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Abstract
With the rapid development of geo-positioning techniques and high-speed mobile

networks, location-aware applications like location-based services, location-based so-

cial networks and intelligent driving navigation have been gaining tremendous pop-

ularity in recent years. When using these location-aware applications, users often

issue queries with both spatial and textual requirements, e.g., searching restaurants

within one kilometer from the current location, where the term “restaurants” is tex-

tual requirement while “within one kilometer from the current location” is spatial

requirement. To provide users query services regarding both spatial and textual re-

quirements, the research community has proposed Spatial Keyword Query which

combines traditional spatial query in spatial databases and keyword query in infor-

mation retrieval.

Specifically, given a spatial keyword query with spatial requirement (e.g., query

location and spatial range) and textual requirement (usually described by query key-

words), both of (i) the spatial relationship (e.g., spatial proximity) between target

objects and the spatial requirement and (ii) the textual relevance between the tex-

tual descriptions of target objects and query keywords are considered. In the past

decade, extensive studies have been conducted to solve all kinds of spatial keyword

queries. However, these studies mainly focus on Euclidean space and cannot ef-

fectively support spatial keyword queries over road networks on which the spatial

proximity between two locations is network distance rather than Euclidean distance.

Considering that people’s travel routes are restricted by road networks, and the Eu-

clidean distance and network distance between two locations could be quite different,

it is of high necessity to study spatial keyword query over road networks. In addition,

existing spatial keyword queries mainly aim to locate the target objects and ignore

the function of routing, and are thus unable to provide complete travel solutions
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to get to the target objects. Motivated by these observations, this thesis focuses

on“Spatial Keyword Query Processing over Road Networks” and aims to

propose effective solutions to the following three typical types of interesting queries:

First, we study services locating over road networks to find the locations of

required services. For this type of query, we propose Range Spatial Keyword

(RSK) query to retrieve all the objects that are textually relevant to the query

keywords and locate within a given range from the query location. Though RSK

query has received extensive studies in Euclidean space, little has been done to deal

with it over road networks. To process RSK query over road networks efficiently,

we first propose an expansion-based approach based on the locality of RSK query.

Then, we improve the efficiency of this approach based on the observation that

road network distance is always larger than or equal to the corresponding Euclidean

distance between two locations. In addition, to ensure high scalability on large road

networks and RSK queries of large query ranges, we design an Rnet Hierarchy index

and devise an efficient query processing algorithm based on this index. According

to the experiments, Rnet Hierarchy-based approach can deal with RSK queries over

road networks of millions of vertices.

Second, to search a route relevant to query keywords, we propose two queries,

i.e., Keyword Coverage Route (KCR) query and Bounded-Cost Informa-

tion Route (BCIR) query. Given a set of query keywords, KCR query retrieves

an optimal route such that its length is less than a distance threshold and it cov-

ers the most query keywords. By contrast, BCIR query retrieves the optimal route

whose textual relevance to the query keywords is maximized and cost (e.g., length

and travel time) is less than a cost budget. Different from KCR query, BCIR query

considers general cost rather than the spatial distance and aims to maximize the

global textual relevance rather than maximizing the number of query keywords on

the routes. KCR query is particularly helpful for tourists to search the routes cover-

ing many interested objects while BCIR query is useful for tourists and city explorers

to search for routes of specific topics. Both KCR query and BCIR query are NP-hard

problems without solutions of polynominal time complexity. To solve KCR query, we
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propose an adaptive route sampling framework under which both static and dynamic

route sampling techniques are proposed. Particularly, the dynamic route sampling

can obtain routes of high quality by learning knowledge from the routes sampled

previously. The proposed framework can flexibly compute query results of different

qualities according to the response time limit, thus avoiding the low efficiency of

traditional exact solutions and the low quality of approximate solutions. To solve

BCIR query, we propose different solutions for different application scenarios. On

the one hand, we design an exact solution for the BCIR queries of small cost bud-

gets and propose multiple pruning techniques to reduce the searching space. On the

other hand, we propose a time-bounded solution and an error-bounded solution for

BCIR queries of large cost budgets. Time-bounded solution initializes a set of can-

didate routes and keeps refining them until reaching the given response time limit.

Error-bounded solution is adapted from the exact solution by relaxing the prun-

ing requirement to improve the pruning efficiency and can greatly reduce the query

processing time while guaranteeing the quality of query results.

Third, considering that the travel times of routes are uncertain and dynamical-

ly changing over time, we propose uncertain road network model which represents

the travel time of each road by a dynamic discrete random variable. Then, we

propose the Probabilistic Time-constrained Route (PTR) query to retrieve

keyword-aware routes over this model such that (i) the returned routes sequentially

pass multiple categories of POIs (points of interest, e.g., bank and restaurant) ac-

cording to the order of given query keywords and (ii) the travel times of routes are

small in high confidence. To answer PTR queries efficiently, we propose a two-phase

query approach which first generates a small set of candidate routes by employing

effective pruning strategies regarding the service time constraints on POIs and the

probabilistic/rank requirements of queries. A refinement operation based on Monte

Carlo sampling is then conducted over the candidate routes to compute the final

results.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, location-aware applications receive tremendous popularity due to

the wide spread of smart mobile devices and the rapid development of techniques

in geo-positioning and mobile communication. For example, navigation systems are

widely used for planning routes by drivers; location-based services (LBSs) provide

services ranging from entertainment to accommodation; location-based social net-

works bridge the virtual social networks and the physical world; and geo-marketing

brings more convenient and efficient business promotion. Users often issue queries

with both spatial and textual attributes when using these location-aware applica-

tions. For example, a query searching all the restaurants within one kilometer from

the current location has spatial attribute “within one kilometer from the curren-

t location” and textual attribute “restaurants”. Another example is to search the

k nearest banks where “k nearest” and “banks” are spatial and textual attributes,

respectively. Therefore, we need an efficient way to process queries with both spa-

tial and textual attributes, which is one common concern for many location-aware

applications.

The research community has identified this issue and proposed spatial keyword

query [18] which combines traditional spatial query in spatial database and keyword
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query in information retrieval. Specifically, a spatial keyword query considers both of

the spatial proximity between target query objects and query location and the textu-

al relevance between the textual descriptions of target objects and query keywords.

Here, the objects could be any spatio-textual data that contains spatial and textual

attributes, e.g., Points of Interest (POIs) with locations and textual service descrip-

tions from Google map, geo-tagged comments from Foursquare, geo-tagged photos

with text tags from Facebook, geo-tagged posts from twitter, and location-based ad-

vertisements from different shopping Web sites. For example, Figure 1.1 illustrates

the distribution of POIs in New York and those POIs with textual descriptions on

the island of Richmond County in New York, where lines in the background rep-

resent road network and points represent all kinds of physical objects like hotels,

restaurants, banks, and cinemas.

Figure 1.1: The distribution of POIs in New York and the POIs with textual de-
scriptions in Richmond County.

In the past decade, a considerable number of spatial keyword queries based on

Euclidean distance have been proposed. In these queries, spatio-textual data is rep-

resented as individual spatio-textual objects and each spatio-textual object contains

a spatial location and a piece of textual description consisting of keywords. Classical

spatial keyword queries include range spatial keyword query and top-k spatial key-
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word query, where range spatial keyword query retrieves those spatio-textual objects

that are located within some specified query region and contain the given query key-

words, top-k spatial keyword query searches for the k optimal spatio-textual objects

regarding the spatial proximity and the textual relevance between spatio-textual ob-

jects and queries. In addition, some specialized spatial keyword queries such as group

spatial keyword query, moving spatial keyword query, and reverse kNN spatial key-

word query are also proposed. The major challenge for processing spatial keyword

query is to deal with spatial query and keyword query simultaneously. To solve this

issue, different indexing methods and query processing algorithms are proposed.

Most existing studies on spatial keyword query are conducted in Euclidean space

where the spatial proximity between two locations is quantified by the Euclidean

distance. Spatial keyword queries in Euclidean space are useful in Web search engines

when spatial factor is involved. In reality, however, people’s travel routes are usually

strictly constrained by the topology structure of road network, especially for car

drivers. In many cases, the Euclidean distance and the network distance between

two locations could be quite different. Therefore, it is of high necessity to study

spatial keyword query over road networks on which the spatial proximity between

two locations is measured by the network distance rather than the Euclidean distance.

Although there are already some studies on spatial keyword query over road

networks, it is still far from enough to cover all the existing types of spatial keyword

queries and many query problems remain unsolved. Compared with computing the

Euclidean distance between two locations, computing network distance is much more

time-consuming, thus increasing the difficulty to efficiently process the counterpart

spatial keyword queries over road networks. In addition, when it comes to road

networks, many new types of spatial keyword queries associated with route search

are emerging. For example, a user may issue a query to find a route that covers

a set of query keywords. These new queries should also be studied specifically.
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With the observations above, we thus propose the topic “Spatial Keyword Query

Processing over Road Networks” and study three typical types of queries as

discussed in Section 1.2.

1.2 Research Scope

This research topic will mainly focus on the following three types of spatial keyword

queries over road networks.

First, to effectively locate services, we propose Range Spatial Keyword (RSK)

query over road networks which searches for all the spatio-textual objects with textual

descriptions relevant to the query keywords and locations within a specified area.

Though RSK query has received extensive studies in Euclidean space, little has been

done to deal with it over road networks. To process RSK query over road networks

efficiently, we propose alternative approaches with different indexing strategies and

query processing algorithms.

Second, to search a route relevant to query keywords, propose Keyword Coverage

Route (KCR) query and Bounded-Cost Informative Route (BCIR) query. KCR query

allows users to specify their interests by query keywords and returns a route that

has a distance less than a distance threshold and covers the most number of query

keywords. KCR query is particularly helpful for tourists. For example, a tourist

may wish to find a route from a scenic spot to her hotel to cover many local artware

shops. To make full use of spatio-textual data and provide users an easy way to

describe their preferences for travel routes, BCIR query retrieves the routes that

are most textually relevant to user-specified query keywords while satisfying a travel

cost budget. BCIR query treats the textual description of each route as a document

and leverages an information retrieval model to compute its textual relevance to the

query keywords, thus different from KCR query.
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Third, in practice, traffic conditions over road networks are inherently uncertain

and dynamically varying over time, which makes it rather challenging to provide

accurate results for route queries based on travel time. Inspired by this observation,

we consider the practical settings of road networks and model them by uncertain road

networks (URNs) on which the travel time of each road is uncertain and captured by

a set of travel time samples. Then, we formalize the Probabilistic Time-constrained

Route (PTR) query over uncertain road networks to retrieve those routes that not

only cover required spatio-textual objects with constrained service time but also have

the minimum travel times in high confidence.

Road 
network

Spatio-
textual data

Traffic 
data

Data 
processingObjects extraction Geo-coding

IndexingSpatial indexing Textual indexing Graph indexing Hybrid indexing

RetrievalRSK query KCR query BCIR query PTR query

ApplicationsRoute planning RecommendationLBS Urban renewal

Map-matching

Datasets

Figure 1.2: Research framework for spatial keyword query processing over road net-
works.

Figure 1.2 presents the research framework for this topic. For each spatial key-

word query, we need to design a suite of specific techniques for data processing,

indexing and query processing altogether. Then, the queries can be applied in dif-

ferent application scenarios. It is worth noting that many spatial keyword queries

over road networks are NP-hard. For example, all KCR query, BCIR query and PTR

query are NP-hard problems, which will be proved in the corresponding chapters. As
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of writing this thesis, we cannot expect an exact processing algorithm of polynomial

time complexity for these three queries since P“NP remains unproved. Therefore, to

efficiently process these queries, we aim to design either exact query processing algo-

rithms with effective pruning techniques or approximate query processing algorithms

with high efficiency and quality guarantee.

1.3 Organization

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 4
RSK Query

Chapter 5
KCR Query

Chapter 6
BCIR Query

Chapter 7
PTR Query

Chapter 8
Conclusion & Future 

Work

Chapter 3
Preliminaries

Figure 1.3: The organization of this thesis.

As illustrated in Figure 1.3, this thesis contains eight chapters where

• Chapter 1 introduces the background, highlights the motivations for studying

spatial keyword query over road networks, and overviews the research scope;

• Chapter 2 reviews the related work and discusses the gap between the prac-

tical requirement for spatial keyword query processing and the existing tech-

niques;

• Chapter 3 provides the definitions of road network and spatio-textual objects,

briefly introduces the basic indexing structures that will be used for facilitating

query processing, and summarizes the datasets used for evaluating the perfor-

mance of proposed solutions;
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• Chapter 4 proposes range spatial keyword (RSK) query and designs three

approaches with different indexing structures based on the properties of road

network and RSK query;

• Chapter 5 proposes keyword coverage route (KCR) query, analyzes its hard-

ness, and proposes an adaptive route sampling framework that can flexibly

return query results of different qualities according to the given response time

limits;

• Chapter 6 proposes bounded-cost informative route (BCIR) query, discusses

its difference with existing route queries, and designs one exact solution with

effective pruning methods and two approximate solutions with performance

guarantees;

• Chapter 7 defines probabilistic time-constrained route (PTR) query over un-

certain road network models and designs a two-phase solution to efficiently

process queries.

• Chapter 8 concludes the thesis and highlights the future work relevant to road

network and spatio-textual data.
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Chapter 2

Literature Review

Spatial keyword has been studied for around ten years and a comprehensive survey

on spatial keyword query could be found in [18]. According to the spatial aspect (i.e.,

the distance metric between two locations), exiting spatial keyword queries can be

classified into two categories, i.e., spatial keyword queries in Euclidean space

and spatial keyword queries over road networks . For spatial keyword queries

in Euclidean space, the spatial distance between two locations is Euclidean distance.

In contrast, the spatial distance between two locations in spatial keyword queries

over road networks is the network distance. The details of these two lines of research

are elaborated in Sections 2.1 and 2.2, respectively. In addition, we also review the

relevant work on route query over road networks since three of the four queries we

will study are route queries.

2.1 Spatial Keyword Query in Euclidean Space

In the past decade, many spatial keyword queries in Euclidean space [18, 7] are

proposed, which are elaborated as below.

• Range Spatial Keyword Query [20, 24, 42, 49, 80, 103]: Range spatial key-

word query retrieves relevant spatio-textual objects within a given query range

such that their textual descriptions contain query keywords or are relevant to
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the query keywords in terms of some relevancy functions. In general, the query

region is specified by a geometry shape, e.g., circle and square. The original so-

lution [103] to range spatial keyword query first retrieves all the spatio-textual

objects within the query range and then conducts a detailed examination on the

retrieved spatio-textual objects based on their textual relevance to the query

keywords. This solution is however inefficient for large-size datasets. To solve

this inefficiency issue, previous studies try to embed traditional textual indices,

e.g., Inverted Index [104] and Signature File [29] into an R-tree [40] or its vari-

ants. Almost all the proposed approaches for range spatial keyword query in

Euclidean space are based on these hybrid indices. During the query process-

ing, spatial proximity and textual relevance are computed simultaneously, thus

making it efficient to prune irrelevant branches as soon as possible.

• Boolean kNN Query [12, 31, 85]: Given a query location and a set of query

keywords, Boolean kNN query retrieves the k nearest spatio-textual objects

that contain all the query keywords.

• Top-k Spatial Keyword Query [12, 25, 55, 70, 84]: Essentially, Boolean

kNN query utilizes query keywords as a filter to find out those objects con-

taining query keywords and then return the k nearest ones from the query

location. Differently, top-k spatial keyword query combines spatial proximity

and textual relevance with a score function and retrieves those spatio-textual

objects having the top-k largest scores.

• Group query [4, 9, 10, 38, 58, 75, 98, 99, 101]: Instead of requiring spatol-

textual objects to satisfy the query keywords requirement independently, group

spatial keyword query aims to retrieve a set of spatio-textual objects to satisfy

the query keywords requirement collectively.
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• Moving query [45, 83, 86, 87, 89, 90]: For moving spatial keyword query, the

query location is continuously moving and the corresponding query results also

need to be updated frequently.

• Why not query [16, 17, 19, 57]: When issuing a spatial keyword query, users

usually expect some known spatio-textual objects to be in the query results.

In some cases, however, the real query results do not contain such objects and

users would like to know the reason, thus the why not query. A why not query

provides users the reason why the expected objects are missing from the query

results and suggests a revised query to ensure that those objects are included.

• Reverse kNN query [23, 59]: For service providers, it is important to know

the number of potential customers if they choose some business sites. A po-

tential user here means his or her top-k query results for the same service

provided by the service provider contain the service provider. Motivated by

this observation, we have reverse kNN query. Given a query location and a set

of query keywords, a reverse kNN query retrieves those objects whose top-k

objects contain the query in terms of spatial proximity and textual relevancy.

• Similarity join query [5, 39, 93]: Given a set of spatio-textual objects and

a set of query keywords, a similarity join query retrieves those pairs of ob-

jects such that the spatial proximity and relevancy between them satisfy some

specified thresholds.

• Region of interest query [11, 21, 22, 32, 47, 79]: Given a set of query

keywords, region of interest query aims to find a region (e.g., circle, rectangle

and polygon) that is most relevant to the given query keywords.
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2.2 Spatial Keyword Query over Road Networks

Compared with spatial keyword query in Euclidean space, the research on spatial

keyword query over road networks is limited. On the one hand, the same query

(e.g., top-k spatial keyword query) over road networks is much more complicated

than that in Euclidean space because computing network distance requires a much

higher computation cost than computing Euclidean distance. On the other hand,

there are many new types of queries emerging when it comes to road networks. For

example, it is of high interests for users to retrieve routes to cover some preferred

query keywords.

Existing studies on spatial keyword queries over road networks are summarized

as below.

• Boolean kNN query: Given a query location and a set of query keywords,

Boolean kNN query over road networks retrieves the k nearest spatio-textual

objects (based on network distance) that contain all the query keywords. Fang

et al. [30] propose a solution with two pruning techniques to process Boolean

kNN query over road networks. On the one hand, they employ an inverted

index to conduct text pruning based the query keywords. On the other hand,

a G-tree [102] is utilized to conduct the spatial pruning.

• Top-k spatial keyword query: Similar to the top-k spatial keyword query in

Euclidean space, top-k spatial keyword query over road networks also targets

at finding the k most optimal spatio-textual objects in terms of spatial proxim-

ity and textual relevancy. The only difference is that network distance is used

for quantifying the spatial proximity instead of Euclidean distance. To solve

this query problem, Rocha-Junior et al. [71] propose three approaches, i.e., 1)

a basic approach based on road network expansion, 2) an enhanced approach
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with indices to identify those spatio-textual objects relevant to query keyword-

s, and 3) an overlay approach that partitions the road network into regions

and constructs an hierarchy index for these regions. Particularly, the overlay

approach can efficiently retrieve top-k spatio-textual objects by skipping those

regions without relevant objects during the expansion.

• Keyword-aware route query: For spatial keyword query over road network,

it is natural to combine route planning and spatial keyword query to retrieve the

optimal routes for users. Cao et al. [8, 6] propose keyword-aware optimal route

(KOR) query to find a route such that it covers all query keywords, its cost

budget is less than a specified threshold, and its objective score is maximized.

One example of KOR query is to find a route to covers “bank” and “restaurant”

such that its distance is less than 5 km and its popularity is maximized. In

KOR query, there are two types of weights, cost and score, for each route and

KOR query constrains the cost by a cost budget and maximizes the score.

Zeng et al. [97] assume that users have different preferences for different query

keywords and propose to search for an optimal route that covers the weighted

query keywords while satisfying a cover budget. To solve this problem, they

propose a solution based on A* algorithm. Similar to [97], Li et al. [54] also

consider different preferences for query keywords and propose Keyword-aware

Dominant Routes (KDR) query to computes all the preferable routes that

cover the query keywords while having a cost less than the cost budget. To

solve KDR query problem, they develop both exact and heuristic algorithms.

Yao et al. [95] propose approximate keyword route query to retrieve routes

that cover the query keywords according to an approximate string similarity

function rather perfect match. Another similar work is [74] which proposes the

problem of identifying Streets of Interest (SOIs) aiming to identify individual
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street segments that have a large density of relevant spatio-textual objects

around them.

• Group query: We could also define group spatial keyword query over road

networks to find a set of spatio-textual objects to collectively cover query key-

words. To solve group keyword query problem over road network, Gao et

al. [35] first prove that the query is NP-hard and then propose two approximate

algorithms and one exact algorithm. Luo et al. [62, 63] develop a distribut-

ed solution to answering group spatial keyword queries over road networks.

Concretely, they proposed a distributed index that enables each machine to

independently evaluate the operation on its network fragment in a distribut-

ed setting. In addition, they theoretically prove the space optimality of the

proposed index technique. As a variant of group spatial keyword query, Su

et al. [77] propose to retrieve a set of objects for multiple users rather than a

single one such that the returned objects are not only close to each other but

also close to the group of users.

• Region of interest query: In some cases, users are interested in finding a

region of interest. For example, it will be very helpful to get a region full of

restaurants if a user wants to find a place for dining. To meet this demand, Cao

et al. [11] propose the Length Constrained Maximum-Sum Region (LCMSR)

query that computes a road network region such that its total length is less

than a specified threshold and the spatio-textual objects in it best match the

query keywords in terms of textual relevancy.

• Moving query: Guo et al. [37] consider the mobility of query locations and

propose continuous top-k spatial keyword queries over road networks. To ef-

ficiently process the proposed query, they propose two algorithms, a query-
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centric algorithm and an object-centric algorithm. The query-centric algo-

rithm incrementally expands from the query location to search the k optimal

spatio-textual objects. In contrast, object-centric algorithm expands from the

spatio-textual objects relevant to query keywords directly.

• Reverse kNN query: Given a set of spatio-textual objects with both spatial

locations and textual descriptions, a query location and a set of query keywords,

a reverse kNN query over road networks retrieves those spatio-textual objects

which have query as one of their top-k optimal objects in terms of both textual

relevance and spatial proximity. With different ways to compute the top-k

optimal objects for each object, we have different variants. For example, Gao et

al. [34] compute the top-k optimal objects as the k nearest objects that contain

all the query keywords and propose reverse top-k Boolean spatial keyword

(RkBSK) query. To solve the RkBSK query, they devise an algorithm based on

filter-and-refinement framework equipped with novel pruning techniques with

respect to both spatial and textual information. Another example is the work of

Luo et al. [61] who compute the top-k optimal objects based on a score function

that combines both network distance and textual relevance. Accordingly, they

propose reverse spatial and textual nearest neighbor (RSTkNN) query and

design different pruning methods to facilitate the query processing.

• Skyline route query: Wen et al. [82] propose a variant of keyword-aware

route query and try to compute the optimal routes in the similar way with

skyline query. For a route in their query, they consider evaluation metrics

including 1) the attractiveness of the spatio-textual objects the route passes,

2) the arrival times at these spatio-textual objects containing query keywords,

and 3) the influence of those users who have passed the route. The three

metrics aforementioned are then utilized for skyline search.
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2.3 Route Query over Road Networks

Traditional shortest route query between two locations over road networks has been

studied extensively and a comprehensive survey could be found in [88]. In addition

to shortest route query between two locations, many practical route queries require

returned routes to cover some specified objects, i.e., coverage route query. Roughly,

coverage route query includes arc orienteering problem [60, 76, 81] object coverage

route query [15, 52, 64, 73] and keyword coverage route query [8, 53, 54, 74, 95, 97].

• Arc orienteering problem (AOP): Arc orienteering problem [60, 76, 81] is

a variant of the classical orienteering problem (OP). In orienteering problem,

each network vertex has a score and each edge has a cost, and the objective

is to find a route such that the cost is less than a given cost budget while

the total score is maximized. Different from orienteering problem, the score in

AOP problem is associated with edge instead of vertex. The objective of AOP

problem is also to search a route such that its cost is within a cost budget and

its total score is maximized.

• Object coverage route query: In this line of research, spatio-textual ob-

jects are grouped into different categories. The goal of object coverage route

query is to find a route that covers at least one object from each required cat-

egory of spatio-textual objects with the smallest travel distance. The required

categories can be visited sequentially [73] or partially sequentially [15, 51]. In

addition, Costa et al. [26] considers the service time of objects when searching

the optimal route and Lian et al. [56] propose trip planner query which retrieves

the optimal route to traverse a set of points over probabilistic time-dependent

road networks.

• Keyword coverage route query: Keyword coverage route query retrieves
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routes to cover user-specified query keywords. Cao et al. [8] propose the

keyword-aware optimal route (KOR) query in which each edge of the road

network was associated with a cost and a score. As discussed previously, given

a cost budget, KOR query is targeted at finding a route that covers a set of user-

specified query keywords and maximizes the objective score within the given

cost budget. Taking into account the weights of different keywords of query ob-

jects, Zeng et al. [97] propose an optimization problem to optimize the keyword

coverage on the required route. Yao et al. [95] proposed approximate keyword

route query to retrieve routes that cover the query keywords according to an

approximate string similarity function rather than perfect match. Li et al. [54]

contribute an extension to the KOR query by searching all those routes that

are not dominated by others. Another relevant work is [74] which proposes the

problem of identifying Streets of Interest (SOIs) to identify individual street

segments that have many relevant POIs around them.

In addition, considering the inherent uncertainty and dynamics of road networks,

we have route queries over uncertain road networks. The uncertainty of travel times

over road networks are generally represented in two forms, discrete probability distri-

bution function and sample-based representation. With these two representations, we

have different definitions for the optimality of a route over uncertain road networks.

The existing studies on route queries over uncertain road networks can be classified

into two categories, i.e., least expected travel time route query [41, 65, 13, 44, 14, 94]

and reliable route query [3, 67, 68, 43, 72, 92, 91].

• Least expected travel time route query: Least expected travel route query

retrieves the optimal route that has the minimum expected travel time. Both

Hall [41] and Miller-hooks [65] utilize discrete probability distribution to rep-

resent the travel times of roads and compute the optimal route between two
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locations based on the expected travel time. Chen et al. [14] employ a set of

random travel time samples to capture the uncertainty of the travel time of

roads and propose an efficient multi-criteria A* algorithm to exactly determine

the least expected time route over uncertain time-dependent networks. Yang

et al. [94] leverage a sampled-based representation scheme to construct an in-

teger programming model for finding the a priori least expected time route. A

moment-based characterization for continuous link travel times through vari-

ance is presented in [78] which computes the expected travel time for a given

departure time with an ensemble mean travel time over a number of days. Chen

et al. [13] propose three definitions of optimality, i.e., expected value model,

dependent-chance model and chance-constrained model, for finding the opti-

mal route under an uncertain environment. They designed a simulation-based

generic algorithm to compute the final result. Assuming that link travel times

are uncertain and correlated over time and space, Huang et al. [44] define a

utility function of travel time to evaluate the routes and return the route with

the minimum expected utility value as the query result.

• Reliable route query: Reliable route query aims to find the routes that can

be travelled within certain time in high confidence. Hua et al. [43] apply random

variables approximated by a set of samples to capture the uncertainty of road

networks and propose three types of probabilistic queries, i.e., a probabilistic

route query, a weighted-threshold top-k route query and a probability-threshold

top-k route query. These queries can be computed with joint probability dis-

tribution directly. Wu et al. [67] study the problem of finding a priori optimal

route such that a given likelihood of arriving on-time over uncertain networks is

guaranteed. Xing et al. [92] use Lagrangian substitution approach to estimate

the lower bound of the most reliable route solution through solving a sequence
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of standard shortest route search problems. Zhou et al. [91] discuss two models

to evaluate the travel time robustness, i.e., absolute and α-percentile robust

shortest route problems. They propose a Lagrangian relaxation approach to

deal with the problem.

2.4 Remarks

Table 2.1 summarizes the typical spatial keyword queries in Euclidean space and

over road networks, where NA means inapplicability and ˚ indicates that there are

no existing studies. Obviously, spatial keyword query in Euclidean space has been

studied extensively. In contrast, the research on spatial keyword query over road

networks is still limited and many query problems remain unsolved, e.g., range spatial

keyword query, route query to search routes that are relevant to the query keywords,

and keyword-aware route query over dynamic/uncertain road networks. Hence, in

this topic “spatial keyword query processing over road networks”, we study three

typical types of spatial keyword queries to contribute to the literature on spatial

keyword query over road networks.

Table 2.1: The typical spatial keyword queries in Euclidean space and over road
networks.

Query Euclidean space Road network

range query [20, 24, 42, 49, 80, 103] ˚
Boolean kNN query [12, 31, 85] [30]
top-k query [12, 25, 55, 70, 84] [71]
group query [4, 9, 10, 38, 58, 75, 98, 99, 101] [35, 62, 63, 77]
moving query [45, 83, 86, 87, 89, 90] [37]
why not query [16, 17, 19, 57] ˚
reverse kNN query [23, 59] [34, 61]
similarity join query [5, 39, 93] ˚
region of interest query [11, 21, 22, 32, 47, 79] [11]
keyword-aware route query NA [8, 6, 97, 54, 95]
skyline route query NA [82]

To this end, however, we have to tackle multiple challenges. First, many spatial
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keyword queries over road networks are NP-hard and it is difficult, if not impossible,

to devise efficient exact solutions for these queries. Second, the size of road network

could be very large, e.g., millions of vertices. In this case, much route computation

required by spatial keyword queries will be time-consuming. Third, we still need to

deal with the dual attributes, i.e., spatial and textual attributes, of spatial keyword

query over road network. Therefore, this thesis aims to propose efficient solutions to

the target queries under the challenges above.
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Chapter 3

Preliminaries

Before proceeding to detail the techniques for processing the four target spatial

keyword queries over road networks, we would like to briefly introduce the definitions

of road networks and spatio-textual objects, several index structures that will be

utilized for accelerating the query processing, and the datasets used for experimental

evaluation.

3.1 Road Network and Spatio-Textual Objects

Definition 3.1 (Road Network). A road network is modeled as a directed graph

G“pV,Eq, where each vertex viPV represents an intersection of roads or a road

terminal, and each edge ei,jPE(i‰j) represents the directed road segment from vertex

vi to vertex vj and has a length of |ei,j|.

Figure 3.1(a) illustrates the road network of New York. A simple route (without

duplicate vertices) R over road network G consists of a sequence of vertices, i.e.,

R“pv1, v2, . . . , vγq and vi‰vj if i‰j (1 ď i, j ď γ). The length of R, distpRq, is the
sum of the lengths of its edges, i.e., distpRq“řγ´1

i“1 |ei,i`1|. The shortest route from

vertex vi to vertex vj is denoted by SRpvi, vjq, or SRi,j for simplicity.

Definition 3.2 (Spatio-Textual Objects). Each spatio-textual object, o, is denoted

by a triple o=pl, e,Kq, where:
21



(a) Road network (NY) (b) Distribution of Objects (NY)

Figure 3.1: The road network and spatio-textual objects in New York.

• o.l is the spatial location consisting of longitude and latitude;

• o.e“pvi, vjq is the edge on which o resides or the nearest edge to o, and the dis-

tances from o to vertices vi and vj are distpo.l, viq and distpo.l, vjq, respectively;

• o.K is the textual description of o, e.g., the category, service contents and user

comments.

The set of all spatio-textual objects is denoted by O.

Generally, the textual description o.K of o consists of a set of keywords. Fig-

ure 3.1(b) illustrates the spatial distribution of Points of Interest (POIs, a typical

type of spatio-textual objects) in New York. Actually, there are many types of

spatio-textual objects, e.g., POIs, geo-tagged comments and geo-tagged photos. In

the context of road network, we mainly focus on POIs because spatial keyword

queries over road networks usually need to find physical objects in the real world.

Therefore, unless stated otherwise, spatio-textual object, object and POI are used

interchangeably in this thesis.
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3.2 Index Structures

3.2.1 R-tree

R-tree [40] is a popular spatial index that indexes spatial objects according to their

spatial proximity. Figure 3.2 provides an example of R-tree which covers 9 objects.

As illustrated by Figure 3.2, R-tree seeks to put close objects into the same tree node

and organizes all nodes in a hierarchy structure.

Figure 3.2: R-tree index.

3.2.2 Inverted Index

To efficiently retrieve the spatio-textual objects containing query keywords, Inverted

Index [104] is widely used for indexing the text descriptions of spatio-textual objects.

As illustrated in Table 3.1, Inverted Index lists for each keyword ki all the objects

containing ki, denoted by Invpkiq. During the query processing, the spatio-textual

objects containing query keywords can be quickly identified by using Inverted Index.

For example, the set of spatio-textual objects containing keywords k1 and k2 can be

obtained by computing the intersection of Invpk1q and Invpk2q.
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Table 3.1: Inverted Index for spatio-textual objects.

Keyword Spatio-textual object list

k1 o1, o3, o5, ¨ ¨ ¨
k2 o2, o3, o6, ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨

3.2.3 Contraction Hierarchy

Contraction Hierarchy (CH) [36] is an efficient index for spatial network to compute

the shortest route between locations. CH index imposes a total order on the vertices

V according to their importance (e.g., the degree of vertex), and pre-computes the

distances between vertices based on this order. Initially, the least important vertex,

say vi, is removed and its adjacent vertices are checked. If the shortest route of a

pair of adjacent vertices, say vj and vk, passes through vi, a virtual edge with the

weight of the shortest distance between vj and vk is introduced. Then, the second

least important vertex is removed and processed in the same way. By doing this

repeatedly until the entire spatial network is reduced to an appropriate scale, we can

build a hierarchical index for the spatial network. During the shortest distance/route

computation, bidirectional Dijkstra’s algorithm with some modifications, i.e., only

those unvisited vertices (adjacent to current vertex) ranking higher (resp. lower) than

the current expanding vertex are considered during the forward (resp. backward)

traversal, is employed. Thus, much vertex expansion is avoided by using CH index,

which greatly facilitates the query processing.

3.3 Datasets

In this thesis, we mainly employ two types of data, road network data and spatio-

textual object data to evaluate the performance of proposed solutions. All the road

network datasets and spatio-textual object datasets used in this thesis are summa-

rized in Table 3.2.
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Table 3.2: Datasets used for performance evaluation

Datasets No. of vertices No. of edges No. of objects

New York (NY) 6, 393 13, 885 14, 537
Dublin (DL) 62, 975 82, 730 5, 297
Beijing1 (BJ1) 46, 029 62, 778 21, 192
Beijing2 (BJ2) 46, 029 62, 778 252, 125
California1 (CA1) 21, 048 21, 693 104, 470
California2 (CA2) 90, 870 202, 250 118, 307
Los Angeles (LA) 17, 458 40, 626 18, 384
London1 (LN1) 209, 406 282, 267 34, 341
London2 (LN2) 209, 045 282, 267 34, 341
Australia (AU) 1, 223, 171 1, 682, 182 70, 064
British Isles (BI) 3, 760, 213 4, 865, 094 300, 891

The details of these datasets are presented separately as below.

• New York dataset: New York dataset is directly extracted from Open-

StreetMap1(OSM). The road network and the distribution of spatio-textual

objects in New York dataset are illustrated in Figure 3.1.

• Dublin dataset: The road network and spatio-textual objects (cf. Figure 3.3)

in Dublin dataset are from [71] which also extracts them from OSM.

• Beijing dataset: The road network and spatio-textual objects in dataset BJ1

are extracted from OSM. Meanwhile, to get more spatio-textual objects, we also

use another spatio-textual dataset from DataTang2 in dataset BJ2. Figure 3.4

illustrates the road network and object distribution in dataset BJ1.

• California dataset: We have two datasets for California, i.e., CA1 and CA2,

where CA1 is from Real Datasets for Spatial Databases3 and CA2 is from OSM.

Figure 3.5 shows the road network and the distribution of objects in CA2.

1 https://www.openstreetmap.org/

2 http://www.datatang.com/

3 http://www.cs.utah.edu/ lifeifei/SpatialDataset.htm
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• Los Angeles dataset: Los Angeles dataset is extracted from OSM and its

road network and spatio-textual objects are illustrated in Figure 3.6.

• London dataset: London dataset is from [71] where LN1 is the original

dataset and LN2 removes some isolated vertices. Figure 3.7 illustrates the

road network and the distribution of spatio-textual objects in LN1.

• Australia dataset & British Isles dataset: Both Australia dataset and

British Isles dataset are extracted from OSM and their plots are illustrated in

Figures 3.8 and 3.9, respectively.

(a) Road network (DL) (b) Distribution of Objects (DL)

Figure 3.3: The road network and spatio-textual objects in Dublin.

(a) Road network (BJ) (b) Distribution of Objects (BJ)

Figure 3.4: The road network and spatio-textual objects in Beijing.
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(a) Road network (CA) (b) Distribution of Objects (CA)

Figure 3.5: The road network and spatio-textual objects in California.

(a) Road network (LA) (b) Distribution of Objects (LA)

Figure 3.6: The road network and spatio-textual objects in Los Angeles.

(a) Road network (LN) (b) Distribution of Objects (LN)

Figure 3.7: The road network and spatio-textual objects in London.
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(a) Road network (AU) (b) Distribution of Objects (AU)

Figure 3.8: The road network and spatio-textual objects in Australia.

(a) Road network (BI) (b) Distribution of Objects (BI)

Figure 3.9: The road network and spatio-textual objects in British.

3.4 Frequently used Notations

Table 3.3 lists the notations that will be frequently used in this thesis, where some

notations are general for all the four queries while the others belong to specific

queries.
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Table 3.3: Frequently used notations and their meanings.

Notation Meaning

General

GpV,Eq a road network
vi a vertex on road network G
ei,j the edge from vertex vi to vertex vj
|ei,j | the length of edge ei,j
R a simple route
SRi,j the shortest route from vi to vj
| ˚ | the cardinality of set ˚
o “ pl, e,Kq a spatio-textual object
O the whole set of spatio-textual objects

RSK
q “ ps,K, τ, rq a RSK query
Oq returned objects for query q

KCR
q “ ps, d,K, Lq a KCR query
SpRq the number of query keywords covered by route R

BCIR
q “ ps, d,K, Bq a BCIR query
R˚ the optimal route of BCIR query
Ki,j the keywords of edge ei,j
KR the keywords of route R
CBs,d all the candidate routes from vs to vd
ci,j the travel cost of edge ei,j
fk,e the occurrences of keyword k on edge e
fk,R the occurrences of keyword k on route R
λpRq the travel cost of route R
τpRq the score of route R in terms of textual relevancy

PTR
q “ ps, d, ts,K, h, τq a PTR query
G “ pV pGq, EpGqq uncertain road network
wpGq a possible world of G
WpGq all possible worlds of G
tpei,jq the travel time of edge ei,j
tpRq the travel time of route R
oi “ tl, e,K, Iu a time constrained spatio-textual object
apoiq the arrival time at object oi
acpoiq the constrained arrival time at object oi
Rps, dq a route from s to d covering required objects
Rh
wps, dq the top-h time-constrained routes in wpGq
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Chapter 4

Range Spatial Keyword Query

4.1 Introduction

Given a query location and a set of query keywords, Range Spatial Keyword (RSK)

query aims to find all the spatio-textual objects such that their textual descriptions

are relevant to the query keywords while their locations are within a specified distance

to the query location. For instance, a visitor may issue a RSK query to search for

all the banks offering exchange service within 3 km from the current location. There

have been some studies on RSK query in Euclidean space. In reality, however,

people’s move is generally constrained by the topology structure of road networks.

Figure 4.1 illustrates an example of RSK query on a small road network with 13

vertices vi (i“1, . . . , 13) and 10 spatio-textual objects oj (j“1, . . . , 10). The number

beside each edge is the length of the corresponding edge. The RSK query starting

from s searches for all the banks within 3 km. In Euclidean space, both o2 and o4 will

be returned as the query results. However, we cannot reach o2 by travelling within

3 km from s along the road network since distps, v1q ` distpv1, o2q“3.5 km. Hence,

conducting RSK query based on network distance is more practical than that based

on Euclidean distance.

Conducting RSK query on road networks is however much more challenging than

that in Euclidean space because we need to evaluate the shortest distance between
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Figure 4.1: An example of RSK query, where distps, v1q“1.5 km, distpv1, o2q“2 km,
distps, v4q“1.5 km and distpv4, o4q“1 km

query location and each candidate spatio-textual object. With a large query range,

we have to enumerate many spatio-textual objects and compute their shortest dis-

tances to the query location, which incurs a high computational cost.

To efficiently solve RSK query problem over road networks, we propose three

approaches:

• Expansion-based approach (EA): As a baseline approach, EA traverses the

road network starting from the query location in a similar way to the classical

Dijkstra’s algorithm [28].

• Euclidean heuristic approach (EHA): EHA improves EA approach by em-

ploying Euclidean heuristic to accelerate the query processing.

• Rnet Hierarchy based approach (RHA): To avoid traversing the road net-

work vertex by vertex, RHA leverages the Rnet Hierarchy [50] to partition

the whole road network into a group of interconnected sub-networks and orga-

nizes them in a hierarchy index, which is then utilized for improving the query

efficiency.
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4.2 Problem Statement

With the definitions of road network and spatio-textual object in Definitions 3.1 and

3.2, we have the definition of RSK query over road networks as below.

Definition 4.1 (Range spatial keyword, RSK, query). A RSK query q is denoted by

q=ps,K, τ, rq, where s is the query location, K is a set of query keywords, τ P p0, 1s
is a predefined textual relevance threshold, and r specifies the query range. Given

road network G and spatio-textual objects O, q aims to find the set of spatio-textual

objects Oq Ď O such that

Oq “ to|po P Oq ^ pdistpq.s, o.lq ď rq ^ pθpo.K, q.Kq ě τqu (4.1)

where distpq.s, o.lq is the network distance from q.s to o.l, and θpo.K, q.Kq computes

the textual relevance between o.K and q.K.

The textual relevance θpo.K, q.Kq between o.K and q.K is computed by using the

TF-IDF model [104], i.e.,

θpo.K, q.Kq “
ř
kPq.K wk,o.K ¨ wk,q.Kbř

kPo.K pwk,o.Kq2 ¨ ř
kPq.K pwk,q.Kq2

(4.2)

where wk,o.K“1 ` lnpfk,o.Kq with fk,o.K counting the occurrences of keyword k in

o.K; wk,q.K“lnp1 ` |O|
|Ok|q with |O| and |Ok| representing the number of spatio-textual

objects on G and the number of spatio-textual objects containing k, respectively.

For ease of presentation, the following approaches are devised for undirected road

networks, i.e., |ei,j|“|ej,i| for edges ei,j and ej,i. However, all approaches can be easily

extended to directed road networks.

4.3 Expansion-based Approach

The basic idea of expansion-based approach (EA) is to expand vertex by vertex from

query location until going beyond the query range. During the expansion, the spatio-
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textual objects on edges are checked with respect to their textual relevance to the

query keywords.

4.3.1 Index Structure

To facilitate the query processing using EA, we build index for both road network

and spatio-textual objects. As illustrated in Figure 4.2, an R*-tree [2] (a variant

of R-tree [40]) is employed to index edges E, where each edge is represented by a

minimum bounding rectangle. With the R*-tree index, the edge on which query

location s resides can be quickly determined with a spatial point query.

R*-tree

e1 e2 en-1 en

Figure 4.2: R*-tree for edges.

(vx, Inv(vx), Padj)

vi ex,i |ex,i| Inv(ex,i)

B+-tree vj ex,j |ex,j| Inv(ex,j)

Figure 4.3: Index for road networks.

Meanwhile, as shown in Figure 4.3, we build a B`-tree to index the modified

adjacent list which maintains the connectivity of road network G. Each entry in leaf

node is a triple pvx, Invpvxq, Padjq, where vx is a vertex; Invpvxq is a pointer to the

inverted index [104] (called vertex inverted index ) that indexes all the spatio-textual

objects on vx’s adjacent edges; Padj is another pointer pointing to the adjacent list

of vx. Each entry in the adjacent list is a quadruple xvi, ex,i, |ex,i|, Invpex,iqy, where
vi is a neighbor vertex of vx; ex,i is the edge between vx and vi with length |ex,i|; and
Invpex,iq is a pointer to the inverted index (called edge inverted index ) that indexes

the spatio-textual objects on edge ex,i.

Updating the index structure efficiently is very important for practical use. In

general, the topology structure of road network is comparatively static. Therefore,

we focus on updating POIs. Once the description of POI o is updated, we need to
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update the corresponding vertex inverted index and edge inverted index. Assuming

that the total number of distinct keywords is η, the corresponding time complexity

is 2 ¨ |o.K ¨ |Opηq, where |o.K| is the number of keywords in object o.

4.3.2 Query Processing

Initially, a priority queue U is created to store the visited vertices during expansion

based on their network distances to the query location s. Meanwhile, a list L is

created to store query results. First, the edge ei,j on which s resides is located by

using the R*-tree for edges. Then, a verification is conducted to check whether ei,j

contains spatio-textual object whose textual relevance to the query keywords q.K is

larger than the threshold τ . Next, both vertices vi and vj are inserted into U with

their distances to s. By obtaining vertices from U and checking their adjacent edges

repeatedly, we can traverse all those edges within r from s and check them in the

same way as we do for ei,j. During the expansion, spatio-textual objects satisfying

the textual relevance threshold are added to L. Finally, list L is returned as the

query result.

Example 4.1. We take the query q in Figure 4.1 for example, where query loca-

tion is s, query keywords q.K=“bank” and query range r=3. For the simplicity of

presentation, we ignore τ and only require that each returned spatio-textual objec-

t contains query keywords q.K. First, we find that query location s is located on

edge e1,4 which has no desirable spatio-textual objects. Then, vertices v1 and v4 are

inserted into queue U as pv1, 1.5q and pv4, 1.5q, respectively. Next, we get pv1, 1.5q
from U . By checking the inverted index Invpv1q for vertex v1, we find that edge e1,3

contains query keyword “bank”. Then, Invpe1,3q is checked and object o2 containing

query keyword “bank” is found. However, o2 is not a desirable object because we have

distps, o2q=distps, v1q ` distpv1, o2q=3.5ą3. Since the distances from s to vertices v2

and v3 are larger than the query range r“3, we do not add these two vertices to
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queue U . Following that, we get pv4, 1.5q from U . Similarly, by checking the inverted

index Invpv4q of vertex v4, we find that edge e4,3 contains query keyword “bank”.

Then, Invpe4,3q is checked and the desirable object o4 is inserted into list L. Since

the distances from s to vertices v3, v5 and v6 are larger than query range r“3, we

do not search beyond them. Now queue U is empty and the algorithm terminates.

Finally, we get the query result L“to4u.

4.3.3 Complexity analysis

EA approach expands from the query location s to check all the edges within query

range r. Assuming that the number of vertices within query range is n1 and the

maximum degree of road network is D, the query complexity is Oplog n`n1 ¨D ¨F q,
where log n is the time cost for locating the edge of s with R*-tree, n is the total

number of vertices, and F is the time cost to check one edge.

During the query processing, EA approach needs to store expanded vertices and

obtained query results. Therefore, the space cost of EA is Opn1 ` |L|q, where L is

the number of objects in the query results.

4.4 Euclidean Heuristic Approach

EA approach is efficient for RSK queries of small query ranges. However, if query

range r is large and numerous edges and spatio-textual objects are covered, EA will

incur a high overhead to obtain all the desirable objects because it needs to check

the inverted indices of all the relevant edges that contain at least one query keyword.

In general, many keywords only appear on a small number of edges. In this case,

checking the inverted indices for all the relevant edges is unnecessary. To solve this

issue, we propose the Euclidean heuristic approach (EHA).

Intuitively, the Euclidean distance between two vertices on a road network is

always smaller, if not equal to, than the network distance between them. Therefore,
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if a spatio-textual object belongs to the query result based on network distance,

then it must be in the query result based on Euclidean distance. Motivated by this

observation, we propose the EHA approach to first retrieve all the candidate objects

using the state-of-the-art Euclidean distance-based approaches for RSK query. Here

we employ the approach based on IR-tree[55] which augments each node of the R-

tree with an inverted index. The set of edges containing candidate objects (satisfying

textual relevance threshold) is recorded as Eq. During the expansion, we only check

those edges in Eq. Thus, edges containing no desirable objects are filtered. EHA is

implemented based on EA by adding a Euclidean distance-based RSK query at the

beginning to get Eq.

4.4.1 Complexity analysis

Different from EA approach, EHA approach first uses IR-tree to retrieve all the

objects whose Euclidean distances to the query location s are less than the query

range r, and that satisfy the query keywords. The time complexity for this step

is Oplog |O|q, where |O| is the total number of objects. Then, EHA approach still

needs to traverse all the edges whose network distance to s is less than r. Since we

have known whether an edge contains required objects, we do not need to check the

inverted files for all edges. The complexity for this traverse is Oplog n`n1¨D¨log |Eq|q,
where log |Eq| is used for checking whether one edge is in set Eq. The overall time

complexity of EHA approach is thus Oplog |O| ` log n ` n1 ¨ D ¨ log |Eq|q.
As for space complexity, EHA approach needs to store all the edges Eq containing

candidate objects. Therefore, the corresponding space complexity is Op|Eq|`n1`|L|q.

4.5 Rnet Hierarchy-based Approach

Essentially, both EA and EHA expand vertex by vertex on road network G until

going beyond the query range r. Therefore, both approaches are inefficient to process
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RSK queries with a large query range r. To solve this issue, we introduce the Rnet

Hierarchy [50] to index road networks and further propose Rnet Hierarchy-based

approach, RHA for short.

4.5.1 Indexing Structure

Rnet Hierarchy partitions a road network into sub-networks called Rnets (regional

nets) and organizes them in a hierarchy structure as illustrated in Figure 4.4. An

Rnet R is denoted by pVR, ER, BRq where VR, ER, and BR are the sets of vertices,

edges and border vertices of R, respectively. BR are those vertices shared by two or

more Rnets (e.g., v4). In Figure 4.4, there are four Rnets R11, R12, R21 and R22 on

level 1 and two larger Rnets R1 and R2 on level 2. R1 encloses R11 and R12, and

R2 encloses R21 and R22. Level 0 is the original road network. Therefore, a road

network is organized as a group of Rnets on each level.
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Figure 4.4: Rnet Hierarchy of the road network in Figure 4.1.

To skip over those Rnets containing no query keywords during query processing,

shortcut is introduced. A shortcut is the shortest route between two border vertices

of an Rnet, e.g., SRpv4, v8q. With the help of shortcuts on different levels, the search

expands quickly with different step sizes. Now the challenge is how to partition a

road network into a group of Rnets while minimize the number of border vertices. To
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this end, we first consider the equal-size partition [50] using geometric approach [46]

and KL algorithm [48] to partition the entire road network into Rnets of the similar

size. Concretely, Equal-size partition first partitions the entire road network into two

parts with almost the same number of edges, and then tunes them by exchanging

edges to reduce the border vertices. By doing this recursively, we can partition G

into a set of Rnets of the similar size.

(a) Spatial distribution of objects (b) Statistics of object distribution

Figure 4.5: The distribution of spatio-textual objects in London.

Equal-size partition ignores the spatial distribution of spatio-textual objects. In

reality, however, spatio-textual objects are often clustered [96] in some hot areas like

commercial centers. For example, the area around v4 in Figure 4.1 has more objects

than the areas around other vertices (e.g., v12). Figures 4.5 illustrates distribution

of spatio-textual objects in London. According to Figure 4.5(b), most vertices have

less than 5 objects (those objects residing on the edges adjacent to the vertex).

Accordingly, we consider partitioning a road network based on the distribution of

objects, thus distribution-aware partition, and aim to partition as many objects as

possible into the same Rnet. To this end, we first collect all the vertices with more

objects than a specified parameter (e.g., 10) and then merge these vertices to form

larger areas based on their spatial proximity until an Rnet is generated. Meanwhile,

the other areas are partitioned by using the equal-size partition.
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Figure 4.6: Index for the Rnet Hierarchy.

Rnet Hierarchy is organized in a B`-tree as illustrated in Figure 4.6. The B`-tree

indexes all vertices based on their identifiers and each entry in the leaf node points

to an adjacent list or a hierarchy tree. Concretely, if a vertex vi (e.g., v2) is not a

border vertex, the entry for vi has a pointer pointing to an adjacent list just as EA.

Otherwise, the entry for vi has a pointer pointing to a hierarchy tree which records

the organization of all the Rnets associated with vi on different levels. For example,

v4 is a border vertex of R11 and R12, and it has a hierarchy tree Tv4 . The root node

of Tv4 contains two entries ER11 (for R11) and ER12 (for R12) and a pointer pointing

to the inverted index for them. In a hierarchy tree, each entry in the intermediate

nodes also stores all the shortcuts within the corresponding Rnet while each entry

in the leaf nodes points to the adjacent list of the border vertex.

In addition, to utilize Euclidean heuristic to quickly find out those Rnets con-

taining desirable spatio-textual objects, we also organize all Rnets on different levels

into a variant of IR-tree as illustrated in Figure 4.7.
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Figure 4.7: IR-tree for Rnets

4.5.2 Query Processing

Given an RSK query q, RHA searches for the desirable objects in an expanding

fashion as detailed in Algorithm 4.1. If a vertex vi is not a border vertex, it processes

in the same way as EA approach. Otherwise, the hierarchy tree Tvi of vi is checked.

First, we examine the inverted index for the root node of Tvi to check whether it

contains desirable objects. If not, we skip the entire Rnet via the shortcuts without

checking its inner edges. Otherwise, we check its child nodes to further retrieve

desirable objects.

Example 4.2. We consider the RSK query in Figure 4.1 with query range r“3.

First, we check the edge e1,4 on which s resides. Then, pv1, 1.5q and pv4, 1.5q are

inserted into queue U . Next, we get pv1, 1.5q from U . Since v1 is not a border vertex,

it is processed as the same as EA approach and no required objects are found. The, we

get pv4, 1.5q from U . As v4 is a border vertex, we evaluate R11 and R12. R11 contains

query keyword “ bank” and a detailed examination is conducted. Then e4,3 is checked

and o4 is added to L. We do not add v3 to U since distps, v3q“3.5 which is larger

than the query range r. R12 contains no desirable objects and the shortcuts from v4

to v7 and v8 go beyond the query range. Finally, the result L=to4u is returned.
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Algorithm 4.1 The Rnet Hierarchy based Approach

Input: Road network G “ pV,Eq and range query q“ps,K, τ, rq
Output: Any object o such that distpo.l, sq ď r and θpo.K, q.Kq ě τ
1: U ÐnewPriorityQueue() Ź priority queue for storing visited vertices
2: L ÐnewList() Ź list to store final results
3: ei,j ÐlocateEdge(s)
4: U .enqueue(vi, distps, viq)
5: U .enqueue(vj, distps, vjq)
6: checkEdge(ei,j) Ź check Invpei,jq
7: while U is not empty do
8: v Ð U .Dequeue()
9: if v is not a border vertex() then Ź v is not a border vertex
10: for each adjacent edge e of v do
11: if e contains q.K then
12: checkEdge(e)
13: if v.currentDistance+e.lengthă r then
14: U .enqueue(e.endVertex)
15: else Ź v is a border vertex
16: check v.HierarcyTree
17: return L

Algorithm 4.1 can efficiently process RSK queries by skipping those regions with-

out required spatio-textual objets. Therefore, RHA approach cost much less time

than the previous two approached to evaluate the whole query range. As an expected

improvement, we employ the IR-tree in Figure 4.7 to accelerate the query processing

by computing all the Rnets containing desirable objects in advance, which avoids

checking the inverted indices for all the Rnets.

4.5.3 Complexity Analysis

Since those regions without query results can be skipped, Algorithm 4.1 can get the

query results efficiently. However, in the worst case (i.e., every edge contains at lease

one candidate object), Algorithm 4.1 still needs to check the inverted file for every

edge and the time complexity is the same as EA algorithm, i.e., Oplog n`n1 ¨D ¨F q.
In the worst case, the space cost is Opn1 ` |L|q, where n1 is the number of vertices

within the query range, L is the number of objects in query results, which corresponds

to U and L, respectively, in Algorithm 4.1.
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4.6 Experiments

4.6.1 Setups

The performance of proposed approaches is evaluated on four real datasets1, i.e.,

the road networks of Dublin (DL), London (LN), Australia (AU) and British Isles

(BI). Table 4.1 shows the statistics of these datasets. For each dataset, we randomly

generate 500 query locations within the road network area and 500 sets of keywords

of sizes 1, 2, 3, 4, and 5, respectively. Table 4.2 lists the parameters used in the

experiments and highlights their default values in bold. All experiments run on a

PC with a 3.1 GHz Intel processor and a 4 GB RAM.

Table 4.1: Datasets for evaluating RSK query

Attributes Dublin London Australia British Isles

No. of vertices 62, 975 209, 406 1, 223, 171 3, 760, 213
No. of edges 82, 730 282, 267 1, 682, 182 4, 865, 094
No. of objects 5, 297 34, 341 70, 064 300, 891
No. of distinct keywords 3, 563 12, 522 18, 789 60, 558

Table 4.2: Parameter setting in RSK query

Parameters Values

r 1, 3, 5, 7, 9 (km)
τ 0.3, 0.5, 0.7, 0.9, Boolean
|q.K| 1, 2, 3, 4, 5
Datasets Dublin, London, Australia, British Isles
Partition Strategy Equal-size partition , Distribution-aware partition

4.6.2 Experimental Results

Varying query range r: Figure 4.8(a) illustrates the response time while varying

query range r. EA achieves satisfying performance for queries of small r. With the

increase of r, however, the response time increases rapidly because EA has to check all

the edges within r from s. Compared to EA, EHA performs better because it avoids

checking the inverted indices for those edges without required spatio-textual objects.

1 http://www.idi.ntnu.no/~joao/publications/EDBT2012/.
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However, both EA and EHA expand vertex by vertex, which inevitably incurs a high

overhead. In contrast, RHA performs better than EA and EHA because it bypasses

the Rnets without required objects and avoids a detailed examination on their inner

edges. Additionally, with the help of different layers and different size of Rnets, RHA

adapts well to different r.

(a) Varying r (b) Varying τ (c) Varying |q.K|
Figure 4.8: The response time while varying the query range r, the textual relevance
threshold τ and the number of query keywords |q.K|

.
Varying textual relevance threshold τ : Figure 4.8(b) shows the response time

while varying the textual relevance threshold τ . A smaller τ covers more objects,

thus consuming more time to evaluate these objects. Both EA and EHA cost more

than 3 seconds to evaluate a RSK query when varying τ from 0.3 to 0.9. In contrast,

RHA only needs about one second. As suggested by Figure 4.8(b), Boolean query2

(τ“1) takes less time than other queries with textual relevance thresholds because it

does not need to compute the textual relevance between spatio-textual objects and

query keywords.

Varying number of keywords |q.K|: Figure 4.8(c) presents the response time

while varying the number of query keywords |q.K|. With the increase of |q.K|, both
EA and EHA have to check more spatio-textual objects relevant to q.K, thus leading

to the increase in response time. Although RHA also needs more time to evaluates

RSK queries of more query keywords, the increase of response time is moderate

2 This value is only a label for Boolean query rather than a textual relevance threshold.
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(a) Response time (b) Expanded edges (c) Index size

Figure 4.9: The response time, expanded edges and index size on different datasets

(a) ERHA (b) Response time (c) Expanded edges

Figure 4.10: The response time while using ERHA, and the response time and ex-
panded edges while varying partition strategies

because RHA computes the textual relevance between an Rnet and query keywords

q.K and does not examine the inner objects if the computed relevance is less than τ .

Therefore, increasing the number of query keywords only affects a small portion of

Rnets and the other Rnets can be still skipped through shortcuts.

Different datasets: Figure 4.9(a) shows the response time when using different

datasets. RHA processes RSK queries on the four datasets of different sizes in about

one second. Particularly, the response time on Australia network is smaller than

that on London network though the Australia network is larger than London road

network. This is because London network is denser than Australia network. Given

the same query range, London network usually has more spatio-textual objects and

edges than Australia network. This can be also seen from Figure 4.9(b), which

illustrates the number of edges expanded during query processing.

Index size: Figure 4.9(c) shows the index size of the three approaches on different
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datasets. The index size of EHA is larger than EA because it constructs an IR-tree

for all objects. Meanwhile, RHA and EHA have almost the same index size.

Euclidean heuristic based RHA: Figure 4.10(a) presents the response time of

the Euclidean heuristic based RHA (ERHA) that indexes all Rnets with an IR-tree

as illustrated in Figure 4.7. As RHA indexes a road network in a hierarchy and is

already able to prune unrelated Rnets, there is no obvious difference between RHA

and ERHA with respect to the response time.

Partition strategy: Figures 4.10(b) and 4.10(c) present the response time and the

number of expanded edges while using different road network partition strategies.

Compared with equal-size partition (RHA-E), distribution-aware partition (RHA-D)

achieves better performance. By partitioning a road network based on the distri-

bution of objects, the areas containing few objects can be partitioned into Rnets

of large granularity, thus making RHA-D more advantageous in pruning unrelated

Rnets than RHA-E.

4.7 Summary

In location-aware applications, RSK query has been widely used for retrieving nearby

services for users. Considering that existing techniques for RSK query cannot be ap-

plied to its counterpart over road networks, we thus propose RSK query problem over

road networks. To efficiently process this query, we first propose the EA approach

based on the locality of RSK query. Then, EA approach is improved by utilizing the

observation that network distance is always larger than or equal to the Euclidean

distance between two locations, thus EHA approach. In addition, to process RSK

queries over large road networks and RSK queries of large query range, we design

Rnet Hierarchy index and propose the RHA approach which can efficiently process

RSK queries of different query ranges over road networks of millions of vertices.
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Chapter 5

Keyword Coverage Route Query

5.1 Introduction

In some cases, users have the start location and destination, and wish to explore some

interested spatio-textual objects along the routes. Existing route queries aim to find

the shortest route that covers spatio-textual objects of specific categories [52, 73] or

spatio-textual objects containing the query keywords [8, 6]. One example of these

queries is “finding the shortest route that passes through a restaurant and a pub”.

Such queries are useful when users need to visit each category of spatio-textual

objects once. In contrast, we focus on a different case where the user wants to

explore as many relevant spatio-textual objects as possible. For example, a tourist

may ask: “finding a route that covers as many restaurants and pubs as possible”. This

would provide more choices for users to choose, and thus improve the satisfaction of

users.

Therefore, we propose keyword coverage route (KCR) query in this chapter. Given

the user’s interests (i.e., query keywords) and travel requirements (i.e., start loca-

tion s, destination d, and route distance threshold), KCR query returns the optimal

route from s to d such that: the length of the route is bounded by the given distance

threshold; and the total number of query keywords on the route is maximized. The

length is restricted because users may not want to travel a very long route. Essential-
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Figure 5.1: The quality of query result and the response time of exact and approxi-
mate/heuristic solutions

ly, KCR query aims to find a route that covers the most number of query keywords

while satisfying the given distance threshold.

We will prove that KCR query is NP-hard (cf. Section 5.2.2). For such a com-

putationally expensive problem, the typical solutions are either to develop an exact

solution (e.g., branch-and-bound solution) that computes the optimal result but in-

curs a significant time cost, or to develop an approximate solution (e.g., nearest

neighbor heuristics) that quickly returns results of low quality. Figure 5.1 visualizes

the relationship between the quality of query result and the response time for these

two types of solutions. In this work, we propose an adaptive solution that provides

flexible trade-offs between the quality of query result and response time. Concretely,

we take the response time limit into account and propose an adaptive route sam-

pling framework to compute a good approximate route within the given response

time limit.

5.2 Problem Statement

5.2.1 Problem Definition

Based on the definitions of road network and spatio-textual objects in Section 3.1,

we have the definition of keyword coverage route (KCR) query as below.
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Definition 5.1 (Keyword Coverage Route (KCR) Query). Given a road network

G and the spatio-textual objects O, a keyword coverage route query is denoted by

q “ ps, d,K, Lq, where s and d are the start location and destination, respectively, q.K
is a set of query keywords to describe uers’ interests, and L is a distance threshold.

The objective of q is to find a route R˚ from s to d such that:

R˚ “ arg max
RPRLps,dq

SpRq (5.1)

where

‚ RLps, dq is the set of feasible routes between s and d whose lengths are less than

L, i.e., RLps, dq“tR|R P Rps, dq ^ distpRq ď Lu and Rps, dq represents all the

simple routes from s to d;

‚ SpRq is the score of R with respect to the query keywords q.K and computed

by SpRq“ΣoiPR|oi.K X q.K|, where |oi.K X q.K| computes the number of query

keywords contained by oi.K and is denoted by Spoiq.

In the definition above, we say o P R if o.e is on route R. Meanwhile, we have

the score of an edge Speq“ΣoiPeSpoiq. Accordingly, we have SpRq“ΣePRSpeq.

4 2

5
3

3 3

, , 

4

Figure 5.2: Road network and KCR query q“pv1psq, v5pdq, tk1, k2u, 8q
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Table 5.1: Routes for the KCR query in Figure 1

Routes Length Objects on route Score

R1“xv1, v3, v5y 6 {o4} 1
R2“xv1, v2, v5y 8 {o1,o3} 3
R3“xv1, v3, v2, v5y 9 {o3,o4} 3
R4“xv1, v4, v5y 8 {o2,o5} 2

Example 5.1. Figure 5.2 illustrates an example of road network with five vertices

and five spatio-textual objects. The length of each edge is marked beside the corre-

sponding edge. Figure 5.2 also provides a KCR query, where s“v1 and d“v5 are the

start location and destination, respectively, q.K“tk1, k2u specifies two query keyword-

s, and the distance threshold is L“8. We have four possible routes as listed in Ta-

ble 5.1. Route R3 should be pruned because it is not a feasible route (distpR3q“9ą8).

The other three routes are feasible because all of them satisfy the distance threshold.

Finally, the query result is R2 since its score is larger than that of routes R1 and R4.

5.2.2 Problem Hardness

In complexity theory, a problem is NP-hard if we can prove its corresponding decision

problem is NP-hard. Therefore, we first define the decision version of KCR query

problem, i.e., Decision-KCR, as below.

Definition 5.2 (Decision-KCR problem). Given road network G, Decision-KCR

problem decides whether there exists a route from start location s to destination d

such that its length is at most L and its score is at least X, where X ě 0.

Then, we have the following theorem.

Theorem 5.1. Decision-KCR problem is NP-hard.

Proof. The theorem can be proved by a reduction from the Hamiltonian Path/Route

(Ham-Route) problem, a well-known NP-hard problem, to the Decision-KCR prob-

lem. Given a graph GpV,Eq, a Ham-Route problem decides whether there exists a

simple route on G that visits every vertex in V once.
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Assume that graph GpV,Eq is an instance of Ham-Route problem and that graph

G1pV 1, E 1q is an instance of Decision-KCR problem. First, we convert G to G1.

Initially, we let G1 have the same vertices of G, i.e., V “V 1. If ei,jPE, we set the

length and score of edge ei,j in G1 as |ei,j|“1 and Spei,jq“1. Otherwise, we have

|ei,j|“`8 and Spei,jq“0. Two additional vertices vs“s and vd“d are added to G1

such that, for any vertex viPV 1, we have |es,i|“|ed,i|“1 and Spes,iq“Sped,iq“0. Now

we have V 1“V Y tvs, vdu.
We can prove that a Ham-Route problem on graph G is equivalent to a Decision-

KCR problem on graph G1. Specifically, G has a Ham-Route if and only if there is a

route in G1 from vs to vd such that the length of the route is at most n ` 1(n“|V |)
and the score of the route is at least n ´ 1, which can be proved from the following

two aspects.

• If there is a Ham-Route R in G, the number of vertices in R should be n. By

adding vs and vd to the two ends of R, respectively, we can generate a new

route R1 whose length and score are n ` 1 and n ´ 1, respectively.

• If there is a route R1 in G1 such that distpR1qďn ` 1 and SpR1qěn ´ 1, the

number of edges in R1 (except for the edges connected to vs and vd) should be

at least n ´ 1 because the score of each edge is at most 1. Therefore, the total

number of edges in R1 is at least n ` 1 if the two edges connected to vs and vd

are counted. Considering that the length of R1 is at most n` 1 and the length

of each edge is 1, we can conclude that the number of edges in R1 is n ` 1 and

the number of vertices in R1 is n ` 2. Thus, a Ham-Route in G is obtained by

removing vs and vd from R1.

The proof is completed.
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5.3 Adaptive Route Sampling Framework

5.3.1 Framework Overview

As KCR query problem is NP-hard, it is impossible to design algorithms with polyno-

mial time complexity when P‰NP. Therefore, it is reasonable to design approximate

solutions for KCR queries. Meanwhile, to overcome the low efficiency of exact so-

lutions and the low quality of approximate/heuristic solutions, we propose a route

sampling framework, as illustrated in Figure 5.3, which adaptively generates query

results of different qualities according to the given response time. Taking as input

the road network and a KCR query, the sample route module generates a feasible

route with a certain route sampling method each time. The current optimal route is

updated if the new feasible route has a larger score. Then, the response time limit is

checked. If there is still spare time, more loops are executed to generate new feasible

routes. Otherwise, the current optimal route is returned as the query result.
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Figure 5.3: The adaptive route sampling framework for KCR query

This route sampling framework concerns two key issues, i.e., sampling a feasible

(i.e., the feasibility issue) and good (i.e., the quality issue) route each time. We will

elaborate these two issues in the following sub-sections.
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5.3.2 Sampling a Feasible Route

We sample a feasible route R by starting from s and adding edges sequentially

until reaching the destination d. The challenging issue is how to ensure that R is

feasible. Without loss of generality, we assume that the current expanding vertex is vi

with adjacent vertices adjpviq, i.e., adjpviq“tvj|ei,j P Eu. After removing the visited

vertices, we get the unvisited adjacent vertices of vi, i.e., adjupviq. Then, a vertex

vj is selected from adjupvq according to selection probability pi,j and concatenated

to R to generate a longer partial route, where 0ďpi,jď 1 and
ř
vjPadjupviq pi,j“1. The

details of pi,j will be elaborated in Section 5.3.3. However, some vertices from adjupvq
may violate the distance threshold. In order to guarantee a feasible route, the vertex

vj selected from adjupvq must survive from the distance pruning, i.e., the following

lemma.

Lemma 5.1. For any vertex vj P adjupviq, vj can be selected for route expansion if

and only if the following condition holds:

distpRq ` |ei,j| ` distpSRpvj, dqq ď L (5.2)

where R is the partial route from start location s to vertex vi, |ei,j| is the length of

the edge from vi to vj, and distpSRpvj, dqq is the shortest distance between vj and

the destination d.

Proof. The proof is obvious because any vertex vj P adjupviq satisfying Eq. (5.2) can

generate a feasible route.

We record those vertices in adjupviq surviving from the distance pruning of Lem-

ma 5.1 as adj1
upviq. Therefore, the selection of vertices to expand the route should

be constrained by the distance threshold L and we call it selection constrained (SC)

expansion. Then, we have the following theorem.
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Theorem 5.2. SC expansion can always generate a feasible route.

Proof. Assume the current partial route and the newly added vertex are R and vi,

respectively. Initially, R“xsy and vi“s. In each expansion, an adjacent vertex vj

satisfying Eq. (5.2) is selected. We can always generate a feasible route R1“R ‘
tvju ‘ SRpvj, dq because it satisfies the distance threshold L, where x‘ y represents

a concatenation operation between x and y.

Example 5.2. We take the KCR query in Figure 5.2 for example. Initially, we have

R“xv1y and adj1
upv1q“tv2, v3, v4u. Assuming that v3 is selected and R“xv1, v3y, we

have adjupv3q“tv2, v5u. Since

distpRq ` |e3,2| ` distpSRpv2, dqq “ 3 ` 2 ` 4 “ 9 ą L “ 8,

we have adj1
upv3q“tv5u. Finally, a feasible route R“xv1, v3, v5y is sampled.

In SC expansion, distpSRpvj, dqq is computed online. To accelerate this compu-

tation, we conduct a backward expansion from the destination d on the reverse graph

of G (generated by changing the direction of each edge in G) to compute the shortest

distances from d to all the vertices that are within L from d. These distances are

stored and can be checked quickly during the SC expansion, thus avoiding computing

the network distance between vj and d for every partial route.

The process of feasible route sampling is outlined in Algorithm 5.1, which receives

as input a KCR query q and returns as output a feasible route R.

5.3.3 Route Sampling Techniques

Though SC expansion guarantees a feasible route, how to select a vertex from adj1
upviq

is not yet tackled because the selection probability pi,j is still unknown. The quality

issue depends on the techniques used to compute pi,j. In the following subsections, we

will elaborate different techniques to compute pi,j. Note that, other route sampling

techniques can also be added to the framework.
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Algorithm 5.1 Sample a feasible route

Input: a KCR query q “ ps, d,K, Lq
Output: a feasible route R
1: Initialize route R Ð xsy and vi Ð s
2: while R not reach d do
3: adj1

upviq Ð H
4: for vj P adjpviq do
5: R1 Ð R ‘ tvju ‘ SRpvj, dq
6: if vj R R ^ distpR1q ď L then
7: adj1

upviq.add(vj)
8: let pi,j be the probability to select vertex vj
9: pick vj from adj1

upviq according to pi,j
10: R.add(vj) and vi Ð vj
11: return R

A. Uniform Route Sampling

Straightforwardly, during the expansion, a vertex can be selected from adj1
upviq uni-

formly, i.e., pi,j“ 1
|adj1

upviq| . By doing this repeatedly until reaching the destination d,

we can generate a feasible route.

Example 5.3. We take the KCR query in Figure 5.2 for example and expand from v1

with the partial route R“xv1y. Initially, by Lemma 5.1, we have adj1
upv1q“tv2, v3, v4u.

A vertex is then selected from adj1
upv1q randomly with equal probability. We assume

that v2 is selected and R“xv1, v2y. Next, we have adjupv2q“tv3, v5u. However, v3 is

removed because distpRq`|e3,2|`distpSRpv2, dqq “ 3`2`4 “ 9 ą L “ 8. Therefore,

only one vertex is left, i.e., adj1
upv2q“tv5u. Now, the final vertex v5 is reached and

we get the feasible route R“xv1, v2, v5y with a score SpRq“Spe1,2q ` Spe2,5q“3.

B. Prioritized Route Sampling

All vertices in adj1
upviq are selected equally in the uniform route sampling. Therefore,

in most cases, we cannot obtain a good route unless enough feasible routes are

sampled. Intuitively, a good route sampling method should give a higher priority to

those routes with large scores. However, it is difficult to achieve this end because we

do not have the whole route before finishing the route sampling. In other words, we
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only have a partial route when selecting a vertex from adj1
upviq. Actually, selecting vj

from adj1
upviq can be done in a greedy fashion. To this end, we define the desirability

of selecting a vertex vj P adj1
upviq as below.

ηi,j “ 1 ` Spei,jq
|ei,j| ¨ SàvgpGq (5.3)

where SàvgpGq is the maximum average score over the whole road network, i.e.,

S`
avgpGq “ max

ePE Savgpeq “ max
ePE

Speq
|e| (5.4)

We compute the selection probability pi,j of vj by pi,j“ ηi,jř
vhPadj1

upviq ηi,h
. In this way,

the scores of adjacent edges are taken into consideration when selecting the next

vertex to expand. Though this is just a local greedy strategy, it indeed improves the

quality of returned routes compared with the uniform route sampling, which will be

validated by the experiments.

Example 5.4. We still take the KCR query in Figure 5.2 for example. First, we

have Spe1,2q“ Spe1,3q“ Spe1,4q“Spe4,5q“1, Spe2,3q“Spe3,5q“0, and Spe2,5q“2. By

Eq. (5.4), we have SàvgpGq“0.5. Initially, we start from v1 with route R“xv1y and

have adj1
upv1q“tv2, v3, v4u by Lemma 5.1. Particularly, for vertex v2, we have

η1,2 “ 1 ` Spe1,2q
|e1,2| ¨ SàvgpGq “ 1 ` 1

4 ˚ 0.5 “ 1.5

In such a way, we have η1,3 “ η1,4 “ 1.67. Further, we have

p1,2 “ η1,2ř
vhPadj1

upv1q ηi,h
“ 1.5

1.5 ` 1.67 ` 1.67
“ 0.31.

Similarly, we have p1,3“p1,4“0.345. A vertex is then selected from adj1
upv1q according

to the computed probability pi,j. Without loss of generality, we assume that v2 is
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selected and R“xv1, v2y. Next, we have adjupv2q“tv3, v5u. However, v3 is removed

due to the distance violation as discussed previously. Therefore, only one vertex is

left, i.e., adj1
upv2q“tv5u and we have p2,5“1. Now, we reach the final vertex v5 and

have a feasible route R“xv1, v2, v5y whose score is SpP q“Spe1,2q ` Spe2,5q“ 3.

C. Dynamic Prioritized Route Sampling

To take advantage of the previously sampled routes, we further propose the dynamic

prioritized route sampling technique, which updates the selection probability pi,j

dynamically according to the knowledge learned from the sampled routes. Assuming

that a set of routes have been sampled by using the prioritized route sampling,

different strategies to update pi,j are elaborated below.

DPri-Sample 1: Intuitively, the probability of getting better routes increases as

more and more routes are sampled. Therefore, for each edge ei,j P R, we update its

desirability by η1
i,j“ ηi,j

1`Rpei,jq , where Rpei,jq is the number of sampled routes that pass

edge ei,j. Accordingly, pi,j is adjusted as below.

pi,j “ ηi,j{p1 ` Rpei,jqq
ΣvhPadj1

upviqtηi,h{p1 ` Rpei,hqqu (5.5)

DPri-Sample 2: Intuitively, we tend to travel these edges covered by routes of high

scores. Therefore, we increase the desirability of an edge ei,j with respect to the

scores of the routes that travel through ei,j, i.e.,

pi,j “ ηi,j ¨ p1 ` Σm
k“1Δτ ki,jq

ΣvhPadj1
upviqηi,h ¨ p1 ` Σm

k“1Δτ ki,hq (5.6)

where Δτ ki,j is the increase ratio contributed by the k-th route Rk and computed by

the follow function.

Δτ ki,j “
#

SpRkq
distpRkq¨SàvgpGq if route Rk travels on edge ei,j

0 otherwise
(5.7)
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where SpRkq is the score of route Rk and SàvgpGq is the maximum average score

(computed by Eq. (5.4)) over the whole road network.

DPri-Sample 3: Instead of updating pi,j once a feasible route is sampled, we update

pi,j when a set of m1 routes have been sampled. Thus, pi,j is computed as below.

pi,j “ ηi,j ¨ τi,j
ΣvhPadj1

upviqpηi,h ¨ τi,hq (5.8)

where the increase ratio τi,j is adjusted by τ 1
i,j“p1´ρq ¨τi,j `Σm1

k“1Δτ ki,j and ρ P r0, 1sq.
Initially, we have τi,j“1 for all edges ei,j.

5.3.4 Sampling Quality Analysis

Assuming that the maximum degree of vertex in road network G is D, in the worst

case, the total number of feasible routes is |RLps, dq| “ D
L

Lmin , where Lmin is the

length of the shortest edge in G. For simplicity, we use ζ to denoteD
L

Lmin . In uniform

sampling, each feasible route has the equal probability to be sampled. Therefore, in

each iteration, the probability that the optimal route is selected is PrtR˚u “ 1
ζ
. After

I iterations, the probability that we can obtain the optimal route is 1´ p1´ 1
ζ
qI . To

guarantee that the probability of obtaining the optimal result is larger than (1 ´ ε),

ε P p0, 1q, the number of iterations should be I ě logε
logpζ´1q´logζ . The analysis of other

sampling methods are similar, thus being omitted.

5.3.5 Complexity Analysis

Sampling a feasible route is the dominated time cost of the route sampling frame-

work. Therefore, we focus on analysing the time cost for sampling feasible routes

which utilize Eq. (5.2) to check the feasibility of an edge. The corresponding time

complexity of this check is Oplog nq because both distpRq and |ei,j| are already known,
and distpSRj,dq can be retrieved with time Oplog nq. Therefore, the time complexity
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for sampling a feasible route is Op L
Lmin

¨D ¨log nq, where L
Lmin

is the maximum number

of edges in the route, and D is the maximum vertex degree among all vertices.

5.4 Experiments

5.4.1 Setups

We conduct experiments over three real datasets, i.e., the road networks and POIs

of Dublin, Beijing and London. All the datasets are extracted from OpenStreetMap

and their details are presented in Table 5.2.

Table 5.2: Datasets for evaluating KCR query

Datasets No. of vertices No. of edges No. of POIs

Dublin (DL) 62,975 82,730 5,297
Beijing (BJ) 46,029 62,778 21,192
London (LN) 209,045 282,267 34,341

In the experiments, we evaluate the performance of three route sampling strate-

gies, i.e., uniform route sampling (Uni), prioritized route sampling (Pri), and dynamic

prioritized route sampling (DPri). We use DPri1, DPri2 and DPri3 to denote the

three different update strategies in DPri. In addition, we revise the Nearest Neighbor

Heuristic (NNH) algorithm in [27] to process KCR query and use it as a baseline.

NNH expands from the start location s, and selects the nearest POI containing query

keywords to expand until reaching the distance threshold L.

We generate 50 KCR queries for each dataset. The two query locations of each

query are randomly selected from vertices V , and query keywords are randomly

selected from the vocabulary built based on the textual description of POIs. The

average score of returned routes for 50 KCR queries is used as the metric to evaluate

the performance of solutions.

The settings of used parameters are summarized in Table 5.3, where the default

values are highlighted in bold font. We use London dataset as the default dataset if

no specific statement. |V ps, dq| denotes the number of vertices whose total distance
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to two query locations, i.e., s and d, is less than the distance threshold L. |V ps, dq| is
computed with two expansions from s and d, respectively. In addition, the distance

threshold of each KCR query is specified with a certain deviation from shortest

distance distpSRs,dq between two query locations.

Table 5.3: Parameter setting in KCR query

Parameters Meaning Values

m1 number of sampled routes to up-
date pi,j

{0.005, 0.01, 0.02, 0.03, 0.05, 0.1,
0.3, 0.5}˚ |V ps, dq|

ρ the decrease ratio in DPri3 0.01, 0.05, 0.1 0.2, 0.3, 0.4, 0.5
L distance threshold {1.2, 1.3, 1.4, 1.5, 1.6}˚ distpSRs,dq
T response time limit 1, 3, 5, 7, 9 (seconds)

5.4.2 Experimental Results

Varying parameters in DPri3: Figure 5.4 illustrates the average scores of 50

KCR queries over London dataset with T“1 second while varying the parameters

m1 and ρ. As suggested by Figure 5.4(a), the optimal value of m1 is 0.03˚|V ps, dq|.
A smaller m1 will degrade DPri3 to the Pri sampling while a larger m1 will slow the

update of pi,j, thus reducing the efficiency of route sampling. The other parame-

ter used in DPri3 is the decrease ratio ρ which should be set to 0.2 according to

Figure 5.4(b). A smaller ρ than 0.2 results in a quick increase of pi,j for frequently

visited edges while reducing the chance to explore unvisited edges. In contrast, a

larger ρ than 0.2 will weaken the utilization of previously sampled routes.

Comparing different route sampling methods: Figure 5.5 illustrates the per-

formance of different route sampling methods on three datasets. Pri outperforms Uni

because it considers the scores of edges rather than selecting edges uniformly. DPri1

does not achieve better performance than Pri because it has a low chance to visit

the edges that have been visited many times before. However, these edges may still

lead to the optimal routes. Differently, both DPri2 and DPri3 achieve better perfor-

mance than other route sampling methods. Particularly, the query results returned
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(a) Varying m1 (b) Varying ρ

Figure 5.4: Varying parameters in DPri3.

by DPri3 are much better than that of other route sampling methods. Therefore, to

simplify the presentation, we only report the results of DPri3 for dynamic prioritized

route sampling in the subsequent experiments.

(a) Dublin (b) Beijing (c) London

Figure 5.5: Comparing different route sampling methods on three different datasets.

Varying response time: Figure 5.6(a) illustrates the results of KCR query while

varying the response time limit. For Uni, Pri, and DPri3, the average route scores of

query results gradually increases with the increase of response time limit. Actually,

given a response time limit large enough, the route sampling framework can find

results with very high quality. The query results obtained by NNH keep the same

when varying the response time limit because it only generates one route greedily as

the query result.

Varying distance distpSRs,dq and distance threshold L: We generate 20

distance intervals between 0 km and 20 km with a distance span of 1 km. For each

distance interval, we randomly generate 50 KCR queries such that distpSRs,dq is
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(a) Response time limit (b) distpSRs,dq (c) L

Figure 5.6: The results while varying response time limit, distance distpSRs,dq and
distance threshold L

within the corresponding distance interval. According to Figure 5.6(b), the average

score increases with the increase of distpSRs,dq and DPri3 outperforms Uni, Pri and

NNH. Figure 5.6(c) illustrates the query results by varying the distance threshold L.

As suggested by Figure 5.6(c), DPri3 still has the best performance.

5.5 Summary

To retrieve interesting routes for users, we propose KCR query that combines spatial

keyword query and route planning to retrieve the routes that have the most query

keywords while satisfying a cost constraint. To efficiently solve KCR query problem,

we propose an adaptive route sampling framework with both static and dynamic

route sampling techniques, where dynamic route sampling techniques can improve

route sampling by learning knowledge from the routes sampled previously. The pro-

posed route sampling framework can generate query results flexibly according to the

given response time limit, thus avoiding the low efficiency of traditional exact solu-

tions and the low quality of approximate solutions and achieving a tradeoff between

the query efficiency and the quality of query results. Though KCR query in this

work focuses on road networks, it can also find applications in many other scenarios,

e.g., route searching in shopping malls and theme parks.

62



Chapter 6

Bounded-Cost Informative Route
Query

6.1 Introduction

Although there exist some studies on route query over road networks using the spatio-

textual data [8, 95, 54, 97, 53], they mainly aim to find a route to cover a set of query

keywords while satisfying a travel cost (e.g., travel distance) budget or minimizing

the travel cost. These queries are analogous to the Boolean keyword search in Web

search engines and suitable for trip planning that aims at visiting particular types

of POIs, e.g., a route passing a restaurant and a bank. However, if users want to

find a route textually relevant to the given query keywords, keyword coverage search

cannot apply because it only needs to cover the query keywords and cannot compute

a textual relevance score for each route. Thus, existing studies cannot find a route

that is most relevant to the given query keywords regarding the textual relevance.

In this Chapter, we propose a new route query termed Bounded-Cost Informative

Route (BCIR) query which retrieves the optimal route that is most textually relevant

to the user-specified query keywords. Concretely, given the start and destination

locations s and d, the query keywords and a travel cost budget (e.g., the maximum

travel distance or time), BCIR query finds the optimal route R˚ from s to d such
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that the travel cost of R˚ is bounded by the given travel cost budget, and the textual

relevance (also called route score) between the keyword description of R˚ and the

query keywords is maximized. The reason for introducing a travel cost constraint is

that users generally have a cost budget in mind to avoid a high travel cost.

scenic views
scenic and nature-

friendly viewsnature-friendly 
roads 

nature-friendly 
routes with

scenic spots

12
10 11

high buildings

nice hotel with 
swimming pool

route with frequent 
traffic jams

economy 
hotel

BCIR
SR

KOR

Figure 6.1: The difference between shortest route (SR) query, keyword-aware optimal
route (KOR) query and bounded-cost informative route (BCIR) query, where query
keywords are “scenic, nature-friendly”.

For example, a tourist may issue a query with query keyword “scenic, nature-

friendly” to find a route that is scenic and nature-friendly. Figure 6.1 illustrates the

difference between shortest route (SR) query, keyword-aware optimal route (KOR)

query [8] and BCIR query, where KOR query is one representative for the keyword

coverage route queries. The number beside each route is the corresponding travel

cost. The SR route is the shortest route from s to d but contains no query keywords.

KOR query retrieves the optimal route that only needs to cover all the query key-

words once. In contrast, the BCIR route is most relevant to “scenic, nature-friendly”

than the other two queries with a little larger travel cost.

BCIR query has a wide range of potential applications, e.g., finding interesting

tourist routes, finding emotional routes, and detecting the routes that are relevant

to complaints to support urban maintenance. Particularly, two representative appli-

cations are discussed below.
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Application scenario I: finding interesting tourist routes

Tourists usually would like to explore interesting attractions when visiting a new city.

With the BCIR query, they can easily specify what they are interested in by query

keywords and search for the corresponding route that is most relevant to the given

query keywords. As discussed in Figure 6.1, one tourist may issue a BCIR query to

find a route relevant to “scenic, nature-friendly” from her current location to the

hotel. More interestingly, BCIR query can retrieve a route of some specific topics.

For example, a route with the topic “shopping” can be retrieved by specifying some

query keywords relevant to shopping such as “sale”, “mall” and “shop”.

Application scenario II: finding emotional routes

In addition to finding efficient routes that are short and fast, users may also want to

find some routes that are emotionally pleasant [69]. Existing studies mainly focus

on computing the emotion scores of routes from different aspects such as happiness,

quietness and beauty. Novelly, BCIR offers a general and flexible way to compute an

emotionally pleasant route by specifying some emotion-aware query keywords. For

example, if someone wants to find a happy route, a BCIR query with query keywords

“happy”, “joy” and “delight” will help. Moreover, some dangerous and negative

routes can also be identified by using query keywords like “crime”, “robbery” and

“accident” in BCIR query.

Challenges and Contributions

It is difficult to answer BCIR query efficiently due to its non-additive property (cf.

Section 6.2.2), i.e., the textual relevance of a route is computed based on the text

description of the entire route rather than simply summing the textual relevance val-

ues of its edges. This characteristic differentiates BCIR query from existing keyword

coverage route queries which have additive route scores. Furthermore, BCIR query

is actually an NP-hard problem (cf. Section 6.2.2). For such a computationally
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expensive problem, we propose three solutions, i.e., an exact solution with efficien-

t pruning techniques, an approximate solution with response time guarantee and

another approximate solution with quality guarantee. The exact solution with mul-

tiple pruning methods can greatly reduce the search space and return exact results

for BCIR queries of small cost budgets efficiently. In contrast, the two approximate

solutions report good approximate results for BCIR queries of large cost budgets.

6.2 Problem Statement

In this section, we first formally define the BCIR query problem. Then, we prove

that BCIR query is an NP-hard problem and discuss its non-additive property.

6.2.1 Problem Definition

Before defining BCIR query, we first give a new definition of road network as below.

Definition 6.1 (Road Network). A road network is modeled by a directed graph

GpV,Eq, where each vertex viPV represents an intersection of roads; each edge ei,jPE
represents the directed road segment from vi to vj and is associated with a travel cost

ci,j and a set of keywords Ki,j with their occurrences.

Example 6.1. Figure 6.2 illustrates a small road network. For simplicity, we assume

that all edges are bi-directed. The travel cost and keywords are labelled beside each

edge. For example, the travel cost of edge es,3 “ ps, v3q is cs,3“5 and its keywords are

Ks,3“{k1: 1, k3: 1} where the numbers specify the occurrences of the corresponding

keywords on edge es,3.

The travel cost ci,j of edge ei,j can be any non-negative metric, such as the length

of ei,j and the time to travel through ei,j. The keywords Ki,j of edge ei,j can be

extracted from different sources, e.g., the geo-tagged comments from Foursquare and

Facebook.
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Figure 6.2: A small road network, where each edge is associated with its travel
cost and keywords (if exist). Given a BCIR query with start location s, destination
d, query keyword Kq“{k1}, and travel cost budget B“12, the query result is route
R˚“xs, v1, dy.

A routeR“xvx1 , . . . , vxγy consists of a sequence of vertices, where edge pvxi , vxi`1
qPE

and vxi‰vxj if xi‰xj (1 ď i, j ď γ). We use ER and VR to denote those edges and ver-

tices on route R, respectively. The travel cost of R, λpRq, is computed by summing

the travel costs of its edges, i.e.,

λpRq “
ÿ

ei,jPER
ci,j. (6.1)

The shortest route from vi to vj is denoted by SRi,j whose travel cost is λpSRi,jq.
The keyword description of route R, KR, is computed by merging the keywords of

its edges, i.e.,

KR “
ě

ei,jPER
Ki,j, (6.2)

where
Ţ

is an union operation for multi-set that allows duplicate elements.

The BCIR query is then defined as below.

Definition 6.2 (Bounded-Cost Informative Route (BCIR) Query). Given a road

network G, a BCIR query is denoted by q“ps, d,Kq, Bq, where s and d specify the

start location and destination, respectively, Kq is a set of query keywords, and B is
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a travel cost budget. The objective of q is to find the optimal route R˚ from s to d

such that:

R˚ “ arg max
RPCBs,d

τpRq (6.3)

where τpRq computes the textual relevance between KR and Kq; CBs,d represents those

candidate routes, from s to d, whose travel costs are less than or equal to B, i.e.,

CBs,d “ tR|R P Rs,d ^ λpRq ď Bu (6.4)

and Rs,d represents the entire set of simple routes from s to d.

The cost budget B is specified by a deviation ratio μ ě 0 from the shortest route

between two query locations, i.e., B“p1 ` μq ¨ λpSRs,dq. Note that the travel cost

budget B can be also specified by users directly.

In this work, we compute route score τpRq by utilizing the TF-IDF model [104]

which is widely used for information retrieval. Concretely, we have

τpRq “
ř
kPKq pwk,Rq ¨ pwk,qqbř

kPKR pwk,Rq2 ¨ ř
kPKq pwk,qq2

(6.5)

where wk,R“1 ` lnpfk,Rq and fk,R counts the occurrences of keyword k in KR; wk,q“
lnp1 ` |E|

|Ek|q and Ek are those edges containing keyword k.

Example 6.2. Figure 6.2 illustrates a BCIR query, where the start location and

destination are s and d, respectively; Kq“{k1} specifies one query keyword, and the

travel cost budget is B=12. As listed in Table 6.1, there are five possible routes.

Particularly, for route R1“xs, v1, dy, we have

KR1 “ Ks,1 Z K1,d “ txk1 : 3y, xk2 : 1yu

where the numbers record the occurrences of the corresponding keywords. For exam-

ple, xk1 : 3y indicates that keyword k1 appears three times on route R1. We then
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have wk1,R1“1 ` ln 3 and wk2,R1“1 ` ln 1. Meanwhile, we have |Ek1 |“4, |Ek2 |“2

and |Ek3 |“3, which count the numbers of edges containing keywords k1, k2 and k3,

respectively. For query keyword k1, we have

wk1,q “ lnp1 ` |E|
|Ek1 | q “ lnp1 ` 7

4
q “ ln

11

4

Accordingly, the score of route R1 is

τpR1q “
ř
kPKq pwk,R1q ¨ pwk,qqbř

kPKR1
pwk,R1q2 ¨ ř

kPKq pwk,qq2

“ p1 ` ln 3q ¨ pln 11
4

qb
pp1 ` ln 3q2 ` p1 ` ln 1q2q ¨ pln 11

4
q2

“ 0.903

The scores of the other four routes can be computed in the same way. The details

of five routes are summarized in Table 6.1. Routes R4 and R5 should be pruned since

their travel costs are larger than the cost budget B“12. The other three routes are

candidate routes and R1 is returned as the query result because its score is larger

than that of routes R2 and R3.

Table 6.1: All possible routes for the BCIR query in Figure 1

Route Cost Keyword Score

R1 “ xs, v1, dy 12 {xk1 : 3y, xk2 : 1y} 0.903
R2 “ xs, v2, dy 10 {} 0
R3 “ xs, v3, dy 11 {xk1 : 1y, xk2 : 2y, xk3 : 2y} 0.385
R4 “ xs, v2, v1, dy 15 {xk1 : 3y, xk3 : 1y} 0.903
R5 “ xs, v1, v2, dy 17 {xk1 : 2y, xk2 : 1y, xk3 : 1y} 0.767

6.2.2 Problem Hardness

A. NP-hardness

BCIR query can be proved to be NP-hard. First, we define the decision problem of

BCIR query, Decision-BCIR, as below.
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Definition 6.3 (Decision-BCIR). Given a road network G, a BCIR query q“ps, d,Kq, Bq
and a score threshold Xą0, Decision-BCIR decides whether there exists a route from

s to d such that its cost is at most B and its score is at least X.

Then, we have the following theorem.

Theorem 6.1. Decision-BCIR problem is NP-hard.

Proof. This theorem can be proved by a reduction from the Hamiltonian Route/Path

(Ham-Route for short) problem, a well-known NP-Complete problem, to the Decision-

BCIR problem. Given a road network GpV,Eq, Ham-Route problem decides whether

there exists a route passing each vertex in V once and only once. Then, we can for-

mulate an instance of the Decision-BCIR problem based G as below.

• Road network G1pV 1, E 1q: We create a new road network G1pV 1, E 1q by let-

ting V 1“V Y tvs, vdu and E 1“E Y tpvi, vjq|viPtvs, vdu ^ vjPV u, where vs and

vd are two new vertices. For each edge ei,jPE 1, we set its cost ci,j“1. In addi-

tion, we assume that edge ei,jPE in G1 contains one unique keyword and edge

ei,jPtpvi, vjq|viPtvs, vdu ^ vjPV u does not contain any keywords.

• Decision-BCIR problem q“ps, d,Kq, B,Xq: The start location s and desti-

nation d correspond to vertices vs and vd on G1, respectively. Query keywords

Kq contains all the keywords in G1, i.e., |Kq|“|E|. The cost budget B and score

threshold X are set to n ` 1 and
b

n´1
|E| , respectively, where n“|V |.

Then, we can prove that G has a Ham-Route R if and only if there exists a route

R1 from vs to vd on G1 such that the cost of R1 is at most n ` 1 and the score of R1

is at least
b

n´1
|E| .

One the one hand, assuming that there is a Ham-Route R in G that passes all

the n vertices in V , we can get a new route R1 in G1 by adding vs and vd to the two
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ends of R, respectively. The cost of R1 is n` 1 because R1 has n` 2 vertices and the

cost of each edge is exactly 1. Meanwhile, the score of R1 is

τpR1q “
ř
kPpKR1 XKqq pwk,R1q ¨ pwk,qqbř
kPKR1 pwk,R1q2 ¨ ř

kPKq pwk,qq2
. (6.6)

Considering that each edge (except for the edges connecting to vs and vd) in G1

contains one unique keyword, we have |E 1
k|“1 for keyword k and |KR1 |“n ´ 1. Fur-

thermore, we have wk,q“lnp1` |E1|
|E1
k|q“lnp1`|E 1|q and wk,R1“1` lnpfk,R1q“1` lnp1q“1.

We then have

τpR1q “
ř
kPpKR1 XKqq 1 ¨ lnp1 ` |E 1|qbř

kPKR1 1
2 ¨ ř

kPKq plnp1 ` |E 1|qq2

“ |KR1 | ¨ lnp1 ` |E 1|qa|KR1 | ¨ |Kq| ¨ lnp1 ` |E 1|q

“
d

|KR1 |
|Kq| “

d
n ´ 1

|E| (6.7)

where
ř
kPpKR1 XKqq pwk,R1q ¨ pwk,qq “ |KR1 | ¨ lnp1 ` |E 1|q because Kq contains all the

keywords and KR1ĎKq. Therefore, if there is a Ham-Route R in G, we can find a

route R1 in G1 such that its cost is at most n ` 1 and its score is at least
b

n´1
|E| .

On the other hand, we assume that there is a route R1 in G1 such that its cost

is at most n ` 1 and its score is at least
b

n´1
|E| . According to Eq. (6.7), we have

τpR1q“
b

|KR1 |
|Kq | “

b
|KR1 |

|E| , where |KR1 | counts the number of keywords on route R1. R1

should contain at least n ´ 1 keywords if its score is at least
b

n´1
|E| . Accordingly, R

1

must have at least n ` 1 edges considering that each edge in G1 contains one unique

keyword and the edges connected to vs and vd have no keywords. Meanwhile, R1 has

at most n ` 1 edges because its cost is at most n ` 1 and the cost of each edge is 1.

71



Therefore, R1 has exactly n ` 1 edges. By removing vs and vd from R1, we get the

corresponding Ham-Route R in G.

It completes the proof.

Therefore, Desicion-BCIR problem is NP-hard, thus the NP-hardness of BCIR

query.

B. Non-additive Property

The route score in BCIR query is non-additive because it is computed based on the

text description of the entire route. In other words, the score of a route cannot be

computed by adding the scores of its sub-routes.

Example 6.3. Take the BCIR query in Figure 6.2 for example and consider route

R1“xs, v1, dy and its sub-routes R11“xs, v1y and R12“xv1, dy. With Eq. (6.5), we

have τpR1q“0.903, τpR11q“0.707, and τpR12q“1.0. Obviously, the score of route R1

cannot be computed by summing the scores of its sub-routes, i.e., τpR1q‰τpR11q `
τpR12q.

The non-additive property makes BCIR query more difficult than the existing

keyword coverage route queries [8, 53, 54, 95, 97] in which the scores of routes are

additive. Accordingly, this non-additive property also prevents us from leveraging

existing techniques to process BCIR queries efficiently.

6.3 Solution Overview

Considering the hardness of BCIR query problem, we design different solutions for

different application scenarios.

Scenario I: Requiring optimal result

In this scenario, users request for the exact results. BCIR query is NP-hard, indi-

cating that it is impossible to devise an exact solution of polynominal complexity to
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process BCIR query. Nevertheless, it is still possible to evaluate all candidate routes

if the travel cost budget is small. Additionally, some users may be willing to wait for

a reasonably long time for the exact query results. Therefore, we propose an exact

solution to BCIR query problem and design effective pruning techniques to reduce

the search space

Scenario II: Limiting response time

In this scenario, users wish to obtain the query results within a specified time limit.

To satisfy this requirement, we propose the time-bounded solution (TBS) which re-

ceives as input a processing time limit and aims at maximizing the scores of returned

routes within the time limit.

Scenario III: Guaranteeing answer quality

Some users would like to sacrifice a certain degree of exactness to reduce the running

time as long as the quality of query result is guaranteed. To meet this requirement,

we propose the error-bounded solution (EBS) which imposes an approximation error

threshold on the returned route.

Figure 6.3 provides an overview of the three solutions. Sections 6.4, 6.5 and 6.6

will discuss the technical details for the exact solution, time-bounded solution and

error-bounded solution, respectively.

6.4 Exact Solution

6.4.1 Algorithm Sketch for Exact Solution

BCIR query retrieves the optimal route with the largest score among all the candidate

routes CBs,d that satisfy the travel cost budget B. Therefore, one exact solution for

solving BCIR query problem is to evaluate all the candidate routes and select the

route with the largest score as the query result. Algorithm 6.1 sketches this exact

solution which explores the candidate routes by a depth-first expansion from the
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Figure 6.3: Solution overview for BCIR query

start location s. Initially, a partial route set U is created to store partial routes (i.e.,

routes starting from s but not reaching destination d) during the query processing

and R˚ is used to record the current optimal route. The initialization of U and R˚

will be discussed in Section 6.4.5. In each iteration, a partial route is selected from U

to generate more partial routes by expanding the adjacent vertices of its end vertex.

Once a partial route reaches the destination d and its score is larger than the current

optimal route R˚, R˚ is updated. The algorithm terminates until U is empty.

However, it is computationally expensive to conduct such an exploration because

the number of candidate routes could be considerably large. To reduce the search

space, we design effective pruning techniques to avoid checking those candidate routes

that cannot be the optimal result as soon as possible (line 6 in Algorithm 6.1, cf.

Sections 6.4.3 and 6.4.4).

6.4.2 Indexing

In order to facilitate the query processing, we build a Shortest Route Index and an

Inverted Index for road network G.

Shortest route index: Shortest route computation will be frequently used to check

whether a route is feasible when processing the BCIR query. In order to facilitate
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Algorithm 6.1 Algorithm sketch for the exact solution

Input: BCIR query q“ps, d,Kq, Bq
Output: The optimal route R˚
1: Initialize partial route set U
2: Initialize the optimal route R˚ by heuristics Ź Section 6.4.5
3: while U is not empty do
4: select a partial route R from U
5: generate new partial routes CR based on R
6: prune unpromising routes in CR Ź Sections 6.4.3 and 6.4.4
7: for R1 P CR do
8: if R1 reaches the destination d then
9: update R˚
10: else
11: add R1 to U
12: return R˚

the shortest route computation, we build a Contraction Hierarchy (CH) [36] index,

one of the most efficient index structures for shortest route computation, for road

network G.

Inverted index: In order to check which edges contain the query keywords, an

inverted index is built for all edges E. Inverted index is widely used for text indexing

by listing for each keyword those documents that contain it. Table 6.2 is an example

of the inverted index for the road network in Figure 6.2, where the numbers after

the colon are the occurrences of the corresponding keywords.

Table 6.2: The inverted index for the edges in Figure 6.2

Keywords Edge list

k1 xes,1 : 1y, xes,3 : 1y, xe1,2 : 1y, xe1,d : 2y
k2 xes,1 : 1y, xe3,d : 2y
k3 xes,3 : 1y, xe1,2 : 1y, xe3,d : 1y

Caching shortest costs: In addition, during the query processing of each BCIR

query, we build a hash table S to cache the shortest costs, λpSRi,jq, that have been

computed. Then, λpSRi,jq can be obtained from S directly if it is in the hash table,

which will further facilitate the query processing. The corresponding algorithm for

looking up λpSRi,jq is detailed in Algorithm 6.2.

In what follows, we will detail the proposed pruning techniques (Sections 6.4.3
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Algorithm 6.2 Look up the shortest cost λpSRi,jq
Input: Cached hash table S, start vertex vi and end vertex vj
Output: The shortest cost λpSRi,jq
1: λpSRi,jq Ð 8
2: if S contains λpSRi,jq then
3: get λpSRi,jq from S
4: else
5: compute SRi,j by CH index
6: for each vertex vx on route SRi,j do
7: if S does not contains λpSRi,xq then
8: add λpSRi,xq to S
9: return λpSRi,jq

and 6.4.4) and the corresponding query processing algorithm that combines these

techniques (Section 6.4.5).

6.4.3 Cost Pruning

The goal of cost pruning is to prune those partial routes that violate the cost budget

B during query processing. In other worlds, the pruned partial routes cannot expand

to generate any candidate routes.

Given a partial route R“xs, . . . , viy, the set of candidate routes, from the start

location s to the destination d, generated by expanding R is

CR “ tR1|R1 “ R ‘ Rx, Rx P CB1
i,du (6.8)

where CB1
i,d is the set of candidate routes from the end vertex vi to the destination d

(cf. Eq. (6.4)), B1“B ´ λpRq, and ‘ is an operation to concatenate two routes.

The essential idea of cost pruning is to compute a lower bound cost λ´pRq for all
the candidate routes, CR, generated by expanding partial route R, and verify whether

λ´pRq violates the cost budget B. First, we define the lower bound cost λ´pRq.

Definition 6.4 (Lower bound cost). Given partial route R“xs, . . . , viy, a lower bound

cost λ´pRq for all the candidate routes CR satisfies λ´pRq ď λpR1q, @R1 P CR.
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With the lower bound cost λ´pRq, the partial route R should be pruned if

λ´pRq ą B.

Considering that the shortest cost between two vertices is a lower bound for all

the routes between them, we compute λ´pRq as below.

λ´pRq “ λpRq ` λpSRi,dq (6.9)

where SRi,d is the shortest route from the end vertex vi to the destination d. We

then have the following lemma.

Lemma 6.1. Given partial route R, the λ´pRq computed by Eq. (6.9) is a lower

bound for the costs of those candidate routes CR generated by expanding R.

Proof. For any candidate route R1PCR, we assume that R1“R ‘ Rx, where RxPCB1
i,d.

Since SRi,d is the shortest route from vi to d, we have λpSRi,dqďλpRxq, @RxPCB1
i,d.

Therefore, for any candidate route R1 P CR, we have λpR1q“λpRq ` λpRxqěλpRq `
λpSRi,dq“λ´pRq. Thus, λ´pRq is a lower bound for the costs of those candidate

routes generated by expanding partial route R.

Example 6.4. Take the BCIR query in Figure 6.2 for example. Assuming that the

partial route is R“xs, v2, v1y, R should be pruned since λ´pRq “ λpRq ` λpSR1,dq “
10 ` 5 ą B, where the cost budget B“12.

Pre-computing λpSRi,dq: When computing λ´pRq, λpSRi,dq is computed online,

which incurs a high computation cost. With the observation that the destination d

is fixed for all shortest routes SRi,d, we pre-compute the smallest costs to the desti-

nation d for those vertices that are within the travel cost budget from d by utilizing

a reverse Dijkstra’a algorithm. With these computed smallest costs, λpSRi,dq can

be retrieved directly instead of being computed from the scratch during the query

processing.
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6.4.4 Score Pruning

Intuitively, a partial route R should be pruned if all of its expanded candidate routes,

CR, are not better than the current optimal routeR˚. Therefore, we aim at computing

an upper bound score, τ`pRq, for all the candidate routes CR and exploit τ`pRq to

verify the possibility that there exists a route in CR that is better than the current

optimal route R˚.

First, we define the upper bound score τ`pRq as below.

Definition 6.5 (Upper bound score). Given partial route R“xs, . . . , viy, an upper

bound score τ`pRq for all the candidate routes in CR satisfies τ`pRqěτpR1q, @R1 P CR.

Then, we have the following lemma about score pruning.

Lemma 6.2 (Score Pruning). Given partial route R and the current optimal route

R˚, R should be pruned if τ`pRq ď τpR˚q, where τ`pRq is an upper bound score for

all the candidate routes generated by expanding R, i.e., CR.

Proof. Since τ`pRq is an upper bound score for all the candidate routes in CR, we have
τpR1qďτ`pRq for each route R1PCR. By inequality transition, we have τpR1qďτpR˚q,
indicating that the candidate routes generated by expanding partial route R cannot

be better than the current optimal route R˚. Therefore, R should be pruned.

Computing τ`pRq

The challenge for computing τ`pRq is twofold. On the one hand, τ`pRq should be

computed based on a route set, CR, rather than a single route. On the other hand,

as discussed in Section 6.2.2, the route score in BCIR query is non-additive and we

cannot add the scores of routes Rx and Ry to obtain the score of route Rx ‘ Ry.

With these two challenges, the proposed techniques for computing the upper bounds

of route scores in existing studies cannot be applied to the BCIR query directly.
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In this study, according to the definition of route score in Eq. (6.5), we compute

the upper bound score τ`pRq by the following equation.

τ`pRq “
ř
kPKq p1 ` lnpfk,R ` F`pk, i, d, B1qqq ¨ pwk,qqbř

kPKR p1 ` lnpfk,Rqq2 ¨ ř
kPKq pwk,qq2

(6.10)

where fk,R is the frequency of keyword k on route R, F`pk, i, d, B1q is a function that

computes an upper bound for the occurrences of keyword k on all the sub-routes

CB1
i,d and requires fk,RxďF`pk, i, d, B1q, @Rx P CB1

i,d. We will discuss the computation

of F`pk, i, d, B1q later.

Then, we have the following lemma about the upper bound score computed above.

Lemma 6.3. The upper bound score τ`pRq computed by Eq. (6.10) is an upper

bound for the scores of all the candidate routes, CR, generated by expanding partial

route R, i.e., τpR1qďτ`pRq, @R1 P CR.

Proof. We use R1 to represent any candidate route in CR and let R1“R ‘ Rx, where

sub-route Rx P CB1
i,d. Accordingly, the frequency of keyword k on route R1 is the sum

of the frequencies of keyword k on routes R and Rx, i.e., fk,R1“fk,R ` fk,Rx .

According to the definition of route score in Eq. (6.5), we have

τpR1q “
ř
kPKq pwk,R1q ¨ pwk,qqbř

kPKR1 pwk,R1q2 ¨ ř
kPKq pwk,qq2

(6.11)

For simplicity, we denote wq“
bř

kPKq pwk,qq2 and then have

τpR1q “
ř
kPKq pwk,R1q ¨ pwk,qq

wq ¨
bř

kPKR1 pwk,R1q2
(6.12)

On the one hand, for Eq. (6.12), we have

ÿ
kPKq

pwk,R1q ¨ pwk,qq “
ÿ
kPKq

p1 ` lnpfk,R ` fk,Rxqq ¨ pwk,qq (6.13)
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Since F`pk, i, d, B1q computes an upper bound for the occurrences of keyword k for

all the sub-routes Rx P CB1
i,d, we have

ÿ
kPKq

pwk,R1q ¨ pwk,qq ď
ÿ
kPKq

p1 ` lnpfk,R ` F`pk, i, d, B1qqq ¨ pwk,qq (6.14)

On the other hand, the denominator in Eq. (6.12) has the following derivation.

wq ¨
d ÿ

kPKR1
pwk,R1q2 “ wq ¨

d ÿ
kPKR1

p1 ` lnpfk,R ` fk,Rxqq2

ě wq ¨
d ÿ

kPKR
p1 ` lnpfk,Rqq2 (6.15)

Combining Eq. (6.12), Eq. (6.14) and Eq. (6.15), we have

τpR1q “
ř
kPKq pwk,R1q ¨ pwk,qq

wq ¨
bř

kPKR1 pwk,R1q2

ď
ř
kPKq p1 ` lnpfk,R ` F`pk, i, d, B1qqq ¨ pwk,qq

wq ¨
bř

kPKR p1 ` lnpfk,Rqq2

“ τ`pRq

Therefore, we have τpR1qďτ`pRq for any candidate route R1PCR. Thus, the τ`pRq
computed by Eq. (6.10) is an upper bound for the scores of all the candidate routes,

CR, generated by expanding partial route R.

Computing F`pk, i, d, B1q

Given partial route R“xs, . . . , viy, function F`pk, i, d, B1q computes an upper bound

for the occurrences of keyword k on all the sub-routes CB1
i,d, where i and d are the

subscript of the end vertex vi of R and the destination d, and B1“B ´ λpRq. Since

F`pk, i, d, B1q will be invoked frequently during query processing to compute the

upper bound score, an efficient method for computing F`pk, i, d, B1q is required.
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One straightforward method for computing F`pk, i, d, B1q is to evaluate the oc-

currences of keyword k, fk,Rx , on each route RxPCB1
i,d and report the maximum fk,Rx .

However, CB1
i,d could be considerably large, making it time prohibitive to evaluate

all the routes in CB1
i,d. Therefore, instead of evaluating all the routes in CB1

i,d, we uti-

lize those edges on routes CB1
i,d to directly estimate the maximum possible number of

occurrences of keyword k on each route RxPCB1
i,d.

With end vertex vi, destination d and the remaining cost budget B1, the set of

edges EB1
i,d that appear on routes CB1

i,d and contain keyword k is computed by

EB1
i,dpkq “ tef,g|ef,g R R ^ k P Kf,g ^ Γpi, f, g, dq ď B1u (6.16)

where function Γpi, f, g, dq“λpSRi,f q ` cf,g ` λpSRg,dq computes the smallest travel

cost from vi to d when passing edge ef,g.

In Eq. (6.16), inverted index is utilized to check whether edge ef,g contains query

keyword k and Algorithm 6.2 is invoked to compute λpSRi,f q. Note that we can

get λpSRg,dq in Eq. (6.16) directly since a reverse Dijkstra’a algorithm has been

conducted at the beginning of query processing to compute the shortest cost to the

destination d for each vertex (cf. the last paragraph in Section 6.4.3).

Straightforwardly, F`pk, i, d, B1q can be computed by counting the total oc-

currences of k on all edges in EB1
i,dpkq. Nonetheless, the computed upper bound

F`pk, i, d, B1q in this way could be very loose since EB1
i,dpkq covers much more edges

than each route RxP CB1
i,d.

Example 6.5. Take Figure 6.4 for example and assume that the remaining cost

budget is B1“6. With Eq. (6.16), the set of edges on routes CB1
i,d and containing

keyword k is EB1
i,dpkq“te1,2, e2,3, e5,7, e7,8, e8,du whose total keyword occurrences are

20. However, the corresponding total cost is 9 which is larger than the remaining

cost budget B1“6, indicating that the computed upper bound is loose.
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Figure 6.4: Road network example for computing F`pk, i, d, B1q.

To obtain a tighter F`pk, i, d, B1q, we compute the maximum number of keyword-

s k that each route RxPCB1
i,d could have by selecting a sub-set of edges from EB1

i,dpkq
rather than using the whole set. To this end, we build an average keyword frequen-

cy histogram H for those edges in EB1
i,dpkq and leverage this histogram to compute

F`pk, i, d, B1q.
First, with the frequency of keyword k on edge e, fk,e, the corresponding average

keyword frequency is f̄k,e “ fk,e
ce

, where ce is the travel cost of edge e.
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Figure 6.5: Average keyword frequency histogram

All edges in EB1
i,dpkq are then sorted based on their average keyword frequencies.

Without loss of generality, we assume that the sorted edges are e1, e2, . . . , eγ where

f̄k,eiďf̄k,ej if iăj. The corresponding average keyword frequency histogram H for

these sorted edges is illustrated in Figure 6.5, where the accumulated cost xi“xi´1 `
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cei and x1“ce1 .

Given the remaining travel cost budget B1 and the average keyword frequency

histogram H, F`pk, i, d, B1q is computed by

F`pk, i, d, B1q “ f̄k,e1 ¨ x1 ` f̄k,e2 ¨ px2 ´ x1q ` ¨ ¨ ¨ ` f̄k,eβ ¨ pB1 ´ xβ´1q
“ fk,e1 ` fk,e2 ` ¨ ¨ ¨ ` f̄k,eβ ¨ pB1 ´ xβ´1q (6.17)

where B1 is assumed to be located at edge eβ, i.e., xβ´1 ă B1 ď xβ. We then have

the following lemma.

Lemma 6.4. The F`pk, i, d, B1q computed by using the average keyword frequency

histogram H is an upper bound for the keyword frequency fk,Rx of any route Rx P CB1
i,d.

Proof. We first assume that the optimal route in route set CR is R˚ and the corre-

sponding sub-route of R˚ from vertex vi to the destination d is Rx̊. We further assume

that those edges containing keyword k on sub-route Rx̊ are ERx̊ pkq“tei, ei`1, . . . , eαu.
We then have ERx̊ pkqĎEB1

i,dpkq since any edge that contains keyword k and is not in

EB1
i,dpkq will violate the cost budget constraint (cf. Eq. (6.16)).

The frequency of keyword k on route Rx̊ is fk,Rx̊“ř
ePE

Rx̊
pkq fk,e and the cost of

Rx̊ satisfies λpRx̊q ď B1. In Figure 6.5, we record those edges on the left side of the

cost budget B1 or insects with B1 as EH“te1, e2, ¨ ¨ ¨ , eβu. Then, for any edge e on

route Rx̊, if eREH, the average keyword frequency of e cannot be larger than any

edge in EH. Therefore, the F`pk, i, d, B1q computed based on EH is an upper bound

for the keyword frequency fk,Rx of any route Rx P CB1
i,d.

Example 6.6. Continued with Example 6.5, the costs, keyword frequencies, and

average keyword frequencies of these edges in EB1
i,dpkq are summarized in Table 6.3.

The corresponding average keyword frequency histogram is illustrated in Figure 6.6.

83



1  3     5   7   9

Av
er

ag
e 

ke
yw

or
d 

fr
eq

ue
nc

y

Accumulated cost

1.5
2.0

3.0

4.0

Figure 6.6: Average keyword frequency histogram for Figure 6.4

Table 6.3: The edges EB1
i,dpkq containing keyword k in Figure 6.4

Edge Cost Keyword frequency Average keyword frequency

e1,2 2 6 3.0
e2,3 2 3 1.5
e5,7 1 4 4.0
e7,8 2 3 1.5
e8,d 2 4 2.0

With Eq. (6.17), we have

F`pk, i, d, B1q “ fk,e5,7 ` fk,e1,2 ` fk,e8,d ` f̄k,e2,3 ¨ pB1 ´ 5q
“ 4 ` 6 ` 4 ` 1.5 ¨ p6 ´ 5q
“ 15.5

6.4.5 Query Processing Algorithm

Algorithm 6.3 presents the algorithm for the exact solution. The initialization and

processing procedures are elaborated below.

Initialization: Initially, a max-priority queue U is created to store partial routes

during the query processing and a partial route R with the start location s is en-

queued (lines 1-3). Meanwhile, route R˚ stores the optimal route and is initialized to

the shortest route from s to d, i.e., SRs,d (line 4). Note that R
˚ can be also initialized
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by other heuristic methods without modifying the algorithm. In addition, a reverse

Dijkstra’s algorithm is conducted to compute the shortest cost of each vertex to the

destination d (line 5).

Query processing: In each iteration, the partial route R with the largest upper

bound score is dequeued from U (line 7). If the upper bound score of R is not larger

than that of the current optimal route R˚, R is pruned (line 8). Otherwise, the end

vertex vi of R is computed (line 9). Each adjacent vertex vj of vi is then concatenated

to R to generate a longer route R1 if vj has not been visited by R (lines 10-11). R1

will be pruned if it is impossible to generate a candidate route (cost pruning, line

12). If R1 survives from the cost pruning, arrives at the destination d and has a larger

score than the current optimal route R˚, it is used to update R˚ (lines 13-14). If R1

is just a new partial route, its upper bound score τ`pR1q is computed (lines 15-16).

If τ`pR1q is not larger than that of the current optimal route, R1 is pruned (line 17).

Otherwise, R1 is add to the priority queue U for further exploration (line 18). The

algorithm terminates when U is empty (line 6) and the optimal route R˚ is returned

(line 19).

6.4.6 Complexity Analysis

We assume that the minimum cost among all edges is cmin and the maximum vertex

degree is D. In the worst case, Algorithm 6.3 needs to check OpD B
cmin q routes. There-

fore, the efficiency of pruning methods greatly affects the practical time complexity.

6.5 Time-Bounded Solution

In some applications, users would like to impose a constraint on the response time to

avoid waiting for a long time. To meet this requirement, we propose time-bounded

solution (TBS) which returns query results within the user-specified response time
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Algorithm 6.3 The exact solution

Input: BCIR query q“ps, d,Kq, Bq
Output: The optimal route R˚
1: Initialize U Ð an empty priority queue
2: Initialize R Ð xsy
3: U .enqueue(R, 0)
4: R˚ Ð SRs,d

5: Compute λpSRi,dq for each vi by reverse Dijkstra’s algorithm
6: while U is not empty do
7: R Ð U .dequeue()
8: if τ`pRq ě τpR˚q then Ź score pruning
9: vi ÐendVertex(R)
10: for vj P adjpviq do
11: R1 Ð R ‘ tvju
12: if λpR1q ` λpSRj,dq ď B then Ź cost pruning
13: if pvj “ dq and pτpR1q ą τpR˚qq then
14: R˚ Ð R1 Ź update the optimal route
15: else
16: Compute upper bound score τ`pR1q
17: if τ`pR1q ą τpR˚q then Ź score pruning
18: U .enqueue(R1, λpR1q)
19: return R˚

limit.

The idea of TBS is based on the observation that candidate route set CBs,d between
two query locations s and d often share edges with each other. Therefore, it is possible

to convert one route to another by changing their sub-routes. One candidate route

can be enhanced if we can replace its sub-routes with other sub-routes such that the

new candidate route has a better score.

Figure 6.7 illustrates the framework for TBS which takes as input the road net-

work, the BCIR query and a response time limit, and returns an approximate query

result. In TBS, we have three major components:

• routes initialization generates a set of candidate routes;

• inferior sub-route identification randomly selects one candidate route from

the generated candidate route set and identifies an inferior sub-route with lim-

ited contribution to the score of the selected candidate route for enhancement;
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Figure 6.7: Framework of time-bounded solution

• route enhancement generates a new sub-route to replace the identified infe-

rior sub-route and enhances the selected candidate route.

When response time limit permits, inferior sub-route identification and route en-

hancement repeat continuously. Finally, the optimal route in the candidate route set

is returned as the query result. The details of the three components are elaborated

in the subsequent sub-sections.

6.5.1 Routes Initialization

Route initialization generates a set of h candidate routes C so that time-bounded

solution can further enhances these h candidate routes continuously until reaching

the response limit.

The reason for generating h candidate routes rather than one is twofold. On

the one hand, it is of high probability for one candidate route to get stuck in a

local optimum, thus reducing the probability of obtaining the optimal route. On the

other hand, enhancing h candidate routes is faster to approach the optimal route

than enhancing one. As illustrated in Figure 6.8 where the grey ellipse is the whole
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Figure 6.8: Initialized candidate routes and the search space

search space, if only route R1 is generated, it will be a long way to enhance R1 to get

the optimal route R˚. In contrast, if four routes R1, R2, R3 and R4 are generated,

it should be very fast to enhance R4 to get the optimal route R˚.

The setting of h concerns two aspects. On the one hand, though a large h could

have a good coverage of the search space, it also requires much time to generate

and enhance the candidate route set. On the other hand, a small h cannot reflect

the advantage of route set initialization since it only covers a small search space.

Therefore, we will tune h in the experiments to determine its appropriate value.

To generate h candidate routes that are distributed randomly over the whole

search space, we propose two methods below.

A. Random route sampling

Random route sampling samples a candidate route by gradually expands edges from

the start location s. Initially, a route R with the start location s is generated. In

each expansion, one more edge is added to the end of R. To ensure that the added

edge ei,j satisfies the cost budget, ei,j should satisfy λpRq ` ci,j `λpSRj,dqďB, where

ci,j is the cost of ei,j and SRj,d is the shortest route from vj to the destination d.

Finally, R reaches the destination d and is returned as a candidate route.

Example 6.7. Take the BCIR query in Figure 6.2 for example. Initially, we have

R“xsy. There are three edges adjacent to s, i.e., es,1, es,2 and es,3. We randomly

select one edge from the three edges and assume es,2 is selected, thus R“xs, v2y.
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Next, we consider the two adjacent edges e2,1 and e2,d of the end vertex v2 of R.

Since λpRq ` c2,1 ` λpSR1,dq “ 5 ` 5 ` 5 ą B “ 12, only e2,d is feasible. Therefore,

we have R“xs, v2, dy which reaches the destination d, thus a candidate route.

B. Route sampling by adapted nearest neighbour heuristics

Since random route sampling generates candidate routes without considering the

query keywords on edges, the initialized candidate routes may have very small scores.

In this case, it will take a long time to enhance the candidate routes. To deal with this

issue, we propose to sample candidate routes by adapted nearest neighbours (NN)

heuristics. Traditional NN heuristics method [27] starts from the start query location

and gradually adds the nearest edge containing query keywords until reaching the

destination. In this way, we can always generate one candidate route. However,

time-bounded solution requires h candidate routes. Therefore, we adapt traditional

NN heuristics method so as to generate h candidate routes.

The initialization of adapted NN heuristics method is the same as random sam-

pling. In each expansion, we compute the h nearest edges Eh containing query

keywords for the end vertex vi of R. Then, one edge is randomly selected from Eh

and added to the end of R. The remaining issue is how to compute the h nearest

edges for vertex vi. For each BCIR query q, we compute all those edges, Eq, that

contain at least one query keyword in Kq and satisfy the cost budget B, i.e.,

Eq “ tef,g|ef,g P E ^ pKf,g X Kq ‰ Hq ^ Γps, f, g, dq ď Bu (6.18)

where function Γps, f, g, dq“λpSRs,f q ` cf,g ` λpSRg,dq is the same as that in E-

q. (6.16). For ease of discussion, we call Eq positive edges. Then, we select the h

nearest edges Eh for vertex vi from Eq.

Example 6.8. We still take the BCIR query in Figure 6.2 for example and initial-

ize R“xsy. First, we have positive edges Eq“tes,1, es,3, e1,2, e1,du. If h“2, we have
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Eh“tes,1, es,3u. Assuming that es,3 is selected, we have R“xs, v3y. Then we consider

the two nearest edges containing query keywords for v3. However, we cannot find a

feasible edge containing query keywords to add to v3. Therefore, R goes directly to

the destination d and generates a candidate route R“xs, v3, dy.

6.5.2 Inferior Sub-route Identification

After generating h candidate routes C, the next step is to refine these h candidate

routes until reaching the response time limit T . Each time, a candidate route R is

randomly selected from C. The goal of inferior sub-route identification is to find a

sub-route of R for enhancement.

Cost 

A1

A2

Figure 6.9: The distribution of all sub-routes of R

Figure 6.9 illustrates the distribution of all the sub-routes of R with respect to

their costs and ΔτpRq values, where ΔτpRq value of sub-route Ri,j is computed as

below.

ΔτpRq “ τpRq ´ τpR ´ Ri,jq (6.19)

where τpR ´ Ri,jq computes the route score after removing sub-route Ri,j from R.

Obviously, ΔτpRq quantifies the change of route score after removing the sub-route

Ri,j.

Since it is difficult to bound the value of ΔτpRq
λpRi,jq , we compute the corresponding
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angle θpRi,jq in Figure 6.9 by

θpRi,jq “ arcsin
ΔτpRq
λpRi,jq (6.20)

Angle θpRi,jq quantifies the ratio between ΔτpRq and the cost of sub-route Ri,j.

According to Eq. (6.20), we have θpRi,jq P p´90˝, 90˝q since λpRi,jq is always positive
while ΔτpRq could be both positive and negative.

Intuitively, to increase the score of candidate route R, we need to replace those

sub-routes whose costs are large while ΔτpRq values are small, i.e., sub-routes with

small θ. To this end, we devise two methods as below.

A. Ranking-based inferior sub-route identification

Ranking-based identification orders all sub-routes according to the θ value. First,

the sub-route with the minimum θ value is selected. If we can replace this sub-route

with a better one, this sub-route is identified. Otherwise, the second sub-route is

checked. ranking-based identification repeats this operation until one sub-route is

identified. For example, In Figure 6.9, ranking-based inferior sub-route identification

will first select the sub-route corresponding to the black point A1 since it has the

smallest angle θ.

B. Threshold-based inferior sub-route identification

In threshold-based inferior identification, we set a threshold φ for θ and compute the

longest sub-route Ri,j of R such that

Ri,j “ arg max
Ri,jPR^θpRi,jqďφ

λpRi,jq (6.21)

In Figure 6.9, assuming that the threshold is the dashed line, threshold-based

sub-route identification will select the sub-route corresponding to the grey point A2

since it locates below the threshold line and has the largest cost. During the query
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processing, we first set φ“´80˝ and increase it by 10˝ gradually until a sub-route is

identified.

6.5.3 Route Enhancement

After identifying the inferior sub-route Ri,j of candidate route R, we need to find a

new sub-route to replace Ri,j such that the new candidate route is better than R. Ac-

tually, any route between vi and vj such that its cost is less thanB1“B´pλpRq´λpRi,jqq
can be used to replace Ri,j. However, it is computationally prohibitive to evaluate

all these routes to select the optimal one to replace Ri,j.

Intuitively, adding those edges containing query keywords to an existing candidate

route is of high probability to increase the route score. Therefore, given sub-route

Ri,j of candidate route R, we compute a candidate route set C 1 by evaluating all the

positive edges in Eq.

Figure 6.10: Route enhancement in TBS.

For each edge ef,gPEq, according to Figure 6.10, the new candidate route gener-

ated by replacing sub-route Ri,j with respect to edge ef,g is

Rnew “ Rs,i ‘ SRi,f ‘ ef,g ‘ SRg,j ‘ Rj,d (6.22)

where Rs,i is the sub-route (from s to vi) of R, Rj,d is the sub-route (from vj to d) of

R, SRi,f is the shortest route from vertex vi to vertex vf , and SRg,j is the shortest

route from vertex vg to vertex vj.

The algorithm for computing the candidate route set C 1 is presented in Algo-

rithm 6.4 which receives as input a candidate route R with its sub-route Ri,j, and
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the positive edges Eq. Initially, an empty route set C 1 is created to store potential

candidate routes (line 1). In each iteration, one edge from Eq that is not in R is

evaluated (line 2), and a new route Rnew is computed (line 3). The new route Rnew

may contain duplicate edges since the two shortest routes, SRi,f and SRg,j, may

contain edges in sub-routes Rs,i and Rj,d. After removing duplicate edges (line 4),

Rnew is added to the candidate route set C 1 if λpRnewqďB and τpRnewqąτpRq(lines
5-6). By evaluating all the edges in Eq, algorithm generates a set of candidate routes

C 1 whose scores are larger than R (line 7).

Algorithm 6.4 Enhance route(R, Ri,j, Eq)

Input: Candidate route R and its sub-route Ri,j, and positive edges Eq

Output: A set of new candidate route C 1
1: C 1 Ð H Ź Store the candidate routes
2: for ef,g P Eq ´ ER do
3: Rnew Ð Rs,i ‘ SRi,f ‘ ef,g ‘ SRg,j ‘ Rj,d

4: remove duplicate edges of Rnew

5: if λpRnewq ď B and τpRnewq ą τpRq then
6: add Rnew to C 1
7: return C 1

With the generated candidate routes C 1, we have two methods to update the

original candidate route R.

A. Score-aware enhancement

In score-aware enhancement, the optimal route in C 1 is selected to replace R in C.

B. Randomness-aware enhancement

Since score-aware enhancement only considers the optimal route in C 1, it is of high

probability to get the local optimum. Therefore, we introduce randomness-aware

enhancement in which one candidate route is randomly selected from C 1 to replace

the original candidate route R. Though randomness-aware enhancement needs more

time than score-aware enhancement to converge, it will gradually improve the quality

of the current optimal route since only those routes better than the current optimal

route are selected as candidate routes.
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6.6 Error-Bounded Solution

In some cases, users would like to sacrifice the quality of query answer to reduce pro-

cessing time as long as the worst case is under control, i.e., the approximation error

of the query answer is bounded. Given an approximate route R̂, the corresponding

approximate error ε is computed as below.

ε “ τpR˚q ´ τpR̂q
τpR˚q (6.23)

where R˚ is the optimal route. Obviously, we have ε P r0, 1s.
Formally, an error-bounded solution (EBS) returns approximate query results

such that the given approximation error threshold is guaranteed. In the exact so-

lution, we can relax the upper bound score based on the approximation error ε to

search an approximate route rather than the optimal one, i.e., the following lemma.

Lemma 6.5 (Relaxed score pruning). Given partial route R and the current optimal

route Rc̊ , if p1 ´ εq ¨ τ`pRqďτpRc̊ q, R can be pruned while guaranteeing that the

approximation error is at most ε.

Proof. For each candidate route R1PCR generated by expanding partial route R, we

have τpR1qď τ`pRq. With the assumption that p1 ´ εq ¨ τ`pRqďτpRc̊ q, we have

p1 ´ εq ¨ τpR1qďτpRc̊ q. Assuming that the optimal route is R˚, R˚ will be pruned if

and only if there exists a route Rc̊ such that p1 ´ εq ¨ τpR˚qďτpRc̊ q. Accordingly, we
have τpR˚q ´ ε ¨ τpR˚q ď τpRc̊ q, i.e., τpR˚q´τpRc̊ q

τpR˚q ďε. Therefore, the approximation

error for route Rc̊ is at most ε.

Therefore, we can adapt the exact solution to an error-bounded solution by using

the relaxed score pruning. In addition, we also employ the time-bounded solution

to improve the efficiency of EBS. In Algorithm 6.3, we call a time-bounded solution

with a time limit T after Line 4. By doing this, we can obtain a good route efficiently,

94



thus improving the score pruning. The setting of time limit T will be discussed in

the experiments and we call this revised EBS as EBS-T.

Though EBS can further reduce the number of iterations in Algorithm 6.3 by

using a tighter score bound, it still requires a high time cost to compute the final

query results if the error ratio is small and the cost budget is large, which will be

evaluated in the experiments.

6.7 Experiments

6.7.1 Setups

We evaluate the performance of proposed solutions over three datasets, i.e., the road

networks of New York (NY), California (CA) and United Kingdom (UK), where NY

dataset is the default one. All datasets are extracted from OpenStreetMap (OSM)1

and their details are summarized in Table 6.4. The text descriptions of edges are

extracted from the text descriptions of those POIs residing on them. Distance is

used as the travel cost in the experiments.

The settings of those parameters in the experiments are listed in Table 6.5, where

the default values are highlighted in bold. Particularly, the cost budget of each

query is specified by a deviation ratio μ ě 0 from the shortest route, i.e., B“p1`μq ¨
λpSRs,dq. We randomly generate 50 queries for each setting and compute the average

value of the corresponding results for plotting. All algorithms were implemented in

Java and run on a PC equipped with Intel(R) Core(TM) i3-2100 CPU @3.10GHz, 8

GB RAM.

1 https://www.openstreetmap.org
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Table 6.4: Datasets for evaluating BCIR query

Dataset #vertices #edges average #keywords

New York (NY) 6, 393 13, 885 4.25
California (CA) 90, 870 202, 250 2.46
United Kingdom (UK) 338, 838 738, 610 2.65

Table 6.5: Parameter setting in BCIR query

Parameter Meaning Value

|Kq| the number of query keywords 1, 2, 3, 4, 5
λpSRs,dq the shortest distance (km) from s to

d
4, 6, 8, 10, 12, 14, 16, 18, 20

μ the deviation ratio 0.05, 0.10, 0.15, 0.20, 0.25
h the number of initialized candidate

routes
1, 3, 5, 9, 11, 13, 15, 17, 19

6.7.2 Experimental Results

A. BCIR query vs. KOR query

In order to compare KOR query [8] and BCIR query, we need to adapt KOR query.

The cost budget is the same for KOR query and BCIR query. For each edge ei,jPE,

we set the objective score in KOR query as OSpei,jq“ |Ki,j |
ci,j

, where |Ki,j| and ci,j are

the number of keywords and cost of ei,j, respectively. Then, the adapted KOR query

computes the optimal route such 1) it covers the given query keywords, 2) its cost is

less than the cost budget, and 3) it has the maximum objective score. Differently,

BCIR query is targeted at computing the optimal route within the cost budget such

that it is most textually relevant to the query keywords. Figure 6.11(a) shows the

scores (i.e., textual relevance) of the routes returned by KOR query and BCIR query.

The route scores of KOR query are much smaller than that of BCIR query. Therefore,

existing routing applications using keyword coverage query cannot effectively find the

optimal route that is most textually relevant to the query keywords. In addition,

Figure 6.11(b) presents the number of edges in returned routes for two queries.

With the increase of shortest distance, both queries return routes with more edges.

However, there is no obvious difference between the sizes of edges for two queries.
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(a) Score (b) Number of edges

Figure 6.11: The route score and number of edges while varying the shortest distance
λpSRs,dq between two query locations in BCIR query and KOR query, where cost
budget B“p1 ` 0.15q ¨ λpSRs,dq

B. Exact Solution

Pruning effectiveness: The exact solution exploits cost pruning and score pruning

to reduce the search space. Figure 6.12 shows the response time and the number of

iterations in Algorithm 6.1 while using no pruning (Exact-N), cost pruning (Exact-

C) and cost-score pruning (Exact-CS), where Exact-N does not involve any pruning

techniques, Exact-C employs the cost pruning, and Exact-CS leverages both cost

pruning and score pruning. Note that, we set the upper bound running times of

Exact-N and Exact-C to 200 seconds since the real running times are much longer

than 200 seconds when the cost budget is large. As suggested by Figure 6.12, the

cost pruning reduces iterations by several orders of magnitude and the score pruning

can further reduce the number of iterations by around one order of magnitude. After

applying both cost and score pruning methods, the number of iterations is greatly

reduced, thus making the algorithm efficient for BCIR queries of small cost budgets.

In addition, Figure 6.12 indicates that when the shortest distance between two query

locations is less than 15 km, the exact solution can return the query results within

seconds.
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(a) Response time (b) Number of iterations

Figure 6.12: The results while varying the shortest distance λpSRs,dq, where cost
budget B “ p1 ` 0.15q ¨ λpSRs,dq

Varying deviation ratio μ: Figure 6.13(a) illustrates the response time of exact

solution while varying the cost deviation ratio μ, where the cost of the shortest

route is λpSRs,dq“10 km. With the increase of μ, the response time of Exact-C

increases rapidly. In contrast, if both cost pruning and score pruning are used, i.e.,

Exact-CS,the increase rate is moderate.

Varying the number of query keywords |Kq|: Figure 6.13(b) illustrates the

results while varying the number of query keywords. With the increase of the number

of query keywords, the response time of Exact-CS gradually increases since it needs

more time to compute the upper bound score. Differently, the response time of

Exact-C keeps almost the same because it only utilizes cost pruning and does not

need to compute upper bound score, thus less dependent on the number of query

keywords.

Scalability test: We also evaluate the performance of exact solution on two large

datasets, i.e., CA and UK datasets. As illustrated in Figure 6.14, exact solution

still performs well when the road network have hundreds of thousands of vertices.

In fact, the response time on these two datasets is smaller than that on NY dataset

because the query locations are randomly selected and they could be out of city on
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(a) Response time (b) Number of iterations

Figure 6.13: The results while varying the deviation ratio μ and number of query
keywords

the two large datasets. In general, the density of road network out of city is sparse,

thus reducing the number of candidate routes for in BCIR query. In sum, according

to Figures 6.12(a) and 6.14, exact solution can process BCIR query within several

seconds when the cost budget is less than 15 km.

(a) California (b) United Kingdom

Figure 6.14: The response time while varying the shortest distance λpSRs,dq on CA
and UK datasets

C. Time-Bounded Solution

Method combination comparison: Time-bounded solution (cf. Section 6.5) has

three components and each component has two methods, thus 8 combinations in
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total. For ease of presentation, we record these combinations as X-Y-Z where X rep-

resents routes initialization method, including random route sampling (R) and adapt-

ed NN heuristics route sampling (N); Y represents inferior sub-route identification

method, including ranking-based identification (R) and threshold-based identifica-

tion (T); and Z represents enhancement method, including score-aware enhancement

(S) and randomness-aware enhancement (R). For example, R-R-S indicates that ran-

dom route sampling, ranking-based identification and score-aware enhancement are

used. Figure 6.15 presents the approximation error (defined in Eq.(6.23)) of returned

routes using different combinations. According to Figure 6.15(a), we set the number

of initialized candidate routes h“11. Since combination R-T-S performs the best

among all the combinations, we only report the results of R-T-S in subsequent plots.

In addition, Figure 6.16 illustrates the distribution of response time for all combi-

nations. Obviously, random route sampling consumes less time than adapted NN

heuristics route sampling.

(a) Varying h (T=1 sec) (b) Varying response time (h=11)

Figure 6.15: The results of different combinations while varying the number of ini-
tialized candidate routes h and the response time limit, where λpSRs,dq “15 (km).

GRASP vs. TBS: To demonstrate the performance of time-bounded solution, we
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Figure 6.16: The distribution of processing time among three components

adapted the GRASP [76] solution for arc orienteering problem (AOP) to our BCIR

query. Similar to TBS, GRASP also gradually refines the current optimal route by

generating new candidate routes. However, GRASP generates candidate routes by

searching the whole road network and needs to pre-compute the shortest routes for

all pairs of vertices. Since it is inapplicable to pre-compute all pair shortest routes

for large-scale road networks, we utilize CH index to compute the shortest route

between two locations for GRASP online. Figure 6.17 illustrates the results of R-

T-S and GRSAP with two large shortest distances, 15 km and 20 km. According

to Figure 6.17, R-T-S greatly outperforms GRASP algorithm. The performance of

GRASP algorithm is not satisfying because it needs to search the whole road network

in each iteration and cannot iterate enough times to improve the quality of query

results.

Varying μ and |Kq|: Figure 6.18 presents the results while varying the deviation

ratio μ and the number of query keywords |Kq|. With the increase of μ, the ap-

proximation error first increases because the search space increases. However, the

approximation error then decreases when μ is larger than 0.15 because the increase

of the optimal route score slows down. Differently, with the increase of |Kq|, the
approximation error always decreases. According to Figure 6.18, R-T-S outperforms
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Figure 6.17: The results of TBS and GRASP while varying the processing time limit
where cost budget B “ p1 ` 0.15q˚15 (km).

GRASP in all cases.

(a) Varying μ (b) Varying |Kq|
Figure 6.18: The results while varying the deviation ratio μ and the number of query
keywords |Kq|, where cost budget B “ p1 ` 0.15q˚15 (km).

D. Error-Bounded Solution

Figure 6.19(a) illustrates the response time while varying the time limit T of time-

bounded solution in EBS-T. According to Figure 6.19(a), the response time reduces

most when setting T“0.2 second. Figure 6.19(b) presents the approximation error of

EBS and EBS-T (T“0.2 second) while varying the approximation error threshold ε.

With the increase of ε, the approximation errors of both solutions increase. However,
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the increase ratio of EBS-T is much smaller than that of EBS. In addition, we also

evaluate the performance of EBS and EBS-T while varying the deviation ratio μ and

the number of query keywords. As suggested by Figure 6.20, the response time will

increase with the increase of μ and |Kq| and EBS-T performs better than EBS.

(a) Varying time limit T (b) Varying ε

Figure 6.19: The response time while varying time limit T and the approximation
error while varying the approximation error threshold ε, where cost budget B“p1 `
0.15q˚15 (km)

(a) Varying μ (b) Varying |Kq|
Figure 6.20: The response time while varying the deviation ratio μ and the number
of query keywords |Kq|, where ε “ 0.5 and cost budget B“p1 ` 0.15q˚15 (km)
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6.8 Summary

In this chapter, we propose the BCIR query to retrieve the route that is most tex-

tually relevant to the user-specified query keywords within a travel cost budget. To

efficiently process BCIR queries, we propose an exact solution with effective prun-

ing techniques and two approximate solutions regarding the response time and the

quality of query results, respectively. As demonstrated via extensive experiments,

the proposed solutions achieve satisfying performance over different datasets. BCIR

provides a new style of route query that can be applied in different applications

ranging from route planning to location-aware recommendation. The future exten-

sions of BCIR query may include 1) searching the top-k optimal routes rather than

the optimal one, 2) finding a BCIR route that allows duplicate vertices or edges, 3)

removing the query location constraints and retrieving the optimal route over the

whole road network.
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Chapter 7

Probabilistic Time-constrained
Route Query

7.1 Introduction

With the increasing popularity of GPS-enabled mobile devices, computing a route

over road networks to pass required service providers becomes a fundamental oper-

ation in many location-based applications and location-aware recommendation sys-

tems [100]. Figure 7.1 illustrates a small road network on which edges and ver-

tices represent road segments and intersection points of road segments, respectively.

In addition, a set of POIs, o1 „ o6, such as restaurants, banks and supermarkets

(represented by white circles) reside on road segments and provide certain services

described by keywords (ki). A typical route query is to find routes between given

start location and destination that pass through a number of user-specified POIs on

the road network with some criteria (e.g., small travel distance or time). Assuming

that v4 is the current location of a user who has a destination of v5, one example of

route query is: “Give me a driving route from v4 to v5 that sequentially passes a bank

offering exchange (k1, k2) service and a supermarket (k6) with the minimum travel

time”.

While many existing studies [8, 51, 73, 95] on route query assume that the traffic
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Figure 7.1: An example of uncertain road network, where circles are POIs with
keyword descriptions. The length and travel time of each edge are labeled beside.
For example, the length of edge e1,2“pv1, v2q is 4 and the travel time is 4 minutes in
a probability of 0.8 and 5 minutes in a probability of 0.2. In addition, an example
of PTR query is q“(v4,v5, 12:00, txk1, k2 : 30miny, xk6 : 20minyu, 1, 0.5q which finds
the optimal routes from v4 to v5 to cover keywords “k1, k2” and “k6” sequentially.

on road networks is deterministic. However, this is not the real scenario. In practice,

vehicle speeds collected on roads are uncertain and imprecise since different vehicles

may have various possible speeds on the same road. Although there exist some

studies on route query on uncertain road network [41, 65, 43, 14, 94], they only

compute probabilistic routes with the optimal travel time between two locations and

do not consider retrieving routes to cover POIs.

In addition, it is often necessary to consider the time constraints, i.e., the service

time, of POIs. For example, in Figure 7.1, one may want to find a route from v4 to

v5, and drop by a bank (k1) for some exchange (k2) on the route. Starting from v4,

we consider two routes R1“(v4, o2, v1, v3, v5) and R2“(v4, o5, v5) that cover o2 and

o5, respectively. We assume that the departure time is 12:00 and the business hours

of o2 and o5 are {9:00-13:00, 14:00-18:00} and {8:00-12:00, 13:00-17:00}, respectively.
Without considering the service time constraints of banks, o5 is better than o2 since

R2 is much shorter than R1. However, one will find that o5 is closed (the earliest

arrival time is 12:02 which will be discussed in Example 7.4) if s/he chooses R2. In
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this case, bank o2 is the better choice. Therefore, it is important to consider the

service time constraints of POIs for route query.

Inspired by the practical requirements of route query over road network above, we

model road network as uncertain road network (URN) over which the travel time of

each edge is captured by a set of travel time samples. Moreover, based on uncertain

road network, we propose the probabilistic time-constrained route (PTR) query to

find the best routes that sequentially pass through a number of POIs containing

user-specified query keywords (e.g., types of services provided by POIs), satisfy the

service time constraints of POIs, and have small travel times with high confidence.

PTR query is particularly useful in location-based services. When touring a city,

a tourist may be unfamiliar with the service hours of POIs (the exhaustive manual

checking is boring) and the traffic condition there. In this case, PTR query can help

the tourist find the routes that satisfy both keyword and service time constraints of

POIs, and have the optimal travel times with high confidence.

However, efficient answering of PTR queries is rather challenging. Actually, as

it will be discussed in Section 7.2.3, PTR query is an NP-hard problem. In order

to tackle the PTR problem, we design effective pruning strategies to filter out false

alarms and obtain a small set of candidate routes. After that, a refinement step based

on sampling is conducted over the candidate routes to get the final query results.

7.2 Problem Statement

7.2.1 Data Models

A. Uncertain road network

Uncertain road network model captures the inherent uncertainty of the travel times

over road network and is formally defined as below.

Definition 7.1. (Uncertain Road Network, URN) An uncertain road network is
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denoted by G“pV pGq, EpGqq, where

• V pGq is a set of vertices and each vertex vi P V pGq represents an intersection

of roads or a road terminal,

• EpGq is a set of directed edges ei,j (i.e., the road segment from vertex vi to vertex

vj) with length |ei,j|, each associated with a random variable tpei,jq representing
the uncertain times for vehicles to travel from vi to vj,

where the distribution tpei,jq is captured by T discrete random samples collected on

edge ei,j.

Example 7.1. Figure 7.1 illustrates an example of uncertain road network with 5

vertices and 7 edges. The length and travel time of each edge are marked beside. In

particular, the travel time of edge e1,2 is 4 minutes with a probability of 0.8 and 5

minutes with a probability of 0.2, which means 80% of the T travel time samples are

4 minutes while 20% are 5 minutes. For simplicity, in this example, only three edges

are uncertain and the others are assumed to be deterministic.

In this work, we assume that edges ei,j and ej,i have the same travel time, i.e.,

tpei,jq“tpej,iq. Nonetheless, our proposed approaches can be also applied to roads

with asymmetric travel time. In addition, the travel time samples for adjacent edges

are collected independently in the same time period as discussed in Section 7.3.6.

Thus, in some ways, the correlation between adjacent edges has been implicitly

considered with respect to the temporal relationship.

Obviously, the travel time tpei,jq on edge ei,j is bounded by rt´pei,jq, t`pei,jqs,
where t´pei,jq“mintPtpei,jq t and t`pei,jq“maxtPtpei,jq t. Given a route R“(v1, v2, . . . ,

vl), its travel time over uncertain road network G is

tpRq “
l´1ÿ
i“1

tpei,i`1q. (7.1)
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The minimum and maximum travel times of R are

t´pRq “
l´1ÿ
i“1

t´pei,i`1q (7.2)

and

t`pRq “
l´1ÿ
i“1

t`pei,i`1q, (7.3)

respectively.

B. Possible Worlds of URNs

Possible world [1] semantics is widely used in probabilistic databases, where each

possible world is a materialized instance of the database that can appear in the real

world. Similarly, the possible worlds of an uncertain road network G are defined

below.

Definition 7.2. (Possible Worlds of G) A possible world, wpGq, of uncertain road

network G is a deterministic graph on which the random variable tpei,jq of each edge

ei,j takes a certain value xpei,jq and its appearance probability, PrtwpGqu is:

PrtwpGqu “ Pr

$&
%

ľ
@ei,jPEpGq

tpei,jq “ xpei,jq
,.
- . (7.4)

The set of all the possible worlds of G is recorded as WpGq.

In Definition 7.2, the appearance probability of possible world, PrtwpGqu, is

the joint probability that each variable tpei,jq takes value xpei,jq. Considering the

assumption that random variables tpei,jq are independent, we have

PrtwpGqu “
ź

@ei,jPEpGq
Prttpei,jq “ xpei,jqu. (7.5)
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Therefore, the number of possible worlds of G is exponential with respect to the

number of edges in G, i.e., ś
ei,jPE |tpei,jq| (“ T |E| in the worst case), where |tpei,jq|

is the number of distinct values in tpei,jq.

Example 7.2. Table 7.1 presents 8 possible worlds, w1pGq„w8pGq, of the uncer-

tain road network in Figure 7.1. For example, possible world w1pGq takes tpe1,2q=4,
tpe1,4q=4, and tpe3,5q=3 (the travel times of other edges are deterministic and we can

regard that the collected samples have the same value). From Figure 7.1, we have

Prtw1pGqu “ Prttpe1,2q “ 4u ˆ Prttpe1,4q “ 4u ˆ Prttpe3,5q “ 3u
“ 0.8 ˆ 0.3 ˆ 0.6

“ 0.144.

Table 7.1: Possible worlds of the uncertain road network in Figure 7.1

possible world the travel time of edges Prpwiq R1
wi

w1(G) tpe1,2q=4, tpe1,4q=4, tpe3,5q=3 0.144 R1

w2(G) tpe1,2q=4, tpe1,4q=4, tpe3,5q=6 0.096 R2

w3(G) tpe1,2q=4, tpe1,4q=6, tpe3,5q=3 0.336 R1

w4(G) tpe1,2q=4, tpe1,4q=6, tpe3,5q=6 0.224 R2

w5(G) tpe1,2q=5, tpe1,4q=4, tpe3,5q=3 0.036 R1

w6(G) tpe1,2q=5, tpe1,4q=4, tpe3,5q=6 0.024 R2

w7(G) tpe1,2q=5, tpe1,4q=6, tpe3,5q=3 0.084 R1

w8(G) tpe1,2q=5, tpe1,4q=6, tpe3,5q=6 0.056 R2

C. Service Time Constrained POI

On an uncertain road network G, there exist many service time constrained POIs

that represent all kinds of service providers such as banks and hotels.

Definition 7.3 (Service Time Constrained Points of Interest). Each service time

constrained POI is in the form of o“(l, e, K, I), where

• l is the spatial location of o;
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• o.e“pvi, vjq is the edge on which o resides or the nearest edge to o, and the dis-

tances from o to vertices vi and vj are distpo.l, viq and distpo.l, vjq, respectively;

• K is a set of keywords describing the properties of o or the services provided by

o; and

• I is a set of time intervals {I1, I2, . . . } in which o is valid for providing

services.

The whole collection of POIs is denoted by O.

In Definition 7.3, the time interval set I={I1, I2, . . . } specifies the service time

constraints of POI o on a 24-hour cycle. For simplicity, in this chapter, we use POIs

and time constrained POIs interchangeably when the context is clear.

Example 7.3. Table 7.2 lists the details of the six POIs, o1„o6, in Figure 7.1.

For example, POI o2 is on edge o2.e“e1,4, distpo2, v1q=1.5, contains 2 keywords

o2.K={k1, k2}, and is associated with two time intervals o2.I={9:00-13:00, 14:00-

18:00}, i.e., the valid time intervals of services.

Table 7.2: The time constrained POIs in Figure 7.1

POIs o.e distpo, viq o.K o.I

o1 e1,2 distpo1, v1q“3.0 tk4, k5u {11:00-13:00, 17:00-21:00}
o2 e1,4 distpo2, v1q“1.5 tk1, k2u {09:00-13:00, 14:00-18:00}
o3 e2,5 distpo3, v2q“1.0 tk1u {09:00-11:00, 13:00-16:00}
o4 e3,5 distpo4, v3q“1.0 tk6, k7u {08:00-20:00}
o5 e4,5 distpo5, v4q“1.0 tk1, k2u {08:00-12:00, 13:00-17:00}
o6 e4,5 distpo6, v4q“2.0 tk3, k6, k7u {08:00-21:00}

7.2.2 Probabilistic Time-constrained Route Query

A probabilistic time-constrained route (PTR) query is denoted by q“(s, d, ts, K,

h, τ), where s and d are the start location and destination, respectively; ts is the
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departure time; q.K specifies the query keywords along with the staying times at

the corresponding POIs containing the query keywords; h is an integer parameter

w.r.t. the number of the returned routes; and τ P p0, 1s is a probability threshold to

ensure that the returned routes have the minimum travel time in high confidence.

Particularly, we have

q.K “ txK1, t1y, ..., xKψ, tψyu (7.6)

where Ki and ti (i “ 1, . . . , ψ) are the query keywords and expected staying time for

the i-th POI, respectively.

For simplicity, we use Rps, dq“xs, ox1 , . . . , oxψ , dy to represent any route from start

location s to destination d that sequentially covers ψ required POIs with the ψ sets

of query keywords, i.e., KiĎoxi .K. All these routes are recorded as Rps, dq. We then

have the definition of PTR query.

Definition 7.4 (Probabilistic Time-constrained Route (PTR) Query). Given an

uncertain road network G, the objective of a PTR query q is to retrieve a subset,

Rhps, dq, of routes from Rps, dq, i.e.,

Rhps, dq “ tR|R P Rps, dq ^ PrhtRu ě τu (7.7)

where

PrhtRu “
$&
%

ÿ
@wpGq,RPRh

wps,dq
PrtwpGqu

,.
- (7.8)

and Rh
wps, dq are the top-h optimal routes in possible world wpGq such that for @R P

Rh
wps, dq

Ki Ď oxi .K, i “ 1, 2, . . . , ψ (7.9)

rapoxiq, apoxiq ` tis Ď oxi .I (7.10)

@R1 P Rps, dqzRh
wps, dq, twpRq ď twpR1q (7.11)

where twpRq is the travel time of route R in possible world wpGq.
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In Definition 7.4, PrhtRu is the probability that route R is among the top-h

optimal routes in all possible worlds. Therefore, PTR query retrieves those routes,

Rhps, dq, that are the top-h time-constrained routes in all possible worlds WpGq with
a probability not less than threshold τ . In other words, the returned PTR routes

satisfy keyword/time constraints on POIs, and have the top-h smallest travel times

in high confidence.

Example 7.4. Figure 7.1 shows an example of PTR query q, where s“v4, d“v5,

ts“12:00, q.K“tx“k1, k2”, 30miny, x“k6”, 20minyu, h“1, and τ“0.5. Since there are

two POIs (o2 and o5) containing query keywords “k1, k2” and two POIs (o4 and o6)

containing query keyword “k6”, we have four candidate routes, i.e., R1=pv4, o2, o4, v5q,
R2=pv4, o2, o6, v5q, R3=pv4, o5, o4, v5q, and R4=pv4, o5, o6, v5q. Starting from s“v4, the

arrival time at o5 is

12 : 00 ` tpe4,5q ¨ distpo5, v4q|e4,5| “ 12 : 00 ` 8 ¨ 1.0
4

“ 12 : 02

which is out of the time intervals of o5 (o5.I={08:00-12:00, 13:00-17:00}). Therefore,
both routes R3 and R4 cannot satisfy the service time constraints of o5 and should be

pruned.

Considering route R1 in possible world w1pGq, the arrival time at POI o2 is

12 : 00 ` tpe4,1q ¨ |e4,1| ´ distpo2, v1q
|e4,1| “ 12 : 00 ` 4 ¨ 3 ´ 1.5

3
“ 12 : 02

which is within the time interval of o2 (o2.I={9:00-13:00, 14:00-18:00}). After s-

taying at o2 for 30 minutes, the arrival time at o4 is 12:39 which satisfies the time

constraint of o4 (o4.I={8:00-20:00}). Finally, we have tpR1q=11 in possible world

w1pGq. Similarly, we have tpR2q=12 in w1pGq. Therefore, the top-1 time-constrained

route in possible world w1pGq is R1
w1

ps, dq “ tR1u.

113



The top-1 time-constrained routes, R1
wps, dq, in other possible worlds can be com-

puted in the same way and the corresponding results are listed in Table 7.1. Then,

we have

PrhtR1u “ 0.144 ` 0.336 ` 0.036 ` 0.084 “ 0.6 ą τ

and

PrhtR2u “ 0.096 ` 0.224 ` 0.024 ` 0.056 “ 0.4 ă τ

where τ“0.5. Therefore, R1 is the query result.

7.2.3 Problem Hardness

PTR query seeks to find a subset of routes Rhps, dqĎRps, dq such that these routes

are among the top-h optimal routes in high confidence. Without loss of generality, we

consider a special case of PTR query in which h“1 and the appearance probabilities

of all possible worlds are equal.

First, we define the decision problem of PTR query as below.

Definition 7.5 (Decision-PTR). A Decision-PTR problem determines whether there

exist k routes in Rps, dq such that these k routes contain the top-1 route in at least

x possible worlds.

Then, we have the following theorem.

Theorem 7.1. Decision-PTR problem is NP-hard.

Proof. We can prove that Decision-PTR problem is NP-hard by a reduction from

partial covering problem [33] which has set-cover problem as one of its special cases.

Given the global set U“te1, e2, ¨ ¨ ¨ , emu and a set of subsets S“tU1, U2, ¨ ¨ ¨ , Unu
where UiĎU , a partial covering problem decides whether there exist k subsets S 1ĎS

covering at lest x elements of U .
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In Decision-PTR problem, we assume thatRps, dq“tR1, R2, ¨ ¨ ¨ , Rnu andWpGq“
tw1, w2, ¨ ¨ ¨ , wmu. Now we convert a partial covering instance to an instance of the

Decision-PTR problem. We regard each subset UiPS as a route Ri and each element

ejPU as a possible world wj. If ejPUi, we have the travel time of route Ri in possible

world wj, twjpRiq“1, otherwise twjpRiq“`8. Thus, we can find k subsets S 1 from

S to cover at least x elements of U if and only if we can find k routes that are the

top-1 optimal route in at least x possible worlds, which is proved from the following

two aspects.

• Assume that we have found k subsets S 1 from S such that S 1 covers at least x

elements of U . Therefore, in each of the corresponding x possible worlds, the

corresponding k routes must contain the top-1 optimal route considering that

twjpRiq“1 if ejPUi, otherwise twjpRiq“`8. Thus, we have at least x possible

worlds of WpGq in which the corresponding k routes have the top-1 route.

• Assume that we find k routes such that they contain the top-1 route in at least

x possible worlds. In each of these possible worlds, we must have that the

corresponding element is covered by the corresponding k subsets since we can

always find a route with travel time of 1, i.e., the top-1 route. Thus, there are

at least x elements are covered.

Now we can conclude that PTR-Decision problem is NP-hard.

One straightforward method is to enumerate all possible worlds WpGq, obtain
Rh
wps, dq under each possible world wpGq, and aggregate all the obtained results to

generate the PTR query result. However, this method is rather inefficient due to

the exponential number of possible worlds that are computationally expensive to

materialize. Therefore, in this work, we propose to process PTR query in a two-

phase fashion. First, we design effective pruning strategies to filter out false alarms
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without enumerating all possible worlds and produce a small set of candidate routes.

Second, a refinement step based on Monte Carlo theory [66] is conducted to compute

the final result.

7.3 Solution

7.3.1 Solution Overview

Figure 7.2 illustrates the flow chart of our proposed solution. In a nutshell, the

solution covers the following three tasks:

• Generating the route search space according to the PTR query, POIs and

uncertain road network (URN),

• Designing efficient pruning strategies to filter out infeasible routes to obtain a

small set of candidate routes, and

• Conducting a refinement step to refine the candidate routes and get the final

results,

where the first two tasks belong to the first phase while the third task belongs to the

second phase.

The details of these tasks are elaborated in the following sections. In section 7.3.2,

we first build indices for POIs and road network, respectively, to accelerate query

processing. Section 7.3.3 discusses the generation of search space. In section 7.3.4,

the details of three pruning strategies are presented. Section 7.3.5 describes how to

compute candidate routes with the proposed pruning strategies and how to refine

the obtained candidate routes to generate the final results as well. In addition, we

also discuss about the updates of travel time samples in uncertain road network in

Section 7.3.6.
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Figure 7.2: The flow chart of the proposed solution.

7.3.2 Indexing POIs and Road Networks

In order to efficiently retrieve those POIs that satisfy the query keywords during the

PTR query answering, we utilize an inverted index [104] to index keywords as well

as the relevant POIs. We denote Invpkq as the set of POIs containing keyword k,

with cardinality |Invpkq|. Given a set of query keywords Ki=tk1, . . . , klu, the set

Invpk1q X ¨ ¨ ¨ X Invpklq contains POIs that have all query keywords in Ki. Note that,

to further improve the query efficiency of accessing query keywords, we also index

keyword entries in the inverted index with a B`-tree, where the keys in the B`-tree

are unique values transformed from keywords.

In addition, in order to efficiently compute the shortest route between two POIs,

we index the road networks with Contraction Hierarchy(CH) [36] which has been

discussed in Section 3.2.3. Note that, CH index is adopted because we only consider

the shortest distance route between each pair of POIs and the objective of PTR query

is to find a sequence of required POIs with the least travel time in high confidence.
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7.3.3 Generating Search Space

Given a PTR query q“(s, d, ts, K, h, τ), those relevant POIs are first retrieved

with respect to the query keywords q.K. For query keywords KiPK (i“1, . . . , ψ), all

the POIs containing Ki are computed by using the inverted index as discussed in

Section 7.3.2. If no ambiguity, we record those POIs containing all keywords in Ki

as InvpKiq and use |InvpKiq| to represent its cardinality. Then we have the total

number of combinations
śψ

i“1 |InvpKiq| which increases exponentially with respect

to the number of required POIs. Therefore, to enumerate all these combinations will

be time-consuming. Our objective is to greatly reduce the size of these combinations

with novel pruning strategies as detailed in Section 7.3.4.

7.3.4 Pruning Mechanisms

In this section, we will design effective pruning methods to reduce the PTR search

space, which can produce a small set of candidate routes for further refinement.

Concretely, we first present time constraint pruning (T-pruning) to prune those

routes that violate the time constraints of POIs. Then, probabilistic pruning (P-

pruning) is proposed to enable the pruning by utilizing the probability threshold τ .

Furthermore, since only top-h time-constrained routes are requested under possible

worlds, we also propose the travel time pruning (T2-pruning) that directly filters

out false alarms that cannot be top-h time constrained routes.

A. Time Constraint Pruning

As illustrated in Figure 7.3, Rps, dq represents any route that sequentially passes

POIs ox1 , ox2 , . . . , oxψ , where oxi (i“1, . . . , ψ) represents any POI containing query

keywords Ki. Thus, if Rps, dq does not satisfy the time constraints, oxi .I, of some POI

oxi in any possible world, Rps, dq cannot be a PTR answer (i.e., PrhtRps, dqu“0),

and thus should be pruned.
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Figure 7.3: The arrival times at different POIs along route Rps, dq.

Specifically, let apoxiq be the arrival time at the i-th POI oxi , we have:

apoxiq “ ts ` tpRps, oxiqq `
i´1ÿ
j“1

tj (7.12)

where Rps, oxiq is the sub-route of Rps, dq from s to oxi , tpRps, oxiqq is the travel time

of Rps, oxiq and tj (j=1, . . . , i´ 1) is the staying time at oxj . Due to the uncertainty

of tpRps, oxiqq, apoxiq is uncertain and falls into the time interval ra´poxiq, a`poxiqs,
where a´poxiq and a`poxiq are the earliest and latest arrival times at oxi , respectively.

Then, we denote the constrained arrival time, acpoxiq, as the set of possible arrival

times within the service time of oxi , i.e.,

acpoxiq “ tx|x P apoxiq ^ rx, x ` tis Ď oxi .Iu (7.13)

Intuitively, constrained arrival time acpoxiq computes arrival times such that they and

their staying times are within the time intervals of oxi . Assuming that the interval

of acpoxiq is rać poxiq, ac̀ poxiqs, we have

ra´
c poxiq, a`

c poxiqs Ď ra´poxiq, a`poxiqs (7.14)

Then, we have the following lemma about T-Pruning:

Lemma 7.1. (Time Constraint Pruning, T-Pruning) Given an uncertain road

network G and a PTR query q, if route Rps, dq passes some POI oxip1 ďi ďψq in G,
and |acpoxiq|“0, then Rps, dq can be safely pruned.
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Proof. According to the lemma assumption that |acpoxiq|=0, Rps, dq cannot be a-

mong the top-h time-constrained routes Rh
wps, dq under any possible world wpGq due

to the violation of POI time constraints. Thus, the PTR probability, PrhtRps, dqu
is equal to 0, which is smaller than the nonzero probability threshold τ . Therefore,

Rps, dq cannot be a PTR query answer and can be pruned.

Note that, both arrival and departure times at POIs oxi must fall into some

single time interval of oxi .I so that the staying time ti can be satisfied without an

interruption.

To conduct T-pruning, we need to compute acpoxiq efficiently. With Eqs. (7.12)

and (7.13), the arrival time and constrained arrival time at each POI can be computed

iteratively as follows.

apoxiq “
#
ts ` tps, oxiq, i “ 1

acpoxi´1
q ` ti´1 ` tpoxi´1

, oxiq, i ą 1
(7.15)

where tpx, yq is the travel time of the shortest route from x to y. Finally, the arrival

time at destination d is

apdq “ acpoxψq ` tψ ` tpoxψ , dq (7.16)

In general, however, it is not trivial to enumerate all values of apoxiq and acpoxiq
due to their numerous instances. Instead, to avoid costly computations, we compute

lower/upper bounds for apoxiq and acpoxiq.
To obtain lower/upper bounds, a´poxiq and a`poxiq, of the arrival time apoxiq for

POI oxi , we aim to obtain lower/upper bounds of tpoxi´1
, oxiq. Denote the bounds

of travel time tpx, yq as rt´px, yq, t`px, yqs. Initially, for the sub-route from s to

ox1 on route Rps, dq, we have a´pox1q“ts ` t´ps, ox1q and a`pox1q“ts ` t`ps, ox1q.
Accordingly, the constrained arrival time interval at ox1 is computed by

ra´
c pox1q, a`

c pox1qs “ ra´pox1q, a`pox1qs X ox1 .I
1, (7.17)
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where ox1 .I
1 is computed by subtracting t1 from the upper value of each sub-interval

of ox1 .I so that the required staying time t1 can be satisfied. For example, if ox1 .I={8-
12, 13-16} and t1=1, we have ox1 .I

1={8-11, 13-15}.
Similarly, for the i-th POI oxi on route Rps, dq (2 ď i ď ψ), we have:

ra´
c poxiq, a`

c poxiqs “ ra´poxiq, a`poxiqs X oxi .I
1 (7.18)

where

a´poxiq “ a´
c poxi´1

q ` ti´1 ` t´poxi´1
, oxiq, (7.19)

a`poxiq “ a`
c poxi´1

q ` ti´1 ` t`poxi´1
, oxiq. (7.20)

With the bounds of constrained arrival times at POIs, route Rps, dq should be

pruned if there exists some POI oxi such that

acpoxiq “ ra´poxiq, a`poxiqs X oxi .I
1 “ H (7.21)

In this case, we have |acpoxiq|“0. Thus, with T-pruning, those routes that violate

the time constraints of POIs can be pruned to reduce the search space.

B. Probabilistic Pruning

The basic idea of probabilistic pruning is as follows. Intuitively, if an upper bound

of the PTR probability, PrhtRps, dqu for route Rps, dq is smaller than the specified

probability threshold τ , then Rps, dq can be pruned.

Lemma 7.2. (Probabilistic Pruning, P-Pruning) Denote the upper bound of the

PTR probability, PrhtRps, dqu, as Pr`
h tRps, dqu. If Pr`

h tRps, dquăτ holds, then

Rps, dq can be safely pruned.

Proof. This lemma can be easily pruned by the inequality transition of PrhtRps, dquď
Pr`

h tRps, dqu and Pr`
h tRps, dqu ă τ .
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Now, the task turns out to be the derivation of a probability upper bound,

Pr`
h tRps, dqu. According to the definition of the PTR query, a PTR route should

satisfy the time constraints of POIs and have the top-h smallest travel times with a

probability above τ . Therefore, for route Rps, dq, we need to consider two factors,

i.e., the time constraints of POIs and ranking probability (having the top-h smallest

travel time). Note that, for route Rps, dq, satisfying the time constraints of POIs

is the precondition of considering its ranking probability. Therefore, we will first

use the constraint-based probability upper bound of Rps, dq to prune this route. If

Rps, dq survives, its ranking probability will be further considered to compute another

rank-based probability upper bound to prune this route.

(a) Constraint-based probability upper bound

According to Eq. (7.12), the arrival time at each POI oxi , apoxiq, is a set of discrete
values within ra´poxiq, a`poxiqs. In general, we have [ać poxiq, ac̀ poxiqs Ď ra´poxiq,
a`poxiqs, i.e., only a subset of values in apoxiq satisfy the time constraints of oxi . We

assume that Epoxiq is the event that Rps, dq satisfies the time constraints of oxi , i.e.,

PrtEpoxiqu “ Prta´
c poxiq ď apoxiq ď a`

c poxiqu (7.22)

Hence, we have the constraint-based probability, PrctRps, dqu, i.e., the probability

that Rps, dq satisfies the time constraints at all ψ POIs, as below.

PrctRps, dqu “ Pr

#
ψľ
i“1

Epoxiq
+
. (7.23)

If PrctRps, dqu ě τ , we call Rps, dq an effective route. Then, we have the following

lemma.

Lemma 7.3. Given a sub-route Rps, oxiq of route Rps, dq, we have:

PrctRps, dqu ď PrctRps, oxiqu
ď min

j“1,...,i
Prta´

c poxjq ď apoxjq ď a`
c poxjqu (7.24)
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Proof. we have

PrctRps, oxiqu “ Pr

#
iľ

j“1

Epoxjq
+
. (7.25)

Given i ď ψ, Pr
!Źψ

j“1 Epoxjq
)

ď Pr
!Źi

j“1 Epoxjq
)
holds because

Źψ
j“1 Epoxjq

has more events (i.e., more constraints) than
Źi

j“1 Epoxjq. Therefore, by combining

Eqs. (7.23) and (7.25), we have PrctRps, dqu ď PrctP ps, oxiqu. Furthermore, we

have:

PrctRps, dqu ď PrctRps, oxiqu

“ Prt
iľ

j“1

Epoxjqu

“ Prt
iľ

j“1

a´
c poxjq ď apoxjq ď a`

c poxjqu

ď min
j“1,...,i

Prta´
c poxjq ď apoxjq ď a`

c poxjqu. (7.26)

Hence, Lemma 7.3 holds.

Lemma 7.3 indicates that a longer route has a lower constraint-based probability

and an upper bound of the PTR probability PrhtRps, dqu can be computed by

min
j“1,...,i

Prta´
c poxjq ď apoxjq ď a`

c poxjqu. (7.27)

To compute this upper bound, we need to calculate Prtać poxjqďapoxjqďac̀ poxjqu
for POI oxj . A straightforward method is to compute the probability distribution

of apoxjq, and aggregate these samples that are within rać poxjq, ac̀ poxjqs to obtain

the constraint-based probability. However, this will incur a very high computation

cost due to the exponential number of possible instances. Instead of computing

apoxjq directly, we compute an upper bound for Prtać poxjqďapoxjqďac̀ poxjqu without
computing the actual probability distribution.

123



We denote the cumulative distribution function (CDF) of tpRps, oxiqq as

FRpzq “ PrttpRps, oxiqq ď zu (7.28)

whose lower and upper bounds are accordingly assumed to be F´
R pzq and F`

R pzq,
respectively. Then, we have:

Prta´
c poxjq ď apoxjq ď a`

c poxjqu ď F`
R pbq ´ F´

R paq (7.29)

where a=ać poxjq ´ ts ´ řj´1
l“1 tl, b=ac̀ poxjq ´ ts ´ řj´1

l“1 tl, and tl is the staying time

at POI ol. Eq. (7.29) can be proved by the following derivation:

Prta´
c poxjq ď apoxjq ď a`

c poxjqu “ Prta ď apoxjq ´ ts ´
j´1ÿ
l“1

tl ď bu

“ Prta ď tpRps, oxjqq ď bu
ď F`

R pbq ´ F´
R paq (7.30)

Next, we discuss how to compute the bounds of FRpzq, i.e., F´
R pzq and F`

R pzq. As-
sume that the CDF of tpeq is Fepxq“Prttpeq ď xu. Generally, Fepxq can be computed

easily, since the distribution of tpeq is known to be represented by samples. How-

ever, FRpzq is difficult to compute due to the unknown distribution of tpRps, oxiqq.
Therefore, our basic idea is to generate bounds of FRpzq based on Fepxq instead of

the detailed distribution of tpRps, oxiqq. To this end, we set a certain threshold for

tpeq pe P Rps, oxiqq according to z and tpeq such that the sum of these thresholds is

less than z. Further, these thresholds are used to compute the corresponding Fepxq
and FRpzq as discussed below.

We assume Rps, oxiq“e1 Ñ e2 ¨ ¨ ¨ Ñ el and specify each e P Rps, oxiq a threshold:

t�peq “ t´peq ` pt`peq ´ t´peqq ¨ pz ´ řl
j“1 t

´pejqqřl
j“1pt`pejq ´ t´pejqq (7.31)

Then, we have the following lemma to compute bounds of FRpzq:
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Lemma 7.4. Given t�pejq (j=1, . . . , l) in Eq. (7.31), we have three cases:

• Case 1: If
řl
j“1 t

´pejq ą z, we have FRpzq “ 0.

• Case 2: If
řl
j“1 t

`pejq ă z, we have FRpzq “ 1.

• Case 3: If
řl
j“1 t

´pejq ď z ď řl
j“1 t

`pejq, we have

lź
j“1

Fejpt�pejqq ď FRpzq ď 1 ´
lź

j“1

p1 ´ Fejpt�pejqqq (7.32)

Proof. According to the definition of tpRq, we have

lÿ
j“1

t´pejq ď tpRq ď
lÿ

j“1

t`pejq, (7.33)

thus, both Cases 1 and 2 hold. As for Case 3, we first prove the lower bound of

FRpzq as follows.

FRpzq “ Prttps, oxiq ď zu (7.34)

“
ÿ

y1`¨¨¨`ylďz
Prttpe1q “ y1 ^ ¨ ¨ ¨ ^ tpelq “ ylu

ě
ÿ

y1`¨¨¨`ylďz^yjďt�pejq
Prttpe1q “ y1 ^ ¨ ¨ ¨ ^ tpelq “ ylu

According to the definition of t�peiq, if yi ď t�peiq holds for i “ 1, . . . , l, we have
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řl
i“1 xi ď řl

i“1 t�peiq and further:

lÿ
i“1

t�peiq “
lÿ

i“1

pt´peiq ` pt`peiq ´ t´peiqq ¨ pz ´ řl
j“1 t

´pejqqřl
j“1pt`pejq ´ t´pejqq q

“
lÿ

i“1

t´peiq ` pz ´ řl
j“1 t

´pejqq ¨ řl
i“1 pt`peiq ´ t´peiqqřl

j“1pt`pejq ´ t´pejqq

“
lÿ

i“1

t´peiq ` z ´
lÿ

j“1

t´pejq

“ z

Therefore, inequality
řl
i“1 xiďz always holds when yiďt�peiqp1 ď i ď lq. Moreover,

according to Eq. (7.34), we have:

FRpzq ě
ÿ

y1`¨¨¨`ylďz^yjďt�pejq
Prttpe1q “ y1 ^ ¨ ¨ ¨ ^ tpelq “ ylu

“ Prttpe1q ď t�pe1q ^ ¨ ¨ ¨ ^ Prptpelq ď t�pelqu

“
lź

j“1

Prttpejq ď t�pejqu “
lź

j“1

Fejpt�pejqq

the left hand side of Eq. (11) holds.

To prove the right hand side of Eq. (11), we need to prove that 1 ´ FRpzq ěśl
i“1p1 ´ Feipt�peiqqq, i.e.,

PrttpRps, oxiqq ě zu ě
lź

i“1

p1 ´ Feipt�peiqqq. (7.35)
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Similarly, we have

Prttps, oxiq ě zu “
ÿ

y1`¨¨¨`ylěz
Prttpe1q “ y1 ^ ¨ ¨ ¨ ^ tpelq “ ylu

ě
ÿ

y1`¨¨¨`ylěz^yjět�pejq
Prttpe1q “ y1 ^ ¨ ¨ ¨ ^ tpelq “ ylu

“ Prttpe1q ě t�pe1q, . . . , P rptpelq ě t�pelqu

“
lź

i“1

p1 ´ Feipt�peiqqq,

and the right hand side of Eq. (11) also holds.

From Lemma 7.4, we obtain bounds for FRpzq, i.e., in Cases 1 and 2, we have

F´
R pzq=F`

R pzq=0 (or 1); in Case 3, we have

F´
R pzq “

lź
i“1

Feipt�peiqq (7.36)

and

F`
R pzq “ 1 ´

lź
i“1

p1 ´ Feipt�peiqqq (7.37)

Further, since it holds that Prta ď tpRps, oxiqq ď bu “ FRpbq ´ FRpaq, we can

compute bounds for Prta ď tpRps, oxiqq ď bu, i.e.,

Prta ď tpRps, oxiqq ď bu ě F´
R pbq ´ F`

R paq (7.38)

and

Prta ď tpRps, oxiqq ď bu ď F`
R pbq ´ F´

R paq (7.39)

Then, with Eq. (7.29), route Rps, dq can be pruned if there exists a sub-route Rps, oxjq
(j=1, . . . , i) such that F`

R pbq ´ F´
R paq ď τ .

(b) Rank-based probability upper bound
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The constraint-based upper bound only considers the time constraints of POIs.

In this subsection, we will derive a rank-based probability upper bound for filtering

out false alarms further.

Assume that we have obtained a set of effective routes (as discussed in Sec-

tion 7.3.4), U=tR1, ¨ ¨ ¨ , Rnu, sorted by t´p¨q where PrctRiuěτp1ďiďnq. We record

Ui“tR1, ¨ ¨ ¨ , Riupi ď nq. For route Ri, if there are at least h routes in Ui´1 having

travel time less than Ri, then Ri has a rank larger than h. However, a strict ranking

among these routes cannot be implemented because the travel time of each route is

a random variable bounded by an interval. Our idea is to compute the probability

that there are at least h routes in Ui´1 having travel time less than Ri, i.e.,

ÿ
AĎUi´1^|A|ěh

Prt
ľ
RPA

tpRq ď tpRiqu ¨ Prt
ľ

RPUi´1zA
tpRq ą tpRiqu (7.40)

Generally, it is not trivial to enumerate all such subsets to compute the exact

probability. Hence, we only consider the first h routes and have the following lemma.

Lemma 7.5. Given a set of constraint-based routes U=tR1, ¨ ¨ ¨ , Rnu sorted by t´p.q,
for route Ripi ą hq, if 1 ´ ś

RPUh LB FRpt´pRiqqăτ , then routes in UzUi´1 can be

pruned.

Proof. First, we have

ÿ
AĎUi´1^|A|ěh

Prt
ľ
RPA

tpRq ď tpRiqu ¨ Prt
ľ

RPUi´1zA
tpRq ą tpRiqu ěPrt

ľ
RPUh

tpRq ď tpRiqu

ě
ź
RPUh

PrttpRq ď tpRiqu

ě
ź
RPUh

PrttpRq ď t´pRiqu

ě
ź
RPUh

F´
R pt´pRiqq
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Therefore, we further have

PrhtRiu ď 1 ´
ź
RPUh

F´
R pt´pRiqq (7.41)

If 1´ ś
RPUh F

´
R pt´pRiqqăτ , by the inequality transition, we have PrhtRiu ă τ , thus

Ri can be safely pruned. Meanwhile, for each route Rt in UzUi “ tRi`1, ¨ ¨ ¨ , Rnu,
we have

PrhtRtu ď 1 ´
ź
RPUh

F´
R pt´pRtqq ď 1 ´

ź
RPUh

F´
R pt´pRiqq ă τ (7.42)

Therefore, UzUi´1 can be pruned if 1 ´ ś
RPUh F

´
R pt´pRiqq ă τ .

Thus, a candidate route that cannot be pruned by the constraint-based probabil-

ity upper bound might be filtered out by using this rank-based bound. In addition,

a sub-route can also be pruned by using this bound as described below.

Lemma 7.6. Given a set of constrained routes U=tR1, . . . , Rnu sorted by t´p¨q and

a sub-route Rps, oxiq, Rps, oxiq can be pruned if

1 ´
ź
RPUh

F´
R pt´pRps, oxiqqq ă τ (7.43)

Proof. A complete route generated from Rps, oxiq has a larger t´p¨q value than that

of Rps, oxiq, which reduces its corresponding PTR probability, hence the proof.

Thus, 1 ´ ś
RPUh F

´
R pt´pRqq can be used as the rank-based probability upper

bound to prune candidate routes.

(c) Discussion on two probability upper bounds

During the query processing, both constraint-based and rank-based upper bounds

of the PTR probability are employed to prune routes. The constraint-based probabil-

ity upper bound can prune those routes that have constraint-based probabilities less
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than τ , which mainly considers the keyword/time constraints of POIs. For the rank-

based probability upper bound, it requires that there exist h candidate routes whose

constraint-based probabilities are above τ . Thus, we can also use it to prune those

candidate routes whose PTR probabilities less than τ . Therefore, the rank-based

probability works as a complement to the constraint-based one to collaboratively

reduce the number of candidate routes.

C. Travel Time Pruning

According to the definition of the PTR query, we aim to compute the probabilities

that routes are among the top-h time-constrained routes which satisfy both keyword

and time constraints and have the top-h smallest travel times. With this observation,

we further proposed the travel time pruning, denoted as T2-Pruning. The basic

idea of T2-Pruning is to use a travel time threshold to directly prune those routes

with larger travel times than h constraint-based routes we have seen so far without

computing probability upper bounds. Concretely, we have the T2-Pruning in the

following lemma.

Lemma 7.7. (Travel Time Pruning, T2-Pruning) Assume that we have obtained h

effective routes which satisfy time constraints at POIs on these routes with probability

above τ . Let ρ be the largest travel time upper bound among these h routes. Then,

a route Rps, dq can be pruned if its lower bound of travel time, t´pRps, dqq, is larger

than ρ.

Proof. From the lemma assumption, if t´pRps, dqq ą ρ holds, Rps, dq has larger travel
time than at least h routes in all possible worlds (since we have obtained h routes

that satisfy keyword/time constraints at POIs). Hence, route Rps, dq cannot be a

top-h time-constrained route and should be pruned.

We consider two cases of obtaining h effective routes used in Lemma 7.7. First,
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for Rps, dq, if the arrival time at every POI on Rps, dq is within the corresponding

service time, i.e.,

ra´
c poxiq, a`

c poxiqs “ ra´poxiq, a`poxiqs (7.44)

then route Rps, dq is an effective route. The second case is that, there exist some

POIs oxi on Rps, dq whose time intervals do not fully cover the whole arrival time,

i.e.,

ra´
c poxiq, a`

c poxiqs ‰ ra´poxiq, a`poxiqs (7.45)

In this case, our rationale is to derive an lower bound, Prć tRps, dqu, for the prob-

ability PrctRps, dqu. If this lower bound is above threshold τ , then route Rps, dq is

an effective route. According to the definition of PrctRps, dqu, we have

PrctRps, dq ě PrctRps, ox1qu ¨
ψź
i“2

PrctRpoxi´1
, oxiqu

ě Pr´
c tRps, ox1qu ¨

ψź
i“2

Pr´
c tRpoxi´1

, oxiqu.

” Pr´
c tRps, dqu (7.46)

where Prć tRpx, yqu is a lower bound for PrctRpx, yqu.
Now the goal turns out to compute the lower bounds of PrctRps, ox1qu and

PrctRpoxi´1
, oxiqu (2 ď i ď ψ). Obviously, if there exists a travel time interval for

tpRpx, yqq in which Rpx, yq always satisfies the keyword/time constraints of POIs,

we can compute a lower bound for the probability that the travel time tpx, yq falls

into this interval by using Eq. (7.38). Based on the constrained arrival time at oxi´1

and oxi , the constraint-based interval of tpRpoxi´1
, oxiqq, i.e.,

rt´
c pRpoxi´1

, oxiqq, t´
c pRpoxi´1

, oxiqqs (7.47)
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can be computed by solving the following inequalities:

$’&
’%
t´pRpoxi´1

, oxiqq ď x ď t`pRpoi´1, oxiqq,
ać poxiq ď ać poxi´1

q ` x ` ti´1 ď ac̀ poxiq
ać poxiq ď ac̀ poxi´1

q ` x ` ti´1 ď ac̀ poxiq.
(7.48)

Then, with Eq. (7.38), we can calculate a lower bound of PrctRpoxi´1
, ooxi qu below:

PrctRpoi´1, oxiqu ě Prtt´
c pRpoxi´1

, oxiqq ď tpRpoxi , oxi`1
qq ď t`

c pRpoi´1, oiqqu
ě F´pt`

c pRpoi´1, oxiqqq ´ F`pt´
c pRpoxi´1

, oxiqqq.
” Pr´

c tRpoi´1, oxiqu. (7.49)

With Prć tRps, ox1qu and Prć tRpoxi´1
, oxiqu, we can compute the lower bound of

the constraint-based probability in Eq. (7.46). If this constraint-based probability is

above τ , then we can use Rps, dq as an effective route to filter out other false alarms

as described in Lemma 7.7.

7.3.5 Query Processing Algorithm

To efficiently answer PTR queries, we first generate a small set of candidate routes

by utilizing the designed pruning strategies. After that, a refinement step based on

sampling is conducted to compute the final query results.

A. Candidate Route Generation

We propose an expansion-based heuristic algorithm which has the similar flavor to

A* algorithm. We expand from POI by POI and the shortest route between two POIs

is computed by using the CH index. During the expansion, T-pruning, P-pruning

and T2-pruning are employed together to prune infeasible routes.

The PTR query processing algorithm is elaborated in Algorithm 7.1 which ac-

cepts as input a PTR query q and produces as output a small set of candidate routes

C. Initially, three priority queues C, Q and U are created to store candidate routes,
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Algorithm 7.1 Generate Candidate Routes

Input: a PTR query q“ps, d, ts,K, h, τq
Output: Candidate routes set C
1: Initialize C, Q, U Ðnew priorityQueue()
2: ρ Ð `8
3: R Ð xsy
4: Q.enqueue(R,testpRq)
5: while Q is not empty do
6: R Ð Q.dequeue()
7: if testpRq ě ρ then
8: Break
9: i ÐPOICount(R)
10: ocurr ÐcurrPOI(R)
11: if i “ ψ then
12: Rnew Ð R ‘ Rpocurr, dq
13: if t´pRnewq ă ρ then
14: C.add(Rnew, t

´pRnewq)
15: if PrctRnewu ě τ then
16: U .add(Rnew, t

´pRnewq)
17: P-Pruning(C)
18: update(ρ)
19: else
20: Rnew Ð P .expand()
21: if not (t´pRnewq ě ρ and T-Pruning(Rnew) and P-Pruning(Rnew)) then
22: Q.enqueue(Rnew, testpRnewq)
23: update R
24: Q.enqueue(R, testpRq)
25: return C

expanded routes which have covered partial POIs, and constraint-based routes, re-

spectively (line 1). All these routes are sorted by the lower bound of travel time. In

addition, ρ records the travel time threshold of the current top-h constraint-based

routes (line 2).

First, the route containing the start location s is added to Q (lines 3-4) and its

weight is an estimated value of the travel time, testpRq. Assume that the current

POI of R is ocurr (initially, ocurr“s) and the next POI (if exists) is onext. Meanwhile,

Eucpx, yq is the Euclidean distance between x and y, and vel`pGq is the maximum

velocity over the whole road network. Then, we compute testpRq as below:
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• Case 1: R has covered all required POIs.

testpRq “ t´pRq ` Eucpocurr, dq
vel`pGq (7.50)

• Case 2: R only covers partial POIs.

testpRq “ t´pRq ` Eucpocurr, onextq ` Eucponext, dq
vel`pGq (7.51)

In each loop, while Q is not empty (line 5), the route R with the minimum testpRq is
dequeued from Q (line 6). If testpRqěρ (line 7), algorithm terminates, otherwise we

have two cases as described below:

• Case 1: R has covered all the required POIs (line 11). In this case, we expand

from R to compute the shortest route to d and generate a complete route, Rnew,

from s to d. If Rnew survives from T2-pruning, it is returned as a candidate

route (line 14). Additionally, if PrctRnewuěτ , Rnew is added to U (line 16);

each route in C is checked by P-pruning (line 17); and ρ is updated (line 18).

• Case 2: R only covers partial POIs (line 19). In this case, we expand from R

to cover the pi ` 1q-th POI, where i is the number of POIs that R has already

covered, and a new route, Rnew, is generated. Then, three pruning methods

are employed. If Rnew survives, we add it to Q with the estimated travel time.

Meanwhile, R is updated (the next POI, onext) and inserted into Q again.

The loops terminate when the testp¨q value of dequeued route is larger than ρ, or Q

is empty. Finally, a set C of candidate routes is returned.

B. Refinement

Generally, the number of returned candidate routes is small but some of them may

be not PTR answers. Hence, a refinement step is required to compute the real re-

sults. In order to efficiently obtain the final result, we use a sampling algorithm, as
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described in Algorithm 7.2, to estimate the probabilities of being among the top-h

time-constrained routes for candidate routes. Particularly, in line 4, function sam-

ple(G) samples the travel time of each edge according to its probability distribution.

Here, only the edges covered by the routes in U are sampled, since other edges of

G have no effect on the final result. According to the Monte Carlo theory [66], we

have:

Prt|PrhpRq ´ P̂ rpRq| ď ηu ą 1 ´ ξ (7.52)

where P̂ rpRq=N0{N is computed according to Algorithm 7.2, and both parameters

ξ and η are set to 0.1 by default [66] (line 2). Finally, those routes with N0{N larger

than τ are returned as the final query result.

Algorithm 7.2 Calculate P̂ rpRq
Input: R P C
Output: P̂ rpRq
1: N0 Ð 0
2: N Ð 4p|C|´1q lnp2{ξq

η

3: for i Ð 1 to N do
4: wi Ð sample(G)
5: compute Rh

wi
ps, dq among U

6: if P P Rh
wi

ps, dq then
7: N0 Ð N0+1
8: return N0{N

7.3.6 Updates of URNs

In order to capture the dynamic uncertainty of the travel times on roads over uncer-

tain road network G, we maintain a queue for each edge ei,j. The queue contains T

samples, sr (t0 ´ T ` 1 ď r ď t0), for the last T timestamps within rt0 ´ T ` 1, t0s,
where t0 is the current timestamp. Each sample is represented by a triple pei,j, sr, rq,
where ei,j is an edge, sr is a possible travel time value on edge ei,j, and r is the

timestamp that the sample is collected.
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In order to facilitate PTR query processing, we maintain some pre-computed

data for the URN G, including the minimum/maximum travel time, t´pei,jq and

t`pei,jq, on each edge ei,j, and the minimum/maximum velocities, denoted as vel´pGq
and vel`pGq, on the entire road network G. At a new timestamp pt0 ` 1q, a new

sample, spt0`1q, of the travel time on edge ei,j arrives and is added to the queue.

Meanwhile, the oldest one, spt0´T`1q, is expired and removed from the queue, and

the pre-computed data is updated as below.

• Update t´pei,jq and t`pei,jq: If the new sample spt0`1q is within interval

rt´pei,jq, t`pei,jqs, we do not need to update the time interval. Otherwise, if

spt0`1qăt´pei,jq, we update t´pei,jq with spt0`1q; if spt0`1qąt`pei,jq, we update

t`pei,jq with spt0`1q. If the expired sample spt0´T`1q P rt´pei,jq, t`pei,jqs, we do

not need to update the time interval. If spt0´T`1q equals to either t´pei,jq or

t`pei,jq, we need to scan all the samples in the last T timestamps to re-calculate

the interval rt´pei,jq, t`pei,jqs.

• Update vel´pGq and vel`pGq: If the travel time interval rt´pei,jq, t`pei,jqs
remains the same, we do not update vel´pGq and vel`pGq. Otherwise, if the

minimum travel time t´pei,jq has changed, we have the new maximum ve-

locity on edge ei,j, i.e., velǹewpei,jq“|pei,j|{t´pei,jq, and update vel`pGq with

velǹewpei,jq when velǹewpei,jqąvel`pGq, or re-compute vel`pGq when the old

maximum velocity vel`pei,jq“vel`pGq and vel`pei,jqąvelǹewpei,jq. If the maxi-

mum travel time t`pei,jq has changed, we have the new minimum velocity on

edge ei,j, i.e., velńewpei,jq“|ei,j|{t`pei,jq, and update vel´pGq with velńewpei,jq
when velńewpei,jqăvel´pGq or re-compute vel´pGq when the old minimum ve-

locity vel´pei,jq“vel´pGq and vel´pei,jqăvelńewpei,jq.
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7.4 Experiments

7.4.1 Setups

In this section, we conduct extensive experiments on three real datasets (i.e., Califor-

nia, Beijing and London) to evaluate the performance of proposed solution. Specifi-

cally, California dataset (including road network and POIs) is from Real Datasets for

Spatial Databases1; Beijing dataset has road network from OpenStreetMap2 (OSM)

and POIs from Datatang3; London dataset extracts both road network and POIs

from OSM. The statistical information of three datasets, including index construc-

tion time and index size for both Inverted Index (Inv) and Contraction Hierarchy

(CH), is detailed in Table 7.3.

Table 7.3: Datasets for evaluating PTR query

Attributes California Beijing London

number of vertices 21,048 46,029 209,045
number of edges 21,693 62,778 282,267
number of POIs 104,470 252,125 34,341
Index size (Inv) (MB) 0.5 1.2 0.3
Index construction time (Inv) (sec) 0.11 0.595 0.043
Index size (CH) (MB) 44 152 341
Index construction time (CH) (sec) 2.2 28.7 47.9

Table 7.4: Parameter setting in PTR query

Parameters Values

|q.K| 1,2,3,4,5
h 1, 3, 5, 7, 9
τ 0.1, 0.3, 0.5, 0.7, 0.9

Keywords of POIs: The POIs of California have 62 categories and that of Beijing

have 533 categories. In the experiments, each category is regarded as the keyword

description of POIs, i.e., oi.K, in this category. Each POI in London is associated

1 http://www.cs.utah.edu/ lifeifei/SpatialDataset.htm

2 http://www.openstreetmap.org

3 http://www.datatang.com/
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with a set of keywords, extracted from OSM, to describe its properties and services.

Time intervals of POIs: We define three time interval patterns, i.e., {7:00-
12:00,13:00-17:00} (such as banks), {8:00-22:00} (such as restaurants), and {0:00-
24:00} (such as 24-hour stores). Then, one of the three patterns is selected for each

POI. After that, to increase the diversity of the time intervals of POIs, for each POI,

we generate sub-intervals of the selected time interval pattern such that they have

an overlap of more than 70%. For example, assuming that a time interval in the

pattern is [a, b], we randomly generate a sub-interval [x, y] within [a, b] such that

y´x
b´a ě 0.7.

Travel time of roads: For each road, we first randomly select a speed sub-interval

within [20km/h, 80km/h] which is the driving speed interval for most cities. Then,

a set, V , of T (=50) speed samples is randomly generated within the sub-interval

according to Uniform distribution and Truncated Gaussian distribution,

respectively. In addition, we also extract Real speed samples from the GPS trajec-

tories of over 10,000 taxis in Beijing dataset4. Then, with the length of each road e,

each sample of tpeq is obtained by |e|
v
(vPV). Note that, truncated gaussian distribu-

tion is used as the default distribution.

Queries: For each dataset, we evaluate 50 PTR queries whose start location and

destination are generated randomly within the road network area and their departure

times are randomly selected between 6:00 and 22:00. Additionally, the query key-

words are also randomly selected from the corresponding vocabulary of each dataset.

The staying time at each POI is randomly selected between 600 and 1,200 seconds.

Table 7.4 illustrates experimental settings, where the default values of parameters

are highlighted in bold font. All experiments are run on a PC with a 3.1GHz Intel

processor and a 8GB RAM.

4 If there are no enough samples for some roads, we add the average values of existing samples to
ensure T samples.
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7.4.2 Experimental Results

Pruning power vs. datasets: Figure 7.4 illustrates the relationship of candidate

route sets after applying pruning strategies, i.e., T-pruning (T), P-pruning (P),

and T2-pruning (T2). We can see that T-pruning results in a superset of candidate

sets from the other two pruning strategies. Moreover, the intersection of two candi-

date route sets by applying P-pruning and T2-pruning is our final candidate set that

needs further refinement. Figure 7.5 illustrates the performance of three pruning

strategies over three datasets with Gaussian vehicle speeds (the case of datasets with

Uniform vehicle speeds is similar and thus omitted). As presented, a considerable

portion of infeasible routes are pruned when only T-pruning is employed. Further,

compared with T-pruning, the number of candidate routes after T+P pruning is

greatly reduced. Finally, we can get a small set of candidate routes with all the three

pruning strategies, i.e., T+P+T2 pruning. Furthermore, we can see from Figure 7.5

that the number of final candidate routes (after all pruning) on each dataset has

almost the same scale as that of final results (obtained after the verification step

given in Algorithm 7.2), which confirms the effectiveness of our pruning strategies.

T-Pruning

T2-PruningP-Pruning

No Pruning

Candidate routes

Figure 7.4: The relationship between three pruning methods

Method comparison: We compare the performance of our solution with that of

the solution by enumerating all possible worlds [1] (EPW for short). As illustrated

in Figure 7.6, the response time of EPW is much larger than that of our solution
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Figure 7.5: Pruning ability test on different datasets

on all three datasets. Actually, when the number of query keywords increases, it is

computationally prohibitive to process the PTR query with EPW solution. On the

contrary, our solution can always compute the PTR query efficiently.

Figure 7.6: The response time comparison between EPW and our solution

Performance vs. the number of keyword sets |K|: Figure 7.7 illustrates the

experimental results while varying the number of query keyword sets, i.e., |K|, on
different datasets with Gaussian, Uniform, and Real distribution of the travel time

on each edge. With the increase of |K|, the response time increases since more routes

should be evaluated. Nonetheless, with |K| less than 4 (the general case in reality),

we can efficiently get the final results within around one second. With the increase

of |K|, the number of candidate routes increases exponentially without applying any

pruning methods. After using the proposed pruning strategies, however, the number
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(a) California (b) Beijing (c) London

(d) California (e) Beijing (f) London

Figure 7.7: The results while varying the number of keyword sets |q.K|

of candidate routes slightly increases, and remains small. For example, the number

of candidate routes without pruning is in the scale of millions when |K|“3, and

the number of candidate routes after T+P+T2 pruning is only in the scale of tens.

Meanwhile, with Uniform distribution of tpeq, there are more candidate routes than

that of truncated Gaussian distribution, which accordingly takes higher response

time. This is because Gaussian distribution concentrates around the mean value,

which makes the P-pruning more effective. The real distribution takes even more

time and generates more candidate routes because its speed span is larger than that

of other two distribution.

Performance vs. parameter h: Figure 7.8 presents the response time and the

number of candidate routes by varying h, where other parameters are set to their

default values. We can see that the number of candidate routes has a smooth increase,

since larger h means more routes need to be retrieved and checked. This further

incurs an increase in the query response time for large h, as shown in Figure 7.8.
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(a) California (b) Beijing (c) London

(d) California (e) Beijing (f) London

Figure 7.8: The results while varying parameter h

Performance vs. probability threshold τ : Figure 7.9 reports the experimental

results with different probability thresholds from 0.1 to 0.9. According to Figure 7.9,

the curves for response time are almost concave. The reason is as follows. On the one

hand, a small τ covers more candidate routes but generates a good pruning threshold

ρ in Algorithm 7.1. On the other hand, a large τ can prune more expanding routes

during the query processing but impedes the generation of the pruning threshold ρ.

Therefore, with a small τ (e.g., 0.1), a large number of evaluated routes incurs a high

response time. With the increase of τ , the number of evaluated routes decreases,

which results in the decrease of the response time. However, when τ becomes larger,

Algorithm 7.1 will postpone to terminate because the pruning threshold ρ is difficult

to generate (since fewer routes satisfy the constraint of the probability threshold τ).

Thus, the response time first decreases, and then increases again for large τ . With

the increase of τ , the number of candidate routes slightly decreases because fewer

complete routes satisfy the probabilistic requirement.
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(a) California (b) Beijing (c) London

(d) California (e) Beijing (f) London

Figure 7.9: The results while varying the probability threshold τ

7.5 Summary

In this work, we formalize the probabilistic time-constrained route (PTR) query,

which utilizes uncertain road network to describe the uncertainty of the travel time

over road network, and retrieves routes that satisfy both keyword and time con-

straints at POIs, and are in the set of top-h optimal routes with high probabilities.

PTR query is particularly useful for users who are touring a city and are unfamiliar

with the traffic condition and the service hours of POIs there. In order to efficient-

ly tackle the PTR query problem, we propose three effective pruning strategies to

filter out false alarms, and integrate them into an efficient PTR search algorith-

m. As demonstrated through extensive experiments, the proposed solution achieves

satisfying performance over different datasets.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Conducting queries with both spatial and textual requirements has been an impor-

tant part for many location-aware applications. Existing studies on spatial keyword

query cannot well meet such demand since most of them are conducted based on

Euclidean distance and inapplicable in the context of road network. Motivated by

this, I focus on Spatial Keyword Query Processing over Road Networks

and study three types of queries, i.e., services locating, route planning, and route

planning over dynamic road networks.

• Services locating: For this type of query, we propose range spatial keyword

(RSK) query to search all the objects that are relevant to the query keywords

within a given spatial range. RSK can find many applications like searching

surrounding services and providing location-based recommendations. To pro-

cess RSK query, we first propose an expansion-based approach by using the

locality property of RSK query. Then, the expansion-based approach is im-

proved based on the observation that network distance is always larger than or

equal to the Euclidean distance between two locations. In addition, to increase

the scalability of RSK query, we design the Rnet Hierarchy index and devise an

efficient processing approach based on this index. As demonstrated by the ex-
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periments, Rnet Hierarchy-based approach can efficiently process RSK queries

of various query ranges over road networks of millions of vertices.

• Route planning: For this type of query, we propose keyword coverage route

(KCR) query and bounded-cost informative route (BCIR) query. KCR query

searches the optimal route that covers the most number of query keywords

within a given distance threshold. BCIR query retrieves the optimal route

that is most textually relevant to the query keywords within a given cost bud-

get. KCR is designed to identify routes of many target objects for users to

explore while BCIR query is good at finding routes of specific topics and ex-

tracting specific travel routes for tourism promotion. To process KCR query,

we propose an adaptive route sampling framework and design both static and

dynamic route sampling techniques under this framework. Particularly, the dy-

namic route sampling can improve route sampling by learning knowledge from

the routes sampled previously, thus reducing the time of getting the routes

of high quality. The proposed route sampling framework can flexibly return

query results of different qualities according to the given response time limit,

thus providing a tradeoff between the query efficiency and the quality of query

results. For BCIR query, considering the high complexity of BCIR query and

its non-additive property, we design different solutions for different applications

scenarios. On the one hand, we design an exact solution with multiple pruning

methods for BCIR queries of small cost budgets. On the other hand, we design

a time-bounded solution and an error-bounded solution for BCIR queries of

large cost budgets, where time-bounded solution initializes a set of candidate

routes and keeps refining them until reaching the response time limit; error-

bounded solution is adapted from the exact solution by relaxing the pruning

requirement to improve the pruning efficiency and can greatly reduce the query
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processing time while guaranteeing the quality of query results. BCIR query

can be regarded as a generalization of the KCR query. However, BCIR aims

to maximize the textual relevance of a route rather than the number of query

keywords.

• Route planning over dynamic road networks: For this type of query, we

propose probabilistic time-constrained route (PTR) query to search the routes

that pass a sequence of POIs and have the optimal travel time in high confidence

when considering the dynamic traffic over road networks and the service time

constraints at POIs. PTR query is particularly useful for users who are touring

a new city and are unfamiliar with the traffic condition and the service hours

of POIs there. To solve this query problem, we propose a two-phase solution.

First, multiple pruning methods are designed based on the time constraints at

POIs and the optimality of routes. With these pruning methods, a processing

algorithm is proposed to compute a small set of candidate routes. Second,

Monte Carlo sampling is used to refine the computed candidate routes to get

the final query results. As demonstrated by the experiments, the proposed

solution can efficiently solve the PTR query problem and performs better than

the existing uncertain route query techniques.

In sum, we aim to provide users an easy way to have a good knowledge of their

required services and the corresponding travel routes to these services. Specifically,

the range spatial keyword query provides users the information about the surrounding

environments; both keyword coverage route query and bounded-cost informative

route query retrieve interesting routes for users to explore; and the probabilistic time-

constrained route query is particularly useful for route planning when the dynamics

of road network and the time constraints of service providers need to be considered.
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8.2 Future Work

As discussed in Section 2, the research on spatial keyword query over road networks

is still limited. Except for the existing studies and the work in this topic, there

are still many spatial keyword queries over road networks remaining unsolved, e.g.,

similarity join query to retrieve all pairs of similar spatio-textual objects over road

networks, and why not query to uncover the reason why some expected objects are

not covered by query results. In addition, there are many other directions relevant

to spatio-textual data and road networks. Particularly, I listed a few as below.

• Spatio-Textual Data Extraction: Though there is already a large amount

of explicit spatio-textual data from different sources, more other spatio-textual

data is not so obvious. For example, many comments from social networks

do not have clear spatial locations which are hidden in the content. In this

case, we need to utilize text analysis techniques to uncover the underlying lo-

cation attributes. Therefore, studying how to extract spatio-textual data from

the Web will greatly increase the scale of spatio-textual data and accordingly

extend the applications of spatial keyword query.

• Dynamics in Spatial Keyword Query: Apart from moving spatial keyword

queries over road networks, almost all other existing queries are conducted

based on static data. However, the traffic over road network is dynamically

changing over time and the working times of service providers (a kind of spatio-

textual objects) along the roads are also time-dependent. Existing spatial

keyword queries based on static data cannot capture such dynamics. Therefore,

it is of high necessity to revisit all existing spatial keyword queries to make them

adapt to the dynamics in both traffic and objects.

• Advanced Map Construction: In addition to considering the cost such
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as distance and travel time when searching travel routes, users usually wish

that the returned routes also have some other properties, e.g., safe, quiet,

popular and emotionally pleasant. To retrieve such routes, it is important

to construct the corresponding map for each property. Since spatio-textual

objects, especially the geo-tagged comments and photos, contain abundant

information about these properties, it is promising to construct advanced maps

from spatio-textual objects by using machine learning and big data analytic

techniques. With these constructed maps, almost all existing route queries can

be redefined to provide more personalized route querying service.
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