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Abstract

Low-density parity-check (LDPC) codes have been proved to have theoretical lim-

its approaching the channel capacity. Quasi-cyclic LDPC (QC-LDPC) codes are a

particularly important class of LDPC codes. QC-LDPC codes have attracted much

attention because of their special advantages, flexible design and ease of implemen-

tation. Recently, a novel type of QC-LDPC block codes called cyclically-coupled

quasi-cyclic LDPC block codes (CC-QC-LDPC codes) have been proposed. CC-

QC-LDPC code have been shown to achieve outstanding bit error performance with

extremely low error floor.

Our first study is a novel construction method of CC-QC-LDPC codes which

shortens the code length of CC-QC-LDPC codes and at the same time achieves a

larger girth and a better error performance. We show that even with a shorter code

length, the new CC-QC-LDPC codes can outperform the traditional CC-QC-LDPC

ones.

In our second study, we modify the CC-QC-LDPC code construction by using

random permutation matrices instead of circulant permutation matrices, forming

random-permutation-matrix-based CC-LDPC (RP-CC-LDPC) codes. Compared

with CC-QC-LDPC codes, regular and irregular QC-LDPC codes, the BER perfor-

mance of the RP-CC-LDPC code is comparable to and can possibly exceed that of

other codes. However, decoder complexity and throughput are the major issues of

the RP-CC-LDPC code.

With an aim to solving the above problem, our third study proposes tree

permutation matrices (TPM) and uses them to construct new types of LDPC

codes. This kind of LDPC codes is named as tree-permutation-matrix LDPC
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(TPM-LDPC) codes. We also realize parallel decoding of TPM-LDPC codes us-

ing field-programmable gate-array (FPGA). Compared with random-permutation-

matrix-based LDPC codes, the TPM-LDPC codes can achieve a higher throughput.

Compared with QC-LDPC codes, the TPM-LDPC codes achieve a slightly better

BER but requires a bit more resources in hardware implementation.
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Chapter 1

Introduction

As one of the two known classes of Shannon limit-approaching codes, low-density

parity-check (LDPC) codes are wildly used and studied because of their better er-

ror performance especially for high code rate and their structure that is strongly

preferred in hardware implementation. The study of LDPC codes can be traced

back to mid-1990’s. Up to now, studies presented by a great number of researchers

covered areas such as fast encoding, construction of LDPC codes with large girth

and hardware implementation of decoders. This thesis is related to the construction

of LDPC codes with good error performance and the implementation of decoders

on field-programmable gate-array (FPGA). This chapter presents the background

of LDPC codes, the scope of our work, and the organization of this thesis.
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1.1 Background

Low-density parity-check (LDPC) codes introduced by Gallager in 1962 [1] have been

widely applied and studied in the past two decades. LDPC codes have been proved

to have theoretical limits approaching the channel capacity. Moreover, extremely

long codes (length larger than 106) can perform very close to their theoretical limits

because the probability of having short cycles in their graph representations is very

small [2]. However, such long codes are not practical in most applications because

of the high hardware complexity and high latency [3, 4]. Codes of length ranging

from 500 to 100,000 are more practical because they can be applied to more com-

munication systems. It is also well-known that error performance of LDPC codes

with finite lengths may degrade significantly from their theoretical limits if there

exist many short cycles in their associated Tanner graphs. Such short cycles will

also form structures such as stopping sets [5, 6], elementary/dominant/detrimental

trapping sets [7–9] and absorbing sets [9, 10] that give rise to the error floor in the

high signal-to-noise-ratio (SNR) region. One effective way to maximize the girth

(shortest cycle length) of an LDPC block code is to connect the variable nodes and

the check nodes based on the progressive-edge growth (PEG) method [11] or its

modifications [12, 13]. Yet, the codes constructed using these algorithms may still

possess error floors in the high signal-to-noise-ratio (SNR) region.

To lower the error floor by reducing the occurrences of stopping sets and/or

elementary/detrimental trapping sets and/or absorbing sets, various construction

methods that (i) avoid small-size stopping sets [6]; (ii) avoid short cycles with ap-

proximate cycle extrinsic message degree (ACE) below a given value [14]; (iii) com-

bine PEG and ACE [12]; (iv) combine PEG and Approximate-minimum-Cycle-Set-
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Extrinsic message- degree (ACSE) [9]; and (v) control the absorbing set spectrum

[15, 16]; have been proposed [6, 9, 12, 14–16]. These methods in general can be ap-

plied to the construction of random LDPC block codes as well as structured LDPC

block codes such as quasi-cyclic LDPC (QC-LDPC) block codes.

Random construction and algebraic construction are two main set of methods

to construct LDPC codes. Random constructions can produce LDPC codes that

closely approach the Shannon capacity [17], [18], [19], [2]. Some irregular LDPC

codes have shown better error performance than regular LDPC codes. On the other

side, algebraic constructions have also attracted much interest because algebraic

constructions yield structures that are strongly preferred in hardware implementa-

tions. Quasi-cyclic LDPC (QC-LDPC) codes are a particularly important class of

algebraic-construction-based LDPC codes. QC-LDPC codes have been widely used

because of their flexible design and ease of implementation. We can use different

structured codes to construct QC-LDPC codes, such as finite geometry codes [20]

and circulant-permutation-matrix (CPM) based codes [21],[22],[23]. In order to op-

timize the performance of QC-LDPC codes, short cycles should be removed during

code constructions. However, structured codes usually cannot guarantee a large

girth (shortest cycle length) with a relatively short code length. Hence error floors

can still exist in the high SNR region for codes constructed under the method like

PEG.

Some efficient computer searching methods have been proposed to remove the

short cycles in QC-LDPC codes. Since there is an enormous number of possible

cycle combinations, it is extremely time-consuming and infeasible to conduct an

exhaustive computer search. The hill-climbing algorithm [24] is an effective searching
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method that modifies the elements of the base matrix iteratively. In [25], a fast hill-

climbing method has been further proposed to reduce the time complexity and make

the searching method more efficient. However, whatever construction methods we

use, a regular QC-LDPC code cannot have a girth larger than 12 because these

cycles are inevitable [26],[9].

Using LDPC convolutional codes (LDPCCCs) and QC-LDPC convolutional

codes (QC-LDPCCCs) is another way to improve the error performance and lower

the error floor [27],[28],[29]. However, the decoder of LDPCCC has a high hardware

complexity. Recently, a novel type of LDPC block code called cyclically-coupled

quasi-cyclic LDPC block codes (CCQC-LDPC code) has been proposed [30]. It is

formed by spatially-coupling a number of identical QC-LDPC block codes partially

in a cyclic manner. Furthermore, this property allows a simple design of a CC-QC-

LDPC decoder. To verify the feasibility of the idea that coupling the QC-LDPC

block codes partially can improve the overall error performance, the authors in [30]

construct a CC-QC-LDPC code with a rate of 5/6 and length around 98000. The

only criterion in the design is that the girth (minimum cycle length) equals 8. No

other optimization technique such as minimum distance analysis has been applied.

An experimental decoder has also been implemented on a field-programmable-gate-

array (FPGA) device. Under the condition that 10 decoding iterations are performed

for each codeword, the decoder achieves a throughput of 3.0 Gb/s . Moreover, the

CC-QC-LDPC decoder has a much lower complexity requirement and 50% higher

throughput compared to a LDPCCC decoder that achieves similar BER perfor-

mance [29]. For this rate-5/6 CC-QC-LDPC code, no error floor has been observed

above a bit error rate (BER) of 10−14 and a BER below 10−15 is expected at a bit-
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energy-to-noise-power-spectral-density ratio (Eb/N0) of 3.5 dB. A net coding gain

of 11.5 dB is therefore achieved. Furthermore, having taken the difference in code

rates into consideration, the CC-QCLDPC code has still demonstrated substantial

improvement over the un-coupled QC-LDPC block codes.

1.2 Objective and Scope

It is well-known that error performance of LDPC codes with finite lengths may

degrade significantly from their theoretical limits if there exists many short cycles in

their associated Tanner graphs. How to construct LDPC codes with an outstanding

error performance has always been a problem. Various construction methods also

have been proposed to optimize the error performance of LDPC codes. Recently, a

new class of QC-LDPC codes which is called cyclically-coupled quasi-cyclic LDPC

(CC-QC-LDPC) block codes have been proposed and shown to achieve outstanding

bit error performance with extremely low error floor.

In this thesis, our first study is focused on methods that shorten the code

length of CC-QC-LDPC codes and at the same time, allow the code achieving a

larger girth and a better error performance. With an aim to improving the girth, we

propose two special types of CC-QC-LDPC codes. We convert some sub-matrices

in a full CC-QC-LDPC code into zero matrices. Because of the conversion, cycles

passing through these removed sub-matrices can be eliminated. As a result, when

we construct the CC-QC-LDPC codes with a smaller sub-matrix size, we can still

obtain girth 8. The structures and error performance of the two new types of CC-

QCLDPC codes is given in our study.
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Our second study is focused on achieving a better error performance of CC-

QC-LDPC codes with the same code length. We modify the CC-QC-LDPC code

and propose a new type of CC-LDPC codes. Instead of using circulant permutation

matrices, we make use of random permutation matrices to form the basic build-

ing blocks of CC-LDPC codes. The proposed code is called random-permutation-

matrix-based CC-LDPC (RP-CC-LDPC) code. The decoder of the proposed RC-

CC-LDPC codes has been implemented using FPGA. We also compare the bit error

rate (BER) results and decoder complexity of our codes with those of regular and

irregular QC-LDPC codes under the same code length and code rate. Results show

that the BER performance of the RP-CC-LDPC code is comparable to and can pos-

sibly exceed that of other codes. However, decoder complexity and throughput are

major issues of the RP-CC-LDPC code which makes use of relatively more complex

random permutation matrices instead of simple circulant permutation matrices.

Our third task is therefore to design CC-LDPC codes with a lower complexity

than RP-CC-LDPC codes and good BER performance. In order to reduce the

resource utilization of FPGA and improve the throughput of the decoder, we modify

the QC-LDPC code construction by using tree-permutation-matrices (TPM) instead

of circulant permutation matrices. A TPM can be obtained by repeatedly replacing

a ‘1’ in a matrix with a 2× 2 permutation matrix. Moreover, parallel decoding can

be realized for TPM-based LDPC codes. As a result, compared with the RP-CC-

LDPC codes, a higher throughput can be achieved and the complexity of the decoder

is reduced. Compared with QC-LDPC codes, although TPM-based LDPC codes

require more resources in implementation, they provide a better BER performance.

Compared with CC-QC-LDPC codes, TPM-LDPC codes also use more resources in
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implementation and they have a lower error floor when the code length is relatively

short.

1.3 Organization

Chapter 2 gives an introduction to LDPC codes, including the definition of LDPC

codes and their representations based on parity-check matrices and Tanner graphs

(bipartite graphs). Then we review the belief propagation (BP) algorithm which

is used to decode LDPC codes. After that an important class of LDPC codes,

namely quasi-cyclic (QC) LDPC codes, is presented. We also introduce the hill-

climbing algorithm and the fast hill-climbing algorithms, both of which are used to

search for high-girth QC-LDPC codes. At the end of Chapter 2, the definition and

construction of CC-QC-LDPC codes will be briefly reviewed. We also introduce the

overall FPGA architecture of its decoder as the background of our study.

In chapter 3, we introduce two new types of CC-QC-LDPC codes which possess

better girth properties. We construct the codes and describe the structures of the

two new types of CC-QCLDPC codes. We also present the error performance of

the new CC-QC-LDPC codes. We find that even with a shorter code length, the

new CC-QC-LDPC codes can achieve a better error performance compared with

the original CC-QC-LDPC ones. In the same chapter, we further propose a new

type of CC-LDPC codes. Instead of using circulant permutation matrices, we make

use of random permutation matrices to form the basic building blocks of CC-LDPC

codes. The proposed code is called a random-permutation-matrix-based CC-LDPC

(RP-CC-LDPC) code. The decoder of the proposed RC-CC-LDPC codes has been
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implemented using FPGA. The error performance and decoder complexity of the new

code are evaluated and compared with other codes. We will describe the structure

of the proposed RP-CC-LDPC codes and introduce the memory arrangement of the

hardware implementation. Finally, we show the simulation results and compare the

results with other LDPC codes.

In chapter 4, we modify the LDPC code construction by using tree-permutation-

matrices (TPM) instead of circulant permutation matrices or random permutation

matrices. TPM-based LDPC codes can allow parallel decoding. We can achieve a

higher throughput and at the same time reduce the complexity of FPGA decoder

compared with RP-CC-LDPC code. We will first introduce TPM and TPM-LDPC

codes. After that we propose an effective method to find cycles in TPM-LDPC codes

and an efficient way to construct a high-girth TPM-LDPC code systematically. Then

we explain how to avoid the RAM access conflicts in the decoder design. Finally,

we show the simulation results of our proposed TPM-LDPC codes and compare

the results and decoder complexity with other regular and irregular LDPC codes.

Throughout our investigation, 10 belief propagation decoding iterations are used

and 4-bit quantization is applied in FPGA decoding.

In chapter 5, we summarize the work performed in this thesis and present some

future work.

8



Chapter 2

Low-Density Parity-Check Codes

This chapter gives a brief introduction of low-density parity-check (LDPC) codes.

The definition of an LDPC code and its representations based on parity-check matrix

and Tanner graph (bipartite graph) are reviewed. Then the belief propagation (BP)

algorithm which is used to decode LDPC codes is presented. After that an important

class of LDPC codes called quasi-cyclic (QC) LDPC codes will be reviewed and

the hill-climbing methods for constructing QC-LDPC codes with large girth are

introduced. Finally, the definition of cyclically-coupled QC-LDPC (CC-QC-LDPC)

codes and the decoder architecture will be briefly reviewed.
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2.1 Definition of LDPC Codes

2.1.1 Matrix Representation of LDPC Codes

A parity-check code of length N can be defined by an M×N parity-check matrix H,

whose M rows specify each of the M constraints. For example, if the first constraint

designates that the 3rd bit and 5th bit should be equal, then there must be two

1’s in the first row of H, one at column three and another one at column five,

and 0’s elsewhere. Let C be a set of binary vectors and H be a matrix containing

only 0’s and 1’s. If the set of binary vectors C satisfies all the constraints, i.e.,

C = {c : cHT = 0}, C is defined as a parity-check code and H defined as the parity-

check matrix of the code. Denoting the rank of H by r = rank(H) ≤ M , the code

dimension K is given by K = N−r and it represents the number of information bits

in each codeword c. Since each codeword has length N and contains K information

bits, its code rate is K/N .

A “low-density” parity-check (LDPC) code is defined by a parity-check matrix

which is sparse [1]. This parity-check matrix should contain mostly 0’s and relatively

few 1’s. The parity-check matrix of a regular LDPC code is an M × N binary

matrix containing j ones in each column and l ones in each row, where j < l < N

and Ml = Nj. Since Ml = Nj, the parameters N, M, j and l cannot be chosen

independently. For example, N, j and l should be chosen in such a way that Nj/l

is an integer. The code rate R = 1−M/N (when H is full rank) of a regular LDPC

code equals R = 1 − j/l. For an irregular LDPC code, the parity-check matrix is

still sparse but not all rows and columns have the same number of 1’s. In (2.1)

and (2.2), we show the parity-check matrix of an (N, j, l) = (10, 2, 5) regular LDPC
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code and an irregular LDPC code, respectively. In (2.1) we can see that there are

10 columns. Moreover, each column contains two 1’s and each row contains five 1’s.

The code rate is R = 1− j/l = 3/5.

H =



















1 1 0 0 1 0 1 0 1 0

0 0 1 1 1 0 0 1 0 1

0 1 1 0 0 1 1 0 0 1

1 0 0 1 0 1 0 1 1 0



















(2.1)

H =



















1 0 0 1 1 0 0 1 1 0

0 0 1 0 1 0 0 1 0 1

1 1 1 0 0 1 1 0 0 0

1 0 0 0 0 1 0 1 1 0



















(2.2)

2.1.2 Graph Representation of LDPC Codes

The graph representation of a parity-check matrix was first introduced by Gallager

[1] in 1963. He used a tree to connect codeword symbols and their corresponding

parity-check equations. In 1981, Tanner presented the concept of bipartite graph

(Tanner graph), and then Tanner graph became the most useful graph representation

of LDPC codes, especially in explaining belief propagation decoding.

A Tanner graph, which can be used to specify an LDPC code, is essentially a

visual representation of a parity-check matrix H. Recall that an M×N parity-check

matrix H can represent an LDPC code whose code length is N and each codeword

satisfies a set of M parity-check constraints. The Tanner graph of H contains N
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Figure 2.1: The Tanner graph of a (10, 2, 5) regular LDPC code

variable nodes (bit nodes) corresponding to the elements of the codeword and M

check nodes corresponding to the set of parity-check constraints. We use circles

to represent the variable nodes and squares to represent the check nodes. If the

(m,n)-th entry in H equals 1, i.e., Hm,n = 1, the n-th variable node participates in

the m-th check node and the n-th variable node will be connected to the m-th check

node. The Tanner graph is also called a bipartite graph because it contains two

distinct type of nodes — check nodes and variable nodes — and direct connections

cannot exist between any two variable nodes or two check nodes.

The Tanner graph associated with the (10,2,5) LDPC code in (2.1) is shown

in Figure 2.1. The 10 variable nodes are shown as circles at the top of the figure

and the 4 check nodes are shown as squares at the bottom. We can see that each

variable node has two branches (i.e., degree 2) connecting to 2 different check nodes

because each column in H contains two 1’s. Similarly, each row in H has five 1’s

and hence the number of branches connected to each check node is always five (i.e.,

12



degree 5) .

An ensemble of LDPC codes bearing the same degree distributions can be

characterized by the degree-distribution polynomials

λ(x) =

jmax
∑

i=2

λix
i−1 (2.3)

and

ρ(x) =

lmax
∑

i=2

ρix
i−1 (2.4)

where

• λ(x) denotes the variable-node degree distribution;

• λi is the fraction of edges connected to variable nodes of degree i;

• jmax is the maximum variable-node degree;

• ρ(x) denotes the check-node degree distribution;

• ρi is the fraction of edges connected to check nodes of degree i;

• lmax is the maximum check-node degree.

Moreover, the code rate R is given by

R = 1−

∫ 1

0
ρ(x) dx

∫ 1

0
λ(x) dx

. (2.5)

In the case of the irregular LDPC code in (2.2), the degree-distribution polynomials

are given by

λ(x) =

jmax
∑

i=2

λix
i−1 =

2

5
x+

2

5
x2 +

1

5
x3,
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ρ(x) =

lmax
∑

i=2

ρix
i−1 =

4

9
x4 +

5

9
x5,

and the code rate equals

R = 1−

∫ 1

0
ρ(x) dx

∫ 1

0
λ(x) dx

= 0.6.

2.2 LDPC Decoding

In this section, the belief propagation (BP) algorithm, which is also called the sum-

product algorithm (SPA), is introduced. The BP algorithm is the most widely used

decoding algorithm and has demonstrated successes in many applications including

LDPC decoding and turbo decoding.

The BP algorithm carries out iterative message-passing processes to achieve

convergence for all constrained variable nodes. We use

• c = (c1, c2, c3, . . . , cN) to represent the codeword;

• t = ((−1)c1+1, (−1)c2+1, (−1)c3+1, . . . , (−1)cN+1) to represent the transmitted

vector; and

• r = (r1, r2, r3, ...rN) to represent the received vector.

Given the received vector r, the log-likelihood ratio of the n-th bit is given by

λn = log
Pr[cn = 1|r]

Pr[cn = 0|r]
(2.6)
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where Pr[x] denotes the probability of x. According to Bayes rule,

Pr[cn = 1|r] = Pr[cn = 1|rn, {ri 6=n}]

=
Pr(rn, cn = 1, {ri 6=n})

Pr(rn, {ri 6=n})

=
Pr(rn|cn = 1, {ri 6=n})Pr(cn = 1, {ri 6=n})

Pr(rn|{ri 6=n})Pr({ri 6=n})

=
Pr(rn|cn = 1)Pr(cn = 1, {ri 6=n})

Pr(rn|{ri 6=n})Pr({ri 6=n})

(2.7)

Similarly,

Pr[cn = 0|r] =
Pr(rn|cn = 0)Pr(cn = 0, {ri 6=n})

Pr(rn|{ri 6=n})Pr({ri 6=n})
(2.8)

and hence λn can be re-written as

λn = log
Pr(rn|cn = 1)Pr(cn = 1, {ri 6=n})

Pr(rn|cn = 0)Pr(cn = 0, {ri 6=n})

= log
Pr(rn|cn = 1)

Pr(rn|cn = 0)
+ log

Pr(cn = 1, {ri 6=n})

Pr(cn = 0, {ri 6=n})
. (2.9)

In (2.9), the first item denotes the “direct” contribution derived from the received

signal rn. Assuming an additive white Gaussian noise (AWGN) channel with noise

power σ2, we have

Pr(rn|cn) = (2πσ2)−
1

2 exp

(

−(rn − 2cn + 1)2

2σ2

)

(2.10)

and

log
Pr(rn|cn = 1)

Pr(rn|cn = 0)
=

2

σ2
rn. (2.11)

In (2.9), the second item denotes the “indirect” contribution coming from other

received signals {ri 6=n} and can be derived from the BP iterative algorithm.
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2.2.1 Belief Propagation Iterative Algorithm

Considering the parity-check matrix in (2.1) and its corresponding Tanner graph in

Figure 2.1, each BP iteration can be divided into two parts. In the first part of

the iteration, the check-to-variable (C2V) message umn sent from check node m to

variable node n is computed by

umn = 2 tanh−1





∏

n′∈N(m),n′ 6=n

tanh

(

λmn′

2

)



 ∀ m = 1, 2, . . . ,M and n ∈ N(m)

(2.12)

where

• N(m) denotes the set of variable nodes connected to check node m; and

• λmn′ is the variable-to-check (V2C) message sent from variable node n′ to check

node m in the previous iteration.

Basically, check node m computes the C2V message to variable node n based on all

incoming V2C messages λmn′ except the one from variable node n. For example,

in Figure 2.2, check node c1 uses the information λ12, λ15, λ17, λ19 from v2, v5, v7, v9,

respectively, and computes the C2V message u11 to v1.

In the second part of the iteration, the overall LLR of variable node n is com-

puted using

λn =
2

σ2
rn +

∑

m′∈M(n)

um′n ∀ n = 1, 2, . . . , N ; (2.13)
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Figure 2.2: Variable-to-check messages

and the V2C message λmn sent from variable node n to check node m is computed

using

λmn =
2

σ2
rn +

∑

m′∈M(n),m′ 6=m

um′n = λn − umn ∀ n = 1, 2, . . . , N and m ∈M(n)

(2.14)

where M(n) denotes the set of check nodes connected to variable node n. For

example in Figure 2.3, variable node v1 receives the incoming C2V messages u11 and

u41 from c1 and c4, respectively. Then v1 updates the LLR λ1, and computes the

V2C messages λ11 and λ41 and send them to c1 and c4, respectively.

The procedures of the BP algorithm for a M × N parity-check matrix H are

summarized in Algorithm 1.
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Figure 2.3: Check-to-variable messages

Algorithm 1 Procedures of the BP algorithm

1: Initialization: Set λ
(0)
mn = 2

σ2 rn ∀m ∈ {1, 2, . . . ,M} and n ∈ {1, 2, . . . , N}.
2: Begin iteration

3: for iteration i = 1, 2, . . . , imax do

4: Check-node update: for m ∈ {1, 2, · · · ,M} and n ∈ N(m), compute

u(i)
m,n = 2 tanh−1





∏

n′∈N(m),n′ 6=n

tanh

(

λ
(i−1)
mn′

2

)



 (2.15)

5: Variable node update: for n ∈ {1, 2, . . . , N} andm ∈ {1, 2, · · · ,M}, compute

λ(i)
n =

2

σ2
rn +

∑

m′∈M(n)

u
(i)
m′n

λ(i)
mn = λ(i)

n − u(i)
mn (2.16)

end

6: Decision: If λ
(imax)
n > 0, cn = 1; else cn = 0.

2.3 Quasi-Cyclic LDPC Codes

Quasi-cyclic LDPC (QC-LDPC) codes are a particularly important class of alge-

braically constructed LDPC codes. The parity-check matrix of a QC-LDPC code18



can be divided into sub-matrices which have a circulant structure. QC-LDPC code

is also a widely used LDPC code and has been featured in many communication

system standards, e.g., IEEE 802.16e, DVB-S2, and 801.11 [31, 32].

A (J, L) regular QC-LDPC code can be described by a parity-check matrix H

H =



















I(p0,0) I(p0,1) ... I(p0,L−1)

I(p1,0) I(p1,1) ... I(p1,L−1)

... ... ... ...

I(pJ−1,0) I(pJ−1,1) ... I(pJ−1,L−1)



















(2.17)

where I(pj,l) represents a z × z circulant permutation matrix (CPM) obtained by

cyclically right-shifting the z×z identity matrix I by pj,l positions (0 ≤ j ≤ J−1, 0 ≤

l ≤ L − 1, 0 ≤ p(i, j) ≤ z − 1). I(pj,l) represents the z × z identical matrix I when

pj,l = 0. Therefore, QC-LDPC codes can also be defined by a J ×L base matrix Hb

where

Hb =



















p0,0 p0,1 ... p0,L−1

p1,0 p1,1 ... p1,L−1

... ... ...

pJ−1,0 pJ−1,1 ... pJ−1,L−1



















. (2.18)

A cycle is defined as a path that begins and ends at the same variable node. For

a QC-LDPC code, an arbitrary cycle of length 2i has to pass through 2i elements of

the base matrix. The sequence of the elements are denoted by (j0, l0), (j0, l1), (j1, l1),

. . . , (ji−1, li−1), (ji−1, l0), where js 6= js+1 and ls 6= ls+1 for 0 ≤ s− 1 ≤ i. Then there
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exists a cycle of length 2i if [22]

i−1
∑

s=0

(pjs,ls − pjs,ls+1
) = 0 (mod z). (2.19)

Figure 2.4 shows the expanded parity-check matrix Hb for the base matrix

Hb =







1 0 0 1

2 1 1 1






(2.20)

with z = 3. It can be seen that cycle-4 exists and involves p0,0, p0,1, p1,1 and p1,0.

Moreover, it can be easily found that p0,0 − p1,0 + p1,1 − p0,1 = 0 mod 3. For an

LDPC code, the girth is defined as its minimum cycle length. The error performance

of LDPC codes with finite lengths may degrade significantly from their theoretical

limits if many short cycles exist. Therefore short cycles should be eliminated when

constructing LDPC codes.

2.3.1 Hill-Climbing Algorithm

The hill-climbing algorithm [24] is an effective computer searching method to find

QC-LDPC codes with large girth. The algorithm starts with a base matrix Hb

of a QC-LDPC code where the elements pj,l are assigned values randomly among

{0, 1, 2, . . . , z−1}. Using the base matrixHb, the cost vector cj,l = {cj,l,0, cj,l,1, . . . , cj,l,z−1}

for each element pj,l is computed where cj,l,k denotes the cost when pj,l = k. The

cost function is related to the numbers of cycles whose lengths are less than a desired

girth and some weight parameters. In the cost function, cycles with a shorter length

are always weighted more costly than cycles with a longer length. A cost matrix C
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Figure 2.4: Illustration of a cycle-4 in a QC-LDPC code

can be defined to track the cost, i.e.,

C =



















c0,0 c0,1 ... c0,L−1

c1,0 c1,1 ... c1,L−1

... ... ...

cJ−1,0 cJ−1,1 ... cJ−1,L−1



















. (2.21)

In each iteration, a change that can reduce the cost most is made. The base matrix

and cost matrix are modified iteratively until the cost cannot be further reduced.

2.3.2 Fast Hill-Climbing Algorithm

In the original hill-climbing algorithm, the computational complexity is relatively

large because in each iteration, all the cycles with length shorter than the desired

girth should be counted for all elements. It is necessary to reduce the computational
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complexity of the original hill-climbing algorithm when the base matrix is large

and/or the sub-matrix size z × z is large. In [25], a fast searching method for the

construction of QC-LDPC codes with large girth has been proposed.

This fast searching algorithm also begins with a randomly constructed base

matrix. Then the elements pj,l are selected and modified one-by-one in a sequen-

tial way, as shown in Fig. 2.5. However, the evaluation criterion (cost) is changed

adaptively, as illustrated in Fig. 2.6. To begin with, the evaluation criterion is the

number of cycles with length 4. Therefore for each element pj,l, a particular value

is selected such that the smallest number of cycle-4 is formed by this element. Af-

ter all elements have been considered once, the first element will be re-considered

again. The process repeats until a base matrix without cycle-4 is found. Then the

evaluation criterion is changed to (i) no cycle-4 AND (ii) the number of cycles with

length 6. When each element pj,l is modified, the new value should ensure that no

cycle-4 will be formed and the number of cycle-6 will not be reduced. Otherwise,

its value should not be changed. Again the process repeats for all elements itera-

tively until a base matrix without cycle-4 nor cycle-6 is found. Then the evaluation

criterion is changed to (i) no cycle-4 AND (ii) no cycle-6 AND (iii) the number of

cycles with length 8. The iterative procedure continues until the desired girth with

a minimum number of cycles is found or no further changes can be made. Note

that when an element is being considered, only cycles passing through this element

and length no longer than the current girth will be evaluated. For example, if the

evaluation criterion is (i) no cycle-4 AND (ii) the number of cycles with length 6,

cycles larger than 6 are not evaluated. Thus the computational intensity can be

reduced distinctly compared with the original hill-climbing method and at the same
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Figure 2.5: Selecting and modifying each element of the base matrix one-by-one.

Figure 2.6: A fast searching method for the construction of QC-LDPC codes with
large girth.

time a desired girth can be obtained.

2.4 Cyclically-Coupled QC-LDPC Codes

2.4.1 Parity-check Matrix Representation

Define a QC-LDPC subcode Hc as

Hc =

[

Hl Hm Hr

]

(2.22)
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where the sub-matrices Hl, Hr and Hm consist of circulant permutation matrices

(CPMs); Hl and Hr are of the same size; and Hm has the same number of block

rows but not necessarily the same number of block columns as the other two sub-

matrices. In other words, the base matrices of Hl and Hr are of the same size

whereas the base matrices of Hl, Hr and Hm have the same number of rows. Then

a cyclically-coupled QC-LDPC code (CC-QC-LDPC) code can be constructed with

k QC-LDPC subcodes and by shifting and coupling Hl and Hr from two consecutive

subcodes Hc in a cyclic manner. The parity-check matrix of a CC-QC-LDPC code,

denoted by Hcc,k, can therefore be given by [30]

Hcc,k =

































Hl Hm Hr

Hl Hm Hr

Hl · · ·

. . .

· · · Hr

Hr Hl Hm

































k rows (2.23)

In general, we assume that in the QC-LDPC subcode Hc

• there are J × L CPMs of size z × z;

• both Hl and Hr contain J ×W sub-matrices;

• Hm contains J × (L− 2W ) sub-matrices;

where W is defined as the “coupling degree”. For example in [30], the parameters

J = 4, L = 28,W = 4 are used, meaning that Hl and Hr consist of 4 block rows

and 4 block columns, while Hm has 4 block rows and 20 block columns.
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2.4.2 Architecture of Hardware Decoder

Figure 2.7 shows the overall hardware architecture of a CC-QC-LDPC code decoder

(more details can be found in [30]). For every QC-LDPC sub-code Hc, there will

be a corresponding QC-LDPC sub-decoder within the CC-QC-LDPC decoder. In

the example given in (2.23), there will be k sub-decoders connected in a cyclic way,

i.e., the first sub-decoder connected to the second and k-th sub-decoders; the second

sub-decoder connected to the first and third sub-decoders; etc. Each sub-decoder is

responsible for (i) the decoding of the corresponding sub-code and (ii) exchanging

check-to-variable (C2V) and variable-to-check (V2C) messages with its adjacent

sub-decoders. With such a decoder design, each sub-decoder can remain relatively

simple. The structure also allows parallel operation of the sub-decoders, and the

overall throughput is approximately the sum of the throughputs of the sub-decoders.

Considering the structure of a CC-QC-LDPC code, one QC-LDPC sub-code

includes three parts —Hl, Hm andHr. When updating the V2C messages ofHl and

Hr, the C2V messages of the adjacent sub-codes are also needed. As a result, the

V2C messages and C2V messages of Hr and the C2V messages of Hl are updated in

the current sub-decoder; while the V2C messages of Hl are updated in the preceding

sub-decoder.

In each QC-LDPC sub-decoder, there are two processors, namely variable-node

processor (VNP) and check-node processor (CNP), to update the V2C messages and

C2V messages, respectively. The architecture also includes a number of random

access memories (RAMs) to store the C2V messages, V2C messages and channel

messages. These RAMs are connected to the corresponding VNP and/or CNP so

that updated messages can be read and written during iterations. Each sub-decoder
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includes four types of RAMs and they are described as follows.

Type I RAMs are used to store the messages corresponding to Hm and Hr.

Both C2V and V2C messages of Hm andHr are updated in the current sub-decoder.

Moreover during the decoding, C2V and V2C messages will not be required at the

same time and hence only one memory location is needed for each check-variable

edge. When a V2C message is used by CNP to update C2V message, its memory

location will then overwritten by the updated C2V message of the same check-

variable edge.

Type II RAMs provide storage for C2V messages of Hl. These C2V messages

will be sent to the VNP of the preceding sub-decoder to update the V2C messages

of Hl. In other words, this kind of RAMs is read by the preceding sub-decoder but

written by the current sub-decoder.

Type III RAMs are used to store the V2C messages corresponding to Hl. The

V2C messages updated by the preceding sub-decoder will be written into this kind

of RAMs. Contrary to Type II RAMs, this kind of RAMs is read by the current

sub-decoder but written by the preceding sub-decoder. To ensure that there is no

conflict occurring during the decoding process, two types of RAMs are needed to

store the messages of Hl.

The last type of RAMs stores the channel messages. During decoding the same

codeword, messages in this kind of RAMs are kept unchanged.
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Figure 2.7: Overall architecture of a CC-QC-LDPC hardware decoder

2.5 Summary

This chapter reviews the fundamental concepts of low-density parity-check (LDPC)

codes. The definition of LDPC codes have been first introduced and two methods

to represent the LDPC codes, namely parity-check matrices and Tanner graphs

(bipartite graphs), have been presented. The belief propagation (BP) algorithm

which is used to decode LDPC codes has been briefly described. An important class

of LDPC codes, namely quasi-cyclic LDPC (QC-LDPC) codes, has been introduced

and two methods for constructing QC-LDPC codes with large girth — hill-climbing

and fast hill-climbing — are introduced. Finally, the structure of cyclically-coupled
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QC-LDPC (CC-QC-LDPC) codes and the hardware decoder architecture are shown.

In the next chapter, we will begin presenting our own works.
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Chapter 3

New Types of Cyclically-Coupled

LDPC Block Codes

In this chapter, we investigate the performance of CC-QC-LDPC codes when the

subcode structure is changed. Recall that a CC-QC-LDPC code can be represented

by [30]

Hcc,k =

































Hl Hm Hr

Hl Hm Hr

Hl · · ·

. . .

· · · Hr

Hr Hl Hm

































k rows (3.1)

and Hc = [Hl Hm Hr] denotes a QC-LDPC subcode. Moreover, in the QC-

LDPC subcode Hc,

• there are J × L circulant permutation matrices (CPMs) each of size z × z;

29



• both Hl and Hr contain J ×W CPMs; and

• Hm contains J × (L− 2W ) CPMs.

In our first study, we replace the regular QC-LDPC subcodes of a CC-QC-LDPC

code with irregular ones by making some of the circulant permutation matrices

(CPMs) to be zero matrices [33]. In particular, we make the components Hl and

Hr to be triangular, as shown in Fig. 3.1(b) and (c). With such a modification,

it will become easier to remove short cycles and to construct codes with a larger

girth. In our second study, we replace the circulant permutation matrices (CPMs)

in the regular QC-LDPC subcodes with random-permutation matrices, forming the

random-permutation-matrix-based CC-LDPC codes. In both cases, we will evaluate

not only the bit error rate performance of the resultant CC-LDPC codes, but also

the decoder complexity.

3.1 CC-QC-LDPC Codes Based on Irregular QC-

LDPC Subcodes

Assuming J = 4 and W = 4, Fig. 3.1(a) illustrates a full CC-QC-LDPC code.

Here all the sub-matrices are non-zero CPMs and the fast hill-climbing described in

chapter 2.3.2 [30] can be applied to select the CPMs such that a desired girth can be

achieved. Note that if we are to achieve a girth of 8, only cycles formed within two

subcodes need to be considered. When L = 28 and k = 4, a girth-8 CC-QC-LDPC

code can be found with z = 1024. When z is reduced to 512, 256 and 128, however,

we can only find CC-QC-LDPC codes with a girth 6 due to substantially smaller
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(a)

(b)

(c)

Figure 3.1: CC-QC-LDPC codes. (a) Full (b) Type-I and (c) Type-II
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search spaces.

3.1.1 Type-I and Type-II CC-QC-LDPC Codes

With an aim to improving the girth, we propose two special types of CC-QC-LDPC

codes which contain zero sub-matrices [33]. They are shown in Figs. 3.1(b) and

3.1(c), respectively. Type-I CC-QC-LDPC codes are characterized with Hl being

upper triangular and Hr being strictly lower triangular; and Type-II CC-QC-LDPC

codes are characterized with Hl being upper triangular and Hr being lower trian-

gular. By converting some sub-matrices in Fig. 3.1(a) to zero submatrices, we form

the Type-I and Types-II CC-QC-LDPC codes shown in Figures 3.1(b) and (c). Be-

cause of the conversion, cycles passing through these removed submatrices can be

eliminated. One such removal of cycle-6 has been demonstrated in Fig. 3.1. As a

result, CC-QC-LDPC codes with girth 8 can be easily designed with a smaller value

of z, i.e., shorter codelength. Note that by converting the submatrices in Hl and Hr

instead of Hm to zero submatrices, we can maintain column weights of at least 4.

3.1.2 Simulation Results

We compare CC-QC-LDPC codes with the following parameters: J = 4, L =

28,W = 4, k = 4 and a code rate of 5/6. For all cases, we optimize the girth of the

CC-QC-LDPC codes using the fast hill-climbing method [25], the block diagram of

which has been shown in Fig. 2.6. Note that in the optimizing process, it is ade-

quate to consider cycles formed by two consecutive subcodes only, i.e., cycles found

in Fig. 3.1. Moreover, all decoders have been implemented on an Altera Stratix
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Figure 3.2: Bit error rate of full CC-QC-LDPC codes with z = 512, 256 and 128.

IV EP4SE530H35C2 FPGA. Also 4-bit quantization and 10 decoding iterations are

used.

First, we consider the full CC-QC-LDPC codes with z = 512, 256 and 128. The

optimized codes all have the same girth of 6. In Fig. 3.2, we present the bit error

rate (BER) results found by FPGA implementation. We can observe that as the

code length increases, the BER performance improves. However, error floor exists

in all cases.

Next, we attempt to construct Type-I and Type-II CC-QC-LDPC codes with

girth 8. The minimum values of z that achieve girth 8 are 293 and 331, respectively,
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Figure 3.3: Bit error rates of Type-I and Type-II CC-QC-LDPC codes. z = 293
and 331, respectively, for Type-I and Type-II codes.

for Type-I and Type-II codes. In Figure 3.3, we further present the BER results

found by computer simulation and FPGA implementation. Comparing the computer

simulation and the FPGA implementation results, we observe that the BER degrades

by about 0.05 dB. The main reason is that computer simulation uses floating-point

computations while the FPGA implementation makes use of fixed-point calculations.

Moreover, Type-II CC-QC-LDPC code slightly outperforms Type-I code in terms

of BER and has a lower error floor. One possible explanation is that the column

weights of Type-I code are all 4 but the column weights of Type-II code can be 4 or
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Figure 3.4: Bit error rate of all three types of CC-QC-LDPC codes.

5.

Finally, we compare the FPGA experimental BERs of all three different types

of CC-QC-LDPC codes in Figure 3.4. We find that Type-I and Type-II CC-QC-

LDPC codes outperform full CC-QC-LDPC codes with z = 128 and 256, and have

similar BER performances as full CC-QC-LDPC codes with z = 512. In particular,

Type-I code (with z = 293) though having a shorter codelength can achieve very

similar BER performance compared with the full CC-QC-LDPC code with z = 512.

Type-II code (with z = 331) can even accomplish a lower error floor compared with

the full CC-QC-LDPC code with z = 512. We also look into the complexity of the
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different decoders. The overall architectures of the three CC-QC-LDPC decoders

are similar except that RAM blocks can be saved when CPMs are replaced by all-

zero matrices. Thus the complexity becomes lower when more sub-matrices in a

full CC-QC-LDPC code are converted to zero sub-matrices. Therefore the decoder

complexity of the Type-I CC-QC-LDPC code is the lowest, and that of the Type-II

CC-QC-LDPC code is lower than that of the full CC-QC-LDPC code.

3.2 Random-Permutation-Matrix-Based Cyclically-

Coupled LDPC Codes

3.2.1 Code Structure and Construction

We again consider the same sub-code Hs of CC-QC-LDPC codes in the previous

section. In Hs, both Hl and Hr contain 4× 4 sub-matrices and Hm contains 4× 20

sub-matrices. However, instead of CPMs, random permutation matrices are used

in the sub-matrices [34]. We can also view the modified Hs as a protograph-based

LDPC code [35] with a base matrix Bs given by

Bs = [14×4 14×20 14×4] (3.2)

where 14×4 and 14×20 represent the 4 × 4 and 4 × 20 all-one matrices, respectively.

The corresponding CC-LDPC codes constructed from Bs, which we called random-

permutation-matrix-based CC-LDPC (RP-CC-LDPC) codes, are therefore repre-

sented by the base matrix Bcc
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Bcc =


















14×4 14×20 14×4 0 0 ... 0 0

0 0 14×4 14×20 14×4 ... 0 0

...
...

...
...

...
. . .

...
...

14×4 0 0 0 0 ... 14×4 14×20



















. (3.3)

By replacing each 1 in Bs by a random permutation matrix of size z × z and then

substituting the results into Bcc, RP-CC-LDPC codes are obtained.

3.2.2 Accessing the V2C and C2VMessages Stored in RAMs

For CC-QC-LDPC codes, the sub-matrices are all circulant permutation matrices,

which means the data corresponding to consecutive columns/rows in the CPM are

stored next to each other in the RAMs and can be read/written in a successive

manner. Figure 3.5 shows the method of specifying the addresses of RAM spaces

when decoding the CC-QC-LDPC codes. Here we use counters to generate sets

of consecutive numbers as the addresses of RAM. At clk1, the counter provides a

signal of ‘1’, this signal is directly connected to the interface which receives address

information of a RAM. At the next clock, the signal change to ‘2’ and then the

signal will point to the next location in RAM. For z × z sub-matrices, we need z

counters since the start address of a sub-matrix can be any number between 1 and

z.

When implementing the decoder of RC-CC-LDPC codes on FPGA, specifying

the addresses of RAMs which store the check-to-variable (C2V) and variable-to-

check (V2C) messages becomes more complicated. It is because the sub-matrices

are all randomly generated permutation matrices. The positions of the ‘1’s in these
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Figure 3.5: Access the memory locations of the RAMs. Top: CC-QC-LDPC code;
Bottom: RP-CC-LDPC code.

sub-matrices do not possess the regularity of CPMs. As a result, we need to store

the positions of the ‘1’s and use them to locate the addresses in a RAM where we

should read or write messages. Fig. 3.5 also shows the method of specifying the

addresses of RAM locations when decoding RC-CC-LDPC codes. In Fig. 3.5, ‘ADD
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RAM’ is used to store position information and ‘DATA RAM’ is used to store the

C2V and V2C messages. We use counters to point to consecutive addresses of the

ADD RAM and read the associated contents in consecutive clock cycles. Based

on the contents which in fact indicate the addresses of DATA RAM, we can locate

where the C2V and V2C messages should be read/written. For example at clk1, the

counter provides a signal of ‘1’ and hence the content a1 in the first location of the

ADD RAM is read. Here a1 ∈ {1, 2, . . . , z} denotes the column position of the ‘1’ in

the first row of the random permutation sub-matrix. According to a1, the correct

location in the DATA RAM can be accessed.

Suppose the degree of parallelism is G, which means G rows of messages in

the parity-check matrix are updated at the same time. Since we can only write to

or read from one location of each RAM in each clock cycle, we will have to use

G RAMs to store the messages for each sub-matrix. (When the size of each sub-

matrix is z × z, the depth of each RAM is D = z/G.) In the case of CC-QC-LDPC

codes, due to their regular structure, we can ensure that the G messages are coming

from different RAMs when the messages are properly arranged. However, it is not

possible to ensure conflict of RAM access will not occur in the case RP-CC-LDPC

codes.

Figure 3.6 shows an example illustrating the conflict of RAM access, where

z = 9, G = 3 and D = z/G = 3. Each ‘1’ in the matrices represents an edge

between a variable node and a check node, and there are two kinds of messages in

each edge — C2V and V2C message. Since we only use one memory location to

store both kinds of messages for most of the matrices, we use Cj ↔ Vl to define

the message in a RAM location. Supposing we need to update the messages of
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Figure 3.6: Illustration of conflict of RAM access
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the first 3 rows corresponding to C1, C2 and C3, we need to access not only the

memory locations C1 ↔ V2, C2 ↔ V4 and C3 ↔ V3 at the same time, but also

all memory locations that corresponding to the related columns V2, V4 and V3. In

other words, the memory locations C13 ↔ V2, C16 ↔ V4 and C15 ↔ V3 have to be

accessed simultaneously as we access C1 ↔ V2, C2 ↔ V4 and C3 ↔ V3. However,

it is obvious that the locations C13 ↔ V2 and C16 ↔ V4 are in the same RAM, i.e.,

RAM 4. Thus a conflict of RAM access will occur. Note that we are using only

two sub-matrices as an example in Fig. 3.6. In practice, tens of sub-matrices will be

involved depending on the row weight and column weight, i.e., the numbers of ‘1’s

in each row and each column. Thus conflict of RAM access is almost guaranteed

to occur unless the sub-matrices have a regular structure. In other words, for each

sub-code in a RP-CC-LDPC code, we can either implement (i) no parallelism G = 1,

i.e., process one row (check node) at a time for each sub-code or (ii) full parallelism

G = z, i.e., process z rows (check nodes) at a time for each sub-code. In the latter

case, a lot of hardware resources will be required and is not desirable.

3.2.3 Results

We consider a RP-CC-LDPC code with J = 4, L = 28, W = 4, K = 4 and z = 1024.

As mentioned earlier, permutation matrices are randomly generated for the RP-CC-

LDPC code. We compare the bit error performance and hardware complexity of our

proposed RP-CC-LDPC code with other LDPC codes. All codes have the same code

rate 5/6 and code length 98304, and are simulated under an additive white Gaussian

noise (AWGN) channel. All our results are generated by FPGA implementation of

the corresponding decoders. Moreover, 10 decoding iterations and 4-bit quantization
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Figure 3.7: The bit error rate (BER) comparison of different codes. All the results
are obtained from FPGA simulations under an AWGN channel and 4-bit quantiza-
tion.

are used.

3.2.3.1 Comparison with CC-QC-LDPC Code

First, we compare our RP-CC-LDPC code with the CC-QC-LDPC code reported

in [30]. Fig. 3.7 shows that the proposed RP-CC-LDPC code outperforms the CC-

QC-LDPC code in terms of bit error rate (BER). In particular, RP-CC-LDPC code
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Table 3.1: Hardware Information of the Decoder Implementations. Code A: 4×24
regular QC-LDPC code, girth=8, z = 4096; Code B: 4 × 24 irregular QC-LDPC
code, girth=8, z = 4096; Code C: 4 × 24 irregular QC-LDPC code, girth=10,
z = 4096; Code D:16× 96 CC-QC-LDPC code, girth=8, z = 1024; Code
E: 16× 96 RP-CC-LDPC code, z = 1024.

Code A B C D E

Parallelism degree 32 32 32 32 4
ALUTs 65,178 56,137 55,990 70,342 31,660
Registers 45,336 41,740 41,740 43,801 13,564

Memory bits 1,769,372 1,474,560 1,474,560 2,359,296 4,297,289
Clock 100 MHz 100 MHz 100 MHz 100 MHz 100 MHz

Throughput 1.55 Gbps 1.55 Gbps 1.55 Gbps 1.55 Gbps 0.182 Gbps

outperforms CC-QC-LDPC code by 0.05 dB at a BER of 10−13. No error floor is

also observed above this BER level.

Table 3.1 compares the complexity and throughput of the two decoders. The

CC-QC-LDPC code and RP-CC-LDPC code are represented by Code D and Code E,

respectively. As we can observe, the degree of parallelism of the RP-CC-LDPC code

is reduced by 8 times compared with that of the CC-QC-LDPC code. (Note that the

degree of parallelism of the RP-CC-LDPC code equals 4 because k = 4 subcodes are

processed at the same time.) The main reason is the random permutation matrices

being used in the RP-CC-LDPC code. Consequently, the same ratio in terms of

decoder throughput reduction is observed. We can also see a substantial increase of

memory required in the RP-CC-LDPC decoder. They are used to store the entries

of the permutation matrices which are random in general.
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Figure 3.8: Structure of the irregular QC-LDPC code.

3.2.3.2 Comparison with Regular and Irregular QC-LDPC Codes

We construct a 4 × 24 QC-LDPC code with z = 4096. Using the fast hill-climbing

algorithm in [25] and illustrated in Fig. 2.6, we can eliminate both cycle-4 and

cycle-6 but not cycle-8. The largest girth that we can obtain is therefore 8. The

resultant 4 × 24 QC-LDPC code is denoted as Code A in Table 3.1. In order to

achieve a larger girth, we assign 4 all-zero sub-matrices for each row in a 4 × 24

QC-LDPC code. Thus, all block rows have a weight of 20, 16 block columns have a

weight of 3, and 8 block columns have a weight of 4. The structure of the resultant

irregular QC-LDPC code is shown in Fig. 3.8. Each φ in Fig. 3.8 represents an

all-zero sub-matrix. Again we apply the fast hill-climbing algorithm and we are able

to eliminate all cycle-4, cycle-6 and cycle-8. A girth-10 irregular QC-LDPC code is

hence obtained and is denoted as Code C in Table 3.1. A girth-8 irregular QC-LDPC

code, denoted as Code B in Table 3.1, is also generated and used for comparison.

Referring to Fig. 3.7, the BER curves show that the regular QC-LDPC code

performs the worst among all codes while the irregular ones can outperform the
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proposed RP-CC-LDPC code in the low Eb/N0 region. However, an error floor

occurs at around 10−13 BER for the irregular QC-LDPC code with girth 8. At

Eb/N0 = 3.425 dB, the BER performances of irregular QC-LDPC code with girth

10 and RP-CC-LDPC code are very similar. The BER curve trends seem to forecast

that the irregular QC-LDPC code will be outperformed by RP-CC-LDPC code

beyond Eb/N0 = 3.45 dB. That needs to be verified though. Table 3.1 compares the

complexity and throughput of the decoders. Again, the RP-CC-LDPC code is at a

disadvantageous position in terms of decoder complexity and throughput.

3.3 Summary

In this chapter, we have firstly proposed two new types of CC-QC-LDPC codes,

Type-I and Type-II, which have a shorter code length and achieve a larger girth

compared with the full CC-QC-LDPC codes. We also have demonstrated their

superior BER performance and low error floors even with short code lengths. Their

decoder complexities are also lower. We have also proposed a random-permutation-

matrix-based cyclically-coupled LDPC (RP-CC-LDPC) code. We have compared its

performance with the CC-QC-LDPC code, regular and irregular QC-LDPC codes

using FPGA simulations. Results show that the BER performance of the RP-CC-

LDPC code is comparable to and can possibly exceed that of other codes. However,

decoder complexity and throughput are major issues of the RP-CC-LDPC code,

which makes use of relatively more complex random permutation matrices instead

of simple circulant permutation matrices. In the next chapter, we will propose a

new type of LDPC code which has a “semi-regular” structure. We will investigate

its BER performance as well as decoder complexity.
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Chapter 4

Tree-Permutation-Matrix Based

LDPC Codes

In the previous chapter, we have shown that when random permutation matri-

ces are used as parity-check sub-matrices of LDPC codes, decoder complexity and

throughput become the major issues. In the other extreme, using circulant per-

mutation matrices (CPMs) as sub-matrices allows a simple and high-throughput

decoder structure to be implemented. In this chapter, we propose a new type of

matrices called tree-permutation-matrices (TPM) and apply them in the construc-

tion of LDPC codes [36]. TPMs are not as regular as CPMs but also not as random

as random permutation matrices. Thus we call TPMs as semi-regular matrices.

Like QC-LDPC codes, TPM-based LDPC codes allow decoding operations to be

conducted in parallel and can achieve a high decoding throughput. Moreover, there

are more choices of TPMs compared with CPMs for a given matrix size. Hence, a

larger girth can potentially be achieved for TPM-based LDPC codes.

46



4.1 Tree Permutation Matrices

We first make use of 2 × 2 permutation matrices to illustrate how to construct

TPMs. There are only two different 2×2 permutation matrices — the identity 2×2

matrix (denoted by I2×2) and the anti-diagonal 2× 2 matrix (denoted by Ĩ2×2). To

construct TPMs, we refer to Fig. 4.1 and start with a matrix that contains only a

single element “1” as shown at the top.

1. To construct Layer-1 TPMs, we replace the ‘1’ at the top with either I2×2

(a1,0 = 0) or Ĩ2×2 (a1,0 = 1). There are only two possibilities and hence N1 = 2

possible Layer-1 TPMs, the size of which are 2× 2.

2. To construct Layer-2 TPMs, the 1’s in each Layer-1 TPMs are replaced with

either I2×2 or Ĩ2×2. For each Layer-1 TPM, there are 22 = 4 possible choices

(a2,0a2,1 = 00, 10, 01, 11). Hence the total number of Layer-2 TPMs equals

N2 = 22 ×N1 = 23 = 8. The size of each Layer-2 TPM is 22 × 22.

3. To construct Layer-3 TPMs, the 1’s in each Layer-2 TPMs are replaced with

either I2×2 or Ĩ2×2. For each Layer-2 TPM, there are 22
2

= 16 possible choices.

Hence the total number of Layer-3 TPMs equals N3 = 22
2

× N2 = 27 = 128.

The size of each Layer-3 TPM is 23 × 23.

4. TPMs in subsequent layers are generated in a similar manner. It can be easily

shown that at Layer M , there are 22
M−1 different TPMs, the size of which are

2M × 2M . The tree expansion is illustrated in Fig. 4.2. We also denote PM
2 as

a Layer-M TPM matrix formed by I2×2 or Ĩ2×2.
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In our study, we consider only TPMs formed by I2×2 or Ĩ2×2. In general, TPMs can

be constructed by Z × Z permutation matrices. In Figure 4.3, we further show the

expansion tree if every ‘1’ in the previous layer is replaced by a Z ×Z permutation

matrix. At Layer M , each TPM will have a size of ZM × ZM .

Referring to Fig. 4.2, a Layer-M TPM formed by expanding 2× 2 permutation

matrices repeatedly can be defined by the “tree” vector

V = (a1,0, a2,0, a2,1, a3,0, a3,1, a3,2, a3,3, . . . , aM,0, aM,1, . . . , aM,22M−1
−1)

in which each element is either “0” or “1”. When the element assumes the value

“0” and “1”, it represents an expansion with I2×2 and Ĩ2×2. respectively. It can be

readily shown that

• a 2M × 2M identity matrix will be associated with the all-zero tree vector with

2M − 1 elements; and

• a 2M×2M TPM has a fixed column1 if and only if at least one branch transvers-

ing from the top to the bottom of the tree assumes all “0” values, e.g., the

branch a1,0 = a2,0 = a3,0 = · · · = aM,0 = 0.

4.1.1 Multiplication of TPMs

It can be easily verified that TPMs formed by 2× 2 permutation matrices are closed

under multiplication. One way is to consider all possible multiplications and then

build a look-up table to simplify the computation. The table can be large depending

1A permutation matrix has a fixed column (or row) if and only if it overlaps with the identity
matrix in at least one column (or row) [1].
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Figure 4.1: Forming tree-permutation matrices by replacing each ‘1’ in the upper
layer with a 2× 2 permutation matrix.

on the value of M . On the other hand, each TPM is represented by a tree vector.

To find the product of two TPMs, we can make use of their corresponding tree

vectors, perform appropriate module-2 additions, and arrive at a new tree vector

that represents the TPMs’ product. The procedures to compute the product of two

TPMs with size 2M × 2M is shown in Algorithm 2. In Algorithm 2, PA and PB

denote the tree vectors of the two TPMs to be multiplied. V is a vector used to

locate the corresponding elements in the two tree vectors. PM represents the tree

vector of the product of the two TPMs.
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Figure 4.2: The full tree representation of PM
2 .

Figure 4.3: The general tree representation
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Algorithm 2 Multiplication of two PM
2 TPMs

1: PM [0]← PA[0]⊕PB[0],V[0]← 0
2: for node = 1;node < 2M − 2;node++ do

3: parent← (node− 1)/2
4: if node is odd then

5: V[node]← V[parent]× 2 +PA[parent]
6: else

7: V[node]← V[parent]× 2−PA[parent]

8: PM [node]← PA[node]⊕PB[node+V[node]]

Algorithm 3 Transpose of a PM
2 TPM

1: PT [0]← P[0],V[0]← 0
2: for node = 1;node < 2M − 2;node++ do

3: parent← (node− 1)/2
4: if node is odd then

5: V[node]← V[parent]× 2 +P[parent]
6: else

7: V[node]← V[parent]× 2−P[parent]

8: PT [node+V[node]]← P[node]

4.1.2 Transpose of a TPM

Similar to multiplication, the transpose operation on a TPM can be conducted

effectively based on its tree vector. The transpose of a TPM with size 2M × 2M

is computed with the method shown in Algorithm 3. In Algorithm 3, P and PT

represent the tree vectors of a TPM and its transpose, respectively. V is a vector

used to locate the corresponding elements in the two tree vectors.
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4.2 TPM-based LDPC codes

We define a TPM-based parity-check matrix HTPM as

HTPM =



















T0,0 T0,1 ... T0,L−1

T1,0 T1,1 ... T1,L−1

... ... ...

TJ−1,0 TJ−1,1 ... TJ−1,L−1



















(4.1)

where each Ti,j indicates a TPM matrix, and J and L correspond to the number

of rows and columns of the parity-check base matrix. We further define the corre-

sponding LDPC code of the TPM-based parity-check matrix as a TPM-based LDPC

code.

4.2.1 Cycle Evaluation

To evaluate the cycles of a TPM-based LDPC code, we can apply the following

theorem (Details can be found in [37]).

Theorem 4.1. Let C be a code which can be described by a parity-check matrix H =

(Pi,j), where the (i, j)-th entry Pi,j represents a p× p permutation matrix. If there

exists a cycle of length 2l which including the indices i0, i1, ..., il−1 and j0, j1, ..., jl−1

(is 6= is+1, js 6= js+1, for all s ∈ 0, 1, ..., l− 1), then the product of the matrices

Pi0,j0P
T
i1,j0

Pi1,j1P
T
i1,j1

...Pil−1,jl−1
P T
i0,jl−1

(4.2)

has a fixed column.
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Moreover, in the previous section, we have stated that a TPM has a fixed col-

umn if and only if there exists an all-zero branch in its tree representation. Therefore,

a cycle exists if the tree vector corresponding to (4.2) contains an all-zero branch.

Furthermore, the tree vector can be readily evaluated based on the tree vectors of

the component TPMs in (4.2) using Algorithms 2 and 3.

4.2.2 Code Construction

Recall that a 2M × 2M TPM has 22
M−1 different combinations. In the design of a

TPM-based parity-check matrix HTPM shown in (4.1), there will be a tremendous

number of possible combinations to consider if M is large. Fortunately, it can be

readily shown that if a HTPM achieves a girth of g, expanding each ‘1’ in HTPM with

I2×2 and Ĩ2×2 will result in a new H′
TPM with girth no less than g.

Hence, we can start our code construction using small-size TPMs and consider

small girth first. Then we expand the TPMs and try to achieve a higher girth. Since

the expansion will not lead to new cycles whose length is smaller than the current

girth, we do not need to consider the previous portion (i.e., original tree vector) of

a TPM when searching for a higher girth, but only need to focus on the expanded

part (i.e., new elements in the tree vector that define the expansion). Because of

this advantage, the fast hill-climbing algorithm can be easily used in searching for

high-girth TPM-LDPC codes. Recall the fast hill-climbing algorithm introduced in

Chapter 2. The process is divided into several steps and in each step, each element

is optimized with an adaptive cost. For TPMs, this adaptive cost can be simplified

because after we have achieved a girth-2l TPM-LDPC code, we do not need to

consider cycles shorter than 2l after expanding the code.
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In order to reduce the computational intensity when searching for high-girth

TPM-LDPC codes using fast hill-climbing algorithm, we first focus on small-size

TPMs. When the size of TPMs is small, the conditions of each sub-matrix we need

to consider is relatively small. Then we expand the TPMs to try to achieve a larger

girth. For example, the construction of a girth-8 TPM-LDPC code with 3 × 10

TPMs is presented as follows. We replace each ‘1’ in the 3 × 10 base matrix with

a randomly chosen 23 × 23 TPM. Note that there are 22
3−1 = 128 different 23 × 23

TPMs. Then we minimize the number of cycle-4 by varying the TPMs one-by-one.

If all cycle-4s are eliminated and a girth-6 TPM-LDPC code is found, we expand

the TPMs to the size of 24× 24 and attempt to minimize the number of cycle-6. At

this step, the initial part of the matrix (or tree vector) is fixed and we only need to

consider the expanded part. In addition, all the choices of expanded part will not

lead to new length-4 cycles so the calculation only includes the paths of potential

length-6 cycle. Then the conditions to traverse will be reduced distinctly. If all

cycle-6 cannot be eliminated after a number of iterations, we expand each TPM

again to become 25 × 25 and repeat the operation.

When the size of a TPM becomes large, there will be an enormous number

of possible combinations after each expansion. It is extremely time-consuming to

try all the possible combinations. Therefore, we will randomly pick some of these

combinations and select the one with the minimum cost. In this way, the TPM-

LDPC code can be further “optimized” with the fast hill-climbing algorithm even

when the size is large. With this method, we obtain a girth-8 TPM-LDPC code with

a base matrix of size 4× 24, and a girth-10 TPM-LDPC code with a base matrix of

size 3× 10.
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4.2.3 Parallel Decoding and Message Storage

In chapter 3.2.2, we have shown that conflicts of RAM access will occur when random

permutation matrices are used in constructing LDPC codes. In the case of TPM-

based LDPC codes, such conflicts can be avoided when the messages are properly

stored and the number of parallel processors are chosen with care.

For TPM-LDPC codes, a PM
2 TPM has a size 2M × 2M . It can also be char-

acterized by 2M1 smaller TPMs each of size 2M2 × 2M2 where M1 + M2 = M . For

example, each of the 23 × 23 TPMs shown in Fig. 4.4 can be characterized by (i)

21(= 2) smaller 22×22(= 4×4) TPMs, or (ii) 22(= 4) smaller 21×21(= 2×2) TPMs.

To avoid conflicts of RAM access, the degree of parallelism G must equal 2M2 for

some M2. Moreover, the 2M2 C ↔ V messages corresponding to each 2M2 × 2M2

small TPM must be assigned to G = 2M2 different RAMs. Then, the condition that

two C ↔ V messages in the same RAM are needed at the same time will never

happen. From Figure 4.4, we can visualize why parallel decoding can be performed

without RAM access conflicts when G = 2. In fact, we can also see that parallel

decoding can be performed when G = 4.

In addition, we need to use a group of RAMs (called address RAMs) to store the

address information of the RAMs storing C ↔ V messages. Due to the possibility

of parallel decoding, the number and size of such kind of RAMs in a TPM-LDPC

decoder are reduced compared with those needed in random-permutation-matrix

LDPC decoders.
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Figure 4.4: Illustration of possibility of parallel decoding of TPM-based LDPC code.

4.3 Simulation Results

We first construct and simulate TPM-LDPC codes with the following parameters.
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• J = 4, L = 24, z = 4096, g = 8, a code rate of 5/6 and a code length of 98304

• J = 4, L = 24, z = 2048, g = 6, a code rate of 5/6 and a code length of 49152

For both cases, we optimize the girth of the LDPC codes using the fast hill-climbing

method [25]. The decoder is implemented on an Altera Stratix IV EP4SE530H35C2

FPGA. The BER results are plotted in Fig. 4.5. We also plot the BER of the

following codes for comparison.

• Regular 4× 24 QC-LDPC codes with z = 4096, g = 8 and length 98304

• 16× 96 CC-QC-LDPC code with z = 1024, and g = 8 and length 98304

• 16× 96 CC-QC-LDPC code with z = 512, g = 6 and length 49152

Comparing codes with length 98304, the CC-QC-LDPC code accomplishes the

best BER, outperforming our proposed TPM-based LDPC code by about 0.015 dB

and QC-LDPC code by about 0.03 dB. Comparing codes with length 49152, the

CC-QC-LDPC code outperforms our proposed TPM-based LDPC code by about

0.02 dB. However, the CC-QC-LDPC code reaches an error floor at around 10−13

whereas our proposed TPM-based LDPC code does not show an error floor below

10−13.

Next, we construct and simulate a TPM-based LDPC code with the following

parameters:J = 3, L = 10, z = 4096, g = 10, code rate of 7/10, and a code length

40960. The BER curve is plotted in Fig. 4.6. We also show the BER of a 3 × 10

regular QC-LDPC code with z = 4096 and g = 10 in the same figure. Both codes

cannot achieve a girth of 12 at z = 4096 using the fast hill-climbing algorithm. The
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Figure 4.5: Bit error rates of different codes

results show that the proposed TPM-LDPC code not only outperforms the regular

QC-LDPC code, but also shows a lower error floor.

In Table 4.1, we show the hardware complexity of the different decoders. In

general, the complexity becomes lower when fewer address RAMs are used during

the decoding. The decoder complexity of the regular QC-LDPC code (Code A) is

the lowest. The CC-QC-LDPC decoder (Code D) is more complex than the regular

QC-LDPC decoder but is simpler than the TPM-LDPC decoder (Code B) and the

RP-CC-LDPC decoder (Code C). The decoder complexity of the TPM-LDPC codes

is lower than that of the RP-CC-LDPC codes. In addition, the degree of parallelism

has a great impact on the throughput of the decoder. The regular QC-LDPC code

58



Figure 4.6: Bit error rate of QC-LDPC code and TPM-based LDPC code with 3×10
sub-matrices.

has the same throughput as the TPM-LDPC code and the CC-QC-LDPC code. The

throughput is much higher than that of the RP-CC-LDPC code.

4.4 Summary

In this chapter, a new type of LDPC code called tree-permutation-matrix (TPM)-

LDPC code has been proposed. We introduce the construction and properties of

TPMs and we define TPM-LDPC codes. We have also described simple meth-

ods for computing the product and transpose of TPMs. According to these basic
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Table 4.1: Hardware Information of the Decoder Implementations. Code A: 4×24
regular QC-LDPC code, girth=8, z = 4096; Code B: 4 × 24 TPM-LDPC code,
girth=8, z = 4096; Code C:16 × 96 RP-CC-LDPC code, z = 1024; Code
D:16× 96 CC-QC-LDPC code, z = 1024.

Code A B C D

Parallelism degree 32 32 4 32
ALUTs 65,178 87,479 31,660 70,342
Registers 45,336 49,322 13,564 43,801

Memory bits 1,796,372 2,589,891 4,297,289 2,395,296
Clock 100 MHz 100 MHz 100 MHz 100 MHz

Throughput 1.55 Gbps 1.55 Gbps 0.182 Gbps 1.55 Gbps

characteristics of TPMs, we have proposed a systematic way of finding large-girth

TPM-LDPC codes based on fast hill-climbing algorithm. Using this method, we

obtain a girth-8 TPM-LDPC code with a base matrix of size 4 × 24 and a girth-10

TPM-LDPC code with a base matrix of size 3 × 10. We have shown how RAM

access conflicts can be avoided when designing parallel TPM-LDPC decoders.

We have shown our simulation results of three TPM-LDPC codes with different

parameters. We have also compared the BER results and decoder complexity of the

proposed TPM-LPDC codes with other LDPC codes under the same code length

and code rate. Simulation results have shown that TPM-LDPC codes make use of

fewer memory resources and have a higher throughput compared with RP-CC-LDPC

codes. Compared with QC-LDPC codes, TPM-LDPC codes require more resources

in implementation but can provide a slightly better BER performance. While the

CC-QC-LDPC codes require less resource in implementation, TPM-LDPC codes

have a lower error floor when the code length is relatively short.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

In this thesis, we have studied/proposed different kinds of LDPC codes and sim-

ulated their error performance based on computer and/or FPGA. Moreover, the

girth of the codes, whenever possible, is optimized by using the fast hill-climbing

algorithm.

Firstly, with an aim to achieving a shorter code length and a larger girth, we

have proposed two new types of CC-QC-LDPC codes. We eliminate some cycle

possibilities by converting some sub-matrices in a full CC-QC-LDPC code into zero

matrices. Simulation results have demonstrated that compared with the full CC-QC-

LDPC ones, our new types of CC-QC-LDPC codes can achieve a better performance

and have lower error floors even with shorter code lengths. The decoder complexities

of our new CC-QC-LDPC codes are also lower because fewer RAMs are required. We

have also modified the CC-QC-LDPC code and propose a new type of CC-LDPC
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codes. We have replaced the circulant permutation matrices in a CC-QC-LDPC

code with random permutation matrices, forming the random-permutation-matrix

CC-LDPC (RP-CC-LDPC) code. We have further implemented the decoder of the

proposed RP-CC-LDPC codes using FPGA. We have compared the error perfor-

mance of the RP-CC-LDPC code with the CC-QC-LDPC code, the regular and

irregular QC-LDPC code. Simulation results have shown that RP-CC-LDPC code

can outperform CC-QC-LDPC code and regular QC-LDPC code in terms of BER.

However, RP-CC-LDPC code does not perform as well as irregular QC-LDPC code.

The RP-CC-LDPC code also suffers from the high complexity and low throughput

issues.

We have also modified the QC-LDPC code construction by using tree-permutation-

matrices (TPM) instead of circulant permutation matrices, and have proposed a new

type of LDPC codes called TPM-LDPC codes. We have introduced the TPM and its

expansion method. We define TPM-LDPC codes and provide a systematic way of

reducing the number of cycles in TPM-LDPC codes based on the fast hill-climbing

algorithm. We have obtained a girth-8 TPM-LDPC code with a base matrix of size

4× 24 and a girth-10 TPM-LDPC code with a base matrix of size 3× 10. We have

described how to avoid memory access conflict and to achieve parallel TPM-LDPC

decoding. The simulated BER results and the decoder complexity of TPM-LDPC

codes have been shown and compared with other regular and irregular LDPC codes

under the same code length and code rate. The TPM-LDPC codes outperform the

CC-QC-LDPC codes and regular QC-LDPC codes in terms of BER but is outper-

formed by the same two codes in terms of decoder complexity.
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5.2 Future Work

Firstly, the CC-QC-LDPC codes can be modified by using TPMs as their sub-

matrices. According to the simulation results in chapter 4, we find that using TPMs

instead of CPMs can improve the BER performance and lower the error floor of the

LDPC codes. TPMs also provide the opportunity of parallel operation which can

reduce the complexity and improve the throughput of FPGA design of the decoder.

Secondly, in Chapter 4, the size of the permutation matrices used to construct

the TPMs is 2×2. Matrices of larger sizes can be used to construct TPMs and hence

TPM-LDPC codes. The error performance of such codes should be investigated.

Finally, searching for large-girth LDPC codes with large-size TPMs using com-

puters becomes very time-consuming. FPGAs which can perform parallel and fast

computations can be considered for such purposes.
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