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Abstract 

Nowadays, precision freeform surfaces play an important role since they have 

superior performance and indispensable functionalities. Due to their geometrical 

complexity, high form accuracy and low surface roughness, precision freeform 

surfaces introduce a lot of research challenges in precision manufacturing and 

measurement processes. This is particularly true when the measurement is performed 

on traditional off-line single-sensor instruments such as white light interferometers 

(WLIs) and coordinate measuring machines (CMMs) whose measurement abilities are 

limited. 

For a single-sensor instrument, the measurement range and measurement 

resolution always need to strike a balance since the two terms appear to be 

contradictory. Moreover, when the workpiece is extremely large and error 

compensation procedure is needed to correct the form error of the workpiece, it is 

necessary to perform the measurement on machining facilities since repositioning 

error is unacceptable. However, off-line based measurement instruments cannot fulfil 

the in-situ measurement requirement.  

To address the above issues, this research firstly established a generic Gaussian 

process data modelling and image registration-based stitching method for the 

measurement of precision freeform surfaces based on traditional single-sensor surface 

measurement instruments using multiple measurement methods. With the proposed 

method, a dataset with a large measurement range and high resolution can be obtained. 

The proposed stitching method provides a turn-key solution for high dynamic range 

measurement using single-sensor instruments with a multiple measurement method.  
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For multi-sensor instruments such as multi-sensor coordinate measuring 

machines (CMMs), this study proposes a Gaussian process-based data modelling and 

maximum likelihood data fusion method for the measurement of freeform surfaces for 

multi-sensor CMMs. The method utilizes an optical sensor such as laser sensor and a 

touch trigger probe mounted on the multi-sensor coordinate measuring machine for 

the measurement of freeform surfaces, and the measurement data are modelled using 

the Gaussian process modelling method. The combination of different kinds of sensors 

balances the measurement efficiency and accuracy since most optical sensors have a 

fast measurement speed and high density but low accuracy while contact sensors have 

an accurate measurement result but low efficiency. The measurement datasets from 

the laser sensor and touch trigger probe were fused with a maximum likelihood method 

so as to reduce the overall measurement uncertainty.  

To address the in-situ measurement issue, this thesis proposes an autonomous 

multi-sensor in-situ metrology system for high dynamic range measurement of 

freeform surfaces for precision machine tools. The system utilizes a laser scanner and 

a motion sensor together with a designed trajectory so as to perform in-situ 

measurement on the machining facilities. The proposed system is independent of the 

machining facilities which makes it extendable to a wide range of industrial 

applications. Based on the theory developed for the autonomous multi-sensor in-situ 

metrology system, a homogeneous multi-sensor in-situ measurement metrology 

system was developed equipped with a laser line sensor and laser point sensor. The 

laser line sensor provides high lateral resolution data while the laser point sensor gives 

accurate data. The measurement data from these two kinds of sensors are fused to 

obtain a more accurate result without losing the high lateral resolution.  
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The present study has very large potential applications in industry. The 

successful development of the Gaussian process and image registration-based stitching 

method provides an important means for high dynamic range measurement, while the 

Gaussian process-based data modelling and maximum likelihood-based data fusion 

method establishes a generic measurement strategy for multi-sensor coordinate 

measuring machines so as to improve the measurement accuracy for precision 

freeform surfaces. The proposed in-situ multi-sensor high dynamic range 

measurement method and hence the homogeneous multi-sensor in-situ metrology 

system enable the measurement ability of machine tools so as to improve the efficiency 

and accuracy of the precision manufacture of complex freeform surfaces. The outcome 

of the research contributes significantly to the measurement science and technology, 

especially in the field of multi-sensor measurement and in-situ measurement of 

precision freeform surfaces.   
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Chapter 1 Introduction  

1.1 Background of the study 

Manufacturing and measurement of workpieces with complex freeform 

surfaces has long been a focus of study especially in the industries of die moulds (Altan 

et al., 2001), turbine blades (Veers et al., 2003), automotive (Chen et al., 2002), 

aerospace (Campbell, 2011), bio medical (Murr et al., 2009) and optics (Fang et al., 

2013b). This is due to the fact that complex freeform surfaces provide significant 

improvement in terms of energy efficiency, optical performance, compact size and 

superb functional achievement, etc. (Savio et al., 2007). With increasing demands of 

the industries and the development of science and technology, the requirement of the 

freeform parts is becoming more and more stringent including larger size, higher form 

accuracy, better surface roughness and more complex surface features such as 

multiscale features (Jiang et al., 2007c).  

The stringent requirements of freeform surfaces bring a lot of challenges not 

only to the machining process but also to the measurement process. For a large 

workpiece which may be metres large in size but with small features of several 

micrometres (Shore and Morantz, 2012), it is necessary to measure the whole 

workpiece and the small features at the same time. This raises a great challenge in a 

high dynamic range (HDR) measurement where the measurement should have a large 

measurement range and a high lateral resolution (Leach et al., 2013). For traditional 

measurement instruments, especially for those optical instruments that use 

CCD/CMOS as a capturing device, these two requirements are contradictory since the 

spatial resolution of the CCD/CMOS in the instruments is fixed; when the 

measurement range is increased, the lateral resolution is reduced, and vice versa. To 
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meet the high dynamic range requirement, one possible method is to perform the 

measurement multiple times and stitch the data together to form a holistic surface 

which covers the whole workpiece without losing the required resolution at the same 

time (Wang et al., 2015).  

For surface stitching, most of the traditional stitching methods have large 

rotational stitching error especially when the number of the original measurement 

datasets is large since the rotational error accumulates significantly with increasing 

measurement data. The measurement noise of the original measurement dataset also 

largely affects the stitching accuracy while the transition area always has discontinuity 

which may be caused by the lack of a suitable data fusion process. On the other hand, 

most of the traditional dimensional measurement instruments only have a single sensor 

installed and its measurement ability is largely affected by the sensor’s characteristics. 

For example, the CMM machine with a touch trigger probe has slow measurement 

speed, although the measurement accuracy is supposed to be high and reliable. A laser 

sensor, which has a fast measurement speed, is a convenient measurement device as it 

measures workpieces using a non-contact measurement method. Combining multiple 

sensors in a measurement task can make use of the strength of different sensors, and 

the measurement ability, reliability and accuracy are significantly improved.  

Nowadays, there are many commercially available multi-sensor CMM 

machines which are equipped with many different kinds of sensors such as touch 

trigger probe, image sensor, laser scanner, fibre probe, white light distance sensor, etc. 

(Hexagon, 2016, Carl Zeiss Industrial Metrology, 2016, Werth Messtechnik GmbH, 

2016). The measurement ability has been largely improved by integrating different 

kinds of sensors to perform holistic measurement. However, most of the measurement 

methods only enhance the performance improvement according to the characteristic 
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of the sensor itself. Only few studies focus on the multi-sensor measurement strategy 

to further improve the overall accuracy, which is a research trend towards higher 

measurement accuracy. Moreover, a generic data modelling and data fusion method is 

much needed for multi-sensor measurement machines. The limitations need to be 

highlighted during the development of a multi-sensor data fusion method for 

dimensional measurement.  

To address the in-situ measurement and high dynamic range measurement 

issues, one solution is to install the measurement instruments onto the machining 

facilities to perform the measurement task (GF AgieCharmilles, 2015, Zeeko Ltd, 

2010). With the measurement instruments installed on the machining facilities, the 

measurement can be performed in situ on the machines and there is no need to take the 

workpiece for offline measurement. By incorporating the measurement process onto 

the machining facilities, the instruments can be moved along with the motion axes of 

the machine, and the measurement range can be significantly enlarged by the motion 

of the axes. Since most of the motion control systems of the machines are closed and 

cannot be accessed by most of the users and researchers, it is difficult to obtain the 

coordinate information of the axes and it is difficult or sometimes impossible to 

perform holistic measurement for workpieces. As a result, it would be a great 

advantage to accurately estimate the coordinate information of the axes without 

accessing the motion control system of the machines.  

Although some researchers have studied the position estimation by using 

motion sensors (Latt et al., 2011), the implementation for precision machines is seldom 

seen in the literature and the accuracy is still in question. With the development of an 

autonomous in-situ metrology system, the position estimation method is convenient 

for research and development, considering that the measurement method is 
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independent of the machine control system. It provides solutions to an ultra-wide range 

of applications which can enhance the measurement ability of the machines. To 

estimate the position information, additional sensors and special motions should be 

investigated. Moreover, a more sophisticated method should be studied and developed 

to improve the accuracy of the estimated position.  

 Moreover, most of the multi-sensor instruments are off-line measurement 

instruments while most of the in-situ measurement instruments are single-sensor 

measurement instruments. There is a large research gap regarding research on in-situ 

multi-sensor measurement instruments especially when the data modelling method and 

data fusion method are considered. The research trends toward in-situ measurement 

and multi-sensor data fusion technology are a promising research area to develop 

multi-sensor in-situ surface measurement instruments which can possibly meet all the 

most challenging measurement requirements such as high accuracy, high resolution, 

high speed and high robustness.  

1.2 Research objectives and significance  

To address the issues for the measurement of precision freeform surfaces with 

high dynamic range requirement and specially for multi-sensor CMM machines and 

for the in-situ high dynamic range measurement for precision freeform surfaces, this 

research aimed to study the new stitching and data fusion method for surface 

measurement and develop a measurement method for multi-sensor CMM 

measurement and in-situ measurement method for precision machine tools, together 

with the development of a multi-sensor in-situ surface measurement instrument. The 

objectives of this study are given as follows:  
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(i) To develop a stitching method for high dynamic range measurement of 

precision freeform surfaces for multiple measurement of single-sensor 

instruments. 

(ii) To develop a Gaussian process data modelling and maximum likelihood data 

fusion method to model the measurement data and fuse them together to further 

increase the measurement accuracy. 

(iii) To develop an in-situ metrology system for high dynamic range measurement 

for precision freeform surfaces on precision machine tools.  

(iv) To develop a multi-sensor in-situ surface measurement instrument equipped 

with the proposed data modelling and data fusion method together with in-situ 

measurement ability.  

As the research and development aimed to achieve the above objectives, the 

significance of this study is summarised as follows: 

(i) Development of a generalized data modelling and stitching method for high 

dynamic range measurement of precision freeform surfaces for multiple 

measurement with single sensor instruments. This work is published as in Liu 

et al. 2017 in Precision Engineering.   

(ii) Development of a generic data modelling and data fusion method for multi-

sensor measurement for precision freeform surfaces. This work is published as 

in Liu et al. 2016 in Applied Sciences.  

(iii) Establishment of an in-situ multi-sensor metrology system which is capable of 

high dynamic range measurement of precision freeform surfaces without the 

need of communicating with the motion controller of the machine tool. This 

work is published as in Liu et al. 2016 in Measurement Science and 

Technology.  
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(iv) Establishment of a multi-sensor metrology system to fill the research gap of 

the implementation of in-situ measurement principle of multi-sensor data 

fusion.  

1.3 Organization of the thesis 

The thesis is composed of six chapters. Chapter 1 is the introduction of the 

whole thesis which introduces the background of this study and states the aims and 

objectives of this research, and it gives an overview of the organization of this thesis. 

Chapter 2 gives a thorough literature review related to the research including the 

development of precision freeform surfaces and their applications, the machining 

technologies for precision freeform surfaces, the measurement technologies for 

precision freeform surfaces. The review of the measurement technologies is divided 

into single-sensor measurement systems, multi-sensor measurement systems, in-

situ/in-process measurement systems and high dynamic range measurement systems. 

The measurement uncertainty and traceability are also reviewed and followed by a 

summary section at the end.  

In Chapter 3, a Gaussian process and image registration-based stitching method 

is proposed for high dynamic range measurement of precision freeform surfaces. The 

method utilizes the Gaussian process data modelling method to model the original 

measurement dataset which aims to increase the registration accuracy in the following 

step. Hence, the datasets are projected to the X-Y plane, and the original measurement 

datasets are thus transformed to 2D images. An image registration method is used to 

register the 2D images and z axis alignment is performed. The overlapped area is fused 

together by using an edge intensity method so as to obtain a smooth transition.  

Chapter 4 introduces a Gaussian process-based data modelling and maximum 

likelihood-based data fusion method for multi-sensor instruments purposely developed 
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for multi-sensor CMMs. The method starts with the measurement of the workpiece by 

the laser sensor and the touch trigger probe. The measurement data are then modelled 

by using the Gaussian process. The mean surfaces and the associated uncertainties for 

both measurements are obtained and the datasets are fused with the maximum 

likelihood principle to generate a more accurate result. A series of experiments were 

conducted to verify the proposed method and the limitation of the proposed method is 

also discussed.  

Chapter 5 reports an in-situ metrology system developed for high dynamic 

range measurement of freeform surface on precision machine tools. The system was 

designed, developed and demonstrated on a precision polishing machine tool. 

Experiment shows that the metrology system measures freeform surface with high 

resolution. The measurement range is large since the metrology system can be moved 

with the motion axes of the machine tool. Moreover, the system is independent of the 

control system of the machine tool which makes it widely expandable to industry 

where most of the interface of the machine tools is not open to users and researchers.  

Chapter 5 also presents a homogenous multi-sensor in-situ metrology system 

which incorporates two kinds of developed in-situ metrology systems which are line 

sensor-based and point sensor-based, together with the proposed Gaussian process data 

modelling and maximum likelihood data fusion method. Experimental procedures are 

given in detail to demonstrate that the fusion result has better measurement accuracy 

and high lateral resolution. The establishment of the newly proposed metrology system 

also successfully demonstrates the promising multi-sensor data fusion technology 

implemented in an in-situ measurement environment. Finally, an overall conclusion of 

the thesis and some suggestions for future studies are discussed in Chapter 6.  
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Chapter 2 Literature review  

2.1 Introduction  

In this chapter, an extensive literature review is presented which includes the 

evolution of freeform surfaces and their applications, the machining techniques of 

precision freeform surfaces and the development of metrology technology for the 

measurement of freeform surfaces. The review of the measurement technology is 

discussed in detail which is divided into single-sensor measurement systems, multi-

sensor measurement systems, in-situ/in-process measurement systems and high 

dynamic range measurement. The methods for measurement uncertainty and 

traceability are also reviewed. The development trends and the limitations of the 

current measurement technology are discussed and a summary is given at the end.  

2.2 Precision freeform surfaces and their applications 

Simple geometrical shapes such as planes, spheres and cylinders are the basic 

components of traditional industrial parts which provide the functionalities for 

products. Unlike conventional simple surfaces which usually possess rotational and 

translational symmetry, by definition, freeform surfaces or complex surfaces are 

surfaces without rotational or translational invariance (ISO/TS 17450-1, 2005). 

Structured surfaces such as V-grooves, micro-lens arrays and micro-pyramids are also 

freeform surfaces (Jiang et al., 2007a). The freeform surfaces are introduced along 

with the development of science and technology and have a long history. Compared 

with a simple surface, freeform surfaces provide superior functionality and 

performance (Jiang et al., 2007b) and they are now widely used in many industries 

such as aerospace, automotive, optics, biomedical, etc.  
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One of the most important attributes of freeform surfaces is their aerodynamic 

performance for moving objects such as airplanes, cars and wind turbine blades. With 

careful design with computational simulation together with the technologies for 

manufacturing and measurement of precision freeform surface, the drag coefficient is 

significantly reduced since the flow condition can be significantly improved with 

purposely-designed continuous freeform surfaces. The use of freeform surface in these 

industries has been proven to be of great significance to reduce cost and carbon dioxide 

emissions.  

Moreover, a lot of research has been focused on the design and optimization of 

freeform surfaces to improve aerodynamic performance. For instance, one of the most 

challenging goals in airplane design is to increase aerodynamic performance (Jameson, 

1989). In order to reduce the aerodynamic resistance which results in better economic 

and environmental friendliness, the design of the wings and the fuselage are freeform 

parts with complex surfaces. The aerodynamic design of an airplane usually takes 

partly in computational fluid dynamics (CFD) simulations and experiments in wind 

tunnels to test the performance. Figure 2.1 shows a complete model in a wind tunnel 

for experimental evaluation of the design of the mega liner A380 from Airbus.  

 

 

Figure 2.1 A complete model of airplane in the wind tunnel (Reckzeh, 2003)  
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 For automobiles, it has been reported that 40%, which is a significant amount 

of drag coefficient, comes from the shape of the vehicle (Hucho and Sovran, 1993). 

Improvement of the aerodynamic design can greatly reduce the drag coefficient. As a 

result, research on this area has become a hot topic in car design. To improve 

aerodynamic performance, freeform car shapes’ design and optimization are much 

needed and this was commonly seen in the high-end car market in the past. However, 

most of the cars, even the economy class, have freeform designed shapes to improve 

aerodynamic performance and this has significant impact on reducing carbon dioxide 

emissions. Figure 2.2 shows the simulation result of streamlines around a stock car.  

 

Figure 2.2 Aerodynamic simulation of cars (Katz, 2006) 

 It is reported that about 15-20% of the wind turbine production cost comes 

from the cost of manufacturing the wind turbine blades (Jureczko et al., 2005). The 

shape of the wind turbine blade is designed to be a freeform surface so as to increase 

its aerodynamic efficiency. Due to the large size of wind turbine blades, the design, 

manufacturing, measurement and testing are a challenge. Figure 2.3(a) shows a picture 

of a modern wind turbine from Siemens and Figure 2.3(b) shows the testing 

environment for a wind turbine.  
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(a) A modern Siemens wind turbine (b) Testing of a wind turbine 

Figure 2.3 Freeform surfaces of the wind turbines (Hansen, 2015, Veers et al., 2003) 

 Freeform surfaces are also widely used in biomedical implant applications 

since most of the parts of the human body are freeform shapes (Curodeau et al., 2000). 

For example, the replacement of hip and knee in biomedical applications requires the 

polishing and correction of freeform surfaces since these surfaces in the human body 

are typically freeform shapes (Charlton and Blunt, 2008). The surface accuracy and 

surface finishing of these implants impose stringent requirements and they are usually 

made of difficult-to-machine material due to their bio-capability. Figure 2.4 shows 

total hip replacement and total knee replacement.   

 

Figure 2.4 Total hip and total knee replacement (Blunt et al., 2009) 
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 Moreover, freeform surfaces are widely used in advanced optics since optical 

performance can be significantly improved and the size of the optical system can be 

greatly reduced. There are a lot of applications of freeform surfaces in optics. One 

example is the imaging system. The Polaroid SX-70 folding Single Lens Reflex 

camera (Plummer, 2005) was a well-known successful commercial product in the early 

days which deployed freeform optic design in 1972 to correct the field tilt, the 

astigmatic error across the view scene and localize the apparent power. Figure 2.5(a) 

shows the system and Figure 2.5(b) shows the optical path of the camera.  

(a) The system (b) Diagram of the optical route 

Figure 2.5 Polaroid SX-70 folding Single Lens Reflex camera (Plummer, 2005, 

Plummer, 1982)  

Another example of advanced optics is the f-theta lens which is a freeform 

surface widely used in high-end scanners (Takahashi et al., 2005), 3D displays (Wang 

et al., 2010), 3D imaging (Jin et al., 2014), and laser machining (Araki et al., 2009). 

Figure 2.6 shows some of the applications of the f-theta lens. Figure 2.6(a) shows a 

volumetric 3D display utilizing a diode laser to project a fast scanning X-Y 

galvanometer with an f-theta lens. Figure 2.6(b) shows a high-speed THz reflection 

tomography system which makes uses of a telocentric f-theta lens for beam steering 



Chapter 2 Literature review  

 

13 
 

while Figure 2.6(c) shows a 2D optical lens scanner with an integrated f-theta lens. 

Figure 2.6(d) shows an f-theta lens used for UV laser machining which has diffraction-

limited performance.  

(a) 3D display (b) 3D imaging 

(c) Scanner 

 

(d) Laser drilling 

Figure 2.6 Applications of f-theta lens (Wang et al., 2010, Jin et al., 2014, Takahashi 

et al., 2005, Araki et al., 2009)  

 Freeform optics also have applications in the optometric field. One example is 

the freeform progressive addition lens (PAL) which contains a far view zone, a near 

zone and a progressive zone between the far and near zones (Kong et al., 2014, Li et 

al., 2013). It is becoming popular in the market for optometric applications. Figure 2.7 
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shows the machined PAL mould inserts with a freeform surface (Figure 2.7(a)) and an 

aspheric surface (Figure 2.7(b)).  

 

(a) A freeform mould insert  

 

(b) An aspheric mould insert  

Figure 2.7 Machining of PAL mould inserts (Kong et al., 2014) 

Freeform optics are also widely used in the illumination systems to improve 

the efficiency of light transfer or reduce the number of optical elements (Jiang et al., 

2006). One of the most powerful design methods for the illumination method is the 3D 

simultaneous multiple surfaces (3D SMS) method (Miñano et al., 2009). Given the 

input and output wavefronts, the freeform surface can be calculated simultaneously 

point by point. Figure 2.8(a) shows the design of a freeform condenser with the 3D 

SMS method while Figure 2.8(b) shows an example of the Kohler surfaces design of 

the freeform surface for illumination applications.  
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(a) Freeform condenser design with 

the 3D SMS method 

(b) Design of free-form Kohler surfaces for 

integration of the illumination distribution 

Figure 2.8 Freeform illumination systems (Miñano et al., 2009) 

 Freeform lenses are also widely used in lighting systems, e.g. LED lighting 

systems. The freeform lenses are used to redistribute the light flux from the LED to 

meet the needs for lighting. Figure 2.9 shows two examples of the freeform lens for 

LED lighting. For the design as shown in Figure 2.9(a), the lens is used for  

 

(a) Design principles on Y and X sections for one LED lens  

 

(b) Ray trace model and the molding lens for another LED lens  

Figure 2.9 Freeform lens for LED lighting (Jiang et al., 2010, Zheng et al., 2009)  
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streetlighting and the lighting has a rectangular pattern to appropriately cover the 

roadway without excessive spill light into other areas to increase the lighting efficiency 

(Jiang et al., 2010). The design as shown in Figure 2.9(b) utilizes a freeform lens to 

generate a uniform illumination with a divergence half-angle of 6° and the efficiency 

is as high as 78.6% (Zheng et al., 2009).  

Freeform surfaces with micro structures such as microlens array (Cheung et 

al., 2010), surface with Frustum ridge structures (Kong et al., 2013), micro-grooves 

(Fang et al., 2003), and micro-pyramids (Yan et al., 2010a) are widely used in 

advanced optics to improve performance which provides irreplaceable functionalities. 

Figure 2.10 shows a variety of freeform surfaces with microstructures. Microlens  

 

(a) Micro-lens array (b) Micro-ridge 

(c) Micro-grooves 

 

(d) Micro-pyramids 

Figure 2.10 Freeform surfaces with micro structures (Cheung et al., 2010, Kong et 

al., 2013, Fang et al., 2003, Yan et al., 2010a)  
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arrays have various applications for focusing, illuminating and imaging. The micro-

ridge has self-cleaning and special imaging functionalities. Micro-grooves have a wide 

range of applications in mechanical, electronic, photonic and bio-medical fields. The 

applications of microstructures are becoming more important and attracting more 

attention. There is a lot of applications in the roll-to-roll industry for mass production 

of everyday-life products incorporating microstructures. Since the dimensional scale 

of the microstructures is small, down to several micrometres or even smaller, the 

manufacturing and measurement of these features are challenging.  

 Roll-to-roll manufacturing of microstructure is a promising technique to 

achieve mass production. Figure 2.11 shows one of the examples of a roll-to-roll 

process and the machined prism film. The prism file was fabricated on a 100 µm-thick 

film substrate. The experiment showed that the film had high refractive indices which 

made it possess a better on-axis luminous gain.  

(a) The roll-to-roll equipment (b) Image of the prism structures 

Figure 2.11 Roll-to-roll fabrication process (Wang and Tseng, 2009) 
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2.3 Machining of precision freeform surfaces 

Ultra-precision machining technologies enable the manufacturing of precision 

freeform surfaces. With the development of science and technology, there are a lot of 

machining technologies which are capable of machining precision surfaces which 

include focused ion beam technology, single point diamond turning, precision grinding 

and polishing, etc. One of the most commonly used and powerful technologies for 

ultra-precision machining is single point diamond turning (SPDT) which enables the 

machining to have high form accuracy and super smooth surface finishing. With its 

flexibility and relatively low cost, these machines are equipped in many precision 

machining centres. Along with the development of science and technology for 

manufacturing, the definition of precision varies.  

Nowadays, ultra-precision machining can produce components with form 

accuracy better than 0.1 µm and surface roughness better than 0.01 nm. The trends of 

machining accuracy are predicted (Taniguchi, 1983) and shown in Figure 2.12 In  

 

Figure 2.12 An interpretation of the Taniguchi curves, depicting the general 

improvement of machine accuracy capability with time during much of the twentieth 

century (Shore and Morantz, 2012) 
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the past few decades, the machining accuracy of normal machining technologies such 

as CNC machines has increased from 0.1 mm to 1 µm while the accuracy for ultra-

precision diamond turning machines has increased from 1 µm to 0.01 µm. For soft X-

ray lithography, ion beam machining and STM/AFM molecular manipulation 

technologies, the accuracy has achieved the atomic level.  

The ultimate achievement for ultra-precision machining is to machine 

workpieces at atomic level. In fact, this was achieved first by IBM in the work to move 

atoms using the tips of scanning tunnelling microscopy (STM) (Eigler and Schweizer, 

1990) and later atomic force microscopy (AFM) by other research groups (Blackman 

et al., 1990, Leung and Goh, 1992, Yan et al., 2010b). However, machining a 

workpiece per atom has ultra-low efficiency and can only be conducted at a very small 

scale. The motion of the tip is controlled by the piezoelectric components to ensure the 

motion accuracy. If a large machining area is required, the accuracy of the motion with 

a large moving range is a problem regarding ensuring the overall machining accuracy. 

Nowadays, this kind of technology is still limited due to these shortages. Figure 2.13 

shows series of STM images taken for the construction of an array of xenon atoms 

showing “IBM” on a nickel (110) surface conducted by IBM (International Business 

Machines Corporation). Since this technology relies on the STM/AFM instruments, 

the limitations depend mainly on the specifications of the STM/AFM, e.g. the work 

developed by Harbin Institute of Technology (Yan et al., 2010b) has the motion range 

and resolution of 100 µm±5 nm, 100 µm±5 nm, and 20 µm±2 nm for the x, y and z 

directions, respectively, while the machining speed is 10 µms-1. Figure 2.14 shows the 

schematic illustration of the system to perform 3D mechanical machining at the 

nanometre scale.  
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Figure 2.13 A sequence of STM images taken during the construction of a patterned 

array of xenon atoms on a nickel (110) surface (Eigler and Schweizer, 1990) 

 

Figure 2.14 Schematic illustrating the integration of a closed-loop nanoscale 

precision stage with an AFM to perform 3D mechanical machining at the nanometre 

scale (Yan et al., 2010b) 

Focused ion beam technology is a promising technology for ultra-precision 

machining (Ampere, 2004). Applications using focused ion beam technology are 

increasing due to its advantages over other technologies especially in the micro-

machining area. A focused ion beam has high machining resolution and accuracy. It 

can machine without masks and is able to machine many different materials and 

geometrical features. The focused ion beam technology has the ability to machine 

small features at a size smaller than 1 µm, which makes it popular in the ultra-precision 

machining field. Figure 2.15 shows a SEM image of a sinusoidal wave surface 
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machined by focused ion-beam milling. It is concluded (Ampere, 2004) that with a 

small beam diameter of the order of 10 nm and small currents of the order of 1 pA, the 

machining resolution of the order of 1 nm can be achieved. Figure 2.16(a) shows one 

of the focused ion-beam machines in the National University of Defense Technology 

of China and Figure 2.16(b) shows the flow of the focused ion-beam machining 

process.  

 

Figure 2.15 SEM image of the sinusoidal wave machined by focused ion-beam 

milling (Vasile et al., 1999) 

(a) The machine (b) The flow of the process 

Figure 2.16 Focused ion-beam machining (Xie and Li, 2015) 
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With the development of the precision technologies for machine tools, 

diamond cutting is the most widely used precision machining method. The Large 

Optics Diamond Turning Machine (LODTM) (Hale, 1999) from Lawrence Livermore 

National Laboratory (LLNL) of the USA is considered to be the world’s most accurate 

lathe. Figure 2.17 shows a cut-away view of the Large Optics Diamond Turning 

Machine. The machine has a vertical axis and it can machine workpieces as large as 

64 inches in diameter, 20 inches in height and 3,000 pounds in weight. The moving 

range of the cutting tool in the X-Z plane is 37 by 20 inches. The machining accuracy 

of the LODTM is 28 nm root mean square (RMS) while the surface finish is 5 to 10 

nm depending on the machining conditions. To achieve the highest accuracy, the 

metrology loop and structural loop were designed to be separated and only the spindle 

belongs to both loops. The specifications of the LODTM are shown in Table 2.1.  

 

Figure 2.17 Cut-away view of the Large Optics Diamond Turning Machine (Hale, 

1999) 
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Table 2.1 Specifications of the LODTM 

Maximum workpiece size 64 inches in diameter by 20 inches high 

Maximum workpiece weight 3000 pounds 

Cutting tool movement range 37 by 20 inches in X-Z plane 

Form error 28 nm RMS 

Surface finish 5 to 10 nm RMS 

  

For diamond turning, the workpiece is mounted on the spindle while the 

diamond tool moves along the workpiece surface for precision machining. There is 

another kind of machining method called raster milling where the diamond tool is 

installed on the spindle while the workpiece moves to achieve machining of the desired 

surface. Ultra-precision raster milling allows for direct machining of the freeform 

surfaces with sub-micrometre form accuracy and surface finish in the nanometre range 

(Kong and Cheung, 2012). Figure 2.18 shows the freeform 705G ultra-precision raster  

 

Figure 2.18 Freeform 705G ultra-precision raster milling machine tool (Kong and 

Cheung, 2012)  
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milling machine tool. However, the machining efficiency of raster milling is relatively 

low as compared with diamond turning since the cutting process only happens in a 

small period in every cycle of the movement of the diamond tool.  

Although diamond cutting has very high accuracy and is widely used in 

precision machining, it is difficult to machine some hard and special materials. For 

difficult-to-machine material, precision grinding is one of the promising machining 

technologies (Brinksmeier et al., 2010), especially in the optics manufacturing industry 

since many of the optical materials are hard materials. Researchers in the Hong Kong 

Polytechnic University (Zhang et al., 2016, Chen et al., 2016) used ultra-precision 

grinding to machine hard material such as TiC-based cermet and Silicon Carbide. 

Figure 2.19 shows the 450UPL ultra-precision grinding machine and its setup.  

 

Figure 2.19 Ultra-precision grinding machine (450UPL, Moore nanotech. USA) 

(Zhang et al., 2016) 

Compared with diamond cutting, the cutting force for machining of hard 

material is large and this requires the machine to be highly stiff. To address this issue, 

some special machine structures were designed. Figure 2.20 shows a grinding machine 

with the design of Tetraform C devised around the NPL Tetraform machine concept. 

With the special designed structure, the stiffness of the machine is large and the 
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experimental result showed that hardened bearing steel M50 can be machined to 

achieve optical surface with less than 10 nm Ra surface roughness (Stephenson et al., 

2001).  

 

Figure 2.20 Photograph of Tetraform C (Stephenson et al., 2001) 

 Another issue for diamond turning or cutting is that there are tool marks left 

on the surface, while polishing is a post-processing machining technology to remove 

the tool marks. Figure 2.21 shows a 7-axis Zeeko IRP200 ultra-precision freeform 

polishing machine from the UK. The machine has the moving range of 300 mm along 

the X axis, 260 mm along the Y axis, 130 mm along the Z axis, ±90° along the A axis 

and ±180° along the B axis. It has a C axis for mounting of the workpiece and an  

 

Figure 2.21 Ultra-precision freeform polishing machine (Zeeko IRP200 from UK) 

(Cheung et al., 2011)  
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additional H axis for the polishing head. The surface finish can be achieved to several 

nanometres after the polishing process.  

2.4 Measurement of precision freeform surfaces 

 As mentioned in the previous sections, freeform-shaped surfaces have a large 

range of applications. Different applications have different sizes and tolerance 

requirements as shown in Figure 2.22 (Savio et al., 2007). This requires the 

measurement process to be able to determine if the machined parts meet the 

requirements of the design specifications. In order to meet different measurement 

requirements for different sizes and different measurement uncertainties, different 

kinds of measurement technologies have been developed for the evaluation procedures.  

The measurement instruments can be classified as contact measurement 

instruments and non-contact measurement instruments regarding their measurement 

concepts of whether the instrument is touching the workpiece during the measurement 

process. One of the most important measurement instruments for measuring 

geometrical features is the coordinate measuring machine (CMM) and it has become 

one of the industrial standards due to its high accuracy and flexibility. Most of the 

traditional CMMs use contact measurement methods since the machine is usually 

equipped with a touch trigger probe. Nowadays, many advanced CMMs are also 

equipped with non-contact sensors such as laser scanners and 2D cameras. Most of the 

non-contact measurement instruments are optical-based instruments but there are also 

some which are based on force or current such as AFM (atomic force microscopy) and 

STM (scanning tunnelling microscopy). On the other hand, most of the measurement 

instruments are offline measuring instruments since the measurement processes are off 

the machine facilities and most of them require a clear and vibration-isolated 

environment. 
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Figure 2.22 Typical values of tolerances vs. dimensions (Savio et al., 2007) 

  Determined by the number of sensors involved in relation to the measurement 

principle, the measurement systems can be classified as single-sensor measurement 

systems and multi-sensor measurement systems. After many years of development, 

there are many kinds of measurement principles for the single-sensor measurement 

instruments while multi-sensor measurement instruments are relatively new in the 

field.  

2.4.1 Single-sensor measurement systems 

 Most of the traditional measurement systems are single-sensor instruments 

which are solely based on a single sensor or a single measurement principle. According 

to the measurement method in terms of contact with the workpiece, they can be 

classified by contact measurement and non-contact measurement, e.g. CMM machines 

and laser interferometers. In this section, the common single measurement systems are 

reviewed and the main advantages and disadvantages are discussed. Instead of giving 

a general description of the instruments, the most advanced or commonly available 

commercialized products are given as examples.  
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2.4.1.1 Coordinate measuring machines (CMMs)  

 Coordinate measuring machines (CMMs) are the most widely used 

measurement instruments for surface measurement (Hocken and Pereira, 2016) which 

have become the actual industry standards for geometrical measurement. After several 

decades of development, the accuracy of the CMMs are ensured by the sophisticated 

designed hardware and software together with equipping a high repeatability touch 

trigger probe. ZEISS XENOS (ZEISS, 2016) shown in Figure 2.23 is one of the most 

accurate commercialized CMM machines which has the measurement range of 900 

mm × 1500 mm × 700 mm and MPE of 0.3 µm. The ZEISS XENOS has a new design 

Y axis which has a lower moving mass that enables the optimal positioning of the Y 

coordinate. It also has a virtual central drive to ensure the optimal force distribution 

according to the position of the X axis to maximize the accuracy. The probe equipped  

(a) The machine (b) The equipped VAST probe 

Figure 2.23 ZEISS XENOS CMM (ZEISS, 2016) 
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with the ZEISS XENOS is the powerful sensor-VAST gold reference probe (Wozniak, 

2007). Figure 2.23(a) shows a snapshot of the ZEISS XENOS CMM and Figure 2.23(b) 

shows the equipped VAST probing system. The specifications of the ZEISS XENOS 

CMM are shown in Table 2.2.  

Table 2.2 Specifications of the ZEISS XENOS CMM 

Measuring range of X axis 900 mm 

Measuring range of Y axis 1,500 mm 

Measuring range of Z axis 700 mm 

length measurement error E0 0.3 + L/1000 μm 

      (L is the length to be measured in mm) 

The ISARA400 (Widdershoven et al., 2011) as shown in Figure 2.24(a) is an 

ultra-precision CMM developed by IBS with a measurement range of 400 mm × 400 

mm × 100 mm and one-dimensional (1D) measurement uncertainty (k=2) of 50 nm, 

two-dimensional (2D) measurement uncertainty (k=2) of 70 nm and three-dimensional 

(3D) measurement uncertainty (k=2) of 109 nm. The system was designed to be Abbe 

error-free in which three laser beams are always aligned with the centre of the probe 

tip. The laser interferometers measure the coordinates of the probe tip along all X, Y 

and Z axes with temperature, pressure and humidity compensation. The ISARA400 is 

equipped with a Triskelion probe system as shown in Figure 2.24(b). The probe itself 

can detect the deflections of the probe tip in all X, Y and Z directions and the absolute 

measurement error is less than 15 nm in 3D (Donker et al., 2010). Table 2.3 shows the 

specifications of the ISAR400.  
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(a) ISARA400 (b) Ultra-precision touch probe 

Figure 2.24 ISARA400 Next generation ultra-precision coordinate measuring 

machine (IBS Precision Engineering, 2016) 

Table 2.3 Specifications of the ISARA400 

Measuring range of X axis 400 mm 

Measuring range of Y axis 400 mm 

Measuring range of Z axis 100 mm 

Positioning accuracy Better than ± 0.5 μm (x,y,z) during standstill

3D measurement uncertainty (k=2) 109 nm 

 

 A non-contact measurement machine was developed (Henselmans, 2009) for 

measuring freeform optics. The machine was installed with an optical sensor (Cacace, 

2009). The measurement machine has the universal measurement ability that it can 

measure flat, spherical, aspherical, freeform and off-axis surfaces, convex and concave 
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surfaces, transmission and reflection optics. The measurement range is up to 500 mm 

in diameter and 100 mm in height. The measurement uncertainty is within 30 nm (k=2). 

The developed measurement machine and the optical sensor are shown in Figure 2.25 

and Figure 2.26.  

 

Figure 2.25 Non-contact freeform optics measurement machine prototype 

(Henselmans, 2009) 

 

Figure 2.26 The optical sensor installed in the machine (Cacace, 2009) 
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 Probing systems are the most important components for CMMs. The accuracy 

and repeatability of the probing systems is one of the important factors to determine 

the measurement uncertainty of CMMs. Depending on the measurement principle, 

there are many kinds of measurement probes available. Figure 2.27 shows various 

kinds of probing systems such as the Zeiss MT probe, Zeiss VAST prove, Leitz TRAX 

probe, Renishaw probe SP80, etc.  

 

(a) Zeiss 

MT probe 

 

(c) Leitz 

TRAX 

probe 

 

(d) Renishaw 

probe SP80 

 

(f) NPL 

microprobe 

 

(h) Silicon 

membrane probe 

 

(b) Zeiss 

VAST 

probe 

 

(e) Renishaw 

SP25M probe 

 

(g) METAS 3D 

touch probe 

 

(i) Opto-tactile 

probe from PTB 

Figure 2.27 Varies kinds of probing systems (Weckenmann et al., 2004) 

The most widely used probing system for CMMs is the touch trigger probe at 

a much lower cost such as the TP200 from (Renishaw, 2014). With this kind of probing 

system, since the probe only generates a trigger signal to the CMM, the probing 

direction needs to be the same as the surface’s normal direction to precisely 

compensate for the radius of the probe tip. If the probing direction is not aligned along 
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the normal direction, there is error in determining the actual point to measure (Chiang 

and Chen, 1999). This phenomenon is described in Figure 2.28 which clearly shows 

that there is a deviation from the target point to the compensated point (measurement 

result). This is especially true when the normal vectors are diverse largely from the 

actual proving directions. In practice, a CAD file is used to calculate the normal vectors 

of the measured workpiece at different positions to ensure the accuracy of the 

measurement.  

 

Figure 2.28 Surface generated by improper probing directions (Chiang and Chen, 

1999)  

However, in the presence of form error, the actual normal vectors are not 

exactly the same as the designed ones, and this is not known in advance since the true 

surface is not known. Moreover, the CAD model needs to align to the measured 

workpiece; this work is usually done manually and there is an alignment error in the 

process. There are sometimes no reference features in the design or the reference 

features come from rough machining, which introduces a large alignment error and 

thus influences the final measurement result.  
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2.4.1.2 Profilometer 

Profilometers are another kind of instrument for surface measurement. One of 

the most advanced profilometers is the Ultrahigh-Accurate 3-D Profilometer (UA3P) 

(Takeuchi et al., 2004). The UA3P utilizes an atomic force probe as the touching 

element and the measurement accuracy is in the order of 10 nm. The measurement 

range of the model of UA3P-700H is 500 mm × 500 mm × 120 mm. The machine can 

also measure high slope surface up to 75°. The construction of the UA3P is shown in 

Figure 2.29. The AFM probe tip is utilized as the sensor and three laser interferometers 

are used to detect the coordinate information of the probe so as to avoid the Abbe error 

(Zhang, 1989), which is the principle of achieving such highly accurate measurement 

result. The measuring force is about 0.15 mN - 0.30 mN and the tip angle is 30° while 

the radius of the tip is 2 µm. Since the UA3P measures the workpiece using an AFM 

such as probe tip, with a high lateral resolution measurement, the measurement speed 

is slow, i.e. as low as 0.005 mm/s. Table 2.4 shows the specifications of the UA3P-

700H.  

 

Figure 2.29 Construction of ultrahigh-accuracy 3-D measuring machine (Takeuchi 

et al., 2004) 
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Table 2.4 Specifications of the UA3P-700H 

Measuring range (X, Y, Z axes) 500×500×120 mm 

Resolution  0.3 nm 

Angle for side-surface measurement 75° 

Measurement accuracy  

30° max: ±0.05 µm 

45° max: ±0.08 µm 

60° max: ±0.1 µm 

Measurement speed 0.01-30 mm/s 

 

Taylor Hobson has provided a wide range of surface profilometers over its long 

history and they have become the industrial standard. The core of the profilometer is 

a Phase Grating Interferometer (PGI) which provides form repeatability of less than 

100 nm (Taylor Hobson, 2016).  The measurement resolution of the gauge is down to 

0.3 nm while the measurement range is up to 20 mm. For contour measurement, the 

form error is less than 0.2 µm. For roughness measurement, the noise level of root-

mean-square roughness measurement ( R q ) is less than 2 nm. Figure 2.30 shows the 

working principle of the PGI. Although the PGI has high measurement accuracy, it is 

not suitable for soft material such as copper and aluminium since the diamond 

measurement tip may damage the surface of the workpiece.  
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Figure 2.30 Operation principle of PGI (Buehring and Mansfield, 1996) 

2.4.1.3 Scanning probe microscopy 

 Nowadays, the most accurate surface measurement instruments may be the 

famous Atomic force microscope (AFM) and Scanning tunnelling microscope (STM) 

(Binnig and Rohrer, 1982, Binnig and Rohrer, 1983, Binnig et al., 1986). The original 

design of an AFM also utilizes a STM to detect the position of the AFM tip. The 

vertical resolution of the AFM can be less than 0.1 nm. However, the measurement 

range of the AFM is as small as the order of dozens of micrometres and the 

measurement speed is slow. Figure 2.31 shows the measurement principle of the STM  

 

Figure 2.31 Principle of the operation of the STM as well as that of an AFM (Binnig 

et al., 1986) 
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and AFM. In order to extend the measurement range of the AFM/STM, some studies 

use the AFM/STM as a measure probe in the measurement machine, e.g. the UA3P 

(Takeuchi et al., 2004) and for on-machine measurement (Ju et al., 2014).  

2.4.1.4 Interference microscopy 

 Phase Shifting Interferometry (PSI) (de Groot, 2011b) and Coherence 

Scanning Interferometry (CSI) (de Groot, 2011a) play important roles in non-contact 

surface metrology (de Groot, 2015). Figure 2.32 shows the working principle of the 

PSI. A PSI is an upgraded version of a Michelson interferometer which turns distance 

measurement into a surface topography measurement. A stable laser enables the 

Michelson interferometer to have ultra-high precision measurement accuracy and 

resolution, and it is widely used in industry and research, e.g. the laser interferometer 

gravitational-wave observatory (LIGO) (Abbott et al., 2016). The basic setup of a 

Michelson interferometer is shown in Figure 2.33. The interference signal obtained at  

 

Figure 2.32 Imaging interferometer for areal surface profiling (de Groot, 2011b) 
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Figure 2.33 Michelson interferometer (de Groot, 2011b) 

the detector can be determined as: 

 ( , ) cos ( ) ,DC ACI h I I K h       (2.1)

where DCI and ACI are fixed coefficients and K is the fringe frequency, h  is the 

sample surface height and  is the position of the reference mirror, and   is a  phase 

offset of the reflection and transmission properties of the optical components. The 

fringe frequency K can be determined as: 

4 /K    (2.2)

where  is the wavelength of the high coherence light source, e.g. laser. 

 Equation (2.1) shows that the detected intensity is a function of the difference 

( )h   , and the characteristic of the intensity is periodic. One cycle modulation of 

the intensity corresponds to a half-wavelength change of the distance difference of 
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( )h  . As shown in Figure 2.32, with an additional lens and a camera to measure the 

areal signal of the interferometric pattern, the Michelson interferometer can be 

upgraded to a surface topography measurement instrument. Every pixel of the camera 

corresponds to a specific location of the measured surface and the corresponding 

surface height is then measured using the concept of the Michelson interferometer. 

This method has a long history for visual interpretation of the fringe pattern to 

determine the surface characteristics of the measured surface. To digitalize the method 

for high-accuracy surface measurement, data processing is needed to estimate the 

phase: 

Kh    (2.3)

Since the offset   is constant, it can be set to zero and the surface height can 

be determined as:  

/h K  (2.4)

With the accurate estimation of the phase of the fringe pattern, the surface 

feature and the surface roughness can be measured accurately. The resolution of the 

phase determines the measurement resolution with regard to the wavelength of the 

light source. Extensive review of the PSI technology can be found elsewhere (Schmit 

et al., 2007, Schreiber and Bruning, 2006). 

 Another kind of widely used interferometry is the Coherence Scanning 

Interferometry (CSI). The working principle of a CSI is shown in Figure 2.34. 

Different from Phase Shifting Interferometry (PSI), where the interference fringes are 

only visible in a small range of surface height difference, the CSI provides a variation 

of fringe contrast according to different surface heights. This can be explained by the 

phenomenon as shown in Figure 2.35 where a curved surface is measured by using a  
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Figure 2.34 Working principle of a CSI (de Groot, 2011a) 

 

Figure 2.35 Images of interference fringes on a curved surface with low coherence 

illumination (de Groot, 2011a) 
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CSI. The contrast of the fringes varies at different heights. Combined with vertical 

scanning along the optical axis, the pattern determines the measured surface to be a 

convex surface. Figure 2.37 also shows that there is an advantage for a CSI as 

compared with a PSI in that there is no 2π error for the fringe pattern even for a large 

surface height difference.  

Calculation of the surface height needs the data processing of the images of the 

scanned fringe pattern. Since the CSI utilizes a low coherent light source with a 

broadband spectrum (white light), the fringe pattern is actually a combination of 

interferences from light with different wavelength. Unlike the PSI which utilize the 

coherent light source that has a precise and stable wavelength, the CSI needs to be 

calibrated for the scale which is usually accomplished with a step height artefact.  

 The measurement resolution of optical interferometry can be very high at the 

nanometre level with the advanced image processing technology. However, the 

measurement accuracy is affected by many factors such as stability of the light source, 

characterization of the workpiece such as surface roughness (Pavliček and Hýbl, 2008) 

and surface local gradient (Liu et al., 2015).  

2.4.1.5 Confocal microscopy 

 Confocal microscopy is another kind of widely used method of optical 

measurement. Compared with other kinds of optical instruments, the confocal 

microscope has a large numerical aperture which leads to a high lateral resolution and 

high ability to measure slope surface. According to the actual setup of the microscope, 

there are three types of confocal instruments, i.e. disc scanning, microdisplay scanning 

and laser scanning.   

Figure 2.36 shows the basic setup of a laser scanning confocal microscope. 

The laser light source is projected to the surface of the measured sample through the  
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Figure 2.36 Basic setup of a laser scanning microscope with the sample in focus 

position (Artigas, 2011) 

illumination pinhole and the objective. The light reflects back through the objective 

and another pinhole to the detector and this pinhole is called the confocal aperture. 

Since the pinhole is very small, only the light reflected from the focal plane can go 

through the pinhole and be detected by the detector. The image of the focal plane is 

obtained by scanning a laser beam on the measured surface point by point and the 3D 

surface is reconstructed by scanning in the vertical optical axis layer by layer. By 

analyzing the signal of each pixel along the z axis, the one with the strongest signal is 

determined to be the optimal position regarded as the focal plane. The scanning method 

in the lateral and vertical directions results in the measurement speed of the confocal 

being slow. As a result, the disc scanning and microdisplay scanning methods are 

introduced to improve the efficiency of the measurement which measures multiple 
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points at the same time. One of the advantages of the confocal microscope is that it 

can measure high slope surfaces. For example, a 0.95 numerical aperture can measure 

surface with a slope of up to 72°. Moreover, measurement with a higher slope is 

possible with a larger numerical aperture.  

2.4.2 Multi-sensor measurement systems 

Multi-sensor measurement systems can be divided into two categories, i.e. 

multiple measurements with single-sensor metrology systems and multiple 

measurement with multi-sensor metrology systems. Generally, the multiple 

measurement with single-sensor instruments is homogeneous data which are widely 

found in stitching measurement systems and repeat measurement methods. For 

multiple measurement with multi-sensor instruments, the datasets can be 

inhomogeneous or homogeneous, while the data fusion method is usually implemented 

with the expectation that the fused data improve the result.  

2.4.2.1 Multiple measurement with a single sensor  

All the surface measurement instruments have a limited field of view (FOV) 

and lateral resolution. To obtain a measurement result with a large lateral range and 

high resolution, multiple measurement is usually needed and the sub-surfaces are 

stitched together to form a holistic result. The stitching method can largely expand the 

measurement range of the instrument. As a result, a lot of work has been done to 

investigate different stitching methods. Many of them comprise stitching 

interferometry (Murphy et al., 2003). The outline of the stitching interferometry 

process is shown in Figure 2.37. The full aperture measurement and the sub-aperture 

stitching measurement of a spherical surface is shown in Figure 2.38 and the result 

shows that the stitching result is very close to the full aperture measured result.  
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Figure 2.37 Outline of the stitching interferometry process (Murphy et al., 2003) 

 

(a) Full aperture measurement with 

f/0.75 transmission sphere 

 

(b) Sub-aperture stitched map with f/1.5 

transmission sphere 

Figure 2.38 Sub-aperture stitching (Murphy et al., 2003) 

A non-null test for aspheric surfaces was developed (Zhao et al., 2014) using 

an elliptical sub-aperture stitching technique as shown in Figure 2.39. The testing 

results for a concave ellipsoid and a convex hyperboloid are shown in Figure 2.40  with 

residual error of peak-to-valley value (PV) = 0.0929 wave, root-mean-square (RMS) 

= 0.0117 wave and PV = 0.062 wave, RMS = 0.065 wave, respectively.  
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Figure 2.39 Experimental setup for the non-null testing for aspheric surfaces using 

elliptical sub-aperture stitching technique (Zhao et al., 2014) 

(a) Concave ellipsoid (b) Convex hyperboloid 

Figure 2.40 Testing results for concave ellipsoid and convex hyperboloid (Zhao et 

al., 2014) 

A four-axis fixture and a commercial profiler to perform stitching 

measurement was utilized (Yang et al., 2017, Ye et al., 2016) for large aspheric 

surfaces. To obtain an accurate stitching result, the multi-body theory, invariability of 

curvature radiuses and the least square principle was implemented in the stitching 

algorithm. The measurement system is shown in Figure 2.41. Figure 2.42 shows a 

measurement setup for the stitching measurement experiment for an off-axis parabolic 

surface and the stitching error is shown in Figure 2.42(b).  
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Figure 2.41 Stitching measurement system with the help of an additional 4-axis 

fixture (Ye et al., 2016) 

(a) Measurement setup (b) Stitching error 

Figure 2.42 Stitching measurement of an off-axis parabolic surface (Yang et al., 

2017) 

2.4.2.2 Multiple measurement with multiple sensors 

 Nowadays, there is a development trend towards multi-sensor measurement 

systems since the single-sensor measurement systems can hardly meet the highly 

stringent requirements. There are several commercialized multi-sensor CMM 

machines available in the high-end market. For instance, ZEISS O-INSPECT (Carl 

Zeiss Industrial Metrology, 2016) is equipped with a contact sensor, imaging sensor 

and white light distance sensor, and is able to provide fast inspection by the image 
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sensor and high-accuracy 3D measurement results by the contact sensor and white 

light distance sensor. Werth VideoCheck (Werth Messtechnik GmbH, 2016) is 

designed to be equipped with many kinds of sensors such as trigger probe, fibre probe 

and video sensor and provides the measurement ability of small features with the help 

of the small-diameter fibre probe in a scale down to 20 µm, as well as quick checking 

with the fast trigger probe and image sensor. Hexagon Optiv Classic (Hexagon, 2016) 

provides a vision sensor and a touch trigger probe, while Nikon (Nikon Metrology 

NV, 2016) enhances true 3D multi-sensor measurement by combining a vision sensor, 

laser auto-focus sensor, tactile sensor and rotary indexer. Figure 2.43 shows some of 

the commercially available multi-sensor CMM machines. The measurement  

(a) Hexagon Optiv Classic 

(b) Werth VideoCheck 

(c) ZEISS O-INSPECT 

Figure 2.43 Multi-sensor CMM machines (Hexagon, 2016, Werth Messtechnik 

GmbH, 2016, Carl Zeiss Industrial Metrology, 2016)  
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range, resolution and flexibility are largely enhanced by the complementarity of the 

different characteristics of various sensors. The combination of different types of 

sensors extends the measurement ability such as accuracy and measurement range of 

the CMMs. However, most multi-sensor CMMs lack an optimal strategy to perform 

multi-sensor measurement and fusion of data from different sensors.  

Multi-sensor data fusion is an emerging research area and there is a lot of 

research focused on the measurement strategy and algorithms for data fusion, 

especially in the areas of target tracking, decision-making and image processing (Raol, 

2009). There is also some research on surface metrology but it is not commonly seen, 

relatively, especially in practice. A cooperative fusion method was developed (Galetto 

et al., 2015) for a distributed multi-sensor large-volume metrology system which 

combines datasets from angular and distance measurements. The setup of the system 

is shown in Figure 2.44. However, it only works for measurement by using angular 

and distance sensors to determine the 3D positions of the measured points and cannot 

be used for CMMs. 

 

Figure 2.44 Measurement layout of the distributed multi-sensor large volume 

metrology system (Galetto et al., 2015)  
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A Gaussian process modelling method was used (Colosimo et al., 2014) to 

combine high-accuracy low-density CMM data with low-accuracy high-density data 

from the laser scanner. One of the measurement examples is shown in Figure 2.45. 

The two datasets were linked together by using a “linkage” model by introducing the 

scaling and shifting factors to correct the systemic error. The result showed that the 

measurement uncertainty of the fused data was reduced as compared with the results 

from the single measurement. This method is similar to the one proposed (Qian and 

Wu, 2008), but it deals with surface metrology problems instead of mechanical 

material design and modelling of food processors.  

 

(a) Measured freeform workpiece (b) Sampling using CMM 

Figure 2.45 Gaussian process modelling of the measurement (Colosimo et al., 2014)  

The Gaussian process is a machine learning process (Williams and Rasmussen, 

2006) which is largely used in research areas such as image processing. Recently, it 

has been used in surface metrology. The Gaussian process was utilized (Xia et al., 

2008) to form error assessment for CMM machines. The procedure of the proposed 

method is shown in Figure 2.46. With the proposed Gaussian modelling method, the 

designed geometric form, systematic manufacturing errors and random manufacturing 

errors were decomposed. Simulation and actual measurement data demonstrated the 

improvement compared to the traditional method.  
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Figure 2.46 GP modelling and form error assessment (Xia et al., 2008) 

A Gaussian process-based modelling method and data fusion method were 

developed (Yin et al., 2016) for the measurement of complex surfaces. An adaptive 

sampling strategy was also introduced in their work. Figure 2.47 shows one of the 

results for the estimated uncertainty before and after data fusion. The result showed 

that the measurement uncertainty of the fused dataset was smaller than the original 

datasets. However, the systematic error was not considered in the proposed method.  

(a) Before fusion (b) After fusion 

Figure 2.47 Comparison of uncertainty in Gaussian process fusion (Yin et al., 2016) 

A one-to-one linkage model to the one-to-many neighbourhood linkage model 

was extended (Xia et al., 2011) to improve the misalignment problem. Figure 2.48 
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shows the measurement setup of the proposed data fusion method. Simulation and 

actual measurement results both showed significant improvement. 

 

Figure 2.48 Fusion of two resolution data from a CMM using a tough probe and 

laser scanner (Xia et al., 2011) 

2.4.3 In-situ/In-process measurement systems 

 In some circumstances, when the workpiece is extremely large and heavy, or 

re-machining of the workpiece is required to correct the machining error, in-situ or on-

machine measurement of the workpiece is greatly needed, since it is not possible to 

take the huge and heavy workpiece off the machining facility and put it on a metrology 

instrument; another reason is that the re-alignment error is not acceptable. In-situ or 

on-machine measurement is a challenge to metrology since most of the measurement 

instruments have a stringent requirement for the environment while this is 

incompatible with the machining environment. This requires the in-situ measurement 

instrument to be fast, robust and adaptive to the machining facilities. An in-situ real-

time measurement instrument was developed (Jiang, 2011) for microstructured 

surfaces. The system was based on the wavelength division multiplexing (WDM) and 
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graphics processing unit (GPU) technologies. The WDM technology implemented 

phase-to-depth conversion with large measurement ratios in terms of range to 

resolution. The GPU technology speeded up the analysis of the optical interferograms 

to realize real-time calculation. Figure 2.49 shows the schematic diagram and the 

prototype of the system.  

(a) The schematic diagram (b) The prototype system 

Figure 2.49 The wavelength scanning interferometry system (Jiang, 2011) 

An in-situ measurement instrument based on scanning tunnelling microscopy 

(STM) was developed (Ju et al., 2014). The system can be used to measure the machine 

surface and correct the form error by using the fast tool servo (FTS) on the machine. 

The tool tip of the FTS and the tip of the STM are aligned to avoid distortion of the 

machined and measured surface. The STM measures the surface of the workpiece by 

using the spiral scanning method which is efficient. The highly accurate measurement 

principle of the STM and the accurate motion of the machine tool ensure the accuracy 

of the measurement result. Figure 2.50 shows the measurement device built in the 

machine tool and the schematic of the system. 
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(a) Photograph of the built-in STM measurement device  

 

(b) Schematic view of the system 

Figure 2.50 The STM in situ measurement system (Ju et al., 2014)  

 In-situ metrology systems are also available for some commercial machining 

facilities. One example is the on-machine Stitching Interferometer (OMSI) mounted 

on the IRP 200 ultra-precision polishing machine as shown in Figure 2.51. The OMSI 

is mounted on the H-axis parallel to the axis of the polishing head to conduct the on- 
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machine measurement. The OMSI utilizes a compact simultaneous-phase 

interferometer from 4D Technologies to overcome the vibration issue in the 

environment. The workpiece is mounted on the C axis of the polishing machine. The 

measurement process follows the tool path in the same way as the polishing one since 

this can make the OMSI follow the workpiece’s surface according to its local slope. 

Since the OMSI can only measure a small part of the surface of the workpiece, i.e. 

perform the sub-aperture measurement, the sub-aperture measurement is then stitched 

to generate a holistic measurement result of the whole surface. As a result, the accuracy 

of the measurement result is not dependent on the accuracy of the motion axes.  

 

Figure 2.51 The OMSI – On Machine Stitching Interferometer Mounted to the H-axis 

(polishing head) of an IRP 1200 (Zeeko, 2010) 

 For some advanced commercial CNC machines such as the MIKRON HPM 

600U/HPM 800U (GF AgieCharmilles, 2015), a touch probe is selectable as an option 

which can perform in-situ measurement. However, the in-situ measurement system 

has to be installed by the machine tool developer since the electrical interface of the 

machine tool is not open to users and researchers. Moreover, further development of 
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the machine tools is forbidden or it will violate the operational conditions of the 

machines.  

2.4.4 High dynamic range measurement 

 Many optical components have large dimensional size and small feature size, 

while the accuracy requirement of both the large form and the small features are 

stringent. One of the examples is the roller in the roll-to-roll industry where the roller 

is up to 2 metres in size and has microstructure with a size of about 10 µm. Figure 2.52 

shows one of the ultra-precision lathes (Oh et al., 2013) that can machine rollers with  

 

Figure 2.52 Photograph of the ultra-precision lathe (Oh et al., 2013) 

a diameter of 600 mm and a length of 2,500 mm, while the minimum pitch is 20 µm 

as shown in Figure 2.53. Measurement of both large-scale features and small-scale 

features poses the high dynamic range challenge. This is because most of the 

measurement instruments have to strike a balance between measurement range and 

resolution. Figure 2.54 shows the relationship of the measurement area to the 

resolution and where the high dynamic range measurement requirement falls into.   
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(a) Near the head stock (b) At the centre (c) Near the tail stock 

Figure 2.53 Machined 20 µm pitch prism microstructure on the roll: (a) near the 

head stock, (b) at the centre, and (c) near the tail stock (Oh et al., 2013) 

 

Figure 2.54 Space representing the challenges of high dynamic range metrology 

(Leach et al., 2013) 

2.5 Measurement uncertainty and traceability 

All measurements have associated uncertainty. According to the Guide to the 

Expression of Uncertainty in Measurement (GUM) (BIPM, 2008), the measurement 
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uncertainty can be classified as type A and type B. Type A evaluation of standard 

uncertainty can be regarded as an experimental method, where the experimental 

standard deviation is determined by:  

2

1

1
( ) ( )

n

k j
j

s q q q
n 

    (2.5)

 Type B evaluation of standard uncertainty is not obtained from repeated 

measurements and it is determined by scientific judgment, which is based on all the 

available information. The information includes previous measurement data, the 

experience or general knowledge of the material and instruments, manufacturer’s 

specifications, data provided in calibration and other certificates and uncertainties 

assigned to reference data taken from handbooks (BIPM, 2008).  

The measurement uncertainties for different sensors are different. The 

approaching direction and speed, probe indexing angle and spring pressure are affected 

by the measurement uncertainty of the touch trigger probe (Cauchick-Miguel and 

King, 1998). The surface roughness and surface local gradient are influenced by the 

measurement uncertainty for the scanning white light interferometer (Liu et al., 2015). 

For the laser scanning method, the measurement uncertainty is largely affected by the 

surface reflection (Liu et al., 2016) and incident angle of the sensor (Mahmud et al., 

2011). For the CCD camera used in 2D measurement, the measurement noise of the 

sensor chip and the measurement algorithm such as edge detection are also affected by 

the measurement uncertainty.  

In a multi-sensor measurement environment, the measurement uncertainties of 

different kinds of sensors need to be determined in advance. The evaluation method 

can be done by experiments or the sensors’ specifications. This can be determined by 
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using a mathematical model such as the Gaussian process machine learning method 

(Williams and Rasmussen, 2006). The advantage of using mathematical modelling is 

that it is more efficient and it can determine the measurement uncertainty according to 

the environmental conditions since they may have an influence on the measurement 

result. However, the accuracy of the modelling and its influencing factors need to be 

determined in depth.  

The Monte Carlo method was firstly developed by Stanislaw Ulam 

(Metropolis, 1987) and has become an important tool. It utilizes random sampling to 

obtain numerical results and is powerful in determining the propagation of uncertainty 

especially in non-linear complex systems. The method has also become one of the 

standards for the determination of measurement uncertainty (JCGM, 2008b). The 

Monte Carlo method was utilized (Ren et al., 2012a, Cheung et al., 2012) to develop a 

task-specific uncertainty analysis method for least-squares-based form 

characterization of ultra-precision freeform surfaces. This method was also extended 

to evaluate the uncertainty in the form characterization of ultra-precision freeform 

surfaces on coordinate measuring machines (Cheung et al., 2014). 

Traceability measurement relies heavily on a standard artefact which is 

traceable to the SI unit. An artefact for traceable freeform measurements on coordinate 

measuring machines was developed (Savio and De Chiffre, 2002) which is based on a 

Modular Freeform Gauge (MFG) concept. The MFG configuration is shown in Figure 

2.55. NPL (McCarthy et al., 2011) developed a freeform artefact for verification of 

non-contact measuring systems as shown in Figure 2.56.  
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Figure 2.55 MFG configuration on a CMM during the uncertainty assessment 

procedure (Savio and De Chiffre, 2002) 

 

Figure 2.56 Photograph of NPL freeform artefact (McCarthy et al., 2011) 

2.6 Summary 

Nowadays, freeform surfaces are widely used in many areas such as optics, 

aerospace, biomedical, etc. They have been playing an important role in the past 

decades. The research and development trend is paying more attention to the study of 
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freeform surfaces. With the development of science and technology, the freeform 

surfaces are more complex, higher in accuracy, and smaller in surface finish. This 

poses a lot of challenges not only for the design and manufacturing process, but also 

for the measurement process, since the measurement is greatly needed to determine 

conformity with the design.  

According to the literature review in the previous sections, the large amount of 

applications of freeform surfaces determine the intensive needs for manufacturing and 

measurement of freeform surfaces. The development of the design of freeform surface 

is on one hand pushing the development of the techniques of manufacturing and 

measurement of freeform surfaces. On the other hand, it is also limited by the 

capability of manufacturing and measurement of freeform surfaces.  

Nowadays, there are a lot of techniques which are capable of manufacturing 

and measurement of freeform surfaces and these techniques are also developing fast 

towards greater accuracy, volume, efficiency, etc. Nevertheless, there are still a lot of 

problems in the manufacturing and measurement of freeform surfaces since the 

requirements of the freeform surfaces are becoming more and more stringent. This is 

particularly true for their measurement due to the reason that the accuracy of the 

measurement is usually required to be one order better than that of manufacturing. 

There is a large amount of research work focused on the study of single-sensor 

measurement of freeform surfaces. However, there is relatively little research focused 

on the multi-sensor measurement for surface metrology. Moreover, most of the 

measurement methods are offline measurements, so how to incorporate the 

measurement device to perform in-situ measurement on the machining facilities is a 

research trend and challenge in the industry.  
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Based on the intensive review of the literature, there is a need to develop a 

generic data modelling method for the multi-sensor CMM measurement of freeform 

surfaces. Moreover, a data fusion algorithm is greatly needed to combine the 

measurement data from different sensors to generate a fused dataset with higher 

accuracy. A generic in-situ measurement method is essential for measuring the 

freeform surface without taking off the workpiece from the machining facilities. At 

the current status, there is still a large research gap to fill regarding the implementation 

of the multi-sensor data fusion measurement method with the in-situ measurement 

instruments. The development of a generic method which is applicable to in-situ 

measurement combining the multi-sensor data fusion algorithm is most significant for 

the further development of precision surface measurement.  
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Chapter 3 Gaussian process-based stitching 

measurement of freeform surfaces 

3.1 Introduction  

In precision metrology, one of the challenges is the high dynamic range 

measurement of precision surfaces, which requires both large measurement area and 

high-resolution data (Leach et al., 2013). This is particularly true for the measurement 

of surfaces with multi-scale characteristics which possess large-scale topography and 

small-scale microstructured features. Due to the limited field of view (FOV) and 

resolution of the camera, it is difficult to obtain a result under a satisfactory range in a 

single measurement when multi-scale information is acquired. One of the possible 

solutions is to perform multiple measurements and stitch the results together to form a 

dataset with a larger area to reveal the large topographic information without losing 

the high-resolution information so as to characterize the microstructure pattern (Bray, 

1997).  

Stitching has been reported for a sub-aperture stitching interferometer for both 

spherical and flat surface measurements (Liang et al., 2013, Chen et al., 2005, Chen et 

al., 2015, Jansen et al., 2006). A phase-correlation method was used (Preibisch et al., 

2009) to find the translation matrix between image pairs and perform global optimal 

stitching. A sub-aperture stitching and localization algorithm was proposed (Chen et 

al., 2007) for spherical and planar surfaces. Moreover, they developed a coarse-to-fine 

stitching strategy. A simultaneous reverse optimizing reconstruction method was 

developed (Zhang et al., 2015) which is based on a system modelling technique for 

aspheric sub-aperture stitching interferometers. An optimal stitching planning method 
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was used (Ye et al., 2016) to measure large aspheric optical surface with a ±4 mm 

range of probe and 20% of overlapped region. The accuracy of the sub-aperture 

stitching method was evaluated (Wiegmann et al., 2011) by using virtual experiments 

and they found that the overall accuracy of stitching result outperformed the direct 

measurement method by a factor of about 3. For surface measurement instruments 

such as coherence scanning interferometers, which are widely used  for precision 

surface measurement, some commercial products can provide a stitching function for 

relatively flat surfaces (Fleig et al., 2003). 

However, most of the stitching methods make use of six degrees of freedom 

for registration in the overlapped regions and the computational complexity is 

relatively high. For instance, the Iterative Closest Point (ICP) algorithm (Besl and 

McKay, 1992) has ( )p xO N N  complexity for a single iteration. For a registration with 

tN and qN initial translations and rotations, the total complexity is ( )p x t qO N N N N

which is considerably high. Moreover, the error caused by the stitching algorithm is 

accumulated when the number of sub-surface measurements is increasing, especially 

for the rotational error, which is difficult to be compensated. It was pointed out 

(Marinello et al., 2007) that the translational error is the biggest source of error, while 

the Roll, Pitch and Yaw error can be as small as several arc-secs. With the help of 

high-precision linear stages in which the rotational error can be considered to be 

minimal or negligible, the registration can be simplified to a three degrees of freedom 

translation problem with the complexity being reduced to ( )p x tO N N N .  

In this chapter, a stitching method is developed based on the Gaussian process 

and image registration together with edge intensity data fusion. The working principle 

of the Gaussian process and image registration-based stitching method is discussed. A 
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simulation and actual measurement were conducted to verify the performance of the 

method. Some technical aspects are also discussed and the edge effect was found to be 

improved as compared with the traditional method. The results of the experiments 

show that the proposed method is suitable for stitching the measurement results of 

areal measurement instruments, which provides a technically feasible solution for high 

dynamic range optical measurement of precision surfaces. 

3.2 The principle of the Gaussian process and image registration-

based stitching method 

A framework of the proposed Gaussian process and image registration-based 

stitching method is shown in Figure 3.1. First, the sub-aperture measurement datasets 

are modelled using a Gaussian process (Williams and Rasmussen, 2006) so as to obtain 

the mean surfaces, which can reduce the registration error caused by measurement 

noise and outliers. The datasets are converted to two-dimensional images and the 

images are registered by using an intensity-based algorithm, which can determine the 

(x, y) translation parameters. The MATLAB Image Registration Toolbox (Gonzalez 

et al., 2004) was used to implement this algorithm. In this study, 20% overlapped area 

was determined for the measurement datasets and chosen for the best balance between 

efficiency and accuracy (Wyant and Schmit, 1998). After the (x, y) translation, the z 

axis translation was calculated by using the least-squares error method so as to 

minimize the z distance between the two mean surfaces. The next step was to calculate 

the data in the overlapped region with an edge intensity data fusion method. Finally, 

the datasets were stitched together to form a dataset combining all the (x, y, z) 

translation information, and the overlapped data were fused. 
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Figure 3.1 Diagram of the Gaussian process-based stitching method 

3.2.1 Gaussian process modelling of original surfaces 

Noise in the measurement processes and outliers in the result may affect the 

registration accuracy. It is pointed out that both the standard deviation of the noise and 

the mean error of the noise have influence on the registration error (Huang et al., 2016). 

Traditional methods utilize filtering techniques to remove noise and outliers in the 

original measurement results. However, filtering is limited by distortion and edge 

effects (Brinkmann et al., 2001). The Gaussian process modelling involved in the 

proposed stitching method aims to improve the registration accuracy (Liu et al., 

2016b). The original measurement results can be described as a discrete function of 

( , )i iz x y , which means the z-coordinate of the i -th point is a function of the lateral 

position ( ,i ix y ). Let ( , )i i ix yv ,  the measured datasets can be represented as ( )iz v , 

i = 1, 2, … , N , where N  is the number of points. The measurement process can be 

considered as a Gaussian process which is a stochastic process, with underlying 

surface and measurement noise, which can be expressed as: 

( ) ( )i iz f  v v      (3.1) 

where ( )if v is the underlying surface and  is the measurement noise, which is 

assumed to have a Gaussian distribution 2~ (0, )N   , with zero mean and 2

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variance. It should be noted that the mean and variance for the measurement noise 

denote the systematic error and random error of the measurement. With a carefully 

calibrated measurement instrument, the systematic error is negligible thus it is set to 

zero.  

In order to model the underlying surface, Gaussian process modelling was used 

in this study. A Gaussian process is a random process where the probability 

distribution function in regard to the associated observation is normal and the joint 

probability distributions associated with any finite subset of the observations are also 

normal. A Gaussian process can be modelled as a mean function and a covariance 

function, which are expressed as:  

( ) ( ( ), ( , ))i z i z i jf GP m kv v v v     (3.2) 

where ( )z im v is the mean function, ( , )z i jk v v is the covariance function with  

( ) [ ( )]z i im E zv v  and ( , ) [( ( ) ( ))( ( ) ( ))]z i j i z i j z jk E z m z m  v v v v v v . The mean 

function represents the expected z value at iv while the covariance function represents 

the variance of the z  value when i jv v and the covariance between the z  values 

when i jv v . 

In this study, the mean function was designed to be zero function since the 

measured surface is unknown. Moreover, a squared exponential function is used to 

represent the covariance of the Gaussian process model: 

2

2
2

( , ) exp
2

i j

z i j zk
l


   
 
 

v v
v v     (3.3) 
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where i jv v is the distance between iv  and jv , 2
z is the constant variance of the 

Gaussian process model and l is the characteristic length-scale.  

The parameters of the covariance function corresponding to unit characteristic 

length-scale and unit signal standard deviation were firstly initiated to be zeros and the 

likelihood parameter was initiated to be log	ሺ0.1ሻ, which denotes the standard deviation 

of the noise to be 0.1 mm. The parameters of the Gaussian process were then optimized 

by minimizing the negative log marginal likelihood. After the parameters were 

optimized, the mean surface and the covariance surface of the measured data were 

determined. In this study, the implementation of the Gaussian process modelling was 

based on the Gaussian processes for machine learning (GPML) MATLAB toolbox 

(Rasmussen and Nickisch, 2010).  

3.2.2 Image registration for x-y alignment 

After Gaussian process modelling, the mean surfaces of the original 

measurement datasets were modelled. The three-dimensional datasets were then 

projected onto the x-y plane as 2D images. Image registration was used to align the 

overlapped images. Generally, there are four types of transformation for image 

registration, i.e. translation, rigid, similarity and affine. In this study, the translational 

type was used since only x-y translation was considered. The technique used in the 

image registration process is intensity-based automatic image registration. The 

intensity-based automatic image registration is an iterative process. Firstly, the 

overlapped regions of two images were identified; one was set as the fixed image while 

the other was set as the moving image. Hence, a metric, an optimizer and the 

transformation type were specified. Since the measurement datasets were taken from 

the same instrument, the metric and optimizer were configured to be monomodal. For 

each iteration, a transformation matrix applied to the moving image was determined 
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and the metric was determined by comparison with the transformed moving image 

with a bilinear interpolation to the fixed image. The iteration stopped when the stop 

condition was detected, i.e. when it reached a point of diminishing returns or reached 

the maximum number of iterations. 

3.2.3 z-axis alignment 

In the previous process, the overlapped region was registered in the x-y 

direction. The datasets on the z axis were then aligned to minimize the distances of the 

overlapped surfaces. This is a least-squares problem and the objective function can be 

determined by: 

2

1

N

i i
i

F z z


          (3.4) 

where iz and iz are the corresponding points in the two surfaces, and iz denotes the 

translated data points of the alignment process along the z axis. Translation along the 

z axis can be determined by minimizing the objective function in Eq. (3.4).  

3.2.4 Data fusion for the overlapped area 

When all the (x, y, z) translation information was determined, the datasets 

could be stitched together to form an overall measurement result. For the overlapped 

region, the data were fused together with a data fusion algorithm. There are many kinds 

of data fusion methods such as simple or weighted means, weighted least-squares 

fusion and residual approximation-based fusion (Wang et al., 2015). In this study, the 

edge intensity data fusion method (Chen et al., 2008) was used to have a better 

transition in the overlapped region. For a dataset ( )R m n , the edge intensity is defined 

by:  
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( , )

( , )

1R i j

f i j m
E

m n




 
      (3.5) 

where 
1 1

( , )n m

i j

f i j
m

m n 


 ( 1,...,i n , 1,...,j m ) 

For two datasets ( , )A i j  and ( , )B i j , the weighting functions were 

determined by: 

( , )
( , )

( , ) ( , )
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  

     (3.6) 

Hence, the fused dataset F was determined by:   

( , ) ( , )( , ) ( , ) ( , )A i j B i jF i j W A i j W B i j         (3.7) 

3.3 Simulation verification 

To verify the proposed stitching method, a simulation using MATLAB was 

conducted. As shown in Figure 3.2, a synthetic large sinusoidal surface was considered 

to be the targeted measuring surface. The design of the surface is determined by:   

  (0, 0.1)sin( ) cos( )z a GNx y     (3.8) 

where 0.002a  mm, , [0,100]x y mm and (0,0.1)GN is the added Gaussian noise 

with zero mean and 0.1 µm variance. 

The peak-to-valley distance of the surface was 8 µm. The area of the whole 

surface was 100 mm ×100 mm which was divided into nine sub-regional 

measurements. The highlighted area in Figure 3.2 denotes the overlapped area between 

nearby measurement datasets. 
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Figure 3.2 Simulated stitching surface  

As shown in Figure 3.2, the nine measurements had the same size and are 

marked as 11~13, 21~23 and 31~33 respectively. The area of the individual 

measurement was 40 mm ×40 mm while the width of the overlapped area (highlighted 

in the figure) was 8 mm, which was 20% of the width of the dataset, as suggested 

elsewhere (Wyant and Schmit, 1998).  

After the Gaussian process, the mean and variance of the original surface were 

determined and Figure 3.3 shows the mean and variance of surface 11. The result 

shows that the standard deviation of the majority of the modelled surface was about 

0.1 µm, while the simulated noise level was 0.1 µm, which demonstrates the 

effectiveness of the Gaussian process.  

The mean surfaces after Gaussian process modelling were then transformed 

into 2D grayscale images to perform image registration. The registration result of the 

overlapped regions of surface 11 and surface 12 are shown in Figure 3.4. The result 

shows that the two sub-regions are well registered. 
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(b) 2D section profile illustrating mean and covariance  

(a) Original surface 

 

(c) Zoom-in view of mean and covariance 

Figure 3.3 Results after Gaussian process  

(a) Fixed image (b) Moving image (c) Registered pair images 

Figure 3.4 Zoom-in view of one pair the registration results  

After image registration, the (x,y) translation relationship of the nearby regions 

was determined. The next step was to register the datasets in the z direction. The 

process was to search for the minimum distance between the two mean surfaces by 

using the least-squares error method. For surface region 11 and surface region 12, the 
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aligned result is shown in Figure 3.5. The result shows that the two surfaces were well 

registered in the z direction.  

 

Figure 3.5 Z axis registration result. The colour-coded surface represents surface 11 

and the black dots represents surface 12 

After the (x, y, z) translation information was determined, the sub-regions 

could be stitched together. The data in the overlapped area were recalculated with the 

edge intensity method. Figure 3.6 shows the final stitching result which shows that  

 

Figure 3.6 Stitching result  
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there were no obvious edges in the overlapped area. This infers that the datasets were 

well stitched. The final stitching result was also registered to the original design 

surface with an iterative closest point (ICP) method (Besl and McKay, 1992) and the 

error map was determined as shown in Figure 3.7. The root-mean-square (RMS) value 

of the error map is 0.108 µm. The error map shows that the error is evenly distributed 

and in most areas is close to zero. It is also interesting to note that the error in the 

central area is relatively small as compared to that in the surrounding areas. This is 

mainly caused by the accumulated errors in the image registration process since the 

surrounding datasets principally need more connections than those in the centre. The 

different patterns for the error map related to two nearby sub-surfaces are the results 

from the registration error for the proposed method. The result shows that the 

registration error is in the level of sub-micrometre and the error for each nearby 

registration is randomly distributed, which depends on the data in the overlapped area. 

This is demonstrated well in different datasets for the x direction, i.e. for different 

groups of datasets (11, 12, 13), (21, 22, 23) and (31, 32, 33), the errors are distributed 

(from left to right) in an increasing manner, first decreasing and then increasing 

manner, and decreasing manner, respectively.  

 

Figure 3.7 Error map comparing with the design surface 
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3.4 Experimental verification and discussion 

3.4.1 Measurement of a diamond-turned sinusoidal surface 

To demonstrate the practical usage of the proposed method, a stitching 

measurement experiment was conducted by measuring a diamond-turned sinusoidal 

surface by a commercial coherence scanning interferometer (CSI, with a 20× object 

lens and 1× and 0.55× zoom lens). The surface was measured in a manner similar to 

the simulation in a 3×3 matrix arrangement. The area of a single measurement was 

approximately 0.3 mm ×0.2 mm. A set of nearby sub-surfaces with an overlap marked 

region is shown in Figure 3.8 and all the original measurement data are shown in 

Figure 3.9.  

 

Figure 3.8 The 3D dataset for two nearby sub-surfaces, the overlap region is marked 

with dash line 
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Figure 3.9 Original data (measurement size of each dataset is approximately 

(0.3×0.2) mm and the colour bar gives height information in micrometres) 

After obtaining the individual measurement data, the data were modelled by a 

Gaussian process. The mean surfaces of the measurement data are shown in Figure 

3.10. The result shows that the overall deviations of the mean surfaces are greatly  

 

Figure 3.10 Mean surfaces of Gaussian process (measurement size of each dataset is 

approximately (0.3×0.2) mm and the colour bar gives height information in 

micrometres) and overlapped regions  
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reduced and the intensities of the subfigures have better uniformity. This result 

demonstrates the advantage of using a Gaussian process to model the measurement 

data, especially when the measurement noise is large or the measurement result is 

affected by obstacles such as dust and/or scratches. As reported by some researchers 

elsewhere (Huang et al., 2016), the registration error is about 25 µm for a noise level 

with standard deviation of 150 µm.   

The mean surfaces were then converted to grayscale images and image 

registration was conducted among the eight overlapped regions which are highlighted 

in Figure 3.10 with notations of A to H. Figure 3.11 shows the registration results of 

the overlapped regions for region A. The results show that the sub-surfaces are 

registered well. 

 

(a) Fixed image 

 

(b) Moving image

 

(c) Registered pair images 

Figure 3.11 One pair of the image registration result  

After image registration for the x-y plane, the next step was to perform z axis 

alignment. After that, the coordinate transformation information for all the three axes 

was obtained and the registration process was finished. In this study, the z axis 

alignment was divided into two steps. The first step aimed to align the sub-surfaces in 

the horizontal direction and the other step was used to align the sub-surfaces in the 

vertical direction. The horizontal direction step aimed to register the sub-surface in the 

horizontal direction, i.e. regions A and B, regions C and D, and regions E and F as 
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shown in Figure 3.10. The vertical direction step aimed to register the sub-surface in 

the vertical direction, i.e. regions G and H. As a result, the relationships of all the sub-

surfaces were determined.  

3.4.2 Results and discussion 

After registration, the overlapped data were fused together by using the edge 

intensity method. Figure 3.12 shows the final stitching result after data fusion while 

Figure 3.13 shows the stitching result provided by the CSI software. The details of the 

stitching result from the proposed method and that from the CSI software are also 

shown in Figure 3.12 (b, c) and Figure 3.13 (b, c). The stitching result shows that the 

sub-surfaces were well stitched together and the stitching result provided by the 

proposed method had better edge transition features than the stitching result provided 

by the CSI software. Figure 3.12 (b, c) shows a better transition area than Figure 3.13 

(b, c) at the region near the edge of the original sub-surfaces. This is due to the  

 

Figure 3.12 Stitching result of the proposed method 
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Figure 3.13 Stitching result of the CSI software  

characteristics of the edge intensity data fusion method, which combines both the 

features in the overlapped surfaces to generate a fused dataset. This is particularly 

useful when the two overlapped sub-surfaces have significantly different measurement 

results due to measurement noise.   

The final stitching result was also compared with that measured with a lower 

magnification setting (20×0.55) in a single shot measurement. To reduce the effect of 

the measurement noise, especially the different noise levels at different magnifications 

(Liu et al., 2015), the form error of the stitching method was evaluated. Both the results 

of the stitched measurements and the single shot measurement were bandwidth-

matched through a Gaussian filter. The cut-off spatial wavelength of the Gaussian filter 

was 0.01 mm. Moreover, the edge area with half a cut-off length was removed since 

this area had a large edge effect, which significantly affected the evaluation of the 



Chapter 3 Gaussian process‐based stitching measurement of freeform surfaces  

 

79 
 

results. The two filtered results were then registered with the ICP method and the error 

map calculated as shown in Figure 3.14. The single shot measurement had a 

measurement area of 0.6 mm ×0.4 mm which covered the central part of the final 

stitching measurement result and contained all the edges in the stitching result. The 

root-mean-square (RMS) error with the proposed method was 0.31 µm. Similarly, the 

stitching result provided by CSI software was also registered to the single shot 

measurement result by using the same method and the error map was obtained as 

shown in Figure 3.15. The RMS error was 0.27 µm. The result shows that the errors 

were of the same order and both were evenly distributed.  

 

Figure 3.14 Proposed stitching error comparing with a single shot measurement 

 

Figure 3.15 CSI stitching error comparing with a single shot measurement 
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The proposed stitching method makes use of a precision moving stage to 

simplify the stitching process from a 6 DOF problem to 3 DOF problem. For the 

stitching strategy as shown in the measurement experiment, the length of each sub-

surface is about 0.3 mm, to achieve the sub-micrometre stitching accuracy. The 

angular motion error can be calculated to be less than 0.1 μm
arctan( ) 0.33 mrad

0.3 mm
 . 

This requirement can be achieved by many commercial linear stages such as those 

from Aerotech (2017), whose rotation error is as small as 0.050 mrad.  

The proposed stitching method is a generic method which is suitable for 

measuring various kinds of surfaces with different patterns or different local 

curvatures. However, its measurement ability is affected by the measuring range of the 

sensor and the moving stage. For the experiments as demonstrated in this study, the 

measurement ability is limited by the hardware of the instrument: measurement range 

in the z direction of the CSI and the X-Y stage, which results in the fact that it can only 

measure surfaces which are relatively flat. With the help of additional rotational stages, 

the measurement for high-departure aspheric surfaces becomes possible with the 

modified proposed method. The corresponding translation motion should be modified 

to the rotation motion. For surfaces with relatively less features such as those with a 

longer spatial period, the registration accuracy may be largely affected, and pre-

processing can be implemented to improve the registration accuracy by using the 

invariant features such as Gaussian curvature (Ren et al., 2012b). This will be 

considered in future work. On the other hand, for some workpieces without strong 

periodical patterns, the small local difference caused by surface roughness and 

discontinuity of materials can still be treated as features to ensure the registration 

accuracy (Liu et al., 2016a).  
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3.5 Summary 

In this chapter, a Gaussian process and image registration-based stitching and 

data fusion method is presented for high dynamic range optical measurement of 

precision surfaces, which is based on a Gaussian process, image registration and data 

fusion techniques. For the overlapped areas, the data are fused with the edge intensity 

method. A simulation and actual measurement were conducted for verification of the 

method. For both simulation and actual measurements, nine (3×3) sub-surface 

measurements were stitched together to form a holistic measurement result. The 

stitching result exhibited improved edge transition features in the overlapped area, 

which is an advantage, especially for overlapped sub-surface measurements that have 

significantly different results. It is concluded that the proposed method is technically 

feasible and suitable for sub-aperture stitching for large area measurement with optical 

instruments. 
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Chapter 4 Gaussian process-based multi-

sensor measurement of freeform surfaces  

4.1 Introduction  

Nowadays, modern optical components with freeform surfaces are widely used 

since they have the advantages of excellent optical performance and functionality 

(Fang et al., 2013b). Due to the high accuracy requirement and geometrical complexity 

of freeform surfaces, this poses a lot of challenges in their design and manufacture as 

well as their measurement since the measurement process needs to characterize the 

machined freeform surfaces so as to determine conformance with the design. The 

coordinate measuring machine (CMM) (Hocken and Pereira, 2016) is one of the most 

important geometrical measurement devices. Equipped with the most widely used 

touch trigger probe with high repeatability, it provides traceable and accurate 

measurement results over a relatively large measurement range, and is well accepted 

in the industry for coordinate measurement due to its flexibility and accuracy (Savio 

et al., 2007). For modern CMMs, after several decades of development since they were 

first invented, their measurement accuracy is ensured by sophisticated designed 

hardware and a carefully controlled environment together with specific software.  

At present, there is a research and development trend towards multi-sensor 

CMMs since the measurement capability of these machines can be significantly 

enhanced by integrating multiple sensors (Weckenmann et al., 2009). This provides a 

unique functionality comparison with the single-sensor CMM machines. Currently, 

there are many commercialized multi-sensor CMMs available in the market. For 

instance, ZEISS O-INSPECT (Carl Zeiss Industrial Metrology, 2016) is equipped with 

a contact sensor, imaging sensor and white light distance sensor, which is able to 
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provide fast inspection by the image sensor and high-accuracy 3D measurement results 

by the contact sensor and white light distance sensor. Werth VideoCheck (Werth 

Messtechnik GmbH, 2016) is designed to be equipped with many kinds of sensors 

such as trigger probe, fibre probe (Schwenke et al., 2001) and video sensor, which 

provide measurement ability for small features with the help of the small-diameter 

fibre probe down to 20 µm, as well as quick checking with the fast trigger probe and 

image sensor. Hexagon Optiv Classic (Hexagon, 2016) provides a vision sensor and a 

touch trigger probe, while Nikon (Nikon Metrology NV, 2016) enhances the true 3D 

multi-sensor measurement by combining a vision sensor, laser auto-focus sensor, 

tactile sensor and rotary indexer.  

On one hand, the measurement range, resolution and flexibility are largely 

enhanced by the complementary different characteristics of various sensors. On the 

other hand, in regard to most of the multi-sensor CMMs equipped with additional non-

contact optical sensors which provide the ability to obtain the actual form and position 

of the workpiece, this functionality offers a solution to reduce the measurement error 

caused by the geometrical error such as form error and alignment error. Moreover, 

further improvement of the measurement accuracy can be accomplished by data fusion 

from different sensors.  

Measurement with different kinds of sensors also provides the possibility to 

improve the overall measurement accuracy by data fusion techniques. Most of the 

multi-sensor CMMs enhance the measurement ability according to the sensor’s 

characteristics. Although this provides high flexibility for measuring different features 

and samples by selecting different sensors installed on multi-sensor CMMs, there is 

still plenty of space for research and development when the integration of measured 

datasets from different sensors is taken into account. At the current stage of surface 

metrology, there are quite a number of studies focused on combining the datasets from 
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different sensors to generate holistic results with improved measurement accuracy. A 

cooperative fusion method was developed (Galetto et al., 2015) for a distributed multi-

sensor large-volume metrology system which combined datasets from angular and 

distance measurements. However, it only worked for measurement using angular and 

distance sensors to determine the 3D positions of the measured points and could not 

be used for CMMs. A Gaussian process modelling method was used (Colosimo et al., 

2014) to combine highly accurate low-density CMM data with low-accuracy high-

density data from a laser scanner. The two datasets were linked together using a 

“linkage” model by introducing the scaling and shifting factors to correct the 

systematic error. The result showed that the measurement uncertainty of the fused data 

can be reduced as compared with the results from single measurement. This method 

was similar to the one proposed elsewhere (Qian and Wu, 2008), but it dealt with 

surface metrology problems instead of mechanical material design and modelling of 

food processors.  

The Gaussian process is a machine learning process (Williams and Rasmussen, 

2006) which is largely used in research areas such as image processing. Recently it has 

been used in surface metrology. The Gaussian process to form error assessment for 

CMMs was utilized (Xia et al., 2008). With the proposed Gaussian modelling method, 

the designed geometric form, systematic manufacturing errors and random 

manufacturing errors were decomposed. Simulation and actual measurement data 

demonstrated the improvement as compared to the traditional method. A Gaussian 

process-based modelling method and data fusion method was developed (Yin et al., 

2016) for the measurement of complex surfaces. The result showed that the 

measurement uncertainty of the fused dataset was smaller than for the original datasets. 

However, the systematic error was not considered in the proposed method. The one-

to-one linkage model to the one-to-many neighbourhood linkage model was extended 
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(Xia et al., 2011) to improve the misalignment problem. Simulation and actual 

measurement both exhibited significant improvement. In the multi-sensor CMM 

scenario, a generic method for data modelling and data fusion method is greatly needed 

to meet the development trend of the emerging market of multi-sensor metrology. 

Moreover, in the presence of measurement noise and form error, there is a need to 

study the accuracy of the data modelling method and how it is affected by these factors. 

The performance of the data modelling method should also be verified experimentally.  

In order to address these issues, this chapter proposes a Gaussian process-based 

data modelling and maximum likelihood-based data fusion method for multi-sensor 

CMM measurement of freeform surfaces. The datasets from both sensors were first 

modelled by using the Gaussian process to obtain the mean surfaces and the covariance 

surfaces, which represent the underlying surfaces and the associated uncertainties. 

Hence, the mean and covariance surfaces were then fused together under the maximum 

likelihood principle. The method was verified through a series of simulations and real 

measurement conducted on a multi-sensor CMM, followed by detailed discussions 

including some failure situations to which much attention should be paid. The 

proposed Gaussian process and maximum likelihood-based method establishes a 

generalized, sensor-independent data fusion framework for multi-sensor CMMs, 

which provides an indispensable solution for integrating different sensor data for 

measuring high-precision freeform surfaces. The influence of the form error and 

measurement noise on the accuracy of the data modelling method is also discussed and 

was demonstrated in a series of experiments, while the performance of the Gaussian 

process modelling of the measurement uncertainty was also experimentally verified.  
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4.2 Gaussian process-based data modelling and maximum 

likelihood-based data fusion method   

The schematic diagram of the proposed Gaussian process-based data modelling 

and maximum likelihood-based data fusion method is shown in Figure 4.1. It starts 

with the measurement of the workpiece with a laser sensor and a touch trigger probe. 

The measurement data of both the laser sensor and the touch trigger probe were 

modelled by using the Gaussian process method to obtain the estimated mean surface 

and associated measurement uncertainty. The next step is registration of two datasets 

into a common coordinate system. The measured data of the CMM is presented in 

point cloud format while the global coordinate information for different sensors was 

determined in advance in the calibration process, by using a standard calibration ball. 

However, it is reported (Shen and Menq, 2001) that there still exists small residual 

error due to the sensor’s relative position at the micrometre level.  

 

Figure 4.1 Framework of the Gaussian process and maximum likelihood-based data 

fusion method 

To further improve the overall accuracy of the measurement process, the 

datasets were registered to a single coordinate system with the Iterative Closest Point 

(ICP) algorithm (Besl and McKay, 1992). This aimed to perform fine registration since 

the coordinate information of the two datasets was calibrated before the measurement 
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so coarse registration was undertaken. After registration, the datasets were aligned in 

a common coordinate system. Since the measurement datasets were modelled by using 

the Gaussian process, the mean surfaces and the covariance surfaces of the 

measurements were obtained. Hence, the mean surfaces and the covariance surface 

were fused together using the maximum likelihood data fusion algorithm. In the end, 

the best estimated underlying surface and its associated measurement uncertainty were 

determined. In this method, Gaussian process modelling is used to determine the 

underlying surface and its measurement uncertainty for each measurement from 

different sensors. With the measurement data and the uncertainty information, the 

maximum likelihood data fusion is used to determine the best estimated result in a 

statistical manner. The details of the proposed generalized data fusion method are 

explained in the following sections.  

4.2.1 Gaussian process data modelling 

In the present study, both the measured point clouds measured by laser sensor 

and touch trigger probe were modelled by the Gaussian process. A Gaussian process 

is a generalization of the Gaussian probability distribution (Williams and Rasmussen, 

2006). There is always noise in the measurement process and the noise is supposed to 

follow the Gaussian distribution. In the CMM measurement process, the measurement 

result can be determined by Equation (4.1). 

ݖ ൌ ݂ሺxሻ ൅ (4.1) ,ߝ

where ݖ is the measurement result and ݂ሺxሻ is the true value, respectively, x is the 

input vector which represents the measured location, and ߝ is the measurement error 

which is of Gaussian distribution with zero mean and variance ߪ௡ଶ; hence, 

ߝ ∼ ,ሺ0ߋ ௡ଶሻ, (4.2)ߪ
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It should be noted that the mean and variance for the measurement noise denote 

the systematic error and random error of the measurement. Similar to the assumption 

in Eq. (3.1) in Chapter 3, with a carefully calibrated measurement instrument, the 

systematic error is negligible thus it is set to zero. 

Since the true value ݂ሺxሻ	is unknown and hereby the aim of using the Gaussian 

process is to estimate the ݂ሺxሻ and the associated uncertainty, the Gaussian process 

can be defined by the mean function and covariance function: 

݂ሺxሻ ∼ ,ሺ݉ሺxሻܲܩ ݇ሺx, x′ሻሻ, (4.3)

where ݉ሺxሻ is the mean function at location x and ݇ሺx, x′ሻ is the covariance function 

evaluated at x and xᇱ, which can be determined by:  

݉ሺxሻ ൌ  ,ሾ݂ሺxሻሿܧ

݇ሺx, x′ሻ ൌ ሾሺ݂ሺxሻܧ െ ݉ሺxሻሻሺ݂ሺx′ሻ െ ݉ሺx′ሻሻሿ, 

  

(4.4)

 Equation (4.3) shows that ݂ሺxሻ  is fully defined by the mean function and 

covariance function in Gaussian process modelling. Once the model is established, any 

prediction f∗ at new location ܺ∗ can be given by the joint distribution of the measured 

values and the function values at the test locations: 

ቂ
ݖ
f∗
ቃ ∼ ܰ ൬0, ൤

,ሺܺܭ ܺሻ ൅ ܫ௡ଶߪ ,ሺܺܭ ܺ∗ሻ
,∗ሺܺܭ ܺሻ ,∗ሺܺܭ ܺ∗ሻ

൨൰, (4.5)

where I is the identity matrix, ܺ is the matrix of the measured locations and ܺ∗ is the 

matrix of predictive locations; ߪ௡ଶ is the noise variance. 

 Hence, the predictive equation for Gaussian process regression is: 

f∗|ܺ, ,ݖ ܺ∗ ∼ ܰ൫f∗̅, covሺf∗ሻ൯, (4.6)

where  
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f∗̅ ൌ ,ܺ|∗ሾfܧ ,ݖ ܺ∗ሿ ൌ ,∗ሺܺܭ ܺሻሾܭሺܺ, ܺሻ ൅  ,ݖሿିଵܫ௡ଶߪ

covሺf∗ሻ ൌ ,∗ሺܺܭ ܺ∗ሻ െ ,∗ሺܺܭ ܺሻሾܭሺܺ, ܺሻ ൅ ,ሺܺܭሿିଵܫ௡ଶߪ ܺ∗ሻ, 
(4.7)

 In the present study, Gaussian process modelling was undertaken by using the 

Gaussian processes for machine learning (GPML) toolbox (Rasmussen and Nickisch, 

2010). The mean function was chosen to be zero mean since the underlying surface is 

supposed to be unknown. Choosing zero mean surface may affect the accuracy and 

efficiency of Gaussian process modelling; it may be considered to combine Gaussian 

process modelling with local topological consideration (Bukkapatnam and Cheng, 

2010) in future study. The covariance function was chosen to be the most popular 

squared exponential function which can model smooth surface and is infinitely 

differentiable (Williams and Rasmussen, 2006), since the measured surface in this 

study was continuous freeform surface. The same covariance function used in the 

previous chapter which is determined by Eq. (3.3) is utilized in this study.  

 Since the Gaussian process is a machine learning process, the parameters of 

the model are first initiated and then optimized by minimizing the negative log 

marginal likelihood. This is implemented in an iterative process in the GPML toolbox.  

4.2.2 Maximum likelihood data fusion 

 After Gaussian process modelling, the mean surface and the associated 

uncertainty at any positions can be estimated for each measurement. For a particular 

multi-sensor CMM measurement which considers measurement datasets from two 

different sensors, the mean surfaces and the associated measurement uncertainties can 

be denoted as ݉ଵ,݉ଶ and ݑଵ,  ଶ, respectively. As the measurement noise is governedݑ

by Gaussian distribution, the probability of both of the two measurements obtaining 

result m can be determined by:  
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,ሺ݉|݉ଵ݌ ଵଶሻݑ ൌ
1

ߨଵ√2ݑ
݁
ି
ሺ௠ି௠భሻమ

ଶ௨భమ , 

,ሺ݉|݉ଶ݌ ଶଶሻݑ ൌ
1

ߨଶ√2ݑ
݁
ି
ሺ௠ି௠మሻమ

ଶ௨మమ , 

(4.8)

For a particular measurement at a specified position, the likelihood of both 

sensors observing ݉ is: 

,ሺ݉|݉ଵ݌ ,ଵଶ,݉ଶݑ ଶଶሻݑ ൌ ,ሺ݉|݉ଵ݌ ,ሺ݉|݉ଶ݌ଵଶሻݑ ଶଶሻݑ

ൌ
1

ଶݑଵݑߨ2
݁
ି൤
ሺ௠ି௠భሻమ

ଶ௨భమ
ା
ሺ௠ି௠మሻమ

ଶ௨మమ
൨
, 

(4.9)

The natural logarithm of the above function is:  

ln൫݌ሺ݉|݉ଵ, ,ଵଶ,݉ଶݑ ଶଶሻ൯ݑ ൌ െ ቈ
ሺ݉ െ݉ଵሻଶ

ଵଶݑ2
൅
ሺ݉ െ݉ଶሻଶ

ଶଶݑ2
቉ ൅ (4.10) ,ܥ

where ܥ ൌ ln	ሺ ଵ

ଶగ௨భ௨మ
ሻ. 

According to the maximum likelihood principle, the best estimation for ݉ can 

be determined when Equation (4.10) is maximized, which yields: 

ෝ݉ ൌ argmaxሾln൫݌ሺ݉|݉ଵ, ,ଵଶ,݉ଶݑ ଶଶሻ൯ሿ, (4.11)ݑ

Hence,  

߲ ln൫݌ሺ݉|݉ଵ, ,ଵଶ,݉ଶݑ ଶଶሻ൯ݑ
߲݉

ൌ
߲ሺെ ൤

ሺ݉ െ݉ଵሻଶ

ଵଶݑ2
൅
ሺ݉ െ݉ଶሻଶ

ଶଶݑ2
൨ ൅ ሻܥ

߲݉

ൌ 0, 

(4.12)

Thus,  

2ሺ ෝ݉ െ ݉ଵሻ
ଵଶݑ2

൅
2ሺ ෝ݉ െ ݉ଶሻ

ଶଶݑ2
ൌ 0, (4.13)

The best estimated value ෝ݉  can be determined by:   
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ෝ݉ ൌ
൬
݉ଵ
ଵݑ
ଶ ൅

݉ଶ
ଶݑ
ଶ ൰

൬
1
ଵݑ
ଶ ൅

1
ଶݑ
ଶ൰

൚  (4.14)

Define weights  

ଵݓ ൌ
ଵ

௨భ
మ and ݓଶ ൌ

ଵ

௨మ
మ (4.15)

 Equation (4.14) can be rewritten as:  

ෝ݉ ൌ
ଵ݉ଵݓ ൅ ଶ݉ଶݓ

ଵݓ ൅ ଶݓ
 (4.16)

 Using the uncertainty propagation principle (JCGM, 2008a), the uncertainty 

for ෝ݉  can be determined as:   

ොݑ ൌ ඨ൬
ଵݓ

ଵݓ ൅ ଶݓ
ଵ൰ݑ

ଶ

൅ ൬
ଶݓ

ଵݓ ൅ ଶݓ
ଶ൰ݑ

ଶ

ൌ ඪ൮

1
ଵݑ

1
ଵݑ
ଶ ൅

1
ଶݑ
ଶ

൲

ଶ

൅ ൮

1
ଶݑ

1
ଵݑ
ଶ ൅

1
ଶݑ
ଶ

൲

ଶ

ൌ
1

ඨ൬
1
ଵݑ
ଶ ൅

1
ଶݑ
ଶ൰

 

(4.17)

 Using the weight denotation yields the uncertainty value ݑො:  

ොݑ ൌ
1

ଵݓ√ ൅ ଶݓ
 (4.18)

 Equation (4.18) shows that the fused uncertainty has a smaller value than that 

from each of the original measurement data.  

4.2.3 Data modelling and data fusion principle from the view of dimensional 

measurement science 

From a statistical point of view, a measurement dataset which has a smaller 

measurement uncertainty has a larger weighting to the fused measurement value and 
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vice versa. It is intuitively understood that there is a bias towards measurement data 

which are more accurate. Equation (4.18) also shows that the fused uncertainty is 

smaller than any other uncertainty from the original measurement data. The fusion of 

two Gaussian distributions is illustrated in Figure 4.2. The horizontal axis denotes the 

measurement value at a specific position and the vertical axis denotes the probability 

of obtaining that measurement value. The two measurement datasets are of Gaussian 

distribution and denoted as Data 1 and Data 2 as shown in Figure 4.2. Regarding the 

random error, Data 2 is more accurate than Data 1 since Data 2 has a smaller standard 

deviation. The fused data have an even smaller standard deviation which illustrates 

that they have improved accuracy.  

 

Figure 4.2 Fusion of two Gaussian distributions  

Due to the nature of dimensional measurement, every measurement result has 

associated uncertainty and the true value is never known. Moreover, there are 

systematic error and random error contained in the measurement result. The systematic 

error denotes the bias from the estimated mean value to the true value while the random 

error complies with the Gaussian distribution of the measurement result which 

represents the measurement uncertainty. In the process of maximum likelihood-based 

multi-sensor data fusion, the fusion algorithm takes into account both the systematic 

error and random error and the fused result is calculated in a statistical manner. It is 
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easy to understand that the output uncertainty is reduced in the fusion result since the 

fusion process itself can be considered as a multiple (double) measurement process 

which can reduce the measurement uncertainty as compared to single measurement in 

the final result (Taylor, 1997). It is interesting to note that the weights for each dataset 

are determined by the associated uncertainties, i.e. the random errors. If a measurement 

has large systematic error but small random error while another measurement has small 

systematic error but large random error, the fused result will have a large bias to the 

measurement with small random error, which will introduce a large systematic error 

in the fused result.  

This issue also exists in other fusion methods such as weighted least square 

fusion (Wang et al., 2015). This is particularly true for the state-of-the-art technology 

where the measurement instruments have high repeatability with very low 

measurement noise. However, the systematic error is sometimes large as compared to 

the random error, which means that the repeatability is high but the accuracy is not 

ensured (i.e. may deviate from the true value) (Liu et al., 2015). On the other hand, 

with the advanced technology such as the precision calibration method, the systematic 

error of CMMs is controlled well which can reduce the influence of this effect. The 

influence of the systematic error and random error on the fused result under different 

situations is shown in Figure 4.3.  

With two different measurement datasets D1 and D2, it is assumed that D2 has 

smaller uncertainty than D1, the fused result Df has smaller uncertainty than both D1 

and D2 and the mean of Df has a bias towards D2, which is shown in all the sub-

figures in Figure 4.3. It is interesting to note that the true value (short as Tv) of the 

measurement is unknown and it can be considered under the following four situations: 

(a) ܶݒ ൏ 1ܯ ൏ 1ܯ (b) ,2ܯ ൏ ݒܶ ൏ ݒܶ (c) ,(bias to M1) 2ܯ ൏ 1ܯ ൏  bias to) 2ܯ

M2) and (d) 1ܯ ൏ 2ܯ ൏   .where M1 and M2 are the mean values of D1 and D2 ,ݒܶ
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(a) Measurement with large systematic 

error but small random error, fused 

with measurement with small systematic 

error but large random error, ܶݒ ൏

1ܯ ൏  2ܯ

(b) Measurement with large systematic 

error but small random error, fused 

with measurement with small systematic 

error and large random error, 1ܯ ൏

ݒܶ ൏   2ܯ

(c) Measurement with small systematic 

error and small random error, fused 

with measurement with large systematic 

error and large random error, ܶݒ ൏

1ܯ ൏   2ܯ

(d) Measurement with small systematic 

error and small random error, fused 

with measurement with large systematic 

error and large random error, 1ܯ ൏

2ܯ ൏  ݒܶ

Figure 4.3 Influence of systematic error, random error and the true value for the 

fused result  
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The case as shown in Figure 4.3(c) is the ideal case which has the optimal result that 

the fused result has the smallest bias to the true value. The case as shown in Figure 

4.3(a) is the worst case in which the fused result has the largest bias to the true value.  

In practice, the sensor with small measurement uncertainty usually possesses a 

small systematic error. This is particularly true when comparing the optical sensor with 

contact sensor which are widely used in multi-sensor CMMs, e.g. the laser sensor has 

large uncertainty and large systematic error while the touch trigger probe has small 

uncertainty and small systematic error. The case shown in Figure 4.3(d) is another case 

in which the fused result has a smaller uncertainty: it has a smaller bias than D1 but 

larger than D2. This is the case that should be paid much attention in multi-sensor data 

fusion for dimensional measurement. In general, with a sophisticated designed multi-

sensor CMM, the case shown in Figure 4.3(c) is the most desired case statistically, 

since the true value should be among the two mean values of the different 

measurements with bias to the sensor with a higher accuracy in a well-calibrated 

situation. In fact, this situation has the highest probability in the measurement process.  

In this study, the mean value and associated uncertainty for the measurement 

datasets are not directly given by the measurement instrument but they are modelled 

by using the Gaussian process modelling method. Due to the existence of measurement 

uncertainty, the data points in the measurement result cannot represent the mean 

surface but are Gaussian distributed along the mean surface. The use of Gaussian 

process data modelling aims to model the raw data to obtain the mean surface and the 

associated uncertainty at every position of interest. The mean surface can be treated as 

the best estimated true value for the surface. With a sophisticated designed multi-

sensor CMM and a well-established Gaussian process model, the mean surfaces from 

two different sensors should be consistent with each other with small systematic error. 

However, in some cases in which the accuracy requirement is stringent, the 
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measurement error from the hardware and the modelling error from the Gaussian 

process method may influence the final result, especially when one of the sensors has 

a large systematic error.  

4.3 Experiments and discussions  

 To demonstrate the effectiveness and limitation of the proposed method, a 

series of simulated and real measurements with a sinusoidal surface and an f-theta lens 

surface was carried out. The performance of Gaussian process modelling was also 

demonstrated in a series of evaluation experiments. The real measurement experiments 

were conducted on a Werth VideoCheck UA multi-sensor CMM as shown in Figure 

4.4 and the results are analyzed and discussed. The designed and machined sinusoidal 

and f-theta lens freeform surface are shown in Figure 4.5. Two sensors were used in  

 

Figure 4.4 Werth VideoCheck UA multi-sensor CMM used for the experiments 
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(a) Sinusoidal workpiece 

 

(b) F-theta lens workpiece 

Figure 4.5 The designed and machined workpieces  

the measurement experiment: the Werth opto-electronic non-contact laser distance 

sensor and the trigger probe (Renishaw TP200) with a 1.997-mm diameter tip. The 

probing error of the trigger probe is ±0.65 µm while the probing error of the laser 

sensor is ±1.0 µm. The Maximum Permissible Measuring Error (MPE) of the CMM is 

(0.75+L/300) µm. The experiment was conducted in a clean room and the environment 

temperature was kept at 20±1°C.  

4.3.1 Simulated experiments  

4.3.1.1 Sinusoidal surface 

The first experiment simulated the measurement of a sinusoidal surface with 

two different sensors. For each sensor, the measurement had different uncertainty 
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values. Figure 4.6 shows the simulated measurement results and the measurement can 

be determined as: 

ଵ,ଶݖ ൌ ܽ ቂsin ቀ
ߨ
10

ቁݔ ൅ cos ቀ
ߨ
10

ቁቃݕ ൅ ଵ,ଶ, (4.19)ߝ

where ܽ ൌ 1 mm, ݔ ∈ ሾ0,40ሿ mm and ݕ ∈ ሾ0,40ሿ mm, ߝଵ ൌ 0.03 mm and ߝଶ ൌ 0.02 

mm are the added normal distributed noises which represent different measurement 

uncertainties.  

(a) With 30 µm measurement noise (b) With 20 µm measurement noise 

Figure 4.6 Simulated measurement results of the designed sinusoidal surface  

 Modelling of the two measured datasets was undertaken by the Gaussian 

process method. In the Gaussian process modelling, the mean function was initially 

chosen to be zero mean function and the covariance function was Squared Exponential 

function, while the likelihood function was specified to be Gaussian. The parameters 

of the covariance function corresponding to unit characteristic length-scale and unit 
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signal standard deviation were firstly initiated to be zeros and the likelihood parameter 

was initiated to be log	ሺ0.1ሻ, which denotes the standard deviation of the noise to be 

0.1 mm. The parameters of the Gaussian process were then optimized by minimizing 

the negative log marginal likelihood. The results of the Gaussian process modelling 

are shown in Figure 4.7. The covariance is shown in a profile view for better 

illustration. The root mean squared (RMS) values of the covariance surfaces were 29.8 

µm and 19.8 µm, and the modelling errors were both 0.2 µm, which clearly 

demonstrate the effectiveness of modelling the noise for the two measurement datasets. 

 

(a) With 30 µm measurement noise 

 

(b) With 20 µm measurement noise 

Figure 4.7 Gaussian process modelling results of the two simulated measured 

datasets  

The fused result with the maximum likelihood data fusion algorithm is shown 

in Figure 4.8. The result shows that the overall uncertainty value was reduced and the 
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RMS value of the covariance surface was 16.5 mm, smaller than both the original 

measurement data.  

 

Figure 4.8 Fused result with the maximum likelihood data fusion method. 

 The deviations from the original measured surfaces and fused surface to the 

underlying surface were evaluated and the result is shown in Figure 4.9. It is interesting  

(a) For sensor 1 (b) For sensor 2 

 

(c) For fused data 

Figure 4.9 Deviations to underlying surface  
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to note that the edge area of the measurement results, especially the corner area, had a 

larger prediction error since there were insufficient measurement data in those areas. 

Table 4.1 shows the RMS value of the uncertainties and the deviations for the original 

measurement datasets and the fused dataset. The result clearly shows that both the 

uncertainty and the deviation from the reference surface had improvements as 

compared to the original measurement results.  

Table 4.1 RMS value of associated uncertainties of original measurement datasets 

and fused dataset 

 With sensor 1 With sensor 2 Fused data 

RMS of uncertainty 29.8 µm 19.8 µm 16.5 µm 

RMS of deviation 3.5 µm 2.4 µm 2.2 µm 

 

4.3.1.2 F-theta lens surface 

 Another simulation experiment was conducted on an f-theta lens freeform 

surface to evaluate the proposed method. Compared with the sinusoidal surface, the f-

theta lens surface is relatively smoother without periodical features. The measurement 

of the f-theta lens surface is determined by: 

ଵ,ଶݖ ൌ ଶݔܽ ൅ ସݔܾ ൅ ଶݕܿ ൅ ଵ,ଶ, (4.20)ߝ

where ܽ ൌ െ1/250, ܾ ൌ 1/92000 and ܿ ൌ െ1/25 are the design parameters of the 

surface and ߝଵ ൌ 40 µm and ߝଶ ൌ 30 µm are the added normal distributed noises 

which represent the different measurement errors. Figure 4.10 shows the simulated 

measurement surfaces.  
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(a) With 40 µm measurement noise (b) With 30 µm measurement noise 

Figure 4.10 Simulated measurement results of the designed f-theta lens surface  

 Figure 4.11 shows the results of Gaussian process modelling with the mean 

surface and the covariance surface determined. The RMS values of the covariance  

 

(a) With 40 µm measurement noise 

 

(b) With 30 µm measurement noise 

Figure 4.11 Gaussian process modelling results of the two simulated measured 

datasets   

surface were 38.6 µm and 31.0 µm and the modelling errors were 1.4 µm and 1.0 µm, 

respectively. The results show that the measurement uncertainty was estimated well 
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using the Gaussian process. Figure 4.12 shows the result after maximum likelihood 

data fusion. The RMS value of covariance surface was 24.2 µm which is smaller than 

the ones from the original covariance surface, and this is expected from the use of the 

data fusion principle.   

 

Figure 4.12 Fused result with the maximum likelihood data fusion method 

 The deviations from the original surfaces and the surface after data fusion to 

the underlying surface are shown in Figure 4.13. The RMS value of the uncertainties  

(a) For sensor 1 

 

(b) For sensor 2 

 

(c) For fused data 

Figure 4.13 Deviation from the underlying surface  
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and deviations are shown in Table 4.2. Both the uncertainties and the deviations of the 

fusion result showed improvement as compared with the original datasets. Similar to 

the one for the sinusoidal surface, the error in the edge and corner area was larger since 

the data in those areas were insufficient.  

Table 4.2 RMS value of associated uncertainties of original measurement datasets 

and fused dataset 

 With sensor 1 With sensor 2 Fused data 

RMS of uncertainty 38.6 µm 31.0 µm 24.2 µm 

RMS of deviation 2.3 µm 2.1 µm 1.8 µm 

 

4.3.2 Model error analysis for Gaussian process modelling 

In the previous simulation experiments, the measurement noises were 

modelled well by the Gaussian process modelling method. However, in real-life 

situations, machined surfaces are not perfect and may contain defects and form error 

due to machining error which may affect the modelling accuracy of the Gaussian 

process. A series of simulation experiments was conducted to verify the effectiveness 

and limitations of Gaussian process modelling by adding the form error to the 

simulated surface. That is to say, the simulated surface had a base form, form error 

and measurement noises as shown in Figure 4.14. The base form was a sinusoidal 

surface with lateral pitch of 50 mm and the peak-to-valley (PV) value was 4 mm with 

the surface denoted by ܵ௕. The machining error denoted by ܵ௘ was simulated to be a 

sinusoidal deviation from the base form with a higher spatial frequency together with 

a pitch of 5 mm and smaller peak-to-valley height (PV) value of 0.1 mm, and the PV 

value was varied in a series of experiments in order to validate the model. The  
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(a) Measurement result (b) Base form 

(c) Machining error (d) Measurement noise 

Figure 4.14 Simulated measurement result and components with different spatial 

frequencies  

combination of the base form and the form error determined the actual form (ܵ௖) of the 

surface as shown in Equation (4.21): 

ܵ௖ ൌ ܵ௕ ൅ ܵ௘, (4.21)

For the measurement noise ܰ, it was simulated to be Gaussian distributed noise 

with zero mean and 0.005 mm standard deviation, the expanded deviation was of 0.015 

mm (k=3), and this amplitude was also varied to test the performance of the model. 

The simulated measurement result of the surface is denoted by ܵ௠: 

ܵ௠ ൌ ܵ௕ ൅ ܵ௘ ൅ ܰ, (4.22)
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The experiment was conducted as follows. The amplitude of the base form was 

fixed as ±2 mm and the standard deviation of the measurement noise was fixed as 

0.005 mm. The expanded deviation of the measurement noise level (k=3) was 0.015 

mm. The amplitudes of the form errors in the experiments were simulated as ±0.005 

mm, ±0.01 mm, ±0.02 mm, ±0.03 mm, ±0.04 mm and ±0.05 mm. The simulated 

measurement result of the surface ܵ௠  was then modelled by using the Gaussian 

process modelling method and the mean surface ܵ௠௘௔௡ and the variance surface ܵ௖௢௥ 

were calculated. The objective function ܱா of the performance of the Gaussian process 

model was determined by the RMS of the deviation from the mean surface ܵ௠௘௔௡ to 

ܵ௖: 

ܱா ൌ ሺܵ௠௘௔௡ܵܯܴ െ ܵ௖ሻ, (4.23)

 The result of the experiment is shown in Figure 4.15(a). The result shows that 

when the form error was smaller than the measurement noise, the error of the model 

was large, while when the form error was larger than the measurement noise, the error 

of the model was small. This result demonstrates that when the form error is smaller 

than or similar to the measurement noise, the model has the limitation of being unable  

(a) Fixed measurement noise  (b) Fixed form error  

Figure 4.15 The relationship of model error, form error and measurement noise  
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to distinguish the form error and measurement noise which leads to a large modelling 

error that treats both the form error and the measurement noise as the measurement 

noise. This leads to an overestimate of the overall uncertainty of the measurement.  

 Another experiment was conducted to fix the base form and the form error, and 

change the amplitude of the measurement noise. The amplitude of the base form was 

also fixed as ±2 mm as in the previous experiment while the form error was fixed as 

±0.02 mm. The standard deviation of the measurement noise was simulated as 0.001 

mm, 0.005 mm, 0.01 mm, 0.02 mm and 0.03 mm. The method of evaluation of the 

performance of the model was similar to that in previous experiments and the result is 

shown in Figure 4.15(b). The expanded deviation values of the measurement noise are 

used in the results. The result shows that the model error increases when the 

measurement noise increases in a linear relationship. When the measurement noise is 

larger than the form error, the modelled error may also be affected by the form error 

but this is not clearly shown in the result since it may be covered by the effect of the 

large measurement noise.  

In general, the experiment results show that the accuracy of the model of 

Gaussian process modelling is not only affected by the measurement noise but also by 

the form error of the measured surface, especially when the amplitude of the form error 

is smaller than that of the measurement noise. It is interesting to note that the model 

error affected by the measurement noise is in the confident region of the uncertainty 

modelled by the Gaussian process which is acceptable in the result, and the model error 

being affected by the form error is not the case since it may cause the mean surface to 

have a bias to the true value which is outside the confident region of the modelling. 

This is one of the limitations of Gaussian process data modelling and affects the 

accuracy of the proposed method.  
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4.3.3 Evaluation of the performance of measurement uncertainty modelling 

using the Gaussian process   

 To evaluate the performance of the Gaussian process model for modelling the 

measurement uncertainty for a multi-sensor CMM, a repeated measurement 

experiment by using the touch trigger probe was conducted and compared with the 

specification of the sensor and the result of using Gaussian process modelling. A 

workpiece was designed as shown in Figure 4.16 and eight points (marked A-H) were 

measured 50 times with a purposely-designed DMIS programming language (Werth 

Messtechnik GmbH, 2011). The eight points were chosen to be on the flat surface and 

curved surface with different tilting angles. The results show good agreement with 

similar distribution and Figure 4.17 shows one of the measurement results in a 

histogram and fitted Gaussian distribution. The standard deviation of the fitted 

Gaussian distribution is about 0.7 µm which is at the same level of the specification of 

the touch trigger probe (i.e. 0.65 µm).  

The freeform surface as shown in Figure 4.5(a) was measured by using the 

touch trigger probe with a dense measurement (i.e. 0.5 mm pitch). The measured data  

 

Figure 4.16 The designed and machined workpiece and the repeated measurement  
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Figure 4.17 Evaluation result for the measurement uncertainty for the trigger probe 

using the repeated measurement method  

were modelled by Gaussian process modelling while the mean surface and the 

associated uncertainty are shown in Figure 4.18. The RMS of the uncertainty is 0.74 

µm which is slightly larger than the specification of the probe and the experimental 

standard deviation value. The result demonstrates the effectiveness of the Gaussian  

(a) Mean surface (b) Associated uncertainty 

Figure 4.18 Mean surface and associated uncertainty after Gaussian process 

modelling  
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process method to model the measurement uncertainty. It should be noted that the 

uncertainties in the edge and corner areas are largely due to the lack of data points in 

those areas and the measurement uncertainties are different with different 

measurement density, with less measurement points or larger sampling pitch, so it is 

clear that the measurement uncertainty is larger due to a reduction of measurement 

data.   

4.3.4 Measurement experiment using a multi-sensor CMM  

The two workpieces with sinusoidal and f-theta lens surface surfaces as shown 

in Figure 4.5 were measured with the Werth multi-sensor CMM with a laser sensor 

and touch trigger probe to demonstrate the effectiveness of the proposed data 

modelling and data fusion method. Generally, the laser sensor has the strength of its 

non-contact measurement nature but has larger measurement uncertainty while the 

touch trigger probe has higher measurement accuracy with smaller uncertainty. The 

measurement with the laser sensor was designed to be dense and the measurement with 

the touch trigger probe was designed to have less sampling points.  

4.3.4.1 Measurement of a sinusoidal surface  

The experiment was designed as follows. First, the sinusodial surface was 

measured by the touch trigger probe with a density of 0.5 mm and the measurement 

result was treated as the reference data since it had high density and high accuracy. 

The surface was then measured by the laser sensor with a density of 1 mm pitch and 

this measurement result was determined as the first dataset. The measured data were 

then modelled by the Gaussian process and the results are shown in Figure 4.19. Figure 

4.19(a) is the raw data from the laser sensor, Figure 4.19(b) and Figure 4.19(c) are the 

mean surface and the associated uncertainty of the Gaussian process while Figure 

4.19(d) shows the deviation from the mean surface to the reference surface. The RMS 

of the uncertainty is 18.3 µm and the RMS of the deviation is 38.3 µm. The large 
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measurement uncertainty may be caused by the unstable measurement of the optical 

sensor. It is interesting to note that the prediction grid for the Gaussian process has 1-

mm pitch in the area where ݔ ∈ ሾെ30, 30ሿ mm and ݕ ∈ ሾെ30, 30ሿ mm.  

 

(a) Raw data of measurement with the 

laser sensor 

 

(b) Mean surface 

 

(c) Associated uncertainty 

 

(d) Deviation of the mean surface to the 

reference data 

Figure 4.19 Measurement data of laser sensor and Gaussian process result  

A subset of 50 randomly sampled measurement points from the dense 

measurement data of the touch trigger probe was selected as the second dataset. The 

raw data and the result after the Gaussian process for the second dataset are shown in 

Figure 4.20. Figure 4.20(a) shows the raw measurement data while Figure 4.20(b) 

shows the mean surface and Figure 4.20(c) shows the associated uncertainty. Figure 

4.20(d) shows the deviation from the mean surface to the reference surface. It is noted 

that the grid of the prediction for the Gaussian process is the same as that for the laser 



Chapter 4 Gaussian process‐based multi‐sensor measurement of freeform surfaces  

 

112 
 

sensor. The RMS of the measurement uncertainty is 15.7 µm and the RMS of the 

deviation map is 13.2 µm. The large measurement uncertainty is due to the small 

number of sampling points.  

 

(a) Raw data of the touch trigger probe (b) Mean surface 

  

(c) Associated uncertainty  (d) Deviation to the reference data 

Figure 4.20 Measurement data of touch trigger probe and Gaussian process result  

 The fused result of the dataset from the laser sensor and trigger probe is shown 

in Figure 4.21. Figure 4.21(a) is the fused mean surface, while Figure 4.21(b) is the 

associated uncertainty and Figure 4.21(c) is the deviation from the fused mean surface 

to the reference data. The RMS of the uncertainty is 8.0 µm and the RMS of the 

deviation map is 8.4 µm, both showing improvements compared to the original 

measurement datasets.  

 Five different datasets for the touch trigger probe from different sampling 

positions were obtained and underwent the above procedure and the results are shown 

in Figure 4.22. The measurement data of the laser sensor were the same. Figure 4.22(a)  
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(a) Mean surface (b) Associated uncertainty 

 

(c) Deviation from reference data 

Figure 4.21 Mean surface, associated uncertainty and deviation from the reference 

data after data fusion 

(a) Uncertainty 

 

(b) Deviation from the reference surface

Figure 4.22 Repeated measurement results  

shows the results of the RMS of the measurement uncertainties and Figure 4.22(b) 

shows the result of the RMS of the deviations. Both results show a consistent 
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improvement of the measurement uncertainty and deviation from the reference data 

for the repeated measurement. The result demonstrates the effectiveness of the 

proposed data modelling and data fusion method. The high repeatability of the 

improvement of the data fusion may result from the well-established sensor 

configuration and high performance of data modelling which fit the situation shown in 

Figure 4.3(c).  

4.3.4.2 Measurement of a f-theta lens surface  

The f-theta lens freeform surface was measured in the present study. Instead of 

showing the improvement of the final result, this experimental result shows that when 

one measurement has a large systematic error, the performance of the final result is 

affected. Similar to the previous experiment, the surface was measured by a touch 

trigger probe with a dense measurement of 0.5-mm pitch and the result was determined 

as the reference data. In this experiment, there existed a large systematic error in the 

measurement of the laser sensor which may have been caused by the outliers in the 

measurement result, as shown in Figure 4.23. It is interesting to note that the outliers 

were removed in the data processing with a statistical analysis method (Rusu and 

Cousins, 2011). However, there was still residual error in the dataset which may have 

affected the final result. The outliers may be caused by the characteristics of the 

measured surface such as reflection and dust which may greatly influence the optical 

sensor.  

 

Figure 4.23 Measurement result with outliers of the laser sensor  



Chapter 4 Gaussian process‐based multi‐sensor measurement of freeform surfaces  

 

115 
 

After the outliers were removed, raw data were processed by Gaussian process 

modelling and the mean surface was obtained together with the associated uncertainty. 

The deviation of the mean surface to the reference surface was also determined as 

shown in Figure 4.24. The RMS of the uncertainty was 18.9 µm and the RMS of the 

deviation map is 24.9 µm. The result shows a larger uncertainty and even larger 

deviation than the previous measurement experiment which may introduce a larger 

systematic error for this measurement.  

(a) Raw data of the laser sensor 

 

(b) Mean surface 

(c) Associated uncertainty  (d) Deviation to the reference data 

Figure 4.24 Measurement data of laser sensor and Gaussian process result  

A subset of 50 points of the measurement data from the touch trigger probe 

were used as the second dataset for the measurement. The data were modelled using 

the Gaussian process and the mean surface and the associated uncertainty were 

determined. The deviation from the mean surface to the reference surface was also 
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determined as shown in Figure 4.25. The RMS of the uncertainty was 5.7 µm while 

the RMS of the deviation map is 2.9 µm.  

 

(a) Raw data of the touch trigger probe (b) Mean surface 

  

(c) Associated uncertainty  (d) Deviation to the reference data 

Figure 4.25 Measurement data of touch trigger probe and Gaussian process result  

The fused results of the two datasets are shown in Figure 4.26. The RMS of 

fused uncertainty was 5.2 µm while the RMS of the deviation map is 4.8 µm. It is 

found that the fused uncertainty was improved, which was smaller than the original 

two datasets. However, the deviation was larger than the one only considering the 

touch trigger probe. Another five measurement results were obtained at different 

sampling locations and the results are shown in Figure 4.27. All the results show that 

the uncertainty was improved while the deviations were worse. This is due to the fact 

that the measurement data from the laser sensor had large bias from the true value 

which affected the final fused result. These results of the experiment demonstrate that  
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(a) Mean surface (b) Associated uncertainty 

 

(c) Deviation from reference data 

Figure 4.26 Mean surface, associated uncertainty and deviation from reference data 

after data fusion 

(a) Uncertainty (b) Deviation from the reference surface

Figure 4.27 Repeated measurement result  

the case was similar to the situation as discussed in Figure 4.3(d), where the true value 

was larger than the mean values of both original measurements. This is the limitation 
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of the data fusion method that when one of the sensors has large systematic error, the 

fused result is poorer than when only considering the data from another sensor. Future 

work will be focused on the quantitative analysis of the influence of the systematic 

error on the fusion result. Practically, more attention should be paid to correcting the 

systematic error, especially that which is caused by the optical sensors such as the laser 

sensor. For this issue when considering the systematic error, another approach is 

generating adaptive weighting by a Bayesian framework (Wang et al., 2014). In this 

situation, the fault-inducing systematic error may be detected and the weighting for 

those points can be adjusted accordingly. 

4.4 Summary  

 Coordinate measuring machines (CMMs) equipped with multiple sensors are 

becoming popular in the high-end precision metrology market since their measurement 

ability can be enhanced by combining the datasets measured from different sensors. 

The development of a data modelling method for datasets measured by different 

sensors and an appropriate data fusion method are the key issues for measurement with 

multi-sensor CMMs so as to further enhance their measurement performance. This 

chapter presents a data modelling and data fusion method for multi-sensor CMMs 

which is based on Gaussian process modelling and the Bayesian inference-based 

maximum likelihood principle. The raw data from different sensors were firstly 

modelled by the Gaussian process so as to obtain the mean surface and covariance 

surface which represent the underlying surface and the measurement uncertainty, as 

well as the prediction for the data at unsampled positions. The mean surface and 

covariance surface were then fused together by the maximum likelihood principle so 

as to obtain the best estimated surface and the associated uncertainty. Simulation and 

real experiments showed that both the measurement uncertainty and prediction error 
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at unsampled positions underwent improvement over single-sensor measurement. 

Special attention should be paid to the important aspect of avoiding or reducing the 

systematic error from each sensor so that the performance of the fusion algorithm can 

be enhanced. The proposed method is a generic data modelling and data fusion method 

which can be implemented in various kinds of multi-sensor CMMs with different 

sensors. The limitation of the proposed method is that the performance is affected by 

the systemic error. Further work will be suggested to focus on the identification of 

systematic error and setting different weights according to the accuracy of the datasets 

regarding the systematic error and random error. 
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Chapter 5 Development of multi-sensor in-

situ metrology systems  

5.1 Introduction  

The Industry 4.0 standard has proposed a new initiative for in-situ and/or in-

process production measurement in manufacturing environments. With the demand 

for ever higher-performance products, emphasis has been placed on the functional use 

of three-dimensional (3D) surfaces in order to produce high-value-added products 

(Jiang and Whitehouse, 2012). The trend towards product miniaturization further 

constitutes a driving force for the use of 3D surfaces in many fields, such as advanced 

optics (Fang et al., 2013a) and biomedical applications (Bechert et al., 2000), to 

improve the performance and provide versatile functionalities of the surfaces. This 

poses new research challenges for high dynamic range measurement for 3D surfaces 

that can cover a larger scale with credible accuracy (Leach et al., 2013) and production 

measurement in manufacturing environments which demand high-speed and robust in-

situ and/or in-process surface measurement (Shore and Morantz, 2012, Jiang, 2011, Ju 

et al., 2014, Zhu et al., 2015). This is particularly true when the workpiece is large and 

repositioning error is unacceptable.  

One of the reasons is that with a large and heavy workpiece, it is difficult, 

sometimes impossible, to measure the workpiece with an off-line method. Another 

reason is that it is difficult to compensate for the machining error if the workpiece is 

taken off for offline-line measurement and remounted on the machine tool after 

measurement. Moreover, most of the off-line measurement machines rely on one 
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single sensor with a limited field of view which cannot provide a measurement result 

with a high dynamic range, which has a large measurement area and high resolution.  

To address these challenges, a turnkey solution is to develop a separate 

metrology loop which does not rely on the structural loop of the machine tool. One of 

the examples is the Large Optics Diamond Turning Machine (LODTM) (Hale, 1999). 

This method is similar to most of the modern metrology systems which move the 

sensor head with the moving linear or rotational stages. To enhance the measurement 

ability, different types of sensors can be chosen to be mounted on the moving axes. 

For instance, Lamb et al. (Lamb et al., 1999) developed an automation system for 

industrial 3D laser digitizing which integrated the Hymarc Hyscan 45C laser scanner 

with a CMM machine which had a working volume of (2.0×1.3×1.0) m. The Hyscan 

45C was built-in with a high-power laser and a panning mirror making it capable of 

measuring steep walls and deep core out areas which are difficult to measure. Equipped 

with the products having advanced sensor technologies such as Gocator 3100 series 

which act as an area structured light sensor, the 3D surface data can be obtained in a 

single shot measurement with fast measurement speed and high accuracy (LMI 

Technologies, 2016).  

However, integrating these sensors with a separate metrology frame is a 

complicated and expensive solution. Considering that the machine tools nowadays 

have precision advanced motion control, the motion accuracy is high and the motion 

error is within an acceptable accuracy range. Moreover, without machining force, the 

deformation and vibration situation is better compared with that in the machining 

process (Hocken and Pereira, 2016). Installing a measurement system on the machine 

tool is one of the promising methods to implement in-situ measurement. With the large 
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moving range of the motion axis of the machine tools, high dynamic range 

measurement can be achieved.  

Nowadays, there are commercial machine tools which provide in-situ 

metrology capability. The MIKRON HPM 600U/800U CNC machines provide an 

optional infrared touch probe which can be mounted on the machine replacing the tools 

to perform on-machine measurement (GF AgieCharmilles, 2015). Zeeko developed an 

on-machine stitching interferometer (OMSI) for mounting on a Zeeko IRP polishing 

machine to perform in-situ measurement (Zeeko, 2010). However, they have to be 

implemented by the machine tool manufacturers since it is necessary to access the 

coordinate information from the CNC controller. 

 Since most of the motion control interfaces of the machine tools are not open 

to users and researchers, it is difficult to obtain the coordinate information of the 

motion axis and further develop it on the machine tool for in-situ measurement. This 

issue also exists in the methods which integrate additional sensors into the metrology 

systems with motion stages. Without the coordinate information of the axes, it is 

difficult to combine the sensor data to obtain a holistic measurement result. Without 

directly accessing the coordinate information of the machines, the position of the 

sensor has to be estimated. Position estimation is widely used in robots. An optical 

fibre gyroscope (Komoriya and Oyama, 1994) was used to estimate the position of a 

mobile robot. However, the position estimation error was large. A drift-free position 

estimation method (Latt et al., 2011) was developed using inertial sensors for periodic 

or quasi-periodic motion. The method combined a linear filtering stage with adaptive 

filtering stage to remove drift and attenuation. The root mean square (RMS) error of 

the proposed method was about 3 µm while the maximum error was 8.9 µm.  
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However, the prior knowledge of the motion was needed in this method. In 

order to address this issue, this chapter presents a method to estimate the position of 

the motion axis with an additional motion sensor when the motion is controlled with a 

designed trajectory. With the help of a 2D laser scanner and an additional motion 

sensor, a multi-sensor in-situ metrology system was built and mounted on the machine 

tool demonstrating the high dynamic range measurement of a 3D surface. Together 

with the information provided by the designed trajectory, the position estimation 

accuracy was significantly enhanced as compared with the methods solely based on 

the motion sensor. The methodology and experimental setup details are described and 

the measurement result and its associated uncertainty are also analyzed. The successful 

establishment of this method provides an innovative way for in-situ high dynamic 

range measurement for 3D surfaces. 

The proposed multi-sensor in-situ metrology system utilizes multiple sensors, 

i.e. the motion sensor and the laser sensor, to complete the surface measurement task. 

Since the measurand are different physical quantities, i.e. acceleration/angular 

acceleration and dimension, the metrology system is an inhomogeneous multi-sensor 

system. The data fusion principle developed in Chapter 4 deals with homogeneous 

physical quantities, i.e. both are dimensions, from different sensors. In the latter part 

of this chapter, a new type of homogeneous multi-sensor in-situ metrology system is 

built including a laser point sensor and a laser line sensor. With the Gaussian process-

based data modelling method and the maximum likelihood data fusion method 

developed in the previous chapter, the data obtained from these two sensors are fused 

together and the accuracy of the fused data is improved comparing with the original 

data. The homogeneous multi-sensor in-situ metrology system not only further 

demonstrates the effectiveness of the proposed data modelling and data fusion method 
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in the previous chapter but also implements the data fusion method in an in-situ 

environment, which is a pioneer research work to fill the gap of in-situ measurement 

and multi-sensor data fusion for dimensional measurement.  

5.2 Inhomogeneous multi-sensor in-situ metrology system  

5.2.1 System configuration  

Figure 5.1 shows a schematic diagram of the multi-sensor in-situ metrology 

(MIM) system. Without the need to build an independent metrology frame, instead, 

the system is built and attached to the motion axis of the machine tool as a sensor 

module incorporated into a specially designed fixture. The sensor module contains 

two types of sensors: a 2D laser scanner as a geometrical measurement sensor and a 

motion sensor. The sensor module is mounted on the machine tool and scans along the 

surface of the workpiece with a purposely-designed tool path. During the scanning of 

the surfaces, the data from the laser scanner and the motion sensor are simultaneously 

acquired by a computer system. After data processing, the coordinate  

 

Figure 5.1 Diagram of the multi-sensor in-situ metrology system  
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information of the sensor module is determined by integrating the designed tool path 

and the motion sensor data. The whole surface can be reconstructed by the coordinate 

information provided by the sensor module and the laser scanner. The MIM system is 

mechanically attached to the machine tool. However, it is relatively independent of the 

machine tool since it has no direct electrical connection to the control system of the 

machine tool. The independent feature of the MIM system extends its application to a 

large field in industry. This is a very useful attribute of the MIM system.  

A prototype of the MIM system was designed for a 7-axis multi-axis ultra-

precision polishing machine IRP200 from Zeeko, Ltd. which is equipped with three 

linear axes (X, Y, Z), three rotational axes (A, B, C) and a spindle axis (H). The 

configuration of the motion axes is shown in Figure 5.2. With the purposely-designed 

and made precision fixture, the sensor module is mounted on the B axis without  

 

Figure 5.2 Motion axes setup of the MIM system mounted on the multi-axis ultra-

precision polishing machine. The sensor module is mounted on the B axis covering H 

axis while the workpiece is mounted on the C axis.   
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removing the polishing head while the workpiece is mounted on the C axis. With this 

setup, the sensor module can be moved along the A and B axes and the workpiece can 

be moved along the X, Y, Z and C axes. This setup realizes a large scanning volume 

for the sensor module which enables the system to undertake large range measurement.   

Figure 5.3 shows the scanning strategy of the MIM system. The scanning 

strategy consists of the rotational motion of the B axis and the linear motions of the X 

axis, Y axis, and Z axis. The A axis has a fixed angle to ensure that the laser scanner 

is perpendicular to the X-Y plane. The laser scanner is rotated around the B axis and a 

scanning slice can be generated, as shown in the highlighted zone in Figure 5.3. The 

workpiece is moved along the X axis, Y axis and Z axis, combined with the scanning 

of the B axis. As a result, the whole surface of the workpiece can be scanned. The total 

scanning area is large as this is determined by the moving range of the motion axis of 

the machine tool. The resolution of the scanning is high together with the help of the 

high sampling rate of the laser scanner and the motion sensor as well as a fine feed 

rate.  

 

Figure 5.3 Scanning strategy of the metrology system  
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On the other hand, the measurement range is limited by the moving range of 

the motion axes while the measurement resolution is limited by the laser scanner and 

the sampling rate. This is different from that of single CCD camera measurement 

systems in which the measurement range and resolution need to be compromised. In 

other words, the MIM system can achieve a large measurement range with high 

resolution. This is the principle of the high dynamic range measurement of the MIM 

system.  

The motion sensor consists of a 3-axis acceleration sensor and a 3-axis 

gyroscope. While scanning by the proposed method, the gyroscope data along the Z 

direction and the acceleration data in the Y (also g) direction are used to assist the 

determination of the position for each dataset, together with the designed trajectory. 

Since the data from the laser scanner and the motion sensor are obtained 

simultaneously, with the designed scanning angle for the B axis, the coordinate 

information for each line of the laser scanner can be determined accordingly. The 

coordinate of the sensor module is determined by the time signal combining with the 

space signal from the design trajectory. With coordinate transformation for the 

scanning lines, the whole surface can be reconstructed as a point cloud format 

incorporating both a large area and a high resolution. To avoid the missing of data and 

to provide the stitching ability for future work, the scanning slices are designed to 

overlap.  

5.2.2 Experimental setup and procedures  

The experiment was conducted on an IRP200 7-axis polishing machine from 

Zeeko Co. Ltd., UK. The flowchart of the process to conduct the in-situ measurement 

is shown in Figure 5.4. The experimental setup is shown in Figure 5.5.  
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Figure 5.4 Flowchart of the process to conduct in-situ measurement 

 

Figure 5.5 Experimental setup of the metrology system on the multi-axis machine 

tool  

The sensor module consists of a Keyence LJ-G015 2D laser sensor, a MPU-

6050 motion sensor (6-axis Motion Tracking device) and an Arduino UNO with Atmel 

ATmega16 micro-controller. The sensors and the associated controller and control 

board are shown in Figure 5.6.  
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(a) KJ-G015 2D laser sensor (b) LJ-G5001 controller for the laser 

sensor 

 

(c) Arduino Uno board (d) Motion sensor board 

Figure 5.6 Sensors and controllers in the experiment  

 The sensor module is mounted on the B axis via a purposely-designed fixture 

and the workpiece is mounted on the C axis of the polishing machine. As shown in 

Figure 5.7 and Figure 5.8, the fixture is designed as two separate parts. The first part  

 

Figure 5.7 Sensor module and fixture 
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(a) The base connector 

 

(b) The adjust plane 

Figure 5.8 Design of the fixture: (a) the base connector, and (b) the adjust plane  
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is attached to the H axis while the second part is detachable and adjustable around the 

H axis for adjusting alignment purposes. The laser sensor measures a 2D profile with 

7 mm length, 10 µm pitch and 4.6mm Z axis measurement range. The laser sensor is 

connected to a Keyence LJ-G5000 laser controller and the motion sensor is connected 

to the micro-controller. Both the laser controller and the micro-controller are 

connected to a laptop computer via a USB hub. The laptop computer communicates 

with the laser controller via a VB.Net library and controls the micro-controller via a 

USB-serial protocol purposely developed by the author. The baud rate is set to 230400 

bps. The specifications of the motion sensor and the 2D laser sensor are shown in Table 

5.1  and the specifications of the polishing machine are shown in Table 5.2.  

Table 5.1 Specifications of the motion sensor and the 2D laser sensor  

Motion sensor (InvenSense MPU-6050) 

Gyroscope full-scale range ±250°/sec 

Accelerometer full-scale range ±2g 

Analog-to-digital converters word length 16 bits 

2D laser sensor (Keyence LJ-G015) 

Z-axis measuring range ±2.3 mm 

X-axis measuring range (reference distance) 7.0 mm 

Z-axis repeatability 0.2 μm 

X-axis repeatability 2.5 μm 
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Table 5.2 Specifications of the IRP200 ultra-precision polishing machine 

X axis travel range ±145 mm 

Y axis travel range ±125 mm 

Z axis travel range +5 mm, -125 mm 

A axis travel range +115°, -50° 

B axis travel range ±180° 

C axis travel range 
Continuous bi 

directional 

 

The embedded software for the micro-controller is written in C programming 

language and the software on the laptop is written in VB.Net programming language, 

integrated with the application program interface (API) of the laser controller. The data 

from the laser sensor and motion sensor are obtained simultaneously and recorded as 

a data file for data processing. The recorded time for every dataset is also retained with 

millisecond accuracy. The data processing is implemented by Matlab programming 

language.  

The micro-controller is designed to run a tight loop to check the command sent 

from the host computer. For the current design, there is only one command to process, 

which is the data receiving command. The communication of the micro-controller and 

the host PC is via the USB-to-serial port and the baud rate is set to 230400 bps, which 

is as high as possible to increase the data transition speed. Three axes of acceleration 
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data and gyro data are captured and sent for analysis. The flow chart of the firmware 

of the micro-controller is shown in Figure 5.9.  

 

Figure 5.9 Flow chart of the firmware of the micro-controller  

 The VB.net program communicates with both the micro-controller and the 

laser sensor. The main loop of the program is written in a timer loop which is triggered 

every 10 milliseconds. The flow chart of the VB.net program is shown in Figure 5.10. 

In every timer loop, the memory of the local variables is first allocated and then checks 

the start measurement command. The start measurement command is controlled in the  

 

Figure 5.10 Flow chart of the timer loop of the VB.net program 

UI (user interface) of the program and the UI is shown in Figure 5.11. Once the 

measurement command is started, the VB.net program sends a data receiving 

command to the micro-controller and waits for all the motion data to be received from 

the micro-controller. After all the motion data are received, the data from the laser 

sensor are retrieved and the system time is logged in millisecond resolution to 
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determine the actual time for the measurement data. In the end, the data are appended 

to a text file for further analysis.  The data format of the output text file is shown in 

Table 5.3.  

 

Figure 5.11 User interface of the VB.net program  

Table 5.3 Data format for the output files of the MIM system 

Items Data counts Format 

Laser scanner data 800  float  

Motion data 12 (2 for each component) unsigned char  

System time 3 minute/second/millisecond

 

A workpiece used in previous chapter was adopted for the evaluation of the 

developed multi-sensor in-situ metrology system. Figure 4.16 shows the drawing of 

the workpiece which was designed based on the concept of the Modular Freeform 
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Gauges (MFG) for ease of calibration (Savio et al., 2002). The dimension of the 

surface of the workpiece is 100 mm × 50 mm and the height is 5 mm. The process to 

conduct in-situ measurement for the designed MIM system starts with the installation 

of the sensor module and the fixture on the machine. The next step is alignment 

adjustment so as to minimize the installation error of the sensor module. The scanning 

parameters are then determined and the NC tool path file is generated. Hence, data 

acquisition and data processing are finally undertaken.  

5.2.2.1 Alignment adjustment for the sensor module 

Although the laser scanner is installed on a well-designed fixture and carefully 

aligned, there are still imperfections and the installation error is shown in Figure 5.12 

which includes three errors: roll, pitch and yaw errors.  

 

Figure 5.12 Alignment error of the laser scanner 

With the designed fixture installed on the polishing machine, there are two 

major alignments to be adjusted. One is the perpendicularity of the laser scanner to the 

X-Y plane, which is determined by the angle of the A axis. The other alignment is the 

parallelism of the laser scanner to the X-Z plane which is determined by the angle of 

adjustment as shown in Figure 5.7.  
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To fine-tune the perpendicularity of the laser scanner to the X-Y plane, an 

optical flat surface was mounted on the C axis and the profile of the flat surface was 

measured while adjusting the angle of the A axis as shown in Figure 5.13. A best-fit 

line was generated to the measurement data by the least square method and the best 

position was determined by minimizing the tilting angle of the line.  

 

Figure 5.13 Procedure to adjust the perpendicularity of the laser scanner to the X-Y 

plane using a flat surface  

To adjust the parallelism of the laser scanner to the X-Z plane, a standard 

sphere was mounted on the C axis and the profile was measured while fine-tuning the 

angle of the fixture, as shown in Figure 5.14. A circle was fitted for the measured data 

and the radius of the circle was calculated. The best position was determined by 

maximizing the radius through adjusting the fixture.  

 

Figure 5.14 Procedure to adjust the parallelism of the laser scanner to the X-Z plane 

using a standard sphere 
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After the alignment adjustment, the scanning radius of the slice was determined 

and is expressed by Equation (5.1).  

1
( )
2s s xR X L C    (5.1)

where sX is the X coordinate of the standard sphere, L is the measurement length of 

the 2D laser scanner, and xC is the X coordinate of the centre of the fitted circle.  

5.2.2.2 Determination of the scanning parameters 

For every measurement, the scanning parameters should be optimized to be 

able to cover the whole measured surface by having the right balance between 

scanning speed and data resolution. For the workpiece as shown in Figure 4.16 the 

scanning parameters are shown in Table 5.4. It is interesting to note that the scanning 

with the B axis and the X axis was good enough for this workpiece since the scanning 

range can cover the whole workpiece. After the scanning parameters were determined, 

the tool path was generated by the G-code as the NC file for the polishing machine. 

Table 5.4 Scanning parameters 

B axis range 25° ~ -25° 

X axis pitch 5 mm 

Feed rate 20 mm/min 

Scanning Radius 73.475 mm 
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5.2.2.3 Data acquisition 

The NC file for the scanning trajectory (see Figure 5.3) was implemented on 

the polishing machine and data acquisition was undertaken. The data acquisition 

process was controlled by the software on the laptop computer as a timer loop (15 ms). 

For every cycle, a command is issued by the laptop computer to the micro-controller 

to obtain the motion sensor data and the function is then called to receive the data from 

the laser scanner through the application program interface (API). The data of the laser 

scanner, the data of the motion sensor, and the captured time signal (in milliseconds) 

were stored in a text file for data processing. The time signal was recorded to solve the 

jitter issue in the data acquisition process.  

5.2.2.4 Data processing  

The data processing was done by the data processing module which is written 

in Matlab programming language. The first data to be analyzed were the motion data. 

The raw data of the acceleration data in the X, Y, Z directions and the gyroscope data 

in X, Y, Z directions are shown in Figure 5.15. Since the B axis was rotating around 

the Z axis, the most significant motion data were the acceleration data of the Y axis 

and gyroscope data of the Z axis. The raw data were first normalized with zero mean  

 

Figure 5.15 Raw data of the acceleration and gyroscope data in the X, Y, Z 

directions  
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and filtered for further processing. To avoid a phase shift in filtering which 

significantly affects the accuracy, a forward-backward filtering algorithm (Gustafsson, 

1996) was used to filter the raw data. The normalized raw data and the filtered data of 

the acceleration and gyroscope are shown in Figure 5.16.  

 

Figure 5.16 Raw data and filtered data  

Since the motion was slow, the effect of the acceleration and deceleration was 

insignificant. In this study, the scanning slices were determined by setting two 

thresholds in the filtered gyroscope data for the anti-clockwise scanning and clockwise 

scanning, respectively. It is interesting to note that there was jitter in the data capturing 

process, which means that the capturing time was not evenly distributed. The jitter 

issue is illustrated in Figure 5.17. The result shows that the actual time between two 

datasets was not evenly distributed. The jitter issue is caused by the operating system 

of the host computer due to the fact that the Windows system is not a real-time system 

so that the timer is affected. In order to reduce the influence of the jitter effect, a 

solution was introduced as described below. Nevertheless, a real-time system will be 

introduced to improve the MIM system in future work.  
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Figure 5.17 Jitter issue for the MIM system 

To address this issue, the datasets within one slice and their associated scanning 

angle were calculated according to the actual capturing time, which is determined by 

Equation (5.2):  

0
0

i
i r

T

t t
a a a

t


   (5.2)

where 0a is the start angle, 0t is the start time, it is the capturing time for the thi dataset, 

Tt is the total time, and ra is the angle of the scanning range.  

After the angles for every dataset were identified, the coordinate information 

associated with the data from the laser scanner could be determined by the 

transformation matrices and the transformed scanned data can be determined by 

Equation (5.3): 

z xt R T mS M M S  (5.3)

where mS is a matrix containing the original measurement data with X and Z coordinate 

data from the 2D laser scanner and the Y coordinate is set to zeros, 
xTM is the 

transformation matrix to translate the data according to the scanning radius, and
zRM is 
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the transformation matrix to rotate the data according to the determined scanning 

angle. Thus, mS , 
xTM , and 

zRM are determined by: 
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  (5.4)

where xM , yM , zM are the vectors containing the measurement data from the laser 

scanner in X, Y and Z coordinates, respectively. I  is the identity matrix with the same 

size of xM , yM  and  zM .  
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where Tx , Ty  and Tz  are the translational values in the X, Y and Z directions and 

they are determined by the actual setup of the fixture and the laser scanner. In this 

study, 73.475Tx  mm, 0Ty  mm and 0Tz  mm.  
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  (5.6)

where ia  is the associated scanning angle for the processing slice.  

 Since the scanning slices are shifting from left to right, the x coordinate of the 

scanned data is shifted according to the actual shifting distance which is determined 

by: 
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a t SS S M   (5.7)

where  
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where ( 1) 5S Sx n   , 0Sy   and 0Sz  , Sn determines the order of the slice 

number.  

5.2.3 Results and discussion  

The measurement data were acquired in a point cloud format and the number 

of points for the designed workpiece was about 75 million, which indicates that there 

were about 15,000 points per mm2. With a higher sampling rate, the resolution can be 

increased. The scanning time was about 60 minutes for a surface of 100 mm × 50 mm 

and the processing time was about 3 minutes. With the use of a faster microprocessor 

to increase the sampling rate, the feed rate can be increased and the scanning time can 

be shortened. To visualize the result, the measurement data were down-sampled and 

the result is shown in Figure 5.18. Figure 5.19 shows that the result has the resolution  

 

Figure 5.18 Scanned 3D surface 
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of about 10 µm. It is interesting to note that there was some measurement noise near 

the lower part of the spherical area, caused by the reflection of the laser light. The 

reflection area can be determined by the geometry of the surface and the angle of the 

laser beam. To address this issue, rotating the A axis or C axis for some specific area 

may be implemented in future work.  

 

Figure 5.19 High-resolution measurement of the dataset for about 10-µm pitch 

The measurement result was compared with the result measured by a Werth 

Coordinate Measuring Machine (CMM) (Video Check UA 400) with a touch probe 

TP200 (Renishaw UK). Since the measurement accuracy of the CMM is high with 

Maximum Permissible Measuring Error (MPE) of (0.75+L/300) µm at a temperature 

range of 20°C±2K and humidity of 50±5%, the probing error is as low as ±0.65 µm 

for the trigger probe, the measurement result of the CMM was used as a reference. The 

measurement result of the proposed system was registered to that of the CMM by using 
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an iterative closest point (ICP) method (Besl and McKay, 1992). The registration result 

is shown in Figure 5.20. The result shows that the two datasets were registered well.  

 

Figure 5.20 Registration result for the MIM measurement data and the CMM 

measurement data 

One of the error maps of the measurement result is shown in Figure 5.21. The 

measurement result of the MIM system was evaluated at nine selected representative 

positions along the centre line of the surface as shown in Figure 5.18. The sample 

positions cover the flat and the tilted surfaces. Five repeated measurements were  

 

Figure 5.21 Error map of the measurement result compared with the CMM 

measurement data  
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conducted. As shown in Figure 5.22, the results were compared with the measured 

data by the CMM after registration. The error bar depicts the standard deviation of the 

repeated measurements. The result shows that measurement data at the flat surface had 

a higher accuracy than that at the tilted surface, i.e. 5 µm as compared to 10 µm from 

the reference CMM data, while the repeatability at every selected position was about 

±4 µm. The uncertainty of the measurement may be due to the imperfection of the 

fixture, alignment error of the laser sensor, the motion error, and vibration of the 

machine tool. The measurement range divided by the measurement uncertainty is 

about 500:1 and this is believed to be able to be enhanced to 1000:1 by designing and 

fabricating a higher accurate fixture, the use of a higher-speed micro-controller and 

the incorporation of a data stitching method in future work. Moreover, a higher 

accurate laser scanner can be used to enhance the accuracy of the MIM system. 

 

Figure 5.22 Performance evaluation of the measurement result  

5.3 Homogeneous multi-sensor in-situ metrology system 

The inhomogeneous multi-sensor in-situ metrology system consists of a 

motion sensor and a 2D laser sensor which can perform as an independent metrology 

system attached to a machine tool system. This is an advantage to the current machine 

tool systems since this method can be adapted to any kind of machine tool system or 

motion system as its independent characteristic. A homogeneous multi-sensor in-situ 
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metrology system was designed based on the inhomogeneous multi-sensor in-situ 

metrology system described in the previous section, which added an additional sensor 

system to measure the freeform surface with higher accuracy but less density. The aim 

of adding the additional sensor system is to improve the overall measurement accuracy 

with Gaussian process-based data modelling and maximum likelihood-based data 

fusion method as described in Chapter 4. 

5.3.1 System configuration 

The system diagram of the proposed homogeneous multi-sensor in-situ 

metrology system is shown in Figure 5.23. The multi-sensor module consists of two 

independent sensor systems, which are the line sensor measurement system and the 

point sensor measurement system, respectively. The line sensor system is based on the 

inhomogeneous multi-sensor in-situ metrology system described in the previous 

section while the point sensor is built on an accurate laser displacement sensor, which 

measures the surface according to the coordinate of the machine tool in the manner of 

an optical CMM. As a result, the detail of the newly proposed homogeneous multi-

sensor in-situ measurement system is shown in Figure 5.24.  

 

Figure 5.23 System diagram of the proposed homogeneous multi-sensor in-situ 

metrology system 
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Figure 5.24 System design of the homogeneous multi-sensor in-situ metrology system 

The line sensor and its controller are LJ-G015 and LJ-G5001 from Keyence 

with 0.2 µm measurement repeatability; the motion sensor is MPU-6050 from 

InvenSense with 16 bits ADC resolution; the point sensor and its controller are LK-

H022 and LK-G5001 from Keyence with 0.02 µm measurement repeatability; the 

optical motion sensor is MCS-12085 from RMR Systems which has 400 cpi resolution; 

both micro-controllers are Arduino UNO. All the sensors and the micro-controller 

communicate with the PC via USB. The specifications of the laser line sensor and the 

laser point sensor are list in Table 5.5.  

The hardware design of the multi-sensor module and the assembled system is 

shown in Figure 5.25. The multi-sensor module is designed to be mounted on an ultra- 

 

Figure 5.25 Hardware design of the sensor module  
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Table 5.5 Specifications of the laser line sensor and the laser point sensor 

 Laser line sensor (Keyence LJ-G015) 

Z-axis measuring range ±2.3 mm 

X-axis measuring range (reference distance) 7.0 mm 

Z-axis repeatability 0.2 μm 

X-axis repeatability 2.5 μm 

 Laser point sensor (Keyence LK-H022) 

Z-axis measuring range ±3.0 mm 

Z-axis repeatability 0.02 μm 

 

precision polishing machine (IRP-200). The assembled system and the installation are 

shown in Figure 5.26. For the line sensor measurement system, the scanning setup is 

based on the one for the inhomogeneous multi-sensor in-situ metrology system as 

shown in Figure 5.27(a). For the point sensor measurement system, the displacement 

sensor is designed to be perpendicular to the X-Y plane of the coordinate of the 

machine tool. The measurement path is designed to be a raster scanning path as shown 

in Figure 5.27(b), which is in a point sampling configuration. The measurement path 

is generated by a purposely-designed MATLAB program which takes into account the 

scanning area, scanning pitch as input parameters and outputs the NC file which is 

readable for the IRP-200 polishing machine. To conduct the measurement experiment 
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automatically, an additional optical motion sensor was implemented to detect the X-Y 

motion of the machine tool and the implementation is shown in Figure 5.28.  

 

(a) Assembled sensor module

 

(b) Installation in the machine tool 

Figure 5.26 Photos of the sensor module  

(a) Line sensor (b) Point sensor 

Figure 5.27 Scanning measurement path for different sensors 

 

Figure 5.28 Optical motion sensor to detect the motion of the machine tool 
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5.3.2 Measurement experiment  

To evaluate the effectiveness of the proposed homogeneous multi-sensor in-

situ measurement method and the developed multi-sensor metrology system, 

experiments were designed and conducted in the IRP-200 ultra-precision polishing 

machine. A progressive lens surface was used as the target surface which can be 

defined by the Zernike polynomials as shown in Equation (5.9) and the drawing of the 

progressive lens surface is shown in Figure 5.29.  

ݖ ൌ 0.462 ൈ √3 ൈ ሺ2ݔଶ ൅ ଶݕ2 െ 1ሻ െ 0.015 ൈ 2√2ሺ3ݔଶݕ െ ଷሻݕ

െ 0.046 ൈ 2√2ሺ3ݔଶݕ ൅ ଷݕ3 െ ሻݕ2

൅ 0.007 ൈ 2√2ሺ3ݔଷ ൅ ଶݕݔ3 െ ሻݔ2

൅ 0.007 ൈ 2√2ሺݔଷ െ ଶሻݕݔ3

൅ 0.0064

ൈ 2√3ሺ10ݔସݕ ൅ ଷݕଶݔ20 െ ݕଶݔ12 ൅ ହݕ10 െ ଷݕ12

൅  .ሻݕ3

(5.9)

 

Figure 5.29 Design of the progressive lens freeform surface  

The measurement process includes two steps. The first step is the measurement 

with the line sensor and the second step is measurement with the point sensor. The 

measurement setups with the line sensor and the point sensor are shown in Figure 5.30. 
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For the measurement setup using the line sensor, the measurement parameters are 

shown in Table 5.6. Figure 5.31 shows the measurement result of the line sensor and 

the high measurement resolution is shown in Figure 5.31(b) which has about 10-µm 

lateral resolution.  

(a) Line sensor (b) Point sensor 

Figure 5.30 Experiment setups with different sensors 

Table 5.6 Scanning parameters for the sinusoidal surface 

B axis range 25° ~ -25° 

X axis pitch 5 mm 

X axis range -100 ~ -40 mm 

Feed rate 20 mm/min 

Scanning Radius 72.861 mm 
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(a) Measurement result (b) Result showing the high resolution 

Figure 5.31 Measurement result with the line sensor  

The scanning parameters with the point sensor are shown in Table 5.7. The 

measurement result is shown in Figure 5.32. Compared with the measurement result 

obtained using the line sensor, the lateral resolution of the measurement result obtained 

by using the point sensor was much lower, i.e. 2 mm to 10 µm. From this point of 

view, the high dynamic range measurement of the inhomogeneous multi-sensor in-situ 

metrology system is an advantage since it has a relatively high lateral resolution.  

Table 5.7 Scanning parameters with the point sensor 

X axis range -40 ~ -100 mm 

Y axis range -30 ~ -90 mm 

Pitch 2 mm 
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(a) Measurement result (b) Result showing the low resolution 

Figure 5.32 Measurement result with the point sensor  

5.3.2.1 Gaussian process data modelling for the measurement data 

(1) Data modelling for the measurement data from the line sensor 

The mean surface and the measurement uncertainty of the measurement data 

from the line sensor are shown in Figure 5.33. The RMS value of the associated 

uncertainty with the whole surface was 7 µm.  

 

(a) Mean surface (b) Associated uncertainty 

Figure 5.33 Result of Gaussian process for the measurement result from line sensor  

(2) Data modelling for the measurement data from the point sensor 
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The mean surface and the associated uncertainty for the measurement data 

obtained from the point sensor is shown in Figure 5.34. The RMS value of the 

uncertainty was 5.6 µm.  

(a) Mean surface (b) Associated uncertainty 

Figure 5.34 Gaussian process result for the point sensor  

5.3.2.2 Maximum likelihood data fusion  

The mean surface and the associated uncertainty for the line sensor and the 

point sensor were fused together by the maximum likelihood data fusion method and 

the result is shown in Figure 5.35. The RMS value of the uncertainty after data fusion 

was 4.4 µm.  

(a) Mean surface (b) Associated uncertainty 

Figure 5.35 Result of fused data  
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5.3.2.3 Discussion  

To evaluate the effectiveness of the proposed method, the measurement data 

were compared to the data measured by an accurate CMM as shown in Figure 5.36. 

As a result, the measurement result obtained from the CMM was used as the reference 

data.  

 

Figure 5.36 Measurement result by a CMM 

The error map denoted by the deviation of the measurement data obtained from 

the line sensor and the point sensor to the reference data are shown in Figure 5.37. The 

RMS value of the error map are 5.9 µm and 8.2 µm, respectively. The deviation of the 

fused data to the reference data is shown in Figure 5.38. The RMS value of the error 

map is 4.2 µm, which has an improvement over both the original measurement data 

from the line sensor and point sensor. The result shows the effectiveness of the 

proposed data modelling and data fusion in the in-situ measurement environment. The 

result is summarized in Table 5.8 and Table 5.9.  
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(a) For line sensor (b) For point sensor 

Figure 5.37 Deviation of the measurement data to the reference data  

 

Figure 5.38 Deviation of the fused surface to the reference data  

Table 5.8 RMS value of the estimated measurement uncertainty before and after data 

fusion 

Line sensor 7 µm 

Point sensor 5.6 µm 

Fused data 4.4 µm 
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Table 5.9 RMS value of the form deviation to the reference surface before and after 

data fusion 

Line sensor 5.9 µm 

Point sensor 8.2 µm 

Fused data 4.2 µm 

 

Repeat measurement experiments were conducted and the RMS value of the 

measurement uncertainty and the RMS value of the form deviation to the reference 

surface before and after data fusion are shown in Table 5.10 and Table 5.11. In both 

repeat measurements, the measurement uncertainty and the form deviation to the 

reference surface were improved after data fusion, and the result demonstrates the 

effectiveness of the proposed data modelling and data fusion method in the scenario 

of self-developed multi-sensor in-situ metrology system.  

 

Table 5.10 Repeat measurement results for the RMS value of the estimated 

measurement uncertainty  

 Repeat measurement #1 Repeat measurement #2 

Line sensor 6 µm 6.2 µm 

Point sensor 5 µm 4.6 µm 

Fused data 3.9 µm 3.7 µm 
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Table 5.11 Repeat measurement results for the RMS value of deviation to the 

reference surface 

 Repeat measurement #1 Repeat measurement #2 

Line sensor 5.6 µm 5.8 µm 

Point sensor 7.4 µm 7.6 µm 

Fused data 4.2 µm 4.5 µm 

 

5.4 Summary  

In this chapter, an autonomous multi-sensor in-situ measurement system has 

been reported which attempts to enable the precision machine tools to perform high 

dynamic range measurement of three-dimensional (3D) surfaces. This system makes 

use of a motion sensor to assist the estimation of the position for a 2D laser scanner 

while it is scanning with a purposely-designed trajectory. Without interfacing with the 

motion controller of the machine tool, this system possesses very high feasibility and 

it can be easily integrated into different machine tools. The result shows that the 

method is not only suitable for in-situ measurement but also provides high dynamic 

range measurement results with large measurement area and high resolution. The 

measurement uncertainty of the system is in the order of 10 micrometres, which 

depends on the alignment of the sensor and the fixture.  

Furthermore, a homogenous multi-sensor which contains two types of optical 

sensor including a line sensor and a point sensor was built for in-situ measurement of 

freeform surface in a precision machine tool. The Gaussian process data modelling 

and maximum likelihood data fusion method presented in Chapter 4 was implemented 
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in the developed system. The experiment results show that the fused data had 

improvement over both the original data from different sensors, regarding the 

measurement uncertainty and error presented by the form deviation from the reference 

surface.  
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Chapter 6 Overall conclusions and 

suggestions for future work  

6.1 Overall conclusions 

The fast-developing technologies in various industries such as biomedical and 

advanced optics and their widespread applications have generated abundant research 

and development pertaining to the design, manufacturing and measurement of objects 

with freeform surfaces. Unlike the traditional parts with simple shapes such as planes 

and spheres, freeform surface is inherently complex and this poses a lot challenges for 

the manufacturing and measurement processes. This is particularly true when the 

requirements for freeform surfaces are developing in line with the trends of the overall 

size of workpieces becoming larger, the feature size of the microstructures becoming 

smaller, the surface form becoming more accurate and the surface roughness becoming 

smoother, etc. The requirement for measurement is even more stringent since the 

accuracy of measurement is always required to be one order higher than for machining. 

It is extremely difficult to meet all these requirements in a specific measurement 

instrument based on a single sensor or single measurement principle.  

As a result, researchers are building numerous kinds of new measurement 

instruments which are based on the multi-sensor principle since their measurement 

ability can be significantly improved by utilizing the different characteristics of 

different kinds of sensors. There are more and more commercially available multi-

sensor instruments such as multi-sensor CMMs in the advanced market and more and 

more literature available in the research field. Nonetheless, the research and 

development of multi-sensor techniques for dimensional measurement is still 
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relatively new and there still exists research gaps and plenty of room for further study, 

especially in the field of freeform surface measurement. Recapping the research 

objectives stated in Chapter 1, the conclusions of the research work done in this thesis 

can be list as below:  

(i) To develop a stitching method for high dynamic range 

measurement of precision freeform surfaces for multiple measurement of single-

sensor instruments. There is always large stitching error when the number of sub-

surfaces is large for high dynamic range measurement using the stitching method. This 

is due to the fact that the rotational stitching error such as yaw, pitch, and roll is 

accumulating and this error is difficult to compensate for. Another issue is that there 

is always an obvious edge observed in the overlapped area of the fused result which is 

caused by the lack of a suitable data fusion method to combine the data from different 

datasets. This phenomenon is widely seen even in commercial surface measurement 

instruments. To address this issue, a Gaussian process and image registration-based 

stitching method and edge intensity data fusion method have been developed for high 

dynamic range measurement of precision surfaces. The data from the original datasets 

are first modelled by the Gaussian process data modelling method to obtain the 

underlying surface, which can reduce the effect caused by the measurement noise and 

improve the registration accuracy. The datasets are then registered together in a X-Y-

Z translation manner with an image registration and z axis minimum least square error 

alignment method. Finally, the data in the overlapped region are fused together by an 

edge intensity method which balances the weighting for each data from different 

nearby datasets. With the proposed stitching method, the rotational stitching error can 

be significantly reduced and the transition effect in the overlapped area can be largely 
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improved. Furthermore, the proposed method is a generic method which can be 

implemented in a wide range of surface instruments. 

(ii) To develop a Gaussian process data modelling and maximum 

likelihood data fusion method to model the measurement data and fuse them 

together to further increase the measurement accuracy. The performance of the 

measurement including the accuracy of the measurement result can be improved by 

fusion of the datasets measured from different kinds of sensors in multi-sensor 

measurement scenarios. This is realized by proposing a generic Gaussian process-

based data modelling method and a maximum likelihood-base data fusion method. The 

datasets measured from two sensors are first modelled using the Gaussian process-

based data modelling method to obtain the mean surface and the covariance surface 

which represent the associated measurement uncertainty. The proposed Gaussian 

process-based method is powerful to model the measurement dataset to estimate the 

true surface and associated measurement uncertainty at every location in a single 

measurement. Unlike the traditional method, where the measurement uncertainty is 

usually obtained by the specifications of the sensor or repeated measurement 

experiments, the Gaussian process modelling method evaluates the result for the 

measured surface and determines the measurement uncertainty in a machine learning 

manner. The accuracy of the Gaussian process modelling method was evaluated 

through repeated measurement experiments and the results were also compared with 

the specification of the sensor. The influence of the form error and the measurement 

noise was also studied thoroughly. The result shows that the Gaussian process-based 

data modelling method is effective for modelling the measurement uncertainty. The 

method is a generic method and it is independent of the sensor type which makes it 

widely applicable to various kinds of dimensional measurement sensors. After 

obtaining the mean surface and the associated measurement uncertainty of the two 
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datasets measured from different sensors, the mean surface and the associated 

measurement uncertainty are fused together with a maximum likelihood-based data 

fusion method and the fused mean surface and the fused associated measurement 

uncertainty is determined. Moreover, the uncertainty propagation is clear from the 

maximum likelihood method since it follows the uncertainty propagation method 

suggested in the GUM (Guide to the Expression of Uncertainty in Measurement), 

which makes the uncertainty analysis straightforward. Furthermore, the influence of 

the systematic error in the fusion process was studied thoroughly and some special 

situations were identified which should be avoided or should be paid more attention 

to, where the performance of the fusion result is affected.  

(iii) To develop an in-situ metrology system for high dynamic range 

measurement for precision freeform surfaces on precision machine tools. In order 

to minimize or even eliminate the repositioning error in an error compensation scenario 

where re-mounting of the workpiece is required, an in-situ metrology system is much 

needed but this is not usually equipped on machining facilities. Installing an additional 

dimensional sensor on the machining facilities is difficult since the coordinate 

information is not accessible to users and researchers. As a result, an autonomous 

multi-sensor in-situ metrology system for high dynamic range measurement of 

freeform surfaces on precision machine tools was developed which fuses the time-

space data from the motion sensor, 2D laser scanner and the designed trajectory to 

obtain a holistic 3D measurement result. The motion sensor and the laser scanner 

together with the electronics were installed in a fixture which was in turn installed on 

the machine tool as a sensor module. With a purposely-designed trajectory and a 

motion sensor such as accelerometer and gyroscope to measure the motion signal, the 

coordinate information of the sensor module can be determined and so the signal 

measured by the laser scanner can be transmitted to the machine coordinate system. 
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With a user developed fixture installed on the machine tool, the alignment is significant 

since it directly influences the accuracy of the measurement result. A self-alignment 

method was introduced to align the perpendicularity of the laser scanner to the X-Y 

plane and the parallelism of the laser scanner to the X-Z plane. The developed system 

measures the workpiece over a large range which is as large as the motion range of the 

machine tool and with a high lateral resolution which is determined by the resolution 

of the laser scanner. This ensures the high dynamic range measurement of the 

developed system. With the developed system, the in-situ measurement ability of 

machine tools is enabled without the need to access the control systems of the machine 

tools, which makes this method more adaptable to a wide range of industrial 

applications. The performance of the in-situ metrology system was determined by 

comparing the measurement result with that from a high-precision CMM. Moreover, 

repeated measurements were also conducted to verify the measurement uncertainty of 

the system.  

(iv) To develop a multi-sensor in-situ surface measurement instrument 

equipped with the proposed data modelling and data fusion method together with 

in-situ measurement ability. Finally, a homogenous multi-sensor in-situ metrology 

system equipped with a laser line sensor and a laser point sensor was developed to 

demonstrate the effectiveness of implementation of the proposed data fusion method 

in an in-situ environment. The metrology system combines the two independent in-

situ metrology systems installed on a precision machine tool and integrates with the 

proposed Gaussian process data modelling and maximum likelihood data fusion 

measurement instrument. The sub-system including the laser line sensor provides high 

dynamic range measurement results for a large measurement range and high 

measurement resolution, where the measurement accuracy is limited by the alignment 

of the sensor and the fixture together with the scanning algorithm. On the contrary, the 
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sub-system including the laser point sensor provides highly accurate measurement 

results but the number of sampling points is limited since the measurement principle 

is point measurement. The overall accuracy of the fused data can be improved by 

combining both datasets from the two sub-systems. This is the first implementation of 

a multi-sensor data fusion system for an in-situ measurement scenario and the 

effectiveness of the data modelling and data fusion is also demonstrated.  

The main contributions of this study are summarised as below: 

(i) To address the data fusion issue with single-sensor multiple 

measurement, a Gaussian process and image registration-based stitching method is 

proposed which has achieved accuracy improvement regarding the rotational stitching 

error. The method utilizes the Gaussian process data modelling method to model the 

original sub-surfaces so as to obtain the underlying surface to reduce the influence of 

measurement noise. The datasets are then projected onto a common plane to form 

subsequent 2D images and the nearby datasets are then registered by an image 

registration method. In the proposed method, the traditional 6 degrees-of-freedom 

(DOF) registration problem is translated to a simplified 3 DOF translational 

registration problem. As a result, the computational complexity is greatly reduced. 

Moreover, the accumulated rotational error found in the traditional stitching method is 

greatly reduced. An intensity edge data fusion method is also implemented to minimize 

the edge effect in the overlapped region. Generally, the proposed method is a generic 

stitching method which is suitable for most of the surface measurement instruments 

which can be extended to a wide range of applications. This is a very valuable 

contribution for high dynamic range surface measurement in which a large 

measurement range and high measurement lateral resolution are required. This 

contribution fills the research gap for the multiple measurement data fusion method 
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with a single-sensor instrument where the accuracy of the fusion result undergoes 

improvement regarding the difficult-to-compensate rotational error and large edge 

effect in the overlapped region.  

(ii) To address the data fusion issue with multi-sensor multiple 

measurement, a generic Gaussian process-based data modelling and maximum 

likelihood-based data fusion method was developed to further increase the 

measurement accuracy using fused measurement data from different kinds of sensors. 

Both the data modelling method and data fusion method are data-oriented which make 

the method generic and independent of the sensor types. Both the datasets measured 

by the two sensors are first modelled by the Gaussian process modelling method, while 

the mean surface and covariance surface are obtained which represent the best 

estimated underlying surface and the associated measurement uncertainty. The 

modelling accuracy of the Gaussian process was studied thoroughly by comparing the 

measurement results with the specifications of the sensors and the result from the 

repeated measurements. A maximum likelihood-based data fusion was then utilized to 

fuse the mean surfaces and the associated measurement uncertainties so as to obtain a 

theoretically best estimated mean surface and reduced associated measurement 

uncertainty. The uncertainty propagation with the fusion method is traceable and this 

is very useful for deterministic dimensional measurement. The proposed method was 

verified experimentally and repeated measurements have also been conducted for 

verification. The influence of the system was also studied and some special cases 

which should be avoided or more attention paid to are pointed out in practice, i.e. the 

systematic error needing to be minimized by careful calibration with known or more 

accurate datasets.  

(iii) An autonomous multi-sensor in-situ metrology system for high 

dynamic range measurement of freeform surfaces has been developed. The system 
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measures the freeform surfaces on precision machine tools with the addition of a laser 

scanner and motion sensor. The measurement range can be as large as the moving axes 

of the machine tool, while the measurement resolution can be as high as the laser 

scanner, which is the fundamental of high dynamic range measurement. The 

innovativeness of the system is that it makes use of the motion sensor, the designed 

trajectory and the laser scanner to perform independent, holistic measurement of 

freeform surfaces without the need to interface with the control system of the machine 

tool. This makes it widely extendable to a large field of industrial applications. A self-

alignment method is also proposed to align the sensor module with the machine tool. 

A prototype of the system was developed for a 7-axis computer controlled ultra-

precision polishing machine and a series of experiments was conducted to verify the 

accuracy and repeatability of the system. The successful establishment of the proposed 

metrology system provides a new method to extend the measurement ability for the 

precision machine tool especially those for which the interface is not open to users.  

(iv) Taking the developed Gaussian process data fusion and maximum 

likelihood data fusion method as well as the developed autonomous multi-sensor in-

situ measurement method into account, a novel homogeneous multi-sensor in-situ 

metrology system was developed of its first kind which is composed of two types of 

sensors including a laser line sensor and a laser point sensor to perform in-situ high 

dynamic range measurement on a precision machine tool. The sub-systems based on a 

laser line sensor and a laser point sensor are independent inhomogeneous systems 

which provide high-resolution measurement data and highly accurate measurement 

data, respectively. Fusion of the datasets from the laser line sensor and laser point 

sensor provides a more accurate measurement result with high resolution. The 

successful establishment of the proposed homogeneous multi-sensor in-situ metrology 

system demonstrates that the proposed Gaussian process data modelling and maximum 
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likelihood data fusion method is not only applicable for high-precision off-line 

measurement instruments, but also suitable for wide industrial applications even in the 

situation of in-situ measurement.  

The present study contributes to a wide range of measurement science and 

technology and it is also focused on the multi-sensor measurement methods for 

measuring freeform surfaces. The Gaussian process and image registration-based 

stitching and data fusion method contributes significantly to a wide range of applicable 

surface measurement instruments. The multi-sensor measurement method based on the 

Gaussian process and maximum likelihood principle and the multi-sensor 

measurement method not only contribute to the research and development for multi-

sensor CMM measurement to conduct autonomous in-situ high dynamic range 

measurement, but also provides a new insight into the science and technology for 

measurement development on machine tools. The integration of the proposed Gaussian 

process data modelling and data fusion method together with the in-situ high dynamic 

range measurement method fills the research gap of the development of in-situ multi-

sensor surface measurement instruments.  

6.2 Suggestions for future work  

Multi-sensor data fusion is emerging in the field of dimensional measurement 

and the research and development have attracted a lot of research attention. The 

possibility to integrate different kinds of sensors with different characteristics has been 

proven to have the ability to improve measurement capability, accuracy, and 

efficiency, and can even introduce some special functions such as high dynamic range 

measurement. However, due to the complexity of freeform surface and the 

measurement process involving various disciplines, there is still a large potential for 
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further research and development. Some suggestions of future work are discussed as 

follows: 

(i) Different kinds of measurement errors are determined by the integration of 

different characteristics of the measured surface and the characteristics of different 

sensors used for the measurement, together with the uncertainty introduced in the 

measurement process. A multi-sensor CMM equipped with different kinds of sensors 

provides the ability to select specific kinds of sensors to perform specific kinds of 

measurement corresponding to the workpiece. A database for the characteristics of 

different kinds of sensors and the characteristics of different kinds of surface will be 

suggested to be built and the corresponding model of measurement uncertainty will be 

established. For example, the sensor can be optical sensors such as laser scanner, 

imaging sensor, and white light interferometer, or it can be contact sensors such as 

touch trigger probe, opto-tactile fibre probe, and AFM-based micro probe. The optical 

sensors may be affected by specular reflection of the workpiece with mirror surface 

finishing, and the surface roughness and surface gradient, so the measurement 

uncertainty is not easy to determine. However, they usually possess fast measurement 

speed and have a large volume of measurement data. The contact sensors are sensitive 

to soft material, and the factors influencing the accuracy of radius compensation and 

the measurement speed are usually slow. Nevertheless, the measurement result of the 

contact is considered to be more reliable and accurate. The establishment of such 

databases for sensors and workpieces is a large systematic project which requires a lot 

of rigorous basic research and experiments. However, its establishment will strengthen 

the foundation for the further development of multi-sensor dimensional measurement. 

As a result, future work focused on studying the sensor characteristics for various kinds 

of sensors is suggested.  
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(ii) Data modelling using the Gaussian process is a promising technology due to 

its data driven and sensor independent nature. Different target surfaces should have 

different mean surfaces in Gaussian process modelling which may improve the 

accuracy and efficiency of the modelling method. Currently, the mean surface is set to 

be zero mean surface since the measured surface is assumed to be unknown. However, 

in practice, most of the target surfaces will be well defined by mathematical models. 

Utilizing the a priori knowledge of the target surface to establish the corresponding 

mean surface will be suggested for further study which may allow improvements in 

the modelling result, as well as in modelling efficiency. This is especially useful when 

the measurement result has a large amount of data, since the computational speed of 

the Gaussian process is extremely slow when dealing with large datasets. Hence, an a 

priori knowledge-based Gaussian process modelling method is suggested for future 

study.  

(iii) Systematic error adversely influences the performance of the maximum 

likelihood-based data fusion method. An automatic detection method for the 

systematic errors is greatly needed to identify the systematic error and change the 

weighting in the fusion algorithm so as to improve the overall accuracy of the fused 

result. The systematic error can be large especially for some optical measurement 

instruments since they will be severely affected by factors such as surface tilting and 

specular reflection. If this kind of systematic error is used in the fusion process, the 

fused result will be greatly affected and the overall performance influenced. This will 

work with the suggestions in (i) to have a priori knowledge of the sensor and the 

workpiece to assist the estimation of the possible obtained measurement noise in the 

result. The noisy data will be further removed or set with an associated weighting 

depending on the noise level in the modified maximum likelihood-based data fusion 

algorithm to reflect the handling of the systematic error. With different kinds of 
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measurement sensor, this implementation is very promising since different kinds of 

sensors would have different levels of systematic errors and using different weighting 

will enable significant improvement of the fusion result. Hence, an intelligent sensor 

selection and data modelling method and development of such kind of measurement 

system is suggested in future study.  

(iv) With a higher sampling rate of the data from the motion sensor and the data 

from the laser scanner, the resolution of the scanned data will be improved and the 

accuracy of the measurement result will be increased. This can be realized by using a 

high-performance micro-controller and a high-speed communication protocol between 

the micro-controller and computer. Moreover, the whole system can be upgraded to a 

real-time operating system-based design to avoid the jitter issue to improve the 

performance of the system. Furthermore, an intelligent tool path generator will be 

developed to automatically generate the scanning trajectory according to the 

topography of the workpiece. A more accurate fixture will also be made and a self-

calibration method to determine the 6 degrees-of-freedom alignment error will be 

developed to further improve the accuracy of the measurement result. With the 

improvement of the accuracy of the in-situ metrology system, the industrial 

applications will be largely extended and hence future study is suggested.  
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Appendix A Specification of Werth 

VideoCheck UA Multi-sensor CMM 

Werth VideoCheck UA is an ultra-precision 3D CNC bridge-type coordinate 

measuring machine. It integrates the multisensory concept which supports combined 

measurements with several sensors. The specification of Werth VideoCheck UA is 

listed as below:  

 Measuring range: X = 400 mm, Y = 400 mm, Z = 250 mm 

 Maximum permissible error (MPE) 

a) Unidirectional – MPE 

E1: (0.15+L/900) µm 

Temperature range: 20±0.1 ºC  

Temperature gradient: 0.1 ºC/h  

Humidity: 50±5% rel. humidity 

b) Unidirectional – MPE 

E1: (0.15+L/500) µm 

Temperature range: 20±2 ºC  

Temperature gradient: 0.5 ºC/h  

Humidity: 50±5% rel. humidity 

c) Unidirectional – MPE 

E1: (0.15+L/120) µm 
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Temperature range: 16 ºC - 30 ºC 

Temperature gradient: 1 ºC/h  

Humidity: 50±5% rel. humidity 

L = Measuring length in mm 

 Sensor image processing IP with telocentric optics 

Resolution: 1360×1024 pixels  

MPE 

a) With lens 5×: 

for P1Z: 1.10 µm 

b) With lens 10×: 

For P1Z: 0.75 µm 

c) With lens 20×: 

For P1Z: 0.50 µm 

 WERTH FIBER PROBE 

a) MPE (point-to-point probing) 

0.25 µm 

b) MPE (scanning operation) 

1.5 µm  
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Appendix B Specification of Zygo Nexview 

Zygo Nexview is a 3D optical surface profiler. As a coherence scanning interferometer 

(CSI), it can measure both smooth and rough surfaces with sub-nanometre precision. 

The main specification of the Zygo Nexview is listed below: 

 Vertical scanning range 

150 µm 

 Surface topography repeatability 

0.08 nm 

 Optical lateral resolution  

0.34 µm (100× objective) 

 Step height repeatability  

0.1% 

 Field of View 

Objective and zoom selectable from 0.04 to 16 mm  
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