and end by disappearance, splitting, merging, and annexation for

zones that are destroyed. However, the end of the active period followed by an in-

active period instead of the death of the UHI indicates that the UHI is temporally

disappeared and it will appear again as an awaken in certain time period. This transi-

tion requires some topological constrains: the disappeared zones cannot be destroyed

by the absorption (i.e. annexation and merging) since the absorption causes the zones

to be destroyed for good, and the appeared zones cannot come from the dispersion (i.e.

separation and splitting) because the dispersion generates totally new objects. Thus,

only the consecutive disappearance and appearance can lead to an awaken, and dif-

ference between formation and awaken can be achieved by searching whether there is

a vanished zone that can connect the existing zone by an empty sequence.

When a UHI is active, it can be described by a series of sequences where each

sequence corresponds to a specific spatial behavior. These sequences are connected

by transitions and transformations. A sequence is defined by a series of transitions of

the same type. For two zones z and z0, we note the function relation(z,z0) returning

the type of relation between the two zones. Given a series of n consecutive zones zi

observed between t1 and tn, these zones form a sequence if for two consecutive zones,

we have relation(zi,zi+1) = relation(z1,z2).

In contrast, no behavior occurs when a UHI is inactive even it still exists. In this

scenario, a special sequence still can be made as an empty sequence during the inactive

period. By this means, sequences can continue without any interruption during the

statue transition process. Eventually, each UHI can be defined as an object composed

by a set of sequences. A UHI also goes through changes which can be internal (con-

tinuous transitions) or external (transformations) involving topological changes. In the

object-oriented model, changes can be perceived as behaviors of objects and can be

specialized into continuous transitions and transformations. Continuous transitions are

components of UHIs while transformations are connected to one or more UHIs with

three items of associations:

• a transformation can generate a UHI (appearance, separation, splitting, merg-
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Fig. 3.7 A UHI are continuously stopping, shifting, and moving in three consecutive
queues from t1 to t8.

ing);

• a transformation can terminate a UHI (disappearance, splitting, annexation, merg-

ing); and

• a transformation can modify the shape of a UHI (annexation, separation).

As proposed in Section 3.2, an uninterrupted displacement corresponds to a queue.

The displacement can be either static (i.e. stopping) or dynamic (i.e. shifting or mov-

ing). With the same approach, an empty queue can also be designed during the inactive

period so that queues will continue during the whole life span. Since a UHI does not

move in a regular rule, determining its consecutive queues would explicitly describe

the displacement patterns of the locations. As drawn in Figure 3.7, z1
n continuously

contracts as z2
n and z3

n, where extent of z2
n is covered by z1

n and z3
n is covered by z2

n,

which leads to a stopping queue for the locational behavior of a UHI. Hence, the UHI

is shifting since zones partial coincide and touch with each other during [t3, t6]. Then,

the UHI obtains a moving because their zones are disjoint. Notably, time periods for a

sequence and a queue does not necessarily coincide with each other but also can be in-
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Fig. 3.8 Shift the center of mass of the zone to the centroid of the minimum enclosing
rectangle of all the cores.

terlaced (Figure 3.6). For example, a UHI can have no displacement for a time period,

which corresponds to a stopping queue. Simultaneously, areal extent of the UHI can

continue and expand during the same time period, making two consecutive sequences.

This interlacing shall be an interesting phenomenon to determine different causative

factors.

3.6 Trajectory determination

When all the behaviors are established, an auxiliary task can be visualized areal ex-

tents and trajectory of each UHI over time. Areal extents can be visualized by sim-

ply plotting the polygon of each zone zi
n at each time instant ti. However, construc-

tion of trajectories shall be subjectively determined. As mentioned above, there may

be several cores that values of the thematic property in these cores equal to the the-

matic temperature. Let k number of these cores in the boundary of zi
n be denoted by

{r(i,k)n } (k = {1, ..., l}). Since cores essentially represent hotspots of the zone caused by
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spatial distribution of the interested temperatures, it is much more meaningful to con-

sider that the centroid of the zone is determined by the set of cores instead of setting

it at the center of the zone. Since there can be several cores that their areas are almost

the same, still setting the centroid as the center of either core is not convinced. An

appropriate solution is locating it at the centroid of the minimum enclosing rectangle

of all the cores and noted by pi�1
n as shown in Figure 3.8. This solution considers the

contribution of each core to the centroid displacement. As such, routing trajectory for

each UHI can be depicted by a polyline noted as {p1
n, p2

n, ..., pi
n}, and it can be easily

extended by adding a new point pi+1
n at ti+1 to the trajectory.

3.7 Summary

The proposed conceptual model offers definitions that allow the complete description

of the qualitative dynamic behaviors of a UHI over time for three properties of the

zone, intensity, and location. A zone which continuously has areal changes can be

conceptualized as expansion, contraction, or continuation when the area is getting

larger, smaller, or almost the same, respectively. A zone can also have topological

transformation when it has associated relationships with several zones. More specif-

ically, it can associate with others as separation when part of the zone is separated

from the original as one or several new ones, or as annexation when the zone absorbs

others into its own. In contrast, a zone can also be destroyed due to splitting when the

zone is deconstructed followed by several newly generated zones, or merging when

the zone together with others is destroyed and aggregated as a new one. During a spe-

cial transformation, a zone may appear or disappear when it is newly generated or

destroyed.

For a clear description of the construction of a UHI, all the behaviors are refined

into a hierarchical class diagram as shown in Figure 3.9. It shows that the life span of

each UHI is composed of one or several periods transited as being active or inactive,

and changes of each period in the same trend for a time period in terms of area of the
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Fig. 3.10 A hierarchical set of dynamic behaviors of UHIs.

zone, intensity, and location are respectively described by a sequence, a chain, and a

queue. Continuous changes of each property through time can express several typical

evolutionary trends and hence are defined as several different types of transitions. With

more detailed descriptions, changes of each property are expressed by behaviors that

depict filiations between them. Both the intensity and location filiations are associated

with the continuous filiation of the zone as long as it continuously exists. Transforma-

tion between zones may occur simultaneously with other zones that lead to the creation

or deconstruction of other newly generated UHIs.

For example, UHIs are composed of sequences differentiated by zones. Zones

are delineated by a polygon extracted from the thermal images such that temperatures

within the polygon are higher than the reference rural temperature, and zones also have

continuous or transformation filiation. UHIs are composed by their continuous transi-

tions and are associated to their transformations. A transition is associated with two

sequences while a transformation is associated with one to several sequences. Each
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transition and transformation class can be further specialized into subclasses corre-

sponding to the behaviors described above. Essentially, transition and transformation

describing the filiation between zones differentiates transition depicting topological

transformation between sequences. Contrary to the study in (McIntosh & Yuan, 2005),

processes do not include only split and merge but all topological transformation, al-

lowing the description of a UHI life-cycle as a series of transformations.

In order to have more distinct and structured descriptions, changes of the proper-

ties can be viewed as dynamic behaviors of each UHI and are thereby conceptually

summarized as a set of concepts, represented in Figure 3.10. The figure shows that dy-

namic behavior contains a transition continuing for a time period and transformation

that has topological changes at a time instant associated with two or several transi-

tions. Particularly, awaken is a special transformation undergoing exactly the same

evolutionary process as appearance given a pre-condition that a sequence ending with

a disappearance connects with a new sequence starting with the zone which is gener-

ated by appearance.





Chapter 4

Graph-based tracking of UHI

behaviors

4.1 Introduction

Chapter 3 conceptualizes a UHI as a field-object and models three types of behav-

iors for each UHI. The modeling approach is also developed from the zone-oriented

to the core-oriented modeling, considering various of spatial distributions of the the-

matic temperatures. Chapter 4 is one step further in the development of life-cycles of

UHIs in view of automation. Compared with Chapter 3 that UHIs are continuous phe-

nomenon over space and time, Chapter 4 discretizes the UHI phenomenon as a series

of snapshots over time because the observed temperatures come from discrete data. To

develop a long-term tracking, study in (Del Mondo et al., 2013) proposed a graph to

track the spatiotemporal relationships and their changes of over time. Inspired by this

study, this chapter proposes six hierarchical graphs in different description granular-

ities to track the UHI evolutionary process from the most original component of the

zones to the most global gratuity of the UHIs.

To start with, Section 4.2 proposes a thematic graph to track the continuous changes

of temperatures of zones in sequence. Different from the thematic graph which is built

from the quantivative description of temperatures, the locational graph designed in
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Section 4.3 is established based on the qualitative analysis of geometrical intersections

between zones. Hence, the zone graph is introduced by simultaneously considering

continuous relationships and transformations between zones in Section 4.4. Further,

continuous tracking is moving from tracking successive sequences in Section 4.5 to-

wards more generalized period tracking in Section 4.6. Whenever consecutive periods

of each UHI can be tracked by the period graph, tracking of a set of UHIs can be ob-

tained through the UHI graph in Section 4.7, which associates with the UHIs through

transformations that lead to the creation and destruction of objects. To sum up, Sec-

tion 4.8 presents a hierarchical structure of the six graphs.

4.2 Thematic-graph based tracking

Let C be a complete set of thematic temperatures of all the UHIs existing in the spatial

and temporal domains, and Fc denotes a set of thematic filiations between tempera-

tures. Let Fc = Cc[Tc such that (ci
n,c

j
n) 2 Cc occurs in the same UHI to represent the

qualitative descriptions of the temperatures, and (ci
n,c

j
m) 2 Tc associates with several

UHIs. In other words, Cc connects temperatures in sequences of zones that belong to

the same UHI, and Tc describes the connection of temperatures that belong to differ-

ent UHIs when they are topologically associated. Thus, a new graph for the process of

thematic change can be refined as GC = (C,Fc). Further, let a chain contain a series of

temperatures over a time period [ti, t j] such that all these temperatures are the thematic

properties of zones which belong to the same UHI and they have only one type of the

thematic filiation. Hence, a chain can be more formally denoted as an = {ci
n, . . . ,c

j
n}

which satisfies 8k, i < k  j,(ck�1
n ,ck

n) = (ci
n,ci+1

n ) 2 Cc.

Unlike sequences which can be interrupted by topological transformations, the-

matic chains continue all the time because temperature is a property of UHI. Appar-

ently, Cc distribution along with the temporal domain can depict thematic behaviors of

a UHI. Let ai j�1
n , ai j

n , and ai j+1
n denote three consecutive chains of the UHI un, the two

edges (ai j�1
n ,ai j

n ) and (ai j
n ,a

i j+1
n ) can be stated as the following:
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• if ai j�1
n increases and ai j

n decreases, un reaches the vertex at the transition (ai j�1
n ,ai j

n );

• if ai j�1
n , ai j

n , and ai j+1
n consecutively increases, stays stationary and decreases, un

is reaching a plateau, at a plateau and leaving a plateau during the transitions;

• if ai j�1
n decreases and ai j

n increases, un reaches the saddle at the transition (ai j�1
n ,ai j

n );

• if ai j�1
n decreases, ai j

n keeps stationary, and ai j+1
n increases, un is reaching a basin,

at a basin and leaving a basin respectively during the transitions; and

• if both ai j�1
n and ai j+1

n increase or decrease and ai j
n is stationary, both has upslope

in the first transition and downgrade in the second transition, while ai j
n has a

break.

4.3 Locational-graph based tracking

To track the displacement of UHIs and to reveal evolutionary trends of the locational

movements, a new graph is thus proposed as: GQ = (Q,Fq) where Q denotes a time-

series of locations and Fq represents a set of filiations between locations, which es-

sentially relies on the existence of the thematic graph GC. Note Fq = Qq [Lq so that

(qi
n,q

j
n) 2 Qq describes each pair of consecutive queues belonging to the same UHI,

which is viewed as an edge of the graph to offer qualitative descriptions of the loca-

tions, and (qi
n,q

j
m) 2 Lq indicates that one or several queues of different objects q j

m as-

sociate with the same queue qi
n of the UHI un. Since a queue contains a set of centroids

for the same UHI over [ti, t j] that ultimately constructs one particular type of the loca-

tional filiation (e.g. stopping, shifting, or moving), a queue thus can be more precisely

noted as qn = {li
n, . . . , l

j
n} which satisfies 8k, i < k  j,(lk�1

n , lk
n) = (li

n, li+1
n ) 2 Qq.

Apart from two transitions for sequences and chains that have been proposed (Zhu

et al., 2016), a new transition to present trends of locations is gathered. Let qi j�1
n , qi j

n

and qi j+1
n denote three consecutive queues of the same UHI un that transitions connect

every two of them in a temporal domain. Compared with the thematic property which
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has quantitative records for the intensity, locational movement does not include a mag-

nitude description domain such that the transitions have neither peaks nor troughs.

Associating with the two edges (qi j�1
n ,qi j

n ) and (qi j
n ,q

i j+1
n ), transitions can be redefined:

• if qi j�1
n is stopping, qi j

n is shifting, and qi j+1
n is moving, then un obtains an accel-

erating;

• if qi j�1
n has a movement, qi j

n shifts, and qi j+1
n stops, then un reaches a decelerating;

• if qi j
n either moves or shifts while qi j�1

n and qi j+1
n are stopping, then the queue qi j

n is

viewed as an active phrase. un consequentially reaches and leaves an activation;

and

• if qi j
n stops while qi j�1

n and qi j+1
n either move or shift, then the queue qi j

n is con-

ceptualized as a quiescence. un reaches quiescence and resumption during the

two transitions.

4.4 Zone-graph based tracking

A UHI is identified through time as a series of zones which can be related together

through spatiotemporal relationships. We note GZ = (Z,Fz) as a graph where Z is the

set of all zones and Fz is the set of filiation relationships connecting the zones, which

relies on the existence of the thematic-graph GC. As zones are UHI components, each

zone zi
n can be identified by a time instant ti and the UHI un it belongs to and a filiation

can be noted as (zi
n,z

j
m) 2 Fz.

Among filiations for zones, expansion, continuation, and contraction are concerned

with geometrical changes occurring within one UHI while splitting, separation, merg-

ing, and annexation imply at least three zones and a topological transformation. The

set of filiations can be partitioned into two sets Fz = Cz[Tz defining the set of contin-

uous relationships and the set of transformations respectively. This study also extends

Tz by adding two specific transformations, i.e., appearance and disappearance.
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4.5 Sequence-graph based tracking

Study in (Del Mondo et al., 2013) suggested that sequences and processes can be

defined using a spatiotemporal graph approach. A sequence is then defined by a series

of zones over an interval [ti, t j] such that all zones in the series are connected by the

same continuous relationship. A consequence is that all zones must belong to the

same UHI. Hence, a sequence si
n is a series of zones {zi

n, . . . ,z
j
n} such that 8k, i < k 

j,(zk�1
n ,zk

n) = (zi
n,zi+1

n ) 2 Cz.

This work models that sequences, chains, and queues those are continuous without

any interruption given the condition that the UHI still exists, and transformation is

depended on sequences at a time instant. Furthermore, sequences can be gathered

in a third graph GS = (S,Es) where S is the set of sequences and Es is the set of

edges marking changes between the sequences. Each sequence can be characterized

by one of the three relationships from Cz and edges can be characterized by the types

of sequence they connect. Thus, Es can be divided between a set Cs of continuous

transitions where two consecutive sequences show an area change in the evolution of

the UHI and a set Ps of processes where a transformation occurs. While processes

have a similar meaning as transformations in Tz, continuous transitions can further

describe the behavior of a UHI. Noting si j�1
n , si j

n and si j+1
n three consecutive sequences

connected by continuous transitions belonging to the same UHI un, the study associates

edges (si j�1
n ,si j

n ) and (si j
n ,s

i j+1
n ) with an action describing un’s behavior:

• if si j�1
n is an expansion and si j

n is a contraction, un peaks during the transition

si j�1
n ,si j

n ;

• if si j�1
n is an expansion, si j

n is a continuation and si j+1
n is a contraction. Sequence

si j
n is qualified as a plateau. un reaches a plateau and leaves a plateau during the

transitions;

• if si j�1
n is a contraction, si j

n is a continuation and si j+1
n is an expansion. Sequence

si j
n is qualified as a floor. un reaches a floor and leaves a floor during the transi-

tions;
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• if si j�1
n is a contraction and si j

n is an expansion, un reaches a low during the tran-

sition si j�1
n ,si j

n ; and

• if si j�1
n and si j+1

n are both contractions or both expansions and si j
n is a continuation,

si j
n corresponds to a pause in the evolution of the UHI. The first transition is a

stabilization and the second is a resumption.

4.6 Period-graph based tracking

An active period contains a set of sequences listed sequentially and is denoted as pa
n =

{qc
n, . . . ,qd

n}. All the zones of each sequence over a temporal domain [ti, t j] have either

area changes or transformations given the condition that they belong to the same UHI,

where 8k, i < k  j,(zk�1
n ,zk

n) = (zi
n,zi+1

n ) 2 Fz. Similarly, an inactive period can also

be denoted as pb
n and modeled as an empty sequence connecting the active periods so

that a standby connects with an empty sequence and generates another active sequence.

Thereby, all the periods can be refined into a graph GP = (P,Ep) where P is the set

of nodes denoting periods and Ep is the set of edges representing the state transitions

between the periods. Each active period can be characterized by either process of area

change or constrained transformation (i.e. belonging to the same UHI), and edges can

be characterized by different transformations that they associate with. Essentially, this

graph describes complete life-cycle for a UHI.

In a short time period, a GP can track a UHI having several periods so that some

patterns caused by short-term effects may be revealed. For instance, the reason of

UHIs appearing and disappearing periodically on a daily basis is that buildings release

the heat during nighttime while they absorb the heat from solar radiation during the

daytime. The graph can also be used to track cyclic patterns in a wider temporal scale

such as in months, seasons, and even in years.
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Fig. 4.1 A hierarchical structure of six graphs to track continuous evolution of UHIs.

4.7 UHI-graph based tracking

Obviously, a period-graph GP can only track complete life-cycle of one UHI, which is

not able to track all the UHIs at the same time when several UHIs interact with each

other in the same urban area or spatial contiguous city clusters. Thus, one more graph

is needed to track global evolution of all the UHIs existing in the same spatial and tem-

poral domain. Let the UHI graph note as GU = (U,Eu), where U is a set of UHIs that

makes the graph nodes and Eu is the edges composed by topological transformations

which can lead the creation and destruction of UHIs. Since UHIs can reincarnate at

a time instant from the apparent death caused by disappearance, complete life-cycle

cannot be interrupted by the consecutive disappearance and appearance that makes an

awaken occur. Therefore, the edges of Eu have to exclude a pair of filiations which
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connect two consecutive periods of the same UHI. In other words, Eu shall only main-

tain some specific edges in Ep that for the first time to create a period and for the last

time to destroy another period.

4.8 Discussion

The boundary of any UHI is fuzzy and undetermined, while both the object-oriented

modeling and graph-based tracking of UHI rely on explicit boundaries. Therefore,

fuzzy boundaries can lead to spatial uncertainty of UHIs in two aspects. First, ap-

proximation of the fuzzy boundaries can cause that UHIs boundaries are generalized

or simplified. Second, because of the generalized boundaries, the proposed models

cannot fully capture the complexity of UHI. Consequently, UHI behaviors can be in-

conclusive or differentiated. For instance, a contracting UHI is disappeared because its

zone is too small and its boundary is too vague to be detected; or contracting of a zone

is determined as a splitting that two zones are generated and closely located due to its

fuzzy boundary. The two examples indicate that even though uncertainty behaviors

can happen as special scenarios, these behaviors still present the same evolutionary

trends and thus will not make significant influence on the results. In other words, evo-

lutionary trends of UHIs detected from graph-based tracking can always be effective

and reliable.

4.9 Summary

Six hierarchical graphs are shown in Figure 4.1. This conceptual model completes

the qualitative description of thematic and spatial behaviors of UHIs. GC is the most

fundamental graph that temperatures can develop independently, which hence decides

the existence and performance of the GZ and GQ simultaneously. Relying on GC, GZ

describes the most elementary spatial-evolution and builds the foundation of GS so that

spatial revolution pattern associated with topological transformations can be revealed.



4.9 Summary 53

Benefiting from GS, GP records complete life-cycle of a UHI which may have several

consecutive sequences associated with some particular transformations such that all of

the UHIs revolution can be finally tracked in GU .





Chapter 5

Model evaluation and results

5.1 Introduction

The previous two chapters propose a model to track spatial and thematic behaviors

of UHIs over time instantly. This chapter will test the effectiveness of the proposed

model. A time series of thermal infrared images with fine spatial and temporal resolu-

tions will be used as the input of the model. These images with high spatial resolution

can also describe the temperature distribution in an urban scale for the research of the

UHI phenomenon (Kourtidis et al., 2015; Wang & Ouyang, 2017; Zhou et al., 2016).

However, spatial and temporal resolutions of the current thermal satellite images are

too coarse to be used directly for this purpose (Keramitsoglou et al., 2013; Nichol,

2009). To tackle this problem, many studies adopted image fusion methods to enhance

the spatial resolution (Hughes & Ramsey, 2010; Hughes & Ramsey, 2013; Rodriuez-

Galiano et al., 2011), which yet still under research. On the contrary, machine learning

methods are frequently being used for super-resolution construction in recent years.

5.1.1 Image-fusion based super-resolution modeling

Image fusion techniques normally integrate different image sources (multi-spectral

and/or multi-resolution images) into a single super-resolution image with a higher tem-
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poral resolution. Based on the empirical evidence that similar materials in a similar

viewing conditions and time will have similar radiance spectra, study in (Tonooka,

2005) proposed an original framework to generate super-resolved thermal infrared

(TIR) images from the resolution 90 m to 15 m based on three images, i.e., the orig-

inal TIR image, the visible and near-infrared (VNIR) image, and the super-resolved

shortwave infrared (SWIR) image which is derived from the original VNIR and SWIR

images. Performance of this framework is acceptable in visual while the study meets

the challenge in testing the accuracy quantifiability. Then, significant modifications

of this framework were proposed in (Hughes & Ramsey, 2010; Hughes & Ramsey,

2013). Research in (Hughes & Ramsey, 2010) utilized the ISODATA rather than k-

means clustering algorithm to create and merge clusters without any prior assumption

automatically, and used the Point Spread Function which transforms radiation from a

point to a two-dimensional surface (Townshend et al., 2000) to degrade higher reso-

lution channels such that surfaces in different spectral regions are identical. Further

improvement in (Hughes & Ramsey, 2013) simplifies the framework for adopting cur-

rent ASTER configuration where SWIR bands are not available. However, both modi-

fications depend on the solid understanding of the spectral statistical distribution of the

original images for determining a number of input parameters, which obviously limits

their widely applications.

Study in (Rodriuez-Galiano et al., 2011) simply generated a TIR image at 30 m

resolution based on Landsat 7 ETM+ image using the cokriging regression / interpo-

lation model, which can be optimal enough for the UHI investigation. By contrast,

both studies in (Aiazzi et al., 2005; Merino & Núñez, 2007) obtained a higher res-

olution of 15 m. Study in (Merino & Núñez, 2007) modified a Variabl-Pixel Linear

Reconstruction algorithm by weighting each pixel values of the input low resolution

images (i.e. Landsat ETM+) based on the statistical significance, which simultane-

ously removes geometric distortion effects and maintains photometry. The purpose of

the study in (Aiazzi et al., 2005) is to create high resolution RGB images, method of

which can not be adapted for generating TIR images directly. In comparison, study
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in (Aiazzi et al., 2005) created a fused thermal infrared image from VNIR image

by proposing a generalized Laplacian pyramid, i.e., a sequence of images in multi-

resolution obtained from the image reduced recursively by a scale ratio, which is de-

rived from the Gaussian pyramid to enhance the spatial resolution and maintain the

spectral characteristics. Using multi-spectral (MS) and mulit-resolution images at the

same time, research in (Zhan et al., 2012) inversed LSTs, proxy-sharpens MS bands,

and hence downscale LSTs based on a theoretical framework of thermal sharpening.

To further enhance spatial resolution of thermal images for UHI analysis, a research

in (Nichol, 2009) combined a higher resolution SPOT5 image (10 m resolution) with

a lower resolution ASTER L1B thermal image (90 m resolution) based on an emissiv-

ity modulation (EM) equation derived from the Stephan Bolzmann Law (SBL), which

simultaneously converted the image-derived brightness temperature to the true kinetic

temperature at 10 m resolution. However, this study simply assumes that sub-pixel

temperatures vary only based on land cover types within each large pixel, which most

probably ignores the distortion that sub-pixel temperatures could be dramatically in-

fluenced by the surrounding land cover types.

In summary, studies discussed above proposed several methods for LST downscal-

ing. However, these studies generally could not derive finer spatial resolutions which

are vital for tracking and modeling the changes of the UHIs (Dousset & Gourmelon,

2003; Lo et al., 1997; Nichol et al., 2009; Stathopoulou & Cartalis, 2007) since evo-

lutionary process of the UHIs obviously happen in the urban areas at a micro-scale.

Investigating dynamic behaviors of UHIs requires very high temporal resolution of

thermal images (i.e. an ideal resolution shall be in hour) because temperatures in the

urban area could vary significantly within a short period of time.

5.1.2 Machine-learning based super-resolution modeling

More advanced approaches in machine learning, such as support vector machines

(SVMs) (Zortea et al., 2006) and extreme learning machines (ELMs) (Bai et al., 2015),

were proposed to downscale the thermal infrared images. SVMs are supervised learn-
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ing models associated with the designed learning method for classifications and re-

gression analysis (Zortea et al., 2006). Study in (Zhang & Huang, 2013) calibrated

the spatial resolution and radiometric differences by using a nonlinear super-resolution

method, i.e., support vector regression, to downscale the ETM+ data to 15 m based on

the resampling of the ASTER data set. However, this method cannot derive images

with very high temporal resolution since the same or similar time phrase for the ETM+

and ASTER data sets are required in the method. To improve the coarse spatial and

temporal resolutions, one study in sequential upscaled the component data set to the

same coarse resolution of the LST image, used a set of machine learning machines

to correspondingly downscale LTS images, and combined the derived of downscaled

LST images based on gradient boosting (Keramitsoglou et al., 2013). The result is

promising for the downscaling from 3 km to 1 km since a much stronger regression

model was established. However, 1 km resolution is still too coarse for investigating

UHIs in micro-scale. This study in (Keramitsoglou et al., 2013) is empirical-based and

may not be applicable to other studies. To define the optimal internal parameters of

SVMs for LST estimation automatically, study in (Moser & Serpico, 2009) adapted

Powell’s algorithm with span-bound functional to establish a configuration of quasi-

optimal parameter to minimize regression errors. Although the initial input parameter

would impact the computational time considerably, the process time is still signifi-

cantly shorter than the one without this function, which would be interesting to extend

the method to the SVMs.

Though not widely used, many artificial neural network (ANN) methods have been

proposed in the super-resolution reconstruction for thermal infrared images (Huang

et al., 2004; Huang et al., 2012; Yao & Han, 2010). For example, research in (Yang

et al., 2011) firstly obtained land use classification at 30 m resolution using a SVM

with four remote sensing indices as input parameters, then trained the relationship be-

tween MODIS LST (990 m), area ratios and endmember indices (990 m) using an

artificial neural network which essentially is a self-organized genetic algorithm, and

finally estimated the sub-pixel (at 90 m resolution) temperature of MODIS LST based
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on the trained network model. However, the applicability of this method depends on

particular application requirements since the estimation errors (i.e. RMSE and MAE)

are higher than that of images in 990 m resolution. This problem is probably due to

the scale dependence that information derived from one image could be significantly

different from internal information in the other image, if the spatial resolution of the

two images have a significant difference. Motivated by this problem when predict-

ing LST, a study in (Ghosh & Joshi, 2014) firstly trained the relationship between

reflectance and LST in four spatial resolutions with support vector machine (SVM),

gradient boosting machine (GBM), and partial least square (PLS). Then images at

coarse resolution were imported into the three trained model to predict the LST im-

ages at finer resolutions. The proposed method suggests that GBM and SVM models

have better performance in a relatively homogeneous land use area.

Overall, previously proposed machine learning methods of downscaling LST im-

ages still face challenges for UHI analysis such as downscaled spatial resolution of

LST images is still coarse, some methods rely on images derived from multiple satel-

lite sensors, and accumulated errors may be high. Moreover, fused images also limit

their practical use because source images fulfilling the same time or criteria of overpass

time are not frequently available. Instead of using satellite thermal infrared images, a

new strategy is to collect near-surface air temperatures from a sufficient number of

automatic weather stations and generating contiguous measurements by interpolation.

5.1.3 Chapter structure

Section 5.2 selects an appropriate study area for the empirical test. Section 5.3 uses

an interpolation method to obtain a series of thermal images with fine spatial and tem-

poral resolutions that cover the study area. Section 5.4 develops two methods (i.e.

zone-oriented and core-oriented methods) to extract behaviors of zones since the data

sets are essentially discrete. When the zones have been extracted, Section 5.5 deter-

mines the behaviors based on two computational methods. Specifically, Section 5.6

discusses some vital constraints for determining the behaviors. Hence, Section 5.7 im-
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plements the proposed computational methods in a spatial database such that results

can be finally presented in Section 5.8.

5.2 Study area

Guangzhou in China is selected to evaluate the effectiveness of the model, which is the

core area of an urbanized city-clusters in the southern China with 13 million popula-

tion in total and more than 1700 inhabitants per square kilometer (Guangzhou, 2017).

The urban heat island phenomenon in this city is evident sine the annual tempera-

ture difference can reach up to 14.5 degree Celsius in the subtropical monsoon cli-

mate (Guangzhou, 2017).

5.3 Preprocessing

Near-surface (approximately 1.5 meter above the land surface) air temperatures were

collected at hourly for six weeks (i.e., July 31 – August 6, July 28 – September 3,

September 25 – October 1, October 23 – October 29, November 20 – November 26,

and December 18 – December 24) in year 2015, so that it covers a continual of six

months. Specifically, 216 automatic weather stations are mainly located in the urban

areas as shown in Figure 5.1. Thereby, a series of near-surface thermal images are

generated by interpolating hourly data, and are used as the input data of the model.

Ordinary Kriging was used since it models the surface by assuming that an overriding

trend exists in the data sets, which is beneficial for highlighting the hotspot character

of UHIs (Chai et al., 2011; Hofstra et al., 2008; Irmak et al., 2010; Stahl et al., 2006).

Rural temperatures observed at the triangle (Figure 5.1) were used as the reference

temperature to extract zones of UHIs because this site is in the Dajinfeng Eco-scenic,

which is not only located in the rural area (i.e. land cover is forest) but also next to

the urban areas of Guangzhou. Thus, extracting zones of UHIs using this reference

temperature is confidential since rural and urban temperatures can be unambiguously
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differentiated. Previous study proposed a feature extraction method to extract zones

of UHIs automatically (Keramitsoglou et al., 2011). In the method, temperature pix-

els are clustered as a group (i.e. a zone) if each pixel in the group has at least one

neighborhood pixel when searching with k-pixels distance in all directions. Thereby,

the method can possibly merge smaller groups into a bigger one. In comparison, this

study also developed an automatic extraction method in the system implementation to

extract a time series of zones automatically. However, the k-group method (Keramit-

soglou et al., 2011) was not used for extraction since spatial behaviors between zones

proposed by this study have already addressed this issue (e.g. merging: two or several

zones merge together as a single one).

Collecting air temperatures for six weeks with three-weeks time interval still costs

time even though a batch processing was used to edit the original data set to generate

a homogeneous format, and shapefile points, interpolate the points into contiguous

images, and import them into the database (Figure 5.2).

5.4 Extraction of UHI changes

As a simplified consideration, zone filiations are built only based on topological rela-

tionship between zones. A refined method constructs the filiations based on the rela-

tionship between zones and cores. Therefore, extraction for UHI changes are either

zone-oriented or core-oriented.

5.4.1 Zone-oriented extraction

Hourly updated rural temperatures observed at the triangles in Figure 5.1 were used as

the reference threshold temperature to extract zones of UHIs. UHI zones are defined

by urban areas where the temperature is defined as the difference between the reference

temperature and observed temperatures. Areal variations were computed at each time

instant. If there is no overlapping area between two consecutive UHI polygons or

if the proportion of the overlapping area to either of the two polygons is small, it is
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Fig. 5.1 Automatic weather stations are located in Guangzhou city, China.

reasonable to define that they have no relationship and belong to different UHIs. In

opposite, they can be regarded as belonging to the same object if they overlap on a

significant area.

Let zi
n denote a zone indexed as n at time ti. As shown in Figure 5.3, significant
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Fig. 5.2 Batch processing to obtain contiguous of thermal images from points in the
shapefile format in ArcMap.

overlapping between zi�1
n and zi

n corresponds to two statuses of a single UHI in two

consecutive time instants, and areal change occurs when comparing the areas of the two

zones. Similarly, insignificant overlapping between the two leads to a disappearance

and appearance. More complicated scenarios can happen if zi�1
n associates two ones at

ti or two zones at ti relate with the same zone zi
n. Hence, changes at time ti are more

specifically defined as follows.

• appearance: the zone at time ti has insignificant overlapping area or does not

overlap with any zones at time ti�1.

• disappearance: the zone at time ti�1 has no significant overlapping area or does

not overlap with any zone at time ti.

• expansion: the UHI polygon significantly overlaps with a UHI at time ti�1 and
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Fig. 5.3 Overlapping instance of UHI zones in two consecutive times instants.

its area is bigger.

• contraction: the UHI polygon considerably overlaps with a UHI at time ti�1 and

its area is smaller.

• continuation: the UHI significantly overlaps with a UHI at time ti�1 and their

areas are equivalent.

• merge: one UHI polygon at ti overlaps with several UHIs at ti�1. If one UHI at

ti�1 is much larger than the others and its area is close to that at ti, the UHI is

supposed to be in the continuity of the big UHI and an annexation can be deter-

mined. If the new UHI cannot be associated to one specific UHI, it is considered

as a new UHI and a merging is derived.

• split: several UHI polygons at ti overlap with one polygon at ti�1. If the shape

at ti is similar to one specific polygon at ti�1, it is a separation otherwise it is a

splitting.
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5.4.2 Core-oriented extraction

Section 3.4 considers that cores are more representative for the description of spatial

distribution of thematic intensities, and association of cores in two continuous time in-

stants which is the most fundamental determinant to identify affiliation between zones

(i.e. zones that belong to the same object) so that areal changes can be investigated.

Further, any other zones that have spatial association with the current zone are viewed

as affiliated zones to have topological transformations. For the convenience of repre-

sentation, different relationships between cores of (ri�1
n ,ri

n) are proposed as:

• thematic relation if at least one core ri�1
n locates in the extent of zi

n;

• close relation if most of the area of the cores area({r(i�1,k)
n }) locates in the extent

of zi
n; and

• untight relation if a small proportion of the area of the cores area({r(i�1,k)
n })

locates in the extent of zi
n.

In organizing of the spatial relationships between zones, if zi
n overlaps with zi�1

n

and the pair of the zones have thematic relation, then they are confidentially viewed

as continuous status of the same object. Specifically, when zi
n coincidentally overlaps

with zi�1
n , this pair of zones have the strongest thematic and spatial association since

the overlapping is exclusive that any other spatial relationships relating with any other

zones cannot occur. Obviously, this pair of the zones go through areal changes as:

• expansion when zi�1
n and zi

n are closely related with each other, and area(zi
n) is

larger;

• continuation when zi�1
n and zi

n are in close relation, and area(zi
n) and area(zi�1

n )

are equivalent; and

• contraction when zi�1
n and zi

n have close relation, and area(zi
n) is smaller.

A zone zi
n at ti can also thematically relate with two zones at ti�1, leading to a

merge (i.e. merging or annexation) as shown in of Figure 5.4. While, they may only
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apparently touch with each other without topological association even though zi
n over-

laps with the two ones simultaneously if they are not in thematic relation (i.e. cores in

the two zones are not associated). A similar but different scenario is that two zones zi
n

and zi
p at ti have thematic relation with a single one at ti�1, which triggers a split (i.e.

splitting or separation). In summary, topological transformations can be determined

as:

• merging when both zi�1
n and zi�1

p relate with zi
q not closely;

• annexation when zi�1
n and zi�1

p respectively have close and untight relation with

zi
n;

• splitting when zi�1
n has loose relation with zi

p and zi
q; and

• separation when zi�1
n has close and untight relation with zi

n and zi
p respectively.

A zone zi
n may contain one or several zones noted by {zi�1

m } (m= {n, ..., p}), which

indicates that area(zi
n) is larger than any individual zone in {area(zi�1

m )}. Sequentially,

zi
n also contains cores of {r(i�1,k)

m } such that all the cores at ti�1 are located in the extent

of zi
n. Thus, zi�1

n expands as zi
n if there is only one zone at ti�1, or zi�1

n annexes other

zones and expands as zi
n. In the opposite, one or several zones {zi

m} (m = {n, ..., p})

can also be inside of zi�1
n . Even though it may not satisfy the above proposed thematic

relation, thematic and spatial associations are still strong since zones at ti�1 completed

fall in the extent of the zone at ti. Therefore, zi�1
n expands as zi

n when only zi�1
n existed

at ti�1, or alternatively zi�1
n separates and contracts as zi

n by simultaneously associating

with other zones at ti.

When UHIs have obvious displacements (i.e. zi
n touches or disjoints zi�1

n ), thematic

cores of both zones do not have any relation because they are separated in two disjoint

zones. Since each UHI can travel for a certain distance at its maximum capability dur-

ing a given time period, pair of zones are considered to have the closet relationship and

can be associated into a sequence of zones in a temporal domain if they have the short-

est distance in between and the distance is uniquely within a distance threshold. Hence,
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Fig. 5.4 Spatial relationships between zones and cores in two continuous time instants.

the two zones (zi�1
n ,zi

n) are also conceptualized as two continuous statues of the same

object with areal changes. Based on the above discussion, creation and deconstruction

of an object on are accordingly determined as:

• appearance when ({zi�1
m },zi

n) has no thematic relation and each pair of the zones
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are in a remote distance; and

• disappearance when (zi�1
n ,{zi

m}) has no thematic relation and each pair of the

zones are in a remote distance.

5.5 Computation

This dissertation proposes two computational methods (i.e. unidirectional and bidi-

rectinal zone-overlapping) to determine spatial filiations between zones. Unidirec-

tional zone-overlapping determines unidirectional relationships of zones at ti�1 to

zones at ti to compute spatial behaviors of UHIs. However, this method may cause

a problem that zi�1
n is still associated to zi

n even though zi
n insignificantly overlaps zi�1

n

but significantly overlaps with zi�1
m . In this case, determining zi�1

n and zi
n as the com-

ponents of the same UHI is not confident enough. A better method is considering

bidirectional overlapping scenarios that zi�1
n overlaps zi and zi overlaps zi�1 to deter-

mine the spatial filiations between zones.

5.5.1 Unidirectional zone-overlapping

Several threshold parameters were defined to recognize different types of continuous

and transformation filiations. First, in order to be related together, zones identified at

two consecutive time instants need to overlap significantly. This is done by checking

if the overlapping of two zones is significant compared to the zone at ti�1. Thus, a

magnitude threshold erelated is defined for this (equation 5.1).

area(zi \ zi�1)

area(zi�1)
> erelated (5.1)

Then, the type of filiation that the UHI undergoing depends on the associated re-

lationship that has been determined above and the number that a zone associates with

other zones. If a zone is associated with one single zone, no transformation occurs and

the UHI is changing. If no association can be determined with only one single overlap-
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ping or no overlapping, the UHI is appearing or disappearing. If several associations

are made, a merge is taking place. Finally, a split occurs if there is several overlapping

but with no association.

Two UHI zones are considered to be of the same size if their relative area difference

is smaller than a threshold earea (equation 5.2). A UHI is considered to expand if its

area has increased by earea between two consecutive time instants. Similarly, if the

UHI area decreases by earea, the UHI is contracting.

| area(zi)�area(zi�1) |
area(zi�1)

6 earea (5.2)

A merge occurs when zi
k is associated with several zones {zi�1

j } ( j = 1, ..., l). More

distinctly, an annexation occurs if one of the zones at ti�1 significantly merges into the

zi
k. Hence, a UHI will undergo an annexation if it has the maximum overlapping area

which also occupies significant area of zi
k (Equation 5.3). Otherwise, all the older zones

corresponding to the new zone have a merging.

max({area(zi
k \ zi�1

j )})
area(zi

k)
> emerge ( j = 1, ..., l) (5.3)

In contrast, a split occurs when zi�1
j overlaps but is not associated with several

zones of {zi
k} (k = 1, ..., l). A separation occurs if area of one of the zones zi

k still

notably splits from its origin. Thus, a UHI will experience a separation if it has the

maximum overlapping area which also takes considerable area of the preceding zone

(Equation 5.4). Otherwise, splitting will be derived for all the UHIs.

esplit 6
max({area(zi

k \ zi�1
j )})

area(zi�1
j )

< erelated (k = 1, ..., l) (5.4)

5.5.2 Bidirectional zone-overlapping

Obviously, the type of spatial behavior that a UHI could been determined by (i) the

number of zones it associates with and (ii) the associated filiations it has with other
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zones. The UHI has areal change if it associates with only one zone and without any

topological transformations. If no overlapping or no association occurs, this UHI will

appear or disappear. Otherwise, it can have transformations when overlapping and

associating with several other zones.

Thus, spatial behaviors can be stated based on the number of zones in two consec-

utive time instants denoted as num = (num({zi�1}) : num({zi})), where the relation

for each zone at ti�1 to each zone at ti is denoted as r(zi�1 ! zi), and the reversal rela-

tion is r(zi ! zi�1). zi�1 has close relation to zi if the overlapping area has significant

proportion to the area of zi�1 (Equation 5.5). Inversely, zi has close relation to zi�1

if it satisfies Equation 5.6. Hence, the two zones are determined as the same object

if they have significant overlapping with each other by satisfying both conditions. To

have more structured statement, let T (stands for true) denote the scenario when zi�1

relates to zi and let F (stands for false) denote the case when zi�1 does not. Thus,

relation of each pair of (r(zi�1 ! zi) : r(zti ! zi�1)) has four possible scenarios, i.e.,

relate = {(F : F),(F : T ),(T : F),(T : T )}.

area(zi�1 \ zi)

area(zi�1)
2 [espaRelated,1] (5.5)

area(zi�1 \ zi)

area(zi)
2 [espaRelated,1] (5.6)

A UHI continues from zi�1 to zi if num = (1 : 1) and relate = (T : T ). This UHI

remains at continuation when its areal variation is relatively limited as shown in Equa-

tion 5.7. While, the UHI can also expand or contract if it falls above the upper limit of

(1+ espatStable) or below the lower limit of (1� espatStable).

area(zi)

area(zi�1)
2 [1� espaStable,1+ espaStable] (5.7)

A merge occurs when several zones {zi�1} relate to the same zone zi, satisfying

num=(m : 1) (m > 2) and relate=(T : T/F). Moreover, an annexation can be deter-
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mined if the maximum overlapping area is also significant to area(zi
k) (Equation 5.8),

which means the zone zi�1
k continues as the zone zi

k by absorbing others. Otherwise,

all the zones are merging together as a new zone.

max({area(zi�1
j \ zi

k)})
area(zi

k)
2 [eannex,1) ( j = 1, ..., l) (5.8)

One the opposite, a split happens when several zones {zi} overlap and relate to

the same zone zi�1, which satisfies num=(1 : m) (m > 2) and relate=(F : T ). More

specifically, a separation occurs if the maximum overlapping area to the area(zi�1
j )

is still considerable though it does not satisfy the significant condition, which can be

computed in Equation 5.9. Alternatively, a split is obtained if all the overlapping areas

to the area(zi�1
j ) are negligible.

max({area(zi�1
j \ zi

k)})
area(zi�1

j )
2 [esepar,espaRelated) (k = 1, ..., l) (5.9)

Whenever spatial filiation of each pair of zones (zi�1
n ,zi

n) has been determined,

UHI constructed by sequences of zones {zi
n} (i = 1, ..., l) can be tracked instantly such

that thematic changes can be investigated in time series. If thematic temperature ci
n

is almost the same as ci�1
n and difference between the two temperatures is negligible,

it is reasonable to consider that thematic filiation of zi
n is stationary computed as in

Equation 5.10. However, it can be depicted as increasing or decreasing if the relative

change exceeds the upper limit or the lower limit.

ci
n

ci�1
n

2 [1� etheStable,1+ etheStable] (5.10)

5.6 Constraint determining for spatial filiations

Since each UHI can only involve in one transition and/or transformation at each time

instant, the model has to ensure that spatial filiation of each zone is neither omitted



72 Model evaluation and results

nor determined duplicately. As seen in Figure 5.5a, zi
b overlaps on zi�1

a and zi�1
c sig-

nificantly, and zi�1
a and zi�1

c also have a significant overlapping with zi
b. Therefore,

both zi�1
a and zi�1

c shall associate with the same zi
b based on the bidirectional zone-

overlapping method. Further, zi�1
a shall become zi

b by absorbing zi�1
c because the over-

lapping area between zi�1
a and zi�1

b is larger. Since the transformation of zi�1
a has been

determined, it is impossible for zi�1
a to contract as zi

d simultaneously. This scenario

can be automatically excluded when zi�1
a can only have one significant overlapping

area satisfying Equation 5.5, which requires espaRelated is larger than 0.5. Because of

the same reason, zi�1
c cannot be determined as the same object as zi

b. This can be

achieved when the overlapping area area(zi�1
a \ zi

b) occupies more than half of the

area(zi
b) such that area(zi

b) and area(zi�1
c ) will never satisfy in Equation 5.8 when

eannex is larger than 0.5.

However, the proposed method may still come across a conflict in determining

spatial filiations. For example, zi�1
b and zi�1

c have merged together and a new zone

zi
d has generated as shown in Figure 5.5b, which means sum of the overlapping area

area(zi�1
b [ zi�1

c ) takes rather small proportion of area(zi
d). This consequently causes

one possibility that the overlapping area area(zi�1
a \zi

d) is significant, and hence zi
d can

split from zi�1
a . To solve this conflicting problem, the model gives zi

d the first priority

to have the merging behavior.

5.7 System implementation

5.7.1 System architecture

The object-relational database management system (DBMS) PostgreSQL 9.3.4 was to

manage the data sets, and pgAdmin III 1.18.1 was utilized as an administrative and

management tool for the database development. Experiments for evaluating perfor-

mance of the system have been conducted in Windows 8 64-bit with Intel(R) Core(TM)

i7-4770 CPU (4 cores, 8 processors, 3.4GHz, and 16.0 GB RAM).
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(a) zi�1
a absorbs zi�1

c and becomes zi
b (annexation).

(b) zi�1
b and zi�1

c merges together and becomes zi
d (merging).

Fig. 5.5 Constraint analysis to avoid duplicate clustering of spatial filiations between
zones.

5.7.2 Database model

A database model for summarizing all the classes and their associations is presented in

Figure 5.6. First, a time series of thermal images interpolated from the air temperatures

are imported into the tables. To reduce the computational cost, each set of zones

that have been extracted from each image is firstly stored as a union zone (i.e. a set
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of zones that are unionized as a single zone) in the table. Then, each

union zone is discretized as a set of single polygons and stored in a geometry column

named as in the table so that temperatures within each zone are with a

given temperature (i.e. ) higher than the rural temperature (i.e. ). Pixel

values of each zone are summarized and recorded in the table of so

that an appropriate temperature value can be specified for constructing cores of each

zone in the table of . For each time instant, overlapping statistics between the

zones are recorded in the table so that whether the overlapping area

is significant to both area(zi�1
n ) and area(zi

n) which can be checked for zone filiation

determination. More specifically, overlapping area (i.e. ) of each pair of

zones h i respectively at ti�1 and ti are calculated. Simultaneously,

additional information such as the distance between each and every two zones in the

two time instants is recorded as the in the table, which is derived

from the records of their centroids in the table.

Three types of filiations (i.e. spatial, locational, and thematic filiations) between

zones at each time instant can be determined at this stage. To avoid duplicated de-

termination of behaviors of zones, zones which are merged, split, or still continued

are respectively listed in the , , and tables. Hence, a new

table named as can be added storing the filiations computed for each zone

in order to build up sequences and transformations. This table includes not only the

continuous but also topological transformations of Figure 3.2. Each type of the filia-

tion instance is composed of two attributes which are the current zones (i.e. )

and preceding zones (i.e. ). Particularly, the three functions associated in the

class are one-click solution that can determine zones which will continue

(i.e. expansion, continuation, and contraction), appear and disappear, and can insert

them into the table. When the system has reconstructed all the filiations at

each time, pairs of zones which have disappeared for certain time period and appeared

again at ti can be determined and listed in the table. Based on this table,

active periods and inactive periods hence can be constructed by the
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and functions, which are uniquely recorded as the

attribute in the table. Consequentially, complete life-cycle for each UHI is built

from the periods and listed as the .

Finally, zones belonging to the same sequence and zones relating topological trans-

formations are recorded in the through the func-

tion. According to the obtained process-and-sequence IDs, spatial behaviors can be

easily determined (i.e. ) and hence their patterns are discovered

(i.e. ) in the table. Similarly, zones which have been continuing

for certain time period can have transitions for both locational and thematic properties.

The statistics for two transitions are carried out respectively in the table

such that the designed patterns are discovered and listed in the table,

which are ultimately organized in the table.

5.7.3 Populating the tables

All the filiations and evolution occurring in whole of the life-cycle of each UHI are

retrieved through SQL queries. Algorithm 1 computes all the zones that to be merged

at each time instant. Firstly, the number of zones h i which are related with

ones at previous time instant are listed based on simple aggregations (Lines 2-4). Thus,

all the pairs of zones h i that each has more than one association

are determined (Lines 1-6), suggesting which will be merged. Then, Algorithm 2

determines zones (named as ) which are absorbed by zones (named as ).

Line 3 firstly lists the largest intersection area for each zone h i so

that zones h i that have the largest intersection area are obtained (Lines

2-5). Inversely, the algorithm computes pairs of zones which only have the topological

transformation when has no the largest intersection area (Line 6). Algorithm

3 calculates zones which only have areal changes (i.e. expansion more specifically).

Based on the zones { } that are related with { } derived from one simple

aggregation (Lines 2-3), the function further selects the only instance for (Line

4) that h i are related (Lines 5-6) and area of is larger than
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SQL 1 FUNCTION PreMergeStat(min_r)

SQL 2 FUNCTION AnnexationDiffObj(time, merge_idx)

SQL 3 FUNCTION Expansion(time, min_r, up_idx)

SQL 4 FUNCTION Appearance(time, min_r)
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SQL 5 FUNCTION ActivePeriod()

(Line 7). Algorithm 4 computes appeared zones with a simple excluding method. First,

line 2 lists zones that possibly are appeared ones in the current time instant. Second,

the function queries all the zones of { } which have areal changes (Lines 3-5),

merges (Lines 6-7) and splits (Lines 8-9). Third, zones having appearance can be

selected by excluding the above scenarios from derived { } (Line 10).

It is necessary to identify topological relations associated with zones that can create

and destroy an active period (Algorithm 5), and it is also vital to connect the active

periods that belong to the same UHI by determining the awaken zones that trigger the

new periods (Algorithm 6). In Algorithm 5, lines 4-6 generate serial numbers as the

candidates of period IDs, which are viewed as the roots of periods. Lines 7-12 extend

sequences of zones starting with which are newly generated. More specifically, line

9 connects the leaves on the root. Line 10 avoids the computational dead circle by

ensuring that the appearance and disappearance behaviors are included in the period,

and generates the period when zones are separated as different objects. Hence, lines

11-12 terminate the extension of sequences when zones are destroyed. Lastly, lines

3-13 execute the recursive calculation and lines 2-14 select the maximum value of

path used as the final period ID. In the Algorithm 6, lines 5-6 and 7-8 respectively list

zones having appearance as the head and disappearance as the tail, where time interval
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SQL 6 FUNCTION AwakenZone(sleep_t, min_r, min_rein)

between them is more than two hours but not longer than the maximum sleeping time

(lines 9-10). Thus, pairs of the heads and tails that satisfy the awaken condition (lines

11-13) are selected as the awaken candidates (lines 2-3). However, several disappeared

zones can map to the same appeared zone in the awaken candidates. On the basis of

the candidates which have the minimum sleeping time (lines 19-20), zones having

the maximum overlapping area are selected (lines 21-22) from the records of awaken

candidates (lines 23-25). Finally, zones satisfying all the conditions are imported into
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Fig. 5.7 Accumulated number of UHIs with different magnitudes summarized by hour-
of-day for seven days.

the awaken table (lines 14-17).

5.8 Results

The spatial and thematic filiations between zones to track the whole life-cycles of

UHIs. Section 5.8.1 mainly focuses on the spatial filiations between zones, which

is computed using the unidirectional zone-overlapping method as proposed in 5.5.1.

Each active period is viewed as a complete life-cycle for a UHI since cycles are not con-

structed in this section. By contrast, Section 5.8.2 represents the results for both spatial

and thematic filiations, using the bidirectional zone-overlapping computing method

according to 5.5.2. Active and inactive periods construct a complete life-cycle in this

case because UHIs are viewed as objects that can have reincarnation process. Lastly,

Section 5.8.4 instantly tracks the changes of all the designed behaviors, and some in-

teresting patterns are also revealed.

5.8.1 Spatial filiations between zones

Temperature which is with a given threshold temperature (i.e. magnitude) above the

referenced rural temperature was used as the threshold to extract zones from images.

Based on the magnitudes that are between 1.5 and 5 degree Celsius, accumulated num-
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Table 5.1 An active period for an urban heat island

time curZID preZID objID s/pID spaBeh spaPat
15-07-31 21:00 67 51 251 152 annex_s_obj annex_s_obj
15-07-31 22:00 70 67 251 152 annex_s_obj annex_s_obj
15-07-31 23:00 74 70 251 174 continuation plateau
15-08-01 00:00 2765 74 251 174 continuation plateau
15-08-01 01:00 2694 2765 251 174 continuation plateau
15-08-01 02:00 2626 2694 251 191 contraction leave_plateau
15-08-01 03:00 2630 2626 251 196 annex_s_obj annex_s_obj
15-08-01 04:00 2771 2630 251 199 continuation null
15-08-01 05:00 2775 2771 251 205 annex_s_obj annex_s_obj
15-08-01 06:00 167 2775 251 205 annex_s_obj annex_s_obj
15-08-01 07:00 174 167 251 222 contraction null
15-08-01 08:00 2776 174 251 229 splitting splitting

ber of UHIs summarized in unit of hour-of-day for seven days is drawn in Figure 5.7.

The figure shows that the numbers of UHIs with eight different magnitudes decrease

dramatically from 8 am when the sun is rising, while there is no UHI during 11 am

and 5 pm apart from the case of 1.5 degrees intensity. After 5 pm, all the lines grow

significantly in a whole trend with some variation between 7 pm and 9 pm. In general,

this figure shows that the UHI phenomenon is much obvious during the night as this

has been widely acknowledged.

To reveal the evolutionary trend of UHIs in the whole study area, a low magnitude

(1.5 degree Celsius) was selected to simulate all the events and track all the life-cycles

given the input parameters of erelated , earea, emerge, and esplit equaling to 0.53, 0.1, 0.65,

and 0.5001, respectively. This set of parameters is determined based on several empir-

ical tests, all of which satisfy the constraint conditions in Section 5.6. Table 5.1 lists a

complete life-cycle of a UHI directly plotted from the table. In the table, a UHI is

identified by the ID ( ), which contains a pair of zones in the current and previ-

ous time instants ( and ) at every time instant ( ), and its behavior

( ) and transition ( ) are recorded for each sequence or transformation

(s/pID). The table shows that this UHI exists from 9 pm to 8 am on the next day with

several continuous processes of annexation and sequences of continuation. Changes
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Fig. 5.8 Evolutionary trajectory of a UHI drawn from part of its life-cycle.

between sequences are also listed having the plateau and leave a plateau behaviors.

To have an in-depth investigation of this UHI, Figure 5.8 draws part of its evolution

interacting with other UHIs, which can be viewed as a graph GS containing the ver-

tices of zones connecting with the edges of several events. Obviously, zone of

absorbs zone of and becomes at 3 am. Then, this UHI is stabilized as zone

of in a given range of area variation, and three new UHIs appear simultaneously.

In the next hour, the zone merges the other two into its own body, and the newly

appeared zone becomes contracting its areal extent in the meanwhile. Sub-

sequently, the zone absorbs and becomes at 6 am. Finally, the zone

contracts as and splits as several new UHIs.

Figure 5.9 shows the spatial distribution of the above UHIs in six consecutive hours,

which clearly presents that the UHI phenomenon is obvious and stable at night. More

specifically, the large UHI covers the most urbanized urban areas throughout the night

with variations of appearing and disappearing of some small UHIs in the northwest.
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(a) Two zones merge together as a single zone
at 3 am.

(b) Zone continues as and three new
ones appear at 4 am.

(c) Zone merges two others as , and zone
contracts at 5 am.

(d) Zone grows and merges the other one as
at 6 am.

(e) Zone contracts as at 7 am. (f) Zone contracts and splits as five pieces at 8
am.

Fig. 5.9 Areal changes of UHIs at six consecutive time instants.



84 Model evaluation and results

Fig. 5.10 Area tracking of five UHIs in five different days.

This is probably because of the thermal emission of the urban areas absorbed from the

solar radiation and anthropologic heat flux during the day time. Area of the UHI then

decreases significantly in the early morning and continuously dissipates and splits into

several pieces at 8 am, which corresponds to sunrise and a rising reference temperature.

A similar phenomenon revealed by (Kourtidis et al., 2015) would also support the ef-

fectiveness of this model. Areal change tracking of this UHI (i.e. ) together

with the other four in five different days is also drawn in Figure 5.10, which shows that

all of them share the very similar trend of areal change, starting from stable increase

followed by notable variation, and ending with dramatic decrease. More interestingly,

all of these UHIs appear at around 8 pm benefiting from annexation and disappear at 8

am caused by splitting or disappearance, which indicates an obvious periodical trend

for them. Thus, this example explicitly suggests that the system can effectively track

the dynamic behaviors of the UHIs in areal changes and transformations.

Based on the results as illustrated above, temporal evolution trend of UHIs can

be revealed by accumulating the number of different events in unit of hour-of-day as

shown in Figure 5.11. Obviously, the appearance and merging events mostly occur

from 7 pm, which indicates the UHIs increasingly expand and merge together after

the sunset. In contrast, the splitting and disappearance events dominantly happen at 9
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Fig. 5.11 Number of different events accumulated by hour-of-day for seven days.

Fig. 5.12 The total area of UHIs during seven days in the whole study area.

am and 10 am respectively, suggesting the fact that UHIs are splitted and disappeared

rapidly most probably caused by the increase of referenced rural temperature after the

dawn. While, other three events are not observed frequently during the whole night.

This indicates that only a few UHIs have independent evolution, while most UHIs

interact with each other frequently due to the significant variation of air temperatures

perpetually.

Figure 5.12 shows that the total area of UHIs in the study area has an apparent

periodical trend, which expands significantly at around 8 pm, reaches to the largest

extents at around 1 pm, and contracts dramatically around 8 pm every day. To discover

periodical trend of UHIs, zones of UHIs when disappeared and appeared are extracted
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(a) Disappeared zones of UHIs (b) Appeared zones of UHIs

Fig. 5.13 Roads are overlapped with disappeared and appeared zones of UHIs.

from transformations overlapping with the road networks (Figure 5.13). Obviously,

occurrence of the disappeared and appeared zones of UHIs has almost the same spatial

distribution indicating that they are most probably the same UHIs with periodical life-

cycle trend. It also represents that the most frequently disappeared and appeared zones

are located in the less dense urban areas (i.e. north and east regions of the study area).

Interestingly, several small and discrete areas in the urbanized core areas with high

density of road networks in the middle region of the study area also have the most

frequent occurrence. This suggests that human activities (e.g. transportation) may

have considerable periodical influence to the UHI phenomenon as discussed in the

literature (Alonso et al., 2003; Srivanit & Hokao, 2012). The southern part also has

high frequent occurrence where a great number of factories are located although the

density of road network is not high.
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Fig. 5.14 Temperature variations of the UHIs in five different thematic intensities for
consecutive seven days calculated based on the observed rural temperatures.

5.8.2 Spatial and thematic filiations between zones

Temperatures with at least one to five degree Celsius (which is also viewed as five

UHI magnitudes) higher than the observed rural temperatures were identified and used

to extract zones of UHIs. Figure 5.14 represents seven consecutive days of the av-

eraged rural temperatures (rural_t) and UHI temperatures in five different intensities

(urban_t_1c to urban_t_5c). The figure shows that both rural and UHI temperatures

have very obvious periodical trends each day, growing from the lowest value in the

middle of the night to the highest at noon. Nevertheless, both temperatures have

slightly growth every day during the whole temporal span, which suggests that the

significance of the UHI is gradually increasing. On each day, the most significant

UHI phenomenon occurs in the middle of the night, which is also notable at noon for

UHIs in the low intensity (urban_t_1c). It also reveals that UHI with lower intensities

has longer temporal span than that with higher intensities, which, however, has less

significant phenomenon because temperature difference with the rural temperature is

smaller.

Let the UHI magnitude be 2 and the thematic temperature of each UHI be the mean
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value of temperatures within the UHI zone such that all the UHI behaviors can be sim-

ulated. Table 5.2 shows a complete life-cycle of a UHI ( ) with an inactive period

( =316) connecting with two active periods, and spatial and thematic filiations

( and ) of each pair of zones ( and ) are listed at each

time instant ( ). This indicates that all the information of the proposed five graphs

can be easily queried from the built model. Particularly, the UHI areas expand dur-

ing the first four hours followed by the expansion and contractions. Hence, the UHI

continuously embraced others and then contracted and disappeared temporally during

the sun rising, following an awaken in the middle of night of the same day. Notably,

the UHI also had a very obvious thematic evolutionary pattern from reaching a basin

( ), at a basin ( ), leaving a basin ( ) during the first period.

To investigate spatial variation of the UHI, zones in the first period of the above

mentioned UHI ( equals to 15) are plotted in light gray color, which are over-

lapped by other UHI zones having higher magnitudes (Figure 5.15). The figure shows

an overall trend that most of the zones expand gradually with a mild shrinking in be-

tween, shrink dramatically, and finally disappear. Zones with higher intensities have

more discrete and smaller areas located within the zones having lower intensities, and

their life spans are much shorter. In addition, some urban heat sinks (UHSs) appear as

holes in the zones of UHIs, areas and locations of which are very stable with insignif-

icant change for a time period. Further investigation suggests that locations of these

UHSs are associated with the green lands, water body, and open areas in the delta re-

gion. However, detailed process of the dramatic contraction of the UHIs starting from

7 am cannot be tracked without more thermal images.

Observation samples by different spatial and thematic behaviors were also sum-

marized that Chi-square test could be used to investigate correlation relations between

them since they are qualitative indicators (i.e. non-numeric data). Considering that be-

haviors can be influenced notably when zones are extracted in different magnitudes, a

series of intensities are used to calculate the P-values. For example, if two zones merge

together as one, then other zones with higher magnitudes located within the two zones
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(a) zone at 21:00 (07/31) (b) zone at 22:00 (07/31) (c) zone at 23:00 (07/31) (d) zone at 00:00 (08/01)

(e) zone at 01:00 (08/01) (f) zone at 02:00 (08/01) (g) zone at 03:00 (08/01) (h) zone at 04:00 (08/01)

(i) zone at 05:00 (08/01) (j) zone at 06:00 (08/01) (k) zone at 07:00 (08/01) (l) zone at 08:00 (08/01)

Fig. 5.15 Overlapped zones of UHIs in sixteen consecutive time instants, where zones
in the light gray, gray, and dark gray are respectively with three magnitudes of 2, 3,
and 4 degree Celsius. (a)-(l) Continuous of areal changes for zones of UHIs from
2015-07-31 21:00 to 2015-08-01 08:00.

may have either areal change or merging behaviors but definitely not disappearing.

Thus, P-values are calculated and drawn in Figure 5.16 based on a set of magnitudes.
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Fig. 5.16 Chi-square test to investigate the correlation relation between the spatial and
thematic behaviors.

Interestingly, all the P-values are extremely small even though they grow increasingly

with the increase of the magnitudes, which means the spatial and thematic behaviors

have very strong correlations with highly accepted significance when the significance

level is 0.001.

Table 5.3 The number of observations group by spatial and thematic behaviors when
magnitudes equal to 1 and 5.

magnitude behaviors increasing stationary decreasing sum
expansion 45 20 20 85

continuation 0 1 5 6
contraction 28 26 31 85

1 annexation 113 49 53 215
merging 117 42 178 337

separation 1 0 0 1
splitting 317 33 42 392

sum 621 171 329 1121
expansion 2 13 31 46

continuation 0 1 1 2
contraction 6 26 24 56

5 annexation 1 1 3 5
merging 0 15 51 30

separation 0 0 0 0
splitting 0 9 32 41

sum 9 65 106 180
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Table 5.3 summarizes the number of both spatial and thematic behaviors using the

Chi-square test when magnitudes equal to 1 and 5. When it equals to 1, UHIs have

large extents but low intensities, and the increase of the temperatures brings more ex-

pansions and annexations, which probably happens during the day time because of the

solar radiation. Increasing temperatures also generates a great number of splits, and

UHIs having these splits can appear during the night time due to the latent heat from

the surface with dense artificial buildings and disappear during the sun rise. Never-

theless, contraction and merging have notable numbers of increasing and decreasing,

both of which also can be determined by the above two reasons simultaneously. By

contrast, UHIs with higher magnitude (equals to 5) have much smaller extents but

higher intensities. More expansions, annexations, and mergers are associated with the

decreasing, which represents a growing trend for the dense hotspots during the night

time. More UHIs tend to have splits when decreasing, suggesting that existence of

these UHIs heavily relies on the heat resources contributed during the day time such as

the anthropogenic heats and solar radiations. Moreover, no separation indicates a fact

that all these zones in the high intensity shrink so fast that none of them is significantly

larger or still exists in the next hour.

5.8.3 Life-cycle of UHIs

To investigate the evolutionary process of UHIs with several temporal periods, the vital

input parameters should be defined. First, the magnitude is set at 3 degree Celsius to

extract zones of UHIs to obtain a balance between getting larger extent of zones and

more diversity of filiations. Second, the maximum distance that a UHI can move for

each time instant is 11.1 km, which equals to the length of 0.1 latitude in Guangzhou.

Table 5.4 lists the complete life-cycles of three UHIs that interact with each other.

More specifically, a UHI ( ) has one or more periods ( ), and for each pair

of zones ( and ) at a time instant ( ) have three types of filiations

( , , and ). In addition, sequences ( ), chains ( ), and

queues ( ) are listed corresponding with their transitions ( , , and
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). To start with, a UHI (object ID is ) contains three active periods (period

IDs are , , and ) connected by two inactive periods (period IDs are and

). The first inactive period has extended only for one hour from 5 to 6 am, while

the second one covers three days from 1 August to 4 August. During the same time

period as shown in Figure 5.17 which is directly plotted from the table, the other

one (object ID is ) develops independently from 2 to 8 am. The last UHI appears

at 5 am, which is then destroyed by merging with the UHI at 6 am.

Table 5.4 indicates that the model is very sensitive to detect and track the changes

of UHIs even they are inactive for a short time (i.e. inactive period for the UHI

is one hour). Specifically, the UHI (object ID is ) has two spatial behaviors

of continuation and annexation at 6 am. This is different from the original proposed

conceptualization that a UHI can only have one spatial behavior of either areal change

or topological transformation at a time instant. The reason is that some transformations

do not mean that a UHI will be destroyed but can still extend its life span by separating

apart from its origin (i.e. separation) or absorbing one or several ones into its own

(i.e. annexation). Therefore, the UHI can simultaneously have areal changes at the

time when particular transformations occur. In contrast, destruction of a UHI caused

by splitting and merging excludes areal change scenarios.

By investigating at the UHI , its spatial extent shrinks at 4 am, and then con-

tinuously approaches to, stays at, and leaves the plateau. Interestingly, its thematic

transition is opposite to the spatial transition, i.e., it reaches, stays at, and leaves the

basin. This observation indicates a very interesting phenomenon that a UHI existing

during the nighttime can grow larger even though its thematic intensity decreases. Spa-

tial behaviors of the UHI (ID is ) is relatively simple without topological trans-

formations. By investigating the locational behavior, this UHI only shifts away from

its original location insignificantly at a time instant and it stops most of time, which

suggests that UHI can be locationally fixed and the displacement is not obvious, which

is also proved by other studies (Hua & Wang, 2012; Jalan & Sharma, 2014). Regarding

Figure 5.18, the area covered by this UHI is the concrete seaport, which tends to dis-
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(a) Zone at 1:00 of 08/01/2015 (b) Zone at 2:00 of 08/01/2015 (c) Zone at 3:00 of 08/01/2015

(d) Zone at 4:00 of 08/01/2015 (e) Zone at 5:00 of 08/01/2015 (f) Zone at 6:00 of 08/01/2015

(g) Zone at 7:00 of 08/01/2015 (h) Zone at 4:00 of 08/04/2015 (i) Zone at 5:00 of 08/04/2015

Fig. 5.17 Complete life-cycle for three UHIs.
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Fig. 5.18 The zone ( is ) of a UHI ( is ) mainly covers the
concrete floor of a seaport.

perse the heat during the nighttime absorbed from solar radiations during the daytime.

Still, this seaport is surrounded by the sea and the farmland that no other UHIs can be

generated so that this UHI only develops independently throughout its life-cycle.

Table 5.4 also shows that both UHIs of and merge together as a new

one ID as drawn in Figure 5.19a. It shows that the two small UHIs destroying

at 5 am are followed by a large one at 6 am, which contains several holes within the

zone because of the heat emission from the land surface that heat dispersion shall

decrease gradually over time. Instead, it is most probably caused by sunrise that the

land accumulates great volume of the heat and air temperatures in urban areas in a

faster rate than that in rural areas. Most of the holes in the zone are in the green
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(a) Zone at 6:00 of 08/04/2015 (b) Zone at 7:00 of 08/04/2015

Fig. 5.19 A UHI generated from merging at 6 am is splitted at 7 am, leading to the
deconstruction of itself and generation of 32 new UHIs.

areas or high-rising buildings that provide shades. Lastly, this large UHI is destroyed

by splitting itself into 32 new ones at 7 am (Figure 5.19b). Causative factors for these

UHIs existing during the daytime shall be different from that in the nighttime, which

shall be investigated further.

Notably, some heat sinks are within the extent of the UHI (Figure 5.19a) because

temperatures of the sinks do not satisfy the condition to form the UHI, i.e., temper-

atures of the sinks are lower than the minimum temperature of the UHI. Preliminary

results suggest that most of these sinks have a correlated but opposite evolutionary

trend with the UHI. While others have static extents or insignificant areal variations.

Since the sink is also enclosed with certain area, it hence can be conceptualized as a

field object and named as the urban heat sink (UHS).
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(a)Tem
peratures
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31/07/2015

to
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(b)Tem
peratures

from
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to
03/09/2015.

(c)Tem
peratures

from
25/09/2015

to
01/10/2015.

(d)Tem
peratures

from
23/10/2015

to
29/10/2015.

(e)Tem
peratures

from
20/11/2015

to
26/11/2015.
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peratures

from
18/12/2015

to
24/24/2015.
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5.8.4 Revolutionary trends of UHIs

To find the evolutionary trends of UHIs over a long time period, the study investi-

gates the changes of UHIs in six weeks covering a continual of six months from July

to December in 2015. The magnitude is defined as 3 degree Celsius to cover a large

urban area, and the core-oriented behavior modeling is used for this investigation. Fig-

ure 5.20 draws the curves of the referenced rural temperatures and the mean of UHI

intensities are calculated for each of the three weeks. Between July 31 and August

6, the rural temperatures and UHI intensities are increasing gradually, which has been

discussed in the above section (Figure 5.20a). An interesting phenomenon occurs be-

tween August 28 and September 3 that the rural temperatures have a slight decrease

and UHIs are insignificant through the whole week (Figure 5.20b). This abnormal

phenomenon was caused by rainstorms in the whole week that the heat is dispersed

obviously. UHI intensities between September 25 and October 1 has an unconspic-

uous decrease and increase (Figure 5.20c). In comparison, difference between the

maximum and the minimum rural temperatures are decreasing between October 23

and October 29 (e.g. variation between the maximum and the minimum temperature

shrinks from 13 �C on Oct 23 to 7 �C on Oct 29) while both the absolute rural tem-

peratures and UHI intensities have a growth trend (Figure 5.20d). Obviously, rural

temperatures and UHI intensities have obvious decrease, and occurrence of the UHIs

is shortening between November 20 and November 26 (Figure 5.20e). By contrast, a

significant increase occurs from a low temperature (i.e. around 8 degree Celsius) for

both rural temperatures and UHI intensities during December 18 and December 24,

and UHIs occur more rarely (Figure 5.20f).

Overall, intensities of UHIs are changing around 28 degree Celsius in August and

September, and it gradually decreases to 23 and 17 degrees during October and Novem-

ber. It supposed that the intensities continuously decrease to 8 degrees in the late of

December, following by a growth that reaches to 23 degree Celsius. The figure shows

that UHIs mostly happen and are the most significant during the night. However, an

entire opposite phenomenon also occurs in some specific days that UHIs are the most
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significant at noon on September 30 (Figure 5.20c), October 27 (Figure 5.20d), and

November 25 (Figure 5.20e). This abnormal phenomenon always accompanies with a

prodigious decrease of the temperatures that it was sunny in the previous day while it

rains in the current day. It can be explained that the heat accumulated in the previous

daytime cannot disperse immediately during the night because of the thermal insula-

tion contributed by the urban canopy (i.e. rain-clouds). Thus, the heat accumulated in

the previous day gradually releases in the next day, and the UHI is getting more obvi-

ous with the anthropogenic heat fluxes generated in the current day. This explanation

is also suggested by some other studies (Holderness et al., 2013; Zhong et al., 2015).

Figure 5.21 draws the curves of the total area of UHIs as the same time period as

that draws in Figure 5.20. It shows a positive relationship that the total areas grow with

the increase of the UHI intensities during the summer (Figure 5.21a), and the areas are

small all through the existence of UHIs because of the continuous rains (Figure 5.21b).

However, the areas are with slight decrease in the late of September, which is with an

opposite trend as the changes of the UHI intensities (Figure 5.21c). The areas are con-

tinue shrinking even though the UHI intensities are increasing, and this trend is getting

much more significant in October (Figure 5.21d) and December (Figure 5.21f) when

UHI intensities become lower. This negative relationship also occurs on December

25 and 26 (Figure 5.21e), i.e., decrease of the UHI intensities is with the increase of

the areas. Moreover, daily occurrence of UHIs is shortening gradually from October

to December. This special phenomenon can be caused by that the urban temperatures

raise up or drop down slower than that of the rural temperatures during the winter

time, so that areas of UHIs are contracting since magnitudes (i.e. temperature differ-

ence between the rural temperature and the urban temperature) are decreasing with the

increase of the rural temperatures, and areas of UHIs are expanding because magni-

tudes are increasing with the decrease of the rural temperatures. One explanation is

that urban areas absorb less solar radiation which is one of the most majority heat re-

sources of UHIs (Giridharan et al., 2007) and release more accumulated heat during

the winter because of the seasonal winds (Wang, 2006) so that it is more difficult to
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form UHIs and areas of UHIs more tend to contract even though rural temperatures

increase in winter.

SQL 7 FUNCTION SummativeStatistics()

5.8.5 Exploratory discovery

This section explores spatio-temporal variabilities of trajectories through summative

statistics. The proposed model is interactive and allows SQL query (Lines 1-6 in

SQL 7) to construct trajectories of UHIs and summarize their active hours. Figure 5.22

draws all the trajectories of UHIs over six independent weeks. The figure shows that

UHIs associate in the core urban area of Guangzhou and shift back and forth to ur-

ban areas of the surrounding districts periodically when the magnitude is intermediate

(m = 3). Accordingly, a series of zones of each UHI categorized by area are plotted

along with the trajectories (Figure 5.23), derived from the second simple query (Lines

7-13 in SQL 7). It obviously shows that larger zones are clustering in the core urban

area while smaller zones are discretized in different districts, apart from raining days

(Figure 5.23b). The two figures also reveal that: (i) the UHI phenomenon becomes

inconspicuous from summer to winter since trajectories are getting sparse; (ii) UHIs

having the same magnitude maintain their travels between cores and suburbs disre-

garding with the change of seasons; and (iii) their extents contract moving from cores

to suburbs while the extents expand when turning round.

The above findings motivate us to further investigate trajectories when UHIs are in
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(a) Traj. in 07/31-08/06 (b) Traj. in 07/31-08/06 (c) Traj. in 09/25-10/01

(d) Traj. in 10/23-10/29 (e) Traj. in 11/20-11/26 (f) Traj. in 12/18-12/24

Fig. 5.22 Trajectories of UHIs (m = 3) for six weeks. Longer life-span of a UHI is
presented in darker color.

higher magnitudes. Focusing on a single week between July 31 and August 6, areal

information of zones and their occurrence time along with the trajectories are drawn in

Figure 5.24 and Figure 5.25 respectively, both of which are derived from SQL 7 as well.

It is found that trajectories are getting sparser and shorter, and gradually centralized in

the core urban area with the increase of magnitudes. This means that UHIs with higher

intensities would have smaller extents and tend to associate in more density urban

areas. Figure 5.25 also visualizes temporal occurrence of UHIs. It presents that UHIs

with low magnitude (m = 3) can exist all through the day covering a large area, while
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(a) Zone area in 07/31-08/06 (b) Zone area in 07/31-08/06 (c) Zone area in 09/25-10/01

(d) Zone area in 10/23-10/29 (e) Zone area in 11/20-11/26 (f) Zone area in 12/18-12/24

Fig. 5.23 Zone of UHIs associated with their trajectories. Lager area of the zone has
larger circle size.

UHIs with higher magnitude (m = 5) overwhelmingly occur in the night occupying

much smaller area. All these findings suggest that UHIs having a low magnitude would

associate in several urban areas while their occurrence time can decrease over seasons.

In contrast, UHIs with a high magnitude would associate in a specific urban area while

their occurrence time can only be in the night.
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(a) Zone areas when m = 3 (b) Zone areas when m = 4 (c) Zone areas when m = 5

Fig. 5.24 Zone areas of UHIs in different magnitudes associate with their trajectories
between July 31 and August 6.

(a) Time of zones when m = 3 (b) Time of zones when m = 4 (c) Time of zones when m = 5

Fig. 5.25 Time-based location of zones associated with their trajectories between July
31 and August 6.

5.9 Discussion

Spatio-temporal resolution of the thermal images has profound influences on extracting

zones of UHIs and consequentially determining the evolution of UHI behaviors. This

study used 216 in-suit weather stations for spatial interpolation, in which 169 stations

located in the urban areas and most of these stations were in the core urban areas.

This suggests that a higher density of the stations corresponds to space where more
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spatial variability of UHIs is expected. Exploratory experiments found that Ordinary

Kriging with the spherical semi-variogram model was able to highlight the hotspots

much better, comparing with the Universal Kriging. Therefore, Ordinary Kriging was

used to generate contiguous of the thermal images so that hotspots of UHIs could be

fairly constructed. Thermal images were derived with spatial resolution as high as

100 m and standard deviation of (1 ± 0.4) �C. Even though spatial resolution is still

coarse compared with the thermal band of Landsat ETM+ (i.e. 60 meters) and ASTER

(i.e. 90 meters), it allows the proposed model to identify UHI object and track its

spatial variability at block level, which means that its evolution still can be tracked as

a monitoring of micro-climate in the urban area. Meanwhile, hourly thermal images

provide a much higher temporal resolution compared with the conventional satellite

images (e.g. revisit frequency is 16 days for Landsat 8), which enables the model to

track the evolution instantly most of time. This could be the most favorable factor for

using the in-situ weather station data. However, the hourly-based resolution still meets

challenges to track all the spatial evolution unambiguously since UHIs can contract,

split, and disappear dramatically in just several minutes in the early morning.

It is vital that the estimated thematic and spatial behaviors of UHIs have close re-

lation to the physics of UHI process in the real world. Benefiting from appropriately

constructed thermal images, zones of UHIs extracted from thermal images are thus

promising in terms of the spatial extent and thematic intensity. Since computation of all

the spatial behaviors relies on the significant overlapping analysis and rigorous topo-

logical calculation, the model can ensure that related zones for each two consecutive

time instants correspond to the same UHI object, and therefore can depict evolutions

of the UHI in physics reliably. In addition, the model allows UHIs to move as typical

moving objects, while results found that UHIs in core urban area (with high magni-

tudes) were locational associated that did not move obviously from their origins, as

other studies have suggested in Section 5.8.4. This uncovered pattern indicates that the

proposed model can track evolution of UHIs in physics effectively. Thereby, thematic

behaviors determined by comparing intensities of the related zones are convincing.



5.10 Summary 107

5.10 Summary

In this chapter, the study collected six weeks of the air temperatures to obtain con-

tiguous thermal surfaces and proposed computational methods to determine behaviors

of zones so that a spatial database system was developed to simulate the evolutionary

process of UHIs continuously over time. Results suggested that spatial, thematic, and

locational behaviors of UHIs with several periods can be tracked and their transitions

can be detected simultaneously. Several findings are summarized as follows.

1. UHIs have periodic evolution in the daily basis, which can be caused by an-

thropogenic heat (i.e. heat produced by vehicles) and particular land covers (i.e.

concrete seaports surrounded by vegetation).

2. UHIs have revolutionary trends over seasons. In summer, daily occurrence of

UHIs extends, daily temperature variation enlarges, and areas of UHIs grow.

However, the trends are contrary in winter. It is supposed that UHI evolution is

also periodic in the seasonal basis.

3. UHI is normally significant in the nighttime in both summer and winter. As an

abnormal, it can also obvious in the daytime if it is a raining day and the previous

day was sunny.

4. UHIs defined in different magnitudes have different types of spatial behaviors,

and sinks can affiliate to the UHIs in some particular time periods.

5. UHIs in the same magnitude would maintain their locational displacement but

with the decrease of the total numbers over seasons. UHIs with a higher magni-

tude are smaller and more locational associated in the more density urban area,

and their occurrence time decreases.





Chapter 6

Discussion and conclusion

6.1 Summary

This study conceptualizes each UHI as a two-dimensional field-object which has four

properties (i.e. extent, location, temperature, and time). Then, an object-oriented data

model is proposed to track the dynamic behaviors of UHIs instantly, which are ex-

pressed by three types of filiations (i.e., spatial, locational, and thematic filiations)

between zones at each two consecutive time instants. For each time instant, spatial

filiations are defined by areal changes and topological transformations. A zone at ti

associating with a single zone at ti�1 makes an areal change and a zone at ti has as-

sociation with several ones at ti�1 corresponds to a topological transformation. As a

field-object, a UHI is also allowed to have active and inactive periods connecting with

each other caused by status transitions, which finally construct a complete life-cycle.

To track continuous evolution of UHIs observed by a series of discrete thermal im-

ages, six hierarchical graphs are proposed so that their evolutionary processes can be

described in different description granularities.

Empirical evaluation based on a developed database system suggests that the pro-

posed spatiotemporal data model is effective to record the changes of UHIs and is able

to reveal evolutionary trends of UHIs. On a daily basis, UHIs normally appear after the

sunset, mostly grow and merge together before the middle night, become stable and
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significant after the middle night, and finally split and disappear rapidly at dawn. On

a seasonal basis, UHIs expand and their intensities increase, and the daily occurrences

extend in the summer; while the trends are reverse in the winter. In addition, UHIs

with higher magnitudes are more locationally associated while variability of their tra-

jectories maintains in all the seasons. The results also suggest that the model is able to

detect abnormal phenomena sensitively such as significant UHIs occurring at the noon

in the raining days.

6.2 Discussion

In each set of the experiment, a specific magnitude was used to extract zones of UHIs,

and temperatures within the zones are at least with a magnitude difference from the

referenced rural temperatures. However, location of the rural temperatures used for

extracting the extent of UHIs was selected empirically, which could not represent all

the rural temperatures to precisely extract the boundaries of UHIs. An approach to

determine the referenced rural temperatures more accurately is creating an outer-buffer

of the investigated urban areas with a certain width so that the buffer shall cover certain

rural areas. Hence, a threshold temperature can be determined by averaging all the

rural temperatures within this buffer zone. The advantage of this approach is that all

the rural temperatures are taken into account so that uncertainty of the reference rural

temperatures caused by selection of the site can be avoided.

Initially, a UHI is conceptualized to have either areal change or topological trans-

formation at each time instant. For example, a UHI may continue by splitting part from

its own at ti. In this case, this UHI has only transformation (i.e. separation) without

any areal changes at ti. Having more deliberate consideration, this study further refines

the model that a UHI can have both areal changes and transformation at the same time

in some particular scenarios. As long as a UHI continues, its zone will still continue

without any interruption even when transformation occurs. In this consideration, when

a UHI separates part from its origin (i.e. separation) or absorbs some into its own
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(i.e. annexation) at ti, the UHI can still be determined as zi
n so that the two areas of

(area(zi�1
n ),area(zi

n)) can be compared. That is to say, the UHI may simultaneously

have transformation and areal change. This refinement allows a continuous tracking of

the areal information during the whole active period.

This study still encounters two limitations. First, zones of UHIs are extracted from

thermal images based on the reference rural temperatures. Because of the different

magnitudes, the extracted zones sometimes cover rural areas which are not belonging

to the urban areas. This causes an uncertainty that the discovered phenomenon can

be influenced by rural areas. For example, two zones contain rural areas in two con-

secutive time instants and they are associated because of the significant overlapping.

However, the two zones shall have no association if rural areas are excluded from

the zones. Second, this study reveals some new patterns and suggests some causative

factors based on the analysis between the zones, road networks, and land uses (Fig-

ure 5.13 and Figure 5.18). However, exploration of the causative mechanisms is still

preliminary even though it is not the objective of this study.

6.3 Conclusion

From a unique view of the UHI research, this study proposes a complete spatiotem-

poral data model to track the evolutionary processes of UHIs. It suggests that the

proposed model is effective for continuous tracking of UHIs and for uncovering evolu-

tionary trends of UHIs over time. Based on the summary and discussion above, several

conclusions can be made in the following.

• This study establishes knowledge in the UHI phenomenon in Guangzhou.

First, UHIs are more significant in the summer and tend to occur in the nighttime.

Second, UHIs have both daily periodicity and seasonal variation. Third, UHIs

with higher magnitudes are more locationally associated in the core urban areas

with shorter temporal occurrence.

• This study provides more approaches for research of the field phenomena.



112 Discussion and conclusion

First, the model accepts several types of the data sets, not only for discretized

points (e.g. observed air temperatures) but also for remote sensing images given

the condition that the spatiotemporal resolutions are fulfilled. This indicates a

wide usage of the model. Second, compared with conventional object-oriented

data models looking at discretized temporal snapshots, the proposed model is

more flexibly since it provides an interactive interface that allows summative

statistics (e.g. accumulation and aggregation) to uncover interesting patterns in

forms of both textual and visualized information. Third, the model is helpful to

determine potential causative factors and effects through continuous tracking of

the interested phenomenon and correlation analysis.

• This study develops the theory of spatiotemporal data modeling. The pro-

posed model allows a distributed geographical phenomenon to be conceptual-

ized as a field-object such that its evolution can be modeled as continuous of

the dynamic behaviors, acting as an object either develops independently or in-

teracts with other objects with topological transformations. All the behaviors,

transitions, and transformations can be tracked by the proposed six hierarchical

graphs. Furthermore, this study for the first time proposes a complete life-cycle

concept for each field-object that each one can have several periods connected

by active or inactive transitions. This brings a remarkable benefit that tracking

of the interested phenomenon can be extended into a longer time period.

6.4 Future work

The proposed model cannot be used and applied for tracking all the field phenomena.

For example, urban heat sinks can be visually detected during the tests but cannot be

tracked directly using the current established model. Yet, some results are still prelim-

inary and more interesting patterns and causative factors shall be explored further with

the systematic correlation analysis. Thus, future work is planned in the following five

aspects.
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1. Discover long-term revolutionary trends. Several seasonal trends of UHIs

have yet been studied while this study only covers six months from August to

December due to the data limitation. Future work will obtain long-term data

so that patterns of yearly trends can be analyzed. Additionally, future work

will propose an event-based behavior for UHIs by aggregating the sequences or

periods according to the pre-defined.

2. Extract UHI extent smartly. The model can be used widely in different spatial

scales for either an urban core area, several city clusters, or even continental re-

gions. If the study area is a wide region, rural temperatures used as the threshold

shall be selected simultaneously in multiple places since temperatures in differ-

ent places that with different UHI. For example, urban areas of four Chinese

cities (i.e. Shenzhen, Dongguan, Guangzhou, and Foshan) are spatial contigu-

ous and they cover a large area so that intensities of the UHIs in the four cities

shall be different. In a continental scale, Miami may not have a UHI when it

is 31 degree because the whole Florida has temperature around 31. While, 29

degree in Buffalo may generate a UHI since its surrounding temperature is 26.

Thereby, future work will further develop this model to smartly extract extents

of UHIs. In this case, geostationary satellite images (e.g. MTAST with spatial

resolution is 4 km and temporary resolution is 1 hour) or data from automatic

weather stations with high spatial density may provide more comprehensive data

source for the study.

3. Explore causative factors effectively. The current model can be used to investi-

gate UHI at a finer scale of urban areas such that underlying mechanism of the

UHIs phenomenon may be revealed by synchronously tracking other hypothet-

ical influential factors. For instance, heat produced by vehicular flows can be a

major contribution to the UHI in some specific places where the heat also has

the peaks during the rushing hours in the morning and afternoon. In consider-

ation of the urban morphology, different wind directions can either accumulate
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or disperse the heat when the wind travels through different wind corridors in a

city. Future work can track the UHI evolution using the developed model and

simulate the urban dynamics (e.g. vehicles and winds) with multi-disciplinary

knowledge, and analyze their spatio-temporal correlations systematically to ex-

plore and understand potential factors.

4. Model urban sink islands. Urban Sink Island (USI) is a very interesting phe-

nomenon affiliated with the urban heat island that an enclosed urban area does

not belong to the urban heat island but is surrounded by an urban heat island.

Some but not many studies have discovered this phenomenon (Buyantuyev &

Wu, 2010; Zhou et al., 2013) and some investigated in its patterns and causative

factors (Clinton & Gong, 2013; Nassar et al., 2016). For instant, study in (Nas-

sar et al., 2016) found that the greatest effect of USI is during the daytime of

summer in the desert, which mostly happens in zones of high-rising buildings

since the cooling effect is promoted by the building shades and variations of air-

flow. However, previous work could not track this phenomenon over time with

the exploration of other causative factors. In spatiotemporal data modeling, each

USI can develop independently, affiliating with a UHI. Similarly, several USIs

can depend on the same UHI and merge as a single one, which may also split

into pieces. In this clue, USIs can be extracted from a series of thermal images,

and their behaviors can be modeled. Obviously, the USI is parasitic on the UHI,

and several USIs can be viewed as leaves growing from the same UHI root with

certain associations. By reversely extracting the extents of UHIs, the proposed

model can also be applied for tracking dynamic behaviors of USIs to investigate

certain discovered phenomena.

5. Spatial Big Data. The model is implemented in an object-relational database

management system (i.e. PostgreSQL) and estimation of all the filiations is

through SQL queries. Thus, computation of the model can natively fall into

the Spatial Big Data computing task. Computational cost of this study is low
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because the data only covers a small region and for a short time period. How-

ever, the computing task can be significantly challenged if (i) the study area

dramatically expand to a national or even continental scale; (ii) zones are ex-

tracted by multiple relative intensities so that behaviors of UHIs have to be deter-

mined simultaneously in different relative intensities; and/or (iii) the estimation

is extended to much longer time periods (e.g. continuous of several months of

even years). In this case, many strategies have to be used to fit the Spatial Big

Data computing task such as cloud computing either centralized (e.g. Hadoop

MapReduce (Hadoop, 2017)) or decentralized (e.g. HyperCGSF (Fei, 2017)),

and SQL query optimization (e.g., , , and ).
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