

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

INFORMATION VISUALIZATION OF LARGE

DATA STREAMING

CHENHUI LI

Ph.D

The Hong Kong Polytechnic University

2018

The Hong Kong Polytechnic University

Department of Computing

Information Visualization of Large Data
Streaming

Chenhui Li

A Thesis Submitted
in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

May 2017

ABSTRACT

The visualization of increasingly large streaming data has become a challenge for tra-

ditional static visualization algorithms and in the cognitive process of understanding

features at various scales of resolution. In this thesis, we focus on stream visualiza-

tion and study a class of visual analytic techniques that provide rich visual patterns

to help common users better comprehend the main features of stream data. In stream

visualization, we look for significant temporal patterns via several classical method-

ologies in the modern context of rapidly changing information content. However,

the current methodologies for stream visualization are still limited. We summarize

four critical problems for which the currently appropriate solutions require further

improvements: (1) How to visually cluster useful patterns from streaming data; (2)

How to smoothly map between data frames to provide a continuous visual effect in

dynamic visualization and detect smooth trends and patterns; (3) How to automat-

ically retarget the significant content of streams and make it suitable for different

resolutions; and (4) How to visually query the patterns among streaming data

To answer the first question, we present two approaches to support the stream-

based visualization and visual analysis. One approach is a density map estimation

method to accurately cluster the high-density data. Another approach is a module-

based clustering method to detect graph patterns and emphasize the interconnecting

structures between local modules. Since the first problem is fundamental, the an-

swer to it provides the foundation for answering the other three questions. For the

second question, we propose a novel algorithm called StreamMap that utilizes the

diffusion model to smoothly morph frames among dynamic data. We also present a

trend representation that can help convey the flow directions. The approach for the

third question is a mesh-based energy optimization method. We propose a visual-

saliency map to mark the regions with different significances. Auxiliary triangles are

used to retarget the elements in visualizations, and the optimized result is achieved

by solving a large sparse linear system. To answer the fourth question, we outline a

iii

new framework with two interactions for interactively querying the streaming data.

We also designed a pair of representations to visualize and explore the query results.

The effectiveness of the presented methods are demonstrated on several real datasets

when dynamic visualization and a visual analysis of structured and unstructured pat-

terns in streaming data are required.

iv

LIST OF PUBLICATIONS

1. Chenhui Li, George Baciu, and Yu Han. StreamMap: Smooth Dynamic

Visualization of High-Density Streaming Points. IEEE Transactions on Visualization

and Computer Graphics, 2017. (Accepted)

2. Chenhui Li, George Baciu, Yunzhe Wang, and Xiujun Zhang. Fast Content-

Aware Resizing of Multi-layer Information Visualization via Adaptive Triangulation.

Journal of Visual Languages and Computing, 2017. (Accepted)

3. Chenhui Li, George Baciu, and Yunzhe Wang. Module-Based Visualization

of Large-Scale Graph Network Data. Journal of Visualization, 2017, 20(2), pp.205-

215.

4. Chenhui Li and George Baciu. VisQuery: Visual Querying of Streaming Data

via Pattern Matching. IEEE Digital Media Industry Academic Forum, Santorini,

Greece, July 4-6, 2016, pp.161-165.

5. Chenhui Li, George Baciu, and Yunzhe Wang. ModulGraph: Modularity-

Based Visualization of Massive Graphs. SIGGRAPH Asia 2015 Symposium On

Visualization in High Performance Computing, Kobe, Japan, 2015, pp.11:1-11:4.

6. Chenhui Li, George Baciu, and Yu Han. Interactive Visualization of High

Density Streaming Points with Heat-Map. Proceeding of IEEE International Confer-

ence on Smart Computing, Hong Kong, 2014, pp.145-149.

7. Chenhui Li and George Baciu. VALID: A Web Framework for Visual Analyt-

ics of Large Streaming Data. IEEE 13th International Conference on Trust, Security

and Privacy in Computing and Communications (TrustCom 2014), Beijing, China,

2014, pp.686-692.

8. George Baciu, Chenhui Li, Yunzhe Wang, and Xiujun Zhang. A Cloud-

Driven Visual Cognition of Large Streaming Data. International Journal of Cognitive

v

Informatics and Natural Intelligence, 2016, 10(1), pp.12-31.

9. George Baciu, Chenhui Li, Yunzhe Wang, and Xiujun Zhang. Cloudets:

Cloud-Based Cognition for Large Streaming Data (Best Paper Award). 14th IEEE

International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC

2015), Beijing, China, 2015, pp.333-338.

10. George Baciu, Yunzhe Wang, and Chenhui Li. Smooth Animation of Struc-

ture Evolution in Time-Varying Graphs with Pattern Matching. SIGGRAPH Asia

2017 Symposium On Visualization, Bangkok, Thailand, 2017.

11. George Baciu, Yunzhe Wang, and Chenhui Li. Cognitive Visual Analytics of

Multi-dimensional Cloud System Monitoring Data. International Journal of Software

Science and Computational Intelligence, 2017, 9(1), pp.20-34.

vi

ACKNOWLEDGEMENTS

I would never have completed this research study without the help from many people.

Firstly, I thank my supervisor, Prof. George Baciu, for his years of encourage-

ment and mentoring. Prof. George Baciu always gives me the strongest support and

insightful suggestions on my Ph.D. courses, idea finding, experiments, research pa-

per writings, and presentations. Either discussing with us or reviewing the research

manuscript, he is full of energy and patient.

I thank all Lab members and friends at PolyU – Dr Yu Han, Miss Yunzhe Wang,

Dr Jianlin Liu, Dr Yunliang Cai, Dr Xiujun Zhang, Mr Yushi Li, Miss Zhixiang He,

and many others.

Finally, I thank my parents for their selfless support and care. Without their un-

derstanding and help, it would have been impossible to finish this dissertation. In

addition, I want to express my sincere gratitude to my wife for her long-term encour-

agement, understanding, and a great patient.

vii

TABLE OF CONTENTS

Title Page i

Certificate of Originality ii

Abstract iii

List of Publications v

Acknowledgements vii

Table of Contents viii

List of Figures xii

List of Tables xviii

Chapter 1 Introduction 1

1.1 Motivation 2

1.2 Contributions 7

1.3 Organization 9

Chapter 2 Literature Review 10

2.1 Large-Scale Information Visualization Frameworks 10

2.2 Visual Clustering 12

2.3 Representations of Dynamic Data 16

2.4 Information Visualization Resizing 20

2.5 Visual Querying 24

2.6 Conclusion 25

viii

Chapter 3 Smooth Dynamic Visualization of Streaming Data 26

3.1 Introduction 26

3.2 Definition 28

3.3 StreamMap 29

3.3.1 Super kernel density estimation 30

3.3.2 Smooth morphing 33

3.3.3 Trend representation 41

3.4 Use Cases 45

3.4.1 Artificial Data (AD) 46

3.4.2 People Crowd (PC) 47

3.4.3 Air Pollution (AP) 50

3.5 Evaluation and Discussion 52

3.6 Conclusion 55

Chapter 4 Module-Based Large-Scale Graph Visualization 57

4.1 Introduction 57

4.2 Module Graph 58

4.2.1 Pattern definition 62

4.2.2 Pattern detection via k-clustering 64

4.2.3 Visual design 65

4.3 Super Module Graph 66

4.4 Experimental Study 69

4.4.1 Social network 69

4.4.2 Spatial network 72

4.4.3 Streaming graph data 73

4.5 Implementation and Evaluation 74

4.6 Conclusion 75

Chapter 5 Content-Aware Information Visualization 76

5.1 Introduction 76

5.2 Overview 78

ix

5.3 Visual Saliency Map (VSM) 78

5.3.1 Importance detector 80

5.3.2 Context detector 81

5.4 Adaptive Resizing Model 83

5.4.1 Adaptive triangulation 83

5.4.2 Mesh deformation 85

5.4.3 Vector adjustment 88

5.4.4 Content enhancement 88

5.5 Stream-Aware Resizing 89

5.6 Experiments and Results 91

5.6.1 Results 92

5.6.2 Discussions 97

5.7 Conclusion 100

Chapter 6 Interactive Visual Querying of Streaming Data 102

6.1 Introduction 102

6.2 Saliency Definition and Generation 103

6.2.1 Saliency map 104

6.2.2 Saliency block 105

6.3 The Querying Method 108

6.3.1 Brush-based querying 108

6.3.2 Block-based querying 110

6.4 Visualization Design 112

6.4.1 Flow-oriented representation 112

6.4.2 Similarity-oriented representation 114

6.5 Experiments and Discussion 115

6.5.1 Air Pollution (AP) 116

6.5.2 Flickr Photo (FP) 118

6.6 Performance 120

6.7 Conclusion 121

x

Chapter 7 Conclusion 122

7.1 Summing Up 122

7.2 Limitations 124

7.3 Areas of Further Research 126

References 129

xi

LIST OF FIGURES

1.1 Two-dimensional raw streaming data at different time steps. 2

1.2 Two frames of high-density geographical data. 3

1.3 Two large networks at different time steps. 4

1.4 Comparison of linear blending (upper) and smooth morphing with
minimal artifacts (lower). Left and right: input density maps. Mid-
dle: transition sequence. 5

1.5 Results of four different strategies for the resizing of visualization
outputs. 6

2.1 Two large-scale information visualization frameworks. 11

2.2 A real-time stream visualization system developed by Alooma [4]. 12

2.3 Visual clustering methods. 13

2.4 A trajectory bundling method for point transitions [38]. 17

2.5 An illustration of the methods of interpolation and feature tracking:
(left) original time series data; (middle) the interpolation process be-
tween two frames; (right) the tracked variation features. Dashed cir-
cles in the middle part are generated data. Dashed circles in the right
part are the target data of feature tracking. Dashed arrows indicate
the variation trends. 19

2.6 CloudLines [68]. 21

2.7 An example of a Sankey diagram. 21

3.1 The definition of StreamMap. We assume that points in a stream are
similar to moving darts and that the frame is the collection of darts
on a projected 2D plane representation, as shown at the top of the
figure. Streaming data are organized as a density map through data
aggregation and density estimation. StreamMap’s diffusion model
supports the composition of sub-DMs between two density maps. 27

3.2 An example of the density diffusion between two density maps. x

means a pixel in a density map, and u indicates the transformation
value. I and T are a pair of inputs in the morphing model. 29

xii

3.3 Smooth dynamic visualization compared with the scatterplot and the
linear blending methods. In-between frames of two scatterplots are
blank, if no interpolation is applied. The leftmost and the rightmost
density maps are inputs of the blending. 30

3.4 KDE result with fixed bandwidth. The number texts on the figure
indicate three different density points. 31

3.5 Irregular grid division of the SG clustering methods. 32

3.6 A comparison of the k-means and the SG clustering methods. 34

3.7 Six morphing patterns. The blue region indicates the area in the
original density map. The red region shows the area in the target
density map. A complete morphing procedure for two density maps
normally includes various morphing patterns. 38

3.8 After adding the seeds (ei and et), the moving pattern has been di-
vided into the contraction pattern and the growth pattern. Hence, the
morphing process from Is to Ts becomes feasible. 39

3.9 A result of peak pixel detection on a density map using the steepest
descent method [150]. e0, e1, e2, and e3 are the detected peak pixels. 40

3.10 Examples of six morphing patterns, each of which includes four
sub-DMs. The left column shows the density map of Is, and the right
column shows the density map of Ts. After adding the seeds, all of
the morphing processes become feasible. 41

3.11 Figure showing density map morphing between I and T using two
methods. In the final morphing step 6, our result is smooth and more
similar to T than using the diffusion model. Hence, our method is
able to handle density nonconformity, with minimal artifacts. 42

3.12 Trend direction representation. 44

3.13 Estimated density maps according to the artificial data (AD). 47

3.14 The morphing result according to the artificial data (AD). 48

3.15 A comparison of the clustering results of a large-scale AD frame. 49

3.16 Estimated density maps according to the collected PC data between
1:00 PM and 2:00 PM on 25 July 2015. 50

3.17 Morphing results of the people flow visualization between two time
steps. The left and right columns are the input density maps. In-
between four columns are transition sequences selected from the it-
erative morphing operation. 51

xiii

3.18 Comparison of two air quality visualization methods. 52

3.19 Air pollution visualization using StreamMap. 53

3.20 Time cost of the SKDE method with different data sizes (the dataset
used is AD as shown in Sec. 3.4.1). 53

3.21 Comparisons of the morphing effectiveness using two measurements.
55

4.1 A simple example of module detection and Module Graph. 59

4.2 Visualization of a simplified large network. 61

4.3 The five types of graph modules. 62

4.4 Examples of graph modules: for each example, we show the agent
pattern on the left, and example cases on the right. 63

4.5 An example of k-clustering. The color indicates the pattern type. 65

4.6 Visualizing the Module Graph design. 66

4.7 The chord diagram representation of Module Graph. 67

4.8 Visualizing social networks by Module Graph and Chord Diagrams. 68

4.9 A pipeline of the SMG generation. 69

4.10 Morphing between two types of Module Graphs. 70

4.11 An example of the morphing animation between two types of Mod-
ule Graphs with size changing. 71

4.12 Hierarchical Module Graph of YouTube social network. 71

4.13 Visualization of the size distribution of modules via box plot diagram
for the Orkut network. 71

4.14 The spatial network of U.S.A. airline flights for a given period of
time. 72

4.15 Visualizing streaming graph data using SMG. 73

5.1 Different parts of VSM. (a) Original visualization image. (b) Impor-
tant regions. (c) Sharp edges. (d) Context regions. (e) Content depth.
(f) Final visual saliency map. 80

5.2 Color palette from Tableau. The top palette of deep colors is nor-
mally used to represent the most important regions in visualization.
On the other hand, the bottom palette of light colors indicates the less
important regions or backgrounds in the visualization. 81

xiv

5.3 (a) Multi-layer visualization with light color. (b) The saliency map
is unavailable since the light green region is not detected. (c) Visual
saliency map for solving SSDC problem. 81

5.4 Results of visual saliency map. (top) Visualization of cost of living in
different countries as described in Sec 5.6.1. (middle) A heat map of
users’ locations from Brightkite as described in Sec 5.6.1. (bottom)
A graph shows a social network with hundreds of nodes. 83

5.5 Triangulations with different levels of details where α = 20. (a)
Original visualization. (b) Level=1, S(i, j) ∈ [0, 0.15). (c) Level=2,
S(i, j) ∈ [0.15, 0.5). (d) Level=3, S(i, j) ∈ [0.5, 1.0]). (e) Level=1-3,
S(i, j) ∈ [0.0, 1.0]. 83

5.6 Two strategies of triangulation. 85

5.7 Results of three different strategies for content enhancement. (a) No
enhancement. (b) Fisheye enhancement. (c) Content-aware enhance-
ment without vectorial adjustment. (d) Content-aware enhancement
with vectorial adjustment. 89

5.8 Result of the content enhancement without the canvas resizing. The
content in this visualization is a heat-map of the people locations as
described in Sec. 5.6.1. (a) Original visualization. (b) Triangulation
of the original visualization. (c) Enhanced visualization without the
canvas resizing. (d) Corresponding triangles of the enhanced visual-
ization. 90

5.9 An example of a SVSM that is generated by applying SMA on six
VSMs. 91

5.10 A comparison of the preservation of content measured by the average
pixel saliency using four different approaches of resizing. The testing
visualization is the bottom case, as shown in Fig. 5.15. 92

5.11 Results of 3 different strategies for horizontal resizing of SGM 5.6.1,
GGM 5.6.1 and GC 5.6.1. (a) Original visualization images. (b)
Linear scaling. (c) Grid-based resizing [145]. (d) Our method. 93

5.12 Results of 3 different strategies for the vertical resizing of GGM 5.6.1.
(a) Original visualization with triangulations. (b) Linear scaling re-
sult. (c) Grid-based resizing result [145]. (d) Our method. 94

xv

5.13 Results of 2 different strategies for vertical resizing of GC 5.6.1.
(a) Triangulation and saliency map without SSDC fixing. (b) Trian-
gulation and saliency map with SSDC fixing. (c) Result of vertical
resizing of GC without SSDC fixing. (d) Result of vertical resizing
of GC with SSDC fixing. 95

5.14 Results of 2 different approaches for the horizontal resizing of the vi-
sualization in IG 5.6.1. (a) Original visualization with triangulations.
(b) Linear scaling result. (c) Original visualization with triangula-
tions. (d) Our method. 96

5.15 Additional results of four different methods for reducing the width of
the visualization. (a) Original visualization. (b) Cropping. (c) Linear
resizing. (d) Grid-based resizing. (e) Ours. Figure 5.10 shows the
saliency preservation of each method by using the bottom case in
this figure. 97

5.16 Comparison of the resizing results of the time-varying frames using
different approaches. 101

6.1 An example of kernel density estimation. The left canvas lists some
raw points, whereas the right canvas shows the result of KDE. The
different kernel sizes are listed at the bottom. This estimation process
can be approximated through circle rendering. 105

6.2 The components of a saliency map. 106

6.3 A description of a saliency block. S0 and S1 indicate two time-close
saliency maps. Circles indicate the saliency regions. 107

6.4 Two querying interactions. BRQ interaction can be applied on a raw
data map or a saliency map. BLQ can only be applied on a saliency
map, and the selected saliency region will be highlighted with a red
contour. 109

6.5 A description of the spatial chain matching. 110

6.6 An example ofFlowblock and corresponding saliency snapshots. (top)
Saliency air pollution snapshots in Beijing from April 20th, 2016, to
April 28th, 2016. (bottom) A flow representation that visualizes the
variation of the air pollution in Beijing. 113

6.7 A description of the Simcurve design. 114

6.8 A description of the Simblock design. 114

6.9 Brush-based querying of air pollution from north to south regions in
China. 115

xvi

6.10 A visualization example of the air pollution data. 116

6.11 A visualization example of the photo location data. 117

6.12 Block-based querying of air pollutions on saliency regions in China. 118

6.13 Brush-based querying of the photo distribution along a coastline in
the western U.S.A. 119

6.14 Block-based querying of the photo distribution on saliency map in
the eastern U.S.A. 120

6.15 Performance of the brush-based querying. 121

xvii

LIST OF TABLES

3.1 Summary of datasets used in experiments. 46

4.1 The selected social network datasets. 69

4.2 Comparison of module detection performance. 74

4.3 Comparison of the rendering performance. 75

5.1 Performance and evaluation of our experiments. The top data in
each row indicate the results using a grid-based method [145], and
the bottom data in each row address the results using the proposed
method. 98

5.2 Time cost of clutter map [114] and visual saliency map. 99

xviii

CHAPTER 1

INTRODUCTION

Information visualization can be defined as any mental representation for communi-

cating a message via charts, plots, tables, graphs, animation, or any combinations of

visual shapes, symbols, or glyphs that form patterns consistent with the underlying

information being represented and transmitted. Early foundational issues in informa-

tion visualization field were addressed by Bertin [18]. He presented a visualization

theory through a study of graphic techniques. A number of current visualization

designs follow the ideas outlined by Bertin [18]. In the big data era, large-scale in-

formation visualization has become the main challenge in computational analytics for

various applications, ranging from search and rescue (e.g., Malaysia Airlines Flight

MH370) to medical diagnosis, on-line retail, internet of things, network security, and

in big data science (e.g., cosmology, high-energy physics, genomics), as addressed

in many other publications [86, 90, 153].

Research on streaming data visualization is becoming more significant with the

increasing volume of time-varying data from real-time data collectors and monitors.

Data streams offer new opportunities for the development of tools that can be used

to observe and explore temporal data from various perspectives, thus helping data

analyzers to visually explore the historical and predicted data leading to quicker and

smarter decisions.

Streaming data contains a vast amount of time-varying, unstructured informa-

tion. Hence, it is becoming increasingly difficult to analyze, visualize, explore, and

interpret the data patterns in the data streams. Although displaying raw streaming

data can help in understanding relevant patterns, the volume, variety, velocity, and

variability of the streams preclude the deep interpretation of the data patterns. For

example, simply displaying two-dimensional raw streaming data at different time

1

steps, as shown in Fig. 1.1, does not properly show the variation information among

streaming frames. In order to cope with these problems in big data analytics and

identify new general directions in visualiation research, in this thesis we propose a

series of approaches toward a better information visualization through large-scale

data streaming.

In this chapter, the motivation of this thesis is first addressed, overcoming the

overlapping of high-density data visualization, smoothing the sequence-by-sequence

representation, and discussing the aggregation requirement from large-scale data vi-

sualization, the difficulties encountered in content retargeting and enhancement, and

the visual querying on spatio-temporal data. Moreover, the contributions of this the-

sis are discussed. The chapter closes with a brief overview of the thesis structure.

Figure 1.1: Two-dimensional raw streaming data at different time steps.

1.1 Motivation

Traditional information visualization algorithms and tools mainly focus on static data

visualization. Static data refers to data that does not include a temporal dimension.

Since most useful data expands in real time, such as data from climate monitoring,

social networks, news, surveillance, and tracking, it is becoming increasingly im-

portant to prioritize, filter, cluster, enhance, and query relevant information in data

streams before pursuing higher levels of visual analytics. The extension from static

data visualization to stream visualization is not trivial since stream visualization is a

time-dependent process that poses various problems. In addition, a coherent method

has not been presented to solve different forms of stream visualization problems. It

motivates us to present a coherent approach that is the foundation of the other meth-

ods such as smoothing, content-aware resizing, and visual querying.

2

Overlapping in high-density Data

Information visualization suffers from overlapping when the data stream contains

high-density data structures. This problem is known as overdrawing, and it has be-

come more significant as the size of data has exploded. Although the existing ap-

proaches achieve high performance and acceptable visual results, there are still a few

limitations in the visualization of important patterns and structures from large vol-

umes of continuous data, such as streaming point data (Fig. 1.2) and graph network

data (Fig. 1.3).

For streaming point data, kernel density estimation (KDE) is one of the statistical

methods often used to overcome the overlapping problem. However, KDE requires

manual bandwidth adjustment to estimate the density of streaming points. There-

fore, it is necessary to improve KDE to calculate the density of streaming data by

using the adaptive bandwidth approach. The adaptive bandwidth approach offers two

advantages. First, it improves the visual disparity in cluttered point clouds because

sparse points are estimated using small kernel sizes, thus avoiding abrupt discontin-

uous changes and reducing the overall number of calculations. Second, it also avoids

the need for manual bandwidth adjustment for different point sets. For static data

visualization, manual adjustment may work well; however, for stream visualization,

adaptive bandwidth adjustment is both convenient and necessary because of the num-

ber of sequential point sets that need to be estimated.

(a) (b)

Figure 1.2: Two frames of high-density geographical data.

3

(a) (b)

Figure 1.3: Two large networks at different time steps.

Analysis and visualization of the large-scale network have become important

challenges with the rapid increase in network data, including the data generated

from social networks, modern transportation networks, document referencing, and

academic citations. A practical approach to displaying graph content is partitioning

the network according to well-defined domain-dependent attributes. However, graph

visualization in the presence of incomplete information is an open challenge, and ap-

plications in this area can be found in abundance. To better visualize and understand

the patterns in large-graph discovery, a representation of local patterns is required to

avoid overlapping in high-density network data. This is a critical step in determin-

ing the structural components of a graph visualization, particularly when the graph

network data are dynamic.

Abrupt changes in animation-based visualization

Directly visualizing data streams as dynamic frames without interpolation leads to a

significant problem of abrupt changes because visual continuity is missing between

two data frames. A dynamic morphing (dynamic blending) approach between frames

is often adopted to produce patterns that are easier to observe and evaluate in stream-

ing data visualization. For dynamic morphing, conventional linear interpolation be-

tween two frames is a practical solution. However, when the data streams contain

large variations, this approach produces visual ghosting patterns. In addition, the

4

information generated by linear interpolation does not always produce visually ac-

ceptable trend patterns, especially in point cloud regions.

The advantages of smooth dynamic data visualization with visual continuity can

be summarized as follows. First, the human visual system is well adapted to identify

changes in the shapes of dynamic regions compared with coarse, non-smooth visual-

izations of dynamic data. This advantage was reported by Tversky et al. [135]. Sec-

ond, as the size of data increases exponentially, it becomes increasingly difficult to

show sufficient information in a single image frame. Although some techniques such

as binning and summarization [153] perform re-sampling and data reduction for the

target display, the number of pixels for a static image will always remain finite, and

the points from data streams can easily exceed the display capacity. Third, morphing

operations produce intermediate patterns compared to static visualizations. More-

over, these additional patterns can include data trends, as presented by Thirion [129].

Therefore, it is vital to find an effective algorithm to retarget one frame to another

frame to avoid abrupt changes that are uncomfortable for the human eye system.

Figure 1.4: Comparison of linear blending (upper) and smooth morphing with min-
imal artifacts (lower). Left and right: input density maps. Middle: transition se-
quence.

Content-aware resizing requirement

Content resizing is required when the stream representation should effectively adapt

for different ratios of displays, such as mobile phones, tablet pads, projector screens,

5

and widescreen televisions. The basic content resizing techniques, such as cropping

and linear scaling, often result in losing information content and introducing distor-

tions. Cropping (Fig. 1.5b) is the simplest operation for visualization resizing. Crop-

ping can be used to adapt to different types of displays, but it often removes important

content. Linear scaling (Fig. 1.5c) is another approach, but distortions often appear

when more important content has the same scaling rate as less important regions.

Missing content and introduced distortions in visualizations quickly lead to a loss

of attention or, worse, the complete misinterpretation of the information presented.

Hence, it is paramount to adopt a robust approach for information visualization that

not only resizes the content appropriately but also retains the important content.

(a) Original visualization.

(b) Cropping
method.

(c) Scaling method. (d) Grid-
based [145].

(e) Expected result.

Figure 1.5: Results of four different strategies for the resizing of visualization out-
puts.

In addition, for the stream representation, the temporal coherency of the stream

frames should be considered to avoid artifacts. Similar methods have been proposed

in the works of seam carving for video retargeting [117] and motion-based video re-

6

targeting [144]. However, the motion-aware resizing technique has not been studied

for information visualization, especially for dynamic information visualization.

Visual stream querying

Interactive querying of streaming data is becoming an increasingly important func-

tion in visual analytics applications. However, the conditional selection for querying

spatio-temporal data is currently an open challenge. Relational queries require a new

visualization paradigm to make use of the native data properties and features. Sim-

ply listing the query results as a histogram cannot fulfill the spatio-temporal querying

requirements because of missing time sequences and feature details. In addition, a

static histogram cannot represent related potential information, such as variations and

evolutions. Therefore, a practical approach for retrieving spatio-temporal data is re-

quired to provide a more intuitive querying interaction to better identify regions of

interest.

1.2 Contributions

Our visual clustering work is proposed in [77] and later improved upon in [79]. The

study of smooth dynamic visualization is presented in [75] and [76]. Content-aware

resizing work is addressed in [80]. Visual querying work is proposed in [78]. The

data processing frameworks for visualization are published in [74], [13], and [14].

Visual clustering methods for large-scale data representation

Aiming at two basic data types, points and graphs, we propose two visual clustering

methods to overcome the overdrawing problem in high-density data. First, an adap-

tive kernel density estimation method is developed to aggregate high-density data at

a time step as a density map. The adaptive kernel density estimation method avoids

the trivial manual operations in the data stream visualization. Second, a flexible

graph visualization framework that aggregates the components of large graphs into

7

modules helps users overcome graph size limitations and effectively gain insights

into attributed graph data. The main idea is to partition the graph into several clus-

ters and visualize the relationships between clusters to emphasize the graph patterns

and allow users to understand the structure of a large graph in detail. The study of

graph clustering also supports further dynamic graph visualization. Most of the pro-

posed approaches adopt visual clustering results as input, so the visual clustering is

the foundation of the other methods such as smoothing, content-aware resizing, and

visual querying.

Dynamic data smoothing

We show an approach, entitled StreamMap, to effectively avoid abrupt changes in the

data stream visualization and help in revealing the key patterns needed to understand

the information contained in streams. We define the task of streaming data visual-

ization as a problem in creating a smooth interpolation between a pair of frames that

contain two sets of data during a given time interval. A novel algorithm for smooth-

ing is presented through density map morphing. In addition, the variation patterns

among in-between sequences are visualized to gain insights into data trends. The ex-

periments demonstrate the effectiveness of StreamMap when dynamic visualization

and the visual analysis of trend patterns in streaming data are required.

Content-aware resizing for information visualization

We present a content-aware resizing approach for information visualization. The

basic idea is to resize the visualization via the adaptive adjustment of a superimposed

reference mesh for each detected layer. The contributions of this work are four-

fold. First, an abstract multi-layer model for the resizing problem of information

visualization. Our model can be used to resize the output from a visualization system

to automatically match the native aspect ratio of any external target display. Second,

a set of criteria called the visual saliency map (VSM) to describe the features of

information visualizations in different saliency layers. Third, a triangle mesh-based

8

energy optimization method to achieve a better visual distribution of information

after resizing. Fourth, the resizing model has been extended to re-target the dynamic

information visualization.

Visual querying of temporal data

We present a saliency-based interactive querying framework, called SalQuery, to ad-

dress the requirements of visual interactions and temporal data analysis. SalQuery

can aid users in obtaining insights into the pattern evolution and similarity according

to the selected regions. The contributions are three-fold. First, we construct a density

estimation kernel that transforms the raw two-dimensional temporal data into a fixed-

size saliency map and encodes the saliency region information as saliency blocks. We

present a novel saliency block structure to encode the features of a saliency region.

Second, a pair of interactions is presented to make the querying process convenient.

A robust saliency matching method has been addressed to ensure the querying speed

and accuracy on a large-scale, spatio-temporal dataset. Third, a hybrid visualization

method is designed to enrich the query results from two perspectives: flow-oriented

and similarity-oriented perspectives.

1.3 Organization

The remainder of the thesis is organized as follows. Chapter 2 outlines the prior

related work. Chapter 3 introduces a novel smooth dynamic visualization method.

Chapter 4 describes a module-based large-scale graph data visualization method.

Chapter 5 addresses a resizing method for information visualization. Chapter 6 intro-

duces a visual querying framework for the exploration of streaming data. Chapter 7

concludes the thesis and discusses future work.

9

CHAPTER 2

LITERATURE REVIEW

Stream-based visualization has become one of the main research topics in IEEE and

ACM publications, and it has been a primary field of study in information visual-

ization, computer graphics, and data mining. It requires several techniques such

as stream processing, data clustering, stream smoothing, content enhancement, and

querying. In this chapter, the prior work on the information visualization of stream-

ing data is reviewed. First, the related work on large-scale visualization frameworks

is discussed. When the data are large-scale, a robust framework is required to effec-

tively process the data. Second, the visual clustering methods are reviewed. Visual

clustering could be considered a fundamental research topic for large-scale informa-

tion visualization because of the space limitations of the display. The main objectives

of the visual clustering are overcoming the overdrawing problem in high-density data

visualization. Third, three related research topics on information visualization are ad-

dressed: dynamic data representation, information visualization resizing, and visual

querying.

2.1 Large-Scale Information Visualization Frameworks

Recently, many frameworks have been presented on large-scale data visualization, as

shown in Fig. 2.1. imMens [90] uses multivariate data tiles to process data loading

in advance to support effective interaction. By using a GPU to accelerate querying

computing, it sustains real-time brushing and linking of diverse visualization tech-

niques. Lins [86] and his colleagues presented an algorithm to calculate and query

nanocubes in streaming data. They demonstrated that nanocubes can be used with

real-world large datasets via visual heat maps, histograms, and parallel coordinate

10

plots. Wickham [153] addressed a statistics-based framework for big data visualiza-

tion. He introduced a simple but highly effective framework called bin-summarise-

smooth to reduce the amount of data to still discover meaningful hidden patterns in

large datasets. Zinsmaier [178] inspired by the technique of Level-of-Detail in the

computer graphics discipline introduced straight-line graph drawing that can be ren-

dered interactively with the level of detail needed to visualize large-scale contents.

Although these frameworks have been shown to work well on static datasets, few

frameworks are equipped for dynamic data.

(a) imMens [90]. (b) Nanocubes [86].

Figure 2.1: Two large-scale information visualization frameworks.

Dynamic data usually occur in data streams with relatively short time stamps.

Sensors, for example, are naturally suited for delivering data streams. However,

formatting large data sets for streaming and handling data streams for large data

is a relatively new topic in database management [10] and information visualiza-

tion [35, 155]. Specifically, in information visualization, the visualization of stream-

ing data has become one of the most challenging problems.

Babcock et al. [10] gave a comprehensive overview of data stream systems. They

outlined that data streams could not directly support persistent relations. Wong et

al. [155] introduced a data stratification approach to speed up the processing of the

data streams. Arasu et al. [8] presented a complex stream system that deals with

well the continuous unstructured data. Mortar [91] was proposed by Logothetis and

Yocum to handle streaming queries across large distributed systems. Although Mor-

tar is a stable system for data stream processing and querying, its scalability and

11

elasticity could be further improved. Spark [170] is a novel memory-based paral-

lel computing architecture that is designed for stream processing, but it is difficult

to configure and program for the usage of the information visualization. The com-

pany of Alooma [4] developed a real-time stream visualization system, as shown in

Fig. 2.2, to present the statistics of a data flow. They also provide tools for searching

and filtering data streams. However, further visualization of dynamic data is required

to explore the potential patterns, while the majority of the prior work barely addresses

the problems found in dynamic data streams.

Figure 2.2: A real-time stream visualization system developed by Alooma [4].

2.2 Visual Clustering

Data clustering is a fundamental research topic in a variety of fields such as data

mining, visual analytics, and image processing. K-means [94] is the most popular

method to cluster data. Diverse variations and improvements have been presented to

better cluster data such as DBSCAN [43], CLIQUE [3], Level Set [102], and Density

Peaks [112].

Compared with the data clustering methods, visual clustering aims to overcome

the overdrawing problem in high-density data visualizations. The study in [15] ad-

dressed the concern that overlapping data may lead to decision mistakes. Visual

clustering can be considered a hybrid method that combines a data clustering method

and a visualization technique and can be categorized into four main types: simpli-

12

fication, projection, bundling, and statistics. Figure 2.3 shows an example of these

four visual clustering methods.

(a) Original data. (b) Simplification. (c) Projection.

(d) Bundling. (e) Statistics: histogram. (f) Statistics: KDE.

Figure 2.3: Visual clustering methods.

Simplification

Simplification is defined as a method that reduces the amount of original data. Ag-

gregation, sampling, and summarization methods can be classified as simplification

methods. The simplification method reduces the data amount according to their posi-

tion distribution, time stamp, or other feature channels. The binning and summariza-

tion [153] method sampled data to overcome the overlapping problem and reduce the

computational time. Chen et al. [29] proposed a visual abstraction and exploration

system that samples the original data through blue noise calculation, which can repre-

sent multi-class data distributions. Cottam et al. [34] proposed a simple aggregation

process that enables the concise expression of the alpha composition. When the data

are from moving objects such as taxis, flights or animals, the sampling approaches

presented by Andrienko et al. [7, 5] can be used to explore the locations of significant

changes.

Various methods for data simplification have been developed to visualize large-

scale data. The most prominent one is graph summarization [131], which allows

the user to interactively control the resolution of each aggregation in a large graph.

HiMap [123] was presented to visualize large-scale social networks through a hi-

erarchical summarization. Complexity reduction via k-Core [37] was used to re-

13

move nodes with fewer than k links. Zhang and his colleagues [172] proposed a new

model to calculate the core structure with a million or more nodes. Unlike the k-Core

method, this model can convert low-degree vertices into core nodes.

The community detection algorithm is usually used to simplify large-scale data,

especially network data. It is aimed at partitioning a large graph into communi-

ties. Newman [99] converted the community detection problem into an optimization

problem using a modularity-based method titled Modularity Classes. This method

can measure the performance of the algorithm on the community detection problem.

Blondel et al. [19] presented an acceleration method called Louvain to reduce the

computational complexity of the community detection problem and demonstrate its

performance on several large datasets. Dynamic graph evolution visualization was

achieved in [139, 146] through community detection.

Projection

Different from simplification, the projection method converts data from one space

to another space. Keim et al. [64] presented a method called PixelMap that projects

high-density points to surrounding empty regions to improve and smooth the visual

effect. Another projection method in [46] considered readers’ impressions by adjust-

ing the aspect ratio. In addition, for high-dimensional data visualizations, a projec-

tion technique proposed by [97] represented the point data in 5D attribute space. A

projection matrix and tree methods were proposed in [169] to provide insights into

high-dimensional data. For graph visualization, a dimensionality reduction method

was proposed in [136] to project abstract information into points in two-dimensional

space.

Bundling

Edge bundling is a visual clustering method in which edges are organized into groups

to achieve an uncluttered visualization layout. Many edge clustering methods have

been presented from different perspectives, as summarized in the work of Zhou et

14

al. [176]. Holten [53] presented an early work on edge bundling. Later, force-

directed edge bundling (FDEB) [54], a physical force-based approach, was devel-

oped to reduce edge clutter in large graphs. Following the emergence of FDEB, many

edge-bundling methods arose, most of which were focused on increasing the speed

and effectiveness of the bundling. For example, Telea and Ersoy [128] proposed an

image-based approach (IBEB) for rendering a skeleton of bundled edges. Ersoy et

al. [42] then extended the work on IBEB and presented a skeleton-based method of

iteratively transforming edges toward the skeleton of the line set. Polygonal strips

were presented by Palmas et al. [104] to guide the clustering of data in each dimen-

sion for line bundling. Hurter and his colleague [59] presented an image-based edge-

bundling method for spreading control points while clustering edges. They were the

first to implement edge bundling on a GPU. Later, a CUDA-based edge bundling

framework, CUBu [137], was presented by Van et al. to speed up the visualization of

large graphs.

Instead of pursuing speed improvements, Hurter et al. [58] performed edge bundling

for time-varying data. Later, Bach et al. [11] presented a confluent drawing method

for visualizing a graph by considering the network connectivity and information

preservation. To further reduce the complexity of bundled edges, a module-based

edge bundling method was proposed by Dwyer et al. [40]. A similar cluster-based

approach was later considered by Sun et al. [126]. Böttger et al. [22] and Zielasko

et al. [177] extended the edge bundling technique to a three-dimensional space us-

ing a mean-sift method and a 3D force-directed method, respectively. Most recently,

Kwon et al. [70] applied edge bundling to an immersive environment with illumina-

tion. Their work represented an early attempt to combine virtual reality techniques

with the edge bundling method.

Statistics

Histograms and KDE are two statistical methods often used to overcome the over-

lapping problem. However, the histogram has some disadvantages, as mentioned

15

in [101] and [71]; it is less smooth and limits the bin selection. Lampe and his col-

leagues [71] visualized large-scale traffic data on a map using KDE to overcome

the overlapping problem. Similarly, the KDE technique was adopted by Willems et

al. [154] to deal with the problems involved in visualizing moving objects. The KDE

method also has been used to implement line bundling, as presented in [59]. Be-

cause a set of data may belong to different groups, [96] presented a splatter plot to

visualize group contours using an extended KDE method. In addition to the general

KDE, Correll and Heer [33] presented a Bayesian-based method to further improve

the KDE effectiveness in information visualization.

The choice of bandwidth for KDE is extremely important in stream-based visu-

alization because it determines the accuracy of the density estimation. For streaming

data visualizations, adaptive bandwidth estimation was adopted by Lampe et al. [71]

to estimate the density of data with respect to the level of detail. However, their

method did not include adapting the bandwidth of KDE for each region at one level,

which may lead to inaccurate density maps.

2.3 Representations of Dynamic Data

Dynamic data representation is a major research topic in information visualization,

particularly the visualization of streaming data. Their categories are summarized in

this section and include interpolation methods, variation feature tracking, and time-

line visualization.

Interpolation methods

Much work has been performed to achieve dynamic effects from streaming data

through interpolation. Figure 2.5(left) shows sequences of dynamic data, and Fig-

ure 2.5(middle) shows an illustration of the process of interpolation. Krstajic and

Keim [69] addressed the challenges involved in measuring changes and maintain-

ing context in dynamic information visualization. Assuming that each frame is a

16

scatterplot representation and each point’s position in each frame is known, position

interpolation is a suitable method to overcome ghosting. Position interpolation, as

explained in the works of Robertson et al. [111] and Du et al. [38], involves dynam-

ically computing the movement trajectory for each point. Figure 2.4 shows a line

bundling method to interpolate the point trajectories. However, a constraint of this

method is that each point in one frame should match a point in the next frame; in

reality, not all point sets meet this constraint. For example, when one user’s record

(represented as a point in the visualization) appears in only one frame, it is difficult

to interpolate its position to an unknown position in the next frame. Furthermore,

point interpolation may lead to visual confusion as the number of animated points

increases.

Figure 2.4: A trajectory bundling method for point transitions [38].

Generating density maps frame by frame is a practical solution candidate to

overcome visual confusion because KDE normalizes all of the points in a frame

into a structured density map. Still, visual ghosting might appear, as shown in

Fig. 3.3(middle), if we adopt linear interpolation between two density maps when

the frame displacements are large.

A nonlinear retargeting algorithm such as optical flow [55] could be used to es-

tablish accurate correspondences between two density maps to avoid visual ghosting.

However, the time-consuming iteration is required to morph density maps and the

miss-convergence problem makes optical flow impractical for meeting the require-

ments of dynamic visualizations. Mahajan et al. [95] described a path-based mov-

ing gradient approach that can handle complex non-rigid morphing. Liao et al. [82]

17

presented a semi-automated morphing approach for images that is suitable for large-

scale transitions with only a few interactive operations. Unfortunately, the moving

gradient [95] method requires further improvement when content exhibits large-scale

changes between frames. Moreover, content-based interactive operations [82] are not

convenient for users because the contents change frequently over time in dynamic vi-

sualizations.

Apart from the temporal interpolation discussed before, spatial interpolation is

another direction to generate missing data. Zheng et al. [174] applied linear/Gaussian

and an artificial neural network (ANN) for the interpolation of air pollution data, pro-

duced by the sparse air quality monitoring stations in a city. Another work called

BlueAer [57] improved the accuracy of interpolation toward 3D space by imple-

menting a PM2.5 monitoring prototype system. Spatial interpolation was also used

for noise diagnosis, as described by Zheng et al. [175]. They provided a method to

estimate city noise based on hybrid data sources such as road networks, points of

interest (POI), user check-ins, and a noise complaint database. However, the current

spatial interpolations have paid less attention to visual effects and aesthetic criteria.

Therefore, for dynamic data, the existing interpolation techniques require more

improvement to achieve better visual effects and data enrichment.

Variation feature tracking

Scientific visualization studies such as those in the field of feature tracking are also

related to the visualization of dynamic data. Extracting features such as trend in-

formation from streaming data can be of great benefit to users. Figure 2.5(right)

describes the feature tracking among sequences of data. Similar to scientific vi-

sualization, the variation features in information visualization can be summarized

as follows: crossing, moving, disappearing, appearing, division, and aggregation.

Woodring et al. [157] used the wavelet transform to change point sets into curve sets

along a time axis to track time-varying trends. Flow-based scatterplots [28] were

presented to highlight variations in flow data. Samtaney et al. [118] proposed an

18

algorithm to extract the coherent features from unstructured time-dependent scalar

fields; they summarized these interaction features as continuation, creation, dissipa-

tion, bifurcation, and amalgamation. Based on the work of Samtaney et al. [118],

Ozer and his colleagues [103] tracked clusters of features from time-varying 3D flow

fields to improve the performance. Grottel et al.[51] addressed flow groups to study

molecular dynamics by visualizing the cluster evolution over time. Cluster structural

variations were visualized by Turkay et al. [133] using an interactive cluster viewing

design. For tracking variation features among spatio-temporal data, Cao et al. [26]

proposed a tensor-based approach to dynamically detect the anomalous patterns.

Figure 2.5: An illustration of the methods of interpolation and feature tracking: (left)
original time series data; (middle) the interpolation process between two frames;
(right) the tracked variation features. Dashed circles in the middle part are generated
data. Dashed circles in the right part are the target data of feature tracking. Dashed
arrows indicate the variation trends.

19

Timeline visualization

The method of timeline visualization transforms temporal data into a two-dimensional

space. Figure 2.5(left) is the simplest timeline visualization, visualizing the data se-

quence by sequence. Figure 2.6 shows a more abundant result using a timeline-based

approach called CloudLines [68], which is a suitable tool to visualize event episodes

among streaming data. Another work [93], called Event Cueing, studied the spatio-

temporal distribution of evolving media discourse. Event Cueing utilizes the benefit

of the timeline and allows users to explore underlying spatial patterns. Brehmer et

al. [23] surveyed a number of timelines and designed a hybrid timeline representa-

tion that combines different timeline representations in a three-dimensional design

space. Apart from the direct visualization timeline, the similarity measurement of

time series records has been discussed in [156], which is beneficial to the compatible

visualization of continuous data. Visualizing patterns through timeline deformation

is put forward by Bach et al. [12]. Their work overcame the space limitation problem

of the prior timeline visualization while preserving the time information.

Another frequently used tool is the Sankey flow diagram, as mentioned in [24]

and [140], which is used to visualize the evolution of time-dependent data. Figure 2.7

shows an example of a Sankey diagram that represents the check-in region variations

of a website in the U.S.A. at different time steps. Different from CloudLines [68],

the Sankey flow includes node aggregation and division. Vehlow et al. [139] adopted

the Sankey flow to visualize the dynamic graph evolution and enhanced the Sankey

flow through relationship representation. A similar work is egoSlider [160], which

aims at the analysis and exploration of egocentric network evolution.

2.4 Information Visualization Resizing

When the visualization display is changing, content-aware resizing is required to

protect and enhance the salient regions. For stream visualization, it is essential to

implement content-aware visualization because it is more sensitive to the size of the

20

Figure 2.6: CloudLines [68].

Figure 2.7: An example of a Sankey diagram.

data and displays. In the following subsections, we review the methods of infor-

mation visualization resizing such as content-aware resizing and the saliency map.

Content-aware resizing is a technique that re-targets the visualization content while

preserving the important parts. The method of a saliency map is used to define which

parts on a canvas are important. These two techniques are frequently used in the

image processing field [116] and have recently been adopted to deal with the content

resizing problem in information visualization, as mentioned in the work of Wu et

al. [162].

Content-aware resizing

Many researchers have recently been working on the content-aware resizing problem

[116]. This problem is also known as focus+context resizing or saliency-aware resiz-

ing. Generally, content-aware resizing methods can be classified into (a) pixel-based

and (b) mesh-based. Pixel-based methods are discrete. Seam carving [9] was the

21

first proposed pixel-based method that is related to the content-aware resizing of im-

ages. Rubinstein and his colleagues improved seam carving by using the forwarding

energy [117]. Seam carving was also improved by Xu et al. [165] by transforming

the extracted image structure. Battiato et al. [16] adopted gradient vector flow to

generate the path of seam carving and achieved better results. Unfortunately, these

methods are based on some form of pixel energy or intensity levels and are not appli-

cable to vector-based visualizations such as graphs and geographical maps (GGM).

In addition, the content cannot be further enhanced when it is resized by seam carv-

ing. Furthermore, the iteration of seam carving is time-consuming and puts severe

constraints on real-time interactive editing. Some improvements have been presented

by Yael et al. [108] and Wu et al. [159], which achieved better visual results than the

original pixel-based methods, but these still lead to missing information in informa-

tion visualizations.

On the other hand, mesh-based methods for resizing provide a degree of conti-

nuity for the underlying regions. Gal et al. [48] presented a novel resizing method

using a manual feature mask and an underlying grid. Wang et al. [145] described an

optimized resizing approach that overcomes the edge distortion problem that was not

considered before. Zhang et al. [171] used edge similarity constraints to obtain better

results on object edges. Panozzo and his colleagues [105] used axis-aligned deforma-

tions to resize images with content preservation in real time. Since the axis-aligned

deformation method has fewer degrees of freedom for deformation than other com-

mon mesh-based methods, it cannot be easily extended to fit various target displays

and multi-layer visual information. Kaufmann and his colleagues [63] used a FEM

model to reduce the degrees of freedom in resizing to perform the real-time resizing

of images.

Currently, the focus is increasingly put on content-aware resizing for information

visualization. Examples can be found in tree maps [132], metro maps [142, 158, 31],

word clouds [89], and road networks [52, 85]. These methods provide effective algo-

rithms for spatial information visualizations. Wu et al. [162] utilized a significance

22

map and quad-based deformation to put forward a general resizing framework for vi-

sualization. However, for complex elements in multiple layers, such as geographical

information and large graphs, the existing methods are still challenged.

Saliency map

In content-aware retargeting for both images and visualizations, the saliency map is

treated as a form of energy of pixels, which can be used to build an energy function,

such as shown by Wang et al. [145]. Itti et al. [60] took into consideration the human

visual system and denoted the significance of points from a natural image. They also

presented an effective feed-forward feature-extraction method to compute a saliency

map from it. Frintrop et al. [47] extended the work of [60] and computed the saliency

at the pixel level with high performance. Wang et al. [145] used the method explained

in [60] to assign a significance threshold to quads. Jänicke and Chen [61] proposed

an effective method to measure the visualization quality via a saliency map approach.

Wu et al. [162] combined a clutter map and a DOI map into a significance map, which

is another type of saliency map. Engelke et al. [41] studied fixation density maps and

showed that a saliency map can be generated by eye tracking devices. Zhang et

al. [173] used an anisotropic diffusion equation to further improve the accuracy of

saliency detection.

Achanta et al. [1] summarized five basic requirements for saliency detection and

proposed a simple implementation, called FT. FT could be easily extended to con-

sider multiple visual features in images. Goferman et al. [49] presented a novel

method to detect a context-aware saliency map that aimed to represent the dominant

objects in an image. They argued that the context of a region should also be consid-

ered to generate a more accurate saliency map and demonstrated that their approach

has potential applications in image resizing. Yan et al. [166] proposed a hierarchical

saliency detector that can generate a multi-layer saliency map for natural images. A

cellular automaton with different layers was used by Qin et al. [109] to detect saliency

among similar image patches. However, in information visualizations, the methods

23

of [49], [166], and [109] require further adaptation for visual saliency detection.

2.5 Visual Querying

For large-scale streaming data, interactive querying is essential to rapidly find useful

information. In this section, we review related methods on visual querying that in-

cludes content as follows: stream mapping, feature matching, querying interaction,

and query representation.

A frequently used data aggregation and organization method is kernel density

estimation (KDE), as presented in [125]. Many KDE-based studies have been pre-

sented to solve visualization problems. Hurter et al. [59] provided a KDE-based

visual clustering method to overcome the overlapping problem in complex graph

drawing. Cottam et al. [34] presented an aggregation process that enables the concise

expression of the alpha composition. An extension of KDE [96] has been presented

to further overcome the overdrawing problem in visualizing high-dimensional data.

However, the hidden details of the density map have not yet been discussed.

For feature matching, the popular SIFT [92] method can be adopted to generate

feature points from saliency maps generated by the data visualizer. However, this

method requires time-consuming calculations. In particular, if a saliency map in-

cludes fewer features, such as a smooth density map generated using KDE, SIFT is

not suitable for feature matching for the purpose of effective visual querying. More-

over, the main advantages of SIFT, such as detecting translational or rotating features,

cannot generally be used in visual querying because the querying areas are nearly al-

ways fixed relative to the streaming data. Similarly, other improved image matching

methods, such as those mentioned in [124], are also not suitable for solving the visual

querying problem.

Correll and Gleicher [32] introduced a sketch-based visual query framework for

the understanding and exploration of time series data. Recently, researchers have be-

gun to focus more on interactive querying for large-scale data due to the demand for

24

big data analytics. Ferreira et al. [45] constructed a spatio-temporal system that sup-

ports the interactive visualization of data patterns and potential details. Liu et al. [90]

provided an interactive querying method on a large-scale dataset. Their system can

support a rectangle-based interaction. Lins et al. [86] further presented nanocubes

to support very large geographical data querying and browsing and demonstrated

their system on a large Twitter location dataset. When the query results are spatio-

temporal data, the interaction in imMens [90] requires an improvement to better vi-

sualize them.

Numerous line-based visualizations can be adopted to present query spatio-temporal

data. CloudLines [68] is a suitable tool for visualizing event episodes in streaming

data. Although the representation of CloudLines is simple, it provides a suitable

timeline visualization tool to visualize the evolution of events. Other similar works,

such as Storyline [127] and StoryFlow [88], have also been presented to trace the

states of time-varying data.

2.6 Conclusion

This chapter presented the major methodologies that have been widely used in the

information visualization of large-scale dynamic data. We first presented the re-

lated frameworks of data processing and visualization. We then introduced the vi-

sual clustering theories. The common dynamic data representation approaches were

also discussed, including those for interpolation, variation feature tracking, and time-

line visualization. We then introduced the concept of content-aware resizing that has

commonly been used to preserve and enhance the important content when the size of

the display is changing. We finally summarized the related work of visual querying

and addressed real interactive applications on temporal data querying, especially on

spatio-temporal data.

25

CHAPTER 3

SMOOTH DYNAMIC VISUALIZATION OF

STREAMING DATA

3.1 Introduction

Research on streaming data visualization is becoming significant with the increasing

volume of time-varying data from areas such as social media networks, air quality

monitoring, GPS tracking, and real-time online retailing. When visualizing stream-

ing data, the two-dimensional point data model is the most commonly used model in

practice because most of the features in the data stream can be described as points

on a two-dimensional spatial grid, such as geographical locations, nodes in network

graphs, and atmospheric or environmental sensor data.

Scatterplots have been used to study two-dimensional data for many years, but

they suffer from overlapping (Fig. 1.2) when the data stream contains high-density

point structures. This problem is known as overdrawing, and it has become more sig-

nificant as the size of data has exploded. In addition, directly visualizing streaming

points as dynamic scatterplots without interpolation leads to a significant problem of

sudden sharp changes because visual continuities are missing between two scatter-

plots, as shown in Fig. 3.3(a).

To create visual continuity, conventional linear interpolation between two frames

is a practical solution. Nevertheless, when the data streams contain large variations,

this approach produces visual ghosting patterns, as shown in Fig. 3.3(b). In addition,

the information generated by linear interpolation does not always produce visually

acceptable trend patterns, particularly in point cloud regions. Therefore, a smooth

morphing (smooth blending) approach between frames is necessary to produce pat-

terns that are easier to observe and evaluate in data streaming visualization.

26

To address the above issues, we present a novel framework to represent streaming

points, called StreamMap (Fig. 3.1). StreamMap offers a smooth dynamic visualiza-

tion in large regions of point clouds, as shown in Fig. 3.3(c). We define the task

of streaming point visualization as both a density estimation problem and a prob-

lem in creating a smooth interpolation between a pair of frames that contain two sets

of points during a given time interval. Our method for visualizing the high-density

point streams is to morph the two frames smoothly, thus overcoming overlapping and

sudden changes in the dynamic visualization. Compared with prior algorithms, our

approach not only overcomes the overdraw problem in high-density point visualiza-

tions but also reduces the artifacts common in dynamic visualizations. In addition,

we also dynamically show the evolution of features in two frames.

Figure 3.1: The definition of StreamMap. We assume that points in a stream are
similar to moving darts and that the frame is the collection of darts on a projected 2D
plane representation, as shown at the top of the figure. Streaming data are organized
as a density map through data aggregation and density estimation. StreamMap’s
diffusion model supports the composition of sub-DMs between two density maps.

27

StreamMap is more suitable for streaming data with a “flow” nature. For ex-

ample, when the data sets are streaming photo locations, such as from Flickr.com,

interpolated sub-frames would not reflect valid states because the points of photo lo-

cations and the point clouds are normally independent. Hence, we assume that the

input data set of StreamMap has a “flow” nature. In addition, because our work fo-

cuses on the streaming point visualization, we assume that points in different frames

are not necessarily linked. A trajectory is an example of a linking data set. This

assumption is different from the related works of Willems et al. [154] and Andrienko

et al. [6]. Without the existence of point links, StreamMap conventionally offers a

smooth representation of changes.

We applied our method to three cases, all of which include 2-dimensional points

and have a “flow” nature. Nevertheless, these cases have their own characteristics.

Artificial data (Sec. 3.4.1) include explicit continuous point distributions; therefore,

we adopt artificial data to evaluate the effectiveness of the morphing approach. Be-

cause a crowd of people (Sec. 3.4.2) includes heterogeneous point densities, it was

used to demonstrate the density estimation method. Air pollution (Sec. 3.4.3) is more

unusual because the point positions are fixed at different time steps.

3.2 Definition

We assume that the streaming point data used for visualization were pre-accumulated

over a set of time intervals {t1, ..., ti}. The accumulated points within a given con-

sistent time interval ti can be defined as a frame Fi. We assume that the boundary

of each frame is fixed. The super kernel density estimation (SKDE) method is used

to transform a frame Fi into a density map Di through adaptive density estimation.

Each density map is a grayscale image with the same size.

In addition, we provide a robust method to smoothly morph between each pair of

density maps, such as from Di to Di+1. To simplify the notation, we define each pair

of density maps as I and T in our morphing model, as shown in Fig. 3.2. The input

28

u()x

x x+u()x

I T

Figure 3.2: An example of the density diffusion between two density maps. x means
a pixel in a density map, and u indicates the transformation value. I and T are a pair
of inputs in the morphing model.

to our method is a density map I , and T is the target density map. We assume that

the morphing process from I to T can be achieved by applying a transformation to

I . We define it as Iu, which transforms the input density map using the deformation

field function u(x),

u{I}(x) = I(x + u(x)),x ∈ Ω, (3.1)

where x indicates the position of a pixel in the density map, u can be written as

(ua, ub)
T , ua denotes the horizontal component, and ub denotes the vertical compo-

nent. Furthermore, we define the in-between density map (sub-DM) generated by the

morphing process between I and T as Si, where i indicates the in-between density

map index.

3.3 StreamMap

Our StreamMap model is constructed as follows:

(1) To overcome the overdraw problem, we propose a superpoint-based estimation

method called SKDE to achieve an accurate density map from a time period of

streaming point data. SKDE achieves an accurate density map by using adaptive

kernel selection with a fast point-clustering method.

(2) To create the visual continuity and solve the visual ghosting problem, we use a

29

(a) Visualizing two frames of points via scatterplots without an interpolation.

(b) Linear blending of two density maps.

(c) Smooth morphing of two density maps using StreamMap.

Figure 3.3: Smooth dynamic visualization compared with the scatterplot and the
linear blending methods. In-between frames of two scatterplots are blank, if no in-
terpolation is applied. The leftmost and the rightmost density maps are inputs of the
blending.

smooth process to dynamically visualize data streams.

(3) To identify and represent the trend in point streams, we design a trend represen-

tation that can help users obtain insights into the variation of point streams.

3.3.1 Super kernel density estimation

The super kernel density estimation (SKDE) approach for visualizing high-density

streaming point data uses single pixels to represent multiple data points. The basic

idea behind SKDE is to achieve an adaptive estimation of the density in a region

by aggregating the value of each influential point. For this purpose, we generate

point clusters called superpoints from the point set and assign clusters with different

estimated kernel sizes with respect to the point number in the cluster.

Adaptive kernel density estimation

We improve the prior KDE approach [71] by making it possible to estimate density

using adaptive bandwidth. The input of SKDE is a set of points F , and the output is

30

(a) Original points. (b) A density map estimated using KDE.

Figure 3.4: KDE result with fixed bandwidth. The number texts on the figure indicate
three different density points.

a grayscale density map D, where the size of the density map is defined as having

dwidth and dheight. In our experiments, dwidth is 1200 and dheight is 780. We

formulate SKDE as K(x), as follows:

K(x) =
1

n

n∑
j=1

1

hj

G(
|x−xj|
hj

), xj ∈ F, x ∈ F, (3.2)

where n is the number of points in the set F , G(x)= 1√
2π
e−

x2

2 is a standard Gaussian

kernel, and hj is the bandwidth of SKDE that defines the range of the kernel function.

Each point has its own bandwidth.

Traditional KDE with a fixed bandwidth suffers from the creation of artificial

blocks as shown in set-3 of Fig. 3.4(b) as there are some independent points in spa-

tial space. In addition, the KDE result in Fig. 3.4(b) shows a poor visual result

because medium-density points at set-2 were estimated with high density that is sim-

ilar to high-density points at set-1. Accurate manual bandwidth adjustment for each

frame may achieve a better visual estimation effectiveness. However, it is difficult

to achieve in a large-scale stream visualization. Hence, SKDE is more suitable for

estimating the density of streaming points because it provides automatic bandwidth

assignment.

31

Superpoint generation

The adaptive bandwidth setting is achieved through superpoint generation (SG),

which clusters the points into nearly uniform-area superpoints. SG is inspired from

the superpixel algorithms [110] and [2] used in the image processing field. Super-

pixel, which was first presented by Ren and Malik [110], is a method that can segment

an image into nearly uniform superpixels (from pixel level to region level). Because

each superpixel can represent its region, the difficulty of an image segmentation is

reduced to the region level. SLIC [2] is an improvement of the work of Ren and

Malik [110], which limits the search region to accelerate the superpixel generation.

We assign a bandwidth to each superpoint. All points inside the superpoint will then

be estimated with the superpoint’s bandwidth. Superpoints with high point densities

will be assigned larger bandwidths. Conversely, superpoints with sparse points will

be assigned smaller bandwidths.

(a) Initial regular grids. (b) Irregular grids.

Figure 3.5: Irregular grid division of the SG clustering methods.

We assume that F will be clustered into k superpoints. Initially, the points are

distributed to k regular superpoints (regular grids) of size 64, in which k initial su-

perpoint centers will be calculated. We can calculate k through k =
√

dwidth·dheight
8

.

The superpoint center is equal to the mean location of points inside the superpoint.

We assume that each point is in a 2D space. Each point will be assigned to its clos-

est superpoint by calculating the distances between it and its neighboring superpoint

32

centers. We then recalculate the superpoint centers and repeat the point assignment

process. When no points have moved to new superpoints with this iterative process,

the iteration stops.

We found that SG can achieve convergence for most point sets in 8 iterations;

therefore, we applied 8 iterations in our experiments. Then, we calculate the band-

width of superpoint shi as follows:

shi =
ni

ni∑
j=1

‖pij − ci‖
, i ∈ [1, k], (3.3)

where ni indicates the number of points associated with superpoint i, pij is a point

inside superpoint i, ci is the superpoint center, and
ni∑
j=1

‖pij−ci‖ is the variance of

points from their superpoint center. Because we assume that the points belonging to

the same superpoint have a consistent bandwidth, all point bandwidths (hj in Eq. 3.2)

can be achieved after calculating shi.

Finally, a grayscale density mapD for each frame can be generated using Eq. 3.2.

SG is an improvement of k-means [94] that exhibits improved performance because

the required distance calculations are reduced by limiting the search region. Fig-

ure 3.5(a) presents the initial regular grids of SG, and Fig. 3.5(b) shows an example

of the irregular grids in the SG process. Figure 3.6(a, b) shows a comparison of the

k-means and SG clustering methods. Each circle in Fig. 3.6(a, b) represents a cluster.

The circle size indicates the point number in the cluster. All cluster members are

linked with their cluster circle. As shown in Fig. 3.6(d), the SG method achieves a

better density map than the k-means method. Set-2 in Fig. 3.6(d) are estimated with

a medium density that is more accurate than the one in Fig. 3.6(c).

3.3.2 Smooth morphing

We now provide the details of our smooth morphing model. First, a basic morphing

model is proposed to solve the morphing problem. Second, we propose a helper

seed method to compensate for a weakness in the basic morphing model. We also

33

(a) K-means clustering result. (b) SG clustering result.

(c) Adaptive KDE result using k-mean method. (d) Adaptive KDE result using SG method
(SKDE).

Figure 3.6: A comparison of the k-means and the SG clustering methods.

further improve the effectiveness of the morphing process by overcoming density

nonconformity in the morphing process.

Diffusion model

Inspired by the Demons diffusion model [129], we formulate the morphing operation

between a pair of density maps as the following optimization problem:
δu

(n+1) = argmin
δu
{Ed(I, T, δu)︸ ︷︷ ︸

data

+ λEr(δu)︸ ︷︷ ︸
regularization

}

u(n+1) = u(n) + δu
(n+1)

, (3.4)

where Ed is a data term that guarantees the accuracy of the transformation, Er is a

regularization term that ensures the smoothness of the transformation, n indicates the

34

iteration step, u(n) is the transformation of the density map, and λ is a free parameter

used to adjust the smoothness. We define the data term, Ed, as follows:

Ed =

∫
Ω

∥∥∥Iu(n) + (∇Iu(n))
Tδu − T

∥∥∥2

dx, (3.5)

where T denotes the value in a target density map, Iu(n) denotes the value in a trans-

formed density map after applying the transformation u(n) to I , and∇ is the gradient

operator. ∇Iu(n) indicates (∂xIu(n) , ∂yIu(n))T, where ∂xIu(n) and ∂yIu(n) are two com-

ponents of∇Iu(n) . Iu(n+1) is defined as Iu(n+1) = Iu(n)(x+u(n+1)(x)). We then define

the regularization term, Er, as follows:

Er =

∫
Ω

‖δu‖2dx. (3.6)

By minimizing the functional E(δu) = Ed + λEr with respect to the vector

function δu, we can obtain δu(n+1). We define two components of δu(n+1), which

are δuy(n+1) and δuy(n+1). According to the theory of the calculus of variations,

the Euler-Lagrange equation of δu is obtained by setting E ′(δu) = 0, as shown in

Eq. 3.7.

E ′(δu) = 0⇒ (Iu(n) − T)∇Iu(n) + (∇Iun · δu)∇Iun + λδu = 0 (3.7)

δux
(n+1) =

T − Iu(n)

(∂xIu(n))
2 + λ

∂xIu(n) (3.8)

δuy
(n+1) =

T − Iu(n)

(∂yIu(n))
2 + λ

∂yIu(n) (3.9)

Here, we provide a detailed derivation of Eq. 3.8 and Eq. 3.9.

Let Ed =
∫
Ω

∥∥∥Iu(n) + (∇Iu(n))
T · δu − T

∥∥∥2

dx and Er =
∫
Ω

‖δu‖2dx, where ∇ is

the gradient operator. The denotation ∇Iu(n) is (∂xIu(n) , ∂yIu(n))T, where ∂xIu(n) and

∂yIu(n) are two components of ∇Iu(n) . Through minimizing the functional E(δu) =

Ed+λEr with respect to the vector function δu, we can get δu(n+1), namely, δu(n+1) =

argmin
δu
{Ed + λEr}.

35

According to the theory of the calculus of variations, the Euler–Lagrange equa-

tion of E(δu) is computed as follows.

Firstly, we introduce αη as a permutation of δu, where α ∈ R is a number, and η =

(ηx, ηy) is a vector function similar to δu = (δux, δuy). Let J(α) = E(δu+αη), where

δu and η are fixed. Then, according to the Gatuex derivation of E(δu), E ′(δu), is de-

fined byE ′(δu) =
dJ(α)
dα

∣∣∣
α=0

= 2
∫

Ω
[(Iun − T)∇Iun · η + (∇Iun · δu)(∇Iun · η) + λδu · η]dx.

The Euler-Lagrange equation ofE(δu) is obtained by settingE ′(δu) = 0, namely,

2
∫

Ω
[(Iun − T)∇Iun · η + (∇Iun · δu)(∇Iun · η) + λδu · η]dx = 0, for ∀η.

Then, the Euler-Lagrange equation of E(δu) is formulated as follows: (Iun −

T)∇Iun + (∇Iun · δu)∇Iun + λδu = 0, from which we can lead to the solution as

shown in Eq. 3.8 and Eq. 3.9.

From Eq. 3.7, we arrive at the solution as shown in Eq. 3.8 and Eq. 3.9. We set

the initial values as δu(0) = u(0) = 0 and Iu(0) = I . The iterative step in Eq. 3.4 can

be repeated until Iu(n+1) is nearly equal to T . We observed that 16 iterations are suffi-

cient for most morphing cases; therefore, we apply n = 16 in our experiments. Here,

λ is set to 0.4, which is an experiential value that can achieve a better smoothing.

In our implementation, we approximate the∇ operator using the following equa-

tions: {
gx(i, j) =

1
2
(D(i− 1, j)−D(i+ 1, j)),

gy(i, j) =
1
2
(D(i, j − 1)−D(i, j + 1)).

, (3.10)

where D(i, j) indicates the value at position (i, j) in the density map.

Helper seed

The diffusion model is subject to two constraints: an accuracy constraint and a

smoothness constraint. The accuracy constraint ensures that the value of a pixel

remains constant when it is moved from x to x + u(x), whereas the smoothness

constraint ensures that the displacement field of each pixel varies smoothly. How-

ever, in density maps created from streaming points, some morphing patterns may

36

not fulfill these constraints in a finite number of iterations.

As shown in Fig. 3.7, we summarize six basic morphing patterns for density

map morphing. The region with the blue color (called I) is defined as the original

region, and the red region (called T) is defined as the target region. Although we use

circles to present the original and target regions, the contour of morphed areas could

be curves or other irregular shapes. Because a complex morphing operation can be

divided into independent basic morphing operations, we focus only on these basic

morphing patterns.

As shown in Fig. 3.7(a,b), growth and contraction are the most common patterns.

Here, I completely belongs to T with respect to the growth pattern. Conversely, T

would completely belong to I in a contraction pattern. A cross pattern, as shown in

Fig. 3.7(c), means that I and T overlap. When I ∩ T = ∅, as shown in Fig. 3.7(d-f),

this diffusion model is inefficient. Finally, for the pattern in Fig. 3.7(d), it is difficult

to ensure that the diffusion animation fulfills the smoothness constraint when gaps

exist between I and T . For the examples in Fig. 3.7(e, f), the energy constraint is not

satisfied because the morphing is from empty to T or from I to empty. Therefore, an

optimized diffusion model is required to achieve smooth morphing.

Our approach for improving the diffusion model is to add some suitable seeds

into I and T to make sense of the I ∩ T 6= ∅ throughout the morphing process. By

adding the helper seed, each pattern in the bottom of Fig. 3.7 can be divided into

two patterns that match the top patterns in Fig. 3.7. For example, if we add two

helper seeds called ei and et to the moving pattern region (Fig. 3.8a), we obtain two

sub-patterns as shown in Fig. 3.8(b). Because these sub-patterns belong to common

patterns such as contraction and growth, the morphing process will work well. The

seeds required are normally quite small; hence, their visual influence on I and T is

negligible.

Because the highest density area normally plays an important role in visualiza-

tion, helper seeds could be generated in the saliency region of the density map, par-

37

Figure 3.7: Six morphing patterns. The blue region indicates the area in the original
density map. The red region shows the area in the target density map. A complete
morphing procedure for two density maps normally includes various morphing pat-
terns.

ticularly in the peak-value pixels. We adopt the steepest descent (SD) method [150]

(which is also known as gradient descent) to detect the peak pixels in a density map.

We define the steepest descent method as a function SD(X), where X is a density

map and the output is a set of detected peak pixels. E(SD) indicates a sparse density

map that only contains the pixels in SD. In addition, we use β as a free threshold

(with an empirical value of 0.6) to control the saliency regions. We assume that pixel

values larger than β are in a saliency region. We define Sr(X, β) as a density map

that only contains the saliency regions of a density map X . Hence, the helper seed

adding operation on I and T can be defined as follows:{
Is = I + E(SD(Sr(T, β)))

Ts = T + E(SD(Sr(I, β)))
(3.11)

We define the density maps with helper seeds as Is and Ts. Fig. 3.9 shows a result

of peak pixel detection on a density map using the steepest descent method [150].

Fig. 3.10 shows six morphing results using our seed-based morphing model (Is and

Ts are inputs).

38

I

T

e

e

t

i

Contraction GrowthMoving

I

T

s

s

(a) Original I and T .

I

T

e

e

t

i

Contraction GrowthMoving

I

T

s

s

(b) New Is and Ts with helper seeds.

Figure 3.8: After adding the seeds (ei and et), the moving pattern has been divided
into the contraction pattern and the growth pattern. Hence, the morphing process
from Is to Ts becomes feasible.

Overcoming density nonconformity

By adding the helper seeds, the diffusion model may still suffer from the density

nonconformity (DN) problem, as shown in Fig. 3.11(a). DN means that the final

morphing sequence will not match the target density map (T) using only limited

calculation iterations. As shown in Fig. 3.11(a), the DN problem makes it difficult to

obtain satisfactory morphing results. Figure 3.11(c), left, shows a magnified result.

DN is another weakness of the diffusion model. The reason for why DN occurs is

that the accuracy constraint (AC) is not fulfilled for some pairs of density maps. The

AC means that the variation in energy Eve =
∑
k∈P
|ik − tk|2 should nearly equal 0,

where P is the pixel set of the density map and ik and tk represent the density values

of pixel k in I and T , respectively. Figure 3.11(a) shows a pair of density maps

that will not fulfill the AC. The morphing result generated using the diffusion model

is consequently distorted, as shown in Fig. 3.11(a). Hence, an improved method is

required to overcome the DN problem.

In linear blending, although distortion and ghosting appear frequently in the mor-

39

Figure 3.9: A result of peak pixel detection on a density map using the steepest
descent method [150]. e0, e1, e2, and e3 are the detected peak pixels.

phing process, the final morphed density values are always close to the target density

map. Consequently, we present a hybrid morphing model that takes advantage of lin-

ear blending to overcome the DN problem. Combined with the diffusion model and

the helper seed method, the improved hybrid model can be formulated as follows:{
Si+1 = (1− (i

τ
)ψ)Siui

+ (i
τ
)ψT, S0 = Is

ui+1 = ui +
Ts−Siui

(∇Siui
)2+λ
∇Siui

,
(3.12)

where Si indicates the sub-DM of the morphing process, i is the iteration index, Is

is the input density map with helper seeds, Ts is the target density map with helper

seeds, Siui
= Si(x + ui(x)), τ is the number of iterations (initiated with 16), and

ψ ∈ [1,+∞] is a free parameter that is used to adjust the convergence speed to the

target density map. The smaller ψ is, the more artificial ghosting will appear. The

larger ψ is, the slower a target density map is achieved. ψ = 2 achieved satisfactory

results in our experiments. By taking advantage of linear blending, the density maps

used for morphing will satisfy the AC and will be close to the target density map

in the last morphing step. The better results generated via this hybrid morphing

model are shown in Fig. 3.11(b). We find that the sixth sequence of the morphing

40

(a) Growth

(b) Contraction

(c) Cross

(d) Moving

(e) Appearing

(f) Disappearing

Figure 3.10: Examples of six morphing patterns, each of which includes four sub-
-DMs. The left column shows the density map of Is, and the right column shows
the density map of Ts. After adding the seeds, all of the morphing processes become
feasible.

result, as shown in Fig. 3.11(c), right, is better than using the diffusion model without

overcoming DN as shown in Fig. 3.11(c), left.

The entire StreamMap algorithm is summarized in Algorithm 1. The input of

StreamMap is a pair of point sets, such as Fj and Fj+1. The output of StreamMap is

S, which is a sequence of smooth in-between density maps.

3.3.3 Trend representation

Dynamic smooth morphing, which is similar to a video, helps users notice the obvi-

ous trends in the flow of information. We designed a trend representation to improve

41

(a) Morphing results using the diffusion model [129].

(b) Morphing results using our method with density nonconformity overcoming.

(c) The one on the left is based on the diffusion model, and the one on the right
is based on our improved method. Clearly, the result on the left includes artifacts,
whereas the result on the right is smooth.

Figure 3.11: Figure showing density map morphing between I and T using two meth-
ods. In the final morphing step 6, our result is smooth and more similar to T than
using the diffusion model. Hence, our method is able to handle density nonconfor-
mity, with minimal artifacts.

user understanding of the variations between two density maps. The data source of

trend representation (TR) is based on a variational vector field, which is defined as

u in the smooth morphing model, where u is a vector set that presents the instanta-

neous velocity of each pixel on the density map. Each iterative calculation between

two density maps in the morphing model will generate an updated u. Based on the

generated vector field data, we designed an arrow-based representation called TR to

emphasize the trend variation. The basic TR design, as shown in Fig. 3.12(a), is sim-

ilar to the wind and current visualization. We define the basic visual element of TR

as a trend representation particle (TRP). Each TRP is represented by an arrow with

a special size and direction on a density map. We define csi as a sampling interval

pixel number that defines the distance between neighboring TRPs. Fig. 3.12(a) and

42

Algorithm 1 StreamMap algorithm
1: procedure STREAMMAP(Fj, Fj+1)
2: Dj ← SKDE(Fj)

3: Dj+1 ← SKDE(Fj+1)

4: I ← Dj

5: T ← Dj+1

6: Is ← AddSeedI(I, T)

7: Ts ← AddSeedT (I, T)

8: u0 ← 0, S0 ← Is, i← 0, λ← 0.4, τ ← 16, ψ ← 2

9: while i ≤ τ do
10: Si+1 ← (1− (i

τ
)ψ)Siui

+ (i
τ
)ψT

11: ui+1 ← ui + δ(ui, Is, Ts)

12: i← i+ 1

13: end while
14: return S = {S0, S1, ..., Sτ}
15: end procedure

Fig. 3.12(b) show two TR results with different csi values. In addition, as shown

in Fig. 3.12, a red TRP means an increasing trend, whereas a cyan TRP indicates a

decreasing trend. A white circle indicates no variation in the related region. The size

of the TPR indicates the intensity of the variation.

We further improved the TR design by presenting a non-linear trend representa-

tion (NTR) method, which enhances the visualization of the salient trend variation

and accelerates the rendering by reducing the number of explicit TRPs. We adopt the

density map to create an NTR distribution to enhance the trend content. The rules of

NTR distribution on the density map are defined as follows:

(1) We define u as a variation vector field between two density maps, I and T . Then,

d = T − I is defined as a difference density map.

(2) The sampling interval csi = (1−davg)(µ−ν)+ν is calculated, where davg is the

average density of I , µ indicates the upper bound of csi, and ν defines the lower

bound. In our experiment, we set µ to 30 and ν to 10. TRPs will be assigned

to a pixel on the density map one by one according to the sampling interval csi.

Figure 3.12(a) shows an example of a TRP distribution with csi = 10.

43

(a) Uniform distribution of TRP (csi = 10)

(b) Uniform distribution of TRP (csi = 20)

(c) Non-linear distribution of TRP

Figure 3.12: Trend direction representation.

(3) We define λ(‖uid‖) to determine whether a TRP, generated in the second step,

will be shown on the density map.

λ(‖uid‖) =

{
0, ‖uid‖ < θ

1, ‖uid‖ ≥ θ
(3.13)

In Eq. 3.13, id is the sampled pixel’s id, 0 means hiding the TRP on the density

map, and θ is a threshold. We assign θ with 0.001 in our experiments.

(4) The size of a TRP is calculated according to ‖uid‖.

(5) The color of the TRP is determined by the value of d. When did is positive, we

assign a red TRP; otherwise, we assign a cyan TRP.

44

Following the rules presented above, we visualize the NTR as shown in Fig. 3.12(c),

which enhances the salient region and improves the performance.

3.4 Use Cases

This section demonstrates usages for StreamMap. We show how to apply our ap-

proach to three large stream datasets. The first dataset is an artificial dataset, while

the other two are real-world datasets. Tab. 3.1 shows a summary of the experimental

datasets. The stream processing framework used in this work is VALID [74]. All

visualizations are implemented using JavaScript and the D3 [21] and Leaflet [72] li-

braries. All experiments were run using a Google Chrome browser on a MacBook

Pro with Intel Core i7 2.5 GHz CPU, 16 GB RAM, and Intel Iris Pro integrated

graphics.

To help the user explore and understand the streaming points easily, StreamMap

is visualized as a stream animation. A stream animation is designed to explore data

sequentially, similar to a video player, according to a time step. The user can switch

to each processed frame. To enhance the animation of the density map, we adopt

color mapping to indicate the different density scales in a sequence. The color range

is divided into a distribution of “warm” and “cool” colors in which warm colors,

such as dark red, are selected to indicate high-density areas and cool colors, such as

cyan and blue, are used to indicate low-density areas. The contrast between the warm

color and cool colors can draw users’ attention appropriately, as reported in [66].

To reduce the computational complexity of SKDE, we can aggregate points in the

same position as a point with a grayscale value in advance. Furthermore, because it

is time-consuming to estimate the densities of large quantities of points at the same

time, we were able to improve the speed of the SKDE calculations by rendering dif-

ferent sizes of pre-rendered Gaussian kernel images. Each Gaussian kernel image

will be blended with an alpha value (0.1 in our experiments) in the final implementa-

tion to accelerate the density estimation.

45

Table 3.1: Summary of datasets used in experiments.

Dataset
Records

(Millions)
Period
(Date)

Data
Interval

Elements

Artificial
Data (AD)

93.6M
07/2016-
07/2016

6 seconds Point

People
Crowd (PC)

189.3M
07/2015-
08/2015

1 minute
People

Location
Air Pollution

(AP)
11.2M

03/2016-
04/2016

1 hour
Location,

AQI

3.4.1 Artificial Data (AD)

We use Perlin noise (PN) [106] to artificially generate a variety of time-varying point

sets to test and evaluate the StreamMap method. PN is frequently used to create

natural object surfaces in the field of computer graphics; however, we use it here to

make the two-dimensional testing points more realistic than random points.

Figure 3.15 shows a comparison of the clustering results of a large-scale AD

frame. We find that SKDE can achieve higher accuracy result than using the k-means

method, as shown in Fig. 3.15(c). Figure 3.13 shows an example of the morphing re-

sult (some of the morphing sequences are selected). Figure 3.13(a) shows sequential

point sets generated using the Perlin noise method. We applied the SKDE method

to frame0−16 to create DM0−16, as shown in Fig. 3.13(b). In this case, we apply

the morphing model to a pair of generated density maps: DM0 and DM16. The re-

maining DMs (from DM1 to DM15) are used as benchmarks to evaluate the effect

of the morphing model. Our morphing results (sub-DMs) are shown in Fig. 3.13(c).

The results are smooth and contain less artificial ghosting compared with the result

using the linear blending method, as shown in Fig. 3.13(d). In addition, our mor-

phing result is similar to the benchmarks, as shown in Fig. 3.13(b). We highlight a

smooth morphing density map with the corresponding frame in Fig. 3.14(a), which

demonstrates that the morphing results closely match the point sets. In Fig. 3.14(b),

we highlight the artifacts generated using the linear blending method.

46

(a) Frames generated using Perlin Noise method.

(b) Density Maps (DM 1-15 are benchmarks).

(c) Morphing results using our method (DM 0 is I and DM 16 is T).

(d) Results using Linear Blending (DM 0 is I and DM 16 is T).

Figure 3.13: Estimated density maps according to the artificial data (AD).

The similarities between benchmarks and sub-DMs will be calculated to evaluate

the morphing effectiveness as presented in Sec. 3.5. When sub-DMs are similar to

benchmarks, we consider that the morphing model has achieved a good result.

3.4.2 People Crowd (PC)

Our method can easily be applied to visualize the flow of people. We collected a

set of locations of people in the center of Shanghai City from the Easygo website.

The dataset was collected per minute over ten days. To demonstrate the performance

of StreamMap, we integrate the people locations from one hour into a frame and

then generate a total of 24 frames to create one full day of data. Each frame will

be converted to a density map using SKDE. Figure 3.16(b) shows a density map

generated using the SKDE method with adaptive kernel sizes. Figure 3.16(c-d) shows

47

(a) 5th in-between DM merged with frame 5
(Our method).

(b) 5th in-between DM (linear blending).

Figure 3.14: The morphing result according to the artificial data (AD).

the results of the KDE method with coincident kernel sizes. Figure 3.16(c) (KDE

with a small kernel size) shows unclear salient regions, whereas the result will appear

over-estimated, as shown in Fig. 3.16(d), when the kernel size is large. Compared

with the KDE results, the SKDE method automatically assigns a suitable kernel size

for the detected clusters to avoid obtaining artificial results. The SKDE method also

avoids the problem of having to manually adjust the kernel size frequently to estimate

the density of streaming data. Consequently, the most crowded regions at different

time periods can be accurately estimated using StreamMap. For example, we can

clearly find the most crowded regions at the center of Shanghai in Fig. 3.16(b). In

addition, the estimated crowded regions are more independent than those when using

the KDE method. It is easy to enhance the variety when two density maps used in a

morphing process involve independent regions.

In addition, StreamMap provides a smooth crowd flow movement; thus, a user

can easily detect the trends of the people flow. Figure 3.17 shows smooth morphing

results on 25 July 2015 at East Nanjing Subway Station (the left rectangle region in

Fig. 3.16a). In Fig. 3.17, we observe that people are moving toward the southwest exit

48

(a) Original point data and corresponding density map using KDE.

(b) K-mean clustering result and corresponding density map using KDE.

(c) SG clustering result and corresponding density map using SKDE.

Figure 3.15: A comparison of the clustering results of a large-scale AD frame.

from 13:00 to 14:00. Moreover, there are two different crowds of people that appear

in the northeast and southeast. From 21:00 to 22:00, the flows of people at East

Nanjing Subway Station are stable, whereas people at the northeast are increasing.

Figure 3.17 also shows the crowd variations of people at the Bund (the right

rectangle region in Fig. 3.16a), which is a famous attraction in Shanghai. There are

two crowds of people at the Bund; one is stable and the other is decreasing from 13:00

to 14:00. From 21:00 to 22:00, the upper people crowd at the Bund is decreasing and

the lower one is increasing.

Because the center of Shanghai includes many tourist attractions, knowing the

crowd situation around the different destinations can help tourists design their travel

49

(a) People locations (b) SKDE with adaptive kernel size

(c) KDE with small kernel size (d) KDE with large kernel size

Figure 3.16: Estimated density maps according to the collected PC data between 1:00
PM and 2:00 PM on 25 July 2015.

plans and avoid congestion at peak hours. Similarly, knowing the directions in which

moving crowds diffuse could help urban designers optimize routes and traffic flows.

3.4.3 Air Pollution (AP)

Air quality has severe adverse health effects on a large percentage of the population

as the air quality index (AQI) increases. The AQI is used to indicate how polluted the

air is. Air pollution in one area may affect neighboring areas. There are nearly eight

thousand air quality monitors in the world. Each record from each monitor is visu-

alized as a colored flag at aqicn.org. However, the current air pollution visualization

tool at aqicn.org suffers from the overlapping problem, as shown in Fig. 3.18(a). In

addition, dynamic representation of AQI data is a difficult challenge.

Using the StreamMap method, we can generate smooth air pollution diffusion

50

Figure 3.17: Morphing results of the people flow visualization between two time
steps. The left and right columns are the input density maps. In-between four
columns are transition sequences selected from the iterative morphing operation.

animations to aid viewers in understanding the distribution and variation of air pollu-

tion. We collected the AQI records from aqicn.org every hour over a forty-day period

from 12 March 2016 to 26 April 2016. The basic elements in each AQI record are

the monitor location and the AQI value. Figure 3.18(a) presents an example of the

distribution of air quality monitors in China. Using the StreamMap model, we can

visualize the streaming AQI data as continuous density maps superimposed over a

geographical map.

As shown in Fig. 3.18(a), it is difficult to obtain useful sequential information

from the static flags because they overlap. When the display is small, the overlap-

ping problem will be more serious. In addition, if the flags are directly browsed frame

by frame, then the transformation between frames is not smooth. Figure 3.18(b)

shows the air pollution density map estimated from Fig. 3.18(a) through SKDE. Fig-

ure 3.18(b) also shows the air pollution diffusion trend. From the blue rectangle in

Fig. 3.18(b), users can easily observe that the air pollution in Beijing is increasing and

will diffuse to the surrounding areas. The red rectangle shows the increasing air pol-

51

(a) Original AQI visualization visualized at aqicn.org.

(b) Improved AQI visualization with density map and trend repre-
sentation.

Figure 3.18: Comparison of two air quality visualization methods.

lution trend in Shanghai. The pollution from Shanghai may affect Anhui Province to

the west of Shanghai. Fig. 3.19(a) shows 5 trend representations at East China at dif-

ferent time steps, which help convey the air pollution density, the density variations,

and the diffusion directions. Fig. 3.19(b) shows a variety of smooth air pollution

sub-DMs. Both smooth sub-DMs and trend representations can help users notice an

obvious distribution of the air pollution data.

3.5 Evaluation and Discussion

Fig. 3.20 shows the average SKDE time cost in our test. The size of the generated

density maps in the tests was 1280×960. The inputs for SKDE are the high-density

52

(a) Trend representations at East China from 19 April 2016 to 23 April 2016.

(b) Smooth morphing results at East China between 20 April 2016 and 21 April 2016.

Figure 3.19: Air pollution visualization using StreamMap.

random 2D points over the fixed area. The generation of these random 2D points was

discussed in Sec. 3.4.1. For each point density, we generated ten random frames for

the performance tests. K is set to 300 in the SKDE performance test. As shown in

Fig. 3.20, SKDE with the superpoint method can finish on average in near real time.

Moreover, we found that as the point number increases non-linearly, SKDE shows

a nearly linear increase in computation time. Compared with the slower k-means

method, the SKDE with the superpoint method achieves higher performance, thus

making SKDE suitable for large-scale and high-density point visualizations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10,000

20,000

40,000

80,000

160,000

320,000

Average Time Cost (s)

P
o

in
t

C
o

u
n

t

K-means Superpoint

Figure 3.20: Time cost of the SKDE method with different data sizes (the dataset
used is AD as shown in Sec. 3.4.1).

We also computed the structural similarity (SSIM) to evaluate the morphing effec-

tiveness. SSIM was used as a structure similarity measurement between two images,

53

as discussed in the work of Wang et al. [147]. SSIM is more consistent with the visual

perception of a human than peak signal-to-noise ratio (PSNR) [149]. More similar

density maps achieve higher SSIM scores. We selected 170 continuous frames from

the AD dataset in Sec. 3.4.1 as the testing dataset to evaluate the morphing effec-

tiveness. SKDE was used to generate sequences of density maps according to the

selected frames. We defined 17 density maps as a group, in which the first and the

last ones are the inputs of the smooth morphing model (I and T). We used the re-

maining ones as benchmarks. Overall, our testing data included 10 groups. For each

group, 15 sub-DMs were generated using the morphing methods from 15 iterations.

We define two measurements to evaluate the effectiveness of the morphing process

according to the selected testing data.

For the first measurement, we define the SSIM of an in-between density map and

a benchmark density map as a morphing accuracy rate (MAR). MAR is used to eval-

uate the morphing accuracy. Figure 3.21(a) shows the MAR results obtained using

three different methods: linear blending, diffusion model [129], and our method. As

these results show, our smooth morphing results closely match the benchmarks.

Another measurement is called morphing completion rate (MCR), which defines

the SSIM of an in-between density map and a target density map (T). MCR is used

to evaluate whether a morphing operation will be performed in finite iterations. If

an in-between density map is similar to a target density map (T), then the MCR will

be close to 1. Figure 3.21(b) shows the MCR results obtained using three different

methods. These results show that our method achieves the best MCR and that the

diffusion model method requires more iterations to finish the morphing.

Measurements of MAR and MCR show that our method achieves a better mor-

phing effectiveness than the other two methods. StreamMap is also user-friendly

because the smooth morphing is finished in 16 iterations, whereas the diffusion

model [129] suffers miss-convergence in 16 iterations.

54

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
A

R

Iteration

Benchmark Linear Blendering Diffusion Model StreamMap

(a) Comparison of the morphing accuracy rate: SSIM values of a benchmark DM and an
in-between DM generated using different methods.

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
C

R

Iteration

Target DM (T) Linear Blendering Diffusion Model StreamMap

(b) Comparison of the morphing completion rate: SSIM values of a target DM (T) and an
in-between DM generated using different methods.

Figure 3.21: Comparisons of the morphing effectiveness using two measurements.

3.6 Conclusion

This chapter presents a new method for dynamically visualizing high-density stream-

ing points called StreamMap. After a comprehensive overview of the related work,

such as scatterplots and linear blending, we show how these techniques lead to the

significant problem of sudden sharp changes and ghosting occurring in dynamic vi-

sualizations. Then, we present the SKDE method to adaptively cluster the high-

density points into regular density maps. We present a novel diffusion-based algo-

rithm to implement smooth morphing between two estimated density maps. Finally,

we introduce a method of trend representation that can enhance the visualization of

StreamMap. The experiments demonstrate the scalability of our method. For visual

analysis, changing patterns can easily be detected through StreamMap’s visualiza-

55

tions.

A future direction of exploration is to visualize the evolution of high-density fea-

ture regions to provide an overview of long-period streaming data. High-density

features in different frames will be generated by StreamMap, and the visualization

could be further complemented with Sankey flow diagrams, as shown in the works

of Sebastian et al. [121] and Landesberger et al. [140]. Many other applications can

easily be configured to work with StreamMap, such as crowding effects in congested

public urban transportation systems. Andrienko et al. [6] presented a good method

tailored for visualizing and analyzing trajectories concerning routes of people. We

believe that our method could be combined with the method of Andrienko et al. [6]

to address streaming trajectory data in the future.

56

CHAPTER 4

MODULE-BASED LARGE-SCALE GRAPH

VISUALIZATION

4.1 Introduction

Graph connectivity patterns allow us to discover and isolate points of interest in mas-

sive networks which are otherwise difficult to spot visually on current displays. How-

ever, the effect of large network visualization is often limited to the size of the dis-

play [178]; thus directly visualizing them will cause an overlapping problem.

The primary objective of large network visualization is the understanding of

global and local patterns in dynamic graphs such as connectivity bundles, cluster-

ing, boundary formations, and expansions. Zinsmaier and his colleagues [178] are

inspired by the Level-of-Detail (LOD) techniques in the computer graphics disci-

pline and introduce a straight-line graph drawing that can be rendered interactively

with different levels of detail to visualize large-scale graphs. Because display systems

have finite area and are physically limited both in size and spatial dimensions for vi-

sualizing large graph structures, a multi-screen solution is adopted in [27]. However,

the multi-screen approach imposes restrictions on spatial layouts and interactions.

A practical approach to displaying a large-scale network is partitioning the net-

work according to well-defined domain-dependent attributes. However, graph visu-

alization in the presence of incomplete information is an open challenge and appli-

cations in this area can be found in abundance. To better visualize and understand

patterns in large-graph discovery, we focus on the representation of local patterns.

This is a critical step in deciding the structural components of a graph visualization.

For the representation of community networks, Blondel et al. [19] and Ros-

vall [115] discuss in detail community aggregation. They aggregate the nodes of

57

a community into a super-node. A machine learning method, such as Belief Propa-

gation [56], is adopted to explore large graphs. In addition, Dunne et al. [39] improve

the graph visualization readability by drawing different glyphs. Wu et al. [161] utilize

Voronoi maps to enhance the community visualization. Compared with the previous

methods cited above, our method focuses on designing a module for anticipating the

visual effects of the final visualization layout for large-scale networks.

In this chapter, we present the Module Graph, a flexible large-scale graph visual-

ization framework that aggregates the community of large graphs into modules. We

first address the problem of module-based graph visualization by introducing a graph

modularity measure. Second, a graph simplification method is adopted to accelerate

the module detection. Third, each graph pattern in the module is analyzed using the

k-clustering method to enhance the module visualization. Fourth, the visualization

of Module Graph is constructed by (a) building a module-based graph that indicates

the basic structure of the original graph and (b) identifying the sub-graph patterns.

We use a symbolic signature instead of a simple node in the community graph. Fi-

nally, our experiments on real social networks and spatial networks show that Mod-

ule Graph can effectively transform large graph data into recognizable patterns and

shapes that reveal significant structural and topological information.

The remainder of this chapter is organized as follows. We present the details

of our Module Graph approach, including the mathematical model and the visual de-

sign, in Sec. 4.2. We describe the experimental study to demonstrate the effectiveness

of the presented approach in section 4.4. In Sec. 4.5, we further discuss the perfor-

mance of our methods. Finally, in Sec. 4.6, we conclude our work and present future

research directions.

4.2 Module Graph

We define the visualization of large-scale networks as a problem of module detection

and clustering. Figure 4.1 is a simple example of module detection. The input of our

58

framework is the network data and the corresponding number of edges and nodes.

First, we aggregate the nodes into modules through modularity measuring. Second,

we abstract the features of detected modules and assign the modules with different

patterns using a k-clustering method. In this step, we design five patterns to approx-

imatively represent the structure of the module. Finally, the detected information is

visualized according to the module design.

Figure 4.1: A simple example of module detection and Module Graph.

Our method, called the Module Graph, can be viewed as an abstraction of a large

graph. The right part of Fig. 4.1 is an example of Module Graph. The topology

of a large graph is indicated by G = (V,E), where V = [vT0 ,v
T
1 , ...,v

T
n], (vi ∈

R2) denotes the vertices and E denotes the undirected edges. The Module Graph is

defined as Mg = (M,E), where M = [mT
0 ,m

T
1 , ...,m

T
n], (mi ∈ R2) denotes a set

of modules and E denotes a set of undirected edges, where each edge has a weight

of w = |E|. Each m is a vector with several features such as the module pattern,

sub-node count, and sub-link count.

Overall, each module can be considered as a community in the graph. Hence,

a community detection method called Modularity Classes, as described in [99], can

be adopted to find the communities from a large graph. The method of community

detection is better than the k-means clustering method because the assignment of k is

not required in advance. A further improved method for community detection, called

the Louvain, reduces the calculation of the modularity. This has been shown to be

effective for large-scale community detection by Blondel et al. [19]. The process of

59

finding the modules consists of maximizing the modularity of the linked nodes. The

modularity measure Q can be defined as [99]:

Q =
1

2m

∑
i,j

[
Wij −

kikj
2m

]
λ(si, sj) (4.1)

where Wij indicates the linking weight of node i and node j; ki and kj denote the

counts of linked nodes on node i and j, respectively; m indicates the sum of all link-

ing weights; and the function λ(i, j) denotes whether two nodes belong to the same

community. The range of Wij is [0.0, 1.0]. Parameter λ(i, j) is set to 0 when node i

and node j belong to different communities. Otherwise, λ(i, j) is set to 1.

Historically, researchers have paid less attention to community detection on spa-

tial networks. An example of a spatial network is a geographical network such as

airlines around the world. We further consider the distance feature for a spatial net-

work by modifying Equation (4.1). The link with a longer length will contribute less

modularity. Hence, the improved modularity measure Qd can be defined as follows:

Qd =
1

2m

∑
i,j

[
Wijdistij

−α − kikj
2m

]
λ(si, sj) (4.2)

In Equation (4.2), the value of α indicates the network type. The type could be 0

or 1, respectively denoting a non-spatial network or a spatial network. distij denotes

the Euclidean distance of two nodes in a spatial network. In a non-spatial network,

the value of distij is 1.

The calculation of Modularity Classes [99] for a large-scale graph is time con-

suming. Although the Louvain method [19] achieves a high performance, its preci-

sion is lower than that of Modularity Classes. We present a hybrid modularity-based

method to utilize the two addressed methods. Our method is based on the modularity

and is suitable for calculating the modules of a large-scale graph. We can define the

hybrid modularity Qh as follows:

Qh =

{
Qd, (cv + cl) ≤ ε

Qd
′, (cv + cl) > ε

(4.3)

60

(a) Original network (b) Community-based aggregation

Figure 4.2: Visualization of a simplified large network.

In Equation (4.3), cv denotes the vertex count of the graph, cl denotes the edge

count of the graph, and Qd
′ is a high-speed community detection measure that re-

moves the function of λ(si, sj). Although λ(si, sj) removal will slightly affect the

accuracy of community detection, it makes sense of the community detection of a

large-scale graph. ε ∈ (0,+∞) is a parameter that decides which measure will be

used. The setting of ε is performed based on the computer configuration, namely the

available CPU and RAM. In our experimental environment, we set ε as 0.1 million

to achieve interactive visualization when the input network is a large-scale network.

If the experimental computer is more powerful than ours, the user can increase ε to

achieve more accurate results.

Using the hybrid modularity-based method, we can effectively detect the com-

munities of a large-scale graph, as shown in Fig. 4.2(left). Different communities

are assigned different colors. To observe the graph clearly, each community can be

replaced with a single node, as shown in Fig. 4.2(right). A simplified community

graph allows the user to easily realize the clear structure of the original graph.

When the module sizes become very large, the simplified community graph may

remain unsatisfactory on a limited display. Our Module Detection method can be

extended using the hierarchical module method. A hierarchical module means that

the detected communities in the previous detection process can be considered as the

61

input of a new community detection process.

For hierarchical module detection, we define the iteration of module detection as

i, with a default value of 1. Screen width and height are defined as w and h. If the

number of nodes in the input network is far greater than ηwh, we increase the module

iteration of i until the node count in the new graph is equal to or less than ηwh. η is a

free parameter that reflects the blank space of the module visualization in the display.

In our experiment, we set η as 0.3, w as 1440, and h as 900.

4.2.1 Pattern definition

(a) Tree-connection (b) Concentration (c) Circular (d) Low-connectivity (e) Full-connectivity

Figure 4.3: The five types of graph modules.

To further gain insight into modules, we analyze the module patterns. Wer-

nicke [151] presented a method to detect motifs in a large network. Motifs indicate

the link patterns in the graph. Unlike motifs, we calculate several pattern factors to

analyze each module type according to its internal graph, as well as other significant

features such as module size, linking weight, visibility, and occupation percentage.

An internal graph represents the structure of the module.

To simplify the module representation, we classify the modules into five agent

patterns. The design of agent patterns is according to the most common network

structures as presented in network structure theory [164]. Fig. 4.3 shows our de-

signed patterns: tree-connection, concentration, circular, low-connectivity, and full-

connectivity. The tree-connection pattern indicates that the graph is extended from a

node and that some children of the root still contain the children. The concentration

pattern indicates that all children nodes are connected to the root and that each child

62

(a) Tree-connection patterns (b) Concentration patterns

(c) Circular patterns (d) Low-connectivity patterns

(e) Full-connectivity patterns

Figure 4.4: Examples of graph modules: for each example, we show the agent pattern
on the left, and example cases on the right.

does not have other connections. The circular pattern indicates that each node in the

graph only has two links. The full-connectivity pattern is a complete graph. The

remaining structure of the graph will be classified as a low-connectivity pattern. We

define the patterns in Fig. 4.3 as the agents to represent other similar structures. We

show some cases of similar structures of the agent patterns in Fig. 4.4. The right part

of each sub-figure shows some graph cases of the related patterns. The method of

mapping the graph to agent patterns will be discussed in Sec. 4.2.2.

63

4.2.2 Pattern detection via k-clustering

We present a k-clustering method to detect the pattern type of each module. To

classify the module into the agent patterns that we have defined, we abstract three

features for each module. The feature vector can be defined as vf = [α, β, δ]. We

define the number of connected nodes for a node as c. By following the pattern

design, we can denote α = max(ei)∑
ei

, β = count(ei=2)
n

and δ = 1
n
count(ei >

n
2
), where

ei denotes the neighbor count of node i and n denotes the node count of the module.

We propose a k-clustering method to approximately generate the clusters accord-

ing to the module feature vector. Each cluster includes the modules with the same

pattern. The proposed clustering method includes five steps. First, vf is calculated for

each module. We define each module as a node in our method and consider vf as a 3-

dimensional position. Initially, all the nodes are not assigned to any cluster. Second,

the cluster count (k) is initialized as 5 because we have designed 5 types of agent

patterns for visualization. Third, 5 nodes that match 5 agent patterns are selected,

and their positions are assigned as the cluster centers. The selection method can fol-

low the agent pattern definition. Hence, we can obtain 5 initial clusters. Each initial

cluster only contains one node. Fourth, the remaining nodes will be assigned to the

closest cluster by calculating the distance between its position and the other cluster

center. Fifth, the mean position of the cluster’s nodes is calculated and defined as the

new cluster center.

The fourth and fifth steps should be repeated until the sum of the distances D is

minimized. D is defined as D =
i<k∑
i=0

j<count(i)∑
j=0

dist(pij, ci), where pij indicates node j

in the cluster i, ci indicates the cluster center of the cluster i, and dist is the distance

calculation function. Figure 4.5 presents an example of 5 cluster distributions in

the 3-dimensional space after the k-clustering process is completed. Colored circles

denote the cluster centers.

64

Figure 4.5: An example of k-clustering. The color indicates the pattern type.

4.2.3 Visual design

The basic Module Graph layout can be calculated using a direct-force algorithm to

ensure that each module will not be overlapping with other modules. The main idea

of our visual design for Module Graph is to attempt to visualize the specific patterns

instead of the crowd nodes in a large graph. The visual elements of each module

include a circle with a different radius called mc, an outside orbit with a different

percentage called mo, an icon called mp that indicates the module pattern, and a set

of edges calledme that connect the related modules. Each edge between modules has

a different width according to the weight. Fig. 4.6 gives a description of the Module

Graph design.

We choose the color themes from the Google Color Palette [50] to represent dif-

ferent modules. Because the color types are limited, the number in the center of the

module can be used to indicate the id of the module. When the module graph remains

large scale after simplifying the original graph, we design a chord diagram to assist in

module visualization. A chord diagram is adopted to present the module relationship

and distribution through the circle layout according to the importance weight of the

65

Figure 4.6: Visualizing the Module Graph design.

module. The importance weight can be defined according to the neighbor count of

a module. The outside circle’s color indicates the pattern type. The importance per-

centage of a module and the relationships among modules can be easily determined

via a chord diagram, as shown in Fig. 4.7.

4.3 Super Module Graph

When the graph network data is large-scale and time-varying, it is very difficult to

keep the content information stable due to the layout complexity and temporal vari-

ation. Feng et al. [44] presented a smooth streaming graph visualization approach

to ensure both the temporal coherence and preservation of important content; how-

ever, the smooth visualization of a large-scale time-varying graph has not been in-

vestigated. Based on the idea of Module Graph, we further present a module-based

method for dealing with large-scale time-varying graph visualization that avoids ar-

tifacts such as abrupt changes or popping. Since this approach is inspired by a super-

graph idea [36], we titled it Super Module Graph (SMG).

The super-graph is a method to aggregate various graphical data together to create

66

Figure 4.7: The chord diagram representation of Module Graph.

an overview of the whole structure of graphs. We define the streaming graph data at

different time steps as Gt = (Vt,Et) and SG = (SV,SE) as a super-graph, where

SV = {V1∪V2∪...∪Vn}, SE = {E1∪E2∪...∪En}, and t ∈ T = [1, n]. The super-

graph not only represents the relationships between different time-varying graph data

but also simplifies the graph layout smoothing. Feng et al. [44] used the super-graph

approach to smooth the dynamic graph visualization; however, when the super-graph

is large-scale, it will exceed the screen display, thus causing an overlapping problem.

Hence, we consider applying the community detection method on the super-graph

and generating a super community graph. Then, the communities will be assigned

for the graph data at each time step according to the super community graph. In

the visualization part, we use Module Graph to indicate the graph data at each time

step, thus converting a time-varying graph visualization problem into a time-varying

Module Graph visualization problem. When the graph communities at different time

steps are detected, we calculate their module types to generate a SMG. Since each

module in the SMG has a fixed position according to the super community graph,

the sudden change of the module variation can be overcome through a linear module

blending. Figure 4.9 shows a pipeline of the SMG generation.

The representation of the SMG in our design is a smooth Module Graph anima-

67

(a) Module Graph of Facebook network. (b) Chord diagram of Module
Graph for Facebook network.

(c) Module Graph of DBLP network. (d) Chord diagram of Module
Graph for DBLP network.

Figure 4.8: Visualizing social networks by Module Graph and Chord Diagrams.

tion that visualizes the large-scale graph through graph structure abstraction. SMG

consists of sequences of Module Graphs. Since the pattern of each module is re-

stricted to five types with similar node positions, as shown in Fig. 4.3, the morphing

between two different modules should be feasible, as shown in Fig. 4.10. Since the

size of each module will be different in a real SMG animation, we first enable the

module type morphing with the same size and then enlarge or shrink the module size

to ensure the smoothness of the animation.

68

Figure 4.9: A pipeline of the SMG generation.

Table 4.1: The selected social network datasets.

Datasets Nodes Edges Module
Brief
Modules

Facebook 4,039 88,234 16 -
DBLP 317,080 1,049,866 442 -
Youtube 1,134,890 2,987,624 9821 8
Orkut 3,072,441 117,185,083 1969 244

4.4 Experimental Study

4.4.1 Social network

We select several large social network datasets from SNAP [73] which is a data li-

brary for analyzing large information networks. The selected social network dataset

is from Facebook, DBLP, YouTube, and Orkut, as summarized in Table 4.1. The

visualization results of Module Graph for these network data are shown in Fig. 4.8.

From the results, we can find that the module patterns can be directly presented with-

out any other interactions. From Fig. 4.8(a), we can find that most of the module

structure of the Facebook network is a concentration structure. A high percentage of

concentration modules shows that most of the people on Facebook like to follow the

hot people. Fig. 4.8(b) is an assistant representation of Fig. 4.8(a). The outer circle

in Fig. 4.8(b) shows the percentage of each module type. Each chord at the outside

circle represents a module. The inside part shows the connection of each module.

69

(a) From tree-connection to concentration.

(b) From concentration to circular.

(c) From circular to low-connectivity.

(d) From low-connectivity to full-connectivity.

(e) From full-connectivity to tree-connection.

Figure 4.10: Morphing between two types of Module Graphs.

Fig. 4.8(c) shows the Module Graph of DBLP data. The DBLP data include the

paper citation relationships of the researchers. Because there are many modules in the

final result, we hide the outside circle of the Module Graph. From Fig. 4.8(c), we find

that the module pattern appearing most often is the tree-connection pattern. When

the user clicks the module, as shown in the red rectangle of Fig. 4.8(c), the related

relationship of the selected module can be presented through a chord diagram, as

shown in Fig. 4.8(d). The bottom part of Fig. 4.8(d) presents the pattern types.

For large-scale networks, the hierarchical Module Graph representation as shown

in Fig. 4.12 produces a clearer visual representation which can aid significantly in

querying and visual selections. The left side of Fig. 4.12 shows the visual results

70

Figure 4.11: An example of the morphing animation between two types of Module
Graphs with size changing.

Figure 4.12: Hierarchical Module Graph of YouTube social network.

without the hierarchical process. Because the detected modules are beyond the screen

size, we create a new Module Graph by making the previous Module Graph as the

input graph. The right side of Fig. 4.12 is the hierarchically processed result.

To further describe the information of the Module Graph, we adopt box plots to

show the type distributions of the modules, as shown in Fig. 4.13. Fig. 4.13 is related

to the module information of the Orkut network. The five box plots in this Fig. 4.13

represent the five agent pattern statistics of the Module Graph. Each box plot includes

Figure 4.13: Visualization of the size distribution of modules via box plot diagram
for the Orkut network.

71

five values: maximum, second maximum, median, second minimum, and minimum.

(a) Original visualization of the airline network.

(b) ModulGraph representation of the airline network.

Figure 4.14: The spatial network of U.S.A. airline flights for a given period of time.

4.4.2 Spatial network

For the case study of a spatial network, we select a dataset with a massive number of

flight records in the United States [152] in 2008. There are nearly 0.6 million flight

lines, which are related to 3374 airports. Figure 4.14(a) is the original visualization

of the airline network. By comparison with the simple representation, our method’s

result as shown in Fig. 4.14(b) represents the airport community distribution and the

bundling airlines. In this case, the outside circle denotes the number of neighboring

airports. The airline count inside the module is presented via the size of the inside

circle. The pattern icon for each module represents the sub-network structure of

the detected area. The information presented through Module Graph can help data

analyzers acquire the important patterns from a large-scale network. For example,

72

the air traffic northwest of New York State can be easily observed from Fig. 4.14(b).

4.4.3 Streaming graph data

For the cast study of the streaming graph data visualization, we artificially create

various sequences of graphs. We apply the SMG method on the artificial graph data

and compared the result with the visualization result without using SMG as shown in

Fig. 4.15.

(a) t0 (b) t1 (c) t2 (d) t3

(e) t0 (f) t1 (g) t2 (h) t3

(i) t0 (j) t1 (k) t2 (l) t3

Figure 4.15: Visualizing streaming graph data using SMG.

73

4.5 Implementation and Evaluation

We use D3 [21] to visualize the results on a computer with 2.8 GHz Intel i7 CPU and

16 GB RAM. The visualizations are displayed in the Chrome browser (45.0) with a

1440× 900 resolution. Module detection is implemented using the C++ language on

the Windows 7 operating system.

Table 4.2 summarizes the performance of three module detection methods: com-

munity detection [99], fast community detection [19], and our module detection

method. We also provide the module detection performance with k-clustering. From

the summary, we can find that our method can effectively support large-scale network

aggregation and visualization. Because a distance feature has been considered in our

method, our method is slightly slower than the fast community detection [19] for

large-scale network processing. The time cost of k-clustering is ignorable because it

is only related to the number of detected modules.

Table 4.2: Comparison of module detection performance.

Datasets
Community

Detection [99]
Fast Community
Detection [19]

Module
Detection Method

Module Detection
with k-Clustering

Facebook 1.1(s) 0.2(s) 1.2(s) 1.2(s)
DBLP 217.4(s) 11.0(s) 12.5(s) 13.1(s)

Youtube Out of Memory 25.3(s) 27.4(s) 27.7(s)
Orkut Out of Memory 247.1(s) 251.5(s) 251.6(s)

Flight Lines 54.8(s) 4.2(s) 5.7(s) 5.74(s)

Compared with the full network rendering, Module Graph achieves a satisfactory

rendering performance for basic interactions. Timing results are shown in Table 4.3

where fps indicates frames per second. The rendering of the Module Graph of Orkut

is performed at high speed because we adopted a hierarchical rendering strategy for

the very-large Module Graph. Although in some experiments the massive data sizes

reduce the rendering speed, such as DBLP and Youtube in Table 4.3, it is feasible

to rewrite our Module Graph rendering applications directly on a GPU subsystem to

achieve interactive rates. Since the implementation of SMG is an extension of the

74

Module Graph, we do not evaluate the time performance of SMG.

Table 4.3: Comparison of the rendering performance.
Datasets Full Network Module Graph
Facebook 0.19(fps) 58.82(fps)

DBLP Out of Memory 0.94(fps)
Youtube Out of Memory 0.55(fps)

Orkut Out of Memory 17.86(fps)
Flight Lines 0.15(fps) 30.30(fps)

4.6 Conclusion

The Module Graph is an effective visualization tool for aggregating and representing

large graph data through clustering and interconnectivity pattern analysis. A module

detection method is presented to integrate the nodes that belong to the same group

into a new integral module. We further extend the Module Graph method to SMG

in order to visualize the streaming graph data. We also demonstrate that Module

Graph can be applied to spatial network visualization. In the future, the context

change between modules can also be considered in SMG implementation. Moreover,

our method can be extended to visualize fuzzy networks that include overlapping

communities and ego network that consists of a focal node.

75

CHAPTER 5

CONTENT-AWARE INFORMATION

VISUALIZATION

5.1 Introduction

Content-aware resizing is an adaptive technique in image processing that removes

less important content and retains more important content. The expression content

indicates the concept of important interesting regions. This technique has also be-

come a useful tool for information visualization since the diversity of displays for

hardware is increasing. In addition, virtual displays of arbitrary size or aspect ra-

tio, in the context of cloud-based visualization output, require content-aware resizing

techniques. Although artists, web designers and programmers can design several

available layouts for different scenarios, the task is time-consuming and costly.

Existing approaches for content-aware resizing mainly focus on natural images

such as portraits, landscapes, and buildings. In information visualization, images

normally consist of abstract mathematical representations such as vectors, points,

lines, icons and geometrical shapes. The important content often represents the main

subject in visual content.

Most of the existing image resizing approaches are not entirely suitable for in-

formation visualization. Grid-based methods [145] have been used for resizing such

images as geometric distortions and are easily identified. Pixel-based seam carving,

as in Avidan et al. [9], is normally used for image resizing. However, this technique

cannot easily be extended to account for the layout adjustments of geographical scat-

terplots and social network graphs. In addition, the criteria for significant regions

in visualization are different from those of natural images since their color schemes

are different. For example, a blue sky in a natural scene is normally classified as

76

background. Therefore, it would often be considered less important than a person in

the foreground. Unlike in natural images, a blue region rendered by a visualization

system may be regarded as an important region.

Information visualization often consists of multiple information layers. For ex-

ample, a geographical application would normally contain several layers such as wa-

ter, continents, and various location markers. If we ignore major regions such as

continents in resizing, then the results will suffer from distortions. Multi-layer based

resizing is rarely discussed in the previous work on image resizing or information

visualization resizing. The resizing framework of Wu et al. [162] assumed that the

information visualization layer is single such as in a scatterplot, network, or word

cloud. However, there are often many abstract layers in information visualization

designs such as a scatterplot on a map and a graph with group shapes. Therefore, it

is necessary to revisit the multi-layer approaches to detect and preserve the different

layers in information visualization. When the resizing content is dynamic and the

canvas becomes larger, the time performance becomes more important. Prior work

such as that of Wu et al. [162] requires adjustment to rapidly resize the information

visualization.

Hence, based on the resizing pipeline of Wu et al. [162], we present a different vi-

sualization resizing approach in four aspects. First, we define a visualization-related

saliency map. Second, we consider the classes of information to be segregated into

multi-layers for visualization. Third, the controlling mesh for resizing in our ap-

proach is adaptive so that users can emphasize the content of the visualization with

fewer distortions. Fourth, we extend the resizing model for the streaming data visual-

ization. We present the results of our experiments on different genres of multi-layered

visualizations to demonstrate the performance of our approach.

The structure of this chapter is as follows. Section 5.2 gives an overview of our

method. Section 5.3 discusses the visual saliency detector for visualization. Sec-

tion 5.4 demonstrates the adaptive resizing model. Section 5.5 presents a stream-

aware resizing approach. Section 5.6 compares and discusses the results and perfor-

77

mance, and Section 5.7 concludes the chapter and presents future work.

5.2 Overview

We define information visualization resizing as a saliency detection and geometric

deformation problem. The input of our model is a multi-layered rendering. Multi-

layers can be viewed as more than one representation in information visualization. In

the example of Fig. 4.1, the input includes a geographical map and several scatterplots

with different radii. First, we detect the visual saliency through a hybrid saliency

model, the VSM, which can generate different saliencies for different layers in the

visualization. In this step, we further improve the accuracy of the visual saliency

detector by considering the lightness in color information. Second, we create an

adaptive mesh that consists of controlling triangles with different levels of detail over

the input visualization. The input data, such as scatterplots, were bound to vertices in

the mesh according to their positions. Third, we formulate the controlling triangles

for the resizing problem as an optimization problem according to the VSM. Finally,

we resize the input visualization by solving a large sparse linear system. After the

mesh deformation, the important features of the input image can be well preserved.

5.3 Visual Saliency Map (VSM)

The proposed saliency-based method, called the visual saliency map (VSM), adap-

tively indicates the significant regions in information visualization. For the content-

aware resizing method, the deformation of each region is dependent on its corre-

sponding saliency. Although the saliency of each region can be assigned by users

manually, it is more effective to automatically detect the important regions.

The saliency concept for visualization is different than the one used in natural im-

ages in three aspects. First, the content in data visualizations is more contiguous than

that in natural images, and hence it is unnecessary to pre-process the pixels before the

78

saliency detection. Second, regions with different colors but similar shapes in visu-

alizations may have the same ground-truth saliency, but ordinary saliency detection

algorithms for natural images normally define those regions with different saliencies.

Third, the resizing approaches for natural images rarely take context into considera-

tion, because context information is usually extracted from the less important regions

in multi-layer visualizations.

Normally, the background maps in geographical applications and communities of

social networks could be defined as context since they are closely related to important

regions that users are interested in. Hence, we focus on two parts of the VSM. One

is the saliency detector, which can detect the most important regions, and the other is

the context detector, which first identifies the sharp edges in the visual rendering and

then detects its adjacent context.

The methods of [49] and [166] can hierarchically detect the importance from im-

ages, but we should also consider the performance and the special features such as the

color theme of visualizations. Although the method of clustering [162] works well for

single-layer visualizations, it is time-consuming for multi-layer visualizations since

the large area of less important layers is subjected to the same calculations. We are

inspired by the work of [1] and propose an effective importance detector for infor-

mation visualizations. Since the work of [1] requires further improvement when the

information visualization has light colors, we consider more features for the saliency

detector. Our saliency detector fulfills seven basic requirements.

1. It enhances the most important salient regions.

2. It considers frequently appearing global features that are salient in visualiza-

tions.

3. It considers local features such as sharp edges.

4. It detects secondary layers to avoid resizing distortion of multi-layer visualiza-

tions.

79

5. It considers light colors in information visualization.

6. It considers depth in information visualization.

7. It creates the saliency map with high efficiency and robustness.

(a) (b) (c) (d) (e) (f)

Figure 5.1: Different parts of VSM. (a) Original visualization image. (b) Important
regions. (c) Sharp edges. (d) Context regions. (e) Content depth. (f) Final visual
saliency map.

5.3.1 Importance detector

We adopt a frequency-based method [1] to detect the most important region (as shown

in Fig. 5.1b). This method is formulated as follows:

G(i, j, k) =
1

2πk2
e−(i2+j2)/2k2

(5.1)

Sm(i, j) = ‖G(i, j,∞)−G(i, j, ε)‖2 (5.2)

where G(i, j, ε) represents the Gaussian blurred values of pixel (i, j) for image ren-

dering following the Gaussian filter function, as shown in Equation 5.1. The function

G(i, j,∞) is approximated through calculating the mean pixel value of the visual

image. Since different features such as color and contrast should be considered in

the importance detection, G is defined as a vector. In the method of [1], Achanta et

al. adopted the LAB color space with the three features of lightness (L), one color-

opponent dimension (A) and another color-opponent dimension (B), as a feature vec-

tor. The feature of lightness in the LAB color can represent the high-contrast regions,

which are normally considered of high importance in information visualization.

80

Figure 5.2: Color palette from Tableau. The top palette of deep colors is normally
used to represent the most important regions in visualization. On the other hand, the
bottom palette of light colors indicates the less important regions or backgrounds in
the visualization.

We found that using the LAB color space to maintain feature vectors is not

enough to detect the available salient regions in information visualization. For ex-

ample, if the designers follow the Tableau 20 palette [84], as shown in Fig. 5.2, it is

hard to detect the available saliency for the light regions, as shown in Fig. 5.3(b). We

define this problem as the similar-shape-different-color (SSDC) problem. We add the

mid-channel feature to the feature vector so that we can ignore the extreme values of

the color channel among the light colors. The mid-channel feature is represented by

calculating the middle value of the three channels in RGB color. Finally, the feature

vector in G can be defined as vf = [l, a, b,m]. The better visual contrast between

features can be achieved by modifying the feature vector, as in [1], see Fig. 5.3(c).

(a) (b) (c)

Figure 5.3: (a) Multi-layer visualization with light color. (b) The saliency map is
unavailable since the light green region is not detected. (c) Visual saliency map for
solving SSDC problem.

5.3.2 Context detector

The context is normally the surrounding area of the important region. The context

should also be considered since the distortion of context while resizing will also

81

affect the visual results. We present a method called Edge Maximization to detect the

saliencies of the context.

We assume that the edge of the context should be preserved. Hence, we try to first

detect the edges of the context. The Sobel and Canny Operators can be used to detect

edges. We select the Sobel Operator since it is a discrete differentiation operator that

has higher performance than the Canny Operator. The edge (as shown in Fig. 5.1d)

of the visualization can be abstracted via the Sobel Operator as follows:

Se(i, j) =

√
gx(i, j)

2 + gy(i, j)
2 (5.3)

where gx(i, j) is the gradient along the horizontal direction and gy(i, j) is the gradi-

ent along the vertical direction. Since the edge is narrow, it is difficult to generate

triangles. Thus, we enhance the edges using a dilation operator that extends the edge

by the structuring element B. Hence, we can formulate the context saliency as

Sc(i, j) = max{Se(i + m, j + n)}|(m, n) ∈ B (5.4)

where B is a square of radius r and (m,n) is a point in B.

The depth of the shape in information visualization requires further optimization

for resizing. A shape with a closer depth will be assigned with greater saliency. We

define the content depth of information as Sd(i, j). The content depth can be acquired

from the data of the original information. As a result, we formulate the final VSM

(Fig. 5.1f is an example) as follows:

S(i, j) = Sm(i, j) + Sc(i, j) + Sd(i, j) (5.5)

The Gaussian filter can be approximated through a filter template 1
4
[1, 2, 1] with

k = 1.6. The radius of the dilation operator is set to 3. The final value of the

saliency map should be normalized to limit the value in [0, 1]. With the VSM, we

can adaptively indicate the saliency layers of various visual elements that are the

preparation of our resizing mode. Figure. 5.4 shows the results of our VSM.

82

(a) Original visualization images. (b) Visual saliency map.

Figure 5.4: Results of visual saliency map. (top) Visualization of cost of living in
different countries as described in Sec 5.6.1. (middle) A heat map of users’ locations
from Brightkite as described in Sec 5.6.1. (bottom) A graph shows a social network
with hundreds of nodes.

5.4 Adaptive Resizing Model

In the following sections, we describe our resizing model in detail. First, we start with

the adaptive meshing. We resort to triangular meshes, as they can be more readily

adapted to high-density regions.

5.4.1 Adaptive triangulation

(a) (b) (c) (d) (e)

Figure 5.5: Triangulations with different levels of details where α = 20. (a) Original
visualization. (b) Level=1, S(i, j) ∈ [0, 0.15). (c) Level=2, S(i, j) ∈ [0.15, 0.5). (d)
Level=3, S(i, j) ∈ [0.5, 1.0]). (e) Level=1-3, S(i, j) ∈ [0.0, 1.0].

83

Here we propose an adaptive triangulation method to reduce the degree of factors

(DOF) that are related to the performance of resizing.

Based on the VSM, we vary the density of triangles for different important re-

gions. First, a point set will be extracted on the basis of the intensities in the saliency

map. Delaunay triangulation [122] can be used to generate triangles. For two-

dimensional triangulation, a set of key points V will construct a mesh M. M should

fulfill three constraints. First, the edges in M do not contain any key points in V

except for the start and end points. Second, an edge cannot intersect another edge.

Third, all elements in M are triangles. These elements form the convex hull of V.

We utilize the VSM to create a set of key points, the V band that satisfies these

three constraints to generate M that includes several triangles. The threshold is a

quick method to create key points from a saliency map by extracting the points with

high saliency, but a large number of key points will be extracted if there are many

pixels with high saliency. Therefore, we construct a constraint to determine the in-

terval of triangulation sampling to limit the total count of points in V. We define

the constant count of points in V through Cp =
wh
α2 , where w and h are respectively

the width and height of the canvas in the visualization, and α is a free parameter

that is used to adjust Cp. Different values of the saliency can be mapped to different

levels of triangulations. We use tk0 and tk1 to indicate the range of saliency values

for level k. The interval of the triangulation sampling for different levels k could be

formulated as follows:

Ik =
Cp√ ∑

tk0≤S(i,j)<tk1

S(i, j)
(5.6)

When the saliency of a region is between tk0 and tk1, it should follow the interval

of sampling Ik. The interval of sampling indicates the count of interval pixels of

each key point vk in V. Figure 5.5 shows an example of triangulation with different

levels of detail. In our resizing model, we merge three levels of triangulation into

one, as shown in Fig. 5.5(e). By using VSM and Delaunay triangulation, we can

generate content-aware triangles, as shown in Fig. 5.6(b), which is more flexible than

84

the homogeneous triangulation in Fig. 5.6(a).

(a) Homogeneous triangulation

(b) Adaptive triangulation

Figure 5.6: Two strategies of triangulation.

5.4.2 Mesh deformation

Deformation energy optimization

We represent the topology of the mesh with M = (V,E,T), where V = [vT0 ,v
T
1 , ...,v

T
n],(vi ∈

R2) denotes the vertices, E are the edges and T depicts the triangles that each have

three vertices and three edges. We use V
′
= [v

′T
0 ,v

′T
1 , ...,v

′T
n] to indicate the de-

formed vertices. E = [eT0 , e
T
1 , ..., e

T
n], (ei = va − vb) was used to indicate the edges.

The edges divide the visualization into several patches. The basic idea of mesh re-

sizing is optimizing a linear energy function, as shown in [48]. The linear energy

function can be defined as
h∫
y

w∫
x

S(x, y) ‖JF −P‖2
2 dxdy, where JF is a Jacobian ma-

trix, P represents the linear transformation, and w and h are the width and height of

the canvas, respectively.

Inspired by Wang and his colleagues [145], we assume that the triangles bound

85

to areas with high saliency will be assigned a smaller scaling factor, while those

that cover less important areas can be distorted by the linear scaling operations. Our

method is different from that of Wang et al. [145] since we change the basic con-

trolling unit from a rectangular grid to a triangular mesh. The resizing energy for a

triangle can be formulated as

R(t) =
∑

{m,n}∈E(t)

‖(vm
′ − vn

′)− st(vm − vn)‖2

, (5.7)

where t ∈ T indicates a triangle, st is a scaling factor for each vertex v in the triangle

and we assume that the scaling factors for the x-axis and y-axis are the same, E(t)

is a set of edges in t, v and v′ respectively indicate the vertex of an original triangle

and its corresponding deformed vertex, and ‖·‖2 is the L2 norm of a vector. We can

differentiate R(t) and continue getting a direct solution of st, as shown in [145]. As

we can see, R(t) calculates the resizing energy of the edges, but different triangles

should have different degrees of warping due to their different saliencies. Hence,

we need to take the saliency value of each triangle into consideration. The resizing

energy of all the triangles is formulated as

R =
∑
t∈T

λtR(t) =
∑
t∈T

1

n
R(t)

∑
x∈Pt

S(x), (5.8)

where λt = 1
n

∑
x∈Pt

S(x) is the saliency of each triangle, Pt is the set of all pixels

in t, x indicates the position of a pixel, and n is the number of pixels in Pt. Since

the saliency of each pixel can be calculated from the VSM, we can use a scan-line

algorithm to detect the entire pixel saliency contained in one triangle. This leads to

the triangle saliency λt. Since R is a quadratic energy function, we can minimize the

total resizing energy to obtain the final deformed vertices V′.

Constraints

To get the accurate resizing result, the constraints should be taken into account. The

constraints for resizing includes overlapping preventing, boundary and smoothing.

86

We adopted the method as shown in [62] to guarantee that the mesh is resized accu-

rately without overlap. Beyond that, we formulate two constraints, such as boundary

checking and mesh smoothing, for resizing.

• Boundary Constraints

Since the boundary of the visualization should fulfill the linear scaling in order to

avoid the warp, R should obey the constraints on the boundary. We define the vertices

set on the boundary as B, which includes four corner vertices and several vertices on

four side edges of the boundary. The vertex set on four side edges could be defined

as B(left), B(top), B(right) and B(bottom). Hence, the constraints for B can be

defined respectively as:
vleft,top = (0, 0)T ,

vright,top = (w, 0)T ,

vleft,bottom = (0, h)T ,

vright,bottom = (w, h)T

(5.9)

v′i = (0, viy), i ∈ B (left) ,

v′i = (vix, 0), i ∈ B (top) ,

v′i = (w, viy), i ∈ B (right) ,

v′i = (vix, h), i ∈ B (bottom) .

, (5.10)

where w indicates the width of the canvas and h indicates the height of the canvas.

• Smoothing Constraint

It is necessary to further avoid distortion through smoothing constraint as shown in

the works of Wang et al. [145] and Wu et al. [162]. We formulate a scaling energy

function as follows to smooth out the scaling factor of each triangle:

Es =
∑
t∈T

∑
n∈Adj(t)

1

2
(at + an)(λtst − λnsn)2 (5.11)

where Adj(t) is a set of adjacent triangles of t, n indicates one adjacent triangle,

at and an respectively represent the acreage of t and n. Es is an energy function

that represents the distortion scaling factor of the adjacent triangles. We can achieve

better scaling factors by optimizing Es.

87

5.4.3 Vector adjustment

The proposed resizing model works well for the image resizing of the visualization.

It can be easily extended to the vectorial resizing of the visualization with feature

preservation. Vectorial resizing means that some vectorial elements such as points

and edges can be bound to the vertices in the triangulated meshes. The positions

of elements in a visualization will be adjusted through mesh resizing. We take the

scatterplots on a world map as an example. We assume points in the scatterplots

are the main regions and the background map is the context that also needs to be

preserved. Each point will be bound to the vertex of the triangulated mesh. The

adjustment of positions can be achieved by resizing the controlling mesh. We use

the whole visualization image to generate the saliency map and respectively resize

the main part and the context part. In the final step, adjusted points will replace the

main part and combine with context part as the final result according to their adjusted

positions. As shown in Fig. 5.11, in our experiments we adopt a hybrid method which

takes advantage of both image resizing and vectorial resizing.

5.4.4 Content enhancement

Content enhancement is aimed at further enhancing the important regions while re-

sizing the canvas. For example, there are many overlapping plots on the region of

Europe; thus, it is difficult for the users to get integrated information as shown in

Fig. 5.7. Fish-eye distortion [119] is a solution for solving this problem. However,

there are two drawbacks of the fish-eye distortion method. First, manual selection of

the significant region is tedious for the users. Second, the spherical representation of

the fish-eys distortion is not suitable for enhancing irregular regions.

We present an approach that achieves better content enhancement for the infor-

mation visualization. In addition, the proposed method has a potential for a resizing

application that all content will be transformed from a large display to a small one.

In our approach, we add an enhancing factor, called δk, to control the enhancement

88

(a) (b) (c) (d)

Figure 5.7: Results of three different strategies for content enhancement. (a) No
enhancement. (b) Fisheye enhancement. (c) Content-aware enhancement without
vectorial adjustment. (d) Content-aware enhancement with vectorial adjustment.

of the different layers in a visualization. A scaling factor st is formulated in the en-

ergy function of the resizing model. k denotes the layer of saliency. We formulate

an enhancing energy function for content enhancement as shown in Eq. 5.12. The

values of δk can be adjusted by the user to interactively enhance the desired regions.

Figure 5.7 and Fig. 5.8 show two results of the content enhancement.

E(t) =
∑

{m,n}∈E(t)

‖(vm
′ − vn

′)− stδkλt(vm − vn)‖2
. (5.12)

5.5 Stream-Aware Resizing

The resizing becomes a challenge when the content dynamically changes in time.

The resizing model for a static image or information visualization will cause waving

because the temporal coherence is not considered. However, most of the monitoring

data from physical devices are streams, so a content-aware resizing model should

account for the stream nature. Wang et al. [143] presented a related solution for the

resizing of a video stream through a video-based importance map detection and a

video-based grid warp model. However, similar work has not been investigated from

an information visualization perspective. Therefore, we propose a stream-aware re-

sizing approach to deal with the resizing problem of dynamic information visualiza-

tion.

Directly using a static resizing model to resize each frame of the streaming data

89

(a) (b)

(c) (d)

Figure 5.8: Result of the content enhancement without the canvas resizing. The
content in this visualization is a heat-map of the people locations as described in
Sec. 5.6.1. (a) Original visualization. (b) Triangulation of the original visualization.
(c) Enhanced visualization without the canvas resizing. (d) Corresponding triangles
of the enhanced visualization.

will cause abrupt changes in the region of importance that will make the human

system unsuitable. We find that the abrupt changes are mainly caused by the variation

of the VSM at each frame. Therefore, we consider generating a uniform VSM for a

set of continuous frames with a similar nature.

First, we cluster the frames into k segments. Each segment includes a set of

continuous frames that will use the same VSM in the stream-aware resizing model.

We generate the VSM for a segment, SV SM , through the saliency maximization

approach (SMA). The input of the SMA is the sequences of the VSM detected by

using the VSM model presented before. The SMA can be formulated as

SV SM(x, y) =Max(V SM1(x, y), V SM2(x, y), ..., V SMm(x, y)), (5.13)

where m is the frame number of a segment and x and y indicate the pixel position of

the VSM.

Since we apply the same VSM for the frames of a segment in the resizing process,

90

(a) Six VSMs.

(b) SVSM.

Figure 5.9: An example of a SVSM that is generated by applying SMA on six VSMs.

the abrupt changes will not appear. Figure 5.9(b) shows an example of a SVSM that

is generated by applying SMA on six VSMs. To avoid sudden changes between two

segments, we can further apply linear blending on a SV SM , as shown in Eq. 5.14.

SV SM ′
j =

1

4
(SV SMj−1 + SV SMj+1) +

1

2
SV SMj (5.14)

5.6 Experiments and Results

All the experiments in this chapter were performed on a computer with the Windows

7 OS, an Intel i7 CPU 2.8 GHz and 8 GB RAM. We implemented the algorithm in

C++ and used the CGAL [20] library to generate the triangulation. The Lapack++

library was employed to solve the large sparse linear system of equations.

We tested our method on several datasets and obtained better results than previous

91

methods. Since we use the adaptive method to generate triangles, better performance

can be achieved than previous methods for visualization resizing. We show the per-

formance of our method on Tab. 5.1 and evaluate our work through computing the

remaining saliency (Fig 5.10) in the resized visualization.

Figure 5.10: A comparison of the preservation of content measured by the average
pixel saliency using four different approaches of resizing. The testing visualization
is the bottom case, as shown in Fig. 5.15.

5.6.1 Results

We base our experiments on multi-layered information features for visualization. We

analyze three cases of resizing using the method presented in this chapter. We com-

pared our approach with the linear scaling and grid-based methods. Our results

demonstrate that the adaptive content-aware method has better visual feature rep-

resentation than the grid-based method for multi-layered visualization resizing. We

show additional resizing results in Fig. 5.15.

Scatterplots and Geographical Maps (SGM)

In the first multi-layer visualization case, we select a dataset from numbeo.com that

records the costs of living around the world. The scatterplots and geographical map

(SGM) can be regarded as two layers of the visualization of this dataset. The scat-

terplots show the costs of living in different countries, and the geographical map

92

(a) (b) (c) (d)

Figure 5.11: Results of 3 different strategies for horizontal resizing of SGM 5.6.1,
GGM 5.6.1 and GC 5.6.1. (a) Original visualization images. (b) Linear scaling. (c)
Grid-based resizing [145]. (d) Our method.

demonstrates the distribution of the countries. The algorithm in [162] acts on just

one layer in the visualization, such as the scatterplots, and we take another layer such

as the geographical map into consideration. Since the geographical map occupies a

large area, computing the cluster map in [162] requires more calculations. We can

see that all the circles in Fig. 5.11(top) suffer less distortion after the resizing by us-

ing our method. We can also adjust the enhancing parameter to enhance important

the regions in the visualization, as shown in Fig. 5.7(d).

Graph and Geographical Maps (GGM)

In the second case, we select a large dataset called Brightkite [30]. Each record in

this dataset includes a geographical location. When the canvas is resized without the

content-aware constraints, two main problems emerge. First, the re-layout algorithm

such as the direct-force method is time-consuming for large graphs. Second, the im-

portant regions are not preserved. Although regular grid-based methods can preserve

93

(a)

(b)

(c)

(d)

Figure 5.12: Results of 3 different strategies for the vertical resizing of GGM 5.6.1.
(a) Original visualization with triangulations. (b) Linear scaling result. (c)
Grid-based resizing result [145]. (d) Our method.

important regions, the high density of the grid will necessitate excessive calculation

because the computation is related to the grid density. In our method, we bind each

node with a nearby vertex in the controlling mesh and redraw the nodes after resiz-

ing the mesh to achieve a high performance of content-aware resizing. The resizing

results of the GGM are shown in Fig 5.11(middle) and Fig 5.12.

Graph and Community (GC)

The third example demonstrates the advantages of our method in dealing with the

SSDC problem, as discussed in Sec. 5.3.1. We select a graph-based dataset that

presents the relationships between computer languages. This dataset can be consid-

ered as a social network of computer language. In the visualization, this dataset can

94

(a) (b)

(c) (d)

Figure 5.13: Results of 2 different strategies for vertical resizing of GC 5.6.1. (a)
Triangulation and saliency map without SSDC fixing. (b) Triangulation and saliency
map with SSDC fixing. (c) Result of vertical resizing of GC without SSDC fixing.
(d) Result of vertical resizing of GC with SSDC fixing.

be represented as a graph and community. All the nodes in the graph are assigned

with different colors according to their Modularity Classes, which were computed by

a statistical method presented by Blondel et al. [19]. Nodes of similar color will build

a community, which is presented as an ellipse-like shape in the visualization image.

We draw the visualization image with the color palette from Tableau. Our result in

Fig. 5.11(bottom) and Fig 5.13 shows that our method can achieve a better result and

avoid the problem of SSDC.

Infographic (IG)

The fourth example demonstrates the advantages of our method for handmade multi-

layer visualization. An infographic is a visual representation of information that

utilizes text, lines, and graphics to improve the visual pattern discovery. Unlike splat-

terplot and graph, the layout of an infographic is usually created by a vector graphics

tool such as Adobe Illustrator. We selected a vector graphic from Shutterstock.com

and applied our method to resize the vector graphic. Our result in Fig. 5.14(d) shows

that our method can obtain a better result than linear scaling for infographics.

95

(a) (b)

(c) (d)

Figure 5.14: Results of 2 different approaches for the horizontal resizing of the visu-
alization in IG 5.6.1. (a) Original visualization with triangulations. (b) Linear scaling
result. (c) Original visualization with triangulations. (d) Our method.

Streaming heatmap

The fifth example demonstrates the performance of our stream-aware resizing model.

We apply the model to a set of point frames on a geographical map. The stream-

aware resizing model can be applied directly on the heatmap of points. We can first

adjust the point layout through triangle deformation and then generate the heatmap

on the updated point positions. Our result in Fig. 5.16(d) shows that our method can

preserve the significant regions better than directly using a resizing model without

stream-aware consideration.

96

(a) (b) (c) (d) (e)

Figure 5.15: Additional results of four different methods for reducing the width of
the visualization. (a) Original visualization. (b) Cropping. (c) Linear resizing. (d)
Grid-based resizing. (e) Ours. Figure 5.10 shows the saliency preservation of each
method by using the bottom case in this figure.

5.6.2 Discussions

Performance

The performance of our method is better than that of previous resizing algorithms

for visualizations, as shown in Tab 5.1. This is because we implement an adaptive

method to generate the geometric mesh, which substantially improves the perfor-

mance when a visualization image has more than half empty regions, which mean

that the regions have zero saliency. Furthermore, we adopt a simple but efficient

method to create the VSM, so that more time-consuming calculations, such as esti-

mating the kernel density, can be avoided.

97

Table 5.1: Performance and evaluation of our experiments. The top data in each row
indicate the results using a grid-based method [145], and the bottom data in each row
address the results using the proposed method.

Cases Original size New size Vertices DOF Time cost (ms)

SGM Sec. 5.6.1 876×374 385×374
741 4104 175
324 586 19

GGM Sec. 5.6.1 876×414 438×414
1012 5670 263
589 3242 64

GC Sec. 5.6.1 1500×800 750×800
2886 16644 4739
853 4824 161

IG Sec. 5.6.1 678×680 1066×680
1849 10584 1337
611 3498 58

Hex Points 750×495 375×495
950 3800 206
408 2310 19

Graphs 600×299 300×299
465 2520 42
405 2322 19

Social Network 600×363 300×363
589 2356 54
280 1560 12

Heat Map 1126×563 663×563
1653 6612 1024
479 2694 30

China Map 1320×791 660×791
2688 10752 3932
393 2142 32

Evaluation

There are many methods to evaluate the effect of visualization resizing as shown in

the cognitive experiments [116]. We mainly focus on evaluating three attributes: the

count of vertices in the controlling mesh, degrees of freedom (DOF), and time cost.

DOF indicates the number of variables that are free to change in the final compu-

tation. DOF is a statistical concept and is often used in evaluating the performance

of retargeting, such as in [63]. Since our model has advantages in controlling the

mesh reduction, DOF can be used in our evaluation. The results of the evaluation

are shown in Tab. 5.1. From the evaluation, we find that the presented approach has

better performance, especially for a large canvas size, and has fewer DOFs than the

grid-based method.

98

Table 5.2: Time cost of clutter map [114] and visual saliency map.
Cases Canvas size Method Time cost (ms)

SGM Sec. 5.6.1 876×374
Clutter map [114] 3441

Our method 472

GGM Sec. 5.6.1 876×414
Clutter map 3813
Our method 525

GC Sec. 5.6.1 1500×800
Clutter map 12177
Our method 1749

IG Sec. 5.6.1 678×680
Clutter map 4631
Our method 653

Hex Points 750×495
Clutter map 3762
Our method 534

Graphs 600×363
Clutter map 2370
Our method 303

Social Network 600×299
Clutter map 1973
Our method 254

Heat-map 1126×563
Clutter map 6477
Our method 943

China Map 1320×791
Clutter map 10456
Our method 1553

Although image energy preservation methods [9] are normally used in pixel-

based retargeting approaches such as seam carving, they are also applicable to our

method. The visual coherency can be evaluated quantitatively by calculating the per-

centage of energy preservation. We use the saliency of each pixel instead of the

gradient to calculate the preserved energy because the presented method is based

on a VSM. The average saliency of the pixels is shown in Fig. 5.10. The figure

shows the saliency preservation abilities of the four strategies and demonstrates that

our method can effectively preserve the saliency content in the visualization while

resizing the canvas.

99

5.7 Conclusion

In this chapter, we present an adaptive triangle-based approach for the content-aware

resizing of information visualizations, especially dynamic information visualizations.

We propose a visual saliency detector that follows a set of criteria. The detected VSM

is used not only to generate adaptive meshes but also to calculate the deformation fac-

tor of each triangle. A robust resizing energy function is defined to implement mesh

resizing. We also extend the resizing model in a stream-aware form to achieve a

smooth focus+context stream visualization. The experiments show that our method

has the potential to be used effectively in the re-targeting of information visualiza-

tions.

100

(a) 6 frames of time-varying heatmaps (1136×700).

(b) Resizing result using seam carving (400×250).

(c) Resizing result using our method without stream-aware consideration (400×250).

(d) Resizing result using our method with stream-aware consideration (400×250).

Figure 5.16: Comparison of the resizing results of the time-varying frames using
different approaches.

101

CHAPTER 6

INTERACTIVE VISUAL QUERYING OF

STREAMING DATA

6.1 Introduction

There is a growing need for interactive querying with the increase in spatio-temporal

data applications. Basic requirements for simultaneous variation analysis and vi-

sualization are necessary due to the demand in spatio-temporal data analytics, par-

ticularly in dynamic data mining and prediction. We assume that spatio-temporal

data are sequences of data that can be collected in real-time through physical sen-

sors, such as vehicles, mobile phones, and climate monitors. Because the majority of

spatio-temporal data include unorganized structures and a large variety of features,

querying significant patterns and trends requires high-performance computing and

accurate pattern matching.

A number of visual query systems have been presented before. Correll and Gle-

icher [32] introduced a complete sketch-based visual query framework for the un-

derstanding and exploration of time series data. However, they only focused the

visual query on one-dimensional space. The query issues on two-dimensional space,

such as a geographical map, are appearing in many real applications. Liu et al. [90]

provided a fast approach to query big data in real-time on two-dimensional space

through rectangle-based interactions. However, the work of Liu et al. [90] requires

further adjustment to query a special pattern in the time series data. In addition, re-

lational queries require a new visualization paradigm to make use of the native data

properties and features. Simply listing the querying results as a histogram cannot

fulfill the spatio-temporal querying requirements because of missing time sequence

and feature details.

102

To address the above issues, we present a new saliency-based framework that pro-

vides a more intuitive querying interaction to better identify regions of interest. Our

first contribution is a saliency map structure that helps in organizing time-varying

spatial data. A pair of querying interactions is presented to query patterns on a se-

quence of saliency maps. We then describe methods to address the challenges of

analyzing and visualizing query results, such as pattern flow and similarities. Exper-

imental results obtained on two real datasets demonstrate that SalQuery provides an

intuitive and effective interaction and visualization on large spatio-temporal datasets.

The remaining sections are organized as follows. Section 6.2 describes saliency

map generation in detail. Section 6.3 shows the querying interactions. Section 6.4

describes the visualization designs for the query results. Section 6.5 addresses the im-

plementation of our framework and presents the results obtained on two real datasets.

Section 6.6 discusses the results and the performance. Section 6.7 draws the conclu-

sion.

6.2 Saliency Definition and Generation

As shown in [60], Itti et al. define saliency as a set of points that can immediately

attract a viewer’s attention. Then, researchers such as Achanta et al. [1] and Gofer-

man et al. [49] further define saliency as a set of regions, which consider the multiple

visual features in images. Based on the theory of saliency, we assume that saliency in-

dicates the most important parts of the spatio-temporal data. We use the KDE [125]

to estimate the saliency map of the input data set. We assume that the input data

are two-dimensional spatio-temporal data. The elements of the input are locations

(points) and timestamps. Hence, spatio-temporal data in a period can be represented

as a sequence of saliency maps. Beyond the saliency map, we present a new structure

called saliency block (SB) to describe abundant features of the saliency regions and

their relationships. The generation of saliency maps and blocks will be beneficial to

the further visual querying method.

103

6.2.1 Saliency map

KDE provides a smoother result than using histograms, as discussed in [125]. Be-

cause traditional density computing methods such as k-means clustering require time-

consuming calculations, kernel-based approximation has been devised to estimate the

density of data. We adopt the Gaussian function G(t) = 1√
2π
e−

t2

2 as a kernel because

of its smoothness and parameterization. Hence, the KDE method is formulated as

follows:

K(x, t) =
1

nt

nt∑
j=1

1

rj
G(
|x− xj|
rj

), xj ∈ St, x ∈ St (6.1)

where nt is the number of points in the data set St, t indicates the timestamps, xj

is one of the data points in St, and rj is a kernel size parameter of xj . rj is defined

according to the feature of rj in a real application. Further discussion of KDE can

follow a fundamental concept in statistics as shown in [125]. K(x) will be called nt

times to generate a density map of St. Although the calculation of KDE is still time-

consuming, it is easy to be approximated through nt times Gaussian circle rendering

with alpha blending.

Figure 6.1 shows a simple example of density map generation. We assume that

each saliency map has the same width and height. In our experiments, all of the

saliency maps will be generated in advance and stored as gray-scale images. We

define a saliency map in a timestamp as St. Figure 6.2(a-b) shows a saliency map

generated from a frame of raw data.

• Connected Component Map

The generated saliency map can be considered to be an image. To query the salient

regions, we present a binary saliency detection method to label the pixels in a saliency

map. Each pixel will be labeled with two values, such as sir and sic. sir indicates “Is

a pixel i in a saliency region?”, and sic means “Which connected component does a

pixel belong to?”. First, a binary saliency map could be generated via a thresholding

setting on a saliency map. If the pixel value in a saliency map is larger than δ, then

104

Figure 6.1: An example of kernel density estimation. The left canvas lists some raw
points, whereas the right canvas shows the result of KDE. The different kernel sizes
are listed at the bottom. This estimation process can be approximated through circle
rendering.

sir is equal to 1. Otherwise, sir is equal to 0. We set δ as 0.5 in our experiments. Fig-

ure 6.2(c) shows an example of a binary saliency map generated through calculating

sir of a saliency map.

Based on the binary saliency map, connected components can be found using

sequential operations [113] that are effective for labeling the index of each region.

There are two passes for the detection of connected components. The first pass is to

scan the pixels in the binary saliency map from top to bottom and find the successive

component for each row. Different components will be labeled with different compo-

nent indices. Since it is unnecessary to traverse all pixels repeatedly, saliency region

detection is not time-consuming. By using sequential operations, we can assign sic

with different saliency component indices, as shown in Figure 6.2(d).

6.2.2 Saliency block

A saliency encoding method called saliency block is presented in this subsection to

help to analyze the features of a saliency map and accelerate the querying process.

We define a saliency block (SB) as a set of features of a saliency region. A number

105

(a) Raw data. (b) A saliency map with a color mapping.

(c) A binary saliency map. (d) A labeled connected component map.

Figure 6.2: The components of a saliency map.

of saliency blocks will be generated based on the processing of the saliency map. A

saliency block includes many features, such as saliency boundary box, data number,

key point, variation state, variation direction, last related saliency block index (LSBI),

and next related saliency block index (NSBI). The features of a saliency block can

be enriched according to different requirements from the real applications. We use

SB = {SBi}, i ∈ [1, sn] to indicate a set of saliency blocks in a saliency map

with timestamp t, where sn indicates the saliency block number. Figure 6.3 shows a

description of a saliency block.

• Boundary box (SBbb)

SBbb is a rectangle that describes the boundary box of a saliency region. The rectan-

gle can be calculated by finding left-top and right-bottom points.

• Boundary hull (SBbh)

A concave hull of the saliency region will be calculated according to the work pre-

sented in [98]. A concave hull can use fewer markers to approximate an accurate

106

Figure 6.3: A description of a saliency block. S0 and S1 indicate two time-close
saliency maps. Circles indicate the saliency regions.

region boundary.

• Data number (SBdn)

SBdn is used to indicate the data number in the saliency region. This value is related

to the raw data and will be visualized in the further data representation.

• Key point (SBkp)

SBkp is used to indicate the most salient point in the saliency region. We use the

steepest descent method to find the key point of a saliency region.

• Variation state (SBvs)

SBvs outlines the variation state of the saliency region between two time steps. One

of two states, namely, increment or decrement, will be assigned. If the data number

is larger than the related saliency region at the last time step, then SBvs will be set as

increment. Otherwise, SBvs will be set as decrement.

• Variation direction (SBvd)

SBvd is addressed to describe the variation direction of a saliency region. To simplify

the variation direction calculation, we divide the related boundary box into 9 average

107

sub-regions. Then, the variation states of these 9 sub-regions will be calculated. The

surrounding 8 variation states can represent the variation direction of the saliency

region. Finally, we will assign SBvd with a two-dimensional vector.

• LSBI and NSBI (SBlsbi and SBnsbi)

To link with the time-close saliency block, SBlsbi and SBnsbi are outlined. If a

saliency block in the last time period saliency map is overlapping with the current

saliency block, we will assign this SB to SBlsbi. Similarly, an overlapping SB in the

next time period saliency map will be assigned to SBnsbi. If no overlapping SB can

be found, SBlsbi or SBnsbi will be assigned with null. We assume that LSBI or NSBI

can be greater than one.

6.3 The Querying Method

We address a pair of querying interactions as shown in Figure 6.4. Brush-based

querying is provided to freely select multiple regions on the saliency map. Block-

based querying is another querying interaction that allows users to select the most

important regions on a saliency map and query similar saliency blocks in a period.

Prior to querying, the user should select a timestamp to see the raw data or the related

saliency map to start the querying. All of the querying inputs will be generated

through the saliency map that is currently being viewed.

6.3.1 Brush-based querying

Traditional rectangle-based querying requires improvement to select accurate re-

gions, particularly when the querying regions are along coastlines or rivers on a

geographical map. Our brush-based querying (BRQ) is inspired by the attribute

signatures [134], but we focus on time-based evolution visualization and similarity

analysis. BRQ will generate a brushing trajectory that includes a set of points.

108

(a) Brush-based querying (BRQ)
on a raw data map.

(b) Brush-based querying
(BRQ) on a saliency map.

(c) Block-based querying (BLQ)
on a saliency map.

Figure 6.4: Two querying interactions. BRQ interaction can be applied on a raw data
map or a saliency map. BLQ can only be applied on a saliency map, and the selected
saliency region will be highlighted with a red contour.

We define the points with inflections as special points, which will be detected

through the second derivative of the brushing trajectory. If the second derivative of

a point on the brushing trajectory is not close to 0, we define it as a special point.

Saliency point detection has the advantage of improving performance. Because a

drawing includes numerous points, which may lead to time-consuming variation cal-

culations and comparisons, we reduce the complexity of a brushing trajectory and

only store the special points. BRQ can be applied on a raw data map or a saliency

map, as shown in Fig. 6.4(a-b). Red circles address the special points on a brushing

trajectory. We define the saliency values on the red circle location as a spatial chain

SCt = [st1, st2, ..., stn], where t indicates the timestamp of a saliency map. We define

the currently viewed spatial chain as SCin, which will be the input condition of the

further matching.

• Spatial Chain Matching

Spatial chain matching is an operation that can find the similar SCt that belong to

a sequence of saliency maps compared with the input SCin. It is beneficial to find

matched results from massive historical data through a simple brush on the map. Fig-

ure 6.5 shows a description of the spatial chain matching. The numbers at the bottom

indicate the indices of the detected special points. The green chain in Figure 6.5

outlines SCin, which is the saliency values selected by a user through brush-based

querying. The other three spatial chains are the candidates in other timestamps.

109

Figure 6.5: A description of the spatial chain matching.

The process of spatial chain matching includes three steps. First, peak values

such as the maximum value and minimum value should be calculated in advance for

each special point. Figure 6.5 shows an example of peak values at the fourth special

point. Two high-dimensional vectors, SCmax and SCmin, are defined to store the

peak values. Second, we calculate the similarities between the input and each spatial

chain candidate. The spatial chain matching process can be formulated as follows:

SCM(SCin, SCt) =
1

k

i≤k∑
i=1

1− |SCt(i)− SCin(i)|
|SCpeak(i)− SCin(i)|

(6.2)

SCpeak(i) =

{
SCmax(i), SCt(i)− SCin(i) > 0

SCmin(i), SCt(i)− SCin(i) < 0
(6.3)

where SCM defines the similarity function of spatial chains, SCpeak(i) ensures that

the range of the similarity is from 0.0 to 1.0, and k is the number of the special

points. After calculating the similarities, matched high similarity timestamps will be

visualized.

6.3.2 Block-based querying

In block-based querying (BLQ), we will check whether a touch occurs on the saliency

regions. All of the touched saliency regions and their saliency blocks will be the

querying input. If a user clicks on or touches a saliency regions, the entire region

will be highlighted with a non-linear red contour, as shown in Figure 6.4(c). We

adopt the concave hull method as mentioned in [98] to generate the contour. BLQ is

110

designed to interact with the saliency blocks. All of the block features are considered

in the querying, such as saliency boundary box, data number, key point, variation

state, variation direction, last related saliency block index (LSBI), and next related

saliency block index (NSBI). The similarities of features will be calculated to find

the most matched results through saliency block matching.

• Saliency Block Matching

Saliency block matching (SBM) is a hybrid matching method, and it is more complex

than a simple image comparison as mentioned in [78]. As previously mentioned, the

related saliency block will be an input to query the matching data from the candi-

dates. Because a sub-saliency map in a block contains less obvious feature points,

image-based matching such as SIFT matching [92] may not be a suitable solution.

Perceptual hashing [65] is another method to match the saliency, but it requires a

fixed region size. Based on the saliency block structure, we present the SBM method

for evaluating the similarities of saliency blocks. SBM can be formulated as follows:

SBM(SBin, SBt) =

j≤m∑
j=1

λjsimj(SBinj, SBtj), sbmj ∈ sbm, λj ∈ λ (6.4)

sbm = {sbmbb, sbmdn, sbmkp, sbmvs, sbmvd, sbmlsbi, sbmnsbi} (6.5)

where m = 7 means the feature number of the saliency block, j indicates the feature

index, λj means the weight of each feature, and sbm defines the sub-matching func-

tion set. In our experiment, we define λ as {0.5, 0.1, 0.15, 0.075, 0.075, 0.05, 0.05}.

The value of λ can be adjusted according to different requirements, but the sum of

λj should be 1.0 to ensure that SBM ∈ [0.0, 1.0].

The first step of SBM is to calculate the similarity of two boundary boxes sbmbb

that belong to two saliency blocks. sbmbb is related to the crossing area between two

boxes; hence, we define it as sbmbb(x, y) = Areacross
Areax+Areay−Areacross . sbmdn indicates

the similarity of the raw data number. It can be calculated as simdn(x, y) = 1.0 −

111

|x−y|
x

. sbmkp outlines the similarity of the key points. We define it as simkp(x, y) =

1.0− |x−y|
255

.

sbmvs and sbmvd outline the trend similarity of two saliency blocks. Trend-based

querying has not been discussed in the prior querying work such as [90]. How-

ever, it is useful for spatio-temporal data querying because the variation feature pro-

vides potential information. Various studies such as feature tracking [157, 28] in

scientific visualization have discussed the usage of the variation. Because the vari-

ation state only has two values, we define the similarity of two variation states as

sbmvs(x, y) =

{
0, x 6= y

1, x = y
. The similarity of two variation directions can be formu-

lated as sbmvd(x, y) = cos(x·y
|x||y|) using a cosine similarity calculation.

sbmlsbi and sbmnsbi are defined as sbmsbi(x, y) =

{
0, x 6= y

1, x = y
where x and y

mean the numbers of linked blocks. Finally, we can calculate the similarity of two

saliency blocks using Eq. 6.4.

6.4 Visualization Design

Query result visualization is an important part of SalQuery. We design two represen-

tations to visualize the query results. The first one provides an overview of the flow

information related to the selected regions. The second one shows the candidates

with high similarities.

6.4.1 Flow-oriented representation

Flow-oriented representation (FOR) is a flow-based design to show the saliency evo-

lution in a period. We design two types of FORs according to our two interactions.

Flowsal is designed to visualize the saliency flow. Flowsal includes four parts, as

shown in Figure 6.9(a). The left side indicates the timestamps of the candidates. The

right side is the axis of the saliency values. The non-linear arranging special points

112

with indices are listed at the bottom. The distance scale of two special points is ac-

cording to their distance on the map. All of the spatial chains in different timestamps

are rendered as curves with blue color and red color, where red color indicates the

input saliency chain. The range of the time span can be adjusted by the user. Flowsal

can be used to compare the data saliency in different regions and different times.

Figure 6.6: An example of Flowblock and corresponding saliency snapshots. (top)
Saliency air pollution snapshots in Beijing from April 20th, 2016, to April 28th,
2016. (bottom) A flow representation that visualizes the variation of the air pollution
in Beijing.

For the block-based querying interaction, we design Flowblock as shown in Fig-

ure 6.6 to obtain further insights of the saliency regions. In the representation of

Flowblock, the main features of the saliency blocks will be visualized through a

bubble-flow. Each bubble indicates a saliency block on the saliency map. A bub-

ble will be connected with a neighbor bubble according to the saliency block linking

state. The size of a bubble corresponds to the area of the saliency block. The varia-

tion direction of the saliency region has not been considered in traditional time-line

visualization. Hence, we enhance the time-line-style visualization [68] via adding a

directional icon in the center of a bubble. No bubble along the y-axis indicates that

there is no salient region at the corresponding timestamps. For example, no bubble

on April 23 in Figure 6.6 means no saliency on the selected region. The bubble with

no further linking node shows that the salient region is going to disappear. A related

example is on April 21 in Figure 6.6. If a saliency block is divided into two small

saliency blocks in the next timestamps, two linking bubbles will be generated. In

summary, Flowblock can not only show the overview of a sequence of saliency maps

113

but also visualize the hidden details, such as variation state, direction, appearing,

disappearing, combination, and division.

Figure 6.7: A description of the Simcurve design.

Figure 6.8: A description of the Simblock design.

6.4.2 Similarity-oriented representation

We find that bar chart visualization, as shown in VisQuery [78], is limited to the

query result visualization. A bar chart can only present simple information, such as

a date and a value. We design a new similarity-based visualization called similarity-

oriented representation (SOR) that provides abundant information for further analysis

and decision.

Similarly, we design two types of SORs according to our two interactions. We

first design a small-size curve Simcurve as shown in Figure 6.7 to visualize the sim-

ilarity of the special chain in a timestamp. The similarities of all special points are

114

(a) The Flowsal representation shows the air pollution values on 20 regions in 25 days.

(b) The Simcurve representation shows the most similar air pollution distribution in 25 days.

Figure 6.9: Brush-based querying of air pollution from north to south regions in
China.

listed on this curve. We define the similarity of a special point as a local similarity

and the entire special chain similarity as a global similarity. There are two types

of saliency similarities: positive and negative. In the final visualization, we only

show the information in a timestamp with higher global similarities. We use different

widths of the linking line, as shown in Figure 6.7, to indicate the time span.

For the block-based querying interaction, the main task is to visualize many

saliency regions with multiple features. Therefore, we designed Simbar as shown

in Figure 6.8 to visualize groups of feature similarities through multiple bars. Seven

bars indicate seven feature similarities between a saliency block and a selected saliency

block. The connection style of Simbar is similar to that of Simcurve.

6.5 Experiments and Discussion

The experiments are implemented on a MacBook Pro with an Intel Core i7 CPU and

16 GB RAM. The raw spatio-temporal data and saliency blocks are managed through

MongoDB, which is a structured storage database. We adopt D3 [21] to provide

interactions and visualize the query results. All saliency maps are visualized through

color mapping on the geographical map. The color mapping themes are shown in the

115

(a) 3378 air quality monitoring stations in China and other countries.

(b) An air pollution saliency map on May 1st, 2016, in China.

Figure 6.10: A visualization example of the air pollution data.

right parts of Figure 6.10(b) and Figure 6.11(b).

6.5.1 Air Pollution (AP)

We found that the air pollution influences the lives of individuals. To help users query

the air pollution distribution, we apply our framework to a real air pollution (AP)

dataset, as shown in Figure 6.10. This dataset provides the air quality index (AQI),

such as PM2.5, in China. They were collected from aqicn.org over 32 days from April

12th, 2016, to May 13th, 2016. AQI data were monitored at 3378 monitoring stations.

Each record includes an AQI value and corresponding monitoring location. A high

AQI means a bad air quality. Thirty-two saliency maps were generated in advance

through kernel density estimation. SalQuery provides an interactive querying to find

the date with a similar AQI distribution on a geographical map compared the selected

day.

We switch the viewing date on April 28th and use brush-based querying interac-

tion to query the air pollution data from north to south regions in China, as shown in

116

(a) 71831 photo locations on December 2012 in U.S.A.

(b) A photo location saliency on December 2012 in U.S.A.

Figure 6.11: A visualization example of the photo location data.

Figure 6.9. Nearly 20 regions (20 special points) have been automatically selected.

The Flowsal representation shown in Figure 6.9(a) shows the air pollution values in

20 regions in 25 days. The red curve indicates the input of the spatial chain on April

28th. From the Flowsal, we can find that the air quality becomes increasingly better

from north to south regions. The air quality of some regions, such as region 2 in

Figure 6.9, was varying in a very large range over 23 days. Moreover, the Simcurve

representation presented in Figure 6.9(b) shows the most similar air pollution distri-

bution over 25 days. Although the similarity of April 29th is equal to that of May

11th, their local similarities of special points are different. Most of the local similar-

ities on April 29th are negative, which means that the air pollution is less than the

selected date. By contrast, most of the local similarities on May 11th are positive,

which means the air pollution is more than the selected date.

Another querying task is based on saliency regions of air pollution. On the May

1st saliency map, we select five saliency regions through touching. The evolution

flow of the related saliency blocks is generated through the Flowblock representation,

117

(a) The Simbar representation shows the most similar air pollution distribution dates and the related
feature similarities.

(b) The Flowblock representation shows the air pollution evolutions on five saliency regions.

Figure 6.12: Block-based querying of air pollutions on saliency regions in China.

as shown in Figure 6.12(b). Although the air quality of Ningxia (index is 3) on

May 1st is not good, there is less air pollution on other days. For the region of

Jiangsu (index is 4), the bad air quality occurrence is not continuous. The Simbar

visualization shown in Figure 6.12(a) is a supplement of Flowblock. Simbar of the

five regions show the most similar date and the similarities of seven features.

6.5.2 Flickr Photo (FP)

To further evaluate SalQuery, we applied it to a large-scale dataset called YFCC100m [130].

YFCC100m is an official dataset released by Yahoo! Flickr, which contains nearly

fifty millions geotagged photos. We filter the YFCC100m dataset and only use the

photos with locations in the U.S.A from Jan. 1st, 2007, to Feb. 28, 2014. Filtered

YFCC100m can be considered to be a large-scale spatio-temporal dataset. The total

118

number of photo records that we used is 17 million. We aggregate the photo locations

in a month into a saliency map. Hence, we generated 86 saliency maps according to

the photo distributions among 86 months in the U.S.A. Figure 6.11 shows an example

of the photo distribution in a month, which includes 71831 photo locations.

Figure 6.13: Brush-based querying of the photo distribution along a coastline in the
western U.S.A.

It is easy to use SalQuery to query the photo distributions along coastlines or other

special sequences of regions. Figure 6.13 shows photo distributions of region 17

over 25 months. We can find that most of the dates have similar photo distributions.

Special distributions only occur on regions 13, 14 and 15, which are highlighted using

a red ellipse.

Because SOR omits fewer similarity dates, it can show longer period information

than FOR. As shown in the bottom of Figure 6.13, the dates with similar photo distri-

butions have been listed. If the saliency regions were selected, SalQuery can show the

evolution of them, as shown in Figure 6.14(a). We can find that the selected saliency

regions keep stable photo distributions over two years. Simbar in Figure 6.14(b)

overcomes the space limitation problem of FOR. We can observe time-line-based

similar results in the entire period of the data. Space limitation problem means the

maximum period of FOR is limited in a fixed value such as 25 because the screen

display is limited.

119

(a) The Flowblock representation shows the photo distribution evolutions on three saliency regions.

(b) The Simbar representation shows the dates with the most similar photo distribution and the related
feature similarities.

Figure 6.14: Block-based querying of the photo distribution on saliency map in the
eastern U.S.A.

6.6 Performance

SalQuery can support an interactive ratio querying over the spatio-temporal data. We

evaluate the time cost of our brush-based querying method. We adopt different scales

of the special points to evaluate the performance, namely, 10, 20, 40, 80, 160 and 320.

The resolution of the querying space is 1240×620 on the display. The datasets

for measurement are AP and FP, which have been presented in Sec. 6.5. As shown

in Figure 6.15, the brush-based querying can be finished in a nearly interactive time.

Moreover, we can observe from Fig. 6.15 that when the count of special points is

increasing, the time-cost of brush-based querying is still stable. The dataset of FP is

large-scale, but the performance on it is similar to the dataset of AP. Therefore, we

can conclude that brush-based querying is suitable for a large-scale spatio-temporal

dataset.

120

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 40 80 160 320

Ti
m

e
 C

o
st

 (
s)

Special Point Count

AP FP

Figure 6.15: Performance of the brush-based querying.

6.7 Conclusion

We outlined a new framework with two interactions for interactively querying spatio-

temporal data. A semi-automatic extraction of density features was addressed to

aggregate the spatio-temporal data into saliency maps. Based on the saliency maps,

we introduced two querying interactions. We also designed a pair of representations

to visualize and explore the query results. Experimental results demonstrate that

SalQuery can offer an intuitive and effective query on large-scale spatio-temporal

datasets.

121

CHAPTER 7

CONCLUSION

This chapter concludes the dissertation. In the first section, a brief summary of the

ideas and methodologies presented in the prior chapters are addressed. The limita-

tions of our methods are then presented. In the last section, we propose future work.

7.1 Summing Up

Large-scale streaming data commonly exists in various real applications. For exam-

ple, social network applications such as Twitter and Flickr receive numerous user

locations every second, and air quality monitoring systems generate a large amount

of air pollution data every hour. Visualizing the data structures and exploring the

potential patterns is a significant task for interpreting large-scale time-series data.

Various approaches have been presented to solve large-scale information visu-

alization problems. Visual clustering methods such as KDE and edge bundling are

frequently used to reduce the visual overlapping among high-density data. Timeline

techniques such as CloudLines and the Sankey flow diagram are proposed to solve

the visualization problems of streaming data. Although these approaches have been

applied to visualize data streams, there are still many critical challenges that must

be investigated and addressed. For example, the sudden change between two stream

frames is an unsolved problem; however, finding expected patterns in the data stream

requires a feasible morphing technique. To help users comprehend the data patterns,

we proposed a series of techniques for visualizing large-scale dynamic data through

streaming. A brief introduction of the stream-based information visualization prob-

lems and our motivation for solving these problems were presented in Chapter 1.

122

Chapter 2 reviewed the prior research works on dynamic information visualiza-

tion, especially on the methodologies of large-scale visualization frameworks, visual

clustering, dynamic data representation, content-aware resizing, and visual querying.

It was found that few visualization frameworks directly support dynamic informa-

tion visualization. The stream processing frameworks such as Spark [163] do not

address streaming data from a visualization perspective. This section categorized the

visual clustering models into simplification, projection, bundling, and statistics. Var-

ious representation approaches of dynamic data were discussed in this chapter to find

the unresolved problems. Various representation approaches were categorized as the

interpolation method, variation feature tracking, and timeline visualization. Finally,

the content-aware resizing of information visualization and the visual querying of the

streaming data were discussed.

Chapter 3 presented a novel morphing framework, StreamMap, to smooth a pair

of stream frames. StreamMap is based on a kernel density estimation method and

a diffusion model. For the stream clustering, a similarity binning method and a su-

per kernel density estimation model were presented to adaptively cluster dynamic

high-density data. For the stream frame morphing, we proposed a robust morph-

ing model to implement smooth morphing among different streams. The morphing

model could also be used to represent the frame variation to find significant variation

patterns. StreamMap has been demonstrated on three large-scale time-series datasets

and evaluated using two quantifiable measurements.

Chapter 4 described a Module Graph approach to deal with large-graph data visu-

alization. Module Graph either reduces the number of visualizing nodes or maintains

the graph structure. By combining it with the idea of the super-graph, the SMG ap-

proach was presented to address the challenging issue of the streaming large-scale

graph visualization. The Module Graph approach has been applied to various large-

scale graph datasets and achieved positive results in either visual effectiveness or time

performance. In addition, it was demonstrated that Module Graph could be used to

represent spatial graph data with a simple modification of the module model.

123

Chapter 5 outlined a content-aware resizing model to make the streaming data

visualization suitable for screen resolution variation via adaptive triangle implemen-

tation and energy optimization of the mesh deformation. We first introduced a multi-

layer resizing framework to deal with the re-targeting problem related to the normal

cases of information visualization, and we then presented a stream-aware approach to

resize the dynamic visualization content with major content preservation. The visual

effectiveness and time performance have been evaluated on various datasets.

Chapter 6 presented a visual querying method, SalQuery, for rapidly finding de-

sired patterns among time-varying spatial data. Querying streaming data is becom-

ing a dominant problem in big data analytics. We presented a new visual framework

that provides a more intuitive querying interaction for streaming data by combin-

ing visual selections on patterns with image processing techniques and two querying

interactions. Our experiments showed that this framework can provide an effective

interactions for querying the desired patterns from spatio-temporal data.

7.2 Limitations

Although we have demonstrated the effectiveness of the presented methods for stream-

ing data visualization, there are still some limitations.

First, StreamMap fails to address the following issues: (1) Although we adopted

an adaptive bandwidth selection KDE method (SKDE) to estimate the density of the

data, the accuracies of the density contour and peak still require improvement. In

addition, current SKDE method cannot deal with different forms of data using the

same parameters. Manual adjustment of the parameter for one frame in a dataset is

required. (2) The accuracy of the morphing operation requires further improvement,

particularly for handling a “moving” morphing pattern. (3) Current trend represen-

tations also suffer from over-plotting, which might affect the density pattern finding.

Potential improvements with more sophisticated representations might be achieved

through flow-visualization methods, such as OLIC [148] and IBFV [138]. (4) For

124

data sets without a “flow” nature, such as web portal logins and urban noise, smooth

morphing works well; however, the trend representation will likely not present valid

states.

Second, the proposed Module Graph method has not dealt with special graph data

such as directed graphs, ego networks, fuzzy networks, and graphs with uncertainty.

For directed graphs, the traditional community detection method requires modifica-

tion to detect the high-accuracy communities. The graph pattern in an ego network

is less than that in a general network, so the pattern design and selection should be

further modified. The overlapping communities in a fuzzy network also hinder the

wide usage of Module Graph. A graph with uncertainty is challenging for both the

information visualization researcher and statistician; a combination of a graph visu-

alization and a statistical method is a potential solution. In addition, our presented

SMG approach is still at the beginning stage of the smooth dynamic graph visualiza-

tion because the result of the super-graph based community detection of each graph

frame is not highly accurate. An efficient community detection method in dynamic

social networks such as that of Nguyen et al. [100] presents a potential direction for

the SMG extension.

Third, since the content-aware resizing of the dynamic information visualization

is very challenging, the stream-aware resizing model has not been completely per-

formed and evaluated, especially when the layer number of the information visual-

ization is large. In addition, if the visualization does not have a clear multi-layer des-

ignation, automatically classifying features of visual representations is required. The

work of cartoon and texture decomposition [167] is a potential direction to abstract

the structure of multiple layers in information visualization. Furthermore, our pro-

posed saliency detection method is not of high accuracy, so a deep learning saliency

map [81] can be adopted to guide the mesh deformation to further reduce the distor-

tion.

Fourth, the current version of the visual querying approach has limitations in

addressing the different levels of detail of the streaming data because saliency maps

125

at different levels of detail can exhibit high variations when using the current density

estimation methods. In addition, the brush-based interaction has a limitation in result

representation that the query result should be visualized on another panel. A new

visual design that displays the query result directly on the geographical map will be a

suitable solution. Bar diagrams and arrows can be visualized directly on the brushing

path to make the trend representation more intuitive.

7.3 Areas of Further Research

This dissertation proposes a number of methods to deal with the problems of stream

visualization. The current works of visual clustering, smooth morphing, resizing, and

visual querying can be further investigated and extended in a number of directions.

1. The extension of the usage area of the visual clustering method on stream-

ing data. Information visualization researchers have proposed many approaches to

visualizing edge clouds, e.g., edge bundling [53] and smooth time-varying graph vi-

sualization [58]. In the edge bundling method, adjacent edges are visualized as a

bundled group to reduce visual clutter. However, few methods have been presented

with the specific purpose of visualizing data in related research areas such as im-

age processing and computer vision. For example, the feature matching lines of two

videos require a dynamic visual clustering approach. A comprehensive solution for

visualizing video features and their corresponding pair matchings has not been in-

vestigated from an information visualization perspective. Therefore, we believe that

a new visualization system for understanding and exploring video feature matchings

to satisfy the requirements of domain researchers would be a breakthrough work.

2. The extension of the data class in the dynamic visualization system from single

to multiple. The current visual clustering methods, such as SKDE and Module Graph,

can be extended for dealing with multi-class streaming data. Multi-class dynamic

data exists in various real applications such as air pollution visualization systems and

Buckets [25]. Air pollution normally contains multiple pollutants such as PM2.5,

126

PM10, NO2, and CO2. The web system of Buckets shows a multi-class dataset

related to the shooting indexes of NBA players. A visual analysis of the dynamic

multi-class data will make the related application more convincing. Certainly, multi-

class data visualization is still very challenging.

3. The extension of the smooth morphing model. The first potential significant

extension is based on the deep learning (DL) method. Compared with the tradi-

tional computer vision methods, such as optical flow, the DL method has a higher

morphing accuracy and a higher extension probability. For examples, Liao et al. [83]

shows various convincing examples to demonstrate the effectiveness of DL in content

transformation. Berthelot et al. [17] perform a smooth face morphing experiment to

demonstrate the effectiveness of Generative Adversarial Networks (GAN). The two

natures of the streaming data are similar to the training data of DL. The saliency map

of the stream frame is similar to the image and the long period frames are large-scale,

so it is possible to adopt the DL method to implement a better information morphing.

The second potential extension is applying the morphing model on dynamic network

data with uncertainty to visualize the network variation. Schulz et al. [120] visualized

the probability distributions of a large-scale graph and extended their work to a spa-

tial space. Since the relative distributions in the spatial space are fixed, it is possible

to apply a smooth morphing model on sequences of probability distribution frames

to visualize the graph variation. The third potential extension is proposing a coinci-

dent approach for three parts of StreamMap to speed up it for real-time processing

on large-scale datasets. The peak-based clustering method [112] is a candidate.

4. The improvement of the stream-aware resizing framework without mesh warp-

ing. Although the solution of the video resizing issue is mature, similar approaches

applying dynamic information visualization are still very challenging because the

data structure type is more abundant than the image. Even if the mesh-based resizing

model can reduce the content distortion rate while resizing, the layout deformation

still precludes effective pattern finding. A new approach without content deforma-

tion, such as the work of Photo Collage [168, 87], will be a potential direction for the

127

improvement of the current content-aware visualization model. In addition, a learn-

ing based color mapping is a potential direction to retarget the content of the stream

visualization as shown in the work of Poco et al. [107].

5. The improvement of the visual querying approach with higher accuracy and

abundant interaction. In the future, a more flexible framework for querying different

levels of detail will be considered. Moreover, forecast-based visualization via deep

learning is a potential direction for the information visualization of streams. Wang

et al. [141] propose a deep learning method to predict the traffic speed. Similarly,

the stream data can be applied as a matrix and input into the deep learning network

to predict further stream frames. In addition, with the increasing popularity of ap-

plications based on CNNs [67], a visual analysis tool for exploring and explaining

convolutional stream features is expected to be beneficial to the deep learning and

data mining communities. The sketch-based querying interaction [32] is another di-

rection to improve SalQuery by converting the sketch from a one-dimensional space

to a two-dimensional space.

128

REFERENCES

[1] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada, and Sabine

Susstrunk. Frequency-Tuned Salient Region Detection. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR2009), pages 1597–1604,

2009.

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal

Fua, and Sabine Susstrunk. SLIC Superpixels Compared to State-of-the-Art

Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(11):2274–2282, 2012.

[3] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar

Raghavan. Automatic Subspace Clustering of High Dimensional Data for

Data Mining Applications. In Proceedings of the 1998 ACM SIGMOD In-

ternational Conference on Management of Data, volume 27, pages 94–105,

1998.

[4] Alooma. https://www.alooma.com/live.

[5] Gennady Andrienko, Natalia Andrienko, Christophe Hurter, Salvatore

Rinzivillo, and Stefan Wrobel. Scalable Analysis of Movement Data for Ex-

tracting and Exploring Significant Places. IEEE Transactions on Visualization

and Computer Graphics, 19(7):1078–1094, 2013.

[6] Gennady Andrienko, Natalia Andrienko, Salvatore Rinzivillo, Mirco Nanni,

Dino Pedreschi, and Fosca Giannotti. Interactive visual clustering of large

collections of trajectories. In Proceedings of the IEEE Symposium on Visual

Analytics Science and Technology (VAST 2009), pages 3–10. IEEE, 2009.

129

[7] Natalia Andrienko and Gennady Andrienko. Visual Analytics of Movement:

An Overview of Methods, Tools and Procedures. Information Visualization,

12(1):3–24, 2013.

[8] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,

Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. Stream:

The Stanford Data Stream Management System. Book Chapter, 2004.

[9] Shai Avidan and Ariel Shamir. Seam Carving for Content-Aware Image Re-

sizing. ACM Transactions Graphics, 26(3):10:1–10:10, 2007.

[10] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and Issues in Data Stream Systems. In Proceedings of the

21 ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, pages 1–16, 2002.

[11] Benjamin Bach, Nathalie Henry Riche, Christophe Hurter, Kim Marriott, and

Tim Dwyer. Towards Unambiguous Edge Bundling: Investigating Confluent

Drawings for Network Visualization. IEEE Transactions on Visualization and

Computer Graphics, 23(1):541–550, 2017.

[12] Benjamin Bach, Conglei Shi, Nicolas Heulot, Tara Madhyastha, Tom

Grabowski, and Pierre Dragicevic. Time Curves: Folding Time to Visualize

Patterns of Temporal Evolution in Data. IEEE Transactions on Visualization

and Computer Graphics, 22(1):559–568, 2016.

[13] George Baciu, Chenhui Li, Yunzhe Wang, and Xiujun Zhang. Cloudets:

Cloud-based Cognition for Large Streaming Data. In 2015 IEEE 14th Interna-

tional Conference on Cognitive Informatics Cognitive Computing (ICCI*CC),

pages 333–338, 2015.

[14] George Baciu, Chenhui Li, Yunzhe Wang, and Xiujun Zhang. Cloudet: A

Cloud-Driven Visual Cognition of Large Streaming Data. International Jour-

nal of Cognitive Informatics and Natural Intelligence, 10(1):12–31, 2016.

130

[15] Stefano Baldassi, Nicola Megna, and David C Burr. Visual Clutter Causes

High-magnitude Errors. PLoS Biol, 4(3):e56, 2006.

[16] Sebastiano Battiato, Giovanni Maria Farinella, Giovanni Puglisi, and Daniele

Ravi. Saliency-Based Selection of Gradient Vector Flow Paths for Content

Aware Image Resizing. IEEE Transactions on Image Processing, 23(5):2081–

2095, 2014.

[17] David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilib-

rium generative adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

[18] Jacques Bertin. Semiology of Graphics. University of Wisconsin Press, 1983.

[19] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne

Lefebvre. Fast Unfolding of Communities in Large Networks. J. Stat. Mech-

theory. E., 2008(10):P10008, 2008.

[20] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud,

and Mariette Yvinec. Triangulations in CGAL. Computer Geometry, 22(1-

3):5–19, 2002.

[21] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-Driven

Documents. IEEE Transactions on Visualization and Computer Graphics,

17(12):2301–2309, 2011.

[22] Joachim Böttger, Alexander Schäfer, Gabriele Lohmann, Arno Villringer, and

Daniel S Margulies. Three-Dimensional Mean-Shift Edge Bundling for the

Visualization of Functional Connectivity in the Brain. IEEE Transactions on

Visualization and Computer Graphics, 20(3):471–480, 2014.

[23] Matthew Brehmer, Bongshin Lee, Benjamin Bach, Nathalie Henry Riche, and

Tamara Munzner. Timelines Revisited: A Design Space and Considerations

for Expressive Storytelling. IEEE Transactions on Visualization and Com-

puter Graphics, 22(1):449–458, 2016.

131

[24] Gennady Andrienko Natalia Andrienko Tobias Schreck Bremm, Sebastian and

Tatiana von Landesberger. Interactive Analysis of Object Group Changes over

Time. In EuroVA 2011: International Workshop on Visual Analytics. The

Eurographics Association, 2011.

[25] Buckets. http://buckets.peterbeshai.com. 2017.

[26] Nan Cao, Chaoguang Lin, Qiuhan Zhu, Yu-Ru Lin, Xian Teng, and Xidao

Wen. Voila: Visual Anomaly Detection and Monitoring with Streaming Spa-

tiotemporal Data. IEEE Transactions on Visualization and Computer Graph-

ics, 2017.

[27] Sangwon Chae, Aditi Majumder, and M Gopi. HD-GraphViz: Highly Dis-

tributed Graph Visualization on Tiled Displays. In Proceedings of the Eighth

Indian Conference on Computer Vision, Graphics and Image Processing,

ICVGIP ’12, pages 43:1–43:8, 2012.

[28] Yu-Hsuan Chan, Carlos D Correa, and Kwan-Liu Ma. Flow-based Scatterplots

for Sensitivity Analysis. In Proceedings of the IEEE Symposium on Visual

Analytics Science and Technology, pages 43–50, 2010.

[29] Haidong Chen, Wei Chen, Honghui Mei, Zhiqi Liu, Kun Zhou, Weifeng Chen,

Wentao Gu, and Kwan-Liu Ma. Visual Abstraction and Exploration of Multi-

class Scatterplots. IEEE Transactions on Visualization and Computer Graph-

ics, 20(12):1683–1692, 2014.

[30] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and Mobility:

User Movement in Location-Based Social Networks. In Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 1082–1090. ACM, 2011.

[31] Pio Claudio and Sung-Eui Yoon. Metro Transit-Centric Visualization for City

Tour Planning. Computer Graphics Forum, 33(3):271–280, 2014.

132

[32] Michael Correll and Michael Gleicher. The Semantics of Sketch: Flexibility

in Visual Query Systems for Time Series Data. In 2016 IEEE Conference on

Visual Analytics Science and Technology (VAST), pages 131–140, 2016.

[33] Michael Correll and Jeffrey Heer. Surprise! Bayesian Weighting for De-

Biasing Thematic Maps. IEEE Transactions on Visualization and Computer

Graphics, 23(1):651–660, 2017.

[34] Joseph Cottam, Andrew Lumsdaine, and Peng Wang. Overplotting: Unified

Solutions under Abstract Rendering. In IEEE International Conference on Big

Data, pages 9–16, 2013.

[35] Joseph A Cottam, Andrew Lumsdaine, and Chris Weaver. Watch This: A

Taxonomy for Dynamic Data Visualization. In IEEE Conference on Visual

Analytics Science and Technology (VAST 2012), pages 193–202, 2012.

[36] Stephan Diehl and Carsten Görg. Graphs, They are Changing. In Interna-

tional Symposium on Graph Drawing, pages 23–31. Springer, 2002.

[37] Sergey N. Dorogovtsev, Alexander V. Goltsev, and Jose F. Mendes. k-Core Or-

ganization of Complex Networks. Physical Review Letters, 96:040601, 2006.

[38] Fan Du, Nan Cao, Jian Zhao, and Yu-Ru Lin. Trajectory Bundling for An-

imated Transitions. In Proceedings of the 33rd Annual ACM Conference on

Human Factors in Computing Systems, pages 289–298. ACM, 2015.

[39] Cody Dunne and Ben Shneiderman. Motif Simplification: Improving Net-

work Visualization Readability with Fan, Connector, and Clique Glyphs. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, CHI ’13, pages 3247–3256. ACM, 2013.

[40] Tim Dwyer, Christopher Mears, Kerri Morgan, Todd Niven, Kim Marriott, and

Mark Wallace. Improved optimal and approximate power graph compression

for clearer visualisation of dense graphs. In 2014 IEEE Pacific Visualization

Symposium (PacificVis), pages 105–112. IEEE, 2014.

133

[41] Ulrich Engelke, Hantao Liu, Junle Wang, Patrick Le Callet, Ingrid Heynder-

ickx, Hans-jürgen Zepernick, Senior Member, and Anthony Maeder. Compar-

ative Study of Fixation Density Maps. IEEE Transactions on Image Process-

ing, 22(3):1121–1133, 2013.

[42] Ozan Ersoy, Christophe Hurter, Fernando Paulovich, Gabriel Cantareiro, and

Alex Telea. Skeleton-Based Edge Bundling for Graph Visualization. IEEE

Transactions on Visualization and Computer Graphics, 17(12):2364–2373,

2011.

[43] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A Density-

based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In KDD, volume 96, pages 226–231, 1996.

[44] Kun-Chuan Feng, Chaoli Wang, Han-Wei Shen, and Tong-Yee Lee. Co-

herent Time-Varying Graph Drawing with Multifocus+Context Interaction.

IEEE Transactions on Visualization and Computer Graphics, 18(8):1330–

1342, 2012.

[45] Nivan Ferreira, Jorge Poco, Huy T. Vo, Juliana Freire, and Cláudio T. Silva.

Visual exploration of big spatio-temporal urban data: A study of new york

city taxi trips. IEEE Transactions on Visualization and Computer Graphics,

19(12):2149–2158, 2013.

[46] Martin Fink, Jan-Henrik Haunert, Joachim Spoerhase, and Alexander Wolff.

Selecting the Aspect Ratio of a Scatter Plot Based on Its Delaunay Tri-

angulation. IEEE Transactions on Visualization and Computer Graphics,

19(12):2326–2335, 2013.

[47] Simone Frintrop, Thomas Werner, and Martn Garca Germn. Traditional

Saliency Reloaded: A Good Old Model in New Shape. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR2015), 2015.

134

[48] Ran Gal, Olga Sorkine, and Daniel Cohen-Or. Feature-Aware Texturing. In

Conference of the European Association for Computer Graphics, pages 297–

303, Nicosia, Cyprus, 2006. Eurographics Association.

[49] Stas Goferman, Lihi Zelnik-Manor, and Ayellet Tal. Context-Aware Saliency

Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

34(10):1915–26, October 2012.

[50] Google. Color palette. https://www.google.com/design/spec/

style/color.html.

[51] Sebastian Grottel, Guido Reina, Jadran Vrabec, and Thomas Ertl. Visual Ver-

ification and Analysis of Cluster Detection for Molecular Dynamics. IEEE

Transactions on Visualization and Computer Graphics, 13(6):1624–1631,

2007.

[52] Jan-Henrik Haunert and Leon Sering. Drawing Road Networks with Fo-

cus Regions. IEEE Transactions on Visualization and Computer Graphics,

17(12):2555–62, 2011.

[53] D Holten. Hierarchical Edge Bundles: Visualization of Adjacency Rela-

tions in Hierarchical Data. IEEE Transactions on Visualization and Computer

Graphics, 12(5):741–748, 2006.

[54] Danny Holten and Jarke J Van Wijk. Force-directed edge bundling for graph

visualization. In Computer Graphics Forum, volume 28, pages 983–990,

2009.

[55] Berthold K Horn and Brian G Schunck. Determining Optical Flow. In 1981

Technical Symposium East, pages 319–331. International Society for Optics

and Photonics, 1981.

[56] Duen Horng, Polo Chau, Aniket Kittur, Jason I Hong, and Christos Faloutsos.

Apolo : Making Sense of Large Network Data by Combining Rich User In-

135

teraction and Machine Learning. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (SIGCHI2011), pages 167–176, 2011.

[57] Yidan Hu, Guojun Dai, Jin Fan, Yifan Wu, and Hua Zhang. BlueAer: A Fine-

Grained Urban PM2.5 3D Monitoring System Using Mobile Sensing. In The

35th Annual IEEE International Conference on Computer Communications

(INFOCOM 2016), pages 1–9. IEEE, 2016.

[58] Christophe Hurter, Ozan Ersoy, and Alex Telea. Smooth Bundling of Large

Streaming and Sequence Graphs. pages 41–48, 2013.

[59] Christophe Hurter, Ozan Ersoy, and Alexandru Telea. Graph Bundling by

Kernel Density Estimation. In Computer Graphics Forum, volume 31, pages

865–874, 2012.

[60] Laurent Itti, Christof Koch, and Ernst Niebur. A Model of Saliency-Based

Visual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 20(11):1254–1259, 1998.

[61] Heike Jänicke and Min Chen. A Salience-based Quality Metric for Visualiza-

tion. Computer Graphics Forum, 29(3):1183–1192, 2010.

[62] Yong Jin, Ligang Liu, and Qingbiao Wu. Nonhomogeneous Scaling Optimiza-

tion for Realtime Image Resizing. The Visual Computer, 26(6-8):769–778,

2010.

[63] Peter Kaufmann, Oliver Wang, Alexander Sorkine-Hornung, Olga Sorkine-

Hornung, Aljoscha Smolic, and Markus Gross. Finite Element Image Warp-

ing. Computer Graphics Forum, 32(2-1):31–39, 2013.

[64] Daniel A Keim, Christian Panse, Mike Sips, and Stephen C North. Visual

Data Mining in Large Geospatial Point Sets. IEEE Computer Graphics and

Applications, 24(5):36–44, 2004.

136

[65] Fouad Khelifi and Jianmin Jiang. Perceptual image hashing based on virtual

watermark detection. IEEE Transactions on Image Processing, 19(4):981–

994, 2010.

[66] Hye-Rin Kim, Min-Joon Yoo, Henry Kang, and In-Kwon Lee. Perceptually-

based Color Assignment. Computer Graphics Forum, 33(7):309–318, Octo-

ber 2014.

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in Neural Infor-

mation Processing Systems, pages 1097–1105, 2012.

[68] Milos Krstajic, Enrico Bertini, and Daniel Keim. CloudLines: Compact Dis-

play of Event Episodes in Multiple Time-series. IEEE Transactions on Visu-

alization and Computer Graphics, 17(12):2432–2439, 2011.

[69] Milos Krstajic and Daniel A. Keim. Visualization of Streaming Data: Observ-

ing Change and Context in Information Visualization Techniques. Proceed-

ings of the IEEE International Conference on Big Data, pages 41–47, 2013.

[70] Oh-Hyun Kwon, Chris Muelder, Kyungwon Lee, and Kwan-Liu Ma. A

Study of Layout, Rendering, and Interaction Methods for Immersive Graph

Visualization. IEEE Transactions on Visualization and Computer Graphics,

22(7):1802–1815, 2016.

[71] Ove Daae Lampe and Helwig Hauser. Interactive Visualization of Stream-

ing Data with Kernel Density Estimation. In 2011 IEEE Pacific Visualization

Symposium (PacificVis), pages 171–178, 2011.

[72] Leaflet. http://leafletjs.com. 2013.

[73] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

137

[74] Chenhui Li and George Baciu. Valid: A web framework for visual analytics of

large streaming data. In IEEE 13th International Conference on Trust, Secu-

rity and Privacy in Computing and Communications (TrustCom2014), pages

686–692, Sept 2014.

[75] Chenhui Li, George Baciu, and Yu Han. Interactive visualization of high den-

sity streaming points with heat-map. In 2014 International Conference on

Smart Computing, pages 145–149, 2014.

[76] Chenhui Li, George Baciu, and Yu Han. StreamMap: Smooth Dynamic Visu-

alization of High-Density Streaming Points. IEEE Transactions on Visualiza-

tion and Computer Graphics, 2017.

[77] Chenhui Li, George Baciu, and Yunzhe Wang. Modulgraph: Modularity-

based visualization of massive graphs. In SIGGRAPH Asia 2015 Visualiza-

tion in High Performance Computing, SA ’15, pages 11:1–11:4, New York,

NY, USA, 2015. ACM.

[78] Chenhui Li, George Baciu, and Yunzhe Wang. VisQuery: Visual Querying of

Streaming Data via Pattern Matching. In 2016 Digital Media Industry Aca-

demic Forum (DMIAF), pages 161–165, 2016.

[79] Chenhui Li, George Baciu, and Yunzhe Wang. Module-Based Visualization of

Large-Scale Graph Network Data. Journal of Visualization, pages 205–215,

2017.

[80] Chenhui Li, George Baciu, Yunzhe Wang, and Xiujun Zhang. Fast Content-

Aware Resizing of Multi-layer Information Visualization via Adaptive Trian-

gulation. Journal of Visual Languages and Computing, 2017.

[81] Guanbin Li and Yizhou Yu. Visual Saliency Based on Multiscale Deep Fea-

tures. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5455–5463, 2015.

138

[82] Jing Liao, Rodolfo S Lima, Diego Nehab, Hugues Hoppe, and Pedro V Sander.

Semi-Automated Video Morphing. 33(4):51–60, 2014.

[83] Jing Liao, Yuan Yao, Yuan Yuan, Gang Hua, and Sing Bing Kang. Vi-

sual Attribute Transfer through Deep Image Analogy. arXiv preprint

arXiv:1705.01088, 2017.

[84] Sharon Lin, Julie Fortuna, Chinmay Kulkarni, Maureen Stone, and Jeffrey

Heer. Selecting Semantically-Resonant Colors for Data Visualization. Com-

puter Graphics Forum, 32:401–410, 2013.

[85] Shih-Syun Lin, Chao-Hung Lin, Yan-Jhang Hu, and Tong-Yee Lee. Drawing

Road Networks with Mental Maps. IEEE Transactions on Visualization and

Computer Graphics, 20(9):1241–1252, 2014.

[86] Lauro Lins, James T Klosowski, and Carlos Scheidegger. Nanocubes for real-

time exploration of spatiotemporal datasets. IEEE Transactions on Visualiza-

tion and Computer Graphics, 19(12):2456–2465, 2013.

[87] Lingjie Liu, Hongjie Zhang, Guangmei Jing, Yanwen Guo, Zhonggui Chen,

and Wenping Wang. Correlation-Preserving Photo Collage. IEEE Transac-

tions on Visualization and Computer Graphics, PP(99):1–13, 2017.

[88] Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu. Sto-

ryFlow: Tracking the evolution of stories. IEEE Transactions on Visualization

and Computer Graphics (Proceedings of IEEE InfoVis 2013, 19(12):2436–

2445, 2013.

[89] Xiaotong Liu, Han-Wei Shen, and Yifan Hu. Supporting Multifaceted View-

ing of Word Clouds with Focus+Context Display. Infornation Visualization,

page 1473871614534095, 2014.

[90] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. imMens: Real-time Visual Query-

ing of Big Data. Computer Graphics Forum, 32(3):421–430, 2013.

139

[91] Dionysios Logothetis and Ken Yocum. Wide-Scale Data Stream Management.

In Usenix Annual Technical Conference, pages 405–418, 2008.

[92] David G Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.

[93] Yafeng Lu, Michael Steptoe, Sarah Burke, Hong Wang, Jiun-Yi Tsai, Hasan

Davulcu, Douglas Montgomery, Steven R Corman, and Ross Maciejewski.

Exploring evolving media discourse through event cueing. IEEE Transactions

on Visualization and Computer Graphics, 22(1):220–229, 2016.

[94] James MacQueen. Some Methods for Classification and Analysis of Mul-

tivariate Observations. In Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability, Volume 1: Statistics, pages 281–297,

Berkeley, Calif., 1967. University of California Press.

[95] Dhruv Mahajan, Fu-Chung Huang, Wojciech Matusik, Ravi Ramamoorthi,

and Peter Belhumeur. Moving Gradients: a Path-based Method for Plausible

Image Interpolation. ACM Transactions Graphics, 28(3):1–11, 2009.

[96] Adrian Mayorga and Michael Gleicher. Splatterplots: Overcoming Overdraw

in Scatter plots. IEEE Transactions on Visualization and Computer Graphics,

19(9):1526–38, September 2013.

[97] Vladimir Molchanov, Alexey Fofonov, and Lars Linsen. Continuous Repre-

sentation of Projected Attribute Spaces of Multifields over Any Spatial Sam-

pling. Computer Graphics Forum, 32:301–310, 2013.

[98] Adriano Moreira and Maribel Yasmina Santos. Concave hull: A k-nearest

Neighbours Approach for the Computation of the Region Occupied by a Set

of Points, 2007.

[99] Mark E J Newman. Modularity and community structure in networks. Pro-

ceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.

140

[100] Nam P Nguyen, Thang N Dinh, Yilin Shen, and My T Thai. Dynamic Social

Community Detection and its Applications. PloS One, 9(4):e91431, 2014.

[101] Philippe Noriega, Benedicte Bascle, and Olivier Bernier. Local Kernel Color

Histograms for Background Subtraction. In Proceedings of the International

Conference on Computer Vision Theory and Applications, pages 213–219,

2006.

[102] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit

Surfaces, volume 153. Springer Science & Business Media, 2006.

[103] Sedat Ozer, Jishang Wei, Deborah Silver, Kwan-Liu Ma, and Patrick Martin.

Group dynamics in scientific visualization. In Proceedings of the IEEE Sym-

posium on Large Data Analysis and Visualization, pages 97–104, Oct 2012.

[104] Gregorio Palmas, Myroslav Bachynskyi, Antti Oulasvirta, Hans Peter Seidel,

and Tino Weinkauf. An Edge-bundling Layout for Interactive Parallel Co-

ordinates. In IEEE Pacific Visualization Symposium (PacificVis2014), pages

57–64, 2014.

[105] Daniele Panozzo, Ofir Weber, and Olga Sorkine. Robust Image Retargeting

via Axis-Aligned Deformation. Computer Graphics Forum, 31(2-1):229–236,

2012.

[106] Ken Perlin. An Image Synthesizer. In Proceedings of the 12th Annual Con-

ference on Computer Graphics and Interactive Techniques (SIGGRAPH ’85),

pages 287–296, New York, NY, USA, 1985. ACM.

[107] Jorge Poco, Angela Mayhua, and Jeffrey Heer. Extracting and Retargeting

Color Mappings from Bitmap Images of Visualizations. IEEE Transactions

on Visualization and Computer Graphics, 2017.

[108] Yael Pritch, Eitam Kav-Venaki, and Shmuel Peleg. Shift-Map Image Editing.

In IEEE International Conference on Computer Vision (CVPR2009), pages

151–158, Sept 2009.

141

[109] Yao Qin, Huchuan Lu, Yiqun Xu, and He Wang. Saliency Detection via Cel-

lular Automata. In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR2015), 2015.

[110] Xiaofeng Ren and Jitendra Malik. Learning a Classification Model for Seg-

mentation. In Proceedings of the Ninth IEEE International Conference on

Computer Vision, pages 10–17, 2003.

[111] George Robertson, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John

Stasko. Effectiveness of Animation in Trend Visualization. IEEE Transac-

tions on Visualization and Computer Graphics, 14(6):1325–1332, 2008.

[112] Alex Rodriguez and Alessandro Laio. Clustering by Fast Search and Find of

Density Peaks. Science, 344(6191):1492–1496, 2014.

[113] Azriel Rosenfeld and John L Pfaltz. Sequential Operations in Digital Picture

Processing. Journal of ACM, 13(4):471–494, 1966.

[114] Ruth Rosenholtz, Yuanzhen Li, Jonathan Mansfield, and Zhenlan Jin. Feature

Congestion: A Measure of Display Clutter. In Proc. SIGCHI Conference on

Human Factors in Computing Systems, CHI ’05, pages 761–770, 2005.

[115] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex

networks reveal community structure. Proceedings of the National Academy

of Sciences, 105(4):1118–1123, 2008.

[116] Michael Rubinstein, Diego Gutierrez, Olga Sorkine, and Ariel Shamir. A

Comparative Study of Image Retargeting. ACM Transactions Graphics,

29(6):1–10, 2010.

[117] Michael Rubinstein, Ariel Shamir, and Shai Avidan. Improved Seam Carving

for Video Retargeting. ACM Transactions Graphics, 27(3):1–9, 2008.

[118] Ravi Samtaney, Deborah Silver, Norman Zabusky, and Jim Cao. Visualizing

Features and Tracking Their Evolution. Computer, 27(7):20–27, 1994.

142

[119] Manojit Sarkar and Marc H Brown. Graphical fisheye views of graphs. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, pages 83–91. ACM, 1992.

[120] Christoph Schulz, Arlind Nocaj, Jochen Goertler, Oliver Deussen, Ulrik Bran-

des, and Daniel Weiskopf. Probabilistic Graph Layout for Uncertain Network

Visualization. IEEE Transactions on Visualization and Computer Graphics,

23(1):531–540, 2017.

[121] Bremm Sebastian, Gennady Andrienko, Natalia Andrienko, Tobias Schreck,

and Tatiana von Landesberger. Interactive Analysis of Object Group Changes

over Time. In Proc. International Workshop on Visual Analytics (EuroVA

2011), pages 41–44, 2011.

[122] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Guality Mesh Gen-

erator and Delaunay Triangulator. pages 203–222, 1996.

[123] Lei Shi, Nan Cao, Shixia Liu, Weihong Qian, Li Tan, Guodong Wang, Jimeng

Sun, and Ching-Yung Lin. Himap: Adaptive visualization of large-scale on-

line social networks. In 2009 IEEE Pacific Visualization Symposium (Paci-

ficVis), pages 41–48, 2009.

[124] Abhinav Shrivastava, Tomasz Malisiewicz, Abhinav Gupta, and Alexei A

Efros. Data-driven Visual Similarity for Cross-domain Image Matching. In

ACM Transactions on Graphics, volume 30, page 154, 2011.

[125] Bernard W Silverman. Density Estimation for Statistics and Data Analysis,

volume 26. CRC press, 1986.

[126] Maoyuan Sun, Peng Mi, Chris North, and Naren Ramakrishnan. Biset: Se-

mantic edge bundling with biclusters for sensemaking. IEEE Transactions on

Visualization and Computer Graphics, 22(1):310–319, 2016.

143

[127] Yuzuru Tanahashi and Kwan-Liu Ma. Design Considerations for Optimizing

Storyline Visualizations. IEEE Transactions on Visualization and Computer

Graphics, 18(12):2679–2688, 2012.

[128] Alexandru Telea and Ozan Ersoy. Image-based edge bundles: Simplified vi-

sualization of large graphs. 29(3):843–852, 2010.

[129] J P Thirion. Image Matching as a Diffusion Process: an Analogy with

Maxwell’s Demons. Medical Image Analysis, 2(3):243–260, 1998.

[130] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl

Ni, Douglas Poland, Damian Borth, and Li-Jia Li. YFCC100M: The New

Data in Multimedia Research. Communications of the ACM, 59(2):64–73,

2016.

[131] Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. Efficient Aggre-

gation for Graph Summarization. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’08, pages 567–

580, 2008.

[132] Ying Tu and Han-Wei Shen. Balloon Focus: A Seamless Multi-

Focus+Context Method for Treemaps. IEEE Transactions on Visualization

and Computer Graphics, 14(6):1157–64, 2008.

[133] Cagatay Turkay, Július Parulek, Nathalie Reuter, and Helwig Hauser. Interac-

tive Visual Analysis of Temporal Cluster Structures. In Computer Graphics

Forum, volume 30, pages 711–720, 2011.

[134] Cagatay Turkay, Aidan Slingsby, Helwig Hauser, Jo Wood, and Jason Dykes.

Attribute Signatures: Dynamic Visual Summaries for Analyzing Multivari-

ate Geographical Data. IEEE Transactions on Visualization and Computer

Graphics, 20(12):2033–2042, 2014.

144

[135] Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. Anima-

tion: Can It Facilitate? International Journal of Human-Computer Studies,

57(4):247–262, 2002.

[136] S. van den Elzen, D. Holten, J. Blaas, and J.J. van Wijk. Reducing snapshots

to points: A visual analytics approach to dynamic network exploration. IEEE

Transactions on Visualization and Computer Graphics, 22(1):1–10, Jan 2016.

[137] Matthew van der Zwan, Valeriu Codreanu, and Alexandru Telea. Cubu: uni-

versal real-time bundling for large graphs. IEEE Transactions on Visualization

and Computer Graphics, 22(12):2550–2563, 2016.

[138] Jarke J Van Wijk. Image Based Flow Visualization. ACM Transactions on

Graphics, 21(3):745–754, 2002.

[139] Corinna Vehlow, Fabian Beck, Patrick Auwärter, and Daniel Weiskopf. Vi-

sualizing the Evolution of Communities in Dynamic Graphs. In Computer

Graphics Forum, volume 34, pages 277–288, 2015.

[140] Tatiana Von Landesberger, Sebastian Bremm, Natalia Andrienko, Gennady

Andrienko, and Maria Tekusova. Visual analytics methods for categoric

spatio-temporal data. In Proceedings of the IEEE Conference on Visual Ana-

lytics Science and Technology (VAST), pages 183–192, 2012.

[141] Jingyuan Wang, Qian Gu, Junjie Wu, Guannan Liu, and Zhang Xiong. Traf-

fic Speed Prediction and Congestion Source Exploration: A Deep Learn-

ing Method. In 2016 IEEE 16th International Conference on Data Mining

(ICDM), pages 499–508. IEEE, 2016.

[142] Yu-Shuen Wang and Ming-Te Chi. Focus+Context Metro Maps. IEEE Trans-

actions on Visualization and Computer Graphics, 17(12):2528–2535, 2011.

[143] Yu-Shuen Wang, Hongbo Fu, Olga Sorkine, Tong-Yee Lee, and Hans-Peter

Seidel. Motion-Aware Temporal Coherence for Video Resizing. ACM Trans-

actions Graphics, 28(5):1–10, 2009.

145

[144] Yu-Shuen Wang, Hui-Chih Lin, Olga Sorkine, and Tong-Yee Lee. Motion-

Based Video Retargeting with Optimized Crop-and-Warp. In ACM Transac-

tions on Graphics, volume 29, page 90, 2010.

[145] Yu-Shuen Wang, Chiew-Lan Tai, Olga Sorkine, and Tong-Yee Lee. Optimized

Scale-and-Stretch for Image Resizing. ACM Transactions Graphics, 27(5):1–

8, 2008.

[146] Yunzhe Wang, George Baciu, and Chenhui Li. Smooth animation of structure

evolution in time-varying graphs with pattern matching. In SIGGRAPH Asia

Symposium On Visualization, 2017.

[147] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image

quality assessment: from error visibility to structural similarity. IEEE Trans-

actions on Image Processing, 13(4):600–612, 2004.

[148] Rainer Wegenkittl, Eduard Groller, and Werner Purgathofer. Animating Flow

Fields: Rendering of Oriented Line Integral Convolution. In Computer Ani-

mation’97, pages 15–21, 1997.

[149] Stephen Welstead. Fractal and Wavelet Image Compression Techniques. SPIE

Optical Engineering Press, 1999.

[150] Stephen Welstead and Jorge Nocedal. Numerical Optimization. Springer Sci-

ence, 2006.

[151] Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics, 3(4):347–359, 2006.

[152] Hadley Wickham. Asa 2009 data expo. Journal of Computational and Graph-

ical Statistics, 20(2), 2011.

[153] Hadley Wickham. Bin-summarise-smooth: a Framework for Visualising

Large Data. Tech. rep.,had.co.nz, 2013.

146

[154] Niels Willems, Huub van de Wetering, and Jarke J. van Wijk. Visualization of

Vessel Movements. In Proceedings of the 11th Eurographics / IEEE - VGTC

Conference on Visualization, pages 959–966, 2009.

[155] Pak Chung Wong, Harlan Foote, Dan Adams, Wendy Cowley, and Jim

Thomas. Dynamic Visualization of Transient Data Streams. In IEEE Sym-

posium on Information Visualization (InfoVis 2003), pages 97–104, 2003.

[156] Krist Wongsuphasawat and Ben Shneiderman. Finding comparable temporal

categorical records: A similarity measure with an interactive visualization. In

IEEE Symposium on Visual Analytics Science and Technology (VAST2009),

pages 27–34. IEEE, 2009.

[157] Jonathan Woodring and Han-Wei Shen. Multiscale Time Activity Data Explo-

ration via Temporal Clustering Visualization Spreadsheet. IEEE Transactions

on Visualization and Computer Graphics, 15(1):123–137, 2009.

[158] Hsiang-Yun Wu, Shigeo Takahashi, Daichi Hirono, Masatoshi Arikawa, Chun-

Cheng Lin, and Hsu-Chun Yen. Spatially Efficient Design of Annotated Metro

Maps. Computer Graphics Forum, 32(3pt3):261–270, 2013.

[159] Huisi Wu, Yu-Shuen Wang, Kun-Chuan Feng, Tien-Tsin Wong, Tong-Yee

Lee, and Pheng-Ann Heng. Resizing by Symmetry-Summarization. ACM

Transactions Graphics, 29(6):1–10, 2010.

[160] Yanhong Wu, Naveen Pitipornvivat, Jian Zhao, Sixiao Yang, Guowei Huang,

and Huamin Qu. egoslider: Visual analysis of egocentric network evolution.

IEEE Transactions on Visualization and Computer Graphics, 22(1):260–269,

2016.

[161] Yanhong Wu, Wenbin Wu, Sixiao Yang, Youliang Yan, and Huamin Qu. In-

teractive visual summary of major communities in a large network. In IEEE

Pacific Visualization Symposium (PacificVis2015), pages 47–54, April 2015.

147

[162] Yingcai Wu, Xiaotong Liu, Shixia Liu, and Kwan-Liu Ma. ViSizer: A Visu-

alization Resizing Framework. IEEE Transactions on Visualization and Com-

puter Graphics, 19(2):278–290, 2012.

[163] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, Ion Stoica, and Eecs

AMPLab. GraphX: A Resilient Distributed Graph System on Spark. First In-

ternational Workshop on Graph Data Management Experiences and Systems,

pages 2:1–2:6, 2013.

[164] Junming Xu. Topological Structure and Analysis of Interconnection Networks,

volume 7. Springer Science & Business Media, 2013.

[165] Li Xu, Qiong Yan, Yang Xia, and Jiaya Jia. Structure Extraction from Tex-

ture via Relative Total Variation. ACM Transactions on Graphics, 31(6):1–10,

2012.

[166] Qiong Yan, Li Xu, Jianping Shi, and Jiaya Jia. Hierarchical Saliency De-

tection. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR2013), pages 1155–1162, 2013.

[167] Han Yu, Xu Chen, Baciu George, Li Min, and Islam Md. Robiul. Cartoon

and Texture Decomposition-Based Color Transfer for Fabric Images. IEEE

Transactions on Multimedia, 19(1):80–92, 2017.

[168] Zongqiao Yu, Lin Lu, Yanwen Guo, Rongfei Fan, Mingming Liu, and Wen-

ping Wang. Content-Aware Photo Collage using Circle Packing. IEEE Trans-

actions on Visualization and Computer Graphics, 20(2):182–195, 2014.

[169] Xiaoru Yuan, Donghao Ren, Zuchao Wang, and Cong Guo. Dimension Pro-

jection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of

High Dimensional Data. IEEE Transactions on Visualization and Computer

Graphics, 19(12):2625–2633, 2013.

[170] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and

Ion Stoica. Spark: Cluster Computing with Working Sets. In Proceedings of

148

the 2nd USENIX Conference on Hot Topics in Cloud Computing, pages 1–7,

2010.

[171] Guo-Xin Zhang, Ming-Ming Cheng, Shi-Min Hu, and Ralph R Martin. A

Shape-Preserving Approach to Image Resizing. Computer Graphics Forum,

28(7):1897–1906, 2009.

[172] Xiao Zhang, Travis Martin, and M. E. J. Newman. Identification of Core-

periphery Structure in Networks. Physical Review E, 91(3):1–10, 2015.

[173] Xiujun Zhang, Chen Xu, Min Li, and Robert K.F. Teng. Study of Visual

Saliency Detection via Nonlocal Anisotropic Diffusion Equation. Pattern

Recognition, 48(4):1315 – 1327, 2015.

[174] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. U-Air: When Urban Air Quality

Inference Meets Big Data. In Proceedings of the 19th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 1436–1444.

ACM, 2013.

[175] Yu Zheng, Tong Liu, Yilun Wang, Yanmin Zhu, Yanchi Liu, and Eric Chang.

Diagnosing New York City’s Noises with Ubiquitous Data. In Proceedings

of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, UbiComp ’14, pages 715–725, New York, NY, USA, 2014.

[176] Hong Zhou, Panpan Xu, Xiaoru Yuan, and Huamin Qu. Edge bundling in

information visualization. Tsinghua Science and Technology, 18(2):145–156,

2013.

[177] Daniel Zielasko, Benjamin Weyers, Bernd Hentschel, and Torsten W Kuhlen.

Interactive 3D Force-Directed Edge Bundling. 35(3):51–60, 2016.

[178] Michael Zinsmaier, Ulrik Brandes, Oliver Deussen, and Hendrik Strobelt. In-

teractive Level-of-Detail Rendering of Large Graphs. IEEE Transactions on

Visualization and Computer Graphics, 18(12):2486–2495, 2012.

149

