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ABSTRACT 

Developing highly-damped and light-weighted structures is of great importance 

for various engineering problems. The Acoustic Black Holes (ABH) effect reduces 

the phase velocity of flexural waves to zero when the structural thickness approaches 

zero according to a power-law thickness variation, resulting in zero wave reflections 

and high energy concentrations at the wedge tip. The ABH effect thus shows 

promising application potentials for vibration controls since only a very small 

amount of damping materials is required at the energy focalization region. In this 

thesis, a flexible wavelet-decomposed and energy-based model is established to 

study various ABH features by preserving the full coupling between the damping 

layers and the host 1-D ABH structure. Highly consistent with the FEM and 

experimental results, numerical simulations demonstrate that the proposed 

wavelet-based model is particularly suitable to characterize the ABH-induced drastic 

wavelength fluctuation phenomenon. The ABH feature as well as the effect of the 

wedge truncation and that of the damping layers on the vibration response of the 

beam is systematically analyzed. It is shown that the conventionally neglected mass 

of the damping layers needs particular attention when their thickness is comparable 

to that of the ABH wedge around the tip area. Meanwhile, this model predicts the 

loss of the ABH effect in a finite beam around the local resonance frequencies of the 

beam portion delimited and pinned by the excitation point, which should be avoided 
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in the particular application frequency ranges. Due to its modular and energy-based 

feature, the developed model offers a general platform allowing the embodiment of 

other control or energy harvesting elements to guide ABH structural design for 

various applications. 

To maximum the ABH effect with a minimum achievable truncation thickness, a 

modified ABH thickness profile and an extended platform of constant thickness are 

systematically investigated using the developed model. Compared with conventional 

ABH profile, numerical results show that the modified thickness profile brings about 

a systematic increase in the ABH effect at mid-to-high frequencies in terms of system 

loss factor and energy distribution, especially when the truncation thickness is small 

and the profile parameter m is large. The use of an extended platform further 

increases the ABH effect to broaden the frequency band whilst providing rooms for 

catering particular low frequency applications. 

As a further extension of the study, the performances of single ABH and 

multiple ABHs are compared. Multiple ABHs are shown to be able to enhance the 

overall low frequency performance of the ABH. Meanwhile, multiple ABHs also 

bring about broadband attenuation bands and wave suppression phenomena at low 

frequencies. To better understand the underlying physics, the developed model is 

expanded to an infinite structure with periodic ABH elements. Numerical results 

show that the periodic boundary conditions in terms of displacement and rotational 

slope imposed on a unit cell, based on the finite model, are sufficient to describe the 
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band structures of the corresponding infinite lattice. The analysis reveals that the 

attenuation bands correspond exactly to the band gaps of the infinite structure with 

the same ABH elements, resulting from the local resonances of the ABH elements. 

Therefore, enhancing ABH effect by increasing the taper power index m or reducing 

the truncation thickness h0 would help to generate broader and lower-frequency band 

gaps. To simultaneously achieve band gaps at high frequencies whilst maintaining 

the structural strength, a new type of phononic beams is proposed by carving the 

uniform beam inside with two double-leaf ABH indentations. By incorporating the 

ABH-induced locally resonant effect and Bragg scattering effect generated by a 

strengthening stud connecting the two branches of the indentations, ultra-wide band 

gaps, covering over 90% of the entire frequency range, are achieved through a proper 

tuning of the ABH parameters and that of the stud. Both numerical and experimental 

results show that with only three cells, the proposed phononic beams allow 

considerable vibration energy attenuation within an ultra-broad frequency range, 

pointing at promising applications in vibration control and high performance wave 

filter design. 
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Chapter 1 Introduction 

1.1 Overview of the Acoustic Black Hole Phenomenon 

Developing advanced light-weight structures with good vibration damping and 

noise insulation capability is of great importance for various engineering problems. 

Structural waves are difficult to control because they are dispersive and can quickly 

spread out over the structures and the surroundings. Traditional methods of reducing 

structural vibrations usually require additional weight such as covering structures 

with heavy viscoelastic materials [1], which limits its application when considering 

economic efficiency, especially in the transportation industry.  The approach using a 

graded impedance interface for attenuating structural wave reflections at the edges of 

plates and bar [2] may potentially allow alleviating the abovementioned drawback of 

traditional methods. Their applications, however, are limited in practical applications 

due to the technological difficulties in creating suitable impedance interfaces. Wave 

manipulation starts to draw the ever-increasing attention in achieving peculiar wave 

phenomenon, such as negative refraction and cloaking by acoustic metamaterials 

[3-5]. Among other technologies, the concept of Acoustic Black Hole (ABH) 

emerges as another interesting technique for the wave manipulation which starts to 

arouse intensive interest from researchers during the last decade. Due to the unique 

energy concentration/focalization phenomenon of the ABH, only a very small 
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amount of damping materials is required at the energy focalization region to achieve 

efficient damping of flexural waves. 

The concept of the Black Hole was first proposed by Pierre Simon Laplace in 

1795, referring to an object from which light could not escape. Nearly 150 years later, 

a similar effect was observed in acoustics by Pekeris [6], noting the absence of 

reflected waves in an inhomogeneous stratified fluid with a sound velocity declining 

to zero as depth increases. Mironov later observed a similar phenomenon in a tapered 

structure [7]. For a plate in particular, it was noticed that, by reducing the wall 

thickness to zero according to a power-law profile, the local phase and the group 

velocities of the flexural waves also gradually approach zero irrespective of 

frequencies, resulting in no energy reflection at the tip in an ideal scenario [8-11]. 

This tapered feature embedded in the structure was referred to as Acoustic Black 

Hole (ABH). The geometrical approach [11], initially applied by Krylov, shows that 

to obtain zero reflection, the relationship between the local thickness h and the 

distance from the edge x needs to satisfy certain conditions: h(x)=εxm (m≥2) as 

shown in Fig. 1.1. In a sense, the structural waves can be manipulated, through 

thickness changes in this case, to create energy trapping and localization so that only 

a very small amount of added damping materials is required for energy absorption 

[12-14], which is particularly important for vibration control in light-weighted 

structures with wide applications in aerospace and automotive industries.  
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Fig. 1.1 Sketch of a power-law profile wedge from Ref. [12]. 

1.2 Theoretical Model and Numerical Analyses 

In terms of theoretical and numerical studies, geometrical acoustics approach 

was first used to analyse the flexural wave propagation in tailored wedges with an 

ideal geometrical shape [11-14]. With a power-law profiled wedge, the wave phase 

of a flexural wave propagating from any arbitrary point x towards zero point can be 

expressed as  

( )
0

d
x
k x xΦ = ∫                            (1.1) 

where k(x) is the is a local wavenumber: k(x) =121/4 kp
1/2(𝜀𝜀xm)-1/2; in which kp = ω/cp 

is the wavenumber of a plate wave with cp = 2ct(1-ct
2/cl

2 )1/2 the phase velocity; cl and 

ct are the longitudinal and shear wave velocities in a wedge material, and ω =2πf is 

the circular frequency. As one can see, when m≥2, the phase Φ becomes infinite, 

which indicates the wave will never reach the edge. Therefore, the wave will never 
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be reflected back either and become trapped around the wedge tip, which is what 

mentioned above as the ABH phenomenon.  

In the ideal scenario, ABH effect could achieve zero reflection in an ideal 

geometrical shape with thickness diminishing to zero and be used for effective 

vibration damping. However, truncated edges always exist in practical wedges with a 

residual tip thickness, which lowers the performance as ‘black holes’. Therefore, as 

first noticed in Ref. [7], without additional damping treatment, the typical values of 

the reflection coefficient in steel can become as large as 50-70 % even for a small 

thickness truncation, indicative of the impossibility to use such wedges as practical 

vibration dampers. It was then observed that the situation for real wedges (with 

truncations) can be significantly improved by covering the wedge surfaces with thin 

damping layers to increase the wave energy dissipation in the energy localization 

area (near the sharp edges) [12-14]. The effect of a thin damping film was taken into 

consideration utilizing the model of Ross-Unar-Kerwin (RUK) [1] on the system loss 

factor and imaginary part of a flexural wave number, Im k(x) as [12] 

 ( )
1/4 1/2

d1/2

12 3Im
( ) 4 2 ( )

p d dk h Ek x
h x h x E

h h
   

= +   
    

             (1.2) 

where hd, Ed, and dη is the thickness, Young modulus and loss factor of damping 

layers, respectively. 

Then, the total reflection coefficient R0 from the truncation point x0 to the point 

x can be expressed by  
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( )
0

0 exp( 2 Im d )
x

x
R k x x= − ∫                  (1.3) 

As a result, the reflection coefficient of such structures was analytically expressed in 

simplified formulae for different power-law profiles of order m=2, 3, 4 and for a 

sinusoidal profile [12]. The reflection coefficient of a beam with a termination can be 

also obtained through Kundt-like measurement [15]. Take a wedge of quadratic 

shape with h(x)=εx2 as a example, the reflection coefficient R0 can be derived and 

expressed as:  

0 1 2exp( 2 2 )µ µ= − −R                     (1.4) 

where  

1/4 1/2

1 1/2
0

12
= ln( )

4
η

µ
ε

pk x
x

                    (1.5) 

1/4 1/2 2
0

2 3/2 2 2
0

3 12 1 1
4

p b b bk h E x
E x x

h
µ

ε
×  

= − 
 

              (1.6) 

One can see from the Eqs. (1.4), (1.5) and (1.5) that, the presentence of an damping 

layer brings substantial reduction of the reflection coefficient, sometimes down to 1% 

to 3%. Corresponding numerical results in Fig. 1.2 show a smaller truncation 

thickness and a larger value of relative stiffness between the damping layer and the 

wedge structure benefit to reduce the whole reflection coefficient. Meanwhile, ABHs 

are most efficient at the mid-to- high frequencies. 
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Fig. 1.2 Effect of the wedge truncation x0 (in m) on the reflection coefficient R0 from 

Ref. [12]: solid curve denotes to an uncovered wedge, dotted and dashed curves 

reresent to wedges covered by thin damping films with the values of relative stiffness 

Eb/E=2/30 and Eb/E=2/3; respectively; the film material loss factor is 0.2, and the 

film thickness is 5 mm. 

Although a higher taper power m leads to a smaller reflection coefficient, the 

underlying theoretical smoothness assumption of the geometrical acoustics approach 

may break at this situation [12, 16]. The smoothness assumption requires that the 

change in the wave number must be small over a distance which is comparable to the 

structural wavelength, namely the normalized wave number variation is much less 

than 1[16]. Numerical results reveal that increasing m decreases the reflection 

coefficient but also increases the normalized wavenumber variation and hence may 

violate the smoothness criterion at lower frequencies. Therefore, the predicted results 
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should be carefully examined when applying the above ABH theory. A 

multi-objective optimization by considering both the low frequency performance of 

ABH and the smoothness criterion was proposed using evolutionary search [17]. To 

achieve a superior ABH effect in a low frequency vibration absorber, the optimized 

beam taper should be longer and the initial and final beam height should be small. 

An impedance method which is not limited by the hypothesis of geometrical 

acoustics has also been proposed by Georgiev et al. for beam structures [18, 19], 

which in turn leads to a Riccati equation for the beam impedance. Numerical 

integration of the equation yields the frequency- and spatially-dependent impedance 

of the beam, from which the reflection matrix was obtained. The above two types of 

approaches only consider semi-infinite structures, even only the ABH wedge part in 

some cases [12, 14]. This is obviously different from the practical situation in which 

structures are finite in size with real boundary, and an ABH profile is usually only 

part of conventional structures. All these combined, multiple reflections take place 

between boundaries as well at the intersection between the ABH portion and the rest 

of the structure, which cannot be apprehended by the existing models. On the other 

hand, existing approaches consider the effect of a thin damping layer through 

Ross-Unar-Kerwin (RUK) model [1], which assumes the thickness of the damping 

layer is much smaller than that of the wedge and thus ignores its added mass effect. 

In practice however, the thickness of even an extremely thin damping layer would be 

comparable to that of the wedge tip, where ABH effect is the largest, which suggests 
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the importance of considering the added mass effect and the full coupling between 

the damping layer and the power-law profile wedge. This issue becomes even more 

important when other control and energy harvesting elements are added. Moreover, 

the RUK model is only applicable to a uniform damping layer. The geometrical and 

material characteristics as well as the location of damping layers are shown to greatly 

affect the performance of damping layers on energy dissipation [18, 20]. An 

optimization on these parameters as well as the thickness variation of the damping 

layers might be an additional way to achieve the maximum energy dissipation. 

Another wave model was developed to calculate the mobility of plates with 1D 

wedge or with a power-law profiled central hole [21]. The ability of the model in 

predicting the ABH effect for vibration damping had also been demonstrated by 

experiments [22]. However, in this model, although the equivalent loss factor of a 

damped wedge can be obtained by separating the wedge into many discrete steps, 

which is still based on RUK model, large error may occur if the wedge follows large 

power-law profile. A 2D numerical model through the finite difference method was 

developed to study the ABH-induced higher model overlap factor, which again was 

based on RUK model [23]. The scattering effect of the flexural waves by inserting a 

pit of ABH in an infinite thin plate was also theoretically investigated using a wave 

based model without considering the effect of damping layers [24]. The ABH was 

shown to act as a resonant scatter to exhibit a maximum of scattering effect. 

Generally, nearly all existing models, to the best of our knowledge, ignore the 
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dynamic coupling between the damping layers and the wedge, which may be very 

important when the local wedge tip covered by thick damping layers or when other 

control and energy harvesting elements are added. Although a Rayleigh-Ritz 

variational energy method with considering full coupling effect of damping layers 

was proposed to study a rectangular plate with a 1D ABH profile [25], the 

application is restricted by the reachable frequency range, which is probably due to 

the fact that simple trigonometric shape functions can hardly characterise the rapid 

variation of the structural wavelength in such ABH structures. Meanwhile, as 

illustrated in detail below, ABH effect shows its significant potential in controlling 

sound radiation [26-28] and developing enhanced energy harvester [29-31] while 

most existing models do not offer the flexibility of considering additional control and 

energy harvesting elements for further potential applications. 

1.3 Experiments and Implementation of the ABH 

Experimental studies on ABH have been primarily applying 1D ABH in a variety 

of beam-like and plate-like structures, as shown in Fig. 1.3. Krylov first measured the 

point mobility of a steel plate with a quadratic wedge covered with an absorbing 

layer[32]. The results show a substantial reduction of the resonant peaks compared 

with uncovered wedge, which demonstrates the existence of ABH effect and implies 

its possibility application.  A steel rod of a quadratic profile with its sharp tip 
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covered by absorbing layers was also tested by Kralovic and Krylov [33]. The 

combination of this special geometrical structure and the additional absorbing layers 

significant reduce the resonant vibrations in the mid-to- high frequency range. The 

modal analysis on a beam with a power-law profile covered by a thin damping layer 

shows that the ABH takes effect, as evidenced by an increase of the Modal Overlap 

Factor of the beam [23]. The reflection coefficient of the ABH beam terminations 

was also shown to decrease in a clear manner by using the Kundt-like measurement 

method [15]. In addition, the effect of 1D ABH is also satisfactorily investigated in 

practical structures experimentally, such as turbofan blades [34]. Except for vibration 

attenuation, the ABH effect was also used to enhance the ultrasonic radiation in 

wedge structures with cubic profile [35]. 

(a)

(b)

 

Fig. 1.3 1D ABH in (a) beam structures from Ref. [23] and (b) plate structures from 
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Ref. [32] 

For the above 1D ABH structures, Krylov et al. [12] showed that the inevitable 

truncation (the residual thickness at the wedge tip) resulting from the limited 

manufacturing capability would significantly compromise the ideal ABH effect by 

generating wave reflections. To maximize the ABH effect, however, the ultimate 

pursuit of extremely thin wedge tip is of high cost and poses harsh demand for the 

precision machining and would also lead to tip damage of tearing and irregularities. 

Bowyer et al. investigated the effects of the manufacturing processes (such as 

TIG-welding, Mig-welding, gluing and direct machining) and the tolerances on 

damping flexural vibrations in wedge-like structures with a power-law profile [20]. 

Results indicated that the damage on the wedge tip does not notably affect the ABH 

effect and the damping layer on the flat surface of the wedge may yielded better 

damping effect than that on the top of the profile. Denis et al. [36] reported that an 

imperfect wedge tip would surprisingly reduce the reflection because of the resultant 

scattering effects. Bayod et al. investigated the wedge extended at the sharp edge to 

achieve better vibration damping compared with conventional wedge [37]. 

Experiments and FEM analyses were carried out to confirm this concept. Probably 

due to the lack of simulation tools, however, no deep explanation and parametric 

studies were provided in that work to guide the design of the modified wedge. 

Meanwhile various modified wedge thickness profiles were also proposed [15, 30]. 

Although similar ABH effect as the conventional profile was observed, the effect of 
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parameters defining the modified profiles still needs to be systematically analyzed 

and quantified.  

Although ABH effect can ideally be achieved by a power-law profiled wedge, 

the exposed sharp tip of the wedge is not only delicate and structurally weak, but also 

impractical to use. To tackle the problem, proposals were made to move the wedges 

inside structures to form what is called ABH indentation, such as power-law slots 

machined inside plates, shown in Fig. 1.4(a), the effect of which on damping flexural 

vibrations is comparable with the methods using wedges at the plate edges [38, 39]. 

2D ABH profiles were also incorporated into plate structures for vibration 

attenuation [18, 22, 40, 41] and energy focalization [42, 43], as shown in Fig. 1.4(b). 

Using an elliptical plate with a pit of power-law profile placed in one of its foci, the 

velocity fields of the plate with and without ABH were measured and analyzed [18]. 

It was shown that the driving-point mobility of the elliptical plate with ABH was 

significantly reduced compared to the other configurations. The experiments on a 

cylindrical plate incorporating a tapered hole of power-law profile with additional 

damping layer also showed a substantial suppression of the resonant vibration [22]. 

The effect of wave focusing and wave speed reduction was studied in time domain 

both numerically and experimentally [42]. The wave energy focalization could also 

be achieved by imperfect ABH indentation, which would however be offset from 

indentation centre [43].   
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(a) (b)

 

Fig. 1.4 ABH slots within plates from Ref. [38] and (b) 2D ABH in plates from Ref. 

[41] 

 Multiple 2D ABHs have also been included in structures for achieving and 

possible enhancing the ABH effect. Indentations of power-law profiles were drilled 

inside the structures [40, 41]. The experimental results show that the introduction of 

the central holes would increase the damping effect and the layout of the indentations 

determines whether the indentations will increase the damping. Various specific 

structures using 1-D slots and 2-D cylindrical pits were also proposed inside 

composite plates [44]. The resonant vibrations were greatly damped without the 

damping layers because of the large values of the loss factor in the composites. A 

plate with twenty ABH cells covered by damping layers was shown to produce 

significant reductions of the surface-averaged mobility in comparison with its 

uniform counterpart [45]. In particular, the low frequency ABH performance is 

mainly attributed to the low order local ABH modes.    

In the above implementation of ABHs, nearly all structures suffer from the 
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structural weakness problems for practical applications, due to the extremely thin 

residual thickness of the ABH profiles. On the other hand, almost all the references 

mentioned above reveal that the ABH effect is most efficient only at mid-high 

frequencies. Possible extension of the ABH effect to lower frequencies is still a great 

challenge and is of particular importance for energy harvesting and noise control 

applications.                                                                                          

1.4 Applications of the ABH effect 

Up to now, ABHs have been mainly explored for the purpose of suppression of 

flexural structural vibrations or sound radiation control to a less extent. For the 

former, applications were initiated such as turbo-fan blades with ABH trailing edge 

[34, 46], design of tennis racquets [33], or even biomedical applications such as 

artificial cochlear [47]. Preliminary research also shows that a ABH can be curved 

into an Archimedean spiral to reduce the space occupancy while maintaining the 

efficiency in vibration reductions [48]. The ABH effect can also be used in 

semi-passive vibration control with shunted piezoelectric transducers [49]. For the 

later, Conlon et al. used Finite Element and Boundary Element models to investigate 

both vibration and structural sound radiation of plate structures embedded with 

ABHs and found that the low order local modes of the ABH could affect the 

performance of the ABH effect at lower frequencies [26]. However, the broadband 
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absorption only happens above the frequency where the bending wave length is no 

smaller than the ABH diameter. Bowyer et al. reported some early experimental 

results, showing a significant reduction of the noise radiation of a plate with six 

ABHs [27]. The ABH feature was also incorporated into the Helmholtz resonators to 

increase the sound absorption bandwidth [31].  

 Other potential application of the ABH includes energy harvesting and wave 

manipulations. The initial design of energy harvesters based on ABH was firstly 

investigated in both steady and transient excitations [29]. Because of the high energy 

density concentrated on the ABH part, the harvested energy was in drastic increase 

compared with traditional structures, as demonstrated by the experiments [30]. On 

the other hand, structures with periodic ABHs were also proposed and studied, with 

particular attention paid to their wave propagation characteristics [50]. Resulting 

from the ABH effect, remarkable wave properties were achieved, such as zero group 

velocity in the fundamental modes, negative group refraction index, and birefraction. 

Applications of ABH-like profiles in various meta-surfaces were also attempted in 

the realization of anomalous refraction, focal lenses and phase masks [51]. An 

overall review about the applications of ABHs can be found in Ref. [52]. 

In the above applications, on one hand, the presence of vibration control or 

energy harvesting elements may affect the formation of the ideal ABH effect through 

their coupling with the host structure. Meanwhile, topological or system 

optimizations may be needed to achieve the maximum performance. To this end, a 
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flexible model, which allows the consideration of the full coupling between the host 

ABH structure and various control or energy-harvesting elements to be embedded, is 

of paramount importance. On the other hand, the limitation of applying the ABH 

effect lies in that the elastic or acoustic wavelengths should at least be comparable 

with the expected geometrical dimensions of practical ABHs, which can make ABHs 

non-effective or less effective in the low and mid-frequency range. The use of 

periodic arrays of ABHs may offer the possibility of making ABH more efficient at 

relatively low frequencies, which still warrants further investigations. Meanwhile, 

the possible accumulated ABH effect and wave filter effect induced by multiple or 

periodic ABHs also remain unknown. Explorations of these issues may shed light on 

the underlying physics of the ABHs and guide significant applications in future 

vibration control and sound absorption applications.  

1.5 Research objectives and thesis layout 

From the above literature review, the major existing problems related to the 

ABH can be identified at both fundamental and engineering level, bottlenecking its 

applications. The crucial issue of the coupling between the ABH near the energy 

concentration area and the damping layer coating is not well apprehended by the 

existing models. It is anticipated that, due to the high energy concentration and the 

weakness of the structure in that area, the added effect (in terms of mass, stiffness 
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and damping) of the damping layer would be very significant and important. A 

meticulous study of this effect, as well as thickness changes of the damping layer 

will be crucial for optimizing the performance of energy dissipation. Moreover, when 

other control elements or energy harvesting elements are added, the full coupling 

between these elements and the host needs to be apprehended. Besides, the finite size 

and the real boundaries of the structures may create multiple reflections, which 

cannot be apprehended by existing models. In terms of engineering applications, on 

one hand, manufacturing an ideally tailored power-law profile of a structure with 

embedded ABH tip thickness being zero can hardly be achieved in practice. The 

inevitable truncation at the wedge tip of the structure can significantly weaken the 

expected ABH effect by creating wave reflections. Therefore, on the premise of the 

minimum achievable truncation thickness by the current manufacturing technology, 

exploring ways to ensure and achieve better ABH effect becomes very important. On 

the other hand, ABH mainly take effect in high frequencies while practical 

engineering vibration or sound radiation focuses on low and medium frequencies, the 

contradiction of which should be resolved, such as by multiple or periodic ABHs. 

Meanwhile, producing the ABH effect while ensuring the mechanical rigidity and 

integrity of the structure also needs to be tackled before the ABH technique can find 

more real engineering applications. These issues will be addressed in the present 

thesis. 

The general objective of the thesis is therefore twofold. From the basic research 
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viewpoint, this thesis attempts to provide answers to the aforementioned fundamental 

issue. From engineering application viewpoint, modified ABH profile or periodic 

ABHs with enhancement ABH effect as well as high structural strength will be 

explored to suit engineering applications. 

More specifically, the following objectives will be targeted: 

1). To establish a semi-analytical model for more realistic prediction and 

analysis of the coupling between the ABH and various damping treatment or other 

control elements. 

2). To investigate various parameters influences on the ABH effect and further 

optimize damping treatment for largest energy absorption.  

3). To explore method to enhance ABH effect when ideal ABH cannot be 

manufactured. 

4). To extend the semi-analytical model to structures with multiple or periodic 

ABHs, for further enhancing ABH effect and broadening the ABH effectiveness to 

low frequencies.   

5). To explore structural designs towards more effective energy trapping and 

dissipation while ensuring the mechanical properties of the overall structure. 

The general outline of the thesis is as follows. Chapter 2 presents a 

wavelet-decomposed semi-analytical model to analyze a Euler-Bernoulli beam with 

embedded ABH features. Unlike most existing models, this model considers the full 

coupling between the ABH-features host structure and the damping layers coated 
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over its surface, as well as the finite size and real boundary conditions. The 

theoretical model based on Lagrange equations and the solution using Mexican Hat 

wavelet are given in Sec. 2.1. The cases of both the ideal ABH without truncation 

and the ABH with truncation are investigated to numerically validate the accuracy of 

the model against the Finite Element results in Sec. 2.2. Based on this model, ABH 

phenomena and parameter influences are analyzed in Chapter 3. The effects of the 

damping layers and their full coupling with the host structure are systematically 

investigated. The effect of the thickness, location, and the thickness variation of the 

damping layers are investigated with a view to increasing the ABH effect for better 

energy dissipation. Particularly, the loss of the ABH effect is revealed in a finite 

beam structure as a result of the energy localization. The developed model and the 

uncovered phenomena are systematically validated by experiments in Sec. 3.5. 

In practice, zero ABH tip cannot be manufactured and a truncation thickness 

will always exist at the ABH wedge tip, which significantly increases the wave 

reflection and consequently reduce the ABH effect. For a given truncation thickness, 

methods to enhance the ABH effect are explored in Chapter 4 through a combination 

of a modified thickness profile and an extended platform. Subsequently in Chapter 

5.1, multiple ABHs in beam structures are investigated by utilizing the developed 

wavelet-decomposed energy method to take advantage of the possible accumulated 

ABH effect and wave filter effect for vibration isolation applications. In Chapter 5.2, 

the energy method is further extended for investigating infinite structures with 
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periodic ABHs. Parametric analyses are also carried out to guide the design of 

structures with multiple ABHs for vibration control. To avoid the inherent structural 

weakness brought by the extremely thin truncation thickness, Chapter 6 investigates 

a double-layered compound beam with periodic double-leaf ABH indentations using 

a finite element (FE) package, COMSOL Multiphysics 5.2. The band structures are 

studied and parametric analyses are conducted to generate ultra-wide band gaps for 

vibration isolation and wave filter applications. Meanwhile, experiments are 

conducted in Chapter 6.4 to validate the numerical results. Finally, conclusions along 

with some suggestions for further work are summarized in Chapter 7.   
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Chapter 2 Wavelet-Decomposed Full-Coupled Model 

As mentioned in Chapter 1, nearly all existing theoretical models ignore the full 

coupling between the ABH wedge and the additive components over it, which may 

be very important when the local wedge tip is covered by thick damping layers or 

other control and energy harvesting elements. Meanwhile, multiple reflections take 

place between structural boundaries as well at the intersection between the ABH 

portion and the rest of the structure in structures with finite size and real boundaries, 

which cannot be fully apprehended by the existing models. Therefore, the 

consideration of more realistic structures with finite size and boundary is necessary 

to guide the design of practical ABH structures. This chapter presents a 

semi-analytical model to analyze an Euler-Bernoulli beam with embedded ABH 

feature by considering its full coupling with the damping layers coated over its 

surface. The beam is of finite length with arbitrary boundary conditions. Based on 

the energy method, the damping layer is considered as an integral part of the system, 

thus conserving its full coupling with the host structure. Meanwhile, due to its 

energy-based and modular nature, this model allows easy extension to further include 

other embedded control or energy harvesting elements for potential applications. 

The challenges in present problem lie in the fast-varying nature of the wave 

speed and that of the wavelength when the flexural waves enter from the uniform 

part into the ABH tapered region. To tackle the problem, Mexican hat wavelets are 
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proposed to decompose the displacement field of the system via Lagrange’s equation, 

leading to the theoretical model presented in Section 2.1. Mexican hat wavelets are 

briefly introduced and analyzed in terms of their advantage in tackling the present 

ABH induced fast-varying wavelength problems. In Section 2.2, numerical results 

are compared with FEM for validations both for an ABH wedge with and without a 

truncation thickness. Much of the work presented in this chapter has been published 

in [53]. 

2.1 Theoretical Model and Formulation 

2.1.1 Modeling Procedure 

As shown in Fig. 2.1, consider an Euler-Bernoulli beam undergoing flexural 

vibration under a point force excitation F(t) at xf. The response is calculated at point 

xm. The beam is composed of a uniform portion with constant thickness hb from xb1 to 

xb2, an ABH portion with power-law profiled thickness, i.e. ( ) ε= mh x x , from x0 and 

xb1, and damping layers with variable thickness hd(x) from xd1 and xd2.  The whole 

system is assumed to be symmetrical with respect the mid-line of the beam. The 

non-uniform end of the beam is free and the other end is elastically supported by 

artificial translational and rotational springs [54, 55], the stiffness of which can be 

adjusted to achieve various boundary conditions. For example, when the stiffnesses 

of the translational and rotational springs are both set to be extremely high compared 
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with that of the beam, a clamped boundary is achieved. This treatment also 

eliminates the geometrical boundary conditions of the system, thus facilitating the 

choice of admissible functions in the following displacement-discomposed analysis 

based on Hamilton principle. The damping of both the beam and the damping layer 

are taken into account through complex stiffness E, i.e., E =E (1+jη), where η is the 

damping loss factor. 

hd(x)
o

z

x

damping layer

hb h(x)beam

translational 
spring K

rotational 
spring Q 

xb2 xb1
x0

xd2

F(t)

xf

xd1

xm

Fig. 2.1 An Euler-Bernoulli beam with symmetrical ABH power-law profiles. 

Based on Euler-Bernoulli beam theory, the displacement field of the beam 

writes 

{ }, , ( , )∂ = − ∂ 
wu w z w x t
x

                   (2.1) 

where the vector { },u w represents the displacement of a point either on the beam or 

on the damping layers, along x and z directions, respectively. Note the above 

assumption assumes a perfect bonding of the damping layer with the host beam to 

ensure the displacement continuity.  The flexural displacement w can be expanded 
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as 

( , ) ( ) ( )n n
n

w x t a t xϕ= ∑                       (2.2) 

where ( )n xϕ  are the assumed admissible functions and ( )na t the complex unknowns 

to be determined.  

Upon constructing the Hamiltonian functional, its extremalization leads to the 

following Lagrange’s equations 

d 0
d ( ) ( )n n

L L
t a t a t

 ∂ ∂
− = ∂ ∂ 

                     (2.3) 

where the Lagrangian of the system L can be expressed as                                

= − +k pL E E W                         (2.4) 

in which Ek represents the kinetic energy of the system; Ep the potential energy and 

W the work done by the external force. They can be obtained by 

21 d
2k

wE V
t

ρ ∂ =  ∂ ∫                       (2.5) 

2 22
2 2

22

( , )1 1 1( ) d ( , )
2 2 2

b
p b

w x twE EI x x Kw x t Q
x x

  ∂∂  = + +   ∂ ∂  
∫        (2.6) 

( ) ( , )fW F t w x t= ⋅                        (2.7) 

Keep in mind that the kinetic energy and the potential energy in Eqs. (2.5) and 

(2.6) are the sum of the whole system, so the integration should be carried out for 

both the beam and the damping layers. Based on the energy concept, the damping 

layers are modeled as part of the system with its intrinsic material properties 

(modulus Ed, density ρd) and full coupling with the beam. Similarly, should other 
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control or energy harvesting elements be present, their energy terms can also be 

easily added into the system. 

Substituting Eqs. (2.4) to (2.7) into Eq. (2.3) yields the following linear 

equations in matrix form: 

( ) ( ) ( )+ =Ma Ka f t t t                       (2.8) 

Where M and K are, respectively, the mass matrix (real) and stiffness matrix 

(complex due to the material viscoelasticity); a(t) and f(t) are, respectively, the vector 

of the response ( )ia t  and the force. In a harmonic regime, the vector of the response 

and the vector of the force are represented as: 

( ) ω=a A j tt e                          (2.9) 

( ) ω=f F j tt e                         (2.10) 

Then Eq. (2.8) can be rewritten as, 

2[ ]ω− =K M A F                       (2.11) 

The forced vibration response can be obtained by solving the Eq. (2.11) directly. For 

free vibration, setting the force vector in Eq. (2.11) to zero leads to the following 

eigenvalue equation:  

-1 2ω=M KA A                        (2.12) 

which gives the natural frequencies and the corresponding mode shapes. Since the 

system is complex, recalling the express of the stiffness, the eigenvalues take 

complex form as 

2 2= (1 )n jω ω η+                          (2.13) 
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where nω is the natural frequency and η the corresponding modal loss factor of the 

system. The latter will be particularly useful to characterize the energy absorption of 

the damping layers as a result of ABH effect. 

2.2.2 Solution Using Mexican Hat Wavelet Expansion  

In the modelling, the key challenge is to find suitable admissible functions in Eq. 

(2.2) to approximate the present displacement field. Although power series 

(polynomial functions) have been used for non-uniform beams [56, 57] or plates 

[58-60] with linear or nonlinear thickness variation, none of them are comparable to 

the degree of thickness variation required by ABH profile. In fact, the present 

non-uniform beam follows power-law profile with thickness quickly diminishing to 

zero, especially when the power is larger than 2. The resultant rapidly varying 

wavelength and corresponding increase in vibration amplitude, particularly near the 

ABH wedge tip, create particular difficulties to the choice of admissible functions. In 

fact, using polynomial functions to approximate the displacement as a preliminary 

attempt in our calculation shows strong singularity even with a few expansion terms. 

The Mexican hat wavelet (MHW) is hereafter demonstrated to be particularly 

suitable to describe the tightness of the wave packet near the ABH wedge end. 

The MHW is the second derivative of the Gaussian distribution function
2

2e
−

x

, 

which can be defined as following after normalization [61, 62] 
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21
24 22( ) [1 ]e

3
ϕ

− −
= π −

x

x x                   (2.14) 

MHW drops exponentially to zero along x, which can be treated as approximately 

localized in [-5, 5]. After the wavelet transform, the mother wavelet of MHW in Eq. 

(2.14) can be expanded into a set of MHW functions 

21 (2 )
/2 24 2

,
2( ) 2 [1 (2 ) ]e
3

i x s
i i

i s x x sϕ
−

− −
= π − −           (2.15) 

where i is the scaling parameter (integer) to stretch or squeeze the MHW and s the 

translation parameter (integer) to move the MHW along x axis. MHW functions with 

the scaling parameter i=0 and different translation parameters s are shown in Fig. 2.2. 

It shows that MHW is highly localized and fairly flexible by scaling and translation, 

which enables MHW to better cope with the local details of the ABH part. Moreover, 

the smoothness of MHW is also particularly desirable in the approximation.  The 

abovementioned properties make MHW suitable as the basis functions as 

demonstrated later on.  
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Fig. 2.2 MHW functions with the scaling parameter i =0 and different translation 

parameters s 

Choosing MHW as basis function, Eqs. (2.2) and (2.3) can then be represented 

as 

, ,( , ) ( ) ( )i s i s
i s

w x t a t xϕ= ∑∑                  (2.16) 

, ,

d 0
d ( ) ( )i s i s

L L
t a t a t

 ∂ ∂
− =  ∂ ∂ 

                  (2.17) 

Partial derivatives of the displacement over time t and x axis can be obtained as 

follows 

, ,
( , ) ( ) ( )i s i s

i s

w x t a t x
t

ϕ∂
=

∂ ∑∑ 

                
(2.18)
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,
,

( )( , ) ( ) i s
i s

i s

xw x t a t
x x

ϕ∂∂
=

∂ ∂∑∑                   (2.19)
 

22
,

,2 2

( )( , ) ( ) i s
i s

i s

xw x t a t
x x

ϕ∂∂
=

∂ ∂∑∑                  (2.20)
 

where  

21 (2 )
, 34 2

( ) 2 e 2 (2 ) 3 2 (2 )
3

i x s
i s i i i ix

x s x s
x

ϕ −
− −∂

 = π − − ⋅ − ∂
 

22 1 (2 )
, 2 4 2 2 24 2

2

( ) 2 e 2 (2 ) 6 2 (2 ) 3 2
3

i x s
i s i i i i ix

x s x s
x

ϕ −
− −∂

 = π − − + ⋅ − − ⋅ ∂
 

Submitting Eqs. (2.18), (2.19) and (2.20) into Eqs. (2.5) and (2.6), we can get 

the kinetic and potential energies of the ABH beam part respectively through the 

integrations over the ABH part as  

1

0

1

0

( )beam_ABH

(

2
, ,

, , , ,

)
( ) ( )

( ) ( ) ( ) (

1= d d
2

) d

b
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x h
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i s

m
i s p r i s p r

i s

x

k bx h x

x

b x
p r

a t x

a t a t x x x

E x z

x

r

e ϕr

ϕ

ϕ

−

 
  

=

∑∑
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∫ ∫

∫


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        (2.21) 
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∑
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  (2.22)

 

where the subscripts p and r are the scaling parameter and the translation parameter 

respectively, same as the subscripts i and s. 

Similar, the kinetic and potential energies of the uniform beam part, the 

damping layers part and the supported spring edges can also be obtained respectively 

as follows 
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2

1

beam_Uni
, , , ,( ) ( ) ( ) ( )db

b
i s p r i s p r

x

k b
s

x
i p

b
r

E h a x xa t t xϕ ϕr= ∑∑∑∑∫           (2.23)
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be ,
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b

p ri s
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p x

xx
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x x
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ϕϕ ∂∂
∂
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d2

d1
, , , ,

damp ( ) ( ) ( () ) d( )
x

k d i s p r i s p r
i s p r

dx
a t a t x xE h x xr ϕ ϕ= ∫ ∑∑∑∑         (2.25)
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The total kinetic and potential energies of the system can be therefore 

expressed as  

beam_ABH beam_Uni damp
k k k kE E E E= + +                (2.28) 

beam_ABH beam_Uni damp edge
p p p p pE E E E E= + + +            (2.29)

 
The work done by external force writes 

, ,( ) ( ) ( )i s i s f
i s

W F t a t xϕ= ∑∑                  (2.30)
 

Submitting Eqs. (2.21) to (2.30) into Eqs. (2.3) and (2.4), we can get the 

components of the mass matrix, stiffness matrix and force vector in Eq. (2.11) as 

follows 

beam_Uni beam_ABH damp+ipsr ipsr ipsr ipsrM M M M= +          (2.31) 

2

1

beam_Uni
, ,=2 ( ) ( )db

b

x

ipsr b b i s p rx
M h x x xr ϕ ϕ∫               (2.32) 
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0

beam_ABH
, ,=2 ( ) ( ) dbx m

ipsr b i s p rx
M x x x xer ϕ ϕ∫              (2.33) 

2

1

damp
, ,2 ( ) ( ) ( )dd

d

x

ipsr d i s p r dx
M x x h x xr ϕ ϕ= ∫               (2.34) 

beam_Uni beam_ABH damp edge+ipsr ipsr ipsr ipsr ipsrK K K K K= + +         (2.35) 
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xxE hK x
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∂ ∂∫           (2.36) 
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b b

p ri s
ipsr i s b p r b x x x x

xx
K K x x Q

x x
ϕϕ

ϕ ϕ = =
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= +

∂ ∂
       (2.39) 

, , ( )i s i s fF F xϕ=                           (2.40)
 

Another key issue is to choose the appropriate range of translation parameter s 

when the scaling parameter i is defined. Note that all MHW functions in the beam 

domain [x0, xb2] should be included into the displacement expansion in Eq. (2.16). 

Meanwhile, to avoid possible singularity of the matrix K and M, those MHW 

functions resulting in zero 2

0
, ( )dbx

i sx
x xϕ∫  value should be eliminated. Recall that we 

assume the mother wavelet of MHW is localized in [-5, 5]. If all MHW functions 

with different scaling parameters i are supposed to be localized in this range, this 

may lead to the morbidity of the matrix K and M because of the huge numerical 

difference among the MHW functions with different scaling parameters. Therefore, 

we only assign the MHW functions with the largest scaling parameter i localized in 
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[-5, 5], while reducing the localized range with each smaller scaling parameter by 1. 

For example, given that the MHW functions with the largest scaling parameter 

i=Mmax (Mmax≤5) is localized in [-5, 5], the MHW functions with any i≤Mmax in the 

calculation should be localized in [−5+( Mmax−i), 5− (Mmax−i)].  Therefore, the 

translation parameter s should be within the following range 

max 0 2 max

min min min max

[ 4 ( 2 ), ( 2 ) 4 ],
( , 1,..., , 0 5)

i i
b

max

s M i x x M i
i M M M M M

a γ= − + − + + − +
= + ≤ ≤ ≤

    (2.41) 

where α(*) rounds the elements of * to the nearest integers towards zero; γ(*) rounds 

the elements of * to the nearest integers towards infinity. As shown in Fig. 2.2, 

setting x0 =0, xb2 =5 cm, M=0, and i =0, s should be within the range [-4, 9] to ensure 

that all MHW functions in the beam domain [0, 5] are included. Meanwhile each 

MHW function with translation s would not result in zero 2

0
, ( )dbx

i sx
x xϕ∫ value 

(namely the value of MHW function (solid line) in [0, 5] should not always equal to 

zero). Equation (2.41) shows that under the same scaling parameter i, the range of 

translation parameter s is larger with the increasing beam length, i.e. (xb2-x0). For a 

given beam length, however, both i and s can be adjusted to ensure that sufficient 

terms be used in the expansion to guaranty the calculation accuracy. Generally 

speaking, for low frequency calculations, only small scaling parameters are needed 

with the smallest scaling parameter Mmin usually being zero. However, to ensure an 

acceptable accuracy of the high frequency calculations, the largest scaling parameter 

should be enlarged accordingly while the smallest scaling parameter should be 
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carefully chosen (not necessary being zero) to avoid the huge numerical difference 

among different scaling parameters and consequently the morbidity of the matrix K 

and M as stated above. 

2.2 Numerical Results and Discussions 

As a numerical example, the geometrical and material parameters of the beam 

and the damping layers are shown in Table 2.1. The beam is of clamped-free. A 

harmonic driving force of 1N is applied at xf =8 cm. The first resonant frequency of a 

clamped-free uniform beam with a length of 10 cm and the same material properties 

is used as the reference frequency [63],  

2
ref 4( ) 209.5 Hz, ( 1.875104)β β

r
= = =β

β

E If l l
Al

       (2.42) 

To verify the accuracy of the present model, FEM results are calculated using 

finite element analysis software COMSOL Multiphysics v5.2 as a comparison. The 

non-uniform beams are modeled by 2D beams in the Solid Mechanics Module. The 

width of beams is set to be unit, while the uniform section and the ABH section of 

the beam are respectively assigned with different cross section data, namely different 

cross area and moment of inertia.  
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Table 2.1  

Geometrical and material parameters used in the numerical simulation. 

Geometrical parameters Material parameters 

 Beam 

ε =0.005 Eb =210 GPa 

m =2 ρb =7800 kg/m3 

hb =0.125 cm ηb =0.005 

 Damping layers 

x0 =1 cm Ed =5 GPa 

xb1 =5 cm ρd =950 kg/m3 

xb2 =10 cm ηd =0.3 

2.2.1 Ideal ABH without truncation 

We first verify the accuracy of the proposed model when the ABH beam portion 

is perfectly fabricated without truncation, namely x0 =0. Table 2.2 and Fig. 2.3 show, 

respectively, the comparison between the FEM results and the results using the 

present approach in terms of the natural frequencies and some selected mode shapes. 

The scaling parameter is from two to three. Table 2.2 shows the errors for the first 

seven resonant frequencies between the two approaches. It can be seen that 

reasonable accuracy is obtained for the lower-order modes up to the fifth or sixth one. 

As shown in Fig. 2.3, the mode shapes calculated by the present approach are also in 
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acceptable agreement with the ones of FEM. Large vibration amplitude mainly 

concentrates on the ABH wedge tip in the high order modes, which demonstrates the 

ABH phenomenon. However, when the thickness of the beam tends to zero, the local 

phase velocity of the flexural waves also approaches to zero and the vibration 

amplitude becomes infinite theoretically, which can be hardly simulated by either 

FEM or the present numerical calculation. Therefore, the resonant frequencies and 

mode shapes cannot exactly match with each other when no truncation exists. Since 

the thickness of the beam cannot reach zero in practice, the case without truncation is 

not the main focus of the work, rather than just showing the general ideal ABH 

phenomena. 

Table 2.2 

Resonant frequency comparison between FEM and present approach results for the 

beam without truncation x0 =0. 

Resonant frequency (Hz) FEM  Present approach Error (%) 

ω1 427.74 427.82 0.017 

ω2 964.47 960.28 -0.434 

ω3 1162.64 1154.94 -0.662 

ω4 1465.12 1470.33 0.355 

ω5 1851.49 1896.61 2.437 
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ω6 2306.23 2423.38 5.080 

ω7 2831.84 3071.44 8.461 
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Fig. 2.3 Mode shape comparison between FEM and present approach when x0 =0 cm 

for (a) first mode; (b) third mode; (c) fifth mode; and (d) seventh mode. 

2.2.2 ABH with truncation 

The accuracy of the present approach increases significantly with the 

appearance of a truncation, even very small. As shown in Table 2.3 and Fig. 2.4, the 

present approach guarantees extremely high accuracy for the first thirty-seven modes 
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in terms of both resonant frequencies (with an error less than 0.5% as compared with 

FEM) and mode shapes when a small truncation (x0 =1 cm corresponding to a 

thickness of the wedge tip of 0.01 cm) is introduced. In this case, the scaling 

parameter is also chosen from two to three. Similar to Fig. 2.3, Fig. 2.4 shows that 

ABH takes better effect at higher resonant frequencies and the wavelength decreases 

proportionally to the local phase velocity of the flexural waves in the ABH wedge. 

On the other hand, the existence of the truncation, as expected, reduces the ABH 

effect by increasing the vibration level of the uniform beam part compared with that 

in Fig. 2.3.  

Table 2.3 

Resonant frequency comparison between FEM and present approach for the beam 

with truncation x0 =1 cm. 

Resonant frequency 

(Hz) 

FEM  Present approach Error (%) 

ω1 432.91 432.77 -0.033 

ω2 1669.52 1669.44 -0.005 

ω3 2972.79 2972.68 -0.004 

ω4 5071.01 5071.64 0.012 

ω5 8000.11 8000.41 0.004 

ω6 11338.33 11338.29 0.000 

ω7 15564.66 15563.33 -0.009 
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ω8 20445.83 20445.20 -0.003 

… … … … 

ω20 132394.69 132388.11 -0.005 

ω21 146265.88 146258.45 -0.005 

… … … … 

ω33 365983.72 367427.36 0.394 

ω34 388845.60 390636.11 0.460 

ω35 412250.75 413190.71 0.228 

ω36 436519.49 436889.19 0.085 

ω37 461370.85 463679.23 0.500 

ω38 486902.30 493317.59 1.318 

ω39 513248.96 523609.75 2.019 

ω40 540113.58 546477.55 1.178 

Figure 2.5 shows the calculation errors of the resonant frequencies between the 

FEM and the present approach when different scaling parameters are used (caped at 

5%). As can be seen, when the scaling parameter is zero, only the first eight modes 

can be obtained with an error less than five percent. Increasing the largest scaling 

parameter to 1, the modal number can be significantly increased to twenty-one. 

However, if further increasing the largest scaling parameter to 2 while maintaining 

the smallest scaling parameter to zero, the accurate modal number is adversely 

reduced to ten, marked as diamonds. This is because of the morbidity of the matrix K 
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and M resulting from the huge numerical difference of the MHW functions with the 

scaling parameter being zero and two as mentioned above. Therefore, the zero 

scaling parameter is omitted in the calculation and results would be significantly 

improved. Varying the scaling parameter from two to three, the errors of the first 

forty modes nearly reduce to less than two percent compared with the FEM results. 

Figure 2.5 also shows the fast convergence of the present method with MHW 

decomposition. For low frequency applications, only very small scaling parameters 

are needed. For high frequency applications, the largest scaling parameter should 

increase provided the smallest scaling parameter is properly chosen. 

 

Fig. 2.4 Mode shape comparison between FEM and present approach when x0 =1 cm 
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for (a) first mode; (b) fifth mode; (c) twentieth mode; and (d) thirty-fifth mode. 
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Fig. 2.5 Errors of resonant frequencies (less than five percent) between the FEM and 

the present approach using different scaling parameters. 

Generally speaking, the above results demonstrate that the proposed model 

together with the use of MHW decomposition can effectively characterize the 

wavelength fluctuation along the beam as a result of the ABH effect and guarantee 

high calculation accuracy. In addition, treating MHW with the largest scaling 

parameter i as approximately localized within a specified region [-5, 5] is also 

reasonable and will not cause sensible errors in the calculations. 

2.3 Short summary 

In this Chapter, a semi-analytical model is established to analyze an 
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Euler-Bernoulli beam with embedded ABH feature and its full coupling with the 

damping layers coated over its surface. By using Mexican hat wavelet functions to 

approximate the flexural displacement, the governing equations are obtained based 

on Lagrange’s equation. Highly consistent with the FEM results in terms of the 

resonant frequencies and mode shapes, especially when a truncation exists, 

numerical results demonstrate the validity and the suitability of the proposed 

wavelet-based model to characterize the wavelength fluctuation along the beam as a 

result of ABH effect. From the numerical results, we can see the ABH effect enables 

a high energy density concentration in the vicinity of the ABH wedge tip, which is 

conducive to energy control and utilization within a confined area. However, the 

practical inevitable truncation will weaken the ABH effect, which will produce wave 

reflection and needs damping layers treatment for energy absorption as discussed in 

the following Chapter.  

As a final remark, the proposed model provides an efficient way to study the 

ABH feature and the effect of damping layers using a more realistic ABH-featured 

beam. Furthermore, due to its modular and energy-based nature, the proposed 

framework offers a general platform for further including other control or energy 

harvesting elements into the model to guide the design of ABH structures for various 

applications. 
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Chapter 3 ABH Phenomena, Parametric Analyses and 

Experimental Validations 

The model developed in the previous chapter provides an efficient method to 

study the structure with ABH feature. In this chapter, numerical examples are given 

in view of demonstrating the validity of the model in producing typical ABH 

phenomenon and its flexibility and versatility to handle various system 

configurations. To be specific, ABH feature and the effects of the truncation are 

analyzed in Sec. 3.1. To compensate the adverse effect of the truncation, damping 

layers are applied over the ABH tapered part and the effects of the thickness, location 

and thickness variation are investigated respectively in Sec. 3.2. Moreover, due to the 

unique feature of this model, the importance of the full coupling between the beam 

and the damping layers as well as the influence of the structural finite size is 

evaluated in Sec. 3.3 and 3.4, respectively. The accuracy of the present model is also 

validated by experimental results in Sec. 3.5. These works are summarized in two 

journal papers [53, 64]. 

3.1 ABH feature and effects of the truncation 

The beam and its corresponding geometrical and material parameters 

investigated in this chapter are the same as those shown respectively in Fig. 2.1 and 
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Table 2.1. To show the ABH feature and the effect of the truncation on the response, 

Fig. 3.1(a) first presents the cross-point mobility, ( =6cm) / ( ) m fw x f x , for the ABH 

beam with or without truncation. The case of a uniform beam with the same length as 

the ABH beam without truncation is also used as reference. It can be seen from 

Fig.3.1(a) that the response of the beam with ABH feature at point xm=6cm is slightly 

reduced at high frequencies. To further reveal the overall vibration level, Figs. 3.1(b) 

and (c) respectively show the mean quadratic velocity of the uniform portion and the 

mean quadratic velocity ratio Γ between the ABH portion and the uniform portion. 

The latter is defined as
2

ABH
2

Unif

10 log V
V

Γ < >
=

< >
 to quantify the mean energy density 

distribution between the ABH portion and uniform portion of the beam. The mean 

quadratic velocity ratio of the uniform beam is calculated within the same region 

corresponding to the ABH beam without truncation. As a result of ABH effect, the 

vibration level of the uniform portion of the ABH beam is slightly reduced at high 

frequencies, and the vibration energy mainly shifts to the ABH part as shown in Fig. 

3.1(c). Not surprisingly, the appearance of the truncation reduces this energy shift 

thus weakening the ABH effect. 

43 
 



 

(a)

(b)

0 4 8 12 16 20
-100

-80

-60

-40

-20

0

f/fref

 BeamUni

 BeamABH x0
=0

 BeamABH x0
=1

M
ea

n 
Qu

ad
ra

tic
 V

elo
cit

y 
(d

B)

 

 

0 4 8 12 16 20
0

5

10

15

20

25

30

f/fref

 BeamUni

 BeamABH x0
=0

 BeamABH x0
=1

Γ  

 

 

0 4 8 12 16 20
-120
-100
-80
-60
-40
-20

0

 BeamUni

 BeamABH x0
=0

 BeamABH x0
=1

dB
 re

 1
 m

/s/
N

f/fref

 

 

(c)

Fig. 3.1 Comparison of (a) the cross-point mobility, ( =6cm) / ( ) m fw x f x , (b) the 

mean quadratic velocity of the uniform beam portion, and (c) the ratio of mean 

quadratic velocity of the ABH portion to the uniform beam portion for three different 

beam conditions. 

3.2 Effects of damping layers 

Damping layers are suggested to compensate for the adverse effect induced by 

the truncation [12, 14]. Fig. 3.2 shows the sufficient increasing of the system 

damping loss factors when damping layers with relatively thin thickness hd=0.005 
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cm are applied over the whole surface of the ABH part of the beam. As a reference, 

the damping layers with same thickness and length are also applied over a uniform 

beam. Because of the ABH effect in higher frequencies, the concentrating energy on 

the ABH part enable the damping layers to take much better effect compared with 

that of the uniform beam, and thus greatly increase the system damping loss factors 

by as large as 100%.   

 

Fig. 3.2 Effect of damping layers on the system damping loss factors of the uniform 

beam and the beam with ABH feature, respectively (xd =1~5 cm). 

3.2.1 Effects of the thickness 

Figure 3.3 compares the system damping loss factors η when damping layers 

with different thicknesses are used to cover the whole surface of the ABH part. At the 

0 20 40 60 80 100

0.004

0.006

0.008

0.010

0.012

0.014

f/fref

η  

 

 BeamUni hd
=0    BeamUni hd

=0.005

 BeamABH h
d
=0  BeamABH h

d
=0.005

45 
 



 

first resonant frequency when the ABH part does not dominate the vibration mode, 

the damping layers show little effect on the system damping loss factor. With the 

increasing input frequency, the ABH part starts to dominate the vibration mode; 

therefore, thicker damping layers create larger system damping as expected. 

Typically, the system damping loss factor with damping layers of thickness hd =0.01 

cm (double of the thickness of the ABH tip) is nearly twice as large as that without 

damping layers (hd =0). The vibration level of the uniform part and energy ratio are 

also shown in Fig. 3.4. Consistent with Fig. 3.3, the damping layers with thicker 

thickness reduce the mean quadratic velocity of the uniform part, the maximum of 

which can be reduced as much as 11.3 dB at the seventh resonant frequency. The 

damping layers, on the other hand, increase the energy in the ABH part especially at 

high frequencies as evidenced by an increase in the quadratic velocity ratio Γ , which 

demonstrates the compensation effect induced by the surface damping layers. 
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Fig. 3.3 Comparison of the system damping loss factors for different thicknesses of 

damping layers when xd =1~5 cm. 

Fig. 3.4 Comparison of (a) the mean quadratic velocity of the uniform beam portion, 

and (b) the ratio of mean quadratic velocity of the ABH portion to the uniform beam 

portion for different thicknesses of damping layers when xd =1~5 cm. 
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3.2.2 Effects of the location and thickness variation 

As demonstrated above, damping layers are effective to increase the system 

damping at high frequencies and thus compensate to certain extent the disadvantage 

of the inevitable truncation. To obtain the maximum damping, the distribution of the 

damping layers could be adjusted. As an example, the system damping loss factors 

for different distributions of damping layers with constant mass are compared in Fig. 

3.5. It can be seen that applying damping layers near the ABH tip rather than the 

whole ABH part significantly increases the system damping loss factor at high 

frequencies. The maximum loss factor is obtained when the damping layers with 

thickness of hd =0.01 cm are deployed in the area from 1 cm to 2 cm, which is close 

to the ABH tip. Since this small area correspond to the highest energy density, unit 

mass of damping layers can consume largest energy and increase the system damping 

loss factor to maximum content. 
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Fig. 3.5 Comparison of the system damping loss factors for different thicknesses and 

distributions of damping layers with constant mass. 

Figure 3.6 further reveals the effect of the thickness variation of damping layers 

with constant mass on the system damping loss factor. The damping treatment is 

applied in the area from 1 cm to 2 cm to gain the maximum damping effect as 

suggested in Fig. 3.5. The case with uniform damping layer thickness of hd =0.005 

cm is used as reference. It can be seen that the effect of the shape of the damping 

layer is not quite obvious for lower-order modes. However, with the increasing ABH 

effect at higher frequencies, the shape of the damping layer starts to play an 

important role in determining the overall damping of the system. Roughly speaking, 

the wave packets shift closer and tighter near the ABH tip with higher energy density 
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when frequency increases as shown in Fig. 2.4. Therefore, the optimal damping 

application area also tends to shift towards the ABH tip. Generally, the proposed 

model provides a tool to eventually optimize the thickness and distribution of the 

damping layers to achieve the most effective damping effect for a given application, 

for both free and forced vibration problems. 

 

Fig. 3.6 Comparison of the system damping loss factors for different linear 

distributions of damping layers with constant mass while the uniform thickness 

damping layer corresponding to the condition of hd =0.005 cm and xd =1~2 cm. 

3.2.3 Effects of the damping loss factor 

Given a damping loss factor of damping layers of 0.3, the maximum reduced 
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compared with the bare beam without damping layers as demonstrated in Fig. 3.4. In 

practice, the damping loss factor of damping layers can be even larger than 0.3 for 

some polymers, especially when the material operates in its glass transition region 

[65]. Fig. 3.7 presents the reduced amplitude of mean quadratic velocities of the 

uniform beam part compared with bare beam for different damping loss factors for 

the first six resonant frequencies. The larger the damping loss factor is, the more the 

vibration level will be reduced as expected.  The reduced mean quadratic velocities 

of the uniform part for larger damping loss factors at higher resonant frequencies can 

be appreciable (up to 14 dB in the best case). Therefore, significant damping effect 

can be achieved by making use of the ABH feature by properly choosing parameters 

and distribution of the damping layers. 

 

Fig. 3.7 Mean quadratic velocity reduction using damping layers with different 

damping loss factors (hd =0.01 cm, xd =1~5 cm) 
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3.3 Effects of the full coupling 

To evaluate the importance of the full coupling between the beam and the 

damping layers, Fig. 3.8 and Fig. 3.9 compare the system response with/without 

considering the mass and the stiffness of the damping layers, respectively. From Fig. 

3.8 (a), one can see that when the damping layer is uniformly applied over the whole 

ABH region with a thin thickness (only a half of the thickness of the ABH tip), the 

effect of the added mass by the damping layers is relatively small and negligible.  

When a thicker layer (double of the thickness of the ABH tip) only covers the tip 

region, however, the higher-order resonant frequencies are shifted to lower 

frequencies (the maximum reduction can be as large as 298 Hz in the present case) 

with the consideration of the mass of the damping layer, suggesting that, in this case, 

the added mass on the ABH tip area can be significant. This is understandable since 

ABH tip area dominates the vibration mode at these high frequencies as shown in Fig. 

2.4. However, both cases in Fig. 3.8 show the negligible effect of the damping layer 

mass on the overall vibration level of the structure. When considering the stiffness of 

the damping layers, for the same reason, the high order resonant peaks shifts to high 

frequencies, more noticeably in Fig. 3.9 (b). Meanwhile, a reduction in the mean 

quadratic velocity can also be observed in both cases, more noticeable for the tickers 

layer in Fig. 3.9 (b). 
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Fig. 3.8 The effect of the mass of damping layers on the mean quadratic velocity of 

the damping layers covered region for (a) thinner thickness and (b) thinker thickness 

compared with the thickness of beam tip. 

Fig. 3.9 The effect of the stiffness of damping layers on the mean quadratic velocity 

of the damping layers covered region for (a) thinner thickness and (b) thinker 

thickness compared with the thickness of beam tip. 
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3.4 Loss of ABH effect 

Existing research indicates that, despite the truncation, the ABH effect is still 

highly efficient as a broadband phenomenon, although the effect is not obvious 

below the cut-on frequency [24]. For semi-infinite structures with ABH wedge 

features, the geometrical acoustic approach [11] was first proposed to analyze the 

flexural wave propagation properties and revealed an obvious reduction in the 

reflection coefficient with the increase of frequency [12]. Similar results on the 

reflection coefficient were also obtained by an impedance method [18]. However, 

these two types of approaches only deal with semi-infinite structures, namely the 

finite length in the wedge and the infinite length on the other portion of the structure. 

In practice, structures are also finite in size with real structural boundaries. In such 

cases, multiple reflections would take place between the boundaries and excitation 

points as well as the intersection between the ABH portion and the rest of the 

structure. Up to now, the reported theoretical models [21, 25, 46] and experiments 

[20, 22, 32, 37, 46, 66] on finite structures with ABH profiles all confirmed the 

effectiveness of the ABH effect above the cut-on frequency. With the help of the 

present developed model, however, we demonstrate that the ABH effect may lose its 

effect, or fail, in a finite beam in particular frequency bands, which will be called 

failure frequency bands hereafter.  

A beam with a tailored ABH profile wedge, same as the sketch shown in Fig. 
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2.1, was employed to investigate its flexural vibration response when subjected to a 

unit point excitation force. The beam consists of an ABH part with a symmetrical 

thickness profile 2( ) 0.00125h x x= , 12 cm long, and a uniform part with a constant 

thickness of 0.64 cm, 16 cm long. The beam is made of steel with a mass density of 

7794 kg/m3 and Young modulus of 200 GPa with free boundary conditions. The 

harmonic unit force is applied at the point, 8 cm away from the uniform end, namely 

xf=24cm.  

Figure 3.10 (a) reveals that the mean quadratic velocity of the ABH part, 

representing its overall vibration level, is particularly low in two regions around 3595 

Hz and 11290 Hz, respectively. In Fig. 3.10 (b), the ratio of the mean quadratic 

velocity of the ABH part to that of the uniform beam part is used to quantify the 

effectiveness of the ABH effect, on the premise that effective ABH effect results in 

energy concentration in the tapered ABH region with a high positive 𝛤𝛤. On the 

contrary, when 𝛤𝛤 is negative, we consider the ABH effect is lost or sufficiently 

weak, in which case we loosely call it failure of the ABH effect. As clearly seen in 

the Fig. 3.10 (b), around these two bottommost frequency regions the energy mainly 

concentrates on the uniform part rather than the ABH part as the conventional ABH 

effect would have suggested. This indicates a clear disappearance of effectiveness of 

the ABH effect around these frequencies, against the conventionally established 

broadband nature of the ABH feature reported in the literature. A band is defined as a 

failure band when its Γ value is negative. In the present case, the bandwidths of two 
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failure bands are 875 Hz and 1755 Hz respectively. 
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Fig. 3. 10. (a) The mean quadratic velocity of the ABH part and (b) the ratio of mean 

quadratic velocity of the ABH part to that of the uniform beam part. 

To further demonstrate the phenomenon, Fig. 3.11 (a) and (b) depict the 

displacement distribution of the beam at the first and second bottommost frequencies, 

for two excitation locations (xf = 24 cm, and 26 cm, respectively). As a comparison, 

Fig. 3 (c) also depicts the displacement distribution at two frequencies, outside and 

adjacent to the two failure bands, respectively (f =3220 Hz and 5840 Hz). Fig. 3.11 (c) 

shows typical ABH effect in that the vibration mainly concentrates on the ABH part 

with large vibration level near the wedge tip. However, the results in Fig. 3 (a) and (b) 

show that the vibration level of the ABH part at two bottommost frequencies is 

negligible compared with that of the uniform part, which indicates a loss of the ABH 

effect. It is logical to surmise that, in this situation, applying damping layers or 

energy harvesting elements on the ABH part would not lead to efficient damping or 

harvesting performance. For both excitation positions, the figure shows that the low 
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vibration region of the ABH part roughly starts from the excitation location. 
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Fig. 3.11 Displacement distribution along the beam at (a) the first bottommost 

frequency and (b) the second bottommost frequency of the energy ratio Γ  where 

the ABH effect fails, and (c) the frequencies outside and adjacent to the first failure 

bands (f =3220 Hz and 5840 Hz), with the force applied at xf  = 24 cm and xf  = 26 

cm, respectively. Different highlighted areas mean the ABH part and uniform part, 

respectively. 

A plausible reason to explain the observed phenomenon is proposed as follows. 

Due to the presence of the excitation, a structural discontinuity in the local 
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impedance is created, demarcating the beam into two subsystems, i.e., the right 

uniform part and the left part with ABH profile. Within the failure frequency band, 

multiple wave reflections take place between the structure boundary and the 

excitation point. This allows the formation of standing waves and local resonances, 

thus triggering the energy localization effect. Indeed, analyses show that the ABH 

failure frequencies correspond to the local resonance frequencies of that uniform 

beam portion with pinned boundary conditions at the force excitation point and the 

real structural boundary at the other end.  In the present case, the observed two 

bottommost ABH failure frequencies correspond to the first two local resonance 

frequencies of the beam portion with the pinned-free boundary, which can be 

predicted [63]. When the excitation frequency approaches the local resonance 

frequencies of the uniform portion delimited by the excitation point and the structural 

boundary, energy will be localized within that region due to the local resonance 

phenomenon, neutralizing the ABH effect in the ABH beam portion. To further 

confirm this phenomenon and explanation, we changed the excitation point to xf = 26 

cm (6 cm away from the end of the uniform beam portion). In this case, the first and 

second local resonant frequencies of the uniform beam portion are re-calculated, 

giving 6380 Hz and 20673 Hz, respectively. These values are reasonably close to the 

two bottommost frequencies corresponding to the minimum energy ratio 𝛤𝛤 (6422 

Hz and 19844 Hz). 

     More cases were simulated to confirm the general character of the 
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phenomenon and the validity of the proposed prediction of the failure frequencies. 

When changing the boundary conditions and excitation locations, similar ABH 

failure phenomenon was noticed in each case (not shown here). The first and second 

bottommost ABH failure frequencies are compared with the corresponding predicted 

local resonant frequencies of the uniform subsystem delimited by the excitation 

points at xf = 23 cm and xf = 27 cm, respectively, as displayed in Table 3.1.  Treating 

the excitation point as a pinned constraint, the predicted local resonant frequencies 

are indeed very close to bottommost ABH failure frequencies for all three different 

boundary conditions. The failure frequency bands are also highly obvious, ranging 

from 542 Hz to as large as 2594 Hz. Therefore, the reported ABH failure 

phenomenon applies to all cases and the phenomenon can be accurately reproduced 

by the established wavelet-decomposed model, which should be avoided in the 

targeted application ranges. 

TABLE 3.1. The first and second bottommost ABH failure frequencies and their 

comparison with corresponding predicted local resonant frequencies of the uniform 

beam portion delimited by the excitation points xf =23 cm and xf =27 cm, respectively, 

and failure frequency bands for three different boundary conditions.  

Boundary 

conditions 

Equivalent 

local 

boundary 

conditions 

Excitation 

locations 

(cm) 

Predicted 

local resonant 

frequencies 

(Hz) 

Bottommost 

ABH failure 

frequencies 

(Hz) 

Differenc

e (%) 

Failure 

frequency 

bands 

(Hz) 
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Free-free pinned-free 

xf =23 
2835 

9188 

2821 

9188 

0.50 

0 

717 

1202 

xf =27 
9186 

29769 

9122 

29774 

0.70 

-0.00017 

1296 

2594 

Free-pinned 
pinned- 

pinned 

xf =23 
1815 

7260 

1821 

7260 

-0.33 

0 

542 

1999 

xf =27 
5880 

23521 

5880 

23520 

0 

0.0043 

1205 

2170 

Free-clamped 
pinned- 

clamped 

xf =23 
2835 

9188 

2858 

9176 

-0.81 

0.13 

721 

1206 

xf =27 
9186 

29769 

9136 

29712 

0.54 

0.00019 

1390 

2016 

 

3.5 Experimental validations 

In this section, we present some experimental results to further validate the 

accuracy of the present semi-analytical model as well as the loss of ABH effect 

uncovered by numerical analyses. The beam is made of steel with a mass density of 

7794 kg/m3 and Young modulus of 200 Gpa. The whole beam has a uniform width of 

1 cm. The ABH portion parameters of the beam are: ε =0.00125 cm-1 and m=2. Other 

parameters are: x0=4 cm, xb1=16 cm, xb2=32 cm.  

As shown in Fig. 3.12, the beam was supported by two thin strings to simulate 

free boundary conditions, thus eliminating the effect of boundary supports. The beam 
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was excited using a broadband electromagnetic shaker at xf=26 cm, with the force 

measured through a Bruel and Kjaer force transducer (series 8200) and amplified by 

a Bruel and Kjaer charge amplifier (series 2635). The Polytec scanning vibrometer 

(PSV) was used to generate a periodic chirp signal with frequency from 0 Hz to 16 

kHz to the shaker via a Bruel and Kjaer power amplifier (series 2706). The response 

velocity of each point in the beam was scanned by the PSV and post-processed by 

Fourier average.  

Shaker

Force transducer

Supporting strings

Scanning point
x

z

O
 

Fig. 3.12 Experimental set-up. A beam with a left ABH part and a right uniform part 

was hung by two thin strings and excited by a periodic chirp signal from an 

electromagnetic shaker; the force was measured by a force transducer and amplified 

by a charge amplifier; a Polytec scanning laser vibrometer was used to scan the beam 

and measure its vibration response. 

The predicted cross-point mobility ( ( ) / ( ) m fw x f x ) calculated by the present 
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model is compared with the experimental result in Fig. 3.13. The predicted resonant 

frequencies and anti-resonant frequencies agree very well with that of experiment for 

the first eight modes with error less than 2%. The increasing error in relatively higher 

frequencies is likely coming from the omission of the shear and torsional 

deformation caused by deviation of the excited force from the center axis and the 

working accuracy of the force transducer at higher frequencies. The predicted 

amplitude of the cross point mobility is also acceptable compared with the 

experimental measurements, where the main error is due to the difficulty in 

determining the accurate loss factor in the experiments. Fig. 3.14 (a) and (b) show 

the predicted vibration level of the uniform part and that of the ABH part 

respectively against the experimental results. Both the predicted resonant frequencies 

and amplitudes are in good agreement with the experimental measurements. Fig. 

3.14(c) shows the ratio of the mean quadratic velocity of the ABH part to that of the 

uniform beam part. As can be seen, the predicted failure of ABH effect agrees well 

with the experiments results with 𝛤𝛤 being negative at most frequencies.  
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Fig. 3.13 Comparison of the predicted cross point mobility, ( =5cm) / ( )m fw x f x , 

against experimental measurements. 

Furthermore, the predicted displacement distribution in Fig.3.11 is also 

validated by the experimental results, as shown in Fig. 3.15. The highly consistent 

results show that the vibration level of the ABH part at the two bottommost 

frequencies is negligible compared with that of the uniform part, which indicates a 

loss of the ABH effect. Therefore, the present semi-analytical model does provide 

correct prediction and sufficient accuracy after being compared with the 

experimental results. Meanwhile, the disappearance of the ABH effect in a finite 

beam does exist and should be avoided for the targeted frequency ranges in the ABH 

applications. 
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 Fig. 3.14 Comparison of the prediction mean quadratic velocity of (a) the uniform 

beam portion, and (b) the ABH portion against experimental measurements.       
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Fig. 3.15 The experimentally measured and numerically predicted displacement 

distribution along the beam at (a) the first bottommost frequency and (b) the second 

bottommost frequency of the energy ratio Γ  where the ABH effect fails, and (c) the 

frequencies outside and adjacent to the first failure bands (f =3220 Hz and 5840 Hz), 

with the force applied at xf  = 24 cm and xf  = 26 cm, respectively. 

3.6 Short summary 

The proposed wavelet-decomposed and energy-based model provides an 

efficient way to study the ABH feature and the effect of damping layers using a more 
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realistic ABH-featured beam. The ABH effect enables a high energy density 

concentration in the vicinity of the ABH wedge tip, which is conducive to energy 

control and utilization within a confined area. However, the thickness truncation 

adversely weakens the ABH effect. Covering the ABH part with damping layers can 

compensate for the adverse effect of truncation and thus reduce the mean quadratic 

velocity of the uniform portion of the beam at high frequencies. Damping layers are 

preferable to be applied near the wedge tip as frequency increases. For a given 

problem, an optimization using the proposed model is possible to find the exact 

damping layer configuration to achieve the maximum damping effect. Numerical 

results also indicate that the stiffness of the damping layers plays a more important 

role than the mass does, which should be apprehended in the model; while the effect 

of the added mass also needs particular attention when the thickness of damping 

layers is considerable to that of the ABH wedge around the tip area. As a general rule, 

the full coupling between the add-on elements such as the damping layers and the 

host structure is important to consider, which shows the importance of a fully 

coupled model. 

Meanwhile, the developed model predicts a loss of the ABH effect in a beam of 

finite size, which up to now has been reported as a broadband phenomenon above the 

cut-on frequency in semi-infinite ABH structures. The loss of the ABH effect 

features a significantly impaired energy focalization capability in the tapered ABH 

region. The width of the failure band can be quite substantial. When this happens, the 
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vibration energy mainly concentrates within the uniform part of the beam delimited 

by the excitation force, thus neutralizing the expected ABH effect. Physically, the 

presence of the shaker, or mechanical excitation, introduces a discontinuity in the 

local structural impedance to the waves. At certain frequencies (within the failure 

frequency bands), multiple wave reflections take place between the structure boundary 

and the excitation point, forming standing waves and local resonances, thus triggering 

the localization effect. The failure frequencies can be predicted by calculating the 

local resonance frequencies of the beam portion delimited and pinned by the 

excitation point, which allows the avoidance of the phenomenon in the targeted 

application ranges. 

As a final remark, the model also guarantees high accuracy with highly 

consistent results compared with the numerical and experimental results in terms of 

the resonant frequencies and vibration amplitude as well as the distribution.  
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Chapter 4 Imperfect ABH and Methods to Enhance ABH 

Effect 

ABH effect shows appealing potential for passive vibration control [12, 18, 21, 

22, 32], sound radiation control [26, 27] and energy harvesting [29, 30] due to the 

high energy concentration within a confined area. However, manufacturing an ideally 

tailored power-law thickness profile of a structure with embedded ABH feature can 

hardly be achieved in practice. Past research showed that the inevitable truncation at 

the wedge tip of the structure resulting from the manufacturing can significantly 

weaken the expected ABH effect by creating wave reflections [12]. To maximize the 

ABH effect, however, the ultimate pursuit of extremely thin wedge tips incurs high 

cost and poses harsh demand for the precision machining and would also lead to tip 

damage such as tearing. Although Bowyer et al [20] experimentally showed that the 

damage on the wedge tip does not notably affect the ABH effect; Denis et al [36] 

reported that the imperfect wedge tip would reduce the reflection because of the 

resultant scattering effects; structures with ultra-thin or damaged tips however can 

hardly be applied in industry due to the structural strength problems. Therefore, on 

the premise of the minimum achievable truncation thickness by currently available 

manufacturing technology, ways to maximize the ABH effect need to be explored. 

Motivated by this, Bayod [37] proposed a modified thin wedge with extended 

constant thickness to achieve better vibration damping compared with conventional 
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wedge. Experiments and FEM analyses were carried out to confirm this concept. 

Probably due to the lack of simulation tools, however, no deep explanation and 

parametric studies were provided in that work to guide the design of the modified 

wedge. Meanwhile various modified wedge thickness profiles were also proposed 

[15, 30, 43]. Although similar ABH effect as the conventional profile was observed, 

the effect of various parameters defining the modified profiles still needs to be 

systematically analyzed and quantified. On the other hand, nearly all the references 

mentioned above focused on the ABH effect at relatively higher frequencies. Possible 

extension of the ABH effect to lower frequencies is still a great challenge and is of 

particular importance for applications in energy harvesting and noise control. It is 

understandable that none of the above could be done without a reliable and flexible 

simulation tool. 

In this chapter, we focus on seeking ways to achieve better ABH effect on the 

premise of the minimum achievable truncation thickness and the possibility of 

applying ABH effect at low frequencies. Firstly, an Euler-Bernoulli beam, with 

modified thickness profile, 0 0( ) ( )ε= − +mh x x x h  and an extended platform, is 

studied using the previously developed wavelet-decomposed model (Sec. 4.1). Then, 

the effect of the additional thickness 0h and the extended platform is systematically 

discussed through numerical simulations (Sec. 4.2). Particularly, we investigate the 

effect of the profile parameters on the average system loss factor for different 

additional thicknesses and lengths of extended platform. A particular focus is also put 
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on exploring the beneficial effect of the extended platform in the low frequency 

range. Much of the work presented in this chapter has been published in [67]. 

4.1 Modelling of the system 

We consider an Euler-Bernoulli beam composed of a uniform portion with a 

constant thickness hb and an ABH portion, same as that shown in Fig. 2.1. The 

difference is that the ABH part now follows a modified thickness profile, defined as

0 0( ) ( )ε= − +mh x x x h , from x0 to xb1 (Fig. 4.1). When x0 and h0 are both equal to zero, 

it retreats to the conventional power-law thickness profile, i.e. ( ) ε= mh x x . Meanwhile, 

the tip portion is extended to form a platform with a uniform thickness h(x0) from the 

truncation point x0 to xext. The covered damping layers with a variable thickness hd(x) 

from xd1 and xd2 can be either on the ABH profile or on the extended platform. The 

whole system is symmetrical with respect the mid-line of the beam. The extended 

platform end of the beam is free and the other end is elastically supported by 

artificial translational and rotational springs as shown in Fig. 2.1, the stiffness of 

which can be adjusted to achieve various boundary conditions. The damping of both 

the beam and the damping layer are taken into account through complex stiffness E, 

i.e., E =E (1+iη), where η is the damping loss factor, assigned differently to the beam 

and the damping layer. The previously developed wavelet-decomposed method based 

on Lagrange’s equation is used to obtain the vibration response. 
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Fig. 4.1 The ABH part with symmetrical modified power-law profile and extended 

platform. 

Decomposing the flexural displacement of the whole beam by MHW functions 

to obtain the Lagrangian of the system, and then submitting the Lagrangian into the 

Lagrange’s equations, we can finally get and solve the forced and free vibration 

equations, similar to Eqs. (2.11) and (2.12). The detailed procedure can be referred to 

Chapter 2.1. Note that the kinetic and potential energies of the extended platform 

should also be included in the whole system. Accordingly, Eqs. (2.28) and (2,29) are 

re-expressed as   

beam_ABH beam_Uni damp ABH_extend+k k k k kE E E E E= + +              (4.1) 
beam_ABH beam_Uni damp edge ABH-extend+p p p p p pE E E E E E= + + +        (4.2) 

where  

0

ext

ABH_extend
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3
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2 2
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3
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Meanwhile, considering the modified thickness profile and the additional 

coverage of damping layers over the extended platform, the kinetic and potential 

energies from the ABH part and the damping layers should also be considered as 

1

0
, , ,

beam_A
,

BH ( ) ( ) ( ) ( ) ( )db

i s p r

x

i s p r
i s p

x
r

k b a t a t xE x h x xϕr ϕ= ∑∑∑∑∫         (4.3) 
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Then, the components in the mass matrix and stiffness matrix in Eq. (2.11) can be 

rewritten as
 

beam_Uni beam_ABH damp ABH_extend+ +ipsr ipsr ipsr ipsr ipsrM M M M M= +      (4.7) 

  
beam_Uni beam_ABH damp edge ABH_extend+ +ipsr ipsr ipsr ipsr ipsr ipsrK K K K K K= + +   (4.8) 

where 

1

0
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The rest of the components in the mass matrix and stiffness matrix and the force 

vector remain the same as Eqs. (2.32), (2.36), (2.39) and (2.40). 

4.2 Numerical results and discussions 

Consider two clamped-free beams with the same uniform portion under a 

harmonic driving force of 1N applied at the point, 3 cm away from the clamped end 

(as shown in Fig. 4.1). Keep the same truncation thickness h(x0) and profile 

parameters ε and m, the responses of the two beams are first analyzed and compared. 

Case 1 involves a conventional ABH thickness profile ( 1( ) ε= mh x x ) and case 2 a 

modified thickness profile ( 2 0 0( ) ( )ε= − +mh x x x h ). The material and geometrical 

parameters are listed in Table 4.1. Note that truncated at x0=4 cm, the prescribed 

truncation thickness h(x0), 0.02cm, is the same in both cases. As a benchmark system, 

an entirely uniform beam with the same thickness and length as case 1 is also given 

as a reference in the following analyses. 

 

Table 4.1  
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Material and geometrical parameters. 

Material parameters Geometrical parameters 

Beam  

Eb = 210 GPa ε = 0.00125 

ρb = 7800 kg/m3 m = 2 

ηb = 0.001 x0 = 4  

Damping layers h0 = 0.02 cm  

Ed = 5 GPa hb =0.32 cm 

ρd = 950 kg/m3 h(x0)= 0.02 cm 

ηd = 0.1 lUni= xb2- xb1= 12 cm 

 

It should be noted that, in order to keep the same truncated thickness and the 

same uniform beam thickness, the effective length of the ABH part is different in 

cases 1 and 2. However, we start from the assumption that the ABH structure is 

usually used as an add-on part to the existing structure (which is the uniform beam in 

this particular case). In this context, we would accept a slightly different ABH length 

as long as the results remain comparable. In the following analyses, within the range 

we used for ɛ, m and other parameters, the difference in the ABH length is not very 

large, especially for cases of our interest when m is large and truncation thickness is 

small. Meanwhile, we make sure that the cases shown in each figure are comparable 

by ensuring that the same damping layers are applied in all cases, starting from the 
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free end with exactly the same thickness and length. The latter is taken as the shortest 

ABH length if different ABH profiles are involved in figures where comparisons are 

made. 

4.2.1 Effect of the modified thickness profile 

Since tip truncation is inevitable, we will first investigate the possibility of 

changing the thickness profile, aiming at achieving better ABH effect than the 

conventional ABH profile with the same truncation. Keeping the same truncation tips 

with the same minimum achievable thickness h(x0), the modified thickness profile 

(case 2) is different from the conventional ABH thickness profile (case 1) in that it 

possesses an additional thickness term h0. We first investigate the effect of this 

additional thickness term on the ABH effect without the consideration of the 

extended platform.  

Figure 4.2 shows the mean quadratic velocity of the uniform beam portion and 

the mean quadratic velocity ratio Γ (
2

ABH
2

Unif

10 log V
V

Γ < >
=

< >
) between the ABH 

portion and the uniform portion for three different beams without damping layers. It 

can be seen that the overall vibration level of the uniform portion of both beams with 

the conventional and modified ABH profiles are slightly lower at higher frequencies 

compared with their uniform counterpart as a result of ABH effect. However, due to 

the existence of the truncation, flexural waves are reflected back in the absence of the 
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damping layers, which explains the barely noticeable reduction in the vibration level. 

Meanwhile, the modified thickness profile takes better ABH effect than the 

conventional profile by slightly reducing the vibration level at higher frequencies as 

shown in Fig. 4.2 (a). This can be further confirmed in the Fig. 4.2(b) which shows a 

clear vibration energy shift to the ABH portion, in case 2 more than in case 1.  

Since the damping layers take the upmost effect near the truncation tip as shown 

in chapter 3. Fig. 4.3 compares the system loss factors for the same three beam cases 

when same length of damping layers applied. Compared with the entirely uniform 

beam, while the system loss factor in case 1 with conventional ABH profile being 

significantly increased at higher frequencies due to the ABH effect, that of case 2 

with the modified profile is nearly doubled. Meanwhile, different from case 1, the 

lower-order modal loss factor in case 2 also attains noticeable increase. Thus, the 

overall reduction in the vibration level of the uniform portion in case 2 is also larger 

than that in case 1, in comparison with the entirely uniform beam as revealed in Fig. 

4.4, reaching a level as high as 19.2 dB. 
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Fig. 4.2. (a) The mean quadratic velocity of the uniform beam portion, and (b) the 

ratio of the mean quadratic velocity of the ABH portion to the uniform beam portion 

for three different beam cases without damping layers. 
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Fig. 4.3 The system loss factors for three different beam cases with same length of 

damping layers.  
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Fig. 4.4 (a) The mean quadratic velocity of the uniform beam portion, and (b) the 

ratio of the mean quadratic velocity of the ABH portion to the uniform beam portion 

for three different beam cases with same length of damping layers. 

Two plausible reasons could explain the reason why the modified thickness 

profile with an additional thickness h0 outperforms the conventional ABH profile for 

the same given thickness truncation. The mode shapes of the entire beam for the two 

cases are shown and compared in Fig. 4.5. It can be seen that case 2 with modified 

profile promotes larger structural deformation at the ABH portion for both the first 

and one representative higher-order (tenth) mode shape. This enables more energy 

concentration on the ABH portion, conducive to energy absorption by the damping 

layers. From the perspective of the geometrical acoustic theory, the total wave 

reflection coefficient R0 can be expressed as 
0

0 exp( 2 Im ( )d )= − ∫
x

x
R k x x [12], in 

which the local wavenumber 1/4 1/2 1/2( ) 12 ( / ) ( )ω −= lk x c h x with 

(1 ) /l b b bc E jη ρ= +  being the velocity of longitudinal waves. Therefore, R0 is 
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negatively correlated with the integration term 
0

1/2( )−∫
x

x
h x . The derivatives of the 

thickness profiles of case 1 and case 2 are respectively 1
1( ) ε −′ = mh x mx and 

1
2 0( ) ( )ε −′ = − mh x m x x . It can be seen that 1( )′h x  is always larger than 2 ( )′h x . 

Therefore, given the same starting truncation thickness x0, the thickness at any point 

along the beam in case 1 is always larger than that in case 2, i.e. 1/2 1/2
1 2( ) ( )− −<h x h x . 

On the other hand, for the same beam thickness h(xb1), the corresponding x of case 1 

is constantly smaller than that of case 2, i.e. xb1_1< xb1_2. Consequently, the integration

1_ 2

0

1/2
2 ( )bx

x
h x −∫ is always larger than 1_1

0

1/2
1( )bx

x
h x −∫ , resulting in a lower reflection 

coefficient in case 2 as compared to case 1. This implies better ABH effect achieved 

by the case 2 for any ε and m as observed above. 

(a) (b)

5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

 Case 1 lp=0
 Case 2 lp=0

x(cm)

w  

 

5 10 15 20 25 30

-0.6
-0.3
0.0
0.3
0.6
0.9
1.2

x(cm)

w

 Case 1 lp=0
 Case 2 lp=0

 

 

Fig. 4.5 Mode shape comparison for two cases: (a) first mode; (b) tenth mode. 

To quantify the broadband ABH feature of the modified profile, the average 

system loss factor is used and applied to both thickness profiles cases. The band is 

defined starting from a characteristic frequency fcha, at which corresponding 
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wavelength λ  of the incoming wave approaches and starts to be shorter than the 

characteristic ABH dimension, i.e. the length of the ABH part, so that the incoming 

wave can interact more effectively with the ABH element. For 
cha

b
ABH

c L
f

λ = ≤  and

1
2 2

4 4
12

b b
b b

b b

E I Ec fh
A
ω π

ρ ρ
 

= =  
 

 , we get cha 2

4
12

b b

ABH b

h Ef
L

π
ρ

= .  Then, the increase 

in the average system damping loss factor is defined as

2 2( 1) 2( ) 1 1( 1) 1( )
1 1( .... ) ( .... )η η η η η η η

+ +

+ + + +∆ = + + + − + + +∑ ∑
p m q n

p p p m q q q n
p qm n

, where the first 

subscript of η  denotes the case number and the second subscript denotes the mode 

number above the characteristic frequency.  

Figure 4.6 shows the effect of h0 (i.e. the truncation thickness) on η∆  for 

different parameters (frequency band chosen as 10000 ~ 50000 Hz). It can be seen 

that the increase in the ABH effect by the modified profile is much more noticeable 

as h0 reduces, due to the fact that ABH effect is most effective near the very thin 

truncation region. Even a small variation in the thickness profiles with a thinner 

truncation thickness would lead to significant difference in the ABH effect. For the 

same h0, steeper profile variation with a larger profile parameter m is certainly 

helpful, whilst ε, however, showing negligible effect. Noted that to maintain a 

reasonable length comparison of the ABH part for different parameters, the change of 

m in Fig. 4.6 is not very large. If further increase in the parameter m is needed, the 

resultant increase in the ABH effect will be more obvious. Therefore, for larger 

80 
 



 

profile parameter m and smaller truncation thickness, the modified thickness profile 

can greatly increase the ABH effect as compared with the conventional ABH profile 

having the same truncated tip thickness. 
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Fig. 4.6 Average increase in system damping loss factor of case 2 compared with 

case 1 under different parameters of thickness profile. 

4.2.2 Effect of the extended platform 

Using both ideal and modified thickness profiles, the truncated tip is extended to 

form a platform of constant thickness.  Numerical analyses are performed to explore 

the possibility of improving ABH effect at both high and low frequencies using the 

extended platform. Figure 4.7 compares the system loss factors for both cases with 

and without the platform when ABH portion (extended platforms also considered as 
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a part of the ABH portion for convenience) is covered by damping layers with same 

length. It can be seen that the extended platform, with a length lp= 4 cm, significantly 

increases the system damping at higher frequencies for both thickness profiles. As 

defined before, the characteristic frequency ( cha 2

4
12

b b

ABH b

h Ef
L

π
ρ

= ) actually shifts to 

lower frequencies because the characteristic dimension ABHL  of the ABH region is 

enlarged by the extended platform, i. e. = +ABH ABH PL l l . Taking case 1 as an 

example, the characteristic frequency without platform is roughly 2000 Hz, while 

that with the platform reduces to about 1100 Hz, as shown in Fig. 4.7.  On the other 

hand, compared with the cases without platform, the system loss factor with a 

platform also significantly increases below the characteristic frequency. Therefore, 

the extended platform allows achieving better broadband ABH effect while providing 

the possibility to lower its effective region. Owing to the additional benefit of the 

additional thickness h0 revealed above, the modified thickness profile further 

enhances the ABH effect compared with the conventional ABH profile, as 

demonstrated in Fig. 4.7. 
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Fig. 4.7 System loss factors for three different beam cases with and without extended 

platform when damping layers with same length applied. 

    Focusing on case 2 with the modified thickness profile, Fig. 4.8 shows the 

vibration level of the uniform part and the energy ratio of the beams with and without 

platform when damping layers applied. As can be seen from Fig. 4.8 (a), the overall 

vibration level of the uniform beam portion is reduced with the use of the extended 

platform, which is systematic at higher frequencies, but more or less at the lower 

resonant frequencies. It is understandable that the lower frequency alteration in the 

system damping depends more on the modal characteristics of the system, which 

certainly deserves a closer examination. In general, however, the platform allows 

better energy focalization in the ABH part at higher frequencies (Fig. 4.8 (b)). 
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Meanwhile, the first peak in the energy ratio curves increases significantly while the 

corresponding frequency shifts to much lower frequency than the case without 

platform, which implies more effective ABH effect at a lower frequency as well.  
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Fig. 4.8 (a) Mean quadratic velocity of the uniform beam portion, and (b) ratio of 

mean quadratic velocity of the ABH portion to the uniform beam portion for case 2 

with and without extended platform when damping layers with same length applied. 

To further explain the observed phenomena, Fig. 4.9 shows the mode shape with 

and without the extended platform. Similar to Fig. 4.5, the case with a platform 

involves more significant structural deformation at the ABH portion than the one 

without platform at the first mode, allowing better energy concentration in the ABH 

portion. For higher–order mode (tenth mode as an example), the extended platform 

prolongs the active area of the ABH by extending the intensive wave packet to the 

platform area after being compressed by the ABH profile.  

    Fig. 4.10 shows the effect of the length of the extended platform on the system 
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loss factor. As the length increases, the system loss factor also increases in a 

broadband region, not necessarily proportional to the increase in the length of the 

platform. Below the characteristic frequency, although the damping enhancement is 

observable, the tendency, however, is less systematic for different lengths of the 

platform. Nevertheless, the observation that the first system modal loss factors 

increases and the effective frequency is shifted to lower frequencies with the 

increasing platform length still holds. Again, the phenomenon strongly depends on 

the modal behavior of the structure. Therefore, the length of the platform should be 

properly selected to target particular application frequency range with additional 

consideration of the system dimension.  
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Fig. 4.9 Mode shape comparison for case 2 with and without extended platform: (a) 

first mode; (b) tenth mode. 
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Fig. 4.10 System loss factor for case 2 with different lengths of the extended 

platform when damping layers with same length applied. 

The effect of different thickness profile parameters is revealed in Fig. 4.11, 

which shows the influences of the length of the extended platform on the average 

system loss factor for case 2 and the corresponding damping enhancement compared 

with case 1, respectively. It can be seen that, irrespective of the profile parameters, 

the average system loss factor systematically increases as the length of platform 

increases. A larger power parameter m further helps enhancing the effect.  The 

average system loss factor is lower for larger ε and shorter platform, but higher when 

the platform becomes longer. In terms of damping enhancement in case 2 compared 

with case 1, η∆  also increases with m and ε. The decreasing trend of η∆  with the 

length of the extended platform suggests that, although the damping being enhanced 
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for both ideal and modified thickness profiles with the use of extended platform, the 

modified thickness profile, however, allows achieving more significant improvement 

as compared to the ideal thickness profile for shorter platform. This could be an 

additional advantage for using modified profile, since an excessively long extended 

platform may not be feasible in practical applications.  
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Fig. 4.11 (a) Average system loss factor in case 2 within broadband effective 

frequency range and (b) Damping increase compared with case 1 when damping 

layers with same length applied. 

To further examine the effect of the extended platform at lower frequencies, the 

first system modal loss factor ( 1η ) and the frequency of the first peak 1f  on the 

energy ratio curve for different platform lengths and profile parameters are plotted in 

Fig. 4.12. For shorter platform length, 1η  seems to be insensitive to the profile 

parameters. With the increase in the platform length, however, 1η  rapidly increases 

before reaching a certain relatively stable level. Meanwhile, larger m and ε are 

beneficial. Fig. 4.12(b) shows that 1f  is also down-shifted more significantly for 
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larger m and ε, which confirms the favorable effect of the extended platform on 

expanding ABH effect further down to lower frequencies.   
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Fig. 4.12. (a) The first system modal loss factor and (b) The frequency of the first 

peak in the energy ratio curve Γ in case 2 when damping layers with same length 

applied. 

4.3 Short summary 

In this chapter, we investigate an Euler-Bernoulli beam with a modified 

thickness profile and extended platform using the previously developed 

wavelet-decomposed semi-analytical model based on Lagrange’s equation. On the 

premise of the same minimum achievable truncation thickness, the vibration level of 

the uniform part of the beam, the energy distribution and the system loss factor with 

the modified thickness profile are systemically investigated and compared with its 

counterpart with conventional ABH profile when damping layers are applied. It is 
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shown that the ABH effect can be significantly enhanced through the use of the 

modified thickness profile in terms of vibration reduction of the uniform part, energy 

distribution and the system loss factor. The observed improvement on ABH effect 

can be explained using the geometrical acoustical theory, which indicates a reduced 

wave reflection coefficient as a result of the modified thickness profile irrespective of 

m and ε. The improvement in the ABH effect is more significant with larger power 

parameter m and smaller truncation thickness, with negligible influence of parameter 

ε. 

The use of an extended platform brings about two positive effects: an 

enhancement of the overall system damping in a broad frequency band above the 

cut-on frequency; and an appreciable shift of the ABH effect towards low frequency. 

For the former, the system loss factors increases with the length of the extended 

platform, especially with a larger power index m. The effect of parameter ε, however, 

depends on the length of the extended platform. Therefore, an optimal configuration 

needs to be worked out in order to find the best combination among different 

parameters. For the latter, the extended platform can significantly enlarge the first 

peak of energy ratio and shift it to lower frequency, which provides the possibility of 

catering ABH effect for lower frequency applications. The tuning of this 

phenomenon, however, strongly depends on the modal behavior of the whole system, 

which again requires meticulous analyses using a simulation tool (as the one used in 

this work) to optimize the ABH performance for particular applications. 
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In conclusion, for a given truncation thickness, which can possibly be achieved 

by currently available manufacture technology or prescribed by practical limitation 

due to the structural strength consideration, an ABH wedge can be profiled and 

manufactured according the proposed modified thickness profile with an extended 

platform to prolong the ABH effect. By choosing appropriate parameters such as m, ε 

and the length of the platform, enhanced ABH effect can be achieved in a broad 

frequency range, including the possibility of performance tuning at lower 

frequencies. 
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Chapter 5 Beams with Multiple ABHs for Vibration 

Applications 

Intensive ABH research has covered various aspects of both 1D and 2D 

structures in recent years. The effectiveness of using a single ABH element for 

attenuating bending vibrations has been demonstrated in various theoretical and 

experimental studies. Semi-infinite 1-D structures have been extensively investigated 

using models such as the geometrical acoustic approach [7, 12] and the impedance 

method [18]. These studies reveal insight into the dominant wave propagation 

phenomena, such as the reduction in the reflection coefficient of flexural waves when 

the frequency increases. For 1-D structures of finite size, the ABH effect has also 

been observed both theoretically and experimentally in chapters 2, 3, and 4. 

Meanwhile, the use of different thickness profiles was also exploited for both 1D [15, 

37, 67] and 2D configurations [43].  

The major flaw of a single ABH element is that, although ABH effects start to 

appear above a certain frequency when local ABH dynamics are cut-on, systematic 

broadband ABH effects can only be achieved above a much higher characteristic 

frequency as indicated in Chapter 4. Embedding multiple ABHs can, to some extent, 

improve the low frequency performance without increasing the ABH dimension [45], 

with applications extended for sound radiation [26]. Existing studies on multiple 

ABHs [26, 28-30, 45] are mostly based on experiment and the Finite Element 
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Method. These studies show the ABH effect on wave propagation characteristics. 

However, the possible accumulated ABH effect and wave filter effect induced by 

multiple ABHs were not chosen to be the main focus of the discussions. Meanwhile, 

given limited structural space for ABH part, the performance of the structure with 

different number and distribution of ABHs remains unknown. It is therefore 

important to compare this performance with the case containing only one ABH to 

optimize the design of the number and distribution of ABHs to maximum the ABH 

effect.  

In this Chapter, we first investigate an Euler-Bernoulli beam containing multiple 

ABHs using the wavelet-decomposed energy method developed in Sec. 5.1. The 

system loss factors of the cases with single and multiple ABHs under the same length 

of ABH part are compared. The effects of parameters including the power index m, 

truncation thickness h0, platform length lp and the distribution of ABHs are also 

studied. Furthermore, special wave filter phenomenon in multiple ABHs structures is 

analyzed in terms of vibrational energy distributions and transmissions. Then, to 

illustrate and explain the physical phenomena arising from multiple ABHs, the 

wavelet-decomposed energy model is expanded to deal with an infinite periodic 

structure with ABHs in Sec. 5.2. The model is verified and the comparison between 

infinite and finite structures is made thereafter. Meanwhile, the ABH parameters are 

analyzed to achieve broader filter gaps. Much of the work has been published in Ref. 

[68]  
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5.1 Finite structures with multiple ABHs 

5.1.1 Modelling procedure 

The wavelet-decomposed model developed in Chapter 2 is used to investigate a 

structure of finite size with multiple ABHs, as shown in Fig. 5.1. The tapered ABH 

parts can be covered by thin damping layers. The thickness profile takes the form

0( ) ε= +mh x x h , as shown in Fig. 5.1(b). Artificial translational and rotational 

springs, of distributed stiffness K and Q, can be adjusted to achieve various boundary 

conditions. The damping of both the beam and the damping layer is taken into 

account within the complex Young’s modulus E, i.e., E =E (1+jη), where η is the 

damping loss factor, to be assigned different values for the beam and the damping 

layer. The modelling procedure is almost the same as in Chapter 2, which is omitted 

here.  

(a)

hb(b)

0.5a
h0

lABH

h(x)=ɛxm
+h0

y

x
o

K 

Q

Damping layerh0+hd

lp

Fig. 5.1 Sketch of (a) an Euler-Bernoulli beam with multiple ABHs and (b) the 

thickness profile 
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5.1.2 Performance comparison between single and multiple ABHs 

To compare the performance of structures with different numbers of ABHs 

under the same available space, consider three clamped beams with the same 

thickness and length, containing one, two, and three ABH elements, respectively. For 

each beam, the sum length of the ABH profile and extended platform keeps constant 

as well as the sum of the uniform part and the truncation thickness. The damping 

layers are applied over the ABH profile and extended platform also keep constant. 

The material and geometrical parameters are tabulated in Table 5.1.  

Table 5.1 Material and geometrical parameters 

 Beam Damping layers 

Material parameters Eb = 210 GPa Ed = 5 GPa 

 ρb = 7800 kg/m3 ρd = 950 kg/m3 

 ηb = 0.001 ηd = 0.1 

 

Geometrical parameters 
 

hb =0.32 cm h0 =0.02 cm 

hd=0.02 cm  

 Sum(lABH +lp )= 24 cm Sum(lUni )= 24 cm 

  Without loss of generality, we set the total length of the ABH profile as 16 cm and 

the extended platform as 8 cm, and compare the system loss factors of the three 

beams in Fig. 5.2 when the taper power m is 2. For beams with one, two, and three 
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ABH elements, the characteristic frequencies [67] are respectively approximate as 

1050Hz, 4200Hz, and 9500Hz. As can be seen, above each characteristic frequency, 

the system loss factors for the beam itself increase systematically as compared with 

the bare beam without damping layers and reach to a stable level as expected. As 

long as three beams all reach their characteristic frequencies, the loss factors show 

little difference among beams embedded with different ABH elements. This is 

understandable because above the characteristic frequency, the wavelength is shorter 

than the characteristic ABH dimension; the wave slows down in ABH profile and can 

interact more effectively with the ABH element (including both the ABH portion and 

the extended platform). While in present situation, the whole length of the ABH part 

remains the same. Therefore, the overall performance at high frequencies is almost 

the same too. Below the characteristic frequency, the damping enhancement for the 

beams with different ABH elements is less systematic. However, when increasing the 

number of ABHs, the first system loss factor can reach a lower frequency with high 

value. This indicates that increasing the number of ABHs would help to enhance the 

low frequency performance of the structures with ABHs occupying the same beam 

length. When m equals to 3, the comparison is also given in Fig. 5.3. The observation 

is consistent with that with m being 2. Meanwhile, because of the positive role of m 

on the ABH effect, the overall system damping loss factors are slightly increased. 
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Fig. 5.2 System damping loss factors comparison for different number of ABHs 

when m=2. 
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Fig. 5.3 System damping loss factors comparison for different number of ABHs 

when m=3 
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    To further quantify the effect of the number of ABH elements, the system 

average damping loss factors before and after the characteristic frequency (9500 Hz) 

for different numbers of ABHs are compared with different truncation thicknesses h0 

in Fig. 5.4. It can be seen that the overall system damping loss factor significantly 

increases when the truncation thickness of the three beams gets smaller, which is 

consistent with the observation made in Chapter 3. For a larger m, the average system 

damping loss factors also increase. More importantly, with a larger number of ABH 

elements, the average loss factors in the relatively low frequency range (below 9500 

Hz) also increase. On the contrary, the average loss factors above 9500 Hz slightly 

reduce in both cases when m is 2 and 3. Especially, when the truncation thickness is 

smaller, the corresponding increase of the average loss factors at low frequencies or 

the decrease at high frequencies is more obvious. The decrease of the average loss 

factors at high frequencies may result from the fact that although the wavelength is 

shorter than each characteristic ABH dimension above the characteristic frequency, 

the concentrated wave energy can be absorbed more effectively in each ABH element 

with a longer length, which is the case of the beam with fewer ABHs. Therefore, the 

average loss factor in beams with less ABHs is higher. Meanwhile, since the smaller 

of the truncation thickness, the more effective of the ABH effect, the resultant 

difference becomes more obvious for smaller truncation thickness. 

97 
 



 

lp=0

0

0.01

0.02

0.03

0.04

0.05

n=1

n=2

n=3

0

0.01

0.02

0.03

0.04

0.05

n=1

n=2

n=3

h0=0.005 h0=0.01 h0=0.04h0=0.02

m=3

h0=0.005 h0=0.01 h0=0.02 h0=0.04

<9500 >9500

<9500 >9500

m=2(a)

(b)

 

Fig. 5.4 Comparison of the system average damping loss factors before and after the 

characteristic frequency (9500 Hz) for different number of ABHs under different 

truncation thickness h0 : (a) when m=2 and (b) when m=3. 

    The effect of the length of the extended platform on the average damping loss 

factors for different ABHs is also shown in Fig. 5.5. Similar observation can be seen 

that with more ABHs, the average loss factor reduces above the characteristic 

frequency while increase below it. As discussed in Chapter 4, increasing the length of 

the platform would increase the overall loss factors. Meanwhile, due to the same 
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reason stated above, a longer length of the platform provides more space to dissipate 

the concentrated wave. Therefore, the difference of the average damping loss factor 

above the characteristic frequency between different beams with different ABHs is 

reduced as the length of platform increases. For the average loss factors below the 

characteristic frequency, the difference seems to be more obvious. 
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Fig. 5.5 Comparison of the system average damping loss factors before and after the 

characteristic frequency (9500 Hz) for different number of ABHs under different 

platform length lp: (a) when m=2 and (b) when m=3. 

    Figure 5.6 shows the effect of the location of the ABH elements on the system 
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damping loss factors. Only two ABH elements are considered in the beam for the 

sake of simplicity. Above the characteristic frequency, the damping loss factor is 

almost the same for different locations of the two ABH elements. For lower 

frequency range, the loss factor strongly depends on the structural mode involved. 

Therefore, the average damping loss factors are compared in Fig. 5.7. Consistent 

with the results shown in Fig. 5.6, the average damping loss factors above the 

characteristic frequency can be barely seen. However, below the characteristic 

frequency, the average damping loss factors greatly reduces when the two ABH 

elements are connected together compared with other distribution cases, which 

should be avoided in the application. 
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Fig. 5.6 System damping loss factors comparison for different layout of ABHs when 
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n=2 and m=2. The length of three uniform part separated by two ABH elements are 

used to identify the layout of the ABH elements, as shown in each symbol label. 
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Fig. 5.7 Comparison of the system average loss factors before and after the 

characteristic frequency (9500 Hz) for different layout of ABHs when m=2. 

In general, when the space for ABHs is constant and limited, for higher 

frequency, placing one ABH element rather than multiple ABH elements allows more 

effective damping; for mid-low frequency, increasing the number of the ABHs is 

benefit to enhance the overall damping performance. Meanwhile, a larger number of 

ABHs can reduce the effective frequency of the ABH effect. However, for particular 

frequency bands, the number of ABH elements should be carefully chosen by using 

the developed model because the increased damping effect is modal dependent. 

Besides, the layout of the ABH elements shows little effect on the overall 

performance of the ABH except for cases where ABH elements are connected 

together, which will impair the overall damping performance below the characteristic 
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frequency. 

5.1.3 Multiple ABHs effect 

In this section, to further investigate the possible multiple ABHs effect (for 

example the accumulated effect and wave filter effect), the ABH element are kept 

constant while the number is increased. As a numerical example, consider three 

free-free beams containing one, two, and three identical ABH elements, respectively. 

An entirely uniform beam, having the same thickness hb and the same total length as 

the beam with three ABHs, is also included as a reference. For simplify, no extended 

platform is included in this section, namely lp=0. The material and geometrical 

parameters are the same as in the Table 5.1 except for a being 8 cm and lABH being 2 

cm. A unit excitation force is applied at the free end of the beam while the receiving 

point is placed at the other free end. 

Figure 5.8 (a) compares the vibration transmission of the three ABH beams with 

that of the reference beam without damping layers. The vibration transmission is 

defined as out

in

20 log w
w

, in which inw is the input displacement at the excitation point 

and outw  is the output displacement at the receiving point. The vibration 

transmission of the beams with ABHs is significantly reduced in four broad 

frequency bands, 150-850 Hz, 2.1-8.8 kHz, 10.4-14.8 kHz, and 18.3-21.6 kHz, which 

can loosely be referred to as ‘attenuation bands’ (Comparisons of these attenuation 
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bands with the ‘band gaps’ used in infinite structures will be performed at a later 

stage). Meanwhile, transmission reduces quite significantly as the number of ABHs 

increases. The minimum transmission reaches nearly -60 dB when three ABH 

elements are present. This observation suggests that, compared with the uniform 

beam, ABH elements act as efficient vibration isolators at specific frequencies even 

in the absence of the damping layers. The transmission curves are compared again in 

Fig. 5.8 (b) for samples with damping layers applied over the ABH sections and the 

corresponding regions of the uniform reference beam. The damping layers show little 

influence on the attenuation bands in terms of both frequency distribution and 

attenuation intensity, which suggests that the observed vibration attenuation in the 

attenuation bands is not caused by the dissipation. However, energy concentration in 

the ABH section from the ABH effect leads to significantly reduced transmission of 

the beam with ABHs at the resonant frequencies, in agreement with the common 

understanding on the conventional ABH structures. As expected, this reduction is 

also increased with the number of ABH elements. 
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Fig. 5.8 Comparisons of vibration transmission involving beams with one, two, and 

three ABHs and the uniform reference beam. (a) with no damping layers applied and 

(b) with damping layers applied for hd=0.02 cm 

The displacement distribution at 5.8 kHz (roughly the trough of the second 

attenuation band) is compared in Fig. 5.9 for different beams with damping layers to 

examine what happens inside the attenuation bands. As can be seen, for the uniform 

reference beam, the vibration is fairly balanced along the entire beam span; with only 

one ABH element, the vibration is mainly concentrated on the ABH part while the 

vibration energy is attenuated to some extent at the receiving point of the uniform 

part. With additional ABH elements, the wave is further attenuated when passing 

through each ABH, resulting in negligible vibration towards the end of the uniform 

region for the beam with three ABH elements. 
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Fig. 5.9 Displacement distribution at 5.8 kHz for different beams with A1 denoting 

the ABH part closest to the point excitation. 

Focusing now on the beam with three ABHs with damping layers, its energy 

and displacement distribution along the beam span is further illustrated in Fig. 5.10. 

Fig. 5.10(a) shows the energy ratio Γ (
2

ABH
2

Unif

10 log V
V

Γ < >
=

< >
) between each ABH 

part and the uniform part in terms of the averaged quadratic velocity with A1 

denoting the ABH part closest to the force input. It can be seen that the energy is 

mainly trapped in the first ABH portion, adjacent to the force excitation, while less 

and less energy propagates to the subsequent ABH elements within the attenuation 

bands, as shown in Fig. 5.8. At other frequencies, however, the energy distribution 

among different ABHs is fairly balanced among different portions of the beam. This 

phenomenon can be substantiated by the displacement distribution at two 
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representative frequencies as shown in Fig. 5.10 (b). At 5.8 kHz in the second 

attenuation band with the lowest transmission (as also shown in Fig. 5.9), the 

vibration level is significantly suppressed after the wave passes through the first 

ABH, part A1, and the remaining vibration is almost negligible, especially for the 

last uniform part past the third ABH element, A3. However, at 25 kHz beyond the 

fourth attenuation bands, the wave is compressed within the three ABH regions with 

the vibration amplitude greatly amplified compared with that of the remaining 

uniform part. Clearly, the vibration of the uniform part is reduced because of the 

ABH effect, but the displacement level within each ABH area remains comparable. 

In conclusion, numerical simulations show the existence of the attenuation 

bands, within which significant wave attenuation can be achieved using a small 

number of ABH elements. Apparently, they appear at relatively low frequencies, 

typically before the so-called characteristic frequency chaf as stated in Chapter 4. 

Above this frequency, the incoming wavelength starts to be equal to or less than the 

geometrical characteristic dimension of the ABH element, which is 16731 Hz in the 

present case. This frequency range can be loosely called mid-to-high frequencies. 

Contrary to the structure with a single ABH element where waves are systematically 

attenuated only after the characteristic frequency [67], the structure with multiple 

ABHs brings new perspective to the wave attenuation.  
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Fig. 5.10 (a) Energy ratio between the ABH part and the uniform part, with A1 

denoting the ABH part closest to the excitation point, and (b) displacement 

distribution at 5.8 kHz and 25 kHz. The shadow areas denote the three ABH regions. 

5.2 Infinite structures with periodic ABHs 

To better explain the physical phenomena observed from the above analyses 

with multiple ABHs, infinite structures with periodic ABHs, forming so-called 

Phononic Crystals (PCs), are investigated. The possible band gaps existing in PCs 

may provide new impetus to revisit the above issue.   

5.2.1 Brief introduction of Phononic Crystals 

Phononic Crystals (PCs) [69] are artificial media consisting of periodic 

materials or components with the ability to achieve unusual wave propagation 

characteristics, such as waves filtering [70, 71], negative refraction [72-74], and band 

gaps [75-77] etc. As one of the most attractive physical properties of the PCs, band 
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gaps means the frequency bands in which elastic wave cannot propagate, thus 

showing great potentials for applications such as vibration control, wave 

manipulation and sound absorptions etc. Out of band gaps, the wave can propagate 

without attenuation when ignoring the material damping, which thus is referred to as 

passbands. The band gaps are usually exhibited in band structures, namely the 

dispersion curves between the eigen-frequency and the wave vector k. Because of 

both the materials and geometric periodic properties in PCs, the Bloch theorem 

reveals that the eigen-frequency and the eigen-mode also show the same periodic 

properties. To find the band gaps existing in PCs, we only need to find the dispersion 

curves in the first Brillouin zone [78]. In band structures, the frequency bands where 

no any dispersion curves exists are called band gaps while the remaining bands are 

called passbands. Theoretically, band structures only apply to ideally infinite periodic 

structures. For practical applications, periodic structures can only be finite, where the 

band gaps would exhibit a quick wave energy attenuation after passing through each 

unit cell. In this situation, a transmission coefficient is usually used to define the 

band gap characteristics. The frequency bands with extremely low transmission 

coefficient usually correspond to the band gaps.  Meanwhile, the transmission 

coefficient will further reduce as the number of cells increases. 

Band gaps can be generated mainly through two physical mechanisms: Bragg 

scattering [79-82] or local resonances [83-91]. The former are usually formed by 

placing scatterers periodically into the matrix structures. For one-dimensional 
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phononic beams, this can be achieved by periodically connected two components A 

and B with different material properties (Young’s modulus and density) and cross 

sections [82, 92], as shown in Fig. 5.11(a). To ensure destructive interferences, the 

difference between the material properties and cross sections should be large enough 

to generate band gaps. Meanwhile, the band gaps can be only obtained in the 

frequency bands where the wavelength scales is comparable with the lattice constant 

[78]. Therefore, to attenuate low frequency and long wavelength waves, the unit cell 

needs to be prohibitively large. Meanwhile, a large number of elements are needed to 

achieve broad band gaps. These limitations can be overcome using locally resonant 

band gaps by attaching local resonators [81, 93], with typical one-dimensional 

phononic beams as shown in Fig. 5.11(b). The band gaps are more dependent on the 

local resonances of the scatterers rather than the periodic elements arrangement. 

Therefore, the band gaps can reach relatively low frequency bands without large 

scale of lattice constant. However, as shown in Fig. 5.11(b), since the resonators 

usually contain single-degree-of-freedom, the gaps are narrow, near the resonant 

frequencies of the resonators. These two types of band gaps are difficult to conciliate. 

In addition, the demanding fabrication process and numerous interfaces required by 

conventional PCs also hamper the practical applications of the PCs. 
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Fig. 5.11 sketch of two main typical types of phononic beams: (a) Bragg scattering 

mechanism and (b) locally resonant mechanism. 

The ABH effect may offer a new perspective to resolve the aforementioned 

problem. In an idealized ABH structure, the phase and group velocities of the 

flexural waves gradually reduce to zero at the tip of the taper, thus annulling wave 

reflection. When this happens, the tapered ABH becomes an ideal energy absorber 

because of the high energy concentration and trapping. Despite the inevitable 

truncated thickness of the structures in practice, considerable ABH effect can still be 

observed with /without the use of a damping layer coated over the ABH region [42, 

43, 53]. An interesting question is whether broad band gaps could be achieved at low 

frequencies through ABH effects by using a small number of ABH elements without 

attaching additional elements and creating multiple interfaces. If achievable, how can 

simulation and design serve to predict this behavior. To the best of our knowledge, 

there is only one paper dealing with an infinite 2D ABH lattice [50]. The work 
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clearly shows the ABH cells can be used to generate unique dispersion properties, 

such as negative group refraction index, zero group velocity in the fundamental 

modes, and birefraction, etc. Applications of ABH-like profiles in various 

meta-surfaces are also attempted in the realization of anomalous refraction, focal 

lenses and phase masks [51]. However, due to the complex wave travel paths in a 2D 

system, whether absolute band gaps exist still remains unknown. If any, the band 

gaps could also be quite narrow, specific to certain types of wave modes. Owing to 

the relatively simple wave travel path in 1D structures, it is interesting to revisit this 

issue in 1D configuration, which may explain the physical phenomena observed in 

Set. 5.1.3. 

5.2.2 Modelling procedure 

The developed wavelet-decomposed energy method is expanded to investigate 

an infinite lattice with periodic ABH cells, as shown in Fig. 5.12.  

nth  (n+1)th (n-1)th 
0 a

x

y

2a

Fig. 5.12 Sketch of an infinite Euler-Bernoulli beam with periodic ABH cells with a 

lattice constant a. 

The flexural displacement w is again expanded using Mexican Hat Wavelets as 
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in Eq. (5.1). The Lagrangian of the system is written as the sum of Lagrangians of 

every unit cell 

n nk np
n n

L L E E
+∞ +∞

=−∞ =−∞

= = −∑ ∑                      (5.4) 

where Enk and Enp are, respectively, the kinetic energy and the potential energy of the 

nth unit-cell, expressed as 

 
2( )1 d

2
n

nk
w xE V

t
ρ ∂ =  ∂ ∫ , 

22

2

( )1 ( ) d
2

n
np

w xE EI x x
x

 ∂
=  ∂ 

∫          (5.5) 

Considering periodic boundary conditions, the displacement and its second 

derivative between the nth and the (n+1)th unit-cells should satisfy the following 

relationship  

1
( ) ( )

n n

jkaw x a e w x
+

+ =                           (5.6) 

1
( ) ( )

n n

jkaw x a e w x
+

′′ ′′+ =                           (5.7) 

where k is the wave vector and a the lattice constant. 

By substituting Eqs. (5.6) and (5.7) into Eq. (5.5), the relationship 2
1

jka
n nL e L+ =

is obtained. Similarly, the Lagrangian of any (n+q)th unit-cell is obtained by 

2qjka
n q nL e L+ = with q being any integer. Thus Eq. (5.4) can be rewritten as 

2qjka
n n

n q
L L L e

+∞ +∞

=−∞ =−∞

= =∑ ∑                      (5.8) 

Therefore, the extremalization of the Hamiltonian function of the entire infinite 

system can mathematically be expressed in terms of the Lagrangians of one unit-cell 

as follows 
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L L
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 ∂ ∂
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                    (5.9) 

In other words, solving the Lagrange’s equations of one-unit cell leads to the result 

for the whole system. Meanwhile, this set of Lagrange’s equations has a very similar 

form as the one established in Sec. 5.1 for one ABH element. The only difference is 

that this single unit-cell is boundary free with artificial spring stiffnesses K and Q 

being set to zero, and satisfies the periodic boundary conditions in terms of 

displacement, rotation angle, bending moment, and shear force as follows  

( ) (0)jka
n nw a e w=                         (5.10) 

( ) (0)jka
n nw a e w′ ′=                         (5.11) 

( ) (0)jka
n nw a e w′′ ′′=                         (5.12) 

( ) (0)jka
n nw a e w′′′ ′′′= −                        (5.13) 

The displacement w can be rewritten as , ,
=0 1

( , ) ( ) ( ) ( )
m n

i s i s i i
i s i

w x t a t x a xϕ ϕ
=

= =∑∑ ∑ . 

Taking the periodic boundary condition Eq. (5.10) into account, one can get 

 ( )
1

( ) (0) 0
n

jka
i i i

i
a e ajj
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− =∑                     (5.14) 
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with i

i

m
m

m
n

A
A

λ =  and ( ) (0)
i i i

m m jka mA a ejj = − . Here, the superscript m denotes the 

derivative order. The displacement can then be re-expressed as  
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Considering additional periodic boundary condition Eq. (5.11), we can get an-1 

and the displacement similarly as 

2

1
1 1 1

n
i i

n i
i n n

a aλ λ
λ λ

−

−
= − −

 ′−
=  ′− + 

∑                     (5.17) 

2

1 1
1 1 1 1 1

( , ) ( ) ( ) ( )
n

i i i i
i n n i n i

i n n n n

w x t x x x aλ λ λ λϕ ϕ λ λ ϕ
λ λ λ λ

−

− −
= − − − −

  ′ ′− − = + + −  ′ ′− + −   
∑  (5.18) 

With further consideration of the other two periodic boundary conditions, Eqs. (5.12) 

and (5.13), the displacement can be accordingly rewritten as detailed in Appendix A. 

Submitting the displacement expression into Eq. (9), one can get a matrix equation 

similar to Eq. (3) in the harmonic regime. For each given value of wave vector k, the 

corresponding eigen-frequencies can be determined from the matrix equation. This 

allows us to obtain the dispersion curves of the lattice, from which band 

characteristics of the structure can be revealed. 

5.2.3 Model verification and mechanism exploration 

Using the same material and ABH parameters as in Sec. 5.1.3, infinite periodic 

structures are investigated hereafter to explain the physical phenomena previously 

observed on the finite structures with multiple ABHs. 

In Fig. 5.13 we compare the dispersion curves obtained using the present model 

under different periodic boundary conditions with those from the FEM results using 

COMSOL Multiphysics 5.2. For the FEM, one 2-D unit-cell is developed with a 
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sufficient mesh with free tetrahedral and the Floquet periodic boundary condition is 

imposed at the edges of the unit-cell. A reduced frequency Rf , defined as = /Rf fa c , is 

also introduced as a reference, with c being the wave velocity of the uniform beam 

(with a length of a). As can be seen, the results from the present model with two 

periodic boundary conditions, displacement w and rotation angle w′ , match very well 

with the results from the FEM especially in the mid-low frequency range. The 

differences at the high frequencies are mainly attributable to neglect of the shear and 

torsional effect in the present method. Note that using the additional periodic 

boundary conditions of w′′ and w′′′  brings barely noticeable changes to the results. 

This indicates that the two periodic boundary conditions on the displacement and 

rotation angle are sufficient to describe the structural periodicity as well as the band 

structures. Meanwhile, five band gaps are shown to exist below 30 kHz. The first 

three are relatively flat, showing typical characteristics of locally resonant band gaps. 

The bandwidth versus the central frequency of the band, i.e. ( )
_upper _lower

_upper _lower+ / 2
R R

R R

f f
f f

−
, is 

used to describe the relative bandwidth. The relative bandwidths of the first three 

band gaps are 1.38, 1.21, 0.35, respectively, which are very broad compared with the 

conventional locally resonant bandwidths.  
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Fig. 5.13 Dispersion curves. Comparison between the results from the present 

infinite periodic model with different periodic boundary conditions and from the 

FEM. = /Rf fa c  is the reduced frequency with c being the wave velocity of the 

uniform beam having length a. 

The observed phenomenon can be explained by the theory elaborated in Mead 

[94, 95]. In symmetric structures, all coupling coordinates between any two 

neighboring unit-cells can be divided into two types: the first type (type I coordinate) 

has the same sign and magnitudes, whereas the second (type II coordinate) has 

opposite signs and equal magnitudes for a symmetric vibration mode. It was 

theoretically proven that the bounding frequencies of the passbands can be identified 

with the natural frequencies of a single periodic element with two classes of 

boundary conditions – type I coordinate locked and type II free, or oppositely, type I 
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free and type II locked. Specifically, the displacement and the rotational slope belong 

to I and II coordinates, respectively. Therefore, in the present case, the 

aforementioned periodic boundary condition in terms of displacement and rotational 

slope can fully determine the band structures. When predicting the band gaps using 

one periodic element, this corresponds to simply-supported or sliding-sliding 

boundary conditions, which can be achieved by setting K or Q to zero.  

The above analyses can be further validated by comparing the mode shapes 

between the bounding frequencies of the band gaps (labeled in Fig. 5.13) and the 

resonant frequencies of a single element, as shown in Fig. 5.14. The mode shapes, as 

well as the resonant frequencies (not shown here), from the single element match 

perfectly with those of the infinite beam. We highlight that, with the help of the 

previously developed finite model, one can obtain band structure information by only 

analyzing a single element rather than the entire infinite periodic structure. This 

greatly saves calculation time and provides a simple way to predict, and eventually 

optimize, band structures based on a single element. Looking back at the mode 

shapes of the unit-cell, vibration mainly concentrates on the ABH part with reduced 

wavelengths, as shown in Fig. 5.14. The ABH effect promotes wave accumulation 

with decreasing structural thickness and, consequently, the wave amplitude is 

amplified. Ideally, if the thickness of the ABH approaches zero, no wave will be 

reflected back, such that an ABH element could be an ideal local resonator 

containing multiple localized frequencies for the full frequency band. The inevitable 
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truncation thickness however generates wave reflections, albeit weak in practice, 

partly impairing local resonance effects. When the ABH part dominates the vibration 

of the unit-cell while the uniform part is weakly activated, locally resonant modes 

and band gaps appear, exemplified by the first and third modes and band gaps shown 

in Fig. 5.14 and Fig. 5.13. Conventional methods to achieve locally resonant band 

gaps use single-degree-of-freedom spring mass resonators, which are only effective 

near their resonant frequencies within a relatively narrow band gap. In present case, 

however, the ABH part acts as a continuous local resonator with multiple degrees of 

freedom, thus generating multiple broad locally resonant band gaps. The local 

resonance is gradually weakened when the uniform part is activated with increasing 

frequency, as shown in the mode shape of band gap 4 in Fig. 5.14.   

118 
 



 

L1
U1

L2
U2

L3

U3

L4

U4

(a) (b)

(c) (d)

(e)
(f)

(g) (h)

0 1 2 3 4 5 6 7 8
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2

 Periodic
 Single Q=0

 

 

w

x(cm)
0 1 2 3 4 5 6 7 8

-1.2
-0.8
-0.4
0.0
0.4
0.8
1.2

 Periodic
 Single K=0

 

 

w

x(cm)

0 1 2 3 4 5 6 7 8
-1.2
-0.8
-0.4
0.0
0.4
0.8
1.2

 Periodic
 Single Q=0

 

 

w

x(cm)
0 1 2 3 4 5 6 7 8

-0.2
0.0
0.2
0.4
0.6
0.8
1.0  Periodic

 Single K=0

 

 

w

x(cm)

0 1 2 3 4 5 6 7 8
-1.2
-0.8
-0.4
0.0
0.4
0.8
1.2

 Periodic
 Single K=0

 

 

w

x(cm)0 1 2 3 4 5 6 7 8
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2

 Periodic
 Single Q=0

 

 

w

x(cm)

0 1 2 3 4 5 6 7 8
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2

 Periodic
 Single K=0

 

 

w

x(cm)
0 1 2 3 4 5 6 7 8

-1.2
-0.8
-0.4
0.0
0.4
0.8
1.2

 Periodic
 Single Q=0

 

 

w

x(cm)

(f)

 

Fig. 5.14 Mode shape comparisons between the bounding frequencies of the band 

gaps and the resonant frequencies of a single element: the upper row relates to the 
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upper bounding frequencies while the lower row is the lower bounding frequencies 

of each band gap. 

5.2.4 Comparison with finite structures 

    To demonstrate the correlation between the behavior of the finite structure and 

that of the infinite periodic structure, the dispersion curves of the infinite periodic 

beam and the vibration transmission of the finite beam with three ABHs are 

re-plotted and compared in Fig. 5.15. The distribution of the transmission attenuation 

bands is in good agreement with the band gaps. Moreover, only three ABH elements 

are needed to create attenuation bands, as a result of the dominant role played by the 

local resonant mechanism of the ABH elements. Contrary to Bragg scattering, which 

strongly depends on the periodicity of the elements, the locally resonant effect relies 

on the locally resonant characteristics of the unit-cells more than the periodicity.24 

Consequently, the attenuation bands obtained here are also due to the locally resonant 

characteristics of the unit cells rather than the periodicity of the elements in the beam 

structures.   
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Fig. 5.15 (a) Dispersion curves of the infinite periodic beam; (b) transmission of 

finite beam with three ABH elements 

In infinite periodic beams, band gaps are the frequency bands within which 

waves cannot propagate. In finite beams, however, it is relevant to understand what 

happens in the attenuation bands and where the vibration energies go if they are not 

absorbed by the added damping as observed in Fig. 5.8. To answer this question, the 

driving point mobilities, i.e. the ratio between the velocity of the input force point 

over the input force, in a finite beam with three ABH elements and the uniform 

reference beam are compared in Fig. 5.16. As can be seen, the driving point mobility 

of the beam with ABHs shows no resonant peaks in the attenuation bands and has 

quite low amplitude compared with that of the uniform beam. Since the input force is 

a unit force, the driving point mobilities can also reflect the level of the input energy. 

Therefore, in the attenuation bands, the input energy in the beam with ABH elements 

is much lower than that of the uniform beam because of the structural inherent 

properties. In another word, the special design of the beam hampers the vibration 

121 
 



 

energy input leading to the significant reduction of the vibration level of the 

structure. 
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Fig. 5.16 Driving point mobility comparisons between the finite beam with three 

ABH elements and the uniform reference beam when no damping layers are applied.  

5.2.5 Parametric analyses 

Since the band gaps mainly depend on the local resonant of the ABHs, it is 

important to investigate effects of the geometrical parameters of the ABH taper, such 

as the power index m , the truncation thickness h0, the length of the extended 

platform on the band gaps. 

    Figure 5.17 illustrates the first four band gaps for different power indices m. As 

one can see, increasing m would decrease the lower and upper boundary of band gaps 

122 
 



 

overall. Meanwhile, in most cases, the bandwidth at low frequencies also increases 

with larger m. The passbands also become narrower with increasing m, which leads 

to flatter band gaps on the dispersion curves and better local resonant characteristics. 

This can be understood in light of the positive effect of m on the ABH effect. It is 

relevant to note that, with an excessively large m, the smoothness criteria would no 

longer be satisfied [7, 16], and would possibly generate wave scattering, impairing 

the ABH effect. As a result, the local resonance effect may also be weakened and so 

would the locally resonant band gaps.  
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Fig. 5.17 Effect of the power index m on the band gaps: the solid symbols denote the 

lower boundaries of the band gaps, the open symbols denote the upper boundaries, 

and the solid line between symbols indicates the bandwidth.  

Fig. 5.18 illustrates how the truncation thickness h0 affects the band gaps. 

Nearly every band gap becomes wider as h0 decreases, along with a significant 
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reduction in the passbands. This can be directly attributed to the enhanced ABH 

effect. If further decreases in the truncation thickness h0 are allowed, even broader 

band gaps can theoretically be achieved, although the extremely thin thickness is 

most likely prohibited by manufacturing difficulties and ensuing structural strength 

problems. 
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Fig. 5.18 Effect of the truncation thickness h0 on the band gaps: the solid symbols 

denote the lower boundaries of band gaps, the open symbols denote the upper 

boundaries, and the solid line between symbols indicates the bandwidth.  

Keeping the ABH profile and lattice constant as the same, the effect of the 

normalized length of extended platform lp/a on the band gaps is also shown in Fig. 

5.19. It can be seen that lengthening the extended platform would significantly lower 

the band gaps. This is consistent with the effect of extended platform on lowering the 
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ABH effect. The bandwidth of passbands between each band gaps reduces. However, 

the bandwidth of band gaps also reduces overall. Therefore, for particular intended 

application frequency bands, the structure needs to be carefully designed based on 

the present model.  

0.000 0.125 0.250 0.375
0.0

0.4

0.8

1.2

1.6

2.0

2.4

f a
/c  

 

lp/a
 

Fig. 5.19 Effect of the normalized length of extended platform lp/a on the band gaps: 

the solid symbols denote the lower boundaries of band gaps, the open symbols 

denote the upper boundaries, and the solid line between symbols indicates the 

bandwidth. 

Meanwhile, when the ABH profile is kept constant, the effect of the lattice 

constant a on the band gaps is also shown in Fig. 5.20. As can be seen, increasing the 

lattice constant would widen the normalized bandwidth of the band gaps overall. 

Meanwhile, the upper and lower frequencies of the band gaps would also increase 
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overall. Note that the frequency in vertical axis is normalized with the wave length 

(c/a), which is positive related with the lattice constant a. Therefore, the actual 

frequency and bandwidth decrease with the increasing of the lattice constant, which 

is consistent with the conventional PCs suggested. 
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Fig. 5.20 Effect of the lattice constant a on the band gaps: the solid symbols denote 

the lower boundaries of band gaps, the open symbols denote the upper boundaries, 

and the solid line between symbols indicates the bandwidth. 

Finally, the way that the abovementioned parameters affect the band structures 

and the corresponding attenuation performance in finite structure is examined. As an 

example, consider infinite periodic and finite periodic beams, both containing 

identical ABH elements with m=2, a=8 cm, lp=0 and h0=0.005 cm. The dispersion 
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curves of the infinite beam and the transmission of the finite beams with different 

ABH elements are compared in Fig. 5.21. For the infinite beam, extremely broad 

band gaps can be observed, covering nearly the entire frequency band below 20 kHz 

with only a few narrow passbands. For the finite beams, corresponding attenuation 

bands are also observed. It is interesting to note that transmission attenuation gaps 

start to appear with only one ABH element because of the locally resonant effect. 

With three periodic elements, the transmission can be as low as -120 dB, leading to a 

significant broadband and low frequency vibration attenuation by using only a few 

elements without any add-on resonators or creating geometrical or material 

discontinuous like conventional lattices. It is relevant to mention that this happens 

because of the sequential wave travel path across the ABH cells in 1-D beam 

structures.  
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Fig. 5.21 (a) Dispersion curves of an infinite periodic beam, and (b) the 

corresponding transmission of finite beams with different ABH elements for m=2, 

a=8 cm, lp=0 and h0=0.005 cm 
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5.3 Short summary 

In this Chapter, an Euler-Bernoulli beam containing multiple ABHs is studied 

based on the developed wavelet-decomposed energy method. On one hand, the effect 

of different number of ABH elements is investigated when the space for ABHs is 

constant and limited. The results show that more ABH elements help to lower down 

the effective frequency of the ABH effect and enhance the overall damping 

performance at mid-low frequencies. For particular low frequency bands, the number 

of ABH elements should be carefully chosen by using the developed model because 

the increased damping effect is modal dependent. However, for higher frequency, 

placing one ABH element rather than multiple ABH elements is beneficial for more 

effective damping. Besides, the layout of the ABH elements shows little effect on the 

overall performance of the ABH effect except for cases where ABH elements are 

connected together, which will lower down the overall damping performance below 

the characteristic frequency. 

On the other hand, broadband attenuation bands and wave suppression 

phenomena are observed at relatively low frequencies below the so-called 

characteristic frequency. To explain the underlying physical phenomena, the 

wavelet-decomposed energy model is further extended to investigate infinite 

structures with ABH unit cells. The periodic boundary conditions in terms of 

displacement and rotational slope are shown to be sufficient to describe the structural 
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periodicity and the corresponding band structures numerically and analytically. 

Using this model, the frequency bounds of the band gaps can be predicted solely 

based on the resonant frequencies of a single cell with simply-supported or 

sliding-sliding boundary conditions. Therefore, the band structures can be easily 

obtained using the proposed finite model without calculating the dispersion curves of 

corresponding infinite structures. Numerical results show that the observed 

attenuation bands correspond to the band gaps of the corresponding infinite 

structures with the same ABH elements. Analyses on eigenmodes show that the band 

gaps can be attributed to the local resonances of the ABH elements as a result of the 

ABH effect. Therefore, increasing the taper power index m within the smoothness 

criteria, or reducing the truncation thickness h0 within the allowable practical range, 

would help generate broader and lower-frequency band gaps. Meanwhile, extending 

platform can also lower the band gaps. For 1D structures of finite size, significant 

wave attenuation phenomenon occurs because of the enhanced locally resonant effect 

of multiple ABH cells. Because of the unique wave propagation feature of the 1D 

structures, waves pass through each ABH cell, collectively forming a more efficient 

broadband absorber as long as the ABH cell is cut-on to be effective, even at a 

relatively low frequency. 

As to the structure itself, this Chapter proposes a new type of beam structure to 

achieve broad attenuation bands in the relatively low frequency region. Contrary to 

the conventional resonant lattices, only a very few ABH elements are needed with no 
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additional resonator attachment or multiple geometric or material discontinuities. 

These appealing features may offer great potential for applications such as vibration 

isolator and wave filter designs in beam structures.  

As to the model itself, because of the remarkable flexibility and unique features 

offered by wavelets, the wavelet-decomposed energy model can be expanded to deal 

with infinite periodic structures. It provides efficient platform to solve problems with 

rapid space-varying wavelengths or structures with severe geometric or material 

inhomogeneity in conventional PCs. 
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Chapter 6 Beams with Periodic ABHs for Vibration 

Applications 

Owing to the Bragg scattering or local resonance mechanisms, band gaps in 

conventional PCs are attractive for applications such as vibration control, wave 

manipulation and sound absorptions. Their practical implementations, however, are 

hampered by several factors, among which the large number of cells required and 

their impractically large size to ensure the appearance of stopbands at reasonably low 

frequencies are on the top of the list. The combined use of the Bragg scattering and 

locally resonant effects can, in principle, result in wider and lower-frequency band 

gaps. The improvement obtained, however, is somehow limited to a certain 

frequency range in the cases reported in the open literatures [96-99]. Although 

topology optimization is also attempted to achieve broader band gaps, the optimized 

unit cells usually have complex geometry which is difficult to fabricate [100-103]. In 

a different prospective, most PCs are usually tied with the inherent structural 

weakness due to the multiple structural interfaces, which are needed to create 

structural impedance changes. Therefore, the search for PCs with broad band gaps in 

both low and mid-high frequency range whilst ensuring acceptable structural 

properties without attaching additional elements and multiple interfaces becomes 

important. 

As shown in the previous Chapter, an Euler-Bernoulli beam embedding ABH 
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features can generate locally resonant band gaps. The observed band gaps, albeit 

much broader than conventional local resonant band gaps, are limited to relatively 

low frequency range. Besides, the structure still inherits the existing structural 

weakness problems due to the extremely thin truncation thickness of the 

conventional ABH cells. In the present Chapter, we propose a new type of PCs, by 

capitalizing on the unique ABH features and by exploring the dual benefit of the 

locally resonant and Bragg scattering effect. In the proposed design, ABH profiles 

are carved inside of a uniform unit cells to create locally resonant band gaps whilst 

ensuring good structural stiffness/strength. Meanwhile, to produce the effective 

coupling between the Bragg scattering and local resonances, a crosspiece connecting 

the two branches of the ABH indentation (referred to as strengthening stud) is added 

in the hollowed ABH area. This allows the generation of ultrawide band gaps nearly 

over the entire frequency range without complex geometry and add-on attachment 

from the outside of the structure. The band structures of the proposed phononic 

beams (with and without studs) and their generation mechanism are first analyzed 

and compared in Sec. 6.1 and 6.2. Key parameters, i.e. the stud length and the 

parameters of ABHs, are investigated in Sec. 6.3 in views of possible tuning of the 

band gaps. Experiments using only three ABH cells, are then carried out in Sec. 6.4 

to validate the numerically observed band gaps. Finally, conclusions are drawn. 

Much of work presented in this Chapter has been included in Ref. [104] 

6.1 Finite element model 

The proposed phononic beam consists of a uniform beam lattice with its inside 

being carved by a double-leaf ABH profiles, whose thickness variation is described 

as 0( ) mh x x hε= + [67]. The unit cell design and geometrical parameters are shown in 
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Fig. 6.1. The design ensures the structural integrity on the lattice surface and 

relatively high structural stiffness and strength, empowering the beams with 

reasonable transverse load-bearing capability. In the analyses, the unit cell length a = 

0.12 m and the beam thickness hb = 0.0064 m. Each ABH branch takes the form of 

2( ) 3 0.0005h x x= + with a truncation thickness h0 = 0.0005 m and the length l is set 

to be 0.03 m. The unit cell is made of steel with a mass density of 7800 kg/m3, 

Young’s modulus of 210 Gpa, and Poisson’s ratio of 0.3. The band structures are 

calculated using finite element software COMSOL Multiphysics v5.2. Because of the 

non-uniform profile, 2D unit cells are modeled through sufficiently dense mesh with 

triangular elements in Solid Mechanics Module. The Floquet periodic boundary 

condition is imposed at the edges of the unit cell and a parametric sweep is applied 

over the reduced wave vector k. Note that only flexural waves are considered. 

0.5ah(x)=ɛxm
+h0

h0

hb

l

(a)

(b)
Δl

x

 

Fig. 6.1 Unit cells of the proposed phononic beams with the same lattice constant a 

and beam thickness hb: (a) carved inside according to 0( ) mh x x hε= + with a length l 
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and a truncation thickness h0; (b) the same symmetrical tapered profiles are 

embedded and connected by a strengthening stud of length l∆ . 

6.2 Band structures of the periodic beams 

Phononic beams without the strengthening stud ( 0l∆ = ) are first considered 

with their band structures depicted in circles in Fig.6.2. A non-dimensional frequency, 

/Rf fa c= , is included in the right vertical coordinate as a reference with c being the 

flexural wave velocity in the uniform part (Note other frequency terms used in the 

following discussion are also normalized with /c a ). The first two broad band gaps 

are obtained with the normalized bandwidth / cf f∆ = 86.3 % and 110% respectively, 

where f∆ is the bandwidth and cf is the center frequency of the gap. These two band 

gaps are rather flat, which means that the slope of the dispersion curves is almost 

zero. In this case, the group velocity of the wave also approaches zero, indicating that 

the waves stop propagating and are contained to a confined region，which is 

consistent with the typical characteristics induced by local resonances. 

Representative mode shapes are depicted in Fig. 6.3. For the mode indicated by A, 

the vibration mainly concentrates on the ABH part with negligible motion in the 

uniform part of the cell. This can be attributed to the unique energy focalization 

feature of the ABH phenomenon. The gradual thickness changes in the ABH 

indentation produce strong energy focalization as a result of the gradual 
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slowing-down of the incoming wave speed toward the indentation center. This is 

manifested by a compression of the bending waves with a reducing wavelength and 

increasing vibration amplitude. As a result, this highly dynamic region generates 

energetic locally resonant modes which are responsible for the band gaps in the low 

frequency region, similar to the case of conventional ABH configurations [68]. 

Moreover, the ABH part acts as continuous local resonators with multiple degrees of 

freedoms, thus generating multiple locally resonant and broad bandgaps, different 

from the conventional narrow local band gaps induced by single-degree-of-freedom 

spring mass resonators. However, the local resonance effect is gradually impaired 

when the uniform part is activated as the frequency increases, exemplified by modes 

B and C shown in Fig. 6.3. As a result, the band gaps become narrower at higher 

frequencies, typically with the normalized bandwidth below 10% (Fig. 6.2). 

To further enlarge and extend the band gaps to the mid-to-high frequency region, 

a strengthening stud of length 0.01l∆ = m is added as sketched in Fig. 6.1 (b). The 

corresponding band structures are also given in Fig. 6.2 in solid lines for comparison 

with the case without the stud ( 0l∆ = ). As can be seen, whilst retaining the band 

gaps at low frequencies, nearly all the mid-to-high frequency ranges (typically when

Rf > 1) are covered by wide and flat band gaps, with normalized bandwidth ranging 

from 15% to 32%. The displacement field of the selected modes in Fig. 6.3 is similar 

to the case without the studs; namely, ABH-induced local resonances dominate the 

low frequency region (see mode D) but are weakened at mid-to-high frequencies (see 
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modes E and F). The difference is that the strengthening stud causes a large 

impedance mismatch with the thin ABH indentation tip, which ensures the 

generation of the Bragg scattering at mid-to-high frequencies. Owing to the strong 

energy concentration within the indentation area, high intensity waves are reflected 

with an accelerating velocity (due to the increase in the structural thickness this time) 

when reaching the studs. The combination of local resonance and Bragg scattering 

effect produces these broad band gaps. In practice, the large deformation within the 

ABH indentation may introduce nonlinear effects, which can generate the coupling 

between the linear eigenmodes and the energy transfer from low frequencies to high 

frequencies [66]. It can be expected that the high frequency band gaps could be 

enhanced because of the enhanced energy focalization and subsequently stronger 

interference created by the connecting studs. 
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Fig. 6.2 Band structures for the phononic beams with ABH cells. Circles: without 

strengthening studs ( 0l∆ = ); lines: with studs ( 0.01ml∆ = ). 
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Fig. 6.3 Displacement field of typical modes marked by A-F in the band structure 
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curves in Fig. 6.2 

6.3 Parameters analyses 

In views of performance tuning or eventually optimization, the influence of the 

length l∆ on the band structures is investigated first. Figure 6.4 plots the normalized 

band gaps for different normalized stud lengths /l a∆ . It can be seen that the band 

gaps in the mid-to-high frequency range are drastically enlarged with even an 

extremely short stud length ( / 1/ 60l a∆ = for example). Further increasing /l a∆  

would allow the tuning of the band gaps, in both their central frequency and the 

associated bandwidth. It can be seen that when / 1/ 4l a∆ = , a significant portion of 

the frequency range is filled with band gaps. To quantify the frequency coverage of 

the band gaps, the ratio between the sum of the bandwidth of all band gaps, f∆∑ , 

and the entire normalized frequency range, sf , is calculated, with results compared in 

Fig. 6.5 for different normalized stud lengths. It confirms again that the addition of 

the stud, albeit very short, brings about immediate benefit to the enlargement of the 

band gaps. Further increasing the stud length, although still beneficial, only offers 

gradual improvement.  
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Fig. 6.4 Band gaps vs. normalized stud length /l a∆ . Solid and open symbols denote 

the lower and upper boundaries of the band gaps, respectively; lines between 

symbols represent the bandwidth of different band gaps (identified using different 

colors and symbols)  
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Fig. 6.5 Ratio between the sum of bandwidths of band gaps and the entire frequency 
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range 
s

f
f

∆∑ , where fs equals to 7.2 in the present study. 

Since the locally resonant and Bragg scattering effect are closely related to the 

ABH effect as mentioned above, it is important to investigate how the ABH 

parameters affect the band gaps so that the structures can be tactically designed to 

create band gaps pertinent to particular applications. Figure 6.6 shows the effect of 

the taper power index m on the band gaps. As can be seen, increasing m would lower 

the band gaps overall into lower frequency bands. Meanwhile, because of the 

positive effect of m on the ABH effect, the bandwidth of band gaps at low frequency 

are broader due to the improved local resonant of the ABH part. The enhanced 

energy focalization also helps to enhance the Bragg scattering effect at mid-high 

frequency. Therefore, the frequency coverage of band gaps is also increased. Keep in 

mind, however, that the taper power index m cannot be extremely large at the 

expenses of violating the smoothness criterion, which will generate additional 

reflection and thus reduce the ABH effect and the accompanying band gaps. 
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Fig. 6.6 Effect of taper power m on band gaps. Solid and open symbols denote the 

lower and upper boundaries of the band gaps, respectively; lines between symbols 

represent the bandwidth of different band gaps (identified using different colors and 

symbols) 

Figure 6.7 shows the effect of the normalized truncation thickness h0/ hb on the 

band gaps. It can be seen that reducing the truncation thickness not only lowers the 

band gaps overall but also significantly increases the frequency coverage of the band 

gaps. As we know, when the truncation thickness is approaching to zero, there will be 

no wave reflection and the ABH part would be an ideal absorber. Therefore, the ABH 

part with a reduced truncation thickness would act as ideal local resonators, thus 
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generating broader low frequency band gaps. Meanwhile, the reduced truncation 

thickness would also lead to larger impedance mismatch with the strengthening stud. 

Consequently, Bragg scattering can further be strengthened to create even broader 

band gaps at the mid-to-high frequencies.  
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Fig. 6.7 Effect of normalized truncation thickness 0 / bh h on band gaps. Solid and open 

symbols denote the lower and upper boundaries of the band gaps, respectively; lines 

between symbols represent the bandwidth of different band gaps (identified using 

different colors and symbols) 

    The effect of the lattice constant a on the band gaps is also shown in Fig. 6.8. 
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The overall normalized frequency coverage of the band gaps shows little difference 

when different lattice constants are used. However, both the upper and lower 

frequencies of each band gap increase systematically. As stated in Chapter 5, the 

frequency in the vertical axis is normalized with the wave length (c/a), positively 

related with the lattice constant a. Therefore, the actual frequency decreases with the 

increase of the lattice constant. To obtain band gaps at lower frequencies, a larger 

value of both the lattice constant and the taper power m but a smaller truncation 

thickness should be used. 
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Fig. 6.8 Effect of lattice constant a on band gaps. Solid and open symbols denote the 

lower and upper boundaries of the band gaps, respectively; lines between symbols 
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represent the bandwidth of different band gaps (identified using different colors and 

symbols) 

As an example, Fig. 6.9 shows the band structures of a phononic beam with the 

same geometrical parameters as those used in Fig. 6.2, but with the truncation 

thickness of the ABH indentation being reduced by half, i.e. 0 0.00025h = m.  As 

can be seen, flat and broad band gaps cover nearly the entire frequency range, owing 

to the enhanced effect from both local resonances and Bragg scattering. The 

bandwidth percentage 
s

f
f

∆∑  increases up to 92%, as compared to 78.6% when 

0 0.0005h = m. 
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Fig. 6.9 Band structures for the phononic beams with 0 0.00025h = m. All other 
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geometrical parameters are the same as those used in Fig. 2 ( 0.01ml∆ = ). The grey 

areas donate band gaps. 

    In viewing of the ultrawide band gaps generated by the proposed beams with 

double-leaf ABH indentations, we examine whether similar phononic beams with 

inside carved by uniform thickness indentations, as shown in Fig. 6.10, can also 

produce similar ultrawide band gaps. To be comparable, the areas of indentations and 

other geometrical parameters in both phononic beams are kept the same. Therefore, 

when the truncation thickness h0 equals to 0.0005 m in the ABH case, the thickness 

hu of the uniform indentations should be 0.0014 m. The band structures of the two 

cases are compared in Fig. 6.11. It can be seen that, although the beams with uniform 

indentations can also generate multiple band gaps in the frequency ranges, the band 

gaps are quite narrow compared with those existing in the proposed beams with ABH 

indentations, especially at mid-high frequencies.  

0.5a
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Fig. 6.10 Unit cell of the phononic beams with inside carved by uniform thickness hu 

with a length l.  
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To quantify the difference between the two cases, Fig. 6.12 compares the 

normalized bandwidth of the first band gap and the entire bandwidth coverage. The 

results show that, regardless of the bandwidth of the first band gap or the whole 

bandwidth coverage, the performance of the proposed beams with ABH indentations 

overwhelmingly outperforms that of the beams with uniform indentations. This is 

understandable because at low frequencies, the energy focalization from the ABH 

effect helps to generate wider locally resonant band gaps; at mid-high frequencies, 

the Bragg scattering effect can be enhanced by the energy focalization from the ABH 

effect on one hand, and by the larger impedance mismatch due to the thinner 

truncation thickness h0 compared with hu on the other hand. Therefore, the proposed 

beams with double-leaf ABH indentations can achieve much wider band gaps over 

the whole frequency range in comparison with the beams with uniform indentations. 
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Fig. 6.11 Band structure comparisons between the phononic beams with ABH 

indentations and the phononic beams with uniform indentations. The areas of the 

indentations in the two cases are kept the same. 

6.4 Experimental validations 

Experiments were carried out to confirm and validate the numerically observed 

band structures on one hand, and to investigate the possibility of using a small 

number of ABH cells for vibration energy attenuation on the other hand. To this end, 
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four finite beams consisting of one and three cells respectively with the same 

geometrical and material parameters used in Fig. 6.2 were fabricated. A uniform 

beam with the same length of three cells was also included as a reference, as shown 

in Fig. 6.13(a). The width of all beams is the same (0.01m). Flexural vibration 

responses of the beams when subjected to a unit point excitation force were analysed. 

The experiment setup is shown in Fig. 6.13(b). The beams were supported with two 

thin strings to mimic free boundaries. A periodic chirp signal from 0 to 20 kHz was 

applied at one end of the beams through an electromagnetic shaker, with the 

excitation force measured by a force transducer (B&K 8200) and amplified by a 

charge amplifier (B&K 2635). A Polytec scanning laser vibrometer was used to scan 

the whole beams for the response measurement. 
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Fig. 6.12 Comparisons of the normalized bandwidths of the first band gap and the 

band gap coverage between the phononic beams with ABH indentations and the 
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phononic beams with uniform indentations. 

 

Fig. 6.13 (a) a uniform beam and four ABH beams containing one and three cells 

respectively, with the same material and geometrical parameters as those used in Fig. 

6.2; (b) Experiment setup. 

For reference, the displacement transmission, defined as out in20 log /w w ( outw

and inw are respectively the output and input of displacement), from experiments and 

numerical simulations of the uniform beam is given in Fig. 6.14. The experimental 

results agree well with the numerical results in terms of both the resonant frequencies 
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and the amplitudes. Only few additional peaks are observed because of the torsional 

waves, induced by the slight deviation of excitation force from the central axis of the 

beam. Lacking of particular treatment, the uniform beam exhibits no particular wave 

filtering ability, exemplified by the transmission almost larger than zero.  
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Fig. 6.14 Displacement transmission comparison between the numerical results (grey 

and dark solid lines) and experiment results (green dashed and red dotted lines) for 

the uniform beam.  

Figure 6.15 shows the displacement transmission comparison between the beam 

without the stud 0l∆ = and the beam with stud 0.01ml∆ = when one cell is included. 

The experimental results agree reasonably well with the numerical results with only a 

few additional spikes due to the same reason explained above. For the beam without 

stud as shown in Fig. 6.15(a), two narrow attenuation gaps, albeit very narrow, exist 

below 5 kHz, which roughly match the band gaps illustrated in Fig. 6.2. When a stud 
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is added, the displacement transmission in Fig. 6.15(b) shows extremely broader 

attenuation gaps from 3 kHz to 16 kHz with an attenuation level amounting to 20 dB, 

which also roughly agree with the predicted band gaps. Meanwhile, the attenuation 

gaps observed in the beams with only one cell confirm that the band gaps are induced 

by locally resonant effect, which mainly depends on the local resonator properties 

rather than the periodic properties. 
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Fig. 6.15 Displacement transmission comparison between the numerical results 
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(green lines) and experiment results (red dotted lines): (a) the beam with 0l∆ = and 

(b) the beam with 0.01ml∆ = when one cell is included. 

When three cells are incorporated, the displacement transmission comparison is 

again shown in Fig. 6.16. Once again, experimental results agree well with numerical 

ones in terms of both the location and width of the attenuation bands. Differences in 

the deep trough areas are due to the torsional waves as stated before, which emerge 

when flexural waves became significantly weak within the band gaps. For the same 

reason, signals became noisier within the attenuation gaps. From Fig. 6.16(a), we can 

see several obvious attenuation gaps below 5 kHz, which are in good agreement with 

the observed band gaps in Fig. 6.2. Without the strengthening studs, the attenuation 

gaps barely exist apart from the low frequency region. When three strengthening 

studs with a length 0.01ml∆ = were added, Fig. 6.16(b) shows several attenuation 

gaps, which agree with the numerically predicted band gaps shown in Fig. 6.2. These 

attenuation bands cover a very large portion of the frequency range, generating 

transmission attenuation up to nearly 60 dB. With three cells, the attenuation has 

been significantly strengthened compared with the case with only cell. It is relevant 

to note that, as a side benefit of the ABH effect, the levels of the transmission peaks 

are also reduced compared with the uniform beam at mid-to-high frequencies.  
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Fig. 6.16 Displacement transmission comparison between the numerical results 

(green lines) and experiment results (red dotted lines): (a) the beam with 0l∆ = and 

(b) the beam with 0.01ml∆ =  when three cells are included. 

Above comparisons show that, with only a few cells, the proposed phononic 

beams exhibit remarkable wave attenuation ability. The displacement distribution at 

two chosen frequencies within the attenuation bands (in the three-cell case) are 

153 
 



 

plotted in Fig. 6.17 to further reveal the vibration attenuation effect. For both beams 

with ABHs, the measured displacement matches well with the numerically calculated 

one. It can be seen that the vibration is drastically reduced as the wave propagates 

through cells in both cases. With the strengthening studs, the vibration reduction is 

more significant compared with its counterpart without studs, in agreement with 

numerical analyses. 
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Fig. 6.17 Displacement distribution of (a) the beam with 0l∆ = for f=3506 Hz and (b) 

the beam with 0.01ml∆ = for f=4280 Hz. Different highlighted-color areas present 

different cells with cell 1 nearest to the excitation end. 
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6.5 Summary 

In this Chapter, we propose a new type of phononic beams with embedded 

double-leaf ABH indentations. The band structures and their generation mechanism 

are analyzed and compared through finite element analyses. Key parameters related 

to the ABH effect and the lengths of the strengthening studs are investigated for the 

possible tuning of the band gaps in terms of both bandwidth and distribution. 

Experiments are conducted to confirm and validate the numerically predicted 

phenomena. The main conclusions are summarized as follows.  

The proposed phononic beams with double-leaf acoustic black hole (ABH) 

indentation carved inside a uniform unit cell are shown to exhibit remarkable band 

gap properties. The unique energy focalization feature of the ABH effect offers the 

dual benefit: effective and energetic local resonant modes at relatively low 

frequencies and intensive wave interferences to generate Bragg scattering when the 

strengthening studs are added. As a result, the two effects are combined to produce 

ultrawide band gaps. The impedance mismatch between the stud and the thin ABH 

indentation, responsible for the generation of the Bragg scattering, can be tuned by 

changing various parameters related to the ABH indentations and the strengthening 

studs. Increasing the length of the stud or reducing the residual thickness of ABH 

indentation allows a significant increase in the gap bandwidth, which can cover 

nearly 90% of the entire frequency range of interest with realistic geometric and 

155 
 



 

material parameters. The numerically predicted phenomena are confirmed by 

experiments, which further show that, with a few cells, the proposed phnononic 

beams warrant considerable vibration attenuation.  

As to the structure itself, the proposed phononic beams, through embedding 

tapered profiles inside the uniform beams, ensure structural integrity on the lattice 

surface whilst improving the inherent structural stiffness/strength weakness of 

conventional ABH structures in terms of load-bearing capability. Compared with 

most conventional PCs using add-on resonators or optimized complex geometries, 

the proposed structures are self-also self-contained and easier to fabricate, offering 

great potentials for various applications. 
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Chapter 7 Conclusions and Future Suggestions 

This thesis covers the modeling, analyses and implementations of the Acoustic 

Black Hole (ABH) effect for vibration control applications. Along with Finite 

element analyses, studies are mainly based on a novel wavelet-decomposed and 

energy-based model to investigate various ABH features and the effect of damping 

layers using realistic ABH-featured beams. The main conclusions arising from this 

work can be summarized as follows. 

By using the Mexico Hat Wavelets (MHW) for the decomposition of the 

displacement functions under Rayleigh-Ritz framework, the developed 

semi-analytical model guarantees a high simulation efficacy in characterizing the 

wave fluctuation feature of the ABH effect, as verified by both the FEM and 

experimental results. This is attributed to the unique features of the MHW in 

characterizing both highly localized and distributed waveforms as a result of flexible 

scaling and translation. 

The energy based nature of the model allows the consideration of the full 

coupling between the damping layers and the host structures. Numerical results 

reveal that the stiffness of the damping layers plays a more important role than the 

mass does, which should be apprehended in the model; while the effect of the added 

mass also needs particular attention when the thickness of damping layers is 

considerable to that of the ABH wedge around the tip area. This conclusion suggests 
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that an optimal damping layer thickness should exist for each particular system 

configuration in order to strike a balance between the desired damping enhancement 

and the possible adverse coupling-induced reduction in the ABH effect. 

The ABH effect enables a high energy density concentration in the vicinity of 

the ABH wedge tip (or indentation), somehow compromised by the inevitable 

residual thickness. Covering the ABH part with damping layers can compensate for 

the adverse effect of truncation and the proposed model provides an efficient tool to 

optimize the location and shape of the damping layers to achieve maximum ABH 

effect. Generally speaking, damping layers are preferable to be applied near the 

wedge tip as frequency increases. 

The developed model deals with a realistic beam with finite size and uncovers 

the loss of the ABH effect, as opposed to the widely reported broadband 

phenomenon above the cut-on frequency in semi-infinite ABH structures. When this 

happens, the energy focalization capability in the tapered ABH region is significantly 

impaired and the vibration energy mainly concentrates within the uniform part of the 

beam delimited by the excitation force. The presence of the mechanical excitation 

introduces an impedance discontinuity and thus creates multiple wave reflections 

between the structure boundary and the excitation point, forming standing waves and 

local resonances in the uniform part of the beam at certain frequency bands. The 

failure frequencies can be predicted by calculating the local resonance frequencies of 

the beam portion delimited and pinned by the excitation point. 
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Due to its modular and energy-based nature, the developed model also offers a 

general platform for further including other control or energy harvesting elements to 

guide the design of ABH structures for various applications. Meanwhile, compared 

with FEM, it is also more flexible for parametric studies and system optimizations to 

achieve better ABH structural designs. 

The ultimate pursuit of extremely thin wedge tips to maximum the ABH effect 

is practically unrealistic. Therefore, on the premise of the minimum achievable 

truncation thickness by currently available manufacturing technology, a modified 

ABH thickness profile and the use of an extended platform are investigated to 

maximize the ABH effect. It is shown that the modified thickness profile can 

significantly improve the ABH effect in terms of vibration reduction of the uniform 

part of the beam, enhanced energy distribution in the ABH part and the increased 

system loss factor, especially for a larger power parameter m and smaller truncation 

thickness. The extended platform results in an overall increase in the system damping 

above the characteristic frequency, as well as an appreciable shift of the ABH effect 

towards low frequency. In particular, it can significantly increase the first peak of the 

energy ratio and shift it to lower frequency, providing the possibility of catering ABH 

effect for lower frequency applications. This phenomenon, however, strongly 

depends on the modal behavior of the whole system, which needs meticulous 

analyses by the developed model to optimize the ABH performance for particular 

applications. 
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To further increase the low frequency ABH effect, multiple ABH elements are 

shown to be preferable to the single ABH configuration for a given allowable ABH 

space. For particular low frequency bands, the number of ABH elements should be 

carefully chosen by using the developed model because the increased damping effect 

are modal dependent. However, for higher frequency, placing one ABH element 

rather than multiple ABH elements is beneficial for more effective damping. Besides, 

the layout of the ABH elements shows little effect on the overall ABH effect. 

In addition to the enhancement of system damping, multiple ABHs also create 

broadband attenuation bands and wave suppression phenomena at low frequencies. 

Through extension to infinite periodic structures, the developed wavelet-decomposed 

energy model is shown to provide an efficient and flexible means to predict, and 

eventually optimize the band structure of an infinite beam based on only a unit cell 

with periodic boundary conditions of displacement and rotational slope. Analyses 

confirm that the attenuation bands correspond exactly to the band gaps of the infinite 

structures with the same ABH elements. These band gaps are attributed to the local 

resonances of the ABH elements as a result of the strong resonating dynamics of the 

ABH region. Therefore, increasing the taper power index m within the smoothness 

criteria, or reducing the truncation thickness h0 within the allowable practical range, 

would help generate broader and lower-frequency band gaps. Meanwhile, extending 

platform can also lower the band gap frequencies. Contrary to the conventional 

resonant lattices, only a very few ABH elements are needed to produce broad 
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attenuation gaps with no add-on resonator attachment or multiple geometric or 

material discontinuities.  

For practical implementations, the above mentioned conventional ABH 

structures may be hampered by the structural strength weakness resulting from the 

extremely thin truncation thickness and also by limited attenuation bands only at 

relatively low frequency. To tackle the problem, a new type of phononic beams 

carved inside with two double-leaf ABH indentations is proposed. By incorporating 

the local resonance of the ABH indentations and Bragg scattering effects generated 

by a strengthening stud connecting the two branches of the ABH indentations, 

ultrawide band gaps are achieved. These band gaps can be tuned by adjusting the 

length of the stud and the ABH parameters to cover over 90% of the entire frequency 

range of interest. Meanwhile, experiments results show that with only three cells, the 

proposed phononic beams allow considerable vibration energy attenuation within an 

ultra-broad frequency range including the low frequency range which conventional 

PCs can hardly reach. These appealing features may offer great potential for 

applications such as vibration isolation and wave filtering in beam structures. 

Based on the work presented in this thesis, some future suggestions are 

proposed as follows. 

1) The proposed semi-analytical and numerical model only deals with 1D beam 

structures with a thickness profile symmetrical with respect to the mid-line due to the 

Euler-Bernoulli beam assumption. Exploring models which are not limited by these 
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assumptions in both 1D and 2D structures is necessary to investigate more realistic 

structures. 

2) The phononic beams with ABH indentations proposed in this thesis 

demonstrate their high ability in vibration isolation and wave filtering. It is also of 

great interest to study and design 2D plate structures containing ABH feature to 

achieve possible band gaps, considering the wide application of plate structures in 

transportation industry, where light-weight and low vibration and noise is of 

paramount importance. It is understandable that the wave travel paths in plate are 

more complex than that in a beam and obtaining absolute band gaps might be 

difficult. However, achieving band gaps for particular wave modes might still be 

possible and meaningful. 

3) The exploration of the ABH effect for noise control applications is also 

important and technically challenging. Physically, the reduction in the structural 

thickness can slow down the flexural wave from supersonic to subsonic. This may 

significantly change the sound radiation efficiency of the overall structure and offers 

possibilities for better structural design towards noise reduction. Meanwhile, the 

sound radiation problem becomes particularly interesting when band gaps emerge, 

specially near the critical frequency. Therefore, revisiting 2D or even more complex 

structures in an acoustic perspective adds a completely new dimension to the topic of 

ABH, which is technically challenging and practically relevant to a wide range of 

engineering problems for noise control applications. 
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Appendix A: Displacement expression considering additional 

boundary conditions Eqs. (5.12) and (5.13) 

Considering the additional boundary condition Eq. (5.12), we can get 
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With the additional boundary condition Eq. (5.13), the displacement can be repressed 

by 
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