

## **Copyright Undertaking**

This thesis is protected by copyright, with all rights reserved.

#### By reading and using the thesis, the reader understands and agrees to the following terms:

- 1. The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis.
- 2. The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose.
- 3. The reader agrees to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

### IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form, or a copyright owner having difficulty with the material being included in our database, please contact <a href="https://www.lbsys@polyu.edu.hk">lbsys@polyu.edu.hk</a> providing details. The Library will look into your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

# 1,3-PROPANEDIOL AND CAPROATE CO-PRODUCTION THROUGH GLYCEROL FERMENTATION AND CARBOXYLATE CHAIN ELONGATION IN MIXED CULTURE

LENG LING

Ph.D

The Hong Kong Polytechnic University

2018

## The Hong Kong Polytechnic University Department of Civil and Environmental Engineering

# 1,3-PROPANEDIOL AND CAPROATE CO-PRODUCTION THROUGH GLYCEROL FERMENTATION AND CARBOXYLATE CHAIN ELONGATION IN MIXED CULTURE



**LENG Ling** 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

August 2017

## **CERTIFICATE OF ORIGINALITY**

I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it reproduces no material previously published or written, nor material that has been accepted for the award of any other degree or diploma, except where due acknowledgement has been made in the text.

\_\_\_\_(Signed)

LENG Ling (Name of Student)

## **DEDICATION**

To my family and friends who love and trust me

To my supervisor who inspires me and has supported me every step of the way

To the fellows who devote to this research field

To the microorganisms that complete the pathways

Also to the endless nights accompanying my growth

## ABSTRACT

Mixed culture chain elongation of short chain fatty acids (SCFAs) for a medium chain fatty acid (MCFA), caproate, formation is an attractive option for resource recovery in anaerobic wastewater treatment. Caproate, a value-added chemical, is slightly soluble in water and can be used by various industries. Biological production of caproate with ethanol as electron donor has been successfully achieved in anaerobic mixed culture. However, the underlying metabolic pathways of microorganisms except *Clostridium kluvveri* are not well understood. Another potential electron donor is glycerol which is presently being generated in surplus with the rapid growth of the biodiesel industry. In the current approach, an industrial chemical, 1,3-propanediol (1,3-PDO) is produced from crude glycerol along with a formation of other soluble byproducts including ethanol and SCFAs, which necessitates a significant amount of energy input for separation and purification. To circumvent the energy sink requirement and upcycle both the wastewater treatment process and the biodiesel industry, it is highly beneficial to co-produce caproate from the byproducts of glycerol dissimilation along with 1,3-PDO.

At first, thermodynamic and physiological insights gained into the co-production of 1,3-PDO and caproate from glycerol are investigated. Thermodynamics analysis demonstrated that a higher pH range is more favorable when either glycerol or ethanol acting as an electron donor, whereas a high partial pressure (27% at 1 atm) and a low pH ( $\leq$  5.5) are advantageous for caproate formation with hydrogen. With

the glycerol-to-acetate molar ratio of 4 and pH of 7, the physiological experiments achieved a co-production of 1,3-PDO and caproate. However, the caproate yield was low and found to be kinetic-limited. Caproate formation was significantly increased by the intermediate ethanol addition with the optimal mono-caproate formation obtained at the ethanol-to-acetate molar ratio of 3. A synergistic relationship was evinced through microbial characterization, resulting in *C. kluyveri* and some bacteria with function of converting glycerol to SCFAs.

Whilst the metabolic pathway of *C. kluyveri* in carboxylates chain elongation has been discovered, the role of other co-existing microbiomes which promote the elongation remained unclear in mixed culture. Thus, we conducted a fermentation experiment at optimal conditions which is inoculated with fresh anaerobic digestion (AD) sludge and fed with ethanol and acetate. Both 16S rRNA gene-based amplicon and shotgun metagenomics sequencing were employed to elucidate the mixed culture chain elongation by uncovering the microbes and functional pathways. Results revealed a synergistic relationship between *C. kluyveri* and three co-dominant species *Desulfovibrio vulgaris*, *Fusobacterium varium* and *Acetoanaerobium sticklandii*. The co-existence of these three species were able to boost the carboxylates chain elongation by *C. kluyveri*. Draft genomes of *C. kluyveri*, *D. vulgaris* and *A. sticklandii* were successfully recovered, revealing that butyrate and caproate can be directly produced from ethanol and acetate by *C. kluyveri* and indirectly produced through a syntrophic partnership between *D. vulgaris* and *A. sticklandii* with

hydrogen serving as a reducing equivalent messenger. This study presents evidences of a syntrophic partnership between bacterial species and unveils an intricate and synergistic microbial network in mixed culture carboxylates chain elongation.

Moreover, this study enriched a microbial community capable of efficiently co-producing 1,3-PDO and caproate via glycerol fermentation and carboxylate chain elongation. A co-production of 6.38 mM C 1,3-PDO d<sup>-1</sup> and 2.95 mM C caproate d<sup>-1</sup> was achieved in a 2-L semi-continuous fermenter with a glycerol-ethanol-acetate stoichiometric ratio of 4:3:1. Microbimes, E. limosum, C. kluyveri and M. senegalense, utilize a unique combination of metabolic pathways to facilitate the above conversion. Based on metagenomics, E. limosum is capable of converting glycerol to 1,3-PDO, ethanol and H<sub>2</sub>, and also redirecting the electron potential of H<sub>2</sub> into acetate via the Wood-Ljungdahl pathway for chain elongation. C. kluyveri worked synergistically with E. limosum by consuming ethanol and acetate for caproate production. M. senegalense encodes for ethanol oxidation to acetate and butyrate, facilitating the caproate production by C. kluyveri. During the transition between fermentation elongation, unexpected and an phenomenon of poly- $\beta$ -hydroxybutyrate (PHB) formation and reutilization by *M. senegalense* was observed, which may be associated with butyrate formation for further caproate generation. Significant ethanol production as an intermediate of glycerol dissimilation and the non-inhibiting level of 1,3-PDO production, which allows the dominance of C. kluyveri, are key to increasing caproate production.

Finally, a batch test of glycerol fermentation for the co-production with ethanol self-sufficiency inoculated by the fermenter-enriched microbial community was conducted. This study answers whether the enriched versatile glycerol degrader, E. limosum, could convert glycerol-derived energy to ethanol and H<sub>2</sub> in a balance with 1,3-PDO and acetate and whether the ethanol could be further utilized by carpoate producer within the cultivation matrix. In addition, this study also investigated the electron flux of glycerol fermentation and chain elongation. The co-production of 1,3-PDO and caproate was achieved with a favorable glycerol/acetate stoichiometric ratio. Significant ethanol production from glycerol oxidation is the main reason for the caproate production enhancement. A dynamic balance of three dominant microbiomes, E. limosum, M. senegalense, and C. kluyveri, could complete the multiple stages co-production process. E. limosum dominated in the glycerol fermentation phase, while M. senegalense and C. kluyveri worked together for caproate production with ethanol and acetate in the carboxylates chain elongation phase. Redirection of the electron potential of H<sub>2</sub> back into acetate for chain elongation by E. limosum and PHB formation and reutilization by M. senegalense were proved by electron flux calculation. The physiological performance and dynamic microbial community disclosed a unique combination of metabolic pathways successfully facilitated the co-production. The knowledge gleaned paves new avenues for both the wastewater treatment process and the biodiesel industry by upcycling their resources recovery.

## **PUBLICATIONS ARISING FROM THE THESIS**

#### **Journal Papers:**

- LENG, L., Yang, P., Mao, Y., Wu, Z., Zhang, T., & Lee P.-H. (2017). Thermodynamic and physiological study of caproate and 1,3-propanediol co-production through glycerol fermentation and fatty acids chain elongation. *Water Res. 114*, 200-209.
- LENG, L., Yang, P., Singh, S., Zhuang, H., Xu L., Chen W.-H., Dolfing, J., Li, D., Zhang, Y., Zeng, H., Chu W., & Lee P.-H. (2017). A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. *Bioresour Technol.* 247, 1095-1106.
- LENG, L., Nobu, M. K., Narihiro, T., Yang, P., Tan, G.-Y., & Lee P.-H. (2017). Biological co-production of 1,3-propanediol and caproate through glycerol fermentation and carboxylate chain elongation by shaping microbial consortia: Pathways and Mechanisms. (Under review in *Environ Sci Technol*)

#### **Conference Presentations:**

- LENG, L., Yang, P., & Lee P.-H. Synergistic network in carboxylates chain elongation with ethanol. The 9th Asia-Pacific Landfill Symposium, The University of Hong Kong, Hong Kong, Nov., 2016
- LENG, L., Yang, P., & Lee P.-H. Fatty acids chain elongation with glycerol in mixed culture. Second International Conference on Sustainable Urbanization (ICSU 2015), The Hong Kong Polytechnic University, Hong Kong, Jan., 2015

## ACKNOWLEDGEMENTS

Foremost, I would like to express my deepest gratitude to my supervisor, Dr. Henry Lee, for his consistent trust and support. Without his inspiration, I could not finish this thesis. Without his invaluable guidance, I could not grow up to a devoted researcher from the one like a white paper. His ideas and morals build up a role model of the way I pursue. I really appreciate being one of the kids in his research family. I also want to deliver my sincere gratitude to my supervisor, Dr. Takashi Narihiro, in National Institute of Advanced Industrial Science and Technology (AIST), Japan for his generous instruction and help in academics and life during the research attachment. Besides, my sincere appreciation goes to our lab technicians, especially Mr. Lam Wai-Shung, for their technical support and patient assistance in the past four years. I am also grateful for the valuable guidance and constructive suggestions of Dr. Masaru K Nobu.

I sincerely thank my excellent colleagues and great friends, Ms. Yang Peixian, Dr. Giin-Yu Amy Tan, Mr. Dong Chengyu, Ms. Xu Linji, Mr. Zhuang Huichuan, Dr. Wu Zhuoying and Mr. Lin Yu-Ping. Without their kind help and genuine care, I could not get through the tough times of difficulty and solitude.

Last but not the least, I would like to express my sincere gratitude to my beloved parents who support and trust me all the time. Looking forward to a bright future.

## **TABLE OF CONTENTS**

| CERI | TIFIC  | ATE OF ORIGINALITY                                                 | I        |
|------|--------|--------------------------------------------------------------------|----------|
| DEDI | CATI   | ON                                                                 | II       |
| ABST | 'RAC'  | Г                                                                  | III      |
| PUBL | ІСАТ   | IONS ARISING FROM THE THESIS                                       | VII      |
| ACK  | NOW    | LEDGEMENTS                                                         | VIII     |
| тарі | EOE    |                                                                    | IV       |
|      | E UF   | CONTENTS                                                           | IA<br>   |
| LIST | OF FI  | IGURES                                                             | XII      |
| LIST | OF TA  | ABLES                                                              | XX       |
| LIST | OF A   | BBREVIATIONS                                                       | XXII     |
| CHAI | PTER   | 1. INTRODUCTION                                                    | 1        |
| 1.1  | BA     | CKGROUND                                                           | 1        |
| 1.2  | Of     | BJECTIVES                                                          | 2        |
| 1.3  | Тн     | IESIS ORGANIZATION                                                 | 3        |
| CHAI | PTER   | 2. LITERATURE REVIEW                                               | 6        |
| 2.1  | DE     | EMAND OF WASTE TO BIOPRODUCTS CONVERSION WITH MIXED CULTURE        | E        |
| MIC  | ROBIC  | DMES                                                               | 6        |
| 2.   | 1.1    | Environmental threats, economics and sustainability                | 6        |
| 2.   | 1.2    | Sustainable production of biofuels and chemicals                   | 8        |
| 2.   | 1.3    | Undefined mixed culture fermentation                               |          |
| 2.2  | CA     | RBOXYLATES CHAIN ELONGATION FOR CAPROATE PRODUCTION                | 11       |
| 2.   | 2.1    | Applications and manufacture technologies of caproate              | 11       |
| 2.   | .2.2   | Carboxylates chain elongation and caproate production in undefined | l mixed  |
| С    | ulture |                                                                    | 13       |
| 2.   | .2.3   | Caproate formation microbiomes and biological pathways             | 17       |
| 2.3  | WA     | ASTE-DERIVED REDUCED COMPOUNDS FOR CARBOXYLATE CHAIN ELON          | GATION21 |
| 2.4  | GL     | YCEROL FERMENTATION                                                | 22       |
| 2.   | .4.1   | Crude glycerol produced in biodiesel process                       |          |
| 2.   | .4.2   | Glycerol fermentation pathways and microbiomes                     |          |
| 2.   | .4.3   | Glycerol fermentation with undefined mixed culture                 |          |
| 2.5  | CH     | IALLENGES ON 1,3-PDO AND CAPROATE CO-PRODUCTION                    |          |
| 2.6  | BI     | DENERGETICS OF ANAEROBIC MICROBIAL METABOLISM                      |          |
| 2.   | 6.1    | Thermodynamics in metabolism                                       |          |
| 2.   | .6.2   | Energy conservation in anaerobic syntrophy                         |          |
| 2.7  | EC     | ONOMIC ANALYSIS OF THE PROCESSES FOR TWO VALUE-ADDED CHEMIC        | CALS     |
| CO-  | PRODU  | JCTION FROM GLYCEROL                                               | 35       |
| CHAI | PTER   | 3. MATERIALS AND METHODOLOGY                                       |          |
| 3.1  | Тн     | ERMODYNAMICS CALCULATION OF BIOCHEMICAL REACTIONS                  | 37       |

| 3.2           | INOCULUM AND MEDIUM FOR FERMENTATION                                                | 41               |
|---------------|-------------------------------------------------------------------------------------|------------------|
| 3.3           | BATCH TEST EXPERIMENT                                                               | 43               |
| 3.3           | .1 Batch tests design for the study in chapter four                                 | 43               |
| 3.3           | 2 Batch test design for the study in chapter five                                   | 44               |
| 3.3           | 3 Batch tests design for the study in chapter six and seven                         | 44               |
| 3.4           | SEMI-CONTINUOUS FERMENTATION                                                        | 45               |
| 3.5           | ANALYTICAL PROCEDURES                                                               | 46               |
| 3.6           | DNA EXTRACTION AND HIGH-THROUGHPUT SEQUENCING                                       |                  |
| 3.7           | BIOINFORMATICS ANALYSIS                                                             | 49               |
| СНАР'         | TER 4. THERMODYNAMIC AND PHYSIOLOGICAL STUDY OF                                     | I                |
| CAPR          | OATE AND 1.3-PDO CO-PRODUCTION THROUGH GLYCEROL                                     |                  |
| FERM          | ENTATION AND FATTY ACIDS CHAIN ELONGATION                                           |                  |
| 4.1           | Overview                                                                            |                  |
| 4.2           | RESULTS AND DISCUSSION                                                              |                  |
| 4.2           | .1 Thermodynamic analysis of chain elongation with different electr                 | on donors.53     |
| 4.2           | 2 MCFA production with ethanol                                                      | 63               |
| 4.2           | .3 1,3-PDO and MCFA production with glycerol                                        | 66               |
| 4.2           | .4 1,3-PDO and MCFA production with ethanol and glycerol                            | 69               |
| 4.2           | 5 Microbial characterization                                                        | 70               |
| 4.3           | CHAPTER SUMMARY                                                                     |                  |
| СНАР          | TER 5 UNVEILING A NEW SYNERGISTIC AND SYNTROPHIC                                    |                  |
| MICR          | NELL NETWORK FOR CARBOXYLATES CHAIN FLONGATIC                                       | )N WITH          |
| ETHA          |                                                                                     |                  |
| 5.1           | OVERVIEW                                                                            |                  |
| 5.2           | RESULTS AND DISCUSSION                                                              |                  |
| 5.2           | <i>Microbial community structures under different physiological sta</i>             | ges of           |
| car           | boxvlate chain elongation with ethanol                                              |                  |
| 5.2           | 2 Metagenomics-based metabolic pathways characterization                            |                  |
| 5.3           | CHAPTER SUMMARY                                                                     |                  |
|               |                                                                                     | т                |
| CHAP          | LER 6. 1,3-PDO AND CAPROALE CO-PRODUCTION THROUGH                                   | 1<br>ATION DV    |
| GLYCI         | LKOL FERMENTATION AND CARBOXYLATE CHAIN ELONG<br>NG MICDODIAL CONSODTIA             | ATION BY<br>102  |
| <b>5Π</b> ΑΓΙ |                                                                                     | 102              |
| 0.1<br>6.2    |                                                                                     | 102              |
| 0.2           | RESULTS AND DISCUSSION                                                              | 104              |
| 0.2<br>6.2    | 2 Effect of substrates on cannot and 1.2 DDO formation                              | 104              |
| 0.2           | 2 Effect of substrates on caproate and 1,5-PDO formation                            | 100              |
| 0.2           | anol addition                                                                       | e wun un<br>11 A |
| ein<br>6 c    | 1 Microbial community structure analysis                                            |                  |
| 0.2           | <ul> <li>5 Ganoma reconstruction and metabolic nathways characterization</li> </ul> | 119<br>107       |
| 62            | CHADTED SUMMADY                                                                     | 127<br>115       |
| 0.5           | CHAI IER SUIVINIART                                                                 | 143              |
| <b>CHAP</b>   | <b>TER 7. CO-PRODUCTION OF 1,3-PDO AND CAPROATE FROM</b>                            |                  |

## GLYCEROL WITH ENRICHED MICROBIAL COMMUNITY ......149

| 7.1   | OVERVIEW                                                         | 149            |
|-------|------------------------------------------------------------------|----------------|
| 7.2   | RESULTS AND DISCUSSION                                           | 150            |
| 7.2   | .1 Physiological performance of batch tests                      | 150            |
| 7.2   | .2 Microbial community of glycerol fermentation for two value-ad | dded chemicals |
| co-   | production                                                       |                |
| 7.2   | .3 Electron flow of glycerol fermentation                        |                |
| 7.3   | CHAPTER SUMMARY                                                  | 157            |
| CHAPT | <b>FER 8. CONCLUSIONS AND RECOMMENDATIONS</b>                    |                |
| 8.1   | Conclusions                                                      | 159            |
| 8.2   | RECOMMENDATIONS FOR FUTURE WORK                                  | 163            |
| APPEN | DIX I TABLE                                                      | 164            |
| APPEN | DIX II TABLE                                                     | 171            |
| APPEN | DIX III TABLE                                                    |                |
| APPEN | DIX IV TABLE                                                     |                |
| APPEN | DIX V TABLE                                                      |                |
| APPEN | DIX VI TABLE                                                     | 243            |
| REFER | RENCES                                                           | 244            |

## LIST OF FIGURES

| <b>Figure 1.1.</b> Co-production of caproate and 1,3-PDO from glycerol with mixed culture.   |
|----------------------------------------------------------------------------------------------|
|                                                                                              |
| Figure 2.1. Waste(water) treatment and recycling to bioproducts as alternatives to           |
| methane in anaerobic undefined mixed culture to tackle with global issues 6                  |
| Figure 2.2. The schematic of process of biofuels production from biomass                     |
| Figure 2.3. Chain elongation pathways in anaerobic mixed culture adopted from                |
| Spirito et al. (2014) 14                                                                     |
| Figure 2.4. Chain elongation of acetate with ethanol as electron donor in <i>C. kluyveri</i> |
| adopted from Seedorf et al. (2008)                                                           |
| Figure 2.5. Biological pathways of caproate production in different anaerobes                |
| (particial)                                                                                  |
| Figure 2.6. Glycerol production as a byproduct in biodiesel process from fats and oils       |
| (a); Biodiesel production and its impact on crude glycerol prices in US (b)                  |
| adopted from Yazdani and Gonzalez (2007)                                                     |
| Figure 2.7. Metabolic pathways for glycerol metabolism in <i>clostridia</i> adopted from     |
| Johnson and Taconi (2007)                                                                    |
| Figure 2.8. Utilization of electron donor for energy production and cell synthesis           |
| adopted from Rittmann and McCarty (2012)                                                     |
| Figure 3.1. Inoculum source for fermentation (Drainage Services Department, Hong             |
| Kong)                                                                                        |
| Figure 3.2. Semi-continuous fermentation system                                              |

Figure 3.3. The HPLC system (SHIMADZU) used for quantification of the target compounds and GC system (Agilent) used for quantification of the target gases. Figure 3.4. Flowchart of 16S rRNA gene-based amplicon sequencing for microbial Figure 4.1. Standard transformed Gibbs free energy values in KJ mol<sup>-1</sup> as a function of pH and ionic strength (I) for (a) caproate formation with ethanol (Eq. R1 to R6), (b) caproate formation with H<sub>2</sub> (Eq. R7 and R8), (c) different product formation with glycerol fermentation (Eq. R9 to R12), and (d) caproate formation with glycerol (Eq. R13 and R14). ..... 55 Figure 4.2. Standard transformed Gibbs free energy values per electron transfer in KJ  $mol^{-1}$  as a function of pH and ionic strength (I) for caproate formation with Figure 4.3. Transformed Gibbs free energy values in KJ mol<sup>-1</sup> at a pH of 7, an ionic strength (I) of 0.1 M, a temperature of 310 K and pressure of 1 atm for (a) Eq. R1 and R2 as a function of the dissolved  $H_2$  and acetate; (b) Eq. R3 to R6 as a function of the dissolved H<sub>2</sub> and butyrate, acetate of 50 mM; (c) Eq. R7 and R8 as a function of the dissolved H<sub>2</sub> and acetate; (d) Eq. R13 and R14 as a function of the dissolved H<sub>2</sub> and butyrate, acetate of 50 mM, CO<sub>2</sub> formation of twice of 59 butyrate.



| pH 7 and ionic strength (1) of 0.1 M for Eq. R4/R5/R6 as a function of the                    |
|-----------------------------------------------------------------------------------------------|
| dissolved $H_2$ and butyrate, [Acetate] = 50 mM                                               |
| Figure 4.5. Standard transformed Gibbs free energy of reaction in KJ mol <sup>-1</sup> as a   |
| function of pH and ionic strength ( <i>I</i> ) for Eq. R15 to R20                             |
| Figure 4.6. (a) Chain elongation of 150 mM ethanol and 50 mM acetate with AD                  |
| sludge at a pH 7 and 37°C, (b) Product generation of glycerol fermentation in                 |
| mmol electron with AD sludge at pH 7 and 37°C.                                                |
| Figure 4.7. Kinetics of butyric acid, caproic acid, and H <sub>2</sub> production with 150 mM |
| alcohol-contained lignocellulose solution and 50 mM acetate at pH 7 and 37°C.                 |
|                                                                                               |
| Figure 4.8. Glycerol fermentation with and without acetate                                    |
| Figure 4.9. 1,3-PDO and caproate co-production with both ethanol and glycerol in the          |
| substrate, and the relationship with $H_2$ level at a pH 7 and 37°C, (a) Ethanol and          |
| glycerol addition on Day 0, (b) Ethanol addition on Day 20                                    |
| Figure 4.10. Composition of relative abundances of OTUs at Genus level in different           |
| sludge samples. Hierarchical clustering of five sludge samples was performed                  |
| based on all OTUs from the microbial communities with a UPGMA algorithm to                    |
| generate a newick-formatted tree72                                                            |
| Figure 4.11. Microbial pathways occurred in mixed culture glycerol-acetate                    |
| fermentation76                                                                                |
| Figure 5.1. Microbial pathways occurred in mixed culture glycerol-acetate                     |
| fermentation79                                                                                |

- **Figure 5.5.** Neighbor-joining tree based on 16S rRNA gene sequences and related reference lineages. 20 most abundant OTUs of 8 samples were selected for analysis and shown with average abundance and taxonomy information. The phylogenetic tree (bootstrap 1000: > 90% black node, > 70% gray node with black outline and > 50% gray node) were performed in ARB with SILVA

- **Figure 5.6.** Association network among top 10 abundant microbes. Each node represents an OTU and each edge represents a negative (blue) or positive (red) interaction between the two connect nodes. Arrow demonstrates the direction of the influence and the width of edges indicates the strength of the interaction. . 88
- Figure 5.8. Phylogenetic tree based on whole-genome sequence using PhyloPhlAn.

- Figure 6.2. Physiologic performance and microbial characterization of semi-continuous mixed culture fermentation at 37 °C, pH of 7, stirring rate of 150 rpm and HRT of 30 days with methanogenesis inhibition. Substrates in influent (a)

Figure 6.6. Composition of relative abundance of OTUs at genus level in different

- Figure 6.7. UniFrac emperor PCoA (a. weighted, b. unweighted) of a total of 39 samples based on all OTUs from the microbial communities. For sample labels, F represents fresh AD sludge; E is batch test with ethanol as electron donor; G is batch test with glycerol as electron donor; M is batch test with both ethanol and glycerol as electron donors; S stands for semi-continuous fermentation. The numbers represent stage and order (E1\_1: stage 1, parallel number 1; S1\_1: stage 1, phase 1).

| Figure 6.9. Phylogenetic tree of genome bins in stage 3 using PhyloPhlAn              |
|---------------------------------------------------------------------------------------|
| Figure 6.10. Phylogenetic tree of genome bins in stage 6 using PhyloPhlAn 130         |
| Figure 6.11. Phylogenetic tree of genome bins closely related to Bacteroidia bacteria |
| using PhyloPhlAn 131                                                                  |
| Figure 6.12. Annotated metabolic pathways of glycerol fermentation and carboxylate    |
| chain elongation in the system                                                        |
| Figure 7.1. Glycerol fermentation with fermenter-enriched culture                     |
| Figure 7.2. Neighbor-joining tree based on 16S rRNA gene sequences and related        |
| reference lineages. 20 most abundant OTUs were selected for analysis and shown        |
| with average abundance and taxonomy information. The phylogenetic tree was            |
| performed in ARB with SILVA database SSU NR99 as reference 153                        |
| Figure 7.3. Physiologic performance of enriched culture from stage 6 with glycerol in |
| batch. Corresponding representative OTUs at four time points are covered              |
| 72.04%–89.14% of the total sequences                                                  |
| Figure 7.4. Metabolic pathway of caproate and 1,3-PDO co-production from glycerol     |
| with enriched mixed culture                                                           |

## LIST OF TABLES

| Table 2.1. Energy density and market price of selected biomass, liquid fuels and gas.   |
|-----------------------------------------------------------------------------------------|
|                                                                                         |
| Table 2.2. Applications of caproate in industrial market.    12                         |
| Table 2.3. Manufacture technologies of caproate.    13                                  |
| Table 2.4. A summary of caproate producers                                              |
| Table 2.5. A summary of glycerol-fermenting bacteria.    25                             |
| Table 3.1. Medium composition for fermentation.    42                                   |
| Table 4.1. Potential stoichiometry of chain elongation to caproate and glycerol         |
| fermentation to 1,3-PDO, ethanol, butanol and caproate                                  |
| Table 4.2. Electrons transfer of chain elongation with ethanol and acetate at different |
| ethanol/acetate ratio                                                                   |
| Table 4.3. Potential electron production with various electron donors for the           |
| NAD <sup>+</sup> /NADH electron carrier pair                                            |
| Table 4.4. Butyric acid and caproic acid production with different substrate molar      |
| ratios at a fixed theoretical acetate concentration of 50 mM                            |
| Table 4.5. Product distribution in carbon from glycerol fermentation with acetate (50   |
| mM) at different substrate molar ratios                                                 |
| Table 4.6. Products formation distribution of glycerol fermentation with acetate        |
| inoculated with fresh anaerobic digestion sludge and ethanol screened culture.          |
|                                                                                         |
|                                                                                         |

Table 4.7. Abundance of most abundant and functional OTUs of each sample. ...... 72

| Table 4.8. Abundance and taxonomy of top 20 most abundant OTUs in fresh AD                             |
|--------------------------------------------------------------------------------------------------------|
| sludge sample75                                                                                        |
| Table 5.1. Summary of processed sequences and results from alpha diversity analysis.                   |
|                                                                                                        |
| Table 5.2. Abundance and taxonomy of top 20 most abundant OTUs in fresh AD                             |
| sludge samples                                                                                         |
| Table 5.3. Comparison of abundant OTUs of previous observation with this study. 89                     |
| Table 5.4. A summary of genomes recovered from shotgun <i>de-novo</i> assembly                         |
| Table 5.5. Standard transformed Gibbs free energy of ethanol oxidation to acetate and                  |
| $H_2$ by <i>D. vulgaris</i> , and butyrate formation from acetate and $H_2$ by <i>A. sticklandii</i> . |
|                                                                                                        |
| Table 6.1. Average concentrations of substrates and products in stage 6 of                             |
| semi-continuous fermenter. Standard deviation is given in parentheses 117                              |
| Table 6.2. Label and taxonomic information of 35 most-abundant OTUs in Figure 6.7.                     |
|                                                                                                        |
| Table 6.3. High-quality recovered genome bins.    128                                                  |
| Table 6.4. Glycerol fermentation and carboxylate chain elongation pathways in some                     |
| high-quality recovered genome bins                                                                     |
| Table 6.5. Energy conservation modes (excluding substrate-level phosphorylation) of                    |
| recovered genome bins                                                                                  |
| Table 7.1. Electron flow calculation of glycerol fermentation with enriched culture.                   |
|                                                                                                        |

## LIST OF ABBREVIATIONS

| SCFAs   | Short chain fatty acids                 |
|---------|-----------------------------------------|
| 1,3-PDO | 1,3-Propanediol                         |
| VFAs    | Volatile fatty acids                    |
| MCFAs   | Medium chain fatty acids                |
| MSW     | Municipal solid waste                   |
| CCS     | Carbon capture and storage              |
| DGGE    | Denaturing gradient gel electrophoresis |
| UASB    | Upflow anaerobic sludge blanket         |
| MEC     | Microbial electrolysis cell             |
| Т       | Temperature                             |
| Ι       | Ionic strength                          |
| AD      | Anaerobic digestion                     |
| SWH     | Shek Wu Hui                             |
| BESA    | 2-Bromoethanosulfonic acid              |
| PBS     | Phosphate Buffer Saline                 |
| HRT     | Hydraulic retention time                |
| HPLC    | High-performance liquid chromatography  |
| RID     | Refractive index detector               |
| GC      | Gas chromatography                      |
| TCD     | Thermal conductivity detector           |
| PE      | Paired-end                              |
| bp      | Base pairs                              |

- OTU Operational taxonomic unit
- UPGMA Unweighted-pair group mean average
- CCEP Carboxylates chain elongation process
- PCoA Principal coordinate analysis
- SRB Sulfate-reducing bacteria
- G+C content Guanine-cytosine content
- CDS Coding DNA sequences
- Rnf *Rhodobacter* nitrogen fixation
- IMG Integrated Microbial Genomes
- DOE JGI Department of Energy Joint Genome Institute
- CCA Canonical correspondence analysis
- SLP Substrate-level phosphorylation
- ETP Electron transport phosphorylation
- FBEB Flavin-based electron bifurcation
- PHB Poly-β-hydroxybutyrate

## **Chapter 1. Introduction**

#### **1.1 Background**

An alternative process for anaerobic wastewater treatment with methane recovery is to elongate the carbon chain of short chain fatty acids (SCFAs) with a formation of medium chain fatty acids (MCFAs), e.g. *n*-caproic acid with higher monetary value. Mixed culture carboxylates chain elongation for renewable caproate production with ethanol as an electron donor has been developed, and serval liter-scale studies have been conducted and a first pilot-scale study is underway (Angenent et al., 2016). However, the underlying microbial pathways in anaerobic mixed culture are not well understood. In addition to the chain elongating bacterium, *Clostridium kluyveri*, the roles and metabolism of other dominant bacteria in chain elongation process still need further investigation (Agler et al., 2012).

A recent study of environmental life cycle on production of caproate from mixed organic wastes recommended that future associated research focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent (Chen et al., 2017). Another potential electron donor is glycerol as a surplus byproduct from the rapid growth of waste-derived biodiesel industry. Biological reduction of glycerol to 1,3-propanediol (1,3-PDO) concurrently produces oxidative byproducts (SCFAs and ethanol) which limit its purity and cause the cost for separation and distillation (Leng et al., 2017). To circumvent the energy sink requirement and upcycle both the wastewater treatment process and the biodiesel industry, it is highly beneficial to produce a valuable secondary product from the byproducts along with 1,3-PDO. The upgrade of byproducts for the production of caproate could make the 1,3-PDO recovery more cost-efficient. The key point is how to cultivate a consortium of function bacteria who are able to reduce glycerol to 1,3-PDO and transfer the electrons into acetate and butyrate for caproate production via carboxylate chain elongation. The hypothesized biological pathways are shown in Figure 1.1.



Figure 1.1. Co-production of caproate and 1,3-PDO from glycerol with mixed culture.

## **1.2 Objectives**

The broad aim of this study is to evaluate two value-added chemicals, caproate and 1,3-PDO, co-production from glycerol and disclose the microbial networks and biological pathways of glycerol fermentation and carboxylate chain elongation. The specific objectives of this study are shown as follows:

- To evaluate the thermodynamic feasibility of different electron donors for carboxylate chain elongation and determine optimized environmental conditions of biochemical reactions for caproate production.
- (2) To determine the optimized substrate-level stoichiometric ratios of ethanol to acetate for caproate production and glycerol to acetate for caproate and 1,3-PDO co-production.
- (3) To investigate the physiological performance of ethanol-acetate, glycerol-acetate, and glycerol-ethanol-acetate fermentation with optimized substrates stoichiometric ratios in batch and semi-continuous fermentation.
- (4) To explore the microbial community associated with carboxylate chain elongation and glycerol fermentation, and reconstruct metabolic pathways of the enriched mixed culture.
- (5) To examine the co-production of caproate and 1,3-PDO from glycerol with ethanol self-sufficiency inoculated by enriched mixed culture.

### **1.3 Thesis Organization**

This thesis is composed of eight chapters. The first chapter includes the background information, motivation, objectives and the structure of this thesis.

Chapter Two provides a comprehensive literature review of related study. Chain elongation for caproate production and glycerol fermentation with different products formation are introduced, in particular in mixed culture. In Chapter Three, the experimental materials and specific experiment design are described.

In Chapter Four, thermodynamic and physiological insights gained into the caproate production from ethanol and acetate, co-production of 1,3-PDO and caproate from glycerol are reported. The optimized substrate-level stoichiometric ratios of ethanol to acetate for caproate production and glycerol to acetate for caproate and 1,3-PDO co-production are also discussed.

In Chapter Five, 16S rRNA gene-based amplicon and shotgun metagenomics sequencing were employed to elucidate the mixed culture chain elongation with ethanol by uncovering the microbes and functional pathways involved. An intricate and synergistic microbial network in mixed culture carboxylates chain elongation is unveiled.

Chapter Six discusses the physiological performance of ethanol-acetate, glycerol-acetate, and glycerol-ethanol-acetate fermentation with optimized substrates stoichiometric ratios in both batch and semi-continuous fermentation. The microbial community associated with carboxylate chain elongation and glycerol fermentation are disclosed and the reconstructed metabolic pathways in enriched mixed culture are described.

4

Chapter Seven demonstrates the co-production of caproate and 1,3-PDO from glycerol with ethanol self-sufficiency inoculated by enriched mixed culture, and discusses a unique combination of metabolic pathways successfully facilitating the hypothesized conversion.

In the last chapter, conclusions of the work present in this thesis are summarized. Moreover, the limitations of the present study and recommendations for the future work are proposed.

## **Chapter 2. Literature review**

# 2.1 Demand of waste to bioproducts conversion with mixed culture microbiomes



**Figure 2.1.** Waste(water) treatment and recycling to bioproducts as alternatives to methane in anaerobic undefined mixed culture to tackle with global issues.

#### 2.1.1 Environmental threats, economics and sustainability

The global generation of municipal solid waste (MSW) is estimated at 1.7 to 1.9 billion metric tons per year (Balasubramanian & Tyagi, 2017b; Chen et al., 2016), and the global generation of wastewater of municipal origin is estimated at 330 km<sup>3</sup> (Balasubramanian & Tyagi, 2017a). This huge quantity of waste(water) includes a large proportion of recyclable matters, which could be efficiently used for bioproduct conversion, and the disposal of the large quantity of biodegradable food waste brings heavy loading to landfills and squanders the recyclable organic contents. Therefore,

sustainable strategies and technologies must be implemented to treat and reuse the large amount of organic wastes.

Accessible fossil fuel with limited amount as energy resource is a global economic constraint. According to the International Energy Outlook 2016, total world consumption of marketed energy increases 48% from 2012 to 2040 (U.S. Energy Information Administration, 2016). Although the large resources of fossil fuel are still available recently and the global average fossil fuel conversion efficiency has been improved, they will be depleted very quickly in the near future, and only 1% of the worldwide power plants using fossil fuel will be equipped with carbon capture and storage (CCS) technology by 2035 (Patel, 2014). Therefore, in order to tackle with energy scarcity problem, sustainable alternative fuels, such as biofuels, must be combined with fossil fuel as energy resources in the near future.

Global climate change, one of the most critical environmental threats in 21th century, leads to the extreme weather, affects water supply, food security and ecological diversity. Greenhouse gas emission from rapid fossil fuel burning is one of the major reasons. The carbon storage in fossil fuel of thousands years is released from deep earth layer into atmosphere in carbon dioxide and methane, breaking the carbon cycle. Methane is a stronger greenhouse gas with 25 times of global warming potential per unit mass than carbon dioxide (Parry & Intergovernmental Panel on Climate Change. Working Group II., 2007). Methane generation from natural
decomposition of organic waste accounts for the main methane emission source. Anaerobic digestion of waste(water) with methane production needs to be technically upgraded for an efficient utilization of the methane. A challenge but also an opportunity, therefore, exists to change the view of organic wastes (biomass) to versatile renewable resources which can be used by various industries. With the strategy of waste(water) recycling for bioproducts production as an alternative to methane, the wastes can be reused, the fossil fuel consumption can be reduced, and the net greenhouse gas emission decrease (Figure 2.1).

#### 2.1.2 Sustainable production of biofuels and chemicals

The sustainability of biofuels and chemicals are highly depending on the biomass feedstock (Groom et al., 2008). For example, corn-based ethanol manufacturing uses large quantities of fossil fuel and brings about food competition to the society (Granda et al., 2007). According to the viewpoint of a previous study (Tilman et al., 2009), sustainable biofuels should be derived from feedstock generated with much lower life-cycle greenhouse gas emissions than fossil fuels and with little or no competition with food production. In addition, energy input for the recovery of biofuels and chemicals from waste biomass should be minimized. Municipal and industrial organic waste with a large biodegradable proportion is one of the best biofuel feedstocks.

The first generation biofuels are made from sugar, starch and vegetable oil, such as

ethanol, butanol and biodiesel (Ho et al., 2014). Among them, ethanol is the most common biofuel, which is successfully applied in ethanol–gasoline blend spark-ignition engines (Yuksel & Yuksel, 2004). The disadvantages of bioethanol fuel are the low energy density and the high energy input for its distillation. The second generation biofuels are made from various types of biomass, such as lignocellulose biomass (Ho et al., 2014). It solves the problem of food competition from feedstock, however, makes the biofuels extraction even harder (Hendriks & Zeeman, 2009). In addition to the traditional biofuels, there are other biofuels or bio-chemicals, such as biogas, syngas, caproate. Table 2.1 summarizes the energy density and market prices for some of them.

Regarding to conversion technologies, biofuels production has two main pathways, namely thermos-chemical pathway and biological pathway (Mandegari et al., 2016). The schematic process of biofuels production is shown in Figure 2.2 (Liu et al., 2010; McKendry, 2002). In contrast to thermo-chemical pathway which requires external heat, chemical additions and is unfavorable for biofuel production from high water content biomass, biological pathway is preferable with advantages of less energy, chemical input, and capacity to use high water content sources including organic fraction of municipal solid waste.

| Product   | Specific density<br>(MJ/kg) | Energy density<br>(MJ/L) | Market price*<br>(US\$/Ton) |
|-----------|-----------------------------|--------------------------|-----------------------------|
| Ethanol   | 23.4 - 26.8                 | 18.4 - 21.2              | 400 - 600                   |
| Butanol   | 36                          | 29.2                     | 1,450 - 2,450               |
| Biodiesel | 37.8                        | 33.3 - 35.7              | 400 - 1,500                 |
| Methane   | 55 - 55.7                   | (Liquefied) 23.0 - 23.3  | 3500 - 5600                 |
| Methane   | 55.5                        | 0.0364                   | -                           |
| Hydrogen  | 120 - 142                   | (Liquefied) 8.5 - 10.1   | -                           |
| Acetate   | 14 – 15                     | 14 - 15                  | 600 - 700                   |
| Caproate  | 30 - 31                     | 27.5 - 28.5              | 3,600 - 5,800               |

**Table 2.1.** Energy density and market price of selected biomass, liquid fuels and gas.

\* Market price in China enquiry online



Figure 2.2. The schematic of process of biofuels production from biomass.

## 2.1.3 Undefined mixed culture fermentation

Mixed culture biotechnology contains the traditional elements of environmental biotechnology in the fields of waste streams treatment with industrial biotechnology that aims at specific nutrients, organics products recovery and product maximization (Kleerebezem & van Loosdrecht, 2007). Using undefined mixed culture, microbial population with expected metabolic capacities can be enriched from a natural seed inoculum by the selection of substrate and operational conditions. In contrast to pure culture, undefined mixed culture for waste treatment and recycling is vital, because it's an open and anaerobic system that has adaptive capacity, the tolerance to the complexity and variability of substrates, and no need for energetically unfavorable sterilization and aeration (Agler et al., 2011).

In conclusion, production of high energy density biofuels and chemicals from organic waste under undefined mixed culture is a sustainable way to tackle with waste disposal, global climate change and energy scarcity problems.

# **2.2 Carboxylates chain elongation for caproate production**

# 2.2.1 Applications and manufacture technologies of caproate

Caproate (*n*-caproic acid), a 6-carbon saturated MCFA, is capable of serving as a fuel precursor or industrial commodity, and can be easily separated from the fermentation

media to reduce the energy input for distillation (Agler et al., 2012). It has higher energy value per carbon atom than methane, ethanol or acetate, and the low solubility property (1.082 g/100 mL at 20 °C) in water. Caproate is a basic industrial chemical and widely applied to artificial flavor, pharmaceuticals, lubricant, and plasticizer manufacturing processes (Cheon et al., 2014; Kenealy et al., 1995; Panke et al., 2004; Pommet et al., 2003). Ethyl caproate made from caproate is a valuable artificial flavor with pineapple fragrance for wine manufacture (Li et al., 2008). Caproin made from caproate is used for dairy industry (Harper, 1957). The market demand of caproate rapidly increase recently due to the versatile applications (Table 2.2).



**Table 2.2.** Applications of caproate in industrial market.

The technology for caproate production varies. With coconut oil hydrolysis, caproate can be refined via distillation (Hoover et al., 1973). This process highly depends on the coconut oil and is not suitable for Hong Kong and Mainland China which lacks of coconut oil. Caproate can also be produced with paraffin oxidation and refined via distillation (Boss et al., 1973), and with octanol oxidation which is a byproduct of the

process from castor oil to sebacic acid. However, these processes require high cost but keep low efficiency. Another major process for caproate production is octanol oxidation with nitric acid (Xu et al., 1990). The selectivity of this process is poor with more than 10% byproduct heptylic acid generation. And a large amount of NO, NO<sub>2</sub> will be generated in this process, which brings threat to environment (Table 2.3). In contrast, caproate production from organic wastes has been reported through mixed culture chain elongation in carboxylate platform (Agler et al., 2011).

| Coconut oil                                                                                                | Paraffin, Castor oil            | Octanol oxidation                                                                                                                                | Mixed culture                                   |
|------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| hydrolysis                                                                                                 |                                 | with nitric acid                                                                                                                                 | fermentation                                    |
| Highly depending on<br>the coconut oil<br>resource;<br>Not suitable for Hong<br>Kong and Mainland<br>China | High cost but low<br>efficiency | Poor selectivity with<br>more than 10%<br>byproduct;<br>A large amount of<br>NO, NO <sub>2</sub> generation<br>bringing threat to<br>environment | Low cost, high<br>efficiency,<br>sustainability |

Table 2.3. Manufacture technologies of caproate.

#### 2.2.2 Carboxylates chain elongation and caproate production in undefined

# mixed culture

The carbon chains of molecules can be elongated by different microbial pathway in undefined mixed culture under anaerobic conditions. Three major pathways have been summarized including homoacetogenesis, succinate production and reverse  $\beta$ -oxidation, shown in Figure 2.3 (Spirito et al., 2014). Through these pathways, complex substrates from organic waste can be treated and recovered into renewable chemicals and fuels. In homoacetogenesis which is well known as Wood-Ljungdahl pathway, the inorganic carbon dioxide can be reduced to formate and carbon monoxide (Ragsdale & Pierce, 2008). The formyl group from formate is reduced to a methyl group and then combined with carbon monoxide and Coenzyme A to produce acetyl-CoA for further 2-carbon acetate formation. In succinate formation, 3-carbon glycerol, serving as a carbon source and electron donor, conbines with carbon dioxide to produce 4-carbon succinate. With reverse  $\beta$ -oxidation pathway, the SCFAs, such as 2-carbon acetate and 4-carbon butyrate, are elongated into a 6-carbon MCFA, caproate, with ethanol or lactate as electron donor (Spirito et al., 2014).



Figure 2.3. Chain elongation pathways in anaerobic mixed culture adopted from Spirito et al.

(2014).

In undefined mixed culture, the persistent methanogens compete for substrates, acetate and ethanol, with chain elongation bacteria. In order to achieve the caproate production through reverse  $\beta$ -oxidation pathway, the methanogeneis barrier must be overcome. There are several methods to inhibit methanogens, such as chemical inhibition (Steinbusch et al., 2011), periodic heat shock (Oh et al., 2003), low pH inhibition (Agler et al., 2011), or combined low pH with thermal pre-treatment of inoculum (Steinbusch et al., 2009). The first method which has been commonly used is expensive, especially in large scale. Schlegel found that methanogens are killed when they are exposed to temperature over 80 °C while ethanol and butyrate production microorganisms are not heat-sensitive (Schlegel, 1993). The second one with demand of heat input is only suitable for waste-heat-rich biorefinery process. In terms of effect of pH, the methanogenesis rate was 33 times smaller at pH 6 than at pH 7, while the reduction rate of acetate to ethanol was optimal at pH 6 along with butyrate production with ethanol consumption (Steinbusch et al., 2009). However, the low pH inhibition might affect the thermodynamic feasibility of biochemical reactions of caproate production communities (Alberty, 2005).

Caproate production with chain elongation of SCFAs using ethanol as electron donor has been successfully achieved. For example, Steinbusch conducted a fed batch in a UASB reactor with 1 L working volume. The reactor was inoculated with non-sterilized granular sludge and operated at pH 7 and Temperature 30 °C. The substrate was 50 mM ethanol (continuous-maintained) and 50 mM acetate. Hydrogen

with flowrate of 200 mL  $h^{-1}$  was fed. The highest *n*-caproic acid production rate of 25.6 mM C d<sup>-1</sup> was achieved, equivalent to 0.6 mol C per mol C of acetate. The dominant strains were C. kluyveri & Azospira oryzae from Denaturing Gradient Gel Electrophoresis (DGGE) profile (Steinbusch et al., 2011). Agler conducted a semi-continuous (47h fermentation+1h biomass settling period) reactor with 5 L working volume and HRT of 12 days. The reactor was inoculated with non-sterilized natural microbiomes and ran at pH 5.5, Temperature 30 °C. Diluted yeast fermentation beer of 5.7 g COD  $L^{-1}d^{-1}$  (ethanol loading rate 83.3 mM C  $d^{-1}$ ) was fed as substrate. He got the highest *n*-caproic acid production rate of 76.5 mM C d<sup>-1</sup> and identified the dominant species of C. kluyveri and Clostridium acetobutylicum (Agler et al., 2012). An in-line membrane based liquid/liquid continuous extraction system of the unionized n-caproic acid was utilized in the research of Agler to avoid the toxicity of it towards microbial community at low pH (Agler et al., 2012). The driving force of *n*-caproic acid was a hydrophobic selective solvent with a pH gradient. However, energy-intensive in-line membrane based liquid/liquid n-caproic acid extraction system is not necessary if the fermentation is running at neutral pH. Because the density of *n*-caproic acid is  $0.929 \text{ g/cm}^3$ , and the solubility of it in water is 1.082 g/100 mL, supernatant extraction in the fermenter is enough for semi-continuous system.

#### 2.2.3 Caproate formation microbiomes and biological pathways

*C. kluyveri* is a strict anaerobe first enriched from the mud of a canal by H. A. Barker, 1937 in Delft, The Netherlands (Barker, 1937). It's a motile, rod shaped, endospore forming and gram-positive bacterium. The main substrates of *C. kluyveri* are ethanol, acetate for metabolism and bicarbonates only for cell synthesis (Barker et al., 1945; Bornstein & Barker, 1948; Jungermann et al., 1968). The bacterium is able to grow in a range of pH from 5.2 to 8.0 and a range of temperature from 25 to 43 °C (optimized from 35 to 37 °C) (Kenealy & Waselefsky, 1985). The chain elongation of acetate with ethanol for butyrate and caproate production through reverse  $\beta$ -oxidation pathway has been annotated in *C. kluvveri*, as shown in Figure 2.4. The enzymes list in Figure 2.4 could also have a function in caproyl-CoA (hexanoyl-CoA) formation (Seedorf et al., 2008). The butyryl-CoA: acetate CoA transferase (Cat3) has a broad substrate specificity, which could work on butyrate and caproate formation with butyryl- and caproyl-CoA reacting with acetate (Seedorf et al., 2008).



**Figure 2.4.** Chain elongation of acetate with ethanol as electron donor in *C. kluyveri* adopted from Seedorf et al. (2008).

Caproate production has also been reported with other bacteria. For example, *Megasphaera elsdenii*, producing 5-carbon to 8-carbon medium-chain carboxylic acids (MCCAs) from glucose, lactate, sucrose, and butyrate (Jeon et al., 2016; Marounek et al., 1989; Marx et al., 2011). *Eubacterium limosum*, which forms caproate by growing on methanol (Genthner et al., 1981). *Eubacterium pyruvativorans*, which utilizes amino acids and butyrate, pyruvate or trypticase to produce caproate (Wallace et al., 2004; Wallace et al., 2003). *Peptococcus niger* and *Peptostreptococcus anaerobius*, which produces butyrate and caproate with peptone (Ezaki et al., 2001). And the strain CPB6, affiliated with *Clostridium* cluster IV of

the *Ruminococcaceae* family, which produces a high concentration of caproate from lactate (Zhu et al., 2017). These caproate producing bacteria are mesophilic and can be enriched from rumen culture or partially from the human gut ecosystem. A summary of caproate producers is shown in Table 2.4.

| Substrate          | Caproate producer    | Favorable condition    | Reference           |
|--------------------|----------------------|------------------------|---------------------|
| Ethanol and        |                      | pH of 7.2, Temperature | (Barker et al.,     |
| acetate            | Clostridium kluyveri | of 32 – 35 °C          | 1945)               |
| Propanol and       |                      | pH of 6.4. Tomporature | (Vanaaly &          |
| succinate; ethanol | Clostridium kluyveri |                        |                     |
| and succinate      |                      | of $35 - 37$ °C        | Waseletsky, 1985)   |
| Glucose and        |                      | pH of 6.4, Temperature | (Marounek et al.,   |
| lactate            | Megasphaera elsdenii | of 35 – 37 °C          | 1989)               |
| Sucrose and        |                      | pH of 6.0, Temperature |                     |
| butyrate           | Megasphaera elsdenii | of 37 °C               | (Choi et al., 2013) |
| Methanol           | Eubacterium limosum  | pH of 7.2, Temperature | (Genthner et al.,   |
|                    |                      | of 37 °C               | 1981)               |
| Amino acids and    |                      |                        | (Wallace et al.,    |
| butyrate, pyruvate | Eubacterium          | pH of 7.0, Temperature | 2004; Wallace et    |
| or trypticase      | pyruvativorans       | of 39 °C               | al., 2003)          |
| Peptone            | Peptococcus niger    | Not reported           | (Ezaki et al.,      |

| Table 2.4. A summary | of caproate | producers. |
|----------------------|-------------|------------|
|----------------------|-------------|------------|

| Pept               | ostreptococcus       |                        | 2001)               |
|--------------------|----------------------|------------------------|---------------------|
| 6                  | anaerobius           |                        |                     |
| Dum                | inococcacaa          | pH of 5.0 – 6.5,       |                     |
| Lactate            | bacterium CPB6       | Temperature of 30 –    | (Zhu et al., 2017)  |
| Dac                |                      | 40 °C                  |                     |
|                    |                      | pH of 7.0, Temperature |                     |
| D-galactitol Clost | Clostridium sp. BS-1 | of 37 °C               | (Jeon et al., 2010) |

The biological pathways of caproate production by different caproate producers has been summarized and demonstrated in Figure 2.5. As reported in the genome of *C. kluyveri*, caproate is directly produced through a substitutional reaction with acetate/butyrate and caproyl-CoA which is catalyzed by Cat3 which has a broad substrate specificity (Seedorf et al., 2008). Caproyl-CoA is formed via a reverse  $\beta$ -oxidation pathway with acetyl-CoA and butyryl-CoA reduction. When butyryl-CoA is reduced from acetyl-CoA, butyrate production could be achieved via two pathways which are catalyzed by either CoA transferases (broad substrate specificity) or a combination of two enzymes, phosphate butyryltransferase and butyrate-kinase via butyryl-phosphate (Pryde et al., 2002). Some bacteria contain only phosphate butyryltransferase and butyrate-kinase other than CoA transferases. This may be one of the reasons that some bacteria produce butyrate but with insignificant caproate production. As shown in Figure 2.5, acetyl-CoA is the central intermediate linking with reoxidation of different electron donors for caproate production via reverse  $\beta$ -oxidation.



Figure 2.5. Biological pathways of caproate production in different anaerobes (particial).

# 2.3 Waste-derived reduced compounds for carboxylate chain elongation

The chain elongation of SCFAs into MCFAs within anaerobic reactor microbiomes requires additional electron donors. Some of the reducing compounds, directly donating electrons into chain elongation, including ethanol, methanol, lactate and glucose (Table 2.4), are contained in or could be produced from waste, and (Agler et al., 2012; Ghaffar et al., 2014; Li et al., 2007; Vasudevan et al., 2005). With electrons and carbons transferred from water-soluble compounds (SCFAs and reducing compounds) into MCFAs of a good separation property, the cost of energy input for the resources recovery from wastes is reduced. In addition, there are also some other waste-derived compounds, such as  $H_2$ , syngas (a mixture of CO,  $H_2$  and CO<sub>2</sub>) and glycerol, that can provide energy and reducing equivalents for chain elongation indirectly with production of ethanol, lactate and SCFAs as intermediates (Ito et al., 2005; Munasinghe & Khanal, 2010; Sakai et al., 2004). With these reducing compounds, the chain elongation for MCFAs production can be achieved via interspecies cooperation. Chain elongation for caproate and caprylate production from acetate with  $H_2$  as electron donor in anaerobic mixed culture has been achieved by Steinbusch et al. (2011), and syngas fermentation for caproate production via ethanol as intermediates has been reported by Vasudevan et al. (2014). However, MCFAs production with glycerol as electron donor is yet to be investigated.

# **2.4 Glycerol fermentation**

#### 2.4.1 Crude glycerol produced in biodiesel process

Glycerol, the structural component of any lipids, is abundant in nature (da Silva et al., 2009). In the process of biodiesel production with the transesterification of vegetable oils or animals fats, 10 % (w/w) of crude glycerol is produced as a byproduct (Yazdani & Gonzalez, 2007). Therefore, glycerol is presently being generated in surplus with the rapid growth of biodiesel industry, which causes the decline of glycerol price, shown in Figure 2.6. Crude glycerol has been regarded as a waste stream that leads to a disposal cost. Ultimately, removal and recovery of this

byproduct in the biodiesel stream is crucial for the economic viability of the biodiesel industry. Biological conversion of glycerol into different industrial chemicals and solvents has been widely applied due to the high reduced nature of carbon in glycerol and lower capital and operational costs of anaerobic fermentation. Elongation of SCFAs with glycerol as electron donor instead of ethanol is of special interest.



**Figure 2.6.** Glycerol production as a byproduct in biodiesel process from fats and oils (a); Biodiesel production and its impact on crude glycerol prices in US (b) adopted from Yazdani and Gonzalez (2007).

#### 2.4.2 Glycerol fermentation pathways and microbiomes

One particular and promising choice of the biological conversion of glycerol is to

produce 1,3-PDO which is a monomer applied for all types of polycondensates (polyester and polyurethanes) (Lee et al., 2015). Glycerol fermentation generates other products such as acetate, lactate, butyrate, ethanol, butanol, succinic acid and H<sub>2</sub> in addition to 1,3-PDO (Viana et al., 2014). The common glycerol fermentation microorganisms that have been investigated so far belong to the genera of *Klebsiella*, Clostridium, Citrobacter, and Enterobacter (Yazdani & Gonzalez, 2007). For example, Klebsiella pneumoniae anaerobically grows on glycerol for 1,3-PDO production at pH 7 and 37 °C (Menzel et al., 1997); Klebsiella planticola produces ethanol and formate from glycerol at pH 7.2 to 7.4 and 37 °C (Jarvis et al., 1997); Clostridium butyricum produces 1,3-PDO, butyrate, and acetate with glycerol at pH 7 and 37 °C (Barbirato et al., 1998); Clostridium pasteurianum produces 1,3-PDO and butanol from glycerol (Biebl, 2001); Citrobacter freundii converts glycerol to 1,3-PDO at around pH 7 and 30 °C (Boenigk et al., 1993); Enterobacter Aerogenes produces ethanol from glycerol at pH 7 and 30 °C (Chantoom et al., 2014). A summary of glycerol-fermenting bacteria is shown in Table 2.5. These consortia of glycerol-fermenting bacteria have similar cultivation conditions with chain elongation caproate producing bacteria. Figure 2.7 shows the metabolic pathways for glycerol fermentation in Clostridia. The previous study showed that glycerol fermentation obtained a 1,3-PDO and ethanol yield of 0.34 and 0.44 mol per  $C_3$ , respectively (Varrone et al., 2012), while chain elongation achieved a caproate yield of 0.6 mol C per mol C with ethanol (Steinbusch et al., 2011). This suggests that if simultaneous glycerol formation and chain elongation can be achieved, stoichiometric 1,3-PDO and caproate yields of 0.34 and 0.088 mol per mol glycerol are theoretically possible.

| Products            | Microorganism            | Favorable condition    | Reference          |
|---------------------|--------------------------|------------------------|--------------------|
| 1,3-PDO             |                          | pH of 7.0 and          | (Menzel et al.,    |
|                     | Klebsiella pneumoniae    | Temperature of 37 °C   | 1997)              |
|                     | Klebsiella pneumoniae    |                        |                    |
| Ethanol             | (mutant strain, GEM167)  | Temperature of 37 °C   | (Oh et al., 2011)  |
|                     |                          | pH of 7.2 – 7.4 and    | (Jarvis et al.,    |
| Ethanol and formate | Klebsiella planticola    | Temperature of 37 °C   | 1997)              |
| 1,3-PDO, butyrate,  |                          | pH of 7.0 and          | (Barbirato et al., |
| and acetate         | Clostridium butyricum    | Temperature of 37 °C   | 1998)              |
| 1,3-PDO and butanol | Clostridium              | pH of 4.5 – 7.5,       |                    |
|                     | pasteurianum             | Temperature of 35 °C   | (Biebl, 2001)      |
|                     | Clostridium beijerinckii | pH of 7.0 and          | (Gungormusler et   |
| 1,3-PDO             |                          | Temperature of 37 °C   | al., 2011)         |
|                     |                          | pH of 6.0 and          |                    |
| Ethanol             | Clostridium              | Temperature of 35 °C,  | (Speers et al.,    |
|                     | cellobioparum            | Microbial Electrolysis | 2014)              |
|                     |                          | Cell (MEC)             |                    |
| 1,3-PDO             |                          | pH of 7.0,             | (Boenigk et al.,   |
|                     | Citrobacter freundii     | Temperature of 30 °C   | 1993)              |

Table 2.5. A summary of glycerol-fermenting bacteria.

|                     |                        | pH of 7.0,           | (Chantoom et al., |
|---------------------|------------------------|----------------------|-------------------|
| Ethanol             | Enterobacter Aerogenes | Temperature of 30 °C | 2014)             |
| Ethanol, succinate, | Escherichia coli       | pH of 6.3,           | (Murarka et al.,  |
| formate             |                        | Temperature of 37 °C | 2008)             |



**Figure 2.7.** Metabolic pathways for glycerol metabolism in *clostridia* adopted from Johnson and Taconi (2007).

As shown in Figure 2.7, two different concurrent metabolic pathways of glycerol dissimilation are demonstrated including the reductive pathway and the oxidative pathway. In the former pathway, 1,3-PDO production from glycerol reduction begins with the transformation of glycerol to 3-hydroxy-propionaldehyde, which is catalyzed by a coenzyme B12-dependent propanediol dehydratase (Forage & Foster, 1982) or a coenzyme B12-dependent glycerol dehydratase (Raynaud et al., 2003).

Then, 3-hydroxy-propionaldehyde is further reduced to 1,3-PDO catalyzed by 1,3-PDO dehydrogenase (Raynaud et al., 2003). The glycerol dehydratase is the rate-limiting step for glycerol reduction to 1,3-PDO (Abbad-Andaloussi et al., 1996; Menzel et al., 1998). In the latter pathway, glycerol is first dehydrogenated to form dihydroxyacetone by glycerol dehydrogenase, followed by the phosphorylation of dihydroxyacetone to dihydroxyacetone-phosphate glycolytic enzyme by dihydroxyacetone kinase, which is then funneled to glycolysis leading to the production of different carboxylic acids and solvents (da Silva et al., 2009; Johnson & Taconi, 2007). Pyruvate is the core intermediate of glycerol oxidation, which is further converted into acetyl-CoA through an oxidation pathway for SCFAs and alcohol production. These two pathways are associated with electron balance of glycerol dissimilation. For example, one molar acetate production from one molar glycerol results in six molar electrons production. Therefore, other reductive reactions such as 1,3-PDO production should occur to balance the reducing equivalents of the system. In addition, the generation of acetate or butyrate will yield higher amount of ATP compared to ethanol or butanol, which promotes higher biomass formation (Johnson & Taconi, 2007).

#### 2.4.3 Glycerol fermentation with undefined mixed culture

In order to reduce the production costs, the use of undefined mixed cultures to convert crude glycerol to value-added chemicals under nonsterile conditions is more prospective. Glycerol fermentation by undefined mixed culture has been widely investigated for 1,3-PDO, ethanol, propionate and hydrogen production (Chen et al., 2016; Moscoviz et al., 2016; Varrone et al., 2012; Vikromvarasiri et al., 2014). A selective microbial community with functional consortium that adapt to the imposed conditions will dominate after enrichment.

Dietz and Zeng achieved yields of 0.56–0.76 mol 1,3-PDO per mol glycerol with a minimal culture medium containing crude glycerol used mixed cultures from municipal wastewater biogas sludge (Dietz & Zeng, 2014). Selembo et al. achieved 1,3-PDO yield of 0.69 mol 1,3-PDO per mol glycerol along with 0.28 mol H<sub>2</sub> per mol glycerol using heat treated mixed culture (Selembo et al., 2009). Liu et al. used an organic soil mixed culture with heat pretreatment and obtained 1,3-PDO yield of 0.65 mol 1,3-PDO per mol glycerol (Liu et al., 2013). Vikromvarasiri et al. collected mixed culture seed from a full-scale upflow anaerobic sludge blanket (UASB) system and achieved an ethanol yield of 0.81 mol ethanol per mol glycerol operated at 30 °C and pH 7 under anaerobic conditions (Vikromvarasiri et al., 2014). The enriched culture mainly consists of bacteria closely assiociated with genera of Enterobacter and Klebsiella (Vikromvarasiri et al., 2014). Chen et al. achieved propionate yield of 0.45 g COD/g COD glycerol with anaerobic sludge from a mesophilic digester treating starch wastewater induced by high ammonium concentration (Chen et al., 2016). Temudo et al. conducted two comparable fermentations of glycerol and glucose with continuous stirred reactors at pH of 8 under undefined mixed culture (Temudo et al., 2008). They found glycerol fermentation produced more reduced compounds (ethanol and 1,3-PDO) and less biomass than glucose fermentation (Temudo et al., 2008). With limited substrate, the yields of ethanol and formate were higher (60% of the carbon converted) (Temudo et al., 2008). Formate can be further converted into H<sub>2</sub> and CO<sub>2</sub> by the action of formate-H<sub>2</sub> lyase from certain species of enteric bacteria such as *Escherichia coli* and *E. aerogenes* (Viana et al., 2014). With increasing the substrate concentration, the yields of 1,-PDO, acetate increased, and the biomass yield decreased (Temudo et al., 2008). Mixed culture fermentation products spectrum of glycerol are influenced by the NAD<sup>+</sup>/NADH balance.

The pH of undefined mixed culture is a crucial parameter that has a significant impact on the production spectrum. The pH not only affects the growth rate, substrate uptake, efficiency of the substrate conversion, but also determines the fraction of undissociated acids in the solution, which are able to permeate through cell membranes (Temudo et al., 2008). Vikromvarasiri conducted a batch scale experiment to study the pH impact on the bioethanol production from glycerol under mixed culture. They found the neutral pH (6.8 and 7) favored the glycerol utilization and bioethanol production (Vikromvarasiri et al., 2014). Moscoviz et al. investigated the initial pH effect on glycerol fermentation in a batch mixed culture with pH values between 5 and 9 and found that the highest 1,3-PDO production yields was obtained at pH 7 and 8 (Moscoviz et al., 2016).

# **2.5 Challenges on 1,3-PDO and caproate co-production**

To the knowledge of the authors, such a co-production has yet to be realized due to several challenges. First, no organism is known to perform glycerol reduction to 1,3-PDO and glycerol oxidation coupling with chain elongation to caproate concurrently. The chain elongation bacterium, C. kluyveri, lacks glycerol utilization capability (Seedorf et al., 2008), and the well-known glycerol fermentation bacteria of the genera Klebsiella, Clostridium, and Citrobacter are also incapable of producing caproate (Barbirato et al., 1998; Biebl, 2001; Boenigk et al., 1993; Jarvis et al., 1997; Menzel et al., 1997). Consequently, the co-production is only possible via interspecies cooperation. This presents a second challenge on the suitability of cultivation matrix to support the co-dominance of 1,3-PDO-producing and caproate-producing microbes. Specifically, ethanol and 1,3-PDO, both of which are products of glycerol fermentation, may have opposing effects on caproate producers. Ethanol is an essential electron donor for caproate production, while 1,3-PDO of suppresses the chain elongation activity Clostridium spp (Szymanowska-Powaowska & Kubiak, 2015). Ultimately, achieving a balance of 1,3-PDO and ethanol levels within the cultivation matrix is crucial for supporting the population and activity of caproate producers.

# 2.6 Bioenergetics of anaerobic microbial metabolism

Electron donor (energy source) can be used by microorganisms for two approaches, converted into reduced products (catabolism), and assimilated for cell synthesis

(anabolism). Cells of microorganism also decay due to normal maintenance or predation. Part of energy is transferred to the acceptors for more energy generation, and the other part is transferred into the non-active organic cell residue, shown in Figure 2.8. A very important facet of the energy partitioning framework is that it is in terms of electron equivalents (Rittmann & McCarty, 2012). Both the reduced products and microorganism cell synthesis can be expressed as electron equivalents. The two major intermediates connecting cell synthesis and reduced products formation are pyruvate and acetyl-CoA. From pyruvate to acetlyl-CoA, a formate  $(CO_2 \text{ and } H_2)$  will be generated. In undefined mixed culture, different organisms are co-existing, and some of them are in an obligately mutualistic metabolism. In the case of one partner of organisms living off the products of the other partner of organism, it is termed as syntrophy. Schink suggested that a biological "quantum of energy" minimum exists in syntrophy. It has been postulated that a bacterium needs a minimum energy of about  $-20 \text{ kJ mol}^{-1}$  (one third of that needed for the synthesis of an ATP molecule), which is the smallest quantum of metabolically convertible energy for an ion to transport across the cytoplasmic membrane and the amount (Schink, 1997). However, it was reported that many organisms can survive on much less than the -20 kJ mol<sup>-1</sup> (McCarty & Bae, 2011).



**Figure 2.8.** Utilization of electron donor for energy production and cell synthesis adopted from Rittmann and McCarty (2012).

### 2.6.1 Thermodynamics in metabolism

Free energy change of a specific reaction indicates it is spontaneous or not. Thermodynamics of biochemical reactions is more complicated than that of chemical reactions in aqueous solution owing to more independent variables that have to be specified (Alberty, 2005). For example, biochemical reactants often exist in ions, and the activity coefficients of ions are influenced by ionic strength. Therefore, the thermodynamic analysis which is used to compare the free energy change of reactions should involve the association with pH, ionic strength. A transformed thermodynamic model of Gibbs free energies has been well developed (Alberty, 2005). The transformed thermodynamic model with these transformed Gibbs free energies is more appropriate allowing for the simple thermodynamic analysis of multiple forms of biological species in aqueous solution. For example, as the pH and ionic strength are embedded in the transformed thermodynamic properties, calculating the Gibbs free energy of reaction with varying pH and ionic strength is straight forward with tabulated transformed Gibbs free energy of formation for each species. In general, the thermodynamic strategy can be used to compare the potential of different electron donors and manipulate different reduced products formation from different pathways.

Thermodynamic laws can act as a vital tool to provide the theoretical basis for analyzing experimental results and providing important information regarding bacterial growth and metabolism. Thermodynamics also play an important role in understanding the pathway reversibility. The possible pathway reversibility of specific anaerobic catabolic reactions opens a new paradigm in the development of biofuels and chemicals with high energy density (Leng et al., 2017). As anaerobic bioprocesses occur in an energy-scarce environment, the metabolic pathways take place very close to thermodynamic equilibrium with minimum energy dissipation. Therefore, a slight change in substrate/product concentrations or environmental conditions can alter the direction of the pathway.

### 2.6.2 Energy conservation in anaerobic syntrophy

Even when the products of syntrophic acetogenesis are at low concentrations, the Gibbs free energy change for syntrophic metabolism is about -15 to -20 kJ mol<sup>-1</sup>, the smallest quantum of metabolically convertible energy for an ion to transport

across the cytoplasmic membrane, which is lower than the energy required for the synthesis of ATP from ADP (40-70 kJ per mole of ATP) (McInerney et al., 2009; Schink & Stams, 2013). Syntrophic bacteria couple substrate metabolism directly to ATP synthesis by classical phosphoryl transfer reactions (Jackson & McInerney, 2002), and are well adapted to an energetically stressed lifestyle with low growth rate and low yield. The marginal energy economy of syntrophs based on oxidation of energetically unfavorable substrates requires an efficient interspecies transfer to enable the survival of the microbes involved under thermodynamically demanding conditions; for instance, extremely low H<sub>2</sub> concentrations are required for syntrophic bacteria to acquire energy through the oxidation of energetically challenging substrates (Kouzuma et al., 2015). For thermodynamically unfavorable reduction of protons  $(H^+)$  to hydrogen  $(H_2)$ , very efficient energy conservation systems are necessary (Narihiro et al., 2016). Whole-genome and metagenome sequencing approaches have been used to investigate how the syntrophic microorganisms conserve energy when their thermodynamic driving force is very low (McInerney et al., 2009).

Reverse electron transfer, an energy conservation system, is a key requirement in syntrophic interactions. Via biochemical mechanisms, microorganism can perform endergonic chemical transformations under prevailing conditions using energy from other, exergonic transformation steps (Stams & Plugge, 2009). In syntrophic methanogenesis, hydrogen and formate formation from electrons generated in the oxidation of acyl-CoA intermediates to their respective enoyl-CoA intermediates is energetically unfavorable and can occur only with energy input from an energy conservation process (Sato et al., 1999).

# 2.7 Economic analysis of the processes for two value-added chemicals co-production from glycerol

Theoretically, 1 mole of glycerol produces 1 mole of 1,3-PDO with consumption of 2 mole of electrons while 1 mole of glycerol produces 0.5 mole of caproate with consumption of the same electrons.

Glycerol + 2 e<sup>-</sup> 
$$\rightarrow$$
 1,3-PDO  
Glycerol + 2 e<sup>-</sup>  $\rightarrow$  0.5 caproate

As the biological reaction of acetate and  $CO_2$  production from glycerol generates the highest amount of electrons (6 mole e<sup>-</sup> per mole glycerol), the highest conversion rates of 1,3-PDO and caproate were 0.750 and 0.375 mole per mole glycerol, respectively.

Glycerol 
$$\rightarrow$$
 Acetate + CO<sub>2</sub> + 6 e<sup>-</sup>  
Glycerol  $\rightarrow$  0.25 Acetate + 0.25 CO<sub>2</sub> + 0.75 1,3-PDO  
Glycerol  $\rightarrow$  0.25 Acetate + 0.25 CO<sub>2</sub> + 0.375 caproate

For treating 1000 ton of glycerol, the theoretical highest yields for 1,3-PDO and caproate are 620 ton and 473 ton, respectively. The latest market price for refinery and crude glycerol are around US\$ 600 and 70 per ton, respectively (Quispe et al., 2013). The market prices for 1,3-PDO and caproic acid with high purity (above 98%)

are US\$ 900 to 1200 and 2100 to 3600 per ton, respectively. With refinery glycerol as substrate, the feedstock capital is US\$ 600,000. The income for 1,3-PDO production is US\$ 558,000 to 744,000 while that for caproic acid production is US\$ 993,300 to 1,702,800. With crude glycerol as substrate, the benefits are even higher. In general, caproic acid production from the glycerol waste stream is with applicable potential from economic perspective.

# **Chapter 3. Materials and Methodology**

# **3.1 Thermodynamics calculation of biochemical reactions**

The thermodynamic calculations of biochemical reactions were made after Alberty (Alberty, 2005; Hu et al., 2011). The transformed Gibbs free energy,  $\Delta_r G'_T$ , is as follows,

$$\Delta_r G'_T = \Delta_r G'^0_T + RT lnQ \tag{1}$$

where  $\Delta_r G'_T^0$  is the standard transformed Gibbs free energy of a reaction at a temperature (*T*) and *Q* is a factor related to the activities of reactants and products defined as,

$$Q = \frac{(a_A)^a (a_B)^b \dots (a_C)^c}{(a_X)^x (a_Y)^y \dots (a_Z)^z}$$
(2)

where the numerator represents the activity of products A, B, C, etc. and the denominator represents the activity of reactants X, Y, Z, etc. The powers are the stoichiometric coefficients of the products and reactants in each reaction.

In order to obtain  $\Delta_r G'^0{}_T$ , the standard Gibbs free energy of formation ( $\Delta_f G^0$ ) and standard enthalpy of formation ( $\Delta_f H^0$ ) for each reactant and product at *T*=298.15 K and ionic strength (*I*)=0 M were found in references, and a *T* correction for the Gibbs free energies of formation is first required. For example, for a given condition of 310 K, the Gibbs free energy of formation at *T*=310 K,  $\Delta_f G^0{}_{i,310K}$  is adjusted with Eq. 3,

$$\Delta_f G^0{}_{i,310K} = \left(\frac{310K}{298.15K}\right) \times \Delta_f G^0{}_{i,298.15K} + \left(1 - \frac{310K}{298.15K}\right) \times \Delta_f H^0{}_i \tag{3}$$

Subsequently, the standard transformed Gibbs free energies of formation at different pH and ionic strength,  $\Delta_f G'^{0}_{i,310K}(pH,I)$ , are calculated as follows:

$$\Delta_{f} G'^{0}{}_{i,310K}(pH,I) = \Delta_{f} G^{0}{}_{i,310K} - N_{H,i} RT ln 10^{-pH} - RT \alpha \left( Z_{i}^{2} - N_{H,i} \right) I^{\frac{1}{2}} / (1 + BI^{\frac{1}{2}}) \quad (4)$$
  
where  $RT\alpha = 9.20483 \times 10^{-3} T - 1.28467 \times 10^{-5} T^{2} + 4.95199 \times 10^{-8} T^{3}, B = 1.6$   
kg<sup>1/2</sup>mol<sup>-1/2</sup>,  $N_{H,i}$  is the number of hydrogen atoms in a substance, and  $Z_{i}$  is the charge  
number (Alberty, 2001).

Finally, with the standard transformed Gibbs free energies of formation of each reactant and product, the standard transformed Gibbs free energy of each biochemical reaction is calculated using Eq. 5,

$$\Delta_r G^{\prime 0}{}_T = \sum \mathbf{v}_i \times \Delta_f G^{\prime 0}{}_{i,T} \tag{5}$$

where  $v_i$  is the stoichiometry of each reactant and product.

A MATLAB program for thermodynamics calculation is created as follows,

$$Z_i = [0 - 1 \ 0 \ 0 \ 0 \ 0 - 1 \ - 1 \ - 1 \ 0 \ - 1 \ - 2];$$

# Charge number of substances (Reactors and products)

 $N_{H,i} = [2 \ 1 \ 2 \ 6 \ 8 \ 8 \ 3 \ 7 \ 11 \ 10 \ 26 \ 27];$ 

# Number of hydrogen atoms in a substance

$$\Delta_f H^0 = [0.691.99.285.83.277.7.676.55.480.8.486.01.533.8.583.8.327.3.0]$$

# Standard enthalpy of formation ( $\Delta_f H^0$ ) at T=298.15 K and I=0 M

$$\Delta_f G^0 = [0.586.77.237.17.174.9.497.48.327.08.369.31.352.63.335.96.171.84]$$

0 22.65];

# Standard gibbs free energy of formation ( $\Delta_f G^0$ ) at T=298.15 K and I=0 M n = length( $Z_i$ );  $\Delta_f G^0{}_{i,310K}$  = zeros(n,1);

for i = 1:n

$$\Delta_f G^0{}_{i,310K}(i) = (310.00/298.15) \times \Delta_f G^0{}_{i,298.15K} + (1-310.00/298.15) \times \Delta_f H^0{}_i;$$

end

# To calculate gibbs free energy of formation at Temperature=310 K

$$T = 310; B = 1.6;$$
  

$$R = 0.008314;$$
  

$$RTa = 9.20483 \times (10^{-3}) \times T - 1.28467 \times (10^{-5}) \times (T^{2}) + 4.95199 \times (10^{-8}) \times (T^{3});$$
  

$$I = [0 \ 0.05 \ 0.1 \ 0.15 \ 0.2 \ 0.25]; pH = [4.5 \ 5 \ 5.5 \ 6 \ 7 \ 8];$$
  

$$\Delta_{f} G'^{0}{}_{i,310K} = \text{zeros}(\text{length}(I), \text{length}(pH), n);$$
  
for j = 1:n

5

for i = 1:length(I)

for k = 1:length(pH)

$$\Delta_{f} G'^{0}{}_{i,310K}(i,k,j) = \Delta_{f} G^{0}{}_{i,310K}(j) - N_{H,i}(j) \times \mathbb{R} \times \mathbb{T} \times \log(10^{(-pH(k))}) - \mathbb{R} \mathbb{T} a \times (Z_{i}(j)^{2} - N_{H,i}(j)) \times (I(i)^{(1/2)})/(1 + \mathbb{B} \times I(i)^{(1/2)});$$

end

end

end

# To calculate standard transformed Gibbs free energies of formation at different pH and ionic strength

 $\Delta_1 G'_{310K}^0$  = zeros(length(I),length(pH)); % R1 as an example

for i = 1:length(I)

for k = 1:length(pH)

 $\Delta_1 G'^0{}_{310K}(i,k) =$ 

 $-\Delta_{f}G'{}^{0}{}_{i,310K}(\mathbf{i},\mathbf{k},4)-\Delta_{f}G'{}^{0}{}_{i,310K}(\mathbf{i},\mathbf{k},7)+\Delta_{f}G'{}^{0}{}_{i,310K}(\mathbf{i},\mathbf{k},8)+\Delta_{f}G'{}^{0}{}_{i,310K}(\mathbf{i},\mathbf{k},3);$ 

end

end

# To calculate the standard transformed gibbs free energy of reactions

 $\Delta_1 G'_{310K}^0 * = \Delta_4 G'_{310K}^0 (3,5);$  % R1 as an example, fixing pH = 7 and I = 0.1 M

 $x1 = [0\ 0.001\ 0.01\ 0.1\ 0.2\ 0.4\ 0.6\ 0.74];$ 

y1 = [0 10 25 50 100 150 250 500];

 $\Delta_1 G'_{310K}$  = zeros(length(x1), length(y1));

for i = 1:length(x1)

for k = 1:length(y1)  $\Delta_1 G'_{310K}(i,k) = \Delta_1 G'^0_{310K} *+0 \times R \times T \times \log(x1(i)) -1 \times R \times T \times \log(y1(k));$ end

end

# To calculate the transformed gibbs free energy of reactions in terms of the activities of reactants and products

# **3.2 Inoculum and medium for fermentation**

An inoculum of 10% (volume/working volume [v/v]) anaerobic digestion (AD) sludge was collected from Shek Wu Hui (SWH) Sewage Treatment Works in Sheung Shui, Hong Kong. SWH Sewage Treatment Works treated wastewater collected from Sheung Shui and Fanling areas where freshwater is used for toilet flushing. Thus, the seed culture of our study is non-saline AD sludge.



Figure 3.1. Inoculum source for fermentation (Drainage Services Department, Hong Kong).

The composition of the medium included substrates, minerals, trace metals, a reducing agent, a methanogenesis inhibitor, and a redox indicator. One liter of the fermentation medium contained 0.20 g of KH<sub>2</sub>PO<sub>4</sub>, 0.50 g of NH<sub>4</sub>Cl, 1.00 g of NaCl, 0.24 g of MgSO<sub>4</sub>, 0.50 g of KCl, 0.15 g of CaCl<sub>2</sub>·2H<sub>2</sub>O, 2.52 g of NaHCO<sub>3</sub>, 1.50 mg of Fe<sub>2</sub>Cl·4H<sub>2</sub>O, 0.30 mg of H<sub>3</sub>BO<sub>3</sub>, 0.20 mg of CoCl<sub>2</sub>·4H<sub>2</sub>O, 0.05 mg of ZnCl<sub>2</sub>, 0.03 mg of MnCl<sub>2</sub>·4H<sub>2</sub>O, 0.03 mg of Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O, 0.02 mg of NiCl<sub>2</sub>·6H<sub>2</sub>O, 0.01 mg of CuCl<sub>2</sub>·2H<sub>2</sub>O, 0.5 g of L-cysteine, 10 g of 2-bromoethanosulfonic acid (BESA), and 1 mL of resazurin (0.1% w/v). The BESA was added to inhibit methanogenesis.

| Mineral                              |      |      |
|--------------------------------------|------|------|
| KH <sub>2</sub> PO <sub>4</sub>      | 0.20 | g/L  |
| NH <sub>4</sub> Cl                   | 0.50 | g/L  |
| NaCl                                 | 1.00 | g/L  |
| MgSO <sub>4</sub>                    | 0.24 | g/L  |
| KCl                                  | 0.50 | g/L  |
| $CaCl_2 \cdot 2H_2O$                 | 0.15 | g/L  |
| NaHCO <sub>3</sub>                   | 2.52 | g/L  |
| Trace metal                          |      |      |
| Fe <sub>2</sub> Cl·4H <sub>2</sub> O | 1.50 | mg/L |
| H <sub>3</sub> BO <sub>3</sub>       | 0.30 | mg/L |
| CoCl <sub>2</sub> ·4H <sub>2</sub> O | 0.20 | mg/L |
| $ZnCl_2$                             | 0.05 | mg/L |
| $MnCl_2 \cdot 4H_2O$                 | 0.03 | mg/L |
| $Na_2MoO_4 \cdot 2H_2O$              | 0.03 | mg/L |
| NiCl <sub>2</sub> ·6H <sub>2</sub> O | 0.02 | mg/L |
| $CuCl_2 \cdot 2H_2O$                 | 0.01 | mg/L |
| Reducing Agent                       |      |      |
| L-cysteine                           | 0.50 | g/L  |
| Methanogenesis Inhibitor             |      |      |
| 2-bromoethanosulfonic acid (BESA)    | 10   | g/L  |
| Redox indicator                      |      |      |
| Resazurin (0.1% w/v)                 | 1    | mL/L |

**Table 3.1.** Medium composition for fermentation.

# **3.3 Batch test experiment**

#### **3.3.1** Batch tests design for the study in chapter four

Four experimental batches are conducted. The first batch was caproate production from acetate (50 mM) with ethanol or glycerol as electron donor at different molar ratios of ethanol to acetate or glycerol to acetate. The concentration of substrates and products were detected at Day 0 and 35. The second batch was conducted at optimal ratios of ethanol to acetate (50 mM) and glycerol to acetate (50 mM) for catabolism analysis. The third batch was caproate production from acetate with ethanol and glycerol, of which ethanol was added at the beginning or at Day 20. The fourth batch was inoculated with ethanol screened culture and fed with 90 mM ethanol and 30 mM acetate, 120 mM glycerol and 30 mM acetate. The batch fermentation tests were performed in 100 mL anaerobic bottles with rubber stoppers and aluminum caps in duplicate. Each anaerobic bottle was filled with 35 mL working volume, containing carbon source, electron donor, mineral, trace metal, reducing agent, methanogenesis inhibitor, and redox indicator, and then sterilized at 120°C for 20 mins. Before inoculation, the pH was adjusted to 7 with Phosphate Buffer Saline (PBS) solution. After inoculation with 10% (v/v) wet seed culture solution, the anaerobic bottles were capped and closed. The headspace was vacuumed and flushed with nitrogen three times. The anaerobic bottles were incubated at 37°C with agitation at 150 rpm in an incubator.
#### **3.3.2** Batch test design for the study in chapter five

Caproate production from acetate (50 mM) was conducted with ethanol as the electron donor (150 mM). The batch fermentation tests were performed in 250 mL anaerobic bottles with rubber stoppers and plastic caps in duplicate. Each anaerobic bottle was filled with 70 mL medium, and sterilized at 120°C for 20 mins. Before inoculation, the pH was adjusted to 7 using PBS buffer, and maintained around 7 during the entire fermentation process. After inoculated with 10% (v/v) working volume of wet seed, the anaerobic bottles were capped and closed. The headspace was vacuumed and flushed with nitrogen gas for three times to maintain anaerobic condition. The anaerobic bottles were incubated at 37°C with agitation at 150 rpm. Liquid and gas samples were collected periodically and biomass-containing liquid samples were collected at Day 0, 6, 15 and 23.

#### **3.3.3** Batch tests design for the study in chapter six and seven

Caproate production from acetate was conducted with ethanol, glycerol, and a combination of ethanol and glycerol as electron donor(s), respectively. The batch fermentation tests were performed in duplicate in 250-mL anaerobic bottles with rubber stoppers and aluminum caps. Each anaerobic bottle was filled with a 70-mL working volume and then sterilized at 120 °C for 20 min. Before inoculation, the pH was adjusted to 7 with PBS solution, and a pH of around 7 was maintained throughout the fermentation process. After inoculation with 10% (v/v) wet seed, the

anaerobic bottles were capped and closed. The headspace was vacuumed and flushed with nitrogen three times to maintain anaerobic conditions. The anaerobic bottles were incubated at 37 °C with agitation at 150 rpm.

### **3.4 Semi-continuous fermentation**

The semi-continuous fermentation was performed in a 2-L auto-controlled fermenter (Shanghai Bailun Bio. Tech.) with 1.5-L working volume in six stages for 396 days. The fermenter, containing a carbon source, electron donor, minerals, trace metals, reducing agent, methanogenesis inhibitor, and a redox indicator, was sterilized at 120 °C for 20 min before inoculation. After inoculation with 10% (v/v) wet AD sludge, the fermenter became a closed system. The operation was auto-controlled at pH 7 (5 M NaOH and 5 M HCl), 37 °C, and a 150-rpm stirring rate with nitrogen saturation at 1 atm. The semi-continuous fermentation was operated for 96 h per cycle. During each cycle, a 200-mL suspension was decanted and the substrate was supplemented (time 0: substrate feeding, 95 h fermentation, and 1 h settling and rapid effluent removal). Therefore, the flowrate was controlled to 200 mL every 4 days (50 mL/day) and a hydraulic retention time (HRT) of 30 days. Sampling was carried out on Day 0 (influent), Day 2, and Day 4 (effluent).



Figure 3.2. Semi-continuous fermentation system.

# **3.5 Analytical procedures**

Liquid samples were taken with a 1-mL syringe, placed into a 2.0-mL centrifuge tube, centrifuged at 6000 rpm for 5 min, and filtered through a 0.20-µm filter (PVDF syringe, Whatman, Springfield Mill, UK) before analysis. Alcohols and fatty acids were determined using a high-performance liquid chromatography (HPLC) system (SHIMADZU Prominence, MD) equipped with a refractive index detector (RID) and a column (Bio-Rad Aminex HPX-87H column). The operating conditions were 5 mM H<sub>2</sub>SO<sub>4</sub> as the mobile phase, a pump flowrate of 0.6 mL/min, 50 °C detector temperature, and 65 °C oven temperature.



**Figure 3.3.** The HPLC system (SHIMADZU) used for quantification of the target compounds and GC system (Agilent) used for quantification of the target gases.

Gas samples were collected with a 50-mL disposable syringe. The total gas volume was determined at 1 atm. To determine its composition of hydrogen, CO<sub>2</sub>, and methane, a 200-µL gas sample was then analyzed with a gas chromatography (GC) (Agilent 6850 Series II single channel) system equipped with a thermal conductivity detector (TCD) and a carbon molecular sieve–type stationary-phase column (TDX-01, Jing Ke Rui Da Technology, Beijing, China). The operating conditions were helium as the carrier gas, injector temperature of 120°C, oven temperature of 100 °C, detector temperature of 150 °C, pressure control with a 20-psi front inlet pressure, front detector reference flowrate of 15 mL/min, front detector makeup flowrate of 5 mL/min, and total detected flowrate of 41.7 mL/min.

# **3.6 DNA extraction and high-throughput sequencing**

Biomass-containing liquid samples (1 mL) were collected from duplicate cultures and immediately mixed with 100% ethanol at a ratio of 1:1 (v:v) for biomass fixation. The samples were stored at -20 °C before DNA extraction (Yang et al., 2013). Total DNA extraction was conducted on the samples centrifugated at 16000g for 10 min using the protocol described by Liu et al. (Liu et al., 1997). The DNA concentrations and the purity were measured using a NanoDrop 2000c UV-vis spectrophotometer (Thermo Scientific). Total DNA samples were sent to BGI (Shenzhen, China) for 16S rRNA genes library construction and high-throughput sequencing on the Illumina MiSeq platform, generating paired-end (PE) reads 300 (Figure 3.4). 16S rRNA amplicon sequencing was conducted using primers 515F (5' GTG CCA GCM GCC GCG GTA A 3') and 806R (5' GGA CTA CHV GGG TWT CTA AT 3'), which targets the V4 variable region (Albertsen et al., 2015). Shotgun metagenomics sequencing was performed on an Hiseq 4000 platform at BGI (Shenzhen, China), generating PE reads with a read length of 151 base pairs (bp). About 5 Gbp of metagenomic data was generated for each DNA sample.





## **3.7 Bioinformatics analysis**

In the study of chapter four, the obtained PE reads were separated to each sample according to barcodes and subsequently processed following the operational taxonomic unit (OTU)-based analysis provided in the MiSeq SOP (Kozich et al., 2013) on the Mothur (v.1.36.1) platform (Schloss et al., 2009). Specifically, we merged pair-end MiSeq reads into contigs and removed those contigs with ambiguous base calls and with read length shorter than 275 bps. The filter contigs were aligned with the SILVA reference database (release 102) and filtered to ensure that the derived contigs were from the V4 region. In addition, chimera contigs identified with UCHIME were removed and the clean sequences were obtained for downstream analyses. Hierarchical clustering of the sludge samples was performed based on all OTUs with an unweighted-pair group mean average (UPGMA) algorithm to generate a newick-formatted tree.

In the study of chapter five, six and seven, for 16S rRNA gene-based analysis, the raw reads were first merged into contigs and screened for ambiguous base calls and read lengths shorter than 400 bp using the Mothur software (v. 1.36.1) (Schloss et al., 2009). The filtered contigs were aligned with the Greengenes reference database in QIIME (MacQIIME 1.9.1) (Caporaso et al., 2010). In addition, the chimera contigs identified with ChimeraSlayer were removed and clean sequences were obtained for downstream analyses (Haas et al., 2011). Taxonomy was assigned with the Greengenes reference database clustered at 97% identity (McDonald et al., 2012). A

neighbor-joining phylogenetic tree was constructed and analyzed in ARB, with SILVA database SSU NR99 as a reference (Ludwig et al., 2004). Hierarchical clustering of the sludge samples was performed based on OTUs with an UPGMA algorithm to generate a newick-formatted tree.

For metagenomic analysis, the raw reads were first trimmed with a minimum quality cutoff of 3 and further screened to be at least 78 bp in length, having an average quality score above 30 and containing less than three ambiguous nucleotides (N's) using trimmomatic (Bolger et al., 2014). Khmer scripts were then used for digital normalization, abundance filtering, and pair and orphan reads splitting ("-k 20"). The trimmed clean PE reads were further de novo assembled into long sequence contigs using SPAdes version 3.9.0 based on the de Bruijn graph, with default settings ("-k 19,33,47,61,75 --careful") (Bankevich et al., 2012; Nurk et al., 2013). The quality of the assembled contigs was evaluated with Quast (Gurevich et al., 2013). Contigs were clustered into taxonomic bins with MaxBin based on an expectationmaximization algorithm (Wu et al., 2014). CheckM was introduced to evaluate the quality of a draft recovered genome bin using a broader set of marker genes specific to the position of a genome within a reference genome tree and information of the collocation of these genes (Parks et al., 2015). The recovered genome bins were matched to the reference phylogenetic tree with PhyloPhlAn (Segata et al., 2013). Protein coding genes were annotated with Prokka version 1.11 (Seemann, 2014). BlastKOALA was used to further characterize individual gene functions and reconstruct functional pathways (Kanehisa et al., 2016). The flowchat of metagenomic analysis is shown in Figure 3.5.



Figure 3.5. Metagenomic analysis flowchart.

# Chapter 4. Thermodynamic and physiological study of caproate and 1,3-PDO co-production through glycerol fermentation and fatty acids chain elongation

# 4.1 Overview

An alternative process for anaerobic wastewater treatment with methane recovery is to elongate the carbon chain of volatile fatty acids (VFAs) with a formation of medium chain carboxylic acids (MCCAs), e.g. *n*-caproic acid with higher monetary value. A potential electron donor is glycerol as a surplus byproduct from the rapid growth of waste-derived biodiesel industry. In the current approach, an industrial chemical, 1,3-PDO is produced from crude glycerol along with a formation of other soluble byproducts including ethanol and VFAs, which necessitates a significant amount of energy input for separation and purification. To circumvent the energy sink requirement and upcycle both the wastewater treatment process and the biodiesel industry, it is highly beneficial to produce a valuable secondary product from the byproducts.

In this chapter, thermodynamic and physiological insights gained into the co-production of 1,3-PDO and caproate from glycerol are reported. Thermodynamics analysis demonstrated that a higher pH range is more favorable when either glycerol or ethanol acting as an electron donor, whereas a high partial pressure (27% at 1 atm) and a low pH ( $\leq$  5.5) are advantageous for caproate formation with hydrogen. With the glycerol-to-acetate molar ratio of 4 and pH of 7, the physiological experiments

achieved a co-production of 1,3-PDO and caproate. However, the caproate yield was low and found to be kinetic-limited. Caproate formation was significantly increased by the intermediate ethanol addition with the optimal mono-caproate formation obtained at the ethanol-to-acetate molar ratio of 3. A synergistic relationship was evinced through microbial characterization, resulting in *C. kluyveri* and some bacteria with function of converting glycerol to VFAs. The knowledge gleaned paves new avenues for the biodiesel industry by upcycling the byproduct crude glycerol into 1,3-PDO and caproate.

# 4.2 Results and discussion

#### 4.2.1 Thermodynamic analysis of chain elongation with different electron

#### donors

Table 4.1 lists potential stoichiometries for acetate chain elongation with ethanol (Eq. R1 to R6) or H<sub>2</sub> (Eq. R7 and R8), 1,3-PDO/ethanol/butanol formation with glycerol (Eq. R9 to R12), and caproate formation with glycerol (Eq. R13 and R14). To evaluate the thermodynamics of acetate chain elongation for caproate formation with ethanol/glycerol, we developed a generalized stoichiometric model with boundary and assumption of carbon flux balanced in metabolic compounds and a fixed acetate stoichiometry of 1.

| No. | Electron donor | Stoichiometric molar ratio | Reaction                                                                                                                                                                                             |
|-----|----------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R1  | Ethanol        | 1:1                        | Ethanol + Acetate <sup>-</sup> $\rightarrow$ Butyrate <sup>-</sup> + H <sub>2</sub> O                                                                                                                |
| R2  | Ethanol        | 3:2                        | $3/2$ Ethanol + Acetate <sup>-</sup> $\rightarrow$ $5/4$ Butyrate <sup>-</sup> + $1/4$ H <sup>+</sup> + $1/2$ H <sub>2</sub> + H <sub>2</sub> O                                                      |
| R3  | Ethanol        | 2:1                        | 2 Ethanol + Acetate $\rightarrow$ Butyrate + 1/3 Caproate + 1/3 H <sup>+</sup> + 2/3 H <sub>2</sub> + 4/3 H <sub>2</sub> O                                                                           |
| R4  | Ethanol        | 3:1                        | 3 Ethanol + Acetate $\rightarrow$ 1/2 Butyrate + Caproate + 1/2 H <sup>+</sup> + H <sub>2</sub> + 2 H <sub>2</sub> O                                                                                 |
| R5  | Ethanol        | 4:1                        | 4 Ethanol + Acetate <sup>-</sup> $\rightarrow$ 5/8 Butyrate <sup>-</sup> + 5/4 Caproate <sup>-</sup> + 7/8 H <sup>+</sup> + 7/4 H <sub>2</sub> + 9/4 H <sub>2</sub> O                                |
| R6  | Ethanol        | 5:1                        | 5 Ethanol + Acetate $\rightarrow$ 0.565 Butyrate $^{-}$ + 1.625 Caproate $^{-}$ + 1.190 H $^{+}$ + 2.375 H <sub>2</sub> + 2.625 H <sub>2</sub> O                                                     |
| R7  | Hydrogen       | 1:1                        | $H_2$ + Acetate <sup>+</sup> + 1/2 H <sup>+</sup> $\rightarrow$ 1/2 Butyrate <sup>+</sup> + H <sub>2</sub> O                                                                                         |
| R8  | Hydrogen       | 4:3                        | $4/3 \text{ H}_2 + \text{Acetate}^- + 2/3 \text{ H}^+ \rightarrow 1/3 \text{ Caproate}^- + 4/3 \text{ H}_2\text{O}$                                                                                  |
| R9  | Glycerol       | -                          | Glycerol $\rightarrow 2/3$ 1,3-PDO + 1/3 Acetate + 2/3 H <sup>+</sup> + 1/3 HCO <sub>3</sub> + 1/3 H <sub>2</sub>                                                                                    |
| R10 | Glycerol       | -                          | Glycerol $\rightarrow 1/2$ 1,3-PDO + 1/4 Butyrate + 3/4 H <sup>+</sup> + 1/2 HCO <sub>3</sub> + 1/2 H <sub>2</sub>                                                                                   |
| R11 | Glycerol       | -                          | $Glycerol + H_2O \rightarrow Ethanol + HCO_3^{-} + H_2 + H^+$                                                                                                                                        |
| R12 | Glycerol       | -                          | Glycerol + $1/2$ H <sub>2</sub> O $\rightarrow 1/2$ Butanol + HCO <sub>3</sub> <sup>-</sup> + H <sub>2</sub> + H <sup>+</sup>                                                                        |
| R13 | Glycerol       | 2:1                        | 2 Glycerol + Acetate <sup>+</sup> + 2/3 H <sub>2</sub> O $\rightarrow$ Butyrate <sup>+</sup> + 1/3 Caproate <sup>+</sup> + 7/3 H <sup>+</sup> + 8/3 H <sub>2</sub> + 2 HCO <sub>3</sub> <sup>-</sup> |
| R14 | Glycerol       | 3:1                        | 3 Glycerol + Acetate <sup>+</sup> + H <sub>2</sub> O $\rightarrow$ 1/2 Butyrate <sup>+</sup> + Caproate <sup>+</sup> + 7/2 H <sup>+</sup> + 4 H <sub>2</sub> + 3 HCO <sub>3</sub> <sup>+</sup>       |

**Table 4.1.** Potential stoichiometry of chain elongation to caproate and glycerol fermentation to 1,3-PDO, ethanol, butanol and caproate.



**Figure 4.1.** Standard transformed Gibbs free energy values  $(\Delta_r G'^0{}_{310K})$  in KJ mol<sup>-1</sup> as a function of pH and ionic strength (*I*) for (a) caproate formation with ethanol (Eq. R1 to R6), (b) caproate formation with H<sub>2</sub>(Eq. R7 and R8), (c) different product formation with glycerol fermentation (Eq. R9 to R12), and (d) caproate formation with glycerol (Eq. R13 and R14).

Fig. 4.1 shows the standard transformed Gibbs free energy values  $(\triangle_{RI-I4}G^{\circ}_{3I0K})$  of the reactions in Table 4.1 (Case 1) as a function of pH and ionic strength (*I*).  $\triangle_{RI-6}G^{\circ}_{3I0K}$  for butyrate/caproate formation with a series of stoichiometric ratios of ethanol to acetate, illustrated in Fig. 4.1a, yielded values that were higher than the biological "quantum of energy" minimum of approximately - 20 kJ per mol for cell

survival (Schink, 1997), indicating thermodynamically favorable pathways. More free energy is released with higher ethanol/acetate ratio. Additionally, it is worth noting that higher pH conditions have a positive influence on free energy release for Eqs. R2 to R6, though the influence was negligible for I. On the contrary, with  $H_2$ ,  $\triangle_{R7.8}G'_{310K}$  was more negative at lower pH, and  $\triangle_{R8}G'_{310K}$  for caproate formation remained at levels higher than the "quantum of energy" minimum only if pH was below 5.5 (Fig. 4.1b). Furthermore,  $\triangle_{R9-12} G'_{310K}^{0}$  were found to be more negative than the minimum "quantum of energy," implying that glycerol co-production of 1,3-PDO with acetate or butyrate and mono-production of ethanol or butanol  $(\triangle_{R9.12}G^{\prime 0}_{310K})$  are all biologically feasible, particularly at higher pH (Fig. 4.1c). Their thermodynamic priorities lie in butanol formation for mono-production and PDO and butyrate formation for co-production. Similarly, the proposed pathways of caproate and butyrate formation with glycerol were energetically possible and more favorable with higher pH, as the  $\triangle_{RI3-14} G^{'0}_{310K}$  values were above the minimal "quantum of energy" (Fig. 4.1d).

In order to better investigate the thermodynamics of different stoichiometries of chain elongation with ethanol and acetate, Gibbs free energy change per electron of each reaction is determined and summarized in Table 4.2 (Case 2).

| No.        | Electron | Molar | Desction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Electrons             |
|------------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|            | donor    | ratio | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Transfer per reaction |
| <b>R</b> 1 | Ethanol  | 1:1   | $CH_3CH_2OH + CH_3COO^- \rightarrow CH_3(CH_2)_2COO^- + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00                  |
| R2         | Ethanol  | 3:2   | $3/2 \text{ CH}_3\text{CH}_2\text{OH} + \text{CH}_3\text{COO}^- \rightarrow 5/4 \text{ CH}_3(\text{CH}_2)_2\text{COO}^- + 1/4 \text{ H}^+ + 1/2 \text{ H}_2 + \text{H}_2\text{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00                  |
| R3         | Ethanol  | 2:1   | $2 \text{ CH}_3\text{CH}_2\text{OH} + \text{CH}_3\text{COO}^- \rightarrow \text{CH}_3(\text{CH}_2)_2\text{COO}^- + 1/3 \text{ CH}_3(\text{CH}_2)_4\text{COO}^- + 1/3 \text{ H}^+ + 2/3 \text{ H}_2 + 4/3 \text{ H}_2\text{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.55                  |
| R4         | Ethanol  | 3:1   | $3 \text{ CH}_3\text{CH}_2\text{OH} + \text{CH}_3\text{COO}^- \rightarrow 1/2 \text{ CH}_3(\text{CH}_2)_2\text{COO}^- + \text{CH}_3(\text{CH}_2)_4\text{COO}^- + 1/2 \text{ H}^+ + \text{H}_2 + 2 \text{ H}_2\text{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.50                  |
| R5         | Ethanol  | 4:1   | $4 \text{ CH}_3\text{CH}_2\text{OH} + \text{CH}_3\text{COO}^- \rightarrow 5/8 \text{ CH}_3(\text{CH}_2)_2\text{COO}^- + 5/4 \text{ CH}_3(\text{CH}_2)_4\text{COO}^- + 7/8 \text{ H}^+ + 7/4 \text{ H}_2 + 9/4 \text{ H}_2\text{O}^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.00                  |
| R6         | Ethanol  | 5:1   | $5 \text{ CH}_3\text{CH}_2\text{OH} + \text{CH}_3\text{COO}^- \rightarrow 0.565 \text{ CH}_3(\text{CH}_2)_2\text{COO}^- + 1.625 \text{ CH}_3(\text{CH}_2)_4\text{COO}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}^+ + 2.375 \text{ H}_2 + 2.625 \text{ H}_2\text{O}^- + 1.190 \text{ H}_2 + 2.625 \text{ H}_2$ | 7.30                  |

**Table 4.2.** Electrons transfer of chain elongation with ethanol and acetate at different ethanol/acetate ratio.

As illustrated in Fig. 4.2, ethanol/acetate ratio of 3 has the highest free energy release. Interestingly, when the ratio increases from 3 to 4 or 5, the free energy release drops per electron, which is approaching closely to the "quantum of energy" minimum. It indicates that the optimal ethanol/acetate ratio is 3 in the substrate for chain elongation thermodynamically.



**Figure 4.2.** Standard transformed Gibbs free energy values  $(\Delta_r G'^0{}_{310K})$  per electron transfer in KJ mol<sup>-1</sup> as a function of pH and ionic strength (*I*) for caproate formation with ethanol as electron donor (Eq. R1 to R6).

The transformed Gibbs free energy values ( $\triangle_r G'_{310K}$ ) at pH 7 and I = 0.1 M were determined according to the condition of Case 1. Fig. 4.3a displays  $\triangle_{RI-2}G'_{310K}$  as a function of the dissolved H<sub>2</sub> and acetate, demonstrating that the free energy release of the fermentation for butyrate formation is not affected by H<sub>2</sub> concentration when ethanol/acetate ratio is 1. As the ratio approaches to 2 or higher, the caproate is formed in addition to butyrate. As shown in Fig. 4.3b, the higher the relative ratio of ethanol to acetate, the more free energy is released at a wide range of substrate and

compound concentrations in solution suggesting that caproate formation is more favorable at elevated ethanol/acetate ratio. This finding has also been introduced by Angenent with a simple stoichiometry model for stoichiometry and thermodynamics of reverse  $\beta$  oxidation with ethanol based on *C. Kluyveri* (Angenent et al., 2016).



**Figure 4.3.** Transformed Gibbs free energy values  $(\Delta_r G'_{310K})$  in KJ mol<sup>-1</sup> at a pH of 7, an ionic strength (*I*) of 0.1 M, a temperature of 310 K and pressure of 1 atm for (a) Eq. R1 and R2 as a function of the dissolved H<sub>2</sub> and acetate; (b) Eq. R3 to R6 as a function of the dissolved H<sub>2</sub> and butyrate, acetate of 50 mM; (c) Eq. R7 and R8 as a function of the dissolved H<sub>2</sub> and acetate; (d) Eq. R13 and R14 as a function of the dissolved H<sub>2</sub> and butyrate, acetate of 50 mM, CO<sub>2</sub> formation of twice of butyrate.

Fig. 4.4 shows that the energy release, as the stoichiometric ratio of ethanol to acetate increased from 3 to 4 or 5, decreased slightly, suggesting the optimal stoichiometric ratio of 3 (Case 2). Chain elongation with H<sub>2</sub> is sensitive to the dissolved H<sub>2</sub> concentration (Fig. 4.3c). By overcoming the minimum "quantum of energy" for caproate formation, there is a "window of opportunity" defining the dissolved H<sub>2</sub> concentration to be increased to levels higher than 0.2 mM (27% gas composition at 1 atm). This is unlikely to occur without additional H<sub>2</sub> supply; as demonstrated by Steinbusch et al.,  $1.5 \times 10^5$  Pa (1.5 atm) headspace H<sub>2</sub> was provided for caproate formation (Steinbusch et al., 2011). Fig. 4.3d demonstrates that caproate formation from glycerol is thermodynamically feasible at wide ranges of dissolved H<sub>2</sub>, and butyrate concentration.



**Figure 4.4.** Transformed Gibbs free energy values per electron transfer  $(\Delta_r G'_{310K})$  in KJ mol<sup>-1</sup> at pH 7 and ionic strength (*I*) of 0.1 M for Eq. R4/R5/R6 as a function of the dissolved H<sub>2</sub> and butyrate, [Acetate] = 50 mM.

Table 4.3 lists potential electron flow reactions by various electron donors for the NAD<sup>+</sup>/NADH electron carrier pair. Electron transfer from ethanol involves two dehydrogenation steps: ethanol into acetaldehyde (Eq. R15) by a NAD-dependent alcohol dehydrogenase (adh), and acetaldehyde into acetyl-CoA (Eq. R16) by a NAD-dependent acetaldehyde dehydrogenase (ald), overall as described by Eq. R17. Similarly, electron transfer from hydrogen is via the hydrogenase enzyme (Eq. R18), whereas electron transfer from glycerol is via glycerol dehydrogenase and dihydroxyacetone (DHA) kinase to DHA and pyruvate, respectively (Eq. R19 and R20).

| No. | Electron | Deasting                                                                             |  |  |  |  |
|-----|----------|--------------------------------------------------------------------------------------|--|--|--|--|
|     | donor    | Reaction                                                                             |  |  |  |  |
| R15 | Ethanol  | $CH_{3}CH_{2}OH + NAD_{ox} \rightarrow CH_{3}CHO + NAD_{red}$                        |  |  |  |  |
| R16 | Ethanol  | $CH_{3}CHO + CoA + NAD_{ox} \rightarrow Acetyl-CoA + NAD_{red}$                      |  |  |  |  |
| R17 | Ethanol  | $CH_3CH_2OH + CoA + 2 \text{ NAD}_{ox} \rightarrow Acetyl-CoA + 2 \text{ NAD}_{red}$ |  |  |  |  |
| R18 | $H_2$    | $H_2 + NAD_{ox} \rightarrow NAD_{red}$                                               |  |  |  |  |
| R19 | Glycerol | $C_3H_8O_3 + NAD_{ox} \rightarrow C_3H_6O_3$ (Dihydroxyacetone) + $NAD_{red}$        |  |  |  |  |
| R20 | Glycerol | $C_3H_8O_3 + 2 \text{ NAD}_{ox} \rightarrow CH_3COCOO^- + 2 \text{ NAD}_{red}$       |  |  |  |  |

 Table 4.3. Potential electron production with various electron donors for the NAD<sup>+</sup>/NADH
 electron carrier pair.

Fig. 4.5 demonstrates  $\triangle_r G^{'0}_{310K}$  for these aforementioned reactions, and the results of Eq. R15 and R19 show that these reactions are thermodynamically unfavorable at all pH and *I* ranges, suggesting that additional coupled exergonic reactions are needed

for ethanol and glycerol via adh and glycerol dehydrogenase, respectively. As noted above, the electron transfer of Eq. R17 from ethanol to acetyl-CoA tends to occur when pH exceeds 6.5, so that the initial electron-intensive barrier can be overcome for the chain elongation of acetate. The two enzymes (adh and ald) are located in a microcompartment existing as a macromolecular complex in *C. kluyveri* (Seedorf et al., 2008). Results of  $\triangle_{R20}G'_{310K}$  show that the electron donation of glycerol is thermodynamically achievable, if Eq. R19 is coupled with two further steps for pyruvate formation. Coincidentally, glycerol dehydrogenase and DHA kinase expression are regulated under the same genetic control *dha* system in *Klebsiella sp.* (Forage & Foster, 1982). Jointly, all reactions of the NAD<sup>+</sup>/NADH electron carrier pairs presented favors intrinsically at higher pH.



**Figure 4.5.** Standard transformed Gibbs free energy of reaction  $(\Delta_r G'^0{}_{310K})$  in KJ mol<sup>-1</sup> as a function of pH and ionic strength (*I*) for Eq. R15 to R20.

#### 4.2.2 MCFA production with ethanol

The physiological results of MCFA production with ethanol for the fixed acetate of 50 mM were consistent with the aforementioned thermodynamic analyses. As shown in Table 4.4, as the stoichiometric ethanol-to-acetate ratio increased over 1, caproate formed and leveled off at the ratio of 3, which was thermodynamically expected to be the optimal condition. This achieved a caproate conversion rate of around 40% in mol C caproate to mol C substrate corresponding to 0.54 mol C caproate per mol C ethanol. In addition, the stoichiometric ratio tendency for butyrate formation was the reverse, owing to the theoretical increase of chain elongation degree from butyrate to caproate with a higher concentration of electron donors. A similar finding of high ethanol/acetate ratio favored n-caproate and a low ratio favored n-butyrate has been unraveled in pure cultures of by *C. kluyveri* by Barker et al (Barker et al., 1945).

 Table 4.4. Butyric acid and caproic acid production with different substrate molar ratios at a fixed

 theoretical acetate concentration of 50 mM.

| Substrate molar                 | Ethanol    | Total substrate | Caproic acid | Butyric acid | Acetic acid |
|---------------------------------|------------|-----------------|--------------|--------------|-------------|
| ratio<br>Ethanol/Acetic<br>acid | (mM C)     | (mM C)          | (mM C)       | (mM C)       | (mM C)      |
| 0.8                             | 79.98±0.0  | 175.6±0.0       | 0.0±0.0      | 4.1±5.8      | 46.3±1.5    |
| 1.0                             | 126.17±1.9 | 257.6±10.6      | 0.0±0.0      | 165.8±80.7   | -81.2±23.2  |
| 1.5                             | 137.78±3.3 | 231.3±18.6      | 27.4±19.4    | 51.7±40.3    | -10.5±10.3  |
| 3.0                             | 264.38±4.8 | 360.3±8.9       | 143.5±56.7   | 69.4±1.9     | -42.6±8.7   |
| 4.0                             | 349.62±0.0 | 439.2±0.0       | 133.2±94.2   | 36.2±25.6    | -57.0±52.6  |

| $5.0$ $427.45\pm0.0$ $517.0\pm0.0$ $144.5\pm102.2$ $30.6\pm21.6$ $-65.2\pm65$ | 5.0 | 427.45±0.0 | 517.0±0.0 | $144.5 \pm 102.2$ | 30.6±21.6 | -65.2±65.4 |
|-------------------------------------------------------------------------------|-----|------------|-----------|-------------------|-----------|------------|
|-------------------------------------------------------------------------------|-----|------------|-----------|-------------------|-----------|------------|

Fig. 4.6a shows caproate formation at the stoichiometric ethanol-to-acetate ratio of 3. The formation of butyrate and caproate was synchronous with H<sub>2</sub> yield, exhibiting a lag phase of 10 to 15 days, which decreased with alcohol-contained lignocellulose solution, as shown in Fig. 4.7 (occurrence within 4 days). A high titer ethanol production solution was obtained from wood using a quasi-simultaneous enzymatic saccharification and combined fermentation method with sulfite pretreatment (Lan et al., 2013). The solutions were diluted to 150 mM ethanol as substrate. In addition to ethanol, the solutions contained some remaining yeast extract powder, lignin, cellulose and 3 mM glucose. This demonstrates that the chain elongation process is hydrogenogenic, because the highest H<sub>2</sub> detected was lower than 12% at 1 atm, which was nowhere near the "window of opportunity" (Ding et al., 2010). When ethanol was completely consumed (Day 25), the concentration of butyrate and caproate levelled off and the amount of H<sub>2</sub> decreased, probably due to a lack of preferred reduced compounds and inactivity of hydrogenic bacteria (Smith & Mccarty, 1989). Concerning the inoculums with fresh AD sludge and ethanol screened culture at the stoichiometric ethanol-to-acetate ratio of 3, the caproate recovery rates were 39.8% and 34.7%, respectively, indicating that chain elongation bacteria are adaptive to ethanol enriched culture and rapidly dominate the anaerobic mixed culture. Due to undetectable methane in the gas phase of batch bottles, we believe methanogenesis was effectively inhibited by 10 g/L of BESA.

Overall, this study concluded that the stoichiometric feed ratio is involved in the central metabolism of caproate formation, and the ratio of 3 is the optimal feed composition, which is very close to the optimized ethanol and acetate loading rates in an upflow anaerobic filter for high rate MCFA production, as suggested by Grootscholten et al. (Grootscholten et al., 2013). These findings provide useful information on the favorable intermediate composition of glycerol fermentation for caproate production; and indicate that the electron of the caproate originated from ethanol rather than from  $H_2$  produced as one of the intermediates.



**Figure 4.6.** (a) Chain elongation of 150 mM ethanol and 50 mM acetate with AD sludge at a pH 7 and 37°C, (b) Product generation of glycerol fermentation in mmol electron with AD sludge at pH 7 and 37°C.



Figure 4.7. Kinetics of butyric acid, caproic acid, and  $H_2$  production with 150 mM alcohol-contained lignocellulose solution and 50 mM acetate at pH 7 and 37°C.

#### 4.2.3 1,3-PDO and MCFA production with glycerol

Fig. 4.8 illustrates that acetate has a positive effect on the formation of butyrate and ethanol in mixed culture glycerol fermentation, and indicates acetate addition is favorable to caproate production. Different molar ratios of glycerol to acetate (i.e., 2, 4, and 6) were performed and the formation of varied products is summarized in Table 4.5.



Figure 4.8. Glycerol fermentation with and without acetate.

Caproate and 1,3-PDO co-formation in mixed culture glycerol fermentation was observed, which corroborated the thermodynamic analyses. 1,3-PDO production increased as the ratio grew; however, caproate production was found to have an optimal ratio of 4 which was consistent with the trend of ethanol. This shows a close agreement with the finding of Temudo et al. that ethanol production was mainly associated with a substrate limiting condition, while 1,3-PDO was the dominant product with excess substrate (Temudo et al., 2008). The carbon recovery rates to the compounds in Table 2 were 37.6%, 37.4% and 31.4% for the respective glycerol-to-acetate ratios, which decreased with increasing levels of excess substrate. Fig. 4.6b displays the product formation with glycerol and acetate at a molar ratio of 4. Consumption of glycerol and production of 1,3-PDO, ethanol, butyrate, and H<sub>2</sub> occurred within 3 days, while caproate formation was mainly initiated around 15 days, a similar lag phase to caproate formation with ethanol. Along with caproate formation, primary products including ethanol, 1,3-PDO, and H<sub>2</sub> decreased.

Glycerol/ Caproic acid Butyric acid Acetic acid Substrate 1,3-PDO Ethanol Butanol Acetic (mM C) (mM C) (mM C)(mM C) (mM C) (mM C) (mM C) acid 2.0 433.2±0.0  $108.8 \pm 11.1$ 8.0±11.4  $2.2\pm0.2$  $1.9 \pm 2.7$ 41.8±33.5 26.1±30.9 4.0 726.8±0.0 187.8±5.3 32.2±17.8  $7.9 \pm 4.5$ 11.7±4.3 32.4±3.5  $82.5 \pm 0.9$ 6.0 1144.8±0.0 265.7±13.5  $17.7 \pm 4.6$  $16.6 \pm 1.4$ 9.7±3.5  $49.9 \pm 5.0$  $16.4 \pm 4.8$ 

 Table 4.5. Product distribution in carbon from glycerol fermentation with acetate (50 mM) at

different substrate molar ratios.

These findings indicated that Carboxylates Chain Elongation Process (CCEP) is

indirect from glycerol, and the formed reduced products could be utilized when glycerol is completely consumed. Similar findings were reported by Daniel and Perry that the electrons contributed to more thermodynamically favorable products might come first from a high potential electron donor and subsequently from reduced potential intermediates (Smith & Mccarty, 1989). It was concluded that the composition of the primary fermenting products (1,3-PDO, ethanol, acetate, and butyrate) is crucial for the secondary fermenting product (caproate). As indicated in the thermodynamic analysis, the closer the ethanol to acetate molar ratio is to 3, the higher the amount of caproate theoretically produced. In general, it is essential to reduce the lag phase of CCEP and increase the yield of ethanol in the intermediates so as to stimulate the co-production of 1,3-PDO and caproate.

Table 4.6 shows the results for glycerol fermentation inoculated with fresh AD sludge and ethanol screened culture. The results confirmed our conceptual hypothesis and further implied that the microorganisms with the function of 1,3-PDO production from glycerol were easier to be dominant from fresh AD inoculum, while the microorganisms with the function of CCEP preferred to use ethanol and capable of utilizing glycerol for butyrate and caproate production probably in a synergistic pathway.

| Inoculum | Sub.       | Caproic<br>acid | Butyric<br>acid | Acetic<br>acid | Ethanol | Butanol                            | 1,3-PDO                            | Carbon<br>recovery<br>rate |
|----------|------------|-----------------|-----------------|----------------|---------|------------------------------------|------------------------------------|----------------------------|
| culture  | (mM        | (mM             | (mM             | (mM            | (mM     | $(\mathbf{m}\mathbf{M}\mathbf{C})$ | $(\mathbf{m}\mathbf{M}\mathbf{C})$ | (0/2)                      |
|          | C)         | C)              | C)              | C)             | C)      | (IIIVI C)                          | (IIIVI C)                          | (70)                       |
| Fresh AD | 433.2±     | 10127           | 41.8±3          | 26.1±3         | 8.0±11. | 22.02                              | $108.8 \pm 1$                      | 126100                     |
| sludge   | 0.0        | 1.9±2.7         | 3.5             | 0.9            | 4       | 2.2±0.2                            | 1.1                                | 43.0±8.8                   |
| Ethanol  | $462.4\pm$ | 47.2±2          | 136.7±          | $108.0\pm$     | 0.0+0.0 | 27126                              | 0.0+0.0                            | 62.0 19.4                  |
| screened | 0.0        | 8.2             | 71.4            | 60.0           | 0.0±0.0 | 3.7±2.0                            | 0.0±0.0                            | 03.9±18.4                  |

 Table 4.6. Products formation distribution of glycerol fermentation with acetate inoculated with

 fresh anaerobic digestion sludge and ethanol screened culture.

#### **4.2.4 1,3-PDO and MCFA production with ethanol and glycerol**

Fig. 4.9 shows two batch co-fermentation cases of glycerol with ethanol addition on Day 0 (AD inoculum) and Day 20 (enrichment inoculum from Case 1). 1,3-PDO and caproate are co-produced for both cases. For Case 1, there was still a dynamic formation difference, of which glycerol consumption and 1,3-PDO production occurred within two days, while ethanol consumption and caproate production happened after 20 days (Fig. 4.9a). Compared to caproate production with ethanol, the caproate formation with glycerol and ethanol was further delayed roughly five days in the case of co-existing electron donors, which was nevertheless negligible considering the whole fermentation period. Even though ethanol and butyrate were initially produced along with 1,3-PDO from glycerol, caproate was not concurrently produced. This again indicated that caproate formation from glycerol under mixed culture was probably not a direct bioconversion.



**Figure 4.9.** 1,3-PDO and caproate co-production with both ethanol and glycerol in the substrate, and the relationship with H<sub>2</sub> level at a pH 7 and 37°C, (a) Ethanol and glycerol addition on Day 0, (b) Ethanol addition on Day 20.

Interestingly, caproate was immediately formed upon ethanol addition on Day 20 (Fig. 4.9b), implying that CCEP microorganisms can be dominant by ethanol addition in glycerol fermentation culture. Unfortunately, 1,3-PDO decreased when CCEP occurred for both cases. The overcoming of kinetics limitation might be stimulated by the existing of lignocellulose, suggested by Kenealy et al. that this promotion is pivotal to the co-cultures of *C. kluyveri* and ruminal cellulolytic bacteria (Kenealy et al., 1995). Further studies to evaluate this mechanism would be beneficial.

#### 4.2.5 Microbial characterization

Five enriched samples were characterized for microbial community composition. Sample G-1, G-2 and E-1 (batch 1) were enriched from AD sludge with 100 mM glycerol and 50 mM acetate, 200 mM glycerol and 50 mM acetate, 150 mM ethanol and 50 mM acetate, respectively. Sample E-2 and G-3 (batch 4) were enriched from the culture of E-1, fed with 90 mM ethanol and 30 mM acetate, 120 mM glycerol and 30 mM acetate, respectively. The upper panel in Fig. 4.10 displays the distance of their community structure based on all OTUs. According to the clustering tree, G-1 is differentiated from other cultures while G-2 and E-1 are relatively close, and E-2 and G-3 are located in a group. The lower panel of Fig. 4.10 demonstrates that the top 29 most dominant OTUs in genus level covered 97.65%, 94.82%, 96.79%, 43.22% and 62.29% of sequences in G-1, E-2, G-3, E-1, G-2. Most of the genus belong to *Firmicutes* and *Proteobacteria*. The microbial community structure is more diverse when enriched from AD sludge, however, G-1 is exceptional.



**Figure 4.10.** Composition of relative abundances of OTUs at Genus level in different sludge samples. Hierarchical clustering of five sludge samples was performed based on all OTUs from the microbial communities with a UPGMA algorithm to generate a newick-formatted tree.

|                       | G-1    | G-2   | E-1   | G-3    | E-2    |
|-----------------------|--------|-------|-------|--------|--------|
| Clostridium butyricum | 78.68% | 0.54% | 0.02% | 0.06%  | 0.13%  |
| [Clostridium] indolis | 0.01%  | 0.01% | 0.01% | 3.71%  | 47.88% |
| Anaerostipes caccae   | 0.00%  | 0.66% | 0.01% | 22.51% | 1.47%  |
| Escherichia coli      | 0.00%  | 7.02% | 0.01% | 10.62% | 0.03%  |
| Blautia producta      | 0.00%  | 0.01% | 0.00% | 14.28% | 0.06%  |

Table 4.7. Abundance of most abundant and functional OTUs of each sample.

| Enterococcus avium        | 1.87% | 13.61% | 0.01%  | 0.00% | 0.00% |
|---------------------------|-------|--------|--------|-------|-------|
| Clostridium kluyveri      | 0.00% | 0.02%  | 0.74%  | 2.54% | 9.66% |
| [Clostridium] sticklandii | 0.00% | 0.27%  | 11.73% | 0.05% | 0.16% |

The dominant and functional OTUs are summarized in Table 4.7 and the top 20 abundant OTUs in fresh AD sludge sample are shown in Table 4.8. With blast towards NCBI database, these OTUs were further characterized to species level with over 99% identity. C. butyricum was highly dominant in G-1, which is responsible for 1,3-PDO and butyrate production from glycerol fermentation (Saintamans et al., 1994). Enterococcus avium with 1.87% abundance in G-1 is capable of utilizing glycerol for acids production (Facklam & Collins, 1989). In contrast, the abundance of C. butyricum declined and the abundance of E. avium and E. coli grew when the substrate level glycerol/acetate ratio increased from 2 to 4. This shift of the microbial community structure explained the decrease of conversion ratios of butyrate and 1,3-PDO and the increase of production rate of ethanol illustrated in Table 4.5 since E. coli has been reported to produce ethanol, succinate, and formate from glycerol (Murarka et al., 2008). In terms of C. kluyveri, the abundance in G-1 and G-2 were 0.00% and 0.02%, respectively, which results in no caproate and a small amount of caproate production in these two cultures. The ethanol for caproate formation in G-2 was probably produced by E. coli as an intermediate through a synergistic pathway. The structure of E-1 includes C. kluyveri and high abundance of [Clostridium] sticklandii. The butyrate and caproate production with ethanol was consistent with existence of C. kluyveri (Seedorf et al., 2008). [C.] sticklandii which converts amino

acids together with H<sub>2</sub> and acetate to butyrate might promote the chain elongation pathway (Fonknechten et al., 2010). When the culture was further enriched with ethanol and acetate for one more batch, the abundance of C. kluyveri and [Clostridium] indolis increased while that of [C.] sticklandii decreased. [C.] indolis is a sulfate reducer capable of consuming some simple sugars, pectin, pectate, mannitol, and galacturonate, and pyruvate to acetate, formate, ethanol, and butyrate (Biddle et al., 2014). Alcohol dehydrogenase, NADH-dependent aldehyde dehydrogenase and CoA-transferase were also found in the [C.] indolis genome (Biddle et al., 2014). The relationship of this bacteria and carboxylic acids chain elongation with ethanol is also interesting for further study. The culture of G-3 that utilized glycerol for butyrate and caproate formation instead of 1.3-PDO consists of more comparable abundant OTUs which infers to 22.51% of Anaerostipes caccae, 14.28% of Blautia producta, 10.62% of E. coli, 3.71% of [C.] indolis and 2.54% of C. kluyveri. A. caccae is a saccharolytic acetate-utilizing and butyrate-producing bacterium from human faeces (Schwiertz et al., 2002), and *B. producta* is a H<sub>2</sub>/CO<sub>2</sub>or CO-utilizing and acetate-producing Ruminococcus bacterium (Liew et al., 2016; Liu et al., 2008). In a synergistic network, glycerol consumed by E. coli with the formation of ethanol, and formate (H<sub>2</sub> and CO<sub>2</sub>). Then C. kluyveri utilized ethanol for butyrate and caproate production in CCEP. Meanwhile, B. producta produced acetate with H<sub>2</sub> and CO<sub>2</sub> and A. caccae further used acetate to generate butyrate. And the butyrate generated in a parallel pathway promoted caproate formation by C. kluyveri. The cease of 1,3-PDO production was consistent with the insignificant abundance of C. butyricum (0.06%) in G-3 culture. Together with the evidences that caproate

production was found to have an optimal ratio of 4 which was consistent with the trend of ethanol; ethanol production was simultaneous with glycerol consumption and caproate production was simultaneous with ethanol depletion; ethanol addition immediately enhanced caproate production, it concluded that glycerol acting as an electron donor for caproate production was indirectly through the intermediate, ethanol.

 Table 4.8. Abundance and taxonomy of the overall top 20 most abundant OTUs in fresh AD sludge sample.

| OTU ID | Abundance | Phylum         | Class               | Order              | Family                | Genus             |
|--------|-----------|----------------|---------------------|--------------------|-----------------------|-------------------|
| 12116  | 0.00%     | Firmicutes     | Clostridia          | Clostridiales      | Clostridiaceae        | Clostridium       |
| 35728  | 0.00%     | Proteobacteria | Deltaproteobacteria | Desulfovibrionales | Desulfovibrionaceae   | Desulfovibrio     |
| 52828  | 0.01%     | Fusobacteria   | Fusobacteriia       | Fusobacteriales    | Fusobacteriaceae      | Fusobacterium     |
| 39880  | 0.01%     | Bacteroidetes  | Bacteroidia         | Bacteroidales      | Rikenellaceae         | Alistipes         |
| 77232  | 0.01%     | Firmicutes     | Clostridia          | Clostridiales      | Clostridiaceae        | Proteiniclasticum |
| 85382  | 0.05%     | Proteobacteria | Gammaproteobacteria | Enterobacteriales  | Enterobacteriaceae    | Escherichia       |
| 11332  | 2.50%     | Thermotogae    | Thermotogae         | Thermotogales      | Thermotogaceae        | AUTHM297          |
| 38781  | 0.00%     | Firmicutes     | Bacilli             | Bacillales         | Bacillaceae           | Unknown           |
| 77487  | 0.01%     | Firmicutes     | Clostridia          | Clostridiales      | Peptostreptococcaceae | Peptoclostridium  |
| 60584  | 2.07%     | Proteobacteria | Betaproteobacteria  | Burkholderiales    | Comamonadaceae        | Unknown           |
| 49975  | 0.00%     | Actinobacteria | Coriobacteriia      | Coriobacteriales   | Coriobacteriaceae     | Unknown           |
| 68739  | 0.00%     | Firmicutes     | Clostridia          | Clostridiales      | [Tissierellaceae]     | Sedimentibacter   |
| 54933  | 0.00%     | Firmicutes     | Clostridia          | Clostridiales      | Peptostreptococcaceae | Proteocatella     |
| 21429  | 0.00%     | Firmicutes     | Clostridia          | Clostridiales      | [Tissierellaceae]     | Sporanaerobacte   |
| 18980  | 0.01%     | Firmicutes     | Clostridia          | Clostridiales      | Eubacteriaceae        | Eubacterium       |
| 26494  | 0.45%     | Chloroflexi    | Anaerolineae        | SHA-20             | Unknown               | Unknown           |
| 17097  | 0.10%     | Proteobacteria | Deltaproteobacteria | Desulfovibrionales | Desulfovibrionaceae   | Desulfovibrio     |
| 50118  | 2.95%     | WWE1           | [Cloacamonae]       | [Cloacamonales]    | [Cloacamonaceae]      | W22               |
| 29891  | 0.03%     | Bacteroidetes  | Bacteroidia         | Bacteroidales      | Porphyromonadaceae    | Petrimonas        |
| 74102  | 0.42%     | Chloroflexi    | Anaerolineae        | Caldilineales      | Caldilineaceae        | Caldilinea        |

In general, interesting synergistic pathways with different interspecies electron transport routes occurred during glycerol-acetate fermentation (Fig. 4.11). Through the holistic thermodynamic and physiological analysis, it is suggested that in chemostat reactor settings, a desired population of organisms could be manipulated by supplying an optimal substrate composition that gives sufficient energy flow for co-production of 1,3-PDO and caproate.



Figure 4.11. Microbial pathways occurred in mixed culture glycerol-acetate fermentation.

# **4.3 Chapter summary**

This chapter reports thermodynamic and physiological insights for co-production of 1,3-PDO and caproate from glycerol and acetate. Detailed energetic analysis demonstrated that caproate can be elongated from acetate with either ethanol or glycerol, favorable at higher pH range, while caproate formation using  $H_2$  as sole

electron donor need to be maintained at lower pH. The optimized conversion rates of mono-caproate and co-production of 1,3-PDO and caproate were achieved at the ethanol/acetate and glycerol/acetate molar ratios of 3 and 4, respectively. The sufficient intermediate ethanol is capable of enhancing caproate formation along with 1,3-PDO. Such a co-production system is pivotal to a synergistic network resulting in the co-existence of *C. butyricum, E. coli, C. kluyveri* and some other butyrate production bacteria with function of glycerol directly converting to 1,3-PDO and indirectly to caproate. To define and verify the synergistic network, further metagenomic analysis is necessary. The discovery is able to lift up wastewater anaerobic treatment and biodiesel industry and, more significantly, validate thermodynamic aspect to manipulate microbial interspecies interaction for engineering applications.

# Chapter 5. Unveiling a new synergistic and syntrophic microbial network for carboxylates chain elongation with ethanol

# **5.1 Overview**

Mixed culture carboxylates chain elongation for caproate formation with ethanol as an electron donor is an attractive option for resource recovery from fatty acids in anaerobic wastewater treatment. Whilst the metabolic pathway of C. kluyveri in carboxylates chain elongation has been discovered, the role of other abundant co-existing microbiomes and the synergistic network remained unclear in mixed culture. To this end, we conducted a fresh digestion sludge inoculated ethanol-acetate fermentation experiment at optimal conditions, and both 16S rRNA gene-based amplicon and shotgun metagenomics sequencing were employed to elucidate the mixed culture chain elongation by uncovering the microbes and functional pathways involved. Results revealed a synergistic relationship between C. kluyveri and three co-dominant species Desulfovibrio vulgaris, Fusobacterium varium and Acetoanaerobium sticklandii. The co-existence of these three species were able to boost the carboxylates chain elongation by C. kluyveri. Draft genomes of C. kluyveri, D. vulgaris and A. sticklandii were successfully recovered, revealing that butyrate and caproate can be directly produced from ethanol and acetate by C. kluyveri and indirectly produced through a syntrophic partnership between D. vulgaris and A. sticklandii with hydrogen serving as a reducing equivalent messenger. This study presents evidences of a syntrophic partnership between bacterial species and unveils an intricate and synergistic microbial network in mixed culture carboxylates chain elongation.



Figure 5.1. Microbial pathways occurred in mixed culture glycerol-acetate fermentation.

# 5.2 Results and discussion

#### 5.2.1 Microbial community structures under different physiological stages of

#### carboxylate chain elongation with ethanol

Figure 5.2a shows caproate production from ethanol and acetate in a fresh AD enriched culture. Butyrate and caproate formation were initiated on Day 3 and ended on Day 10, which occurred faster and completed within a shorter period of time in comparison to a similar fermentation conducted previously (initiated on Day 10 and ended on Day 25), even though the caproate conversion rate was similar to previous observation in chapter 4 (Leng et al., 2017). During chain elongation,  $H_2$  was produced concurrently while methane was undetectable, and caproate formation


persisted longer (Day 10) than butyrate formation (Day 6).

**Figure 5.2.** Mixed culture carboxylates chain elongation from ethanol with acetate inoculated with fresh AD sludge. The batch fermentation kinetics conducted at 37 °C, pH of 7 and 150 rpm in an incubator with methanogenesis inhibition. Corresponding representative OTUs, collected at three time points, collectively formed 28.25%-37.04% of the bacterial community.

| Sample ID | Sequences/sample | Good's coverage | OTU  | Shannon | Inverse simpson |
|-----------|------------------|-----------------|------|---------|-----------------|
|           |                  |                 |      | index   | index           |
| Day0_1    | 89920            | 94.40%          | 8582 | 9.719   | 0.995           |
| Day0_2    | 89920            | 94.00%          | 8890 | 9.716   | 0.996           |
| Day6_1    | 89920            | 95.90%          | 6066 | 7.898   | 0.976           |
| Day6_2    | 89920            | 96.60%          | 5226 | 7.106   | 0.956           |
| Day15_1   | 89920            | 96.00%          | 6018 | 8.018   | 0.985           |
| Day15_2   | 89920            | 95.80%          | 6079 | 7.984   | 0.983           |
| Day23_1   | 89920            | 96.30%          | 5566 | 7.921   | 0.983           |
| Day23_2   | 89920            | 96.30%          | 5681 | 8.071   | 0.986           |

 Table 5.1. Summary of processed sequences and results from alpha diversity analysis.

To understand the microbial dynamics during the long chain elongation process, 4 groups of duplicate biomass samples for 16S rRNA gene sequencing were collected on Day 0, 6, 15 and 23. A normalized number of 89,920 sequences were obtained with an average Good's coverage of 95.66 % (Table 5.1).



**Figure 5.3.** Composition of relative abundance of OTUs at the Genus level in different samples. The different OTUs in the same genus level were combined to show in the columns. Hierarchical clustering of the total 8 samples was performed based on all OTUs from the microbial communities with a UPGMA algorithm to generate a newick-formatted tree. D0\_1 and D0\_2, D6\_1 and D6\_2, D15\_1 and D15\_2, D23\_1 and D23\_2 represent samples collected at Day 0, Day 6, Day 15 and Day 23 from duplicated bottles, respectively.



**Figure 5.4.** UniFrac emperor principal coordinate analysis (PCoA) (a. unweighted, b. weighted) of total 8 samples based on all OTUs from the microbial communities. D0\_1 and D0\_2, D6\_1 and D6\_2, D15\_1 and D15\_2, D23\_1 and D23\_2 represent samples collected at Day 0, Day 6, Day 15 and Day 23 from duplicated bottles, respectively.

Microbial community structures of the 8 samples were characterized. Based on clustering result, the bacterial community structure in the AD sludge inoculums evolved and became increasingly differentiated with time (Figure 5.3). This was further supported by the principal coordinate analysis (PCoA) (Figure 5.4). PCoA reveals that the microbial community varied during fermentation with consumption of substrates, and formation of intermediates and products. The observed Shannon and inverse Simpson indices indicated that the AD sludge inoculum contained a more diverse microbial community structure with a total of 8582/8890 bacterial OTUs detected (Table 5.1).

| OTU ID | Day0_1 | Day0_2 | Phylum         | Class               | Order              | Family                | Genus             |
|--------|--------|--------|----------------|---------------------|--------------------|-----------------------|-------------------|
| 12116  | 0.00%  | 0.01%  | Firmicutes     | Clostridia          | Clostridiales      | Clostridiaceae        | Clostridium       |
| 35728  | 0.00%  | 0.01%  | Proteobacteria | Deltaproteobacteria | Desulfovibrionales | Desulfovibrionaceae   | Desulfovibrio     |
| 52828  | 0.01%  | 0.00%  | Fusobacteria   | Fusobacteriia       | Fusobacteriales    | Fusobacteriaceae      | Fusobacterium     |
| 39880  | 0.01%  | 0.01%  | Bacteroidetes  | Bacteroidia         | Bacteroidales      | Rikenellaceae         | Alistipes         |
| 77232  | 0.01%  | 0.01%  | Firmicutes     | Clostridia          | Clostridiales      | Clostridiaceae        | Proteiniclasticum |
| 85382  | 0.05%  | 0.01%  | Proteobacteria | Gammaproteobacteria | Enterobacteriales  | Enterobacteriaceae    | Escherichia       |
| 11332  | 2.50%  | 1.28%  | Thermotogae    | Thermotogae         | Thermotogales      | Thermotogaceae        | AUTHM297          |
| 38781  | 0.00%  | 0.01%  | Firmicutes     | Bacilli             | Bacillales         | Bacillaceae           | Unknown           |
| 77487  | 0.01%  | 0.01%  | Firmicutes     | Clostridia          | Clostridiales      | Peptostreptococcaceae | Peptoclostridium  |
| 60584  | 2.07%  | 2.66%  | Proteobacteria | Betaproteobacteria  | Burkholderiales    | Comamonadaceae        | Unknown           |
| 49975  | 0.00%  | 0.00%  | Actinobacteria | Coriobacteriia      | Coriobacteriales   | Coriobacteriaceae     | Unknown           |
| 68739  | 0.00%  | 0.01%  | Firmicutes     | Clostridia          | Clostridiales      | [Tissierellaceae]     | Sedimentibacter   |
| 54933  | 0.00%  | 0.00%  | Firmicutes     | Clostridia          | Clostridiales      | Peptostreptococcaceae | Proteocatella     |
| 21429  | 0.00%  | 0.01%  | Firmicutes     | Clostridia          | Clostridiales      | [Tissierellaceae]     | Sporanaerobacte   |
| 18980  | 0.01%  | 0.01%  | Firmicutes     | Clostridia          | Clostridiales      | Eubacteriaceae        | Eubacterium       |
| 26494  | 0.45%  | 0.61%  | Chloroflexi    | Anaerolineae        | SHA-20             | Unknown               | Unknown           |
| 17097  | 0.10%  | 0.07%  | Proteobacteria | Deltaproteobacteria | Desulfovibrionales | Desulfovibrionaceae   | Desulfovibrio     |
| 50118  | 2.95%  | 1.53%  | WWE1           | [Cloacamonae]       | [Cloacamonales]    | [Cloacamonaceae]      | W22               |
| 29891  | 0.03%  | 0.01%  | Bacteroidetes  | Bacteroidia         | Bacteroidales      | Porphyromonadaceae    | Petrimonas        |
| 74102  | 0.42%  | 0.84%  | Chloroflexi    | Anaerolineae        | Caldilineales      | Caldilineaceae        | Caldilinea        |

Table 5.2. Abundance and taxonomy of top 20 most abundant OTUs in fresh AD sludge samples.

The taxonomy of the top 20 abundant OTUs are shown in Table 5.2, and collectively accounted for merely  $7.86\% \pm 1.07\%$  of the total bacterial population in AD sludge inoculum. In contrast, the microbial community structure became increasingly specialized under enrichment with the dominance of certain bacterial species. At three time points during enrichment (Day 6, 15 and 23), the number of OTUs decreased to between 5226 and 6079 (Figure 5.3 and Table 5.1), and the top 20 abundant OTUs accounted for more than 50% of the bacterial populations. Specifically, the genera of dominant microorganisms in the ethanol and acetate enriched culture were *Clostridium*, *Desulfovibrio*, *Fusobacterium*, *Alistipes*, and

*Proteiniclasticum*. Compared with the similar fermentation conducted previously (Leng et al., 2017), the abundance of *Desulfovibrio* and *Fusobacterium* increased significantly in this batch. It implies that a distinctive interspecies association of the carboxylates chain elongation with ethanol and acetate might be involved. The abundance of methanogens was low and not ranked the top 20 counted OTUs. The total abundances of methanogens in fresh AD inoculum, Day 6, Day 15, and Day 23 were 2.175%, 0.978%, 1.099%, 0.841%, respectively.

| Phylogeny                                                                                                                                                                                                                          | Abundance                        | Taxonomy                                                    |                                                                                    |                                                                                  |                                                                                         |                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                    | (%)                              | Genus                                                       | Family                                                                             | Order                                                                            | Class                                                                                   | Phylum                                                                 |
| Acetoanaerobium noterae<br>OTU 77487<br>[Clostridium] sticklandii                                                                                                                                                                  | 1.75%                            | Peptoclostridium                                            | Peptostreptococcaceae                                                              | Clostridiales                                                                    | Clostridia                                                                              | Firmicutes                                                             |
| OTU 54933                                                                                                                                                                                                                          | 1.35%                            | Proteocatella                                               | Peptostreptococcaceae                                                              | Clostridiales                                                                    | Clostridia                                                                              | Firmicutes                                                             |
| OTU 21429                                                                                                                                                                                                                          | 1.35%                            | Sporanaerobacter                                            | Peptostreptococcaceae                                                              | + Clostridiales                                                                  | Clostridia                                                                              | Firmicutes                                                             |
| OTU 68739                                                                                                                                                                                                                          | 1.37%                            | Sedimentibacter                                             | Peptostreptococcaceae                                                              | + Clostridiales                                                                  | Clostridia                                                                              | Firmicutes                                                             |
| Clostridium ljungdahlii<br>Clostridium jungdahlii                                                                                                                                                                                  | 4.13%                            | Clostridium                                                 | Clostridiaceae                                                                     | Clostridiales                                                                    | Clostridia                                                                              | Firmicutes                                                             |
| Clostridium limosum                                                                                                                                                                                                                | 2.36%                            | Proteiniclasticum                                           | Clostridiaceae                                                                     | Clostridiales                                                                    | Clostridia                                                                              | Firmicutes                                                             |
| Bacillus thermolactis<br>Exiguobacterium acetylicum                                                                                                                                                                                | 1.80%                            | Uncultured                                                  | Bacillaceae                                                                        | Bacillales                                                                       | Bacilli                                                                                 | Firmicutes                                                             |
| CTU 18980                                                                                                                                                                                                                          | 1.31%                            | Eubacterium                                                 | Eubacteriaceae                                                                     | Clostridiales                                                                    | Clostridia                                                                              | Firmicutes                                                             |
| Desulfovibrio vulgaris strain Hildenborough     Desulfovibrio vulgaris strain Hildenborough     Desulfovibrio alaskensis     OTU 45728     Desulfovibrio alaskensis     OTU 5582     Giesbergeria anulus     Maganema perideroedes | 3.62%<br>1.16%<br>2.31%<br>1.60% | Desulfovibrio<br>Desulfovibrio<br>Escherichia<br>Uncultured | Desulfovibrionaceae<br>Desulfovibrionaceae<br>Enterobacteriaceae<br>Comamonadaceae | Desulfovibrionales<br>Desulfovibrionales<br>Enterobacteriales<br>Burkholderiales | Deltaproteobacteria<br>Deltaproteobacteria<br>Gammaproteobacteria<br>Betaproteobacteria | Proteobacteria<br>Proteobacteria<br>a Proteobacteria<br>Proteobacteria |
| Alistipes putredinis     OTU 39880     Alistipes indistinctus     Bretaipebilum acettalemene                                                                                                                                       | 2.40%                            | Alistipes                                                   | Rikenellaceae                                                                      | Bacteroidales                                                                    | Bacteroidia                                                                             | Bacteroidetes                                                          |
| OTU 29891                                                                                                                                                                                                                          | 1.03%<br>1.08%                   | Petrimonas<br>Uncultured                                    | Porphyromonadaceae<br>Uncultured                                                   | Bacteroidales<br>Uncultured                                                      | Bacteroidia<br>Uncultured                                                               | Bacteroidetes<br>Cloacimonete                                          |
| - Fusobacterium varium<br>Fusobacterium varium<br>- Caldiline a aerophila                                                                                                                                                          | 2.51%                            | Fusobacterium                                               | Fusobacteriaceae                                                                   | Fusobacteriales                                                                  | Fusobacteriia                                                                           | Fusobacteria                                                           |
| Caldlinea tarbellica<br>OTU 74102<br>OTU 26494                                                                                                                                                                                     | 0.96%<br>1.18%                   | Caldilinea<br>Uncultured                                    | Caldilineaceae<br>Uncultured                                                       | Caldilineales<br>Uncultured                                                      | Anaerolineae<br>Anaerolineae                                                            | Chloroflexi<br>Chloroflexi                                             |
| Oceanologa tene<br>OTU 1132<br>Marinitoga litoralis                                                                                                                                                                                | 1.97%                            | AUTHM297                                                    | Thermotogaceae                                                                     | Thermotogales                                                                    | Thermotogae                                                                             | Thermotogae                                                            |
| Paraeggerthella hongkongensis<br>OTU 49975<br>Ergenthella signasis                                                                                                                                                                 | 1.43%                            | Uncultured                                                  | Coriobacteriaceae                                                                  | Coriobacteriales                                                                 | Coriobacteriia                                                                          | Actinobacteria                                                         |

**Figure 5.5.** Neighbor-joining tree based on 16S rRNA gene sequences and related reference lineages. 20 most abundant OTUs of 8 samples were selected for analysis and shown with average abundance and taxonomy information. The phylogenetic tree (bootstrap 1000: > 90% black node, > 70% gray node with black outline and > 50% gray node) were performed in ARB with SILVA database SSU NR99 as reference.

A 16S rRNA gene-based tree was constructed by neighbor-joining method to decipher the phylogenetic affiliation of the 20 most abundant OTUs and their evolutionary relationships to known lineages (Figure 5.5). The highly abundant OTU 12116 (4.13%) and OTU 35728 (3.62%) are closely associated with C. kluyveri and D. vulgaris strain Hildenborough, respectively. The other two OTUs that dominated during the active chain elongation period (Day 3 to Day 10), OTU 52828 and 77487, are affiliated to F. varium and Acetoanaerobium sticklandii (formerly known as Clostridium sticklandii) (Galperin et al., 2016), respectively. In addition, the two OTUs, which dominated at the end of or after the active chain elongation period, OTU 77232 and 39880, are closely related to Clostridium limosum (95% identity based on Blastn) and Alistipes putredinis (87% identity based on Blastn), respectively. C. limosum, found in a cluster with other two species, C. histolyticum and C. proteolyticum, is highly proteolytic and able to produce acetate as the major end product (Collins et al., 1994). A. putredinis under the order of Bacteroidales, is capable of producing SCFAs, especially succinic acid, from carbohydrate (Rautio et al., 2003).

Figure 5.2b demonstrates the corresponding dominant microbial constituents in the culture on Day 6, 15, and 23. During Day 6 to Day 15, *C. kluyveri*-related organism were predominantly observed at 7–9% composition of the whole microbial consortia, indicating its critical role in caproate production from ethanol and acetate prior to Day 6, and further elongation from ethanol and butyrate until Day 10 (Steinbusch et al., 2011). In the following stages, the caproate concentration decreased slightly with

the depletion of substrate level energy source, but  $H_2$  declined gradually to a low level.

The most abundant OTUs observed on Day 6, corresponding to the peak of chain elongation activity, was closely related to D. vulgaris strain Hildenborough (100% similarity in Blastn), a well-known sulfate-reducing bacteria (SRB) in anaerobic ecosystem (Heidelberg et al., 2004). This microorganism typically uses sulfate as an electron acceptor, and H<sub>2</sub>, organic acids (i.e., lactate and formate) and ethanol as electron donors for ATP generation through electron transfer-coupled phosphorylation (Heidelberg et al., 2004; Tao et al., 2014). Meanwhile, D. vulgaris Hildenborough preferentially utilizes lactate or ethanol over H<sub>2</sub> as the electron donor and produces H<sub>2</sub> constantly unless lactate or ethanol is depleted (Bryant et al., 1977; Tao et al., 2014). Therefore, the occurrence of H<sub>2</sub> peak during active chain elongation was probably contributed by D. vulgaris Hildenborough and C. kluyveri (Ding et al., 2010; Seedorf et al., 2008). In addition, Bryant et al. revealed a syntrophic relationship between D. vulgaris Hildenborough and H<sub>2</sub>-utilizing methanogens, in which the electrons transferred from ethanol or lactate could be used for methane production via H<sub>2</sub> without competition from the reduction reaction of sulfate to sulfide in media containing low sulfate (20 mM, corresponding to 1921 mg/L) (Bryant et al., 1977). In other words, the non-saline AD sludge inoculum used in this study (20 mg/L sulfate, low sulfate condition) may induce H<sub>2</sub> production from ethanol by D. vulgaris Hildenborough instead of sulfide formation, implying that the electrons generation along with ATP formation from ethanol could also be further transferred to butyrate and caproate as end products. Specifically, the other two dominant microorganisms, F. varium and A. sticklandii, are able to consume amino acids and H<sub>2</sub> generated by *D. vulgaris* Hildenborough to produce butyrate for *C.* kluyveri, and the latter was proved to harbor Wood-Ljungdahl pathway (Fonknechten et al., 2010; Potrykus et al., 2008). After Day 10, a slight acetate accumulation was observed (Figure 1a). In comparison with the microbial community structures on Day 6 and 15, the proportions of four organisms related to uncultured Bacteroidetes bacterium (clone e03=d04), Proteiniclasticum sp., Bacillaceae bacterium mt8, and uncultured Coriobateriaceae bacterium increased and dominated during the last stage (Day 23). The uncultured Bacteroidetes bacterium-related organisms are frequently found in the human gut microbiome, animal rumen, and sludge-degrading community in slurry composting process (Jung & Regan, 2007; Mohapatra, 2008). Many Bacteroidetes species are able to produce acetate and succinate from various carbohydrates, amino acids and lipids (Miller, 1978; Shoaie et al., 2013). The Proteiniclasticum sp., 100% identified as a partial sequence of *Proteiniclasticum* sp. N2, is an anaerobic proteolytic bacterium isolated from cellulose-degrading mixed culture with acetate as one of the fermentative products (Gao et al., 2014; Zhang et al., 2010). Bacillaceae bacterial species predominate in hydrolysis and acidogenesis (Khanal, 2009). Coriobateriaceae bacterial species are strict anaerobic microbes many of which are usually saccharolytic and possess a variety of aminopeptidases (Clavel et al., 2014). Thus, the acetate accumulation in the last stage may be caused by fermentative degradation of debris compounds (i.e., carbohydrates, proteins, and lipids) derived from dead cell

#### biomass.



**Figure 5.6.** Association network among top 10 abundant microbes. Each node represents an OTU and each edge represents a negative (blue) or positive (red) interaction between the two connect nodes. Arrow demonstrates the direction of the influence and the width of edges indicates the strength of the interaction.

Figure 5.6 illustrates the network interaction of the top 10 most abundant OTUs based on microbial community profiles of Day 6, 15, 23. *D. vulgaris* had a positive influence on *C. kluyveri* while *C. kluyveri* had a weak negative effect towards *D. vulgaris*. Although these two microbes compete for the ethanol as electron donor, the acetate generated by *D. vulgaris* could be used by *C. kluyveri*. However, the H<sub>2</sub> formation from ethanol-acetate fermentation by *C. kluyveri* inhibited the ethanol oxidation of *D. vulgaris*. A strong interaction between *D. vulgaris* and *F. varium* was observed, implying that *F. varium* was positively associated with *D. vulgaris*. An

unexpected finding of *A. sticklandii* with low concentration and insignificant dynamics requires further investigation. In addition, this network interaction also explains the difference of the abundant OTUs between previous observation in a similar condition and this study (Leng et al., 2017) (Table 5.3). Compared to OTUs abundance of the previous observation, *C. kluyveri* and *F. varium* increased with the growth of *D. vulgaris*.

Desulfovibrio Clostridium Fusobacterium [Clostridium] Escherichia OTUs sticklandii kluyveri coli vulgaris varium Previous observation 0.09% 0.74% 0.00% 11.73% 0.01% This study 4.84% 5.51% 3.35% 2.34% 3.08%

Table 5.3. Comparison of abundant OTUs of previous observation with this study.

#### 5.2.2 Metagenomics-based metabolic pathways characterization

To verify our proposed synergistic metabolic network for caproate production in the microcosm (Figure 5.7), we performed shotgun sequencing and *de novo* assembly. The recovered metagenomic bins were phylogenetically identified by genomic comparison using PhyloPhlAn, which indicated that Bin 001, Bin 002 and Bin 045 likely represent the draft genomes of *D. vulgaris, C. kluyveri* and *A. sticklandii*, respectively (Figure 5.8) (Segata et al., 2013). Table 5.4 summarized the features of these three recovered bins, whose chromosome size are 2.78 Mb, 4.37 Mb, and 2.33 Mb, respectively, and guanine-cytosine (G+C) content are 63.5%, 31.3%, 34.9%, respectively. The circular chromosome sizes and G+C % of genomes of *D. vulgaris, C. kluyveri* and *A. sticklandii* are 3.57 Mb, 3,96 Mb, 2.72 Mb, respectively, and

63.2%, 32.0%, 33.3%, respectively (Devereux et al., 1997; Fonknechten et al., 2010; Heidelberg et al., 2004; Seedorf et al., 2008). The similar genome sizes and G+C percentages further indicate high similarity between recovered bins and the genomes of known isolates. The completeness of these three bins were between 90% and 95%, and were thus considered as substantially complete genomes. Gene annotation was further performed to illuminate the chain elongation metabolic pathways for caproate formation in mixed culture.



**Figure 5.7.** The proposed synergistic and syntrophic network during the active phase of mixed culture carboxylates chain elongation with ethanol.

| Table 5.4. A summary of | f genomes recovered | from shotgun d | <i>e-novo</i> assembly. |
|-------------------------|---------------------|----------------|-------------------------|
|-------------------------|---------------------|----------------|-------------------------|

| Genome        | Chromosome | GC content | Completenes | Contamination | Strain            |
|---------------|------------|------------|-------------|---------------|-------------------|
|               | size (bp)  | (%)        | s(%)        | (%)           | heterogeneity (%) |
| Desulfovibrio | 2,777,217  | 63.5       | 90          | 4.45          | 44.44             |
| vulgaris      |            |            |             |               |                   |

| Clostridium     | 4,373,507 | 31.3 | 95 | 0.95  | 0     |
|-----------------|-----------|------|----|-------|-------|
| kluyveri        |           |      |    |       |       |
| Acetoanaerobium | 2,325,435 | 34.9 | 95 | 28.42 | 24.49 |
| sticklandii     |           |      |    |       |       |



Figure 5.8. Phylogenetic tree based on whole-genome sequence using PhyloPhlAn.



**Figure 5.9.** The carboxylates chain elongation pathways of *C. kluyveri* or a syntrophic partnership of *D. vulgaris* and *A. sticklandii*. (a) Ethanol-acetate fermentation to butyrate along with  $H_2$  formation; (b) Ethanol oxidation to acetate and  $H_2$ ; (c) Amino-acids-acetate- $H_2$  fermentation to butyrate.

Ethanol and acetate are known to be fermented by *C. kluyveri* with the production of butyrate and caproate (Smith et al., 1985). Although the genome of *C. kluyveri* DSM 555 revealed that the bacterium could perform the metabolism entirely on its own (Seedorf et al., 2008), the gene annotation of the three recovered bins revealed an intricate interspecies pathway of ethanol-acetate fermentation in mixed culture (*Appendix I* Table and Figure 5.9a). The pathway of *C. kluyveri* bin starts with ethanol oxidation via acetaldehyde to acetyl-CoA catalyzed by NAD-dependent iron-containing alcohol dehydrogenases (*yiaY* and *adhE*; CK\_01148, CK\_01212, CK\_02184, CK\_02636, CK\_03254, CK\_04032, and CK\_04084) and a

NAD(P)-dependent acetaldehyde dehydrogenase (ALDH; CK\_03374). These genes discovered located not to be in the same cluster with are microcompartment-associated genes (CK\_02630-02631), differing from the strain DSM 555 genome (Seedorf et al., 2008). In the following step, acetate formation from acetyl-CoA via acetyl-phosphate is catalyzed by putative phosphotransacetylase (pta; CK\_03900) and acetate kinase (ackA; CK\_00062). Meanwhile, two acetyl-CoA proceeds to form acetoacetyl-CoA catalyzed by acetoacetyl-CoA thiolase (thl; CK\_00443-00445). Subsequently, butyryl-CoA formation proceeds from the acetoacetyl-CoA via 3-hydroxylbutyryl-CoA and crontonyl-CoA through reverse β-oxidation pathway. This process involves three enzymes, 3-hydroxybutyryl-CoA dehydrogenase (PaaH), 3-hydroxybutyryl-CoA dehydratase (CroR/Crt) and NAD-dependent butyryl-CoA dehydrogenase/electron transfer flavoprotein (ETF) complex (Bcd/EtfAB). These  $\beta$ -oxidation-related genes are located in a gene cluster (CK\_01045-01049). These coding DNA sequences (CDS) are also capable of forming caproyl-CoA (hexanoyl-CoA) (Figure 5.10) (Seedorf et al., 2008). The formed butyryl-CoA reacts with acetate to form butyrate in a reaction catalyzed by CoA-transferases (cat2; CK\_00295). Similarly, caproate could be formed from caproyl-CoA and butyrate/acetate catalyzed by Cat2 (Figure 5.10). A membrane-bound energy converting systems are also found in the C. kluyveri bin (Appendix II Table). Along with the conversion of crontonyl-CoA to butyryl-CoA, catalyzed by Bcd/EtfAB complex, the reduced ferredoxin (Fdred) generated is oxidized with NAD(P)<sup>+</sup> catalyzed by *Rhodobacter* nitrogen fixation (Rnf) complex (CK\_01888-01893). In addition, we found two additional membrane-associated

93

energy conservation systems: ETF-linked iron-sulfur binding reductase (CK\_03656– 03658) and ETF dehydrogenase (*fixABCX*; CK\_02710–02713). These membrane-bound energy conservation systems consume protons while protons are generated along with ATP formation catalyzed by another membrane associated enzymes ATPase complex (CK\_00434–00442) and a flagellum-specific ATP synthase (*fli1*; CK\_01313). The surplus Fd<sub>red</sub> could be oxidized with H<sub>2</sub> production catalyzed by periplasmic hydrogenase subunit (CK\_02733–02741) and cytoplasmic iron-only hydrogenases (CK\_00654 and CK\_00728).



**Figure 5.10.** The carboxylates chain elongation pathways of *C. kluyveri* or a syntrophic partnership of *D. vulgaris* and *A. sticklandii*. (a) Ethanol-butyrate fermentation to caproate along with  $H_2$  formation; (b) Ethanol oxidation to acetate and  $H_2$ ; (c) Amino-acids-butyrate- $H_2$  fermentation to caproate.

As discussed above, *D. vulgaris* Hildenborough could utilize ethanol to produce  $H_2$  for synergistic-associated methanogens in the absence of the competing sulfate to sulfide reaction in low sulfate media. However, the oxidation of ethanol to acetate with  $H_2$  formation rather than with sulfate as electron acceptor has not been well delineated. Genes encoded in the *D. vulgaris*-related bin 001 was annotated to verify the pathway (*Appendix I* Table and Figure 5.9b). The fermentation proceeds with ethanol oxidation via acetaldehyde to acetate catalyzed by five alcohol dehydrogenases (*yqhD* and *yiaY*; DV\_00409, DV\_01064, DV\_01916, DV\_02002, and DV\_02751), an aldehyde dehydrogenase (DV\_00071–00072 and DV\_01138) and an aldehyde:ferredoxin oxidoreductase (*aor*; DV\_02212). None of the five alcohol dehydrogenase genes are located close to the *aor* gene. The H<sub>2</sub> formation cooperated with a periplasmic [NiFe] hydrogenase was also identified with high amino acid identity to that found in the genome of strain Hildenborough (*Appendix II* Table).

The unexpected finding on ethanol oxidation to acetate and  $H_2$  could be thermodynamically infeasible as shown in the calculation using a thermodynamic model of biochemical reactions (Table 5.5) (Alberty, 2005). Due to the biological "quantum of energy", where a minimum of approximately -20 kJ per mol is required for cell survival of a microorganism, *D. vulgaris* Hildenborough is unable to produce acetate and  $H_2$  from ethanol without external thermodynamics impetus (Schink, 1997). However, this biochemical reaction could proceed when a syntrophic microorganism exists in the culture. *F. varium* and *A. sticklandii* are found to be abundant at the ethanol fermentation stage. They could utilize amino acids and  $H_2$  as energy sources to achieve acetate-butyrate pathways (Fonknechten et al., 2010; Potrykus et al., 2008). Butyrate formation from acetate and  $H_2$  is thermodynamically feasible (Table 5.5). As the products are rapidly consumed by the syntrophic partners, the low concentration of products, especially  $H_2$ , would enable the biochemical reaction of ethanol oxidation by *D. vulgaris* Hildenborough to become thermodynamically feasible. The overall reaction of the two in Table 5.5 yields a value of Gibbs free energy that is higher than twice of the biological "quantum of energy" and supports this syntrophy thermodynamically.

Syntrophic relationship is well known between hydrogen-producing acetogens and methanogenic archaea, in which acetate and H<sub>2</sub> are intermediates and low H<sub>2</sub> partial pressure is essential for acetogenic reactions to be thermodynamically favorable (Schink, 1997). Nevertheless, our findings raised an important notion that syntrophy in mixed culture is not only confined to bacteria and archaea, but could also be extended to inter-bacterial species. Co-culture studies of Men et al. and Harding et al. also illustrate the sustainable syntrophy between *Dehalococcoides ethenogenes* strain 195 (DE195) and *D. vulgaris* Hildenborough and *Dehalococcoides mccartyi* 195 (Dhc195) and *D. vulgaris* Hildenborough, respectively in dechlorination (Harding et al., 2013; Men et al., 2012).

|                | Reaction: Ethanol + $H_2O \rightarrow Acetate^- + H^+ + 2 H_2$ |                           |                             |              |                    |        |  |  |
|----------------|----------------------------------------------------------------|---------------------------|-----------------------------|--------------|--------------------|--------|--|--|
| Ionic strength | pH 4.5                                                         | рН 5                      | pH 5.5                      | рН б         | pH 7               | рН 8   |  |  |
| (101)          |                                                                |                           |                             |              |                    |        |  |  |
| 0              | 14.69                                                          | 11.73                     | 8.76                        | 5.79         | -0.14              | -6.08  |  |  |
| 0.05           | 13.67                                                          | 10.71                     | 7.74                        | 4.77         | -1.16              | -7.10  |  |  |
| 0.1            | 13.39                                                          | 10.43                     | 7.46                        | 4.49         | -1.44              | -7.38  |  |  |
| 0.25           | 12.97                                                          | 10.01                     | 7.04                        | 4.07         | -1.86              | -7.80  |  |  |
|                | Reaction: 2 A                                                  | cetate <sup>-</sup> + 2 H | $H_2 + H^+ \rightarrow H_2$ | Butyrate + 2 | 2 H <sub>2</sub> O |        |  |  |
| Ionic strength | рЦ 4 5                                                         | рЦ 5                      |                             | <b>лШ б</b>  | рЦ 7               | лЦ 9   |  |  |
| (M)            | рп 4.5                                                         | рп з                      | рп 5.5                      | рпо          | рн /               | рп ө   |  |  |
| 0              | -59.89                                                         | -56.93                    | -53.96                      | -50.99       | -45.06             | -39.12 |  |  |
| 0.05           | -58.87                                                         | -55.91                    | -52.94                      | -49.97       | -44.04             | -38.10 |  |  |
| 0.1            | -58.59                                                         | -55.63                    | -52.66                      | -49.69       | -43.76             | -37.82 |  |  |
| 0.25           | -58.18                                                         | -55.21                    | -52.24                      | -49.27       | -43.34             | -37.40 |  |  |

**Table 5.5.** Standard transformed Gibbs free energy  $(\Delta_r G'^0_{310K})$  of ethanol oxidation to acetate and H<sub>2</sub> by *D. vulgaris*, and butyrate formation from acetate and H<sub>2</sub> by *A. sticklandii*.

Unit:  $KJ mol^{-1}$ 

The genes of *A. sticklandii*-related metagenome bin 045 are annotated. As illustrated in *Appendix I* Table, *Appendix III* Table and Figure 5.9c, amino acids such as arginine, serine and cysteine can be fermented to pyruvate (Fonknechten et al., 2010). In addition, alanine can be oxidized to pyruvate by alanine dehydrogenase

(CS\_00093) coupled with the reduction of glycine to acetate via Stickland reaction employing glycine reductase complex (CS\_00283-00284, CS\_00993-00998, CS\_01071-01073, and CS\_01780-01781). Following which, pyruvate is oxidized to acetyl-CoA catalyzed by pyruvate-ferredoxin/flavodoxin oxidoreductase (por; CS\_00432 and CS\_00649) along with CO<sub>2</sub> production. The following pathway for butyrate formation is similar to the pathway of C. kluyveri. Butyryl-CoA formation from acetyl-CoA proceeds via intermediates acetoacetyl-CoA, the of 3-hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA. The involved enzymes include acetyl-CoA C-acetyltransferase (atoB; CS\_01299 and CS\_01905), 3-hydroxybutyryl-CoA dehydrogenase (*paaH*; CS 00222 CS 00704), and enoyl-CoA hydratase (crt; CS 00221) and NAD-dependent butyryl-CoA dehydrogenase complex (bcd/etfAB; CS\_01444 and CS\_01937, partial). The formed butyryl-CoA reacting with acetate results in butyrate formation, catalyzed by acetate CoA/acetoacetate CoA-transferase subunits (atoAD; CS\_00212-00213). According to the abovementioned genes, A. sticklandii also has the potential of caproate formation (Figure 5.10).

As for *Fusobacterium*, no recovered bin was closely associated with the genome of *F. varium* or *F. ulcerans*. The BLAST analysis of 16S rRNA gene sequences showed that the OTU52828 has 99.6% identity to the *F. varium* ATCC 27725, 99.6% identity to the type strain of *F.varium* JSM 6320 (=ATCC 8501) and 99.2% identity to the *F. ulcerans* ATCC 49185 (type strain of *F. ulcerans*). In order to verify an amino acids-acetate-H<sub>2</sub> fermentation pathway of *F. varium*, the genome of *F. varium* ATCC

27725 obtained from Integrated Microbial Genomes (IMG) system of U.S. Department of Energy Joint Genome Institute (DOE JGI) was annotated (McGuire et al., 2014). F. varium ATCC 27725 is able to utilize multiple amino acids such as glycine, serine, and threonine (Appendix IV Table). The pyruvate generated from amino acids is oxidized to acetyl-CoA catalyzed by pyruvate-ferredoxin/flavodoxin oxidoreductase (por; 646284783 and 646284198-646284201) along with CO<sub>2</sub> production (Appendix IV Table). Butyryl-CoA formation from acetyl-CoA proceeds via the intermediates of acetyl-CoA C-acetyltransferase, 3-hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA. The involved enzymes include acetyl-CoA C-acetyltransferase (atoB; 646283343 and 646283326), 3-hydroxybutyryl-CoA dehydrogenase (paaH; 646284062 and 646283324), 3-hydroxybutyryl-CoA dehydratase (croR; 646285345, 646284822 and 646283189), enoyl-CoA hydratase (crt; 646283325) and butyryl-CoA dehydrogenase complex (bcd/etfAB; 646283190, 646283191 and 646283192) (Appendix IV Table). The formed butyryl-CoA reacting with acetate results in butyrate formation, catalyzed by acetate CoA/acetoacetate CoA-transferase subunits (atoAD; 646284367 and 646284366) or CoA-transferases (cat2; 646284915) (Appendix IV Table). According to these annotated genes, the caproate formation by F. varium ATCC 27725 is also possible.

The abovementioned metagenomic features of dominant microbiomes in the mixed culture demonstrate a synergistic and syntrophic metabolic network for caproate production through reconstructed pathways. It proves that butyrate and caproate can be directly produced from ethanol and acetate in the presence of *C. kluyveri* under

mixed culture. In addition, a syntrophic partnership of *D. vulgaris* and *A. sticklandii* (*F. varium*) relying on H<sub>2</sub> as a reducing equivalent messenger, for the first time, was unveiled to indirectly achieve carboxylates chain elongation in low sulfate mixed culture (Figure 5.9). The former pathway of *C. kluyveri* starts with ethanol oxidation and produces caproate by reverse  $\beta$ -oxidation. In this pathway, the reduction of crontonyl-CoA to butyryl-CoA by NADH, catalyzed by Bcd/EtfAB complex, is coupled with the reduction of ferredoxin by NADH. Reduced ferredoxin can be reoxidized by NAD<sup>+</sup> mediated by the Rnf system which generates an electrochemical proton gradient for ATP synthesis. H<sub>2</sub> production is catalyzed by periplasmic hydrogenase subunit and cytoplasmic iron-only hydrogenases for surplus Fd<sub>red</sub> reoxidation. The latter pathway starts with ethanol oxidation by *D. vulgaris* along with H<sub>2</sub> generation by a periplasmic [NiFe] hydrogenase coupled to an aldehyde:ferredoxin oxidoreductase. The H<sub>2</sub> is then utilized by *A. sticklandii* through NADH dehydrogenase involved in the reverse  $\beta$ -oxidation pathway.

## **5.3 Chapter summary**

The abundant bacteria, *D. vulgaris, F. varium*, and *A. sticklandii*, which are co-existent with *C. kluyveri* accelerated the carbon and electron flows of carboxylates chain elongation with ethanol. *D. vulgaris* oxidizes ethanol to acetate and thereby the formed  $H_2$  is used by the two amino acid degrading bacteria for the production of butyrate. The interspecies  $H_2$  transfer takes place, which has been hitherto commonly known for the interaction between syntrophic bacteria and methanogenic archaea. The disclosed metabolic pathways by metagenomic analysis

suggested that the synergy network could be technically applied with the potential to upcycle the mixed culture anaerobic processes for value-added chemicals production. Finally, prior to implementing this mixed culture anaerobic process in practice, additional research must be conducted to (1) identify an optimal bacterial composition for efficient caproate production in a mixture of pure culture strains and (2) test an optimal  $H_2$  partial pressure to maintain the synergistic and syntrophic network in a continuous fermentation reactor.

# Chapter 6. 1,3-PDO and Caproate co-production through glycerol fermentation and carboxylate chain elongation by shaping microbial consortia

# **6.1 Overview**

Glycerol is presently being generated in surplus with the rapid growth of biodiesel industry and the demand for 1,3-PDO-based polymers is constantly increasing. Biological reduction of glycerol to 1,3-PDO concurrently produces byproducts which limit its purity and cause the cost for distillation. This pioneering study successfully enriched a microbial community capable of efficiently converting glycerol to 1,3-PDO and producing a water-slightly-soluble and value-added chemical, caproate, from the byproducts of glycerol fermentation through carboxylate chain elongation. A co-production of 6.38 mM C 1,3-PDO d<sup>-1</sup> and 2.95 mM C caproate d<sup>-1</sup> was achieved in a 2-L semi-continuous fermenter with a glycerol-ethanol-acetate stoichiometric ratio of 4:3:1. Microbimes, E. limosum, C. kluyveri and M. senegalense, utilize a unique combination of metabolic pathways to facilitate the above conversion. Based on metagenomics, E. limosum is capable of converting glycerol to 1,3-PDO, ethanol and  $H_2$ , and also redirecting the electron potential of  $H_2$ into acetate via the Wood-Ljungdahl pathway for chain elongation. C. kluyveri worked synergistically with E. limosum by consuming ethanol and acetate for caproate production. M. senegalense encodes for ethanol oxidation to acetate and butyrate, facilitating the generation of these intermediates for elongation to caproate by C. kluyveri. During the transition between fermentation and elongation, an unexpected phenomenon of poly-β-hydroxybutyrate (PHB) formation and

reutilization by *M. senegalense* was observed, which may be associated with butyrate formation for further caproate generation. Significant ethanol production as an intermediate of glycerol dissimilation and the non-inhibiting level of 1,3-PDO production, which allows the dominance of *C. kluyveri*, are key to increasing caproate production. The knowledge gleaned from the substrate constitute, microbial consortium and their metabolism creates a valuable resource recovery potential for the biodiesel industry.



Figure 6.1. Two value-added chemicals, 1,3-PDO and caproate, co-production through glycerol

fermentation and carboxylate chain elongation.

## 6.2 Results and discussion

## 6.2.1 Glycerol fermentation in a semi-continuous reactor

Glycerol fermentation with mixed culture enriched from non-saline AD sludge was first conducted for three stages in a semi-continuous reactor (Figure 6.2). Fermentation was constantly carried out with methanogenesis inhibition with an HRT of 30 days, controlling temperature at 37 °C, and pH at 7. In the three stages, a gradual increase of glycerol with a constant amount of acetate was fed into the fermenter (Figures 6.2a), resulting in 1,3-PDO, butyrate and acetate as major products (Figures 6.2b). At stage 3, we achieved the highest 1,3-PDO production rate of 13.90 mM C d<sup>-1</sup> and butyrate and acetate (net) yields of 5.48 and 4.06 mM C d<sup>-1</sup>, respectively, from 45 mM C d<sup>-1</sup> of glycerol. The conversion rates of 1,3-PDO and butyrate were 31% (mol<sub>1,3-PDO</sub> mol<sup>-1</sup>glycerol) and 10% (mol<sub>butyrate</sub>/mol<sub>glycerol</sub>), respectively. The electron flow balance in this stage indicated that around 60% of glycerol was catabolized into 1,3-PDO, butyrate and acetate. Correspondingly, 16S rRNA gene-based analysis of the microbial constituents (Figure 6.2c) at the middle and late periods of stage 3 show that organisms associated with E. limosum (100% identity based on Blastn), Proteiniphilum acetatigenes (100%), Actinomyces sp. MD1 (100%), and A. caccae (100%) dominated. Based on the corresponding genome bin recovered (S3\_Bin001), E. limosum is likely converting glycerol to acetate oxidatively (via GldA-DhaL/K) and 1,3-PDO (via PduC/D/E-DhaT) reductively (Figure 6.12 and Table 6.4) (Lin, 1976). A. caccae (S3\_Bin003) encodes for glycerol oxidation to butyrate (via GldA-DhaL/K- -Cat2/3) (Louis & Flint, 2009). Unexpectedly, the commonly known 1,3-PDO-producing bacteria (*C. butyricum* and *K. pneumoniae*) only contributed a small proportion of the microbial constituents in this stage.



**Figure 6.2.** Physiologic performance and microbial characterization of semi-continuous mixed culture fermentation at 37 °C, pH of 7, stirring rate of 150 rpm and HRT of 30 days with methanogenesis inhibition. Substrates in influent (a) and products in effluent (b) of the six stages differ from substrate compositions. Corresponding representative OTUs are covered 63.04%–73.56%, 63.54%–86.63%, 65.32%–79.73%, 73.99%–82.40%, 79.21%–86.62%, and 70.44%–77.43% of the whole sequence at each stage, respectively (c).

In contrast, *C. butyricum* dominated with a large proportion of 34.06% to 38.64% when the glycerol in the influent was much higher (102 mM C  $d^{-1}$ ) at stage 1 (Figure 6.2). Nevertheless, such a high glycerol load could not be completely consumed by 105

the mixed culture in the fermenter. In addition, in the first half of stage 2, *K*. *pneumoniae* showed a high abundance of 12.68% to 17.86%, consistently resulting in a high 1,3-PDO yield of 14.97 mM C d<sup>-1</sup> from 30 mM C d<sup>-1</sup> of glycerol. However, the fermentation became inefficient in the second half of stage 2, accumulating a large amount of glycerol due to fermenter operation fluctuations. In general, a stable microbial community effectively facilitating glycerol dissimilation to 1,3-PDO, butyrate and acetate was enriched during Stage 1 to 3. However, questions remained as to how the fermenter microbiota could be manipulated to achieve a concurrent chain elongation of acetate and butyrate to caproate along with 1,3-PDO production, and how the microorganisms interact to accomplish such metabolisms.

#### 6.2.2 Effect of substrates on caproate and 1,3-PDO formation

To figure to how to link caproate production with glycerol fermentation, three batch tests were performed: glycerol fermentation with acetate (Case 1), glycerol fermentation with ethanol and acetate (Case 2), and ethanol-acetate fermentation (Case 3). Compared with glycerol fermentation in semi-continuous fermenter, the butyrate production was much lower but 1,3-PDO yield was higher in Case 1 (Figure 6.3a). Chain elongation for caproate production only occurred in Case 2 and Case 3 (Figure 6.3b–c).



**Figure 6.3.** Mixed culture fermentation from different substrates inoculated with fresh AD sludge: glycerol with acetate (a), ethanol and glycerol with acetate (b), ethanol with acetate (c). Corresponding representative OTUs collected at three time points are covered 63.23%–76.59%, 59.31%–67.21%, and 28.25%–37.04% of the sequences from each culture, respectively (d–f).

As illustrated in Figure 6.3a, within 3 days, glycerol was completely consumed, resulting in a high amount of 1,3-PDO (0.54 mol C/mol C glycerol) and an insignificant formation of acetate, butyrate and ethanol. After the depletion of glycerol, the ethanol was used immediately with a small yield of butyrate (0.08 mol C/mol C glycerol) and caproate (0.03 mol C/mol C glycerol) in the following days. The H<sub>2</sub> amount in the system showed two peaks, which were associated with glycerol dissimilation and butyrate and 1,3-PDO consumption, respectively. At Day 2 (Figure 6.3e), two dominant microorganisms were identified, which were closely associated with *K. pneumoniae* (100%) and *Propionispira arcuata* (100%). At Day 6, two organisms, uncultured *Desulfovibrio* sp. (100%) and *Megasphaera elsdenii* 

(100%), increased. The high abundance of *K. pneumoniae* contributed to the high production of 1,3-PDO. *M. elsdenii* was reportedly associated with butyrate and caproate (low) production (Marounek et al., 1989).

Figure 6.3b demonstrates two stages of the fermentation. Glycerol consumption occurred quickly within 3 days with the release of a large amount of 1,3-PDO (0.60 mol C/mol C glycerol) and some acetate, butyrate, and ethanol. In the second stage, from Day 4 to Day 12, ethanol and acetate were consumed to form butyrate (0.56 mol C/mol C ethanol) and caproate (0.50 mol C/mol C ethanol). The  $H_2$  amount increased with continued glycerol fermentation, and it remained level until the ethanol declined to a low concentration. However, the chain elongation process was unanticipated to cease after 12 days before ethanol and acetate were depleted. As shown in Figure 6.3f, the microbial community structure at Day 2 was mainly constructed by K. pneumoniae (100%) and E. coli (100%). E. limosum also co-existed with an abundance of 4.16 %. In this case, K. pneumoniae and E. limosum facilitated 1,3-PDO production from glycerol. At Day 8 within the second stage, M. elsdenii (100%) and uncultured Desulfovibrio sp. (100%) increased significantly. C. kluyveri also showed a small increase during the butyrate and caproate formation stage. A co-production of 1,3-PDO and caproate was achieved from glycerol fermentation with ethanol and acetate, and the ethanol addition did not depress the 1,3-PDO production.

Comparing the microbial community with Case 1, the major differences during 108

glycerol consumption stage were the increase of *E. coli* and the disappearance of *P. arcuata* in Case 2. The dominance of *E. coli* over *P. arcuata* was probably because *E. coli* is capable of converting glycerol to ethanol (Murarka et al., 2008) and better adapting to ethanol-containing culture. Comparing the microbial community of day 8 in Case 2 to day 6 in Case 1, a synergistic network for chain elongation was constructed in Case 2. The synergistic network is hypothesized: The *Desulfovibrio* sp. consumed ethanol to produce acetate and butyrate. The *F. varium* utilized amino acids and H<sub>2</sub> for butyrate production. The synergistic-associated *M. elsdenii* and *C. kluyveri* could then elongate butyrate to caproate. At Day 30, the *M. elsdenii* amount significantly decreased, which was consistent with the cessation of caproate formation. The remaining ethanol at a certain level might be related to the breaking down of such a synergistic network.

In general, ethanol addition or increase of ethanol production from glycerol is one of the keys to facilitate the chain elongation for caproate production followed by glycerol fermentation. The kinetics difference of glycerol fermentation and chain elongation is another issue which may cause the electron loss during the leisure time.

In Case 3 (Figures 6.3c and 6.3g), at Day 12, butyrate and caproate formation were initiated on Day 3 and reached peak conversion rates of 0.13 (mol C/mol C of ethanol) and 0.71 (mol C/mol C of ethanol), respectively on Day 12. In comparison with Case 2, the chain elongation occurred more promptly and a complete utilization of ethanol and acetate were achieved with very similar ethanol and acetate levels.

The more caproate production over butyrate in Case 3 than that in Case 2 occurred with a higher  $H_2$  formation indicating a higher reducing potential in the system. Notably, *C. kluyveri* predominated on Day 6 (Detailed discussion in Chapter 5).

In batch test, glycerol-acetate fermentation resulted in a significant production of 1,3-PDO with low amount of acetate, butyrate and  $H_2$  formation (Case 1); glycerol-ethanol-acetate fermentation produced high amount of 1,3-PDO and butyrate with low amounts of caproate and H<sub>2</sub> generation (Case 2); ethanol-acetate fermentation achieved high caproate and H<sub>2</sub> formation with low amount of butyrate production (Case 3). The comparison between Case 2 and Case 3 on caproate production is reflective of an antagonistic effect of glycerol on chain elongation. A big difference on the organism responsible for chain elongation was also observed in that M. elsdenii was chosen over C. kluyveri in Case 2 while C. kluyveri was dominant in Case 3. This indicated that C. kluyveri is more efficient in chain elongation for caproate production. The reason why M. elsdenii was selectively enriched over C. kluyveri in the presence of glycerol is crucial to improve caproate production in glycerol fermentation. Importance was found M. elsdenii cannot metabolize glycerol (Marounek et al., 1989) and hence, its enrichment is not directly stimulated by glycerol. On Day 3 in Case 2 and Day 0 in Case 3, the ethanol and acetate levels were very similar, suggesting it was not substrate availability. The only apparent difference was the generation of 1,3-PDO from glycerol degradation between Day 1-3 in Case 2, which suggested that 1,3-PDO toxicity may be a major factor driving the selection of organisms capable of chain elongation. A previous

study has reported that 10–15 g/L 1,3-PDO can be inhibitory for *Clostridium* spp. (Szymanowska-Powaowska & Kubiak, 2015) and the highest concentration of 1,3-PDO in Case 2 was close to 10 g/L and that in Stage 3 was above it. The inhibitory effect of 1,3-PDO thus created a selective pressure against *C. kluyveri* and provided a window of opportunity for the enrichment of *M. elsdenii*.

Aside from the finding that ethanol addition facilitated concurrent chain elongation and glycerol fermentation, these findings also led us to conclude that an efficient 1,3-PDO and caproate co-production needs (1) a lower glycerol loading to control 1,3-PDO at a non-inhibitory level to allow for 1,3-PDO-sensitve chain elongation bacteria (i.e. *C. kluyveri*) to grow; (2) a glycerol fermenter that produces less 1,3-PDO by converting more glycerol to ethanol (a less oxidized product than acetate), and/or by generating more  $H_2$  to consume excess reducing power through an alternative route; (3) a  $H_2$  consumer who supports  $H_2$  formation from glycerol to maximize the use of glycerol-derived energy.



**Figure 6.4.** Venn diagrams (Oliveros, 2007-2015) of OTUs from three different substrate-enriched cultures in batch fermentation conducted at 37 °C, pH of 7, and 150 rpm with methanogenesis inhibition. Each culture includes 6 samples taken at three time points in duplicate. All OTUs involved (a), OTUs with reads higher than 100 of each culture involved (b), and OTUs with reads higher than 1000 of each culture involved (c).

The relationship of the microbial constituents among these three cases is illustrated with Venn diagrams (Figure 6.4). The diagram that includes all OTUs (Figure 6.4a) demonstrates that the three cultures shared 2,328 OTUs, corresponding to 16.1% of the total population. The culture enriched with ethanol harbors a relatively large number of unique OTUs (35.5%) compared with enrichment cultures with glycerol

(14.9%) or co-electron donors (glycerol and ethanol, 19.9%). Focusing on the abundant OTUs having more 100 and 1000 reads (Figures 6.4b and 6.4c, respectively), similar results could be concluded. Specifically, according to the major OTUs having more than 1000 reads (Figure 6.4c), the three-parties-shared part possesses 28.6% of all parts, which includes F. varium, uncultured Bacteroidetes bacterium, Proteiniclasticum sp., E. coli, and Bacillaceae bacterium mt8. As discussed *F*. varium, uncultured *Bacteroidetes* bacterium, above, and Proteiniclasticum sp. can produce SCFAs using amino acids, probably from biomass degradation. The *Bacillaceae* are a family of heterotrophic bacteria that predominate in the hydrolysis and acidogenesis stage of AD, mainly hydrolyzing proteins into amino acids (Khanal, 2009). As to E. coli growing anaerobically, it also contains membrane-bound enzymes such as hydrogenase, fumarate reductase, and formate dehydrogenase, in addition to essential enzymes for glycerol oxidation (Gray et al., 1966). Between the ethanol- and glycerol-fed cultures in this criteria, there was only one shared OTU, Macellibacteroides fermentans (100%), which belongs to the Porphyromonadaceae family and was initially isolated from an up-flow anaerobic filter treating abattoir wastewater (Jabari et al., 2012). Jabari et al. revealed that this novel obligate anaerobic bacterium uses carbohydrates as electron donors and catalyzes the production of acetate, lactate, and butyrate from glucose (Jabari et al., 2012). In general, these commonly shared OTUs are mainly with functions of hydrolysis, acidogenesis, and acetogenesis, which is similar to traditional AD (Khanal, 2009). C. kluyveri, which produces caproate with ethanol and acetate, is only shared by cultures enriched with ethanol and co-electron donors, whereas K.

113

pneumoniae, with function of 1,3-PDO production from glycerol, is only shared by cultures enriched with glycerol and co-electron donors. These results indicate their critical role in the production of caproate and 1,3-PDO. Potential MCCA-producing M. elsdenii-related OTUs are only shared by cultures enriched with glycerol and co-electron donors. Miyazaki et al. reported that ethanol inhibited the growth of M. elsdenii under weakly acidic-neutral conditions (pH 6.0 to 6.8) (Miyazaki et al., 1991). Although acetate had a stimulating effect on its growth, even in the presence of ethanol at low pH (6.0), the integrated influence on neutral pH was insignificant (Miyazaki et al., 1991), especially in a competitive environment. D. vulgaris Hildenborough and A. sticklandii were owned only by the culture enriched with ethanol in this criteria. The shorter lag phase of chain elongation in the culture enriched with ethanol compared to that enriched with co-electron donors was probably associated with a synergistic network involving D. vulgaris Hildenborough, A. sticklandii, and C. kluyveri. Although D. vulgaris Hildenborough possesses glycerol utilization genes (glycerol kinase and glycerol-3-phosphate dehydrogenase) (Clark et al., 2012; Heidelberg et al., 2004; Rajeev et al., 2012), the growth of D. vulgaris Hildenborough on glycerol was relatively slow (Kremer & Hansen, 1987). The absence of D. vulgaris Hildenborough in the co-electron donor culture might have been caused by comprehensive factors, including its poor glycerol consumption, low sulfate concentration, and lack of synergistic partners.

## 6.2.3 Fermenter microbiome enrichment and physiological performance with

### an ethanol addition

With the findings from the batch tests, we tested the addition of ethanol while gradually decreasing glycerol loading in the influent of the semi-continuous fermenter (Figure 6.2a) to enrich ethanol-consuming caproate producer and ethanol-tolerant/-producing glycerol degraders. As ethanol is contained in the brewery wastewater which needs to be treated, adding the ethanol-containing brewery wastewater also shows a prospect in economic and environmental considerations for such a practice.

As shown in Figure 6.2b, only half of the ethanol in the influent could be used at the beginning, the glycerol decrease and ethanol addition in the influent caused a decline of 1,3-PDO production but an increase in the butyrate yield, especially at stage 4. The average conversion rate of 1,3-PDO from glycerol was 0.23 mol<sub>1,3-PDO</sub> mol<sup>-1</sup>glycerol at stages 4 and 5, which is a slight decrease compared to the conversion rate at stage 3 (0.26 mol<sub>1,3-PDO</sub> mol<sup>-1</sup>glycerol). During these two stages, the microbial consortia showed an obvious increase in the abundance of *Clostridium intestinale* (100%) (Figure 6.2c). *C. intestinale* is a butyrate-producing hydrogen producer that can grow on saccharides and glycerol but not on ethanol (Gossner et al., 2006; Kalia, 2016; Moscoviz et al., 2016; Viana et al., 2014). In stage 6, the fermentation achieved the optimized function of 1,3-PDO and caproate co-production with glycerol-ethanol-acetate stoichiometric ratio of 4:3:1 when the reduced glycerol loading resulted in a lower 1,3-PDO production. The complete consumption of
glycerol and ethanol (20 and 10 mM C d<sup>-1</sup>, respectively) resulted in 6.38 and 2.95 mM C d<sup>-1</sup> of 1,3-PDO and caproate, respectively (Table 6.1). The average conversion rate of 1,3-PDO from glycerol increased to 0.32 mol<sub>1,3-PDO</sub> mol<sup>-1</sup><sub>glycerol</sub>. The most abundant organisms were E. limosum and C. kluyveri as well as Bacillaceae bacterium mt8 in Stage 6 (Figure 6.2c). Based on the recovered genome bins from metagenomics sequencing (Figure 6.12 and Table 6.4), E. limosum (S6\_Bin003) is one of the few organisms capable of converting glycerol (via GldA-DhaL/K) to 1,3-PDO (via PduC/D/E–DhaT), ethanol (via AdhE and Adh2) and H<sub>2</sub>. E. limosum is also capable of oxidizing H<sub>2</sub> to acetate via the Wood-Ljungdahl pathway, which efficiently redirects the energy of H<sub>2</sub> back into chain elongation. The gene annotation results of S6 Bin012 were consistent with the well-known pathway of C. kluvveri, which uses ethanol and acetate to produce butyrate and caproate (via Cat2). Massilibacterium senegalense (Bacillaceae bacterium mt8, S6\_Bin004) encodes for ethanol oxidation (via Adh2/YiaY and ALDH) for acetate (via Pta and AckA) and butyrate (via AtoD) production, facilitating carboxylate chain elongation of C. kluyveri. In contrast to Case 2 of the batch tests, the enrichment of microorganisms in the semi-continuous fermenter selectively excluded facultative pathogens, such as E. coli and K. pneumoniae, but still accomplished the 1,3-PDO and caproate co-production with a straightforward biological process of glycerol fermentation and chain elongation.

 Table 6.1. Average concentrations of substrates and products in stage 6 of semi-continuous

 fermenter. Standard deviation is given in parentheses.

| Stage 6  | Glycerol    | Acetic acid | Butyric acid | Caproic acid | Ethanol     | Butanol     | 1,3-PDO     |
|----------|-------------|-------------|--------------|--------------|-------------|-------------|-------------|
| Influent | 20.00       | 3.33        | /            | /            | 10.00       | /           | /           |
| Effluent | 0.00 (0.00) | 5.30 (0.58) | 3.87 (0.95)  | 2.95 (0.39)  | 0.31 (0.54) | 0.10 (0.15) | 6.38 (0.56) |

Unit:  $mM C d^{1}$ 

The affinity of the 15 most-abundant OTUs in stage 6 and some other related known lineages were deciphered with a phylogenetic tree (Figure 6.5). OTU 106782 with the highest abundance of 24.67% is close to *E. limosum*. As discussed above, the  $H_2$  and  $CO_2$  produced from glycerol could be used by *E. limosum* for acetate and butyrate formation, which would be further utilized by *C. kluyveri* for carboxylates chain elongation. The other abundant OTUs, such as OTU 20679 and OTU 9264, were also involved in such synergetic network. They are able to consume amino acids, sugars and pyruvate in the system to produce acetate and butyrate (S. Y. Chen & Dong, 2005; Nesbo et al., 2012; Zhaxybayeva et al., 2012).

| Phylogeny Ab                                                                                                                                                                                                   | undance        | Taxonomy                       |                                      |                                |                            |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|--------------------------------------|--------------------------------|----------------------------|--------------------------------|
|                                                                                                                                                                                                                | (%)            | Genus                          | Family                               | Order                          | Class                      | Phylum                         |
| Clostridium kluyveri DSM555 Carboxylates chain elongtion<br>OTU 142549<br>Clostridium ljungdahlii                                                                                                              | 6.35%          | Clostridium                    | Clostridiaceae                       | Clostridiales                  | Clostridia                 | Firmicutes                     |
| Clostridium pasbeurianum Butanol production from glycerol<br>Clostridium actobulylicum<br>Clostridium actobulylicum<br>Clostridium beiprinciti<br>Clostridium beiprinciti<br>and buttrata sch burgdute from al | ate            |                                |                                      |                                |                            |                                |
| Clostridium butyricum                                                                                                                                                                                          | reiti          |                                |                                      |                                |                            |                                |
| OTU 7453                                                                                                                                                                                                       | 2.77%          | Uncultured                     | Uncultured                           | Clostridiales                  | Clostridia                 | Firmicutes                     |
| OTU 68821<br>OTU 70265<br>Finihanarovorax odorimutans                                                                                                                                                          | 1.12%<br>2.56% | Sporanaerobacter<br>Uncultured | Tissierellaceae<br>Clostridiaceae    | Clostridiales<br>Clostridiales | Clostridia<br>Clostridia   | Firmicutes<br>Firmicutes       |
| Thermincola carboxydiphia     Thermincola erricoxydiphia                                                                                                                                                       | 24.67%         | Eubacterium                    | Eubacteriaceae                       | Clostridiales                  | Clostridia                 | Firmicutes                     |
| Phascolarctobacterium faecium                                                                                                                                                                                  | 2.21%          | Phascolarctobacteriun          | n Veillonellaceae                    | Clostridiales                  | Clostridia                 | Firmicutes                     |
| Bacillus thermoanylovorans<br>Bacillus thermolactis<br>Exiguobacterium acetylicum                                                                                                                              | 010.00000      |                                | 100 100                              | 42 - 120 - M                   | 1041 - 4111                | 225 10 10                      |
| C OTU 194551<br>Acetate and butyrate production _ Mesotoga prima                                                                                                                                               | 11.77%         | Uncultured                     | Bacillaceae                          | Bacillales                     | Bacilli                    | Firmicutes                     |
| from sguars in the presence of OTU 20679<br>elemental sulfur Mesotoga infera<br>Kosmotoga shengliensis<br>Thermoflexus hugenholtiti JAD2                                                                       | 10.09%         | Mesotoga                       | Thermotogaceae                       | Thermotogales                  | Thermotogae                | Thermotogae                    |
| Ornatilinea apprima<br>OTU 172                                                                                                                                                                                 | 1.97%          | Uncultured                     | Anaerolineaceae                      | Anaerolineales                 | Anaerolineae               | Chloroflexi                    |
| Actinomyces odontolyticus<br>OTU 129356<br>Actinomyces canis                                                                                                                                                   | 4.49%          | Actinomyces                    | Actinomycetaceae                     | Actinomycetales                | Actinobacteria             | Actinobacteria                 |
| OTU 145050 Desulfovibrio simplex                                                                                                                                                                               | 1.95%          | Desulfovibrio                  | Desulfovibrionaceae                  | Desulfovibrionales             | : Deltaproteobacteria      | Proteobacteri                  |
| Coru 107441<br>OTU 107441<br>Proteiniphilum acetaligenes                                                                                                                                                       | 3.45%<br>7.65% | Petrimonas<br>Proteiniphilum   | Bacteroidaceae<br>Porphyromonadaceae | Bacteroidales<br>Bacteroidales | Bacteroidia<br>Bacteroidia | Bacteroidetes<br>Bacteroidetes |
| Oscillbacter ruminantium GH1 Proteolytic, converting<br>Porturate to acetate and CC<br>Oscillbacter valericigenes                                                                                              | 2.94%          | Oscillospira                   | Ruminococcaceae                      | Clostridiales                  | Clostridia                 | Firmicutes                     |
| OTU 82381 Anaerosupes caccae<br>saccharolytic, acetate-utilizing and butyrate-producing                                                                                                                        | 1.56%          | Anaerostipes                   | Lachnospiraceae                      | Clostridiales                  | Clostridia                 | Firmicutes                     |
| 0.10 ● > 90% ○ > 70% ■ > 50%                                                                                                                                                                                   | 85.54% Tota    | al                             |                                      |                                |                            |                                |

**Figure 6.5.** Neighbor-joining tree based on 16S rRNA gene sequences determined in stage 6 of semi-continuous fermenter and related reference lineages. 15 most abundant OTUs were selected for analysis and shown with abundance and taxonomy information. The phylogenetic tree (bootstrap 1000: > 90% black node, > 70% gray node with black outline and > 50% gray node) were performed in ARB with SILVA database SSU NR99 as reference.

Comparing the microbial community of stage 3 and stage 6, the glycerol decrease and ethanol addition lead to the decrease of *C. profunda*, *Actinomyces* sp. MD1 and *A. caccae*, and the increase of *Bacillaceae* bacterium mt8 and *C. kluyveri*. The metabolic pathways of these two stages are discussed in detail in the metagenomic analysis part. In contrast to the Case 2 of the batch test, the enrichment of microorganisms in the semi-continuous fermenter selectively excluded facultative pathogens, such as *E. coli* and *K. pneumoniae*, but still accomplished the 1,3-PDO

and caproate co-production with more appropriate metabolic pathways.

### 6.2.4 Microbial community structure analysis

Thirty-nine enriched samples were characterized for microbial community composition and structural differences. The upper panel in Figure 6.6 displays the distances of the 39 samples based on all OTUs of their communities with a UPGMA algorithm. According to the clustering tree, the 39 enriched cultures formed two groups, one group of fermenter-based semi-continuous fermentation and the other group a batch test in anaerobic bottles together with fresh AD sludge. These results reveal that the sample structure was significantly influenced by the fermentation process. In the batch test group, subgroups are mainly differentiated by substrates. The two seed cultures, fresh AD sludge samples, are close to samples enriched with ethanol as an electron donor, which is probably due to their common relative diverse traits (lower panel). In contrast, the samples enriched with co-electron donors and with glycerol are more similar in structure, with abundant dominant OTUs. These results indicate that the glycerol-utilizing bacteria and their related synergistic bacteria are more dominant than those enriched with ethanol in the mixed culture.



**Figure 6.6.** Composition of relative abundance of OTUs at genus level in different sludge samples. Hierarchical clustering of a total of 39 samples was performed based on all OTUs from the microbial communities with a UPGMA algorithm to generate a newick-formatted tree. For sample labels, F represents fresh AD sludge; E is batch test with ethanol as electron donor; G is batch test with glycerol as electron donor; M is batch test with both ethanol and glycerol as electron donors; S stands for semi-continuous fermentation. The numbers represent stage and order (E1\_1: stage 1, parallel number 1; S1\_1: stage 1, phase 1).

Specifically, the dominant bacteria in the glycerol-enriched culture belong to the genera of Klebsiella, Propionispira, Escherichia, and Eubacterium. The two distinguished samples, G2\_2 and G3\_2, include additional dominant genera of Megasphaera, Desulfovibrio, and Alistipes. As discussed in the previous section, Klebsiella and Escherichia are responsible for the glycerol dissimilation and 1,3-PDO, ethanol, succinate, and formate (H<sub>2</sub> and CO<sub>2</sub>) production. *Eubacterium* then uses H<sub>2</sub> and CO<sub>2</sub> for acetate and butyrate formation. Propionispira facilitates glycerol dissimilation to acetate and propionate. In the adjacent culture enriched with co-electron donors, the dominant bacteria are from the genera Escherichia, Klebsiella, Phascolarctobacterium, Desulfovibrio, Eubacterium, Fusobacterium, and addition Megasphaera. In to the shared genera, some species of Phascolarctobacterium can use succinate for propionate production (Stackebrandt & Osawa, 2015; Watanabe et al., 2012), and the dominance of Megasphaera corresponds with caproate production in this culture. The genera of the dominant bacteria in the ethanol-enriched culture are Clostridium, Desulfovibrio, Fusobacterium, Alistipes, Proteiniclasticum, and Escherichia. The dominance of *Clostridium* is responsible for carboxylate chain elongation with ethanol.

Considering the semi-continuous fermentation group, the subgroups are mainly separated by stage with different substrate loadings. The dominant bacteria of the first three stages are the genera of *Eubacterium*, *Clostridium*, *Proteiniphilum*, *Actinomyces*, *Bilophila*, *Klebsiella*, and *Anaerostipes*, whereas those of the last three stages belong to genera of *Eubacterium*, *Proteiniphilum*, *Clostridium*, *Actinomyces*,

*Mesotoga*, and *Oscillospira*. It is clear that the major dominant genus remained in the system from the stages of single glycerol as an electron donor to the co-electron donor stages. It is apparent that the ethanol addition in the glycerol-enriched culture does not shift the microbial communities significantly and that the ethanol-favorable bacteria grow slowly and are less competitive for space in the co-electron donor condition. *Klebsiella* with function of glycerol to 1,3-PDO only dominated in single electron donor of glycerol. *Mesotoga*, which is capable of fermenting carbohydrates into acetate and butyrate, and *Oscillospira* species, which were found in rumen bacteria with unknown metabolism, were dominant in the stages fed with co-electron donors.(Kamagata, 2015; Mackie et al., 2003)

As illustrated in Figure 6.7, the microbial structure difference of the 39 samples was further analyzed with PCoA. Both weighted (Figure 6.7a) and unweighted (Figure 6.7b) UniFrac distances were performed to reveal the differences in terms of OTUs with and without abundance information. First, the seed cultures (F1\_1 and F1\_2) were apparently separated from the batch-based ethanol-enriched culture by weighted but not unweighted PCoA, which suggests that the difference lies the OTU abundance. Similar results were found between batch-based glycerol-enriched and co-electron donor-enriched cultures. The distances among the fermenter-based samples were similar with the two analyses. However, the samples of stage 2 were even more differentiated from the others in unweighted analysis, which implies that this difference lies not on abundant OTUs.



**Figure 6.7.** UniFrac emperor PCoA (a. weighted, b. unweighted) of a total of 39 samples based on all OTUs from the microbial communities. For sample labels, F represents fresh AD sludge; E is batch test with ethanol as electron donor; G is batch test with glycerol as electron donor; M is batch test with both ethanol and glycerol as electron donors; S stands for semi-continuous fermentation. The numbers represent stage and order (E1\_1: stage 1, parallel number 1; S1\_1: stage 1, phase 1).

To investigate the influence of environmental variables (substrate difference) on sample structure, especially the dominant microorganisms, canonical correspondence analysis (CCA) was performed with four constrained axes accounting for 71.45% of the explained variance. The ordination biplot of the first two axes accounting for 42.10% of the explained variance are shown in Figure 6.8.



**Figure 6.8.** CCA of microbial community structure with fermentation operational conditions. Arrows represent the three substrate-based environmental variables, glycerol, ethanol, and acetate, and indicate the direction and magnitude of variables associated with the microbial community structure. The 39 samples, including both batch and semi-continuous fermentation, are demonstrated by circles. Triangles with numbers stand for the 35 most-abundant OTUs of all 39 samples. Axes 1 and 2 account for 36.07% and 6.03% of the variation, respectively.

CCA revealed that the environmental variable ethanol was highly positively correlated to axis 2, whereas acetate was highly negatively correlated to this axis. The correlation of glycerol towards axis 2 was not apparent, but it was negatively correlated to axis 1. We now consider the sample position and assembly of the ethanol-influenced batch-based samples enriched with ethanol and co-electron donors and the second half three stages of the fermenter-based semi-continuous fermentation samples. The batch-based samples enriched with co-electron donors and the semi-continuous samples of stage 6 are assembled together. These results are consistent with the fermentation conditions and their corresponding performance. Acetate slightly affected the batched-based samples enriched with glycerol and the first half three stages of the fermenter-based semi-continuous fermentation samples. In addition, the effect of glycerol increased from stage 1 to stage 3 but then it decreased from stage 4 to stage 6 of the fermenter-based semi-continuous fermentation samples. These results indicate the sample structure was mostly affected by glycerol in stage 3, but the effect gradually decreased after ethanol addition. However, the glycerol influence on the batch-based samples enriched with glycerol and co-electron donors was insignificant in these two constrained axes.

| Number | Taxonomic information                   |  |  |  |
|--------|-----------------------------------------|--|--|--|
| 1      | Eubacterium limosum                     |  |  |  |
| 2      | Crassaminicella profunda strain Ra1766H |  |  |  |
| 3      | Klebsiella pneumoniae                   |  |  |  |
| 4      | Proteiniphilum acetatigenes             |  |  |  |
| 5      | Escherichia coli                        |  |  |  |
| 6      | Actinomyces sp MD1                      |  |  |  |
| 7      | Clostridium butyricum                   |  |  |  |
| 8      | Clostridium intestinale                 |  |  |  |
| 9      | Bilophila wadsworthia                   |  |  |  |
| 10     | Propionispira arcuata strain WK011      |  |  |  |
| 11     | Anaerostipes caccae                     |  |  |  |

Table 6.2. Label and taxonomic information of 35 most-abundant OTUs in Figure 6.7.

| 12 | Uncultured Oscillospira sp                   |
|----|----------------------------------------------|
| 13 | Clostridium sp LZLJ009                       |
| 14 | Mesotoga prima                               |
| 15 | Uncultured Oscillospira bacterium            |
| 16 | Bacillaceae bacterium mt8                    |
| 17 | Phascolarctobacterium faecium                |
| 18 | Clostridium kluyveri                         |
| 19 | Petrimonas sulfuriphila                      |
| 20 | Fusobacterium varium strain JCM 6320         |
| 21 | Uncultured Desulfovibrio sp clone ADSV51     |
| 22 | Sporanaerobacter acetigenes strain DSM 13106 |
| 23 | Uncultured Bacteroidetes bacterium           |
| 24 | Desulfovibrio vulgaris strain Hildenborough  |
| 25 | Proteiniclasticum sp N2                      |
| 26 | Uncultured Sedimentibacter sp                |
| 27 | Uncultured Anaerococcus sp                   |
| 28 | Bacillaceae bacterium mt6                    |
| 29 | Uncultured Clostridiales bacterium           |
| 30 | Uncultured Clostridium sp clone 5926         |
| 31 | Uncultured Brachymonas sp clone              |
| 32 | Megasphaera elsdenii                         |
| 33 | Clostridium propionicum DSM 1682             |
| 34 | Uncultured Actinomyces bacterium             |
| 35 | Bacteroides uniformis                        |

The CCA of environmental variables with the 35 most-abundant OTUs disclosed significant correlations for numerous taxonomic groups (Table 6.2). Specifically, OTUs of number 14 and 18 were identified as *M. prima* and *C. kluyveri*, respectively. The high correlation of *C. kluyveri* towards ethanol proved that the carboxylate chain elongation with ethanol was conducted by *C. kluyveri*. As to *M. prima*, which was dominant in the second half three stages of the semi-continuous fermentation, the high correlation towards ethanol indicated that it was involved in the synergistic network with ethanol fermentation bacteria. However, Hania revealed that ethanol

did not support the growth of a novel *M. prima* species (*Mesotoga* strain PhosAc3) (Ben Hania et al., 2015). The arrow length of acetate is relatively short, which implies that the influence of acetate on these microorganisms is slight. OTUs of numbers 7, 35, and 9, which are mildly correlated to acetate, were identified as *C. butyricum*, *Bacteroides uniformis*, and *Bilophila wadsworthia*. Acetate addition increases the biomass of *C. butyricum* and promotes butyrate formation from glycerol (Colin et al., 2001), whereas *B. uniformis* and *B. wadsworthia* are acetogenic bacteria (Eggerth & Gagnon, 1933; Laue et al., 1997). OTUs of number 27, 26, 7, and 11 were significantly correlated to glycerol. The first two OTUs were uncultured bacteria in the genera of *Anaerococcus* and *Sedimetibacter*. The other two OTUs were identified as *C. butyricum* and *A. caccae*. In addition to *C. butyricum*, the other three OTUs are not directly involved in glycerol dissimilation, but they are often found in mixed cultures in which intermediates of glycerol fermentation are utilized (Breitenstein et al., 2002; Li et al., 2013; Schwiertz et al., 2002).

### 6.2.5 Genome reconstruction and metabolic pathways characterization

The high-quality PE reads of two samples from the third phase of stages 3 and 6 were collected for shotgun metagenomic sequencing and assembled through *de novo* assembly, resulting in 24,150 and 30,114 contigs with lengths ranging from 1000 to 404,416 bp (N50: 4034 bp) and 1000 to 647,900 bp (N50: 4320 bp), respectively. Seventeen (17) and 21 genome bins with high completeness were recovered from the contigs, as shown in Table 6.3.

Bin name Completeness Genome size GC content 100.00% 3887005 S3 Bin008.fasta 68.1 S3\_Bin011.fasta 100.00% 3628321 37.7 S3\_Bin003.fasta 44.2 97.50% 3539365 S3\_Bin004.fasta 97.50% 2836163 41.4 S3\_Bin006.fasta 64.4 97.50% 2796871 43.9 S3\_Bin013.fasta 97.50% 3941282 S3 Bin014.fasta 97.50% 3251808 67 S3\_Bin016.fasta 97.50% 4427423 63.7 S3\_Bin018.fasta 4341524 52.9 97.50% S3 Bin019.fasta 97.50% 1251484 33.3 49.8 S3\_Bin020.fasta 97.50% 2406510 S3\_Bin001.fasta 95.00% 4115771 47.9 S3\_Bin021.fasta 95.00% 2778211 65.7 S3\_Bin012.fasta 90.00% 2774731 55.7 70.1 S3\_Bin002.fasta 87.50% 2923495 87.50% S3\_Bin009.fasta 4000309 56.6 S3\_Bin015.fasta 87.50% 3491606 66.1 65.5 S6\_Bin002.fasta 100.00% 3121049 47.2 S6 Bin003.fasta 100.00% 4570359 S6\_Bin004.fasta 35.8 100.00% 3077359 S6\_Bin007.fasta 100.00% 4967574 63.9 S6\_Bin012.fasta 100.00% 3978715 31.2 S6\_Bin015.fasta 100.00% 2150534 44.5 S6\_Bin017.fasta 100.00% 4873951 36.7 S6\_Bin018.fasta 3378214 57.6 100.00% S6 Bin001.fasta 2918299 69.9 97.50% S6\_Bin005.fasta 41.8 97.50% 2408517 S6\_Bin008.fasta 97.50% 3712876 55.3 43.4 S6\_Bin010.fasta 97.50% 4762934 S6\_Bin011.fasta 2872656 64.6 97.50% S6\_Bin013.fasta 97.50% 3263496 44.4 55.4 S6\_Bin020.fasta 97.50% 2874281 49.7 S6\_Bin025.fasta 97.50% 2421834 S6\_Bin016.fasta 95.00% 2457566 63.4 66.5 S6 Bin019.fasta 95.00% 2817586 S6\_Bin021.fasta 95.00% 2935508 46.6 40.7 S6 Bin023.fasta 95.00% 3449208 S6 Bin006.fasta 87.50% 45.3 2355869

Table 6.3. High-quality recovered genome bins.



Figure 6.9. Phylogenetic tree of genome bins in stage 3 using PhyloPhlAn.

The genome bins, which were phylogenetically identified by genomic comparison using PhyloPhlAn, showed that S3\_Bin 001, S3\_Bin 002, S3\_Bin003 S3\_Bin008, and S3\_Bin009 were closely related to the draft genomes of E. limosum, Actinomyces provencensis, A. caccae, Paenirhodobacter enshiensis, and Oscillibacter ruminantium in stage 3 (Figure 6.9), whereas S6\_Bin001, S6\_Bin003, S6\_Bin004, S6\_Bin006, S6\_Bin0012, and S6\_Bin0013 were closely related to the draft genomes of A. provencensis, E. limosum, Massilibacterium senegalense (Bacillaceae bacterium mt8), Mesotoga infera, C. kluyveri, and A. caccae in stage 6 (Figure 6.10). In addition, S3\_Bin004, S3\_Bin013, S6\_Bin005, and S6\_Bin010 were identified to be Bacteroidia bacteria (Figure 6.11), among which S3\_Bin013 and S6\_Bin010 are closely related to P. acetatigenes and Bacteroidia bacterium 43-41, respectively. These recovered genome bins are highly consistent with the abundant

### OTUs of the 16S rRNA gene analysis.



Figure 6.10. Phylogenetic tree of genome bins in stage 6 using PhyloPhlAn.



Figure 6.11. Phylogenetic tree of genome bins closely related to Bacteroidia bacteria using

PhyloPhlAn.



Figure 6.12. Annotated metabolic pathways of glycerol fermentation and carboxylate chain elongation in the system.

The gene content of the reconstructed highly abundant genome bins was annotated,

thereby illuminating the potential functional properties of the microbial species. Figure 6.12 and Appendix V Table illustrate the annotated glycerol fermentation and carboxylate chain elongation pathways. There are two pathways for glycerol oxidation. One starts with dehydrogenation catalyzed by glycerol dehydrogenase (GldA), which is followed by phosphorylation catalyzed by dihydroxyacetone kinase [DhaL(K)], and the other starts with phosphorylation catalyzed by glycerol kinase (GlpK), which is followed by dehydrogenation catalyzed by glycerol-3-phosphate dehydrogenase (GlpA) or glycerol-3-phosphate dehydrogenase  $[NAD(P)^+]$  (GpsA) (Lin, 1976). Both pathways result in dihydroxyacetone phosphate (DHA-P) production. Different bacterial species are equipped with different glycerol oxidation pathways. For example, C. butyricum exclusively uses the former (Gonzalez-Pajuelo et al., 2006; Raynaud et al., 2011), whereas E. coli has been described to uses glycerol through the latter (Richey & Lin, 1972; Voegele et al., 1993). K. pneumoniae has been reported to be equipped with both pathways, of which the former is normally inducible anaerobically and the latter is responsible for glycerol oxidation aerobically (Forage & Foster, 1982; Forage & Lin, 1982; Jin et al., 1982). DHA-P is then converted to glycerolaldehyde-3-phosphate (glyceroaldehyde-3-P) catalyzed by triosephosphate isomerase (TPI), which is followed by a glycolytic formation pathway resulting in pyruvate via the intermediates of 3-phospho-D-glycerate, 2-phospho-D-glycerate, and phosphoenolypyruvate. The involved enzymes include glyceraldehyde-3-phosphate dehydrogenase (NADP<sup>+</sup>) (GapN), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), phosphoglycerate mutase (GpmI(B), PGAM), enolase (ENO), and pyruvate kinase (Pyk). Pyruvate oxidation to acetyl-CoA is catalyzed by pyruvate ferredoxin oxidoreductase (Por) or pyruvate dehydrogenase (Pdh). The acetyl-CoA formation then leads to different downstream products. Glycerol reduction to 1,3-PDO begins with the transformation of glycerol to 3-hydroxy-propionaldehyde, which is catalyzed by a coenzyme B12-dependent propanediol dehydratase [PduC(D,E)]. This transformation could also be catalyzed by a coenzyme B12-dependent glycerol dehydratase such as in K. pneumoniae (Forage & Foster, 1982) and C. butyricum (Raynaud et al., 2003), although it was not found in the recovered genomes bins of our system. The intermediate, 3-hydroxy-propionaldehyde, is further transformed to 1,3-PDO catalyzed by 1,3-PDO dehydrogenase (DhaT).

Acetate formation from acetyl-CoA via acetyl-phosphate is catalyzed by putative phosphotransacetylase (Pta) and acetate kinase (AckA). Ethanol production from acetyl-CoA via acetaldehyde is catalyzed by acetaldehyde dehydrogenase (AdhE) and alcohol dehydrogenase (Adh2). The other two functional enzymes, aldehyde dehydrogenase (NAD<sup>+</sup>) and alcohol dehydrogenase (YiaY), acting on acetyl-CoA to ethanol, were also recovered in the genomes bins of our system. The ethanol production pathway is reversible, which could also have worked on ethanol oxidation in our system. Two acetyl-CoAs form acetoacetyl-CoA catalyzed by acetoacetyl-CoA thiolase (Thl/AtoB). Butyryl-CoA formation then proceeds from the acetoacetyl-CoA via 3-hydroxylbutyryl-CoA and crontonyl-CoA through a reverse  $\beta$ -oxidation pathway. This enzymes, 3-hydroxybutyryl-CoA process involves three 133

dehydrogenase (PaaH), 3-hydroxybutyryl-CoA dehydratase (CroR/Crt), and an NAD-dependent butyryl-CoA dehydrogenase/electron transfer flavoprotein (ETF) complex (Bcd/EtfAB). These CDS are also capable of forming caproyl-CoA (hexanoyl-CoA). The formed butyryl-CoA reacting with acetate to form butyrate in a substitution reaction is possibly catalyzed by 4-hydroxybutyrate CoA-transferase (Cat2), butyryl CoA:acetate CoA transferase (YdiF/Cat3), propionate CoA-transferase (Pct), and acetate CoA/acetoacetate CoA-transferase subunits [AtoA(D)]. Among these CoA-transferases, Pct is a general CoA-transferase that can mediate the exchange of acetate/butyryl-CoA and butyrate/acetyl-CoA (Prabhu et al., 2012). Caproate could be produced from caproyl-CoA substituted with butyrate/acetate possibly catalyzed by Cat2, Cat3, and AtoA(D). In addition, an alternative pathway for butyrate formation from butyryl-CoA via butyryl-phosphate is catalyzed by phosphate butyryltransferase (Ptb) and butyrate kinase (Buk). Table 6.4 summarizes the ownership of the above-mentioned glycerol fermentation and carboxylate chain elongation pathways for some high-quality recovered genome bins.

| Sample ID | Closely related species      | Glycerol<br>oxidation<br>1 | Glycerol<br>oxidation<br>2 | DHA-P to<br>glyceralde<br>hyde-3-P | Glycolytic<br>pathway | Pyruvate to acetyl-CoA | Acetate production | Butyrate production | Caproate production | Glycerol<br>reduction to<br>1,3-PDO | Ethanol<br>production/<br>oxidation | PHB<br>production/<br>utilization |
|-----------|------------------------------|----------------------------|----------------------------|------------------------------------|-----------------------|------------------------|--------------------|---------------------|---------------------|-------------------------------------|-------------------------------------|-----------------------------------|
| S3_Bin001 | Eubacterium limosum          | +                          | +                          | +                                  | +                     | +                      | +                  | +                   | -                   | +                                   | +                                   | -                                 |
| S3_Bin002 | Actinomyces provencensis     | -                          | +                          | +                                  | -                     | +                      | +                  | -                   | -                   | -                                   | +                                   | -                                 |
| S3_Bin003 | Anaerostipes caccae          | +                          | +                          | +                                  | +                     | +                      | +                  | +                   | +                   | -                                   | +                                   | -                                 |
| S3_Bin008 | Paenirhodobacter enshiensis  | -                          | +                          | +                                  | +                     | +                      | +                  | +                   | +                   | -                                   | +                                   | -                                 |
| S3_Bin009 | Oscillibacter ruminantium    | -                          | +                          | +                                  | +                     | +                      | +                  | +                   | +                   | -                                   | -                                   | -                                 |
| S3_Bin011 | Clostridiales bacterium      | +                          | +                          | +                                  | +                     | +                      | -                  | +                   | +                   | -                                   | +                                   | -                                 |
| S3_Bin013 | Proteiniphilum acetatigenes  | -                          | -                          | -                                  | -                     | +                      | +                  | +                   | -                   | -                                   | -                                   | -                                 |
| S6_Bin001 | Actinomyces provencensis     | -                          | +                          | +                                  | +                     | +                      | +                  | -                   | -                   | -                                   | +                                   | -                                 |
| S6_Bin003 | Eubacterium limosum          | +                          | +                          | +                                  | +                     | +                      | +                  | +                   | -                   | +                                   | +                                   | -                                 |
| S6_Bin004 | Massilibacterium senegalense | -                          | +                          | +                                  | +                     | +                      | +                  | +                   | -                   | -                                   | +                                   | +                                 |
| S6_Bin006 | Mesotoga infera              | -                          | +                          | +                                  | +                     | +                      | +                  | -                   | -                   | -                                   | -                                   | -                                 |
| S6_Bin010 | Bacteroidia bacterium 43-41  | -                          | -                          | -                                  | -                     | +                      | +                  | +                   | +                   | -                                   | -                                   | -                                 |
| S6_Bin012 | Clostridium kluyveri         | -                          | -                          | -                                  | -                     | -                      | +                  | +                   | +                   | -                                   | +                                   | -                                 |
| S6_Bin013 | Anaerostipes caccae          | +                          | +                          | +                                  | +                     | +                      | +                  | +                   | +                   | -                                   | +                                   | -                                 |

**Table 6.4.** Glycerol fermentation and carboxylate chain elongation pathways in some high-quality recovered genome bins.

Gene annotation of the recovered genome bin S3\_Bin001 (E. limosum) and S6\_Bin003 (E. limosum) both showed that it is possible to produce acetate, butyrate, and ethanol through glycerol oxidation and to generate 1,3-PDO by glycerol reduction. Wood-Ljungdahl pathway is annotated in these two recovered genome bins. Previous researchers also identified E. limosum to be an anaerobic acetogen that utilizes H<sub>2</sub>/CO<sub>2</sub>, CO, and a variety of organic substrates for acetate, butyrate, and ethanol production (Kelly et al., 2016; Lindley et al., 1987; Roh et al., 2011). Lindley et al. proposed that butyrate production from butyryl-CoA is due to the action of phosphate acyltransferase and butyrate kinase (Lindley et al., 1987), whereas Kelly et al. found that butyrate formation is catalyzed by Cat3 in the absence of Buk based on their isolated E. limosum SA11 genome from the rumen of a New Zealand sheep (Kelly et al., 2016). S3\_Bin001 does not have the Buk gene, and the CoA transferase was identified to be Pct. A previous study indicated that caproate production might be possible in E. limosum, as evidenced by physiological observation that caproate was produced from methanol dissimilatory flux with a high butyrate supplement by Lindley et al. and the gene information (Cat3) of E. limosum SA11 by Kelly et al. However, we could not say that caproate production is related to S3\_Bin001 in our system due to the absence of Cat3 in the recovered genome bin. To the best of our knowledge, the evidence that E. limosum produces 1,3-PDO from glycerol is reported here for the first time. The reference close-related genomes, E. limosum KIST612, E. limosum 8486cho, E. limosum ATCC8486 do not include propanediol dehydratase and 1,3-PDO dehydrogenase genes for 1,3-PDO production with glycerol reduction. E. limosum SA11 includes propanediol dehydratase gene but no

136

1,3-PDO dehydrogenase gene. E. limosum 32-A2 is capable of producing 1,3-PDO with genes of glycerol dehydratase and 1,3-PDO dehydrogenase. A. provencensis was a newly isolated facultative anaerobic species from fresh stools of obese French patients (Ndongo et al., 2017), and its metabolic function has not yet been reported. Gene annotation of S3\_Bin003 (A. provencensis) and S6\_Bin001 (A. provencensis) illustrates that these two recovered genome bins can oxidize glycerol through a GlpK-GpsA/GlpA pathway and produce acetate and ethanol. According to the 16S rRNA gene sequencing, the abundance of Actinomyces bacteria decreased after adding ethanol as one of the substrates. Therefore, A. provencensis was more likely to produce ethanol beyond its utilization. in our system. In S3\_Bin003, the ENO gene in glycolysis was missing; it was, however, found in S6 Bin001. S3 Bin003 and S6\_Bin013, which are closely related to A. caccae, contain the genes needed to conduct all the pathways given in Table 6.4 except for glycerol reduction. Although Louis and Flint discovered that Cat3 works on the final step of butyrate synthesis other than Buk in A. caccae (Louis & Flint, 2009), caproate formation of A. caccae was not reported. In S3\_Bin003 and S6\_Bin013, Cat2, Cat3, Pct, and AtoA(D) were all annotated. S3\_Bin008 (P. enshiensis) has the genes of glycerol update (GlpK-GpsA/GlpA pathway), acetate, butyrate [gene AtoA(D)], and ethanol production. Wang et al. investigated the phenotypic characteristics of strain DW2-9<sup>T</sup> and showed that *P. enshiensis* strain DW2-9<sup>T</sup> could utilize acetate, pyruvate, propionate, fumarate, malate, citrate, succinate, D-glucose, D-fructose, D-xylose, maltose as sole carbon sources, and sodium sulfate, cysteine as electron donors, whereas it could not use glycerol as a sole carbon source (Wang et al., 2014). The gene content of S3\_Bin009

(O. ruminantium) shows that it is predicted to oxidize glycerol through the GlpK-GpsA pathway and produce acetate and butyrate. The O. ruminantium strain GH1 was isolated from the rumen of Korean native cattle and identified to be a strict anaerobe producing butyrate from carbohydrates (Lee et al., 2012; Lee et al., 2013). Because the GlpK–GpsA pathway for glycerol oxidation is anaerobically deficient in some bacteria (Jacobs & VanDemark, 1960), the glycerol uptake by O. ruminantium needs further study. In terms of butyrate formation, genes Pct and AtoD were annotated in S3 Bin009, whereas genes Ptb and Buk were not. The function of gene AtoD working on caproate formation needs further evidence. S3\_Bin013 was identified as being closely related to P. acetatigenes, containing the genes for pyruvate uptake, acetate production, and butyrate formation (Ptk-Buk pathway). P. acetatigenes strains were isolated from the granule sludge of an upflow anaerobic sludge blanket reactor treating brewery wastewater, which is a proteolytic, strictly anaerobic bacteria capable of acetate, NH<sub>3</sub>, and CO<sub>2</sub> production (Chen & Dong, 2005). S6\_Bin010 is another Bacteroidia bacterium (Bacteroidia bacterium 43-41) that contains the genes for pyruvate uptake, acetate production, and butyrate formation (Ptk-Buk pathway). In addition, gene AtoA was also annotated in S6\_Bin010 for butyrate formation. S3\_Bin011, which could not be closely related to a specific species, nevertheless is under the order of Clostridiales. Its gene annotation shows that glycerol oxidation for butyrate, caproate, and ethanol production is possible. Interestingly, it also includes the genes PduC(D,E) for glycerol reduction to 3-hydroxy-propionaldehyde. However, gene DhaT was not annotated for 1,3-PDO production. Gene AckA for acetate production was missing in

this recovered genome bin. S6 Bin004 (M. senegalense) contains genes GlpK and GpsA/GlpA to oxidize glycerol, genes Pta and AckA to produce acetate, and genes ALDH and Adh2/YiaY for ethanol oxidation/production. A phenotypic study of M. senegalense strain mt8<sup>T</sup> resulted in a negative reaction of it with glycerol incubated at 37 °C in aerobic conditions (Tidjani Alou et al., 2016), and an insignificant abundance of OTUs related to *M. senegalense* were observed in the first three stages, with only glycerol as the electron donor and carbon source in the substrate. Therefore, these results indicate that S6\_Bin004 might be responsible for ethanol oxidation to acetate and H<sub>2</sub>. The gene content of S6\_Bin006 shows that it is possible to oxidize glycerol through the GlpK-GlpA pathway and produce acetate. Mesotoga infera Strain VNs100<sup>T</sup> and *Mesotoga prima* strain PhosAc3 were reported to only utilize simple sugars and organic acids in the presence of elemental sulfur as a terminal electron acceptor for acetate, CO<sub>2</sub>, and sulfide production (Ben Hania et al., 2013), whereas *Mesotoga prima* strain MesG1.Ag.4.2<sup>T</sup> ferments sugars for acetate, butyrate, isobutyrate, isovalerate, and e-methyl-butyrate production (Ben Hania et al., 2015). Therefore, the growth of S6\_Bin006 in our system is probably related to the element sulfur, and it contributes to glycerol oxidation for acetate CO<sub>2</sub> production in the system. The annotation results of S6\_Bin010 shows that it is unable to use either glycerol or ethanol; however, pyruvate uptake for acetate and butyrate formation is possible. The gene annotation results of S6\_Bin012 are consistent with the well-known pathway of C. kluyveri, which uses ethanol and acetate to produce butyrate and caproate. In S6\_Bin012, butyrate and caproate production was catalyzed by Cat2 rather than Cat3, which was previously reported by Seedorf et al. (Seedorf et

al., 2008).

Three modes of energy conservation are generally known, including substrate-level phosphorylation (SLP), electron transport phosphorylation (ETP), and flavin-based electron bifurcation (FBEB) (Buckel & Thauer, 2013; Thauer et al., 1977). SLP is a metabolic reaction coupling with the phosphorylation of ADP with a phosphoryl (PO<sub>3</sub>) group, which is directly transferred from another phosphorylated compound, for ATP formation. ETP, in most cases known as chemiosmotic ion gradient-driven phosphorylation, uses the electrochemical potential between redox partners to drive the ATP synthesis by a membrane-bound ATP synthase (Thauer et al., 1977). Specifically, the generation of the transmembrane electrochemical ion gradient (an electrical and/or ion gradient) across the membrane is induced by an electron-transfer reaction of different redox partners (Schuchmann & Muller, 2014). FBEB is initially introduced in C. kluyveri including a butyryl-CoA dehydrogenase (Bcd) with two closely located subunits of an electron transferring falvoprotein (EtfAB), forming a complex and binding a flavin cofactor (FMN or FAD) (Li et al., 2008). The mechanism of FBEB peculiarly involves endergonic redox reactions coupled to exergonic redox reactions, where exergonic reduction reactions of one acceptor drives the endergonic reduction of the second acceptor (Schuchmann & Muller, 2014). For example, in clostridial, an endergonic ferredoxin reduction with NADH is coupled to an exergonic crontonyl-CoA reduction with NADH catalyzed by the Bcd/Etf complex (Buckel & Thauer, 2013).

Figure 6.11 demonstrate that SLP energy conservation in glycerol fermentation is catalyzed by PGK and Pyk in a glycolytic pathway, AckA of acetate production, and Buk of butyrate formation. These kinases directly induce a phosphoryl (PO<sub>3</sub>) group transformation from a phosphorylated compound to ADP for ATP generation. In addition, the H<sup>+</sup>- and Na<sup>+</sup>-motive forces generated by a redox reaction of ferredoxin with NADH drive the synthesis of ATP (Figure 6.12). This ETP energy conservation is catalyzed by a Rnf complex coupling with a  $H^+/Na^+$  translocating ATPase (Tremblay et al., 2013). FBEB energy conservation occurs in the reversed beta-oxidation pathway of carboxylate chain elongation (Figure 6.12). The reduction of crontonyl-CoA to butyryl-CoA by NADH, which is highly exergonic and irreversible under physiological conditions, conserves energy through the redox reaction of ferredoxin with  $NAD(P)^+$  that is further catalyzed by an Rnf complex (Herrmann et al., 2008). In addition, we found two additional FBEB membrane-associated energy conservation systems: ETF-linked iron-sulfur binding reductase and ETF dehydrogenase (Figure 6.12). These membrane-bound energy conservation systems consume protons while protons are generated along with ATP formation catalyzed by another membrane-associated enzyme, ATPase complex, and a flagellum-specific ATP synthase, FliI. The surplus Fd<sub>red</sub> could be oxidized with H<sub>2</sub> production catalyzed by a periplasmic hydrogenase subunit and cytoplasmic iron-only hydrogenases.

Table 6.5 summarizes the energy conservation modules of the recovered genome bins.*E. limosum* (S3\_Bin001 and S6\_Bin003), *A. caccae* (S3\_Bin003 and S6\_Bin013), *P.*141

acetatigenes (S3\_Bin013), *M. senegalense* (S6\_Bin004), and *Bacteroidia bacterium* 43-41 (S6\_Bin010), hold the Bcd/Etf complex for energy conservation, which is similar to *C. kluyveri* (S6\_Bin012). *E. limosum* (S3\_Bin001 and S6\_Bin003), *A. caccae* (S3\_Bin003 and S6\_Bin013), and *C. kluyveri* (S6\_Bin012) also include FAD (or Fe-S) reductase linked to the ETF system for energy conservation. *C. kluyveri* (S6\_Bin012) particularly contains FAD (or Fe-S) reductase linked to the ETF-Fix system. Most of the recovered genome bins conserved energy through ETP module. As shown in Table 6.5, Rnf coupling with V/A-type H<sup>+</sup>/Na<sup>+</sup>-transporting ATPase was found in *E. limosum* (S3\_Bin001 and S6\_Bin003), *A. caccae* (S3\_Bin003 and S6\_Bin013), *P. acetatigenes* (S3\_Bin013), and *Bacteroidia bacterium* 43-41 (S6\_Bin010), whereas Rnf coupling with F-type H<sup>+</sup>-transporting ATPase was included in *A. caccae* (S3\_Bin003 and S6\_Bin013), *O. ruminantium* (S3\_Bin009), *Clostridiales bacterium* (S3\_Bin011), *Bacteroidia bacterium* 43-41 (S6\_Bin010), and *C. kluyveri* (S6\_Bin012).

 Table 6.5. Energy conservation modes (excluding substrate-level phosphorylation) of recovered genome bins.

| Bin name  | Electron Transport Phosphorylation<br>(ETP)                                                                                                           | Flavin-based Electron Bifurcation (FBEB)                 |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| S3_Bin001 | Rnf coupling with V/A-type<br>H <sup>+</sup> /Na <sup>+</sup> -transporting ATPase                                                                    | Bcd/Etf complex<br>FAD (or Fe-S) reductase linked to ETF |  |  |  |  |
| S3_Bin003 | Rnf coupling with V/A-type<br>H <sup>+</sup> /Na <sup>+</sup> -transporting ATPase<br>Rnf coupling with F-type<br>H <sup>+</sup> -transporting ATPase | Bcd/Etf complex<br>FAD (or Fe-S) reductase lined to ETF  |  |  |  |  |

| S3_Bin008 | F-type H <sup>+</sup> -transporting ATPase                                                                                                            | -                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| S3_Bin009 | Rnf coupling with F-type<br>H <sup>+</sup> -transporting ATPase                                                                                       | -                                                                                                             |
| S3_Bin011 | Rnf coupling with F-type<br>H <sup>+</sup> -transporting ATPase                                                                                       | -                                                                                                             |
| S3_Bin013 | Rnf coupling with V/A-type<br>H <sup>+</sup> /Na <sup>+</sup> -transporting ATPase                                                                    | Bcd/Etf complex                                                                                               |
| S6_Bin003 | Rnf coupling with V/A-type<br>H <sup>+</sup> /Na <sup>+</sup> -transporting ATPase                                                                    | Bcd/Etf complex<br>FAD (or Fe-S) reductase linked to ETF                                                      |
| S6_Bin004 | -                                                                                                                                                     | Bcd/Etf complex                                                                                               |
| S6_Bin010 | Rnf coupling with V/A-type<br>H <sup>+</sup> /Na <sup>+</sup> -transporting ATPase<br>Rnf coupling with F-type<br>H <sup>+</sup> -transporting ATPase | Bcd/Etf complex                                                                                               |
| S6_Bin012 | Rnf coupling with F-type<br>H <sup>+</sup> -transporting ATPase                                                                                       | Bcd/Etf complex<br>FAD (or Fe-S) reductase lined to ETF<br>FAD (or Fe-S) reductase lined to ETF-Fix<br>system |
| S6_Bin013 | Rnf coupling with V/A-type<br>H <sup>+</sup> /Na <sup>+</sup> -transporting ATPase<br>Rnf coupling with F-type<br>H <sup>+</sup> -transporting ATPase | Bcd/Etf complex<br>FAD (or Fe-S) reductase lined to ETF                                                       |

*Syntrophomonas wolfei* was reported to produce and utilize poly-β-hydroxyalkanoate (PHA) for intracellular energy regulation in both pure culture and coculture with *Methanospirillum hungatei* (Amos & Mcinerney, 1989). Proteomic analysis of *S. wolfei* revealed that the PHA-associated mechanism is supported by enzymes including PhaR, poly-(3-hydroxyalkanoic acid) synthase, acyl-CoA dehydratase, enoyl-CoA hydratase, acetoacetyl-CoA reductase (Sieber et al., 2015). In the recovered genome bin associated with *M. senegalense* (S6\_Bin004), three detected genes are very likely related to PHB production/utilization including an acetyl-CoA

acetyltransferase gene (atoB/phaA), a 3-oxoacyl-[acyl-carrier-protein] reductase gene (phbB) and a poly-beta-hydroxybutyrate polymerase gene (phbC) (Figure 6.12 and Appendix VI Table). These gene-expressed enzymes can catalyze acetotyl-CoA to PHB through acetoacetyl-CoA and (R)-3-hydroxybutanoyl-CoA. It is hypothesized that PHA-associated endogenous energy balance regulation for syntrophic bacteria occurs when the concentrations of H<sub>2</sub> or acetate are too high for the degradation of the growth substrate to be thermodynamically favorable (Mcinerney et al., 1992). This PHB formation and reutilization by *M. senegalense* was further proven by the detection of PHB at 1.94 % cell dry mass (CDM) in phase 3 of Stage 6 whereas it was not detected in the culture without the dominance of *M. senegalense* (i.e. phase 2 of Stage 2) as a reference. It is not clear why PHB was produced rather than generating more butyrate during glycerol fermentation and then utilized during the leisure phase between glycerol fermentation and carboxylates chain elongation, and also why it was produced during the carboxylates chain elongation. One hypothesis is that high accumulated acetate and H<sub>2</sub> need a sink to store temporally and promote the ethanol oxidation to be thermodynamically favorable. M. senegalense paired ethanol oxidation, PHB production, and butyrate production to balance electrons. However, there is little experimental evidence yet for this hypothesis. A better understanding of the PHB system involved in such glycerol fermentation and carboxylates chain elongation system will be of importance since this leads to an energy-efficient process for 1,3-PDO and caproate co-production.

The metabolic pathways in difference stages or batch cases are hypothesized. In

stage 3 of semi-continuous fermentation, E. limosum converted glycerol to 1,3-PDO, acetate and butyrate, and A. caccae facilitate butyrate production from glycerol; In Case 1 of batch test, K. pneumoniae dominated and contributed to 1,3-PDO production from glycerol, however, butyrate formation decreased significantly and glycerol oxidizing to some worthless compounds; In Case 2 of batch test, there are two main phases in which K. pneumoniae converted glycerol to 1,3-PDO at the beginning together with dominance of E. coli which converted glycerol to ethanol and acetate, and a synergistic network of Desulfovibrio sp., F. varium, M. elsdenii, C. kluyveri facilitated carboxylates chain elongation with ethanol and acetate; In Case 3 of batch test, a synergistic relationship between C. kluyveri and the three co-dominant species, D. vulgaris, F. varium, and A. sticklandii were found to boost the carboxylate chain elongation for caproate production from ethanol and acetate; In stage 4 and 5 of semi-continuous fermentation, E. limosum still dominated and converted glycerol to 1,3-PDO, acetate and butyrate. In addition to A. caccae, C. intestinale also dominated and facilitated butyrate production from glycerol. In stage 6 of semi-continuous fermentation, E. limosum converted glycerol to 1,3-PDO, acetate and butyrate. M. senegalense oxidized ethanol to acetate and butyrate. C. kluyveri accomplished carboxylates chain elongation with ethanol, acetate and butyrate.

# **6.3 Chapter summary**

1,3-PDO and caproate co-production were demonstrated in batch- and semi-continuous scale fermentation that use glycerol, glycerol–ethanol or ethanol as

electron donors. In batch test, glycerol-acetate fermentation resulted in a significant production of 1,3-PDO with an insignificant formation of acetate, butyrate and H<sub>2</sub> (Case 1). K. pneumoniae facilitated high 1,3-PDO production from glycerol. Glycerol-ethanol-acetate fermentation produced high amount of 1,3-PDO and butyrate with low amounts of caproate and H<sub>2</sub> generation (Case 2). K. pneumoniae and E. limosum facilitated high 1,3-PDO production from glycerol while M. elsdenii associated with butyrate and low caproate production. Ethanol-acetate fermentation achieved high caproate and H<sub>2</sub> formation with low amount of butyrate production (Case 3), C. kluyveri associated with high caproate and low butyrate production. The comparison of Case 2 and Case 3 on caproate production is reflective of an antagonistic effect of glycerol on chain elongation. A big difference on the organism responsible for chain elongation: M. elsdenii associated with caproate production was chosen over C. kluyveri in Case 2 while C. kluyveri was dominant in Case 3. C. kluyveri is more efficient in chain elongation for caproate production. In Case 2, glycerol led to high 1,3-PDO production which is toxic to C. kluyveri. With the knowledge of batch tests, ethanol addition can technically facilitate chain elongation for caproate production, and an efficient 1,3-PDO and caproate co-production needs (1) a glycerol fermenter that produces less 1,3-PDO by converting more glycerol to ethanol (a less oxidized product than acetate), and/or by generating more H<sub>2</sub> to consume excess reducing power through an alternative route; (2) a lower glycerol loading to reduce 1,3-PDO production to allow for 1,3-PDO-sensitve chain elongation bacteria (i.e. C. kluyveri) to grow; (3) a H<sub>2</sub> consumer who supports H<sub>2</sub> formation from glycerol to not waste glycerol-derived energy.

In the semi-continuous glycerol fermentation, caproate production was stimulated with an ethanol addition and a gradual decrease of glycerol loading. The complete consumption of glycerol and ethanol (20 and 10 mM C d<sup>-1</sup>) resulted in average production rates of 6.38 and 2.95 mM C d<sup>-1</sup> for 1,3-PDO and caproate, respectively. The conversion rates were 0.32  $\text{mol}_{1,3\text{-PDO}} \text{mol}^{-1}_{\text{glycerol}}$  and 0.10  $\text{mol}_{\text{caproate}} \text{mol}^{-1}_{\text{ethanol}}$ (0.30 mol C caproate/mol C ethanol). The microbiomes, E. limosum, C. kluyveri as well as M. senegalense predominated. The concomitant enrichment of E. limosum and gradually decrease of the glycerol loading indeed allowed C. kluyveri to predominate. E. limosum is one of the few organisms capable of converting glycerol to 1,3-PDO, ethanol and H<sub>2</sub> and also oxidizing H<sub>2</sub> to acetate via the Wood–Ljungdahl pathway, whereby efficiently redirecting the energy of H<sub>2</sub> back into chain elongation. C. kluyveri uses ethanol and acetate to produce butyrate and caproate. M. senegalense encodes for ethanol oxidation for acetate and butyrate production. In contrast to the Case 2 of the batch test, the enrichment of microorganisms in the semi-continuous fermenter selectively excluded facultative pathogens, such as E. coli and K. pneumoniae, but still accomplished the 1,3-PDO and caproate co-production with more appropriate metabolic pathways.

Three modes of energy conservation, including substrate-level phosphorylation (SLP), electron transport phosphorylation (ETP), and flavin-based electron bifurcation (FBEB), were annotated in both stages of the system. *E. limosum*, *A. caccae*, *P. acetatigenes*, *M. senegalense*, and *Bacteroidia bacterium* 43-41 held the

Bcd/Etf complex for energy conservation, which is similar to *C. kluyveri. E. limosum*, *A. caccae*, and *C. kluyveri* also included FAD (or Fe-S) reductase linked to the ETF system for energy conservation. *C. kluyveri* particularly contains FAD (or Fe-S) reductase linked to the ETF–Fix system.

# Chapter 7. Co-production of 1,3-PDO and caproate from glycerol with enriched microbial community

## 7.1 Overview

Co-production of 1,3-PDO and caproate in a semi-continuous fermenter with glycerol-ethanol-acetate stoichiometric ratio of 4:3:1 has been introduced in the previous chapter. The metagenomics of the enriched microbial community reconstructed the pathway of ethanol production from glycerol (i.e. E. limosum). Nonetheless, whether the enriched versatile glycerol degrader, E. limosum, could convert glycerol-derived energy to ethanol and H<sub>2</sub> in a balance with 1,3-PDO and acetate and redirect the energy of H<sub>2</sub> back into chain elongation needs further evidence. An investigation on electron flux of glycerol fermentation and chain elongation with ethanol self-sufficiency inoculated by the fermenter-enriched microbial community could help answer the question. In addition, this study also investigated whether the ethanol could be further utilized for caproate production through chain elongation within the cultivation matrix. A batch test inoculated with the fermenter-enriched culture and fed with glycerol and acetate with different concentrations were conducted. The co-production of 1,3-PDO and caproate in glycerol-acetate fermentation was achieved with a favorable glycerol/acetate stoichiometric ratio. Significant ethanol production from glycerol oxidation is the main reason for the caproate production enhancement. A dynamic balance of three dominant microbiomes, E. limosum, M. senegalense, and C. kluyveri, could complete the multiple stages co-production process. The physiological performance and dynamic microbial community disclosed a unique combination of metabolic

pathways successfully facilitated the hypothesized conversion.

# 7.2 Results and discussion

### 7.2.1 Physiological performance of batch tests

The enriched culture collected from the late period of stage 6 of the semi-continuous fermentation was used as the seed for a new batch test fed with glycerol and acetate. The physiological performance of two cases (Case 4 and Case 5) with different initial substrate concentrations is shown in Figure 7.1. In general, 1,3-PDO was produced in Case 4 (Figure 7.1a) while a co-production of 1,3-PDO and caproate was achieved in Case 5 (Figure 7.1b). For both cases, glycerol fermentation resulted in 1,3-PDO and ethanol formation within 4 days. The difference lies on acetate concentration increased along with glycerol consumption in Case 4 while that decreased and much more ethanol was produced in Case 5. The electrons from glycerol in Case 4 were not capable of producing enough ethanol to be further utilized for caproate production through carboxylates chain elongation. During the ethanol consumption stage, butyrate was produced in Case 4 along with H<sub>2</sub> decrease while caproate and butyrate were generated in Case 5 along with H<sub>2</sub> increase. It indicates that carboxylates chain elongation did not occur in Case 4 because chain elongation is a H<sub>2</sub> formation process.



Figure 7.1. Glycerol fermentation with fermenter-enriched culture.

Here we investigated Case 5 in details. Compared to Case 1 (Chapter 6), a significant amount of ethanol was produced in addition to 1,3-PDO along with glycerol consumption (Days 1-4) and a delayed butyrate production was also observed (Days 2–6). With a lag phase of around 12 days, the produced ethanol and the acetate in the system were then used for caproate and butyrate formation. The chain elongation metabolism ceased when ethanol was depleted even though a high amount of butyrate remained in the system. This novel result indicates the importance of ethanol production as an intermediate of glycerol dissimilation before carboxylate chain elongation for caproate production. There are two increases in hydrogen (Days 0-4; Days 12-15) and two decreases (Days 4-12; Days 15-23), and we also divided the whole process into the four phases for analysis. (P1) The first increase correlates to glycerol degradation to ethanol and 1,3-PDO, with delayed accumulation of butyrate. (P2) The first decrease correlates to gradual acetate accumulation. (P3) The second increase correlates with sudden ethanol consumption and production of butyrate and caproate. (P4) The second decrease correlates to a slight increase of
acetate and butyrate.

#### 7.2.2 Microbial community of glycerol fermentation for two value-added

#### chemicals co-production

The mixed culture of three time points was collected for 16S rRNA gene-based analysis in order to identify the microbial community dynamics in Case 5. A 16S rRNA gene-based tree was constructed by neighbor-joining method to decipher the phylogenetic affiliation of the overall 20 most abundant OTUs and their evolutionary relationships to known lineages (Figure 7.2). Together with blastn identification of OTUs, the microbial community of P1–3 of Case 5 is shown in Figure 7.3. Top 10 representative OTUs at three time points are covered 72.04%–89.14% of the total sequences, which is more enriched compared with Case 1–3 (Chapter 6). The microbial community mainly includes *Bacillaceae* bacterium mt8 (*Massilibacterium senegalense*) and *E. limosum* in P1; *Bacillaceae* bacterium mt8 in P2. And *C. kluyveri* increased significantly in P3. How these dynamic microbiomes worked and cooperated to complete the co-production pathways is discussed in the following section.



**Figure 7.2.** Neighbor-joining tree based on 16S rRNA gene sequences and related reference lineages. 20 most abundant OTUs were selected for analysis and shown with average abundance and taxonomy information. The phylogenetic tree was performed in ARB with SILVA database SSU NR99 as reference.



**Figure 7.3.** Physiologic performance of enriched culture from stage 6 with glycerol in batch. Corresponding representative OTUs at four time points are covered 72.04%–89.14% of the total sequences.

#### 7.2.3 Electron flow of glycerol fermentation

The electron flow-based biochemical reactions are summarized in Table 7.1. In P1, 1,3-PDO production from glycerol is net reduction (R1), ethanol production from glycerol is a net oxidation (R2), and H<sub>2</sub> production is also a reductive process (R6). Since a slight consumption of acetate and delayed butyrate production occurred, we assume that some acetate was converted to butyrate reductively and the butyrate was temporarily stored in the cells and released slowly into solution (R9). However, these four reactions in total could not balance the electrons and there is a significant amount of reductive reactions not accounted for. Plus, the acetate should be one of

the byproducts in glycerol fermentation but a net acetate consumption in P1 and a gradual accumulation of acetate in P2 were observed, which indicates acetate is probably stored temporarily in some compounds, such as poly-β-hydroxybutyrate (PHB). Glycerol oxidation to acetate and  $CO_2(R3)$ , Reduction of  $CO_2$  to acetate (R8), and PHB production (R11) are assumed to balance the electron and acetate in P1 (Table 7.1). In the same phase of Case 1, there is a significant amount of oxidative reactions not accounted for, which leads to a big net electron consumption of the total anticipated reactions. The unanticipated oxidized compounds from glycerol in Case 1 reduced the carbon flow to ethanol, and further inhibited the chain elongation for caproate production. Comparing P1 of Case 1 and 5, glycerol converting to ethanol in Case 5 is probably associated with Bacillaceae bacterium mt8 and E. limosum which were not detected in Case 1. In P2, ethanol oxidation to acetate (R5), H<sub>2</sub> oxidation (R7), acetate reduction to butyrate (R9) were detected. The electron flow analysis showed that reduction of CO<sub>2</sub> to acetate (R8) and PHB consumption (R12) are probably occurred concurrently to balance the electron flow. It further proves the PHB production and consumption happened in the process. The most dominant bacteria in P2 of Case 5 was Bacillaceae bacterium mt8. In P3, chain elongation related reactions occurred, including R5, R6, R9 and R10. Reduction of  $CO_2$  to acetate (R8) and PHB production (R12) are probably occurred concurrently to balance the electron flow. Compared with the same phase of Case 1, the dominance of Bacillaceae bacterium mt8 and C. kluyveri in Case 5 are believed to make the major difference.

|       |                                                                    | P.1         | P.2   | P.3          | P.4   |
|-------|--------------------------------------------------------------------|-------------|-------|--------------|-------|
| R1    | $Glycerol + 2e^- \rightarrow 1,3-PDO$                              | 12.08       | 0.00  | 0.00         | 0.00  |
| R2    | Glycerol $\rightarrow$ Ethanol + CO <sub>2</sub> + 2e <sup>-</sup> | 57.61       | 0.00  | 0.00         | 0.00  |
| R3    | $Glycerol \rightarrow Acetate + CO_2 + 6e^{-1}$                    | <u>6.00</u> | 0.00  | 0.00         | 0.00  |
| R4    | Acetate + $4e^- \rightarrow$ Ethanol                               | 0.00        | 0.00  | 0.00         | 0.00  |
| R5    | Ethanol $\rightarrow$ Acetate + 4e <sup>-</sup>                    | 0.00        | 2.96  | 54.65        | 0.00  |
| R6    | $2H^+ + 2e^- \rightarrow H_2$                                      | 13.70       | 0.00  | 3.20         | 0.00  |
| R7    | $H_2 \rightarrow 2H^+ + 2e^-$                                      | 0.00        | 9.24  | 0.00         | 2.25  |
| R8    | $2\text{CO}_2 + 8e^- \rightarrow \text{Acetate}$                   | 8.00        | 4.00  | 9.00         | 0.55  |
| R9    | $2\text{Acetate} + 4e^- \rightarrow \text{Butyrate}$               | 5.32        | 1.55  | 19.38        | 0.00  |
| R10   | Acetate + Butyrate + $4e^- \rightarrow Caproate$                   | 0.00        | 0.00  | 7.99         | 0.00  |
| R11   | $PHB(N) + 2Acetate + 2e^{-} \rightarrow PHB(N+1)$                  | 8.25        | 0.00  | <u>15.00</u> | 0.00  |
| R12   | $PHB(N+1) \rightarrow PHB(N) + 2Acetate + 2e^{-1}$                 | 0.00        | 4.00  | 0.00         | 0.00  |
| Calcu | lated change based on electron involved re                         | eactions    |       |              |       |
|       | Glycerol                                                           | -75.69      | 0.00  | 0.00         | 0.00  |
|       | 1,3-PDO                                                            | 12.08       | 0.00  | 0.00         | 0.00  |
|       | Ethanol                                                            | 57.61       | -2.96 | -54.65       | 0.00  |
|       | Acetate                                                            | -13.14      | 11.87 | -13.11       | 0.55  |
|       | Butyrate                                                           | 5.32        | 1.55  | 11.39        | 0.00  |
|       | Caproate                                                           | 0.00        | 0.00  | 7.99         | 0.00  |
|       | $H_2$                                                              | 13.70       | -9.24 | 3.20         | -2.25 |
|       | e                                                                  | -2.12       | 0.16  | 0.69         | 0.10  |
| Detec | ted change                                                         |             |       |              |       |
|       | dGlycerol                                                          | -102.47     | -1.68 | 0.00         | 0.00  |
|       | dEthanol                                                           | 57.61       | -2.96 | -54.65       | 0.00  |
|       | dAcetate                                                           | -13.14      | 12.38 | -12.65       | 0.55  |
|       | dButyrate                                                          | 5.32        | 1.55  | 11.39        | 0.42  |
|       | $dH_2$                                                             | 13.70       | -9.24 | 3.20         | -2.25 |

 Table 7.1. Electron flow calculation of glycerol fermentation with enriched culture.

Assumptions are labeled with underline, Unit: mM

In Case 5 of batch test, *E. limosum* utilized glycerol to produce both 1,3-PDO, acetate and butyrate, and also produce acetate from  $CO_2$  and  $H_2$  via the Wood–Ljungdahl pathway. *M. senegalense* oxidized ethanol to acetate and  $H_2$ , which pairs a PHB formation to store acetate and electrons temporally and a delayed butyrate formation from acetate and  $H_2$  in the first phase. During the leisure period between

glycerol fermentation and carboxylates chain elongation, PHB was utilized to generate acetate and release electrons by *M. senegalense*. Meanwhile, some acetate together with  $H_2$  was utilized by *M. senegalense* for butyrate production. In the carboxylates chain elongation phase, *M. senegalense* and *C. kluyveri* worked together for caproate production with ethanol and acetate.



Figure 7.4. Metabolic pathway of caproate and 1,3-PDO co-production from glycerol with enriched mixed culture.

# 7.3 Chapter summary

The co-production of 1,3-PDO and caproate in glycerol–acetate fermentation was achieved in batch test inoculated with the fermenter-enriched culture and fed with a favorable glycerol/acetate stoichiometric ratio. Significant ethanol production from glycerol oxidation is the main reason for the caproate production enhancement, which indicates the importance of ethanol production as an intermediate of glycerol dissimilation prior to carboxylate chain elongation for caproate production. The increase of ethanol production rather than other worthless products from glycerol oxidation could balance electron flow in an efficient way with glycerol reduction to 1,3-PDO and further transfer the electrons to caproate. A dynamic balance of three dominant microbiomes, E. limosum, M. senegalense, and C. kluyveri, could complete the multiple stages co-production process. In addition to the metabolism described in Chapter 6, E. limosum is proved to utilized glycerol for ethanol production. M. senegalense oxidized ethanol to acetate and H<sub>2</sub>, which pairs a PHB formation to store acetate and electrons temporally for further utilization in the leisure period between glycerol fermentation and carboxylates chain elongation. In the carboxylates chain elongation phase, M. senegalense and C. kluyveri worked together for caproate production with ethanol and acetate. A significant ethanol production from glycerol oxidation and a non-inhibiting level of 1,3-PDO production towards C. kluyveri are crucial to realize the co-production process.

### **Chapter 8. Conclusions and Recommendations**

#### **8.1 Conclusions**

In this thesis, an environmental friendly biological process for the recovery of two value-added chemicals, 1,3-PDO and caproate, from waste(water) was proposed and investigated in depth by examining its thermodynamic feasibility, physiological performance, corresponding microbial communities, and metabolic pathways. Results showed that 1,3-PDO production can be achieved with glycerol reduction, and caproate is able to be produced from SCFAs and ethanol which is generated with glycerol oxidation. A microbial community was successfully enriched to efficiently convert glycerol to 1,3-PDO and utilize the SCFAs and ethanol for caproate production through carboxylate chain elongation. Organisms *E. limosum, M. senegalense, C. kluyveri* associated with the fermenter utilize a unique combination of metabolic pathways to facilitate the above conversion. The discovery is able to lift up wastewater anaerobic treatment and biodiesel industry downstream technology.

Firstly, it reports thermodynamic and physiological insights for co-production of 1,3-PDO and caproate from glycerol and acetate. Detailed energetic analysis demonstrated that caproate can be elongated from acetate with either ethanol or glycerol, favorable at higher pH range. The optimized conversion rates of mono-caproate and co-production of 1,3-PDO and caproate were achieved at the ethanol/acetate and glycerol/acetate molar ratios of 3 and 4, respectively. A lag phase between 1,3-PDO and caproate production was observed. The sufficient intermediate

ethanol is capable of enhancing caproate formation along with 1,3-PDO. Such a co-production system is pivotal to a synergistic network resulting in the co-existence of *C. butyricum*, *E. coli*, *C. kluyveri* and some other butyrate production bacteria with function of glycerol directly converting to 1,3-PDO and indirectly to caproate.

Secondly, a synergistic network of *D. vulgaris, F. varium*, and *A. sticklandii*, which are co-existent with *C. kluyveri* was disclosed to accelerate the carbon and electron flows of carboxylates chain elongation with ethanol so as to shorten the lag phase between 1,3-PDO and caproate production. *D. vulgaris* oxidizes ethanol to acetate and thereby the formed  $H_2$  is used by the two amino acid degrading bacteria for the production of butyrate. The interspecies  $H_2$  transfer takes place, which has been hitherto commonly known for the interaction between syntrophic bacteria and methanogenic archaea. The disclosed metabolic pathways by metagenomic analysis suggested that the synergy network could be technically applied with the potential to upcycle the mixed culture anaerobic processes for value-added chemicals production.

Furthermore, 1,3-PDO and caproate production were demonstrated in batch- and semi-continuous scale fermentation that use glycerol and glycerol–ethanol as electron donors. In batch test, glycerol-acetate fermentation resulted in significant production of 1,3-PDO with low amounts of acetate, butyrate and H<sub>2</sub> formation (Case 1), *K. pneumoniae* facilitated high 1,3-PDO production from glycerol. Glycerol-ethanol-acetate fermentation produced high amount of 1,3-PDO and butyrate with low amounts of caproate and H<sub>2</sub> generation (Case 2). *K. pneumoniae* 

and E. limosum facilitated high 1,3-PDO production from glycerol while M. elsdenii associated with butyrate and low caproate production. Ethanol-acetate fermentation achieved high caproate and H<sub>2</sub> formation with low amount of butyrate production (Case 3), C. kluyveri associated with high caproate and low butyrate production. The comparison of Case 2 and Case 3 on caproate production is reflective of an antagonistic effect of glycerol on chain elongation. A big difference on the organism responsible for chain elongation: M. elsdenii associated with caproate production was chosen over C. kluyveri in Case 2 while C. kluyveri was dominant in Case 3. C. kluyveri is more efficient in chain elongation for caproate production. In Case 2, glycerol led to high 1,3-PDO production which is toxic to C. kluyveri. With the knowledge of batch tests, ethanol addition can technically facilitate chain elongation for caproate production, and an efficient 1,3-PDO and caproate co-production needs (1) a glycerol fermenter that produces less 1,3-PDO by converting more glycerol to ethanol (a less oxidized product than acetate), and/or by generating more H<sub>2</sub> to consume excess reducing power through an alternative route; (2) a lower glycerol loading to reduce 1,3-PDO production to allow for 1,3-PDO-sensitve chain elongation bacteria (i.e. C. kluyveri) to grow; (3) a  $H_2$  consumer who supports  $H_2$ formation from glycerol to not waste glycerol-derived energy. In the semi-continuous glycerol fermentation, caproate production was stimulated with an ethanol addition and a gradual decrease of glycerol loading. The complete consumption of glycerol and ethanol (20 and 10 mM C d<sup>-1</sup>) resulted in average production rates of 6.38 and 2.95 mM C d<sup>-1</sup> for 1,3-PDO and caproate, respectively. The conversion rates were  $0.32 \text{ mol}_{1,3-PDO} \text{ mol}^{-1}_{glycerol} \text{ and } 0.10 \text{ mol}_{caproate} \text{ mol}^{-1}_{ethanol} (0.30 \text{ mol } C \text{ caproate/mol } C$ 

ethanol). The microbiomes *E. limosum*, *C. kluyveri* as well as *M. senegalense* predominated. The concomitant enrichment of *E. limosum* and gradually decrease of the glycerol loading indeed allowed *C. kluyveri* to predominate. *E. limosum* is one of the few organisms capable of converting glycerolto 1,3-PDO, ethanol and  $H_2$  and also oxidizing  $H_2$  to acetate via the Wood–Ljungdahl pathway, whereby efficiently redirecting the energy of  $H_2$  back into chain elongation. *C. kluyveri* uses ethanol and acetate to produce butyrate and caproate. *M. senegalense* encodes for ethanol oxidation for acetate and butyrate production. In contrast to the Case 2 of the batch test, the enrichment of microorganisms in the semi-continuous fermenter selectively excluded facultative pathogens, such as *E. coli* and *K. pneumoniae*, but still accomplished the 1,3-PDO and caproate co-production with more appropriate metabolic pathways.

Finally, the co-production of 1,3-PDO and caproate in glycerol–acetate fermentation was achieved in batch test when the seed culture was inoculated with the semi-continuous fermenter in the glycerol–ethanol–acetate fermentation stage. Significant ethanol production from glycerol oxidation is the main reason for the caproate production enhancement, which indicates the importance of ethanol production as an intermediate of glycerol dissimilation prior to carboxylate chain elongation for caproate production. The increase of ethanol production rather than other worthless products from glycerol oxidation could balance electron flow in an efficient way with glycerol reduction to 1,3-PDO and further transfer the electrons to caproate. A dynamic balance of three dominant microbiomes, *E. limosum*, *M*.

*senegalense*, and *C. kluyveri*, could complete the multiple stages co-production process. *M. senegalense* oxidized ethanol to acetate and H<sub>2</sub>, which pairs a PHB formation to store acetate and electrons temporally for further utilization in the leisure period between glycerol fermentation and carboxylates chain elongation. In the carboxylates chain elongation phase, *M. senegalense* and *C. kluyveri* worked together for caproate production with ethanol and acetate. Significant ethanol production from glycerol oxidation is the main reason for the caproate production enhancement.

### **8.2 Recommendations for Future Work**

Prior to implementing this mixed culture anaerobic process in application, additional research must be conducted to (1) optimize 1,3-PDO and caproate co-production yields in a continuous anaerobic reactor with crude glycerol and SCFAs-contained wastewater combined in line products extraction, (2) and test the stability and resilience of the reactor microbiomes to withstand operating upsets which probably occur in industrial application. To further prove the syntroph in carboxylate chain elongation, a co-culture cultivation of *D. vulgaris*, *A. sticklandii* and *C. kluyveri* needs to be conducted.

| CDS         | Predicted function                    | Gene name | Enzyme commission    | Identity (%) | e-value | Accession no. | Closely related protein                                                   |
|-------------|---------------------------------------|-----------|----------------------|--------------|---------|---------------|---------------------------------------------------------------------------|
| Clostridium | <i>kluyveri-</i> Ethanol metabolism   |           |                      |              |         |               |                                                                           |
| CK_01148    | Iron containing alcohol dehydrogenase | yiaY      | EC:1.1.1.1           | 93.7         | 0       | BAH07172      | hypothetical protein CKR 2121 [Clostridium kluyveri NBRC 12016]           |
| CV 01212    | Predicted iron containing alcohol     | viaV      | EC:1111              | 02.6         | 0       | EDV25008      | Predicted iron containing alcohol dehydrogenase [Clostridium kluyveri DSM |
| CK_01212    | dehydrogenase                         | yıu1      | EC.1.1.1.1           | 95.0         | 0       | EDK55008      | 555]                                                                      |
| CV 02194    | Predicted iron containing alcohol     | . V       | FC:1111              | 05.4         | 0       | EDK24096      | Predicted iron containing alcohol dehydrogenase [Clostridium kluyveri DSM |
| CK_02184    | dehydrogenase                         | yıar      | EC:1.1.1.1           | 95.4         | 0       | EDK34986      | 555]                                                                      |
| GW 00606    | Predicted iron containing alcohol     |           |                      | <i>c</i> 0.5 | 0       | ED 1/2 /00 /  | Predicted iron containing alcohol dehydrogenase [Clostridium kluyveri DSM |
| CK_02636    | dehydrogenase                         | yıa¥      | EC:1.1.1.1           | 68.5         | 0       | EDK34986      | 555]                                                                      |
| CK_03254    | alcohol dehydrogenase                 | yiaY      | EC:1.1.1.1           | 100.0        | 0       | WP_012102403  | ethanolamine utilization protein EutG [Clostridium kluyveri]              |
| CK_04032    | Aldehyde-alcohol dehydrogenase        | adhE      | EC:1.2.1.10; 1.1.1.1 | 96.2         | 1E-26   | BAH06031      | hypothetical protein CKR_0980 [Clostridium kluyveri NBRC 12016]           |
| CK_04084    | Predicted iron containing alcohol     | yiaY      | EC:1.1.1.1           | 96.7         | 0       | BAH08081      | hypothetical protein CKR 3030 [Clostridium kluyveri NBRC 12016]           |

# Appendix I Table

#### dehydrogenase

| CK_02630 ethanolamine utilization protein EutL   | eutL           |                | 100.0 | 0         | WP_073538121 | microcompartment protein PduB [Clostridium kluyveri]               |
|--------------------------------------------------|----------------|----------------|-------|-----------|--------------|--------------------------------------------------------------------|
| CK_02631 ethanolamine utilization protein EutM   | eutM           |                | 100.0 | 9E-57     | WP_012101449 | carboxysome shell protein [Clostridium kluyveri]                   |
| CK_03374 Aldehyde dehydrogenase AlkH             | alkH<br>(ALDH) | EC:1.2.1.3     | 96.0  | 0         | WP_012102549 | aldehyde dehydrogenase [Clostridium kluyveri]                      |
| <i>Clostridium kluyveri</i> -reverse β-oxidation |                |                |       |           |              |                                                                    |
| CK_03900 putative phosphotransacetylase          | pta            | EC:2.3.1.8     | 98.6  | 2.00E-156 | WP_011989412 | propanediol utilization phosphotransacylase [Clostridium kluyveri] |
| CK_00062 acetate kinase                          | ackA           | EC:2.7.2.1     | 99.0  | 0         | BAH06338     | hypothetical protein CKR 1287 [Clostridium kluyveri NBRC 12016]    |
| CK_00443 acetoacetyl-CoA thiolase                | thl            | EC:2.3.1.9     | 91.3  | 0         | WP_012104014 | acetyl-CoA acetyltransferase [Clostridium kluyveri]                |
| CK_00444 acetoacetyl-CoA thiolase                | thl            | EC:2.3.1.9     | 97.4  | 0         | WP_012104015 | acetyl-CoA acetyltransferase [Clostridium kluyveri]                |
| CK_00445 acetoacetyl-CoA thiolase                | thl            | EC:2.3.1.9     | 99.2  | 0         | WP_012104016 | acetyl-CoA acetyltransferase [Clostridium kluyveri]                |
| CK_01526 3-hydroxybutyryl-CoA dehydrogenase      | hbd (paaH)     | ) EC:1.1.1.157 | 96.9  | 0         | WP_012103136 | 3-hydroxybutyryl-CoA dehydrogenase [Clostridium kluyveri]          |
| CK_01183 3-hydroxybutyryl-CoA dehydratase        | croR           | EC:4.2.1.55    | 97.1  | 3.00E-93  | WP_012103365 | enoyl-CoA hydratase [Clostridium kluyveri]                         |

| CK_00295    | CoA-transferases                                       | cat2       | EC:2.8.3     | 99.1  | 0         | WP_012103918 | 4-hydroxybutyrate CoA-transferase [Clostridium kluyveri]            |
|-------------|--------------------------------------------------------|------------|--------------|-------|-----------|--------------|---------------------------------------------------------------------|
| CK_01045    | 3-hydroxybutyryl-CoA dehydrogenase                     | hbd (paaH) | EC:1.1.1.157 | 97.9  | 0         | BAH05454     | hypothetical protein CKR 0403 [Clostridium kluyveri NBRC 12016]     |
| CK_01046    | Acryloyl-CoA reductase electron transfer subunit gamma | etfA       |              | 98.2  | 0         | WP_011989026 | electron transfer flavoprotein subunit alpha [Clostridium kluyveri] |
| CK_01047    | Acryloyl-CoA reductase electron transfer subunit beta  | etfB       |              | 98.8  | 0         | WP_011989025 | electron transfer flavoprotein subunit beta [Clostridium kluyveri]  |
| CK_01048    | butyryl-CoA dehydrogenase                              | bcd        | EC:1.3.8.1   | 95.8  | 0         | WP_011989024 | acyl-CoA dehydrogenase [Clostridium kluyveri]                       |
| CK_01049    | 3-hydroxybutyryl-CoA dehydratase                       | crt        | EC:4.2.1.55  | 98.5  | 0         | WP_011989023 | crotonase [Clostridium kluyveri]                                    |
| Desulfovibr | io vulgaris-Ethanol metabolism                         |            |              |       |           |              |                                                                     |
| DV_00409    | NADP-dependent alcohol dehydrogenase                   | yqhD       | EC:1.1       | 97.9  | 0         | WP_010939476 | NADH-dependent alcohol dehydrogenase [Desulfovibrio vulgaris]       |
| DV_01064    | NADP-dependent alcohol dehydrogenase                   | yqhD       | EC:1.1       | 100.0 | 0         | WP_010939476 | NADH-dependent alcohol dehydrogenase [Desulfovibrio vulgaris]       |
| DV_01916    | alcohol dehydrogenase, iron-containing                 | adh        | EC:1.1.1.1   | 99.1  | 7.00E-153 | WP_010940145 | alcohol dehydrogenase [Desulfovibrio vulgaris]                      |
| DV_02002    | 3-deoxy-alpha-D-manno-octulosonate                     | kdnB       | EC:1.1.3.48  | 100.0 | 3.00E-71  | WP_010937660 | alcohol dehydrogenase [Desulfovibrio vulgaris]                      |

|            | 8-oxidase                                        |          |             |       |           |              |                                                                             |
|------------|--------------------------------------------------|----------|-------------|-------|-----------|--------------|-----------------------------------------------------------------------------|
| DV_02751   | alcohol dehydrogenase                            | yiaY     | EC:1.1.1.1  | 100.0 | 0         | WP_010939677 | alcohol dehydrogenase [Desulfovibrio vulgaris]                              |
| DV_02212   | aldehyde:ferredoxin oxidoreductase               | aor      | EC:1.2.7.5  | 99.6  | 3.00E-179 | WP_011792756 | aldehyde ferredoxin oxidoreductase [Desulfovibrio vulgaris]                 |
| DV_01138   | aldehyde dehydrogenase, iron-sulfu:<br>subunit   | r        |             | 99.0  | 0         | WP_011792354 | 4Fe-4S ferredoxin [Desulfovibrio vulgaris]                                  |
| DV_00071   | aldehyde oxidoreductase<br>(FAD-independent)     | e<br>mop | EC:1.2.99.7 | 99.9  | 0         | WP_011792353 | aldehyde oxidoreductase [Desulfovibrio vulgaris]                            |
| DV_00072   | molybdopterin biosynthesis protein               |          |             | 100.0 | 0         | WP_010938852 | molybdopterin biosynthesis protein [Desulfovibrio vulgaris]                 |
| Acetoanaer | obium sticklandii-pyruvate to acetyl-Co          | A        |             |       |           |              |                                                                             |
| CS_00432   | pyruvate-ferredoxin/flavodoxin<br>oxidoreductase | porl     | EC:1.2.7.1  | 98.0  | 0         | WP_013362125 | pyruvate:ferredoxin (flavodoxin) oxidoreductase [[Clostridium] sticklandii] |
| CS_00649   | pyruvate-ferredoxin/flavodoxin<br>oxidoreductase | por      | EC:1.2.7.1  | 96.3  | 0         | SCG83877     | putative pyruvate-flavodoxin oxidoreductase [Proteiniborus sp. DW1]         |

| Acetoanae | Acetoanaerobium sticklandii-reverse β-oxidation |                  |                     |       |           |              |                                                                          |  |  |  |  |
|-----------|-------------------------------------------------|------------------|---------------------|-------|-----------|--------------|--------------------------------------------------------------------------|--|--|--|--|
| CS_00221  | enoyl-CoA hydratase-isomerase                   | paaF             | EC:4.2.1.17         | 98.4  | 0         | WP_013361345 | crotonase [[Clostridium] sticklandii]                                    |  |  |  |  |
| CS_00222  | 3-hydroxybutyryl-CoA dehydrogenase              | paaH             | EC:1.1.1.157        | 99.6  | 0         | CBH21253     | 3-hydroxybutyryl-CoA dehydrogenase [[Clostridium] sticklandii]           |  |  |  |  |
| CS_00704  | 3-hydroxyacyl-CoA dehydrogenase<br>precursor    | e                | EC:1.1.1.35         | 99.0  | 0         | WP_013360419 | 3-hydroxyacyl-CoA dehydrogenase [[Clostridium] sticklandii]              |  |  |  |  |
| CS_00929  | NADH dehydrogenase                              | ndh              | EC:1.6.99.3         | 99.7  | 0         | WP_013361632 | pyridine nucleotide-disulfide oxidoreductase [[Clostridium] sticklandii] |  |  |  |  |
| CS_01444  | Acyl-CoA dehydrogenase, short-chain specific    | n<br>ACADS       | EC:1.3.8.1          | 100.0 | 0         | WP_013361348 | acyl-CoA dehydrogenase [[Clostridium] sticklandii]                       |  |  |  |  |
| CS_01937  | Acryloyl-CoA reductase electron transfe         | r<br><i>etfA</i> |                     | 99.7  | 0         | WP_013361350 | electron transfer flavoprotein subunit alpha [[Clostridium] sticklandii] |  |  |  |  |
| CS_01298  | Acetate CoA-transferase subunit alpha           | atoD             | EC:2.8.3.8; 2.8.3.9 | 94.9  | 8.00E-136 | SCG81852     | butyrate-acetoacetate CoA-transferase [Proteiniborus sp. DW1]            |  |  |  |  |
| CS_01299  | Acetyl-CoA acetyltransferase                    | atoB             | EC:2.3.1.9          | 84.7  | 0         | SHK32546     | acetyl-CoA C-acetyltransferase [Caminicella sporogenes DSM 14501]        |  |  |  |  |
| CS_01905  | Acetyl-CoA acetyltransferase                    | atoB             | EC:2.3.1.9          | 97.1  | 2.00E-167 | WP_013361347 | acetyl-CoA acetyltransferase [[Clostridium] sticklandii]                 |  |  |  |  |

|          | acetate                | CoA/acetoacetate | e         |                     |       |           |              | acetyl CoA-acetoacetyl-CoA transferase subunit alpha [[Clostridium]   |
|----------|------------------------|------------------|-----------|---------------------|-------|-----------|--------------|-----------------------------------------------------------------------|
| CS_00212 | CoA-transferase alpha  | subunit          | atoD      | EC:2.8.3.8; 2.8.3.9 | 99.1  | 1.00E-150 | WP_013361336 | sticklandii]                                                          |
| CS_00213 | acetate                | CoA/acetoacetate | e<br>atoA | EC:2.8.3.8; 2.8.3.9 | 100.0 | 7.00E-152 | WP_013361337 | succinyl-CoA-3-ketoacid-CoA transferase [[Clostridium] sticklandii]   |
| CS_00230 | phosphate butyryltrans | ferase           | ptb       | EC:2.3.1.19         | 98.0  | 0         | WP_013360706 | phosphate butyryltransferase [[Clostridium] sticklandii]              |
| CS_00338 | phosphate butyryltrans | ferase           | ptb       | EC:2.3.1.19         | 99.0  | 0         | WP_013360427 | phosphate butyryltransferase [[Clostridium] sticklandii]              |
| CS_01302 | phosphate butyryltrans | ferase           | ptb       | EC:2.3.1.19         | 99.7  | 0         | WP_013361368 | phosphate butyryltransferase [[Clostridium] sticklandii]              |
| CS_00229 | butyrate kinase        |                  | buk       | EC:2.7.2.7          | 99.4  | 0         | CBH20614     | putative butyrate kinase (BK) (Branched-chain carboxylic acid kinase) |
|          |                        |                  |           |                     |       |           |              | [[Clostridium] sticklandii]                                           |
| CS_00231 | butyrate kinase        |                  | buk       | EC:2.7.2.7          | 99.4  | 0         | WP_013360705 | butyrate kinase [[Clostridium] sticklandii]                           |
| CS_00537 | butyrate kinase        |                  | buk       | EC:2.7.2.7          | 97.2  | 0         | WP_013360976 | butyrate kinase [[Clostridium] sticklandii]                           |
| CS_01543 | butyrate kinase        |                  | buk       | EC:2.7.2.7          | 91.3  | 0         | SCG84000     | butyrate kinase [Proteiniborus sp. DW1]                               |
| CS_02050 | butyrate kinase        |                  | buk       | EC:2.7.2.7          | 91.9  | 0         | SCG84002     | butyrate kinase [Proteiniborus sp. DW1]                               |

| CS_00363 | NADH dehydrogenase              |             | EC:1.6.5.3  | 100.0 | 5.00E-110 | WP_013361876 | NADH dehydrogenase [[Clostridium] sticklandii]                           |
|----------|---------------------------------|-------------|-------------|-------|-----------|--------------|--------------------------------------------------------------------------|
| CS_01380 | NADH dehydrogenase              | ndh         | EC:1.6.99.3 | 94.8  | 2.00E-126 | SCG83971     | NADH dehydrogenase [Proteiniborus sp. DW1]                               |
| CS_01647 | NADPH dehydrogenase             | namA        | EC 1.6.99.1 | 76.9  | 0         | SDY55985     | NADPH2 dehydrogenase [Proteiniborus ethanoligenes]                       |
| CS_01567 | NAD(P)H dehydrogenase (quinone) | wrbA        | EC 1.6.5.2  | 75.9  | 1.00E-114 | WP_005587815 | flavoprotein WrbA [[Clostridium] sticklandii]                            |
| CS_00663 | NADP-thioredoxin reductase      | <i>trxB</i> | EC 1.8.1.9  | 98.8  | 0         | WP_013361651 | pyridine nucleotide-disulfide oxidoreductase [[Clostridium] sticklandii] |
| CS_01384 | FerredoxinNADP reductase        |             |             | 31.8  | 1.8       | XP_002956436 | hypothetical protein VOLCADRAFT_121523 [Volvox carteri f. nagariensis]   |

# Appendix II Table

| CDS         | Predicted function                                    | Gene name Enzyme commission     | Identity (%)     | e-value      | Accession no. | Closely related protein                                                                                                                          |
|-------------|-------------------------------------------------------|---------------------------------|------------------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Clostridiun | <i>n kluyveri-</i> Membrane proteins involved i       | n energy conservation-Rnf comp  | lex              |              |               |                                                                                                                                                  |
| CK_01888    | B Electron transport complex protein RnfC             | rnfC                            | 98.9             | 0            | BAH06211      | hypothetical protein CKR 1160 [Clostridium kluyveri NBRC 12016]                                                                                  |
| CK_01889    | Electron transport complex protein RnfD               | rnfD                            | 100.0            | 0            | WP_012101651  | NADH:ubiquinone oxidoreductase [Clostridium kluyveri]                                                                                            |
| CK_01890    | Electron transport complex protein RnfG               | rnfG                            | 99.5             | 3.00E-128    | BAH06213      | hypothetical protein CKR 1162 [Clostridium kluyveri NBRC 12016]                                                                                  |
| CK_01891    | Electron transport complex protein RnfE               | rnfE                            | 99.5             | 1.00E-148    | WP_012101653  | electron transport complex subunit RsxE [Clostridium kluyveri]                                                                                   |
| CK_01892    | 2 Electron transport complex protein RnfA             | rnfA                            | 99.0             | 2.00E-127    | WP_012101654  | electron transport complex subunit RsxA [Clostridium kluyveri]                                                                                   |
| CK_01893    | Electron transport complex protein RnfB               | rnfB                            | 97.9             | 0            | WP_012101655  | protein RnfB [Clostridium kluyveri]                                                                                                              |
| Clostridiun | n kluyveri-Membrane proteins involved i               | n energy conservation-FAD (or F | e-S) reductase l | inked to ETI | 7             |                                                                                                                                                  |
| CK_03656    | j putative FAD-linked oxidoreductase                  |                                 | 98.9             | 0            | BAH08153      | hypothetical protein CKR 3102 [ <i>Clostridium kluyveri</i> NBRC 12016];<br>FAD/FMN-containing dehydrogenase [Energy production and conversion]; |
| CK_03657    | Acryloyl-CoA reductase electron transfer subunit beta | etfB                            | 96.4             | 0            | WP_012103838  | electron transfer flavoprotein subunit alpha [Clostridium kluyveri]                                                                              |

| CK_03658    | Acryloyl-CoA reductase electron transfer subunit gamma                                                                  | etfA         |                       | 95.7        | 9.00E-142     | WP_012103839       | hypothetical protein [Clostridium kluyveri]                             |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-------------|---------------|--------------------|-------------------------------------------------------------------------|--|--|--|--|--|
| Clostridium | Clostridium kluyveri-Membrane proteins involved in energy conservation-FAD (or Fe-S) reductase linked to ETF-Fix system |              |                       |             |               |                    |                                                                         |  |  |  |  |  |
| CK_02710    | 6-hydroxynicotinate reductase                                                                                           | fixX         |                       | 90.7        | 2.00E-60      | WP_012101891       | 4Fe-4S ferredoxin [Clostridium kluyveri]                                |  |  |  |  |  |
| CK_02711    | Electron transfer<br>flavoprotein-ubiquinone oxidoreductase                                                             | fixC         | EC:1.5.5              | 82.1        | 0             | WP_063553767       | nitrogen fixation protein FixC [Clostridium ljungdahlii]                |  |  |  |  |  |
| CK_02712    | electron transfer flavoprotein alpha<br>subunit                                                                         | fixB         |                       | 73.0        | 0             | WP_066622777       | electron transfer flavoprotein subunit alpha [Clostridium magnum]       |  |  |  |  |  |
| CK_02713    | electron transfer flavoprotein beta<br>subunit                                                                          | fixA         |                       | 82.2        | 1.00E-164     | WP_058953659       | electron transfer flavoprotein subunit beta [Clostridium tyrobutyricum] |  |  |  |  |  |
| Clostridium | kluyveri-Membrane proteins involved in a                                                                                | energy conse | rvation-FAD (or Fe-S) | ) reductase | linked to ETF | F-Fix system-ATPas | e                                                                       |  |  |  |  |  |
| CK_00434    | F-type H+-transporting ATPase subunit epsilon                                                                           | atpC         |                       | 96.2        | 2.00E-85      | WP_012104005       | ATP synthase epsilon chain [Clostridium kluyveri]                       |  |  |  |  |  |
| CK_00435    | F-type H+-transporting ATPase subunit beta                                                                              | atpD         | EC:3.6.3.14           | 99.4        | 0             | BAH08304           | hypothetical protein CKR 3253 [Clostridium kluyveri NBRC 12016]         |  |  |  |  |  |
| CK_00436    | F-type H+-transporting ATPase subunit gamma                                                                             | atpG         |                       | 97.9        | 0             | WP_012104007       | ATP synthase subunit gamma [Clostridium kluyveri]                       |  |  |  |  |  |
| CK_00437    | F-type H+-transporting ATPase subunit alpha                                                                             | atpA         | EC:3.6.3.14           | 99.2        | 0             | WP_012621009       | ATP synthase subunit alpha [Clostridium kluyveri]                       |  |  |  |  |  |
| CK_00438    | F-type H+-transporting ATPase subunit delta                                                                             | atpH         |                       | 96.1        | 2.00E-119     | WP_012104009       | ATP synthase subunit delta [Clostridium kluyveri]                       |  |  |  |  |  |

| CK_00439                                                    | F-type H+-transporting ATPase subunit b                                                                                                                                                                                            | atpF                                        |                | 98.1                         | 9.00E-108                       | BAH08308                                                     | hypothetical protein CKR 3257 [Clostridium kluyveri NBRC 12016]                                                                                                                                                                                                                                   |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------|------------------------------|---------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CK_00440                                                    | F-type H+-transporting ATPase subunit c                                                                                                                                                                                            | atpE                                        |                | 100.0                        | 5.00E-47                        | WP_012104011                                                 | ATP synthase F0 subunit C [Clostridium kluyveri]                                                                                                                                                                                                                                                  |
| CK_00441                                                    | F-type H+-transporting ATPase subunit a                                                                                                                                                                                            | atpB                                        |                | 98.7                         | 9.00E-158                       | WP_012104012                                                 | F0F1 ATP synthase subunit A [Clostridium kluyveri]                                                                                                                                                                                                                                                |
| CK_00442                                                    | ATP synthase protein I                                                                                                                                                                                                             | atpI                                        |                | 100.0                        | 9.00E-78                        | WP_073540696                                                 | ATP synthase subunit I [Clostridium kluyveri]                                                                                                                                                                                                                                                     |
| CK_01313                                                    | flagellum-specific ATP synthase                                                                                                                                                                                                    | fliI                                        | EC:3.6.3.14    | 98.9                         | 0                               | WP_012101535                                                 | flagellar protein export ATPase FliI [Clostridium kluyveri]                                                                                                                                                                                                                                       |
| CK_01044                                                    | ferredoxin-NADP+ reductase                                                                                                                                                                                                         | fpr                                         | EC:1.18.1.2    | 98.3                         | 0                               | WP_011989028                                                 | ferredoxin-NADP+ reductase subunit alpha [Clostridium kluyveri]                                                                                                                                                                                                                                   |
|                                                             |                                                                                                                                                                                                                                    |                                             |                |                              |                                 |                                                              |                                                                                                                                                                                                                                                                                                   |
| Clostridium                                                 | <i>kluyveri-</i> Hydrogenases-Periplasmic [NiFo                                                                                                                                                                                    | eSe] hydrog                                 | genase complex |                              |                                 |                                                              |                                                                                                                                                                                                                                                                                                   |
| Clostridium<br>CK_02733                                     | kluyveri-Hydrogenases-Periplasmic [NiFe<br>Hydrogenase expression/formation<br>protein HypE                                                                                                                                        | eSe] hydrog<br>hypE                         | genase complex | 73.9                         | 0                               | WP_053240720                                                 | hydrogenase expression/formation protein HypE [Clostridium sp. DMHC 10]                                                                                                                                                                                                                           |
| Clostridium<br>CK_02733<br>CK_02734                         | e kluyveri-Hydrogenases-Periplasmic [NiFe<br>Hydrogenase expression/formation<br>protein HypE<br>Hydrogenase isoenzymes formation<br>protein HypD                                                                                  | eSe] hydrog<br>hypE<br>hypD                 | genase complex | 73.9<br>59.5                 | 0<br>6.00E-153                  | WP_053240720<br>WP_016206877                                 | hydrogenase expression/formation protein HypE [Clostridium sp. DMHC 10]<br>hydrogenase formation protein HypD [Clostridium sartagoforme]                                                                                                                                                          |
| Clostridium<br>CK_02733<br>CK_02734<br>CK_02735             | e kluyveri-Hydrogenases-Periplasmic [NiFe<br>Hydrogenase expression/formation<br>protein HypE<br>Hydrogenase isoenzymes formation<br>protein HypD<br>Hydrogenase isoenzymes formation<br>protein HypC                              | eSe] hydrog<br>hypE<br>hypD<br>hypC         | genase complex | 73.9<br>59.5<br>83.3         | 0<br>6.00E-153<br>8.00E-35      | WP_053240720<br>WP_016206877<br>WP_053240721                 | hydrogenase expression/formation protein HypE [ <i>Clostridium</i> sp. DMHC 10]<br>hydrogenase formation protein HypD [ <i>Clostridium sartagoforme</i> ]<br>hydrogenase assembly protein HypC [ <i>Clostridium</i> sp. DMHC 10]                                                                  |
| Clostridium<br>CK_02733<br>CK_02734<br>CK_02735<br>CK_02736 | e kluyveri-Hydrogenases-Periplasmic [NiFe<br>Hydrogenase expression/formation<br>protein HypE<br>Hydrogenase isoenzymes formation<br>protein HypD<br>Hydrogenase isoenzymes formation<br>protein HypC<br>Carbamoyltransferase HypF | eSe] hydrog<br>hypE<br>hypD<br>hypC<br>hypF | genase complex | 73.9<br>59.5<br>83.3<br>53.1 | 0<br>6.00E-153<br>8.00E-35<br>0 | WP_053240720<br>WP_016206877<br>WP_053240721<br>WP_065418234 | hydrogenase expression/formation protein HypE [ <i>Clostridium</i> sp. DMHC 10]<br>hydrogenase formation protein HypD [ <i>Clostridium sartagoforme</i> ]<br>hydrogenase assembly protein HypC [ <i>Clostridium</i> sp. DMHC 10]<br>carbamoyltransferase HypF [ <i>Clostridium beijerinckii</i> ] |

| CK_02738    | Cytochrome b5-like Heme/Steroid                          |      |              | 60.3  | 3.00E-50  | AF323616_4   | HypQ3 (plasmid) [Clostridium acetobutylicum ATCC 824]                |
|-------------|----------------------------------------------------------|------|--------------|-------|-----------|--------------|----------------------------------------------------------------------|
|             | binding domain protein (putative                         |      |              |       |           |              |                                                                      |
| CK_02739    | Hydrogenase 3 maturation protease                        | hyaD | EC:3.4.23    | 63.7  | 2.00E-59  | KZL89330     | hydrogenase 2 maturation endopeptidase [Clostridium magnum DSM 2767] |
| CK_02740    | Periplasmic [NiFeSe] hydrogenase large<br>subunit        | hyaA | EC:1.12.99.6 | 74.9  | 0         | WP_066023448 | Ni/Fe hydrogenase [Clostridium pasteurianum]                         |
| CK_02741    | Periplasmic [NiFeSe] hydrogenase small subunit precursor | hyaB | EC:1.12.99.6 | 82.5  | 0         | WP_066023447 | Ni/Fe hydrogenase [Clostridium pasteurianum]                         |
| Clostridium | kluyveri-Hydrogenases-Iron hydrogenas                    | e    |              |       |           |              |                                                                      |
| CK_00654    | ferredoxin hydrogenase                                   | hydA | EC:1.12.7.2  | 98.4  | 0         | WP_012102599 | ferredoxin [Clostridium kluyveri]                                    |
| CK_00728    | Iron hydrogenase 1                                       |      |              | 98.0  | 0         | WP_011988737 | iron hydrogenase [Clostridium kluyveri]                              |
| Desulfovibr | io vulgaris-Hydrogenase                                  |      |              |       |           |              |                                                                      |
| DV_01116    | Periplasmic [NiFe] hydrogenase large<br>subunit          | hydA | EC:1.12.2.1  | 99.6  | 0         | WP_010939208 | hydrogenase 2 large subunit [Desulfovibrio vulgaris]                 |
| DV_01117    | Hydrogenase 1 maturation protease                        | hyaD | EC:3.4.23    | 100.0 | 2.00E-115 | WP_010939209 | hydrogenase expression/formation protein [Desulfovibrio vulgaris]    |
| DV_01118    | Hydrogenase-2 operon protein HybG                        |      |              | 100.0 | 1.00E-51  | WP_010939210 | hydantoin utilization protein B [Desulfovibrio vulgaris]             |
| DV_01335    | Periplasmic [NiFe] hydrogenase large<br>subunit          | hydA | EC:1.12.2.1  | 100.0 | 0         | WP_010939796 | hydrogenase 2 large subunit [Desulfovibrio vulgaris]                 |

| DV_01367 | Hydrogenase 1 maturation protease                           | hyaD | EC:3.4.23    | 100.0 | 2.00E-110 | WP_010939205 | HybD peptidase [Desulfovibrio vulgaris]                                                              |
|----------|-------------------------------------------------------------|------|--------------|-------|-----------|--------------|------------------------------------------------------------------------------------------------------|
| DV_01368 | Periplasmic [NiFeSe] hydrogenase large<br>subunit           | hyaB | EC:1.12.99.6 | 99.7  | 0         | 2WPN_B       | Chain B, Structure Of The Oxidised, As-isolated Nifese Hydrogenase From<br>D. Vulgaris Hildenborough |
| DV_01409 | putative Ni/Fe-hydrogenase 2 b-type cytochrome subunit      |      |              | 100.0 | 0         | WP_010937840 | hypothetical protein [Desulfovibrio vulgaris]                                                        |
| DV_01809 | NAD(P)H-quinone oxidoreductase<br>subunit J, chloroplastic  |      |              | 100.0 | 6.00E-91  | WP_010937738 | ech hydrogenase subunit EchD [Desulfovibrio vulgaris]                                                |
| DV_01810 | Formate hydrogenlyase subunit 7                             |      |              | 100.0 | 2.00E-109 | WP_010937739 | NADH ubiquinone oxidoreductase [Desulfovibrio vulgaris]                                              |
| DV_01811 | Hydrogenase-4 component C                                   |      |              | 100.0 | 0         | WP_010937740 | ech hydrogenase subunit EchB [Desulfovibrio vulgaris]                                                |
| DV_01981 | Cytochrome c3                                               |      |              | 100.0 | 3.00E-98  | WP_014524526 | cytochrome c [Desulfovibrio vulgaris]                                                                |
| DV_01982 | [NiFe] hydrogenase small subunit                            | hydA | EC:1.12.2.1  | 99.1  | 0         | WP_014524527 | [NiFe] hydrogenase small subunit [Desulfovibrio vulgaris]                                            |
| DV_02012 | Hydrogenase-4 component B                                   |      |              | 99.7  | 0         | WP_011791959 | oxidoreductase [Desulfovibrio vulgaris]                                                              |
| DV_02291 | Hydrogenase isoenzymes nickel<br>incorporation protein HypB | hypB |              | 100.0 | 5.00E-118 | WP_010939602 | hydrogenase nickel incorporation protein HypB [Desulfovibrio vulgaris]                               |
| DV_02299 | Hydrogenase expression/formation protein HypE               | hypE |              | 100.0 | 0         | 2Z1T_A       | Chain A, Crystal Structure Of Hydrogenase Maturation Protein Hype                                    |
| DV_02318 | Iron-sulfur protein                                         |      |              | 100.0 | 3.00E-122 | WP_010939568 | iron-sulfur protein [Desulfovibrio vulgaris]                                                         |

| DV_02319    | Hydrogenase/urease nickel incorporation<br>protein HypA | hypA                  | 99.2        | 4.00E-79  | WP_010939567 | hydrogenase nickel incorporation protein HypA [Desulfovibrio vulgaris] |
|-------------|---------------------------------------------------------|-----------------------|-------------|-----------|--------------|------------------------------------------------------------------------|
| DV_02320    | Formate hydrogenlyase subunit 5                         |                       | 99.3        | 3.00E-98  | WP_011791954 | carbon monoxide-induced hydrogenase [Desulfovibrio vulgaris]           |
| DV_02634    | Formate dehydrogenase subunit alpha                     | fdnG-1 EC:1.          | 2.1.2 100.0 | 0         | WP_010937890 | formate dehydrogenase-N subunit alpha [Desulfovibrio vulgaris]         |
| Desulfovibr | <i>io vulgaris-</i> Membrane proteins involved in       | n energy conservation |             |           |              |                                                                        |
| DV_00397    | electron transport complex protein RnfE                 | rnfE                  | 99.0        | 2.00E-64  | WP_010940061 | electron transport complex subunit RsxE [Desulfovibrio vulgaris]       |
| DV_00398    | electron transport complex protein RnfA                 | rnfA                  | 100.0       | 1.00E-133 | WP_010940062 | electron transport complex protein RnfA [Desulfovibrio vulgaris]       |
| DV_00399    | electron transport complex protein RnfB                 | rnfB                  | 100.0       | 0         | WP_010940063 | ferredoxin [Desulfovibrio vulgaris]                                    |
| DV_00959    |                                                         | cytC                  | 100.0       | 0         | WP_010940057 | cytochrome c [Desulfovibrio vulgaris]                                  |
| DV_00960    | electron transport complex protein RnfC                 | rnfC                  | 100.0       | 0         | WP_010940058 | electron transport complex protein RnfC [Desulfovibrio vulgaris]       |
| DV_00961    | electron transport complex protein RnfD                 | rnfD                  | 100.0       | 0         | WP_010940059 | electron transport complex protein RnfD [Desulfovibrio vulgaris]       |
| DV_00604    | ATP synthase subunit b, sodium ion specific             | atpF                  | 100.0       | 1.00E-91  | WP_011792709 | ATP synthase F0 subunit B' [Desulfovibrio vulgaris]                    |
| DV_00605    | ATP synthase subunit b                                  | atpF                  | 100.0       | 7.00E-132 | WP_011792710 | ATP synthase subunit B [Desulfovibrio vulgaris]                        |

| DV_00606    | ATP synthase subunit delta                       | atpH |             | 100.0 | 7.00E-126 | WP_010938079 | ATP synthase subunit delta [Desulfovibrio vulgaris]                                  |
|-------------|--------------------------------------------------|------|-------------|-------|-----------|--------------|--------------------------------------------------------------------------------------|
| DV_00607    | ATP synthase subunit alpha                       | atpA | EC:3.6.3.14 | 100.0 | 0         | WP_010938078 | ATP synthase subunit alpha [Desulfovibrio vulgaris]                                  |
| DV_00608    | ATP synthase gamma chain                         | atpG |             | 100.0 | 0         | WP_010938077 | ATP synthase subunit gamma [Desulfovibrio vulgaris]                                  |
| DV_00609    | ATP synthase subunit beta                        | atpD | EC:3.6.3.14 | 100.0 | 0         | WP_010938076 | ATP synthase subunit beta [Desulfovibrio vulgaris]                                   |
| DV_01506    | flagellum-specific ATP synthase                  | fliI | EC:3.6.3.14 | 100.0 | 0         | WP_010937617 | flagellum-specific ATP synthase FliI [Desulfovibrio vulgaris]                        |
| Acetoanaero | obium sticklandii-ATP synthase complex           |      |             |       |           |              |                                                                                      |
| CS_00193    | V-type ATP synthase subunit H                    |      |             | 96.2  | 5.00E-59  | WP_013362530 | hypothetical protein [[Clostridium] sticklandii]                                     |
| CS_00194    | V/A-type H+/Na+-transporting ATPase<br>subunit C | atpC |             | 94.5  | 0         | WP_013362529 | V-type sodium ATP synthase subunit C [[Clostridium] sticklandii]                     |
| CS_00195    | V/A-type H+/Na+-transporting ATPase<br>subunit I | atpI |             | 96.8  | 0         | WP_013362528 | V-type ATP synthase subunit I [[Clostridium] sticklandii]                            |
| CS_00196    | V/A-type H+/Na+-transporting ATPase<br>subunit K | atpK |             | 100.0 | 1.00E-87  | WP_013362527 | ATPase [[Clostridium] sticklandii]                                                   |
| CS_00197    | V/A-type H+/Na+-transporting ATPase<br>subunit F | atpF |             | 100.0 | 2.00E-67  | CBH22435     | Vacuolar H+-transporting two-sector ATPase, F subunit [[Clostridium]<br>sticklandii] |
| CS_00198    | V/A-type H+/Na+-transporting ATPase<br>subunit E | atpE |             | 98.6  | 1.00E-144 | WP_013362525 | hypothetical protein [[Clostridium] sticklandii]                                     |

| CS_00199 | V/A-type H+/Na+-transporting ATPase<br>subunit A | atpA | EC:3.6.3.14; 3.6.3.15 | 99.5  | 0         | WP_013362524 | ATP synthase subunit A [[Clostridium] sticklandii]          |
|----------|--------------------------------------------------|------|-----------------------|-------|-----------|--------------|-------------------------------------------------------------|
| CS_00200 | V/A-type H+/Na+-transporting ATPase<br>subunit B | atpB |                       | 99.8  | 0         | WP_013362523 | V-type ATP synthase subunit B [[Clostridium] sticklandii]   |
| CS_00201 | V/A-type H+/Na+-transporting ATPase<br>subunit D | atpD |                       | 99.0  | 8.00E-142 | WP_013362522 | ATPase [[Clostridium] sticklandii]                          |
| CS_00312 | F-type H+-transporting ATPase subunit alpha      | atpA | EC:3.6.3.14           | 100.0 | 4.00E-84  | WP_013362330 | ATP synthase subunit alpha [[Clostridium] sticklandii]      |
| CS_00313 | F-type H+-transporting ATPase subunit gamma      | atpG |                       | 98.6  | 0         | WP_013362329 | ATP synthase F1 subunit gamma [[Clostridium] sticklandii]   |
| CS_00314 | F-type H+-transporting ATPase subunit beta       | atpD | EC:3.6.3.14           | 99.1  | 0         | WP_013362328 | ATP synthase subunit beta [[Clostridium] sticklandii]       |
| CS_00315 | F-type H+-transporting ATPase subunit epsilon    | atpC |                       | 97.0  | 1.00E-87  | WP_013362327 | ATP synthase F1 subunit epsilon [[Clostridium] sticklandii] |
| CS_00416 | F-type H+-transporting ATPase subunit delta      | atpH |                       | 96.1  | 2.00E-118 | WP_013362331 | F0F1 ATP synthase subunit delta [[Clostridium] sticklandii] |
| CS_00417 | F-type H+-transporting ATPase subunit b          | atpF |                       | 98.2  | 3.00E-112 | WP_013362332 | ATP synthase F0 subunit B [[Clostridium] sticklandii]       |
| CS_00418 | F-type H+-transporting ATPase subunit c          | atpE |                       | 97.6  | 2.00E-47  | WP_013362333 | ATP synthase F0 subunit C [[Clostridium] sticklandii]       |
| CS_00419 | F-type H+-transporting ATPase subunit a          | atpB |                       | 93.7  | 1.00E-136 | WP_013362334 | ATP synthase F0 subunit A [[Clostridium] sticklandii]       |
| CS_00420 | ATP synthase subunit I                           | atpI |                       | 76.0  | 2.00E-59  | WP_013362335 | ATP synthase I [[Clostridium] sticklandii]                  |

| CS_00421    | ATP synthase protein I                                  | atpI        |                        | 79.8 | 3.00E-45  | CBH22244     | protein of unknown function [ [[Clostridium] sticklandii]       |
|-------------|---------------------------------------------------------|-------------|------------------------|------|-----------|--------------|-----------------------------------------------------------------|
| CS_01451    |                                                         |             |                        | 87.9 | 0         | WP_073028149 | hypothetical protein [Lutispora thermophila]                    |
| CS_01977    |                                                         |             |                        | 96.5 | 8.00E-53  | SCG83516     | UPF0296 protein [Proteiniborus sp. DW1]                         |
| CS_01984    | V/A-type H+/Na+-transporting ATPase<br>subunit C        | atpC        |                        | 72.5 | 1.00E-26  | WP_072975129 | hypothetical protein [Tissierella praeacuta]                    |
| Acetoanaero | obium sticklandii-Hydrogenase (putative o               | electron-bi | furcating hydrogenase) |      |           |              |                                                                 |
| CS_00402    | NADH-quinone oxidoreductase subunit<br>G                | nuoG        | EC:1.6.5.3             | 99.1 | 0         | WP_013361125 | NADH:ubiquinone oxidoreductase [[Clostridium] sticklandii]      |
| CS_00403    | NADH-quinone oxidoreductase subunit<br>F                | nuoF        | EC:1.6.5.3             | 99.2 | 0         | WP_013361126 | NADH dehydrogenase [[Clostridium] sticklandii]                  |
| CS_00404    | NADH-quinone oxidoreductase subunit<br>E                | nuoE        | EC:1.6.5.3             | 99.3 | 4.00E-96  | WP_013361127 | NADH:ubiquinone oxidoreductase [[Clostridium] sticklandii]      |
| Acetoanaero | obium sticklandii-Formate dehydrogenase                 | 3           |                        |      |           |              |                                                                 |
| CS_00819    | formate dehydrogenase major subunit                     | fdfH        | EC:1.2.1.2             | 98.8 | 0         | CBH20954     | Formate dehydrogenase alpha chain [ [[Clostridium] sticklandii] |
| CS_00820    | formate dehydrogenase-H, [4Fe-4S]<br>ferredoxin subunit | fdhB        |                        | 98.3 | 3.00E-123 | WP_013361048 | electron transporter HydN [[Clostridium] sticklandii]           |

# Appendix III Table

| CDS         | Predicted function                                                  | Gene name    | Enzyme commission | Identity (%) | e-value   | Accession no. | Closely related protein                                                           |  |  |  |  |  |
|-------------|---------------------------------------------------------------------|--------------|-------------------|--------------|-----------|---------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
| Acetoanaero | Acetoanaerobium sticklandii-amino acid metabolism-serine metabolism |              |                   |              |           |               |                                                                                   |  |  |  |  |  |
| CS_00099    | D-serine dehydratase                                                | dsdA         | EC:4.3.1.18       | 97.6         | 0         | WP_013360725  | D-serine ammonia-lyase [[Clostridium] sticklandii]                                |  |  |  |  |  |
| CS_00564    | L-serine dehydratase                                                |              |                   | 95.8         | 0         | WP_013362579  | hypothetical protein [[Clostridium] sticklandii]                                  |  |  |  |  |  |
| CS_01160    | L-serine dehydratase                                                | sdhA         | EC:4.3.1.17       | 82.1         | 1.00E-166 | SDZ22446      | L-serine dehydratase [Proteiniborus ethanoligenes]                                |  |  |  |  |  |
| CS_01161    | L-serine dehydratase                                                | sdhA         | EC:4.3.1.17       | 92.4         | 4.00E-147 | SCG82933      | L-serine dehydratase, iron-sulfur-dependent, beta subunit [Proteiniborus sp. DW1] |  |  |  |  |  |
| Acetoanaero | bium sticklandii-amino acid metabolisi                              | m-arginine d | eiminase          |              |           |               |                                                                                   |  |  |  |  |  |
| CS_01599    | arginine utilization regulatory protein                             | rocR         |                   | 85.4         | 0         | SCG81785      | Arginine utilization regulatory protein rocR [Proteiniborus sp. DW1]              |  |  |  |  |  |
| CS_00041    | ornithine carbamoyltransferase                                      | arcB         | EC:2.1.3.3        | 98.4         | 0         | WP_013361145  | ornithine carbamoyltransferase [[Clostridium] sticklandii]                        |  |  |  |  |  |
| CS_01695    | ornithine carbamoyltransferase                                      | arcB         | EC:2.1.3.3        | 92.1         | 0         | SDZ19422      | ornithine carbamoyltransferase [Proteiniborus ethanoligenes]                      |  |  |  |  |  |
| CS_00040    | carbamate kinase                                                    | arcC         | EC:2.7.2.2        | 99.7         | 0         | WP_013361146  | carbamate kinase [[Clostridium] sticklandii]                                      |  |  |  |  |  |

| Acelounderoo | um suckunuu-annio aciu metabolisi             | n-cysteme me   | tabolishi          |                |           |              |                                                                                             |
|--------------|-----------------------------------------------|----------------|--------------------|----------------|-----------|--------------|---------------------------------------------------------------------------------------------|
| CS_01387     | 4,5-DOPA dioxygenase extradiol                | DOPA           | EC:1.13.11         | 96.4           | 4.00E-179 | WP_041487119 | dioxygenase [[Clostridium] sticklandii]                                                     |
| CS_01758     | cystathione beta-lyase                        | patB           | EC:4.4.1.8         | 95.9           | 5.00E-133 | SCG82539     | aminotransferase [Proteiniborus sp. DW1]                                                    |
| CS_00259     | cysteine desulfurase                          | iscS           | EC:2.8.1.7         | 99.5           | 0         | WP_013361707 | cysteine desulfurase NifS [[Clostridium] sticklandii]                                       |
| CS_00920     | cysteine desulfurase                          | iscS           | EC:2.8.1.7         | 99.2           | 0         | WP_013361658 | cysteine desulfurase (tRNA sulfurtransferase), PLP-dependent [[Clostridium]<br>sticklandii] |
| CS_01415     | cysteine synthase A                           | cysK           | EC:2.5.1.47        | 91.7           | 4.00E-142 | SCG83572     | cysteine synthase A [Proteiniborus sp. DW1]                                                 |
| Acetoanaerob | <i>ium sticklandii</i> -Alanine metabolism fo | or Stickland r | eaction (D-Ala >>> | L-Ala >>> pyrt | uvate)    |              |                                                                                             |
| CS_00093     | alanine dehydrogenase                         | ald            | EC:1.4.1.1         | 97.9           | 0         | WP_013360731 | alanine dehydrogenase [[Clostridium] sticklandii]                                           |
| CS_00318     | Alanine racemase                              | alr            | EC:5.1.1.1         | 98.7           | 0         | WP_013362324 | alanine racemase [[Clostridium] sticklandii]                                                |
| CS_00360     | Alanine racemase                              |                |                    | 97.0           | 2.00E-163 | WP_013362093 | YggS family pyridoxal phosphate enzyme [[Clostridium] sticklandii]                          |
| CS_01609     | Alanine racemase                              | alr            | EC:5.1.1.1         | 94.5           | 4.00E-123 | SCG82786     | alanine racemase [Proteiniborus sp. DW1]                                                    |

Acetoanaerobium sticklandii-amino acid metabolism-cysteine metabolism

Acetoanaerobium sticklandii-Glycine/betaine/sarcosine reductase complex and transporter

| CS_00283 | glycine reductase                   |      | EC:1.21.4.2                        | 99.5  | 0         | WP_013361329 | glycine/betaine reductase C [[Clostridium] sticklandii]                                                   |
|----------|-------------------------------------|------|------------------------------------|-------|-----------|--------------|-----------------------------------------------------------------------------------------------------------|
| CS_00284 | glycine reductase                   |      | EC:1.21.4.2                        | 99.2  | 0         | WP_013361328 | glycine/betaine reductase C [[Clostridium] sticklandii]                                                   |
| CS_00993 | thioredoxin 1                       | trxA |                                    | 100.0 | 1.00E-70  | WP_013361324 | thiol reductase thioredoxin [[Clostridium] sticklandii]                                                   |
| CS_00994 | glycine reductase                   |      | EC:1.21.4.2                        | 99.1  | 0         | WP_013361325 | glycine reductase complex component B subunits alpha and beta [[Clostridium] sticklandii]                 |
| CS_00995 | glycine/sarcosine/betaine reductase |      | EC:1.21.4.2;<br>1.21.4.3; 1.21.4.4 | 100.0 | 3.00E-22  | GRDA_CLOSD   | Glycine/sarcosine/betaine reductase complex component A                                                   |
| CS_00996 | glycine/sarcosine/betaine reductase |      | EC:1.21.4.2;<br>1.21.4.3; 1.21.4.4 | 97.2  | 4.00E-71  | WP_041487122 | glycine/betaine reductase A [[Clostridium] sticklandii]                                                   |
| CS_00997 | glycine reductase                   |      | EC:1.21.4.2                        | 98.0  | 0         | CAC14301     | 47 subunit of Protein B [[Clostridium] sticklandii DSM 519]                                               |
| CS_00998 | glycine reductase                   |      | EC:1.21.4.2                        | 100.0 | 1.00E-47  | WP_041487124 | glycine reductase [[Clostridium] sticklandii]                                                             |
| CS_01071 | glycine reductase                   |      | EC:1.21.4.2                        | 100.0 | 5.00E-50  | WP_041487117 | glycine reductase complex protein B subunit gamma [[Clostridium] sticklandii]                             |
| CS_01072 | glycine reductase                   |      | EC:1.21.4.2                        | 100.0 | 0         | CBH21180     | Betaine reductase complex component B subunit beta (Selenoprotein PB beta)<br>[[Clostridium] sticklandii] |
| CS_01073 | glycine reductase                   |      | EC:1.21.4.2                        | 99.1  | 0         | WP_013361272 | betaine reductase complex component B subunit alpha (Selenoprotein PB alpha) [[Clostridium] sticklandii]  |
| CS_01780 | glycine reductase                   |      | EC:1.21.4.2                        | 72.8  | 5.00E-103 | WP_025437076 | beta-aspartate methyltransferase [Peptoclostridium acidaminophilum]                                       |

| CS_01781 | glycine reductase                                      |      | EC:1.21.4.2 | 81.6 | 6.00E-37 | WP_028331194 | glycine reductase [Brachyspira alvinipulli]                                                                         |
|----------|--------------------------------------------------------|------|-------------|------|----------|--------------|---------------------------------------------------------------------------------------------------------------------|
|          |                                                        |      |             |      |          |              |                                                                                                                     |
| CS_01682 | glycine betaine transporter                            | opuD |             | 76.5 | 0        | WP_025640443 | choline transporter [[Clostridium] ultunense]                                                                       |
| CS_01407 | osmoprotectant transport system<br>ATP-binding protein | ориА |             | 95.9 | 0        | CBH20160     | putative transporter subunit: ATP-binding component of ABC superfamily<br>transporter [ [[Clostridium] sticklandii] |

# Appendix IV Table

| Gene name | Predicted function                                  | Enzyme commission<br>number | CDS       | Identity (%) | e-value   | Closely related protein                                                                                                                  |
|-----------|-----------------------------------------------------|-----------------------------|-----------|--------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| sdaA      | L-serine dehydratase                                | EC:4.3.1.17                 | 646283639 | 100.0        | 0         | EES64001.1 L-serine ammonia-lyase [Fusobacterium varium ATCC 27725]                                                                      |
| dsdA      | D-serine dehydratase                                | EC:4.3.1.18                 | 646283243 | 100.0        | 0         | EES64271.1 D-serine ammonia-lyase [Fusobacterium varium ATCC 27725]                                                                      |
| tdcB      | threonine dehydratase                               | EC:4.3.1.19                 | 646284129 | 98.3         | 3.85E-158 | OFL90702.1 threonine ammonia-lyase, partial [ <i>Fusobacterium</i> sp. HMSC073F01]                                                       |
| tdcB      | threonine dehydratase                               | EC:4.3.1.19                 | 646283773 | 100.0        | 2.31E-70  | EES63836.2 threonine ammonia-lyase domain protein, partial [ <i>Fusobacterium varium</i> ATCC 27725]                                     |
| tdcB      | threonine dehydratase                               | EC:4.3.1.19                 | 646283262 | 100.0        | 8.73E-70  | EES63836.2 threonine ammonia-lyase domain protein, partial [Fusobacterium varium ATCC 27725]                                             |
| glyA      | glycine hydroxymethyltransferase                    | EC:2.1.2.1                  | 646282649 | 100.0        | 0         | EES65216.1 glycine hydroxymethyltransferase [Fusobacterium varium ATCC 27725]                                                            |
| ltaE      | threonine aldolase                                  | EC:4.1.2.48                 | 646284449 | 100.0        | 0         | EES62548.1 Beta-eliminating lyase [Fusobacterium varium ATCC 27725]                                                                      |
| por       | pyruvate-ferredoxin/flavodoxin oxidoreductase       | EC:1.2.7.1                  | 646284783 | 100.0        | 0         | EES62881.1 pyruvate synthase [Fusobacterium varium ATCC 27725]                                                                           |
| porG      | pyruvate ferredoxin oxidoreductase gamma<br>subunit | EC:1.2.7.1                  | 646284201 | 100.0        | 8.47E-127 | EES63528.2 2-oxoacid:acceptor oxidoreductase, gamma subunit, pyruvate/2-ketoisovalerate family [ <i>Fusobacterium varium</i> ATCC 27725] |
| porD      | pyruvate ferredoxin oxidoreductase delta<br>subunit | EC:1.2.7.1                  | 646284200 | 100.0        | 3.09E-67  | EES63527.1 2-oxoacid:acceptor oxidoreductase, delta subunit, pyruvate/2-ketoisovalerate family [ <i>Fusobacterium varium</i> ATCC 27725] |

| porA        | pyruvate ferredoxin oxidoreductase alpha<br>subunit | EC:1.2.7.1   | 646284199 | 99.7  | 0        | OFL89337.1 pyruvate ferredoxin oxidoreductase [ <i>Fusobacterium</i> sp. HMSC073F01]                                      |
|-------------|-----------------------------------------------------|--------------|-----------|-------|----------|---------------------------------------------------------------------------------------------------------------------------|
| porB        | pyruvate ferredoxin oxidoreductase beta<br>subunit  | EC:1.2.7.1   | 646284198 | 100.0 | 0        | EES63525.2 thiamine pyrophosphate enzyme, C-terminal TPP binding domain protein [ <i>Fusobacterium varium</i> ATCC 27725] |
| atoB        | acetyl-CoA C-acetyltransferase                      | EC:2.3.1.9   | 646283343 | 100.0 | 0        | EES64371.1 acetyl-CoA C-acetyltransferase [Fusobacterium varium ATCC 27725]                                               |
| atoB        | acetyl-CoA C-acetyltransferase                      | EC:2.3.1.9   | 646283326 | 100.0 | 0        | EES64354.2 acetyl-CoA C-acetyltransferase [Fusobacterium varium ATCC 27725]                                               |
| hbd (paaH)  | 3-hydroxybutyryl-CoA dehydrogenase                  | EC:1.1.1.157 | 646284062 | 100.0 | 0        | EES63755.1 putative 3-hydroxybutyryl-CoA dehydrogenase [Fusobacterium varium ATCC 27725]                                  |
| hbd (paaH)  | 3-hydroxybutyryl-CoA dehydrogenase                  | EC:1.1.1.157 | 646283324 | 100.0 | 0        | EES64352.1 3-hydroxybutyryl-CoA dehydrogenase [Fusobacterium varium ATCC 27725]                                           |
| croR        | 3-hydroxybutyryl-CoA dehydratase                    | EC:4.2.1.55  | 646285345 | 100.0 | 5.46E-91 | WP_005948437.1 enoyl-CoA hydratase [Fusobacterium varium]                                                                 |
| croR        | 3-hydroxybutyryl-CoA dehydratase                    | EC:4.2.1.55  | 646284822 | 100.0 | 1.11E-91 | WP_005947840.1 enoyl-CoA hydratase [Fusobacterium varium]                                                                 |
| croR        | 3-hydroxybutyryl-CoA dehydratase                    | EC:4.2.1.55  | 646283189 | 100.0 | 9.49E-93 | WP_005946704.1 MULTISPECIES: enoyl-CoA hydratase [Fusobacterium]                                                          |
| crt         | enoyl-CoA hydratase                                 | EC:4.2.1.17  | 646283325 | 100.0 | 0        | EES64353.1 3-hydroxybutyryl-CoA dehydratase [Fusobacterium varium ATCC 27725]                                             |
| bcd         | butyryl-CoA dehydrogenase                           | EC:1.3.8.1   | 646283190 | 100.0 | 0        | EES65026.1 butyryl-CoA dehydrogenase [Fusobacterium varium ATCC 27725]                                                    |
| <i>etfB</i> | electron transfer flavoprotein beta subunit         |              | 646283191 | 100.0 | 0        | EES65027.1 electron transfer flavoprotein subunit beta [ <i>Fusobacterium varium</i> ATCC 27725]                          |

| etfA | electron transfer flavoprotein alpha subunit              |                    | 646283192 | 100.0 | 0         | EES65028.1 electron transfer flavoprotein subunit alpha [ <i>Fusobacterium varium</i> ATCC 27725] |
|------|-----------------------------------------------------------|--------------------|-----------|-------|-----------|---------------------------------------------------------------------------------------------------|
| cat2 | CoA-transferases                                          | EC:2.8.3           | 646284915 | 100.0 | 0         | EES63001.1 putative butyryl-CoA:acetate CoA-transferase [Fusobacterium varium ATCC 27725]         |
| atoA | acetate CoA/acetoacetate CoA-transferase beta<br>subunit  | EC:2.8.3.8 2.8.3.9 | 646284367 | 100.0 | 1.65E-155 | EES62466.1 butyrateacetoacetate CoA-transferase subunit B [Fusobacterium varium ATCC 27725]       |
| atoD | acetate CoA/acetoacetate CoA-transferase<br>alpha subunit | EC:2.8.3.8 2.8.3.9 | 646284366 | 100.0 | 1.63E-150 | EES62465.1 butyrateacetoacetate CoA-transferase subunit A [Fusobacterium varium ATCC 27725]       |

# Appendix V Table

| CDS                                                  | Predicted function                                                                        | Gene | Enzyme                | Identity | e-value   | Accession no.  | Closely related protein                                                        |
|------------------------------------------------------|-------------------------------------------------------------------------------------------|------|-----------------------|----------|-----------|----------------|--------------------------------------------------------------------------------|
|                                                      |                                                                                           | name | commission            | (%)      |           |                |                                                                                |
| S3_Bin001-Eubacterium limosum-Wood Ljungdahl pathway |                                                                                           |      |                       |          |           |                |                                                                                |
| EL_0481                                              | formate dehydrogenase major subunit                                                       | fdoG | EC:1.2.1.2            | 99.9     | 0         | WP_038352620.1 | molybdopterin oxidoreductase [Eubacterium limosum]                             |
| EL_2901                                              | formate dehydrogenase major subunit                                                       | fdoG | EC:1.2.1.2            | 99.6     | 0         | WP_038354071.1 | formate dehydrogenase subunit alpha [Eubacterium limosum]                      |
| EL_1797                                              | formatetetrahydrofolate ligase                                                            | fhs  | EC:6.3.4.3            | 100.0    | 0         | WP_038351869.1 | formatetetrahydrofolate ligase [Eubacterium limosum]                           |
| EL_1799                                              | methylenetetrahydrofolate dehydrogenase (NADP+) / methenyltetrahydrofolate cyclohydrolase | folD | EC:1.5.1.5<br>3.5.4.9 | 100.0    | 0         | WP_038351867.1 | methylenetetrahydrofolate dehydrogenase [Eubacterium limosum]                  |
| EL_0761                                              | methylenetetrahydrofolate reductase (NADPH)                                               | metF | EC:1.5.1.20           | 99.6     | 0         | WP_038351520.1 | 5,10-methylenetetrahydrofolate reductase [Eubacterium limosum]                 |
| EL_2312                                              | 5-methyltetrahydrofolate corrinoid/iron sulfur protein                                    | -    | EC:2.1.1.258          | 100.0    | 0         | ADO38562.1     | putative methyltetrahydrofolate:corrinoid/iron-sulfur protein                  |
|                                                      | methyltransferase                                                                         | acsE |                       |          |           |                | methyltransferase [Eubacterium limosum KIST612]                                |
| EL_2310                                              | CO dehydrogenase maturation factor                                                        | cooC |                       | 100.0    | 0         | WP_038352889.1 | carbon monoxide dehydrogenase [Eubacterium limosum]                            |
| EL_2311                                              | carbon-monoxide dehydrogenase catalytic subunit                                           | cooS | EC:1.2.7.4            | 100.0    | 0         | WP_038352890.1 | carbon-monoxide dehydrogenase catalytic subunit [ <i>Eubacterium limosum</i> ] |
| EL_0437                                              | CO dehydrogenase maturation factor                                                        | cooC |                       | 83.0     | 1.67E-146 | WP_026393828.1 | cobyrinic acid a,c-diamide synthase [Acetobacterium dehalogenans]              |
| EL_3306                                              | CO dehydrogenase maturation factor                                                        | cooC |                       | 100.0    | 0         | WP_038352894.1 | carbon monoxide dehydrogenase [Eubacterium limosum]                            |
| EL_2364                                              | CO dehydrogenase/acetyl-CoA synthase                                                      | acsB | EC:2.3.1.169          | 100.0    | 4.29E-92  | ALU15664.1     | CO dehydrogenase/acetyl-CoA synthase complex beta subunit                      |
|                                                      |                                                                                           |      |                       |          |           |                | CdhC [Eubacterium limosum]                                                     |
| EL_2770                                              | acetyl-CoA decarbonylase/synthase complex subunit delta                                   | cdhD | EC:2.1.1.245          | 100.0    | 0         | WP_038352892.1 | acetyl-CoA synthase subunit delta [Eubacterium limosum]                        |
| EL_3477                                              | ferredoxin                                                                                | fer  |                       | 100.0    | 1.53E-34  | WP_038353543.1 | ferredoxin [Eubacterium limosum]                                               |
| S3_Bin001-Eubacterium limosum-Glycerol oxidation 1   |                                                                                           |      |                       |          |           |                |                                                                                |
| EL_1252                                              | glycerol dehydrogenase                                                                    | gldA | EC:1.1.1.6            | 99.0     | 6.55E-140 | WP_038353946.1 | glycerol dehydrogenase [Eubacterium limosum]                                   |
| EL_2236                                              | glycerol dehydrogenase                                                                    | gldA | EC:1.1.1.6            | 100.0    | 0         | ADO38429.1     | glycerol dehydrogenase [Eubacterium limosum KIST612]                           |
| EL_2306        | dihydroxyacetone kinase, C-terminal domain    | dhaL         | EC:2.7.1    | 100.0 | 1.31E-154 | WP_038351073.1 | dihydroxyacetone kinase subunit L [Eubacterium limosum]       |
|----------------|-----------------------------------------------|--------------|-------------|-------|-----------|----------------|---------------------------------------------------------------|
| EL_2307        | dihydroxyacetone kinase, N-terminal domain    | dhaK         | EC:2.7.1    | 99.7  | 0         | SFO23221.1     | dihydroxyacetone kinase DhaK subunit [Eubacterium callanderi] |
| EL_2319        | dihydroxyacetone kinase, C-terminal domain    | dhaL         | EC:2.7.1    | 99.5  | 8.06E-151 | SHL37728.1     | dihydroxyacetone kinase DhaL subunit [Eubacterium callanderi] |
| EL_2320        | dihydroxyacetone kinase, N-terminal domain    | dhaK         | EC:2.7.1    | 100.0 | 0         | ALU13806.1     | dihydroxyacetone kinase DhaK subunit [Eubacterium limosum]    |
| EL_3187        | dihydroxyacetone kinase, C-terminal domain    | dhaL         | EC:2.7.1    | 99.5  | 4.23E-149 | WP_038352007.1 | DAK2 domain-containing protein [Eubacterium limosum]          |
| EL 2720        | diherdanan and him an NI damain didamain      | JI 17        | EC:27.1     | 100.0 | 0         | SE007100 1     | dihydroxyacetone kinase, N-terminal domain [Eubacterium       |
| EL_2730        | dinydroxyacetone kinase, N-terminai domain    | апак         | EC:2.7.1    | 100.0 | 0         | SF09/100.1     | callanderi]                                                   |
| S3_Bin001-Eubo | acterium limosum-Glycerol oxidation 2         |              |             |       |           |                |                                                               |
| EL_0172        | glycerol kinase                               | glpK         | EC:2.7.1.30 | 100.0 | 0         | WP_038351422.1 | glycerol kinase [Eubacterium limosum]                         |
| EL_1833        | glycerol kinase                               | glpK         | EC:2.7.1.30 | 100.0 | 0         | SFO34581.1     | glycerol kinase [Eubacterium callanderi]                      |
| EL_2689        | glycerol kinase                               | glpK         | EC:2.7.1.30 | 99.8  | 0         | WP_038353941.1 | glycerol kinase [Eubacterium limosum]                         |
| EL_3206        | glycerol kinase                               | glpK         | EC:2.7.1.30 | 99.2  | 0         | ALU15928.1     | carbohydrate kinase FGGY family [Eubacterium limosum]         |
| EL_1275        | glycerol-3-phosphate dehydrogenase (NAD(P)+)  | gpsA         | EC:1.1.1.94 | 100.0 | 0         | WP_038350631.1 | glycerol-3-phosphate dehydrogenase [Eubacterium limosum]      |
| EL 2612        | alveand 2 phoenhote debudro concess (NAD(D))) | ~ <b>~</b> ^ | EC.1.1.1.04 | 100.0 | 0         | SIII 05067 1   | glycerol-3-phosphate dehydrogenase (NAD(P)+) [Eubacterium     |
| EL_2012        | gryceroi-5-phosphate denydrogenase (NAD(P)+)  | gpsA         | EC:1.1.1.94 | 100.0 | 0         | SHL03007.1     | callanderi]                                                   |
| EL_1253        | glycerol-3-phosphate dehydrogenase            | glpA         | EC:1.1.5.3  | 99.3  | 0         | SFP62776.1     | glycerol-3-phosphate dehydrogenase [Eubacterium callanderi]   |
| EL_2328        | glycerol-3-phosphate dehydrogenase            | glpA         | EC:1.1.5.3  | 99.2  | 2.50E-79  | WP_038353344.1 | FAD/NAD(P)-binding oxidoreductase [Eubacterium limosum]       |
| EL_2688        | glycerol-3-phosphate dehydrogenase            | glpA         | EC:1.1.5.3  | 99.8  | 0         | WP_052237462.1 | FAD-dependent oxidoreductase [Eubacterium limosum]            |
| EL_3153        | glycerol-3-phosphate dehydrogenase            | glpA         | EC:1.1.5.3  | 99.8  | 0         | WP_038350670.1 | FAD/NAD(P)-binding oxidoreductase [Eubacterium limosum]       |
| EL_3213        | glycerol-3-phosphate dehydrogenase            | glpA         | EC:1.1.5.3  | 99.5  | 0         | WP_038351061.1 | FAD/NAD(P)-binding oxidoreductase [Eubacterium limosum]       |
| EL_3227        | glycerol-3-phosphate dehydrogenase            | glpA         | EC:1.1.5.3  | 99.6  | 0         | WP_038351204.1 | FAD/NAD(P)-binding oxidoreductase [Eubacterium limosum]       |
| EL_3453        | glycerol-3-phosphate dehydrogenase            | glpA         | EC:1.1.5.3  | 99.3  | 0         | ALU15927.1     | FAD-dependent oxidoreductase [Eubacterium limosum]            |
| EL_3629        | glycerol-3-phosphate dehydrogenase            | glpA         | EC:1.1.5.3  | 100.0 | 2.37E-180 | WP_052237143.1 | hypothetical protein [Eubacterium limosum]                    |
| S3_Bin001-Eubo | acterium limosum-Central axis pathway         |              |             |       |           |                |                                                               |
| EL_0336        | triosephosphate isomerase                     | TPI          | EC:5.3.1.1  | 97.9  | 1.28E-168 | WP_038351440.1 | triose-phosphate isomerase [Eubacterium limosum]              |
|                |                                               |              |             |       |           |                |                                                               |

| EL_1779 | triosephosphate isomerase                                   | TPI      | EC:5.3.1.1  | 99.4  | 9.43E-121 | WP_038351075.1 | triose-phosphate isomerase [Eubacterium limosum]                  |
|---------|-------------------------------------------------------------|----------|-------------|-------|-----------|----------------|-------------------------------------------------------------------|
| EL_2048 | triosephosphate isomerase                                   | TPI      | EC:5.3.1.1  | 98.8  | 1.40E-175 | WP_038350858.1 | triose-phosphate isomerase [Eubacterium limosum]                  |
| EL_2221 | triosephosphate isomerase                                   | TPI      | EC:5.3.1.1  | 99.6  | 2.02E-167 | WP_038353251.1 | triose-phosphate isomerase [Eubacterium limosum]                  |
| EL 2050 | -harrield bards 2 where here debarders are                  | CADDU    | EC.1 2 1 12 | 100.0 | 0         | WD 020250070 1 | type I glyceraldehyde-3-phosphate dehydrogenase [Eubacterium      |
| EL_2050 | giyceraidenyde 5-phosphate denydrogenase                    | GAPDH    | EC:1.2.1.12 | 100.0 | 0         | wP_038350860.1 | limosum]                                                          |
| EL_2049 | phosphoglycerate kinase                                     | PGK      | EC:2.7.2.3  | 99.5  | 0         | SFO29749.1     | phosphoglycerate kinase [Eubacterium callanderi]                  |
| EL_0942 | probable phosphoglycerate mutase                            | gpmB     | EC:5.4.2.12 | 99.6  | 6.77E-165 | WP_038350984.1 | histidine phosphatase family protein [Eubacterium limosum]        |
| EL 25/( |                                                             | <b>T</b> | EC:5 4 2 12 | 00.2  | 1 17E 00  | WD 020250057 1 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase       |
| EL_3300 | 2,3-bispnospnogrycerate-independent phosphogrycerate mutase | gpmi     | EC:5.4.2.12 | 99.5  | 1.1/E-98  | wP_038350857.1 | [Eubacterium limosum]                                             |
| EL_1404 | 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase   | PGAM     | EC:5.4.2.11 | 99.4  | 2.03E-126 | WP_038351252.1 | phosphoglyceromutase [Eubacterium limosum]                        |
| EL_2137 | enolase                                                     | ENO      | EC:4.2.1.11 | 99.2  | 0         | SDO52761.1     | enolase [Eubacterium limosum]                                     |
| EL_2047 | pyruvate kinase                                             | pyk      | EC:2.7.1.40 | 99.3  | 0         | ADO38040.1     | pyruvate kinase [Eubacterium limosum KIST612]                     |
| EI 2525 | pyruvate dehydrogenase E2 component (dihydrolipoamide       | DLAT/p   | EC-2 2 1 12 | 100.0 | 2 40E 60  | WD 028251074 1 | hypothetical protein [Fuhactorium limonum]                        |
| EL_3333 | acetyltransferase)                                          | dhc      | LC.2.3.1.12 | 100.0 | 2.40E-09  | w1_038351774.1 | nypomencal protein [Euoacterium timosum]                          |
| EL_3377 | pyruvate dehydrogenase E1 component beta subunit            | PDHB     | EC:1.2.4.1  | 100.0 | 0         | WP_038351975.1 | alpha-ketoacid dehydrogenase subunit beta [Eubacterium limosum]   |
| EI 3375 | puruvata dahudroganasa E1 component alpha subunit           | ррна     | EC-1241     | 100.0 | 0         | SHI 32031-1    | pyruvate dehydrogenase E1 component alpha subunit [Eubacterium    |
| LL_3373 | pyruvate denydrogenase Er component apna subunt             | TDIA     | LC.1.2.4.1  | 100.0 | 0         | 5111.52751.1   | callanderi]                                                       |
| FI 0124 | pyruvate ferredovin ovidoreductase gamma subunit            | porG     | FC·1 2 7 1  | 100.0 | 2 88E-128 | AL 111301/ 1   | 2-ketoisovalerate ferredoxin oxidoreductase gamma subunit         |
| LL_0124 | pyruvate refredoxin oxidoreductase gamma subunit            | pord     | LC.1.2.7.1  | 100.0 | 2.001-120 | AL015014.1     | [Eubacterium limosum]                                             |
| EL_0125 | pyruvate ferredoxin oxidoreductase delta subunit            | porD     | EC:1.2.7.1  | 99.0  | 5.47E-67  | WP_038351933.1 | pyruvate ferredoxin oxidoreductase [Eubacterium limosum]          |
| EL_0126 | pyruvate ferredoxin oxidoreductase alpha subunit            | porA     | EC:1.2.7.1  | 99.7  | 0         | WP_038351932.1 | pyruvate ferredoxin oxidoreductase [Eubacterium limosum]          |
| EL_0127 | pyruvate ferredoxin oxidoreductase beta subunit             | porB     | EC:1.2.7.1  | 99.7  | 0         | WP_038351931.1 | 2-ketoisovalerate ferredoxin oxidoreductase [Eubacterium limosum] |
| EL_2451 | pyruvate ferredoxin oxidoreductase alpha subunit            | porA     | EC:1.2.7.1  | 99.5  | 0         | WP_038353372.1 | pyruvate ferredoxin oxidoreductase [Eubacterium limosum]          |
| EL_2452 | pyruvate ferredoxin oxidoreductase beta subunit             | porB     | EC:1.2.7.1  | 99.7  | 0         | WP_038353373.1 | pyruvate ferredoxin oxidoreductase [Eubacterium limosum]          |
| EL_3198 | pyruvate ferredoxin oxidoreductase delta subunit            | porD     | EC:1.2.7.1  | 100.0 | 1.07E-67  | WP_038353371.1 | ferredoxin [Eubacterium limosum]                                  |

| EL_3199      | pyruvate ferredoxin oxidoreductase gamma subunit | porG | EC:1.2.7.1   | 100.0 | 2.61E-138 | WP_038353370.1 | pyruvate synthase [Eubacterium limosum]                              |
|--------------|--------------------------------------------------|------|--------------|-------|-----------|----------------|----------------------------------------------------------------------|
| S3_Bin001-Eu | bacterium limosum-Acetate production             |      |              |       |           |                |                                                                      |
| EL_2856      | putative phosphotransacetylase                   | Pta  | EC:2.3.1.8   | 99.1  | 1.53E-74  | WP_041690457.1 | MULTISPECIES: phosphate propanoyltransferase [Clostridiales]         |
| EL_3750      | putative phosphotransacetylase                   | Pta  | EC:2.3.1.8   | 99.5  | 3.62E-144 | WP_038352709.1 | phosphate propanoyltransferase [Eubacterium limosum]                 |
| EL_2391      | acetate kinase                                   | ackA | EC:2.7.2.1   | 100.0 | 0         | WP_038354231.1 | acetate kinase [Eubacterium limosum]                                 |
| S3_Bin001-Eu | bacterium limosum-Butyrate production            |      |              |       |           |                |                                                                      |
| EL_0510      | putative acetyltransferase                       | yiaC | EC:2.3.1     | 68.6  | 5.37E-67  | WP_033143003.1 | GNAT family N-acetyltransferase [Blautia producta]                   |
| EL_0991      | acetyltransferase                                | EpsM | EC:2.3.1     | 94.8  | 2.07E-141 | SFP55793.1     | sugar O-acyltransferase, sialic acid O-acetyltransferase NeuD family |
| EL_1705      | putative acetyltransferase                       | yjgM | EC:2.3.1     | 99.4  | 2.30E-115 | WP_038351624.1 | N-acetyltransferase [Eubacterium limosum]                            |
| EL_3474      | acetyltransferase                                | EpsM | EC:2.3.1     | 89.3  | 2.38E-118 | WP_038352497.1 | hypothetical protein [Eubacterium limosum]                           |
| EL_2590      | 3-hydroxybutyryl-CoA dehydrogenase               | paaH | EC:1.1.1.157 | 100.0 | 0         | SFO26749.1     | 3-hydroxybutyryl-CoA dehydrogenase [Eubacterium callanderi]          |
| EL_2589      | enoyl-CoA hydratase                              | crt  | EC:4.2.1.17  | 100.0 | 3.40E-101 | ADO35554.1     | 3-hydroxybutyryl-CoA dehydratase [Eubacterium limosum<br>KIST612]    |
| EL_1565      | butyryl-CoA dehydrogenase                        | bcd  | EC:1.3.8.1   | 96.4  | 0         | ADO35336.1     | acyl-coa dehydrogenase [Eubacterium limosum KIST612]                 |
| EL_2591      | butyryl-CoA dehydrogenase                        | bcd  | EC:1.3.8.1   | 100.0 | 0         | SFO26775.1     | butyryl-CoA dehydrogenase [Eubacterium callanderi]                   |
| EL_2676      | butyryl-CoA dehydrogenase                        | bcd  | EC:1.3.8.1   | 98.9  | 5.64E-123 | WP_038353017.1 | acyl-CoA dehydrogenase [Eubacterium limosum]                         |
| EL_3828      | butyryl-CoA dehydrogenase                        | bcd  | EC:1.3.8.1   | 99.3  | 0         | OEZ04909.1     | acyl-CoA dehydrogenase [[Butyribacterium] methylotrophicum]          |
| EL_2592      | electron transfer flavoprotein beta subunit      | etfB |              | 100.0 | 0         | WP_038350951.1 | electron transfer flavoprotein subunit beta [Eubacterium limosum]    |
| EL_2593      | electron transfer flavoprotein alpha subunit     | etfA |              | 100.0 | 0         | ALU16220.1     | electron transfer flavoprotein alpha subunit [Eubacterium limosum]   |
| EL_3536      | propionate CoA-transferase                       | pct  | EC:2.8.3.1   | 99.4  | 0         | WP_038353018.1 | 3-oxoacid CoA-transferase [Eubacterium limosum]                      |
| EL_0598      | phosphate butyryltransferase                     | ptb  | EC:2.3.1.19  | 99.3  | 0         | WP_038352195.1 | phosphate butyryltransferase [Eubacterium limosum]                   |
| EL_2569      | phosphate butyryltransferase                     | ptb  | EC:2.3.1.19  | 100.0 | 0         | WP_052237430.1 | phosphate butyryltransferase [Eubacterium limosum]                   |
| S3_Bin001-Eu | bacterium limosum-Ethanol production/oxidation   |      |              |       |           |                |                                                                      |
| EL_1813      | propionaldehyde dehydrogenase                    | pduP | EC:1.2.1.87  | 99.4  | 1.84E-120 | WP_058696328.1 | aldehyde dehydrogenase EutE [Eubacterium limosum]                    |

| EL 2000        |                                                            | - JL T     | EC:1.2.1.10            | 00.7  | 0         | SE02(84( 1     | hypothetical protein SAMN04487888_101644 [Eubacterium          |
|----------------|------------------------------------------------------------|------------|------------------------|-------|-----------|----------------|----------------------------------------------------------------|
| EL_3000        | acetaidenyde denydrogenase / aconor denydrogenase          | aune       | 1.1.1.1                | 99.7  | 0         | 5F050840.1     | callanderi]                                                    |
| EL_3755        | acetaldehyde dehydrogenase / alcohol dehydrogenase         | adhE       | EC:1.2.1.10<br>1.1.1.1 | 99.7  | 0         | WP_038353188.1 | butanol dehydrogenase [Eubacterium limosum]                    |
| EL_1064        | alcohol dehydrogenase                                      | adh2       | EC:1.1.1               | 100.0 | 0         | SFP64208.1     | alcohol dehydrogenase [Eubacterium callanderi]                 |
| S3_Bin001-Eu   | ubacterium limosum-Glycerol reduction to 1,3-PDO           |            |                        |       |           |                |                                                                |
| EL_1849        | propanediol dehydratase small subunit                      | pduE       | EC:4.2.1.28            | 100.0 | 1.50E-118 | WP_038352519.1 | propanediol dehydratase [Eubacterium limosum]                  |
| EL 1850        | propagadial dahudratasa madium subunit                     | nduD       | EC-4 2 1 28            | 100.0 | 2 87E 150 | AT 1113208 1   | propanediol dehydratase medium subunit PduD [Eubacterium       |
| EL_1850        | propanetion denytratase metrum subunt                      | puuD       | EC.4.2.1.26            | 100.0 | 2.87E-139 | AL013508.1     | limosum]                                                       |
| EL_1851        | propanediol dehydratase large subunit                      | pduC       | EC:4.2.1.28            | 100.0 | 0         | SFP43929.1     | propanediol dehydratase large subunit [Eubacterium callanderi] |
| EL_3115        | 1,3-propanediol dehydrogenase                              | dhaT       | EC:1.1.1.202           | 99.8  | 0         | OEZ04839.1     | 1,3-propanediol dehydrogenase [[Butyribacterium]               |
| 62 D:001 E-    | La chaine line and Marchana and chain including and in an  |            |                        |       |           |                | meinyloiropnicum]                                              |
| 55_BIN001-Eu   | bacterium umosum-Memorane proteins involved in energy      |            |                        |       |           |                |                                                                |
| conservation-l | kni complex                                                |            |                        |       |           |                |                                                                |
| EL_2763        | electron transport complex protein RnfC                    | rnfC       |                        | 100.0 | 0         | WP_038351329.1 | electron transporter RnfC [Eubacterium limosum]                |
| EL_2764        | electron transport complex protein RnfD                    | rnfD       |                        | 99.7  | 0         | ADO37623.1     | RnfD [Eubacterium limosum KIST612]                             |
| EL_2765        | electron transport complex protein RnfG                    | rnfG       |                        | 99.5  | 8.40E-146 | WP_052237107.1 | electron transporter [Eubacterium limosum]                     |
| S3_Bin001-Eu   | ubacterium limosum-Membrane proteins involved in energy co | onservatio | on-FAD (or             |       |           |                |                                                                |
| Fe-S) reductas | se linked to ETF                                           |            |                        |       |           |                |                                                                |
| EL 2516        | A amileul Co A reductore electron transfer suburit bete    | otfA       |                        | 01.9  | 0         | SIII 04102 1   | electron transfer flavoprotein alpha subunit apoprotein        |
| EL_2310        | Actyloyi-CoA reductase electron transfer subunit beta      | ellA       |                        | 91.8  | 0         | SHL94195.1     | [Eubacterium callanderi]                                       |
| EL_2515        | Acryloyl-CoA reductase electron transfer subunit gamma     | etfB       |                        | 98.5  | 0         | WP_038352172.1 | hypothetical protein [Eubacterium limosum]                     |
| EL_2514        | putative FAD-linked oxidoreductase                         |            |                        | 96.7  | 0         | WP_038352173.1 | FAD-binding oxidoreductase [Eubacterium limosum]               |
| S3_Bin001-Eu   | ubacterium limosum-Hydrogenases and coupling enzymes       |            |                        |       |           |                |                                                                |
| EL_0587        | NADP-reducing hydrogenase subunit HndC                     | HndC       | EC:1.12.1.3            | 100.0 | 0         | ADO35860.1     | NADH dehydrogenase (quinone) [Eubacterium limosum KIST612]     |

| EI 0588        | NADP reducing hydrogenece subunit HndP                | HndB  | EC-1 12 1 3   | 100.0 | 5 63E 88  | SDP44400-1      | NAD(P)-dependent iron-only hydrogenase iron-sulfur protein      |
|----------------|-------------------------------------------------------|-------|---------------|-------|-----------|-----------------|-----------------------------------------------------------------|
| LL_0588        | NADI -reducing nydrogenase subunit finab              | Thub  | EC.1.12.1.5   | 100.0 | 5.05E-88  | SDI 44400.1     | [Eubacterium limosum]                                           |
| EL_2881        | Iron hydrogenase 1                                    |       |               | 99.4  | 9.33E-106 | WP_038352187.1  | ferredoxin [Eubacterium limosum]                                |
| EL_3665        | Ferredoxin, 2Fe-2S                                    |       |               | 100.0 | 1.94E-54  | ADO36201.1      | NADH dehydrogenase subunit E [Eubacterium limosum KIST612]      |
| S3_Bin001-Eub  | acterium limosum-ATPase                               |       |               |       |           |                 |                                                                 |
| EL 0572        | V/A tupe H / No transporting ATDess subunit D         |       |               | 100.0 | 4 51E 150 | SHI 50650 1     | V/A-type H+-transporting ATPase subunit D [Eubacterium          |
| EL_0372        | V/A-type H+/Na+-transporting ATPase subunit D         | AIPVD |               | 100.0 | 4.51E-150 | SHL39030.1      | callanderi]                                                     |
| EL 0573        | V/A type H / Na + transporting ATPase subunit B       |       |               | 100.0 | 0         | SHI 50622-1     | V/A-type H+-transporting ATPase subunit B [Eubacterium          |
| EL_0575        | V/A-type II+/Na+-transporting A II ase subunit B      | AIIVD |               | 100.0 | 0         | 511239022.1     | callanderi]                                                     |
| EL 0574        | V/A tupe H / No + transporting ATDess subunit A       |       | [EC:3.6.3.14; | 00.8  | 0         | SHI 50502 1     | V/A-type H+-transporting ATPase subunit A [Eubacterium          |
| EL_0374        | V/A-type H+/Na+-transporting ATFase subunit A         | AIFVA | 3.6.3.15]     | 99.0  | 0         | SHL39393.1      | callanderi]                                                     |
| EI 0575        | V/A tupe H / No / transporting ATDass subupit E       | ATDVE |               | 100.0 | 8 02E 60  | SHI 50561 1     | V/A-type H+-transporting ATPase subunit F [Eubacterium          |
| EL_0373        | V/A-type H+/Na+-transporting A Pase subunit P         | AIPVF |               | 100.0 | 8.02E-09  | SHL39301.1      | callanderi]                                                     |
| EL_0576        | V/A-type H+/Na+-transporting ATPase subunit C         | ATPVC |               | 99.7  | 0         | WP_038351649.1  | hypothetical protein [Eubacterium limosum]                      |
| EL_0577        | V/A-type H+/Na+-transporting ATPase subunit E         | ATPVE |               | 100.0 | 1.47E-139 | WP_038351650.1  | hypothetical protein [Eubacterium limosum]                      |
| EL_0578        | V/A-type H+/Na+-transporting ATPase subunit K         | ATPVK |               | 100.0 | 1.18E-99  | ALU14703.1      | V-type ATP synthase subunit K [Eubacterium limosum]             |
| FL 0570        |                                                       |       |               | 00.7  | 0         | CLU 50440.1     | V/A-type H+-transporting ATPase subunit I [Eubacterium          |
| EL_0579        | V/A-type H+/Na+-transporting A1Pase subunit 1         | AIPVI |               | 99.7  | 0         | SHL39440.1      | callanderi]                                                     |
| EL 0590        | V/A torre II. Matt Amount of ATData submit C.II.      | ATDVC |               | 100.0 | 2.905 (1  | STH 20400 1     | V/A-type H+-transporting ATPase subunit G/H [Eubacterium        |
| EL_0580        | V/A-type H+/Na+-transporting ATPase subunit G/H       | AIPVG |               | 100.0 | 3.89E-61  | SHL59409.1      | callanderi]                                                     |
| S3_Bin002-Acti | nomyces provencensis-Glycerol oxidation 2             |       |               |       |           |                 |                                                                 |
| AP_0600        | glycerol kinase                                       | glpK  | EC:2.7.1.30   | 97.0  | 0         | WP_043535862.1  | glycerol kinase [Actinomyces polynesiensis]                     |
| AP_1408        | glycerol-3-phosphate dehydrogenase (NAD(P)+)          | gpsA  | EC:1.1.1.94   | 97.6  | 0         | WP_075890310.1  | glycerol-3-phosphate acyltransferase [Actinomyces provencensis] |
| A.D. 1005      |                                                       | 1.6   | 501160        | 100.0 | 0         | NID 050450500 1 | sn-glycerol-3-phosphate dehydrogenase subunit C [Actinomyces    |
| AP_1337        | glycerol- <i>3</i> -phosphate dehydrogenase subunit C | glpC  | EC:1.1.5.3    | 100.0 | 0         | WP_052450782.1  | polynesiensis]                                                  |

| AD 1338   | glycarol 3 phosphata dahydroganasa suhunit R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alpB    | EC:1153     | 00.0         | 0         | WD 075888552 1  | anaerobic glycerol-3-phosphate dehydrogenase subunit B           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------------|-----------|-----------------|------------------------------------------------------------------|
| AI_1556   | giyeeror-3-phosphate denydrogenase subunit b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gipb    | EC.1.1.5.5  | 99.0         | 0         | W1_0758885552.1 | [Actinomyces provencensis]                                       |
| AP 1339   | glycerol-3-nhosnhate dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | glnA    | FC·1153     | 99.1         | 0         | WP 075888554 1  | sn-glycerol-3-phosphate dehydrogenase subunit A [Actinomyces     |
| /H_1559   | giveror 5 phosphate denyarogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sipri   | LC.1.1.5.5  | <i>))</i> .1 | 0         | WI_075000554.1  | provencensis]                                                    |
| AP_2140   | glycerol-3-phosphate dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | glpA    | EC:1.1.5.3  | 98.1         | 0         | WP_075890934.1  | glycerol-3-phosphate dehydrogenase [Actinomyces provencensis]    |
| AP_2141   | glycerol uptake facilitator protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GLPF    |             | 97.4         | 0         | WP_043535861.1  | glycerol transporter [Actinomyces polynesiensis]                 |
| S3_Bin002 | Actinomyces provencensis-Central axis pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |             |              |           |                 |                                                                  |
| AP_0084   | triosephosphate isomerase (TIM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TPI     | EC:5.3.1.1  | 45.4         | 1.47E-61  | WP_025733286.1  | triose-phosphate isomerase [Carnimonas nigrificans]              |
| AP_0330   | triosephosphate isomerase (TIM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TPI     | EC:5.3.1.1  | 99.4         | 1.31E-116 | WP_075889582.1  | triose-phosphate isomerase [Actinomyces provencensis]            |
| AD 1462   | aluaraldahuda 2 nhaanhata dahudraganasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CADDH   | EC-1 2 1 12 | 02.5         | 0         | WD 042525446 1  | type I glyceraldehyde-3-phosphate dehydrogenase [Actinomyces     |
| AF_1402   | gryceratuenyde 5-phosphate denydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UAFDH   | EC.1.2.1.12 | 92.5         | 0         | WF_0455555440.1 | polynesiensis]                                                   |
| AP 2270   | alveeraldehyde 3-phoephate dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAPDH   | FC·1 2 1 12 | 98.8         | 0         | WP 075889586 1  | type I glyceraldehyde-3-phosphate dehydrogenase [Actinomyces     |
| AI _2270  | giyeerandenyde 5-pilospirate denydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OAI DII | LC.1.2.1.12 | 90.0         | 0         | W1_075005500.1  | provencensis]                                                    |
| AP_2271   | phosphoglycerate kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PGK     | EC:2.7.2.3  | 97.5         | 0         | WP_075889584.1  | phosphoglycerate kinase [Actinomyces provencensis]               |
| AP_0092   | probable phosphoglycerate mutase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gpmB    | EC:5.4.2.12 | 99.6         | 7.27E-164 | WP_075889274.1  | hypothetical protein [Actinomyces provencensis]                  |
| AP_0589   | probable phosphoglycerate mutase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gpmB    | EC:5.4.2.12 | 98.3         | 1.48E-165 | WP_043536912.1  | histidine phosphatase family protein [Actinomyces polynesiensis] |
| AP_1075   | 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PGAM    | EC:5.4.2.11 | 100.0        | 4.81E-180 | WP_075892264.1  | phosphoglyceromutase [Actinomyces provencensis]                  |
| AP_2479   | pyruvate, orthophosphate dikinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ppdK    | EC:2.7.9.1  | 99.5         | 0         | WP_075892335.1  | pyruvate, phosphate dikinase [Actinomyces provencensis]          |
| AP_2496   | Pyruvate kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pyk     | EC:2.7.1.40 | 99.7         | 0         | WP_075889634.1  | pyruvate kinase [Actinomyces provencensis]                       |
| AD 1100   | The second state of the se | DDUD    | EC.1241     | 00.6         | 4 255 174 | WD 0759010461   | alpha-ketoacid dehydrogenase subunit beta [Actinomyces           |
| AP_1108   | pyruvate denydrogenase E1 component beta subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | РДПВ    | EC:1.2.4.1  | 99.0         | 4.55E-174 | wP_0/3891940.1  | provencensis]                                                    |
| AD 1550   | numusta dabudencences El component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aaaE    | EC.1241     | 09.1         | 0         | WD 075999424 1  | pyruvate dehydrogenase (acetyl-transferring), homodimeric type   |
| AF_1552   | pyruvate denydrogenase E1 component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | aceE    | EC.1.2.4.1  | 90.1         | 0         | WF_0/5888454.1  | [Actinomyces provencensis]                                       |
| AD 2544   | puruvata dahudroganasa El component alpha subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | EC-1 2 4 1  | 00 7         | 0         | WD 075801044 1  | ABC transporter substrate-binding protein [Actinomyces           |
| AI _2344  | pyruvate denytrogenase Er component alpha subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I DIIA  | LC.1.2.4.1  | 27.1         | U         |                 | provencensis]                                                    |

| AP_1107      | pyruvate dehydrogenase E2 component (dihydrolipoamide | DLAT | EC:2.3.1.12            | 97.4  | 0         | WP_075891948.1 | diaminohydroxyphosphoribosylaminopyrimidine deaminase        |
|--------------|-------------------------------------------------------|------|------------------------|-------|-----------|----------------|--------------------------------------------------------------|
|              | acetyltransferase)                                    |      |                        |       |           |                | [Actinomyces provencensis]                                   |
| S3_Bin002-A  | ctinomyces provencensis-Acetate production            |      |                        |       |           |                |                                                              |
| AP_0652      | phosphate acetyltransferase                           | pta  | EC:2.3.1.8             | 71.9  | 0         | ENO18742.1     | phosphate acetyltransferase [Actinomyces cardiffensis F0333] |
| AP_0653      | acetate kinase                                        | ackA | EC:2.7.2.1             | 99.7  | 0         | WP_078062518.1 | acetate kinase [Actinomyces provencensis]                    |
| S3_Bin002-A  | ctinomyces provencensis-Ethanol production/oxidation  |      |                        |       |           |                |                                                              |
| AP_0159      | acetaldehyde dehydrogenase / alcohol dehydrogenase    | adhE | EC:1.2.1.10<br>1.1.1.1 | 98.4  | 0         | WP_078062118.1 | hypothetical protein [Actinomyces provencensis]              |
| S3_Bin002-A  | ctinomyces provencensis-Membrane proteins involved in |      |                        |       |           |                |                                                              |
| energy conse | rvation-Fix system                                    |      |                        |       |           |                |                                                              |
| AD 1659      | alastron transfar flavonrotain hata auhunit           | fivA |                        | 100.0 | 0         | WD 075999606 1 | electron transfer flavoprotein subunit beta [Actinomyces     |
| AF_1038      | election transfer havoprotein beta subunit            | IIXA |                        | 100.0 | 0         | WF_075888090.1 | provencensis]                                                |
| AP_1659      | electron transfer flavoprotein alpha subunit          | fixB |                        | 100.0 | 0         | WP_075888694.1 | electron transporter [Actinomyces provencensis]              |
| AP_1631      | electron transfer flavoprotein beta subunit           | fixA |                        | 99.6  | 0         | WP_075889900.1 | hypothetical protein [Actinomyces provencensis]              |
| AP_1632      | electron transfer flavoprotein alpha subunit          | fixB |                        | 99.3  | 0         | WP_052450841.1 | hypothetical protein [Actinomyces polynesiensis]             |
| AP_1633      | electron transfer flavoprotein-quinone oxidoreductase | fixC | EC:1.5.5               | 97.7  | 0         | WP_075889897.1 | hypothetical protein [Actinomyces provencensis]              |
| AP_1634      | ferredoxin like protein                               | fixX |                        | 99.0  | 1.05E-66  | WP_043536735.1 | MULTISPECIES: hypothetical protein [Actinomyces]             |
| S3_Bin003-A  | naerostipes caccae-Glycerol oxidation 1               |      |                        |       |           |                |                                                              |
| AC_1263      | Glycerol dehydrogenase                                | gldA | EC:1.1.1.6             | 100.0 | 0         | CDC34132.1     | glycerol dehydrogenase [Anaerostipes sp. CAG:276]            |
| AC_2829      | Glycerol dehydrogenase                                | gldA | EC:1.1.1.6             | 100.0 | 0         | WP_006567890.1 | MULTISPECIES: glycerol dehydrogenase [Anaerostipes]          |
| AC_1206      | dihydroxyacetone kinase, C-terminal domain            | dhaL | EC:2.7.1               | 100.0 | 3.54E-145 | EFV23311.1     | DAK2 domain-containing protein [Anaerostipes sp. 3_2_56FAA]  |
| AC_1207      | dihydroxyacetone kinase, N-terminal domain            | dhaK | EC:2.7.1               | 100.0 | 0         | EFV23312.1     | Dak1 domain-containing protein [Anaerostipes sp. 3_2_56FAA]  |
| AC_1210      | dihydroxyacetone kinase, N-terminal domain            | dhaK | EC:2.7.1               | 100.0 | 0         | EFV23315.1     | Dak1 domain-containing protein [Anaerostipes sp. 3_2_56FAA]  |
| AC_1938      | dihydroxyacetone kinase, C-terminal domain            | dhaL | EC:2.7.1               | 100.0 | 1.75E-151 | EFV22428.1     | DAK2 domain-containing protein [Anaerostipes sp. 3_2_56FAA]  |
| AC_1936      | dihydroxyacetone kinase, N-terminal domain            | dhaK | EC:2.7.1               | 100.0 | 0         | EFV22430.1     | Dak1 domain-containing protein [Anaerostipes sp. 3_2_56FAA]  |

| AC_2476    | dihydroxyacetone kinase, C-terminal domain                  | dhaL  | EC:2.7.1    | 100.0 | 2.78E-151 | EFV21282.1     | DAK2 domain-containing protein [Anaerostipes sp. 3_2_56FAA]                                                           |
|------------|-------------------------------------------------------------|-------|-------------|-------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------|
| AC_2477    | dihydroxyacetone kinase, N-terminal domain                  | dhaK  | EC:2.7.1    | 99.4  | 0         | EDR98779.1     | DAK1 domain protein [Anaerostipes caccae DSM 14662]                                                                   |
| S3_Bin003- | Anaerostipes caccae-Glycerol oxidation 2                    |       |             |       |           |                |                                                                                                                       |
| AC_1043    | Glycerol kinase                                             | glpK  | EC:2.7.1.30 | 100.0 | 0         | EFV23466.1     | glycerol kinase [Anaerostipes sp. 3_2_56FAA]                                                                          |
| AC_2316    | glycerol-3-phosphate dehydrogenase (NAD(P)+)                | gpsA  | EC:1.1.1.94 | 100.0 | 0         | EDR98278.1     | putative glycerol-3-phosphate dehydrogenase [NAD(P)+]<br>[Anaerostipes caccae DSM 14662]                              |
| AC_2751    | glycerol-3-phosphate dehydrogenase (NAD(P)+)                | gpsA  | EC:1.1.1.94 | 99.7  | 0         | EFV20853.1     | NAD-dependent glycerol-3-phosphate dehydrogenase [Anaerostipes<br>sp. 3_2_56FAA]                                      |
| AC_2771    | glycerol-3-phosphate dehydrogenase (NAD(P)+)                | gpsA  | EC:1.1.1.94 | 100.0 | 0         | EDR96703.1     | NAD-dependent glycerol-3-phosphate dehydrogenase C-terminal<br>domain protein [ <i>Anaerostipes caccae</i> DSM 14662] |
| AC_2774    | glycerol-3-phosphate dehydrogenase                          | glpA  | EC:1.1.5.3  | 100.0 | 0         | EDR96700.1     | FAD dependent oxidoreductase [Anaerostipes caccae DSM 14662]                                                          |
| S3_Bin003- | Anaerostipes caccae-Central axis pathway                    |       |             |       |           |                |                                                                                                                       |
| AC_2282    | triosephosphate isomerase (TIM)                             | TPI   | EC:5.3.1.1  | 100.0 | 0         | WP_039930792.1 | MULTISPECIES: triose-phosphate isomerase [Anaerostipes]                                                               |
| AC_2625    | triosephosphate isomerase (TIM)                             | TPI   | EC:5.3.1.1  | 100.0 | 8.82E-167 | EDR98634.1     | triose-phosphate isomerase [Anaerostipes caccae DSM 14662]                                                            |
| AC_2905    | triosephosphate isomerase (TIM)                             | TPI   | EC:5.3.1.1  | 99.6  | 8.81E-166 | EFV22551.1     | triose-phosphate isomerase [Anaerostipes sp. 3_2_56FAA]                                                               |
| AC_2280    | glyceraldehyde 3-phosphate dehydrogenase                    | GAPDH | EC:1.2.1.12 | 100.0 | 0         | EFV20889.1     | glyceraldehyde-3-phosphate dehydrogenase [Anaerostipes sp. 3_2_56FAA]                                                 |
| AC_2281    | phosphoglycerate kinase                                     | PGK   | EC:2.7.2.3  | 100.0 | 0         | EDR96773.1     | phosphoglycerate kinase [Anaerostipes caccae DSM 14662]                                                               |
| AC_1377    | probable phosphoglycerate mutase                            | gpmB  | EC:5.4.2.12 | 100.0 | 1.08E-147 | EFV23711.1     | phosphoglycerate mutase [Anaerostipes sp. 3_2_56FAA]                                                                  |
| AC_1628    | probable phosphoglycerate mutase                            | gpmB  | EC:5.4.2.12 | 100.0 | 0         | CDC34743.1     | phosphoglycerate mutase family protein [Anaerostipes sp. CAG:276]                                                     |
| AC_2285    | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | gpmI  | EC:5.4.2.12 | 100.0 | 0         | EDR96770.1     | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase<br>[Anaerostipes caccae DSM 14662]                        |
| AC_2393    | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | apgM  | EC:5.4.2.12 | 99.7  | 0         | EFV22357.1     | proposed homoserine kinase [Anaerostipes sp. 3_2_56FAA]                                                               |
| AC_2286    | enolase                                                     | ENO   | EC:4.2.1.11 | 100.0 | 0         | EFV20895.1     | phosphopyruvate hydratase [Anaerostipes sp. 3_2_56FAA]                                                                |

| AC_0934        | pyruvate kinase                                   | РК   | EC:2.7.1.40  | 100.0 | 0         | CDC35279.1     | pyruvate kinase [Anaerostipes sp. CAG:276]                      |
|----------------|---------------------------------------------------|------|--------------|-------|-----------|----------------|-----------------------------------------------------------------|
| AC 2439        | nyruvate-ferredoxin/flavodoxin oxidoreductase     | por  | EC:1.2.7.1   | 100.0 | 0         | CDC36269 1     | pyruvate-flavodovin ovidoreductase [Angerostines sp. CAG:276]   |
| NC_2437        | pyruvate terredoxini navodoxini oxidoredaetase    | por  | 1.2.7        | 100.0 | 0         | CDC30207.1     | pytavate navodovni oslaoredaetase (macroshpes sp. erro.270)     |
| S3_Bin003-Anae | erostipes caccae-Acetate production               |      |              |       |           |                |                                                                 |
| AC_0919        | phosphate acetyltransferase                       | pta  | EC:2.3.1.8   | 100.0 | 0         | EDR99093.1     | phosphate acetyltransferase [Anaerostipes caccae DSM 14662]     |
| AC_0918        | Acetate kinase                                    | ackA | EC:2.7.2.1   | 100.0 | 0         | CDC35243.1     | acetate kinase [Anaerostipes sp. CAG:276]                       |
| S3_Bin003-Anae | erostipes caccae-Butyrate and caproate production |      |              |       |           |                |                                                                 |
| AC_3098        | Acetyl-CoA acetyltransferase                      | atoB | EC:2.3.1.9   | 100.0 | 0         | WP_039930536.1 | acetyl-CoA acetyltransferase [Anaerostipes sp. 3_2_56FAA]       |
| AC_3096        | 3-hydroxybutyryl-CoA dehydrogenase                | paaH | EC:1.1.1.157 | 100.0 | 0         | EFV21686.1     | 3-hydroxyacyl-CoA dehydrogenase [Anaerostipes sp. 3_2_56FAA]    |
| AC_2405        | 3-hydroxybutyryl-CoA dehydratase                  | croR | EC:4.2.1.55  | 100.0 | 4.26E-103 | WP_006568567.1 | MULTISPECIES: enoyl-CoA hydratase [Anaerostipes]                |
| AC_2590        | 3-hydroxybutyryl-CoA dehydratase                  | croR | EC:4.2.1.55  | 100.0 | 7.77E-94  | WP_009290664.1 | enoyl-CoA hydratase [Anaerostipes sp. 3_2_56FAA]                |
| 1 0 0007       |                                                   |      | 50 4 9 1 15  | 100.0 | 0         |                | 3-hydroxybutyryl-CoA dehydratase [Anaerostipes caccae DSM       |
| AC_3097        | enoyl-CoA hydratase                               | crt  | EC:4.2.1.17  | 100.0 | 0         | EDR99005.1     | 14662]                                                          |
| AC_3178        | enoyl-CoA hydratase                               | crt  | EC:4.2.1.17  | 100.0 | 0         | EFV23880.1     | enoyl-CoA hydratase/isomerase [Anaerostipes sp. 3_2_56FAA]      |
| 1 0 0100       |                                                   |      | 551201       | 100.0 | 0         |                | acyl-CoA dehydrogenase, C-terminal domain protein [Anaerostipes |
| AC_0139        | butyryl-CoA dehydrogenase                         | bcd  | EC:1.3.8.1   | 100.0 | 0         | EDR97724.1     | caccae DSM 14662]                                               |
| A G. 0400      |                                                   |      | FC 1 2 0 1   | 100.0 | 0         | EDD00027.1     | acyl-CoA dehydrogenase, C-terminal domain protein [Anaerostipes |
| AC_0429        | butyryi-CoA denydrogenase                         | bcd  | EC:1.3.8.1   | 100.0 | 0         | EDR98937.1     | caccae DSM 14662]                                               |
| 10.0474        |                                                   |      | FC 1 2 0 1   | 100.0 | 0         | FEV22005 1     | acyl-CoA dehydrogenase domain-containing protein [Anaerostipes  |
| AC_04/4        | butyryi-CoA denydrogenase                         | bcd  | EC:1.3.8.1   | 100.0 | 0         | EFV23995.1     | sp. 3_2_56FAA]                                                  |
| A C. 0942      |                                                   |      | FC 1 2 0 1   | 100.0 | 0         |                | acyl-CoA dehydrogenase, C-terminal domain protein [Anaerostipes |
| AC_0842        | butyryi-CoA denydrogenase                         | bcd  | EC:1.3.8.1   | 100.0 | 0         | EDR96341.1     | caccae DSM 14662]                                               |
| A G. 2005      |                                                   |      | FC 1 2 0 1   | 100.0 | 0         | FEV01607.1     | acyl-CoA dehydrogenase domain-containing protein [Anaerostipes  |
| AC_3095        | butyryi-CoA denydrogenase                         | bcd  | EC:1.3.8.1   | 100.0 | 0         | EFV2108/.1     | sp. 3_2_56FAA]                                                  |
| AC_3177        | butyryl-CoA dehydrogenase                         | bcd  | EC:1.3.8.1   | 100.0 | 0         | EFV23879.1     | acyl-CoA dehydrogenase domain-containing protein [Anaerostipes  |

|                |                                                        |       |            |       |           |              | sp. 3_2_56FAA]                                                     |
|----------------|--------------------------------------------------------|-------|------------|-------|-----------|--------------|--------------------------------------------------------------------|
| AC_2406        | propionate CoA-transferase                             | pct   | EC:2.8.3.1 | 100.0 | 0         | CDC36734.1   | acetate CoA-transferase YdiF [Anaerostipes sp. CAG:276]            |
| AC_3179        | propionate CoA-transferase                             | pct   | EC:2.8.3.1 | 100.0 | 0         | CDC38503.1   | acetate CoA-transferase YdiF [Anaerostipes sp. CAG:276]            |
| AC 2502        | 1 hydroxykuturate CoA transferess                      | ant?  | EC-2 9 2   | 100.0 | 0         | CDC27756 1   | acetyl-CoA hydrolase/transferase domain-containing protein         |
| AC_2392        | 4-nyuloxybulyrate CoA-transferase                      | Catz  | EC.2.0.3   | 100.0 | 0         | CDC37730.1   | [Anaerostipes sp. CAG:276]                                         |
| AC 1067        | acetate CoA/acetoacetate CoA_transferase alpha subunit | atoD  | EC:2.8.3.8 | 100.0 | 5 51E-174 | FFV23538 1   | coonzyme A transferase [Augerostines sp. 3.2.56EAA]                |
| AC_1007        | accuate COA/accoaccuate COA-transferase arpita subunit | atob  | 2.8.3.9    | 100.0 | 5.512-174 | LI V25556.1  | conzyne A transierase [Antierosupes sp. 5_2_50] AA]                |
| AC_1577        | acetate CoA-transferase                                | ydiF  | EC:2.8.3.8 | 99.8  | 0         | CDC36559.1   | acetate CoA-transferase YdiF [Anaerostipes sp. CAG:276]            |
| AC 3093        | electron transfer flavonrotein alnha subunit           | etfA  |            | 100.0 | 0         | FFV21689-1   | electron transfer flavoprotein FAD-binding domain-containing       |
| AC_5075        |                                                        | curr  |            | 100.0 | Ū         | EI V21009.1  | protein [Anaerostipes sp. 3_2_56FAA]                               |
| AC 3094        | electron transfer flavoprotein beta subunit            | etfB  |            | 100.0 | 0         | EDR99002.1   | electron transfer flavoprotein domain protein [Anaerostipes caccae |
|                |                                                        | eub   |            | 10010 | Ŭ         | 22107900211  | DSM 14662]                                                         |
| S3_Bin003-A    | naerostipes caccae-Ethanol production/oxidation        |       |            |       |           |              |                                                                    |
| AC_0262        | aldehyde dehydrogenase (NAD+)                          | ALDH  | EC:1.2.1.3 | 100.0 | 0         | CDC37217.1   | aldehyde dehydrogenase [Anaerostipes sp. CAG:276]                  |
| AC_0555        | alcohol dehydrogenase                                  | adh2  | EC:1.1.1   | 100.0 | 0         | CDC36055.1   | iron-containing alcohol dehydrogenase [Anaerostipes sp. CAG:276]   |
| AC 1073        | alcohol dehydrogenase                                  | adh2  | FC-111-    | 100.0 | 0         | FDR96137 1   | alcohol dehydrogenase, iron-dependent [Anaerostipes caccae DSM     |
| <u>ne_1075</u> |                                                        | uull2 | Le.1.1.1.  | 100.0 | 0         | LDR/0157.1   | 14662]                                                             |
| AC_1564        | alcohol dehydrogenase                                  | adh2  | EC:1.1.1   | 100.0 | 0         | CDC36582.1   | iron-containing alcohol dehydrogenase [Anaerostipes sp. CAG:276]   |
| AC_1780        | alcohol dehydrogenase                                  | adh2  | EC:1.1.1   | 99.7  | 0         | CDC38414.1   | alcohol dehydrogenase iron-dependent [Anaerostipes sp. CAG:276]    |
| AC 2010        | alcohol dehudrogenase                                  | viaV  | FC-1111    | 100.0 | 0         | FFV21081-1   | iron-containing alcohol dehydrogenase [Anaerostipes sp.            |
| AC_2010        | aconor denydrogenase                                   | yla I | LC.1.1.1.1 | 100.0 | 0         | LI V21/01.1  | 3_2_56FAA]                                                         |
| AC 2521        | alcohol dehydrogenase                                  | adh2  | FC·111-    | 100.0 | 0         | FDR97981 1   | alcohol dehydrogenase, iron-dependent [Anaerostipes caccae DSM     |
| AC_2521        |                                                        | uull2 | Le.1.1.1.  | 100.0 | Ū         | LDI()//)01.1 | 14662]                                                             |
| AC 2544        | alcohol dehydrogenase                                  | adh2  | FC·111-    | 100.0 | 0         | EEV22801_1   | iron-containing alcohol dehydrogenase [Anaerostipes sp.            |
|                |                                                        | uuii2 | 20.1.1.1   | 100.0 | Ŭ         | 24 7 22001.1 | 3_2_56FAA]                                                         |

| AC 3251      | alcohol dehydrogenase                                     | adh2  | FC:111.  | 100.0 | 0          | FFV23191 1   | iron-containing alcohol dehydrogenase [Anaerostipes sp.          |
|--------------|-----------------------------------------------------------|-------|----------|-------|------------|--------------|------------------------------------------------------------------|
| AC_5251      | alconol denyalogenase                                     | aunz  | LC.1.1.1 | 100.0 | 0          | LI V25171.1  | 3_2_56FAA]                                                       |
| S3_Bin003-A  | naerostipes caccae-Membrane proteins involved in energy   |       |          |       |            |              |                                                                  |
| conservation | -Rnf complex                                              |       |          |       |            |              |                                                                  |
| AC 0354      | alactron transport complex protein PnfB                   | rnfB  |          | 100.0 | 0          | EDD08046 1   | electron transport complex, RnfABCDGE type, B subunit            |
| AC_0354      | election transport complex protein Kind                   | IIIID |          | 100.0 | 0          | EDR98040.1   | [Anaerostipes caccae DSM 14662]                                  |
| AC 0355      | alactron transport complex protain PnfA                   | rofA  |          | 100.0 | 3 37E 120  | EDD08047 1   | electron transport complex, RnfABCDGE type, A subunit            |
| AC_0333      | election transport complex protein KinA                   | IIIA  |          | 100.0 | 5.5712-129 | EDR90047.1   | [Anaerostipes caccae DSM 14662]                                  |
| AC 0356      | electron transport complex protein PnfE                   | rnfF  |          | 100.0 | 1.60F-164  | EDR080/18 1  | electron transport complex, RnfABCDGE type, E subunit            |
| AC_0350      | electron transport complex protein Kine                   | THE   |          | 100.0 | 1.00E-104  | EDR90040.1   | [Anaerostipes caccae DSM 14662]                                  |
| AC 0357      | electron transport complex protein RufG                   | rnfG  |          | 100.0 | 4 20E-141  | EDR080/00 1  | electron transport complex, RnfABCDGE type, G subunit            |
| AC_0357      | election transport complex protein King                   | IIIO  |          | 100.0 | 4.20E-141  | LDR/0049.1   | [Anaerostipes caccae DSM 14662]                                  |
| AC_0358      | electron transport complex protein RnfD                   | rnfD  |          | 100.0 | 0          | EFV22725.1   | electron transport complex [Anaerostipes sp. 3_2_56FAA]          |
| AC_0359      | electron transport complex protein RnfC                   | rnfC  |          | 100.0 | 0          | EFV22726.1   | electron transport complex [Anaerostipes sp. 3_2_56FAA]          |
| S3_Bin003-A  | naerostipes caccae-Membrane proteins involved in energy   |       |          |       |            |              |                                                                  |
| conservation | -FAD (or Fe-S) reductase lined to ETF                     |       |          |       |            |              |                                                                  |
| AC_0138      | putative FAD-linked oxidoreductase                        |       |          | 100.0 | 0          | EFV23038.1   | glycolate oxidase [Anaerostipes sp. 3_2_56FAA]                   |
| AC 0140      | Acryloyl CoA reductose electron transfer subunit gamma    |       |          | 100.0 | 0          | EDD07725 1   | electron transfer flavoprotein subunit beta [Anaerostipes caccae |
| AC_0140      | Actyloyi-CoA reductase election transfer subunit gamma    |       |          | 100.0 | 0          | EDR9/725.1   | DSM 14662]                                                       |
| AC 0141      | A avulaul Co A raduatees electron transfer subunit bate   |       |          | 100.0 | 0          | EEV22041 1   | electron transfer flavoprotein FAD-binding domain-containing     |
| AC_0141      | Actyloyi-CoA reductase electron transfer subunit beta     |       |          | 100.0 | 0          | EF V 23041.1 | protein [Anaerostipes sp. 3_2_56FAA]                             |
| AC 0142      | A artilard Co A radiatese electron transfer subunit commo |       |          | 100.0 | 0          | EEV/22044-1  | electron transfer flavoprotein domain-containing protein         |
| AC_0145      | Actyloyi-CoA reductase electron transfer subunit gamma    |       |          | 100.0 | 0          | EF V 23044.1 | [Anaerostipes sp. 3_2_56FAA]                                     |
| AC 0144      | A amiland Co A reductors cleaters transfer submit bets    |       |          | 100.0 | 0          | EEV22045 1   | electron transfer flavoprotein FAD-binding domain-containing     |
| AC_0144      | Actyroyi-CoA reductase electron transfer subunit beta     |       |          | 100.0 | U          | EF V 23043.1 | protein [Anaerostipes sp. 3_2_56FAA]                             |
| AC_0145      | putative FAD-linked oxidoreductase                        |       |          | 100.0 | 0          | CDC38868.1   | putative glycolate oxidase subunit GlcD [Anaerostipes sp.        |

CAG:276]

| S3_Bin003-An | aerostipes caccae-Ethanol production/oxidation-ATPase |       |                         |       |           |                           |                                                                |
|--------------|-------------------------------------------------------|-------|-------------------------|-------|-----------|---------------------------|----------------------------------------------------------------|
| AC_0980      | Ca2+-transporting ATPase                              |       | EC:3.6.3.8              | 100.0 | 0         | EFV21858.1                | ATPase [Anaerostipes sp. 3_2_56FAA]                            |
| A.C. 0091    |                                                       |       |                         | 100.0 | 2.795.07  | EDD05/59 1                | ATP synthase F1, epsilon subunit [Anaerostipes caccae DSM      |
| AC_0981      | F-type H+-transporting A Pase subunit epsiton         |       |                         | 100.0 | 2./8E-90  | EDK95058.1                | 14662]                                                         |
| AC_0982      | F-type H+-transporting ATPase subunit beta            |       | EC:3.6.3.14             | 100.0 | 0         | EDR95659.1                | ATP synthase F1, beta subunit [Anaerostipes caccae DSM 14662]  |
| A.C. 0092    |                                                       |       |                         | 100.0 | 0         | EDD05//01                 | ATP synthase F1, gamma subunit [Anaerostipes caccae DSM        |
| AC_0983      | F-type H+-transporting A1 Pase subunit gamma          |       |                         | 100.0 | 0         | EDK95000.1                | 14662]                                                         |
| AC_0984      | F-type H+-transporting ATPase subunit alpha           |       | EC:3.6.3.14             | 100.0 | 0         | EFV21853.1                | ATP synthase F1 [Anaerostipes sp. 3_2_56FAA]                   |
| AC_0985      | F-type H+-transporting ATPase subunit delta           |       |                         | 100.0 | 1.02E-118 | EFV21852.1                | ATP synthase F1 [Anaerostipes sp. 3_2_56FAA]                   |
| AC_0986      | F-type H+-transporting ATPase subunit b               |       |                         | 100.0 | 9.39E-110 | EDR95663.1                | ATP synthase F0, B subunit [Anaerostipes caccae DSM 14662]     |
| AC_0987      | F-type H+-transporting ATPase subunit c               |       |                         | 100.0 | 2.73E-39  | EDR95664.1                | ATP synthase F0, C subunit [Anaerostipes caccae DSM 14662]     |
| AC_0988      | F-type H+-transporting ATPase subunit a               |       |                         | 100.0 | 1.28E-157 | EDR95665.1                | ATP synthase F0, A subunit [Anaerostipes caccae DSM 14662]     |
| AC_0264      | V/A-type H+/Na+-transporting ATPase subunit D         | ATPVD |                         | 100.0 | 6.28E-149 | EFV22893.1                | ATP synthase subunit D protein [Anaerostipes sp. 3_2_56FAA]    |
| AC_0265      | V/A-type H+/Na+-transporting ATPase subunit B         | ATPVB |                         | 99.8  | 0         | EDR97894.1                | ATP synthase ab domain protein [Anaerostipes caccae DSM 14662] |
| AC_0266      | V/A-type H+/Na+-transporting ATPase subunit A         | ATPVA | EC:3.6.3.14<br>3.6.3.15 | 99.5  | 0         | EDR97895.1                | ATP synthase ab domain protein [Anaerostipes caccae DSM 14662] |
| AC 0267      | V/A-tupe H+/Na+-transporting ATPase subunit F         | ATPVE |                         | 100.0 | 2 82E-136 | EDR07806 1                | hypothetical protein ANACAC_01519 [Anaerostipes caccae DSM     |
| AC_0207      | VArtype Invite - unisporting ATT as subunit L         | AIIVE |                         | 100.0 | 2.021-150 | LDR/70/0.1                | 14662]                                                         |
| AC_0268      | V/A-type H+/Na+-transporting ATPase subunit F         | ATPVF |                         | 100.0 | 1.66E-65  | EFV22897.1                | ATP synthase subunit protein [Anaerostipes sp. 3_2_56FAA]      |
| AC_0269      | V/A-type H+/Na+-transporting ATPase subunit K         | ATPVK |                         | 99.3  | 1.56E-89  | EFV22898.1                | ATP synthase subunit C protein [Anaerostipes sp. 3_2_56FAA]    |
| AC 0270      | V/A_type H_/Na+_transporting ATPase subunit I         | ΔΤΡΛΙ |                         | 100.0 | 0         | FFV22800 1                | V-type ATPase 116kDa subunit protein [Anaerostipes sp.         |
| AC_0270      | V/A-type 11+/10a+-uansporting A11 ase subunit 1       | AIIVI |                         | 100.0 | 0         | LI <sup>-</sup> v 22099.1 | 3_2_56FAA]                                                     |
| AC_0271      | V/A-type H+/Na+-transporting ATPase subunit C         | ATPVC |                         | 99.4  | 0         | CDC37134.1                | aTP synthase subunit C [Anaerostipes sp. CAG:276]              |
| AC_1187      | F-type H+-transporting ATPase subunit epsilon         |       |                         | 100.0 | 1.27E-93  | EDR96894.1                | ATP synthase F1, epsilon subunit [Anaerostipes caccae DSM      |

|                |                                               |       |              |              |           |                | 14662]                                                           |
|----------------|-----------------------------------------------|-------|--------------|--------------|-----------|----------------|------------------------------------------------------------------|
| AC_1188        | F-type H+-transporting ATPase subunit beta    |       | EC:3.6.3.14  | 100.0        | 0         | EDR96895.1     | ATP synthase F1, beta subunit [Anaerostipes caccae DSM 14662]    |
| AC_1189        | F-type H+-transporting ATPase subunit gamma   |       |              | 100.0        | 0         | EFV23294.1     | ATP synthase F1 [Anaerostipes sp. 3_2_56FAA]                     |
| AC_1190        | F-type H+-transporting ATPase subunit alpha   |       | EC:3.6.3.14  | 100.0        | 0         | EDR96897.1     | ATP synthase F1, alpha subunit [Anaerostipes caccae DSM 14662]   |
| AC_1191        | F-type H+-transporting ATPase subunit delta   |       |              | 100.0        | 4.81E-124 | EFV23296.1     | ATP synthase delta subunit protein [Anaerostipes sp. 3_2_56FAA]  |
| AC_1192        | F-type H+-transporting ATPase subunit b       |       |              | 100.0        | 6.26E-116 | EFV23297.1     | ATP synthase F0 [Anaerostipes sp. 3_2_56FAA]                     |
| AC_1193        | F-type H+-transporting ATPase subunit c       |       |              | 100.0        | 1.70E-51  | EDR96900.1     | ATP synthase F0, C subunit [Anaerostipes caccae DSM 14662]       |
| AC_1194        | F-type H+-transporting ATPase subunit a       |       |              | 100.0        | 7.93E-174 | EFV23299.1     | ATP synthase subunit A protein [Anaerostipes sp. 3_2_56FAA]      |
| AC 1105        | ATD synthese protein I                        | atal  |              | 100.0        | 3 57E 07  | EDD06002 1     | hypothetical protein ANACAC_02131 [Anaerostipes caccae DSM       |
| AC_1195        | ATT synulase protein 1                        | atpi  |              | 100.0        | 5.572-97  | EDR90902.1     | 14662]                                                           |
| AC 2203        | ferredoxinNADP+ reductase                     | fnr   | FC·1 18 1 2  | 99.6         | 0         | EEV22008 1     | oxidoreductase NAD-binding domain-containing protein             |
| 110_22005      |                                               | ipi   | Be.1110.11.2 | <i>))</i> .0 | Ŭ         | EI + 22000.1   | [Anaerostipes sp. 3_2_56FAA]                                     |
| S3_Bin008-Paer | nirhodobacter enshiensis-Glycerol oxidation 2 |       |              |              |           |                |                                                                  |
| PE_2877        | Glycerol kinase                               | glpK  | EC:2.7.1.30  | 72.1         | 0         | SDE30209.1     | glycerol kinase [Rhodobacter capsulatus]                         |
| PF 2128        | glycerol_3-phosphate dehydrogenase (NAD(P)⊥)  | ans A | FC·11194     | 81.1         | 5 70E-173 | WP 068766473 1 | glycerol-3-phosphate dehydrogenase [Paenirhodobacter sp.         |
| 1L_2120        | give of 5-phosphate denyelogenase (tVAD(1)+)  | gpsA  | LC.1.1.1.)4  | 01.1         | 5.70E-175 | W1_000700475.1 | MME-103]                                                         |
| PE 0132        | vlycerol-3-phosphate dehydrogenase            | olnA  | EC:1153      | 77.6         | 0         | SDF96460 1     | homodimeric glycerol 3-phosphate dehydrogenase (quinone)         |
| 1 12_0132      | Effector o phosphate denjarogenase            | 51011 | Derritions   | 11.0         | Ŭ         | 55170100.1     | [Celeribacter baekdonensis]                                      |
| PE_1158        | glycerol-3-phosphate dehydrogenase            | glpA  | EC:1.1.5.3   | 57.7         | 0         | WP_071833009.1 | hypothetical protein [Rhizobium sp. 59]                          |
| PE_2876        | glycerol-3-phosphate dehydrogenase            | glpA  | EC:1.1.5.3   | 75.6         | 0         | KFI30710.1     | glycerol-3-phosphate dehydrogenase [Paenirhodobacter enshiensis] |
| S3_Bin008-Paer | nirhodobacter enshiensis-Central axis pathway |       |              |              |           |                |                                                                  |
| PE_2190        | triosephosphate isomerase (TIM)               | TPI   | EC:5.3.1.1   | 83.1         | 1.10E-144 | AOZ71005.1     | triose-phosphate isomerase [Rhodobacter sp. LPB0142]             |
| DE 0467        | aluaaraldahuda 2 phaanhata dahudraganasa      | CADDU | EC-1 2 1 12  | 767          | 0         | 04050279 1     | type I glyceraldehyde-3-phosphate dehydrogenase [Rhodobacterales |
| FE_040/        | gryceraidenyde 5-phosphale denydrogenase      | GAPDH | EC:1.2.1.12  | /0./         | 0         | 00039578.1     | bacterium RIFCSPHIGHO2_02_FULL_62_130]                           |
| PE_0491        | glyceraldehyde 3-phosphate dehydrogenase      | GAPDH | EC:1.2.1.12  | 94.9         | 0         | AOZ69693.1     | type I glyceraldehyde-3-phosphate dehydrogenase [Rhodobacter sp. |

|            |                                                             |          |             |      |            |                | LPB0142]                                                          |
|------------|-------------------------------------------------------------|----------|-------------|------|------------|----------------|-------------------------------------------------------------------|
| DE 0402    | alassendelse de 2 als sederas debudes succes                | CADDU    | EC.1 2 1 12 | 00.4 | 0          | ETD00000 1     | glyceraldehyde-3-phosphate dehydrogenase [Rhodobacter             |
| PE_0493    | giyceraidenyde 5-pnospnate denydrogenase                    | GAPDH    | EC:1.2.1.12 | 90.4 | 0          | E1D00999.1     | capsulatus DE442]                                                 |
| PF 1588    | alveeraldebyde 3-phosphate debydrogenase                    | GAPDH    | FC·1 2 1 12 | 73 / | 1 57E-172  | FSW60866 1     | glyceraldehyde-3-phosphate dehydrogenase [Rhodobacter sp.         |
| 1 E_1588   | gryceraldenyde 5-phosphale denydrogenase                    | OAI DII  | EC.1.2.1.12 | 75.4 | 1.3712-172 | E3 W 00800.1   | CACIA14H1]                                                        |
| PE_1384    | phosphoglycerate kinase                                     | PGK      | EC:2.7.2.3  | 87.6 | 0          | WP_068765213.1 | phosphoglycerate kinase [Paenirhodobacter sp. MME-103]            |
| PE_1172    | probable phosphoglycerate mutase                            | gpmB     | EC:5.4.2.12 | 56.4 | 1.26E-49   | SFA48950.1     | probable phosphoglycerate mutase [Paracoccus halophilus]          |
| PE_2093    | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | gpmI     | EC:5.4.2.12 | 88.1 | 0          | SIS72234.1     | phosphoglycerate mutase [Rhodobacter aestuarii]                   |
| PE_1391    | enolase                                                     | ENO      | EC:4.2.1.11 | 94.1 | 0          | SIS80968.1     | enolase [Rhodobacter aestuarii]                                   |
| PE_1761    | pyruvate kinase                                             | РК       | EC:2.7.1.40 | 78.6 | 0          | ETD02924.1     | pyruvate kinase [Rhodobacter capsulatus DE442]                    |
| PE_3496    | pyruvate kinase                                             | РК       | EC:2.7.1.40 | 91.5 | 0          | AOZ68411.1     | pyruvate kinase [Rhodobacter sp. LPB0142]                         |
| PE 1370    | pyruvate dehydrogenase E2 component (dihydrolipoamide       | DIAT     | FC·23112    | 83.2 | 0          | WP 068765208 1 | pyruvate dehydrogenase complex dihydrolipoamide                   |
| 12_1377    | acetyltransferase)                                          | DLAI     | LC.2.3.1.12 | 05.2 | 0          | W1_000705208.1 | acetyltransferase [Paenirhodobacter sp. MME-103]                  |
| PE 2364    | pyruvate dehydrogenase E2 component (dihydrolipoamide       | DLAT     | FC·2 3 1 12 | 71.8 | 1 89E-108  | SFA84632 1     | pyruvate dehydrogenase E2 component (dihydrolipoamide             |
| 12_2001    | acetyltransferase)                                          | DEIT     | B0.2.5.1112 | /1.0 | 1.072 100  | 511101052.1    | acetyltransferase) [Poseidonocella pacifica]                      |
| PE_1380    | pyruvate dehydrogenase E1 component beta subunit            | PDHB     | EC:1.2.4.1  | 83.1 | 0          | AMY69898.1     | pyruvate dehydrogenase subunit beta [Defluviimonas alba]          |
| PF 1381    | pyruvate dehydrogenase El component alpha subunit           | ррна     | FC·1 2 4 1  | 89.5 | 0          | AOZ69278 1     | pyruvate dehydrogenase (acetyl-transferring) E1 component subunit |
| 12_1501    | pyruvate denydrogenase Er component apna subant             | I DIII I | LC.1.2.4.1  | 07.5 | 0          | 1020/270.1     | alpha [Rhodobacter sp. LPB0142]                                   |
| PE 2361    | pyruvate dehydrogenase E1 component alpha subunit           | РДНА     | FC·1 2 4 1  | 79.9 | 0          | AKO98504 1     | Pyruvate/2-oxoglutarate dehydrogenase complex, dehydrogenase      |
| 12_2301    | pyravate denyalogenase Er component alpha subant            | I DIII I | LC.1.2.4.1  | 19.9 | 0          | /110/0504.1    | component, eukaryotic type [Marinovum algicola DG 898]            |
| PE 2362    | pyruvate dehydrogenase E1 component beta subunit            | PDHB     | EC:1241     | 88.5 | 0          | SFR18622.1     | pyruvate dehydrogenase E1 component beta subunit                  |
| 12_2002    |                                                             | 10110    | Domini      | 0010 | Ū          | 5111002211     | [Poseidonocella sedimentorum]                                     |
| S3_Bin008- | Paenirhodobacter enshiensis-Acetate production              |          |             |      |            |                |                                                                   |
| PE_1307    | phosphate acetyltransferase                                 | pta      | EC:2.3.1.8  | 77.1 | 0          | AOZ71023.1     | enoyl-CoA hydratase [Rhodobacter sp. LPB0142]                     |
| PE_1308    | Acetate kinase                                              | ackA     | EC:2.7.2.1  | 84.6 | 0          | WP_068766622.1 | acetate kinase [Paenirhodobacter sp. MME-103]                     |

| S3_Bin008-Pa | aenirhodobacter enshiensis-Butyrate and caproate production |       |              |      |           |                |                                                                 |
|--------------|-------------------------------------------------------------|-------|--------------|------|-----------|----------------|-----------------------------------------------------------------|
| PE_1057      | acetyl-CoA C-acetyltransferase                              | atoB  | EC:2.3.1.9   | 83.9 | 0         | KFE34529.1     | acetyl-CoA acyltransferase [Thioclava atlantica]                |
| PE_1075      | acetyl-CoA C-acetyltransferase                              | atoB  | EC:2.3.1.9   | 86.4 | 0         | WP_068765357.1 | acetyl-CoA acetyltransferase [Paenirhodobacter sp. MME-103]     |
| PE_1122      | acetyl-CoA C-acetyltransferase                              | atoB  | EC:2.3.1.9   | 87.6 | 0         | SEO38001.1     | acetyl-CoA C-acetyltransferase [Paracoccus alcaliphilus]        |
| PE_1262      | acetyl-CoA C-acetyltransferase                              | atoB  | EC:2.3.1.9   | 90.8 | 0         | SIS65056.1     | acetyl-CoA acetyltransferase [Rhodobacter vinaykumarii]         |
| PE_1642      | acetyl-CoA C-acetyltransferase                              | atoB  | EC:2.3.1.9   | 80.5 | 0         | SFQ30065.1     | acetyl-CoA C-acetyltransferase [Donghicola eburneus]            |
| PE_1791      | acetyl-CoA C-acetyltransferase                              | atoB  | EC:2.3.1.9   | 94.3 | 0         | WP_068767177.1 | acetyl-CoA acetyltransferase [Paenirhodobacter sp. MME-103]     |
| PE_0778      | 3-hydroxybutyryl-CoA dehydrogenase                          | paaH  | EC:1.1.1.157 | 65.4 | 5.76E-132 | WP_010138125.1 | 3-hydroxybutyryl-CoA dehydrogenase [Oceanicola sp. S124]        |
| DE 2880      | 3 hydroxybutyryl CoA dehydrogenace                          | naaU  | EC:111157    | 86.6 | 0         | WD 068765301 1 | 3-hydroxybutyryl-CoA dehydrogenase [Paenirhodobacter sp.        |
| 1 E_2880     | 5-nyuloxyoutyryr-CoA denyulogenase                          | paarr | EC.1.1.1.157 | 80.0 | 0         | w1_008705501.1 | MME-103]                                                        |
| DE 0210      | 2 hudrovuhuturul Co A dohudrotooo                           | omoD  | EC:4 2 1 55  | 947  | 1.025.94  | WD 071165729 1 | (R)-hydratase [Rhodobacter sp. LPB0142] AOZ68795.1              |
| FE_0219      | 5-nyuloxybutyryi-CoA denyulatase                            | CIOK  | EC.4.2.1.55  | 04.7 | 1.92E-04  | wr_0/1105/28.1 | (R)-hydratase [Rhodobacter sp. LPB0142]                         |
| PE_0062      | enoyl-CoA hydratase                                         | crt   | EC:4.2.1.17  | 88.3 | 5.13E-136 | WP_068768004.1 | hypothetical protein [Paenirhodobacter sp. MME-103]             |
| PE_0675      | enoyl-CoA hydratase                                         | crt   | EC:4.2.1.17  | 82.2 | 1.01E-155 | OOL18131.1     | enoyl-CoA hydratase [Ochrobactrum sp. P6BS-III]                 |
| PE_0765      | enoyl-CoA hydratase                                         | crt   | EC:4.2.1.17  | 85.1 | 1.54E-171 | ACM04163.1     | Enoyl-CoA hydratase/isomerase [Rhodobacter sphaeroides KD131]   |
| PE_3213      | enoyl-CoA hydratase                                         | crt   | EC:4.2.1.17  | 85.7 | 2.17E-163 | SIS74030.1     | short chain enoyl-CoA hydratase [Rhodobacter aestuarii]         |
| PE_0499      | butyryl-CoA dehydrogenase                                   | bcd   | EC:1.3.8.1   | 87.9 | 0         | ETD84791.1     | acyl-CoA dehydrogenase [Rhodobacter capsulatus B6]              |
| DE 1054      | acatata CaA/acatagastata CaA transformasa aluba subunit     | otoD  | EC:2.8.3.8   | 78.2 | 9 70E 105 | SEI09121 1     | acetate CoA/acetoacetate CoA-transferase alpha subunit          |
| PE_1034      | acetate CoA/acetoacetate CoA-transferase arpna subunit      | atoD  | 2.8.3.9      | 78.2 | 6.72E-123 | 3FJ08131.1     | [Celeribacter neptunius]                                        |
| DE 3514      | acatata CoA/acatagcatata CoA transfarasa alpha subunit      | atoD  | EC:2.8.3.8   | ר רר | 736E 110  | WD 018633765 1 | acetyl-CoAacetoacetyl-CoA transferase subunit alpha [Meganema   |
| 1E_3314      |                                                             | atoD  | 2.8.3.9      | //./ | 7.30E-119 | w1_018035705.1 | perideroedes]                                                   |
| PF 3515      | acetate CoA/acetoacetate CoA_transferase beta subunit       | atoA  | EC:2.8.3.8   | 70.3 | 2 55E-118 | OHC/9010.1     | succinyl-CoA3-ketoacid-CoA transferase [Rhodobacteraceae        |
| 12_3313      | actate Convactoactate Con-transferase beta subunit          | aloA  | 2.8.3.9      | 17.5 | 2.551-110 | 011047010.1    | bacterium GWF1_65_7]                                            |
| S3_Bin008-Pa | aenirhodobacter enshiensis-Ethanol production/oxidation     |       |              |      |           |                |                                                                 |
| PE_0265      | aldehyde dehydrogenase (NAD+)                               | ALDH  | EC:1.2.1.3   | 89.3 | 0         | AOZ68323.1     | aldehyde dehydrogenase family protein [Rhodobacter sp. LPB0142] |

| PE_0752         | aldehyde dehydrogenase (NAD+)                          | ALDH | EC:1.2.1.3  | 83.2 | 0         | KJZ21783.1     | betaine-aldehyde dehydrogenase [Ruegeria mobilis]                              |
|-----------------|--------------------------------------------------------|------|-------------|------|-----------|----------------|--------------------------------------------------------------------------------|
| PE_1339         | aldehyde dehydrogenase (NAD+)                          | ALDH | EC:1.2.1.3  | 81.0 | 0         | AOZ69140.1     | aldehyde dehydrogenase family protein [Rhodobacter sp. LPB0142]                |
| PE_1494         | aldehyde dehydrogenase (NAD+)                          | ALDH | EC:1.2.1.3  | 87.9 | 0         | AOZ68248.1     | aldehyde dehydrogenase family protein [Rhodobacter sp. LPB0142]                |
| PE_3251         | aldehyde dehydrogenase (NAD+)                          | ALDH | EC:1.2.1.3  | 75.8 | 0         | ETD90655.1     | aldehyde dehydrogenase [Rhodobacter capsulatus YW2]                            |
| PE_3542         | aldehyde dehydrogenase (NAD+)                          | ALDH | EC:1.2.1.3  | 51.2 | 0         | WP_038076817.1 | aldehyde dehydrogenase [Thioclava pacifica]                                    |
| PE_0700         | alcohol dehydrogenase                                  | adh2 | EC:1.1.1    | 88.1 | 0         | WP_028095703.1 | alcohol dehydrogenase [Pseudodonghicola xiamenensis]                           |
| PE_2370         | alcohol dehydrogenase, propanol-preferring             | adhP | EC:1.1.1.1  | 79.7 | 0         | SDW45688.1     | alcohol dehydrogenase, propanol-preferring [Celeribacter indicus]              |
| S3_Bin008-Paen  | nirhodobacter enshiensis-Membrane proteins involved in |      |             |      |           |                |                                                                                |
| energy conserva | tion-Fix system                                        |      |             |      |           |                |                                                                                |
| PE_3758         | electron transfer flavoprotein beta subunit            | fixA |             | 93.6 | 1.94E-138 | AOZ70298.1     | electron transfer flavoprotein subunit beta [ <i>Rhodobacter</i> sp. LPB0142]  |
| PE_3757         | electron transfer flavoprotein alpha subunit           | fixB |             | 89.7 | 9.76E-170 | AOZ70299.1     | electron transfer flavoprotein subunit alpha [ <i>Rhodobacter</i> sp. LPB0142] |
| S3_Bin008-Paen  | irhodobacter enshiensis-ATPase                         |      |             |      |           |                |                                                                                |
| PE_0226         | F-type H+-transporting ATPase subunit epsilon          |      |             | 79.4 | 4.88E-67  | AOZ68786.1     | ATP synthase F1 subunit epsilon [Rhodobacter sp. LPB0142]                      |
| PE_0227         | F-type H+-transporting ATPase subunit beta             |      | EC:3.6.3.14 | 95.7 | 0         | SIS87773.1     | ATP synthase F1 subcomplex beta subunit [Rhodobacter aestuarii]                |
| PE_0228         | F-type H+-transporting ATPase subunit gamma            |      |             | 85.6 | 4.17E-180 | AOZ68784.1     | F0F1 ATP synthase subunit gamma [Rhodobacter sp. LPB0142]                      |
| PE_0229         | F-type H+-transporting ATPase subunit alpha            |      | EC:3.6.3.14 | 94.1 | 0         | SIS87731.1     | ATP synthase F1 subcomplex alpha subunit [Rhodobacter aestuarii]               |
| PE_0230         | F-type H+-transporting ATPase subunit delta            |      |             | 78.2 | 4.81E-96  | ETD88720.1     | F0F1 ATP synthase subunit delta [Rhodobacter capsulatus YW2]                   |
| PE_1195         | ATP synthase                                           |      |             | 65.8 | 0         | SFY39743.1     | phospholipase/carboxylesterase [Paracoccus pantotrophus]                       |
| PE 2134         | E-type H+-transporting ATPase subunit beta             |      | EC:36314    | 85.2 | 0         | AI G89973 1    | ATP F0F1 synthase subunit beta [Confluentimicrobium sp.                        |
| 16_2154         | 1-type 11transporting A11 ase subunit beta             |      | LC.5.0.5.14 | 05.2 | 0         | AL007775.1     | EMB200-NS6]                                                                    |
| PE_2135         | F-type H+-transporting ATPase subunit epsilon          |      |             | 60.1 | 1.05E-51  | KGB81292.1     | ATP synthase F0F1 subunit epsilon [Rhodovulum sp. NI22]                        |
| PE_2136         | ATP synthase protein I                                 | atpI |             | 69.1 | 5.94E-31  | AKR55839.1     | ATP synthase [Devosia sp. H5989]                                               |
| PE_2138         | F-type H+-transporting ATPase subunit a                |      |             | 75.0 | 1.74E-112 | KGB81289.1     | ATP synthase F0F1 subunit A [Rhodovulum sp. NI22]                              |

| PE_2139   | F-type H+-transporting ATPase subunit c                      |          |             | 87.5         | 5.41E-42  | KIL04359.1     | ATP F0F1 synthase subunit C [Pseudomonas stutzeri]                 |
|-----------|--------------------------------------------------------------|----------|-------------|--------------|-----------|----------------|--------------------------------------------------------------------|
| PE_2140   | F-type H+-transporting ATPase subunit b                      |          |             | 55.9         | 3.12E-65  | KGB81287.1     | hypothetical protein JT55_14135 [Rhodovulum sp. NI22]              |
| DE 0141   | E tour II - tour and in ATD an automit alaba                 |          | EC-2 ( 2 14 | 75.6         | 0         | EIE 40002 1    | H+-transporting two-sector ATPase, alpha/beta subunit [Citreicella |
| PE_2141   | F-type H+-transporting ATPase subunit aipna                  |          | EC:3.0.3.14 | /5.0         | 0         | EIE49002.1     | sp. 357]                                                           |
| PE_2142   | F-type H+-transporting ATPase subunit gamma                  |          |             | 61.8         | 3.60E-107 | KGB81285.1     | ATPase [Rhodovulum sp. NI22]                                       |
| S3_Bin009 | -Oscillibacter ruminantium-Glycerol oxidation 2              |          |             |              |           |                |                                                                    |
| OR_3173   | glycerol kinase                                              | glpK     | EC:2.7.1.30 | 83.7         | 0         | CDD40108.1     | glycerol kinase 2 [Clostridium sp. CAG:299]                        |
| OR_3357   | glycerol kinase                                              | glpK     | EC:2.7.1.30 | 100.0        | 0         | WP_040659376.1 | glycerol kinase [Oscillibacter ruminantium]                        |
| OR_0905   | glycerol-3-phosphate dehydrogenase (NAD(P)+)                 | gpsA     | EC:1.1.1.94 | 100.0        | 0         | WP_040661836.1 | glycerol-3-phosphate dehydrogenase [Oscillibacter ruminantium]     |
| OP 2501   | alvastal 2 phosphata dahudrocopaca (NAD(D)))                 | ans A    | EC:11104    | 85.0         | 0         | SCI60554 1     | Glycerol-3-phosphate dehydrogenase [NAD(P)+] [uncultured           |
| OK_3391   | giyeeroi-5-phosphate denydrogenase (NAD(P)+)                 | gpsA     | EC.1.1.1.94 | 63.9         | 0         | 3C109554.1     | Clostridium sp.]                                                   |
| S3_Bin009 | -Oscillibacter ruminantium-Central axis pathway              |          |             |              |           |                |                                                                    |
| OR_1769   | triosephosphate isomerase (TIM)                              | TPI      | EC:5.3.1.1  | 100.0        | 0         | WP_040660011.1 | triose-phosphate isomerase [Oscillibacter ruminantium]             |
| OR 0104   | olyceraldehyde 3-phosphate dehydrogenase                     | GAPDH    | FC·1 2 1 12 | 100.0        | 0         | WP 040660984 1 | type I glyceraldehyde-3-phosphate dehydrogenase [Oscillibacter     |
| on_oron   | gijeeranden jae 5 prosprate den jarogenase                   | on bi    | LC.112.1112 | 100.0        | 0         |                | ruminantium]                                                       |
| OR 0650   | ølyceraldehyde 3-phosphate dehydrogenase                     | GAPDH    | EC:1.2.1.12 | 93.2         | 0         | WP 050619378 1 | type I glyceraldehyde-3-phosphate dehydrogenase [Intestinimonas    |
| 011_0000  |                                                              | 0.11.211 | Lenizini    | <i>y</i> 0.2 | 0         |                | massiliensis]                                                      |
| OR 1884   | glyceraldehyde 3-phosphate dehydrogenase                     | GAPDH    | EC:1.2.1.12 | 100.0        | 0         | WP 040658858.1 | type I glyceraldehyde-3-phosphate dehydrogenase [Oscillibacter     |
|           | 8-)                                                          |          |             |              |           |                | ruminantium]                                                       |
| OR_1770   | phosphoglycerate kinase                                      | PGK      | EC:2.7.2.3  | 100.0        | 0         | WP_040660014.1 | phosphoglycerate kinase [Oscillibacter ruminantium]                |
| OR_0492   | probable phosphoglycerate mutase                             | gpmB     | EC:5.4.2.12 | 100.0        | 0         | WP_040659060.1 | hypothetical protein [Oscillibacter ruminantium]                   |
| OP 1768   | 2.3 hisphosphoglycarate independent phosphoglycarate mutase  | anmI     | EC:5 4 2 12 | 100.0        | 0         | WP 040660010.1 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase        |
| OK_1708   | 2,3-bisphosphogrycerate-independent phosphogrycerate inutase | gpiin    | EC.J.4.2.12 | 100.0        | 0         | WF_04000010.1  | [Oscillibacter ruminantium]                                        |
| OR_2875   | enolase                                                      | ENO      | EC:4.2.1.11 | 42.2         | 0.23      | WP_057088306.1 | hypothetical protein [Bacteroides uniformis]                       |
| OR_2630   | pyruvate kinase                                              | РК       | EC:2.7.1.40 | 88.6         | 0         | WP_052082408.1 | pyruvate kinase [Intestinimonas butyriciproducens]                 |

| OR 2210     | numusta dahudrogonogo El gomnonont alnha subunit           |        | EC:1241     | 100.0    | 0         | WD 051121674 1 | acetoin:2,6-dichlorophenolindophenol oxidoreductase subunit alpha |
|-------------|------------------------------------------------------------|--------|-------------|----------|-----------|----------------|-------------------------------------------------------------------|
| OK_2210     | pyruvate denydrogenase Er component alpha subunt           | IDIA   | EC.1.2.4.1  | 100.0    | 0         | w1_051151074.1 | [Oscillibacter ruminantium]                                       |
| OP 2211     | pyruvate dehydrogenese E1 component bete subunit           | DURB   | EC-1 2 4 1  | 100.0    | 0         | WP 040661100 1 | alpha-ketoacid dehydrogenase subunit beta [Oscillibacter          |
| OK_2211     | pyruvate denyurogenase Er component beta subunit           | I DIID | EC.1.2.4.1  | 100.0    | 0         | W1_040001190.1 | ruminantium]                                                      |
| OR 2217     | pyruvate dehydrogenase E1 component alpha subunit          | ррна   | FC·1 2 4 1  | 100.0    | 0         | WP 0406611961  | acetoin:2,6-dichlorophenolindophenol oxidoreductase subunit alpha |
| OK_2217     | pyruvate denydrogenase Er component apna subunt            | IDIIA  | LC.1.2.4.1  | 100.0    | 0         | W1_040001170.1 | [Oscillibacter ruminantium]                                       |
| OR 2218     | pyruvate dehydrogenase E1 component beta subunit           | ррнв   | FC·1 2 4 1  | 100.0    | 0         | WP 0406611971  | alpha-ketoacid dehydrogenase subunit beta [Oscillibacter          |
| OK_2218     | pyruvate denyurogenase Er component beta subunit           | I DIID | EC.1.2.4.1  | 100.0    | 0         | W1_040001197.1 | ruminantium]                                                      |
| OR 2219     | pyruvate dehydrogenase E2 component (dihydrolipoamide      | σιάτ   | FC·23112    | 100.0    | 0         | WP 0406611981  | hypothetical protein [Oscillibactar ruminantium]                  |
| OK_2219     | acetyltransferase)                                         | DLAI   | EC.2.5.1.12 | 100.0    | 0         | W1_040001198.1 | hypothetical protein [Oscilloacier ruminanilum]                   |
| OR 0303     | pyruvate-ferredoxin/flavodoxin oxidoreductase              | por    | EC:1.2.7.1  | 100.0    | 0         | WP 040660745 1 | pyruvate:ferredoxin (flavodoxin) oxidoreductase [Oscillibacter    |
| OK_0505     | pyruvate refredoxili/havodoxili oxidoredictase             | por    | 1.2.7       | 100.0    | 0         |                | ruminantium]                                                      |
| OR 1623     | nymyste-ferredoxin/flavodoxin oxidoreductase               | por    | EC:1.2.7.1  | 85.9     | 0         | WP 0331184531  | pyruvate:ferredoxin (flavodoxin) oxidoreductase [Intestinimonas   |
| 011_1020    |                                                            | Por    | 1.2.7       | 05.9     | Ū.        |                | butyriciproducens]                                                |
| OR 3352     | nyruvate ferredoxin oxidoreductase beta subunit            | porB   | EC·1 2 7 1  | 94 1     | 7 87E-155 | BAK98548 1     | pyruvate synthase subunit PorB [Oscillibacter valericigenes       |
| 011_0002    |                                                            | Poild  | Derrizinti  | <i>,</i> | 110/2 100 | 21112/00/1011  | Sjm18-20]                                                         |
| S3_Bin009-0 | Oscillibacter ruminantium-Acetate production               |        |             |          |           |                |                                                                   |
| OR_0108     | phosphate acetyltransferase                                | pta    | EC:2.3.1.8  | 99.7     | 0         | WP_040660986.1 | phosphate acetyltransferase [Oscillibacter ruminantium]           |
| OR_2786     | putative phosphotransacetylase                             | pta    | EC:2.3.1.8  | 74.7     | 1.33E-112 | WP_033116456.1 | phosphate propanoyltransferase [Intestinimonas butyriciproducens] |
| OR_3028     | phosphate acetyltransferase                                | pta    | EC:2.3.1.8  | 88.3     | 0         | WP_033118802.1 | phosphate acetyltransferase [Intestinimonas butyriciproducens]    |
| OR_0381     | acetate kinase                                             | ackA   | EC:2.7.2.1  | 100.0    | 0         | WP_040659222.1 | acetate kinase [Oscillibacter ruminantium]                        |
| OR_1180     | acetate kinase                                             | ackA   | EC:2.7.2.1  | 88.5     | 0         | WP_033119262.1 | acetate kinase [Intestinimonas butyriciproducens]                 |
| S3_Bin009-0 | Oscillibacter ruminantium-Butyrate and caproate production |        |             |          |           |                |                                                                   |
| OR_0079     | acetyl-CoA C-acetyltransferase                             | atoB   | EC:2.3.1.9  | 99.7     | 0         | WP_040660251.1 | acetyl-CoA acetyltransferase [Oscillibacter ruminantium]          |
| OR_1778     | acetyl-CoA C-acetyltransferase                             | atoB   | EC:2.3.1.9  | 99.8     | 0         | WP_040660027.1 | acetyl-CoA acetyltransferase [Oscillibacter ruminantium]          |

|             |                                                        |              |                       |      |           |                | acetyl-CoA acetyltransferase [Firmicutes bacterium               |
|-------------|--------------------------------------------------------|--------------|-----------------------|------|-----------|----------------|------------------------------------------------------------------|
| OR_3143     | acetyl-CoA C-acetyltransferase                         | atoB         | EC:2.3.1.9            | 82.8 | 0         | OLA37645.1     | CAG:176 63 11]                                                   |
| OR_0080     | 3-hydroxybutyryl-CoA dehydrogenase                     | paaH         | EC:1.1.1.157          | 99.7 | 0         | WP_040660253.1 | 3-hydroxyacyl-CoA dehydrogenase [Oscillibacter ruminantium]      |
| OR_0709     | 3-hydroxybutyryl-CoA dehydrogenase                     | paaH         | EC:1.1.1.157          | 92.9 | 0         | WP_050618924.1 | 3-hydroxybutyryl-CoA dehydrogenase [Intestinimonas massiliensis] |
| OR_1678     | 3-hydroxybutyryl-CoA dehydrogenase                     | paaH         | EC:1.1.1.157          | 56.6 | 1.04E-119 | WP_044567660.1 | hypothetical protein [Anaerococcus provenciensis]                |
| OR_3144     | 3-hydroxybutyryl-CoA dehydrogenase                     | paaH         | EC:1.1.1.157          | 75.2 | 1.31E-152 | WP_050618924.1 | 3-hydroxybutyryl-CoA dehydrogenase [Intestinimonas massiliensis] |
| OR_3441     | 3-hydroxybutyryl-CoA dehydrogenase                     | paaH         | EC:1.1.1.157          | 87.0 | 0         | WP_024723756.1 | 3-hydroxyacyl-CoA dehydrogenase [Flavonifractor plautii]         |
| OR_0078     | enoyl-CoA hydratase                                    | crt          | EC:4.2.1.17           | 99.6 | 0         | WP_040660249.1 | enoyl-CoA hydratase [Oscillibacter ruminantium]                  |
| OR_0615     | enoyl-CoA hydratase                                    | crt          | EC:4.2.1.17           | 76.5 | 6.07E-149 | WP_058117605.1 | enoyl-CoA hydratase [Intestinimonas butyriciproducens]           |
| OR_0708     | enoyl-CoA hydratase                                    | crt          | EC:4.2.1.17           | 93.0 | 1.07E-172 | WP_033118609.1 | enoyl-CoA hydratase [Intestinimonas butyriciproducens]           |
| OR_1669     | enoyl-CoA hydratase                                    | crt          | EC:4.2.1.17           | 64.5 | 7.93E-121 | WP_050618245.1 | hypothetical protein [Intestinimonas massiliensis]               |
| OR_1619     | 3-hydroxybutyryl-CoA dehydratase                       | croR         | EC:4.2.1.55           | 71.0 | 1.07E-69  | WP_016205959.1 | dehydratase [Clostridium sartagoforme]                           |
| OR_1671     | butyryl-CoA dehydrogenase                              | bcd          | EC:1.3.8.1            | 73.6 | 0         | WP_050618243.1 | acyl-CoA dehydrogenase [Intestinimonas massiliensis]             |
| OR_3620     | butyryl-CoA dehydrogenase                              | bcd          | EC:1.3.8.1            | 63.6 | 4.37E-169 | WP_066240845.1 | hypothetical protein [Anaerosporomusa subterranea]               |
| OR 1334     | acetate CoA/acetoacetate CoA-transferase alpha subunit | atoD         | EC:2.8.3.8            | 75 1 | 1 51F-124 | WP 007288542 1 | 3-oxoadipate CoA-transferase subunit A [Thermosinus              |
| OK_1554     | actuae Convactoactuae Constrainsterase alpha subulint  | atoD         | 2.8.3.9               | 75.1 | 1.512-124 | W1_007200342.1 | carboxydivorans]                                                 |
| OR_1533     | propionate CoA-transferase                             | pct          | EC:2.8.3.1            | 78.3 | 0         | WP_044938912.1 | 3-oxoacid CoA-transferase [Flavonifractor plautii]               |
| OR_1668     | propionate CoA-transferase                             | pct          | EC:2.8.3.1            | 79.5 | 0         | WP_050618247.1 | hypothetical protein [Intestinimonas massiliensis]               |
| OR_1675     | propionate CoA-transferase                             | pct          | EC:2.8.3.1            | 70.5 | 0         | WP_024723620.1 | 3-oxoacid CoA-transferase [Flavonifractor plautii]               |
| OR_3499     | propionate CoA-transferase                             | pct          | EC:2.8.3.1            | 76.1 | 0         | WP_054329786.1 | 3-oxoacid CoA-transferase [Clostridia bacterium UC5.1-1D10]      |
| OP 2621     | 2 oxoooid CoA transformed subunit P                    | soo <b>P</b> | EC.2 8 2 5            | 80.4 | 9 26E 120 | WD 066240842 1 | succinyl-CoA3-ketoacid-CoA transferase [Anaerosporomusa          |
| OK_3021     | 5-oxoacid CoA-transferase subunit B                    | SCOD         | EC:2.8.3.3            | 80.4 | 8.30E-129 | wP_000240845.1 | subterranea]                                                     |
| OR_3622     | acetate CoA/acetoacetate CoA-transferase alpha subunit | atoD         | EC:2.8.3.8<br>2.8.3.9 | 76.3 | 2.88E-138 | WP_066240839.1 | CoA-transferase [Anaerosporomusa subterranea]                    |
| S3_Bin009-0 | scillibacter ruminantium-Membrane proteins involved in |              |                       |      |           |                |                                                                  |

| energy conser | vation-Rnf complex                            |       |             |             |           |                |                                                              |
|---------------|-----------------------------------------------|-------|-------------|-------------|-----------|----------------|--------------------------------------------------------------|
| OR_0160       | electron transport complex protein RnfB       | rnfB  |             | 100.0       | 0         | WP_051131586.1 | ferredoxin [Oscillibacter ruminantium]                       |
| OR_0161       | electron transport complex protein RnfA       | rnfA  |             | 99.5        | 4.32E-132 | WP_040660478.1 | electron transporter RnfA [Oscillibacter ruminantium]        |
| OR_0162       | electron transport complex protein RnfE       | rnfE  |             | 100.0       | 2.89E-141 | WP_040660480.1 | electron transporter RnfE [Oscillibacter ruminantium]        |
| OR_0163       | electron transport complex protein RnfG       | rnfG  |             | 100.0       | 8.78E-136 | WP_040661009.1 | electron transporter RnfG [Oscillibacter ruminantium]        |
| OR_0164       | electron transport complex protein RnfD       | rnfD  |             | 100.0       | 0         | WP_040660482.1 | NADH:ubiquinone oxidoreductase [Oscillibacter ruminantium]   |
| OR_0165       | electron transport complex protein RnfC       | rnfC  |             | 100.0       | 0         | WP_040660484.1 | electron transporter RnfC [Oscillibacter ruminantium]        |
| OR_2484       | electron transport complex protein RnfC       | rnfC  |             | 88.1        | 0         | WP_058117097.1 | electron transporter RnfC [Intestinimonas butyriciproducens] |
| OB 2495       | electron transport complex protein Part       | and D |             | 70.2        | 0         | WD 022117459 1 | NADH:ubiquinone oxidoreductase [Intestinimonas               |
| OK_2403       | election transport complex protein KinD       | IIID  |             | 19.5        | 0         | WF_03311/438.1 | butyriciproducens]                                           |
| OR_2486       | electron transport complex protein RnfG       | rnfG  |             | 64.7        | 1.75E-71  | WP_052082630.1 | electron transporter RnfG [Intestinimonas butyriciproducens] |
| OR_2487       | electron transport complex protein RnfE       | rnfE  |             | 71.4        | 5.53E-102 | WP_007489469.1 | MULTISPECIES: electron transporter RnfE [Clostridiales]      |
| OB 2499       | electron transport complex protein ParfA      | mf A  |             | <u>ہ דד</u> | 4 47E 105 | WD 050617657 1 | electron transport complex protein RnfA [Intestinimonas      |
| OK_2400       | election transport complex protein KinA       | IIIA  |             | //.0        | 4.47E-103 | WF_030017037.1 | massiliensis]                                                |
| OR_2489       | electron transport complex protein RnfB       | rnfB  |             | 73.3        | 1.64E-148 | WP_070103821.1 | ferredoxin, partial [Flavonifractor plautii]                 |
| OP 2065       | alastron transfor flavonrotsin alpha subunit  | fivD  |             | 80.2        | 0         | WD 022110152 1 | electron transfer flavoprotein subunit alpha [Intestinimonas |
| OK_2905       | election transfer fravoprotein appla subunt   | IIXD  |             | 09.5        | 0         | W1_033119132.1 | butyriciproducens]                                           |
| OP 2066       | alactron transfer flavonrotain hata subunit   | fixA  |             | 05.1        | 0         | WD 033110151 1 | electron transfer flavoprotein subunit beta [Intestinimonas  |
| OK_2900       | election transfer havoprotein beta subunit    | ПАА   |             | 95.1        | 0         | w1_033119131.1 | butyriciproducens]                                           |
| S3_Bin009-Os  | cillibacter ruminantium-ATPase                |       |             |             |           |                |                                                              |
| OR_3409       | F-type H+-transporting ATPase subunit epsilon | atpC  |             | 100.0       | 3.28E-92  | WP_040664116.1 | ATP synthase F1 subunit epsilon [Oscillibacter ruminantium]  |
| OR_3410       | F-type H+-transporting ATPase subunit beta    | atpD  | EC:3.6.3.14 | 100.0       | 0         | WP_040664113.1 | ATP synthase subunit beta [Oscillibacter ruminantium]        |
| OR_3411       | F-type H+-transporting ATPase subunit gamma   | atpG  |             | 100.0       | 0         | WP_040664110.1 | ATP synthase F0F1 subunit gamma [Oscillibacter ruminantium]  |
| OR_3412       | F-type H+-transporting ATPase subunit alpha   | atpA  | EC:3.6.3.14 | 99.8        | 0         | WP_040664107.1 | ATP synthase subunit alpha [Oscillibacter ruminantium]       |
| OR_3413       | F-type H+-transporting ATPase subunit delta   | atpH  |             | 97.7        | 2.50E-119 | WP_040664104.1 | hypothetical protein [Oscillibacter ruminantium]             |
| OR_3414       | F-type H+-transporting ATPase subunit b       | atpF  |             | 100.0       | 4.23E-112 | WP_040664101.1 | ATP synthase F0 subunit B [Oscillibacter ruminantium]        |

| OR_3415      | F-type H+-transporting ATPase subunit c           | atpE  |             | 100.0 | 2.72E-38  | WP_040664098.1 | ATP synthase F0 subunit C [Oscillibacter ruminantium]                                                                  |
|--------------|---------------------------------------------------|-------|-------------|-------|-----------|----------------|------------------------------------------------------------------------------------------------------------------------|
| OR_3416      | F-type H+-transporting ATPase subunit a           | atpB  |             | 98.7  | 1.07E-156 | WP_040664316.1 | F0F1 ATP synthase subunit A [Oscillibacter ruminantium]                                                                |
| OR_0025      | flagellum-specific ATP synthase                   | fliI  | EC:3.6.3.14 | 100.0 | 0         | WP_040660167.1 | ATP synthase [Oscillibacter ruminantium]                                                                               |
| OR_1423      | flagellum-specific ATP synthase                   | fliI  | EC:3.6.3.14 | 82.9  | 0         | WP_023345954.1 | flagellar protein export ATPase FliI [Firmicutes bacterium ASF500]                                                     |
| S3_Bin011-Cl | ostridiales bacterium DRI-13-Glycerol oxidation 1 |       |             |       |           |                |                                                                                                                        |
| CB_3449      | Glycerol dehydrogenase                            | gldA  | EC:1.1.1.6  | 73.4  | 0         | WP_042682775.1 | glycerol dehydrogenase [Anaerosalibacter massiliensis]                                                                 |
| CB_0712      | dihydroxyacetone kinase, C-terminal domain        | dhaL  | EC:2.7.1    | 63.4  | 5.28E-84  | KYH29213.1     | PTS-dependent dihydroxyacetone kinase, ADP-binding subunit<br>DhaL [Clostridium colicanis DSM 13634]                   |
| CB_0713      | dihydroxyacetone kinase, N-terminal domain        | dhaK  | EC:2.7.1    | 78.2  | 0         | KYO65477.1     | PTS-dependent dihydroxyacetone kinase, dihydroxyacetone-binding<br>subunit DhaK [ <i>Thermovenabulum gondwanense</i> ] |
| CB_0785      | dihydroxyacetone kinase, N-terminal domain        | dhaK  | EC:2.7.1    | 80.1  | 0         | OFL91225.1     | glycerol kinase [Fusobacterium sp. HMSC073F01]                                                                         |
| CB_0786      | dihydroxyacetone kinase, C-terminal domain        | dhaL  | EC:2.7.1    | 45.9  | 3.04E-63  | OFL91226.1     | Dak phosphatase [Fusobacterium sp. HMSC073F01]                                                                         |
| S3_Bin011-Cl | ostridiales bacterium DRI-13-Glycerol oxidation 2 |       |             |       |           |                |                                                                                                                        |
| CB_0718      | glycerol kinase                                   | glpK  | EC:2.7.1.30 | 87.1  | 0         | KXG76970.1     | Glycerol kinase [Fervidicola ferrireducens]                                                                            |
| CB_0717      | glycerol-3-phosphate dehydrogenase                | glpA  | EC:1.1.5.3  | 68.3  | 0         | AEE90760.1     | FAD dependent oxidoreductase [Tepidanaerobacter acetatoxydans<br>Re1]                                                  |
| CB_2035      | glycerol-3-phosphate dehydrogenase                | glpA  | EC:1.1.5.3  | 75.8  | 0         | SHK15780.1     | glycerol-3-phosphate dehydrogenase [Caminicella sporogenes DSM 14501]                                                  |
| CB_1563      | glycerol-3-phosphate dehydrogenase (NAD(P)+)      | gpsA  | EC:1.1.1.94 | 71.3  | 8.66E-173 | WP_034423582.1 | glycerol-3-phosphate dehydrogenase [ <i>Clostridiales</i> bacterium DRI-13]                                            |
| S3_Bin011-Cl | ostridiales bacterium DRI-13-Central axis pathway |       |             |       |           |                |                                                                                                                        |
| CB_0868      | triosephosphate isomerase (TIM)                   | TPI   | EC:5.3.1.1  | 61.6  | 2.91E-116 | WP_034420300.1 | triose-phosphate isomerase [Clostridiales bacterium DRI-13]                                                            |
| CB_0870      | glyceraldehyde 3-phosphate dehydrogenase          | GAPDH | EC:1.2.1.12 | 79.3  | 0         | WP_034420302.1 | type I glyceraldehyde-3-phosphate dehydrogenase [ <i>Clostridiales</i> bacterium DRI-13]                               |
| CB_0869      | phosphoglycerate kinase                           | PGK   | EC:2.7.2.3  | 74.8  | 0         | WP_034420301.1 | phosphoglycerate kinase [Clostridiales bacterium DRI-13]                                                               |

| CD 00/7 |                                                                          |      | EG 5 4 0 10         | 70.0  | 0         | WD 024420200 1 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase                                                                    |
|---------|--------------------------------------------------------------------------|------|---------------------|-------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------|
| CB_0807 | 2,3-bispnospnoglycerate-independent phospnoglycerate mutase              | gpmi | EC:5.4.2.12         | 70.2  | 0         | wP_034420299.1 | [Clostridiales bacterium DRI-13]                                                                                               |
| CB_0866 | Enolase                                                                  | ENO  | EC:4.2.1.11         | 82.4  | 0         | WP_034420297.1 | phosphopyruvate hydratase [Clostridiales bacterium DRI-13]                                                                     |
| CB_2450 | Enolase                                                                  | ENO  | EC:4.2.1.11         | 74.5  | 0         | OHD71009.1     | phosphopyruvate hydratase [ <i>Spirochaetes</i> bacterium<br>RBG_16_49_21]                                                     |
| CB_0710 | Pyruvate kinase                                                          | РК   | EC:2.7.1.40         | 77.5  | 3.71E-93  | GAU75712.1     | ATP synthase F0 sector subunit c [Fusibacter sp. 3D3]                                                                          |
| CB_1412 | Pyruvate kinase                                                          | РК   | EC:2.7.1.40         | 70.0  | 0         | WP_034424334.1 | pyruvate kinase [Clostridiales bacterium DRI-13]                                                                               |
| CB_0990 | pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) | DLAT | EC:2.3.1.12         | 59.8  | 8.44E-167 | WP_034421312.1 | dihydrolipoyllysine acetyltransferase [ <i>Clostridiales</i> bacterium DRI-13]                                                 |
| CB_0992 | pyruvate dehydrogenase E1 component beta subunit                         | PDHB | EC:1.2.4.1          | 78.0  | 0         | GAK59197.1     | acetoin:2,6-dichlorophenolindophenol oxidoreductase subunit beta<br>[Candidatus Vecturithrix granuli]                          |
| CB_0993 | pyruvate dehydrogenase E1 component alpha subunit                        | PDHA | EC:1.2.4.1          | 80.9  | 0         | WP_034421314.1 | acetoin:2,6-dichlorophenolindophenol oxidoreductase subunit alpha<br>[ <i>Clostridiales</i> bacterium DRI-13]                  |
| CB_1064 | pyruvate dehydrogenase E1 component beta subunit                         | PDHB | EC:1.2.4.1          | 100.0 | 0         | NP_009780.1    | pyruvate dehydrogenase (acetyl-transferring) subunit E1 beta<br>[Saccharomyces cerevisiae S288c]                               |
| CB_2223 | pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) | DLAT | EC:2.3.1.12         | 40.0  | 2.73E-67  | KUO41294.1     | hypothetical protein APZ16_00235 [Hadesarchaea archaeon YNP_45]                                                                |
| CB_2224 | pyruvate dehydrogenase E1 component alpha subunit                        | PDHA | EC:1.2.4.1          | 43.3  | 2.45E-84  | OIP38758.1     | pyruvate dehydrogenase (acetyl-transferring) E1 component subunit<br>alpha [ <i>Desulfobacteraceae</i> bacterium CG2_30_51_40] |
| CB_2225 | pyruvate dehydrogenase E1 component beta subunit                         | PDHB | EC:1.2.4.1          | 58.0  | 5.31E-129 | WP_026499684.1 | alpha-ketoacid dehydrogenase subunit beta [Caldibacillus debilis]                                                              |
| CB_1687 | pyruvate-ferredoxin/flavodoxin oxidoreductase                            | por  | EC:1.2.7.1<br>1.2.7 | 75.9  | 0         | ACL70827.1     | pyruvate flavodoxin/ferredoxin oxidoreductase domain protein<br>[ <i>Halothermothrix orenii</i> H 168]                         |
| CB_1733 | pyruvate ferredoxin oxidoreductase gamma subunit                         | porG | EC:1.2.7.1          | 48.1  | 3.68E-54  | WP_053965824.1 | hypothetical protein [Clostridiales bacterium mt11]                                                                            |
| CB_1734 | pyruvate ferredoxin oxidoreductase delta subunit                         | porD | EC:1.2.7.1          | 51.9  | 1.59E-21  | SCJ87391.1     | Pyruvic-ferredoxin oxidoreductase subunit delta [uncultured<br><i>Clostridium</i> sp.]                                         |
| CB_1735 | pyruvate ferredoxin oxidoreductase alpha subunit                         | porA | EC:1.2.7.1          | 56.4  | 2.50E-159 | CEO89423.1     | Pyruvate synthase subunit porA (Pyruvate:ferredoxin                                                                            |

|                 |                                                 |       |                  |      |           |                | oxidoreductase, alpha subunit) [Syntrophaceticus schinkii]       |
|-----------------|-------------------------------------------------|-------|------------------|------|-----------|----------------|------------------------------------------------------------------|
| CD 1726         |                                                 |       | EC.1 0 7 1       | (1.9 | 4.005 109 | WD 0520(5921.1 | 2-ketoisovalerate ferredoxin oxidoreductase [Clostridiales       |
| CB_1/30         | pyruvate ferredoxin oxidoreductase beta subunit | рогв  | EC:1.2.7.1       | 01.8 | 4.02E-128 | wP_053965821.1 | bacterium mt11]                                                  |
| S3_Bin011-Clost | ridiales bacterium DRI-13-Acetate production    |       |                  |      |           |                |                                                                  |
| CB_0525         | putative phosphotransacetylase                  | pta   | EC:2.3.1.8       | 75.0 | 5.96E-121 | WP_042678834.1 | phosphate propanoyltransferase [Anaerosalibacter massiliensis]   |
| CB_1020         | phosphate acetyltransferase                     | pta   | EC:2.3.1.8       | 79.1 | 0         | WP_034422861.1 | phosphate acetyltransferase [Clostridiales bacterium DRI-13]     |
| CB_1457         | putative phosphotransacetylase                  | pta   | EC:2.3.1.8       | 70.0 | 2.33E-101 | KYO64150.1     | Phosphate propanoyltransferase [Thermovenabulum gondwanense]     |
| CB_1832         | putative phosphotransacetylase                  | pta   | EC:2.3.1.8       | 63.6 | 1.85E-88  | WP_034420556.1 | propanediol utilization protein [Clostridiales bacterium DRI-13] |
| S3_Bin011-Clost | ridiales bacterium DRI-13-Butyrate and caproate |       |                  |      |           |                |                                                                  |
| production      |                                                 |       |                  |      |           |                |                                                                  |
| CP 1020         | agetul CoAC agetultransforaça                   | atoP  | EC.2210          | 2 77 | 0         | ACI 02800 1    | acetyl-CoA acetyltransferase [Desulfotomaculum gibsoniae DSM     |
| CB_1950         | acetyi-COA C-acetyinaiisielase                  | atob  | EC.2.3.1.9       | 11.5 | 0         | AGL03899.1     | 7213]                                                            |
| CB 2031         | acetul CoA C acetultransferase                  | atoB  | EC:2310          | 66.6 | 0         | 01000517.1     | acetyl-CoA acetyltransferase [Candidatus Wirthbacteria bacterium |
| CB_2031         | activit-con C-activitiansierase                 | atob  | EC.2.3.1.9       | 00.0 | 0         | 01000317.1     | CG2_30_54_11]                                                    |
| CB 2048         | acetul-CoA C-acetultransferase                  | atoB  | FC · 2 3 1 9     | 75.0 | 2 08F-50  | OA135251 1     | Acetyl-CoA acetyltransferase [Piscirickettsiaceae bacterium      |
| CD_2040         |                                                 | atob  | LC.2.3.1.9       | 75.0 | 2.001 50  | 0/1355251.1    | NZ-RLO]                                                          |
| CB_2236         | acetyl-CoA C-acetyltransferase                  | atoB  | EC:2.3.1.9       | 78.0 | 0         | WP_034420106.1 | acetyl-CoA acetyltransferase [Clostridiales bacterium DRI-13]    |
| CB 2668         | acetul-CoA C-acetultransferase                  | atoB  | EC:2319          | 77 8 | 0         | ACI 03899 1    | acetyl-CoA acetyltransferase [Desulfotomaculum gibsoniae DSM     |
| CD_2000         |                                                 | atob  | LC.2.5.1.)       | 77.0 | 0         | AGE03077.1     | 7213]                                                            |
| CB_2670         | acetyl-CoA C-acetyltransferase                  | atoB  | EC:2.3.1.9       | 78.3 | 0         | WP_034420106.1 | acetyl-CoA acetyltransferase [Clostridiales bacterium DRI-13]    |
| CB_3152         | acetyl-CoA C-acetyltransferase                  | atoB  | EC:2.3.1.9       | 84.4 | 0         | WP_042678749.1 | acetyl-CoA acetyltransferase [Anaerosalibacter massiliensis]     |
| CR 1031         | 3 hydroxybutyryl CoA dahydroganosa              | paaH  | EC:111157        | 70.4 | 5.63E 147 | KKM104161      | 3-hydroxybutyryl-CoA dehydrogenase [Clostridiales bacterium      |
| CD_1931         | 5-nyuroxyoutyryr-cox denyurogenase              | paarr | EC.1.1.1.157     | 70.4 | J.05E-147 | KKW10410.1     | PH28_bin88]                                                      |
| CB 2235         | 3-hydroxybutyryl-CoA dehydrogenese              | naaH  | FC·1 1 1 157     | 71.3 | 6 51E-152 | KI\$22912 1    | 3-hydroxybutyryl-CoA dehydrogenase [Clostridiaceae bacterium     |
| 00_2235         | 5 Ilyaloxybatyryr corr denyarogenase            | Pauli | 20.1.1.1.1.1.1.7 | /1.5 | 5.51E 152 | 13522712.1     | BRH_c20a]                                                        |

| CB_2671          | 3-hydroxybutyryl-CoA dehydrogenase                     | paaH | EC:1.1.1.157 | 69.5 | 9.14E-143 | WP_034423482.1    | 3-hydroxybutyryl-CoA dehydrogenase [ <i>Clostridiales</i> bacterium |
|------------------|--------------------------------------------------------|------|--------------|------|-----------|-------------------|---------------------------------------------------------------------|
|                  |                                                        |      |              |      |           |                   | DRI-13]                                                             |
| CB_1929          | enoyl-CoA hydratase                                    | crt  | EC:4.2.1.17  | 73.7 | 2.90E-138 | EOD00318.1        | 3-hydroxybutyryl-CoA dehydratase [Caldisalinibacter                 |
|                  |                                                        |      |              |      |           |                   | kiritimatiensis]                                                    |
| CB_2234          | enoyl-CoA hydratase                                    | crt  | EC:4.2.1.17  | 77.0 | 2.66E-145 | KJS83836.1        | crotonase [Peptococcaceae bacterium BICA1-8]                        |
| CB_3100          | enoyl-CoA hydratase                                    | crt  | EC:4.2.1.17  | 70.1 | 1.73E-125 | WP_011878111.1    | enoyl-CoA hydratase [Desulfotomaculum reducens]                     |
| CB_1263          | acyl-CoA dehydrogenase                                 | bcd  | EC:1.3.8.1   | 86.4 | 1.12E-41  | CUH92999.1        | hypothetical protein SD1D_1453 [Herbinix luporum]                   |
| CB_1926          | 4-hydroxybutyrate CoA-transferase                      | cat2 | EC:2.8.3     | 68.7 | 0         | WP_011641322.1    | 4-hydroxybutyrate CoA-transferase [Syntrophomonas wolfei]           |
| CB_2231          | 4-hydroxybutyrate CoA-transferase                      | cat2 | EC:2.8.3     | 70.9 | 0         | CUQ33858.1        | 4-hydroxybutyrate CoA-transferase [Flavonifractor plautii]          |
| CD 0000          |                                                        |      | EC:2.8.3.8   |      | 0.00E 100 | A D.V.15052 1     | butyryl-CoA:acetate CoA transferase [Syntrophobacter                |
| CB_2029          | acetate CoA/acetoacetate CoA-transferase beta subunit  | atoA | 2.8.3.9      | 66.8 | 2.98E-102 | 8E-102 ABK1/9/3.1 | fumaroxidans MPOB]                                                  |
| <b>GD 0</b> 1 40 |                                                        |      | EC:2.8.3.8   |      |           |                   | butyryl-CoA:acetoacetate CoA-transferase beta subunit               |
| CB_2468          | acetate CoA/acetoacetate CoA-transferase beta subunit  | atoA | 2.8.3.9      | 70.5 | 1.32E-108 | SD10/414.1        | [Proteiniborus ethanoligenes]                                       |
| <b>GD 0</b> 1 40 |                                                        |      | EC:2.8.3.8   |      |           |                   | Butyrate-acetoacetate CoA-transferase subunit A [Caldisalinibacter  |
| CB_2469          | acetate CoA/acetoacetate CoA-transferase alpha subunit | atoD | 2.8.3.9      | 67.1 | 3.61E-98  | EOC99457.1        | kiritimatiensis]                                                    |
| GD 0150          |                                                        |      | EC:2.8.3.8   |      |           |                   | butyrateacetoacetate CoA-transferase subunit B [Clostridium         |
| CB_3150          | acetate CoA/acetoacetate CoA-transferase beta subunit  | atoA | 2.8.3.9      | 87.2 | 7.99E-137 | KYH34211.1        | tepidiprofundi DSM 19306]                                           |
|                  |                                                        |      | EC:2.8.3.8   |      |           |                   | branched-chain amino acid dehydrogenase [Geosporobacter             |
| CB_3151          | acetate CoA/acetoacetate CoA-transferase alpha subunit | atoD | 2.8.3.9      | 75.7 | 1.87E-116 | AO170096.1        | ferrireducens]                                                      |
| CB_2672          | propionate CoA-transferase                             | pct  | EC:2.8.3.1   | 78.6 | 0         | WP_034421685.1    | hypothetical protein [Clostridiales bacterium DRI-13]               |
| CB_2323          | phosphate butyryltransferase                           | ptb  | EC:2.3.1.19  | 65.4 | 8.43E-138 | WP_034420080.1    | phosphate butyryltransferase [Clostridiales bacterium DRI-13]       |
| GD 0101          |                                                        |      |              | =0.4 |           |                   | phosphate butyryltransferase [Caloranaerobacter azorensis DSM       |
| CB_3421          | phosphate butyryltransferase                           | ptb  | EC:2.3.1.19  | /8.4 | 2.09E-166 | SHH49166.1        | 13643]                                                              |
| CB_2227          | butyrate kinase                                        | buk  | EC:2.7.2.7   | 63.9 | 3.21E-170 | SET81966.1        | butyrate kinase [Natronincola peptidivorans]                        |
| CB_2322          | butyrate kinase                                        | buk  | EC:2.7.2.7   | 63.8 | 4.89E-170 | SET81966.1        | butyrate kinase [Natronincola peptidivorans]                        |

| 55_Dino11-Ci   | with manages bacterium DKI-13-Ethanor production/oursation  |      |                        |      |           |                |                                                                 |
|----------------|-------------------------------------------------------------|------|------------------------|------|-----------|----------------|-----------------------------------------------------------------|
| CB_0133        | acetaldehyde dehydrogenase / alcohol dehydrogenase          | adhE | EC:1.2.1.10            | 76.4 | 0         | SDD67225.1     | acetaldehyde dehydrogenase /alcohol dehydrogenase AdhE          |
|                |                                                             |      | 1.1.1.1                |      |           |                | [Sporomusa acidovorans]                                         |
| CB_0526        | acetaldehyde dehydrogenase (acetylating)                    |      | EC:1.2.1.10            | 74.9 | 0         | CRK81810.1     | acetaldehyde dehydrogenase [Bacillus sp. LF1]                   |
| CB_0539        | acetaldehyde dehydrogenase (acetylating)                    |      | EC:1.2.1.10            | 77.4 | 0         | OAA92437.1     | Aldehyde-alcohol dehydrogenase [Clostridium ljungdahlii]        |
| CB_1454        | acetaldehyde dehydrogenase (acetylating)                    |      | EC:1.2.1.10            | 66.5 | 0         | GAQ24101.1     | acetaldehyde dehydrogenase [Tepidanaerobacter syntrophicus]     |
| CB_1860        | alcohol dehydrogenase                                       | adh2 | EC:1.1.1               | 63.7 | 7.71E-168 | CDC25113.1     | putative uncharacterized protein [Firmicutes bacterium CAG:466] |
| CB_2625        | acetaldehyde dehydrogenase / alcohol dehydrogenase          | adhE | EC:1.2.1.10<br>1.1.1.1 | 63.6 | 1.61E-173 | KUO68657.1     | alcohol dehydrogenase [Clostridia bacterium BRH_c25]            |
| CB_3444        | alcohol dehydrogenase                                       | adh  | EC:1.1.1.1             | 76.9 | 0         | KJF27414.1     | alcohol dehydrogenase [Clostridium aceticum]                    |
| S3_Bin011-Cl   | lostridiales bacterium DRI-13-Glycerol reduction to 1,3-PDO |      |                        |      |           |                |                                                                 |
| CB_1825        | propanediol dehydratase large subunit                       | pduC | EC:4.2.1.28            | 86.7 | 0         | WP_034420514.1 | propanediol dehydratase [Clostridiales bacterium DRI-13]        |
| CB_1826        | propanediol dehydratase medium subunit                      | pduD | EC:4.2.1.28            | 74.2 | 7.14E-109 | WP_034420513.1 | propanediol dehydratase [Clostridiales bacterium DRI-13]        |
| CB_1827        | propanediol dehydratase small subunit                       | pduE | EC:4.2.1.28            | 63.1 | 6.02E-75  | WP_034420512.1 | propanediol dehydratase [Clostridiales bacterium DRI-13]        |
| CB_1829        | propanediol dehydratase medium subunit                      | pduD | EC:4.2.1.28            | 45.4 | 1.65E-33  | WP_051965455.1 | hypothetical protein [Clostridiales bacterium DRI-13]           |
| S3_Bin011-Cl   | lostridiales bacterium DRI-13-Membrane proteins involved    |      |                        |      |           |                |                                                                 |
| in energy cons | servation-Rnf complex                                       |      |                        |      |           |                |                                                                 |
| CB_1310        | electron transport complex protein RnfC                     | rnfC |                        | 56.5 | 9.75E-175 | WP_053957529.1 | electron transporter RnfC [Clostridiaceae bacterium mt12]       |
| CB_1311        | electron transport complex protein RnfD                     | rnfD |                        | 56.9 | 6.60E-118 | WP_061325102.1 | NADH:ubiquinone oxidoreductase [Clostridium botulinum]          |
|                |                                                             |      |                        |      |           |                | FMN-binding domain-containing protein [Oxobacter pfennigii]     |
| CB_1312        | electron transport complex protein RnfG                     | rnfG |                        | 42.9 | 5.31E-41  | WP_054875717.1 | KPU43836.1 electron transport complex subunit RnfG [Oxobacter   |
|                |                                                             |      |                        |      |           |                | pfennigii]                                                      |
| CD 1212        | alectron transmost complex success Duff                     | mfT  |                        | 61.4 | 4 67E 92  | A DV01404 1    | electron transport complex, RnfABCDGE type, E subunit           |
| 021313         | election transport complex protein KiffE                    | THE  |                        | 01.4 | 4.0/E-03  | AD I 91404.1   | [Thermoanaerobacter sp. X514]                                   |
| CB_1314        | electron transport complex protein RnfA                     | rnfA |                        | 71.2 | 1.99E-91  | SHE67843.1     | electron transport complex protein RnfA [Alkalibacter           |

## S3\_Bin011-Clostridiales bacterium DRI-13-Ethanol production/odixation

|              |                                               |      |             |      |           |                | saccharofermentans DSM 14828]                                                         |
|--------------|-----------------------------------------------|------|-------------|------|-----------|----------------|---------------------------------------------------------------------------------------|
| CD 1215      |                                               | æ    |             | 54.0 | 2 20E 90  | A DI 07470 1   | electron transport complex, RnfABCDGE type, B subunit                                 |
| CB_1315      | electron transport complex protein RnfB       | rnfB |             | 54.2 | 2.20E-89  | ADL0/4/2.1     | [Thermosediminibacter oceani DSM 16646]                                               |
| CB_3044      | electron transport complex protein RnfC       | rnfC |             | 80.3 | 0         | WP_069649212.1 | electron transporter RnfC [Caloranaerobacter ferrireducens]                           |
| CB_3045      | electron transport complex protein RnfD       | rnfD |             | 84.1 | 0         | WP_069649213.1 | NADH:ubiquinone oxidoreductase [Caloranaerobacter ferrireducens]                      |
| CB_3046      | electron transport complex protein RnfG       | rnfG |             | 57.5 | 9.42E-75  | SCL81994.1     | Nitrogen fixation protein RnfG [Sporanaerobacter sp. PP17-6a]                         |
| CB_3047      | electron transport complex protein RnfE       | rnfE |             | 82.3 | 3.22E-109 | SDZ32054.1     | electron transport complex protein RnfE [Proteiniborus<br>ethanoligenes]              |
| CB_3048      | electron transport complex protein RnfA       | rnfA |             | 88.3 | 2.38E-111 | KPU27845.1     | electron transporter RnfA [Caloranaerobacter sp. TR13]                                |
| CB_3049      | electron transport complex protein RnfB       | rnfB |             | 77.2 | 2.04E-179 | WP_026893757.1 | electron transporter RnfB [Clostridiisalibacter paucivorans]                          |
| S3_Bin011-Cl | ostridiales bacterium DRI-13-ATPase           |      |             |      |           |                |                                                                                       |
| CB_2546      | F-type H+-transporting ATPase subunit a       | atpB |             | 79.5 | 5.94E-131 | WP_051965468.1 | ATP synthase F0 subunit A [Clostridiales bacterium DRI-13]                            |
| CB_2547      | F-type H+-transporting ATPase subunit c       | atpE |             | 71.4 | 7.10E-28  | KJS20239.1     | ATP synthase F0 subunit C [Clostridiaceae bacterium BRH_c20a]                         |
| CB_2548      | F-type H+-transporting ATPase subunit b       | atpF |             | 60.2 | 2.60E-61  | WP_034420587.1 | ATP synthase F0 subunit B [Clostridiales bacterium DRI-13]                            |
| CB_2549      | F-type H+-transporting ATPase subunit delta   | atpH |             | 48.4 | 1.52E-57  | WP_034420588.1 | hypothetical protein [Clostridiales bacterium DRI-13]                                 |
| CB_2550      | F-type H+-transporting ATPase subunit alpha   | atpA | EC:3.6.3.14 | 84.2 | 0         | WP_034420589.1 | ATP synthase subunit alpha [Clostridiales bacterium DRI-13]                           |
| CB_2551      | F-type H+-transporting ATPase subunit gamma   | atpG |             | 60.8 | 3.19E-123 | WP_034420590.1 | ATP synthase F1 subunit gamma [Clostridiales bacterium DRI-13]                        |
| CB_2552      | F-type H+-transporting ATPase subunit beta    | atpD | EC:3.6.3.14 | 86.0 | 0         | WP_034420592.1 | ATP synthase subunit beta [Clostridiales bacterium DRI-13]                            |
| CB_2553      | F-type H+-transporting ATPase subunit epsilon | atpC |             | 54.6 | 8.43E-43  | KKM10784.1     | ATP synthase F0F1 subunit epsilon [ <i>Clostridiales</i> bacterium PH28_bin88]        |
| CB_2703      | F-type H+-transporting ATPase subunit epsilon | atpC |             | 71.4 | 8.78E-63  | SHH82272.1     | ATP synthase F1 subcomplex epsilon subunit [Caloranaerobacter<br>azorensis DSM 13643] |
| CB_2704      | F-type H+-transporting ATPase subunit beta    | atpD | EC:3.6.3.14 | 85.1 | 0         | WP_069650578.1 | F0F1 ATP synthase subunit beta [Caloranaerobacter ferrireducens]                      |
| CB_2705      | F-type H+-transporting ATPase subunit gamma   | atpG |             | 68.3 | 3.83E-146 | EOC99447.1     | ATP synthase gamma chain [Caldisalinibacter kiritimatiensis]                          |

| CP 2706       | E tune H   transporting ATDass subunit alpha           | otn A | EC:26214     | 96.9 | 0         | SCC91962 1     | F-type H+-transporting ATPase subunit alpha [Proteiniborus sp.                |
|---------------|--------------------------------------------------------|-------|--------------|------|-----------|----------------|-------------------------------------------------------------------------------|
| СВ_2700       | r-type ri+-transporting A1 rase subunit aipita         | афА   | EC.5.0.5.14  | 00.0 | 0         | 50081802.1     | DW1]                                                                          |
| CB_2707       | F-type H+-transporting ATPase subunit delta            | atpH  |              | 63.2 | 2.49E-74  | EOC99449.1     | ATP synthase delta chain [Caldisalinibacter kiritimatiensis]                  |
| CB_2708       | F-type H+-transporting ATPase subunit b                | atpF  |              | 63.5 | 1.75E-69  | EOC99450.1     | ATP synthase B chain [Caldisalinibacter kiritimatiensis]                      |
| CB_2709       | F-type H+-transporting ATPase subunit c                | atpE  |              | 92.9 | 2.04E-42  | KPU27398.1     | ATP synthase F0F1 subunit C [Caloranaerobacter sp. TR13]                      |
| CB_2711       | F-type H+-transporting ATPase subunit a                | atpB  |              | 80.4 | 3.51E-124 | KPU27543.1     | ATP synthase F0 subunit A [Caloranaerobacter sp. TR13]                        |
| CB_0087       | flagellum-specific ATP synthase                        | fliI  | EC:3.6.3.14  | 75.5 | 0         | WP_051965358.1 | flagellar protein export ATPase FliI [ <i>Clostridiales</i> bacterium DRI-13] |
| S3_Bin011-Cla | ostridiales bacterium DRI-13-Hydrogenases and coupling |       |              |      |           |                |                                                                               |
| enzymes       |                                                        |       |              |      |           |                |                                                                               |
| CB 1861       | hydrogenase expression/formation protein HypE          | hvpE  |              | 65.3 | 4.22E-156 | WP 034420072.1 | hydrogenase expression/formation protein HypE [Clostridiales                  |
|               |                                                        |       |              |      |           |                | bacterium DRI-13]                                                             |
| CB 1862       | hydrogenase expression/formation protein HypD          | hypD  |              | 60.1 | 1.13E-151 | WP 034420071.1 | hydrogenase formation protein HypD [Clostridiales bacterium                   |
| -             |                                                        | 21    |              |      |           | _              | DRI-13]                                                                       |
| CB_1863       | hydrogenase expression/formation protein HypC          | hypC  |              | 60.8 | 2.51E-27  | WP_034420070.1 | hypothetical protein [Clostridiales bacterium DRI-13]                         |
| CB_1864       | hydrogenase maturation protein HypF                    | hypF  |              | 59.2 | 0         | WP_051965397.1 | carbamoyltransferase HypF [Clostridiales bacterium DRI-13]                    |
| CB_1865       | hydrogenase nickel incorporation protein HypB          | hypB  |              | 72.6 | 2.52E-108 | WP_034420236.1 | hydrogenase accessory protein HypB [ <i>Clostridiales</i> bacterium DRI-13]   |
| CB_1866       | hydrogenase nickel incorporation protein HypA/HybF     | hypA  |              | 59.3 | 1.77E-44  | WP_034420069.1 | hypothetical protein [Clostridiales bacterium DRI-13]                         |
| CB_1867       | hydrogenase maturation protease                        | hyaD  | EC:3.4.23    | 38.8 | 3.29E-35  | SFH25243.1     | hydrogenase maturation protease [Desulfotomaculum arcticum]                   |
| CB_1868       | hydrogenase small subunit                              | hyaA  | EC:1.12.99.6 | 75.5 | 2.40E-167 | KJS76055.1     | Ni/Fe hydrogenase [Desulfotomaculum sp. BICA1-6]                              |
| CB 1860       | hudroganasa larga subunit                              | hvaB  | EC:1 12 00 6 | 68 3 | 0         | OAT79946 1     | nickel-dependent hydrogenase large subunit [Desulfotomaculum                  |
| CD_1007       | nyurogenase rarge subunit                              | пуар  | LC.1.12.77.0 | 00.5 | 0         | 0A177740.1     | copahuensis]                                                                  |
| S3_Bin013-Pro | oteiniphilum acetatigenes-Pyruvate to acetyl-CoA       |       |              |      |           |                |                                                                               |
| PA_1106       | pyruvate-ferredoxin/flavodoxin oxidoreductase          | por   | EC:1.2.7.1   | 99.9 | 0         | SCD19401.1     | Pyruvate dehydrogenase (NADP(+)) [Proteiniphilum                              |

|            |                                                       |        | 1.2.7        |       |           |                | saccharofermentans]                                               |
|------------|-------------------------------------------------------|--------|--------------|-------|-----------|----------------|-------------------------------------------------------------------|
| DA 1241    |                                                       | DDUA   | FG 1 0 4 1   | 00.7  | 0         | ND 0105410621  | pyruvate dehydrogenase (acetyl-transferring) E1 component subunit |
| PA_1341    | pyruvate denydrogenase E1 component alpha subunit     | PDHA   | EC:1.2.4.1   | 99.7  | 0         | WP_019541063.1 | alpha [Proteiniphilum acetatigenes]                               |
| DA 1242    | evenueto debudeccences El component hete subunit      | DDUD   | EC.1241      | 08.2  | 0         | WD 010541064 1 | alpha-ketoacid dehydrogenase subunit beta [Proteiniphilum         |
| PA_1542    | pyruvate denydrogenase E1 component beta subunit      | PDHB   | EC:1.2.4.1   | 98.2  | 0         | WP_019541064.1 | acetatigenes]                                                     |
| DA 12/2    | pyruvate dehydrogenase E2 component (dihydrolipoamide | DIAT   | EC-2 2 1 12  | 00.1  | 0         | SCD10867 1     | branched-chain alpha-keto acid dehydrogenase subunit E2           |
| FA_1545    | acetyltransferase)                                    | DLAI   | EC.2.3.1.12  | 99.1  | 0         | SCD19807.1     | [Proteiniphilum saccharofermentans]                               |
| PA 2140    | pyruvata dahydrogenasa E1 component alpha subunit     |        | EC-1241      | 100.0 | 0         | SCD21251-1     | TPP-dependent acetoin dehydrogenase complex, E1 component,        |
| 1A_2140    | pyruvate denydrogenase Er component arpna subunt      | IDIA   | EC.1.2.4.1   | 100.0 | 0         | SCD21251.1     | alpha subunit [Proteiniphilum saccharofermentans]                 |
| PA 21/1    | pyruvate dehydrogenase E1 component beta subunit      | PDHR   | FC·1 2 4 1   | 100.0 | 0         | SCD21250-1     | Pyruvate dehydrogenase (acetyl-transferring) [Proteiniphilum      |
| 17_2141    | pyruvate denydrogenase Er component octa subunit      | I DIID | LC.1.2.4.1   | 100.0 | 0         | 5CD21250.1     | saccharofermentans]                                               |
| PA 2142    | pyruvate dehydrogenase E2 component (dihydrolipoamide | DIAT   | FC·2 3 1 12  | 100.0 | 0         | SCD21249 1     | dihydrolipoamide acetyltransferase [Proteiniphilum                |
| 171_2142   | acetyltransferase)                                    | DEM    | LC.2.5.1.12  | 100.0 | 0         | 50021249.1     | saccharofermentans]                                               |
| PA_3150    | pyruvate dehydrogenase E1 component alpha subunit     | PDHA   | EC:1.2.4.1   | 100.0 | 0         | EIW10975.1     | Pda1p [Saccharomyces cerevisiae CEN.PK113-7D]                     |
| S3_Bin013- | Proteiniphilum acetatigenes-Acetate production        |        |              |       |           |                |                                                                   |
| PA_1749    | phosphate acetyltransferase                           | pta    | EC:2.3.1.8   | 100.0 | 0         | SCD21544.1     | Phosphate acetyltransferase [Proteiniphilum saccharofermentans]   |
| PA_1751    | acetate kinase                                        | ackA   | EC:2.7.2.1   | 100.0 | 0         | SFK27731.1     | acetate kinase [Porphyromonadaceae bacterium KH3CP3RA]            |
| PA_3123    | acetate kinase                                        | ackA   | EC:2.7.2.1   | 90.7  | 4.84E-69  | OFX54921.1     | acetate kinase [Bacteroidetes bacterium GWC2_46_850]              |
| S3_Bin013- | Proteiniphilum acetatigenes-Butyrate production       |        |              |       |           |                |                                                                   |
| BA 2007    | agetul Co A gootultransforaça                         | atoP   | EC:2210      | 05.0  | 0         | SCD22189 1     | hypothetical protein PSM36_3404 [Proteiniphilum                   |
| FA_2097    | acetyr-COA acetyrransrerase                           | atob   | EC.2.3.1.9   | 93.9  | 0         | SCD22188.1     | saccharofermentans]                                               |
| DA 1750    | 2 hudrovuhuturul CoA dohudrogonogo                    | nooU   | EC-1 1 1 157 | 100.0 | 0         | SET08001 1     | 3-hydroxybutyryl-CoA dehydrogenase [Porphyromonadaceae            |
| IA_1750    | 5-nydroxybutyryr-coA denydrogenase                    | paarr  | EC.1.1.1.157 | 100.0 | 0         | 51106001.1     | bacterium NLAE-zl-C104]                                           |
| PA_2878    | enoyl-CoA hydratase                                   | crt    | EC:4.2.1.17  | 75.5  | 1.06E-143 | WP_019228234.1 | hypothetical protein [Sedimentibacter sp. B4]                     |
| PA_1153    | butyryl-CoA dehydrogenase                             | bcd    | EC:1.3.8.1   | 100.0 | 0         | WP_076930396.1 | acyl-CoA dehydrogenase [Proteiniphilum saccharofermentans]        |

| PA 1154           | electron transfer flavonrotein alnha subunit        | etfA         |             | 100.0 | 0         | SCD20374-1  | electron transfer flavoprotein subunit alpha [Proteiniphilum         |
|-------------------|-----------------------------------------------------|--------------|-------------|-------|-----------|-------------|----------------------------------------------------------------------|
| 111_1134          | election transfer navoprotein apria subunt          | eurr         |             | 100.0 | 0         | 56020374.1  | saccharofermentans]                                                  |
| PA 1155           | electron transfer flavoprotein beta subunit         | etfB         |             | 100.0 | 0         | SCD20373-1  | putative electron transfer flavoprotein beta-subunit [Proteiniphilum |
| 1A_1155           | election transfer havoprotein beta subunt           | cub          |             | 100.0 | 0         | 50020575.1  | saccharofermentans]                                                  |
| DA 2164           | nhoenhate hutvrultransferase                        | nth          | EC-23110    | 01.0  | 0         | SEI 27465 1 | phosphate butyryltransferase [Porphyromonadaceae bacterium           |
| 17_2104           | phosphate butyrymansterase                          | pto          | LC.2.5.1.17 | )1.)  | 0         | 51 227405.1 | KH3CP3RA]                                                            |
| PA_2165           | butyrate kinase                                     | buk          | EC:2.7.2.7  | 99.2  | 0         | SCD21990.1  | Butyrate kinase [Proteiniphilum saccharofermentans]                  |
| S3_Bin013-Protei  | niphilum acetatigenes-Membrane proteins involved in |              |             |       |           |             |                                                                      |
| energy conservati | ion-Rnf complex                                     |              |             |       |           |             |                                                                      |
| DA 0178           | alastron transport complex protein PnfP             | DnfD         |             | 100.0 | 0         | SD786045 1  | Na+-translocating ferredoxin:NAD+ oxidoreductase RNF, RnfB           |
| FA_0178           | election transport complex protein Kinb             | KIIID        |             | 100.0 | 0         | SDZ80043.1  | subunit [Porphyromonadaceae bacterium KH3R12]                        |
| <b>DA</b> 0170    | alastron transport complex protein PafC             | DafC         |             | 00.8  | 0         | CD10710-1   | electron transport complex protein RnfC [Proteiniphilum              |
| FA_0179           | election transport complex protein Kinc             | KIIC         |             | 99.0  | 0         | CD19/10.1   | saccharofermentans]                                                  |
| DA 0180           | alastron transport complex protein PrfD             | PafD         |             | 00.4  | 0         | SES06080 1  | electron transport complex protein RnfD [Porphyromonadaceae          |
| FA_0180           | election transport complex protein KinD             | KIID         |             | 99.4  | 0         | 31390000.1  | bacterium NLAE-zl-C104]                                              |
| DA 0191           | alastron transport complex protoin DufG             | <b>D</b> nfC |             | 100.0 | 1 99E 174 | SD786001 1  | electron transport complex protein RnfG [Porphyromonadaceae          |
| FA_0181           | election transport complex protein King             | KIIG         |             | 100.0 | 1.00E-174 | 3DZ80001.1  | bacterium KH3R12]                                                    |
| DA 0182           | alastron transport complex protoin PafE             | DnfE         |             | 100.0 | 5 00E 125 | SD785000 1  | electron transport complex protein RnfE [Porphyromonadaceae          |
| FA_0182           | election transport complex protein Kine             | KIIL         |             | 100.0 | 5.00E-155 | SDZ03990.1  | bacterium KH3R12]                                                    |
| DA 0192           | electron transport complex protein DafA             | DufA         |             | 100.0 | 1 12E 120 | SCD10706 1  | Electron transport complex protein RnfA [Proteiniphilum              |
| PA_0185           | electron transport complex protein KinA             | KIIIA        |             | 100.0 | 1.12E-129 | SCD19700.1  | saccharofermentans]                                                  |
| S3_Bin013-Protei  | niphilum acetatigenes-ATPase                        |              |             |       |           |             |                                                                      |
| DA 1104           | V/A tone II. No. tone of a ATD or solve it F        |              |             | 00.5  | 1.94E 126 | GE07/140 1  | V/A-type H+-transporting ATPase subunit E [Porphyromonadaceae        |
| PA_1194           | V/A-type H+/Na+-transporting ATPase subunit E       | AIPVE        |             | 99.5  | 1.84E-130 | 5F5/0148.1  | bacterium NLAE-zl-C104]                                              |
| DA 1105           | V/A tone II. No. tone of the ATDees of the St       |              |             | 05.9  | 0         | SES7(125.1  | Protein of unknown function [Porphyromonadaceae bacterium            |
| PA_1193           | v/A-type n+/Na+-transporting A1Pase subunit C       | AIPVC        |             | 95.8  | 0         | 5F5/0155.1  | NLAE-zl-C104]                                                        |

| DA 1107            | V/A for The Mart for an article ATTD-second and A |       | EC:3.6.3.14 | 09.5         | 0         | CD701050 1     | V/A-type H+-transporting ATPase subunit A                       |
|--------------------|---------------------------------------------------|-------|-------------|--------------|-----------|----------------|-----------------------------------------------------------------|
| PA_1190            | V/A-type H+/Na+-transporting ATPase subunit A     | AIPVA | 3.6.3.15    | 98.5         | 0         | SDZ91838.1     | [Porphyromonadaceae bacterium KH3R12]                           |
| DA 1107            | V/A type II / No transporting ATDees whynit D     |       |             | 100.0        | 0         | SCD21060 1     | V-type ATP synthase beta chain [Proteiniphilum                  |
| PA_1197            | V/A-type H+/Na+-uansporting ATPase subunit B      | AIFVD |             | 100.0        | 0         | SCD21060.1     | saccharofermentans]                                             |
| DA 1109            | V/A type H / Ne   transporting ATDass subunit D   |       |             | 00.5         | 1 41E 145 | SCD21061-1     | V-type ATP synthase subunit D [Proteiniphilum                   |
| 1A_1196            | V/A-type II+/Wa+-transporting ATI ase subunit D   | AIIVD |             | <i>99.5</i>  | 1.41E-145 | SCD21001.1     | saccharofermentans]                                             |
| PA_1199            | V/A-type H+/Na+-transporting ATPase subunit I     | ATPVI |             | 86.4         | 0         | WP_019537732.1 | V-type ATP synthase subunit I [Proteiniphilum acetatigenes]     |
| PA_1200            | V/A-type H+/Na+-transporting ATPase subunit K     | ATPVK |             | 95.4         | 5.21E-96  | WP_019537733.1 | V-type ATP synthase subunit K [Proteiniphilum acetatigenes]     |
| S3_Bin013-Protei   | iniphilum acetatigenes-Hydrogenase (putative      |       |             |              |           |                |                                                                 |
| electron-bifurcati | ing hydrogenase)                                  |       |             |              |           |                |                                                                 |
| PA 2833            | ferredoxinNADP+ reductase                         | fpr   | FC·1 18 1 2 | 100.0        | 0         | SCD207161      | ferredoxin-NADP(+) reductase subunit alpha [Proteiniphilum      |
| 111_2000           |                                                   | ipi   | Be.1110.112 | 100.0        | 0         | 50520710.1     | saccharofermentans]                                             |
|                    |                                                   |       |             |              |           |                |                                                                 |
| S6_Bin001-Actine   | omyces provencensis-Glycerol oxidation 2          |       |             |              |           |                |                                                                 |
| AP_0992            | glycerol kinase                                   | glpK  | EC:2.7.1.30 | 96.7         | 0         | WP_043535862.1 | glycerol kinase [Actinomyces polynesiensis]                     |
| AP_1608            | glycerol-3-phosphate dehydrogenase (NAD(P)+)      | gpsA  | EC:1.1.1.94 | 97.6         | 0         | WP_075890310.1 | glycerol-3-phosphate acyltransferase [Actinomyces provencensis] |
| AP 0891            | alveeral 3-phosphate dehvdrogenase subunit B      | alpB  | FC·1153     | 00.3         | 0         | WP 075888552 1 | anaerobic glycerol-3-phosphate dehydrogenase subunit B          |
| AI _0071           | gryceror-5-phosphate denydrogenase subunit B      | gipb  | LC.1.1.5.5  | <i>))</i> .5 | 0         | W1_075666552.1 | [Actinomyces provencensis]                                      |
| AP ()892           | glycerol-3-phosphate dehydrogenase                | glnA  | FC·1153     | 99.1         | 0         | WP 075888554 1 | sn-glycerol-3-phosphate dehydrogenase subunit A [Actinomyces    |
| /m_0092            | giyeeror 5 phosphate denyerogenase                | 51p.1 | LC.1.1.5.5  | <i>))</i> .1 | 0         | W1_075000554.1 | provencensis]                                                   |
| AP_2148            | glycerol-3-phosphate dehydrogenase                | glpA  | EC:1.1.5.3  | 98.1         | 0         | WP_075890934.1 | glycerol-3-phosphate dehydrogenase [Actinomyces provencensis]   |
| AP_2149            | glycerol uptake facilitator protein               | GLPF  |             | 97.8         | 0         | WP_043535861.1 | glycerol transporter [Actinomyces polynesiensis]                |
| S6_Bin001-Actine   | omyces provencensis-Central axis pathway          |       |             |              |           |                |                                                                 |
| AP_0354            | triosephosphate isomerase (TIM)                   | TPI   | EC:5.3.1.1  | 45.4         | 1.47E-61  | WP_025733286.1 | triose-phosphate isomerase [Carnimonas nigrificans]             |
| AP_0713            | triosephosphate isomerase (TIM)                   | TPI   | EC:5.3.1.1  | 98.8         | 0         | WP_075889582.1 | triose-phosphate isomerase [Actinomyces provencensis]           |

|              |                                                           |       |             |                          |           |                | type I glyceraldehyde-3-phosphate dehydrogenase [Actinomyces |
|--------------|-----------------------------------------------------------|-------|-------------|--------------------------|-----------|----------------|--------------------------------------------------------------|
| AP_0580      | glyceraldehyde 3-phosphate dehydrogenase                  | GAPDH | EC:1.2.1.12 | 98.8                     | 0         | WP_075889586.1 | provencensis]                                                |
| A.D. 1000    |                                                           | CADDI | 5010110     | 00.1                     | 0         | NID 0425254461 | type I glyceraldehyde-3-phosphate dehydrogenase [Actinomyces |
| AP_1899      | glyceraldehyde 3-phosphate dehydrogenase                  | GAPDH | EC:1.2.1.12 | 92.1                     | 0         | WP_043535446.1 | polynesiensis]                                               |
| AP_0714      | phosphoglycerate kinase                                   | PGK   | EC:2.7.2.3  | 97.9                     | 0         | WP_075889584.1 | phosphoglycerate kinase [Actinomyces provencensis]           |
| AP_0097      | probable phosphoglycerate mutase                          | gpmB  | EC:5.4.2.12 | 99.6                     | 7.27E-164 | WP_075889274.1 | hypothetical protein [Actinomyces provencensis]              |
| AP_1518      | 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase | PGAM  | EC:5.4.2.11 | 100.0                    | 4.81E-180 | WP_075892264.1 | phosphoglyceromutase [Actinomyces provencensis]              |
| AP_0922      | enolase                                                   | ENO   | EC:4.2.1.11 | 100.0                    | 0         | WP_078062515.1 | phosphopyruvate hydratase [Actinomyces provencensis]         |
| AP_0308      | pyruvate, orthophosphate dikinase                         | ppdK  | EC:2.7.9.1  | 99.6                     | 0         | WP_075892335.1 | pyruvate, phosphate dikinase [Actinomyces provencensis]      |
| AD 2376      | pyruvate dehydrogenese E1 component hete subunit          | ррив  | EC:1241     | 100.0                    | 2 30E 174 | WD 075801046 1 | alpha-ketoacid dehydrogenase subunit beta [Actinomyces       |
| AF_2370      | pyruvate denydrogenase Er component beta subunit          | FDHB  | EC.1.2.4.1  | 100.0                    | 2.30E-174 | WF_075891940.1 | provencensis]                                                |
| AP 2377      | pyruvate dehydrogenase E2 component (dihydrolipoamide     | DIAT  | FC·2 3 1 12 | 97 /                     | 0         | WP 075891948 1 | $diaminohydroxyphosphoribosylaminopyrimidine\ deaminase$     |
| AI _2377     | acetyltransferase)                                        | DLAI  | LC.2.5.1.12 | <i>)</i> /. <del>4</del> | 0         | W1_075071740.1 | [Actinomyces provencensis]                                   |
| S6_Bin001-2  | Actinomyces provencensis-Acetate production               |       |             |                          |           |                |                                                              |
| AP_1455      | phosphate acetyltransferase                               | pta   | EC:2.3.1.8  | 71.9                     | 0         | ENO18742.1     | phosphate acetyltransferase [Actinomyces cardiffensis F0333] |
| AP_1456      | acetate kinase                                            | ackA  | EC:2.7.2.1  | 99.7                     | 0         | WP_078062518.1 | acetate kinase [Actinomyces provencensis]                    |
| S6_Bin001-2  | Actinomyces provencensis-Ethanol production/oxidation     |       |             |                          |           |                |                                                              |
| AD 0120      | aastaldahuda dahudraganasa / alaahal dahudraganasa        | adhE  | EC:1.2.1.10 | 08.7                     | 0         | WD 079062119 1 | hypothesical protein [Actin converse proven convict          |
| AF_0139      | acetaidenyde denydrogenase / aconor denydrogenase         | aune  | 1.1.1.1     | 90.7                     | 0         | wr_078002118.1 | hypometical protein [Actinomyces provencensis]               |
| S6_Bin001-2  | Actinomyces provencensis-Membrane proteins involved in    |       |             |                          |           |                |                                                              |
| energy conse | ervation-Fix system                                       |       |             |                          |           |                |                                                              |
| AP 1459      | electron transfer flavonrotein beta subunit               | fixA  |             | 100.0                    | 0         | WP 075888696 1 | electron transfer flavoprotein subunit beta [Actinomyces     |
| / II _ I 100 |                                                           | 11/11 |             | 100.0                    | 0         |                | provencensis]                                                |
| AP_1460      | electron transfer flavoprotein alpha subunit              | fixB  |             | 100.0                    | 0         | WP_075888694.1 | electron transporter [Actinomyces provencensis]              |
| S6_Bin003-J  | Eubacterium limosum-Wood Ljungdahl pathway                |       |             |                          |           |                |                                                              |

| EL_0894                 | formate dehydrogenase major subunit                     | fdoG | EC:1.2.1.2   | 99.9  | 0         | WP_038352620.1    | molybdopterin oxidoreductase [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------|---------------------------------------------------------|------|--------------|-------|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EL_4218                 | formate dehydrogenase alpha subunit                     | fdhA | EC:1.2.1.43  | 99.6  | 0         | WP_038354071.1    | formate dehydrogenase subunit alpha [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EL_1980                 | formate-tetrahydrofolate ligase                         | fhs  | EC:6.3.4.3   | 100.0 | 0         | WP_038351869.1    | formatetetrahydrofolate ligase [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>TT</b> 10 <b>T</b> 0 |                                                         |      |              | 100.0 |           |                   | sugar ABC transporter substrate-binding protein [Eubacterium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EL_1979                 | methenyl-THF cyclohydrolase                             | fchA |              | 100.0 | 6.34E-150 | WP_038351868.1    | limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | methylenetetrahydrofolate dehydrogenase (NADP+) /       |      | EC:1.5.1.5;  |       |           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EL_1978                 | methenyltetrahydrofolate cyclohydrolase                 | folD | 3.5.4.9      | 100.0 | 0         | WP_038351867.1    | methylenetetrahydrofolate dehydrogenase [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EL_1353                 | methylenetetrahydrofolate reductase (NADPH)             | metF | EC:1.5.1.20  | 99.6  | 0         | WP_038351520.1    | 5,10-methylenetetrahydrofolate reductase [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | 5-methyltetrahydrofolate corrinoid/iron sulfur protein  |      |              |       |           |                   | putative methyltetrahydrofolate:corrinoid/iron-sulfur protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EL_1496                 | methyltransferase                                       | acsE | EC:2.1.1.258 | 100.0 | 0         | ADO38562.1        | methyltransferase [Eubacterium limosum KIST612]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | ·                                                       |      |              |       |           |                   | carbon-monoxide dehydrogenase catalytic subunit [Eubacterium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EL_1495                 | carbon-monoxide dehydrogenase catalytic subunit         | cooS | EC:1.2.7.4   | 100.0 | 0         | WP_038352890.1    | limosum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EL 1494                 | CO dehydrogenase maturation factor                      | cooC |              | 100.0 | 0         | WP 038352889.1    | carbon monoxide dehydrogenase [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EL 1501                 | CQ dehydrogenase maturation factor                      | COOC |              | 100.0 | 0         | WP 038352894 1    | carbon monoxide dehydrogenase [Fubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22_1001                 |                                                         | 0000 |              | 10010 | 0         | <u>_</u> 00000209 | CO-methylating acetyl-CoA synthese precursor /acetyl-CoA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| EL_1493                 | acetyl-CoA synthase                                     | acsB | EC:2.3.1.169 | 100.0 | 0         | SHK89002.1        | describes and a contract of the second state o |
| <b>TT</b> 1 10 <b>T</b> |                                                         |      | 50011015     | 100.0 | 0         |                   | decarbonylase/synthase beta subunit [Eubacterium calianaeri]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EL_1497                 | acetyl-CoA decarbonylase/synthase complex subunit gamma | cdhE | EC:2.1.1.245 | 100.0 | 0         | WP_038352891.1    | acetyI-CoA synthase subunit gamma [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EL_1498                 | acetyl-CoA decarbonylase/synthase complex subunit delta | cdhD | EC:2.1.1.245 | 100.0 | 0         | WP_038352892.1    | acetyl-CoA synthase subunit delta [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S6_Bin003-              | Eubacterium limosum-Glycerol oxidation 1                |      |              |       |           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EL_0118                 | glycerol dehydrogenase                                  | gldA | EC:1.1.1.6   | 99.2  | 0         | WP_038353946.1    | glycerol dehydrogenase [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EL_1094                 | glycerol dehydrogenase                                  | gldA | EC:1.1.1.6   | 100.0 | 0         | ADO38429.1        | glycerol dehydrogenase [Eubacterium limosum KIST612]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EL_1695                 | dihydroxyacetone kinase, C-terminal domain              | dhaL | EC:2.7.1     | 99.5  | 4.23E-149 | WP_038352007.1    | DAK2 domain-containing protein [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         |                                                         |      |              |       |           |                   | dihydroxyacetone kinase, N-terminal domain [Eubacterium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EL_1697                 | dihydroxyacetone kinase, N-terminal domain              | dhaK | EC:2.7.1     | 100.0 | 0         | SFO97100.1        | callanderi]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EL_2829                 | dihydroxyacetone kinase, C-terminal domain              | dhaL | EC:2.7.1     | 100.0 | 1.31E-154 | WP_038351073.1    | dihydroxyacetone kinase subunit L [Eubacterium limosum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| EL_2830       | dihydroxyacetone kinase, N-terminal domain   | dhaK  | EC:2.7.1    | 99.7  | 0         | SFO23221.1     | dihydroxyacetone kinase DhaK subunit [Eubacterium callanderi] |
|---------------|----------------------------------------------|-------|-------------|-------|-----------|----------------|---------------------------------------------------------------|
| EL_3471       | dihydroxyacetone kinase, C-terminal domain   | dhaL  | EC:2.7.1    | 100.0 | 0         | WP_038350668.1 | dihydroxyacetone kinase subunit DhaK [Eubacterium limosum]    |
| EL_3472       | dihydroxyacetone kinase, N-terminal domain   | dhaK  | EC:2.7.1    | 99.5  | 8.06E-151 | ADO38052.1     | hypothetical protein ELI_3083 [Eubacterium limosum KIST612]   |
| S6_Bin003-Eub | acterium limosum-Glycerol oxidation 2        |       |             |       |           |                |                                                               |
| EL_0111       | glycerol kinase                              | glpK  | EC:2.7.1.30 | 99.8  | 0         | WP_038353941.1 | glycerol kinase [Eubacterium limosum]                         |
| EL_0505       | glycerol kinase                              | glpK  | EC:2.7.1.30 | 100.0 | 0         | SFO34581.1     | glycerol kinase [Eubacterium callanderi]                      |
| EL_1301       | glycerol kinase                              | glpK  | EC:2.7.1.30 | 99.4  | 0         | WP_038351560.1 | glycerol kinase [Eubacterium limosum]                         |
| EL_1871       | glycerol kinase                              | glpK  | EC:2.7.1.30 | 100.0 | 0         | WP_038351422.1 | glycerol kinase [Eubacterium limosum]                         |
| EL_3010       | glycerol kinase                              | glpK  | EC:2.7.1.30 | 99.2  | 0         | WP_058695680.1 | hypothetical protein [Eubacterium limosum]                    |
| EL_3470       | glycerol kinase                              | glpK  | EC:2.7.1.30 | 99.8  | 0         | WP_038350669.1 | glycerol kinase [Eubacterium limosum]                         |
| EL_3923       | glycerol kinase                              | glpK  | EC:2.7.1.30 | 100.0 | 0         | WP_038351202.1 | glycerol kinase [Eubacterium limosum]                         |
| EL 0250       | alvaaral 2 phasphata dahudraganasa (NAD(D))) | and A | EC:11104    | 100.0 | 0         | SHI 05067 1    | glycerol-3-phosphate dehydrogenase (NAD(P)+) [Eubacterium     |
| EL_0330       | gryceror-3-phosphate denydrogenase (NAD(P)+) | gpsA  | EC.1.1.1.94 | 100.0 | 0         | SHL03007.1     | callanderi]                                                   |
| EL_3860       | glycerol-3-phosphate dehydrogenase (NAD(P)+) | gpsA  | EC:1.1.1.94 | 100.0 | 0         | WP_038350631.1 | glycerol-3-phosphate dehydrogenase [Eubacterium limosum]      |
| EL_0110       | glycerol-3-phosphate dehydrogenase           | glpA  | EC:1.1.5.3  | 99.8  | 0         | WP_052237462.1 | FAD-dependent oxidoreductase [Eubacterium limosum]            |
| EL_1063       | glycerol-3-phosphate dehydrogenase           | glpA  | EC:1.1.5.3  | 98.6  | 0         | SFP62776.1     | glycerol-3-phosphate dehydrogenase [Eubacterium callanderi]   |
| EL_1304       | glycerol-3-phosphate dehydrogenase           | glpA  | EC:1.1.5.3  | 99.1  | 0         | WP_052237143.1 | hypothetical protein [Eubacterium limosum]                    |
| EL_2196       | glycerol-3-phosphate dehydrogenase           | glpA  | EC:1.1.5.3  | 99.0  | 0         | WP_038353326.1 | FAD/NAD(P)-binding oxidoreductase [Eubacterium limosum]       |
| EL_2221       | glycerol-3-phosphate dehydrogenase           | glpA  | EC:1.1.5.3  | 99.2  | 0         | WP_038353344.1 | FAD/NAD(P)-binding oxidoreductase [Eubacterium limosum]       |
| EL_2672       | glycerol-3-phosphate dehydrogenase           | glpA  | EC:1.1.5.3  | 99.6  | 0         | WP_038351204.1 | FAD/NAD(P)-binding oxidoreductase [Eubacterium limosum]       |
| EL_2812       | glycerol-3-phosphate dehydrogenase           | glpA  | EC:1.1.5.3  | 99.8  | 0         | WP_038351061.1 | FAD/NAD(P)-binding oxidoreductase [Eubacterium limosum]       |
| EL_3009       | glycerol-3-phosphate dehydrogenase           | glpA  | EC:1.1.5.3  | 98.5  | 0         | ALU15927.1     | FAD-dependent oxidoreductase [Eubacterium limosum]            |
| EL_3468       | glycerol-3-phosphate dehydrogenase           | glpA  | EC:1.1.5.3  | 100.0 | 0         | WP_038350670.1 | FAD/NAD(P)-binding oxidoreductase [Eubacterium limosum]       |
| S6_Bin003-Eub | acterium limosum-Central axis pathway        |       |             |       |           |                |                                                               |
| EL_0677       | triosephosphate isomerase                    | TPI   | EC:5.3.1.1  | 98.8  | 1.40E-175 | WP_038350858.1 | triose-phosphate isomerase [Eubacterium limosum]              |
|               |                                              |       |             |       |           |                |                                                               |

| EL_1848 | triosephosphate isomerase                                   | TPI    | EC:5.3.1.1  | 97.9  | 1.28E-168 | WP_038351440.1 | triose-phosphate isomerase [Eubacterium limosum]                    |
|---------|-------------------------------------------------------------|--------|-------------|-------|-----------|----------------|---------------------------------------------------------------------|
| EL_2644 | triosephosphate isomerase                                   | TPI    | EC:5.3.1.1  | 99.6  | 2.02E-167 | WP_038353251.1 | triose-phosphate isomerase [Eubacterium limosum]                    |
| EL_2834 | triosephosphate isomerase                                   | TPI    | EC:5.3.1.1  | 100.0 | 0         | WP_038351075.1 | triose-phosphate isomerase [Eubacterium limosum]                    |
| EL 0252 | alassanda kada 2 akasankata dahadar sanasa (NADD)           | N      | EC.1210     | 00.0  | 0         | WD 052227400 1 | NADP-dependent glyceraldehyde-3-phosphate dehydrogenase             |
| EL_0252 | glyceraidenyde-5-phosphate denydrogenase (NADP+)            | gapin  | EC:1.2.1.9  | 99.0  | 0         | wP_052237499.1 | [Eubacterium limosum]                                               |
| EL 0670 | aluanaldahuda 2 mbaankata dahudna canaca                    | CADDU  | EC.1 2 1 12 | 100.0 | 0         | WD 029250960 1 | type I glyceraldehyde-3-phosphate dehydrogenase [Eubacterium        |
| EL_0079 | gryceraldenyde 5-phosphate denydrogenase                    | GAPDH  | EC:1.2.1.12 | 100.0 | 0         | wP_038330800.1 | limosum]                                                            |
| EL_0678 | phosphoglycerate kinase                                     | PGK    | EC:2.7.2.3  | 99.5  | 0         | SFO29749.1     | phosphoglycerate kinase [Eubacterium callanderi]                    |
| EL_0676 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | gpmI   | EC:5.4.2.12 | 99.2  | 0         | SFO29794.1     | phosphoglycerate mutase [Eubacterium callanderi]                    |
| EL_2723 | 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase   | PGAM   | EC:5.4.2.11 | 99.6  | 0         | WP_038351252.1 | phosphoglyceromutase [Eubacterium limosum]                          |
| EL_3185 | probable phosphoglycerate mutase                            | gpmB   | EC:5.4.2.12 | 99.6  | 6.77E-165 | WP_038350984.1 | histidine phosphatase family protein [Eubacterium limosum]          |
| EL_2548 | enolase                                                     | ENO    | EC:4.2.1.11 | 99.8  | 0         | WP_038353181.1 | phosphopyruvate hydratase [Eubacterium limosum]                     |
| EL_3483 | pyruvate kinase                                             | pyk    | EC:2.7.1.40 | 99.3  | 0         | ADO38040.1     | pyruvate kinase [Eubacterium limosum KIST612]                       |
| EI 1654 | pyruvate dehydrogenase E2 component (dihydrolipoamide       | DLAT/p | EC-2 2 1 12 | 00.8  | 0         | AD026112.1     | catalytic domain of components of various dehydrogenase             |
| EL_1054 | acetyltransferase)                                          | dhc    | EC.2.3.1.12 | 99.0  | 0         | AD050112.1     | complexes [Eubacterium limosum KIST612]                             |
| EL_1655 | pyruvate dehydrogenase E1 component beta subunit            | PDHB   | EC:1.2.4.1  | 100.0 | 0         | WP_038351975.1 | alpha-ketoacid dehydrogenase subunit beta [Eubacterium limosum]     |
| EI 1656 | puruvate debudrogenase El component alpha subunit           |        | EC-1241     | 100.0 | 0         | SHI 32031 1    | pyruvate dehydrogenase E1 component alpha subunit [ $Eubacterium$ ] |
| EL_1050 | pyruvate denydrogenase Er component arpna subunt            | FDHA   | EC.1.2.4.1  | 100.0 | 0         | SHL32951.1     | callanderi]                                                         |
| EL 0253 | puruyata farradovin/flayodovin ovidoraductaca               | por    | EC:1.2.7.1  | 100.0 | 0         | WD 038354167 1 | pyruvate:ferredoxin (flavodoxin) oxidoreductase [Eubacterium        |
| EL_0255 | pyruvale-refredoxiii/flavodoxiii oxidoreductase             | por    | 1.2.7       | 100.0 | 0         | W1_058554107.1 | limosum]                                                            |
| EL_2073 | pyruvate ferredoxin oxidoreductase beta subunit             | porB   | EC:1.2.7.1  | 99.7  | 0         | WP_038351931.1 | 2-ketoisovalerate ferredoxin oxidoreductase [Eubacterium limosum]   |
| EL_2074 | pyruvate ferredoxin oxidoreductase alpha subunit            | porA   | EC:1.2.7.1  | 99.7  | 0         | WP_038351932.1 | pyruvate ferredoxin oxidoreductase [Eubacterium limosum]            |
| EL_2075 | pyruvate ferredoxin oxidoreductase delta subunit            | porD   | EC:1.2.7.1  | 99.0  | 5.47E-67  | WP_038351933.1 | pyruvate ferredoxin oxidoreductase [Eubacterium limosum]            |
| EI 2076 | nuruvata farradovin ovidoroductose commo suburit            | nor-C  | EC-1 2 7 1  | 100.0 | 2 88E 129 | AT 1112014 1   | 2-ketoisovalerate ferredoxin oxidoreductase gamma subunit           |
| EL_2070 | pyruvate refredoxin oxidoreductase gamma subumt             | poro   | LC.1.2.7.1  | 100.0 | 2.00E-120 | ALU15014.1     | [Eubacterium limosum]                                               |

| EL_2254        | pyruvate ferredoxin oxidoreductase gamma subunit | porG | EC:1.2.7.1   | 100.0 | 2.61E-138 | WP_038353370.1 | pyruvate synthase [Eubacterium limosum]                            |
|----------------|--------------------------------------------------|------|--------------|-------|-----------|----------------|--------------------------------------------------------------------|
| EL_2255        | pyruvate ferredoxin oxidoreductase delta subunit | porD | EC:1.2.7.1   | 100.0 | 1.07E-67  | WP_038353371.1 | ferredoxin [Eubacterium limosum]                                   |
| EL_2256        | pyruvate ferredoxin oxidoreductase alpha subunit | porA | EC:1.2.7.1   | 99.5  | 0         | WP_038353372.1 | pyruvate ferredoxin oxidoreductase [Eubacterium limosum]           |
| EL_2257        | pyruvate ferredoxin oxidoreductase beta subunit  | porB | EC:1.2.7.1   | 99.7  | 0         | WP_038353373.1 | pyruvate ferredoxin oxidoreductase [Eubacterium limosum]           |
| S6_Bin003-Eubo | acterium limosum-Acetate production              |      |              |       |           |                |                                                                    |
| EL_0991        | putative phosphotransacetylase                   | Pta  | EC:2.3.1.8   | 100.0 | 2.34E-156 | SDP49526.1     | putative phosphotransacetylase [Eubacterium limosum]               |
| EL_2377        | putative phosphotransacetylase                   | Pta  | EC:2.3.1.8   | 98.6  | 1.01E-156 | SDP60926.1     | putative phosphotransacetylase [Eubacterium limosum]               |
| EL_3888        | acetate kinase                                   | ackA | EC:2.7.2.1   | 100.0 | 0         | WP_038354231.1 | acetate kinase [Eubacterium limosum]                               |
| S6_Bin003-Eubo | acterium limosum-Butyrate production             |      |              |       |           |                |                                                                    |
| EL_3224        | acetyl-CoA C-acetyltransferase                   | atoB | EC:2.3.1.9   | 100.0 | 0         | WP_038350953.1 | acetyl-CoA acetyltransferase [Eubacterium limosum]                 |
| EL_3226        | 3-hydroxybutyryl-CoA dehydrogenase               | paaH | EC:1.1.1.157 | 100.0 | 0         | SFO26749.1     | 3-hydroxybutyryl-CoA dehydrogenase [Eubacterium callanderi]        |
| EL_0831        | enoyl-CoA hydratase                              | crt  | EC:4.2.1.17  | 99.6  | 0         | WP_038353019.1 | enoyl-CoA hydratase [Eubacterium limosum]                          |
| EL_3225        | enoyl-CoA hydratase                              | crt  | EC:4.2.1.17  | 100.0 | 0         | WP_038350952.1 | enoyl-CoA hydratase [Eubacterium limosum]                          |
| EL_0829        | butyryl-CoA dehydrogenase                        | bcd  | EC:1.3.8.1   | 99.2  | 0         | SFO81465.1     | butyryl-CoA dehydrogenase [Eubacterium callanderi]                 |
| EL_3227        | butyryl-CoA dehydrogenase                        | bcd  | EC:1.3.8.1   | 100.0 | 0         | SFO26775.1     | butyryl-CoA dehydrogenase [Eubacterium callanderi]                 |
| EL_3228        | electron transfer flavoprotein beta subunit      | etfB |              | 100.0 | 0         | WP_038350951.1 | electron transfer flavoprotein subunit beta [Eubacterium limosum]  |
| EL_3229        | electron transfer flavoprotein alpha subunit     | etfA |              | 100.0 | 0         | ALU16220.1     | electron transfer flavoprotein alpha subunit [Eubacterium limosum] |
| EL_0830        | propionate CoA-transferase                       | pct  | EC:2.8.3.1   | 99.4  | 0         | WP_038353018.1 | 3-oxoacid CoA-transferase [Eubacterium limosum]                    |
| EL_0498        | phosphate butyryltransferase                     | ptb  | EC:2.3.1.19  | 99.3  | 0         | WP_038352195.1 | phosphate butyryltransferase [Eubacterium limosum]                 |
| EL_3573        | phosphate butyryltransferase                     | ptb  | EC:2.3.1.19  | 100.0 | 0         | WP_052237430.1 | phosphate butyryltransferase [Eubacterium limosum]                 |
| S6_Bin003-Eubo | acterium limosum-Ethanol production/oxidation    |      |              |       |           |                |                                                                    |
| EL_2556        | acetaldehyde dehydrogenase                       | adhE | EC:1.2.1.10  | 99.7  | 0         | WP_038353188.1 | butanol dehydrogenase [Eubacterium limosum]                        |
| EL 2035        | acataldahyda dahydrocanasa                       | adhE | EC-1 2 1 10  | 00.7  | 0         | SE036846 1     | hypothetical protein SAMN04487888_101644 [Eubacterium              |
| LL_2735        | acciaidenyde denydrogenase                       | aune | LC.1.2.1.10  | 77.1  | 0         | 51-050640.1    | callanderi]                                                        |
| EL_1014        | alcohol dehydrogenase                            | adh2 | EC:1.1.1     | 100.0 | 0         | SFP64208.1     | alcohol dehydrogenase [Eubacterium callanderi]                     |

| S6_Bin003-E  | ubacterium limosum-Glycerol reduction to 1,3-PDO            |        |              |       |           |                |                                                                |
|--------------|-------------------------------------------------------------|--------|--------------|-------|-----------|----------------|----------------------------------------------------------------|
| EL_2378      | propanediol utilization protein                             | pduK   |              | 99.3  | 3.19E-103 | ADO39020.1     | BMC domain protein [Eubacterium limosum KIST612]               |
| EL_2379      | propanediol dehydratase reactivation protein, small subunit | pduH   |              | 100.0 | 8.90E-82  | WP_038352521.1 | glycerol dehydratase [Eubacterium limosum]                     |
| EL 2290      | propagation debudgators regativation protain large subunit  | nduG   |              | 100.0 | 0         | 40020022.1     | Diol/glycerol dehydratase reactivating factor large subunit    |
| EL_2380      | propaneuror denyuratase reactivation protein, rarge subunit | puuo   |              | 100.0 | 0         | AD039022.1     | [Eubacterium limosum KIST612]                                  |
| EL_2381      | propanediol dehydratase small subunit                       | pduE   | EC:4.2.1.28  | 100.0 | 1.50E-118 | WP_038352519.1 | propanediol dehydratase [Eubacterium limosum]                  |
| EL_2382      | propanediol dehydratase medium subunit                      | pduD   | EC:4.2.1.28  | 100.0 | 2.87E-159 | SDP61038.1     | propanediol dehydratase medium subunit [Eubacterium limosum]   |
| EL_2383      | propanediol dehydratase large subunit                       | pduC   | EC:4.2.1.28  | 100.0 | 0         | SFP43929.1     | propanediol dehydratase large subunit [Eubacterium callanderi] |
| EL_2384      | Propanediol utilization protein                             | pduB   |              | 100.0 | 0         | ALU13306.1     | microcompartment protein PduB [Eubacterium limosum]            |
| EL_2385      | Propanediol utilization polyhedral body protein             | PduA   |              | 100.0 | 1.14E-57  | ALU13305.1     | microcompartment protein PduA [Eubacterium limosum]            |
| EL 0104      | 1.3 propagadiol debudroganasa                               | dhaT   | EC-1 1 1 202 | 00.8  | 0         | OEZ04830 1     | 1,3-propanediol dehydrogenase [[Butyribacterium]               |
| LL_0104      | 1,5-propaneuror denyurogenase                               | ulla I | EC.1.1.1.202 | 99.0  | 0         | 01204639.1     | methylotrophicum]                                              |
| S6_Bin003-E  | ubacterium limosum-Membrane proteins involved in energy     |        |              |       |           |                |                                                                |
| conservation | Rnf complex                                                 |        |              |       |           |                |                                                                |
| EL_3628      | electron transport complex protein RnfC                     | rnfC   |              | 100.0 | 0         | WP_038351329.1 | electron transporter RnfC [Eubacterium limosum]                |
| EL_3629      | electron transport complex protein RnfD                     | rnfD   |              | 99.7  | 0         | ADO37623.1     | RnfD [Eubacterium limosum KIST612]                             |
| EL_3630      | electron transport complex protein RnfG                     | rnfG   |              | 99.5  | 8.40E-146 | WP_052237107.1 | electron transporter [Eubacterium limosum]                     |
| EL_3631      | electron transport complex protein RnfE                     | rnfE   |              | 100.0 | 4.05E-142 | WP_038351331.1 | electron transport complex subunit RsxE [Eubacterium limosum]  |
| EL_3632      | electron transport complex protein RnfA                     | rnfA   |              | 100.0 | 9.36E-129 | ADO37620.1     | RnfA [Eubacterium limosum KIST612]                             |
| EL_3633      | electron transport complex protein RnfB                     | rnfB   |              | 100.0 | 0         | WP_052237108.1 | electron transporter RnfB [Eubacterium limosum]                |
| S6_Bin003-E  | ubacterium limosum-Membrane proteins involved in energy     |        |              |       |           |                |                                                                |
| conservation | FAD (or Fe-S) reductase linked to ETF                       |        |              |       |           |                |                                                                |
| FI 3001      | Acryloyl-CoA reductase electron transfer subunit beta       | etfΔ   |              | 01.8  | 0         | SHI 0/103 1    | electron transfer flavoprotein alpha subunit apoprotein        |
| LL_3001      | Acyroyr-con reductase electron transfer subulit beta        | cuA    |              | 21.0  | U         | 511274175.1    | [Eubacterium callanderi]                                       |
| EL_3002      | Acryloyl-CoA reductase electron transfer subunit gamma      | etfB   |              | 98.5  | 0         | WP_038352172.1 | hypothetical protein [Eubacterium limosum]                     |
| EL_3003       | putative FAD-linked oxidoreductase                     |      |             | 96.7  | 0         | WP_038352173.1 | FAD-binding oxidoreductase [Eubacterium limosum]                        |
|---------------|--------------------------------------------------------|------|-------------|-------|-----------|----------------|-------------------------------------------------------------------------|
| EL_3004       | Electron transfer flavoprotein subunit alpha           | etfA |             | 97.8  | 0         | WP_052237223.1 | hypothetical protein [Eubacterium limosum]                              |
| EL_3005       | Electron transfer flavoprotein subunit beta            | etfB |             | 98.9  | 0         | WP_038352174.1 | hypothetical protein [Eubacterium limosum]                              |
| EL_3006       | putative FAD-linked oxidoreductase                     |      |             | 98.7  | 0         | ALU15924.1     | FAD-linked oxidase [Eubacterium limosum]                                |
| EL_3048       | putative FAD-linked oxidoreductase                     |      |             | 99.6  | 0         | ADO36936.1     | FAD/FMN-containing dehydrogenase [Eubacterium limosum<br>KIST612]       |
| EL_3049       | Acryloyl-CoA reductase electron transfer subunit beta  | etfA |             | 99.3  | 0         | ADO36935.1     | electron transfer flavoprotein [Eubacterium limosum KIST612]            |
| EL_3050       | Acryloyl-CoA reductase electron transfer subunit gamma | etfB |             | 100.0 | 0         | WP_038352354.1 | electron transfer flavoprotein subunit beta [Eubacterium limosum]       |
| S6_Bin003-1   | Eubacterium limosum-Hydrogenases and coupling enzymes  |      |             |       |           |                |                                                                         |
| EL_0486       | NADP-reducing hydrogenase subunit HndD                 | hndD | EC:1.12.1.3 | 99.3  | 0         | WP_038352187.1 | ferredoxin [Eubacterium limosum]                                        |
| EL_0487       | NADP-reducing hydrogenase subunit HndC                 | HndC | EC:1.12.1.3 | 100.0 | 0         | ADO35860.1     | NADH dehydrogenase (quinone) [Eubacterium limosum KIST612               |
| EL_0488       | NADP-reducing hydrogenase subunit HndB                 | HndB | EC:1.12.1.3 | 100.0 | 5.63E-88  | ALU15940.1     | iron-dependent hydrogenase subunit D HydD [Eubacterium limosum]         |
| EL_0490       | NADP-reducing hydrogenase subunit HndA                 | hndA | EC:1.12.1.3 | 100.0 | 4.02E-109 | SHL93496.1     | NADP-reducing hydrogenase subunit HndA [ <i>Eubacterium</i> callanderi] |
| EL_3084       | NADH-quinone oxidoreductase subunit G                  | nuoG | EC:1.6.5.3  | 100.0 | 2.65E-179 | WP_050814047.1 | MULTISPECIES: ferredoxin [Clostridiales]                                |
| EL_3085       | NADH-quinone oxidoreductase subunit F                  | nuoF | EC:1.6.5.3  | 99.7  | 0         | WP_038353796.1 | NADH dehydrogenase [Eubacterium limosum]                                |
| EL_3086       | NADH-quinone oxidoreductase subunit E                  | nuoE | EC:1.6.5.3  | 98.8  | 8.12E-116 | WP_038353797.1 | hydrogenase [Eubacterium limosum]                                       |
| EL_3677       | Iron hydrogenase 1                                     |      |             | 99.6  | 0         | WP_038350720.1 | hydrogenase assembly protein HupF [Eubacterium limosum]                 |
| EL_3678       | Ferredoxin, 2Fe-2S                                     |      |             | 100.0 | 1.94E-54  | ADO36201.1     | NADH dehydrogenase subunit E [Eubacterium limosum KIST612               |
| EL_1912       | NAD-reducing hydrogenase subunit HoxE                  | nuoE | EC:1.6.5.3  | 100.0 | 1.13E-53  | WP_038351390.1 | hypothetical protein [Eubacterium limosum]                              |
| EL_1913       | Iron hydrogenase 1                                     |      |             | 100.0 | 0         | WP_038351389.1 | iron hydrogenase [Eubacterium limosum]                                  |
| EL_0895       | NADH-quinone oxidoreductase subunit F                  | nuoF | EC:1.6.5.3  | 99.8  | 0         | WP_038352621.1 | NADH dehydrogenase [Eubacterium limosum]                                |
| EL_0896       | NADH-quinone oxidoreductase subunit E                  | nuoE | EC:1.6.5.3  | 99.4  | 5.16E-124 | WP_038352622.1 | NADH dehydrogenase [Eubacterium limosum]                                |
| ~ ~ ~ ~ ~ ~ ~ |                                                        |      |             |       |           |                |                                                                         |

| EL 1175 | V/A-type H+/Na+-transporting ATPase subunit G/H               | ATPVG    |                         | 100.0 | 3 89E-61    | SFO68675 1     | V/A-type H+-transporting ATPase subunit G/H [Eubacterium                   |
|---------|---------------------------------------------------------------|----------|-------------------------|-------|-------------|----------------|----------------------------------------------------------------------------|
|         | () if type if () the full appointing if if use subunit (), if | 1111 / 0 |                         | 100.0 | 5.072 01    | 51 000075.1    | callanderi]                                                                |
| EL_1176 | V/A-type H+/Na+-transporting ATPase subunit I                 | ATPVI    |                         | 99.7  | 0           | ADO37168.1     | V-type ATPase 116 kDa subunit [Eubacterium limosum KIST612]                |
|         |                                                               |          |                         | 100.0 | 1 1 0 5 0 0 |                | V/A-type H+-transporting ATPase subunit K [Eubacterium                     |
| EL_II// | V/A-type H+/Na+-transporting ATPase subunit K                 | ATPVK    |                         | 100.0 | 1.18E-99    | SDO86232.1     | limosum]                                                                   |
| EL_1178 | V/A-type H+/Na+-transporting ATPase subunit E                 | ATPVE    |                         | 100.0 | 1.47E-139   | WP_038351650.1 | hypothetical protein [Eubacterium limosum]                                 |
| EL_1179 | V/A-type H+/Na+-transporting ATPase subunit C                 | ATPVC    |                         | 99.7  | 0           | WP_038351649.1 | hypothetical protein [Eubacterium limosum]                                 |
| EL_1180 | V/A-type H+/Na+-transporting ATPase subunit F                 | ATPVF    |                         | 100.0 | 8.02E-69    | ADO37172.1     | ATP synthase F subunit [Eubacterium limosum KIST612]                       |
| EL_1181 | V/A-type H+/Na+-transporting ATPase subunit A                 | ATPVA    | EC:3.6.3.14<br>3.6.3.15 | 99.8  | 0           | ADO37173.1     | ATP synthase [Eubacterium limosum KIST612]                                 |
| EL_1182 | V/A-type H+/Na+-transporting ATPase subunit B                 | ATPVB    |                         | 100.0 | 0           | ADO37174.1     | sodium-transporting two-sector ATPase [Eubacterium limosum                 |
|         |                                                               |          |                         |       |             |                | KIST612]                                                                   |
| EL_1183 | V/A-type H+/Na+-transporting ATPase subunit D                 | ATPVD    |                         | 100.0 | 4.51E-150   | ADO37175.1     | hypothetical protein ELI_2192 [Eubacterium limosum KIST612]                |
| EL 1792 | V/A-type H+/Na+-transporting ATPase subunit D                 | ATPVD    |                         | 99.5  | 7.03E-147   | SDP23599.1     | V/A-type H+-transporting ATPase subunit D [Eubacterium                     |
|         |                                                               |          |                         |       |             |                | limosum]                                                                   |
| EL_1793 | V/A-type H+/Na+-transporting ATPase subunit B                 | ATPVB    |                         | 100.0 | 0           | SFO73027.1     | V/A-type H+-transporting ATPase subunit B [ <i>Eubacterium</i> callanderi] |
| EL_1794 | V/A-type H+/Na+-transporting ATPase subunit A                 | ATPVA    | EC:3.6.3.14<br>3.6.3.15 | 99.2  | 0           | ADO37400.1     | V-type ATP synthase subunit A [Eubacterium limosum KIST612]                |
| EL_1795 | V/A-type H+/Na+-transporting ATPase subunit E                 | ATPVE    |                         | 100.0 | 7.67E-148   | WP_038351485.1 | V-ATPase E-subunit VatE [Eubacterium limosum]                              |
| EL 1707 | V/A tone II ( No. ) tone of a ATD or other to T               |          |                         | 100.0 | 5 22E (5    | CDD22471 1     | V/A-type H+-transporting ATPase subunit F [Eubacterium                     |
| EL_1/90 | V/A-type H+/Na+-transporting ATPase subunit F                 | AIPVF    |                         | 100.0 | 5.55E-05    | SDP234/1.1     | limosum]                                                                   |
|         |                                                               |          |                         |       |             |                | V-type sodium ATP synthase subunit K [Eubacterium limosum                  |
| EL_1797 | V/A-type H+/Na+-transporting ATPase subunit K                 | ATPVK    |                         | 100.0 | 1.12E-92    | ADO37403.1     | KIST612]                                                                   |
| EL_1798 | V/A-type H+/Na+-transporting ATPase subunit I                 | ATPVI    |                         | 99.8  | 0           | WP_038351484.1 | ATPase [Eubacterium limosum]                                               |

| EL_1799    | V/A-type H+/Na+-transporting ATPase subunit C                            | ATPVC |             | 99.7  | 0         | ADO37405.1       | H(+)-transporting two-sector ATPase [Eubacterium limosum<br>KIST612]                           |
|------------|--------------------------------------------------------------------------|-------|-------------|-------|-----------|------------------|------------------------------------------------------------------------------------------------|
| S6_Bin004- | Massilibacterium senegalense strain mt8-Glycerol oxidation 2             |       |             |       |           |                  |                                                                                                |
| MS_1884    | glycerol kinase                                                          | glpK  | EC:2.7.1.30 | 96.6  | 0         | WP_062197477.1   | glycerol kinase [Massilibacterium senegalense]                                                 |
| MS_0086    | glycerol-3-phosphate dehydrogenase (NAD(P)+)                             | gpsA  | EC:1.1.1.94 | 96.8  | 0         | WP_062198284.1   | glycerol-3-phosphate dehydrogenase [Massilibacterium senegalense]                              |
| MS_1883    | glycerol-3-phosphate dehydrogenase                                       | glpA  | EC:1.1.5.3  | 91.9  | 0         | WP_062197478.1   | glycerol-3-phosphate dehydrogenase [Massilibacterium senegalense]                              |
| S6_Bin004- | Massilibacterium senegalense strain mt8-Central axis pathway             |       |             |       |           |                  |                                                                                                |
| MS_1396    | triosephosphate isomerase                                                | TPI   | EC:5.3.1.1  | 96.0  | 0         | WP_062199675.1   | triose-phosphate isomerase [Massilibacterium senegalense]                                      |
| MS_0395    | glyceraldehyde 3-phosphate dehydrogenase                                 | GAPDH | EC:1.2.1.12 | 97.9  | 0         | WP_062199123.1   | glyceraldehyde-3-phosphate dehydrogenase [Massilibacterium senegalense]                        |
| MS_1398    | glyceraldehyde 3-phosphate dehydrogenase                                 | GAPDH | EC:1.2.1.12 | 94.3  | 0         | WP_062199679.1   | type I glyceraldehyde-3-phosphate dehydrogenase<br>[Massilibacterium senegalense]              |
| MS_1397    | phosphoglycerate kinase                                                  | PGK   | EC:2.7.2.3  | 99.0  | 0         | WP_062199677.1   | phosphoglycerate kinase [Massilibacterium senegalense]                                         |
| MS_1395    | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase              | gpmI  | EC:5.4.2.12 | 98.2  | 0         | WP_062199673.1   | phosphoglycerate mutase (2,3-diphosphoglycerate-independent)<br>[Massilibacterium senegalense] |
| MS_2085    | probable phosphoglycerate mutase                                         | gpmB  | EC:5.4.2.12 | 100.0 | 4.88E-143 | WP_062198149.1 I | nistidine phosphatase family protein [Massilibacterium senegalense]                            |
| MS_1394    | enolase                                                                  | ENO   | EC:4.2.1.11 | 99.5  | 0         | WP_062199671.1   | phosphopyruvate hydratase [Massilibacterium senegalense]                                       |
| MS_0410    | pyruvate kinase                                                          | pyk   | EC:2.7.1.40 | 96.8  | 0         | WP_062199156.1   | pyruvate kinase [Massilibacterium senegalense]                                                 |
| MS_1726    | pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) | DLAT  | EC:2.3.1.12 | 90.3  | 0         | WP_062197722.1   | branched-chain alpha-keto acid dehydrogenase subunit E2<br>[Massilibacterium senegalense]      |
| MS_1727    | pyruvate dehydrogenase E1 component beta subunit                         | PDHB  | EC:1.2.4.1  | 98.5  | 0         | WP_062197721.1   | alpha-ketoacid dehydrogenase subunit beta [Massilibacterium senegalense]                       |
| MS_1728    | pyruvate dehydrogenase E1 component alpha subunit                        | PDHA  | EC:1.2.4.1  | 95.6  | 0         | WP_062197720.1   | pyruvate dehydrogenase (acetyl-transferring) E1 component subunit                              |

| S6_Bin004-Mas  | silibacterium senegalense strain mt8-Acetate production |      |              |      |           |                |                                                                             |
|----------------|---------------------------------------------------------|------|--------------|------|-----------|----------------|-----------------------------------------------------------------------------|
| MS_1179        | phosphate acetyltransferase                             | Pta  | EC:2.3.1.8   | 96.0 | 0         | WP_062200212.1 | phosphate acetyltransferase [Massilibacterium senegalense]                  |
| MS_0436        | acetate kinase                                          | ackA | EC:2.7.2.1   | 98.8 | 0         | WP_062199195.1 | acetate kinase [Massilibacterium senegalense]                               |
| S6_Bin004-Mas  | silibacterium senegalense strain mt8-Butyrate and       |      |              |      |           |                |                                                                             |
| caproate produ | ction                                                   |      |              |      |           |                |                                                                             |
| MS_1621        | acetyl-CoA C-acetyltransferase                          | atoB | EC:2.3.1.9   | 99.5 | 0         | WP_062200168.1 | acetyl-CoA acetyltransferase [Massilibacterium senegalense]                 |
| MS_1622        | 3-hydroxybutyryl-CoA dehydrogenase                      | paaH | EC:1.1.1.157 | 99.7 | 0         | WP_062200165.1 | 3-hydroxybutyryl-CoA dehydrogenase [Massilibacterium senegalense]           |
| MS_2108        | 3-hydroxybutyryl-CoA dehydrogenase                      | рааН | EC:1.1.1.157 | 98.2 | 0         | WP_062197210.1 | 3-hydroxybutyryl-CoA dehydrogenase [Massilibacterium senegalense]           |
| MS_2453        | 3-hydroxybutyryl-CoA dehydrogenase                      | рааН | EC:1.1.1.157 | 95.5 | 0         | WP_062199605.1 | 3-hydroxybutyryl-CoA dehydrogenase [Massilibacterium senegalense]           |
| MS_0368        | enoyl-CoA hydratase                                     | fadB | EC:4.2.1.17  | 98.5 | 0         | WP_062199071.1 | enoyl-CoA hydratase [Massilibacterium senegalense]                          |
| MS_2107        | enoyl-CoA hydratase                                     | crt  | EC:4.2.1.17  | 97.7 | 0         | WP_062197209.1 | enoyl-CoA hydratase [Massilibacterium senegalense]                          |
| MS_2450        | enoyl-CoA hydratase                                     | paaF | EC:4.2.1.17  | 95.0 | 0         | WP_062199608.1 | enoyl-CoA hydratase [Massilibacterium senegalense]                          |
| MS_0014        | 3-hydroxybutyryl-CoA dehydratase                        | croR | EC:4.2.1.55  | 99.3 | 5.15E-101 | WP_062198196.1 | 3-hydroxybutyryl-CoA dehydratase [Massilibacterium senegalense]             |
| MS_2109        | butyryl-CoA dehydrogenase                               | bcd  | EC:1.3.8.1   | 98.1 | 0         | WP_062197211.1 | acyl-CoA dehydrogenase [Massilibacterium senegalense]                       |
| MS_0266        | butyryl-CoA dehydrogenase                               | bcd  | EC:1.3.8.1   | 98.7 | 0         | WP_062198984.1 | acyl-CoA dehydrogenase [Massilibacterium senegalense]                       |
| MS_1623        | butyryl-CoA dehydrogenase                               | bcd  | EC:1.3.8.1   | 99.7 | 0         | WP_062200164.1 | acyl-CoA dehydrogenase [Massilibacterium senegalense]                       |
| MS_1624        | Acyl-CoA dehydrogenase                                  | acd  | EC:1.3.8.7   | 99.7 | 0         | WP_062200161.1 | acyl-CoA dehydrogenase [Massilibacterium senegalense]                       |
| MS_2421        | Acyl-CoA dehydrogenase                                  | acd  | EC:1.3.8.7   | 93.7 | 0         | WP_062196993.1 | acyl-CoA dehydrogenase [Massilibacterium senegalense]                       |
| MS_2666        | butyryl-CoA dehydrogenase                               | bcd  | EC:1.3.8.1   | 97.1 | 0         | WP_062199581.1 | acyl-CoA dehydrogenase [Massilibacterium senegalense]                       |
| MS_0366        | electron transfer flavoprotein alpha subunit            | etfA |              | 96.9 | 0         | WP_062199067.1 | electron transfer flavoprotein subunit alpha [Massilibacterium senegalense] |
| MS_0367        | electron transfer flavoprotein beta subunit             | etfB |              | 99.2 | 1.36E-178 | WP_062199069.1 | electron transfer flavoprotein subunit beta [Massilibacterium               |

alpha [Massilibacterium senegalense]

|                    |                                                   |        |              |              |           |                          | senegalense]                                                    |
|--------------------|---------------------------------------------------|--------|--------------|--------------|-----------|--------------------------|-----------------------------------------------------------------|
| MS 0258            | 3-ovoacid CoA-transferase subunit B               |        | FC-2835      | 100.0        | 2 76E-156 | WP 062108969 1           | succinyl-CoA3-ketoacid-CoA transferase [Massilibacterium        |
| WI5_0256           | 5-oxoacid CoA-transferase subuiit D               |        | LC.2.0.5.5   | 100.0        | 2.702-150 | W1_002170707.1           | senegalense]                                                    |
| MS 0259            | 3-oxoacid CoA-transferase subunit A               |        | FC · 2 8 3 5 | 97.8         | 1 31F-164 | WP 0621989711            | succinyl-CoA3-ketoacid-CoA transferase [Massilibacterium        |
| 1015_0237          | 5 Oxodeld Corr Hansferdse subulit rr              |        | LC.2.0.5.5   | 77.0         | 1.512 104 | WI_002170771.1           | senegalense]                                                    |
| S6_Bin004-Massili  | bacterium senegalense strain mt8-Ethanol          |        |              |              |           |                          |                                                                 |
| production/oxidati | on                                                |        |              |              |           |                          |                                                                 |
| MS_2149            | aldehyde dehydrogenase (NAD <sup>+</sup> )        | ALDH   | EC:1.2.1.3   | 99.8         | 0         | WP_062198102.1           | betaine-aldehyde dehydrogenase [Massilibacterium senegalense]   |
| MS_2265            | aldehyde dehydrogenase (NAD <sup>+</sup> )        | ALDH   | EC:1.2.1.3   | 96.0         | 0         | WP_062198142.1           | aldehyde dehydrogenase [Massilibacterium senegalense]           |
| MS_2419            | aldehyde dehydrogenase                            | aldB   | EC:1.2.1     | 82.4         | 0         | KGR79783.1               | aldehyde dehydrogenase [Lysinibacillus manganicus DSM 26584]    |
| MS_2452            | aldehyde dehydrogenase (NAD <sup>+</sup> )        | ALDH   | EC:1.2.1.3   | 98.8         | 0         | WP_062199606.1           | aldehyde dehydrogenase [Massilibacterium senegalense]           |
| MS 1568            | alcohol dehydrogenase                             | adh2   | FC:111-      | 08.2         | 0         | WP 0621970/3 1           | NADH-dependent alcohol dehydrogenase [Massilibacterium          |
| M5_1500            | aconor denyurogenase                              | adiiz  | LC.1.1.1     | 90.2         | 0         | W1_002177043.1           | senegalense]                                                    |
| MS_2418            | alcohol dehydrogenase                             | yiaY   | EC:1.1.1.1   | 98.4         | 0         | WP_062196988.1           | L-threonine dehydrogenase [Massilibacterium senegalense]        |
| S6_Bin004-Massili  | bacterium senegalense strain mt8-Hydrogenases and |        |              |              |           |                          |                                                                 |
| coupling enzymes   |                                                   |        |              |              |           |                          |                                                                 |
| MS 1148            | [NiFe] hydrogenase small subunit                  | hva A  | FC·1 12 99 6 | 99.2         | 0         | WP 062200288 1           | [NiFe] hydrogenase small subunit HydA [Massilibacterium         |
| 1110               |                                                   | iijuii | LC.1.12.99.0 | <i>)).</i> 2 | Ŭ         |                          | senegalense]                                                    |
| MS_1149            | hydrogenase large subunit                         | hyaB   | EC:1.12.99.6 | 99.7         | 0         | WP_062200285.1           | hydrogenase [Massilibacterium senegalense]                      |
| MS 1150            | Ni/Fe-hydrogenase h-type cytochrome subunit       | hvaC   |              | 98.4         | 0         | WP 0622002821            | Ni/Fe-hydrogenase, b-type cytochrome subunit [Massilibacterium  |
| MB_1150            | Tur e nyalogenase, o type cytoenionie subunt      | nyae   |              | 70.4         | 0         | W1_002200202.1           | senegalense]                                                    |
| MS_1151            | hydrogenase maturation protease                   | hyaD   | EC:3.4.23    | 98.1         | 2.91E-106 | WP_062201373.1           | hydrogenase maturation protease [Massilibacterium senegalense]  |
| MS 1153            | hydrogenese nickel incorporation protein          | hypA   |              | 08.3         | 9.60F-79  | WP 062200276 1           | hydrogenase nickel incorporation protein HypA [Massilibacterium |
| MG_1155            | nyarogenase meker meorporation protein            | пурА   |              | 70.5         | 7.00L-73  | ••• <u>-</u> 002200270.1 | senegalense]                                                    |
| MS_1154            | hydrogenase nickel incorporation protein          | hypB   |              | 99.5         | 9.32E-163 | WP_062200274.1           | hydrogenase accessory protein HypB [Massilibacterium            |

|            |                                          |       |             |             |           |                | senegalense]                                                    |
|------------|------------------------------------------|-------|-------------|-------------|-----------|----------------|-----------------------------------------------------------------|
| MS_1155    | hydrogenase maturation protein           | hypF  |             | 94.7        | 0         | WP_062200271.1 | carbamoyltransferase HypF [Massilibacterium senegalense]        |
| MS 1156    | hydroganase expression/formation protein | hypC  |             | 08 7        | 188E 17   | WP 062200267 1 | hydrogenase assembly protein HypC [Massilibacterium             |
| WI3_1150   | nyurogenase expression/tormation protein | пурс  |             | 90.7        | 1.00E-47  | WF_002200207.1 | senegalense]                                                    |
| MS 1157    | hydrogenase expression/formation protein | hypD  |             | 99.2        | 0         | WP 062201371 1 | hydrogenase formation protein HypD [Massilibacterium            |
| WI5_1157   | nyarogenase expression formation protein | пурь  |             | <i>)).2</i> | 0         | WI_002201371.1 | senegalense]                                                    |
| MS 1158    | hydrogenase expression/formation protein | hypE  |             | 97.9        | 0         | WP 062200266.1 | hydrogenase expression/formation protein HypE [Massilibacterium |
|            |                                          |       |             |             |           |                | sene galense]                                                   |
| MS_2018    | NADH dehydrogenase                       | ndh   | EC:1.6.99.3 | 97.5        | 0         | WP_062199499.1 | NADH dehydrogenase [Massilibacterium senegalense]               |
| MS_2517    | thioredoxin reductase (NADPH)            | trxB  | EC:1.8.1.9  | 95.5        | 0         | WP_062199484.1 | ferredoxinNADP(+) reductase [Massilibacterium senegalense]      |
| MS_2518    | NADH dehydrogenase                       | ndh   | EC:1.6.99.3 | 99.0        | 0         | WP_062201308.1 | NADH dehydrogenase [Massilibacterium senegalense]               |
| MS_113     | ferredoxin                               | fer   |             | 100.0       | 3.65E-51  | WP_062198330.1 | ferredoxin [Massilibacterium senegalense]                       |
| S6_Bin006- | Mesotoga infera-Glycerol oxidation 2     |       |             |             |           |                |                                                                 |
| MI_0319    | glycerol kinase                          | glpK  | EC:2.7.1.30 | 99.8        | 0         | CCU86017.1     | Glycerol kinase 2 [Mesotoga infera]                             |
| MI_0653    | glycerol-3-phosphate dehydrogenase       | glpA  | EC:1.1.5.3  | 100.0       | 0         | CCU85716.1     | FAD dependent oxidoreductase [Mesotoga infera]                  |
| S6_Bin006- | Mesotoga infera-Central axis pathway     |       |             |             |           |                |                                                                 |
| MI 0460    | triocanhosphata isomarasa                | трі   | EC:5311     | 100.0       | 0         | CCU84081 1     | Bifunctional PGK/TIM (Includes: Phosphoglycerate kinase ;       |
| WII_0400   | utoseptiosphate isomerase                | 111   | LC.5.5.1.1  | 100.0       | 0         | 0004001.1      | Triosephosphate isomerase) [Mesotoga infera]                    |
| MI 0460    | nhoenhoelveerste kinsee                  | PCK   | EC:2723     | 100.0       | 0         | CCU84081 1     | Bifunctional PGK/TIM (Includes: Phosphoglycerate kinase ;       |
| WII_0400   | phosphogrycerate kinase                  | TOK   | EC.2.7.2.3  | 100.0       | 0         | 0004001.1      | Triosephosphate isomerase) [Mesotoga infera]                    |
| MI_0461    | glyceraldehyde 3-phosphate dehydrogenase | GAPDH | EC:1.2.1.12 | 99.7        | 0         | CCU84080.1     | Glyceraldehyde-3-phosphate dehydrogenase [Mesotoga infera]      |
| MI_0203    | probable phosphoglycerate mutase         | gpmB  | EC:5.4.2.12 | 100.0       | 8.26E-149 | CCU85905.1     | Phosphoglycerate mutase [Mesotoga infera]                       |
| MI_2026    | probable phosphoglycerate mutase         | gpmB  | EC:5.4.2.12 | 100.0       | 2.16E-166 | WP_014731744.1 | fructose 2,6-bisphosphatase [Mesotoga prima]                    |
| MI_1425    | enolase                                  | ENO   | EC:4.2.1.11 | 100.0       | 0         | CCU85457.1     | Enolase [Mesotoga infera]                                       |
| MI_0598    | pyruvate kinase                          | pyk   | EC:2.7.1.40 | 100.0       | 0         | CCU84234.1     | Pyruvate kinase [Mesotoga infera]                               |

| ML 2016     | numwata kinasa                                        | nuk     | EC:27140        | 00.7  | 0         | CCU94646 1     | Durmute kinese [Masstong inford]                                         |
|-------------|-------------------------------------------------------|---------|-----------------|-------|-----------|----------------|--------------------------------------------------------------------------|
| MI_2010     | pyruvate kinase                                       | рук     | EC.2.7.1.40     | 99.1  | 0         | CCU84040.1     | r yluvate kinase [ <i>mesologu injeru</i> ]                              |
| MI_1541     | pyruvate-ferredoxin/flavodoxin oxidoreductase         | por     | EC:1.2.7.1      | 95.3  | 0         | WP_006488153.1 | pyruvate:ferredoxin (flavodoxin) oxidoreductase [Mesotoga prima]         |
|             |                                                       |         | 1.2.7           |       |           |                |                                                                          |
| MI 1871     | puruvata farradovin/flavodovin ovidoraductasa         | por     | EC:1.2.7.1      | 08.0  | 0         | CCU84521 1     | Durnwata flavodovin ovidoraductosa [Masataga infara]                     |
| WII_10/1    | pyruvate-refredoxin/fravodoxin/oxidoreductase         | por     | 1.2.7           | 90.9  | 0         | 0004521.1      | i yiuvale-navodoxin oxidoreductase [mesologu injeru]                     |
| S6_Bin006-2 | Mesotoga infera-Acetate production                    |         |                 |       |           |                |                                                                          |
| MI_0299     | phosphate acetyltransferase                           | Pta     | EC:2.3.1.8      | 100.0 | 3.38E-140 | CCU86038.1     | Phosphate propanoyltransferase [Mesotoga infera]                         |
| MI_0391     | acetate kinase                                        | ackA    | EC:2.7.2.1      | 100.0 | 0         | CCU85692.1     | Acetate kinase [Mesotoga infera]                                         |
| S6_Bin010-A | Bacteroidia bacterium 43-41-Pyruvate to acetyl-CoA    |         |                 |       |           |                |                                                                          |
|             |                                                       |         | EC:1.2.7.1      |       |           |                | pyruvate:ferredoxin (flavodoxin) oxidoreductase [Bacteroidia             |
| BB_1709     | pyruvate-ferredoxin/flavodoxin oxidoreductase         | por     | 1.2.7           | 94.9  | 0         | OJV35651.1     | bacterium 43-41]                                                         |
|             |                                                       |         |                 |       |           |                | pyruvate dehydrogenase (acetyl-transferring) E1 component subunit        |
| BB_0722     | pyruvate dehydrogenase E1 component alpha subunit     | PDHA    | EC:1.2.4.1      | 93.9  | 0         | OJV36229.1     | alpha [ <i>Bacteroidia</i> bacterium 43-41]                              |
|             |                                                       |         |                 |       |           |                | alpha-ketoacid dehydrogenase suhunit heta [ <i>Bactaroidia</i> hacterium |
| BB_0723     | pyruvate dehydrogenase E1 component beta subunit      | PDHB    | EC:1.2.4.1      | 95.4  | 0         | OJV36230.1     |                                                                          |
|             |                                                       |         |                 |       |           |                | 43-41]                                                                   |
| BB_0724     | pyruvate dehydrogenase E2 component (dihydrolipoamide | DLAT    | EC:2.3.1.12     | 83.5  | 0         | OJV36231.1     | hypothetical protein BGO33_05085 [Bacteroidia bacterium 43-41]           |
|             | acetyltransferase)                                    |         |                 |       |           |                |                                                                          |
| BB_2030     | pyruvate dehydrogenase E1 component alpha subunit     | PDHA    | EC:1.2.4.1      | 94.0  | 0         | OJV37110.1     | pyruvate dehydrogenase [Bacteroidia bacterium 43-41]                     |
| DD 2021     | numuuta dahudaaanaaa El aamnanant hata auhumit        | DDUD    | EC.1241         | 00.1  | 0         | OW27100 1      | alpha-ketoacid dehydrogenase subunit beta [Bacteroidia bacterium         |
| DD_2031     | pyruvate denydrogenase E1 component beta subunt       | РДПВ    | EC:1.2.4.1      | 99.1  | 0         | 03 \$ 37109.1  | 43-41]                                                                   |
|             | pyruvate dehydrogenase E2 component (dihydrolipoamide |         |                 |       |           |                |                                                                          |
| BB_2032     | acetyltransferase)                                    | DLAT    | EC:2.3.1.12     | 90.9  | 0         | OJV37108.1     | dihydrolipoamide acetyltransferase [ <i>Bacteroidia</i> bacterium 43-41] |
| S6 Bin010-J | Bacteroidia bacterium 43-41-Acetate production        |         |                 |       |           |                |                                                                          |
| BB_2256     | phosphate acetyltransferase                           | pta     | EC:2.3.1.8      | 92.3  | 0         | OJV37359.1     | phosphate acetyltransferase [Bacteroidia bacterium 43-41]                |
| BB 2258     | acetate kinase                                        | ackA    | $FC \cdot 2721$ | 94 7  | 0         | OIV37468 1     | acetate kinase [ <i>Bacteroidia</i> bacterium 43-41]                     |
| 22_2200     | uccuto Miluse                                         | uviii 1 | 20.2.7.2.1      | 21.7  | 0         | 55757100.1     |                                                                          |

| S6_Bin010- <i>B</i> | Bacteroidia bacterium 43-41-Butyrate and caproate production |      |                       |      |           |            |                                                                                                    |
|---------------------|--------------------------------------------------------------|------|-----------------------|------|-----------|------------|----------------------------------------------------------------------------------------------------|
| BB_0687             | acetyl-CoA C-acetyltransferase                               | atoB | EC:2.3.1.9            | 88.5 | 0         | OJV36545.1 | acetyl-CoA acetyltransferase [Bacteroidia bacterium 43-41]                                         |
| BB_0685             | 3-hydroxybutyryl-CoA dehydrogenase                           | paaH | EC:1.1.1.157          | 92.1 | 0         | OJV36511.1 | 3-hydroxybutyryl-CoA dehydrogenase [ <i>Bacteroidia</i> bacterium 43-41]                           |
| BB_0686             | enoyl-CoA hydratase                                          | crt  | EC:4.2.1.17           | 85.7 | 3.82E-161 | OJV36546.1 | hypothetical protein BGO33_12475 [Bacteroidia bacterium 43-41]                                     |
| BB_0688             | acetate CoA/acetoacetate CoA-transferase beta subunit        | atoA | EC:2.8.3.8<br>2.8.3.9 | 95.0 | 2.07E-149 | OJV36510.1 | succinyl-CoA3-ketoacid-CoA transferase [ <i>Bacteroidia</i> bacterium 43-41]                       |
| BB_2152             | butyryl-CoA dehydrogenase                                    | bcd  | EC:1.3.8.1            | 98.1 | 0         | OJV35776.1 | acyl-CoA dehydrogenase [Bacteroidia bacterium 43-41]                                               |
| BB_2153             | electron transfer flavoprotein alpha subunit                 | etfA |                       | 93.8 | 0         | SFU32761.1 | electron transfer flavoprotein alpha subunit apoprotein<br>[Porphyromonadaceae bacterium KHP3R9]   |
| BB_2154             | electron transfer flavoprotein beta subunit                  | etfB |                       | 94.1 | 0         | OJV35778.1 | electron transfer flavoprotein subunit beta [ <i>Bacteroidia</i> bacterium 43-41]                  |
| BB_1016             | phosphate butyryltransferase                                 | ptb  | EC:2.3.1.19           | 84.2 | 0         | OJV32515.1 | phosphate butyryltransferase [Bacteroidia bacterium 43-41]                                         |
| BB_1015             | butyrate kinase                                              | buk  | EC:2.7.2.7            | 97.5 | 0         | SFU39491.1 | butyrate kinase [Porphyromonadaceae bacterium KHP3R9]                                              |
| S6_Bin010- <i>H</i> | Bacteroidia bacterium 43-41-Membrane proteins involved in    |      |                       |      |           |            |                                                                                                    |
| energy conse        | rvation-Rnf complex                                          |      |                       |      |           |            |                                                                                                    |
| BB_0085             | electron transport complex protein RnfA                      | RnfA |                       | 97.9 | 8.76E-128 | OJV38119.1 | electron transport complex subunit RsxA [ <i>Bacteroidia</i> bacterium 43-41]                      |
| BB_0086             | electron transport complex protein RnfE                      | RnfE |                       | 95.9 | 5.53E-126 | OJV38118.1 | electron transport complex subunit RsxE [Bacteroidia bacterium 43-41]                              |
| BB_0087             | electron transport complex protein RnfG                      | RnfG |                       | 85.1 | 8.39E-131 | SFU38380.1 | electron transport complex protein RnfG [Porphyromonadaceae bacterium KHP3R9]                      |
| BB_0088             | electron transport complex protein RnfD                      | RnfD |                       | 92.2 | 0         | OJV38116.1 | Na+-transporting NADH:ubiquinone oxidoreductase subunit D<br>[ <i>Bacteroidia</i> bacterium 43-41] |
| BB_0089             | electron transport complex protein RnfC                      | RnfC |                       | 92.3 | 0         | OJV38115.1 | electron transporter RnfC [Bacteroidia bacterium 43-41]                                            |

| BB_0090        | electron transport complex protein RnfB                 | RnfB  |                         | 94.4 | 0         | OJV38114.1 | ferredoxin [Bacteroidia bacterium 43-41]                                                         |
|----------------|---------------------------------------------------------|-------|-------------------------|------|-----------|------------|--------------------------------------------------------------------------------------------------|
| S6_Bin010-Bad  | cteroidia bacterium 43-41-Membrane proteins involved in |       |                         |      |           |            |                                                                                                  |
| energy conserv | ation-Fix system                                        |       |                         |      |           |            |                                                                                                  |
| BB_2153        | electron transfer flavoprotein alpha subunit            | fixB  |                         | 93.8 | 0         | SFU32761.1 | electron transfer flavoprotein alpha subunit apoprotein<br>[Porphyromonadaceae bacterium KHP3R9] |
| BB_2154        | electron transfer flavoprotein beta subunit             | fixA  |                         | 94.1 | 0         | OJV35778.1 | electron transfer flavoprotein subunit beta [ <i>Bacteroidia</i> bacterium 43-41]                |
| S6_Bin010-Bad  | cteroidia bacterium 43-41-ATPase                        |       |                         |      |           |            |                                                                                                  |
| BB_0941        | F-type H+-transporting ATPase subunit gamma             |       |                         | 82.7 | 1.23E-167 | OJV33098.1 | ATP synthase F1 subunit gamma [Bacteroidia bacterium 43-41]                                      |
| BB_0942        | F-type H+-transporting ATPase subunit alpha             |       | EC:3.6.3.14             | 91.5 | 0         | OJV33097.1 | F0F1 ATP synthase subunit alpha [Bacteroidia bacterium 43-41]                                    |
| BB_0943        | F-type H+-transporting ATPase subunit delta             |       |                         | 85.4 | 1.72E-108 | OJV33096.1 | ATP synthase F1 subunit delta [Bacteroidia bacterium 43-41]                                      |
| BB_0944        | F-type H+-transporting ATPase subunit b                 |       |                         | 82.5 | 3.70E-94  | OJV33095.1 | ATP synthase F0 subunit B [Bacteroidia bacterium 43-41]                                          |
| BB_0945        | F-type H+-transporting ATPase subunit c                 |       |                         | 93.9 | 4.24E-44  | OJV33094.1 | ATP synthase F0 subunit C [Bacteroidia bacterium 43-41]                                          |
| BB_0946        | F-type H+-transporting ATPase subunit a                 |       |                         | 83.0 | 0         | OJV33107.1 | ATP synthase F0 subunit A [Bacteroidia bacterium 43-41]                                          |
| BB_0947        | ATP synthase protein I2                                 |       |                         | 77.1 | 5.22E-60  | OJV33093.1 | hypothetical protein BGO33_13645 [Bacteroidia bacterium 43-41]                                   |
| BB_0948        | F-type H+-transporting ATPase subunit epsilon           |       |                         | 84.5 | 1.95E-41  | OJV33092.1 | ATP synthase F1 subunit epsilon [Bacteroidia bacterium 43-41]                                    |
| BB_0949        | F-type H+-transporting ATPase subunit beta              |       | EC:3.6.3.14             | 95.0 | 0         | OJV33091.1 | F0F1 ATP synthase subunit beta [Bacteroidia bacterium 43-41]                                     |
| BB_1339        | V/A-type H+/Na+-transporting ATPase subunit E           | ATPVE |                         | 89.7 | 1.01E-119 | OJV39048.1 | hypothetical protein BGO33_13835 [Bacteroidia bacterium 43-41]                                   |
| BB_1340        | V/A-type H+/Na+-transporting ATPase subunit C           | ATPVC |                         | 92.2 | 0         | OJV39049.1 | hypothetical protein BGO33_13840 [Bacteroidia bacterium 43-41]                                   |
| BB_1341        | V/A-type H+/Na+-transporting ATPase subunit A           | ATPVA | EC:3.6.3.14<br>3.6.3.15 | 95.7 | 0         | OJV39050.1 | V-type ATP synthase subunit A [Bacteroidia bacterium 43-41]                                      |
| BB_1342        | V/A-type H+/Na+-transporting ATPase subunit B           | ATPVB |                         | 98.9 | 0         | OJV39051.1 | V-type ATP synthase subunit B [Bacteroidia bacterium 43-41]                                      |
| BB_1343        | V/A-type H+/Na+-transporting ATPase subunit D           | ATPVD |                         | 95.6 | 1.40E-134 | OJV39052.1 | V-type ATP synthase subunit D [Bacteroidia bacterium 43-41]                                      |
| BB_1344        | V/A-type H+/Na+-transporting ATPase subunit I           | ATPVI |                         | 87.1 | 0         | OJV39053.1 | V-type ATP synthase subunit I [Bacteroidia bacterium 43-41]                                      |
| BB_1345        | V/A-type H+/Na+-transporting ATPase subunit K           | ATPVK |                         | 98.0 | 9.98E-99  | SFU52137.1 | V/A-type H+-transporting ATPase subunit K<br>[ <i>Porphyromonadaceae</i> bacterium KHP3R9]       |

| S6_Bin010-Ba   | acteroidia bacterium 43-41-Hydrogenase (putative        |      |                         |       |           |            |                                                                 |
|----------------|---------------------------------------------------------|------|-------------------------|-------|-----------|------------|-----------------------------------------------------------------|
| electron-bifur | cating hydrogenase)                                     |      |                         |       |           |            |                                                                 |
| BB_1168        | NADH-quinone oxidoreductase subunit E                   | nuoE | EC:1.6.5.3              | 85.4  | 4.61E-102 | OJV38404.1 | hypothetical protein BGO33_06290 [Bacteroidia bacterium 43-41]  |
| BB_1169        | NADH-quinone oxidoreductase subunit F                   | nuoF | EC:1.6.5.3              | 88.3  | 0         | OJV38405.1 | NADH dehydrogenase [Bacteroidia bacterium 43-41]                |
| BB_1170        | NADH-quinone oxidoreductase subunit G                   | nuoG | EC:1.6.5.3              | 90.8  | 0         | OJV38406.1 | ferredoxin [Bacteroidia bacterium 43-41]                        |
| BB_2775        | ferredoxinNADP+ reductase                               | fpr  | EC:1.18.1.2             | 96.9  | 0         | OJV36298.1 | ferredoxin-NADP reductase [Bacteroidia bacterium 43-41]         |
| S6_Bin012-Cl   | ostridium kluyveri-Ethanol oxidation                    |      |                         |       |           |            |                                                                 |
| CK_1079        | alcohol dehydrogenase                                   | yiaY | EC:1.1.1.1              | 99.7  | 0         | APM41305.1 | L-threonine dehydrogenase [Clostridium kluyveri]                |
| CK_1814        | alcohol dehydrogenase                                   | adh2 | EC:1.1.1                | 100.0 | 0         | APM38446.1 | NADH-dependent alcohol dehydrogenase [Clostridium kluyveri]     |
| CK_1816        | alcohol dehydrogenase                                   | yiaY | EC:1.1.1.1              | 99.7  | 0         | APM38444.1 | L-threonine dehydrogenase [Clostridium kluyveri]                |
| CK_2119        | alcohol dehydrogenase                                   | yiaY | EC:1.1.1.1              | 100.0 | 0         | APM40732.1 | L-threonine dehydrogenase [Clostridium kluyveri]                |
| CK_2520        | alcohol dehydrogenase                                   | yiaY | EC:1.1.1.1              | 100.0 | 0         | APM39276.1 | ethanolamine utilization protein EutG [Clostridium kluyveri]    |
| CK_1679        | acetaldehyde dehydrogenase / alcohol dehydrogenase      | adhE | EC:1.2.1.10;<br>1.1.1.1 | 100.0 | 0         | APM37882.1 | butanol dehydrogenase [Clostridium kluyveri]                    |
| CK_2949        | aldehyde dehydrogenase (NAD+)                           | ALDH | EC:1.2.1.3              | 100.0 | 0         | APM39462.1 | aldehyde dehydrogenase family protein [Clostridium kluyveri]    |
| CK_1809        | acetaldehyde dehydrogenase (acetylating)                |      | EC:1.2.1.10             | 100.0 | 0         | APM38451.1 | acetaldehyde dehydrogenase (acetylating) [Clostridium kluyveri] |
| CK_2925        | acetaldehyde dehydrogenase / alcohol dehydrogenase      | adhE | EC:1.2.1.10;<br>1.1.1.1 | 100.0 | 0         | APM38120.1 | alcohol dehydrogenase [Clostridium kluyveri]                    |
| CK_3473        | acetaldehyde dehydrogenase / alcohol dehydrogenase      | adhE | EC:1.2.1.10;<br>1.1.1.1 | 98.8  | 0         | APM38455.1 | alcohol dehydrogenase [Clostridium kluyveri]                    |
| S6_Bin012-Cl   | ostridium kluyveri-Reverse β-oxidation for butyrate and |      |                         |       |           |            |                                                                 |
| caproate prod  | uction                                                  |      |                         |       |           |            |                                                                 |
| CK_0235        | acetyl-CoA C-acetyltransferase                          |      | EC:2.3.1.9              | 100.0 | 0         | APM41005.1 | acetyl-CoA acetyltransferase [Clostridium kluyveri]             |
| CK_0236        | acetyl-CoA C-acetyltransferase                          |      | EC:2.3.1.9              | 100.0 | 0         | APM41004.1 | acetyl-CoA acetyltransferase [Clostridium kluyveri]             |
| CK_0237        | acetyl-CoA C-acetyltransferase                          |      | EC:2.3.1.9              | 100.0 | 0         | APM41003.1 | acetyl-CoA acetyltransferase [Clostridium kluyveri]             |

## 

| CK_0295        | 3-hydroxybutyryl-CoA dehydrogenase                      | paaH | EC:1.1.1.157 | 100.0 | 0         | APM40071.1     | 3-hydroxybutyryl-CoA dehydrogenase [Clostridium kluyveri]           |
|----------------|---------------------------------------------------------|------|--------------|-------|-----------|----------------|---------------------------------------------------------------------|
| CK_3075        | 3-hydroxybutyryl-CoA dehydrogenase                      | paaH | EC:1.1.1.157 | 99.4  | 3.08E-101 | APM38896.1     | hypothetical protein BS101_09100 [Clostridium kluyveri]             |
| CK_1050        | 3-hydroxybutyryl-CoA dehydratase                        | croR | EC:4.2.1.55  | 100.0 | 4.02E-96  | APM40240.1     | enoyl-CoA hydratase [Clostridium kluyveri]                          |
| CK_1240        | butyryl-CoA dehydrogenase                               | bcd  | EC:1.3.8.1   | 100.0 | 0         | WP_073537711.1 | acyl-CoA dehydrogenase [Clostridium kluyveri]                       |
| CK_0704        | 4-hydroxybutyrate CoA-transferase                       | cat2 | EC:2.8.3     | 100.0 | 0         | APM40939.1     | 4-hydroxybutyrate CoA-transferase [Clostridium kluyveri]            |
| CK_1054        | 4-hydroxybutyrate CoA-transferase                       | cat2 | EC:2.8.3     | 100.0 | 0         | APM41307.1     | 4-hydroxybutyrate CoA-transferase [Clostridium kluyveri]            |
| CK_2573        | ferredoxinNADP+ reductase                               | fpr  | EC:1.18.1.2  | 99.7  | 0         | APM37777.1     | NAD-binding oxidoreductase [Clostridium kluyveri]                   |
| CK_2574        | 3-hydroxybutyryl-CoA dehydrogenase                      | paaH | EC:1.1.1.157 | 99.6  | 0         | APM41175.1     | 3-hydroxybutyryl-CoA dehydrogenase [Clostridium kluyveri]           |
| CK_2575        | electron transfer flavoprotein subunit alpha            | etfA |              | 100.0 | 0         | APM37776.1     | electron transfer flavoprotein subunit alpha [Clostridium kluyveri] |
| CK_2576        | electron transfer flavoprotein subunit beta             | etfB |              | 100.0 | 0         | APM37775.1     | electron transfer flavoprotein subunit beta [Clostridium kluyveri]  |
| CK_2577        | butyryl-CoA dehydrogenase                               | bcd  | EC:1.3.8.1   | 100.0 | 0         | APM37774.1     | acyl-CoA dehydrogenase [Clostridium kluyveri]                       |
| CK_2578        | enoyl-CoA hydratase                                     | crt  | EC:4.2.1.17  | 100.0 | 0         | APM37773.1     | crotonase [Clostridium kluyveri]                                    |
| S6_Bin012-Cl   | ostridium kluyveri-Membrane proteins involved in energy |      |              |       |           |                |                                                                     |
| conservation-  | Rnf complex                                             |      |              |       |           |                |                                                                     |
| CK 0795        | electron transport complex protein RnfB                 | rnfB |              | 100.0 | 0         | APM38647 1     | RnfABCDGE type electron transport complex subunit B                 |
| CR_0//0        | election duisport complex protoni Rind                  | mb   |              | 100.0 | 0         | 1111100017.1   | [Clostridium kluyveri]                                              |
| CK_0796        | electron transport complex protein RnfA                 | rnfA |              | 100.0 | 2.15E-129 | APM38646.1     | electron transport complex subunit RsxA [Clostridium kluyveri]      |
| CK_0797        | electron transport complex protein RnfE                 | rnfE |              | 100.0 | 3.71E-149 | APM38645.1     | electron transport complex subunit RsxE [Clostridium kluyveri]      |
| CK 0798        | electron transport complex protein RnfG                 | rnfG |              | 100.0 | 4 92F-129 | APM38644 1     | RnfABCDGE type electron transport complex subunit G                 |
| CK_0770        | election transport complex protein Kino                 | mo   |              | 100.0 | 4.921 129 | /11/1300-++.1  | [Clostridium kluyveri]                                              |
| CK_0799        | electron transport complex protein RnfD                 | rnfD |              | 100.0 | 0         | APM38643.1     | electron transporter RnfD [Clostridium kluyveri]                    |
| CK_0800        | electron transport complex protein RnfC                 | rnfC |              | 99.8  | 0         | APM38642.1     | electron transporter RnfC [Clostridium kluyveri]                    |
| S6_Bin012-Cl   | ostridium kluyveri-Membrane proteins involved in energy |      |              |       |           |                |                                                                     |
| conservation-l | FAD (or Fe-S) reductase lined to ETF                    |      |              |       |           |                |                                                                     |
| CK_2896        | Acryloyl-CoA reductase electron transfer subunit gamma  |      |              | 100.0 | 0         | APM40840.1     | electron transfer flavoprotein, beta subunit [Clostridium kluyveri] |

| CK_2897      | Acryloyl-CoA reductase electron transfer subunit beta     |              |             | 100.0 | 0         | APM40839.1   | electron transfer flavoprotein, alpha subunit [Clostridium kluyveri] |
|--------------|-----------------------------------------------------------|--------------|-------------|-------|-----------|--------------|----------------------------------------------------------------------|
| CK_2898      | putative FAD-linked oxidoreductase                        |              |             | 100.0 | 0         | APM41340.1   | FAD-binding protein [Clostridium kluyveri]                           |
| S6_Bin012-C  | Clostridium kluyveri-Membrane proteins involved in energy |              |             |       |           |              |                                                                      |
| conservation | -Fix system                                               |              |             |       |           |              |                                                                      |
| CK_3270      | ferredoxin like protein                                   | fixX         |             | 98.9  | 1.44E-60  | APM41235.1   | 4Fe-4S ferredoxin [Clostridium kluyveri]                             |
| CK_3271      | electron transfer flavoprotein-quinone oxidoreductase     | fixC         | EC:1.5.5    | 98.6  | 0         | APM38882.1   | nitrogen fixation protein FixC [Clostridium kluyveri]                |
| CK_3272      | electron transfer flavoprotein alpha subunit              | fixB         |             | 99.5  | 0         | APM38881.1   | electron transfer flavoprotein subunit alpha [Clostridium kluyveri]  |
| CK_3273      | electron transfer flavoprotein beta subunit               | fixA         |             | 99.6  | 0         | APM38880.1   | electron transfer flavoprotein subunit beta [Clostridium kluyveri]   |
| S6_Bin012-C  | Clostridium kluyveri-ATPase                               |              |             |       |           |              |                                                                      |
| CK_0238      | ATP synthase I chain                                      |              |             | 100.0 | 9.89E-78  | APM41002.1   | ATP synthase subunit I [Clostridium kluyveri]                        |
| CK_0239      | F-type H+-transporting ATPase subunit a                   | atpB         |             | 100.0 | 1.54E-159 | APM41001.1   | F0F1 ATP synthase subunit A [Clostridium kluyveri]                   |
| CK_0240      | F-type H+-transporting ATPase subunit c                   | atpE         |             | 100.0 | 5.00E-47  | APM41000.1   | ATP synthase F0 subunit C [Clostridium kluyveri]                     |
| CK_0241      | F-type H+-transporting ATPase subunit b                   | atpF         |             | 99.4  | 7.34E-108 | APM40999.1   | ATP synthase F0 subunit B [Clostridium kluyveri]                     |
| CK_0242      | F-type H+-transporting ATPase subunit delta               | atpH         |             | 100.0 | 2.36E-123 | APM40998.1   | F0F1 ATP synthase subunit delta [Clostridium kluyveri]               |
| CK_0243      | F-type H+-transporting ATPase subunit alpha               | atpA         | EC:3.6.3.14 | 99.8  | 0         | APM40997.1   | F0F1 ATP synthase subunit alpha [Clostridium kluyveri]               |
| CK_0244      | F-type H+-transporting ATPase subunit gamma               | atpG         |             | 99.6  | 0         | APM40996.1   | F0F1 ATP synthase subunit gamma [Clostridium kluyveri]               |
| CK_0245      | F-type H+-transporting ATPase subunit beta                | atpD         | EC:3.6.3.14 | 100.0 | 0         | APM40995.1   | F0F1 ATP synthase subunit beta [Clostridium kluyveri]                |
| CK_0246      | F-type H+-transporting ATPase subunit epsilon             | atpC         |             | 100.0 | 1.43E-90  | APM40994.1   | ATP synthase F1 subunit epsilon [Clostridium kluyveri]               |
| CK_1829      | flagellum-specific ATP synthase                           | fliI         | EC:3.6.3.14 | 100.0 | 4.60E-95  | APM38542.1   | flagellar protein export ATPase FliI [Clostridium kluyveri]          |
| S6_Bin012-C  | Clostridium kluyveri-Hydrgenases-Periplasmic [NiFeSe]     |              |             |       |           |              |                                                                      |
| hydrogenase  | complex                                                   |              |             |       |           |              |                                                                      |
| CV 2054      | hudes consess summarian /formation protain HumE           | hym <b>E</b> |             | 100.0 | 0         | ADM20045 1   | hydrogenase expression/formation protein HypE [Clostridium           |
| CK_3034      | nydrogenase expression/rormation protein Hype             | пуре         |             | 100.0 | 0         | AP10150045.1 | kluyveri]                                                            |
| CK_3055      | hydrogenase expression/formation protein HypD             | hypD         |             | 100.0 | 0         | APM38844.1   | hydrogenase formation protein HypD [Clostridium kluyveri]            |
| CK_3056      | hydrogenase expression/formation protein HypC             | hypC         |             | 100.0 | 4.21E-43  | APM38843.1   | hydrogenase assembly protein HypC [Clostridium kluyveri]             |

| CK_3057   | hydrogenase maturation protein HypF                              | hypF |              | 99.7  | 0         | APM41229.1     | carbamoyltransferase HypF [Clostridium kluyveri]                          |
|-----------|------------------------------------------------------------------|------|--------------|-------|-----------|----------------|---------------------------------------------------------------------------|
| CK_3058   | hydrogenase nickel incorporation protein                         | НурА |              | 100.0 | 1.68E-52  | APM38842.1     | hypothetical protein BS101_08785 [Clostridium kluyveri]                   |
| CK_3059   | cytochrome b-like heme/steroid binding domain containing protein |      |              | 100.0 | 3.96E-97  | APM38841.1     | steroid-binding protein [Clostridium kluyveri]                            |
| CK_3060   | hydrogenase maturation protease                                  | hyaD | EC:3.4.23    | 100.0 | 1.22E-101 | APM38840.1     | hydrogenase maturation protease [Clostridium kluyveri]                    |
| CK_3061   | hydrogenase large subunit                                        | hyaB | EC:1.12.99.6 | 100.0 | 0         | APM38839.1     | Ni/Fe hydrogenase [Clostridium kluyveri]                                  |
| CK_3062   | hydrogenase small subunit                                        | hyaA | EC:1.12.99.6 | 100.0 | 0         | APM38838.1     | Ni/Fe hydrogenase [Clostridium kluyveri]                                  |
| S6_Bin012 | -Clostridium kluyveri-Glycerol reduction to 1,3-PDO production   |      |              |       |           |                |                                                                           |
| CK_2795   | Propanediol utilization polyhedral body protein                  | PduA |              | 100.0 | 1.55E-56  | APM38225.1     | ethanolamine utilization protein EutM [Clostridium kluyveri]              |
| CK_2796   | propanediol dehydratase large subunit                            | pduC | EC:4.2.1.28  | 100.0 | 0         | APM38226.1     | propanediol dehydratase [Clostridium kluyveri]                            |
| CK_2797   | propanediol dehydratase small subunit                            | pduE | EC:4.2.1.28  | 96.7  | 1.87E-123 | BAH05808.1     | hypothetical protein CKR_0757 [ <i>Clostridium kluyveri</i> NBRC 12016]   |
| CK_2798   | Propanediol utilization polyhedral body protein                  | PduA |              | 84.8  | 3.89E-73  | EDK32896.1     | Predicted microcompartment shellprotein [Clostridium kluyveri<br>DSM 555] |
| CK_1349   | 1,3-propanediol dehydrogenase                                    | dhaT | EC:1.1.1.202 | 100.0 | 0         | APM39683.1     | alcohol dehydrogenase [Clostridium kluyveri]                              |
| S6_Bin013 | -Anaerostipes caccae-Glycerol oxidation 1                        |      |              |       |           |                |                                                                           |
| AC_1531   | Glycerol dehydrogenase                                           | gldA | EC:1.1.1.6   | 100.0 | 0         | WP_006567677.1 | MULTISPECIES: glycerol dehydrogenase [Anaerostipes]                       |
| AC_3149   | Glycerol dehydrogenase                                           | gldA | EC:1.1.1.6   | 100.0 | 0         | WP_006567890.1 | MULTISPECIES: glycerol dehydrogenase [Anaerostipes]                       |
| AC_1311   | dihydroxyacetone kinase, C-terminal domain                       | dhaL | EC:2.7.1     | 100.0 | 1.75E-151 | EFV22428.1     | DAK2 domain-containing protein [Anaerostipes sp. 3_2_56FAA]               |
| AC_1313   | dihydroxyacetone kinase, N-terminal domain                       | dhaK | EC:2.7.1     | 100.0 | 0         | EFV22430.1     | Dak1 domain-containing protein [Anaerostipes sp. 3_2_56FAA]               |
| AC_1474   | dihydroxyacetone kinase, C-terminal domain                       | dhaL | EC:2.7.1     | 100.0 | 3.54E-145 | EFV23311.1     | DAK2 domain-containing protein [Anaerostipes sp. 3_2_56FAA]               |
| AC_1475   | dihydroxyacetone kinase, N-terminal domain                       | dhaK | EC:2.7.1     | 100.0 | 0         | EFV23312.1     | Dak1 domain-containing protein [Anaerostipes sp. 3_2_56FAA]               |
| AC_1478   | dihydroxyacetone kinase, N-terminal domain                       | dhaK | EC:2.7.1     | 100.0 | 0         | EFV23315.1     | Dak1 domain-containing protein [Anaerostipes sp. 3_2_56FAA]               |
| AC_2399   | dihydroxyacetone kinase, C-terminal domain                       | dhaL | EC:2.7.1     | 100.0 | 1.22E-169 | CDC37490.1     | dAK2 domain-containing protein [Anaerostipes sp. CAG:276]                 |
| AC_2400   | dihydroxyacetone kinase, N-terminal domain                       | dhaK | EC:2.7.1     | 100.0 | 0         | EFV21655.1     | Dak1 domain-containing protein [Anaerostipes sp. 3_2_56FAA]               |
| AC_2545   | dihydroxyacetone kinase, C-terminal domain                       | dhaL | EC:2.7.1     | 100.0 | 2.78E-151 | EFV21282.1     | DAK2 domain-containing protein [Anaerostipes sp. 3_2_56FAA]               |

| AC_2546        | dihydroxyacetone kinase, N-terminal domain                   | dhaK  | EC:2.7.1     | 99.4         | 0         | EDR98779.1          | DAK1 domain protein [Anaerostipes caccae DSM 14662]            |
|----------------|--------------------------------------------------------------|-------|--------------|--------------|-----------|---------------------|----------------------------------------------------------------|
| S6_Bin013-     | Anaerostipes caccae-Glycerol oxidation 2                     |       |              |              |           |                     |                                                                |
| AC_0688        | Glycerol kinase                                              | glpK  | C:2.7.1.30   | 100.0        | 0         | EFV23466.1          | glycerol kinase [Anaerostipes sp. 3_2_56FAA]                   |
| AC 1969        | glycarol 3 phosphate dehydrogenase $(NAD(D))$                | ans A | EC:11104     | 100.0        | 0         | EDD08278 1          | putative glycerol-3-phosphate dehydrogenase [NAD(P)+]          |
| AC_1909        | giyeeror-3-phosphate denydrogenase (IVAD(I)+)                | gpsA  | LC.1.1.1.94  | 100.0        | 0         | EDK98278.1          | [Anaerostipes caccae DSM 14662]                                |
| AC 2803        | glycarol 3 phosphate dehydrogenase $(NAD(P))$                | ans A | EC:11104     | 100.0        | 0         | ED <b>P</b> 96703 1 | NAD-dependent glycerol-3-phosphate dehydrogenase C-terminal    |
| AC_2095        | giyeeror-3-phosphate denydrogenase (IVAD(1)+)                | gpsA  | EC.1.1.1.94  | 100.0        | 0         | EDK90705.1          | domain protein [Anaerostipes caccae DSM 14662]                 |
| AC 2913        | Glycerol.3-phosphate dehydrogenase [NAD(P)+1                 | ans A | FC·1119/     | 99.7         | 0         | FFV20853 1          | NAD-dependent glycerol-3-phosphate dehydrogenase [Anaerostipes |
| AC_2715        |                                                              | gpsA  | LC.1.1.1.74  | <i>)).</i> ( | 0         | LI V20055.1         | sp. 3_2_56FAA]                                                 |
| S6_Bin013-     | Anaerostipes caccae-Central axis pathway                     |       |              |              |           |                     |                                                                |
| AC_1431        | triosephosphate isomerase (TIM)                              | TPI   | EC:5.3.1.1   | 99.6         | 8.81E-166 | EFV22551.1          | triose-phosphate isomerase [Anaerostipes sp. 3_2_56FAA]        |
| AC_1935        | triosephosphate isomerase (TIM)                              | TPI   | EC:5.3.1.1   | 100.0        | 0         | WP_039930792.1      | MULTISPECIES: triose-phosphate isomerase [Anaerostipes]        |
| AC_2621        | triosephosphate isomerase (TIM)                              | TPI   | EC:5.3.1.1   | 100.0        | 8.82E-167 | EDR98634.1          | triose-phosphate isomerase [Anaerostipes caccae DSM 14662]     |
| AC 1933        | alugaraldahuda 2 nhaanhata dahudraganaga                     | GAPDH | EC:1.2.1.12  | 100.0        | 0         | EFV20889.1          | glyceraldehyde-3-phosphate dehydrogenase [Anaerostipes sp.     |
| <u>Me_1955</u> | giyeenindenyde 5 pilospinale denydrogenase                   |       |              | 10010        |           |                     | 3_2_56FAA]                                                     |
| AC_1934        | phosphoglycerate kinase                                      | PGK   | EC:2.7.2.3   | 100.0        | 0         | EDR96773.1          | phosphoglycerate kinase [Anaerostipes caccae DSM 14662]        |
| AC_1644        | probable phosphoglycerate mutase                             | gpmB  | EC:5.4.2.12  | 100.0        | 1.08E-147 | EFV23711.1          | phosphoglycerate mutase [Anaerostipes sp. 3_2_56FAA]           |
| AC 1813        | probabla phosphoglycarate mutasa                             | anmB  | EC:5 4 2 12  | 100.0        | 0         | CDC34743 1          | phosphoglycerate mutase family protein [Anaerostipes sp.       |
| AC_1015        | probable phosphogrycerate mutase                             | gpind | LC.J.4.2.12  | 100.0        | 0         | CDC34745.1          | CAG:276]                                                       |
| AC 1938        | 2.3-hisphosphoglycerate_independent phosphoglycerate mutase  | apmI  | EC:5 4 2 12  | 100.0        | 0         | EDR96770 1          | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase    |
| AC_1750        | 2,5-oisphosphogrycerate-independent phosphogrycerate indiase | gpini | LC.J.4.2.12  | 100.0        | 0         | EDK90770.1          | [Anaerostipes caccae DSM 14662]                                |
| AC 2330        | 2.3-bisphosphoglycerate_independent phosphoglycerate mutase  | anoM  | FC ·5 4 2 12 | 99.7         | 0         | WP 009289914.1      | cofactor-independent phosphoglycerate mutase [Anaerostipes sp. |
| NC_2350        | 2,3-01sphosphogrycerate-independent phosphogrycerate mutase  | apent | 20.3.7.2.12  | <i>,,</i> ,, | 0         | 007207714.1         | 3_2_56FAA]                                                     |
| AC 0883        | phosphoglucomutase                                           | ngm   | FC ·5 4 2 2  | 100.0        | 0         | FFV22143 1          | phosphoglucomutase/phosphomannomutase [Anaerostipes sp.        |
|                | Prosprogracomitase                                           | ro    | _0.01.1212   | - 0010       | č         |                     | 3_2_56FAA]                                                     |

| AC_0286      | enolase                                                | ENO  | EC:4.2.1.11  | 100.0 | 0         | WP_006566048.1 | MULTISPECIES: phosphopyruvate hydratase [Anaerostipes]          |
|--------------|--------------------------------------------------------|------|--------------|-------|-----------|----------------|-----------------------------------------------------------------|
| AC_1939      | enolase                                                | ENO  | EC:4.2.1.11  | 100.0 | 0         | EFV20895.1     | phosphopyruvate hydratase [Anaerostipes sp. 3_2_56FAA]          |
| AC_1033      | pyruvate kinase                                        | РК   | EC:2.7.1.40  | 100.0 | 0         | CDC35279.1     | pyruvate kinase [Anaerostipes sp. CAG:276]                      |
| AC 2508      | purmusta formadavin/flavadavin avidaradustasa          |      | EC:1.2.7.1   | 100.0 | 0         | EEV21169 1     | formadovin ovideraduatese [Angenestings on 2, 2, 56EAA]         |
| AC_2308      | pyruvate-refredoxiii/flavodoxiii oxidoreductase        | por  | 1.2.7        | 100.0 | 0         | EF V21108.1    | refredoxili oxidoreductase [ <i>Anderosupes</i> sp. 5_2_50rAA]  |
| S6_Bin013-An | naerostipes caccae-Acetate production                  |      |              |       |           |                |                                                                 |
| AC_1048      | phosphate acetyltransferase                            | pta  | EC:2.3.1.8   | 100.0 | 0         | EDR99093.1     | phosphate acetyltransferase [Anaerostipes caccae DSM 14662]     |
| AC_1049      | acetate kinase                                         | ackA | EC:2.7.2.1   | 100.0 | 0         | EFV21773.1     | acetokinase [Anaerostipes sp. 3_2_56FAA]                        |
| S6_Bin013-An | naerostipes caccae-Butyrate and caproate production    |      |              |       |           |                |                                                                 |
| AC_3165      | acetyl-CoA C-acetyltransferase                         | atoB | EC:2.3.1.9   | 100.0 | 0         | WP_039930536.1 | acetyl-CoA acetyltransferase [Anaerostipes sp. 3_2_56FAA]       |
| AC_3167      | 3-hydroxybutyryl-CoA dehydrogenase                     | paaH | EC:1.1.1.157 | 100.0 | 0         | EFV21686.1     | 3-hydroxyacyl-CoA dehydrogenase [Anaerostipes sp. 3_2_56FAA]    |
| AC_0348      | 3-hydroxybutyryl-CoA dehydratase                       | croR | EC:4.2.1.55  | 100.0 | 7.77E-94  | WP_009290664.1 | enoyl-CoA hydratase [Anaerostipes sp. 3_2_56FAA]                |
| AC_2342      | 3-hydroxybutyryl-CoA dehydratase                       | croR | EC:4.2.1.55  | 100.0 | 4.26E-103 | WP_006568567.1 | MULTISPECIES: enoyl-CoA hydratase [Anaerostipes]                |
| AC_0163      | enoyl-CoA hydratase                                    | crt  | EC:4.2.1.17  | 100.0 | 0         | EFV23880.1     | enoyl-CoA hydratase/isomerase [Anaerostipes sp. 3_2_56FAA]      |
| AC 2166      | anoul CoA hudratasa                                    | ort  | EC:4 2 1 17  | 100.0 | 0         | EDB00005 1     | 3-hydroxybutyryl-CoA dehydratase [Anaerostipes caccae DSM       |
| AC_5100      | enoyi-cox nyuratase                                    | cit  | EC.4.2.1.17  | 100.0 | 0         | EDR99003.1     | 14662]                                                          |
| AC 0539      | huturyl-CoA dehydrogenase                              | bed  | EC:1381      | 100.0 | 0         | EDD07704 1     | acyl-CoA dehydrogenase, C-terminal domain protein [Anaerostipes |
| AC_0339      | butyryr-CoA denydrogenase                              | beu  | LC.1.5.6.1   | 100.0 | 0         | EDR97724.1     | caccae DSM 14662]                                               |
| AC 3168      | huturyl-CoA dehydrogenase                              | bed  | FC-1381      | 100.0 | 0         | FFV21687 1     | acyl-CoA dehydrogenase domain-containing protein [Anaerostipes  |
| AC_5108      | bulyiyi-CoA denyulogenase                              | bcu  | LC.1.5.6.1   | 100.0 | 0         | EP V21007.1    | sp. 3_2_56FAA]                                                  |
| AC_0164      | propionate CoA-transferase                             | pct  | EC:2.8.3.1   | 100.0 | 0         | CDC38503.1     | acetate CoA-transferase YdiF [Anaerostipes sp. CAG:276]         |
| AC 0350      | A-hydroxybutyrate CoA-transferace                      | cat? | EC·283-      | 100.0 | 0         | CDC37756 1     | acetyl-CoA hydrolase/transferase domain-containing protein      |
| AC_0350      | 4-hydroxybutyrate COA-transferase                      | cat2 | LC.2.8.3     | 100.0 | 0         | CDC37750.1     | [Anaerostipes sp. CAG:276]                                      |
| AC 0665      | acetate CoA/acetoacetate CoA-transferase alpha subunit | atoD | EC:2.8.3.8   | 100.0 | 5 51E-174 | WP 009289219 1 | MULTISPECIES: acetoacetatebutyrate CoA transferase              |
| AC_0005      | actuae Constactione Constrainsferase appla subulit     | atoD | 2.8.3.9      | 100.0 | 5.512-174 |                | [Anaerostipes]                                                  |

| AC_0666                  | acetate CoA/acetoacetate CoA-transferase beta subunit   | atoA | EC:2.8.3.8 | 100.0 | 3.51E-157 | EDR96145.1 | 3-oxoacid CoA-transferase, B subunit [Anaerostipes caccae DSM                                             |  |  |
|--------------------------|---------------------------------------------------------|------|------------|-------|-----------|------------|-----------------------------------------------------------------------------------------------------------|--|--|
| AC 1864                  | acetate CoA-transferase                                 | vdiF | EC:2.8.3.8 | 99.8  | 0         | CDC36559.1 | acetate CoA-transferase YdiF [ <i>Anaerostipes</i> sp. CAG:276]                                           |  |  |
| AC_2343                  | propionate CoA-transferase                              | pct  | EC:2.8.3.1 | 100.0 | 0         | CDC36734.1 | acetate CoA-transferase YdiF [Anaerostipes sp. CAG:276]                                                   |  |  |
| AC_3169                  | electron transfer flavoprotein beta subunit             | etfB |            | 100.0 | 0         | EDR99002.1 | electron transfer flavoprotein domain protein [Anaerostipes caccae<br>DSM 14662]                          |  |  |
| AC_3170                  | electron transfer flavoprotein alpha subunit            | etfA |            | 100.0 | 0         | EFV21689.1 | electron transfer flavoprotein FAD-binding domain-containing protein [ <i>Anaerostipes</i> sp. 3_2_56FAA] |  |  |
| S6_Bin013-A              | naerostipes caccae-Ethanol production/oxidation         |      |            |       |           |            |                                                                                                           |  |  |
| AC_1208                  | aldehyde dehydrogenase (NAD+)                           | ALDH | EC:1.2.1.3 | 100.0 | 0         | CDC37217.1 | aldehyde dehydrogenase [Anaerostipes sp. CAG:276]                                                         |  |  |
| AC_0138                  | alcohol dehydrogenase                                   | adh2 | EC:1.1.1   | 99.7  | 0         | CDC38414.1 | alcohol dehydrogenase iron-dependent [Anaerostipes sp. CAG:276]                                           |  |  |
| AC_0386                  | alcohol dehydrogenase                                   | adh2 | EC:1.1.1   | 100.0 | 0         | EFV23191.1 | iron-containing alcohol dehydrogenase [ <i>Anaerostipes</i> sp. 3_2_56FAA]                                |  |  |
| AC_0659                  | alcohol dehydrogenase                                   | adh2 | EC:1.1.1   | 100.0 | 0         | EDR96137.1 | alcohol dehydrogenase, iron-dependent [Anaerostipes caccae DSM 14662]                                     |  |  |
| AC_1877                  | alcohol dehydrogenase                                   | adh2 | EC:1.1.1   | 100.0 | 0         | CDC36582.1 | iron-containing alcohol dehydrogenase [Anaerostipes sp. CAG:276]                                          |  |  |
| AC_2049                  | alcohol dehydrogenase                                   | yiaY | EC:1.1.1.1 | 100.0 | 0         | EFV21981.1 | iron-containing alcohol dehydrogenase [Anaerostipes sp. 3_2_56FAA]                                        |  |  |
| AC_2456                  | alcohol dehydrogenase                                   | adh2 | EC:1.1.1   | 100.0 | 0         | EDR97981.1 | alcohol dehydrogenase, iron-dependent [Anaerostipes caccae DSM 14662]                                     |  |  |
| AC_2479                  | alcohol dehydrogenase                                   | adh2 | EC:1.1.1   | 100.0 | 0         | EFV22801.1 | iron-containing alcohol dehydrogenase [ <i>Anaerostipes</i> sp. 3_2_56FAA]                                |  |  |
| AC_2659                  | alcohol dehydrogenase                                   | adh2 | EC:1.1.1   | 100.0 | 0         | CDC36055.1 | iron-containing alcohol dehydrogenase [Anaerostipes sp. CAG:276]                                          |  |  |
| S6_Bin013-A              | naerostipes caccae-Membrane proteins involved in energy |      |            |       |           |            |                                                                                                           |  |  |
| conservation-Rnf complex |                                                         |      |            |       |           |            |                                                                                                           |  |  |

| AC_2708      | electron transport complex protein RnfC                 | rnfC  | 100.0 | 0          | EFV22726.1   | electron transport complex [Anaerostipes sp. 3_2_56FAA]          |
|--------------|---------------------------------------------------------|-------|-------|------------|--------------|------------------------------------------------------------------|
| AC_2709      | electron transport complex protein RnfD                 | rnfD  | 100.0 | 0          | EFV22725.1   | electron transport complex [Anaerostipes sp. 3_2_56FAA]          |
| AC 2710      | electron transmost complex success DafC                 | mfC   | 100.0 |            | EDD08040 1   | electron transport complex, RnfABCDGE type, G subunit            |
| AC_2/10      | electron transport complex protein KinG                 | mio   | 100.0 | 4.20E-141  | EDK98049.1   | [Anaerostipes caccae DSM 14662]                                  |
| AC 2711      | alastron transport complay protoin PafE                 | mfE   | 100.0 | 1.60E 164  | EDD09049 1   | electron transport complex, RnfABCDGE type, E subunit            |
| AC_2/11      | electron transport complex protein Kine                 | THE   | 100.0 | 1.00E-104  | EDK98048.1   | [Anaerostipes caccae DSM 14662]                                  |
| AC 2712      | alactron transport complay protein PnfA                 | rnfA  | 100.0 | 3 37E 120  | EDD08047 1   | electron transport complex, RnfABCDGE type, A subunit            |
| AC_2/12      | election transport complex protein KinA                 | IIIIA | 100.0 | 5.5712-129 | LDR90047.1   | [Anaerostipes caccae DSM 14662]                                  |
| AC 2713      | electron transport complex protein RnfR                 | rnfB  | 100.0 | 0          | FDR980461    | electron transport complex, RnfABCDGE type, B subunit            |
| AC_2/15      | election transport complex protein Kind                 | IIID  | 100.0 | 0          | LDR/0040.1   | [Anaerostipes caccae DSM 14662]                                  |
| S6_Bin013-A  | naerostipes caccae-Membrane proteins involved in energy |       |       |            |              |                                                                  |
| conservation | FAD (or Fe-S) reductase lined to ETF                    |       |       |            |              |                                                                  |
| AC 0540      | Acrylovl-CoA reductase electron transfer subunit gamma  |       | 100.0 | 0          | EDR977251    | electron transfer flavoprotein subunit beta [Anaerostipes caccae |
| 110_0010     |                                                         |       | 10010 |            | 2010//2011   | DSM 14662]                                                       |
| AC 0541      | Acryloyl-CoA reductase electron transfer subunit beta   |       | 100.0 | 0          | EFV23041.1   | electron transfer flavoprotein FAD-binding domain-containing     |
|              |                                                         |       |       |            | 21 / 2001111 | protein [Anaerostipes sp. 3_2_56FAA]                             |
| AC 0543      | Acryloyl-CoA reductase electron transfer subunit gamma  |       | 100.0 | 0          | 0 FFV23044 1 | electron transfer flavoprotein domain-containing protein         |
|              |                                                         |       |       |            |              | [Anaerostipes sp. 3_2_56FAA]                                     |
| AC 0544      | Acryloyl-CoA reductase electron transfer subunit beta   |       | 100.0 | 0          | EFV23045.1   | electron transfer flavoprotein FAD-binding domain-containing     |
|              |                                                         |       |       |            |              | protein [Anaerostipes sp. 3_2_56FAA]                             |
| AC 0545      | putative FAD-linked oxidoreductase                      |       | 100.0 | 0          | CDC38868.1   | putative glycolate oxidase subunit GlcD [Anaerostipes sp.        |
|              | 1                                                       |       |       |            |              | CAG:276]                                                         |
| S6_Bin013-A  | naerostipes caccae-ATPase                               |       |       |            |              |                                                                  |
| AC_0979      | F-type H+-transporting ATPase subunit a                 |       | 100.0 | 1.28E-157  | EDR95665.1   | ATP synthase F0, A subunit [Anaerostipes caccae DSM 14662]       |
| AC_0980      | F-type H+-transporting ATPase subunit c                 |       | 100.0 | 2.73E-39   | EDR95664.1   | ATP synthase F0, C subunit [Anaerostipes caccae DSM 14662]       |
| AC_0981      | F-type H+-transporting ATPase subunit b                 |       | 100.0 | 9.39E-110  | EDR95663.1   | ATP synthase F0, B subunit [Anaerostipes caccae DSM 14662]       |

| AC_0982 | F-type H+-transporting ATPase subunit delta   |                  | 100.0      | 1.02E-118 | EFV21852.1 | ATP synthase F1 [Anaerostipes sp. 3_2_56FAA]                              |
|---------|-----------------------------------------------|------------------|------------|-----------|------------|---------------------------------------------------------------------------|
| AC_0983 | F-type H+-transporting ATPase subunit alpha   | EC:3.6.3         | 14 100.0   | 0         | EFV21853.1 | ATP synthase F1 [Anaerostipes sp. 3_2_56FAA]                              |
| AC_0984 | F-type H+-transporting ATPase subunit gamma   |                  | 100.0      | 0         | EDR95660.1 | ATP synthase F1, gamma subunit [ <i>Anaerostipes caccae</i> DSM 14662]    |
| AC_0985 | F-type H+-transporting ATPase subunit beta    | EC:3.6.3         | 14 100.0   | 0         | EDR95659.1 | ATP synthase F1, beta subunit [Anaerostipes caccae DSM 14662]             |
| AC_0986 | F-type H+-transporting ATPase subunit epsilon |                  | 100.0      | 2.78E-96  | EDR95658.1 | ATP synthase F1, epsilon subunit [ <i>Anaerostipes caccae</i> DSM 14662]  |
| AC_0987 | Ca2+-transporting ATPase                      | EC:3.6.3         | .8 100.0   | 0         | EFV21858.1 | ATPase [Anaerostipes sp. 3_2_56FAA]                                       |
| AC_1210 | V/A-type H+/Na+-transporting ATPase subunit D | ATPVD            | 100.0      | 6.28E-149 | EFV22893.1 | ATP synthase subunit D protein [Anaerostipes sp. 3_2_56FAA]               |
| AC_1211 | V/A-type H+/Na+-transporting ATPase subunit B | ATPVB            | 99.8       | 0         | EDR97894.1 | ATP synthase ab domain protein [Anaerostipes caccae DSM 14662]            |
| AC_1212 | V/A-type H+/Na+-transporting ATPase subunit A | ATPVA EC:3.6.3.1 | 14<br>99.5 | 0         | EDR97895.1 | ATP synthase ab domain protein [Anaerostipes caccae DSM 14662]            |
| AC_1213 | V/A-type H+/Na+-transporting ATPase subunit E | ATPVE            | 100.0      | 2.82E-136 | EDR97896.1 | hypothetical protein ANACAC_01519 [Anaerostipes caccae DSM 14662]         |
| AC_1214 | V/A-type H+/Na+-transporting ATPase subunit F | ATPVF            | 100.0      | 1.66E-65  | EFV22897.1 | ATP synthase subunit protein [Anaerostipes sp. 3_2_56FAA]                 |
| AC_1215 | V/A-type H+/Na+-transporting ATPase subunit K | ATPVK            | 99.3       | 1.56E-89  | EFV22898.1 | ATP synthase subunit C protein [Anaerostipes sp. 3_2_56FAA]               |
| AC_1216 | V/A-type H+/Na+-transporting ATPase subunit I | ATPVI            | 100.0      | 0         | EFV22899.1 | V-type ATPase 116kDa subunit protein [ <i>Anaerostipes</i> sp. 3_2_56FAA] |
| AC_1217 | V/A-type H+/Na+-transporting ATPase subunit C | ATPVC            | 99.4       | 0         | CDC37134.1 | aTP synthase subunit C [Anaerostipes sp. CAG:276]                         |
| AC_1455 | F-type H+-transporting ATPase subunit epsilon |                  | 100.0      | 1.27E-93  | EDR96894.1 | ATP synthase F1, epsilon subunit [ <i>Anaerostipes caccae</i> DSM 14662]  |
| AC_1456 | F-type H+-transporting ATPase subunit beta    | EC:3.6.3         | 14 100.0   | 0         | EDR96895.1 | ATP synthase F1, beta subunit [Anaerostipes caccae DSM 14662]             |
| AC_1457 | F-type H+-transporting ATPase subunit gamma   |                  | 100.0      | 0         | EFV23294.1 | ATP synthase F1 [Anaerostipes sp. 3_2_56FAA]                              |
| AC_1458 | F-type H+-transporting ATPase subunit alpha   | EC:3.6.3         | 14 100.0   | 0         | EDR96897.1 | ATP synthase F1, alpha subunit [Anaerostipes caccae DSM 14662]            |
| AC_1459 | F-type H+-transporting ATPase subunit delta   |                  | 100.0      | 4.81E-124 | EFV23296.1 | ATP synthase delta subunit protein [Anaerostipes sp. 3_2_56FAA]           |

| AC_1460 | F-type H+-transporting ATPase subunit b |        |             | 100.0 | 6.26E-116 | EFV23297.1 | ATP synthase F0 [Anaerostipes sp. 3_2_56FAA]                |
|---------|-----------------------------------------|--------|-------------|-------|-----------|------------|-------------------------------------------------------------|
| AC_1461 | F-type H+-transporting ATPase subunit c |        |             | 100.0 | 1.70E-51  | EDR96900.1 | ATP synthase F0, C subunit [Anaerostipes caccae DSM 14662]  |
| AC_1462 | F-type H+-transporting ATPase subunit a |        |             | 100.0 | 7.93E-174 | EFV23299.1 | ATP synthase subunit A protein [Anaerostipes sp. 3_2_56FAA] |
| 10 1462 | ATD synthese protein I                  | - tu T |             | 100.0 | 3.57E-97  | EDR96902.1 | hypothetical protein ANACAC_02131 [Anaerostipes caccae DSM  |
| AC_1403 | ATP synthase protein 1                  | atpi   |             |       |           |            | 14662]                                                      |
| AC_2235 | forradovin NADB raduatesa               | f      | EC:1.18.1.2 | 99.6  | 0         | EFV22008.1 | oxidoreductase NAD-binding domain-containing protein        |
|         | TerreuoxiiiiNADr + Teductase            | Ipi    |             |       |           |            | [Anaerostipes sp. 3_2_56FAA]                                |

## Appendix VI Table

| Gene name | Predicted function                 | Enzyme commission number | CDS     | Identity (%) | e-value   | Closely related protein                                                                                       |
|-----------|------------------------------------|--------------------------|---------|--------------|-----------|---------------------------------------------------------------------------------------------------------------|
| atoB/phaA | acetyl-CoA acetyltransferase       | EC:2.3.1.9               | MS_2106 | 97.2         | 0         | WP_062197208.1 beta-ketoadipyl CoA thiolase [Massilibacterium senegalense]                                    |
| crt       | enoyl-CoA hydratase                | EC:4.2.1.17              | MS_2107 | 97.7         | 0         | WP_062197209.1 enoyl-CoA hydratase [Massilibacterium senegalense]                                             |
| paaH      | 3-hydroxybutyryl-CoA dehydrogenase | EC:1.1.1.157             | MS_2108 | 98.2         | 0         | WP_062197210.1 3-hydroxybutyryl-CoA dehydrogenase [Massilibacterium senegalense]                              |
| bcd       | butyryl-CoA dehydrogenase          | EC:1.3.8.1               | MS_2109 | 98.1         | 0         | WP_062197211.1 acyl-CoA dehydrogenase [Massilibacterium senegalense]                                          |
| phbC      | polyhydroxyalkanoate synthase      | EC:2.3.1                 | MS_0009 | 96.4         | 0         | WP_074018155.1 class III poly(R)-hydroxyalkanoic acid synthase subunit PhaC<br>[Massilibacterium senegalense] |
| phbB      | acetoacetyl-CoA reductase          | EC:1.1.1.36              | MS_0010 | 98.8         | 2.86E-176 | WP_062198192.1 beta-ketoacyl-ACP reductase [Massilibacterium senegalense]                                     |

## References

- Abbad-Andaloussi, S., Guedon, E., Spiesser, E., & Petitdemange, H. (1996). Glycerol dehydratase activity: The limiting step for 1,3-propanediol production by *Clostribium butyricum* DSM 5431. *Letters in Applied Microbiology*, 22(4), 311-314.
- Agler, M. T., Spirito, C. M., Usack, J. G., Werner, J. J., & Angenent, L. T. (2012). Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. *Energy & Environmental Science*, 5(8), 8189-8192.
- Agler, M. T., Wrenn, B. A., Zinder, S. H., & Angenent, L. T. (2011). Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. *Trends in Biotechnology*, 29(2), 70-78.
- Albertsen, M., Karst, S. M., Ziegler, A. S., Kirkegaard, R. H., & Nielsen, P. H. (2015). Back to Basics - The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities. *Plos One*, 10(7).
- Alberty, R. A. (2001). Effect of temperature on standard transformed Gibbs energies of formation of reactants at specified pH and ionic strength and apparent equilibrium constants of biochemical reactions. *Journal of Physical Chemistry B*, 105(32), 7865-7870.
- Alberty, R. A. (2005). *Thermodynamics of biochemical reactions*: John Wiley & Sons.
- Amos, D. A., & Mcinerney, M. J. (1989). Poly-Beta-Hydroxyalkanoate in Syntrophomonas Wolfei. Archives of Microbiology, 152(2), 172-177.
- Angenent, L. T., Richter, H., Buckel, W., Spirito, C. M., Steinbusch, K. J. J., Plugge, C. M., . . . Hamelers, H. V. M. (2016). Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals. *Environmental Science & Technology*, 50(6), 2796-2810.
- Balasubramanian, S., & Tyagi, R. D. (2017a). 2 Value-Added Bio-products From Sewage Sludge. *Current Developments in Biotechnology and Bioengineering* (pp. 27-42): Elsevier.
- Balasubramanian, S., & Tyagi, R. D. (2017b). 3 Biopesticide Production From Solid Wastes. *Current Developments in Biotechnology and Bioengineering* (pp. 43-58): Elsevier.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., . . . Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *Journal of Computational Biology*, 19(5), 455-477.
- Barbirato, F., Himmi, E. H., Conte, T., & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. *Industrial Crops and Products*, 7(2-3), 281-289.
- Barker, H., Kamen, M., & Bornstein, B. (1945). The synthesis of butyric and caproic acids from ethanol and acetic acid by *Clostridium kluyveri*. *Proceedings of the National Academy of Sciences*, *31*(12), 373-381.
- Barker, H. A. (1937). The production of caproic and butyric acids by the methane

fermentation of ethyl alcohol. Archives of Microbiology, 8(1-4), 415-421.

- Barker, H. A., Kamen, M. D., & Bornstein, B. T. (1945). The Synthesis of Butyric and Caproic Acids from Ethanol and Acetic Acid by *Clostridium Kluyveri*. *Proceedings of the National Academy of Sciences of the United States of America*, 31(12), 373-381.
- Ben Hania, W., Fadhlaoui, K., Brochier-Armanet, C., Persillon, C., Postec, A., Hamdi, M., . . . Erauso, G. (2015). Draft genome sequence of *Mesotoga* strain PhosAC3, a mesophilic member of the bacterial order *Thermotogales*, isolated from a digestor treating phosphogypsum in Tunisia. *Standards in Genomic Sciences*, 10.
- Ben Hania, W., Postec, A., Aullo, T., Ranchou-Peyruse, A., Erauso, G., Brochier-Armanet, C., . . . Fardeau, M. L. (2013). *Mesotoga infera* sp nov., a mesophilic member of the order *Thermotogales*, isolated from an underground gas storage aquifer. *International Journal of Systematic and Evolutionary Microbiology*, 63, 3003-3008.
- Biddle, A. S., Leschine, S., Huntemann, M., Han, J., Chen, A., Kyrpides, N., . . . Blanchard, J. L. (2014). The complete genome sequence of *Clostridium indolis* DSM 755(T). *Standards in Genomic Sciences*, 9(3).
- Biebl, H. (2001). Fermentation of glycerol by *Clostridium pasteurianum* batch and continuous culture studies. *Journal of Industrial Microbiology & Biotechnology*, 27(1), 18-26.
- Boenigk, R., Bowien, S., & Gottschalk, G. (1993). Fermentation of Glycerol to 1,3-Propanediol in Continuous Cultures of *Citrobacter Freundii*. Applied Microbiology and Biotechnology, 38(4), 453-457.
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*, *30*(15), 2114-2120.
- Bornstein, B., & Barker, H. (1948). The nutrition of *Clostridium kluyveri*. Journal of *Bacteriology*, 55(2), 223.
- Boss, B., Hazlett, R., & Shepard, R. (1973). Analysis of normal paraffin oxidation products in the presence of hydroperoxides. *Analytical Chemistry*, 45(14), 2388-2392.
- Breitenstein, A., Wiegel, J., Haertig, C., Weiss, N., Andreesen, J. R., & Lechner, U. (2002). Reclassification of *Clostridium hydroxybenzoicum* as *Sedimentibacter hydroxybenzoicus* gen. nov., comb. nov., and description of *Sedimentibacter saalensis* sp nov. *International Journal of Systematic and Evolutionary Microbiology*, 52, 801-807.
- Bryant, M. P., Campbell, L. L., Reddy, C. A., & Crabill, M. R. (1977). Growth of *Desulfovibrio* in Lactate or Ethanol Media Low in Sulfate in Association with H2-Utilizing Methanogenic Bacteria. *Applied and Environmental Microbiology*, 33(5), 1162-1169.
- Buckel, W., & Thauer, R. K. (2013). Energy conservation via electron bifurcating ferredoxin reduction and proton/Na<sup>+</sup> translocating ferredoxin oxidation. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1827(2), 94-113.
- Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., . . . Knight, R. (2010). QIIME allows analysis of

high-throughput community sequencing data. Nature Methods, 7(5), 335-336.

- Chantoom, K., Vikromvarasiri, N., & Pisutpaisal, N. (2014). Kinetics of Bioethanol Production from Glycerol by *Enterobacter Aerogenes*. *Energy Procedia*, 61, 2244-2248.
- Chen, P., Xie, Q. L., Addy, M., Zhou, W. G., Liu, Y. H., Wang, Y. P., . . . Ruan, R. (2016). Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. *Bioresource Technology*, 215, 163-172.
- Chen, S. Y., & Dong, X. Z. (2005). Proteiniphilum acetatigenes gen. nov., sp nov., from a UASB reactor treating brewery wastewater. *International Journal of Systematic and Evolutionary Microbiology*, 55, 2257-2261.
- Chen, W. S., Strik, D. P. B. T. B., Buisman, C. J. N., & Kroeze, C. (2017). Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective. *Environmental Science & Technology*, 51(12), 7159-7168.
- Chen, Y., Wang, T., Shen, N., Zhang, F., & Zeng, R. J. (2016). High-purity propionate production from glycerol in mixed culture fermentation. *Bioresource Technology*, 219, 659-667.
- Cheon, Y., Kim, J. S., Park, J. B., Heo, P., Lim, J. H., Jung, G. Y., . . . Kweon, D. H. (2014). A biosynthetic pathway for hexanoic acid production in *Kluyveromyces marxianus. Journal of Biotechnology*, 182, 30-36.
- Choi, K., Jeon, B. S., Kim, B. C., Oh, M. K., Um, Y., & Sang, B. I. (2013). In situ biphasic extractive fermentation for hexanoic acid production from sucrose by *Megasphaera elsdenii* NCIMB 702410. *Appl Biochemistry and Biotechnology*, 171(5), 1094-1107.
- Clark, M. E., He, Z. L., Redding, A. M., Joachimiak, M. P., Keasling, J. D., Zhou, J. Z. Z., . . . Fields, M. W. (2012). Transcriptomic and proteomic analyses of *Desulfovibrio vulgaris* biofilms: Carbon and energy flow contribute to the distinct biofilm growth state. *BMC Genomics*, 13.
- Clavel, T., Lepage, P., & Charrier, C. (2014). The Family Coriobacteriaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), *The Prokaryotes: Actinobacteria* (pp. 201-238). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Colin, T., Bories, A., Lavigne, C., & Moulin, G. (2001). Effects of acetate and butyrate during glycerol fermentation by *Clostridium butyricum*. *Current Microbiology*, 43(4), 238-243.
- Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., . . Farrow, J. A. (1994). The phylogeny of the genus *Clostridium*: proposal of five new genera and eleven new species combinations. *International Journal of Systematic Bacteriology*, 44(4), 812-826.
- da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology. *Biotechnology Advances*, 27(1), 30-39.
- Devereux, R., Willis, S. G., & Hines, M. E. (1997). Genome sizes of *Desulfovibrio* desulfuricans, Desulfovibrio vulgaris, and Desulfobulbus propionicus estimated by pulsed-field gel electrophoresis of linearized chromosomal DNA. Current Microbiology, 34(6), 337-339.

- Dietz, D., & Zeng, A. P. (2014). Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. *Bioprocess and Biosystems Engineering*, 37(2), 225-233.
- Ding, H. B., Tan, G. Y. A., & Wang, J. Y. (2010). Caproate formation in mixed-culture fermentative hydrogen production. *Bioresource Technology*, 101(24), 9550-9559.
- Eggerth, A. H., & Gagnon, B. H. (1933). The *bacteroides* of human feces. *Journal of Bacteriology*, 25(4), 389-413.
- Ezaki, T., Kawamura, Y., Li, N., Li, Z. Y., Zhao, L. C., & Shu, S. E. (2001). Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov and Gallicola gen. nov for members of the genus Peptostreptococcus. International Journal of Systematic and Evolutionary Microbiology, 51, 1521-1528.
- Facklam, R. R., & Collins, M. D. (1989). Identification of *Enterococcus* Species Isolated from Human Infections by a Conventional Test Scheme. *Journal of Clinical Microbiology*, 27(4), 731-734.
- Fonknechten, N., Chaussonnerie, S., Tricot, S., Lajus, A., Andreesen, J. R., Perchat, N., . . . Kreimeyer, A. (2010). *Clostridium sticklandii*, a specialist in amino acid degradation: revisiting its metabolism through its genome sequence. *BMC Genomics*, 11.
- Forage, R. G., & Foster, M. A. (1982). Glycerol Fermentation in *Klebsiella Pneumoniae* Functions of the Coenzyme-B12-Dependent Glycerol and Diol Dehydratases. *Journal of Bacteriology*, 149(2), 413-419.
- Forage, R. G., & Lin, E. C. C. (1982). Dha System Mediating Aerobic and Anaerobic Dissimilation of Glycerol in *Klebsiella Pneumoniae* Ncib-418. *Journal of Bacteriology*, 151(2), 591-599.
- Galperin, M. Y., Brover, V., Tolstoy, I., & Yutin, N. (2016). Phylogenomic analysis of the family *Peptostreptococcaceae* (*Clostridium* cluster XI) and proposal for reclassification of *Clostridium* litorale (Fendrich et al. 1991) and *Eubacterium acidaminophilum* (Zindel et al. 1989) as *Peptoclostridium litorale* gen. nov comb. nov and *Peptoclostridium acidaminophilum* comb. nov. International Journal of Systematic and Evolutionary Microbiology, 66, 5506-5513.
- Gao, Z. M., Xu, X., & Ruan, L. W. (2014). Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil. *Applied Microbiology and Biotechnology*, 98(1), 465-474.
- Genthner, B. R. S., Davis, C. L., & Bryant, M. P. (1981). Features of Rumen and Sewage-Sludge Strains of *Eubacterium limosum*, a Methanol-Utilizing and H<sub>2</sub>-CO<sub>2</sub>-Utilizing Species. *Applied and Environmental Microbiology*, 42(1), 12-19.
- Ghaffar, T., Irshad, M., Anwar, Z., Aqil, T., Zulifqar, Z., Tariq, A., . . . Mehmood, S. (2014). Recent trends in lactic acid biotechnology: A brief review on production to purification. *Journal of Radiation Research and Applied Sciences*, 7(2), 222-229.
- Gonzalez-Pajuelo, M., Meynial-Salles, I., Mendes, F., Soucaille, P., & Vasconcelos, I. (2006). Microbial conversion of glycerol to 1,3-propanediol: Physiological

comparison of a natural producer, *Clostridium butyricum* VPI 3266, and an engineered strain, *Clostridium acetobutylicum* DG1(pSPD5). *Applied and Environmental Microbiology*, 72(1), 96-101.

- Gossner, A. S., Kusel, K., Schulz, D., Trenz, S., Acker, G., Lovell, C. R., & Drake, H. L. (2006). Trophic interaction of the aerotolerant anaerobe *Clostridium intestinale* and the acetogen *Sporomusa rhizae* sp. nov. isolated from roots of the black needlerush Juncus roemerianus. *Microbiology*, 152(4), 1209-1219.
- Granda, C. B., Zhu, L., & Holtzapple, M. T. (2007). Sustainable liquid biofuels and their environmental impact. *Environmental Progress*, 26(3), 233-250.
- Gray, C. T., Wimpenny, J. W., Hughes, D. E., & Mossman, M. R. (1966). Regulation of metabolism in facultative bacteria. I. Structural and functional changes in *Escherichia coli* associated with shifts between the aerobic and anaerobic states. *Biochimica et Biophysica Acta (BBA)*, 117(1), 22-32.
- Groom, M. J., Gray, E. M., & Townsend, P. A. (2008). Biofuels and biodiversity: Principles for creating better policies for biofuel production. *Conservation Biology*, 22(3), 602-609.
- Grootscholten, T. I. M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. *Bioresource Technology*, 135, 440-445.
- Gungormusler, M., Gonen, C., & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized *Clostridium beijerinckii* NRRL B-593 in comparison to suspended culture. *Bioprocess and Biosystems Engineering*, 34(6), 727-733.
- Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. *Bioinformatics*, 29(8), 1072-1075.
- Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., . . . Consortium, H. M. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. *Genome Research*, 21(3), 494-504.
- Harding, K. C., Lee, P. K. H., Bill, M., Buscheck, T. E., Conrad, M. E., & Alvarez-Cohen, L. (2013). Effects of Varying Growth Conditions on Stable Carbon Isotope Fractionation of Trichloroethene (TCE) by tceA-containing *Dehalococcoides mccartyi* strains. *Environmental Science & Technology*, 47(21), 12342-12350.
- Harper, W. J. (1957). Lipase Systems Used in the Manufacture of Italian Cheese. II. Selective Hydrolysis. *Journal of Dairy Science*, 40(5), 556-563.
- Heidelberg, J. F., Seshadri, R., Haveman, S. A., Hemme, C. L., Paulsen, I. T., Kolonay, J. F., . . . Fraser, C. M. (2004). The genome sequence of the anaerobic, sulfate-reducing bacterium *Desulfovibrio vulgaris* Hildenborough. *Nature Biotechnology*, 22(5), 554-559.
- Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. *Bioresource Technology*, 100(1), 10-18.
- Herrmann, G., Jayamani, E., Mai, G., & Buckel, W. (2008). Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. *Journal of*

Bacteriology, 190(3), 784-791.

- Ho, D. P., Ngo, H. H., & Guo, W. (2014). A mini review on renewable sources for biofuel. *Bioresource Technology*, 169, 742-749.
- Hoover, R., Laurentius, S. F, & Gunetileke, K. G. (1973). Spoilage of Coconut Oil Purification and Properties of a Fungal Lipase That Attacks Coconut Oil. *Journal of the American Oil Chemists Society*, 50(3), 64-67.
- Hu, P., Bowen, S. H., & Lewis, R. S. (2011). A thermodynamic analysis of electron production during syngas fermentation. *Bioresource Technology*, 102(17), 8071-8076.
- Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. *Journal of Bioscience and Bioengineering*, 100(3), 260-265.
- Jabari, L., Gannoun, H., Cayol, J. L., Hedi, A., Sakamoto, M., Falsen, E., ... Fardeau, M. L. (2012). *Macellibacteroides fermentans* gen. nov., sp nov., a member of the family *Porphyromonadaceae* isolated from an upflow anaerobic filter treating abattoir wastewaters. *International Journal of Systematic and Evolutionary Microbiology*, 62, 2522-2527.
- Jackson, B. E., & McInerney, M. J. (2002). Anaerobic microbial metabolism can proceed close to thermodynamic limits. *Nature*, *415*(6870), 454-456.
- Jacobs, N. J., & VanDemark, P. (1960). Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. Journal of Bacteriology, 79(4), 532.
- Jarvis, G. N., Moore, E. R. B., & Thiele, J. H. (1997). Formate and ethanol are the major products of glycerol fermentation produced by a *Klebsiella planticola* strain isolated from red deer. *Journal of Applied Microbiology*, 83(2), 166-174.
- Jeon, B. S., Choi, O., Um, Y., & Sang, B. I. (2016). Production of medium-chain carboxylic acids by *Megasphaera* sp. MH with supplemental electron acceptors. *Biotechnology for Biofuels*, *9*, 129.
- Jeon, B. S., Kim, B. C., Um, Y., & Sang, B. I. (2010). Production of hexanoic acid from <sub>D</sub>-galactitol by a newly isolated *Clostridium* sp. BS-1. *Applied Microbiology and Biotechnology*, 88(5), 1161-1167.
- Jin, R. Z., Forage, R. G., & Lin, E. C. C. (1982). Glycerol Kinase as a Substitute for Dihydroxyacetone Kinase in a Mutant of *Klebsiella Pneumoniae*. *Journal of Bacteriology*, 152(3), 1303-1307.
- Johnson, D. T., & Taconi, K. A. (2007). The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. *Environmental Progress*, 26(4), 338-348.
- Jung, S., & Regan, J. M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. *Applied Microbiology and Biotechnology*, 77(2), 393-402.
- Jungermann, K., Thauer, R. K., & Decker, K. (1968). The synthesis of one-carbon units from  $CO_2$  in *Clostridium kluyveri*. *European Journal of Biochemistry*, 3(3), 351-359.

- Kalia, V. C. (2016). *Microbial Factories: Biofuels, Waste Treatment* (Vol. 1): Springer.
- Kamagata, Y. (2015). Oscillospira Bergey's Manual of Systematics of Archaea and Bacteria: John Wiley & Sons, Ltd.
- Kanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. *Journal of Molecular Biology*, 428(4), 726-731.
- Kelly, W. J., Henderson, G., Pacheco, D. M., Li, D., Reilly, K., Naylor, G. E., . . . Leahy, S. C. (2016). The complete genome sequence of *Eubacterium limosum* SA11, a metabolically versatile rumen acetogen. *Standards in Genomic Sciences*, 11.
- Kenealy, W. R., Cao, Y., & Weimer, P. J. (1995). Production of caproic acid by cocultures of ruminal cellulolytic bacteria and *Clostridium kluyveri* grown on cellulose and ethanol. *Applied Microbiology and Biotechnology*, 44(3-4), 507-513.
- Kenealy, W. R., & Waselefsky, D. M. (1985). Studies on the Substrate Range of *Clostridium Kluyveri* - the Use of Propanol and Succinate. *Archives of Microbiology*, 141(3), 187-194.
- Khanal, S. K. (2009). Microbiology and biochemistry of anaerobic biotechnology. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications, 29-41.
- Kleerebezem, R., & van Loosdrecht, M. C. M. (2007). Mixed culture biotechnology for bioenergy production. *Current Opinion in Biotechnology*, 18(3), 207-212.
- Kouzuma, A., Kato, S., & Watanabe, K. (2015). Microbial interspecies interactions: recent findings in syntrophic consortia. *Frontiers in Microbiology*, *6*, 477.
- Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. *Applied and Environmental Microbiology*, 79(17), 5112-5120.
- Kremer, D. R., & Hansen, T. A. (1987). Glycerol and Dihydroxyacetone Dissimilation in Desulfovibrio Strains. Archives of Microbiology, 147(3), 249-256.
- Lan, T. Q., Gleisner, R., Zhu, J. Y., Dien, B. S., & Hector, R. E. (2013). High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. *Bioresource Technology*, 127, 291-297.
- Laue, H., Denger, K., & Cook, A. M. (1997). Taurine reduction in anaerobic respiration of *Bilophila wadsworthia* RZATAU. *Applied and Environmental Microbiology*, 63(5), 2016-2021.
- Lee, C. S., Aroua, M. K., Daud, W. M. A. W., Cognet, P., Peres-Lucchese, Y., Fabre, P. L., . . . Latapie, L. (2015). A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. *Renewable & Sustainable Energy Reviews*, 42, 963-972.
- Lee, G. H., Kumar, S., Lee, J. H., Chang, D. H., Kim, D. S., Choi, S. H., . . . Kim, B.

C. (2012). Genome Sequence of *Oscillibacter ruminantium* Strain GH1, Isolated from Rumen of Korean Native Cattle. *Journal of Bacteriology*, 194(22), 6362-6362.

- Lee, G. H., Rhee, M. S., Chang, D. H., Lee, J., Kim, S., Yoon, M. H., & Kim, B. C. (2013). Oscillibacter ruminantium sp nov., isolated from the rumen of Korean native cattle. International Journal of Systematic and Evolutionary Microbiology, 63, 1942-1946.
- Leng, L., Yang, P. X., Mao, Y. P., Wu, Z. Y., Zhang, T., & Lee, P. H. (2017). Thermodynamic and physiological study of caproate and 1,3-propanediol co-production through glycerol fermentation and fatty acids chain elongation. *Water Research*, 114, 200-209.
- Li, A., Antizar-Ladislao, B., & Khraisheh, M. (2007). Bioconversion of municipal solid waste to glucose for bio-ethanol production. *Bioprocess and Biosystems Engineering*, 30(3), 189-196.
- Li, A., Chu, Y. N., Wang, X. M., Ren, L. F., Yu, J., Liu, X. L., . . . Li, S. Z. (2013). A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. *Biotechnology for Biofuels*, 6.
- Li, F., Hinderberger, J., Seedorf, H., Zhang, J., Buckel, W., & Thauer, R. K. (2008). Coupled ferredoxin and crotonyl coenzyme a (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from *Clostridium kluyveri*. *Journal of Bacteriology*, 190(3), 843-850.
- Li, H., Tao, Y. S., Wang, H., & Zhang, L. (2008). Impact odorants of Chardonnay dry white wine from Changli County (China). *European Food Research and Technology*, 227(1), 287-292.
- Liew, F., Martin, M. E., Tappel, R. C., Heijstra, B. D., Mihalcea, C., & Kopke, M. (2016). Gas Fermentation A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks. *Frontiers in Microbiology*, 7.
- Lin, E. C. C. (1976). Glycerol Dissimilation and Its Regulation in Bacteria. *Annual Review of Microbiology*, *30*, 535-578.
- Lindley, N. D., Loubiere, P., Pacaud, S., Mariotto, C., & Goma, G. (1987). Novel Products of the Acidogenic Fermentation of Methanol during Growth of *Eubacterium Limosum* in the Presence of High-Concentrations of Organic-Acids. *Journal of General Microbiology*, 133, 3557-3563.
- Liu, B. C., Christiansen, K., Parnas, R., Xu, Z. H., & Li, B. K. (2013). Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol. *International Journal of Hydrogen Energy*, 38(8), 3196-3205.
- Liu, C. X., Finegold, S. M., Song, Y. J., & Lawson, P. A. (2008). Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov and description of Blautia wexlerae sp nov., isolated from human faeces.

International Journal of Systematic and Evolutionary Microbiology, 58, 1896-1902.

- Liu, H., Hu, H., Chignell, J., & Fan, Y. (2010). Microbial electrolysis: novel technology for hydrogen production from biomass. *Biofuels*, *1*(1), 129-142.
- Liu, W. T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. *Applied and Environmental Microbiology*, 63(11), 4516-4522.
- Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. *Fems Microbiology Letters*, 294(1), 1-8.
- Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, . . . Schleifer, K. H. (2004). ARB: a software environment for sequence data. *Nucleic Acids Research*, 32(4), 1363-1371.
- Mackie, R. I., Aminov, R. I., Hu, W., Klieve, A. V., Ouwerkerk, D., Sundset, M. A., & Kamagata, Y. (2003). Ecology of Uncultivated Oscillospira Species in the Rumen of Cattle, Sheep, and Reindeer as Assessed by Microscopy and Molecular Approaches. Applied and Environmental Microbiology, 69(11), 6808-6815.
- Mandegari, M. A., Farzad, S., & Görgens, J. F. (2016). Process Design, Flowsheeting, and Simulation of Bioethanol Production from Lignocelluloses. *Biofuels: Production and Future Perspectives*, 255.
- Marounek, M., Fliegrova, K., & Bartos, S. (1989). Metabolism and Some Characteristics of Ruminal Strains of *Megasphaera Elsdenii*. Applied and Environmental Microbiology, 55(6), 1570-1573.
- Marx, H., Graf, A. B., Tatto, N. E., Thallinger, G. G., Mattanovich, D., & Sauer, M. (2011). Genome sequence of the ruminal bacterium *Megasphaera elsdenii*. *Journal of Bacteriology*, 193(19), 5578-5579.
- McCarty, P. L., & Bae, J. (2011). Model to Couple Anaerobic Process Kinetics with Biological Growth Equilibrium Thermodynamics. *Environmental Science & Technology*, 45(16), 6838-6844.
- McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., . . . Hugenholtz, P. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. *ISME Journal*, 6(3), 610-618.
- McGuire, A. M., Cochrane, K., Griggs, A. D., Haas, B. J., Abeel, T., Zeng, Q. D., ... Earl, A. M. (2014). Evolution of Invasion in a Diverse Set of *Fusobacterium* Species. *mBio*, 5(6).
- Mcinerney, M. J., Amos, D. A., Kealy, K. S., & Palmer, J. A. (1992). Synthesis and Function of Polyhydroxyalkanoates in Anaerobic Syntrophic Bacteria. *Fems Microbiology Letters*, 103(2-4), 195-205.
- McInerney, M. J., Sieber, J. R., & Gunsalus, R. P. (2009). Syntrophy in anaerobic global carbon cycles. *Current Opinion in Biotechnology*, 20(6), 623-632.
- McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. *Bioresource Technology*, 83(1), 47-54.

- Men, Y. J., Feil, H., VerBerkmoes, N. C., Shah, M. B., Johnson, D. R., Lee, P. K. H., . . . Alvarez-Cohen, L. (2012). Sustainable syntrophic growth of *Dehalococcoides ethenogenes* strain 195 with *Desulfovibrio vulgaris* Hildenborough and *Methanobacterium congolense*: global transcriptomic and proteomic analyses. *ISME Journal*, 6(2), 410-421.
- Menzel, K., Ahrens, K., Zeng, A. P., & Deckwer, W. D. (1998). Kinetic, dynamic, and pathway studies of glycerol metabolism by *Klebsiella pneumoniae* in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. *Biotechnology and Bioengineering*, 60(5), 617-626.
- Menzel, K., Zeng, A. P., & Deckwer, W. D. (1997). High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by *Klebsiella pneumoniae*. *Enzyme and Microbial Technology*, 20(2), 82-86.
- Miller, T. L. (1978). The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. *Archives of Microbiology*, *117*(2), 145-152.
- Miyazaki, K., Hino, T., & Itabashi, H. (1991). Effects of Extracellular Ph on the Intracellular Ph, Membrane-Potential, and Growth-Yield of *Megasphaera Elsdenii* in Relation to the Influence of Monensin, Ethanol, and Acetate. *Journal of General and Applied Microbiology*, 37(5), 415-422.
- Mohapatra, P. K. (2008). *Textbook of environmental microbiology*: IK International Publishing House.
- Moscoviz, R., Trably, E., & Bernet, N. (2016). Consistent 1,3-propanediol production from glycerol in mixed culture fermentation over a wide range of pH. *Biotechnology for Biofuels*, *9*.
- Munasinghe, P. C., & Khanal, S. K. (2010). Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. *Bioresource Technology*, *101*(13), 5013-5022.
- Murarka, A., Dharmadi, Y., Yazdani, S. S., & Gonzalez, R. (2008). Fermentative utilization of glycerol by *Escherichia coli* and its implications for the production of fuels and chemicals. *Applied and Environmental Microbiology*, 74(4), 1124-1135.
- Narihiro, T., Nobu, M. K., Tamaki, H., Kamagata, Y., Sekiguchi, Y., & Liu, W. T. (2016). Comparative genomics of syntrophic branched-chain fatty acid degrading bacteria. *Microbes and Environments*, 31(3), 288-292.
- Ndongo, S., Andrieu, C., Fournier, P. E., Lagier, J. C., & Raoult, D. (2017). 'Actinomyces provencensis' sp. nov., 'Corynebacterium bouchesdurhonense' sp. nov., 'Corynebacterium provencense' sp. nov. and 'Xanthomonas massiliensis' sp. nov., 4 new species isolated from fresh stools of obese French patients. New Microbes and New Infections, 18, 24-27.
- Nesbo, C. L., Bradnan, D. M., Adebusuyi, A., Dlutek, M., Petrus, A. K., Foght, J., . . . Noll, K. M. (2012). *Mesotoga prima* gen. nov., sp nov., the first described mesophilic species of the *Thermotogales*. *Extremophiles*, 16(3), 387-393.
- Nurk, S., Bankevich, A., Antipov, D., Gurevich, A., Korobeynikov, A., Lapidus, A., . . . Pevzner, P. A. (2013). Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads. In M. Deng, R. Jiang, F. Sun, & X. Zhang

(Eds.), Research in Computational Molecular Biology: 17th Annual International Conference, RECOMB 2013, Beijing, China, April 7-10, 2013. Proceedings (pp. 158-170). Berlin, Heidelberg: Springer Berlin Heidelberg.

- Oh, B. R., Seo, J. W., Heo, S. Y., Hong, W. K., Luo, L. H., Joe, M. H., . . . Kim, C. H. (2011). Efficient production of ethanol from crude glycerol by a *Klebsiella pneumoniae* mutant strain. *Bioresource Technology*, 102(4), 3918-3922.
- Oh, S. E., Van Ginkel, S., & Logan, B. E. (2003). The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. *Environmental Science & Technology*, *37*(22), 5186-5190.
- Oliveros, J. C. (2007-2015). An interactive tool for comparing lists with Venn's diagrams. *Venny*, Retrieved from <u>http://bioinfogp.cnb.csic.es/tools/venny/index.html</u>
- Panke, S., Held, M., & Wubbolts, M. (2004). Trends and innovations in industrial biocatalysis for the production of fine chemicals. *Current Opinion in Biotechnology*, 15(4), 272-279.
- Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Research*, 25(7), 1043-1055.
- Parry, M. L., & Intergovernmental Panel on Climate Change. Working Group II. (2007). Climate Change 2007 : impacts, adaptation and vulnerability : contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press,.
- Patel, S. (2014). IEA's World Energy Outlook 2013: Renewables and Natural Gas to Surge Through 2035. Retrieved from <u>http://www.powermag.com/ieas-world-energy-outlook-2013-renewables-and-natural-gas-to-surge-through-2035/</u>
- Pommet, M., Redl, A., Morel, M. H., & Guilbert, S. (2003). Study of wheat gluten plasticization with fatty acids. *Polymer*, 44(1), 115-122.
- Potrykus, J., White, R. L., & Bearne, S. L. (2008). Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe *Fusobacterium varium*. *Proteomics*, 8(13), 2691-2703.
- Prabhu, R., Altman, E., & Eiteman, M. A. (2012). Lactate and Acrylate Metabolism by *Megasphaera elsdenii* under Batch and Steady-State Conditions. *Applied* and Environmental Microbiology, 78(24), 8564-8570.
- Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S., & Flint, H. J. (2002). The microbiology of butyrate formation in the human colon. *Fems Microbiology Letters*, 217(2), 133-139.
- Quispe, C. A.G., Coronado, C. J.R., Carvalho Jr. J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. *Renewable and Sustainable Energy Reviews*, 27(2013), 475-493
- Ragsdale, S. W., & Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl pathway of CO<sub>2</sub> fixation. *Biochimica Et Biophysica Acta-Proteins and Proteomics*, 1784(12), 1873-1898.
- Rajeev, L., Hillesland, K. L., Zane, G. M., Zhou, A. F., Joachimiak, M. P., He, Z.

L., . . . Stahl, D. A. (2012). Deletion of the *Desulfovibrio vulgaris* Carbon Monoxide Sensor Invokes Global Changes in Transcription. *Journal of Bacteriology*, 194(21), 5783-5793.

- Rautio, M., Eerola, E., Vaisanen-Tunkelrott, M. L., Molitoris, D., Lawson, P., Collins, M. D., & Jousimies-Somer, H. (2003). Reclassification of *Bacteroides putredinis* (Weinberg et al., 1937) in a New Genus *Alistipes* gen. nov., as *Alistipes putredinis* comb. nov., and description of *Alistipes finegoldii* sp nov., from human sources. *Systematic and Applied Microbiology*, 26(2), 182-188.
- Raynaud, C., Lee, J., Sarcabal, P., Croux, C., Meynial-Salles, I., & Soucaille, P. (2011). Molecular characterization of the glycerol-oxidative pathway of *Clostridium butyricum* VPI 1718. *Journal of Bacteriology*, 193(12), 3127-3134.
- Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, C., & Soucaille, P. (2003). Molecular characterization of the 1,3-propanediol (1,3-PD) operon of *Clostridium butyricum. Proceedings of the National Academy of Sciences of the United States of America, 100*(9), 5010-5015.
- Richey, D. P., & Lin, E. C. (1972). Importance of facilitated diffusion for effective utilization of glycerol by *Escherichia coli*. *Journal of Bacteriology*, 112(2), 784-790.
- Rittmann, B. E., & McCarty, P. L. (2012). *Environmental biotechnology: principles and applications:* Tata McGraw-Hill Education.
- Roh, H., Ko, H. J., Kim, D., Choi, D. G., Park, S., Kim, S., . . . Choi, I. G. (2011). Complete genome sequence of a carbon monoxide-utilizing acetogen, *Eubacterium limosum* KIST612. *Journal of Bacteriology*, 193(1), 307-308.
- Saintamans, S., Perlot, P., Goma, G., & Soucaille, P. (1994). High Production of 1,3-Propanediol from Glycerol by *Clostridium Butyricum* Vpi-3266 in a Simply Controlled Fed-Batch System. *Biotechnology Letters*, *16*(8), 831-836.
- Sakai, S., Nakashimada, Y., Yoshimoto, H., Watanabe, S., Okada, H., & Nishio, N. (2004). Ethanol production from H<sub>2</sub> and CO<sub>2</sub> by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1. *Biotechnology Letters*, 26(20), 1607-1612.
- Sato, K., Nishina, Y., Setoyama, C., Miura, R., & Shiga, K. (1999). Unusually high standard redox potential of acrylyl-CoA/propionyl-CoA couple among enoyl-CoA/acyl-CoA couples: A reason for the distinct metabolic pathway ay of propionyl-CoA from longer acyl-CoAs. *Journal of Biochemistry*, 126(4), 668-675.
- Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. *Microbiology and Molecular Biology Reviews*, 61(2), 262-80.
- Schink, B., & Stams, A. J. (2013). Syntrophism among prokaryotes: Springer.
- Schlegel, H. G. n. (1993). General microbiology: Cambridge university press.
- Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., . . . Weber, C. F. (2009). Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. *Applied and Environmental Microbiology*, 75(23), 7537-7541.

- Schuchmann, K., & Muller, V. (2014). Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. *Nature Reviews Microbiology*, 12(12), 809-821.
- Schwiertz, A., Hold, G. L., Duncan, S. H., Gruhl, B., Collins, M. D., Lawson, P. A., . . Blaut, M. (2002). *Anaerostipes caccae* gen. nov., sp nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. *Systematic and Applied Microbiology*, 25(1), 46-51.
- Seedorf, H., Fricke, W. F., Veith, B., Bruggemann, H., Liesegang, H., Strittimatter, A., . . . Gottschalk, G. (2008). The genome of *Clostridium kluyveri*, a strict anaerobe with unique metabolic features. *Proceedings of the National Academy of Sciences of the United States of America*, 105(6), 2128-2133.
- Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. *Bioinformatics*, 30(14), 2068-2069.
- Segata, N., Bornigen, D., Morgan, X. C., & Huttenhower, C. (2013). PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. *Nature Communications*, 4.
- Selembo, P. A., Perez, J. M., Lloyd, W. A., & Logan, B. E. (2009). Enhanced Hydrogen and 1,3-Propanediol Production From Glycerol by Fermentation Using Mixed Cultures. *Biotechnology and Bioengineering*, 104(6), 1098-1106.
- Shoaie, S., Karlsson, F., Mardinoglu, A., Nookaew, I., Bordel, S., & Nielsen, J. (2013). Understanding the interactions between bacteria in the human gut through metabolic modeling. *Scientific Reports*, 3.
- Sieber, J. R., Crable, B. R., Sheik, C. S., Hurst, G. B., Rohlin, L., Gunsalus, R. P., & McInerney, M. J. (2015). Proteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of *Syntrophomonas wolfei*. *Frontiers in Microbiology*, 6.
- Smith, D. P., & Mccarty, P. L. (1989). Energetic and Rate Effects on Methanogenesis of Ethanol and Propionate in Perturbed Cstrs. *Biotechnology and Bioengineering*, 34(1), 39-54.
- Smith, G. M., Kim, B. W., Franke, A. A., & Roberts, J. D. (1985). 13C NMR studies of butyric fermentation in *Clostridium kluyveri*. *Journal of Biological Chemistry*, 260(25), 13509-13512.
- Speers, A. M., Young, J. M., & Reguera, G. (2014). Fermentation of Glycerol into Ethanol in a Microbial Electrolysis Cell Driven by a Customized Consortium. *Environmental Science & Technology*, 48(11), 6350-6358.
- Spirito, C. M., Richter, H., Rabaey, K., Stams, A. J. M., & Angenent, L. T. (2014). Chain elongation in anaerobic reactor microbiomes to recover resources from waste. *Current Opinion in Biotechnology*, 27, 115-122.
- Stackebrandt, E., & Osawa, R. (2015). Phascolarctobacterium *Bergey's Manual of Systematics of Archaea and Bacteria*: John Wiley & Sons, Ltd.
- Stams, A. J. M., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. *Nature Reviews Microbiology*, 7(8), 568-577.
- Steinbusch, K. J. J., Arvaniti, E., Hamelers, H. V. M., & Buisman, C. J. N. (2009).

Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation. *Bioresource Technology*, *100*(13), 3261-3267.

- Steinbusch, K. J. J., Hamelers, H. V. M., Plugge, C. M., & Buisman, C. J. N. (2011). Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. *Energy & Environmental Science*, 4(1), 216-224.
- Szymanowska-Powaowska, D., & Kubiak, P. (2015). Effect of 1,3-propanediol, organic acids, and ethanol on growth and metabolism of *Clostridium butyricum* DSP1. *Applied Microbiology and Biotechnology*, 99(7), 3179-3189.
- Tao, X. Y., Li, Y. B., Huang, H. Y., Chen, Y., Liu, P., & Li, X. K. (2014). Desulfovibrio vulgaris Hildenborough prefers lactate over hydrogen as electron donor. Annals of Microbiology, 64(2), 451-457.
- Temudo, M. F., Muyzer, G., Kleerebezem, R., & van Loosdrecht, M. C. M. (2008). Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. *Applied Microbiology and Biotechnology*, 80(6), 1121-1130.
- Temudo, M. F., Poldermans, R., Kleerebezem, R., & van Loosdrecht, M. C. M. (2008). Glycerol fermentation by (open) mixed cultures: A chemostat study. *Biotechnology and Bioengineering*, 100(6), 1088-1098.
- Thauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. *Bacteriological Reviews*, 41(1), 100-180.
- Tidjani Alou, M., Rathored, J., Lagier, J. C., Khelaifia, S., Labas, N., Sokhna, C., . . . Dubourg, G. (2016). *Massilibacterium senegalense* gen. nov., sp. nov., a new bacterial genus isolated from the human gut. *New Microbes and New Infections*, 10, 101-111.
- Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., . . . Williams, R. (2009). Beneficial Biofuels-The Food, Energy, and Environment Trilemma. *Science*, *325*(5938), 270-271.
- Tremblay, P. L., Zhang, T., Dar, S. A., Leang, C., & Lovley, D. R. (2013). The Rnf Complex of *Clostridium ljungdahlii* is a Proton-Translocating Ferredoxin:NAD(+) Oxidoreductase Essential for Autotrophic Growth. *mBio*, 4(1).
- U.S. Energy Information Administration, E. (2016). *INTERNATIONAL ENERGY OUTLOOK* 2016 (DOE/EIA-0484(2016)). Retrieved from https://www.eia.gov/outlooks/ieo/
- Varrone, C., Giussani, B., Izzo, G., Massini, G., Marone, A., Signorini, A., & Wang, A. J. (2012). Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture. *International Journal of Hydrogen Energy*, 37(21), 16479-16488.
- Vasudevan, D., Richter, H., & Angenent, L. T. (2014). Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. *Bioresource Technology*, 151, 378-382.
- Vasudevan, P., Sharma, S., & Kumar, A. (2005). Liquid fuel from biomass: An

overview. Journal of Scientific & Industrial Research, 64(11), 822-831.

- Viana, Q. M., Viana, M. B., Vasconcelos, E. A., Santaella, S. T., & Leitao, R. C. (2014). Fermentative H2 production from residual glycerol: a review. *Biotechnology Letters*, 36(7), 1381-1390.
- Vikromvarasiri, N., Laothanachareon, T., Champreda, V., & Pisutpaisal, N. (2014). Bioethanol Production from Glycerol by Mixed Culture System. *Energy Procedia*, 61, 1213-1218.
- Voegele, R. T., Sweet, G. D., & Boos, W. (1993). Glycerol Kinase of *Escherichia Coli* Is Activated by Interaction with the Glycerol Facilitator. *Journal of Bacteriology*, 175(4), 1087-1094.
- Wallace, R. J., Chaudhary, L. C., Miyagawa, E., McKain, N., & Walker, N. D. (2004). Metabolic properties of *Eubacterium pyruvativorans*, a ruminal 'hyper-ammonia-producing' anaerobe with metabolic properties analogous to those of *Clostridium kluyveri*. *Microbiology*, 150, 2921-2930.
- Wallace, R. J., McKain, N., McEwan, N. R., Miyagawa, E., Chaudhary, L. C., King, T. P., . . . Newbold, C. J. (2003). *Eubacterium pyruvativorans* sp nov., a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate. *International Journal of Systematic and Evolutionary Microbiology*, 53, 965-970.
- Wang, D., Liu, H. L., Zheng, S. X., & Wang, G. J. (2014). Paenirhodobacter enshiensis gen. nov., sp nov., a non-photosynthetic bacterium isolated from soil, and emended descriptions of the genera Rhodobacter and Haematobacter. International Journal of Systematic and Evolutionary Microbiology, 64, 551-558.
- Watanabe, Y., Nagai, F., & Morotomi, M. (2012). Characterization of *Phascolarctobacterium succinatutens* sp. nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. *Applied and Environmental Microbiology*, 78(2), 511-518. doi:10.1128/AEM.06035-11
- Wu, Y. W., Tang, Y. H., Tringe, S. G., Simmons, B. A., & Singer, S. W. (2014). MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. *Microbiome*, 2.
- Xu, G. R., Xu, S. H., & Tao, J. (1990). New technology of producing caproic acid by 2-octanol and/or 2-octanone: Google Patents.
- Yang, Y., Li, B., Ju, F., & Zhang, T. (2013). Exploring Variation of Antibiotic Resistance Genes in Activated Sludge over a Four-Year Period through a Metagenomic Approach. *Environmental Science & Technology*, 47(18), 10197-10205.
- Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. *Current Opinion in Biotechnology*, 18(3), 213-219.
- Yuksel, F., & Yuksel, B. (2004). The use of ethanol-gasoline blend as a fuel in an SI engine. *Renewable Energy*, 29(7), 1181-1191.
- Zhang, K. G., Song, L., & Dong, X. Z. (2010). Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic bacterium isolated from yak rumen. International Journal of Systematic and Evolutionary Microbiology, 60,

2221-2225.

- Zhaxybayeva, O., Swithers, K. S., Foght, J., Green, A. G., Bruce, D., Detter, C., ... Nesbo, C. L. (2012). Genome Sequence of the Mesophilic *Thermotogales* Bacterium *Mesotoga prima* MesG1.Ag.4.2 Reveals the Largest *Thermotogales* Genome To Date. *Genome Biology and Evolution*, 4(8), 812-820.
- Zhu, X. Y., Zhou, Y., Wang, Y., Wu, T. T., Li, X. Z., Li, D. P., & Tao, Y. (2017). Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated *Ruminococcaceae* bacterium CPB6. *Biotechnology for Biofuels*, 10(1), 102.