

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

DESIGN FOR TRUST IN BEHAVIORAL

VLSI DESIGN

NANDEESHA VEERANNA

Ph.D

The Hong Kong Polytechnic University

2018

The Hong Kong Polytechnic University

Department of Electronic and Information Engineering

Design for Trust in Behavioral VLSI Design

Nandeesha Veeranna

A thesis submitted in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

July 2017

Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

(Signed)

Nandeesha Veeranna (Name of student)

I would like to dedicate this thesis to my loving parents, brother, and my friends.

Abstract

The continuous globalization in the semiconductor design and fabrication process of inte-

grated circuits (ICs) is making these extremely vulnerable to malicious modifications. An

adversary in a foundry or in an intellectual property (IP) design house, can insert a small

malicious circuitry inside the genuine circuit which can lead to a serious catastrophe in the

field of operation or leak the secret information.

In addition, the electronic design automation (EDA) industry has tackled the increase in IC

design complexity and shorter design cycles by raising the abstraction level from register

transfer level (RTL) to behavioral level (C/C++/SystemC). This paradigm shift opens a new

window for attackers to insert more powerful hardware Trojan, as a single line in a behavioral

program can lead to 7× more gates than at the RT-level [1]. Thus, this thesis addresses the

possible security issues concerned to behavioral IPs (BIPS) mapped as hardware accelerators

in the heterogeneous system on chip (SoC). Although this thesis mainly extends theories to

protect the BIP user from malicious alterations of the BIP, it also investigates methods to

protect the BIP vendor from an unlawful usage of the BIP. For this purpose, an open source

benchmark suite called Security Synthesizable SystemC benchmark (S3Cbench) consists of

multiple BIPs written in synthesizable SystemC which include different types of Trojan was

first created. These benchmarks are used as the backbone of this work to create methods to

find these Trojans when no golden reference models exist. This thesis then studies the impact

of obfuscation on the quality of results (QoR) of the BIPs and propose an efficient method to

obfuscate these BIPs without a significant QoR degradation due to the redundant operations

viii

inserted by the obfuscator. A hardware Trojan detection technique which leverages formal

verification techniques at the behavioral level is also presented. In particular, property check-

ing techniques to increase source code coverage. This thesis also addresses the detection of

hardware Trojan at the system level. C-Based VLSI design has many advantages compared

to traditional RTL design. One that this work takes advantages of is the generation of fast

cycle-accurate models of complete SoCs. This is used to measure the exact timing at which

each BIP mapped as a loosely coupled Hardware Accelerator (HWAcc) slave. This is in turn

used to detect if the Trojan has been triggered during the intervals in which the accelerator is

not performing any computation. This allows the fine tuning of our proposed circuit called

Trust Filters which can detect the hardware Trojans at runtime. The last part of this thesis

addresses the issues of how to avoid hardware Trojan to be inserted in runtime reconfigurable

systems which depend on a configuration bit stream to reprogram their functionality every

clock cycle, making them extremely vulnerable to Trojan. The experimental results and

implementation analysis demonstrate the effectiveness of our proposed techniques.

List of Publications

Journal Papers:

1. N. Veeranna, B. Carrion Schafer, “Hardware Trojan detection in Behavioral Intel-

lectual Properties(IPs) using Property Checking Techniques,” IEEE Transaction on

Emerging Topics in Computing, June 2016, in print.

2. N. Veeranna, B. Carrion Schafer, “Trust Filter: Runtime Hardware Trojan Detection

in Behavioral MPSoCs,” Journal of Hardware and System Security, Springer, vol.1,

no.1, pp. 56-67, March 2017.

3. N. Veeranna, B. Carrion Schafer, “S3CBench:Synthesizable Security SystemC Bench-

marks for High-Level Synthesis,” Journal of Hardware and System Security, Under

major revision.

Conference Papers:

1. A. Balachandran, N. Veeranna, B. Carrion Schafer, “On Time Redundancy of Fault

Tolerant C-Based MPSoCs,” IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), Pittsburgh, Pennsylvania, 11-13 July 2016, pp. 631-636.

2. N. Veeranna, B. Carrion Schafer, “Hardware Trojan Avoidance and Detection for

Dynamically Re-configurable FPGAs,” IEEE International Conference on Field Pro-

grammable Technology (FPT), Xi’an, China, 7-10 Dec.2016, pp. 193-196.

x List of Publications

3. N. Veeranna, B. Carrion Schafer, “Efficient Behavioral Intellectual Properties Source

Code Obfuscation for High-Level Synthesis,” in IEEE Latin American Test Symposium

(LATS), Bogota, Columbia, 2017, pp.1-6.

4. N. Veeranna, B. Carrion Schafer, “Automatic Hardware Trojan insertion in Behavioral

IPs during the Obfuscation Process,” won the third prize in HACK@DAC Hard-

ware Security contest in Design Automation Conference (DAC), Austin, USA, 2017,

poster.

Acknowledgements

I owe immense gratitude to many people who have instructed and advised me in the course

of writing this thesis.

First of all, I would like to express my sincere heartfelt thanks to my supervisors Prof.

Francis Lau and Dr.Benjamin Carrion Schafer, for their invaluable advice, constant encour-

agement and precise modification. I admire their knowledge and personality. They not only

grants me the opportunity to enter the world of academic research but also gave me the

consistent and illuminating instruction in this prolonged three years of study. Without them,

I could not have completed this thesis.

My thanks also go to Prof. Michael Tse and Prof. Daniel.P.K. Lun for their invaluable

suggestions during the Research Methodology course on writing the research articles and

thesis.

I am fortunate to have the chance to work with Anushree Mahapatra, Anjana Balachan-

dran, Dylan Liu, Shaungan Liu, Siyuan Xu, Susmitha, Pandy, and Farah Taher during my

Ph.D. study. I am thankful for their share of knowledge and thoughts at work, and the life we

have enjoyed together.

I also thank my friends Harish Kumar Narayana, Harun Venkatesan, Virag Raut, Parth

Shah, Yuvraj, Suman, Yamuna, Sonal, Tanuja, Bipin, and Atik. My special thanks go to my

badminton friends Jerry, Alex, Josephine, Eddie, William, Man Wai, Irene, Wendy, Andrew,

Isaac for my interesting and exciting university life in Hong Kong.

xii List of Publications

At last, my deepest gratitude goes to my parents for their endless love and great confidence

in me through these years. They are always my strong backing.

Table of contents

List of Publications ix

List of figures xvii

List of tables xx

List of Acronyms xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution of this Thesis . 4

1.3 Thesis Structure . 6

2 High Level Synthesis 7

2.1 Design Flow . 8

2.1.1 Compilation/Parse . 9

2.1.2 Allocation . 10

2.1.3 Scheduling . 11

2.1.4 Binding . 15

2.1.5 RTL Generation . 16

2.2 Commercial HLS Tools . 17

2.3 Summary . 17

xiv Table of contents

3 Review of Hardware Security Techniques and S3CBench Benchmark Introduc-

tion 19

3.1 Review of Hardware Security Topics . 19

3.1.1 Hardware Trojans . 22

3.1.2 IP Piracy and IC Overbuilding . 24

3.1.3 Reverse Engineering (RE) . 26

3.1.4 Side Channel Attacks . 27

3.1.5 Counterfeiting . 29

3.2 Hardware Trojan . 30

3.3 Hardware Trojan in Behavioral IPs . 33

3.4 S3CBench:Synthesizable Security SystemC Benchmarks for High-Level

Synthesis . 34

3.4.1 S3CBench Overview . 35

3.5 Automatic Generation of Hardware Trojan Trigger Condition 40

3.6 Behavioral IP Obfuscation . 42

3.6.1 Experimental Results . 43

3.7 Summary . 46

4 Behavioral Intellectual Property (BIP) protection 48

4.1 Efficient Behavioral Intellectual Properties Source Code Obfuscation for

High-Level Synthesis . 48

4.1.1 Motivational Example . 51

4.1.2 Previous work . 52

4.1.3 Obfuscation . 54

4.1.4 Typical Obfuscation Process . 55

4.1.5 Reason for the overhead . 57

4.1.6 Proposed Method to Minimize QoR Degradation due to Obfuscation 57

Table of contents xv

4.1.7 GA-based Obfuscation . 58

4.1.8 Fast Iterative-Greedy Method . 60

4.1.9 Experimental Results and Discussions 62

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using

Property Checking Techniques . 63

4.2.1 Related Work . 64

4.2.2 Threat Model . 67

4.2.3 Proposed Detection Method . 68

4.2.4 Experimental Results . 73

4.3 Summary . 82

5 Hardware Trojan Detection at System Level 84

5.1 Hardware Trojan detection in behavioral MPSoC 85

5.1.1 Introduction . 85

5.1.2 Threat Model . 85

5.1.3 Contributions . 86

5.1.4 Background and Related Work . 87

5.1.5 Trojan Detection Method . 90

5.1.6 Behavioral MPSoC Generation . 92

5.1.7 Trust Filter . 96

5.1.8 Experimental Results . 101

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 105

5.2.1 Related Work . 107

5.2.2 Stream Transpose Processor . 107

5.2.3 STP Architecture . 108

5.2.4 STP Design flow . 109

5.2.5 Hardware Trojan in DRPs . 110

xvi Table of contents

5.2.6 Trojan Avoidance and Detection method 112

5.2.7 Experimental Results . 117

5.3 Summary . 122

6 Conclusions and Future work 124

6.1 Conclusions . 124

6.2 Future Work . 126

Bibliography 127

List of figures

1.1 VLSI design Process . 3

1.2 Overview of Thesis . 5

2.1 HLS productivity graph . 8

2.2 High Level Synthesis design flow . 9

2.3 Functional unit allocation example for a ANSI-C code snippet: (a) ANSI-C

code snippet (b) Functional unit and the usage constraint set to "minimum

operator count"; (c) Functional unit and the usage constraint set to "maximum

operator count" . 10

2.4 Scheduling example: (a) Example codes in ANSI-C; (b) DFG of source code

given in (a) . 12

2.5 Scheduling results of Fig. 2.4 example with one adder and one multiplier

constraint: (a) ALAP scheduling; (b) ASAP scheduling 13

2.6 RTL netlist generated by HLS tool [40] 16

3.1 Supply Chain of Semiconductor . 20

3.2 Hardware security systematization around the attack method 22

3.3 Hardware security knowledge in terms of the hardware-based attacks, coun-

termeasures, and metrics for evaluation . 23

3.4 Hardware Trojan taxonomy based on different attributes 31

xviii List of figures

3.5 Hardware Trojan circuit example showing trigger and payload mechanisms 32

3.6 FIR behavioral IP HW Trojan example showing trigger and payload mecha-

nisms . 33

3.7 Sobel Behavioral IP HW Trojan example with encryption 34

3.8 Framework of creating the obfuscated benchmark 42

3.9 Disparity Estimator (a) original input stereo image (1920 × 1080) (b) ex-

pected golden output (64 × 64) (c) input stereo image (1920 × 1080) (d)

expected output (e) HW Trojan effects (combinational trigger+no memory

payload I)(64 × 64) (f) HW Trojan (combinational trigger+ no memory pay-

load II) (64 × 64) (g) HW Trojan effects (combinational trigger+ memory

payload) (64 × 64) . 44

4.1 Typical HLS flow overview. 49

4.2 Area degradation of different benchmarks [107] with the increase in level of

obfuscation . 52

4.3 Behavioral IP obfuscation example . 55

4.4 Genetic Algorithm (GA) method overview. 59

4.5 Proposed Flow . 69

4.6 Assertion insertion example . 71

4.7 Sobel edge detection case study (a) original input image (512 × 512) (b)

expected golden output (c) input image (512 × 512)(d) expected output

(e) HW Trojan effects (combinational trigger+no memory payload (f) HW

Trojan (combinational trigger+memory payload) (g) input image higher

resolution (600 × 600)(h) HW trojan effect (sequential trigger+memory

payload) . 75

4.8 Secret Key leaking . 79

4.9 Inverse Key Expansion . 80

List of figures xix

4.10 UART without Trojan triggered . 81

4.11 UART with Trojan triggered . 81

5.1 Target heterogeneous MPSoC Platform 91

5.2 Design flow overview . 93

5.3 Slave slack estimation example; (a) report generated after simulation. (b)

timing chart of report. 94

5.4 Trust Filter attached to slaves . 97

5.5 An example to demonstrate the number of test-cases needed for the trust filter 97

5.6 Coarse Grain Runtime Reconfigurable Array (CGRRA) IP in a Reconfig-

urable SoC . 106

5.7 STP tile structure . 108

5.8 Architecture of Processing Element (PE) 109

5.9 Configuration flow of STP . 111

5.10 Utilizacion of PEs. (a) Typical usage (b) once HW Trojan is triggered (c)

with proposed method . 114

5.11 Critical path overhead comparison between original designs and case1,case2

and case3 methods. 122

List of tables

2.1 Popular HLS tools and their supported high-level languages 17

3.1 Hardware Trojan types overview and types addressed in this work 31

3.2 Benchmarks and the type of Trojans inserted in each 37

3.3 Experimental Results comparing benchmark with and without Hardware

Trojan for area . 45

3.4 Experimental Results comparing benchmark with and without Hardware

Trojan for coverage . 46

4.1 Results: Experimental Results . 62

4.2 Experimental Results . 74

4.3 False vs. True hardware Trojan Detection Assertions 74

5.1 Hardware Trojan types overview and types addressed in this work 86

5.2 Complex System Benchmarks and Hardware Trojan Type Description . . 100

5.3 Experimental Results . 103

5.4 Worst Case Performance penalty analysis of manual trust filter for different

systems . 104

5.4 Benchmark characteristics . 118

5.5 Experimental Results: Area Overhead . 119

5.6 Experimental Results: Energy Overhead 120

List of Acronyms

AES Advanced Encryption Circuit

AHB Advanced High-performance Bus

ALAP As Late As Possible

ALU Arithmetic Logical Unit

AMBA Advanced Micro-controller Bus Architecture

API Application Program Interface

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

BIP Behavioral Intellectual property

CDFG Control Data Flow Graph

CGRRA Coarse Grained Runtime Re-configurable Arrays

CPU Central Processing Unit

CWB CyberWorkBench

CWM Combinational With memory

CWOM Combinational Without Memory

CUT Circuit Under Test

DFG Data Flow Graph

DMA Direct Memory Access

DRP Dynamically Reconfigurable Processor

xxii List of Acronyms

DSE Design Space Exploration

DSP Digital Signal Processing

EDA Electronic Design Automation

ESL Electronic System Level

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSM Finite State Machine

FU Functional Unit

GA Genetic Algorithm

GUI Graphical User Interface

GPU Graphics Processing Unit

HW Hardware

HWAcc Hardware Accelerator

HDL Hardware Description Language

HLS High Level Synthesis

HT hardware Trojan

IC Integrated Circuit

IO Input Output

IP Intellectual Property

IR Intermediate Representation

ITRS International Technology Roadmap for Semiconductors

MPSoC Multiple Processor System-on-Chip

QoR Quality of Results

RAM Random Access Memory

RE Reverse Engineering

ROM Read-Only Memory

xxiii

RTL Register Transfer Level

SWM Sequential With Memory

SWOM Sequential Without Memory

SoC System-on-Chip

STC State Transition Control

STP Stream Transpose Processor

SW Software

VHDL Very High Speed IC Hardware Description Language

VLSI Very Large Scale Integration

Chapter 1

Introduction

1.1 Motivation

The advent of computers in the last century has revolutionized our society. The Computer

is now ubiquitous. Until recently most of the efforts in computer security focused on the

software (SW). It was assumed that the underlying hardware (HW) executing the SW was

secure. Thus, most of the previous research focused on the development of techniques and

methods to detect and avoid malicious SW programs aka viruses.

For decades, the underlying hardware used for information processing was considered

trusted. With the increase in the complexity of integrated circuits (ICs) and the globalization

of design and manufacturing process, the hardware is becoming more vulnerable to malicious

activities. The main reason behind this is the insertion of hardware Trojans at different

abstraction levels of the IC design process which affects the security and reliability of

ICs. Companies were in the past vertically integrated and a single company would often

design and manufacture their own ICs. This trend has nevertheless been disrupted due to

the complexity of new ICs and the high costs of new fabs. Most IC design companies are

now fabless and often rely on third party IPs to tape out their ICs at increasingly shorter

design cycles. This opens the question of how trustworthy these ICs really are? A security

2 Introduction

breakdown can happen at any stage. In particular, due to the malicious alteration of the IC,

also called hardware Trojans.

Hardware Trojans can be defined as malicious modifications of an IC during the design

or fabrication phase in an untrustworthy design house or foundry which results in incorrect

behavior of an electronic device during run-time. In 2010, the US military discovered a

hardware ?backdoor? in the microchips from missile to transponders which they had bought

from China. The consequences could have been disastrous if they were left undetected [2].

An FBI investigation in 2004-2006 revealed counterfeit Cisco routers in US defense, finance,

and university networks [3]. These fake routers had very low manufacturing quality and high

failure rates. The FBI revealed that the US companies were procuring these routers directly

from untrustworthy sources in foreign countries for a cheaper price. Similar incidents have

been reported in [4–9]. Also, a study conducted by [10] estimated that the semiconductor

industry loses up to $4 billion annually because of IP infringement. Hence, hardware security

at different levels has become a major area of concern.

In the past, most semiconductor companies were Integrated Device Manufactures (IDMs).

These companies used to develop their own semiconductor process technologies, owned and

ran their own fabs and sold the finished Integrated Circuits (ICs) [11]. Modern fab buildings

and maintenance costs have soared and have reached the order of billions of dollars. Thus,

the industries have evolved to a fabless model, where specialized fabrication companies

manufacture ICs for multiple companies. With the breakdown of Dennard scaling, ICs have

started to be tailored to different application domains, aka. domain specific computing. Thus,

most ICs are now heterogeneous System on Chips (SoCs) comprised of multiple in-house

developed IPs and third party IPs (3PIPs) integrated onto the same die. A simplified flow of

the IC design process (also called as VLSI design process) is shown in the Fig. 1.1. From the

actual concept of the design to a final fabricated chip, the design has to undergo different

steps, which can be classified as different design abstraction levels. An attacker (e.g. IP

1.1 Motivation 3

RTL

Gate level Netlist

GDSII

Manual

Transformation

Architectural

Specification

Fabricated chip

Logic Synthesis

Physical Synthesis

Foundry

Behavioral model
(ANSI-C/C++)

Behavioral

Synthesis or High

Level Synthesis

(HLS)

(a)

(b)

Automatic

Transformation

Figure 1.1: VLSI design Process

vendor) can insert the hardware Trojans intentionally in any of these abstraction levels (Fig.

1(a)) with a motive to disable or destroy a complete system at some future time, leak secret

information or reduce the performance of the circuit when triggered. Conventional pre-

silicon (simulation, code coverage) and post-silicon validation (functional/structural/random

patterns) cannot reliably detect hardware Trojans. This is because these techniques aim at

detecting defects that cause deviation from functional or parametric specifications and not

the additional functionalities or modification in circuit operation triggered by uncommon

events [12]. A past mantra, design for testablility has to be renamed to design for trust.

Fig. 1.1 shows the typical VLSI design process with different abstraction levels and the

possibility of hardware Trojan insertion by an attacker at each abstraction level. A plethora

of approaches and design methodologies for validating hardware security and trust at these

4 Introduction

abstraction levels (Fig. 1.1(a)) have already been proposed in academia. Nevertheless, one

area, which still requires much attention, is the behavioral level. In order to further reduce

the time-to-market, IC vendors have started relying on High-Level Synthesis (HLS). HLS is

a technique to convert an untimed behavioral language description such as ANSI-C of C++

to a register-Transfer-Level (RTL) description (e.g. VHDL or Verilog) that can efficiently

execute it (Fig. 1.1(b)). This new VLSI design paradigm shift has also lead to a new market

of third-party behavioral IPs (3PBIPs). The widespread use of HLS has triggered the IP

design houses to start providing BIPs not only for virtual prototyping but also for the actual

design implementation. Although the BIPs market is still in its infancy, some works have

shown that the quality of HLS can rival the hand-coded RTL code [13][14]. This opens the

door to a wider spread of this new technology. This new and promising design methodology

leads to new threats in hardware security that need to be addressed. It is, therefore, imperative

to study the trustworthiness of IC designed at the behavioral level. From single accelerator to

complete SoC.

1.2 Contribution of this Thesis

This thesis investigates how to efficiently insert different types of hardware Trojans in BIPs

and proposes techniques to detect these in stand alone BIPs as well as at the system level in

SoCs. In addition, this thesis also proposes a technique to efficiently obfuscate the BIPs for

HLS to protect the BIP provider from the illegal re-use of the BIP. The overview of the thesis

is shown in the Fig. 1.2. The major contributions of this thesis are summarized as follows:

1. Develop an open source benchmark suite of synthesizable behavioral descriptions with

different types of hardware Trojans which are difficult to detect using typical software

testing techniques like profiling.

1.2 Contribution of this Thesis 5

Hardware Trojan
detection at different

abstraction levels

IP level System Level

Vendor
Perspective

Trust Filters
Detection in
 CGRRA (STP)

Property checking
(Formal Verification)

GA based

technique

Fast Iterative

greedy method

IP level

Countermeasures

Perspective

Objectives

User
Perspective

Abstraction level

Thesis

Protection against

Unlawful use of BIPs

BIPs (ANSI-C/SystemC)

Figure 1.2: Overview of Thesis

2. Study the impact of source code obfuscation on the quality of results of BIPs for HLS

and propose a quick and efficient method to maximize the source code obfuscation

while minimizing the effect on the quality of results of the synthesized circuit due

to redundant operations inserted by the obfuscator, which the HLS process cannot

optimize. Two methods have been developed. A Genetic Algorithm (GA) based and a

fast greedy heuristic method.

3. Introduce a fully automatic method to increase the coverage in BIPs to aid designers

in finding HW Trojans in 3PBIPs using formal verification methods. In particular,

property checking at the behavioral level, when the BIP is encrypted and when it is

not.

4. Introduce a runtime system level method to detect hardware Trojans in behavioral

multi-processor systems. The developed method makes use of accurate fast simulation

models of the complete SoC under different workloads and extracts the timing of each

6 Introduction

BIP mapped as a hardware accelerator slave in the system. This timing information

is in turn used to verify that no hardware Trojan has been triggered at the untrusted

accelerator.

5. Propose a mechanism to detect and avoid the hardware Trojan being triggered in

runtime reconfigurable field programmable gate arrays (FPGAs), in particular, coarse-

grained runtime reconfigurable array (CGRRA), which re-configures itself every clock

cycle and which are programmed using HLS.

1.3 Thesis Structure

This thesis is divided into 6 chapters. The motivation and contributions of this thesis

are provided in Chapter 1. Chapter 2 introduces how HLS works and describes in detail

its three main steps :(1) allocation, (2) scheduling and (3) binding. The review of existing

hardware Trojan detection methodologies for different abstraction levels and research gaps are

discussed in Chapter 3. This chapter also gives a detailed definition of hardware Trojans, their

taxonomy, and their types, and also presents the Synthesizable Security SystemC (S3CBench)

benchmark suite developed for this work. This is the first open source benchmark suite of

synthesizable behavioral descriptions with a wide variety of hardware Trojans. Chapter 4 is

divided into two parts. The first part proposes an efficient method to maximize the BIP source

code obfuscation that also minimizes the Quality of result (QoR) degradation due to the

redundancy inserted by the obfuscator. In the second part, it presents a technique to detect the

hardware Trojan in BIPs using property checking at the behavioral level. Chapter 5 presents

the techniques developed to detect the hardware Trojans at the system level (behavioral

MPSoCs). Also, it discusses the dynamically re-configurable processors (DRPs) which

are used as hardware accelerators in SoCs and possible hardware Trojan scenarios in them.

Finally, conclusions and future work are presented in Chapter 6.

Chapter 2

High Level Synthesis

High-Level Synthesis (HLS) can be described as the process of converting an un-timed

behavioral description into an RTL description which can efficiently execute it. In contrast

to traditional RTL design process, which makes use of low-level Hardware Descriptions

Languages (HDLs) like VHDL/Verilog, HLS typically accepts as inputs high-level program-

ming languages e.g. ANSI-C or C++, allowing designers to focus on the functional behavior

instead of on the implementation details, which are time-consuming and error-prone. This

leads to an increase in design productivity and thus reduce development cycles.

Raising the level of abstraction implies that fewer lines of code are required compared to

RTL descriptions. This not only leads to shorter design cycles but also fewer bugs and makes

it easier to verify and maintain the source code. Fig. 2.1 shows a graph plotting the code

size v.s. generated gate size for different designs implemented in ANSI-C and in Verilog. A

regression line is plotted onto the same graph for the two cases, where the slope indicates the

number of gates per line of code obtained for the C-based design and Verilog case. The ratio

between the two slopes indicates roughly the productivity increase. In this case, 28.73/4.20

≈ 7 times [1].

8 High Level Synthesis

Gate Size= 28.73 code size

Gate Size = 4.20 code size

0

20

40

60

80

100

120

140

0 5 10 15 20 25

KGate

KL

Code Size

G
en

er
at

ed
 G

at
e

Si
ze

 ANSI C

Verilog

Figure 2.1: HLS productivity graph [1]

2.1 Design Flow

Fig. 2.2 summarizes the typical HLS design procedure. HLS takes as inputs the behavioral

description to be synthesized, a set of design constraints and technology libraries of the

target (ASIC or FPGA). In the first step, a formal model is created by parsing the high-level

descriptions (C/C++/SystemC). This first step checks for syntax errors and creates as output

an intermediate representation (IR). The next step performs some technology independent

optimizations on this IR. This step is extremely important as large un-optimized circuits can

be obtained if the input description is not optimized. Some of these optimizations include

dead-code elimination and constant propagation. The output of this step is a Control Data

Flow Graph (CDFG) which is taken as input by the three main HLS steps. These three main

steps are allocation, scheduling, and binding. All these steps work interdependently.

In particular, allocation specifies the hardware resources that are necessary to implement

the different operations in the behavioral description. Scheduling determines for each

operation the time at which it should be performed such that no precedence constraint is

violated. Binding provides a mapping from each operation to a specific functional unit and

from each variable to a register. It should be noted that the final RTL circuit generated by

2.1 Design Flow 9

Verilog/VHDL

C/C++/SystemC

Intermediate
representation

Compilation/Parse

Resource allocation

Scheduling

Binding

Library

Optimizations

CDFG

constraints

+,-,*,/
Delay
Area

Figure 2.2: High Level Synthesis design flow

this procedure depends on the input specification, the hardware resources available in the

library and the synthesis constraints.

2.1.1 Compilation/Parse

HLS has the main advantage that the design and verification can be performed using similar

tools to other high-level software programming languages. This implies that the input

description is compiled, simulated, and debugged using standard software environments like

gcc, gdb and gprof. These attributes make HLS extremely convenient and easy to work with.

It should nevertheless be noted that there are some limitations of what can be synthesized

in HLS. Some of the non-synthesizable constructs like dynamic memory allocation and

recursion need to be considered when using HLS. Some HLS tools ignore some of these

10 High Level Synthesis

constructs automatically while others create errors, suggesting the designers to use the

synthesizable constructs.

(c)

(a)

Adder

Multiplier

8

2

(b)

Adder

Multiplier

1

1

Figure 2.3: Functional unit allocation example for a ANSI-C code snippet: (a) ANSI-C code
snippet (b) Functional unit and the usage constraint set to "minimum operator count"; (c)
Functional unit and the usage constraint set to "maximum operator count"

2.1.2 Allocation

Allocation of hardware components (mainly functional units) is the first step after the

behavioral description has been parsed. Once the behavioral description is parsed, a functional

unit constraint file is generated. This file contains the type and the number of functional

units required to map the particular input description. Typically, to extract the highest level

of parallelism, the HLS process will try to parallelize the behavioral description as much

as possible, and hence use multiple functional units as much as possible. The user then

2.1 Design Flow 11

has the opportunity to overwrite this constraint file manually, setting the maximum number

of functional units that the synthesizer can instantiate, once the allocation stage has been

completed.

A simple example of a behavioral code snippet is shown in the Fig. 2.3(a), which

performs multiple additions and multiplications to compute certain mathematical expressions.

Fig. 2.3(c), shows the output of the resource allocation stage that maps individual operation

in the source code to separate FUs to maximize parallelism. In this case, 8 32-bit signed

adders and 2 32-bit signed multipliers are required. Fig. 2.3(b) shows the minimum number

of FUs required to create a hardware circuit that can execute this description, requiring a

single 32-bit signed adder and a single 32-bit signed multiplier. This can be either manually

set by the user or through a synthesis option to minimize the resources. This example shows

one of the advantages of raising the level of abstraction. In the first case, a large number of

functional units inevitably lead to larger circuit area but the performance of the circuit will be

higher due to decrease in the latency. In the latter case, the area will be reduced, as less FUs

are required, but the performance will degrade. In particular, from 1 clock cycle to 6 clock

cycles. In a theoretical sense, the maximum operator usage case leads to an approximate 5×

(average of the operators) larger in resources and 6× faster in performance design. In the

target architecture like FPGAs, this case does not always guarantee a better performance

design due to the clock period constraint and also due to the multiplexers cost which is

required to share the functional units.

2.1.3 Scheduling

Scheduling follows the resource allocation stage in the HLS process. Scheduling decides

the allocation of operations which have to be executed in a particular clock cycle without

violating the precedence constraint and data dependencies. Scheduling process basically

follows the Data Flow Graph (DFG) restricted by resource and timing constraint as shown in

12 High Level Synthesis

int main(){
int in1, in2, in3, in4,…,in11;
int a, d, g;
int out1, out2, out3;
a= in1+in2;
out1 = (a-in3) * 3;
out2 = in4 + in5 + in6;
d = in7 * in8;
g = d + in9 + in10;
out3 = in11 * 5 * g;
}

(a)

(b)

 Figure 2.4: Scheduling example: (a) Example codes in ANSI-C; (b) DFG of source code
given in (a)

Fig. 2.4. Independent operations can be scheduled at same clock cycle in parallel based on

the target frequency constraint and the resources specified in the allocation stage. Chaining

can be achieved by directly connecting the operations outputs to inputs of the next operations

in the DFG operation. Additional registers are needed if the connection crosses multiple

clock cycles. Multi-cycle operations are allowed only if the clock period is too small to

accommodate the operation or the functional unit delay is too large.

Many scheduling algorithms have been purposed in the past. Most of them are heuristics

as it has been shown that resource constraint scheduling is an NP−hard problem [15–17].

The two most simple scheduling algorithms are As Soon As Possible (ASAP) and As Late As

Possible (ALAP). Without violating the precedence, ASAP maps operations to their earliest

possible start time while ALAP maps operations to the latest possible start time. ASAP

scheduling leads to the shortest schedule if there does not exist any resource constraint, thus

leading to an optimal solution.

Fig. 2.5(a) and (b) continues the example shown in the allocation stage and its DFG. In

this case, the schedule is restricted to 1 adder and 1 multiplier (minimum resources usage).

Fig. 2.5(a) shows the scheduling result of the ALAP schedule and Fig. 2.5(b) of the ASAP

2.1 Design Flow 13

schedule. It can be observed that the ALAP schedule leads to a better result with a latency of

6 clock cycles vs. the 7 clock cycles required by the ASAP schedule.

1

2

3

4

6

5

3

in8 in9 in11 in10 5

+

+

+

+

+

-

x

x

x

x

Out2

Out1

Out3

in1 in2 in4 in5 in6 in7 in3

1

2

3

4

6

5

3

in8 in9 in11 in10 5

+

+

+

+

+

-

x

x

x

x

Out2 Out1

Out3

in1 in2 in4 in5 in6 in7 in3

7

Figure 2.5: Scheduling results of Fig. 2.4 example with one adder and one multiplier
constraint: (a) ALAP scheduling; (b) ASAP scheduling

If the constraint is changed to only one adder and one multiplier, only one adder and

one multiplier can be executed in each clock cycle. This case can generate two different

scheduling results based on whether the scheduler uses an ALAP or ASAP algorithm as

shown in Figs. 2.5(a) and (b). As shown in the figure, ALAP schedules faster (6 clock cycles)

than the ASAP scheduling algorithm (7 clock cycles). Nevertheless, both the algorithms

cannot guarantee an optimal solution. From the above discussion, we can conclude that the

choice of the scheduling algorithm has a greater impact on the synthesis result.

In general, scheduling algorithms can be broadly classified into data-flow-based schedul-

ing (DF-based) and control-flow-based scheduling (CF-based). DF-based scheduling is best

suitable for DSP and image processing applications. Scheduling algorithms can be further

divided into two types: resource-constrained scheduling and time-constrained scheduling.

List scheduling [18, 19] is one of the most widely used heuristics approaches to solve the

resource-constraint scheduling problem. In this approach, ready operations are stored in a

list according to certain priority function and are scheduled in order into the control state

with the resources available. In order to address the time-constrained scheduling problem,

14 High Level Synthesis

force-directed scheduling [20] heuristic approach is commonly used. In this approach, re-

source usage can be reduced by minimizing the force on the operations which balances the

computations over the available time steps.

CF-based scheduling is mainly used to tackle the control-flow-intensive applications

such as controllers and network protocol processors. The earliest approach that dealt with

control-flow dominated description is path-based scheduling [21]. Loop-directed scheduling

incorporates the depth-first search (DFS) approach to schedule the operations. This approach

optimizes the average-case performance and also implicitly accounts for the loop repetition

during the DFS. Wavesched [22] is another approach which explores and schedules the

operations which are ready in a wave-propagation-like manner. The most recent scheduling

algorithms combine the speculative code motions to extract the parallelisms which are not

explicitly uncovered in the input description. In [23], the authors have introduced a set of

speculative code transformations into a high-level synthesis framework.

The CF dominated descriptions are also described by a significant share of I/O timing

constraints for complying to the external circuits. The earliest attempt to address minimum/-

maximum timing constraints is relative scheduling [24]. In order to support the relative

timings, the authors in [25] introduced behavioral templates which lock a number of opera-

tions into certain scheduling templates. A retiming-based approach to schedule the timed

VHDL by behavioral code transformation has been employed in [26] without altering the orig-

inal I/O timings. Many exact scheduling methods, such as the symbolic scheduling [27, 28],

the ILP-based scheduling [29, 30] and the constraint-programming-based scheduling allows

I/O timing constraints.

Although these scheduling algorithms have a certain level of efficiency in a specific class

of applications, they lack the support of various design constraints. For example, DF-based

schedulers will fail to effectively handle CF-intensive designs. Also, most of the scheduling

techniques [21, 31, 22, 20] are not effective for larger designs because of exponential time

2.1 Design Flow 15

complexity during the worst case and many of them [21, 31, 22] fail to support the relative

I/O timings.

2.1.4 Binding

Binding is the last stage in the HLS process. Binding maps each operation to a functional

unit and each variable to a register. Each operation is mapped to a specific functional unit

inherent in the functional unit constraint file which can execute the operation. One functional

unit can be shared by many operations at different clock cycles (resource sharing). In order

to achieve this, multiplexers are needed to assign the correct data to the input at the right

time and deliver the output to the correct register. Binding is a very important stage in HLS

since it affects the routability of the final circuit and hence the wire length and critical path.

It has been shown in [32] that binding is an NP− complete problem. Therefore, different

heuristics have been proposed in the past.

Some of the existing heuristics to solve the binding problem divides the problem into

module binding and register binding and solve independently using clique partitioning

techniques [20, 33]. A few other heuristics [34–36] divide the binding problem into module

binding and separate register binding along the timestep boundary. Weighted Bipartite

Matching [35] is used to solve the subproblems. A few heuristics bind the operations

and values one at a time [34, 36]. These approaches suffer a complete ignorance of the

interactions between the register and module bindings. In [37], authors have proposed an

iterative approach which starts from an arbitrary solution to the binding problem and later

make the changes that have the potential for generating a better design. The approach

proposed in [38] also starts with an arbitrary design but rips out parts of the design at

random, and then reconstruct the design. Optimal designs can also be generated using the

ILP approach described in [39] but is not suitable for large input specifications. Also, it is

difficult to incorporate circuit-level information in the ILP formulation. A robust binding

16 High Level Synthesis

Figure 2.6: RTL netlist generated by HLS tool [40]

algorithm should consider various aspects into the account such as total area of the RTL

design which includes module, register, and interconnection areas. The authors in [41–43]

have pointed out the importance of including the information of the layout in the HLS tools.

A high-performance and area-efficient design can be generated by using the wiring costs

obtained from floorplan instead of estimates based on the number of wires. To handle the

different objective functions such as area, performance, and testability, a binding heuristic

must be adaptable. A dependency between the operator and register binding in the designs

should also be considered apart from the adaptability.

2.1.5 RTL Generation

Based on the results obtained from the previously described steps, HLS synthesizes the

behavioral description into RTL code (VHDL/Verilog). Fig. 2.6 shows the typical RTL archi-

tecture generated by a commercial HLS tool (CyberWorkBench). The RTL code generated

is typically divided into a controller (FSM) and a data path. The controller generates the

2.2 Commercial HLS Tools 17

control signals for the data-path, in order to guarantee the correct execution of the complete

circuit. Also, the controller manages the passing of inputs to corresponding functional units

at the correct state and generates the control signals for the multiplexers. It also decides the

storage of data to either registers or RAM. The generated RTL (VHDL/Verilog) is passed to

the logic synthesizer to get the gate-level netlist of the design.

2.2 Commercial HLS Tools

Although HLS is relatively new, its popularity has gained the attention of electronic design

automation (EDA) tool vendors and there are numerous commercial HLS tools. Table 2.1

shows the prominent HLS tool vendors, their tool name and the input description supported.

Since SystemC (C++ class of hardware modelling) is standardized by IEEE, it is supported

by most of the HLS tool vendors. SystemC has the advantage that allows the modelling of

hardware related constructs and concurrency. Thus, most of the work done in this thesis uses

SystemC as input language.

Table 2.1: Popular HLS tools and their supported high-level languages

Vendor Tool Name Supported Languages
Altera Intel HLS Compiler C, C++
Cadence Stratus C, C++, SystemC
Mentor (Siemens group) Catapult C, C++, SystemC
NEC CyberWorkBench C, SystemC
Synphony C Compiler Synopsys C, System C
Xilinx Vivado HLS C, C++, SystemC

2.3 Summary

This chapter has discussed the benefits of HLS and its main steps. The widespread use of

HLS has triggered IP design houses to start providing behavioral IPs (BIPs) for HLS not only

for virtual prototyping but also for implementing the actual design. Although the market

18 High Level Synthesis

for these IPs is still in its infancy, BIPs verification poses challenges not addressed yet. It

is, therefore, important to study how secure these BIPs are and how to detect any malicious

alteration of these IPs.

Chapter 3

Review of Hardware Security Techniques

and S3CBench Benchmark Introduction

This chapter reviews the different types of hardware Trojan threats and describes in detail

their structure, taxonomy, and how these can be implemented in 3PBIPs. A review of

the existing hardware Trojan detection techniques and their limitations are then presented.

Finally, this chapter introduces the first open source benchmark suite, developed in this thesis,

of synthesizable behavioral descriptions with different types of hardware Trojans called

Synthesizable Security SystemC (S3CBench).

3.1 Review of Hardware Security Topics

Fig. 3.1 shows the typical supply chain of semiconductor IC. The globalization of semicon-

ductor design, manufacturing, and distribution in the supply chain raises the question about

how secure the final hardware actually is. IC design process involves designing some IPs

in-house, buying other IPs from a 3PIP vendor (to reduce the time-to-market), integrate both,

and carry out synthesis and verification to generate the layout (GDSII) which is used as a

blueprint in the foundry to manufacture the ICs. The manufactured ICs are then tested and

20 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

Sy
st

em
 D

es
ig

n

So
C

 d
es

ig
n

 F
lo

w

 Package and Assembly

IP Design
house 2

Foundry

 SoC Integration

IP Design
house 1

In-house

design team

RTL Netlist

 Logic Synthesis

Gate-level Netlist

Physical Synthesis

Integration

team

Layout (GDSII)

C2

2
C3

2
C4

2 C1

C5

2

EDA tool
Vendor

C1

C6

2

Wafer

PCB Assembly

Country

 Recycle/
Repackage ICs

Out-of-spec
ICs

 C

System

IC

Legend

Figure 3.1: Supply Chain of Semiconductor

finally, the fault-free ICs are packaged and deployed. This process implies that there are

multiple paths in the supply chain that an adversary can exploit to alter the IC. The following

possible hardware security breaches can happen in the supply chain:

1. Hardware Trojans: A rogue IP vendor or an adversary in a design house or foundry

may modify the existing design to insert malicious alterations that when triggered,

disrupt the normal specified behavior of the circuit.

3.1 Review of Hardware Security Topics 21

2. IP piracy and IC overbuilding: An IP user may illegally sell the IPs procured from

the 3PIP vendor to other customers for a cheaper price without the consent of the

rightful owner. An untrustworthy foundry may also overproduce the ICs to sell the

excess ICs in the gray market.

3. Reverse Engineering: A competitor can reverse engineer the IC/IP to extract the

hidden internal details. While reverse engineering is not a crime, in fact, it is protected

by law, but it is not acceptable to do so without providing credits to the rightful IC/IP

owner.

4. Side-channel attacks: Side-channel parameters like power consumption, current, time

or delay, electromagnetic emission, acoustic information, optical information, etc. are

exploited by the adversaries to extract the secret information in the IC, e.g. the key in

cryptographic chips.

5. Counterfeiting: An adversary can sell used chips in the open market by remarking or

repackaging the die, by cloning the ICs or by overbuilding it without the legal rights.

Fig. 3.2 shows the systematization of hardware security knowledge based on the different

attack scenarios. The first column gives the goals of the attack, the middle column shows the

type of attack, and the third column gives the attacker location within the supply chain [44].

Hardware security knowledge in terms of the attacks, countermeasures, and evaluation

metrics is presented in Fig. 3.3. The first column gives the possible types of attack, the

middle column summarizes the countermeasures, and the last column gives the metrics for

evaluation of countermeasures.

These figures highlight the importance of hardware security. The next subsection de-

scribes the main security threats and revises the state of the art proposed countermeasures.

22 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

 Figure 3.2: Hardware security systematization around the attack method. source: [44].

3.1.1 Hardware Trojans

As discussed in section 1.1, hardware Trojans are the malicious modifications made to

the hardware circuit during either the design phase, in the IP design house, or during the

fabrication phase at the foundry, which can cause a severe catastrophe at run-time if left

undetected. Because of the stealthy nature and the rare activity of hardware Trojans, it is

extremely difficult to detect them using the conventional verification or validation approaches.

State of-the-Art Defense Techniques

Most of the existing techniques target the detection of hardware Trojans inserted at the

fabrication phase, i.e., in foundry [12, 45]. The possible ways to tackle these types of Trojan

are through invasive and non-invasive detection techniques. In the invasive detection methods,

the components of the circuit under test (CUT) becomes unusable after they undergo the

3.1 Review of Hardware Security Topics 23

Figure 3.3: Hardware security knowledge in terms of the hardware-based attacks, counter-
measures, and metrics for evaluation. source: [44].

detection process. Moreover, the precision measurement equipment used for Trojan detection

is extremely costly.

External parametric and functional IC testing are used in non-invasive detection methods.

In these methods, CUT is excited with input test patterns and the corresponding output values

are measured along with the side channels [46] (e.g., delay, quiescent and dynamic leakage).

Functional and statistical test variants are also used to detect Trojans in non-invasive methods.

Gate-level characterization [47], path delay measurements [48], transient power analysis

[49], thermal profiling [50], or combinations of them. All these techniques assume that the

full details of the circuit design are available in addition to the statistical distribution of gate

characteristics. The IC’s expected characteristic value serves as a reference model to detect

the Trojans.

24 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

Hardware Trojan detection in 3PIPs and defenses against insider attacks include self-

monitoring [51] and static verification [52]. Trojans can be prevented from activation by

scrambling the inputs that are supplied to the hardware units at runtime. This avoids the

Trojan to procure the information needed to perform malicious action [53]. Authors in [54]

proposed that SoC integrator and the 3PIP provider can agree on a set of security-related

properties which the SoC integrator can verify.

3.1.2 IP Piracy and IC Overbuilding

An attacker in the integration house may pirate the 3PIP or can instantiate a number of 3PIPs

than the acquired license. Also, the attacker in the foundry may pirate the 3PIP using the

layout information or overbuild the IC.

State of-the-Art Defense Techniques

Different methods have been proposed to alleviate the problem of privacy and overbuilding.

Watermarking, fingerprinting, obfuscation, metering, and split manufacturing.

1. Watermarking: In watermarking, a signature of the designer is embedded as an

integral part of the design. The designer can claim the ownership later by revealing the

watermark of an IC/IP. The types of watermark may include: addition of new states

and transitions to the original finite state machine (FSM) [55], [56], [57], addition of a

set of design and timing constraints which records the designer’s signature [58], embed

watermarking at physical design level [59], and FPGA designs [60].

Graph partitioning is an optimization problem that has many applications in semi-

conductor design process [61], [62]. The watermark can be encoded as constraints

during graph partitioning. The traits of the good watermarking scheme are: 1) it should

adhere to the functionality of the circuit; 2) embedding cost should be low; 3) it should

3.1 Review of Hardware Security Topics 25

have low implementation overhead; 4)it should have strong authorship proof, and 5)

universal, i.e., it should be applicable to any design [58],[63].

2. Fingerprinting: Although the watermarking technique is capable of identifying the

ownership of IP, it is difficult to track the rogue IP buyer from the unauthorized resold

copies. This is due to the fact that the IP instances sold to the different buyer are

identical and they have the same watermarks. This problem can be alleviated by

embedding a unique and distinguishable mark (fingerprint) into each distributed IP

instance [64]. The designer can later reveal the watermark to claim the ownership

and signature of the buyer to disclose the piracy source. Fingerprinting can also be

applied during different abstraction levels like high-level, logic and physical synthesis

[64]. In order to identify whether a particular chip is fabricated at a particular foundry,

authors in [65] have employed Kolmogorov-Smirnov statistical test for matching two

probability distribution. Fingerprints derived from the SRAM memory cells can also

be used to detect the piracy of an IP [66]. First dynamic fingerprinting technique [67]

on sequential circuit IPs to enable both the owner and legal buyers of an IP embedded

in a chip to be readily identified in the field.

IC piracy can be overcome by registering the IC fingerprints using physically unclon-

able functions (PUFs) and comparing the suspicious ICs against the PUF fingerprint

database [68]. PUF is a disordered physical system when interrogated by a challenge

generates a unique output [69].

3. Hardware Obfuscation: Hardware obfuscation in hardware circuits, is concerned

with protecting the semiconductor IPs from reverse engineering. A simple way of

obfuscating the hardware circuit is by inserting additional gates (XOR/XNOR [70]) or

memory elements [71]. The functionality of these hardware obfuscated circuits can be

verified only by applying the correct values to the gates and memory.

26 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

Another way of achieving the obfuscation of hardware is by obfuscating the FSM of

the design. Obfuscation of FSM can be achieved by adding extra states and transitions

to it. In the original FSM, some states may be replicated [72], invalid transitions

between the states may be added [73], [74], [75], unused states can be utilized [55],

[76] or infinite states (also called as black hole states). All these techniques rely on the

application of valid key to get the correct functionality.

4. Hardware Metering: It is defined as a set of security protocols that enable the design

house to achieve post-fabrication control over their ICs. The hardware metering is

classified into passive and active. Passive metering gives a unique identification of

a chip, or for specifically tagging an ICs functionality so that it can be monitored

passively [77]. The identified ICs are matched against a record in the database which

reveals the unregistered and overbuilt ICs. Active metering provides an active way for

the designers to control, enable, and disable the device.

5. Split Manufacturing: In split manufacturing, IC netlist is partitioned into multiple

parts and each part is fabricated in a separate foundry. Since no foundry can get the

access to full design, it is difficult for the adversary to maliciously modify or clone

the design. One way of achieving the split manufacturing is by splitting the layout

into front-end-of-line (FEOL) layers and back-end-of-line (BEOL) layers. Each of

these layers is separately fabricated in different foundries. After the fabrication, FEOL

and BEOL layers are aligned and integrated using electrical, mechanical, or optical

methods [78].

3.1.3 Reverse Engineering (RE)

RE in semiconductor industry involves, identifying the technology used in the device [79],

extracting the layout/netlist [80] and interpreting the functionality of the design [81]. RE is

3.1 Review of Hardware Security Topics 27

legal, in fact, it is protected by the law. In the US, RE is protected by the Semiconductor Chip

Protection Act. This law allows RE for teaching, analyzing, and techniques epitome in a

hardware circuitry. Similar legislation can also be found in Japan, some European countries,

and other countries. Outside the law, RE can be exploited to pirate a design, identify the

device technology or fabricate the chip unlawfully without the consent of the rightful owner

of the design. Depending on the need of the attacker, he/she can reverse engineer a design to

any desired abstraction level (typically to physical design level or gate-netlist or RTL). The

target level varies depending on the objective of the attacker. If the attacker has a motive to

insert the Trojan, then the target abstraction level can be gate level or RTL.

State of-the-Art Defense Techniques

Camouflaging and obfuscation techniques can be used to mitigate RE. A 3PIP vendor can

obfuscate his IP and a SoC integrator can obfuscate his design. A foundry can camouflage

the layout of the design.

1. Camouflaging: During RE, image processing based technique is used to extract the

gate netlist from the layout of a design. In camouflaging, layouts of the standard cells

are designed to look alike which deceive the attacker by extracting the incorrect netlist.

In [82], authors showed that by camouflaging layout of NAND and NOR cells to look

identical, it is difficult for the attackers to extract the netlist with ease.

3.1.4 Side Channel Attacks

Side channel attacks are the most successful attacks in modern cryptographic systems for

two main reasons. First, they target the weakness of the implementation of the cryptographic

algorithms, not the algorithm themselves [83]. Therefore, the mathematically sound algo-

rithms can become vulnerable to side channel attacks. second, these attacks are non-invasive,

i.e., most of the time the attacker will not leave any traces of the attack. The attacker uses

28 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

the signals leaked from side channels during system’s normal execution, to reveal the secret

information. So, it is hard to detect and catch such attacks.

Side channel attacks have two phases, a marrying phase and a data analysis phase.

During the marrying phase, the attacker will measure and monitor the system’s physical

characteristics when the system is running in the normal mode. The physical characteristics

can be power consumption [84], current, timing or delay, electromagnetic (EM) emanations

[85], acoustic information [86], optical information [87] etc. In the second phase, the attacker

will perform data analysis on the collected side channel data to determine the on-chip secret

information of interest. As we have already mentioned, side channel attacks are non-invasive,

because they do not require to open up the chip. Some of the attacks do not have physical

access to the chip either. For example, the EM attacks and acoustic attacks.

State of-the-Art Defense Techniques

1. Update the secret Key: The accumulation of side channel information by the adver-

sary can be prevented by frequently updating the secret key [88]. In this method, a

predefined sequence of keys along with the second synchronized timings are used to

make sure that the sequence of keys is stable for both the exchange parties. If the

defender knows the maximum information leakage rate per transmission, the keys can

be changed before the amount of leakage information crosses the predefined threshold

value [89].

2. Noise Injection: By artificially injecting noise, the signal to noise ratio of the side

channel information can be reduced. It is very difficult for the attacker to capture the

secret key from the noise induced side channel. A dummy circuitry which consumes

a random amount of power is added to the system in the noise injection technique to

trick the attacker from accessing the key [90]. Using the advanced signal processing

techniques, the effect of noise can be alleviated [89].

3.1 Review of Hardware Security Topics 29

3. Leakage Reduction: Information leakage from the power traces can be reduced by

smoothing the power consumption using asynchronous logic [91], differential and

dynamic logic [92], current mode logic [93], dual rail with precharge logic [94] etc.

4. Secure Scan chains: In this approach, mirror key registers are used in sensitive parts

of the circuits to prevent illegal access to the value of sensitive registers in the test

mode of operation [95]. Access to the scan chain for the users can be randomized by

dividing the scan chains into smaller sub-chains [96]. A new countermeasure based on

the dynamic obfuscation of scan data is proposed in [97].

3.1.5 Counterfeiting

A counterfeit IC/chip can be an unauthorized, remarked/recycled die, cloned design obtained

through reverse engineering, overproduced chip or failed chip. These ICs can alter the

functionality, degrade the performance or impact on the reliability of the chip when it is used

in critical applications like e.g. military or aerospace [98]. The main motive of the fake IC

vendor is typically financial, but pose a significant risk to the system.

State of-the-Art Defense Techniques

1. Hardware Metering

2. IC Fingerprinting

3. Aging Sensors: Whenever an electronic circuit operates in a functional mode, the

transistors integrated on the chip age because of two effects; 1. Negative Bias Temper-

ature Instability (NBTI); 2. Hot Carrier Injection (HCI). According to [46], [99], [100]

NBTI and HCI could cause parametric shifts and circuit failures. By incorporating the

fast ageing sensors in the circuit [101], recycled ICs can be detected.

4. IP Watermarking

30 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

The next section will explain in more detail what hardware Trojans are, their main

structure and how to implement them at the behavioral level.

3.2 Hardware Trojan

Hardware Trojan can be defined as malicious modifications of an IC during the design or

fabrication stage in an untrustworthy design house or foundry, which results in incorrect

behavior of an electronic device during run-time. Hardware Trojans can be broadly classified

based on either the insertion phase (e.g. specification, design, fabrication), the level of

abstraction (e.g. system-level, RT-level, Gate-level, physical level), its activation mechanism

(e.g. always on, internally triggered, externally triggered), its effects (e.g. downgrade perfor-

mance, leak information, change of functionality) and/or its location (e.g. processor, memory,

I/O). Several researchers have proposed different taxonomies based on these attributes [102],

[45], [103]. Fig. 3.4 shows one popular taxonomy. According to [12], the framework

should provide terminology and descriptive name for each class. Thus, the hardware Trojan

taxonomy must meet two key criteria:

• coverage– it should classify all Trojans; none should exist "outside" the taxonomy; and

• resolution– it should distinguish Trojans with significantly different capabilities or

required countermeasures.

Surprisingly enough most of the classifications do not include behavioral level at insertion

phase level, which is the abstraction level used in this work.

3.2 Hardware Trojan 31

Hardware Trojans

Insertion
Phase

Abstraction

Activation
Mechanism

Effects Location

Register Transfer
Level

Transistor Level

Specification

Design

Fabrication

Testing

Assembly and
Packaging

System Level

Development
Environment

Gate Level

Physical Level

Always ON

Triggered
 Internally

 Time based

Externally
 User Input

 Component
Output

Physical
condition
based

Change the
Functionality

Denial Service

Downgrade
Performance

 Leak
Information

Power Supply

Processor

Memory

I/O

Clock grid

Figure 3.4: Hardware Trojan taxonomy based on different attributes [12]

Table 3.1: Hardware Trojan types overview and types addressed in this work

Trigger mechanism

Combinational Sequential

Payload
Without memory

With memory

The fundamental structure of a Hardware Trojan consists of a trigger and a payload

mechanism. The trigger mechanism monitors inputs, internal signal or state and stimulates

the payload under certain conditions. The payload circuit then modifies the originally

intended circuit behavior leading to the malfunction or performance degradation of the

circuit. Hardware Trojan are generally triggered under very rare circumstances, which makes

them very hard to detect during the verification or testing stages. The trigger mechanisms

32 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

Sub-circuit

Sub-circuit

Sub-circuit
Sub-circuit

Sub-circuit

Sub-circuit

Main Circuit

Trigger

Payload T
rig

g
er_

e
n

a
b

le

T1 T2 T3

(Trojan free)

(Trojan free)

(Trojan free)

(Trojan free)

(Trojan free)

(Trojan free)

Figure 3.5: Hardware Trojan circuit example showing trigger and payload mechanisms

can be broadly classified as combinational or sequential. The payload mechanism, in turn,

can be classified based on whether it can remember its activation status or not (payload

with or without memory). Table 5.1 shows on overview of the different trigger and payload

mechanisms and indicates the ones targeted in this work.

Fig. 3.5 shows one of the simplest structures of a hardware Trojan with its trigger

and payload mechanisms. The trigger inputs (T1, T2, T3) come from various nets in the

circuit. The payload taps signals from the original (Trojan-free) circuit and the output of the

trigger. Since the trigger is expected to be activated under rare conditions, the payload output

maintains the same value as Trojan-free circuit most of the time. However, when the trigger

is activated, the payload output will inject an erroneous value into the circuit and cause an

error at the output. In addition, some Trojans may not necessarily impact the function of

the circuit, but rather execute a code that is designed to perform a specific function such as

sending or receiving information to or from adversary from the outside or to degrade the

performance of the circuit.

In the case of behavioral IPs, one can create extremely powerful hardware Trojans with

very few lines of code. In [104], it was shown that a single line of C code generates 7 times

more gates compared to a single line of RTL code.

3.3 Hardware Trojan in Behavioral IPs 33

3.3 Hardware Trojan in Behavioral IPs

The easiest and straight forward way to create a hardware Trojan at the behavioral level is by

using if-else, for loop, while loop or switch-case clause. Fig. 3.6 shows an example of such

a Trojan which triggers when the Sum of Product (SOP) result of the FIR filter reaches a

pre-specified value (TRIGGER). In this case, the payload will set the output to 0. Although a

very naïve example, this highlights how easy it is to create hardware Trojans at the behavioral

level. One can argue that because of the increase in the level of abstraction in behavioral IPs,

 /*--- Sum of Product -----------------*/
 for(i=0;i<9;i++)
 sum += ary[i] * coeff[i] ;

 /*--- Rounding and Saturation -------*/
 if (sum < 0){
 sum = 0 ;
 } else if (sum > 255){
 sum = 255 ;
 } else if (sum == TRIGGER){
 sum = 0 ;
}

Trigger
Payload

Figure 3.6: FIR behavioral IP HW Trojan example showing trigger and payload mechanisms

it is also easier to read the source code and hence to detect the hardware Trojan by simply

reading the source code. At the same time, the complexity of these IPs varies and some of

the BIPs are extremely complex e.g. encryption algorithms. Most SoC integrators (IP users)

often rely on 3PIPs because they do not have the expertise to develop these complex designs.

It is, therefore, reasonable to assume that they do not fully understand every source code line.

Moreover, state of the art HLS tools [40] also allows 3PBIPs to be encrypted as shown in

Fig. 3.7. In order for an IP vendor to encrypt his/her IPs, he/she is first required to contact

the HLS tool vendor, who in turn issues an encryption key to the IP provider. The IP vendor

can then specify using synthesis directives in the form or pragmas (comments), which parts

of the source code to encrypt. Fig. 3.7 shows that pragma encryption_start and pragma

encryption_end delimit the code section to be encrypted. This allows IP vendors to provide

34 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

 // Sobel Convolution starts here
 //-------X GRADIENT APPROXIMATION------
 //-------Y GRADIENT APPROXIMATION------
 for(rowOffset = -1; rowOffset <= 1; rowOffset++){
 for(colOffset = -1; colOffset <=1; colOffset++){
 /* pragma encryption_start */
 sumX += line_buffer[Y -rowOffset][X+colOffset] * …. ;
 sumY += line_buffer[Y -rowOffset][X+colOffset] * ….;
 /* pragma encryption_end */
 }
 }
/* pragma encryption_start */
if(input_row_r[0]==236){flag=1;}
if(flag==1)
 orow = 0;
else
 orow = 255 - (unsigned char)(SUM);
/* pragma encryption_end */

Trigger

Payload

encrypt

Encryption
key

 // Sobel Convolution starts here
 //-------X GRADIENT APPROXIMATION------
 //-------Y GRADIENT APPROXIMATION------
 for(rowOffset = -1; rowOffset <= 1; rowOffset++){
 for(colOffset = -1; colOffset <=1; colOffset++){
 /* pragma ciphertext
 ae8771e2985c0c32763964106d380774
 30d43552f55a6e9086ea38deac2f21c6
 cf60d683eaa96e97ce462c30f403cb57
 */
 }
 }
/* pragma ciphertext
94a2e5c4d8aeab63f529cfdb55eadb3a
f6dff23a1464b1140c42613cc970472b
…
92f1194d379b1cd8b2fa4229b129ad76
*/

Figure 3.7: Sobel Behavioral IP HW Trojan example with encryption

IP users with some degree of reconfigurability, by e.g. not encrypting the I/O declaration to

allow the IP user to set the bit-width of the I/Os. The main idea behind allowing 3PBIPs to

be encrypted is to protect the IP vendor from releasing the complete source code, which in

turn also affects the price of the IP as it can be sold much cheaper, as the IP user cannot fully

re-use the IP. Obviously, the encrypted 3PBIP can only be decrypted and synthesized with

that particular HLS tool. In addition, although the RTL code generated by most commercial

HLS tools is un-encrypted and hence, the Trojan could be detected here, some vendors,

especially FPGA vendors, tightly integrate the HLS tool with their logic synthesis flow so

that this is not possible.

It is obvious that encrypting the IP poses significant security threats as hardware Trojans

of any complexity can now be easily masked. This thesis thus also deals with the detection

of encrypted 3PBIPs.

3.4 S3CBench:Synthesizable Security SystemC Benchmarks

for High-Level Synthesis

An open source benchmark suite of synthesizable behavioral descriptions with different

types of Hardware Trojan was developed to fully understand the mechanism of hardware

3.4 S3CBench:Synthesizable Security SystemC Benchmarks for High-Level Synthesis 35

Trojan and in order to investigate efficient methods to detect them. A repository of RT-level

benchmarks with different types of Hardware Trojan is available at the Trust-hub [105].

Unfortunately, this benchmark suite misses completely the behavioral abstraction level. Thus,

this benchmark suite aims at bridging this gap by providing the first behavioral synthesis

benchmark suite in a common language supported by all major HLS vendors (SystemC)

which cover most of the hardware Trojan types. The designs have been created in such a way

that the Hardware Trojan will always be executed when not triggered, thus, cannot be found

using standard software profiling techniques.

3.4.1 S3CBench Overview

S3CBench (Synthesizable Security SystemC) benchmark suite, a freely available security

synthesizable SystemC benchmark suite available at [106], consisting of 10 SystemC designs

mainly taken from the S2Cbench benchmark suite [107] with different types of Trojan

inserted in each one of them. SystemC is a C++ class originally developed to model HW. Its

main features are that it has its own data types and that it allows modeling the concurrency

by using multiple threads. SystemC has grown in popularity since it was standardized by

the IEEE (IEEE 1666 Standard SystemC Language Reference Manual). Since then, it has

been extended to allow the modeling of entire VLSI systems using SystemC’s transaction

level modeling (TLM) extension and to synthesize it into RTL (Verilog or VHDL) using

High-Level Synthesis. The main reasons for this work to develop the benchmark suite is

SystemC is that all major HLS vendors accept SystemC as its input language. Thus, the

benchmarks can be synthesized unmodified with any of these tools. The main objective of

S3CBench is to allow researchers to come up with different Trojan detection techniques for

behavioral IP protection.

Table 3.2 summarizes the different benchmarks and the type of Trojans inserted in each

case.

36 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

1. CWOM: The trigger mechanism in this type of Trojan is combinational and the pay-

load does not have memory, i.e., the Trojan triggers for a particular input combination

and the output malfunctions only while the input combination triggers the Trojan.

2. CWM: The trigger mechanism in this type of Trojan is also combinational but the

payload has memory, i.e., once the Trojan triggers, the payload is active even after the

trigger condition is not active anymore.

3. SWOM: The trigger mechanism in this type of Trojan is sequential and the payload

does not have memory.

4. SWM: The trigger mechanism is also sequential but the payload has memory, i.e.,

once the Trojan triggers, its effect will last for a prolonged period of time. SWM is

also called a timebomb Trojan.

The functionality of these hardware Trojans covers a wide range from leaking secret

information, denial of service to the malfunctioning of the design. The benchmarks also

cover all different trigger and payload mechanisms.

One traditional way of finding Hardware Trojans has been by profiling the source code

and analyzing the lines of code not covered. Thus, the benchmarks have been designed

in such a way that the hardware Trojan is always executed during normal operation of the

design and hence a 100% coverage of the source code which describes the Hardware Trojan

is achieved (except for the uart case). This is basically achieved by using a mixture of ternary

operators and repeating loop executions.

A brief description of each HW Trojan benchmark is given below:

1.ADPCM: Adaptive Differential Pulse Code Modulation is one of the procedures for

converting analog information to binary data. The ADPCM used in this work converts 16-bit

Pulse Code Modulation (PCM) samples into 4-bit samples. The types of Trojan inserted, in

this case, are SWOM and SWM. For the SWOM case, at regular intervals, the payload is

3.4 S3CBench:Synthesizable Security SystemC Benchmarks for High-Level Synthesis 37

Table 3.2: Benchmarks and the type of Trojans inserted in each

Bench
Trojan type

Effect
CWOM CWM SWOM SWM

ADPCM mal

AES leak

BSORT mal

DECIM mal

DISP mal

FIR mal

INTERP mal

KASUMI mal

SOBEL mal

UART denial

CWOM:Combinational Without Memory. CWM:Combinational With Memory.
SWOM:Sequential Without Memory.SWM:Sequential With Memory.
denial: Denial of service. leak: Leak information. mal: Malfunction.

activated but does not have memory. In SWM, once the counter reaches a particular count

value the Trojan will be triggered and left triggered indefinitely. In both the cases, the Trojan

changes the functionality of the design when it triggers.

2.AES: Advanced Encryption Standard (AES) is a symmetric block cipher. The data size

of the plain text is 128 bits and the allowed key lengths are 128,192 and 256 bits. The type

of Trojan inserted, in this case, is CWOM. The main aim of this Trojan is to leak the secret

keys through the output port for a particular rare input combination. Unlike the Hardware

Trojans implemented in [105], which directly leak the secret keys through the output, which

is extremely easy to detect, in our implementation we extended the work of [108] to leak the

secret key. We modified the trigger mechanism compared to their original work by using

a given input sequence as the trigger mechanism to leak the data required to calculate the

secret key. A secret key leaking mechanism will be discussed in the next chapter.

38 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

3.Bsort: Bubble sort takes 8 input data and sorts them in ascending order. The types

of Trojan inserted, in this case, are CWOM and CWM. In the CWOM case, based on the

particular input trigger combination the payload replaces the original output with a different

value. This mechanism will ruin the entire sorting process for that particular sequence. In

the SWM case, the counter is incremented each time during the sorting process. Whenever

the count value reaches the Trojan trigger condition, the sorting process will be completely

disrupted by the Trojan payload indefinitely.

4.Decimation: Decimation is a 5-stage decimation filter. It has 5 FIR filters cascaded

together in which the output of each stage is connected to the input of the next stage. The

type of Trojan inserted, in this case, is SWM. The Trojan will hold its effect for a particular

count interval after the first trigger. During the count interval, the output of the filter is

affected by the Trojan’s payload.

5.Disp: This algorithm measures the disparity in a stereoscopic image. The input to this

design is a stereoscopic image and the output is a disparity estimated image. The types of

Trojan inserted, in this case, are CWOM and CWM. In the CWOM case, the Trojan triggers

for a particular input pixel combination resulting in a blurring of a corresponding output

pixel of the disparity estimated image. For the CWM case, the Trojan triggers for a particular

input pixel (trigger ON pixel) and the payload will be active until the input pixel matches

with the another trigger pixel (trigger OFF pixel). It should be noted that the output pixels

between trigger ON and trigger OFF pixel are completely blurred. Fig. 3.9 show visually

the result of these Trojan.

6.FIR: FIR is a finite impulse response filter. In this case, it is a 10- tap FIR filter

designed for 8- bit integer operations. The type of Trojan inserted, in this case, is CWOM.

The Trojan triggers for a particular input combination resulting in a payload which outputs

wrong results for the particularly applied input.

3.4 S3CBench:Synthesizable Security SystemC Benchmarks for High-Level Synthesis 39

7.Interp: Interpolation is a 4-stage interpolation filter. The types of Trojan inserted,

in this case, are CWOM, SWOM, and SWM. In the CWOM case, the Trojan will trigger

whenever the output of the final stage of the FIR filter matches with the specified trigger

value. The SWOM case trigger is based on a count value. In this case, the Trojan will trigger

at regular count intervals. Similar to SWOM, the trigger mechanism of SWM is also based

on a count value but once the trigger is activated the payload effect is long lasting.

8.Kasumi: Kasumi is a block cipher algorithm used in mobile communication systems.

It has a 128-bit key and 64-bit input and output. The types of Trojan inserted, in this case,

is CWOM and SWM. In the CWOM case, the output is compared with a particular trigger

value and the output is overwritten when the output matches with a specified trigger value.

In SWM case, the trigger mechanism is based on a count value. After the counter reaches a

particular count value the output is overwritten with an already stored value.

9.Sobel: The Sobel is an edge detection 2D filter algorithm that takes as input a bitmap

image and outputs a new image (bitmap) consisting of the edges of the original image. The

types of Trojan inserted, in this case, are CWOM, CWM, and SWM. In the CWOM case,

the Trojan gets activated when the user passes certain input pixel values and the output is

overwritten with a new value. In the CWM case, once the Trojan is triggered, it results in the

payload to be active for a longer duration, similar to the one in the disparity estimator. In

the SWM case, the trigger mechanism is a counter and once it triggers the payload is active

indefinitely. In this case, the Trojan only triggers when input images with larger resolutions

than the Golden input that never triggers the Trojan are passed. Due to this behavior, it is

called as time-bomb Trojan.

10.UART: Universal Asynchronous Receiver Transmitter is a communication IP used

for serial data transmission. The type of Trojan inserted, in this case, is SWM. This type of

Trojan falls under the category of denial of service in hardware Trojan classification. The

trigger mechanism is based on a counter. Whenever the counter reaches the particular count

40 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

value, the transmission is delayed by certain clock intervals and it also results in the loss of

intermediate data during the course of transmission.

3.5 Automatic Generation of Hardware Trojan Trigger Con-

dition

One of the challenges when creating these benchmarks is to find robust trigger conditions for

each design. This implies triggering the Trojan only when a rare event happens. Thus, in this

work we propose a robust automatic trigger extraction mechanism. The method is composed

of 3 steps as follow (also shown in algorithm 1):

Step 1: Taps Insertion and Evaluation. This first steps parses the original Trojan free

behavioral description (Corig) and instruments the internal variables with taps (line 2). These

taps basically print to files the values of each individual variable being written to. Separate

taps are created if the same variable is re-used throughout the code. Once the instrumentation

takes place, the new behavioral description (Ctaps) is compiled and executed with the test-

vectors provided (TVorig) (line 3). If no test vectors are given then N random vectors are

used.

Step 2: Additional Test-vector Generation. This second step analyzes the test vectors in

TVorig and extracts combinations of inputs not present. New test-vectors can lead to unique

internal variables’ values, which in turn can serve as triggers for the Trojan. In order to

avoid having to generate new test-vector randomly and verify if they are already present in

TVorig, a different approach is taken. For this, the method first sorts TVorig→ TVsort (line

5). The method than continues by choosing n values not present in TVsort and storing them

in TVnew (line 6), where n is specified by the user externally. The new values generated

are in turn appended to the original test-vectors to create an extended new test-vector

TVextend = TVorig
⋃

TVnew (line 7).

3.5 Automatic Generation of Hardware Trojan Trigger Condition 41

ALGORITHM 1: Automatic Trigger mechanism extraction
input :Corig, TVorig, n.

Corig : Trojan free Behavioral IP
TVorig : Test-vectors for Corig

n : Number of new Test-vectors
output :TriggerX

TriggerX : Trigger condition for internal variable X

1 Step 1: Taps insertion and Evaluation.
2 Ctaps=insert_taps(Corig);
3 Val_Taps[i]=execute(Ctaps,TVorig);

4 Step 2: Additional Test-vector Generation.
5 TVsort=sort_TV(TVorig);
6 TVnew=gen_new_unique_TV(TVsort , n);
7 TVextend= TVorig

⋃
TVnew;

8 Step 3: Robust Trigger Condition Extraction.
9 Valextend_Taps[i]=execute(Ctaps,TVextend);

10 X = find_var_unique_value(Val_extendTaps[i]);

11 return(TrigggerX);

Step 3: Robust Trigger Condition Extraction. This last step, re-executes the instrumented

design ((Ctaps)) with the new test-vector (line 9). It then compares the values of the internal

variables for the original test-vectors (TVorig) and the new ones (TVextended) and selects

the test-vectors and the internal signals which have a unique value when simulated with

TVextended as compared to TVorig (line 10). The unique value(S) of the internal signal can

then by used as the trigger condition of the hardware Trojan. Because multiple internal

variables might have unique values, the unique values not created with TVorig are in turn

analyzed and the variable that has a single unique value (rare event) or smallest number of

unique values, generated when using TVextended is used to trigger the hardware Trojan, with

the unique value being the trigger condition.

The entire flow is automated using perl scripts and is extremely fast as it is done at the

behavioral (software) level.

42 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

 SystemC
(kernel.cpp)

z7929401884 [956-0x2C5-0o367] = p795f772c7c;
 k795f772c7c= z7929401884 [0x32D5-0x2EF5-992];
 for (zddd43c876a = 0xEFCD-52363-0x2341;
zddd43c876a < 37661-45842+0x1FFD; zddd43c876a =
zddd43c876a + 0o2563-0o326-1180) {
 k795f772c7c = k795f772c7c +
z7929401884 [0x3ADF-0x2FED-2801+
zddd43c876a]+ 0xEFCD-52364-0x2341;
 }
 ud904d243ce= k795f772c7c /(0x235-492-0x41);

Obfuscator

Kernel_obf.cpp

send receive Test
Vectors

compare

Golden
Output

main.cpp

testbench.cpp

Figure 3.8: Framework of creating the obfuscated benchmark

3.6 Behavioral IP Obfuscation

BIPs normally have different price policies depending on the amount of disclosure of the IP.

A BIP consumer can procure the complete source code and would not need the services of

the BIP vendor anymore as he would have full control and visibility of the code. Alternative

service models include the encryption of the BIP with a predefined set of constraints (e.g. IO

bitwidths, synthesis pragmas/attributes), which the BIP consumer cannot modify. Another

way is through obfuscation. Obfuscation can be defined as the intentional act of obscuring the

functionality of a product to secure the intellectual property innate in the product. Obfuscation

is an easy and inexpensive way to protect the IPs from illegal use without the permission

from the rightful owner. When obfuscating an IP, a functional equivalent source file is

generated, which is virtually impossible for humans to understand and extremely difficult to

reverse-engineer. In this work, apart from the un-obfuscated benchmarks presented, we have

also included obfuscated version of the benchmarks with hardware Trojans. The obfuscated

benchmarks have the same functionality as the un-obfuscated version with the hardware

Trojans embedded. This is to demonstrate how the rogue IP vendor in the supply chain can

3.6 Behavioral IP Obfuscation 43

completely deceive the BIP consumer by inserting the hardware Trojans in the obfuscated

IPs, making it even more difficult to detect using the traditional verification approaches.

Commercial HLS tools also allow the encryption of these BIPs. This approach was not used

in this work as this is tool dependent.

Fig. 3.8 shows an overview of the obfuscated version of the benchmark. As shown in the

figure, not every file is obfuscated. Only the synthesizable kernel is, while the files related to

the benchmark (TB.cpp, Bench.h) are left unobfuscated. The obfuscator used in this work

is Stunnix C/C++ [109]. Adding the obfuscated version of the benchmarks should further

highlight the problems of detecting hardware Trojans at the behavioral level. One could

argue that previously developed detection methods targeting the detection at the RT-level

could be used for the synthesized IP. Two main problems prevent this. First, FPGA vendors

provide their own HLS tools (e.g. Xilinx Vivado HLS and Intel’s OpenCL SDK). The main

problem is that these tools do not generate RTL code as they intend to lock users using only

their FPGAs. Secondly, the RTL code generated by commercial HLS tools are often not easy

to read as it is machine generated. Most of the hardware Trojan techniques do not actually

find a Trojan, but flag a location which could potentially belong to a Trojan , but that could

also be a bug or simply un-executed code that the given test vectors is not covering. The

next step requires the manual inspection to confirm the existence of Trojan or not. If the

behavioral IP is either obfuscated or the RTL is machine generated, this manual inspection is

much harder or impossible.

3.6.1 Experimental Results

Each benchmark comes with a SystemC testbench with golden inputs and golden outputs to

verify that each design works correctly. The Hardware Trojan never triggers for these inputs.

Table 3.3 & 3.4 characterizes each of the designs in terms of they type of Trojan (cols 2 to 4

of Table 3.3), lines of C code of the original design and the infected code (cols 5 and 6 of

44 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

 (a) (b) (c)

(d) (e) (f) (g)

Figure 3.9: Disparity Estimator (a) original input stereo image (1920 × 1080) (b) expected
golden output (64 × 64) (c) input stereo image (1920 × 1080) (d) expected output (e) HW
Trojan effects (combinational trigger+no memory payload I)(64 × 64) (f) HW Trojan (com-
binational trigger+ no memory payload II) (64 × 64) (g) HW Trojan effects (combinational
trigger+ memory payload) (64 × 64)

Table 3.3), area of the synthesized original circuit and the infected version after HLS (cols 7

to 9 of Table 3.3) and finally the coverage with and without the Trojan (cols 5 to 7 of Table

3.4). The reported area is obtained by synthesizing each design with a commercial HLS tool

(CyberWorkBench from NEC [40]). The target technology used is Nangate 45nm and the

target synthesis frequency 100 MHz.

From the results, it can be observed that a few lines of code (on average 0.5% more) can

be transformed into powerful hardware Trojan. On an average, the area of these Hardware

Trojans is 2.92% larger, while in most cases does not exceed 1%. One could argue that this

extra area introduced by the Hardware Trojan can be used as a marker to detect it compared

to the golden, Trojan free design. Although true in nature, the BIP market is extremely small

and infancy, and it is difficult to procure golden IPs from another 3PBIP vendor. This leads

to difficulty in comparison. One other typical way to detect Hardware Trojan is through

coverage reports. Previous work identifies lines of code not executed and assume that this

3.6 Behavioral IP Obfuscation 45

Table 3.3: Experimental Results comparing benchmark with and without Hardware Trojan
for area

Bench Trigger Payload Effect C orig C Trojan Area Orig
[µm2]

Area Tro-
jan [µm2]

∆Area

adpcm Sequential no memory SWOM 186 186 3,560 3,570 0.28%
Sequential memory SWM 187 3,602 1.17%

aes combinational no memory CWOM 371 380 36,904 38,326 3.85%
bsort combinational no memory CWOM 78 78 2,455 2,596 5.74%

Sequential memory SWM 78 2,634 7.29%
decim Sequential memory SWM 298 298 71,967 75,516 4.93%
disp combinational no memory CWOM 284 284 72,366 73,671 1.80%

combinational memory CWM 285 78,152 7.99%
fir combinational no memory CWOM 75 75 9,987 10,023 0.36%
interp combinational no memory CWOM 108 108 46,239 46,254 0.03%

Sequential no memory SWOM 108 46,256 0.03%
Sequential memory SWM 109 46,325 0.18%

kasumi combinational no memory CWOM 288 288 65,571 67,572 3.05%
Sequential memory SWM 288 67,895 3.54%

sobel combinational no memory CWOM 173 173 1,762 1,781 1.07%
combinational memory CWM 175 1,823 3.46%

sequential memory SWM 175 1,782 1.13%
uart sequential memory SWM 160 164 1,614 1,724 6.81%
Geomean 177 178 13,057 13,494
Avg. 2.92%

piece of code is a potential Trojan. Thus, these benchmarks have been written in such a way

that when the Hardware Trojan is enabled their code is always executed, except for the uart

design. The rest achieves 100% code coverage for the Trojan description. Columns 5 to 7 of

Table 3.4 show the source code coverage.

To easily understand the impact of the Hardware Trojan on the results, we have added the

images of the results obtained for the disparity estimator case in Fig. 3.9. Fig. 3.9(a) shows

the input image and Fig. 3.9(b) the expected golden output, both provided by the BIP vendor.

In all of the cases with hardware Trojan, the expected output is always obtained. Fig. 3.9(d)

shows the picture that the disparity estimator should generate during the normal operation

for another input (Fig. 3.9(c)), which is not provided by the IP vendor and hence can trigger

the Hardware Trojan. Figs. 3.9(e) and (f) shows the consequence of hardware Trojan with

the CWOM case. The effect of the Trojan can be observed with entire regions overwritten by

46 Review of Hardware Security Techniques and S3CBench Benchmark Introduction

Table 3.4: Experimental Results comparing benchmark with and without Hardware Trojan
for coverage

Bench Trigger Payload Effect Coverage orig Coverage with Trojan Coverage
of Trojan
code

adpcm Sequential no memory SWOM 100% 100% 100%
Sequential memory SWM 100% 100%

aes combinational no memory CWOM 85.3% 87.1% 100%
bsort combinational no memory CWOM 100% 100% 100%

Sequential memory SWM 100% 100%
decim Sequential memory SWM 100% 100% 100%
disp combinational no memory CWOM 98.2% 98.2% 100%

combinational memory CWM 98.2% 100%
fir combinational no memory CWOM 100% 100% 100%
interp combinational no memory CWOM 96.43% 96.43% 100%

Sequential no memory SWOM 96.43% 100%
Sequential memory SWM 96.67% 100%

kasumi combinational no memory CWOM 98.8% 98.8% 100%
Sequential memory SWM 98.8% 100%

sobel combinational no memory CWOM 100% 100% 100%
combinational memory CWM 100% 100%

sequential memory SWM 100% 100%
uart sequential memory SWM 91.4% 91.9% 50%
Avg. 97.0 % 97.9% 97.22%

it. Fig. 3.9(g) shows the result for a CWM memory case. This is the most powerful Trojan

which enables the payload to be active over a longer duration of time. Because of the page

limit, we can not discuss the results of every benchmark but encourage the users to use the

benchmarks available at [106].

3.7 Summary

This chapter has reviewed the most common hardware security threats and has provided

insight about the most recent work done in this area. The chapter has then focused on

hardware Trojans, their taxonomy and how they can be inserted in behavioral IPs. In

particular, hardware Trojan detection techniques related to our work and their limitations.

Most of the hardware Trojan detection techniques rely on trust-hub benchmarks which cover

3.7 Summary 47

the wide range of Trojans at different abstraction level but does not cover the behavioral

level. Hence, in this chapter, the first security benchmark suite in a behavioral language

supported by all major HLS vendors, with different types of Hardware Trojan which produces

different effects has been presented. The benchmarks are open source and will continue to be

expanded to include more designs in the future.

Chapter 4

Behavioral Intellectual Property (BIP)

protection

This chapter addresses the issue of BIP protection from two different angles: The first, from

the BIP vendor who needs protection from the unlawful use of the BIP. The second, from the

BIP user/consumer to make sure that the 3PBIP purchased is Trojan free. To tackle the first

issue, source code obfuscation is used to hide the BIP from the consumer, but as it will be

shown in this chapter, poses some significant efficiency problems that this work addresses. In

the second case, a hardware Trojan detection technique for behavioral IPs through property

checking techniques is presented.

4.1 Efficient Behavioral Intellectual Properties Source Code

Obfuscation for High-Level Synthesis

The globalization of IC design and manufacturing process poses serious concerns about

their trustworthiness and security. It is nowadays virtually impossible to fully design and

4.1 Efficient Behavioral Intellectual Properties Source Code Obfuscation for High-Level
Synthesis 49

ANSI-C SystemC Matlab

Intermediate Repr. (IR)

High-Level Synthesis

Verilog

cparser.exe scparser.exe mparser.exe

Dead-code
Constant propag
Common sub-expr

verigen.exe vhdlgen.exe

VHDL

Front-end

Back-end

Figure 4.1: Typical HLS flow overview.

manufacture an IC in-house using in-house tools. With the increased time-to-market pressure,

companies further rely on third parties for the development of ICs.

Most ICs are now heterogeneous System on Chips (SoCs) comprised of multiple in-house

developed IPs and third party IPs (3PIPs) integrated onto the same chip. IC vendors have

also embraced High-Level Synthesis (HLS) in order to further reduce the time-to-market.

Thus, this has opened the way to the market of third-party behavioral IPs (3PBIP).

One of the main challenges for BIP providers that is hampering the expansion of the

usage of these BIPs, is how to protect the IP from being reused illegally. A study conducted

by [10] estimated that the semiconductor industry loses up to $4 billion annually because of

IP infringement.

Also, BIPs normally have different price policies depending on the amount of disclosure

of the IP. A BIP consumer can purchase the complete source code and would not need the

services of the BIP provider anymore as he would have full control and visibility of the code.

An alternative service model includes the encryption of the BIP with a predefined set of

constraints (e.g. I/O bit widths, synthesis pragmas), which the BIP consumer cannot modify.

Thus, any future alterations would require a new license agreement and a new purchase. The

first type of service is obviously much more expensive than the second, typically 10-100×.

50 Behavioral Intellectual Property (BIP) protection

An additional issue that needs to be addressed, is when a company is interested in

purchasing a BIP it often contacts the BIP provider to evaluate the quality of the IP (i.e., area,

delay, latency and/or throughput). During the evaluation process, the BIP cannot be made

visible as the BIP consumer would not need to end up purchasing the BIP. Thus, mechanisms

to protect the IP are required.

Obfuscation is an easy and inexpensive way that is being used for this purpose. When

obfuscating an IP, a functional equivalent source file is generated, which is virtually impossi-

ble for humans to understand and extremely difficult to reverse-engineer. The obfuscation

process typically removes comments, renames variables, and adds redundant expressions.

There is a multitude of free or inexpensive obfuscators, which makes this an ideal method

to protect Behavioral IPs (BIPs) for High-Level Synthesis (HLS). The main problem when

using obfuscators is that commercial HLS tools often make use of dedicated parsers, de-

veloped in-house, as front-ends. Fig. 4.1 shows an example of a typical commercial HLS

tool. Different parsers parse different input languages (e.g. ANSI-C, SystemC/C+, Matlab or

Java) into an intermediate internal representation (IR). This first step is responsible for tradi-

tional technology independent compiler optimizations, e.g. dead-code elimination, constant

propagation, and common sub-expression eliminations.

The main synthesizer part, in turn, reads this IR and performs the main HLS steps

(resource allocation, scheduling and binding) and the backend, in turn, generates either

Verilog or VHDL. This flow has some unique advantages that make it extremely popular.

Being able to take as input the IR instead of the source code directly allows supporting new

languages in the future by simply adding a new front-end parser. The main disadvantage is

that each parser needs to be often developed in-house by the EDA company, which might not

be an expert in this field, and thus leading to suboptimal designs due to not being able to fully

optimize the input description. This is particularly important in the case of obfuscation as

4.1 Efficient Behavioral Intellectual Properties Source Code Obfuscation for High-Level
Synthesis 51

this processes typically inserts multiple redundant operations to make the code less readable,

which in turn leads to increase in area, delay, and latency of the synthesized circuit.

This work analyzes the impact of obfuscation on the quality of results (QoR) in HLS,

and to propose effective obfuscation methods which do no lead to any area and performance

degradations. In particular, the main contribution of this work can be summarized as follows:

1. Study the impact of different level of obfuscation of BIP for different commercial HLS

parsers on the QoR.

2. Propose a fast and efficient heuristic approach to obfuscate these BIPs with no over-

heads.

4.1.1 Motivational Example

Fig. 4.2 shows graphically how the level of obfuscation affects the area of the synthesized

circuit when two different parsers from the same commercial HLS tool are used 1. The results

shown correspond to different benchmarks, taken from the open source S2Cbench[107]

benchmark suite. Because the commercial HLS tool used supports ANSI-C and SystemC,

the benchmark suite was converted to ANSI-C in order to allow the comparison.

As shown in the Figs. 4.2(a)-(f), the increase in the level of obfuscation leads to a

monotonically increase in the area for the ANSI-C case, whereas the area stays constant for

the SystemC version. This implies that the independent parsers perform a different level of

compiler optimizations and hence lead to different synthesis results. It is, therefore, important

to develop techniques to maximize the obfuscation of behavioral descriptions for HLS while

maintaining the QoR compared to the unobfuscated version.

1Tool name cannot be disclosed due to confidentiality agreement

52 Behavioral Intellectual Property (BIP) protection

0 20 40 60 80 100

500

1,000

1,500

Obfuscation Level[%]

A
re

a[
µ

m
2]

ANSI-C parser
SystemC parser

(a) AVE8

0 20 40 60 80 100
600

650

700

750

800

Obfuscation Level[%]

A
re

a[
µ

m
2]

ANSI-C parser
SystemC parser

(b) ADPCM

0 20 40 60 80 100
1.7

1.75

1.8

1.85

1.9
·104

Obfuscation Level[%]

A
re

a[
µ

m
2]

ANSI-C parser
SystemC parser

(c) AES

0 20 40 60 80 100

1.78

1.8

1.82
·104

Obfuscation Level[%]

A
re

a[
µ

m
2]

ANSI-C parser
SystemC parser

(d) BSORT

0 20 40 60 80 100
1,800

2,000

2,200

2,400

Obfuscation Level[%]

A
re

a[
µ

m
2]

ANSI-C parser
SystemC parser

(e) DISP

0 20 40 60 80 100

2,500

3,000

3,500

Obfuscation Level[%]

A
re

a[
µ

m
2]

ANSI-C parser
SystemC parser

(f) FILTER

0 20 40 60 80 100
1,000

2,000

3,000

4,000

Obfuscation Level[%]

A
re

a[
µ

m
2]

ANSI-C parser
SystemC parser

(g) SOBEL

Figure 4.2: Area degradation of different benchmarks [107] with the increase in level of
obfuscation

4.1.2 Previous work

In the field of the consumer market, the companies spend a significant amount of time and

resources in reverse engineering their adversary’s product to understand the internal design

details. This is a routine activity which happens in industries ranging from automotive

and computer software to electronics. Reverse engineering is not a crime. In fact, it is

protected by law. The major threat in reverse engineering is, it can be used in a number of

malicious ways. Consider a company A exploits the IP of company B by incorporating in

their own products without giving credit or compensation to company A. Although passive

IP protection methods like copyrights, patents, and watermarking try to safeguard the rightful

4.1 Efficient Behavioral Intellectual Properties Source Code Obfuscation for High-Level
Synthesis 53

owner, it is not effective because of the degree of enforcement law varies from one part of the

world to another. Hence an active approach to IP protection is required, of which obfuscation

is one of the vital part [110].

Obfuscation is an easy and inexpensive way for protecting the hardware IPs. Most

previous work in the field of hardware IP obfuscation deal with hard IPs [111–117]. In

this thesis, we focus on the efficient obfuscation of behavioral IPs, which comes under the

category of soft IPs.

Previous work in this area proposed by [74] and [118] represents RTL code as a data flow

[74] or state transition matrix [118] graph. The graph is then modified with additional states

(which are also called as key states) in the finite state machine representation of the code

which should be passed through with the aid of a key sequence [74] or a code word [118].

The IP will start functioning only after the application of correct keys; otherwise, the IP will

be stuck in a futile, obfuscated state.

Similar to the software case, soft IPs in hardware can also be obfuscated in terms of

readability and intelligibility. The authors in [119] incorporated the techniques such as loop

transformation (loop unrolling), statement reordering, conversion of parallel processing to

sequential, etc., to make the VHDL source code nearly impossible to read and yet functionally

identical to the original source code. Kainth M et al. [120] in their work, took the leverage

of control flow flattening [121] [122] approach to break the function and loop into blocks

and convert to "switch" statements, which implies the control flow of the program becomes

invincible to an attack.

Although the behavioral IP codes are similar to the software codes, the software obfus-

cation techniques can not be directly portable for hardware obfuscation as it does not take

into account the degradation introduced by the unoptimized parsers, which in turn lead to

unoptimized hardware circuits.

54 Behavioral Intellectual Property (BIP) protection

4.1.3 Obfuscation

Obfuscation can be defined as the intentional act of obscuring the functionality of a product

to secure the intellectual property innate in the product. Formally:

Definition: O is an obfuscator which can transform a program P into its obfuscated

version O(P) which has the same functionality F as P, such that the F{P}= F{O(P)} and

such that it is unintelligible for an adversary who is trying to recover P from O(P).

Software obfuscation is different from traditional hardware obfuscation. In software,

code obfuscation changes its structures which make the program difficult to understand for

the attackers to reverse engineer yet preserving the functionality. Code obfuscation is the

most popular alternative to encryption as it does not require any inverse transformation nor

the need for an encryption key to decrypt the cipher text.

In the hardware domain, obfuscation is mainly concerned with protecting the functionality

of a hardware by changing the micro-architecture of the hardware module to be obfuscated,

such that it cannot be reverse engineered. The taxonomy of the hardware obfuscation

techniques at different abstraction level (RTL level, gate level, layout) and also some emerging

techniques can be found at [110]. This taxonomy does not include the behavioral level, mainly

because at this level the micro-architecture has not been fixed and obfuscation at this level is

virtually the same as software obfuscation.

As mentioned previously, the obfuscation of BIPs is similar to the obfuscation of software

programs. Most of the BIP vendors supply IPs which are either written in ANSI-C or

SystemC (C++). This has the additional side benefit that any commercially available software

obfuscators can be used to obfuscate these BIPs.

Fig. 4.3 shows a simple example of the obfuscation of a BIP code snippet which computes

the average of eight numbers using a commercially available C/C++ obfuscator [109]. As

shown in the figure, the obfuscated version of the original code snippet is extremely difficult

to understand and thus for the purpose of reverse engineering.

4.1 Efficient Behavioral Intellectual Properties Source Code Obfuscation for High-Level
Synthesis 55

/*Obfuscated code*/

z7929401884 [956-0x2C5-0o367] = p795f772c7c;
k795f772c7c= z7929401884 [0x32D5-0x2EF5-992];
for (zddd43c876a = 0xEFCD-52363-0x2341;
zddd43c876a < 37661-45842+0x1FFD; zddd43c876a
= zddd43c876a + 0o2563-0o326-1180) {
 k795f772c7c = k795f772c7c + z7929401884
[0x3ADF-0x2FED-2801+ zddd43c876a]+ 0xEFCD-
52364-0x2341;
 }
ud904d243ce= k795f772c7c /(0x235-492-0x41);
ta2e5f06cde = ud904d243ce;

/*Original code */

buffer[0] = in0;
sum= buffer[0];
for (i= 1; i< 8; i=i+1) {
 sum =sum + buffer[i];
 }
 out0_v= sum / 8;
out0 = out0_v;

Obfuscator
@^%&#d;>*@
#&t3}\]>”

Figure 4.3: Behavioral IP obfuscation example

4.1.4 Typical Obfuscation Process

In this section, a brief description about the techniques used by typical software obfuscators

like [109], which can be used to obfuscate BIPs will be discussed. In particular:

1. Mangle integers and mathematical expressions: Mangling the integers and math-

ematical expressions make the attackers difficult to read and analyze the code. If

we revert back to the Fig. 4.3, the integer "8" in the for loop has been replaced by

"37661-45842+0x1FFD". Also, the "sum" expression, "sum =sum + buffer[i]; " in-

side the for loop has been replaced by "k795f772c7c = k795f772c7c + z7929401884

[0x3ADF-0x2FED-2801+ zddd43c876a]+ 0xEFCD-52364-0x2341;". Although both

the expressions evaluate to the same original value and expression, the mangled version

is difficult to understand for the attackers.

56 Behavioral Intellectual Property (BIP) protection

2. Strip spaces: Writing a program is an art. Usually, any program whether it is a

software program or hardware program is written legitimately to make it understandable

(readable) for the readers or the programmer itself when he/she wants to read/modify

the code again. Trimming the extra spaces inserted in the code is one of the techniques

in the obfuscation which accounts for poor readability for the attackers.

3. Replacing the identifiers and the signals: This is one of the important features of

most of the obfuscator. There are different ways of replacing the identifiers, signals or

variables of a program in obfuscation.

(a) Using a set of characters such as I and l or set of O and 0: Replace all the

identifiers with the combination of either I and l or O and 0.

(b) Use of mix case: Since C and C++ are case sensitive, a single large identifier is

chosen as an identifier to replace all the other identifiers by mixing the case of

the identifier.

(c) Use of md5: It is one of the powerful technique to replace the identifier. In this,

message direct algorithm is used to replace the identifier with a generated hash

value. Eg. "buffer" in the Fig. 4.3 is replaced by "z7929401884" which affects

the readability of the code.

(d) Use of prefix: It is one of the simplest and not so efficient ways of replacing the

identifiers. In this case, every identifier is prefixed with a certain word. For exam-

ple, sum (and all the identifiers) in the Fig. 4.3 is changed to _confidential_sum.

4. Comments: Deleting the useful comments or the use of nonsensical comments can

deceive the hackers from understanding the source code.

Obfuscators typically mix all of these techniques. These techniques work extremely well

with mature compilers (e.g. gcc and g++) as these are based on extremely robust parsers

4.1 Efficient Behavioral Intellectual Properties Source Code Obfuscation for High-Level
Synthesis 57

which have been developed for decades. Hence, the binary code (.exe) of obfuscated software

version and the unobfuscated versions are the same.

As discussed in the motivational example, the parsers of different EDA tools can lead

to different results for the obfuscated version of the code. Although the functionality is

preserved, the obfuscated version incurs overheads in terms of area and delay because these

parsers are not as robust as the software compiler ones, as often the input language is a subset

of software languages.

4.1.5 Reason for the overhead

Although the functionality of the obfuscated behavioral IP is equal to that of the un-obfuscated

version, the compiler fails to optimize some of the mangled mathematical expression which

leads to extra circuit generation after synthesis. For example, in Fig. 4.3 "sum =sum +

buffer[i];" has been obfuscated to "k795f772c7c = k795f772c7c + z7929401884 [0x3ADF-

0x2FED-2801+ zddd43c876a]+ 0xEFCD-52364-0x2341;". The obfuscated part "0xEFCD-

52364-0x2341" is a dead code. It is the responsibility of the compiler to optimize the code

using dead code elimination techniques. Failed to optimize will lead to the generation of

an extra circuit after the synthesis which in turn increases the latency or critical path. For

the above example, the synthesizer may generate some extra adders for the un-optimized

expression.

4.1.6 Proposed Method to Minimize QoR Degradation due to Obfusca-

tion

As shown in the motivational example, there is a trade-off between QoR and the level of

obfuscation. In this section, we discuss two methods to minimize the QoR degradation due

to the obfuscation process. The first method is a meta-heuristic based on genetic algorithm

58 Behavioral Intellectual Property (BIP) protection

(GA), which has been shown to lead to very good results for multi-objective optimization

problems like this one and the second method is based on a fast iterative greedy method.

4.1.7 GA-based Obfuscation

GA was first proposed by John Holland in [123] to find solutions to problems which are

computationally intractable. Due to its modular nature, it can be applied to a wide range

of practical problems. In this work, GA is used to find a design with the highest-level

of obfuscation with minimum QoR degradation, although by changing the cost function

it is easy to adapt the method to find different configurations with unique obfuscation vs.

degradation trade-offs. Fig. 4.4 graphically summarizes the two main steps involved in our

proposed GA-based obfuscator, where every gene corresponds to a single line in the BIP,

which either has to be obfuscated or left unobfuscated.

The inputs to the GA-based explorer are the original un-obfuscated code P, the com-

pletely obfuscated code O(P), and lightly obfuscated version LO(P), which does not include

mangling, as this obfuscation technique has been shown to be the culprit for the QoR degra-

dation. Thus, LO(P)(QoR) = P(QoR). This lightly obfuscated version is used as a basis to

further obfuscate the BIP or not and is important to avoid any syntax errors when individual

lines of code are fully obfuscated.

Step 1: Initial Population Generation: In this first step, an initial random population

is generated, each new configuration with random obfuscation level OL. This is done by

randomly parsing the BIP line by line and deciding if the given line should be obfuscated or

not. The obfuscation probability is an input parameter to the explorer. In this case, it is set to

30%. This will generate a random pool of parents to start generating the different offsprings.

Each newly generated configuration is synthesized (HLS), the QoR={Area, Delay}

extracted and the cost C of this new solution computed using C = α×Area−β ×OL (scaling

the area and OL) . The values for α and β can be either fixed to find a particular design or

4.1 Efficient Behavioral Intellectual Properties Source Code Obfuscation for High-Level
Synthesis 59

ANSI-C

SystemC

D
1

D
2

D
3

D
4

D
q

D
5

D
n

D
p

D
p

D
q

Line
1
 Line

2

Line
N

Line
1
 Line

2

Line

N

D
c
 Line

1
 Line

2

Line
N

D
c
 Line

1
 Line

2

Line
N

Crossover

mutation

Step 1 Step 2

Figure 4.4: Genetic Algorithm (GA) method overview.

can be dynamically updated to explore the entire search space, e.g. α = 1 and β = 0 for the

area dominant designs and α = 0 and β = 1 to find obfuscation dominant designs, and α =

0.5 and β = 0.5 when a compromise between QoR degradation and level of obfuscation is

sought. Finally, the cost obtained is stored in a cost array Ccost . Once k parent designs are

generated, the method continues by pruning the xth% of designs with largest cost in order to

reduce the search space and hence the running time. In this case x = 50.

Step 2: Offspring Generation: Two main functions are responsible for generating an

offspring. Crossover and mutation. Crossover is performed between the two parent designs

chosen randomly from within the pruned population. Although there are many techniques to

chose parents, this work makes use of adjacent designs technique. A random cut-off point is

chosen between the two parents and the lines of code obfuscated in each parent are passed to

the child.

The mutation is performed on the offspring by flipping the lines of code to be obfuscated

or not. This method goes from the first line to the last line and computes if the line has to

be mutated or not. A random probability Prand is used for this purpose. If Prand is less than

a given threshold (10% in this case), then the corresponding line of the BIP is obfuscated.

60 Behavioral Intellectual Property (BIP) protection

Finally, the offspring is synthesized and the cost for this configuration computed. The above

steps have to be carried till the stopping criterion is met. Where in this work, N=20.

4.1.8 Fast Iterative-Greedy Method

Although the GA-based explorer can find a good set of designs with unique trade-offs, the

running time of the explorer can be considerable. Thus, a faster method is needed. In this

section, we propose a fast heuristic explorer which generates a single design with better QoR

and obfuscation level. The algorithm 2 gives a brief overview of the proposed method. The

detailed description of the algorithm is given below:

The inputs to the algorithm are the original code P, the completely obfuscated code O(P),

the lightly obfuscated code LO(P) (explained in the GA based obfuscation), and the QoR

synthesis results of the different variants (area and delay). The output is the version with the

highest amount of obfuscation and lowest QoR degradation (best-obfuscated design BO(P)).

The method is based on three main step, as follows:

Step 1: Extract Potential Degradation Sources: As already explained in the previous

section, the mangled integers and expressions are the main culprits for the QoR degradation,

as the ANSI-C parser cannot optimize these redundant operations efficiently. Thus, in this

step, the completely obfuscated code O(P) is parsed and the lines of code which contains

mangled integers and expressions. The line numbers, where these operations take place are

stored in the array array1 (lines 1-2).

Step 2: Identify Real Sources of Degradation: Because not all the mangled lines

(expressions) contribute toward QoR degradation, in this step, the proposed method analyzes

the previously extracted lines stored in array1, and determines which are the lines actually

contribute towards any QoR degradation. For this, each line in array1 is unobfuscated

separately and the new behavioral description O(Psingle) is synthesized (HLS). The QoR

is in turn compared with the unobfuscated original description (O(P)) to determine if the

4.1 Efficient Behavioral Intellectual Properties Source Code Obfuscation for High-Level
Synthesis 61

ALGORITHM 2: Fast Iterative-Greedy Obfuscation heuristic
input :Original_code→ P , Completely_ob f uscate_code→ O(P) ,

Lightly_ob f uscated_code→ LO(P),
QoR of P, QoR of O(P)

output :The best-obfuscated design BO(P)

1 Step 1: Search for the lines in O(P) which contains mangled integers and expressions
2 array1 = search_lines(O(P));
3 Step 2: Set i=0;
4 while !End of array1 do
5 Read the file O(P);
6 if Line number of O(P) == array1[i] then
7 O(Psingle) =Unob f uscate_line(i,O(P));
8 QoR(O(Psingle)) = HLS(O(Psingle));
9 if QoR(O(Psingle)< QoR(O(P)) then

10 array2← i;
11 break;
12 end
13 end
14 i++;
15 end
16 Step 3: Generate new obfuscated code with least obfuscating lines which degrade QoR;
17 BO(P) = replace_ob f _lines(array2,O(P));
18 QoR(area,delay) = hls(BO(P));

particular obfuscated line leads to any degradation or not, by ∆QoR(O(P)−QoR(O(Psingle) =

{AreaO(P)−AreaO(Psingle),DelayO(P)−DelayO(Psingle)} (lines 8-11). Thus, the result of this

step is an array2 containing only the obfuscated line numbers which do contribute to QoR

degradation (∆QoR(O(P)−QoR(O(Psingle) > 1) (line 10). The advantage of this method is that the

order of complexity only grows linearly with the number of lines of code (l), and hence O(n).

In the worst case, this step will require l synthesis.

Step 3: Replace obfuscation that Degrades QoR: The array2 obtained from the step

2 contains the line numbers of the obfuscated code that contribute significantly towards the

QoR degradation. A new obfuscated version of the BIP is in turn generated by substituting

the complex expressions in the array2, by simple obfuscation techniques which are known

not lead to any QoR degradation. E.g. instead of mangling the integer "8" in the for loop

of Fig. 4.3 with "37661-45842+0x1FFD", it can be obfuscated as "5-6+9" or any simple

62 Behavioral Intellectual Property (BIP) protection

Table 4.1: Results: Experimental Results

Benchmark
Original Fully Obfuscated Genetic Algorithm Iterative-Greedy

Area [µm2] Delay [ns] Area [µm2] Delay [ns] Area [µm2] Delay [ns] OL [%] Trun[s] Area [µm2] Delay [ns] OL [%] Trun[s]

Ave8 710 1.33 1,722 2.68 710 1.33 88.88 854 710 1.33 94.73 22

ADPCM 665 5.72 669 5.89 666 5.72 99.07 1062 665 5.72 99.07 60

AES 17,376 2.39 18,329 2.39 17,554 2.39 99.83 1,256 17376 2.39 99.83 334

Bsort 17,800 1.68 18,046 2.57 17,917 2.51 98.46 1042 17,800 1.68 98.46 26

Disparity 1,879 3.09 2,571 4.41 1,981 3.29 98.99 2,256 1,879 3.09 99.61 319

Filter 2,367 4.05 3,523 4.67 2,473 4.32 96.67 926 2,363 4.05 96.67 29

Sobel 1,173 2.94 4,363 15.28 1,301 4.04 97.00 959 1,173 2.94 98.55 27

Geomean 2,580 2.72 3,952 4.37 2,662 3.08 1131.7 2,580 2.72 60.19

Avg. 96.98 98.13

expressions which can be easily optimized by the parser. The same technique applies for

the mangled expressions too. The obfuscated revision obtained is the best-obfuscated code

BO(P), because in this heuristics, instead of un-obfuscating every mangled integers and

expression (line 17) we only obfuscate the lines which actually degrade the QoR value.

Finally, the QoR of the newly generated obfuscated code BO(P) is compared with the QoR

of the original code P by performing the last HLS (line 18).

4.1.9 Experimental Results and Discussions

Seven synthesizable SystemC benchmarks from the (S2CBench) [107] benchmark suite are

used to evaluate our proposed methods. These benchmarks were manually translated into

ANSI-C since the commercial HLS tool used in this work has both a SystemC and ANSI-C

parser. The obfuscator used is Stunnix C/C++ [109]. Table 4.1 shows the qualitative results

(area and maximum delay) for the original (un-obfuscated) code, 100% obfuscated code and

the best results found by the GA and iterative greedy method. Table 4.1 also compares both

methods based on the running time required to find the solution.

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 63

Some important observations can be made from the experimental results. Firstly, by fully

obfuscating the BIP without any further considerations, the area and delay on average grow

by 35% and 37.7% respectively. This is obviously not acceptable as no IP consumer will

accept the price of this overhead. Secondly, the Iterative-Greedy method is much faster than

the GA, on average 18×. Finally, both GA and Iterative-Greedy, lead to very good results,

with both of the methods allowing to obfuscate on average over 96% of the BIP, without

degrading the area nor delay of the synthesized circuit. The Iterative-Greedy can actually

achieve the exact same result as the un-obfuscated synthesis.

It should be noted that the unobligated lines of code can, in turn, be obfuscated using a

simple variable name substitution, space and comment deletion, which has shown, not to

lead to any overheads.

In summary, it can be concluded that the Iterative-Greedy method is very efficient

(requiring on average 60 seconds to execute) while leading to BIP descriptions with over

98% of obfuscated lines with no penalties.

4.2 Hardware Trojan Detection in Behavioral Intellectual

Properties (IPs) using Property Checking Techniques

In the previous section, we have studied the impact of source code obfuscation on the quality

of results of BIPs for HLS and proposed a quick and efficient method to maximize source

code obfuscation while preserving the original design characteristics. In this section, we are

going to discuss the hardware Trojan detection technique in BIPs using formal verification,

in particular, property checking.

The contribution of this work is multi-fold: First, we present a method to detect HW

Trojans in encrypted and un-encrypted 3PBIPs given in ANSI-C or SystemC using formal

verification methods. In particular, property checking at the behavioral level. Secondly, the

64 Behavioral Intellectual Property (BIP) protection

proposed method has been extended to deal with parts of code which are always executed,

i.e., ternary operators (explained in detail in the next sections), by automatically re-writing

these constructs. Thirdly, we extend a method presented in [108] which leaks the secret

key of a block cipher (AES) by creating an HW trojan which executes an n number of

extra encryptions. Finally, we present a wide cross section of different types of HW Trojan

implemented on BIPs to change the functionality of the IP, leak information and another

which leads to the denial of service. These BIPs have been made public at the trust hub [105]

which already includes designs with HW Trojan at different levels of abstractions, but did

not contain any synthesizable BIPs.

4.2.1 Related Work

The main problem with previous hardware Trojan detection approaches is that many proposed

methods require a golden Trojan-free IC or functional model [124]. In the case of detecting

HW Trojan in third party IPs (3PIP), this is not the case. IP providers only provide a

single version of the IP and there is no reference model against which the IP received can be

verified. 3PIPs are typically delivered in RTL code (Verilog/VHDL). Thus, previous detection

techniques have focused on code coverage [125], although it has been shown that even a

100% code coverage cannot guarantee a Trojan free design [126]. Our work nevertheless

deals with this as shown in the next sections.

Most previous work on HW Trojan detection, suggests to source IPs from two different

vendors, as it is very unlikely that both IPs are infected. In [127], the authors present a system

that can detect malicious outputs by duplicating the 3PIPs and comparing their outputs. They

also propose a method to avoid collusion between parent and child IPs from the same vendor,

by ensuring that two consecutive IPs of the same vendor are never directly connected together.

Cui et al. [128] extended this work by proposing a run-time recovery system which rebinds

at runtime the IPs from different vendors in case that a malicious output is detected. The

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 65

main drawbacks of these methods are that they involve large overheads because all 3PIPs

need to be duplicated and also require that all of the IPs are available from different vendors.

Moreover, the runtime recovery method proposed in [128] does not clarify how the rebinding

of IPs is done at runtime. A similar approach is taken in [129], where two BIPs are sourced

from different vendors. The main problem with these approaches is that they all rely on two

independent parties providing the same IP, which is not always possible, especially for BIPs,

which is a market still in its infancy. Secondly, the overheads, especially in area and power,

can be significant as the IP has to be replicated.

In [130], the authors introduce the term Unused Circuits Identification (UCI) to identify

potential Trojan, for circuit parts not sensitized during the verification stage. Because their

method might remove legitimate circuits, it inserts logic to detect if the removed circuits

would have been activated and trigger an exception if the hardware encounters this condition

at runtime. The drawback of this method is that it implies the need for a processor to deal

with this runtime exception.

Formal verification techniques have been also applied for the detection of HW Trojans.

In [131], the authors propose that the 3PIP user and the vendor agree upon a pre-defined set

of security properties which the IP should satisfy. Rajendran et al. [132] extended this work

and uses Bounded Model Checking (BMC) to detect Trojans. The main problem is that this

work also relies on the IP vendor and user agreeing upon a set of security properties for the

design, which the IP vendor can use to hide some of the properties that trigger the HW Trojan

from the user. Another problem with these formal verification methods is that they require

the IP user to have extensive knowledge of the IP as well as to master RTL-based formal

verification tools, which are complicated to use. Also, IPs are often sold encrypted or as

gate netlists in order to protect the IP vendor from the illegal re-use of the IP. FPGA vendors

allow to parameterize their IPs through their proprietary GUI based tools (e.g. Altera’s Mega

Wizard and Xilinx’s Core Generator), but the user has no access to the generated RTL code.

66 Behavioral Intellectual Property (BIP) protection

These IPs are typically 10x cheaper, as IP vendors will not be able to re-sell the IP to the

user if it releases the source code.

These previous works on HW Trojan detection can be coarsely classified as code analysis

techniques and formal verification techniques. Our proposed method makes use of concepts

of both categories as it uses SW profiling to detect parts of the code not executed to flag

possible HW Trojan and continues by using formal verification methods to create test vectors

which force the testbench to execute non-executed code and hence trigger any potential HW

Trojan.

Our proposed method relies on intelligently inserting assertions in the source code. In

previous work on automatically instrumenting the behavioral description to detect errors,

every line of code where an operation is performed was instrumented leading to a large

number of monitoring signals [133]. Other approaches require the user to manually specify

the assertions in the source code and generate On-Chip Monitors (OCM) [134] [135] [136].

The other approach detects and automatically converts behavioral untimed assertions into

temporal RTL assertions [137]. Our work is also different from this work because our Trojan

detection mechanism is purely pre-silicon based and thus does not require OCM. Also, we do

not require the user to specify any assertions beforehand as these are generated automatically

by our proposed method.

Hardware Trojan structure in BIPs

The easiest and straight forward way to create an HW Trojan at the behavioral level is by

using if-else or switch-case statements. Fig. 3.6 of Chapter 3 shows an example of such

a Trojan which triggers when the Sum of Product (SOP) result of the FIR filter reaches a

pre-specified value (TRIGGER). In this case, the payload will set the output to 0. Although

a very naïve example, this highlights how easy it is to create HW Trojans at the behavioral

level. One can argue that because of the increase in the level of abstraction in behavioral

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 67

IPs, it is also easier to read the source code and hence to detect the HW Trojan by simply

reading the source code. At the same time, the complexity of these IPs varies and some of

the BIPs are extremely complex e.g., encryption algorithms. Most SoC integrators (IP users)

often rely on 3PIPs because they do not have the expertise to develop these complex designs.

It is, therefore, reasonable to assume that they do not fully understand every source code

line. Moreover, the state of the art HLS tools [40] also allow 3PBIPs to be encrypted as

shown in Fig. 3.7. In order for an IP vendor to encrypt its IPs, he is first required to contact

the HLS vendor, which in turn issues an encryption key to the IP provider. The IP vendor

can then specify using synthesis directives in the form or pragmas (comments), which part

of the source code to encrypt. Fig. 3.7 shows that pragma encryption_start and pragma

encryption_end delimit the code section to be encrypted. This allows IP vendors to provide

IP users with some degree of reconfigurability, by e.g. not encrypting the I/O declaration

to allow the IP user to set the bit-width of the I/Os. The main idea behind allowing 3PBIPs

to be encrypted is to protect the IP vendor from releasing the complete source code, which

in turn also affects the price of the IP as it can be sold much cheaper, as the IP user cannot

fully re-use the IP. Obviously, the encrypted 3PBIP can only be decrypted and synthesized

with that particular HLS tool. It is obvious that encrypting the IP poses significant security

threats as HW Trojans of any complexity can now be easily masked. Our proposed method

has therefore been extended to also deal with encrypted 3PBIPs.

4.2.2 Threat Model

The threat model used in this work follows a traditional hardware threat model. We assume

that the IP consumer does not have the expertise to fully understand how the IP works and

that the IP provider provides a BIP with a testbench that never triggers the HW Trojan. The

trigger mechanism that our method detects are based on if-else, switch-case statements or

68 Behavioral Intellectual Property (BIP) protection

for and while loops. Under regular verification conditions, the payload of the HW Trojan

will never be executed. We believe that this threat model covers most of the scenarios at the

behavioral (untimed) level. We also assume that the IP vendor can model the HW Trojan

using ternary operators. Ternary operators can be defined as follows:

Ternary Operator. A ternary operator is a conditional operator that provides a shorter

syntax for if-else statements. The first operand of the statement is a boolean expression. If

the expression is true then the value of the second operand is returned otherwise the value of

the third operand is returned, e.g. a1? a2 : a3.

Ternary operators have the special property that they will always be executed, thus, it

is very difficult to detect these Trojan based on code coverage. Our method, as shown in

the next subsection deals with this, by parsing the behavioral description in the first stage to

automatically expand ternary operations into if-else statements.

4.2.3 Proposed Detection Method

Fig. 4.5 shows an overview of our complete proposed flow, where the white boxes indicate

steps performed by our method and the black boxes external tools’ executions. Our method

takes as inputs the encrypted or un-encrypted behavioral IP in ANSI-C or SystemC. Both

types of IPs share 6 main steps while for encrypted IPs two extra pre-processing steps are

required. The inputs to our flow are the 3PBIP and the testbench with the input stimuli and

expected simulation results (golden outputs), which the IP vendor provides to the IP user.

By default, we expect that when the 3PBIP is compiled and simulated, that the simulation

results fully match the expected golden outputs provided by the IP vendor, hence the HW

Trojan has not been triggered. The main steps of our proposed method are as follow:

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 69

e

SW profiler

TB

Execute with 100%
coverage

Counter
Example

No Counter
Example

Trojan Free

Cassert/SystemCassert

TB+New input value

 Re-simulate

C/SystemC

Insert Assertions

Verilog/VHDL

Instrument Testbench

Encrypted C/SystemC

 HLS

 RTL2C

 Property Checker

Ternary operators
expansion

Cexpand/SystemCexpand

Figure 4.5: Proposed Flow

Step1: Ternary Operator Expansion. Ternary operators can mask the presence of an HW

Trojan as the source code line is always reported as being executed during profiling. E.g:

sum = (sum == TRIGGER)? 0 : sum;

In this example, the line of code would always be executed and the code coverage report

would never detect the threat. Hence, this very first step parses the behavioral description

and searches for ternary operators. If found, it expands them into if-else conditionals. The

input of this stage is thus the original C/SystemC description and the output the expanded

version (Cexpand/SystemCexpand).

Step2: Software Profiler. Once the description has been expanded, our method continues by

profiling the behavioral IP using a SW profiler to identify which lines of the source code have

70 Behavioral Intellectual Property (BIP) protection

not been executed during the simulation. At the gate level, circuit parts not sensitized during

the verification stage are treated as potential HW Trojan. The equivalent in the behavioral

description are parts of the code which have not been executed during the simulation using

the testbench provided by the IP provider.

Step3: Assertion Insertion. Our method continues by automatically inserting assertions

into the BIP. The inputs at this stage are the behavioral description (Cexpand or SystemCexpand)

and the profiling report. The output will be an instrumented C or SystemC code (Cassert or

SystemCassert) with assertions, which in turn will be fed to the formal verifier in the next step.

An assertion is basically a statement that something must be true, similar to an if statement.

The difference is that an "if" statement does not assert that an expression is true, it simply

checks that it is true. The property checker thus detects the possibility of a false condition in

the assert function condition as an error and shows the pattern that generates an error. The

type of assertion used in this work is the immediate assertion, as it is virtually impossible to

build HW Trojan with temporal properties in an untimed behavioral description as there is

no clock in the behavioral description.

Currently our method only works with HW Trojans when the trigger condition is either

specified in an if-elsif-else clause, switch-case or for, while loops. This is the most natural

way of specifying trigger conditions in behavioral code and it is also the trigger mechanism

of that most of the RTL HW Trojans available in the open source trust hub [105] (especially

if-else). Thus, our method parses the source code and the profiling report identifying the

lines of code not executed. If a block of code has not been executed, it checks if the first line

of this block is either an if, switch, for or while loop, where a block of code can be loosely

defined as one or more lines of code. If it is, it parses the condition in the statement and

generates the assertion. If it is not any of these operations, then our method ignores this block

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 71

 /*--- Sum of Product -----------------*/
 for(i=0;i<9;i++)
 sum += ary[i] * coeff[i] ;

 /*--- Rounding and Saturation -------*/
 assert(sum !=TRIGGER)
 if (sum < 0){
 sum = 0 ;
 } else if (sum > 255){
 sum = 255 ;
 } else if (sum == TRIGGER){
 sum = 0 ;
}

Figure 4.6: Assertion insertion example

of code and continues. Our approach is scalable and other statements could be supported in

the future, as these conditions are included in a library.

Finally, once the entire description is analyzed, a new C/SystemC description is generated

with assertions which when executed with the property checker should create counterexam-

ples that will lead to the execution of the conditions not triggered during a regular simulation.

Fig. 4.6 shows an example of assertion insertion for the FIR filter described previously to

illustrate the assertion insertion. Because the code with the elseif clause containing the HW

Trojan was not executed during the profiling step, our method inserts an assertion with the

opposite condition of the elseif condition. This will force the property checker in the next

step to find a counter example which would make sum=TRIGGER and hence execute this

part of the code.

Step4: Property Checker. Once the BIP is synthesized, our method calls the property

checker. The commercial HLS tool used in this work includes this property checker, which

makes it easy to integrate into our flow, as the scripts and input files are automatically

generated.

Property checking is a formal analysis technique that searches the design’s state space

without the need of a testbench (simulation) to guarantee that a design property, specified

72 Behavioral Intellectual Property (BIP) protection

using a set of assertions, is not violated. If a property is violated, a counterexample is

generated. The formal verifier used in this work is based on a traditional model check

approach where the input is the behavioral description with properties, e.g. C with assertions

and converts this into a state transition representation system and temporal properties. The

states are traversed and the verification engine periodically (every cycle) checks the path

of this tree to detect the possibility of the existence of a condition that would lead to the

assertion to be triggered. If this type of path does not exist, it will be considered that functional

specifications are met. If a path exists, it will be considered as a violation (exception) of

functional specifications. A counterexample is created in the form of a VCD file containing

the sequence of vectors that lead to the property violation. The property checker treats every

assertion separately and reports a counter example for each assertion if it exists. Hence, in

theory, as many VCD files as assertions are generated.

Step5: Instrument Testbench. If the property checker returns any counter-examples, then

our method parses the VCD file with the input vectors and annotates them at the input files

of the BIP testbench. In our case, the stimuli of the BIP are stored in separate files with the

same name as the I/O port for each I/O.

Step6: Re-simulate:. Once the new test-vectors have been annotated into the stimuli files for

each I/O, our method re-simulates the original 3PBIP using these input vectors. There is no

need to recompile the behavioral code, as only the test-vectors have changed. The simulation

now executes the source code lines, which had not been executed with the original test data

provided by the IP vendor. One key issue in this step is that no golden output is available for

these new test-vectors, hence, the IP user should understand if the output is reasonable or not.

We believe that this assumption is very reasonable because if not, the behavioral IP provider

could intentionally provide wrong golden outputs which trigger the HW Trojan. There are

different types of code coverage metrics such as branch coverage, line coverage, function

coverage etc. involved in the code coverage analysis. In this work, 100% coverage is with

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 73

respect to line coverage considering the boundary conditions. The assertions are inserted

before the lines of code which are not covered considering the boundary conditions.

Trojan Detection in encrypted IP

In the case that the 3PBIP is delivered in encrypted form, two pre-processing steps are

required.

Pre-Step1: High-Level Synthesis. In case that the 3PBIP is encrypted, only that particular

HLS tool can decrypt the IP and synthesize it. Hence, the IP is synthesized and the RTL

(Verilog or VHDL) is generated. This RTL code is not encrypted anymore as it has to be fed

to a third party logic synthesis tool.

Pre-Step2: RTL to C conversion. Once the synthesizable RTL code from the HLS tool is

obtained, it is converted back into C code. Work on translating RTL code to C code has been

done in the past in academia [138] and industry and there are even numerous commercial

products available for this [139, 140]. In our case, the commercial HLS tool used in this

work also comes with an RTL to C translator. This is used to convert the generated RTL code

into C code, which is in turn used for HW Trojan detection following the 6 steps described

previously. It should be noted that there is a big difference between the original manually

written C code and the automatically generated by the RTL to C translator. There are no

comments and is not as easy to read. Nevertheless, it is functionally equivalent.

4.2.4 Experimental Results

Three case studies are presented, in order to verify our proposed HW Trojan detection

method. They cover three of the most important families of HW Trojan. The first changes

the functionality of the IP, the second leaks secret information while the third presents a

denial of service case. For the first case, a Sobel filter was used in order to visually show the

effects of the HW Trojan on the output. Different trigger and payload mechanisms have also

been implemented for this case as shown in Table 4.2. Fig. 4.7 shows the results and will be

74 Behavioral Intellectual Property (BIP) protection

Table 4.2: Experimental Results

Bench Trigger Payload C orig C Trojan Area
Orig
[µm2]

Area
Trojan
[µm2]

∆Area Coverage
orig

Coverage
after

Fig.4.7

sobel combinational no memory 182 186 966 1,028 6% 82.63% 100% (e)

sobel combinational memory 182 188 966 1,073 7.2% 86.57% 100% (f)

sobel sequential memory 182 189 966 980 1.4% 84.32% 100% (h)

aes combinational memory 371 390 36,904 36,984 0.21% 80.73% 100%

UART sequential memory 174 180 1615 1714 5.7% 91.8% 100%

Geomean 207.9 215.4 2,218 2,328

Avg. 4.1% 85.21 % 100%

Table 4.3: False vs. True hardware Trojan Detection Assertions

Bench Properties Assertions Assertions Trojans Total assertions ∆assert_tro jan [%]
target Trojans not targeting

sobel assert(input_row[0] < 20) 3 1 4 0.75
assert(input_row[1]<20)
assert(input_row[2]>245)

sobel assert(colo==512) 2 1 3 0.66
assert(flag==1)

sobel assert(colo==512) 2 1 3 0.66
assert(rep==512)

aes assert(data3[0] == -1460255950)-> 3 times 3 5 8 0.38
UART assert(count>=20) 1 8 9 0.11

Avg 0.512

described in the next paragraphs. The HLS tool used in this work is CyberWorkBench from

NEC [40], which as mentioned previously contains a behavioral level property checker and

an RTL to C converter and the software profile used is GNU’s gprof. The entire flow was

written as a set of Perl scripts. The three designs used in the case studies were taken from

the open source Synthesizable SystemC Benchmark suite (S2Cbench) [107] and modified to

include the HW Trojan. In particular the Sobel filter, AES and the UART benchmark.

Table 4.2 shows the main characteristics of the designs and their results. Columns 2 and

3 indicate the type of trigger and payload mechanisms. Columns 4 and 5 obfuscating the size

in terms of lines of code of the original source code and the modified source code with the

Trojan. It can be observed that it requires very few lines of code to implement a powerful HW

Trojan at the behavioral level. Columns 6 and 7 indicate the area of the synthesized circuit

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 75

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Sobel edge detection case study (a) original input image (512 × 512) (b)
expected golden output (c) input image (512× 512)(d) expected output (e) HW Trojan effects
(combinational trigger+no memory payload (f) HW Trojan (combinational trigger+memory
payload) (g) input image higher resolution (600 × 600)(h) HW trojan effect (sequential
trigger+memory payload)

reported by the HLS tool for the two cases (Trojan free and with Trojan) when synthesized

using a target frequency of 100 MHz and a 45nm Nangate Opencell technology. Columns

8 and 9 indicate the code coverage before and after our proposed method. Finally, the last

column points to the figure in Fig. 4.7 which shows the effect of the Trojan on the result.

Because our method is based on code coverage, it will inevitably insert assertions in parts

of the code which are not HW Trojan. Table 4.3 shows the total number of assertions inserted

into each design and indicates how many of these assertions involved the HW Trojans built

into the designs and how many were unrelated to the HW Trojans. It can be observed that on

an average 50% of the assertions involved the HW Trojan. This percentage will obviously

strongly depend on the testbench provided to the IP user.

The next subsections describe in detail the HW Trojans built into the test cases and

describes in detail how to retrieve that key for the AES example.

76 Behavioral Intellectual Property (BIP) protection

Case Study I (Sobel): Change in functionality

Three different types of HW Trojans are built into the Sobel edge detection algorithm, which

modifies its functionality when certain input data is received. Each HW Trojan has a different

trigger and payload mechanisms, as shown in Table 4.2. Fig. 4.7(a) shows the input image,

while Fig. 4.7(b) shows the expected golden output, both provided by the BIP provider. In

all of the cases with HW Trojans, the golden output is always obtained (Fig. 4.7(b)), hence

the Trojan does not interfere with the functionality of the IP.

Fig. 4.7(c) and (d) show the output that the Sobel filter should be generated when using a

different picture with the same resolution. This picture is not provided by the BIP provider

and will, therefore, trigger the HW Trojan. Fig. 4.7(e) shows the effect of the HW Trojan with

a combinational trigger mechanism without memory. When a certain input pixels’ values are

passed to the Sobel filter the Trojan is activated and the filter output is overwritten with a

new value. The Trojan remains active while the inputs are within the given trigger values and

the payload gets de-activated when the inputs are outside the given trigger values. Fig. 4.7(f)

shows the result of an HW Trojan with combinational trigger and memory payload. In this

case, the Trojan is more powerful as once triggered it causes the payload to be active during

a longer period of time. Finally, Fig. 4.7(g) shows the original image and Fig. 4.7(h) the

effect of a Trojan with the sequential trigger mechanism and memory payload. These type of

Trojan are often also called time-bombs, and their trigger mechanism is basically a counter.

In this case, because the original input image (Fig. 4.7(a)) has a resolution of 512 × 512, the

trigger mechanism was set to trigger after 512 × 512 input pixels are received. This is why

the resolution of Fig. 4.7(g) is also larger (600 × 600). This example shows how to create

simple HW Trojans which trigger when images of different resolutions than the ones used for

the IP verification are used. Often images of lower resolutions are used for IP verifications in

order to speed up the simulation time[141]. Also, it shows how easy it is to build HW Trojans

which will not trigger when static images are used during the algorithmic verification, but

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 77

which will trigger when a real-time video is used in the final design. As shown in Table 5.3,

the first case has a combinational trigger with a payload without memory and is the smallest

in terms of area and also lines of code. It is also the least powerful one, while in order to

describe more powerful HW Trojans more lines of code are needed. Also, from Fig. 4.7,

it can be clearly observed that the HW Trojans completely change the design functionality.

This example is extremely important because most of the modern application rely on image

processing ranging from feature detection for face recognition to missile detections. Most of

these applications make use of edge detection to further process the data. In case that this

stage fails, the functionality of the rest of the system is seriously compromised.

Case Study II (AES): Leak Information

The AES is a symmetric encryption algorithm that was selected by National Institutes of

Standard and Technology (NIST) in 2001 as a new cipher. The fixed data size of the plain

text in the AES algorithm is 128 bits. The specified key lengths are 128, 192 and 256 bits.

We redesigned the AES encryption circuit from the S2CBench benchmark with a fixed

key size of 128 bits and applied the method to leak the secret keys introduced in [108]. In

[108], the authors failed to fully explain the algorithm to leak the secret keys. In this work, we

extend their work and fully illustrate how to leak the secret keys. In this work, we modified

the trigger mechanism compared to their original work by using a given input sequence as

the trigger mechanism to leak the data required to calculate the secret keys. After applying

our Trojan detection methodology, the trigger and payload mechanisms could be successfully

detected. The next sub-section explains in detail how our method is able to leak the secret

keys.

78 Behavioral Intellectual Property (BIP) protection

ALGORITHM 3: Summary of method to leak secret keys
input :Plain text P, cipher text RK10, RK10+x and RK10+x+1.
output :The initial key K0.

1 Step 1: After procuring the cipher encrypted data RK10, the Trojan prolongs the
encryption process for ’a’ more times to get the cipher text RK10+x and RK10+x+1 with
Rcon set to 0 after the 10th round of encryption process.

2 Step 2: From RK10+x manually compute R10+x by following the encryption process
3 Step 3: Calculate K10+x from RK10+x and RK10+x+1 with the equation as below.
4 K10+x=RK10+x xor RK10+x+1 (1)
5 /* Step 4: To calculate K0 from K10+x */

6 Step 4-1: Set r=1
7 Calculate K10+x−r with Rcon set to 0 from the equation
8 Ki = KeyExp−1(Ki+1,Rcon = 0) (2)
9 until K10 is evaluated i.e., r=a.

10 for (r = 1;r <= x;r++) do
11 K10+x−r = KeyExp−1(K10+x−r+1,Rcon = 0)
12 end
13 Step 4-2: Calculate K0 with regular Rcon values used for encryption process.
14 for (i = 9; i >= 0; i−−) do
15 Ki = KeyExp−1(Ki+1,Rcon = regular)
16 end
17 K0 is the initial key.

Algorithm to Obtain Cipher Key

Unlike other HW Trojans applied to AES circuits in [105], which directly leak the secret keys

from the output which should be extremely easy to detect, our extended method calculates the

secret keys from the information obtained by the Trojan circuit. Fig. 4.8 shows a high-level

diagram of the method, which is based on an online and an offline part. The HW Trojan

performs x+1 extra encryptions and this data combined with the plaintext is then used offline

to calculate the initial key.

Fig. 4.9 depicts graphically the inverse key expansion method to calculate initial key

K0. In particular, consider RKx be the output data after the x-th stage round function. Since

the number of round functions iteration is 10 in AES with a key of 128 bits, the final cipher

text is RK10. Additionally, if the AES encryption circuit performs the round function for

100 times, which is larger than the specified number of rounds, the output data has to be

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 79

Encrypt x more

times

Encrypt 1 extra

time

Secrete Key leak

algorithm

Cipher text
RK10

RK
10+x

RK
10+x+1

Plaintext ‘P’

Initial key
K0

Online/ On-chip Offline/ Off-chip

Figure 4.8: Secret Key leaking

RK100. The value of the Rcon after the 10th round must be set to all zeros till the last round

of encryption. i.e., Rcon=0,0,0,0...0(last). The activation condition chosen for the proposed

Trojan circuit is the input sequence of the plain text P. The attack of the suggested Trojan

circuit is the execution of an additional a times round function and the output of RK10+x and

RK10+x+1. Finally, attackers obtain the cipher key from plain text P, RK10+x and RK10+x+1.

The information consists of plain text P, the ciphertext RK10, RK10+x and RK10+x+1,

where the subscript x stands for the extra number of times that the plaintext has been

encrypted. At the beginning, the attackers calculate the round key Kx on the round x with

RK10+x and RK10+x+1. Finally, the initial key K0 is calculated with P, RK10 and Kx.

Although the explanation of the complete AES algorithm is beyond the scope of this work,

algorithm 3 gives the detail description of how to calculate the initial key K0 with P, RK10,

RK10+x, RK10+x+1. During the encryption operation, the final encrypted data will be round

key RK10. Whenever the Trojan is triggered, in addition to RK10, RK10+x and RK10+x+1 will

also be generated at the output (line 1). R10+x is calculated from the obtained RK10+x in the

previous stage (line 2). K10+x (The last key of the encryption process) is evaluated from

80 Behavioral Intellectual Property (BIP) protection

Rcon

SBOX RotByte

Ki

Ki+1

XOR XOR XOR XOR

32 32 32 32

32 32 32 32

128

128

XOR

Figure 4.9: Inverse Key Expansion

RK10+x and RK10+x+1 (lines 3-4). Once K10+x is obtained, K10 is calculated using the inverse

expansion function with Rcon=00 (lines 6-11). Finally, K0 is obtained from K10 with regular

Rcon values for encryption i.e., Rcon = 01 02 04 08 10 20 40 80 1B 36 (lines 13-17) using

the inverse expansion function.

Case Study III (UART): Denial of service

Universal Asynchronous Receiver Transmitter(UART) is a communication IP used for

serial data communications over a computer or a peripheral device serial port. UART’s are

commonly used in conjunction with communication standards such as RS-232, RS-422 or

RS-485. UART takes bytes of data and transmits the individual bits in a sequential manner.

At the receiver side, the second UART device re-assemble the bits to form a complete byte.

The UART design was taken from the S2CBench benchmark suite in SystemC with 1

start bit, 8 data bits and 1 stop bit. The Trojan is inserted at the transmitter block. The

function of the Trojan, in this case, is to delay the transmission after certain time based on the

counter value. Also, the Trojan will make the receiver lose some of the data when triggered.

4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property
Checking Techniques 81

Time

clk

reset

r_data[7:0]

r_ack

rx

tx

t_ack

t_data[7:0]

Figure 4.10: UART without Trojan triggered

The activation mechanism, in this case, is internally conditionally triggered as referred from

[105].

Time

r_ack

r_data[7:0]
reset
rx
t_ack

t_data[7:0]

tx

clk

Lost Lost

Figure 4.11: UART with Trojan triggered

Fig. 4.10 shows the simulation results for UART in a loopback mode where the transmis-

sion is steady throughout. Fig. 4.11 shows the simulation result for the Trojan triggered case.

After the count reaches certain value the transmitter delay the transmission by certain clock

cycles. Meanwhile, the intermediate data will also be lost during the course of transmission

82 Behavioral Intellectual Property (BIP) protection

after the Trojan has triggered. At the receiver side, one can see the loss in transmission of

data.

Our Trojan detection method was applied to these IPs in un-encrypted and encrypted

modes and in all cases, it could successfully detect the HW Trojan. For the sobel case,

because the testbench uses a bmp file as input and as golden output, it was extremely easy

to visually see the effects of the HW Trojan and hence to detect it. From the results, it can

be observed that in order to design a powerful HW Trojan at the behavioral level only a few

lines are needed, even for very sophisticated ones like in the AES case. When synthesized,

the area is only on average 4.1% larger than the Trojan free version.

4.3 Summary

This chapter has addressed two issues related to BIP security. In the first part, it has analyzed

the impact of code obfuscation of BIPs on the quality of results (QoR) when different

parsers are used. As shown, the same BIP can lead to different area and delays as these

are responsible for the technology independent optimizations. Thus, two methods were

proposed to maximize the amount of obfuscated source code while minimizing the amount

of degradation introduced due to the obfuscation process. The first method is based on a

GA algorithm and is used as a baseline method used to compare a faster heuristic based on

an iterative greedy algorithm. In the proposed fast obfuscation method, nearly 100% of the

design is obfuscated while being much faster than the GA baseline obfuscation method.

The second part of this chapter introduced a technique to detect hardware Trojans in

BIPs. The third party behavioral IP (3PBIP) market is still in its infancy compared to the

more mature RTL IP market. Most of the previous techniques address the issue of 3PIP

HW security by instantiating two different IPs from different vendors onto the same system.

Other methods rely on golden Trojan free models to detect HW Trojans. This work targets

the detection of HW Trojans embedded in 3PBIPs when no golden models are available

4.3 Summary 83

using code coverage and formal verification techniques as a pre-processing stage to expand

constructs like ternary operators that can mask the Trojan. A fully automated flow was

created that can also be used for encrypted IPs and show that our flow works well for a

variety of different HW Trojan. Although the proposed method also has some limitations, it

is a very good first step into the automatic detection of HW Trojan in 3PBIPs.

Chapter 5

Hardware Trojan Detection at System

Level

This chapter introduces a system level method to detect hardware Trojan in third party

behavioral intellectual properties (3PBIPs) and in dynamically re-configurable FPGAs. The

first part of this chapter, discusses the proposed hardware Trojan detection circuit called Trust

Filters to detect HW Trojan at runtime. With the help of cycle-accurate simulation model, it

is possible to fine tune these filters so that the overall system has no performance degradation.

This can be achieved by exploiting the slack time between the time that a slave returns the

data to the master and the time that the master sends new data to the slave. The advantages

of using behavioral C-based SoC design are multi-fold: (i) It allows the generation of fast

cycle-accurate models to measure the exact slack of each BIP mapped as a loosely coupled

Hardware Accelerator (HWAcc) slave and (ii) its ability to build the complete SoC using

synthesizable Application Programming Interfaces (APIs) and hence allowing the fine tuning

of these Trust Filters.

The second part of this chapter discusses hardware trojan avoidance and a detection

mechanism for dynamically re-configurable FPGAs. Runtime Reconfigurable FPGAs have

unique characteristics that make them extremely vulnerable to Hardware Trojan. These

5.1 Hardware Trojan detection in behavioral MPSoC 85

FPGA families reconfigure themselves every clock cycle updating the functionality of the

data path. A State Transition Controller (STC) typically holds the configuration code for

each of the contexts. This architecture makes these type of architectures very efficient, but

also extremely vulnerable to malicious alterations across any of the steps from design to

fabrication of the FPGA. Being able to control the STC involves being able to control the

functionality of the FPGA and perform any desired function at runtime. Thus, this work

specifically targets the detection and especially the avoidance of HW Trojan being triggered

in runtime reconfigurable FPGAs and in particular Coarse-Grained Runtime Reconfigurable

Arrays (CGRRA).

5.1 Hardware Trojan detection in behavioral MPSoC

5.1.1 Introduction

Most of the complex ICs now are complex heterogeneous Multi-Processor SoCs (MPSoCs),

composed of multiple in-house and third party IPs (3PIPs). Commercial HLS tools have thus,

been extended to include complete verification environments and SoC design capabilities

in order to allow designers to design and verify complete systems at the behavioral level.

Therefore, it is important to study how secure these behavioral SoCs are and how to detect

any malicious alterations present.

5.1.2 Threat Model

The threat model used in this work assumes that a 3PBIP is instantiated in a SoC as a slave to

perform a dedicated task (also called hardware accelerator-HWacc). This work also assumes

that the test-vectors provided by the IP vendor do not trigger the hardware Trojan and that

the output of the BIP for the given test-vector always match the reference output provided.

Otherwise, the 3PBIP vendor would expose himself easily to the IP user. This work also

86 Hardware Trojan Detection at System Level

Table 5.1: Hardware Trojan types overview and types addressed in this work

Trigger mechanism
Combinational Sequential

Payload With memory
Without memory ✗ ✗

assumes that the foundry can alter the design before tape-out by inserting an HW Trojan.

This implies that the hardware Trojan can be inserted by the 3PBIP provider, or by any third

party company downstream the design and fabrication process. Thus, a runtime detection

method with low area and performance overhead is required. It should be noted that the

IP provider could try to hide the HW Trojan by providing a testbench that triggers the HW

Trojan, but that the reference1 output also provided by the same IP vendor does not report

as erroneous. We assume that the IP user is able to detect these cases either during the IP

integration or verification process. It should be noted that our proposed detection mechanism

can only deal with hardware Trojans which alter the functionality of the IP, and in cases

where the latency is fixed (number of clock cycles requires to generate an output) the trust

filter can also detect cases when the performance is degraded, as it knows the latency that the

Trojan free IP has. Our proposed method can not detect other cases where e.g. the Trojan

increases the power consumption of the IP. Security of the trust filter can also be challenged

because a rogue adversary in a foundry can insert hardware Trojan or tamper the trust filter.

This can be alleviated by incorporating the technique mentioned in [142].

5.1.3 Contributions

The contribution of this work can be summarized as follows:
1Reference output and the golden IPs should not be confused. The reference outputs are the set of test

vectors provided by the IP vendor for the preliminary verification of the IP. Golden model is a complete IP to
which any IP of the same functionality can be compared.

5.1 Hardware Trojan detection in behavioral MPSoC 87

1. Introduce the concept of Trust Filter for heterogeneous MPSoCs to detect HW Trojan

at runtime.

2. Develop different types of Trust Filter and use the slack time between computations at

each slave 2 to determine which type of filter to use at each slave.

3. Accurately measure the area overhead and performance penalty introduced by these

filters by building complete cycle-accurate models of the complete SoCs.

Although this work can also be extended to RTL it is almost impossible to simulate

complete SoCs at the RTL to fine tune the Trust Filters.

5.1.4 Background and Related Work

An overview of most common and relevant HW Trojan attacks and countermeasures can

be found at [124] and [143]. The vital issue with these previous works is that many of the

proposed methods need a golden Trojan-free IC or functional model. The problem is that

IP distributors only provide a single version of the IP without any golden or trusted model

for verifying the sourced IP. Customarily, 3PIPs are distributed in HDL (VHDL or Verilog).

Thus, most of the previous Trojan detection techniques have focused on code coverage [125],

in spite of proving that even a 100% code coverage cannot guarantee a malicious free design

[126].

Eric et al. [144] showed that by assigning 3PIP vendor the task of constructing compliance

proofs for their hardware IP, consumers (SoC integrator) can make sure that the HW they

purchase operates within the parameters they have chosen as provable security properties.

This is basically an agreement between a SoC integrator and a 3PIP vendor on a predefined

set of properties which can be verified by SoC integrator. Waksman et al. [145] instead

of discovering the malicious logic in the design, which they believe - is an extremely hard
2This work makes indistinguishable use of the terms HWAccs, slave, and BIP to designate the computation-

ally intensive task synthesized using HLS.

88 Hardware Trojan Detection at System Level

problem - made the backdoor design problem itself intractable to the attacker. They have

scrambled the inputs that are supplied to hardware units at runtime, making it infeasible for

malicious components to acquire the information they need to perform malicious actions.

Beaumont et al.[146] have developed SAFER PATH architecture, which uses instruction,

data fragmentation, program replication and voting to create the computational system that is

able to operate safely in the presence of active hardware Trojans. However, both of these

works [145], [146] lead to systems with considerable area and performance overheads.

Rajendran et al. [127], in their work to detect HW Trojan in 3PIPs, suggest to source the

IP from different vendors assuming that it is virtually impossible that both IPs are infected.

The system can reveal pernicious outputs by duplicating the 3PIPs and analyzing their outputs.

They also propose a method to avoid collusion between IPs procured from the same vendor,

by ensuring that two consecutive IPs of the same vendor are never directly connected together.

Cui et al. [128] extended this work by introducing a run-time recovery system which rebinds

at runtime the IPs from distinct vendors in case that a vicious output is detected. The main

shortcomings of these detection techniques are that they involve large overheads because

all the 3PIPs needs to be replicated and also demands that all of the IPs are available from

different vendors. Furthermore, the run-time recovery method suggested in [128] does not

clarify how the re-binding of IPs is done run-time. Also, it does not investigate into the

exploration of efficient distinct vendor allocation procedure of similar operations as it affects

the final delay and area of scheduling.

Waksman et al.[147] have presented FANCI, a tool that flags suspicious wires in a design

which have the potential to be malicious. It identifies nearly unused circuits by static Boolean

function analysis. Zhang et al. [148], [149] proposed VeriTrust to detect the hardware

Trojans at the design stage. The uniqueness of their approach is a detection technique which

is insensitive to hardware Trojan implementation styles. The common feature of all these

techniques is that they all apply to pre-silicon hardware Trojan detection. In case, that the

5.1 Hardware Trojan detection in behavioral MPSoC 89

hardware Trojan is inserted at a later stage, e.g. at the foundry, these methods cannot be used

and runtime detection methods are required to complement them.

Moreover, most of these previous works on HW Trojan detection is done at the IP level

isolating the IP, and do not consider system level design issues. Also, at the system level,

there is a possibility that IPs can collude, e.g. a master sends the trigger information to

a slave where the payload is activated. In [150], the authors propose a task scheduling

based approach that an MPSOC designer can take to protect MPSOCs against malicious

modifications by sourcing IPs from different vendors, which leads to the unacceptable area

and power overheads and is often not even feasible, especially for BIPs.

Our work is different in many dimensions. Firstly, it targets the detection of HW Trojans

built into the slaves of heterogeneous MPSoC triggered by a master (microprocessor). These

slaves act as loosely coupled HWAccs and are given as BIPs in ANSI C or SystemC. Secondly,

our proposed method makes use of the slack time during the bus operation in MPSoCs to

detect the HW Trojan, thus in many cases leading to no performance penalties. Finally, as

mentioned previously, our proposed detection methods mainly works at runtime and not

at the pre-silicon level (in theory it can also be used at the pre-silicon level, but it cannot

guarantee to find the hardware Trojan as it is virtually impossible to find the trigger condition).

Formally, the objectives of this work can be formulated as follows:

Problem Formulation: Given N synthesizable behavioral descriptions BD= {C1,C2, . . . ,Cn}

to be mapped onto a shared bus MPSoC as loosely coupled HWaccs, where HWaccs =

{BIP1 ← C1,BIP2 ← C2, . . . ,BIPn ← Cn}, with a potential hardware Trojan. Find the

minimum number of clock cycles at which each HWacc is inactive in the system, i.e.,

BIP1 = slack1 and given two types of Trust Filters T F = {typeI, typeII}, instantiate the

most appropriate filter at each HWacc, e.g. (BIP1← typeI), (BIP2← typeII). TypeI is a

fully autonomous filter which uses the idle time (slack time) to detect hardware Trojans and

typeII is a manual filter, which requires the master to explicitly start the detection procedure.

90 Hardware Trojan Detection at System Level

The decision to use typeI filters or typeII filters is given by: Use typeI if tBIP1 < slack1

else typeII, where tBIP1 = tread1 + tcompute1 + tcompare1, with tread1 being the number of clock

cycles it takes for a HWacc to read the data to compute a new output, and tcompute1, the

latency in clock cycles to produce a new results once a new input has been read and tcompare1

the number of clock cycles required to compare the new output with the reference output

stored in the trust filter. This problem is explained in detail in section 5.1.6.

5.1.5 Trojan Detection Method

Fig. 5.1 shows the target MPSoC platform used in this work. It consists of M number of

masters (typically embedded processors) and N slaves. The slaves are all BIPs which are

mapped onto the MPSoC as loosely coupled HWaccs. In order to build larger systems, the

BIPs are considered independent concurrently executing applications, which periodically

repeat themselves. Each BIP is assumed to have its corresponding testbench (TB) also passed

as an input to our proposed flow. Thus, a system S contains M processors and N tasks to

be mapped onto these processors, where the HW/SW partitioning has been done a priori

mapping the TB to the master and the BIP as a slave, hence N = {BIP1,BIP2, . . . ,BIPN} and

M = {T B1,T B2, . . . ,T BM}. The masters and slaves are interconnected through a memory

mapped shared bus (i.e., AHB/AXI bus). This standard bus follows the following 5 high-level

step protocol:

1. the master requests bus access for writing to the corresponding slave to the bus arbiter;

2. the arbiter grants access to the master and thus writes data to the corresponding slave,

otherwise, it waits until bus access is granted;

3. once the slave receives the data from the master, it computes the result and after

finishing the computation waits for the master’s reading request;

5.1 Hardware Trojan detection in behavioral MPSoC 91

4. the master requests bus access for reading the result from the corresponding slave to

the bus arbiter;

5. the master reads the data from the corresponding slave if the bus access is granted,

otherwise it has to wait until the bus is available or give up reading.

Task 1

Task 2 M
as

te
r

1

M
as

te
r

IF

Task 3

M
as

te
r

2

M
as

te
r

IF

Task N-1

Task N M
as

te
r

M

M
as

te
r

IF

Task 1

Sl
av

e
IF

Task 2

Sl
av

e
IF

Task N

Sl
av

e
IF

A
M

B
A

 A
H

B
/A

X
I B

U
S

Figure 5.1: Target heterogeneous MPSoC Platform

At the heart of our proposed method is the measurement of time that each HWAcc mapped

as a slave onto the heterogeneous MPSoC remains idle waiting for data from the master. This

idle time is called slack. In order to measure this slack accurately, a cycle-accurate simulation

of the entire SoC is required. Previous work on system-level design space exploration tradi-

tionally makes use of approximately timed high-level models to figure out the best possible

system architecture. In these cases, the communication part is traditionally modeled using

transaction-level models, hence they cannot accurately determine the communication over-

heads. The slack measured in our case is in turn used by the trust filter to pass a pre-defined

92 Hardware Trojan Detection at System Level

set of test vectors to the slave and compare the computed output with reference outputs also

stored in the trust filter. Thus, the system will not have any performance penalty if the slack

time available is large enough to accommodate this test phase.

The pre-defined test vectors and reference outputs used to detect the presence of a

hardware Trojan are taken from the test-vectors included in the testbench provided by the

BIP provider. IPs typically come with a testbench and reference outputs to verify that the IP

follows the specifications indicated in the data sheet. These test-vectors can obviously not

trigger any hardware Trojan, if present, as the IP vendor would immediately expose himself.

Thus, this work assumes that these test-vectors can be used to test the correct functionality

of the IP. Building complete behavioral SoCs has two unique advantages: First, it allows to

use the system-level design tools available in state-of-the-art HLS tools like bus interface

generators and secondly, the use of cycle-accurate model generators to accurately measure

the slack of each slave. The proposed flow can be decomposed into two main parts. The

first generates the entire SoC and builds an executable cycle-accurate model of the system in

order to measure the slack of each slave while the second inserts different types of trust filters

into the SoC depending on the slack reported in the previous stage. The next subsections

describe these two stages in detail.

5.1.6 Behavioral MPSoC Generation

One of the uniqueness of this work is the generation of completely synthesizable C-based

MPSoCs by using a bus generator provided by the commercial HLS tool used in this work

[40] and its cycle-accurate model generator. Fig. 5.2 shows an overview of this stage. This

first stage can be further subdivided into 4 main steps:

Step 1: Bus interface annotation. The very first step in our proposed flow is the modifica-

tion of the BIPs to include the bus interfaces. As mentioned previously, commercial HLS

5.1 Hardware Trojan detection in behavioral MPSoC 93

C Based SoC Generator

Bus definition file

Bus Type: AHB/AXI
Bus width: 32 bit
Arbiter: Round Robin
Memory Map
Master Definition
Slave Definition

Bus Generator

BIP1/TB1, BIP2/TB2, ….., BIPN/TBN

High-Level Synthesis
Cycle-accurate model generator

Compile (g++)

Master API
API_burst_write(0x1000ff00, fifo, DSIZE);
API_single_write(0x1000ff00, out0);

Slave API
while(1){
API_poll_req(&stat); /* get status */
if (stat.req == API_WRITE_REQ) {
API_set_response(API_OKAY);
array[num] = API_get_data();
num++;}
if(num == DSIZE) break; }

Masters: M1, M2,…,MN

Slaves: S1, S2,…,SN

 Slaves IF: SIF1, SIF2,…, SIFN

 Masters IF: MIF1,MIF2,…,MIFM
Bus, Top

(Number

masters, arbiter,

bus bw)

mpsoc.exe

Figure 5.2: Design flow overview

tools now provide bus interface generators in the form of synthesizable APIs. These are

function calls to read and write from the bus but will be synthesized into the bus interface

circuit. This approach has numerous advantages over traditional RTL design methods. For

example, the bus is completely abstracted away and the designer can easily modify the bus

type by only using a different API. In our case, an AMBA AHB bus interface is chosen. The

BIPs are all automatically instrumented using a simple perl script.

Step 2: Bus Generator. Once all the BIPs have been instrumented with the bus interface

API, the next step automatically generates the bus definition file (bdef) for the bus generator

used in the work. This bus generator takes as inputs all the instrumented BIPs and the bus

94 Hardware Trojan Detection at System Level

definition file and generates synthesizable ANSI-C descriptions for the bus interfaces, the

bus itself and a top module. The bdef includes the bit-width of the bus, the arbiter (fixed or

round robin) the number of masters and slaves and their memory map. In this work, the bus

bit-width is set to 32-bit and the arbiter to round robin. Once the bus definition file is created,

the bus generator is called and the aforementioned synthesizable system generated.

Clock State
N idle
N+1 idle
: :
N+p read
N+p+1 read
: :
N+q compute
N+q+1 compute
N+q+2 compute
: :

N+r write
N+r+1 write
: :

N+s idle

idle1 read1 compute1 idle2 read2 compute2 idle3write1 write2

(a)

(b)

tcycle1 tcycle2tidle1 tidle2 tidle3

Figure 5.3: Slave slack estimation example; (a) report generated after simulation. (b) timing
chart of report.

Step 3: Cycle-accurate model generation. Because HLS is a single process synthesis

method, each of the BIPs, bus interfaces, and bus generated in step 2 have to be synthesized

5.1 Hardware Trojan detection in behavioral MPSoC 95

separately. The results of the HLS is then passed to the cycle-accurate model generator,

which creates a cycle-accurate SystemC model of the entire system.

Step 4: Slaves’ Slack Estimation. Once the cycle-accurate model has been generated, our

method continues by automatically instrumenting the SystemC files of each slave in the

cycle-accurate model in order to report the number of cycles in which each slave is active or

not. This automatic instrumentation reports, when the model is executed, the clock cycles in

which the slave is waiting for data from the master, the clock cycles at which it is reading

the data sent by the master, cycles doing its intended computation and finally cycles sending

data back to the master in a text file. Fig. 5.3(a) shows an example of a report generated

for each of the slaves to be protected. Fig. 5.3(b) shows the timing diagram that can be

constructed from this report. The cycle through which the slave goes periodically repeats

itself as follows: idle → read data sent by the master → perform computation → return

data back to master → idle. The complete cycle takes tcycle to be completed. It should

be noted that tcycle1 ̸= tcycle2, with tcycle1 = tread1 + tcompute1 + twrite1, where tread1 = tread2,

tcompute1 = tcompute2 and twrite1 ̸= twrite2. The time taken to read data sent from the master

(tread) does not change between executions once the master initializes the communication

and has been granted control over the bus. Similarly, the time taken to compute the results

(tcompute) also does not change once the slave has read all the data sent by the master (the

slaves used in this work do not have data-dependent loops). The only element that changes

between two executions is the write back time (twrite). This is because the slave has to wait

for the master to regain access to the bus in order to send the data back to it. This can take the

different number of clock cycles depending on the bus availability. Moreover, the idle (tidle),

times between executions also change due to this exact same effect, hence tidle1 ̸= tidle2 ̸= tidle3

and in particular tidle2 < tidle1 < tidle3 . Thus, once the simulation finishes, our method reads

the report files of each slave and outputs the smallest idle time (tidlesmallest) for each of them,

96 Hardware Trojan Detection at System Level

which is the same as the maximum slack available, slackslavei= f loor(slack1, ...,slackq). In

the example given in Fig. 5.3(b) tidle2 = SLBIPn.

It should be noted that the way that the tasks are assigned to the different processors, does

affect the slack of each slave. In this work, we, therefore, assume that the task scheduler has

been programmed to balance the load across the system and that tasks are equally distributed

across the processors.

5.1.7 Trust Filter

Once the minimum slack for each slave has been determined, our method continues by

automatically inserting a Trust filters at each slave, with two options available:

T F = {typeI, typeII}. Thus, at the end of this stage, each HWacc will have a trust filter

assign to it, e.g. (BIP1← typeI),(BIP2← typeII), . . . ,(BIPN ← typeII). By default, a trust

filter is inserted for each slave, although the designer can manually overwrite this and specify

at which slaves to insert the trust filters as some slave can be considered safe, e.g. in-house

developed and hence do not need to be checked for hardware Trojan.

As the name indicates, trust filters are reliance circuits which are connected to the slaves

and which can detect hardware Trojan at runtime. The trust filters do not avoid the activation

of the Trojan and only detect these. Based on the type of slave and the available slack time

obtained in stage 1, our method generates two different types of trust filters.

Type I - Autonomous Trust Filter: This is a fully autonomous trust filter, which uses the

slack time between each transaction to verify if a hardware Trojan has been triggered. Thus,

the slack time reported in the previous stage should be large enough to allow the filter to pass

the test vectors to the slave, read the results and compare the results with the reference outputs

stored in the filter. An interrupt signal is raised if the outputs do not match the reference

outputs. In particular, if tBIPi < slacki, where tBIPi = tread_t f _i + tcompute_t f _i + tcompare_t f _i,

with tread_t f _i being the number of clock cycles it takes for a HWacc to read the data to

5.1 Hardware Trojan detection in behavioral MPSoC 97

A
M

B
A

 A
H

B
/A

X
I

Task1

Sl
av

e
IF

Task2

Sl
av

e
IF

Trust Filter I

Trust Filter II

1

Intr.

Intr.

Trust Filter II

Test Vectors
Golden
Outputs

=

Intr.

bus

Trust Filter I

Test Vectors
Golden
Outputs

=

Intr.

Rreq

W
req

Slavein Slave
out

R
req

W

req

Slave
in
 Slave

out

Figure 5.4: Trust Filter attached to slaves

compute a new output, tcompute_t f _i the latency in clock cycles to produce a new results once

a new input has been read and tcompare_t f _i the time needed to compare the output with the

reference output stored in the filter. After HLS, all of these three timing elements are known,

and hence, the type of filter can be accurately assigned.

Fig. 5.4 shows the internal structure of this filter, where type I has 3 inputs and type II

has 4 inputs. The inputs for this filter type are the read and write request from the AMBA

Test cases

TC1

TC2

Compute

golden_1

golden_2

Golden

Outputs

FIR

Output =

in_data[9]

coeff[9]

filter_out

Trust Filter

Figure 5.5: An example to demonstrate the number of test-cases needed for the trust filter

98 Hardware Trojan Detection at System Level

bus (Rreq, Wreq), and the output generated by the slave. The Rreq is used to monitor when to

start the verification. Based on the AMBA AHB bus protocol, the slave will generate a Rreq

pulse when sending data to the master. The slave will then remain in idle mode waiting for

new data from the master once the data has been sent, indicated by a Wreq pulse. Type I trust

filters do not require to monitor the Wreq signal as stage 1 reports that the filter has enough

time to conduct the validation. Nevertheless, to avoid any timing problems, the trust filter

also monitors the Wreq and potentially halt the verification process in case that the master

starts sending data before the trust filter has finished.

Type II - Manual Trust Filter: For some of the slaves’ applications it can not be guaranteed

that the available slack time between two transactions is sufficient for the particular slave to do

the computation on the input data sent from the trust filter (e.g. aes case), with slacki < tBIPi .

Also, for some of the applications (e.g. sobel) the slave stores intermediate results in a

buffer, which are needed in the next computation cycle. Applying the trust filter test vectors

to the slave would completely flush this data, hence making the next computation’s result

invalid. In order to deal with these type of cases, this second type of trust filter is activated

manually from the master. E.g. in the sobel case, after a full picture frame has been computed,

the master sends a start_trojan_check signal in order to start the verification. This type of

filter has an extra input compared to type I as it can be seen from the Fig. 5.4 (data bus).

In order for the master to start the verification, it writes to the memory mapped slave the

start_trojan_check code (in this case 0X8000) and the filter starts the verification. When

finished, it returns a finished signal to the master so that this can resume normal operation.

This second type of filter has obviously the drawback of the performance penalty because

it has to manually start the verification process and wait for it to finish, but on the other

hand, has the advantage that it can guarantee 100% that the verification will be conducted

successfully. In type I filters, our detection method relies on the slack estimation of stage 1.

5.1 Hardware Trojan detection in behavioral MPSoC 99

In the case that the workload changes over time, the slack time could also change and hence

the filter might never have the time to perform a full verification.

It should be noted that the designer can parameterize the behavior of the filters in case

that these have not finished the verification cycle and a new write request from any master

arrives. The designer has the option to set the filters up in such a way that the slave will not

acknowledge the write request until the trust filter has finished or it can be set up in such a

way that it will stop the verification process and deal with the master’s request immediately.

Both options have the strong and weak points. The first guarantees that the slave will always

be verified. The drawback is that it might lead to a potential performance degradation, while

the latter, does never lead to any performance degradation, but might lead to not being able

to evaluate if the hardware Trojan has been triggered.

Our method automatically parses the BIP testbench and extracts two test-vectors that lead to

different output results. The generation of the trust filter is fully automatic through a set of

perl scripts. The inputs and outputs are as follows:

Trust filter generator Inputs: Slave latency, test vectors, reference outputs, type I or II, bus

bandwidth.

Trust filter generator Outputs: Synthesizable ANSI-C code with embedded test-vectors.

According to Table 5.1, the types of Trojan addressed in this work have a payload with

memory (Combinational with memory (CWM) and sequential with memory (SWM)). Hence

the effect of Trojans lasts for a significant number of clock cycles. Intuitively, two test-vectors

are necessary for the trust filter to detect the Trojans. Consider an example of FIR filter

which is used as a slave as shown in Fig. 5.5, where TC1 is the first test-case inputs, TC2 is

the second test-case inputs, golden_1 is the output corresponding to TC1, golden_2 is the

output corresponding to TC2, in_data and coeff are the slave inputs, and filter_out is the

slave output. The trust filter sends the first test-case (TC1) to the slave and the slave in-turn

sends the output (filter_out) back to the trust filter. The trust filter compares the obtained

100 Hardware Trojan Detection at System Level

Table 5.2: Complex System Benchmarks and Hardware Trojan Type Description

Bench Trigger/payload/filter S1 S2 S3 S4 S5 S6 S7

sobel
Trigger comb seq comb comb seq
Payload mem mem mem mem mem

Filter type II II II II II

md5c
Trigger comb comb
Payload mem mem

Filter type I I

fir
Trigger comb comb comb
Payload mem mem mem

Filter type I I I

interp
Trigger comb
Payload mem

Filter type I

bsort
Trigger comb seq comb seq comb
Payload mem mem mem mem mem

Filter type I I I I I

kasumi
Trigger comb comb comb
Payload mem mem mem

Filter type I I I

aes
Trigger comb
Payload mem

Filter type II

ave8
Trigger seq comb
Payload mem mem

Filter type I I

adpcm
Trigger comb seq
Payload mem mem

Filter type I I
slaves 1 2 3 4 4 5 5
masters 1 1 2 1 2 2 3

5.1 Hardware Trojan detection in behavioral MPSoC 101

result from the slave with the golden output already stored in the trust filter. The trust filter

raises the interrupt signal to indicate the presence of Trojan if there is any mismatch in the

value between the obtained output and the golden output. If the output matches the stored

golden output then the trust filter sends the second test-case (a unique test-case which should

lead to a different output than the first test case). This second test case is important to cover

the case that the Hardware Trojan happens to generate the exact same output as the first test

vector. Although very unlikely, as the number of output combinations is 2bw, where bw is the

bitwidth of the output.

Consider {golden_1, golden_2} = {71, 129} are the outputs for the two unique set of

test-cases TC={TC1, TC2} stored in the trust filter. Suppose the Trojan is activated in the

slave and FIR filter output (filter_out) is equal to 71 (accidentally matches with the gold_1,

which is highly unlikely) then the trust filter is unable to detect the presence of Trojan in the

slave (FIR). Since the Trojan payload (CWM and SWM) will persist for the subsequent cycles

(we consider that it has memory), the FIR filter generates the same output (i.e., filter_out

= 71) for the second test-case (TC2) as well. This leads to the mismatch of the filter_out

with the second stored golden output (golden_2 = 129). Hence, by incorporating the second

test-case (TC2) in the trust filter, the rare escape of the Trojan can be avoided.

5.1.8 Experimental Results

Experimental Setup

Different computational intensive application, amiable to hardware acceleration, were se-

lected and grouped together into complex systems in order to test our hardware Trojan

detection method. Table 5.2 shows the different system configurations ranging from systems

with a single master and single slave (S1) to more complex systems with 3 masters and

5 slaves (S7). The slaves were taken from the Synthesizable SystemC benchmarks suite

(S2CBench) [107], where sobel is a 3x3 edge detection filter, md5c is message digest algo-

102 Hardware Trojan Detection at System Level

rithm for cryptographic applications, fir is a 9 tap FIR filter, interp is a 3 stage interpolation

filter, bsort is a 8 element sorting algorithm, kasumi is a block cipher, aes is an Advanced

Encryption Standard specification, ave8 is an average of 8 number algorithm and adpcm is

an adaptive differential pulse coding decoder encoder.

To verify that our proposed method can efficiently detect hardware Trojan, different

types of Trojans with different trigger mechanisms (combinational and sequential), all with a

payload with memory were inserted in each of the slaves with trust filters attached, as shown

in Table 5.2. This table also shows the type of filter used for each of the slaves. It can be seen

that type II filters are only used for the sobel and aes cases. For the rest of the cases, the type I

filter could be used. In the case of the sobel filter the verification is done after one full image

has been filtered and in the aes, every time a value has been encrypted/decrypted. All the

Trojans with combinational trigger mechanisms are triggered by the master by sending the

trigger combination through the bus. The hardware Trojans inserted into these synthesizable

benchmarks are similar to the ones in [105]. Some of the common payload mechanisms

used in this work include functionality changes, secret key leakage, denial of service and

the manipulation of the output signal. The HLS tool used in this work is CyberWorkBench

from NEC [40], which includes a bus generator and cycle-accurate model generator. The

experiments are conducted on an Intel i7-4790 @3.60GHZ CPU and 8 GB memory. The

target HLS frequency in all cases set to 100MHz. The target technology used, Nangate 45nm

and each benchmark were synthesized using the default synthesis options of the HLS tool.

In terms of how the tasks were mapped onto the different masters, a simple load balancing

approach is taken, assigning an equal number of tasks to each master.

It should be noted that the proposed method has not been prototyped on an FPGA. Our

work makes use of cycle-accurate SystemC models for the entire MPSoC. These models

mimic the behavior of the MPSoC cycle-accurately and hence lead to extremely accurate

5.1 Hardware Trojan detection in behavioral MPSoC 103

Table 5.3: Experimental Results

System
Area of Total Area Area Overhead Cycle accurate Cycle accurate ∆sim [%] performance

MPSoC [µm2] TF [µm2] [%] simulation simulation penalty on HW[%]
without TF[s] with TF[s] (over 10,000 cycles)

S1 6,889 445 6.45 251 258 2.7 0.3
S2 36,692 631 1.71 311 323 3.71 0.3
S3 43,302 893 2.06 465 481 3.32 0
S4 44,296 1203 2.71 506 523 3.2 0.3
S5 49,024 1246 2.54 743 768 3.25 0.3
S6 82,753 1523 1.84 853 881 3.17 0
S7 92,770 1902 2.05 964 1023 5.7 0.63

Avg. 2.76 3.57 0.26
Geomean 40,620 1,012 526 546

TF:Trust Filter. HW:Hardware. ∆sim: Difference in the cycle accurate simulation time.

results. The work also inserts these filters completely automatically into any of the slaves

that want to be monitored, hence the setup effort is negligible. The method is fully automatic.

Experimental Results and Discussion

Table 5.3 shows the results of the area, cycle-accurate simulation running time and final

SoC performance penalty for the different master-slave combinations. It is seen that area

of the trust filter is negligibly low compared to the area of total MPSoC. When simulating

the entire system, the cycle-accurate model simulation running time will also be affected, as

the complexity of the entire system increases. Columns 5-7 show the runtime differences,

indicating that on average the simulation time is increased by 3.57%. Finally, column 8

shows the performance penalty in the SoC in % of extra clock cycles required to execute all

the tasks on the silicon extracted from the cycle-accurate simulation due to the trust filters.

Systems with the only Type I filters do not have any performance penalties as the slaves’

idle time is used for the verification. Only systems with Type II filters show a minor penalty

which requires on average 0.26% extra clock cycles. Obviously, in Type II filters the master

manually determines when to perform the verification, thus, this value could increase or

decrease based on the verification frequency.

In order to fully characterize the proposed system, Table 5.4 shows the worst case perfor-

mance penalty analysis of the manual trust filter (type II) for the different systems. In this

104 Hardware Trojan Detection at System Level

Table 5.4: Worst Case Performance penalty analysis of manual trust filter for different
systems

System
Performance Penalty in [%] over 10,000 cycles

for different test intervals
after each testcase after 10 testcases after 50 testcases after 100 testcases

S1 100 10 2 1
S2 78.3 8.3 1.78 1.08
S3 100 10 2 1
S4 88.78 9.26 2.07 1.2
S5 99.5 10.3 2.3 1.3
S6 100 10 2 1
S7 96.96 11.46 2.38 2.16

Avg. 94.79 9.90 2.07 1.24

case, each slave has attached the manual trust filters and we measure the performance degra-

dation of this configuration when the master requests for different intervals the verification

of each slave. From Table 5.4 it can be observed that this verification is performed right after

a single test-case is sent, after 10, 50 and 100. For each case, the performance overhead

varies between 100% to 9.90%, 2.07% and 1.24% depending on the interval at which a

verification is requested. As expected, the higher the interval, the lower the performance

overhead. The worst case would be for the S1 system as it only has a single slave. Although

the performance overhead can be significant, depending on the verification request interval,

this method assures 100% Trojan detection. One alternative to the manual trust filter when

extremely secure systems are required is, as mentioned in the previous section, to instantiate

type I autonomous filter, which ignore any master request until the verification has finished.

One case that this work does not contemplate is the case in which the attacker can alter

the trust filter before it is either taped-out or at the foundry. One easy way to circumvent

the proposed trust filters method would be to change the stored outputs in the Trust Filter

so that the Trojan may evade the detection. This is a potential weakness of any pre-silicon

hardware Trojan detection technique. Most detection method can be potentially breached if it

is assumed that the fabrication process can modify the countermeasures before manufacturing.

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 105

Anyway, for this particular case, one easy way to partially detect that the trust filter has

been manipulated is to insert a standard built-in-a-self check mechanism, similar to the BIST

(Built-in-Self-Test) of VLSI circuits. Also, we can incorporate the technique mentioned in

[142]. We leave this for our future work.

Overall we believe that our hardware Trojan detection method presented in this work is

very efficient and have shown that it leads to small area and performance overheads.

5.2 Hardware Trojan Detection in Dynamically Re-configurable

FPGAs

ICs are becoming extremely complex being most of the cases Systems-on-Chip (SoC). These

SoCs include microprocessors, embedded memories, different types of external interfaces

and a set of Hardware Accelerators (HWaccs), all interconnected through a shared bus, bus

hierarchy or even a Network on Chip (NoC). SoC designers are often system integrators,

integrating a set of in-house and third party IPs (3PIP) onto the SoC and then outsourcing the

fabrication to another company.

One particular architectural novelty in state of the art complex SoCs, is the use of runtime

reconfigurable architectures for the HWaccs mapped as slaves on these heterogeneous SoCs,

also called Reconfigurable SoCs (RSoCs). Fig. 5.6 shows one example. These are typically

coarse-grained runtime reconfigurable arrays (CGRRA), which are runtime reconfigurable.

This means that their functionality can be updated at runtime. This architecture makes these

systems extremely efficient as different tasks can be mapped onto a single CGRRA, but at

the same time makes them extremely vulnerable to malicious alterations that can control the

functionality being executed on them at runtime. Hence, methods to secure these CGRRAs

need to be investigated.

106 Hardware Trojan Detection at System Level

Master(s)
(CPUs)

Slave(s)
(HWaccs)

CGRRA
(STP)

Interfaces/
Controllers

 State Transition Controller (STC)

Memory

Memory

M
em

o
ry

 M
em

o
ry

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

On Chip Bus

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

Figure 5.6: Coarse Grain Runtime Reconfigurable Array (CGRRA) IP in a Reconfigurable
SoC

This section focuses on Hardware Trojan detection in CGRRA IPs embedded into RSoCs.

As illustrated later on when the threat model is explained in detailed, this work assumes that

a rogue designer can insert a hardware Trojan in the controller part of the CGRRA to change

its configuration. The contribution of this work can be summarized as follows:

1. Propose a methodology to avoid any Hardware Trojan to be executed on a CGRRA by

fully utilizing the State Transition Controller’s (STC) memory and hence not allowing

space for the Hardware Trojan.

2. Present a method to avoid the CGRRA to load the Hardware Trojan from external

memory by pinging the CGRRA at regular intervals.

3. Detect the existence of Hardware Trojan in case that the CGRRA can access external

Programmable Read Only Memory (PROMs) with new STC configurations.

4. Present extensive experimental results of different RSoCs validating our method

making use of cycle-accurate SoC models.

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 107

5.2.1 Related Work

Hardware Trojans can also be inserted in reconfigurable devices like FPGAs. FPGAs

are particular interesting targets as they can be altered by manipulating the corresponding

bitstream which configures the device. The first successful real-world FPGA hardware

Trojan insertion demonstration into a commercial product can be found at [151]. The

authors manipulate the FPGA bitstreams to alter the AES-256 algorithm in such a way

that it turns into a linear function which can be broken into 32 known plain text-cipher

text pairs. After the manipulation, the attacker is able to obtain all the user data from the

cipher texts. This work highlights the practical relevance of bitstream modification attacks

that became realistic due to FPGA bitstream manipulations. The work in [152] and [153]

proposes other methodologies for hardware Trojan detection in reconfigurable systems like

FPGAs. All these previous works are related to reconfigurable systems that are static, i.e.,

the configuration remains the same during its execution, but not dynamically reconfigurable

ones like the one presented in this work. CGRRA have unique challenges that have not been

addressed yet in this previous work. To the best of our knowledge, this is the first work which

addresses the hardware security issues in dynamically reconfigurable systems.

5.2.2 Stream Transpose Processor

The target architecture used in this work is a Coarse-Grained Runtime Reconfigurable Array

(CGRRA) and in particular the Stream Transpose Processor (STP) from Renesas Electronics

[154]. It should be noted that without any loss of generality, our proposed method can be

applied to any runtime reconfigurable architecture, as they are mostly based on a similar

architecture (especially the CGRRA ones) [155].

108 Hardware Trojan Detection at System Level

STC

STC

STC

STC

512x8 bit
2port SRAM

Reg

512x8 bit
2port SRAM

16 bit
Multiplier

16 bit
Multiplier

8kx8bit
1port SRAM

16 bit
Multiplier

32 bit
Multiplier/Divid
er

FIFO

Control

Processing

Element

Tile
#1

#1

Tile
#2

#1

Tile
#3

#1

Tile
#4

#1

Reg

Figure 5.7: STP tile structure

5.2.3 STP Architecture

The STP is a coarse-grained, runtime re-configurable core that can be integrated into any SoC

as a loosely coupled HWaccs (it is sold as an IP and not as a stand-alone FPGA). The primary

unit of STP is called tile. The latest STP consists of four tiles. Fig. 5.7 shows the structure

of a single tile, where each tile consists of 64 Processing Elements (PEs), the STC, on-chip

embedded memory blocks and 16-bit multiplier units. VMEM is an 8-bit, 512-word memory

with two input and output port and HMEM is an 8-bit, 4096-word memory unit with one

input and an output port. The STP is a coarse-grained FPGA because is can perform bytes

size operations. The data path consists of an array of PEs and memories. Fig. 5.8 shows

the structure of a PE which has an 8-bit arithmetic logic unit (ALU), a data manipulation

unit (DMU) for 8-bit shift operation and 1-bit logic operations, two 8-bit register file units

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 109

RFU RFU

ALU DMU

U

Instructions

C
o

n
tro

l Sign
als

D
ata W

ire

Instruction

Pointer

Data_In

(8bitx2)

Data_Out

(8bit)

Figure 5.8: Architecture of Processing Element (PE)

(RFUs) which hold 8-bit data. The ALU and DMU can be combined to extend the operand

to a 16-bit adder or 4-to-1 multiplexer.

One unique architectural feature that makes this architecture extremely flexible and

efficient is that the data path is reconfigured every clock cycle in less than 1ns. A State

Transition Controller (STC) located in the center of the CGRRA holds a set of contexts with

the information on how the datapath should be configured. The latest version of the STP can

hold up to 64 different configuration codes (contexts), but can also load more contexts from

external, off-chip, memories through its DMA controller. This is important because it will

impact our Hardware Trojan avoidance and detection method.

5.2.4 STP Design flow

One of the uniqueness of the STP is how it is configured. Because of the architectural

details described in the previous subsection, it makes sense to configure it using High-Level

Synthesis instead of traditional logic synthesis. In RTL, the hardware is manually laid out

spatially on the circuit, parallelizing the application to be executed on it using a Hardware

110 Hardware Trojan Detection at System Level

Description Language (HDL) e.g. VHDL or Verilog. In contrast, in HLS a behavioral

description (e.g. C or C++) is given as an input and it is parallelized based on the target

underlying architecture, thus, it is better suited for this architecture. HLS can be defined

as the process of converting an un-timed high-level behavioral description into an RTL

description (VHDL/Verilog) that can execute it. HLS is composed of three main steps: (1)

Resource allocation, (2) scheduling and (3) binding. In the first step, the number and type

of resources (e.g. Functional Units) are extracted. These are in turn scheduled based on the

target frequency, the resources’ delays and their number and lastly different operations are

mapped to the different resources. The target architecture typically obtained after HLS is an

FSM and a data-path, where the FSM generates the control signals for the data (e.g. muxes).

The FSM generated after HLS can be mapped onto the STP’s STC while the data-path onto

the PEs, making HLS extremely suitable for this architecture.

Fig. 5.9 shows the flow diagram of the STP configuration process. It takes as inputs a

behavioral description given in ANSI-C and a set of constraints (e.g. target clock frequency,

and technology libraries). It then performs HLS on it and then the typical FPGA physical

design steps: Technology mapping, placement and routing. This back-end part also generates

the code for the STC which in turn configures the data-path. As many contexts as states of

the FSM are generated, where each context is loaded every clock cycle reconfiguring the

STP’s data-path in less than 1ns.

One of the byproducts of the synthesis process is an RTL simulation model which will be

used in our experiments to test the effectiveness of our proposed detection method.

5.2.5 Hardware Trojan in DRPs

The architectural uniqueness of CGRRAs and in particular the STP used in this work makes

it extremely vulnerable to hardware Trojan. In particular, the fact that the configuration is

stored in the STC controller makes it susceptible to being manipulated so that the CGRRA

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 111

 Behavioral Synthesis

Constraints

PE Array Code

Multi-context

Front-end

Back-end

FSM Data-path

Technology Map

Place and Route

Code Generation

STC Code

Source code
ANSI C

Simulation
model

Figure 5.9: Configuration flow of STP

executes any other function not originally intended for. The threat model used in this works

assumes that the Hardware Trojan is placed onto the RSoC by either the CGRRA vendor,

hardware designers, the RSoC physical design team or at the manufacturing stage. It is

assumed that at any of these stages the STC can be manipulated.

The trigger mechanism used in this work is very simple. The hardware Trojan is auto-

matically triggered when the CGRRA is not being actively used by monitoring the DMA’s

read and write signals. Thus, right after the CGRRA returns the computed data, the hardware

Trojan is triggered. Once any of the masters send new data to the CGRRA, the Hardware

Trojan will immediately stop to serve the new request and the Hardware Trojan will resume

its activity once the data has been returned to the master. We believe that this is the most

112 Hardware Trojan Detection at System Level

difficult scenarios of all, as the Hardware Trojan will never manifest itself under normal

operations, simulation nor during the testing stage.

The payload, in this case, targets at heating up the RSoC and increasing the power

consumption by actively switching all the PEs. Depending on the thermal characteristics of

the IC, this could lead to the IC being burnt in the worst case, while in the best case it would

consume more power and create a hotspot, which in turns would affect the reliability of the

IC. The threat model assumes that the attackers know about the STC configuration and make

use of unused context in the STC’s memory to implement its behavior.

The STP, as mentioned previously, also allows through its DMA port to access the external

memory to load more configurations onto the STC. This is important for the case that the

application requires more than 64 contexts or in order to execute different applications onto

the STP. It can intuitively be noticed that this can lead to a serious security problem as the

hardware Trojan once triggered could load any application onto the STP. Thus, this work

considers this case too.

5.2.6 Trojan Avoidance and Detection method

The proposed method is divided into two parts. The first part tries to avoid the actual insertion

of the Hardware Trojan in the system, while the second part avoids the Hardware Trojan

being loaded from external memory and if it is not possible to avoid the hardware Trojan to

be triggered, detects its presence. These two methods are described in detailed as follows:

Hardware Trojan Insertion Avoidance: As described previously, the STC contains the

configuration code (contexts) for the data-path part of the STP. For the STP family targeted

in this work, the maximum number of context that it can hold is 64. This means that any

unused context poses a potential threat as it can be used to host the Hardware Trojan. Thus,

the idea behind the Hardware Trojan avoidance used in this method is based on making sure

that for every application mapped onto the STP, it always make use of all the 64 contexts.

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 113

Fig. 5.10(a) shows an example where only 4 contexts are being used (Cused) out of

10 hypothetical maximum number of contexts (Cmax) which can be used (4/10), in this

case Cused = {C0,C1,C2,C3}. The rest of the contexts C(4..9) are unused and hence can be

exploited by the attacker to implement the Hardware Trojan shown in Fig. 5.10(b). In

this example shown, all the PEs are used to switch in order to consume more power and

hence drain the battery faster and to generate a hot-spot. Part of the 64 PEs of the Hardware

Trojan is devoted to jumping back to C0 once a request from the master is received. This is

important, as it avoids being detected. It should be noted that the Hardware Trojan does not

need to use all the remaining contexts to be effective. One context is enough to implement

its functionality. In this case, the Hardware Trojan just needs to stay in this context once

triggered, switching all the PEs simultaneously.

Our proposed avoidance method, hence, requires making sure that all the context are

fully utilized for any application. Thus, the maximum number of contexts should always be

used Cused/Cmax = 1 with Cused =Cmax (in the STP case 64) independently of the application

mapped onto the STP. Listing 1 shows an example of how this is achieved. A snippet of a

FIR filter computing the sum of products of some data and the filter coefficients is shown.

When the main computational loop is fully unrolled, the latency of the circuit should be 1

(depending on the target synthesis frequency), which means that a single context is used.

Thus, Cused = 1. This means that our method has to fill C f illed = Cmax−Cused=64-1=63

remaining contexts in order to fully utilize the STC memory. This is achieved through a

context adjustment function (context_adjust), called once the computation has finished.

Although behavioral descriptions do traditionally not have the notion of the clock and

hence it is difficult to create a delay of a fixed number of clock cycles, most of the commercial

HLS tools extend the C/C++ syntax with synthesis directives in the form of pragmas. The

delay loop is composed of three important elements, which are highlighted in Listing 1.

The first is that in order to guarantee the sequential execution of the delay loop a synthesis

114 Hardware Trojan Detection at System Level

C0

C1

C3

C2

C4

C6

C5

C7

C9
C8

(a)

Potential Trojan

attacking area

C0

C1

C3

C2

C4

C6

C5

C7

C9

C8

(b)

C0

C1

C3

C2

C4

C6

C5

C7

C9
C8

State space of

used PE area

State space of

unused PE area

(c)

Figure 5.10: Utilizacion of PEs. (a) Typical usage (b) once HW Trojan is triggered (c) with
proposed method

directive to not unroll the loop has been specified (in most cases, by default, HLS tools unroll

all the loops in order to parallelize the loop body). The second is a simple logic operation

as the loop body to avoid the synthesizer to optimize the complete logic away. Because the

logic is very simple, it ensures that each loop iteration is executed in exactly one clock cycle

and hence consumes a single context. The additional benefit is that it only consumes a single

PE for the loop counter and hence has very little power overhead. Finally, the write request

signal is also checked every clock cycle in order to exit the delay loop if a new write request

from the master arrives. Fig 5.10(c) shows the results graphically.

If the STP can only use the contexts from within the STC, then this proposed method

should be sufficient to guarantee that no Hardware Trojan can be inserted in the system. The

main problem comes when the STP is allowed to load new configurations from external

memories. This configuration is very usual to make the RSoCs even more flexible. In

this case, the method just introduced is not sufficient as the Hardware Trojan could be

loaded externally into the STP. Because it is virtually impossible from preventing externally

stored configurations to have a Hardware Trojan (e.g. the PROM used to store them can be

exchanged when the system is deployed) another method is required to avoid a hardware

Trojan to be loaded into the STC from external memories and in case that it is loaded to at

least mitigate the event that a Hardware Trojan is present by detecting it or from preventing

it from being executed.

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 115

: :

f o r (i =0 ; i <TAPS ; i ++)

sum += a r y [i] * c o e f f [i] ;

/ / C o n t e x t a d j u s t m e n t f u n c t i o n

c o n t e x t _ a d j u s t (CONTEXTS, a) ;

}

vo id c o n t e x t _ a d j u s t (i n t c o n t e x t s , i n t a) {

/ / pragma u n r o l l =0

f o r (i n t i =0 ; i < c o n t e x t s ; i ++) {

a=a&0x1b ;

i f (w r i t e _ r e q)

r e t u r n ;

}

}

Listing 5.1: Context adjustments function

Hardware Trojan Detection: The CGRRA used in this work is mapped as a loosely

coupled HWacc slave onto a shared memory mapped bus, which is a typical configuration in

current RSoCs. This work assumes that the Hardware Trojan is built into this slave so that

the Trojan is only active when the master does not require the slave to do any computation.

When in idle mode, the CGRRA will load an STC configuration stored in an external PROM

through its DMA port. The Trojan in this case, similar to the previous example will simply

make use of all the PEs of the CGRRA. Once the master requests a new computation from

the slave, this will load back from the external PROM the original design, compute the result

and once in idle mode trigger the Hardware Trojan again. Similar to the previous case, this

makes it extremely difficult to detect the Hardware Trojan. The only hint that anything might

not work well is that the computation latency increases due to having to load contexts from

outside memory.

116 Hardware Trojan Detection at System Level

The main idea behind our proposed detection method is to avoid the Hardware Trojan

to be loaded into the STC. Knowing the STC memory size is 40 Kbytes and given a typical

DMA channel capacity of 8Mbytes/s, it can be estimated that the time required by the

CGRRA to load a new configuration is 500µs. This implies that if the master requests the

CGRRA to perform any new computation within a 500 µs interval, the Hardware Trojan, to

avoid being detected would reconfigure the CGRRA with its original design and hence the

Hardware Trojan would never have enough time to be loaded into the STC. Obviously, this

interval would need to be adjusted based on the final SoC implementation where the CGRRA

is used. Instead of sending a full computation request to the CGRRA and in order to save

power, the master only pings the slave. This avoids having to perform a full computation of

the algorithm mapped onto the CGRRA, requiring less power at the same time.

i f (MSB == 0)

sum = f i r (da t a , c o e f) ;

/ / Dec ryp t f u n c t i o n i f MSB=1

e l s e

r e t u r n (d e c r y p t _ p i n g (d a t a)) ;

/ / C o n t e x t a d j u s t m e n t f u n c t i o n

c o n t e x t _ a d j u s t (CONTEXTS) ;

}

i n t d e c r y p t _ p i n g (i n t d a t a) {

z (0 . . 7) = d a t (0 . . 7) ^ d a t (8 . . 1 5) ;

z (8 . . 1 5) = d a t (8 . . 1 5) ^ d a t (1 6 . . 2 3) ;

z (1 6 . . 2 3) = d a t (1 6 . . 2 3) ^ d a t (2 4 . . 3 1) ;

z (2 4 . . 3 1) = d a t (2 4 . . 3 1) ^ key ;

r e t u r n z ;

}

Listing 5.2: Context adjustments function

In case that the Hardware Trojan acts differently and continues loading the Trojan after

the master has pinged the CGRAA, the pings itself is used to detect if a Hardware Trojan has

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 117

been triggered or not. In order to detect if the master wants the slave to perform a regular

computation or to reply a pinged signal, the MSB value of the first transmitted byte is used to

discriminate these two cases. an MSB=0 implies regular operation, while a MSB=1 implies

that a ping signal was sent. This ping does not just return the data sent by the master, because

this method could easily be compromised if the attacker knew about it, e.g. the attacker

could build a Hardware Trojan that switches all the PEs, but at the same time implements

the logic to return the pinged signal in parallel. To avoid this, the master encrypts a piece of

data (4 bytes) and sends it to the CGRRA. The protocol followed between the master and

the slave is straight forward. Listing 2 shows a snippet of the encryption method. The data

is decrypted by the slave and sent decrypted back to the master. If the data is correct then

the master knows that the CGRRA has not been corrupted. The encryption can be made

more complicated, but in this case a simple method based on doing a pairwise logic XOR

of consecutive bytes of the data sent by the master, including a last logic XOR with the key

stored in the CGRRA is used. This key is only available to the master and hardcoded in the

CGRRA. This method is safe enough because the STP can be reprogrammed anytime by the

final user with the final encryption/decryption mechanism. Thus, the attacker does not have

access to it during the SoC design and manufacturing stages.

We believe that these two methods should make CGRRA based designs much safer. To

further increase security, these methods can be combined together. The experimental results

section shows the effectiveness of these methods.

5.2.7 Experimental Results

Different computational intensive applications, amiable to hardware acceleration were se-

lected from Synthesizable SystemC benchmarks suite (S2CBench)[107] and converted to

ANSI-C because the commercial STP synthesis flow used in this work only accepts ANSI-C

as input language. Table 5.4 shows the different benchmarks used and their complexity in

118 Hardware Trojan Detection at System Level

Table 5.4: Benchmark characteristics

Bench lines mul add/sub loops arrays funcs

ave8 24 0 7 1 1 0

fir 54 7 7 1 2 1

sobel 87 0 26 8 3 2

bosrt 52 0 0 2 2 0

kasumi 221 0 44 21 13 5

interp 91 10 14 5 5 1

terms of the number of lines of code, the number of operators, loops, arrays and functions.

These applications mainly come from the signal processing and security domain. A standard

I/O interface was included in all of them to read and write data from the shared bus using a

synthesizable API provided by the STP vendor.

The CGRRA used in this work is the STP (DRP-II) from Renesas Electronics [156]

which can have a maximum of 64 contexts and 4 tiles in it. Musketeer is the Integrated

Development Environment (IDE) from Renesas Electronics used to synthesize the input code

from ANSI-C to the code to configure the STP. This tool includes a HLS front-end as well as

a physical design back-end. Each benchmark is synthesized with the default options set and

a target HLS frequency of 50MHz. 50MHz might seem a low frequency, but this was the

highest frequency which did not lead to any multi-cycle operation for all of the benchmarks.

Table 5.5 and Table 5.6 characterize our proposed methods in terms of area (number of

PEs used and number of contexts for each application mapped onto the STP) and energy

consumption respectively for the following three cases: case1-Trojan avoidance, case2-Trojan

detection and case1&2, the combination of case1 and case2 for maximum protection. PEmax

represents the maximum number of PEs used throughout all of the contexts, represented

mathematically as follows:

PEmax = Max{PEC0 ,PEC1, . . . ,PECN−1} (5.1)

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 119

In the ave8 benchmark, column 2 indicates 10 (C19), which represents that among the

required 23 contexts to execute the benchmark, given in column 4, the context number

19 (C19) requires the maximum number of PEs among all the other contexts. In this case

PEmax = 10. PEall in column 3 represents the total sum of all the PEs from all the generated

contexts, represented mathematically as follows:

PEall =
CN−1

∑
i=C0

PE{Ci} (5.2)

E.g. for the ave8 benchmark, column 3 indicates that the total number of PEs used across

all the 23 contexts is 107. Obviously, these PEs are shared across contexts and the total

number of available PEs is constant and equal to 256 PEs (4 tiles, each consisting of 64 PEs).

It should be noted that for case 1 and case 1&2 the total number of context are always equal

to the maximum number of contexts that the STC can hold. In this case 64, as shown in

columns 6 and 10.

Table 5.5: Experimental Results: Area Overhead

Benchmark

Original Trojan Avoidance (case 1) Trojan Detection (case 2) Trojan Avoidance

Area [PEs] & detection(case 1& 2)

Maximum PEs utilized Total area # contexts Area [PEs] # contexts Area PEs # contexts Area [PEs] # contexts

in a single context(PEmax) (PEall) (PEall) (PEall) (PEall)

Ave8 10(C19) 107 23 148 64 151 27 188 64

FIR 15(C40) 236 46 254 64 280 50 303 64

Sobel 23(C9) 119 17 166 64 163 21 207 64

Bsort 30(C5) 105 11 158 64 149 15 207 64

Kasumi 29(C28) 212 33 243 64 256 37 284 64

Interp. 40(C20) 301 28 337 64 345 32 378 64

Avg. 25 180 26 218 64 224 31 262 64

Our proposed method obviously also incurs in extra power overheads. Thus, it is im-

portant to measure these. The main problem is that STP synthesis tool does not report any

power figures. Thus, in order to estimate the power consumption, a single PE based on Fig.

5.8 was modeled in RTL (Verilog) and synthesized targeting a Xilinx Virtex-4 FPGA. The

main reason for targeting this FPGA is that this FPGA family and the technology libraries

120 Hardware Trojan Detection at System Level

Table 5.6: Experimental Results: Energy Overhead

Bench
Energy Consumption

Original (in nJ) Case 1(in nJ) Case 2(in nJ) Case 1&2(in nJ) with Trojan(nJ)

Ave8 0.70 0.794 0.79 0.84 3.36

FIR 0.96 1.10 1.05 1.19 3.44

Sobel 1.40 1.54 1.52 1.64 3.78

Bsort 1.68 1.82 1.75 1.86 4.24

Kasumi 1.18 1.34 1.27 1.41 3.68

Interp 2.10 2.24 2.19 2.32 4.46

Avg 1.33 1.47 1.42 1.55 3.36

used for the STP are both 90nm [157]. We then measured the average power consumption

using Xilinx’s Power Estimator (XPE) [158]. It should be noted that the power calculated

using this method is not too accurate, but serves as an indicator of the relative differences

between the different implementations. The energy reported is the total energy within 64

clock cycles (matching the total number of contexts that the STC can hold).

Table 5.6 shows the energy consumption results of the original design without any

hardware Trojan protection mechanism (column 2), with only case1 method (column 3) with

case2 (column 4) and lastly with both protection methods (column 5). It can be observed

that our proposed methods on average increase the energy consumption by 9.5% and 6.3%

respectively, while on average 14.2% for the combined approach (case1&2). To put things

in better context, the last column shows the energy consumption of the hardware Trojan

implemented on the STP switching all of the PEs in each of the 64 contexts, which has an

average energy consumption overhead of 60.4%.

Our proposed methods will also affect the critical path and thus the maximum frequency.

Fig. 5.11 shows the increase in the critical path delay for all 3 scenarios (case1,2 and 1&2)

when compared to the critical path of the original design without any hardware security

measure. On average case 1 method only degrades the critical path by 1.9%, while case 2

5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs 121

degrades it by an average of 6.1%. This is mainly due to the insertion of a mux when our

method reads the MSB to decide if the actual design has to be executed or if the incoming

data is a ping from the master which has to be decrypted. When combining both methods

(case 1&2) the critical path increases on average by 7.8%. We believe that this increase is

reasonable, especially considering the added security to the system.

The previous results described our proposed detection methods quantitatively. It is

nevertheless also required to proof qualitatively that our proposed method works. It should

be noted that it is impossible to demonstrate that case1 works as it is a method designed to

avoid a hardware Trojan to be inserted into the system. Hence, only case2 is tested. In order

to do so, we implemented a complete SoC instantiating a CGRRA as a memory mapped

HWAcc slave in it. As mentioned in section II and shown in Fig. 5.9, one of the by-products

of the design flow is an RTL (Verilog) simulation model of the CGRRA application mapped

onto the STP. This simulation model is inserted as a component in a SoC built out of a

single master and the CGRRA connected through am AMBA AHB bus. In order to build

this SoC a system generator called CybusM, within NEC’s CyberWorkBench [40] is used.

This bus generator takes as inputs the bus type (i.e., AHB, AXI), arbiter type (round robin

used in this case), bus bit width (32 bit in this case), a number of masters, number of slaves,

and their memory map and generates a cycle-accurate model of the entire system. This

cycle-accurate model is given in SystemC or RTL. In this case, as the simulation model

generated by Musketeer is in RTL, this second option is chosen. This allows us to measure

the effectiveness of our proposed detection techniques. Hence, a Hardware Trojan that tries

to access external memory when the CGRRA is not processing any data is instantiated.

When instantiating case2 Trojan avoidance and detection method and having the master

pinging the HWacc every certain interval the simulation results of the cycle-accurate model

showed that the Hardware Trojan could not be loaded from external memory and the correct

output was always received by the master.

122 Hardware Trojan Detection at System Level

av
e8 fir

so
be

l
bs

ort

ka
su

mi
int

erp av
g

5

10

15
C

ri
tic

al
pa

th
O

ve
rh

ea
d

([
%

])

case1 case2 case3

Figure 5.11: Critical path overhead comparison between original designs and case1,case2
and case3 methods.

From these results, we believe that our hardware Trojan detection method for CGRRA is

very efficient and that it can cover a wide range or trigger and detection mechanisms with

low power/energy overheads and limited critical path delay increase.

5.3 Summary

This chapter has presented techniques to detect hardware Trojans at the system level. The

first part of the chapter has presented a novel area efficient circuit to detect hardware Trojans

in MPSoCs. Most of the previous hardware Trojan detection techniques address the issue

of 3PIP hardware security by instantiating two different IPs from different vendors onto

the same system, which is extremely expensive due to the area overhead or not possible

as two IPs might be unavailable from different vendors. Other methods rely on golden

Trojan free models to detect hardware Trojans. This work targets the detection of hardware

Trojans embedded in 3PBIPs when no golden models are available. This work leverages

state-of-the-art HLS tools to build complete SoCs at the behavioral level allowing us to

measure the idle time of each slave and using this to test for hardware Trojans.

5.3 Summary 123

The second part of this chapter has presented a hardware Trojan avoidance and detection

method for runtime reconfigurable FPGAs, in particular, a coarse-grained runtime reconfig-

urable array (CGRRA) mapped as a slave on a memory mapped bus SoC. CGRRAs have

unique capabilities that make them extremely powerful and efficient, but also extremely

vulnerable to hardware Trojan. This work covers cases that STC, which holds the configura-

tion data for the data-path, cannot be re-programmed at runtime, and the case that it can by

accessing an external memory. In both the cases, our proposed method has shown to be very

effective and requiring minimum design effort at a very low power overhead.

Chapter 6

Conclusions and Future work

6.1 Conclusions

Hardware security has become an extremely important topic in VLSI design. The glob-

alization of the design and fabrication process has opened the window to the malicious

manipulation of the design process. Thus, much work has been proposed to address this

issue. Some include IP watermarking, fingerprinting, IC metering, IC camouflaging and

split manufacturing to alleviate the threat of IC counterfeiting, reverse engineering, IP piracy

and IC overbuilding. Although the behavioral level is quite new and still in its infancy, the

security issues related to behavioral IPs have not been addressed properly. This thesis is a

step towards making behavioral IC design more secure.

This thesis first discussed an open source synthesizable security SystemC benchmark suite

(S3CBench) developed which includes different types of hardware Trojans. The benchmark

is developed in such a way that it is difficult for the typical software profiler to point out the

Trojan in code coverage report. The Trojans have different trigger and payload mechanisms

and have different effects on the circuit. In particular, functionality changes, information

leakage and performance degradation of the original circuit.

6.1 Conclusions 125

The BIP protection issue was addressed from two different angles. The first to protect the

BIP provider and the second the BIP consumer. Obfuscation is one of the techniques used to

protect the source code from illegal use without the permission of rightful IP owner. In this

thesis, it was observed that obfuscating the source code can severely impact on the quality

of results (QoRs) of BIPs for HLS. Thus, we have proposed a quick and efficient method

to maximize the source code obfuscation while retaining the original design characteristics.

In the next stage, we have studied different hardware Trojan detection techniques proposed

for semiconductor IPs at various level of VLSI abstraction. Most of the previous techniques

addressed the issue of 3PIP hardware security by instantiating two or more different IPs from

different vendors onto the same system. Other methods rely on golden Trojan free models to

detect the hardware Trojans. For BIPs, we have proposed a fully automatic method to detect

the presence of hardware Trojans using formal verification methods. In particular, property

checking at the behavioral level.

Finally, this thesis has addressed the issue of hardware Trojan detection at the behavioral

system design level. With the advent of HLS, commercial tools now allow the creation of

complete SoCs at the behavioral level. Thus, methods to ensure their security are needed.

This thesis in particular leverage two main features of C-based design: (i) It allows the

generation of fast cycle-accurate models, which this thesis uses to measure the exact slack

of each BIP mapped as a loosely coupled Hardware Accelerator (HWAcc) slave and (ii) its

ability to build the complete SoC using synthesizable Application Programming Interfaces

(APIs). With this in mind, this thesis proposed a small hardware Trojan detection circuit

called trust filters, which exploits the slack time of the slave to detect HW Trojan at runtime.

Finally, CGRRAs have unique capabilities that make them extremely powerful and efficient,

but also extremely vulnerable to hardware Trojan. We have also proposed hardware Trojan

avoidance and detection method for these CGRRAs which are mapped as a slave on a

126 Conclusions and Future work

memory mapped bus SoC. Our proposed method has shown to be very effective and requiring

minimum design effort at a very low power overhead.

6.2 Future Work

Although HLS is finally being widely adopted, the design of complete SoCs at the behavioral

level is still in its infancy. This poses many security concerns that need to be addressed

in the future. Short term future work will address other system-level security issues. This

thesis has mainly addressed the issue of hardware Trojan detection for hardware accelerators

mapped as loosely coupled slaves. Other areas that need to be investigated are the collusion

of different modules within the SoC and covert timing. Long-term research, on the other

hand, will address novel IC design materials and security concerns with their use. We are

reaching the end of Moore’s law and much work is being done to replace traditional CMOS

logic with another type of devices like carbon nano-tubes and memristive devices. Especially

for memristors that can hold and process information, it is therefore important to study how

trustworthiness they are and any potential security issues that can come along with their use.

Bibliography

[1] K. Wakabayashi and B. C. Schafer, ““All-in-C” Behavioral Synthesis and Verification
with CyberWorkBench,” in High-Level Synthesis. Springer, 2008, pp. 113–127.

[2] A. Rawnsley. (2011) "Fishy chips: Spies want to hack-proof cir-
cuits," Wired. [Online]. Available: http://www.wired.com/dangerroom/2011/
06/chips-oyspies-want-to-hack-proof-circuits/

[3] J.H. Follett. (2008) "CRN Cisco Channel at Center of FBI Raid on Counterfeit Gear,".
[Online]. Available: www.crn.com/networking/207602683

[4] S. Adee, “The hunt of kill switch,” IEEE Spectrum, vol. 45, no. 5, pp. 34–39, May
2008.

[5] J. Kumagai, “Chip Detectives,” IEEE Spectrum, vol. 37, no. 11, pp. 43–48, Nov 2000.

[6] Australian Government DoD-DSTO. (2008) "Towards Countering the Rise of
the Silicon Trojan". [Online]. Available: http://dspace.dsto.defence.gov.au/dspace/
bitstream/1947/9736/1/DSTO-TR-2220%20PR.pdf

[7] Defense Advanced Research Projects Agency(DARPA). (2007) "TRUST in
integrated circuits(tic) - proposer Information Pamphlet". [Online]. Available:
http://www.darpa.mil/MTO/solicitations/baa07-24

[8] Semiconductor Industry Association (SIA). (2008) "Global billings report
history(3-month moving average) 1976-March 2009". [Online]. Available: http:
//www.sia-online.org/galleries/Statistics/GSR1976-March09.xls

[9] Defense Science Board Task Force. (2005) "Study on High performance microchip
supply". [Online]. Available: http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_
Report_Final.pdf

[10] SEMI. (2008) "Innovation is at risk as semiconductor equipment and materials
industry loses up to $4 billion annually due to IP infringement". [Online]. Available:
http://www.semi.org/en/Press/P043775

[11] FABLESS:The Transformation of The Semiconductor Industry. CreateSpace Inde-
pendent Publishing Platform, 2014.

[12] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware:
Identifying and classifying hardware trojans,” Computer, vol. 43, no. 10, pp. 39–46,
Oct 2010.

http://www.wired.com/dangerroom/2011/06/chips-oyspies-want-to-hack-proof-circuits/
http://www.wired.com/dangerroom/2011/06/chips-oyspies-want-to-hack-proof-circuits/
www.crn.com/ networking/207602683
http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/9736/1/DSTO-TR-2220%20PR.pdf
http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/9736/1/DSTO-TR-2220%20PR.pdf
http://www.darpa.mil/MTO/solicitations/baa07-24
http://www.sia-online.org/galleries/Statistics/GSR1976-March09.xls
http://www.sia-online.org/galleries/Statistics/GSR1976-March09.xls
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.semi.org/en/Press/P043775

128 Bibliography

[13] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-
level synthesis for fpgas: From prototyping to deployment,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 4, pp. 473–491,
April 2011.

[14] G. Inggs, S. Fleming, D. Thomas, and W. Luk, “Is high level synthesis ready for
business? A computational finance case study,” in 2014 International Conference on
Field-Programmable Technology (FPT), Dec 2014, pp. 12–19.

[15] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the scheduling problem
in high level synthesis,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 10, no. 4, pp. 464–475, 1991.

[16] S. Govindarajan, “Scheduling algorithms for high-level synthesis,” Term paper ECE,
vol. 834, 1995.

[17] Z. Baruch, “Scheduling algorithms for high-level synthesis,” ACAM Scientific Journal,
vol. 5, no. 1-2, pp. 48–57, 1996.

[18] A. C. Parker, J. Pizarro, and M. Mlinar, “MAHA: A Program for Datapath Synthesis,”
in 23rd ACM/IEEE Design Automation Conference, June 1986, pp. 461–466.

[19] R. Jain, A. Mujumdar, A. Sharma, and H. Wang, “Empirical evaluation of some
high-level synthesis scheduling heuristics,” in 28th ACM/IEEE Design Automation
Conference, June 1991, pp. 686–689.

[20] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behavioral synthesis
of ASICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 8, no. 6, pp. 661–679, Jun 1989.

[21] R. Camposano, “Path-based scheduling for synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 1, pp. 85–93,
Jan 1991.

[22] G. Lakshminarayana, K. S. Khouri, and N. K. Jha, “Wavesched: a novel scheduling
technique for control-flow intensive designs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, no. 5, pp. 505–523, May 1999.

[23] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau, “Using global code motions
to improve the quality of results for high-level synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 2, pp. 302–
312, Feb 2004.

[24] D. Ku and G. D. Micheli, “Relative scheduling under timing constraints,” in 27th
ACM/IEEE Design Automation Conference, Jun 1990, pp. 59–64.

[25] T. Ly, “Scheduling Using Behavioral Templates,” in 32nd Design Automation Confer-
ence, 1995, pp. 101–106.

[26] M. Münch, N. Wehn, and M. Glesner, “An Efficient ILP-based Scheduling
Algorithm for Control-dominated VHDL Descriptions,” ACM Trans. Des. Autom.
Electron. Syst., vol. 2, no. 4, pp. 344–364, Oct. 1997. [Online]. Available:
http://doi.acm.org/10.1145/268424.268428

http://doi.acm.org/10.1145/268424.268428

Bibliography 129

[27] S. Haynal, “Automata-based symbolic scheduling,” Ph.D. dissertation, University of
California, Santa Barbara, December 2000.

[28] A. Vijayakumar and F. Brewer, “Weighted control scheduling,” in ICCAD-2005.
IEEE/ACM International Conference on Computer-Aided Design, 2005., Nov 2005,
pp. 777–783.

[29] C. T. Hwang, J. H. Lee, and Y. C. Hsu, “A formal approach to the scheduling problem
in high level synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 10, no. 4, pp. 464–475, Apr 1991.

[30] C. H. Gebotys and M. I. Elmasry, “Global optimization approach for architectural
synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 12, no. 9, pp. 1266–1278, Sep 1993.

[31] S. Bhattacharya, S. Dey, and F. Brglez, “Performance Analysis and Optimization
of Schedules for Conditional and Loop-intensive Specifications,” in Proceedings
of the 31st Annual Design Automation Conference, ser. DAC ’94. New
York, NY, USA: ACM, 1994, pp. 491–496. [Online]. Available: http:
//doi.acm.org/10.1145/196244.196477

[32] B. M. Pangrle, “On the complexity of connectivity binding,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 11, pp.
1460–1465, Nov 1991.

[33] C.-J. Tseng and D. P. Siewiorek, “Automated Synthesis of Data Paths in Digital
Systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 5, no. 3, pp. 379–395, July 1986.

[34] M.C.McFarland, “Allocating registers, processors, and connections,” Dept. Elect. Eng.,
Carnegie-Mellon Univ., Tech. Rep, Aug.1981.

[35] C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu, “Data path allocation based on
bipartite weighted matching,” in 27th ACM/IEEE Design Automation Conference, Jun
1990, pp. 499–504.

[36] K. Kucukcakar and A. C. Parker, “Data path tradeoffs using mabal,” in 27th ACM/IEEE
Design Automation Conference, Jun 1990, pp. 511–516.

[37] G. Krishnamoorthy and J. A. Nestor, “Data path allocation using an extended binding
model,” in [1992] Proceedings 29th ACM/IEEE Design Automation Conference, Jun
1992, pp. 279–284.

[38] T. A. Ly and J. T. Mowchenko, “Applying simulated evolution to high level synthesis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, no. 3, pp. 389–409, Mar 1993.

[39] C. H. Gebotys and M. I. Elmasry, “Optimal synthesis of high-performance archi-
tectures,” IEEE Journal of Solid-State Circuits, vol. 27, no. 3, pp. 389–397, Mar
1992.

[40] NEC CyberWorkBench. (2015). [Online]. Available: www.cyberworkbench.com

http://doi.acm.org/10.1145/196244.196477
http://doi.acm.org/10.1145/196244.196477
www.cyberworkbench.com

130 Bibliography

[41] B. M. Pangrle, F. O. Brewer, D. A. Lobo, and A. Seawright, “Relevant issues in
high-level connectivity synthesis,” in 28th ACM/IEEE Design Automation Conference,
June 1991, pp. 607–610.

[42] J.-P. Weng and A. C. Parker, “3D scheduling: high-level synthesis with floorplanning,”
in 28th ACM/IEEE Design Automation Conference, June 1991, pp. 668–673.

[43] A. C. H. Wu, V. Chaiyakul, and D. D. Gajski, “Layout-area models for high-level
synthesis,” in 1991 IEEE International Conference on Computer-Aided Design Digest
of Technical Papers, Nov 1991, pp. 34–37.

[44] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware Security: Models,
Methods, and Metrics,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1283–1295, Aug
2014.

[45] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Trojan Taxonomy and
Detection,” IEEE Design Test of Computers, vol. 27, no. 1, pp. 10–25, Jan 2010.

[46] F. Koushanfar and A. Mirhoseini, “A Unified Framework for Multimodal Submodular
Integrated Circuits Trojan Detection,” IEEE Transactions on Information Forensics
and Security, vol. 6, no. 1, pp. 162–174, March 2011.

[47] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, “Hardware Trojan horse de-
tection using gate-level characterization,” in 2009 46th ACM/IEEE Design Automation
Conference, July 2009, pp. 688–693.

[48] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay fingerprint,” in
2008 IEEE International Workshop on Hardware-Oriented Security and Trust, June
2008, pp. 51–57.

[49] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan Detection
using IC Fingerprinting,” in 2007 IEEE Symposium on Security and Privacy (SP ’07),
May 2007, pp. 296–310.

[50] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar, “High-sensitivity hardware Trojan
detection using multimodal characterization,” in 2013 Design, Automation Test in
Europe Conference Exhibition (DATE), March 2013, pp. 1271–1276.

[51] C. Sturton, M. Hicks, D. Wagner, and S. T. King, “Defeating UCI: Building Stealthy
and Malicious Hardware,” in 2011 IEEE Symposium on Security and Privacy, May
2011, pp. 64–77.

[52] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith, “Overcom-
ing an Untrusted Computing Base: Detecting and Removing Malicious Hardware
Automatically,” in 2010 IEEE Symposium on Security and Privacy, May 2010, pp.
159–172.

[53] A. Waksman and S. Sethumadhavan, “Silencing Hardware Backdoors,” in 2011 IEEE
Symposium on Security and Privacy, May 2011, pp. 49–63.

Bibliography 131

[54] E. Love, Y. Jin, and Y. Makris, “Proof-Carrying Hardware Intellectual Property: A
Pathway to Trusted Module Acquisition,” IEEE Transactions on Information Forensics
and Security, vol. 7, no. 1, pp. 25–40, Feb 2012.

[55] Y. M. Alkabani and F. Koushanfar, “Active Hardware Metering for Intellectual
Property Protection and Security,” in Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium, ser. SS’07. Berkeley, CA,
USA: USENIX Association, 2007, pp. 20:1–20:16. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1362903.1362923

[56] A. Cui, C. H. Chang, S. Tahar, and A. T. Abdel-Hamid, “A robust fsm watermarking
scheme for ip protection of sequential circuit design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 30, no. 5, pp. 678–690, May
2011.

[57] C. H. Chang and A. Cui, “Synthesis-for-testability watermarking for field authenti-
cation of vlsi intellectual property,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, no. 7, pp. 1618–1630, July 2010.

[58] F. Koushanfar, I. Hong, and M. Potkonjak, “Behavioral Synthesis Techniques
for Intellectual Property Protection,” ACM Trans. Des. Autom. Electron.
Syst., vol. 10, no. 3, pp. 523–545, Jul. 2005. [Online]. Available: http:
//doi.acm.org/10.1145/1080334.1080338

[59] A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe,
“Robust IP watermarking methodologies for physical design,” in Proceedings 1998
Design and Automation Conference. 35th DAC. (Cat. No.98CH36175), June 1998, pp.
782–787.

[60] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “FPGA fingerprinting techniques
for protecting intellectual property,” in Proceedings of the IEEE 1998 Custom Inte-
grated Circuits Conference (Cat. No.98CH36143), May 1998, pp. 299–302.

[61] G. Wolfe, J. L. Wong, and M. Potkonjak, “Watermarking graph partitioning solutions,”
in Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232),
June 2001, pp. 486–489.

[62] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partitioning: A
Survey,” Integr. VLSI J., vol. 19, no. 1-2, pp. 1–81, Aug. 1995. [Online]. Available:
http://dx.doi.org/10.1016/0167-9260(95)00008-4

[63] F. Koushanfar and Y. Alkabani, “Provably secure obfuscation of diverse watermarks
for sequential circuits,” in 2010 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), June 2010, pp. 42–47.

[64] A. E. Caldwell, H.-J. Choi, A. B. Kahng, S. Mantik, M. Potkonjak, G. Qu, and J. L.
Wong, “Effective iterative techniques for fingerprinting design ip,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 2, pp.
208–215, Feb 2004.

http://dl.acm.org/citation.cfm?id=1362903.1362923
http://dl.acm.org/citation.cfm?id=1362903.1362923
http://doi.acm.org/10.1145/1080334.1080338
http://doi.acm.org/10.1145/1080334.1080338
http://dx.doi.org/10.1016/0167-9260(95)00008-4

132 Bibliography

[65] J. B. Wendt, F. Koushanfar, and M. Potkonjak, “Techniques for foundry identification,”
in 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), June 2014, pp.
1–6.

[66] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State as an Identifying
Fingerprint and Source of True Random Numbers,” IEEE Transactions on Computers,
vol. 58, no. 9, pp. 1198–1210, Sept 2009.

[67] C. H. Chang and L. Zhang, “A blind dynamic fingerprinting technique for sequential
circuit intellectual property protection,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 33, no. 1, pp. 76–89, Jan 2014.

[68] M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach, and S. Devadas, “Robust and
Reverse-Engineering Resilient PUF Authentication and Key-Exchange by Substring
Matching,” IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 1, pp.
37–49, March 2014.

[69] U. Rührmair, S.Devadas, and F. Koushanfar, Security Based on Physical Unclonability
and Disorder, Introduction to Hardware Security and Trust. Springer.

[70] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated
Circuits,” in 2008 Design, Automation and Test in Europe, March 2008, pp. 1069–
1074.

[71] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC Piracy Using Reconfig-
urable Logic Barriers,” IEEE Design Test of Computers, vol. 27, no. 1, pp. 66–75, Jan
2010.

[72] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of ICs for piracy
prevention and digital right management,” in 2007 IEEE/ACM International Confer-
ence on Computer-Aided Design, Nov 2007, pp. 674–677.

[73] R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC De-
sign Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, Oct 2009.

[74] ——, “RTL Hardware IP Protection Using Key-Based Control and Data Flow Ob-
fuscation,” in 2010 23rd International Conference on VLSI Design, Jan 2010, pp.
405–410.

[75] ——, “Hardware protection and authentication through netlist level obfuscation,” in
2008 IEEE/ACM International Conference on Computer-Aided Design, Nov 2008, pp.
674–677.

[76] F. Koushanfar and G. Qu, “Hardware metering,” in Proceedings of the 38th Design
Automation Conference (IEEE Cat. No.01CH37232), June 2001, pp. 490–493.

[77] F. Koushanfar, Farinaz, G. Qu, Potkonjak, and Miodrag, Intellectual Property
Metering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 81–95. [Online].
Available: http://dx.doi.org/10.1007/3-540-45496-9_7

http://dx.doi.org/10.1007/3-540-45496-9_7

Bibliography 133

[78] Intelligence Advanced Research Projects Activity (IARPA). (2011) Trusted
integrated circuits program. [Online]. Available: https://www.fbo.gov/utils/view?id=
b8be3d2c5d5babbdffc6975c370247a6

[79] Chipworks. (2012) Intel’s 22-nm tri-gate transistors exposed. [On-
line]. Available: http://www.chipworks.com/blog/technologyblog/2012/04/23/
intels-22-nmtri-gate-transistors-exposed/

[80] R. Torrance and D. James, “The state-of-the-art in semiconductor reverse engineering,”
in 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), June 2011, pp.
333–338.

[81] Defense Advanced Research Projects Agency (DARPA). (2012) Integrity and
reliability of integrated circuits (IRIS). [Online]. Available: http://www.darpa.mil/
Our_Work/MTO/Programs/Integrity_and_ReliabilityofIntegratedCircuits-.

[82] R. Cocchi, L. Chow, J. Baukus, and B. Wang, “Method and apparatus for
camouflaging a standard cell based integrated circuit with micro circuits and
post processing,” Aug. 13 2013, uS Patent 8,510,700. [Online]. Available:
https://www.google.com/patents/US8510700

[83] P. Rohatgi, Improved Techniques for Side-Channel Analysis. Boston, MA:
Springer US, 2009, pp. 381–406. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-71817-0_14

[84] P. Kocher, J. Jaffe, and B. Jun, Differential Power Analysis. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388–397. [Online]. Available:
http://dx.doi.org/10.1007/3-540-48405-1_25

[85] P. Rohatgi, Electromagnetic Attacks and Countermeasures. Boston, MA:
Springer US, 2009, pp. 407–430. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-71817-0_15

[86] D. Genkin, A. Shamir, and E. Tromer, RSA Key Extraction via Low-Bandwidth
Acoustic Cryptanalysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
444–461. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-44371-2_25

[87] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert, Simple Photonic
Emission Analysis of AES. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
41–57. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-33027-8_3

[88] P. Kocher, “Leak-resistant cryptographic indexed key update,” Mar. 25 2003, uS
Patent 6,539,092. [Online]. Available: https://www.google.com/patents/US6539092

[89] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power analysis,”
Journal of Cryptographic Engineering, vol. 1, no. 1, pp. 5–27, 2011.

[90] M. Joye, Basics of Side-Channel Analysis. Boston, MA: Springer US, 2009, pp.
365–380. [Online]. Available: http://dx.doi.org/10.1007/978-0-387-71817-0_13

https://www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6
https://www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6
http://www.chipworks.com/blog/technologyblog/2012/04/23/intels-22-nmtri-gate-transistors-exposed/
http://www.chipworks.com/blog/technologyblog/2012/04/23/intels-22-nmtri-gate-transistors-exposed/
http://www.darpa.mil/Our_Work/MTO/Programs/Integrity_and_ReliabilityofI ntegratedCircuits-.
http://www.darpa.mil/Our_Work/MTO/Programs/Integrity_and_ReliabilityofI ntegratedCircuits-.
https://www.google.com/patents/US8510700
http://dx.doi.org/10.1007/978-0-387-71817-0_14
http://dx.doi.org/10.1007/978-0-387-71817-0_14
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-0-387-71817-0_15
http://dx.doi.org/10.1007/978-0-387-71817-0_15
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-642-33027-8_3
https://www.google.com/patents/US6539092
http://dx.doi.org/10.1007/978-0-387-71817-0_13

134 Bibliography

[91] S. Moore, R. Anderson, R. Mullins, G. Taylor, and J. J. A. Fournier, “Balanced
Self-Checking Asynchronous Logic for Smart Card Applications,” Journal of Micro-
processors and Microsystems, vol. 27, pp. 421–430, 2003.

[92] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential cmos logic with
signal independent power consumption to withstand differential power analysis on
smart cards,” in Proceedings of the 28th European Solid-State Circuits Conference,
Sept 2002, pp. 403–406.

[93] F. Mace, F. x. St, I. Hassoune, J. d. Legat, and J. j. Quisquater, “A Dynamic Current
Mode Logic to Counteract Power Analysis Attacks,” in In The Proceedings of DCIS
2004, 2004, pp. 186–191.

[94] M. Stanojlović and P. Petković, “Strategies against side-channel-attack,” in Proceed-
ings of the Small Systems Simulation Symposium, 2010, pp. 86–89.

[95] B. Yang, K. Wu, and R. Karri, “Secure Scan: A Design-for-Test Architecture for
Crypto Chips,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 10, pp. 2287–2293, Oct 2006.

[96] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing Designs against Scan-
Based Side-Channel Attacks,” IEEE Transactions on Dependable and Secure Comput-
ing, vol. 4, no. 4, pp. 325–336, Oct 2007.

[97] A. Cui, Y. Luo, and C. H. Chang, “Static and dynamic obfuscations of scan data
against scan-based side-channel attacks,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 2, pp. 363–376, Feb 2017.

[98] F. Koushanfar, S. Fazzari, C. McCants, W. Bryson, P. Song, M. Sale, and M. Potkonjak,
“Can eda combat the rise of electronic counterfeiting?” in DAC Design Automation
Conference 2012, June 2012, pp. 133–138.

[99] K. Uwasawa, T. Yamamoto, and T. Mogami, “A new degradation mode of scaled p+
polysilicon gate pmosfets induced by bias temperature (bt) instability,” in Proceedings
of International Electron Devices Meeting, Dec 1995, pp. 871–874.

[100] P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, “Consistent model for the
hot-carrier degradation in n-channel and p-channel mosfets,” IEEE Transactions on
Electron Devices, vol. 35, no. 12, pp. 2194–2209, Dec 1988.

[101] X. Zhang and M. Tehranipoor, “Design of on-chip lightweight sensors for effective
detection of recycled ics,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 5, pp. 1016–1029, May 2014.

[102] S. Bhunia, M. Abramovici, D. Agrawal, P. Bradley, M. S. Hsiao, J. Plusquellic, and
M. Tehranipoor, “Protection Against Hardware Trojan Attacks: Towards a Compre-
hensive Solution,” IEEE Design Test, vol. 30, no. 3, pp. 6–17, June 2013.

[103] J. Rajendran, E. Gavas, J. Jimenez, V. Padman, and R. Karri, “Towards a comprehen-
sive and systematic classification of hardware trojans,” in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, May 2010, pp. 1871–1874.

Bibliography 135

[104] M. A. Coussy, Philippe, High-Level Synthesis - From Algorithm to Digital Circuit.
Springer, 2008.

[105] trust hub. (2010). [Online]. Available: https://www.trust-hub.org/resources/
benchmarks

[106] S3CBench. (2016). [Online]. Available: https://sourceforge.net/projects/s3cbench/

[107] B. Carrion Schafer and A. Mahapatra, “S2CBench: Synthesizable SystemC Bench-
mark Suite for High-Level Synthesis,” Embedded Systems Letters, IEEE, vol. 6, no. 3,
pp. 53–56, 2014.

[108] M. Yoshimura, A. Ogita, and T. Hosokawa, “A smart Trojan circuit and smart attack
method in AES encryption circuits,” in Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2013, pp. 278–283.

[109] “Stunix c/c++ obfuscator,” http://stunnix.com/, accessed: 2017-01-15.

[110] D. Forte, S. Bhunia, and M. Tehranipoor, Hardware Protection through Obfuscation.
Springer, 2017.

[111] A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall, “Interlocking
Obfuscation for Anti-tamper Hardware,” in Proceedings of the Eighth Annual
Cyber Security and Information Intelligence Research Workshop, ser. CSIIRW
’13. New York, NY, USA: ACM, 2013, pp. 8:1–8:4. [Online]. Available:
http://doi.acm.org/10.1145/2459976.2459985

[112] M. Brzozowski and V. N. Yarmolik, “Obfuscation as intellectual rights protection
in vhdl language,” in Computer Information Systems and Industrial Management
Applications, 2007. CISIM ’07. 6th International Conference on, June 2007, pp.
337–340.

[113] R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC De-
sign Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, Oct 2009.

[114] F. Koushanfar, “Provably Secure Active IC Metering Techniques for Piracy Avoidance
and Digital Rights Management,” IEEE Transactions on Information Forensics and
Security, vol. 7, no. 1, pp. 51–63, Feb 2012.

[115] C. Linn and S. Debray, “Obfuscation of Executable Code to Improve Resistance to
Static Disassembly,” in Proceedings of the 10th ACM Conference on Computer and
Communications Security, ser. CCS ’03. New York, NY, USA: ACM, 2003, pp.
290–299. [Online]. Available: http://doi.acm.org/10.1145/948109.948149

[116] Z. Guo, M. Tehranipoor, D. Forte, and J. Di, “Investigation of obfuscation-based
anti-reverse engineering for printed circuit boards,” in 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), June 2015, pp. 1–6.

[117] F. Koushanfar and Y. Alkabani, “Provably secure obfuscation of diverse watermarks
for sequential circuits,” in 2010 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), June 2010, pp. 42–47.

https://www.trust-hub.org/resources/benchmarks
https://www.trust-hub.org/resources/benchmarks
https://sourceforge.net/projects/s3cbench/
http://stunnix.com/
http://doi.acm.org/10.1145/2459976.2459985
http://doi.acm.org/10.1145/948109.948149

136 Bibliography

[118] A. Desai, M. Hsiao, C. Wang, and c. Nazhandali, “Interlocking obfuscation for
anti-tamper hardware,” in In: Proceedings of the eighth annual cyber security and
information intelligence research workshop. ACM, 2013, pp. 1–4.

[119] M. Brzozowski and V. Yarmolik, “Interlocking obfuscation for anti-tamper hardware,”
in In: Proceedings of the eighth annual cyber security and information intelligence
research workshop. ACM, 2013, pp. 1–4.

[120] M. Kainth, L. Krishnan, C. Narayana, S. G. Virupaksha, and R. Tessier, “Hardware-
assisted code obfuscation for fpga soft microprocessors,” in 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2015, pp. 127–132.

[121] C. Wang, “A security architecture for survivability mechanisms,” Ph.D. dissertation,
University of Virginia, 2000.

[122] T. Laszlo and A. Kiss, “Obfuscating C++ programs via control flow flattening,” in
Sectio Computatorica, Aug 2009.

[123] J. Holland, Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor, MI, 1975.

[124] S. Bhunia, M. Abramovici, D. Agrawal, P. Bradley, M. Hsiao, J. Plusquellic, and
M. Tehranipoor, “Protection Against Hardware Trojan Attacks: Towards a Compre-
hensive Solution,” IEEE Design Test, vol. 30, no. 3, pp. 6–17, June 2013.

[125] M. Banga and M. Hsiao, “Trusted RTL: Trojan detection methodology in pre-silicon
designs,” in HOST, June 2010, pp. 56–59.

[126] J. yang Jou and C. nan Jimmy Liu, “Coverage analysis techniques for HDL design
validation,” in APCHDL, 1999.

[127] J. Rajendran, H. Zhang, O. Sinanoglu, and R. Karri, “High-level synthesis for security
and trust,” in On-Line Testing Symposium (IOLTS), 2013 IEEE 19th International,
July 2013, pp. 232–233.

[128] X. Cui, K. Ma, L. Shi, and K. Wu, “High-Level Synthesis for Run-Time Hardware
Trojan Detection and Recovery,” in DAC, 2014, pp. 157:1–157:6.

[129] A. Sengupta and S. Bhadauria, “Untrusted Third Party Digital IP Cores: Power-Delay
Trade-off Driven Exploration of Hardware Trojan Secured Datapath During High
Level Synthesis,” in Proceedings of the 25th Edition on Great Lakes Symposium on
VLSI, ser. GLSVLSI ’15. New York, NY, USA: ACM, 2015, pp. 167–172. [Online].
Available: http://doi.acm.org/10.1145/2742060.2742061

[130] C. Sturton, M. Hicks, D. Wagner, and S. T. King, “Defeating UCI: Building Stealthy
and Malicious Hardware,” in IEEE Symposium on Security and Privacy, ser. SP ’11,
2011, pp. 64–77.

[131] E. Love, Y. Jin, and Y. Makris, “Proof-Carrying Hardware Intellectual Property: A
Pathway to Trusted Module Acquisition,” IEEE Information Forensics and Security,
vol. 7, no. 1, pp. 25–40, Feb 2012.

http://doi.acm.org/10.1145/2742060.2742061

Bibliography 137

[132] J. Rajendran, V. Vedula, and R. Karri, “Detecting Malicious Modifications of Data in
Third-party Intellectual Property Cores,” in DAC, 2015, pp. 112:1–112:6.

[133] B. Schafer, “Source Code Error Detection in High-Level Synthesis Functional Verifi-
cation,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. PP,
no. 99, pp. 1–1, 2015.

[134] M. Ben Hammouda, P. Coussy, and L. Lagadec, “A design approach to automatically
synthesize ANSI-C assertions during High-Level Synthesis of hardware accelerators,”
in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on, June 2014,
pp. 165–168.

[135] J. Curreri, G. Stitt, and A. George, “High-level synthesis techniques for in-circuit
assertion-based verification,” in Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International Symposium on, April 2010, pp. 1–8.

[136] M. Ben Hammouda, P. Coussy, and L. Lagadec, “A Design Approach to Automatically
Generate On-chip Monitors During High-level Synthesis of Hardware Accelerator,”
in Proceedings of the 24th Edition of the Great Lakes Symposium on VLSI, ser.
GLSVLSI ’14. New York, NY, USA: ACM, 2014, pp. 273–278. [Online]. Available:
http://doi.acm.org/10.1145/2591513.2591521

[137] A. Ribon, B. Le Gal, C. Jego, and D. Dallet, “Assertion support in high-level synthesis
design flow,” in Specification and Design Languages (FDL), 2011 Forum on, Sept
2011, pp. 1–8.

[138] N. Bombieri, H.-Y. Liu, F. Fummi, and L. Carloni, “A method to abstract RTL IP
blocks into C++ code and enable high-level synthesis,” in DAC, 2013, pp. 1–9.

[139] Carbon Design Systems. (2015) Carbon Model Studio. [Online]. Available:
www.carbondesignsystems.com/

[140] Aldec. (2015) DVM. [Online]. Available: www.aldec.com

[141] B. Carrion Schafer, A. Trambadia, and K. Wakabayashi, “Design of Complex Image
Processing Systems in ESL,” in ASPDAC, Taiwan, 2010, pp. 809–814.

[142] Y. Cao, C. H. Chang, and S. Chen, “A cluster-based distributed active current sensing
circuit for hardware trojan detection,” IEEE Transactions on Information Forensics
and Security, vol. 9, no. 12, pp. 2220–2231, Dec 2014.

[143] S. Bhunia, M. Hsiao, M. Banga, and S. Narasimhan, “Hardware Trojan Attacks:
Threat Analysis and Countermeasures,” Proceedings of the IEEE, vol. 102, no. 8, pp.
1229–1247, Aug 2014.

[144] E. Love, Y. Jin, and Y. Makris, “Proof-Carrying Hardware Intellectual Property: A
Pathway to Trusted Module Acquisition,” Information Forensics and Security, IEEE
Transactions on, vol. 7, no. 1, pp. 25–40, Feb 2012.

[145] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,” in Security and
Privacy (SP), 2011 IEEE Symposium on, May 2011, pp. 49–63.

http://doi.acm.org/10.1145/2591513.2591521
www.carbondesignsystems.com/
www.aldec.com

138 Bibliography

[146] M. Beaumont, B. Hopkins, and T. Newby, “SAFER PATH: Security architecture using
fragmented execution and replication for protection against trojaned hardware,” in
Design, Automation Test in Europe Conference Exhibition (DATE), 2012, March 2012,
pp. 1000–1005.

[147] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification of
Stealthy Malicious Logic Using Boolean Functional Analysis,” in Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications Security, ser.
CCS ’13. New York, NY, USA: ACM, 2013, pp. 697–708. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516654

[148] J. Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu, “VeriTrust: Verification for Hardware
Trust,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), May
2013, pp. 1–8.

[149] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification for Hardware
Trust,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 7, pp. 1148–1161, July 2015.

[150] C. Liu, J. Rajendran, C. Yang, and R. Karri, “Shielding heterogeneous mpsocs from
untrustworthy 3pips through security-driven task scheduling,” in 2013 IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFTS), Oct 2013, pp. 101–106.

[151] S. Pawel, F. Marc, K. Philipp, M. Amir, and P. Christof, “Interdiction in Practice
– Hardware Trojan Against a High-Security USB Flash Drive,” 2015. [Online].
Available: https://eprint.iacr.org/2015/768.pdf

[152] D. M. Shila, V. Venugopalan, and C. D. Patterson, “FIDES: Enhancing trust in
reconfigurable based hardware systems,” in High Performance Extreme Computing
Conference (HPEC), 2015 IEEE, Sept 2015, pp. 1–7.

[153] A. Al-Anwar, Y. Alkabani, M. W. El-Kharashi, and H. Bedour, “Hardware Trojan
detection methodology for FPGA,” in Communications, Computers and Signal Pro-
cessing (PACRIM), 2013 IEEE Pacific Rim Conference on, Aug 2013, pp. 177–182.

[154] M. Motomura, “STP Engine, a C-based Programmable HW Core featuring Massively
Parallel and Reconfigurable PE Array: Its Architecture, Tool, and System Implications,”
in Proc. Cool Chips XII, 2009, pp. 395–408.

[155] H. Amano, “A survey on dynamically reconfigurable processors,” IEICE Transactions
on Communnication, vol. E89, pp. 3179–3187, December 2006.

[156] Renesas. STP. [Online]. Available: http://www.renesas.com/products/soc/asic/
programmable

[157] Xilinx. (2010). [Online]. Available: http://www.xilinx.com

[158] ——. (2010). [Online]. Available: http://www.xilinx.com/products/technology/power/
xpe/license-virtex-4.html

http://doi.acm.org/10.1145/2508859.2516654
https://eprint.iacr.org/2015/768.pdf
http://www.renesas.com/products/soc/asic/programmable
http://www.renesas.com/products/soc/asic/programmable
http://www.xilinx.com
http://www.xilinx.com/products/technology/power/xpe/license-virtex-4.html
http://www.xilinx.com/products/technology/power/xpe/license-virtex-4.html

	List of Publications
	Table of contents
	List of figures
	List of tables
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contribution of this Thesis
	1.3 Thesis Structure

	2 High Level Synthesis
	2.1 Design Flow
	2.1.1 Compilation/Parse
	2.1.2 Allocation
	2.1.3 Scheduling
	2.1.4 Binding
	2.1.5 RTL Generation

	2.2 Commercial HLS Tools
	2.3 Summary

	3 Review of Hardware Security Techniques and S3CBench Benchmark Introduction
	3.1 Review of Hardware Security Topics
	3.1.1 Hardware Trojans
	3.1.2 IP Piracy and IC Overbuilding
	3.1.3 Reverse Engineering (RE)
	3.1.4 Side Channel Attacks
	3.1.5 Counterfeiting

	3.2 Hardware Trojan
	3.3 Hardware Trojan in Behavioral IPs
	3.4 S3CBench:Synthesizable Security SystemC Benchmarks for High-Level Synthesis
	3.4.1 S3CBench Overview

	3.5 Automatic Generation of Hardware Trojan Trigger Condition
	3.6 Behavioral IP Obfuscation
	3.6.1 Experimental Results

	3.7 Summary

	4 Behavioral Intellectual Property (BIP) protection
	4.1 Efficient Behavioral Intellectual Properties Source Code Obfuscation for High-Level Synthesis
	4.1.1 Motivational Example
	4.1.2 Previous work
	4.1.3 Obfuscation
	4.1.4 Typical Obfuscation Process
	4.1.5 Reason for the overhead
	4.1.6 Proposed Method to Minimize QoR Degradation due to Obfuscation
	4.1.7 GA-based Obfuscation
	4.1.8 Fast Iterative-Greedy Method
	4.1.9 Experimental Results and Discussions

	4.2 Hardware Trojan Detection in Behavioral Intellectual Properties (IPs) using Property Checking Techniques
	4.2.1 Related Work
	4.2.2 Threat Model
	4.2.3 Proposed Detection Method
	4.2.4 Experimental Results

	4.3 Summary

	5 Hardware Trojan Detection at System Level
	5.1 Hardware Trojan detection in behavioral MPSoC
	5.1.1 Introduction
	5.1.2 Threat Model
	5.1.3 Contributions
	5.1.4 Background and Related Work
	5.1.5 Trojan Detection Method
	5.1.6 Behavioral MPSoC Generation
	5.1.7 Trust Filter
	5.1.8 Experimental Results

	5.2 Hardware Trojan Detection in Dynamically Re-configurable FPGAs
	5.2.1 Related Work
	5.2.2 Stream Transpose Processor
	5.2.3 STP Architecture
	5.2.4 STP Design flow
	5.2.5 Hardware Trojan in DRPs
	5.2.6 Trojan Avoidance and Detection method
	5.2.7 Experimental Results

	5.3 Summary

	6 Conclusions and Future work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

