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Abstract
With the rapid development of the Internet, a large amount of text data is generated every

day. People express their feelings and emotions through the Internet. The study of emotion

analysis from texts is essential to understand the sentiment and emotions of people in

public, especially in various social media. This is a major step towards enabling machines

to have affective intelligence.

This thesis focuses on emotion analysis from text, which studies four areas in emotion

analysis, including (1) high-quality emotion corpus construction, (2) more comprehensive

multi-dimensional emotion lexicon construction, (3) phrase level emotion analysis, and (4)

fine grained emotion prediction based on event roles in context. The contribution mainly

consists of five parts.

The first part is on high-quality emotion corpus construction. Due to prohibiting cost,

earlier works on emotion corpus annotation have very limited success. Many works use

automatic methods based on natural labels such as hashtags, which can be very noisy. In

this thesis, a three-step selection framework is proposed to improve the quality of corpus

using natural labels by filtering noises in microblog data. The framework includes both

automatic noise removal and semi-automatic noise removal. Evaluation of this framework

shows that the corpus acquired automatically is of high-quality with Kappa value reaching

0.92. It can reduce manual annotation workload by 45.5% with a relative improvement in

quality by 23.0% in macro F-score.

The second part is on word level emotion analysis, namely multi-dimensional emo-

tion lexicon construction which is more comprehensive and theoretically more sound. The

biggest problem with emotion lexicons using discrete labels is its limited computability

and extensibility. We propose to construct emotion lexicons based on multi-dimensional

emotion model, such as Valence-Arousal-Dominance (VAD), Evaluation-Potency-Activity

(EPA) using continuous values for each dimension. Then, a regression based method is
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proposed to infer affective meanings of words from word embedding. Evaluation on var-

ious emotion lexicons shows that the proposed method outperforms the state-of-the-art

methods on all the lexicons under different evaluation metrics with large margins. Com-

paring to other state-of-the-art methods, the proposed method also has a computational

advantage. The emotion lexicons obtained using our methods are available for public ac-
cess.

The third part investigates phrase level emotion analysis. Based on vector representa-

tions of words, compositional models can be used to infer vector representations of larger

text units. In this work, we first investigate the effectiveness of different word represen-

tations in compositional models for phrases on a phrase sentiment analysis task. Rep-

resentation models include multi-dimensional emotion lexicons, sentiment lexicon and

word embedding. Results show that word embedding clearly outperforms special pur-

pose emotion lexicons even though they are cognitively backed by theories. Secondly, we

investigate how phrase embedding can be learned and thus emotions of phrases can be

inferred from their embedding representation directly. A hybrid method is proposed to

learn phrase embedding from both the external context as well as component words with

a compositionality constraint in such a way to reduce the data sparseness problem and at

the same time reduce the semantic problem for non-compositional phrases. Evaluation on

four datasets shows that the performance of this hybrid method is more robust and can

improve the phrase embedding.

The fourth part investigates fine-grained emotion analysis. Most studies on emotion

analysis focus on the sentiment or emotion expressed by a whole sentence or document.

In this work, a novel task is proposed to predict the emotion states of event roles in a

specific event context, where an event role can be the subject, act and object involved in

the described event. This is backed by cognition theory of Affective Control Theory (ACT)

that emotion states are context dependent. The main idea is to use automatically obtained

word embedding as word representation and use the Long Short-Term Memory (LSTM)

network as the prediction model. Compared to the linear model used in ACT which uses

manually annotated EPA lexicon, the proposed method outperforms the linear model and

word embedding also performs better than EPA lexicon.
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Together, our works show that (1) high-quality emotion corpus can be obtained through

natural labels with proper noise elimination process; (2) provision of a sound and auto-

matic method to obtain multi-dimensional emotion lexicons; (3) under different compo-

sitional models, word embedding representation performs better than other dimensional

emotion representations; (4) both external context and component words are useful for

learning the embedding of phrases; and (5) emotion under specific context can be inferred

more effectively based on LSTM with word embedding. Word embedding as a general

semantic representation is a promising word representation even in domain specific appli-

cations including emotion analysis.
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Chapter 1

Introduction

Text has been one of the most important media for people to exchange information, ex-

press ideas, explain scientific discoveries and create stories, etc. The growing popularity of

social media has fundamentally changed the web from a simple information dissemination

platform to a more interactive and social network based platform not only for information

exchange and sharing but also for personalized expressions of individual feelings. It some-

times also serves as a platform for online emotional support. As Professor R. W. Picard,

a pioneer in affective computing, puts it, “Emotion pulls the levers of our lives, whether it

be by the song in our heart or the curiosity that drives our scientific inquiry” [120]. Emo-

tions expressed through webs, especially in different social media, can affect its readers in

such an unprecedented speed and scale that sometimes it can have dire consequences. The

ability to have emotion and the ability to express our feelings through written forms is one

of the most important characteristics of human beings. It is one of the keys to distinguish

human beings with other animals. It is also one of the keys to differentiate human beings

from machines and robots.

The term emotion has many different definitions. In general psychology, Klaus R.

Scherer gives a formal definition of emotions as episodes of coordinated changes in sev-

eral components (including at least neurophysiological activation, motor expression, and

subjective feeling but possibly also action tendencies and cognitive processes) in response
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to external or internal events of major significance to the organism [131]. Emotion can

be represented by discrete emotion models such as anger, disgust, fear, joy, sadness, sur-

prise [32] or by dimensional emotion models using continuous values in every dimension

such as the two-dimensional Valence-Arousal (VA) model [127]. Without going into for-

mal definitions in psychology nor cognitive science, the term affect is used to describe

a collection of feelings and other traits of human beings including emotion, mood, inter-

personal stance, attitude, and personality traits [120, 131]. From this definition, it is easy

to see that emotion is only one element of affect. Generally speaking, affective comput-

ing refers to the study of computational methods to assign computers with human-like

capabilities regarding observation, interpretation, and generation of affect features [155].

Emotion analysis (EA) refers to computational methods to enable machines to recognize

or generate emotions in a human manner. Even though emotion and affect are not the same

in psychology, studies in affective computing are mostly focused on emotions. Thus, in

this thesis, the terms emotion analysis and affective computing are used interchangeably.

So are the terms emotion and affective meanings. A multi-dimensional emotion model is

defined in the so called emotion space or affective space. The term sentiment is also

used to describe people’s feelings. However, sentiment is normally measured using po-

larities of positive and negative. In the emotion space, sentiment can be represented in a

one-dimensional valence model in which polarity is indicated by a value either on the pos-

itive or the negative axis and the absolute value indicates intensity. Thus, in the emotion

space, sentiment is simply a special one-dimensional emotion. Sentiment analysis aims

to classify the sentiment polarity of a given piece of text. Thus, sentiment analysis can be

viewed as a special kind of emotion analysis with focus on the valence dimension only.

In this thesis, sentiment analysis is treated as a special kind of emotion analysis. Without

loss of generality, sentiment lexicons and emotion lexicons are generally referred to as

affective lexicons.

Emotions have been studied extensively in different disciplines such as psychology,
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neuroscience, sociology, philosophy, medicine as well as computer science. Emotion anal-

ysis in computer science can be sub-divided into two main tasks: 1) emotion recognition

and 2) emotion generation. Emotion recognition (ER) aims at identifying the emotions

expressed in some media, such as images, text, video, audio, etc. Identifying emotions and

changes to its recipient triggered by any of these media is also part of the emotion recog-

nition work. On the other hand, emotion generation (EG) aims at enabling a machine to

express emotions like a human, such as generating emotional faces [48], emotional voices

[134], emotional text expressions and dialogs [190].

The types of emotion recognition are normally dependent on the kind of input data.

Facial expression based ER analyses the expressed emotions using facial features through

computer vision techniques [188]. Audio based ER analyses the expressed emotions using

audio features and speech recognition techniques [27]. Electroencephalography (EEG)

based ER analyses the emotions of a tested subject using brain wave features [61]. Gesture

based ER analyses the conveyed emotions through body gesture features using computer

vision techniques [42]. Text based ER analyses the emotions expressed in a piece of text

[75]. Text based ER can also examine the power of words to its readers by predicting the

emotional changes of either the subjects in text or the readers of the text [102].

This thesis focuses on emotion recognition from text only. Emotion generation is out

of the scope of this study. Therefore, emotion analysis (EA) in this thesis refers to emotion

recognition (ER) related tasks only.

Emotion analysis has many potential applications, such as in analysis of consumer’s

response to product, service, advertisement to help for future decisions [16, 114], recom-

mendation for entertainments such as movies, books, music or pictures that are suitable

for users’ current mood [21], analysis of social responses to public events, such as a dis-

aster, a war, a political event, news, etc [8], prediction of suicide tendency through social

network [31], generation of appropriate responses with emotional recognition in dialog

systems [123, 190], emotion analysis for an assistant system [86].
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Emotion analysis has been studied for a long time and different methods are proposed.

Earlier systems are mostly rule based [173, 28] using hand crafted rules and emotion lexi-

cons. However, rule based systems suffer from scalability issues and knowledge acquired

for one genre of text cannot be used by another genre easily. Newer EA systems mostly

use machine learning (ML) methods [148, 174, 26]. Machine learning based methods

mainly require three components. The first one is an emotion corpus used to train the ML

models. The second one is some emotion-link knowledge base, often in the form of an

emotion lexicon, which is used as an important feature for ML models [99]. The third one

is the ML model itself. Even though there are many machine learning methods developed

for EA, there are still some challenges.

1.1 Problem Statements and Research Objectives

The major problems and objectives that motivate this study will be given based on the

three components in machine learning based EA.

Emotion corpus construction

Emotion corpus plays an essential role for training machine learning models. An emo-

tion corpus consists of text annotated with emotion information. Previous methods for

building emotion corpora either by manual annotation or by distant supervision. Man-

ual annotation is time-consuming and hard to scale up. Many recent studies use distant

supervision methods that make use of naturally annotated data from social media to au-

tomatically obtain labeled data to a great quantity [165, 152, 103]. Naturally annotated

text features such as hashtags (the term inserted between two characters “#” by the author,

called “topic” in Sina Weibo), emoticons and emoji characters in microblogs are auto-

matically extracted from data and served directly as labels after some simple rule-based

selection. The main problem with this method is that naturally annotated labels are noisy.

Without appropriate methods to filter out noisy data, resulting corpora are less useful.
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Objective 1: This work investigates how to make use of naturally labeled data effectively

in order to obtain an emotion corpus with large quantity and at the same time,

eliminate noisy data to obtain a high-quality emotion corpus.

Word level emotion analysis.

Word level emotion analysis is equal to emotion lexicon construction, which aims to

assign affective information to words. Emotion lexicons are important resources for emo-

tion analysis. An emotion lexicon consists of words annotated with emotion information,

often referred to as affective meaning of words. For example, the word party should be

annotated with the label happiness if a discrete emotion model is used. The affective mean-

ing of a word can be represented using different methods. Earlier works in EA use discrete

emotion labels to represent affective meanings of words, such as polarities positive, nega-

tive or multi-labels happiness, sadness, anger, etc. [145, 106, 144]. Other methods repre-

sent affective meanings by some more comprehensive multi-dimensional emotion models

which represent the emotion in multi-dimensional space with each dimension using a con-

tinuous value. Commonly used models include the Valence-Arousal model (VA) [127],

the Valence-Arousal-Dominance model (VAD) [17] and the Evaluation-Potency-Activity

model (EPA) [51], etc. Sentiment is one dimension of the multi-dimensional models.

Compared to discrete emotion model or one-dimensional sentiment, multi-dimensional

emotion model is more comprehensive because it can capture more fine-grained informa-

tion. However, multi-dimensional emotion lexicons as natural language processing (NLP)

resources are very limited because most available ones are based on manual annotation

[17, 167, 183], which is not scalable and limits the use of multi-dimensional models in

real applications. Automatic methods are proposed to help obtain a larger quantity of

annotated affective resources. For example, word embedding based graph propagation

method is proposed as an automatic method to predict the valence-arousal ratings from

seed words [184]. However, words that have similar word embeddings may be associated
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with different affective meanings. For example, “father” and “dad” have similar word

embeddings, yet they are associated with different affective meanings; “father” is more

formal and detached whereas “dad” is more personal and dear affectively.

Objective 2: This work explores more effective methods to automatically build emotion

lexicons based on more comprehensive multi-dimensional emotion models.

Phrase level emotion analysis.

Phrase level emotion analysis aims to assign affective information to phrases. Previous

machine learning based methods for emotion analysis are mainly based on manually de-

fined features to obtain the feature representation of a target text. Commonly used features

include bag-of-word (BoW), n-grams, emotion category counts, emoticons, emoji, hash-

tag, punctuations, text length, Part-of-Speech tagging (POS tagging), etc [3, 152, 146, 99].

However, feature engineering is time-consuming and domain dependent. In addition, such

kind of feature is insufficient for phrases because phrases are too short to obtain engineered

features. An interesting research question is: Can we directly learn the representation of a

phrase for EA? Inspired by recent development in deep learning for NLP, which represent

a word using a dense vector called word embedding [69, 44], composition models can be

used to infer the representations of larger text units from representations of component

words [97, 189, 185]. Various composition models are proposed, such as vector addition,

element-wise vector multiplication, vector concatenation [97], tensor production [189],

recurrent neural network [93], recursive neural network [139].

Objective 3: This work explores the effectiveness of different word representations in

composition models to infer the representation of phrases for EA.

The next question is, however, what happens if some phrases are non-compositional?

For a phrase like battle cry, compositional models can fail to learn its representation from

its component words. In non-compositional cases, they can be treated as non-divisible
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units, and their representations can be learned using distributional models that make use

of the external context of these units based on the distributional hypothesis [49]. However,

the biggest problem with the use of distributional methods is that it can suffer from data

sparseness problem. The longer the non-divisible unit is, the severe the data sparseness

problem is.

Objective 4: This work explores more effective phrase representation learning methods

such that emotions can be inferred from the learned phrase representations.

Event role level emotion analysis.

For emotion analysis tasks, previous studies on emotion analysis aim to classify emo-

tions expressed in a whole piece of text, such as sentences, paragraphs, or documents,

etc.[105, 20]. Sometimes, the emotion that an author wants to express may necessarily

be linked to an emotion state of either the subject or the object in the text. For human

machine interaction, a machine needs to know more fine-grained information about the

agent or patient in a piece of text that describes an event, such as the emotion of “mother”

expressed in the sentence “The mother hit the boy” and the sentence “The mother touched

the baby”.

Objective 5: This work explores methods to do fine-grained EA for the prediction of

emotions of event roles.

1.2 Thesis Outline

Based on the identified problems and objectives, the thesis is organized into mainly four

parts: emotion corpus construction, dimensional emotion lexicon construction, phrase

level emotion analysis and fine-grained emotion analysis of event roles.

Chapter 2 introduces background knowledge related to this thesis, mainly including

emotion models to represent emotions, word representation models that represent semantic
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meanings of a word, composition models to obtain the representation of larger text units

from word representations.

Chapter 3 introduces the proposed method for building a high-quality emotion corpus

using naturally annotated labels. This part mainly focuses on how to make use of the

naturally labeled data automatically from social media and at the same time try to elimi-

nate noise to obtain high-quality data. The basic idea is to use a multiple-step method to

first select high-quality naturally labeled data automatically and then, use semi-automatic

method to select data in the remaining set for high-quality output. Result of this work is

published in the paper [77].

Chapter 4 introduces the proposed regression-based method to construct multi-dimensional

emotion lexicons using word embedding. The method is based on two assumptions: (1)

different features in word embedding contribute differently to a particular affective di-

mension, and (2) one feature in word embedding also contributes differently to different

affective dimensions. The proposed method treats word embedding as word features and

learns meaning specific weights to each feature when mapping embedding to different

affective dimensions. Result of this work is published in two papers [76, 81].

Chapter 5 introduces two works for phrase level emotion analysis. The first work

investigates effective word representation models to be applied to compositional models

for deriving the representations of longer text units such as phrases. Investigated word

representations include multi-dimensional emotion lexicons and word embedding and in-

vestigated composition models include addition, multiplication, concatenation, and Long

Short-Term Memory network (LSTM). Result of this work is published in the paper [78].

Results show that word embedding gives better results than specialized emotion lexicons

because word embedding not only encode affective meanings, but also encode other useful

semantic meanings. Following this conclusion, a hybrid model is proposed to learn em-

bedding representation of phrases with consideration of both external context and internal

component words. The learned embedding can be used to infer emotions of phrases using
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the method proposed in Chapter 4. Result of this work is published in the paper [79].

Chapter 6 introduces a novel emotion analysis task to predict the emotions of different

event roles in an event description. Prediction is based on LSTM trained on different roles

of events in their proper context. Result of this work is published in the paper [80].

Chapter 7 concludes the thesis by summarizing the main contributions, limitations and

future work on emotion analysis.
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Chapter 2

Background

This chapter firstly introduces different emotion models. The second part gives an overview

of the historical development of EA. The third part gives an overview of different word

representations. The fourth part introduces different composition models that are used to

compute the representations of larger text units based on word representations.

2.1 Emotion Models

Emotion, as the most complicated and fascinating part of human, has attracted many stud-

ies from different disciplines including the emotion mechanisms, how to recognize emo-

tions and how to express emotions. How to represent emotion has been studied for a long

time and different emotion models are proposed.

On the theoretical front on emotion understanding, Ortony et al. [111] propose a model

of emotions, based on the appraisal theory in cognitive science, referred to as the OCC

model (the abbreviation of the authors Ortony, Clore and Collins). In OCC model, emo-

tions are classified into 22 types in a hierarchy according to the valenced reactions to

different stimuli including reactions to events, agents (actions of agents), and objects. The

OCC model analyzes emotions from the perspective of causes and how they can trigger

certain emotions as reactions and how one emotion can be related to another. No person-

ality and personal beliefs/values are considered in this model. Richard Lazarus et al. [67]
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propose a unified view of appraisal and coping process model. It characterizes emotion

as the result of some underlying mechanisms including both appraisal, which evaluates

an organism’s circumstances, and coping, which guides the response to this assessment.

Appraisal and coping not only guide emotional behavior, but also play an important role

in informing cognition, often in ways not considered by traditional models of intelligence.

Affects are considered as the result of the appraisal of the environment and situationally in-

teracted with goals, beliefs and intentions. Jonathan Gratch and Stacy Marsella [45] point

out that the appraisal theories posit that events do not have significance in themselves, but

only by virtue of their interpretation in the context of an individual’s beliefs, desires, inten-

tions and abilities. They further introduce the so called appraisal variables (also referred

to as the appraisal dimensions) to characterize the individual variations. They attempt to

propose a unified model that can simulate human emotional responses and also inform

the debate on the general adaptive values of emotional reasoning. They further argue that

beyond modeling the significance of events to one’s self, appraisal variables also seem

to play an important role in mediating social relationships. People readily appraise how

events impact other individuals and use these appraisals to guide social actions. This is

quite relevant to the study of emotion spread over the Internet.

Mahranian [90], in his Pleasure-Arousal-Dominance (PAD) emotional state model,

makes distinctions of emotion states from temperament which he considers an individ-

ual’s emotional traits measured as the average values regarding the three dimensions of

emotions. He argues that dimensions of emotions include evaluation (pleasure), activ-

ity (activity) and potency (dominance) which are used to measure stimuli. Reactions to

stimuli, which are called emotions, yield the same three factors. An individual’s beliefs,

generally termed as the value system, also place a very important role in each individual’s

reactions to the environment. Miller et al. [95] make use of the Personality, Affect, Culture

(PAC) framework to simulate social agents which allow the social behavior to vary accord-

ing to their personalities and emotions which, in turn, vary according to their motivations
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and underlying motive control parameters.

Based on the proposed various emotion theories, emotions can be represented either

by discrete categories or a set of values in continuous scales of some multi-dimensional

space. In discrete representations, different categories are proposed. Table 2.1 lists several

discrete emotion models. Out of the seven discrete emotion models, Ekman’s model with

six categories is the most commonly used. Ortony’s model is the most detailed. Xu’s

model differs from Ekman’s by one additional ”like”. And Xu’s model is more commonly

used in Chinese EA.

Table 2.1: List of popular discrete emotion models

Author Num Basic Emotions

Ekman[32] 6 anger, disgust, fear, joy, sadness, surprise

Parrot[116] 6 anger, fear, joy, love, sadness, surprise

Frijda[39] 6 desire, happiness, interest, sorrow, surprise, wonder

Plutchik[39] 8 acceptance, anger, anticipation, disgust, fear, joy, sadness, surprise

Tomkins[157] 9 anger, contempt, disgust, distress, fear, interest, joy, shame,
surprise

Ortony[111] 22 fear, joy, distress, happy-for, gloating, hope, pity, pride, relief,
resentment, satisfaction, etc.

Xu[175] 7 anger, disgust, fear, joy, like, sadness, surprise

On the other hand, the multi-dimensional emotion models represent emotions in multi-

dimensional space with each dimension a continuous value. For example, in the valence-

arousal model (VA) [127] as shown in Figure 2.1, each word is mapped to the affective

space as a point in a two-dimensional space where valence indicates polarity and arousal

indicates excitement; in the evaluation-potency-activity model (EPA) [112] as shown in

Figure 2.2, each word is mapped to a three-dimensional space where evaluation indi-

cates polarity, activity indicates excitement and potency indicates power; in the hourglass

model of emotion [22], emotions are represented by four independent dimensions: pleas-

antness, attention, sensitivity and aptitude; other dimensional emotion models include the
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four dimensions of evaluation-pleasantness, potency-control, activation-arousal, and un-

predictability [37], and the three dimensions of serotonin, dopamine and noradrenaline

based on neuroscience [89].
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positivenegative
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tired
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Figure 2.1: Two dimensional valence-arousal (VA) emotion model.
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unexciting
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Sadness
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Figure 2.2: Three dimensional evaluation-potency-activity (EPA) emotion model.

Under the multi-dimensional emotion model, sentiment indicated by polarities can

be viewed as a one-dimensional emotion model. For example, it is equal to the valence

dimension in VAD or the evaluation dimension in EPA.
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2.2 Overview of Emotion Analysis Tasks

One of the most important resources for emotion analysis is an emotion lexicon, which

leads to research on emotion lexicon construction. Based on the emotion model used,

it includes discrete emotion lexicon construction and multi-dimensional emotion lexicon

construction. The methods for discrete emotion lexicon construction can be divided into

manual annotations [175, 105, 106] and automatic methods [165, 104, 140]. The manu-

ally annotated discrete emotion lexicons include the Affect Lexicon [175], in which ev-

ery word is labelled with one of 7 emotion categories together with strength of 5 levels,

such as “谢世(die)” labelled with “悲伤(sadness)” with strength 5. This lexicon con-

tains 27,446 Chinese words. Crowdsourcing is employed in [105, 106], which employ the

Amazon’s Mechanical Turk (AMT) to manually label the words with eight basic emotions

(anger, anticipation, disgust, fear, joy, sadness, surprise, trust) and finally about 14,000

words and about 25,000 word senses with labelled emotions are obtained. It also deal

with the polysemy problem through labelling several labels to that word, such as the word

“accident” is labelled with “anger”, “anticipation”, “disgust”, “fear”, “joy”, “sadness”,

“surprise”, “trust”. Automatic methods for building discrete emotion lexicon are mainly

based on statistic information from large amount of texts from the Internet and social net-

work. In [177], Yang et al. build emotion lexicon containing about 4,776 words from

weblog using point-wise mutual information (PMI) of word and emotion pairs. In [144],

Staiano et al. also use crowd source, which is free, to build emotion lexicon from news

articles, compared to Amazon’s Mechanical Turk which need to be paid. By employing

the Rappler’s Mood Meter, a small interface offering the readers the opportunity to click

on the emotion that a given Rappler story makes them feel, 25.3K documents from rap-

pler.com with emotion labelled are obtained. Different from previous annotation with only

one discrete emotion label, the documents are labeled in all eight emotions with strength

value, thus building a document-by-emotion matrix MDE. The document is then repre-
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sented by word-by-document matrix MWD, and then a word-by-emotion matrix, called

DepecheMood, is obtained through multiplication of MDE and MWD and some post-

processing. This lexicon contains about 37k terms with each entry labelled with intensity

of different categories, such as “kill#v” labelled with a predominant weight in AFRAID,

AMUSED, ANGRY, ANNOYED, DON’T CARE, HAPPY, INSPIRED, and SAD (0.23,

0.06, 0.21, 0.07, 0.05, 0.06, 0.05 and 0.27 respectively). The former lexicon are all from

formal article such as news, blogs. Since microblog is becoming more and more important

in people’s social life, in which lots of informal expressions are used frequently, such as “u

(you)”, “thx (thanks)”, Mohammad et al. construct an emotion lexicon from tweet [103].

The authors first obtain an emotion corpus-sentences labeled with an emotion-based on

the hashtag when a tweeter proposes a tweet with a hashtag, then the unigram and bigram

with emotion pairs are obtained through the PMI of the terms and related emotion labels.

This emotion lexicon, called Hashtag Emotion Lexicon contains about 11,418 terms. For

multi-dimensional emotion lexicons, the methods mainly includes manual annotation and

automatic methods, which will be introduced in detail in Chapter 4.

Earlier works on emotion analysis are mostly conducted at the sentence level and doc-

ument level. Research methods are developed in two stages. The first generation (before

2007) of EA is mainly rule-based, which is based on manually defined rules or linguis-

tic patterns to analyze the emotion of a sentence. In [173], a set of emotion generating

rules (EGR) are manually deduced, such as “One may be HAPPY if he obtains something

beneficial”. Further more, the EGR can be divided into a domain-independent component

such as “obtain” and a domain-dependent component such as “something beneficial”.

Through hierarchical hyponym structure of a word, more EGR can be generated and used

for emotion analysis. Chaumartin et al. [28] define rules based on common knowledge

to analyze the emotions of news headlines. For example, the word inherited from “Un-

healthiness” in WordNet will boost fear and sadness emotions. The authors also define the

rule that the main subject in a sentence should weight more. Another kind of rule based
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method is lexicon based, which adds the frequency or intensity of words in each emotion

category and takes the word in a category with the maximum value as the final emotion

label [144, 178]. Rule-based methods generally give higher precision. However, their fatal

drawback is the coverage problem and the time-consuming rule definition.

The second generation (after 2007 to now) EA methods are mainly based on super-

vised machine learning (ML), whose framework is shown in Figure 2.3. This framework

shows that ML pre-processes input text first and then converts it into a feature vector

representation based on emotion lexicon and manually defined feature templates, such as

the Bag-of-Word feature, the POS feature, the n-gram feature, the lexicon based feature

[99, 163]. Based on the feature representation, a classifier or a regression model is trained

on an emotion corpus and then used for emotion prediction.

Pre-
processing

Feature 
Extraction

Classifier

Emotion 
category

Emotion 
lexicon

Input 
text

Feature 
templates

Figure 2.3: Machine learning framework for emotion analysis.

As an emotion corpus is a premise for supervised machine learning, emotion corpus

construction becomes another research topic in emotion analysis community. The details

of related work for emotion corpus construction will be introduced in Chapter 3.

Sentiment analysis, as a special type of EA, is also called opinion mining. As a field

of study, sentiment analysis analyzes people’s opinions, sentiments, appraisals, attitudes

toward entities and their attributes expressed in written text [85]. The tasks in sentiment

analysis can be categorized from different perspectives. Base on the type of targeted text
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genre, the task can be divided into document level, sentence level, aspect level and word

level. Document level analysis is to classify a whole document to either a positive or a neg-

ative sentiment [115]. Sentence level analysis is to determine whether a sentence expresses

a positive or negative opinion. This is closely related to subjectivity classification which

determines if a sentence express a subjective opinion (referred to as a subjective sentence)

or a factual information (referred to as an objective sentence) [85]. Aspect level identi-

fies which aspect is the target of the opinion and what is the opinion towards a specific

target. Word level sentiment analysis is on sentiment lexicon construction, which assigns

the polarity label or polarity with intensity to a given word. For example, good, amazing

are positive and whereas terrible, sad are negative. According to [85], the main difference

between emotion analysis and sentiment analysis is that the former detects multi-class

emotions instead of identifying only the polarity of the target, which is a binary classifica-

tion problem. Theoretically speaking, sentiment is a subset of emotions and all the tasks

in sentiment analysis can be extended to emotion analysis. When using discrete emotion

emotions, EA tasks become multi-class classification tasks from the corresponding binary

classification tasks of sentiment analysis. When using multi-dimensional emotion mod-

els, sentiment is one dimension and the EA tasks become prediction the values in every

dimension rather than only sentiment dimension.

Current works on emotion analysis are mostly at sentence level and document level us-

ing words as the basic semantic and affective units for aggregation and learning. However,

phrases, as a semantically more meaningful units, may carry semantic information differ-

ent from those of the component words and the affective meanings may also be different.

For example, the phrase ”couch potato” is a non-divisible multi-word expression quite dif-

ferent from its component words of ”couch” and ”potato”. From study of literature, I have

not found any systematic study on phrase level emotion analysis. There are only limited

study in sentiment analysis, which analyze the polarity of phrases [172, 1].

In the following sections of this chapter, some models that will be used in the thesis
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will be introduced.

2.3 Word Representations

How to find the most appropriate method to represent the meaning of a word has been

the core issue both in the NLP community and the computational linguistic community.

There are mainly five kinds of methods to represent a word: (1) symbolic representation,

(2) manual feature based representation, (3) cluster based representation, (4) distributional

representation, and (5) distributed representation. Each of them is introduced below.

1). Symbolic representation simply treats a word as a symbol and the word is trans-

formed to a symbol ID, which is then transformed into a feature vector using a one-hot

representation [158]. Feature vectors have the same length as the size of the vocabulary,

and only one dimension is on. Bag-of-Word (BoW) feature representation of documents

and sentences is typically represented symbolically based on one-hot vectors.

2). Manual feature based representation defines a word by a set of manually selected

semantic features that indicate the different aspects of meanings as a set of semantic primi-

tives. For example, in the common sense knowledge base ConceptNet [143], each concept

is represented by manual defined features. For example, the word apple takes the value 1

under the features can eat and is fruit while takes the value 0 under the feature can run.

3). Cluster representation assigns each word a cluster class based on a hierarchical

clustering algorithm, called Brown clustering, where each word is represented by the clus-

ter it is assigned to [18]. In the clustering algorithm, the input to the algorithm is a text,

which is a sequence of words w1, w2, ¨ ¨ ¨ , wn. The output is a binary tree, in which the

leaves of the tree are the words. Each internal node is interpreted as a cluster containing

all the words in that subtree [83]. Each cluster can be encoded by a bit string, which can

be used as the feature representations of the words.

4). Distributional representation is based on the distributional hypothesis that words
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occur in similar context tend to have similar meanings [49]. Based on a given corpus,

a word-context matrix M is constructed by setting the entry Mij to 1 if word wi and

wj co-occur in a context window. Then row i is the distributional representation of the

word wi. The dimension of the vector is equal to the vocabulary size, which is con-

sidered a high-dimensional representation [62]. Each entry is not limited to binary val-

ues. Co-occurrence frequency, mutual information, weighted mutual information, Term

Frequency-Inverse Document Frequency (TF-IDF), point-wise mutual information (PMI)

and the positive point-wise mutual information (PPMI) can all be used in the word-context

vectors [62, 74]. As examples, Formula 2.1 gives the PMI definition of word-context co-

occurrence matrix.

MPMI
i,j “ log

P pwi, cjq

P pwiqP pcjq
“ log

#pwi, cjq ¨ |D|

#pwiq ¨#pcjq
. (2.1)

Formula 2.2 gives the PPMI of word-context co-occurrence matrix.

MPPMI
i,j “ maxpMPMI

i,j , 0q. (2.2)

5). Distributed representation is also based on the distributional hypothesis. The main

advantage is that it is a low-dimensional dense vector representation, also called word

vector or word embedding, whose dimension is usually less than 1,000. Distributed rep-

resentation can be obtained either through count-based methods or prediction-based meth-

ods [10]. A count-based method first builds the word-context co-occurrence matrix by the

distributional representation. Matrix factorization is then performed on the co-occurrence

matrix to obtain several low dimensional matrices and each row in one of the low dimen-

sional matrix is used as word embedding. Different matrix factorization methods can be

used including factorization into the multiplication of two matrix [119], Singular Value

Decomposition (SVD) [135, 74], probabilistic matrix and tensor factorization [187], low

rank approximation [82]. As an example, Formula 2.3 shows the SVD factorization on the
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PPMI word-context co-occurrence matrix to obtain the word embedding,

MPPMI
“ UΣV T . (2.3)

Then, word vector for wi is given by:

wSV Di “ pUqi. (2.4)

The prediction-based methods do not need the word-context co-occurrence matrix.

It directly learns word embedding through optimization on some neural network models

based on the language model or word-context constraint in an unsupervised way. The lan-

guage model based approach predicts the next symbol (usually words) given previous sym-

bol sequence, which should make the sequence fluent. To be specific, given a sequence, s,

of n words sn1 “ w1w2 ¨ ¨ ¨wn where the subscript 1 and superscript n of s indicates word

1 to word n, a language model decomposes the sequence s as the probability:

ppsn1 q “
n
ź

i“1

ppwi|s
i´1
1 q, (2.5)

where ppwi|si´11 q is the probability that word wi occurs after the sequence si´11 . Different

neural language models are proposed to compute the conditional probability ppwi|si´11 q.

For example, in [12, 13], the approximation is based on the n-gram language model:

ppwi|s
i´1
1 q « ppwi|s

i´1
i´nq, (2.6)

which takes a window of size n to approximate the whole sequence before word wi. Then

the probability ppwi|si´1i´nq is computed through a three layer neural network with word em-

bedding as input. After training the language model by maximizing the likelihood of ppsq

over a large corpus, the word embeddings as the model parameters are also learned. Under

this framework, different neural language models are proposed to compute the probabil-

ity ppwi|si´1i´nq. For example, in [98], Mnih et.al employ Restricted Boltzmann Machine
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to model the probability ppwi|si´1i´nq. In [30], Collobert et.al use the convolutional neural

network to predict if the word in the middle of the input window is related to its context

or not. In [58], Huang et.al combines local and global contexts to predict the score of next

word based on previous word context window, where the global context is the weighted

average of the word embedding of the whole document.

Previous word embedding learning models are computationally expensive. Mikolov et

al. propose two simplified versions called the CBOW model (Continuous Bag-of-Words

Model) and the Skip-gram model which are commonly used [94, 92]. The two models are

shown in Figure 2.4.1 The CBOW model predicts the target word given the context words

in a window size. To be specific, the target word is predicted based on the sum of the

vectors of the context words. On the other hand, the Skip-gram model predicts the context

words in a context window size based on the target word. The main difference between the

two models and the previous models is that CBOW and Skip-gram do not use a language

model. They directly model the probability of the co-occurrence of a target word and its

context word in a corpus. Thus, the computation cost of these two simplified models is

much less than previous models.

Inspired by the idea of modeling relationship between a word and its context, other

contexts are further explored, such as context words under specific syntactic dependency

[72], context of words from different languages [36], context from knowledge base [166],

neighbor context in semantic lexicon [35], substitute context [91], contrast context [110],

path-based context [136], and morphological context [147, 35]. Further more, ensemble

based methods are also proposed to make use of multi-view contexts [122, 60, 142]. For

example, in [142], Speer et al. propose to combine word embedding from Skip-gram,

word embedding from matrix factorization and word embedding from knowledge base

ConceptNet to obtain ensemble word embedding. In [122], Rastogi et.al combine multi-

view resources such as monolingual text from Wikipedia, word aligned bi-text, depen-

1 Figure is modified from [92].
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Figure 2.4: The framework of CBOW and Skip-gram for learning word embedding.

dency relations, morphology and Frame relations through Generalized Canonical Corre-

lation Analysis (GCCA). In [29], word definition as an intrinsic view and context as an

extrinsic view are used. Given current word, [29] maximizes the conditional probability

of the context word and definition word, which is similar to [166] that maximizes the con-

ditional probability of a target word given a current word, where the current word is from

a knowledge base.

There is a close relationship between count-based methods and prediction-based meth-

ods. As proven in [73]，the prediction-based method based on Skip-gram is implicitly

factorizing a word-context co-occurrence matrix, whose cells are the PMI of the respec-

tive word and context pairs, shifted only by a global constant. However, since count-based

methods need matrix factorization on a very large matrix (the same size as the vocabulary

size), it costs more than prediction-based methods.

The difference between distributional representations and distributed representations is

23



the dimension size. The dimension of distributed representations is much smaller than dis-

tributional representations, which makes distributed representations widely used in deep

learning based methods. Also, the use of dense vectors makes it possible for compositional

methods to infer the representation of larger text units.

2.4 Compositional Models

One of the key element for natural language processing is to obtain a proper feature rep-

resentation of the target text, such as words, phrases, sentences and documents. How to

obtain the representation of larger text units is a key research problem. Here we focus

on phrase and sentence representations. Methods for their representations can be mainly

divided into three types: 1.) Feature template based methods; 2). Distributional methods;

3). Composition based methods.

Feature template based methods mainly construct the feature representation of target

text by manually defined feature templates, such as word POS tagging, bag-of-word fea-

ture, n-gram feature, punctuation, negation, lexicon, ect. [104]. However, the manual

feature engineering process is time-consuming and not scalable.

Distributional methods are inspired by the distributional methods for learning word

representation as introduced in section 4.2.1. Distributional methods treat a sentence or a

phrase as one single unit and directly learn their vector representation by using their con-

text. For example, words occurrences or n-grams in documents are used as the context to

learn sentence vector representations [68]. The surrounding sentences are directly used as

context to learn sentence vector representations [63]. The surrounding words in a window

are treated as context to predict the phrase vector representation [181]. However, distri-

butional methods can suffer from data sparseness problem. The longer the text units are,

the more severe the data sparseness problem is. The root of the problem is that a distribu-

tional method treats a sentence or a phrase as a non-divisible unit without consideration of
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component words, which can contain meaningful semantic information.

Composition based methods, also referred to as compositional methods, are based

on the principle of compositionality which states that the meaning of an expression is

determined by the meanings of its component expressions and the rules used to combine

them [38, 117]. The basic idea is to obtain the representation of a larger text unit from

the representation of its component words through a computational approach. Let us use

a two-word phrase as an example. Given a phrase p consisting of two words pw1, w2q.

The word embeddings of w1, w2 are ~w1
m, ~w2

m respectively. The compositional methods can

then obtain the representation of the phrase ~p based on the following function:

~p “ fp~w1
m, ~w

2
mq. (2.7)

Partee [117] further suggests that the above principle should also take the role of syntax

into consideration: The meaning of a whole is a function of its constituents as well as the

syntactic rules to combine them. This can be modeled as:

~p “ fp~w1
m, ~w

2
m, Rq, (2.8)

where R is the syntactic relation between w1 and w2.

Lakoff [66] suggests that the meaning of the whole is greater than the meaning of its

parts. The background information about the language and the knowledge related to the

words should also be considered. So, the composition function should include an addi-

tional variable K, representing any knowledge associated with the composition process.

~p “ fp~w1
m, ~w

2
m, R,Kq (2.9)

Compositional methods can obtain the representation of larger units recursively from

the representations of its component words without any manual work. Consequently, com-

positional methods are widely used in NLP community now. In the following subsections,

some commonly used composition models will be introduced.
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2.4.1 Basic Composition Models

Several basic composition models are explored by [96, 97] based on the framework given

in Formula 2.9 through some simplifications. Here only three basic linear models are

shown. The addition composition model is defined as a linear composition:

~p “ A~w1
`B~w2

“
“

A B
‰

„

~w1

~w2



, (2.10)

where A and B are the matrix to define the contribution of the component words. When

A and B degrade to real numbers, the composition model degrades to a weighted addition

model. When A and B further degrades to 1, the composition model degrades to a direct

addition model in which both words contribute equally.

~p “ ~w1
` ~w2. (2.11)

The multiplication composition framework is defined by:

~p “ Cp~w1
â

~w2
q, (2.12)

where
Â

is the tensor product or outer product of vector ~w1
m and ~w2

m, C is a tensor of rank

3 that maps the tensor product to the vector space of ~p. By setting C to 1, a simplified

version of multiplication composition model is produced as:

~p “ ~w1
˝ ~w2, (2.13)

where ˝ is the element-wise multiplication.

Another widely used composition model is the concatenation composition model

which concatenates the vectors of the component words:

~p “ r~w1, ~w2
s. (2.14)

In addition to those basic composition models, more complex composition models are

proposed by introducing different nonlinear transformations, which are widely used in

different deep learning models [44]. Two non-linear neural network models, the recursive

neural network (RecNN) and the recurrent neural network (RNN) will be introduced. Their

relationship with the basic composition models will also be explained.
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2.4.2 Recursive Neural Networks

Recursive neural network (RecNN) was first proposed by Socher for sentiment analysis

[138, 137, 139]. Using the sentence “The movie is cool” as an example, the framework

of RecNN is shown in Figure 2.5. When a word sequence is given to the RecNN model,

it is first parsed into a binary parsing tree with each leaf node as a word. Then the repre-

sentations of the parent nodes are obtained in a bottom-up fashion through a composition

function f . After obtaining the representation of the root node, prediction can be per-

formed on the root representation.
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Figure 2.5: The composition model of RecNN for sentence representation learning.

Different composition functions f are proposed. Let ~vp P Rd denote the vector of a

parent node, and ~vl, ~vr P Rd denote the vectors of the left and the right child nodes where

d is the dimension size of the vectors. The original RecNN uses the following composition

function [138]:

~vp “ σ

ˆ

W

„

~vl
~vr



`~b

˙

“ σ

ˆ

“

Wl Wr

‰

„

~vl
~vr



`~b

˙

, (2.15)

where σ is the element-wise activation function, which can be the sigmoid function, the

tanh function or the ReLU function. This composition function actually concatenates the
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two child vectors and then perform a matrix transformation with a bias, followed by a

non-linear transformation. This can also be seen as the addition composition function in

Formula 2.10 with a bias, followed by a non-linear transformation. The vectors of all

words and matrices are treated as model parameters and learned during model training.

The second version of RecNN modifies f to:

~vp “ σ

ˆ

W

„

Ml~vl
Mr~vr



`~b

˙

, (2.16)

where Ml and Mr are matrix that perform transformation on child vectors [137]. Formula

2.16 defines the so called Matrix Vector Recursive Neural Network (MV-RNN). Compared

to the first composition function in Formula 2.15, the second version adds a matrix trans-

formation before concatenating the two child vectors, which makes the parameters size

much larger than the first model.

The third version of RecNN uses tensor product to capture more semantic interac-

tion between two child words [139], referred to as the Recursive Neural Tensor Network

(RNTN) defined as:

~vp “ σ

˜

„

~vl
~vr

T

V r1:ds
„

~vl
~vr



`W

„

~vl
~vr



`~b

¸

, (2.17)

where V r1:ds P R2dˆ2dˆd is the tensor that defines multiple bilinear to capture the dimen-

sion interaction between the two child words.

2.4.3 Recurrent Neural Networks

The framework of Recurrent Neural Network (RNN) is shown in Figure 2.6. Note that

RNN can be viewed as a specific case of RecNN that the binary parsing tree in RecNN

degrades to a linear chain.

In RNN, the second layer is called the hidden layer and each node is a hidden node.
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Figure 2.6: The composition model of RNN for inferring sentence representation.
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The composition function f of a hidden node i is modeled as:

~hi “ σ
´

V~hi´1 ` U~vi `~b
¯

“ σ

ˆ

“

V U
‰

„

~hi´1
~vi



`~b

˙

, (2.18)

where ~hi is the representation of the hidden node i, which is composed from ~hi´1 and the

current input node vi. Figure 2.7 plots RNN in the form of a binary tree. It is now easier to

see that RNN is a special case of RecNN. Each hidden node hi in RNN can be treated as

the internal parent node pi´1. The only difference is that a ”NULL” node with zero vector

~0 is added on the far left. The advantage of RNN is that it is a simplified linear chain

without requiring a paring tree.

However, a drawback with RNN is that it suffers from the gradient vanishing problem

when the sequence is long. To overcome this problem, more complex composition model

is proposed. The most widely used model is Long Short-Term Memory (LSTM) network

[55]. The framework of LSTM is shown in Figure 2.8. In LSTM, the composition function

f is a group of functions rather than a simple function. Each box as a node is called an

LSTM cell and the input for cell t is the hidden representation~ht´1 from previous cell t´1

and current word representation ~vt. An LSTM cell at position t consists of four parts: an

input gate vector~it, a forget gate vector ~ft, an output gate vector ~ot, and a cell state vector

~ct. The output of each LSTM cell is defined by an output vector ~ht. These vectors are
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Figure 2.7: The composition model of RNN in the form of RecNN.

Figure 2.8: The composition model of LSTM.
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defined as:

~it “ σpUi~xt `Wi
~ht´1 `~biq, (2.19)

~ft “ σpUf~xt `Wf
~ht´1 `~bf q, (2.20)

~ot “ σpUo~xt `Wo
~ht´1 `~boq, (2.21)

~ct “ ~ft ˝ ~ct´1 `~it ˝ tanhpUc~xt `Wc
~ht´1 `~bcq, (2.22)

~ht “ ~ot ˝ tanhp~ctq, (2.23)
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where σ is the sigmoid activation function, ˝ denotes Hadamard product, and ~bi,~bf ,~bo,~bc

are the bias. Ui, Uf , Uo, Uc, Wi, Wf , Wo, Wc are the model matrix parameters that are

learned during training the model. Based on the current input ~xt and the output ~ht´1 of

previous cell, it computes the input gate vector~it, forget gate vector ~ft, output state vector

~ot. Then, the current output ~ht is computed using the formula given below:

~ht “ ~ot ˝ tanhp~ctq. (2.24)

LSTM is good at remembering values for either long or short durations of time. If

directly treating the input word vector as model parameters, this model can also be used to

learn word embeddings. As a deep learning model, LSTM has been widely used in various

NLP tasks, such as machine translation [149], language modeling [46], and sentiment

analysis [151], etc.

2.5 Chapter Summary

In this chapter, the related background knowledge is introduced, including methods for

emotion analysis, sentiment analysis, emotion models, word representations and composi-

tion models. These models and algorithms will be used in this thesis for different tasks. In

the following chapters, the proposed methods will be introduced to overcome the related

problems introduced in Chapter 1.
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Chapter 3

Emotion Corpus Construction

One of the most important parts for supervised machine learning is annotated data. The

availability of annotated data is vital to any supervised machine learning method to per-

form properly. Obtaining labeled data manually can be very time-consuming and noise

prone especially for multi-class annotations or for subject related emotion annotation. This

chapter reports a semi-automatic method to build emotion corpora.

Social media (such as Tweet, Sina Weibo) is a very important platform for people to

share information. Huge amounts of data are generated in social media. Such data are

becoming an important data source for machine learning researchers. One characteristic

of social media data is that it contains naturally annotated information, namely natural

labels, such as hashtags, emoticons and emoji characters. Thus, many studies take ad-

vantage of the social media by distant supervision methods to construct emotion copora

automatically [9, 100, 165]. The basic idea is to extract naturally annotated data and se-

lect the appropriate annotations as emotion labels. However, these automatically obtained

labels can be quite noisy. Take the following sentence as an example:

“在你闲的时候，玩玩转发微博，未必不是一种乐趣！！！#无聊# (When
you are not busy, playing with microblog retweet may be fun! #boring#)”,

which expresses “happiness” emotion if only text is examined. However, the additional

negative hashtag “boring” is in conflict with the text. Thus, this hashtag should be con-
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sidered as a noisy natural label. To show the adverse effect of noisy data, an experiment

is conducted using a high-quality training data NLP&CC2013 [186] to train an emotion

classifier, and naturally labeled data without noise filtering is inserted gradually to the

training data to see the performance of the classifier affected by the naturally labeled data.

NLP&CC2013 has a total of 4,000 sample blogs and 2,172 blogs contain emotion labels.

The rest has neutral labels (namely has no emotions). Figure 3.1 shows the experiment

result. The x-axis is the number of added noisy data and the y-axis is the performance

of the trained classifier. Note that the performance degrades continuously as more natu-

rally annotated data are added. This indicates that if there is no appropriate data cleaning

method, naturally annotated data can do more harm than good. Previous works on emo-

tion corpus construction based on naturally annotated data use limited noise filter by some

simple rules, such as removal of forwarding microblogs, microblogs containing URL, and

microblogs less than four words, etc. [165, 101].
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ABSTRACT 
The availability of labeled corpus is of great importance for 

emotion classification tasks. Because of time consuming for 
manually labeling, hashtags have been used as naturally annotated 
labels to obtain large amount of labeled training data from 
microblog. However, the inconsistency and noise in annotation can 
adversely affect the data quality and thus the performance when 
used to train a classifier. In this paper, we propose a classification 
framework which allows naturally annotated data to be used as 
additional training data and employs a k-NN graph based data 

cleaning method to remove noise after noisy data has certain 
accumulations. Evaluation on NLP&CC2013 Chinese Weibo 
emotion classification dataset shows that our approach achieves 
15.8% better performance than directly using the noisy data without 
noise filtering. If adding the filtered data into high quality training 
data, the performance increase 3.7% compared with just using the 
high quality training data. 
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1. INTRODUCTION 
Emotion classification from social media (such as Tweet, Sina 
Weibo) is becoming more and more important. Many supervised 
learning methods have been employed to solve this problem. 
However, supervised methods require large amount of labeled 
training data.  Obtaining labeled data, mainly annotated manually, 
can be more time consuming and noise prone for multi-class 
annotation, especially for subject related emotion annotation.  

Many research studies take advantage of large amount of text 
available in the social media to investigate automatic methods to 
obtain labeled data [1, 7, 10]. In these works, naturally annotated 
text features such as hashtags, emoticons and emoji characters 
inserted in tweets are automatically extracted from data and these 
features are then directly used as labels after some simple rule based 
filtering. However, these automatically obtained labels are noisy. 

Take the following text as an example, “在你闲的时候，玩玩转

发微博，未必不是一种乐趣！！！#无聊# (When you are not 

busy, playing with microblog retweet may be fun! #boring#)”.  
From the text we can infer that the emotion is “happy”, but the 
author uses a negative hashtag “boring”. As far as we know, there 

is not much work to handle hashtag noise problem for emotion 
classification. Figure 1 shows that directly adding  data using 
hashtag as emotion labels (crawled from Sina Weibo) as additional 
training data to high quality training data (from NLP&CC2013) 
will not improve the system and the performance degrades 
continuously as more naturally annotated data are added. This 
indicate that if there is no appropriate data cleaning method, 
naturally annotated data may do more harm than good. 

 
Figure 1 Performance of random adding 

Semi-supervised learning (SSL) can make use of a small amount of 
labeled seed data and large amount of unlabeled data to achieve 
much better performance, such as S3VMs. Data cleaning, as one 
kind of SSL, has been employed to cope with noisy training data, 
such as co-training [2] and CoTRADE [5]. However, these methods 
are mainly used in binary classification. In addition, training data 

using automatically obtained hashtags in principle are not 
unlabeled data. Rather, it is labeled training data with noise.  

In this study, we focus on making use of automatically obtained 

labeled data for emotion classification.  The main objective is to 
obtain more high quality labeled data to improve the performance 
of emotion classification. The main issue is the design of data 
cleaning strategies to obtain more high quality data and use the data 
to improve classification performance. The basic idea is to train a 
classifier initially using high quality data provided through manual 
annotation and make use of this classifier to predict noisy data. 
Only data with high confidence through the assessment of the 

predicted label compared to the original label will be used as the 
additional training data. As noise can accumulate after several 
iterations, we also make use of a graph based method to estimate 
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Figure 3.1: Performance of random adding

In this chapter, a more comprehensive noise removal method is proposed. The aim

is to make use of the naturally labeled data effectively and at the same time try to elim-

34



inate noise to obtain high-quality data in large scale. The basic idea is to use a multiple

stage method to first select high-quality naturally labeled data automatically and then, use

experts to manually examine data in the remaining set to select more samples.

3.1 Related Work

Emotion corpus construction methods mainly include manual annotation by experts or

crowdsourcing, and automatic methods. There are some emotion corpora based on man-

ual annotation. For the English language, SemEval2007 [146] consists of only 1,250 news

headlines labeled with the six Ekman emotion labels. The ISEAR dataset [130] consists

of 7,666 sentences generated through questionnaires. In [5], Aman et al. construct an

emotion corpus from web blogs and a total of 5,205 sentences are manually annotated

based on the six emotion labels. Neviarouskaya et al. build an emotion corpus consisting

of 700 sentences from a collection of diary-like blog posts [109]. This corpus is manu-

ally annotated with nine emotion labels with intensity. The Affect dataset [4] consists of

more than 15,000 sentences from fairy tales with five emotion labels annotated manually.

Because of the popularity of social media, emotion analysis of social media is attract-

ing research attention. For example, 15,553 tweets annotated with 28 emotion categories

through crowdsourcing via Amazon Mechanical Turk (AMT) are provided in [176].

For Chinese, the Ren-CECps (a Chinese emotion corpus developed by Ren-lab) [121]

emotion corpus consists of 1,487 documents and 35,096 sentences from web blogs anno-

tated with eight emotions. In addition, many emotion corpora are provided in shared tasks

of emotion analysis. For example, a social media orientated Chinese corpus NLP&CC20131

[186] consists of 14,000 microblogs and 45,431 sentences from microblogs with 8 labels

(including “none” label, meaning no emotion) through manual annotation. In NLP&CC2013,

only 7,300 microblogs contain emotions and the size is still quite small. Further, NLP&CC20142

1 http://tcci.ccf.org.cn/conference/2013/pages/page04_evares.html

2 http://tcci.ccf.org.cn/conference/2014/pages/page04_eva.html
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is provided for the shared task of emotion analysis for social media in Chinese microblogs.

This dataset contains 31,196 sentences annotated with the same labels as that of NLP&CC2013.

In the shared task of emotional conversation generation of NLP&CC2017, a conversa-

tion corpus3 annotated with six emotion labels (Anger, Disgust, Happiness, Like, Sadness,

Other) has more than 1 million Weibo post-response pairs. There is also an emotion cor-

pus for code-switch text that contains more than one type of languages. For example,

1,000 Weibo posts containing both Chinese and English are manually annotated with five

emotion labels (happiness, sadness, fear, anger and surprise) [70]. All the above emotion

corpora are labeled by discrete emotion categories. There is one Chinese emotion corpus

that is based on the two dimensional valence-arousal model with about 2,009 Chinese sen-

tences manually annotated and each dimension is annotated in the range of [1-9] [183].

The limitation of the manually annotated datasets is that they are hard to scale because of

the cost of manual annotation.

Distant supervision method is used to automatically build emotion corpora based on

naturally annotated labels. The news emotion categories labels are used as the emotion

labels of news articles where the emotion category is given by readers after they read a

news article [179]. Many news websites provide this kind of emotion tagging function,

such as Yahoo News, Sina News4. Hashtags, emojis, emoticons, given by authors when

they tweet, are used as the emotion labels to construct emotion corpora for social media

text automatically [165]. Mohammad et al. build an emotion corpus from Tweet using

hashtags, which contains about 21,000 tweets [103].

3.2 Selection Based Emotion Corpus Construction

In this study, a high-quality data selection framework is proposed to automatically or semi-

automatically build emotion corpora by employing information from natural labels with

3 http://tcci.ccf.org.cn/conference/2017/taskdata.php

4 http://news.sina.com.cn/society/moodrank/
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noise filtering. Commonly used natural labels include hashtags, emoticons, and emojis.

The advantage of hashtag over emoticon and emoji is that it is straightforward to use

them to search text in microblogs. Emoji and emoticon are not standardized and can

not be searched easily. So hashtags are used as natural labels in this work. The whole

construction procedure is shown in Figure 3.2. Firstly, a set of emotional seed words

are selected manually, similar to other methods. Based on these seed words, microblogs

are crawled to collect raw data. Then, a simple rule based preprocessing is performed

on the raw data to get the preprocessed dataset D0. The preprocessed data D0 then goes

through a lexicon based selector to produce the first set of high-quality data, denoted as H1.

The remaining unselected data D1 goes through an SVM based selector to automatically

produce the second set of high-quality data, denoted as H2. To further enlarge the corpus

size, the remaining data D2 can be manually selected to obtain the third set of high-quality

data, denoted as H3. The remaining data D3 is discarded as noisy data. Previous distant

supervision based methods on natural data selection mostly conduct Step 1, 2, 3 (marked

by the blue box) to construct an emotion corpus. The proposed framework goes further to

include Step 4, 5 and 6 (marked in the red box). Each step will be discussed in details in

the following sections.

3.2.1 Hashtag Seed Selection and Data Crawling

To illustrate the proposed framework, Sina Weibo data is used as a demonstration. The

framework itself is not proposed specifically for this data.

In Step 1, emotion labels are the same as the NLP&CC2013 corpus which takes seven

emotion labels: like, disgust, happiness, sadness, anger, surprise, fear. A set of seed words

are selected as hashtags for different emotion labels as listed in Table 3.1

Step 2 crawls the microblog data from Sina Weibo through Sina Weibo Topic API5

based on the selected seed words. As a result, 173,958 microblogs with hashtags are

5 http://open.weibo.com/wiki/API
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Figure 3.2: Emotion corpus construction framework

obtained. The raw data is denoted as RawData.

3.2.2 Rule Based Preprocessing

Since microblogs are from social media, the crawled data naturally contain noise. In Step

3, preprocessing is conducted on RawData based on the following removal rules.

1. Microblogs that contain less than 3 words excluding the hashtag and URL.

2. Duplicated microblogs in a discussion chain.

3. Microblogs that contain URL.

4. Forwarded microblogs.

5. Microblogs that are not in Chinese.

6. Microblogs that contain more than one hashtag.

7. Microblogs that contain quotes because such text is more likely to be dialogs, such

as “讲个故事：“从前有个太监. . . . . . . . . ”有人耐不住问：“下面呢？”继续
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Table 3.1: Hashtag seed words

Emotion Seed word number and examples

Like
9: “给力(helpful)” “可爱(lovely)” “奋斗(strive)” “喜欢(like)”
“赞(appraise)” “爱你(love you)” “相信(believe)” “鼓
掌(applaud)” “祝愿(hope)”

Disgust
9: “无聊(boring)” “烦躁(agitated)” “嫉妒(jealous)” “尴
尬(embarrassment)” “讨厌(dislike)” “恶心(disgusting)” “怀
疑(suspect)” “烦闷(bored)” “厌恶(disgust)”

Happiness
20: “快乐(happy)” “幸福(happy)” “哈哈(ha-ha)” “爽(so high)”
“感动(moved)” “开心(joy)” “嘻嘻(happy)” “高兴(happy)” “亲
亲(kiss)” “欢喜(happy)” etc.

Sadness
27: “伤不起(can’t bear the hurt)” “郁闷(sadness)” “哭(cry)”
“失望(disappointed)” “心塞(heart hurt)” “难过(sadness)” “思
念(long for)” etc.

Anger 27: “妈的(fuck)” “无语(speechless)” “气愤(angry)” “恼
火(anger)” “tmd” “你妹的(your sister)” etc.

Surprise 16: “神奇(miracle)” “惊呆了(shocked)” “不可思
议(inconceivable)” “天哪(my god)” “大吃一惊(shocked)”

Fear 11: “害怕(fearful)” “紧张(nervous)” “心慌(nervous)” “害
羞(shy)” “(embarrassed)” etc.

讲故事：“下面？没了啊. . . . . . ” (Translation: Let me tell a story: ”long time

ago, there is a eunuch...”. Some impatient person interrupted: ”What’s next?”(In

Chinese, ”What’s next” also means: ”what is down there”), I continued my story.

”What’s next?”, ”no more!”) This is a Chinese joke on eunuchs. There are many

microblogs filled with ambiguity and sarcasm like this.

8. Microblogs that contain abnormal hashtags, such as “神奇(amazing)”, which is the

name of a movie. This is performed through a manual review of raw data.

9. Microblogs whose hashtag is not at the start or the end of the text. This is because

some hashtags are used as a part of the content and do reflect the emotion of the

text. For example, in the sentence “我#讨厌#小孩子，很讨厌很讨厌(I #dislike#

children, very very dislike children)”, “dislike” is the content of the text, if treat it
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as a hashtag and remove it from the text, the text is incomplete.

Also, all traditional Chinese text are converted to simplified Chinese. Through the

above preprocessing, 48,245 (27.77%) microblogs are kept as D0 out of 173,958, indicat-

ing that the filtering percentage is 72.23%. The hashtags as natural labels in the cleaned

microblogs, denoted as the D0 dataset, are converted to the corresponding emotion labels

given in Table 1 and the text is segmented by the Chinese segmentation tool Jieba6 for

further processing.

3.2.3 Lexicon Based Selection

Since natural labels are noisy as stated in introduction part, Step 3 uses a lexicon based

method for verification. This method selects natural labels based on an emotion lexicon

counting strategy. The algorithm is given in Algorithm 3.1. Given a piece of segmented

text, the numbers of words that actually occur in each emotion category in the emotion

lexicon are counted and the emotion category with a maximum count is used as the pre-

dicted emotion label of this piece of text. If the counts for different categories are equal, all

of them are used as predicted labels. Then, if the original natural label is in the predicted

labels, the natural label is used and the sample is added to the selected high-quality dataset

H1. Otherwise, they will be included in the remaining set for further processing. The

emotion lexicon used in this step is DUTIR7 and a collection of popular Internet words.

The DUTIR lexicon contains about 27,000 words that are manually annotated based on

seven discrete emotion labels the same as NLP&CC2013. After lexicon based selection,

14,197 microblogs with high-quality labels are obtained as H1. The remaining 34,108

microblogs, denoted as D1, are used by Step 5 for further processing.

Lexicon based selection helps to identify text that contains explicit emotional words or

emotional affinity words. Text that expresses emotion through word combination cannot

6 https://github.com/fxsjy/jieba

7 http://ir.dlut.edu.cn
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Algorithm 3.1 The Lexicon Based Algorithm
Input :

W “ rw1, w2, ¨ ¨ ¨ , wms: Segmented text with m words.
yo: the natural label of text W from the hashtag.
Y “ y1, y2, ¨ ¨ ¨ , yn: The emotion label set.
S “ rs1, s2, ¨ ¨ ¨ , sns: Emotion lexicon. si is a word list with emotion yi.

Output:
H: The selected high-quality dataset.
D1: The remaining dataset for further processing.

Procedure:
1. Set C “ rc1, c2, ¨ ¨ ¨ , cns where ci “ 0
2. for w in W :
3. for si in S:
4. if w in si:
5. ci “ ci ` 1
6. cmax “ argmaxpCq
7. for ci in C:
8. if ci “ cmax:
9. add yi to y
10. if yo in y:
11. add W to H
12. else:
13. add W to D1

be classified by a lexicon, such as “今天我这里又没有水了(Today there is no water

again in my place)” which expresses disappointment (as a form of sadness) through the

combination of “no” and “water”. To cover these complex cases, machine learning based

selection is used in Step 5.

3.2.4 SVM Based Selection

Step 5 uses a Support Vector Machine (SVM) [150] based selection method. The basic

idea is that a classifier is trained first based on available high-quality emotion corpus.

Then, this classifier is used to predict the remaining data from Step 4. If the predicted

label is the same as the original natural label, it is regarded as a high-quality label and is

put in H2. Otherwise, it is put in D2 for further processing. Features used in SVM include

BoW with stop words removed. SVM is implemented with Liblinear [33]. Training data

is from NLP&CC2013 introduced in Section 3.1, which contains 14,000 microblogs. We

only use the 4000 microblogs of the training data part in NLP&CC2013 because the test

data will be used for evaluation later. After SVM based selection, 7,228 more microblogs
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are obtained as H2, and the remaining 26,820 are put in D2.

3.2.5 Manual Selection

The manual selection step is optional. If there are no annotators, this step can be skipped.

As will be indicated later, this step can help to improve recall for the set of illustrative

data used in this chapter. If using annotators is too costly, one straightforward solution

is to craw more data. If annotators are available, manual annotation can be done using

the remaining D2 data. To ensure quality, annotators are not allowed to see the natural

labels. Each sample in the final annotated data should have only one label. If an annotator

considers some samples to have multiple possible labels, they can put down two labels and

only the one that matches the natural label (by an automatic process after manual labeling)

will be selected. Otherwise, the sample will be discarded.

In this work, one trained annotator is asked to do manual annotation. The annotation

rules are as follows:

1. Only consider emotion of the author through his or her written content.

2. If the author describes something with positive or negative words, the labels should

be either “like” or “disgust”.

3. Each microblog may contain several sentences, the emotion of the microblog should

be for the whole section of the text. For example, the microblog “今天出门上班

摔了一跤，不过还好碰到了个大帅哥把我带到了公司(Today I fell down when

I went to work. Fortunately, a handsome guy gave me a ride to my office.)”, which

expresses “sadness” in the first part and “happiness” in the second part. However,

the whole text should be labeled as “happiness”.

4. One microblog can be annotated with at most two emotion labels and the one that

matches the natural label will be used.
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5. For text that is meaningless without looking at context out of a single blog post, it is

discarded.

6. For text that does not contain emotion, the label should be “none”. This sample

should be discarded.

Since only one annotator is trained to perform the annotation, there is a chance that the

manual label is incorrect. There is also a chance that the natural label is incorrect. How-

ever, the chance of both labels are incorrect is much lower. So only those samples whose

natural labels are consistent with the manual labels are extracted by a program automat-

ically. Finally, 18,236 microblogs are obtained in H3. The remaining 8,584 microblogs

form D3 which is considered as noisy data. In other words, a further 17.8% (8584/48,245)

data are screened out.

Table 3.2: Example samples selected and remainders by different steps.

Step Selected Remainder
Text Hashtag Text Hashtag Prediction

Lexicon

明天期末考试了，真
心希望能逆袭成
功！！(The final exam
will come tomorrow
and I do hope I can
win the battle!!)

like

别人心情不好至少还
有酒能麻痹自己放空
脑袋(They at least
have wine to paralyze
themselves to empty
the head when in bad
mood.)

sadness disgust

SVM

作业好多
啊！！！！！肿么做
得完啊(So many
homework!!!!! How
can I finish it)

sadness 想回家了(I want to go
home) sadness likeness

Manual

这就是高考以后的生
存状态么。。。。(Is
this the living state
after College Entrance
Examination....)

disgust

李丹，我真心爱你！
永不变心！(Li Dan, I
truly love you! I will
never change my
heart)

sadness happiness

Table 3.2 lists some examples under different steps. The text listed under the Selected

Column with text and their corresponding Hashtag which means that the original emotion
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hashtag is the same as predicted emotion label. The Remainder column contains exam-

ples filtered out by their corresponding steps. Hashtag under Remainder is the original

emotion hashtag and Prediction is the predicted emotion label, which is different from

Hashtag. For example, the sentence “想回家了(Want to go home)” in the SVM row is

not recognized by the lexicon based selection because no words in the sentence is in the

emotion lexicon. SVM based selection gives the “like” label whereas the original hashtag

is “sadness”.

3.3 Analysis of Acquired Corpus

After the completion of all six steps, the final cleaned emotion corpus H has 39,661 sam-

ples comprised of three parts. H1 and H2 are obtained automatically. H3 is obtained

manually. The distribution of the three parts is shown in Table 3.3. Note that automat-

ically obtained data accounts for more than 54.1% in the final selected corpus. This is

translated into a reduction of manual work by 44.5% out of the D0 set. If manual annota-

tion is not feasible, this means that to obtain the same amount of annotated data, about 1.8

times of the automatically crawled data should be used.

Table 3.3: Proportioin distribution of obtained corpus

H1 H2 H3 H

Size 14,197 7,228 18,236 39,661
Percentage (%) 35.74 18.35 45.91 100.00

The distribution of emotion classes in H is shown in Table 3.4. It shows that “sadness”

and “happiness” have more samples whereas “surprise” and “fear” are much less. This

is consistent with the manually annotated corpus NLP&CC2013. This distribution also

demonstrates the intrinsic data imbalance problem in EA.
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Table 3.4: Emotion distribution

Emotion Number Percentage (%)

sadness 14052 35.43
happiness 9959 25.11
disgust 4876 12.29
anger 4562 11.50
like 4540 11.45
surprise 1011 2.55
fear 661 1.67

sum 39661 100.00

3.3.1 Quality Analysis

To evaluate the quality of the emotion corpus, a sampling of about 5% for each H1, H2, and

H3 in H is done with the same label proportion given in Table 3.4. Then, another annotator

is asked to manually annotate the three sample sets based on the same rules described in

section 3.2.5. anually annotated labels are compared to the natural labels (namely the gold

labels) and the Kappa values are calculated. The result shown in Table 3.5 indicates that

the Kappa value achieves 0.941, 0.926 and 0.812 for H1, H2 and H3, respectively. This

indicates that the label quality in this work is much higher than the Kappa value of 0.713

in NLP&CC2013. The relatively high Kappa values indicate that the proposed method is

quite effective in obtaining high-quality data.

For those text with inconsistent labels, analysis to the data reveals that sometimes the

natural labels are even more reasonable than the manual ones. For example, in the sentence

“今天放假了, 我会想念你们的！(Holiday begins today, and I will miss you!)”, the

natural label and the lexicon based label are both “sadness” whereas the manual label is

“like”. In fact, this sentence means that the author feels sad for not being able to see his/her

friend, so he/she puts a “sadness” hashtag. On the other hand, there are also samples in

our answer set where the natural labels are not reasonable. For example, in the sentence

“移动总是乱扣费！(China Mobile always charges ridiculous fees)”, the natural label
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and the SVM based label are both ”sadness” whereas the manual label is ”anger”. In this

sentence, ”anger” is more reasonable. These two examples actually show that not only

computer aided methods may introduce noise, manual annotation can also give incorrect

answers. More samples of the constructed corpus can be found in Appendix A.

Table 3.5: Kappa value of automatically selected label

Data Size Sample Size Kappa

H1 14,197 700 0.941
H2 7,228 400 0.926
H3 18,236 900 0.812

To prove that the acquired data is a useful resource, an experiment is conducted to

evaluate the use of baseline emotion corpora and different parts of the corpus produced by

this work in an emotion classification task. The baseline corpora include (1) D0, which

is obtained using simple rule based filtering; (2) the training set of NLP&CC2013. For

the NLP&CC2013 dataset, about half of them are with label “none”, which cannot be

obtained through the hashtag, so the “none” label is discarded both in NLP&CC2013’s

training and testing data. The resulted training and testing sample sizes are 2,172 and 5,182

respectively. The other datasets examined in this experiment also include H1, H2, H1&H2,

H as well as H&NLP&CC2013 (the combination of H and NLP&CC2013). These corpora

are tested by training the same classifier using these dataset and the trained classifiers

are tested on the NLP&CC2013 testing dataset. Since the classifiers are the same, the

assumption is that if the quality of a corpus is higher, the performance of the classifier

trained on it should be better.

The features are simple bag-of-word frequency. The classifier is Liblinear with the de-

fault parameter and metric is macro precision, recall and F-score, which can be calculated

as follows:

Macro Precision “
1

n

ÿ

i

#system correctpemotion “ iq

#system proposedpemotion “ iq
(3.1)
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Macro Recall “
1

n

ÿ

i

#system correctpemotion “ iq

#goldpemotion “ iq
(3.2)

Macro F ´ score “
2ˆMacro PrecisionˆMacro Recall

Macro Precision`Macro Recall
(3.3)

where n is the number of emotion labels, #gold(emotion=i) is the number of samples

whose gold emotion label is i, #system correct(emotion=i) is the number of samples whose

predicted label is the same as gold label i, #system proposed(emotion=i) is the number of

samples whose predicted label is i.

The results are shown in Table 3.6. Column “Size” is the corpus size, “MP” is macro

precision, “MR” is macro recall, “MF” is macro F-score, and “Improve D0%” is the rel-

ative improvement over D0 in macro F-score. H&NLP&CC2013 is the union of the two

sets H and NLP&CC2013. As expected, D0 obtained by simple filtering rules achieves the

worst result which serves as the baseline. H1 alone has comparable performance to D0 al-

though its size is less than one-third of D0. Also H1 performs worse than NLP&CC2013,

its precision is quite high compared to NLP&CC2013. Its problem is the recall as it is

lexicon-selection based samples. H2, with a very small size, is worse than D0 by more than

10%. However, when H1 and H2 are merged, it performs much better than NLP&CC2013

and has a relative improvement of 10.76% in macro F-score to NLP&CC2013 and 18.47%

to D0. This implies that H1 and H2 are complementing to each other even though the sam-

ples identified by H2 is only about half of H1. When all three components are merged as

H, the performance is even better. The precision, recall and F-score have an improvement

over D0 by 23.9%, 22.3% and 23.0%, respectively. This indicates the effectiveness of

the proposed noise removal framework. When H and NLP&CC2013 are used together

to have the largest training set, precision does not improve over H whereas recall is only

improved marginally. This indirectly demonstrates that the quality of data obtained using

the proposed framework is even better than the manually obtained data of NLP&CC2013.
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Table 3.6: Performance of different corpora on NLP&CC2013 test dataset

Training data Size MP MR MF Improve D0%

Simple(D0) 47,243 0.3870 0.3024 0.3395 0.00
NLP&CC2013 2,172 0.3734 0.3534 0.3631 6.95

H1 14,197 0.4338 0.2930 0.3498 3.03
H2 7,228 0.2954 0.3142 0.3045 -10.31
H1&H2 21,425 0.4841 0.3440 0.4022 18.47
H 39,661 0.4793 0.3698 0.4175 22.97
H&NLP&CC2013 41,833 0.4762 0.3732 0.4185 23.27

3.3.2 Noisy Data Analysis

This section focuses on analyzing the 8,584 microblogs in D3, the noisy data after Step 6,

to evaluate the noise level in the natural labels. Since D3 is obtained automatically by a

consistency check program, the inconsistency can only result from two factors: (1) natural

labels in D3 contain noise, and (2) manual annotation is incorrect. The first case with

their labels is denoted as L1 and the second case with their labels is denoted as L2. In

this experiment, another trained annotator is asked to annotate every sample in D3 based

on the same annotation rules in Section 3.2.5, and the labels are denoted as L3. Then the

voting strategy is used to determine the final label L. If L1 equals to L3, it is denoted as

a high-quality label, a noisy label otherwise. The annotation result is shown in Table 3.7,

where the entries represent the percentage of L1=L3, L2=L3 and others, respectively. The

total noisy labels account for 72.5% in D3, which converts to 12.9% in dataset D0. This

means that about 12.9% of microblogs after simple rule-based processing contain noise.

Table 3.7: Statistics of the noisy data

L1=L3 L2=L3 Others

Percentage (%) 27.5 44.3 28.2
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3.4 Chapter Summary

This chapter presents a framework for noise removal on a corpus obtained by distant su-

pervision methods. The framework can automatically or semi-automatically construct a

high-quality emotion corpus from a noisy corpus using natural hashtag labels.

An experiment on microblogs indicates that out of 173K raw microblogs, about 48K

are filtered as candidates for high-quality data. Using the proposed framework including

the optional manual annotation, 39k microblogs are selected to form the final high-quality

corpus with Kappa value reaching 0.92 for the automatically selected part and over 0.81

for the manually selected part. The proportion of the automatically selected part is 54.1%

and the manual part is 45.9%, which translates to a reduction of about 44.5% workload

compared to the manual workload for acquiring high-quality data. Experiment on a clas-

sifier using this corpus as training data shows that it achieves better results compared to

the classifiers trained on the manually annotated NLP&CC2013 training corpus and on the

corpus obtained by simple rule based filtering. As a result of this work, 39,661 Chinese

microblogs with high-quality emotion labels are obtained and are made available8, which

can be used for Chinese emotion analysis and is about five times of NLP&CC2013 if only

samples with emotion labels are considered.

One drawback of this method is that the obtained corpus has no neutral label, namely

text without emotion labels. However, this may be settled by adding crawled sentences that

do not have hashtags contained in the seed hashtags subjected to some additional filtering

works. This will be one possible future research direction.

8 https://yunfeilongpoly.github.io/Team_resource.html
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Chapter 4

Emotion Lexicon Construction

Another important resource for emotion analysis is a comprehensive emotion lexicon,

in which words are annotated with affective meanings. Assigning affective meanings to

words can be considered as word level emotion analysis. As introduced in Section 2.1, the

affective meaning of a word can be represented using different emotion models. Earlier

works represent affective meanings of words by discrete emotion labels, such as positive,

negative, happiness, sadness, anger [145, 106, 144], etc. Another method is to represent

affective meanings by the more comprehensive multi-dimensional representation models

, such as the valence-arousal-dominance model (VAD) [127] and the evaluation-potency-

activity model (EPA) [51]. Theoretically speaking, discrete emotion labels can always be

mapped to certain points in a multi-dimensional affective space [20]. Sentiment indicated

by polarities can be viewed as a one-dimensional emotion model. For example, it is equal

to the valence dimension in VAD or the evaluation dimension in EPA.

Compared to discrete emotion labels or one-dimensional sentiment, multi-dimensional

affective representation is more comprehensive because it can capture more fine-grained

information compared to the discrete and the one-dimensional models. According to the

Affective Control Theory (ACT), each concept in an event has a transient affective mean-

ing which is context dependent in addition to cultural, behavior and other background in-

formation [52]. Multi-dimensional models allow for more interaction between a sequence
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of words so that more context information can be included in emotion analysis of text.

For example, the same noun champion may have different affective state in two different

events: The little boy defeated the champion and The champion defeated the little boy.

The difference of the affective states cannot be inferred through single sentiment dimen-

sion but it can be distinguished through multi-dimensional EPA emotion lexicons based

on the ACT [52].

However, multi-dimensional emotion lexicons as NLP resources are limited because

most available ones are based on manual annotation, such as the ANEW lexicon of VAD

[17], the extended ANEW lexicon [167], the Chinese valence-arousal lexicon [183], and

the EPA lexicon [51]. Obviously, manual annotation is not scalable and it limits the use

of multi-dimensional models in real applications. Only if automatic methods can be used

to learn the affective representations of words, the more comprehensive multi-dimensional

models can have a wider practical use.

Word embedding based graph propagation method is used as an automatic method to

predict the valence-arousal ratings from seed words [184]. However, word embedding

is normally trained to obtain the general meaning of words, which can include denota-

tive meaning, connotative meaning, social meaning, affective meaning, reflected mean-

ing, collocative meaning and thematic meaning [71]. In other words, directly computing

word similarity captures the general meanings of words rather than the affective meanings

specifically. Words that have similar denotative meanings may be associated with different

affective meanings. For example, “father” and “dad” have the same denotative meaning,

yet they are associated with different affective meanings: “father” is more formal and

detached whereas “dad” is more personal and dear affectively.

In this chapter, a regression method is proposed to infer various affective meanings

from word embedding based on the assumption that different features in word embedding

contribute differently to a particular affective dimension and one feature in word embed-

ding also contributes differently to different affective dimensions. This method treats word

52



embedding as word features and learns meaning specific weights to each feature when

mapping embedding to different affective dimensions. Consequently, the method learns

one regression model for each affective dimension based on the seed words to predict the

affective meaning of a new word provided that its word embedding be available.

4.1 Related Work on Emotion Lexicon Construction

Based on the selective emotion models, emotion lexicons are built either using a discrete

emotion model or a dimensional emotion model. This chapter will only focus on di-

mension based lexicons. Since sentiments can be described by a one-dimensional model,

methods for obtaining sentiment lexicons are also included. Theoretically speaking, meth-

ods to obtain a sentiment lexicon can be extended to obtain other affective dimensions in

multi-dimensional models.

Emotion lexicons can be obtained either by manual annotation or automatic methods.

Manual annotation can obtain high-quality lexicons. Manually annotated sentiment lexi-

cons include the General Inquirer (GI) [145], MPQA[172], the twitter sentiment lexicon

based on crowdsourcing [104, 125], VADER based on crowdsourcing[59], etc. Manu-

ally annotated emotion lexicons based on discrete emotion models include the DULTIR

emotion lexicon in Chinese [175] which has been used in Chapter 3 for the lexicon based

selection algorithm, the English emotion lexicon obtained through crowdsourcing [106]

which contains about 17,000 words. Manually annotated multi-dimensional emotion lexi-

cons include ANEW, CVAW, DAL, EPA and ANGST, among others. The ANEW lexicon

based on the VAD model [17] contains 1,034 English words. The extended ANEW lexi-

con contains about 13,965 English words annotated through crowdsourcing. The CVAW

lexicon based on the VA model contains 1,653 traditional Chinese words annotated in the

valence and arousal dimensions [183]. The Dictionary of Affect in Language (DAL) lexi-

con annotated in the dimensions of pleasantness-activation-imagery contains 8,742 terms
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[169]. The EPA lexicon annotated in the evaluation-potency-activity dimensions [52] con-

tains about 4,505 English terms. The ANGST lexicon annotated in the valence-arousal-

dominance-imageability-potency dimensions contains 1,003 German words [132].

Automatic methods to obtain emotion lexicons are focused mainly on the sentiment

dimension because current research works are mostly on sentiment analysis [101, 84, 23,

47]. In terms of methodology, there are mainly three approaches. The first approach uses

statistical information between a target word and the polarity annotated seed words. For

example, sentiment polarity intensities are calculated based on point-wise mutual informa-

tion (PMI) between a target word and the positive seeds and negative seeds, respectively

[160, 104]. Similarly, PMI is used to build discrete emotion lexicon based on naturally

annotated hashtags in twitter [103].

The second kind of approaches is based on label propagation methods which first build

a word graph and then label propagation is performed to infer the affective values of un-

seen words from the seed words. Based on the different ways to construct the word graph,

graph-based methods can be further divided into: (2A) Knowledge-based word graph such

as building the graph based on ConceptNet [25], or WordNet [15, 129]. For example, a

graph can be built based on the semantic relationship in WordNet and the label propagation

is performed to infer the EPA values [2] and sentiment polarity[129]. A knowledge based

graph is confined by the coverage of the knowledge base. (2B) Corpus based graph based

on word cosine similarities which are calculated based on word-context co-occurrence

statistics from a large corpus [162]; and (2C) Word embedding based graph based on the

cosine similarity of available word embedding [184, 47]. For example, word embedding is

used to compute the cosine similarity between words to build the word graph and PageR-

ank algorithm is employed to infer the valence-arousal ratings of unseen words [184],

random walk algorithm is used to infer the sentiment polarities [47].

The third kind of approaches represents a word as a vector and then map this vector to

some sentiment value or categories based on a regression model or a classifier. This kind
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of approaches mainly includes: (3A) representing words by manual defined features based

on some knowledge base and performing linear regression on the features [168]; (3B) rep-

resenting words as word embeddings obtained automatically and using a classifier [154] or

linear regression [6] to obtain sentiment labels or scores; (3C) mapping word embedding

into affective space through a transformation matrix that minimizes intra-group distance

in each sentiment category and maximizes inter-group distance without considering the

actual values of the seed words [126].

4.2 Regression Based Method

This work aims to make use of the semantic information encoded in word embedding to

infer the affective meanings of words. This will help to build valuable lexical resources

for emotion analysis using more comprehensive emotion models. The basic idea of the

proposed approach is to use regression models to learn the affective meanings in each

affective dimension. For a multi-dimensional emotion model having m dimensions, the

objective is to learn m regression models that are suited for m affective dimensions sepa-

rately. The proposed method is based on the assumption that word embedding has encoded

the general semantic meaning into a dense vector and a certain dimension in word embed-

ding contributes differently to different affective meanings. The proposed approach is a

general learning method by using word embedding and regression through a set of seed

words. This method is referred to as the Regression on Word Embedding, denoted as

RoWE.

4.2.1 Distributed Word Embedding

The first step in RoWE is to build a high-quality feature representation for words using

a vector space model (VSM), which represents a word through word embedding (also

called word vector) [161]. As introduced in Section 2.3 on word representation, word
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embedding can be obtained either by count-based methods or prediction-based methods.

According to a comprehensive study done by [74], both methods obtain similar results.

In other words, they are basically equivalent although some fine tuning may be needed.

However, prediction-based methods have lower computation cost because it does not need

to perform matrix factorization over a large co-occurrence matrix. Thus, in this work, only

prediction-based methods are explored to obtain word embedding.

Prediction-based methods are based on neural networks and one of the most widely

used models is Skip-Gram with Negative Sampling (SGNS) [94], which has been roughly

introduced in Chapter 2. Here the details of SGNS are introduced. Given a corpus with

vocabulary V and the extracted word-context pair set D, let ppD “ 1|w, cq be the proba-

bility that pw, cq comes from D and w, c are both in the vocabulary. Let ppD “ 0|w, cq be

the probability that pw, cq does not come from D. The basic assumption of SGNS is that

the conditional probability of ppD “ 1|w, cq should be high if c is the context of word w

within an observation window and low otherwise.

Let ~w denote the embedding of w, and ~c denote the embedding of c. Then, ppD “

1|w, cq is computed as:

ppD “ 1|w, cq “ σp~w ¨ ~cq “
1

1` e´~w¨~c
. (4.1)

Both ~w and ~c are model parameters to be learned. The basic idea behind is that if word w

and context c co-occur, their corresponding vectors should have close correlation, modeled

by ~w ¨ ~c. The objective of negative sampling is to minimize the conditional probability:

ppD “ 1|w, cNq “ σp~w ¨ ~cNq, (4.2)

where cN denotes a negative context of w, namely, context that does not co-occur with

word w. The method randomly samples negative context cN of w from VW . Let PD be the

empirical unigram distribution where

PDpcq “
#pcq

|D|
. (4.3)
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Combining Formula 4.1 and 4.2, the objective for each word-context pair can be translated

into maximizing:

logσp~w ¨ ~cq ` k ¨ EcN„PD
rlogσp´~w ¨ ~cNqs, (4.4)

where k is the number of negative samples. For a given training corpus with a set of words

VW , the final objective function for the whole corpus is:

J “
ÿ

wPVW

ÿ

cPVW

#pw, cqplogσp~w ¨ ~cq

` k ¨ EcN„PD
rlogσp´~w ¨ ~cNqsq.

(4.5)

The obtained ~w and ~c are the word embedding and context embedding, respectively.

The performance of the embedding can be affected by the hyperparameters, as discussed

in [74]. Because finding the optimal word embedding is not our focus, the recommended

settings from [74] is used for the SGNS model. Note that any learning model for word

embedding can be used in this framework, including matrix factorization based word em-

bedding [119], knowledge base with corpus based word embedding [141], and ensemble

based word embedding [182], etc.
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Figure 4.1: The proposed regression method for affective meaning prediction based on
word embedding.

4.2.2 Regression for Affective Meaning Prediction

Figure 4.1 shows the regression based learning model from word embeddings to obtain

57



affective meanings of words. Given a set of seed words with affective values annotated in

every dimension. In the training phase, each seed word s as a training sample has known

word embedding ~s which is a vector of size n, and its affective meaning is defined inm di-

mensional space. A word embedding and an annotated affective value pair consists of one

training sample. Given sufficient such pairs, a regression model can be learned for every

affective dimension Aj where j is in the range of r1...ms. Based on the regression model

in each dimension, the affective value of a new word can be predicted based on its word

embedding. Consequently, an existing emotion lexicon can be extended automatically.

Given a seed, s, and its word embedding ~ws “ res1, e
s
2, ..., e

s
ns, the following mapping

function fj for the jth affective dimension needs to be learned.

fjp~w
s
q “ gjpa

j
1e
s
1 ` a

j
2e
s
2 ` ¨ ¨ ¨ ` a

j
ne
s
nq, (4.6)

where aji is the weight of feature i, gj is the mapping function. When fj is a scalar value,

gj can be the identity function and this model becomes a typical linear regression model.

When fj takes categorical labels, gj can be a logistic function and this model becomes a

typical logistic regression model. fj can be learned for any kind of affective meanings,

including valence, arousal, dominance in the VAD model, evaluation, potency, activity in

the EPA model, or a simple positive/negative label.

Let V denote the set of seed words. The objective function for regression learning in

each affective dimension j is then defined as follows:

min
~a

ÿ

sPV

||fjp~w
s
q ´ ysj q||

2
2 ` αRp~a

j
q, (4.7)

where Rp~ajq is the regularization part on the weight vector ~aj “ raj1, a
j
2, ..., a

j
ns and α is

the regularization weight. When α “ 0, the model degrades to the ordinary least squares

linear regression. When α ‰ 0 and Rp~ajq “ ||~aj||22, the model degrades to the Ridge

regression model. When α ‰ 0 and Rp~ajq “ ||~aj||11, the model degrades to the Lasso

regression model. Different regression models are evaluated in the experiments.

58



The proposed method can be trained on any emotion lexicon. After the model is

learned, given the embedding of a new word, the affective meanings of the new word in

m dimensions can be predicted using m regression models based on its word embedding.

The size of the constructed lexicon should only be limited by the size of the available word

embeddings, which is in principle unlimited because of plenty of available text corpora.

4.3 Experiments and Analysis

Six sets of experiments are reported in this section. The first set of experiments are per-

formed to evaluate the proposed method in inferring affective meanings under different

emotion models including sentiment and several multi-dimensional lexicons. To demon-

strate the generality of the proposed method, predictions of other non-emotion dimensions

are also tested, including concreteness-abstractness, perceptual strength in five senses of

hearing, seeing, touching, tasting and smelling. The second set of experiments evaluate the

complexity of the proposed method and the baseline methods. The third set of experiments

evaluate the effects of seed words for different methods. The fourth set of experiments

evaluate the effects of embedding dimension size. The fifth set of experiments look at

the performance of different regression models and also examine the different embedding

resources in terms their predictability on an existing lexicon. The last set of experiments

evaluate the performance of sentiment lexicons obtained by RoWE on a downstream sen-

timent analysis task.

Experiment settings: In the following experiments for English dataset, the 300 di-

mensional word embedding is trained based on Wikipedia August 2016 dump1 with 3.1

billion tokens and a vocabulary size of 204,981. Since the experiments also include a

Chinese emotion lexicon, the 300 dimensional word embedding is trained based on Baidu

Baike corpus with 1.8 billion tokens2 after performing word segmentation using the HIT

1 https://dumps.wikimedia.org/enwiki/latest/ Accessed May 17, 2017
2 http://www.nlpcn.org/resource/list/2 Accessed May 17, 2017
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LTP tool3. Both embeddings are trained using the SGNS model introduced in Section

4.2.1. The trained word embeddings are referred as embedding lexicons.

4.3.1 Inferring Affective Meanings

The first set of experiments is to examine the effectiveness of the proposed RoWE. The

compared methods are listed below.

1. PMI [160]: This method learns the intensity value of a word measured by the

pointwise mutual information (PMI) with the seed words.

2. Web-GP [162]: This web-based graph propagation method constructs a weighted

graph using cosine similarity of a word and its context by a vector of co-occurrences.

This method only keeps the 25 highest weighted edges for each node to reduce the

effect of noise in web data. The iteration number is set to 5.

3. QWN-PPV [129]：This method extracts the set of words in WordNet that has po-

larity information [118]. Then a word graph is built based on relations in WordNet.

PageRanking algorithm is used to obtain sentiment intensity of unseen words.

4. DENSIFIER [126]: This method learns an orthogonal transformation from the origi-

nal embedding space to obtain task specific information in an ultradense space, such

as the one-dimensional sentiment polarity space.

5. SENTPROP [47]: This method uses cosine similarity of word embedding as the edge

weights to construct a word graph and uses the random walk algorithm to obtain the

affective values.

6. Wt-Graph [184]: This method uses the cosine similarity of word embedding as the

edge weight to construct a weighted word graph and uses the PageRank algorithm

to obtain the affective values.
3 www.ltp-cloud.com/ Accessed May 17, 2017
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Other than QWN-PP which extracts sentiment words from WordNet, all the other methods

need to use some seed words to infer the affective meanings of unseen words. For a fair

comparison, all the methods in the evaluation use the same set of seed words, the same

corpus, and the same test settings.

The gold emotion lexicons used for this set of experiments are chosen because they are

manually annotated and are considered to have high quality. Table 4.1 gives a summary

of the gold lexicons where “Multi-dim” means multi-dimensional emotion lexicons. The

table lists the lexicon names (Lexicon), their sizes (Size), the number of words in the lex-

icons which also appear in the respective word embedding lexicons (Overlap #), whether

standard deviation of annotation is supplied or not (std), the emotion model (emotion

model), and the annotation value range (Range). The first group gives three sentiment

lexicons. GI [145] is a sentiment lexicon annotated with positive, neutral, negative. Dur-

ing prediction, class-mass normalization is used to give discrete labels as done in [47].

VADER [59] and SemEval2015 [125] are sentiment lexicons annotated with intensity.

VADER also contains standard deviation of the annotation. The second group gives five

multi-dimensional emotion lexicons. ANEW [17] and E-ANEW [167] are manually an-

notated in the three dimensions of valence, arousal and dominance with values from 1 to

9. E-ANEW is an extended version of ANEW through crowdsourcing. CVAW [183] is

the Chinese version of ANEW but annotated only on the two dimensions of valence and

arousal. EPA [51] is annotated in the three dimensions of evaluation, potency and activ-

ity. DAL [169] (dictionary of affect in language) is annotated in the three dimensions of

evaluation, activation and imagery (EAI), where the dimension of imagery measures how

easily the word can bring an image to mind. The third group gives two lexicons used to

measure perceptions and concreteness in psychology, respectively. These two are used

here to test the generality of the different models to infer the other semantic meanings of

a word. Perceptual [87, 88], used to measure sensory intensities of words, is annotated

with a perceptual strength of a target word by feeling through five sensations. During an-

61



notation, each word is annotated through the question “To what extent do you experience

something being WORD” (with “WORD” being the target word to be annotated). Un-

derneath this question are five separate rating scales for each perceptual modality, labeled

“by feeling through touch”, “by hearing”, “by seeing”, “by smelling”, and “by tasting”.

The participants are asked to rate the extent to which they would experience about the five

senses, from 0 (not at all) to 5 (greatly) [87, 88]. Concreteness [19] is annotated on the

degree of concreteness or abstractness of a word through crowdsourcing. Among those

lexicons, only CVAW is Chinese and all the others are English.

Table 4.1: Summary of lexicons used in the experiments.

Type Lexicon Size Overlap
# std Emotion

Model Range

Sentiment
GI 3,626 2,942 N Sentiment t´1, 0, 1u
SemEval2015 1,515 751 N Sentiment r´1, 1s
VADER 7,502 3,124 Y Sentiment r´4, 4s

Multi-dim

ANEW 1,034 958 Y VAD r1, 9s
E-ANEW 13,915 11,364 Y VAD r1, 9s
CVAW (Chinese) 1,647 1,309 Y VA r1, 9s
EPA 4,505 2,901 Y EPA r´4, 4s
DAL 8,743 8,003 N EAI r1, 3s

Others
Perceptual 1,001 826 Y Five senses r0, 5s
Concreteness 39,954 18,111 Y Concreteness r1, 5s

The respective overlap sets between the embedding lexicons and the gold lexicons are

randomly split equally to form the training sets and the testing sets. Each experiment runs

five times and the average result and standard deviation are reported. The standard de-

viation is used to measure the robustness of the methods. To satisfy the requirement of

the bipolar scale of some baselines (PMI, Web-GP, DENSIFIER, SENTPROP), the affec-

tive scales are transformed to bipolar scales if needed. For example, ANEW, E-ANEW,

and CVAW are mapped from r1, 9s to r´4,`4s linearly, DAL is mapped from r1, 3s to

r´1,`1s, Perceptual is mapped from r0, 5s to r´2.5, 2.5s and Concreteness is mapped

from r1, 5s to r´2, 2s. The final predicted values are mapped back to the annotation range.
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For the regression model in RoWE, Ridge regression is used in the scikit-learn tool 4 with

default parameters. The training data (seed word) size is set 50% of the total overlap set

between the lexicons and the embedding vocabulary.

Evaluation metrics: For the GI lexicon, the classification is ternary. The AUC (area

under a curve) and macro F-score (denoted as F1) are used as the evaluation metrics using

the method given in [47] to transform the predicted scalar values to sentiment labels5.

For all the other lexicons where the predictions are on continuous scales, the following

evaluation metrics are used:

1. Root mean squared error (RMSE)

RMSE “
a

řn
i“1pAi ´ Piq

2{n,

2. Mean absolute error (MAE)

MAE “ 1
n

řn
1 |Ai ´ Pi|,

3. Mean absolute percentage error (MAPE)

MAPE “ 1
n

řn
1
|Ai´Pi|

Ai
ˆ 100%, and

4. Kendall rank correlation coefficient τ

τ “ C´D
C`D

,

where Ai is the gold standard value; Pi is the predicted value; n is the total number of the

test samples; Ā and P̄ are the average values of A and P ; C is the number of concordant

pairs; andD is the number of discordant pairs. The lower the values of RMSE, MAPE and

MAE, and the higher the value of τ , the better the performance is. Note that the MAPE

evaluation metric suffers from the so-called zero-division problem. In the experiment, the

MAPE result is not reported if the gold value contains 0. So, for lexicons whose values

4 http://scikit-learn.org/
5 Though RoWE can directly predict discrete labels using logistic regression on word embedding, the

baseline methods can only produce scalar values. To be consistent with the baselines, the scalar value is also
predicted using a linear regression model.
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contain zero (SemEval2015, EPA, DAL, Perceptual), the MAPE metric is not used because

MAPE is sensitive to zero. In addition, for the lexicons with provided standard deviation

on annotation, an additional evaluation metric on accuracy is defined as follows:

ac1σ “
1

n

n
ÿ

i“1

gpσi ´ |Ai ´ Pi|q, (4.8)

where

gpxq “

"

1 : x ą 0,
0 : otherwise.

σi is the annotated standard deviation; ac1σ indicates the percentage of correctly predicted

samples within 1 standard deviation of the gold answers.

Table 4.2: Result on inferring affective meaning of sentiment on three sentiment lexicons.

Method PMI Web-GP QWN-PPV DENSI SENTP Wt-Gp RoWE RI

G
I AUC 51.1(.68) 51.1(.94) 88.6(.39) 79.5(6.6) 72.3(5.7) 95.1(.25) 96.2(.21) 1.1

F1 53.5(4.6) 48.2(1.2) 81.8(.67) 70.5(6.3) 64.5(5.4) 88.2(.48) 89.4(.65) 1.4

Se
m

E
va

l RM 2.3(1.5) .70(.05) .47(.01) 4.8(1.6) .56(.05) .47(.01) .29(.00) 62.1
MA 2.1(1.6) .54(.03) .38(.01) 3.8(1.2) .44(.05) .37(.01) .23(.00) 60.9
τ -.58(5.3) -.47(4.1) 37.4(3.1) -22.9(7.9) 16.3(6.7) 47.2(1.7) 56.0(.85) 26.2

VA
D

E
R RM 2.85(.15) 1.8(.01) 1.8(.01) 6.5(1.2) 1.8(.01) 1.7(.01) .96(.01) 80.2

MA 2.3(.16) 1.6(.00) 1.6(.01) 5.3(.91) 1.6(.01) 1.5(.01) .74(.01) 102.7
τ .78(.56) -1.2(2.2) 43.7(.95) 24.3(33.4) 27.8(5.0) 56.0(.65) 62.0(.44) 10.7
ac1σ 28.6(3.6) 20.8(.28) 22.6(.44) 9.8(1.6) 22.3(.51) 20.5(.20) 63.6(.81) 122.3

The performance evaluation results for the three of gold lexicons are shown from Table

4.2 to Table 4.9. In all these tables, RM, MA, MP are used as the shorthand forms for

RMSE, MAE, MAPE respectively. The best performing method is marked in bold. The

second best performer is marked by an underline. The last column RI indicates the relative

improvement of the best performer over the second best performer. RI is calculated as

RI “ |p1st´p2nd|

mintp1st,p2ndu
, where p1st is the best performance and p2nd is the second performance.
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Table 4.3: Result on inferring multi-dimensional affective meanings of VAD on ANEW.

Method PMI Web-GP QWN-PPV DENSI SENTP Wt-Gp RoWE RI
V

al
en

ce
RM 3.6 2.0 2.0 6.9 2.0 1.9 1.2 58.3
MA 3.1 1.8 1.8 5.6 1.7 1.7 0.91 86.8
MP 80.2 45.1 45.8 137.6 47.3 43.3 22.0 96.8
τ -0.25 -1.4 40.8 -4.4 17.8 52.9 60.4 14.2
ac1σ 31.8 49.0 49.0 19.2 52.7 54.2 82.1 51.5

A
ro

us
al

RM 2.5 1.1 - 5.5 1.1 1.0 0.83 20.5
MA 2.3 0.91 - 4.4 0.93 0.84 0.66 27.3
MP 49.2 18.3 - 86.8 20.8 17.6 13.7 28.5
τ -1.4 -0.53 - -10.7 21.3 40.2 43.5 8.2
ac1σ 54.9 93.9 - 35.3 94.5 96.1 97.9 1.9

D
om

in
an

ce

RM 1.5 1.1 - 5.4 1.1 0.99 0.75 32.0
MA 1.2 0.88 - 4.3 0.86 0.79 0.59 33.9
MP 24.8 19.0 - 90.7 20.2 17.2 12.6 36.5
τ -0.92 0.72 - 3.6 11.8 46.3 49.6 7.1
ac1σ 81.7 94.8 - 29.7 94.7 97.0 98.8 1.9

Table 4.2 shows the result on the sentiment lexicons with standard deviations given

in parenthesis. RoWE and Wt-GP are the best two performers while RoWE outperforms

Wt-GP with large margins on SemEval and VADER lexicons as indicated by the respec-

tive RIs. For example, the average RI on SemEval and VADER over Wt-GP under the

RM metric is 71.5%. The standard deviations indicate that RoWE has relatively smaller

standard deviations under all evaluation metrics. In other words, RoWE is more robust

and is less seed word sensitive. The average RI on SemEval and VADER is much larger

(66.4% on average under different evaluation metrics) than on GI (1.3% on average under

different evaluation metrics). This is because SemEval and VADER predict the precise

sentiment value while GI only predicts the sentiment class, which maps to only a range

of values in the continuous space. This also indicates that RoWE performs much better

under stricter criteria. The much better result under ac1σ shows that the predicted values

by RoWE are much closer to the gold answers than the baseline models.

Table 4.3 to Table 4.7 are for multi-dimensional emotion lexicons. Table 4.3 to Ta-
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Table 4.4: Result on inferring multi-dimensional affective meanings of VAD on E-ANEW.

Method PMI Web-GP QWN-PPV DENSI SENTP Wt-Gp RoWE RI

V
al

en
ce

RM 2.0 1.3 1.3 5.2 1.3 1.2 0.83 44.6
MA 1.7 1.0 1.0 4.1 0.99 0.96 0.65 47.7
MP 40.2 23.3 23.2 88.5 24.8 22.7 14.4 57.6
τ -0.27 0.7 28.8 3.1 17.0 44.9 53.4 18.9
ac1σ 55.8 79.1 79.2 24.7 80.4 81.0 93.4 15.3

A
ro

us
al

RM 2.2 1.2 - 5.5 1.6 0.89 0.74 20.3
MA 2.0 1.0 - 4.4 1.4 0.71 0.58 22.4
MP 50.3 28.5 - 108.4 38.0 17.8 14.5 22.8
τ 0.02 0.1 - 6.6 10.0 32.7 38.1 16.5
ac1σ 62.5 91.9 - 36.8 82.8 97.7 99.1 1.4

D
om

in
an

ce

RM 3.3 0.98 - 5.0 0.96 0.92 0.71 29.6
MA 3.1 0.79 - 4.0 0.75 0.73 0.56 30.4
MP 60.0 15.9 - 80.0 16.5 15.3 11.5 33.0
τ 0.82 -0.26 - -6.5 7.9 39.2 44.2 12.8
ac1σ 41.0 95.1 - 37.7 95.5 96.1 98.9 2.9

ble 4.5 are for the VAD lexicons of ANEW, E-ANEW, and CVAW, respectively. Ta-

ble 4.6 is for the EPA lexicon, and Table 4.7 is for the DAL lexicon. QWN-PPV is

included in ANEW, E-ANEW and DAL for the valence dimension. The results on the

multi-dimensional lexicons from Table 4.3 to Table 4.7 show very similar performance

compared to the analysis on the sentiment lexicons. RoWE performs much better than

the second best performer, Wt-GP, on every affective dimension under all the evaluation

metrics. Comparing between different dimensions shows that the relative improvement on

valence dimension is much better than on the other dimensions. For example, in Table 4.3,

the average relative improvement on valence is 61.5% while the average relative improve-

ments on arousal and dominance are 17.3%, 22.3% respectively. Further analysis on the

gold answers shows that the annotation standard deviations of valence, arousal, dominance

are 1.65, 2.37, 2.06, respectively. A smaller standard deviation indicates better consistence

between annotators and more accurate gold values. The Spearman rank-order correlation

coefficient between the relative improvements and the annotation standard deviation is -1.
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Table 4.5: Result on inferring multi-dimensional affective meanings of VA on CVAW.

Method PMI Web-GP DENSI SENTP Wt-Gp RoWE RI

V
al

en
ce

RM 2.2 1.9 8.4 1.9 1.7 0.83 104.8
MA 1.9 1.7 7.0 1.7 1.5 0.64 134.4
MP 48.9 45.1 192.4 49.3 38.5 16.7 130.5
τ -3.0 0.23 25.1 43.6 59.9 65.4 9.2
ac1σ 15.4 12.5 9.4 12.4 12.8 58.2 277.9

A
ro

us
al

RM 1.5 1.4 6.3 1.2 1.2 0.87 37.9
MA 1.2 1.1 5.2 0.96 0.95 0.69 37.7
MP 22.4 19.6 95.5 18.6 19.0 13.5 37.8
τ -1.5 0.42 -9.4 12.6 39.2 48.9 24.7
ac1σ 57.2 59.7 15.0 64.8 66.0 80.3 21.7

Table 4.6: Result on inferring multi-dimensional affective meanings on EPA.

Method PMI Web-GP QWN-PPV DENSI SENTP Wt-Gp RoWE RI

E
RM 2.7 1.4 1.4 4.5 1.3 1.3 0.88 47.7
MA 2.4 1.2 1.2 3.5 1.1 1.0 0.68 47.1
τ -0.77 0.97 31.5 10.3 20.4 42.4 51.3 21.0

P
RM 2.2 0.87 - 4.5 0.74 0.75 0.6 23.3
MA 2.0 0.67 - 3.6 0.58 0.59 0.47 23.4
τ -0.02 -0.69 - 3.7 0.9 34.4 39.3 14.2

A
RM 3.3 1.0 - 5.1 0.86 0.86 0.7 22.9
MA 3.2 0.85 - 4.1 0.68 0.67 0.54 24.1
τ 0.24 0.16 - 3.3 7.4 32.7 40.2 22.9

This indicates that the more accurate of the gold answers are, the better performance of

RoWE compared to the baselines. For the E-ANEW lexicon, which is annotated through

crowdsourcing, the mean absolute errors (MAE) of RoWE are 0.65, 0.58, 0.56 on valence,

arousal, dominance, respectively. This means that the predicted values are quite close to

the manually annotated values. On the ac1σ metric, RoWE achieves 93.4%, 99.1%, 99.0%

on valence, arousal, dominance, respectively. This means that almost all the predicted

values are within one standard deviation of the manually annotated mean value.

Table 4.8 and Table 4.9 show the performance of different methods for perceptual
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Table 4.7: Result on inferring multi-dimensional affective meanings of EAI on DAL.

Method PMI Web-GP QWN-PPV DENSI SENTP Wt-Gp RoWE RI

E
va

lu
at

io
n RM 2.3 0.48 0.44 4.8 0.75 0.43 0.34 26.5

MA 2.3 0.38 0.34 3.8 0.66 0.33 0.27 22.2
MP 130.7 23.2 21.4 215.2 41.8 20.6 15.3 34.6
τ 0.57 -0.11 19.1 0.82 8.9 36.5 40.8 11.8

A
ct

iv
ity RM 2.0 0.45 - 4.6 0.71 0.39 0.33 18.2

MA 1.9 0.36 - 3.7 0.63 0.31 0.26 19.2
MP 108.1 21.7 - 204.7 39.0 18.9 14.9 26.8
τ 0.19 0.15 - 8.6 3.3 28.7 34.9 21.6

Im
ag

er
y RM 2.5 0.64 - 5.0 0.81 0.6 0.45 33.3

MA 2.3 0.53 - 4.0 0.68 0.5 0.36 38.9
MP 132.0 32.2 - 232.8 46.9 31.3 20.9 49.8
τ 1.7 0.75 - -2.2 20.9 43.2 50.1 16.0

and concreteness lexicons, respectively. Results on the two lexicons also indicate similar

conclusions as those on the emotion lexicons. For example, in Table 4.9, the average RI

under different evaluation metrics over the second best performer is 60.9%. This whole

set of experiments show that word embedding is very effective in predicting semantic

meanings not only for affective aspect, but also for other meaning dimensions, as long as

some seed words with the meanings defined quantitatively.

In conclusion, the proposed RoWE method achieves the best result on all the lexicons

under all the evaluation metrics, which validates the assumption that word embeddings do

encode semantic information and the regression model can effectively decode the affec-

tive meanings and other semantic meanings from the embeddings by assigning different

weights to different dimensions in the embedding.

4.3.2 Case Study

Figure 4.2 shows a visualized weight values of ~a on the first ten dimensions of word

embedding to the three affective dimensions on ANEW lexicon. Note that the weights for

the three affective dimensions can be quite different. For example, for the first dimension
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Table 4.8: Result on inferring five-sense meanings.

Method PMI Web-GP DENSIFIER SENTPROP Wt-Graph RoWE RI

H
ea

ri
ng

RM 3.8 1.5 6.9 1.7 1.2 0.91 31.9
MA 3.5 1.3 5.6 1.5 1.0 0.73 37.0
τ -0.11 0.01 -1.0 34.5 48.0 50.8 5.8
ac1σ 9.4 54.3 17.7 47.7 63.3 76.6 21.0

Ta
st

in
g

RM 1.7 2.2 8.8 2.7 1.1 0.73 50.7
MA 1.3 2.0 6.9 2.6 0.82 0.52 57.7
τ 0.92 -3.8 14.4 17.2 35.7 40.0 12.0
ac1σ 40.8 17.1 6.8 12.7 45.0 61.4 36.4

To
uc

hi
ng

RM 1.9 1.5 6.1 1.6 1.3 0.96 35.4
MA 1.7 1.3 4.9 1.4 1.1 0.8 37.5
τ 1.2 0.89 -3.3 12.6 39.9 49.0 22.8
ac1σ 47.2 55.9 18.6 53.3 61.0 75.9 24.4

Sm
el

lin
g RM 3.0 2.0 6.2 2.5 1.0 0.77 29.9

MA 2.8 1.9 4.8 2.4 0.83 0.58 43.1
τ -2.3 0.44 5.9 8.9 29.3 37.9 29.4
ac1σ 16.9 23.4 12.1 16.6 51.8 66.6 28.6

Se
ei

ng

RM 1.5 1.5 5.5 1.1 0.87 0.71 22.5
MA 1.2 1.3 4.4 0.96 0.69 0.56 23.2
τ 0.3 -0.13 -7.4 2.3 37.4 41.5 11.0
ac1σ 56.2 47.3 17.8 60.1 78.8 85.9 9.0

in embedding, its corresponding affective weights are 1.11, -1.05, and 0.63, respectively.

Table 4.10 lists some example words in the ANEW lexicon that are close in embedding

space but not close in the valence dimension. In the table, the Word column is the target

word, the G val column is the gold valence value, P val is the predicted valence value, and

the last column is the top 5 nearest words in embedding space based on cosine similarity.

The value in the parenthesis is the predicted valence value. The words in bold are examples

that are close in the embedding space but not close in the valence dimension. For example,

for the word cold, its nearest word is warm while their predicted valence value are 4.16 and

7.09, respectively. This validates that the proposed method can distinguish the affective

meanings through assigning different weights to the features in the embedding space.
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Table 4.9: Result on inferring concreteness.

Method PMI Web-GP DENSIFIER SENTPROP Wt-Graph RoWE RI
C

on
cr

et
en

es
s RM 2.3 1.0 5.9 1.0 0.97 0.56 73.2

MA 2.1 0.89 4.8 0.89 0.84 0.44 90.9
MP 71.3 31.0 178.3 35.4 30.8 16.0 92.5
τ -0.46 -0.45 18.5 34.9 56.2 64.4 14.6
ac1σ 32.9 66.8 15.1 63.9 67.9 90.6 33.4
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Figure 4.2: The learned weights of different affective meanings for the ANEW lexicon.

Table 4.11 lists some negative examples whose predicted valence value (P val) are not

within 2 standard deviation of the gold values of (G val). The words in bold are dissimilar

in the affective space with the target words. Detailed analysis reveals two possible reasons

for wrong prediction. First, a word may have multiple senses which word embedding

representation cannot distinguish because it is an inclusive mechanism to encompass the

different senses in one presentation. Take the word sad in Table 4.11 as an example, the

top 7 closest words include novi, pazar, etc because there is a city called Novi Sad, which is

the second largest city of Serbia. Similar situations occur for the word engaged. Secondly,

a word normally has similar context to its antonyms which means they also have similar

representation although the affective meaning are likely to be quite different. Taking the

word sad as an example again, its closest word contain happy, which has opposite valence.
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Table 4.10: Example words close in embedding space but not close in affective space.
Words in bold are dissimilar in affective space with the target words.

Word G val P val Top 5 nearest words in embedding space

good 7.47 6.45
decent(5.94), bad(3.34), excellent(7.35),

poor(3.32), commendable(7.19)

heaven 7.3 6.80
heavens(6.33), heavenly(6.80), hell(4.74),

god(6.54), afterlife(5.63)

clouds 6.18 5.66
cloud(5.00), mist(5.00), droplets(4.85),

dust(4.27), overcast(4.54)

cold 4.02 4.16
warm(7.09), winters(5.27), colder(4.94),

cool(6.34), freezing(4.24)

displeased 2.79 3.64
angered(3.34), unhappy(3.43), incensed(3.37),

pleased(6.40), apprehensive(3.79)

Table 4.11: Negative examples whose predicted values are not within 2 standard deviations
of the gold value.

Word G val P val Top 7 nearest words in embedding space

humor 8.56 6.63
humour, irreverent, satire, irony, wry,

humorous, sarcasm

engaged 8.00 5.05
engaging, engage, engages, involved,

participated, resumed, commenced

rescue 7.70 4.53
rescues, rescuing, rescued, rescuers,

firefighting, salvage, ambulance

sad 1.61 4.79
novi, pazar, kragujevac, subotica,

pathetic, happy, melancholic
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Some words used as training data also have the above two problems intrinsically, which

can have adverse effects on the learned regression model.

4.3.3 Computation Efficiency Analysis

The second set of experiments examines the run time efficiency of different methods pre-

sented in Section 4.3.1. This experiment visually observes the difference in computing

time by varying the data size from 1,000 to 11,000 using the E-ANEW lexicon. The size

of the seed words is 300. The remaining collection is used as test data. The hardware plat-

form is a desktop computer with processor of Intel (R) Xeon (R) CPU E5-1620 and 64G

RAM. During the running of each method, all the other programs are closed. The result is

shown in Figure 4.3.6 Web-GP is not listed because its running time is too high, ranging

from about 23,900 to 38,000 (in micro seconds). The figure shows that RoWE requires the

least running time. When the data size increase from 1,000 to 11,000, the running time of

RoWE changes from 11 to 116 which translates to a linear increase of 10.5 times.

Since running time may also be affected by implementation efficiency and environ-

ment, complexity in terms of Big O analysis is listed in Table 4.12 for theoretic analysis.

In this table, N is the data sample size, d is the embedding dimension and k is the number

of nearest neighbors used in Web-GP and SENTPROP. d and k are fixed and thus con-

sidered as constants. The second column indicates that the asymptotic complexities of

PMI, Web-GP, Wt-Graph and SENTPROP grow quadratically with the data size, whereas

the complexities of DENSIFIER and RoWE grows linearly with the data size. The third

column shows the complexity with constant coefficients d and k. Even though d and k

do not have a role in Big O analysis, as shown in the second column, they do affect the

efficiency of the implementations especially when data samples have limited size. In con-

clusion, RoWE has the same complexity as DENSIFIER (OpNq), and lower complexity

6 The y axis is broken at 5000 to 6000 to make the figure more readable. The numbers in parenthesis are
the running time.
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Figure 4.3: The running time of different methods under different data size.

than all the other methods. With consideration of coefficients k and d, RoWE is the most

efficient method theoretically.

Table 4.12: Complexity of different methods.

Method Asymptotic
Complexity

Complexity
with coefficient

PMI OpN2q OpN2q

Web-GP OpN2q OpN2kdq
Wt-Graph OpN2q OpN2dq
DENSIFIER OpNq OpNd3q
SENTPROP OpN2q OpN2kdq
RoWE OpNq OpNd2q

4.3.4 The Effects of Seed Words

In the third experiment, the effects of seed word size are explored using the ANEW lex-

icon. The size of the seed words ranges from 10 to 800 with 30 as the step size and the

remaining as the test data. The result on the valence dimension in terms of ac1σ is shown

in Figure 4.4, which indicates that Web-GP, SENTPROP, and Wt-Graph achieve almost a
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similar result and they are stable without much room to improve when more seed words

are added. PMI and DNSIFIER, however, are not stable. RoWE on the other hand, has

much better performance. Even with a small set of seed words (such as 100, which can

be obtained easily through manual annotation), RoWE still achieves a much better result.

Also, when more seed words are used, the performance continues to improve.
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Figure 4.4: The effects of seed word size.

4.3.5 The Effects of Word Embedding Dimension

In the fourth experiment, the effects of embedding dimension size are explored. Word

embeddings are trained on the Wikipedia corpus with different dimension size using the

SGNS model and RMSE is used as the indicator on the VADER lexicon and the E-ANEW

lexicon. The result is shown in Figure 4.5. Note that as the dimension increases from

50 to 300, the performance improves steadily. However, between 300 to 500, the curve

becomes quite flat. Generally speaking, larger dimensions do bring better performance,

but it would require more resources and computation power. To balance the performance

and computation cost, the dimension is suggested to be set between 300 to 400.
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Figure 4.5: The effects of word embedding dimension.

4.3.6 The Effects of Regression Models and Word Embeddings

Previous experiments use the Ridge regression model and the word embedding trained

using the SGNS model. RoWE, in principle, has no restriction on the regression model nor

the word embedding learning method. In practice, however, different regression models

and the actual embedding learning models may affect the overall performance. In this

section, the effects of the regression models and word embedding models are investigated.

As summarized in Section 4.2, typical regression models include linear regression,

Ridge regression, BayesianRidge regression, ElasticNet regression, Lasso regression, as

well as Support Vector Regression with linear kernel (SVM-Linear), Support Vector Re-

gression with non-linear Gaussian kernel (SVM-RBF). The performance of these models

is evaluated in terms of ac1σ, using the one-dimensional VADER lexicon. The size of the

seed words changes from 10 to 600 with 30 as the step size and the remaining as the test

data. All the models are implemented using the scikit-learn7 tool with default parame-

7 scikit-learn.org/ Accessed May 17, 2017
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Figure 4.6: The performance of different regression models on the VADER lexicon.

ters. The result is shown in Figure 4.6. Note that the SVR-Linear, Ridge and Bayesian

Ridge achieve similar and much better result than the other regression models. This is

because Ridge regression and SVR-Linear use norm 2 regularization on the weights to

avoid overfitting. The linear regression model has a typical U shape because of overfit-

ting without regularization on the weight coefficients. SVR-Linear performs much better

than SVR-RBF. This indicates that linear models are more suitable than non-linear mod-

els for inferring affective meanings from word embedding. Similar results are obtained

under other evaluation metrics and other emotion lexicons. Thus, the suggestion is to use

SVM-Linear, Ridge or Bayesian Ridge regression models in RoWE framework.

Next, different embedding resources are evaluated. In addition to the Wikipedia word

embedding lexicon, denoted as wikiEmb with size 204,981, as explained in Section 4.3.3,

the following public available embeddings that are obtained from different learning meth-

ods are compared:

1. Google embedding (GoogleEmb) [94]: It is trained using the SGNS model as in-
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troduced in Section 4.2.1 from a news corpus of 10 billion tokens.8 The embedding

vocabulary size is 3,000,000.

2. Glove 840B (Glove) [119]: It is based on weighted matrix factorization on the co-

occurrence matrix built from a corpus consisting of 840 billion tokens.9 The embed-

ding vocabulary size is 2,196,017.

3. Meta-Embedding (MetaEmb) [182]: This method ensembles different embedding

sources to obtain the final meta-embedding.10 The size is 2,746,092

4. ConceptNet Vector Ensemble (CNVE) [141]: This method combines word2vec,

Glove with structured knowledge from ConceptNet [143] and PPDB [40].11 The

size is 426,572.

5. MVLSA (MVEmb) [122]: This method learns word embedding from multiple

sources including text corpus, dependency relation, morphology, monolingual cor-

pus, knowledge base from FramNet based on generalized canonical correlation anal-

ysis.12 The size is 361,082.

6. Paragram Embedding (ParaEmb) [171]: This method learns word embeddings

based on the paraphrase constraint from PPDB.13 The size is 1,703,756.

The experiment uses this seven word embedding lexicons to predict the affective mean-

ings of 1,079 words common in all the selected embedding resources against the VADER

emotion lexicon. Among the 1,079 words, 50% are randomly selected as seed words and

the other 50% as test words. Each experiment is run 5 times and the average performance

8 https://code.google.com/archive/p/word2vec/ Accessed May 17, 2017
9 http://nlp.stanford.edu/projects/glove/ Accessed May 17, 2017

10 http://cistern.cis.lmu.de/meta-emb/ Accessed May 17, 2017
11 https://github.com/commonsense/conceptnet-numberbatch Accessed May 17, 2017
12 http://cs.jhu.edu/˜prastog3/mvlsa/ Accessed May 17, 2017
13 http://ttic.uchicago.edu/˜wieting/ Accessed May 17, 2017
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within one standard deviation in the parenthesis is reported in Table 4.13. Note that the

knowledge based CVNE achieves the best result under all the evaluation metrics. Other

than MVEmb, which seems to be low in performance, all the other embeddings have

comparable performance. This indicates that distilling knowledge base into embedding

can improve the quality of word embedding. GoogleEmb performs slightly better than

wikiEmb because GoogleEmb uses a much larger training corpus. Detailed discussion on

the quality of embedding methods can be found in [74]. Even though CVNE has the best

performance in this experiment, it only indicates the usefulness of adding knowledge base

information to a non-supervised training method. It does not by any means guarantee that

CVNE is the best performer on a downstream task because lexicon size is limited by the

coverage of the knowledge base.

Table 4.13: Evaluation of different embeddings on VADER lexicon using RoWE.

Method RMSE MAE τ ac1σ

wikiEmb 1.2(.02) .96(.01) 49.9(1.1) 53.6(1.0)
GoogleEmb 1.1(.01) .86(.01) 55.4(1.0) 57.6(1.5)
Glove 1.0(.02) .80(.02) 59.4(1.2) 61.7(1.5)
MetaEmb 1.1(.03) .86(.02) 56.4(1.3) 57.8(1.4)
CVNE .88(.01) .69(.01) 66.0(.95) 67.3(1.2)
MVEmb 1.3(.02) 1.0(.02) 42.4(1.0) 50.7(.31)
ParaEmb 1.0(.02) .80(.02) 59.6(1.4) 60.8(1.4)

Table 4.14 shows the example words with the top 5 largest and top 5 smallest predicted

values in each affective dimension under different emotion models using CVNE embed-

ding. Note that this list not only contains words, but also phrases because CVNE also

includes embeddings for some frequently used phrases. Since RoWE has no restriction

on the unit size for learning the affective meanings, phrase prediction is not a problem

in general as long as phrase embeddings are given. All the learned top ranked words are

quite reasonable. As sentiment indicators, ANEW-v and EPA-e have the same word giv-

ing gift. Several words do get listed in different lexicons such as giving gift, make happy.
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Table 4.14: Example words with top 5 largest and smallest predicted affective values based
on CVNE embedding.

Examples words of top 5 largest predicted affective values

VADER giving gift, making happy, excellentness, life of party, winning baseball game

ANEW-v giving gift, making happy, make happy, reading books, positive attitude

ANEW-a insanity, gun, sex, rampage, tornado

ANEW-d paradise, win, positive attitude, incredible, self

EPA-e giving gift, heaven, make happy, making happy, positive attitude

EPA-p god, ceo, christ, herculean strength, pope

EPA-a raver, riot, gunfight, fighter, nightclub

DAL-e giving gift, making happy, make happy, showing love, enjoying day

DAL-a dangerous activity, climbing mountain, playing snooker, winning game,
playing cricket

DAL-i neighbor’s house, non powered device, own home, opaque thing, single user
device

Concreteness non powered device, opaque thing, power shovel excavator, non agentive
artifact, single user device

Examples words of top 5 smallest predicted affective values

VADER hell with ,unpleasant person ,hagridden ,abusive language ,hagride

ANEW-v stabbing to death , life threatening condition , poor devil , crybully , abusive
language

ANEW-a soothing , librarian , dull , calm , grain

ANEW-d uncontrollable , earthquake , lobotomy , alzheimers , dementia

EPA-e hell , murder , rape , unpleasant person , rapist

EPA-p coward , weakling , high and dry , slave , powerless

EPA-a glum , cemetery , funeral , mummy , graveyard

DAL-e mommick , unpleasant person , plague , plaguer , nidder

DAL-a scar , shadows , elementary , supplement , oxgang

DAL-i that degree , risibility , in such way , inhere , in this

Concreteness more equal, confessedly, hypostatize, neuter substantive, istically
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Interestingly, on Concreteness, the last word istically is an adverb suffix, which is indeed

quite abstract although quite unexpected. More samples of extended multi-dimensional

emotion lexicons can be found at Appendix B.

4.3.7 Downstream Task for Sentiment Classification

The sixth experiment evaluates the effectiveness of RoWE through a downstream senti-

ment analysis task. This experiment examines the effectiveness of the lexicons obtained

from RoWE compared to the baseline lexicons obtained from other methods including

both manual ones and automatically obtained ones. Eight sentiment corpora used in this

experiment are listed in Table 4.15, which are annotated with positive or negative labels.

The eleven baseline lexicons listed in Table 4.16 are openly available for access. The

lexicons are sorted according to their size. Other than the three emotion lexicons, ANEW,

VADER and E-ANEW, which are obtained either manually or through crowdsourcing, all

the others are obtained automatically.

The setup of the experiment is first to use RoWE to extend the VADER sentiment

lexicon using different word embedding lexicons introduced in Section 4.3.6. RoWE is

trained using the intersection of the VADER lexicon and the respective word embeddings.

The size for each of the extended lexicons is different depending on the vocabulary of the

word embeddings. VADER is chosen because it is the largest manually-annotated senti-

ment lexicon in the bipolar format currently. For a fair comparison, only one downstream

sentiment classifier is used for all different emotion lexicons. The sentiment classification

method is used from [59] which is a simple heuristic rule-based method using a list of

lexical features (along with their associated sentiment intensity measures) defined man-

ually. No machine learning methods are used to avoid mixing other factors to introduce

unknown variants to the evaluated lexicons. The selected method is very suited to measure

the quality of the evaluated sentiment lexicons. In the sentiment analysis task, F-score is

used as the evaluation metric.
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Table 4.15: Statistics of sentiment corpora

Corpus num pos
num vocab avg

words Description

SST[139] 1,821 909 7,576 19.2 movie review
sem[108] 3,583 2,570 18,965 19.8 SenEval 2013
aR[59] 3,708 2,128 8,306 16.5 Amazon review
cr [57] 3,771 2,405 5,712 20.1 customer review
nyt[59] 5,190 2,204 20,929 17.5 News
mpqa [170] 10,603 3,311 6,298 3.1 news
mR[59] 10,605 5,242 29,864 18.9 movie review
mr [113] 10,662 5,331 21,425 21.0 movie review

Table 4.16: Statistics of baseline sentiment lexicons

Lexicon size Description

ANEW[17] 1,034 manual annotation
VADER[59] 7,502 crowdsourcing annotation
E-ANEW[167] 13,915 crowdsourcing annotation

SenticNet4[24] 50,000 propagation on ConceptNet
HashtagSenti[191] 54,129 statistics based on hashtag
senti140[191] 62,468 statistics based on emoticon
QWN-PPV[129] 81,248 propagation on WordNet
SentiWordNet3[7] 89,631 automatic based on WordNet
SentiWords[41] 147,305 ensemble on SentiWordNet
NNlexicon[156] 184,579 neural network prediciton
Tang[154] 347,446 representation learning

Table 4.17 shows the evaluation result and the best results are marked in bold. In this

table, each row represents a lexicon and each column is one sentiment corpus. The first

part lists all the baseline lexicons and the second part lists the extended lexicons by RoWE

based on different embeddings and the size of each obtained lexicon is included in paren-

thesis. In general, the embedding based lexicons perform better than the baseline lexicons.

The ParaEmb lexicon, in particular, achieves the best result on all the sentiment corpora.

In the baseline lexicons, SentiWords performs the best. Note that in both the baseline

lexicons and lexicons obtained from RoWE, lexicon size is not the determiner for the best

performance. Among the baseline lexicons, the best performer, SentiWords has only about
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Table 4.17: Result on downstream sentiment analysis task

Lexicon(size in M) sem mR aR nyt cr mpqa mr SST

ANEW 0.71 0.56 0.55 0.49 0.62 0.27 0.54 0.57
VADER 0.83 0.66 0.71 0.57 0.78 0.63 0.66 0.70
E-ANEW 0.85 0.68 0.74 0.63 0.79 0.58 0.68 0.70
SenticNet4 0.79 0.66 0.69 0.59 0.74 0.57 0.66 0.68
HashtagSenti 0.81 0.62 0.66 0.53 0.71 0.41 0.62 0.66
senti140 0.82 0.68 0.65 0.60 0.68 0.55 0.68 0.70
QWN-PPV 0.76 0.63 0.69 0.57 0.74 0.45 0.63 0.66
SentiWordNet3 0.65 0.56 0.56 0.49 0.62 0.43 0.56 0.60
SentiWords 0.85 0.68 0.74 0.63 0.79 0.60 0.68 0.71
NNlexicon 0.77 0.64 0.68 0.53 0.73 0.55 0.64 0.67
Tang 0.83 0.63 0.63 0.53 0.66 0.54 0.63 0.68

wikiEmb(0.2M) 0.84 0.68 0.74 0.62 0.78 0.66 0.68 0.69
GoogleEmb(3M) 0.85 0.68 0.74 0.63 0.78 0.68 0.69 0.70
Glove(2M) 0.85 0.69 0.74 0.65 0.79 0.69 0.69 0.71
CVNE(0.4M) 0.85 0.69 0.74 0.63 0.78 0.68 0.69 0.70
MetaEmb(2.7M) 0.73 0.47 0.49 0.43 0.48 0.04 0.49 0.47
MVEmb(0.36M) 0.85 0.68 0.74 0.62 0.78 0.68 0.68 0.69
ParaEmb(1.7M) 0.85 0.69 0.74 0.65 0.79 0.70 0.69 0.72

147K sentiment words whereas NNLexicon and Tang have about 184K and 347K respec-

tively. The best performer ParaEmb is also not the largest in lexicon size. In fact, CVNE

which is only 0.4M in size has very good performance. One likely explanation of their

good performance is that ParaEmb include knowledge base information which enriches

the lexicon semantically. Note that MetaEmb performs much worse than other embedding

based lexicons. Further analysis indicates that although the size of MetaEmb is large, the

overlap size of MetaEmb with the sentiment corpora vocabulary is quite small. For exam-

ple, there are only 512 overlapping seeds out of 6,298 (10%) in the mpqa corpus compared

to 6,193 of ParaEmb. Also, most of the words in MetaEmb are informal strings, such as

rates.download, now!download. The general conclusion is that (1) the larger overlapping

is generally good, but again it is not the determining factor; and (2) the high-quality word

embedding also helps even if its size is not large (as shown by CVNE).
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4.4 Chapter Summary

In this paper, a regression based method is proposed to automatically infer the affective

meanings of words from word embedding. Word embedding not only carries general se-

mantic meanings but also meanings in some specific space, such as affective meanings.

This framework first learns word embeddings through unsupervised way and then treats

each word embedding as feature representation to train a Ridge regression model based on

a small set of seed words. The proposed framework can infer different kinds of affective

meanings in multi-dimensional models. A whole set of evaluations shows that: 1) The

proposed RoWE achieves the state-of-the-art performance, outperforming all the baseline

methods on several emotion lexicons in affective space and lexicons in other semantic

space; 2) The proposed RoWE is rating scale insensitive, which means that the method

does not require the rating range to be bipolar and there is no need to transform unipolar

ratings to bipolar ratings; 3) The proposed RoWE is computationally more efficient than

the baseline methods, especially compared to propagation based methods; 4) One exper-

iment using the built sentiment lexicon on the downstream sentiment analysis task shows

that lexicons based on word embedding perform better than previously available senti-

ment lexicons; 5) Comparing between different word embeddings, the promising result

of CVNE which incorporates knowledge base gives a future research direction to obtain

better word embedding with an incorporation of knowledge base information; and 6) The

proposed RoWE provides valuable additional emotion lexicon resources for dimension-

based EA. The extended lexicons with about million of words using different emotion

models are available.14 The dimensional emotion lexicons are one kind vector represen-

tations of words. Can they be used in the composition models to infer the emotion or

sentiment of larger text units? The next chapter will investigate the validity of employing

dimensional emotion lexicons under different composition models for emotion analysis.

14 https://yunfeilongpoly.github.io/Team_resource.html Accessed December 06,
2017.
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Chapter 5

Phrase Level Emotion Analysis

One premise of machine learning based emotion analysis is to obtain feature representa-

tions of a target text. Then, a machine learning model can be performed on such a repre-

sentation for some down stream tasks. Here the term target text can be a word, a phrase,

a sentence, a paragraph or a document. As introduced in Section 2.4, the representation of

a target text can be obtained mainly through three methods: (1) Feature engineering meth-

ods based on manually defined features, such as bag-of-word, term frequency and inverse

document frequency (TF-IDF), shifter, n-grams, POS tags, or count of emotion categories

based on a given emotion lexicon [164, 153, 99]; (2) Distributional methods that treat a

target text as single non-divisible unit and learn its representations directly from its con-

text based on the distributional hypothesis [63, 94]; and (3) Compositional methods to

infer the representation of a target text from its component words based on the principle

of compositionality. Compared to feature engineering methods, both distributional and

compositional methods are less labor intensive.

Phrases, as one kind of language units, play an important role in many NLP applica-

tions such as machine translation, web searching and sentiment analysis [107]. Generally

speaking, phrases can be categorized as either compositional or non-compositional. For

compositional phrases, such as traffic light, swimming pool, their semantics are composed

from the semantics of their component words. We define component words as the inter-
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nal context of a phrase. For non-compositional phrases, such as multiword expressions

couch potato and kick the bucket, their semantics are generally not directly related to the

semantics of their component words. According to [133], in a corpus with a collection of

web pages, about 15% of word tokens belong to multiword expressions, 57% of sentences

and 88% documents contain at least one multiword expression.

Chapter 4 presents word level emotion analysis and shows that the affective mean-

ings of words can be effectively inferred from word embedding representation through a

regression model.

In this chapter, we propose two methods for phrase level emotion analysis. The first

method is based on word representations and composition models to perform emotion

prediction. The second method directly learns the phrase embedding representation and

then decodes the affective information from phrase embedding just like Chapter 4. The

two methods will be introduced separately since they follow different strategies.

5.1 Composition Based Emotion Analysis

As presented in Chapter 4, multi-dimensional affective representations of words can be

obtained by various methods. One advantage of dimensional affective representations over

discrete affective representations is that dimensional vectors can be computed directly. The

issue then is: if multi-dimensional emotion lexicons are used to infer emotions of larger

target text, are the domain specific emotion lexicons have any advantage over other word

representations?

This section attempts to answer this question by investigating the most effective ways

to predict affective meaning of larger text units using dimensional word representations

based on compositional models.
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5.1.1 Composition Models for Emotion Analysis

The objective is to study the effectiveness of different word representations for emotion

analysis of text units longer than words using compositional models. A general learning

framework, as shown in Figure 5.1, is proposed for this investigation. In this framework,

the Word Representation, which may contain either affective knowledge or general se-

mantic knowledge, can be a one-dimensional sentiment lexicon, a multi-dimensional af-

fective lexicon, or a general semantic based word embedding lexicon. The Target Text,

as input data, can be any text that is composed of word sequences. The Composition

Model can be any composition model introduced in Section 2.4, such as concatenation,

addition, multiplication, or more complex LSTM models. The output, Emotions, should

be emotion labels or affective values as a downstream task after their associated emotions

are predicted by the Emotion Prediction module.

Composition 
Model

Emotion 
Prediction

Emotions

Word 
Representation

Target 
Text

Figure 5.1: General composition framework for emotion analysis.

To focus more on the effectiveness of representations, experiments are conducted on

bigram phrases. Five lexicons used in Chapter 4 are selected for this study, including

three manually annotated lexicons introduced in Table 4.1 (VADER sentiment lexicon, the

EPA lexicon, and the E-ANEW lexicon), one automatically obtained lexicon introduced

in Table 4.16 (NRC Hashtag sentiment lexicon, denoted as HSenti here) , and one word
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embedding lexicon introduced in Table 4.3.6 (Glove).

Note that manually annotated lexicons have much smaller size than automatically ob-

tained ones. For fair comparisons, all the lexicons are extended by the method introduced

in Chapter 4.2 based on the Glove word embedding so that all the vocabularies of different

lexicons are the same size as Glove.

Firstly the representation of a phrase is constructed from the base representations of its

component words using some composition functions. Here the term base representations

refers to the different word representations used in this study. Then, the prediction for

phrases is performed to see which base representation is more effective.

The following four composition models introduced in Section 2.11 are used.

1. The addition model defined in Formula 2.11.

2. The multiplication model is defined in Formula 2.13.

3. The concatenation model defined in Formula 2.14.

4. The LSTM model defined in Formula 2.19 is shown in Figure 5.2, which takes the

phrase avoid accident as an example.

In Figure 5.2, the input is the vector representations of words avoid and accident. The

output of LSTM is a vector ~m. The emotion y is predicted based on ~m.

5.1.2 Experiments and Analysis

A set of sentiment classification tasks are conducted. The gold answers for the sentiment

classification of phrases are extracted from the Stanford Sentiment Treebank (SST) [139].

In SST, every sentence is parsed and each node in the parsed tree has a sentiment score

ranging between [0, 1]. The sentences are movie review excerpts from the rottentoma-

toes.com website. Only two-word adjective-noun phrases, noun-noun phrases and verb-
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LSTM
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LSTM
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𝑚

𝑤2𝑤1

Figure 5.2: The LSTM compositional model for emotion analysis.

noun phrases are extracted, and the size of the collection in SST is 9,922. Note that only

6,736 phrases in this collection are used because they are present in all the five lexicons.

Based on this golden answer set on sentiments of phrases, four sentiment analysis tasks

are constructed: (1) a regression task to predict the sentiment score of phrases (labeled as

SST-R); (2) a binary classification task by converting sentiment scores to discrete labels,

where positive label is no less than 0.6 and negative label is no more than 0.4 (labeled

as SST-2c). The numbers of phrases that fall into the positive and negative classes is

2,669 and 1,539, respectively; (3) a ternary classification task similar to SST-2C except

that there is an additional neutral label in the range of 0.4-0.6 (labeled as SST-3c). The

numbers of phrases that fall into the negative, neural and positive classes are 1,539, 5,714,

and 2,669, respectively; (4) a five-class classification task that segments the rating score by

the following standard: [0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 1.0], which represents

very negative, negative, neutral, positive, very positive respectively (denoted as SST-5c).

The class distribution is 166, 1, 373, 5,714, 2,222, and 447, respectively.

Different evaluation metrics are used for the four different tasks. Root mean squared

error (rmse), mean absolute error (mae) and Kendall rank correlation coefficient (τ ) are
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used for SST-R. Accuracy and F-score are used for SST-2c. Weighted accuracy and

weighted F-score are used for SST-3c and SST-5c. Ridge regression and SVM with the

linear kernel are used for regression and classification task, respectively.1 For LSTM, the

output layer is set differently for regression and classification tasks, respectively. In all the

experiments, 5-fold cross validation is used. Results are based on the best parameters. The

number of hidden dimensions in LSTM is set to 4.

Feature Comp SST-R SST-2c SST-3c SST-5c
rmse mae τ acc f acc f acc f

HSenti mul 0.110 0.110 0.060 0.636 0.777 0.573 0.418 0.573 0.418
HSenti add 0.102 0.102 0.298 0.764 0.826 0.573 0.418 0.573 0.418
HSenti conc 0.102 0.102 0.304 0.768 0.829 0.573 0.418 0.573 0.418
HSenti lstm 0.100 0.100 0.307 0.769 0.825 0.609 0.554 0.583 0.470
VADER mul 0.103 0.103 0.240 0.666 0.787 0.608 0.508 0.575 0.420
VADER add 0.088 0.088 0.477 0.888 0.913 0.643 0.577 0.613 0.522
VADER conc 0.086 0.086 0.482 0.889 0.914 0.654 0.590 0.621 0.532
VADER lstm 0.085 0.085 0.487 0.895 0.918 0.668 0.657 0.618 0.552

EPA mul 0.097 0.097 0.367 0.834 0.872 0.575 0.420 0.575 0.420
EPA add 0.092 0.092 0.422 0.887 0.912 0.600 0.488 0.580 0.440
EPA conc 0.092 0.092 0.427 0.886 0.912 0.602 0.494 0.588 0.463
EPA lstm 0.092 0.092 0.436 0.893 0.916 0.637 0.611 0.600 0.507
E-ANEW mul 0.099 0.099 0.313 0.769 0.830 0.601 0.497 0.575 0.420
E-ANEW add 0.090 0.090 0.451 0.890 0.913 0.620 0.549 0.575 0.420
E-ANEW conc 0.089 0.089 0.458 0.894 0.917 0.623 0.555 0.575 0.420
E-ANEW lstm 0.088 0.088 0.471 0.902 0.924 0.653 0.643 0.613 0.564

Glove mul 0.106 0.106 0.245 0.635 0.777 0.575 0.420 0.575 0.420
Glove add 0.074 0.074 0.564 0.920 0.937 0.757 0.751 0.700 0.679
Glove conc 0.074 0.074 0.563 0.924 0.940 0.755 0.749 0.699 0.680
Glove lstm 0.070 0.070 0.578 0.926 0.942 0.754 0.752 0.698 0.683

Table 5.1: Performance of different word representations under different composition
functions for phrase sentiment analysis.

Table 5.1 shows the result of the four tasks. mul, add, conc are for multiplication

composition, addition composition and concatenation composition, respectively. Table

5.1 shows four major points. Firstly, multiplication performs the worst in all categories.

1 Using the scikit-learn tool: scikit-learn.org/
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On the other hand, LSTM, as a deep learning method, is the best performer. Addition

and concatenation do have comparable performance and not too off from LSTM on SST-

R and SST-2c. Secondly, for the two sentiment lexicons, VADER performs much better

than HSenti. This may be because that VADER is manually annotated from crowdsourc-

ing whereas HSenti is automatically obtained which contains more noise. Thirdly, for the

two multi-dimensional affective lexicons, E-ANEW performs slightly better than EPA.

It is surprising that the multi-dimensional lexicons perform even worse than the senti-

ment lexicon VADER even though the annotated size of E-ANEW (13,915) is much larger

than VADER (7,502). This puts a question mark on the quality of annotation for multi-

dimensional lexicon resources. However, then, a sentiment lexicon may be better suited

for a sentiment analysis task. Fourthly, word embedding2 performs much better than all

the other representations. For instance, it achieves a relative improvement of 17.7% un-

der τ for SST-R over the secondly ranked VADER representation. Different composition

models except the multiplication for word embedding perform comparably. In principle,

LSTM should have even more advantages if the text length is longer. In this study, the

performance difference is not obvious because the tested phrases are only bigrams.

When manually constructed affective lexicons are extended automatically, more noise

can be introduced. To eliminate that factor, an additional experiment using only a manually

annotated lexicon is conducted. We use the largest original E-ANEW lexicon without

extension to be compared with word embedding lexicon. In this case, the intersection of E-

ANEW and word embedding lexicon has 3,908 words. A subset corpus of SST containing

these words has 5,251 phrases. Five-fold cross validation is used on this dataset. The

result is shown in Table 5.2. Again, word embedding lexicon achieves much better result

than manually annotated VAD lexicon. If coverage issue is considered, word embedding

has even more advantages.

2 We also experiment on different word embedding dimensions including 50,100,200. All are better than
the other lexicons.
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Feature Comp SST-R SST-2c SST-3c SST-5c
rmse mae τ acc f acc f acc f

E-ANEW add 0.093 0.120 0.450 0.901 0.928 0.614 0.555 0.555 0.397
E-ANEW conc 0.092 0.118 0.464 0.905 0.930 0.622 0.566 0.560 0.426
E-ANEW lstm 0.093 0.118 0.474 0.903 0.930 0.626 0.616 0.585 0.503

Glove add 0.075 0.098 0.574 0.926 0.946 0.762 0.757 0.700 0.683
Glove conc 0.075 0.098 0.577 0.928 0.947 0.762 0.757 0.697 0.679
Glove lstm 0.079 0.103 0.556 0.923 0.943 0.721 0.720 0.658 0.653

Table 5.2: Performance of manual E-ANWE and word embedding under different compo-
sition functions for phrase sentiment analysis.

In conclusion, this section shows that automatically obtained word embedding out-

performs both manually and automatically extended dimensional lexicons including sen-

timent lexicons and multi-dimensional emotion lexicons on the task of phrase level senti-

ment analysis based on different composition models. Although affective lexicons based

on emotion models that are backed by cognitive theories are built specifically for affec-

tive analysis, building them consumes too many resources and annotation quality may still

be questioned due to added complexity. Through a downstream task of sentiment anal-

ysis of phrases, the conclusion can be safely drawn that the manually annotated special

purpose emotion lexicons have no advantage over lexicons of word embedding obtained

automatically no matter which compositional model is used.

5.2 Phrase Embedding Based Emotion Analysis

Section 5.1 shows that compositional methods can be used to predict larger text unit for

sentiment classification based on the principle of compositionality. However, for some

phrases, their meanings cannot be inferred from their component words, such as break up,

or idioms such as kick the bucket [64]. Generally speaking, phrases can be categorized as

either compositional such as traffic light, fresh air, whose semantics are composed from

the semantics of its component words, or non-compositional such as idiomaticity couch
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potato and kick the bucket, whose semantics are not directly composed from its component

words. Furthermore, Chapter 4 shows that affective meanings of words and phrases can

be effectively inferred from their embeddings through a regression model. The technical

question is: can we directly learn embedding representations of phrases and then infer the

affective meanings of phrases from phrase embedding?

Generally speaking, there are mainly two approaches to learn the embedding of phrases.

The first approach, referred to as the distributional approach, is based on the distribu-

tional hypothesis. To apply this principle for phrases, a phrase is simply treated as a single

term and its representation is inferred from its external context in the same way as learn-

ing distributed word representation [94, 181]. Since this approach treats a phrase as a

non-divisible unit, its component words are completely ignored even though this informa-

tion may be useful, especially for compositional phrases. For example, the phrase close

interaction is semantically similar to contact, which can be reflected through the word

embedding similarities between the component word interaction and contact. However,

by treating close interaction as one non-divisible unit, its representation has to be learned

independently which is more likely to suffer from data sparseness problem. In the case of

infrequently used phrases which would have insufficient context, this approach can fail to

learn their representations. Compared to single words, the sparseness problem of phrases

is indeed more severe given the same corpus.

The second approach, referred to as the compositional approach, is based on the prin-

ciple of compositionality. Based on this principle, this approach uses certain composition

function to obtain the representation of a phrase from the representations of its component

words [97, 185], as is discussed in Section 5.1. The representation of the component words

is obtained using distributional models. This approach only uses information of compo-

nent words and the information of external context is indirectly considered using the con-

text of the component words. One key problem with the compositional approach is that

it can fail if a phrase is non-compositional because the semantics of non-compositional
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phrase cannot and should not be derived from its component words. For example, the

phrase monkey business cannot be composed from monkey and business. In such a situa-

tion, the information of the component words can lead to an erroneous result. The meaning

of non-compositional phrases can be lost using compositional models.

In fact, both the external context and the component words provide helpful informa-

tion to the representation of a phrase. Furthermore, the usefulness of component words

depends on the compositionality of the phrase. Compositionality refers to the extent of

the semantic of a phrase can be inferred from the semantic of its component words [128].

For example, the compositionality of phrase monkey business should be low and the com-

positionality of phrase buy fruits should be high. If there is a way to measure the com-

positionality of a phrase, the compositionality can then be used to measure the usefulness

of the component words of a phrase. Based on the above analysis, a hybrid model is pro-

posed in this work to learn the representation of phrases from both the external context and

component words. Instead of simply combining the two kinds of information, the com-

positionality measures from lexical semantics are used to serve as a constraint. The basic

idea is to learn the representation of a phrase based on a linear combination of external

context with a weighted composition of the component words where the weight is based

on automatically predicted compositionality. Compared to previous works, the proposed

model has the advantages of both previous methods while overcomes their drawbacks.

After obtaining the embedding of phrases, phrase related semantic information such as

emotion and sentiment can be inferred from the embeddings.

5.2.1 Related Work

Compositionality of phrases includes two main tasks: compositionality detection and com-

positionality prediction. Compositionality detection aims to identify if a given phrase

is compositional or not, which is considered a binary classification task. Yazdani et al.

[180] propose a semantic composition based method for compositionality detection. Noun
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compounds that cannot be well modeled by a compositional model are considered non-

compositional. Compositionality prediction aims to predict the compositionality value of

phrases in the range of [0, 1]. Salehi et al. [128] propose to compute the compositionality

as the cosine similarity between the representation learned from external context and the

representation composed from the phrase’s component words.

As introduced in Section 2.3, the distributed representation of words can be learned

by counting-based methods and prediction-based methods [10]. Both methods are based

on the distributional hypothesis [49]. Similarly, to learn the representation of phrases, one

approach treats a phrase as a single unit and learns phrase representations from its external

context using the same word representation learning model [94, 181]. In this approach,

a phrase is treated as a non-divisible unit. The second approaches treat phrases as divis-

ible units and infer the representation from the representations of the component words,

which is called compositional approach. In addition to the basic compositional models

introduced in Section 2.4, Baroni et al. [11] propose to represent a noun as a vector and

an adjective as a matrix and use matrix-vector multiplication to obtain the representation

of adjective-noun phrases. Yu et al. [185] propose to obtain phrase representations by

the weighted sum of word vectors and the weights are based on a list of lexical feature

templates of the phrase types. Zhao et al. [189] propose a tensor based compositional

model to learn phrase representations by vector-tensor-vector multiplication. However, all

the above composition based methods assume that phrases are compositional. The study

by Sun et al. [147] on phrase representation learning actually makes use of both external

context and component words by constraining the vector of a phrase to be close to the

vectors of both its two component words. However, the semantics of some phrases are not

necessarily similar to both of its component words. Some non-compositional phrases have

no direct relation to its component words. The work from [50] considers both the external

context and component words with compositionality constraint. However, the learning

process of that work is task dependent and that work only handles verb-noun phrases.
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5.2.2 The Hybrid Model

Most of the works on learning phrase representation either only consider the external con-

texts which ignore the information of component words or only consider the component

words without taking into account the information of external context and the composi-

tionality of the phrases. In this section, a hybrid phrase representation learning model is

proposed to include both the external context as well as the internal component words,

similar to that of [50]. The main difference with [50] is that the proposed method uses

a general compositionality constraint when merging the two components together. This

method is not limited to verb-noun phrases. The learning model consists of two compo-

nents. The first component is based on the distributional model of SGNS [94] to learn

both word and phrase representations using external context. The second component is

the compositional model to learn phrase representations from component words. This

proposed hybrid model is referred to as the D&C (Distributional and Compositional).

However, in D&C, the two components are not simply added linearly. Instead, the compo-

sitional component is subjected to compositionality estimation with which the constrained

compositional model is added to the distributional component. Similar to previous works,

this work also focuses on phrases that consist of two component words. The following

paragraph introduces some notations for this section.

Given a corpus S with a set of words w P VW and their context c P VC where VW

and VC are the word and context vocabularies. Note that the vocabularies of Vw and VC

may be identical. The distinction is more for conceptual convenience. The context of

word wi is defined as the words surrounding wi in a window of size L, namely wi´L, ¨ ¨ ¨ ,

wi´1,(wi), wi`1, ¨ ¨ ¨ , wi`L. Let #pwq denote the frequency of word w, and #pcq denote

the occurrence frequency of context c. Let #pw, cq denote the frequency of a word-context

pair pw, cq. For phrases,let VM denote the set of given phrases where each phrase m P VM

consists of two words. tm is used to denote the compositionality of m and the larger tm is,
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the more compositional is the phrase. Let D denote the set of pw, cq and pm, cq pairs.

The objective is to learn a vector representation ~w P Rd for each w P VW , a vector

representation ~c P Rd for each context c P VC , and a vector representation ~m P Rd for

each m P VM . d is the vector dimension.

The Distributional Component

The distributional component of a phrase representation is defined by the the SGNS model,

introduced in Section 4.2.1. When applying this model to representation learning of

phrases, mi P VM is treated as a single term and representation learning is the same as

word representation learning. However, data sparseness can be an issue for phrases. Note

that for compositional phrases, the SGNS component only takes information from external

context of phrases. Context of component words is not directly taken into consideration.

The Compositional Component

As introduced in Section 2.4, in a compositional model, the representation of a phrase is

inferred from that of its component words. Given a phrase m with two component words

w1
m and w2

m and their respective vector representations ~w1
m and ~w2

m, the representation

of m, denoted by ~m, can be computed by any simple compositional model defined from

Formula 2.11 for addition to the Formula 2.13 for multiplication. Compared to the dis-

tributional component using SGNS, the compositional component can make use of com-

ponent words information. However, this model can produce erroneous representation for

non-compositional phrases.

The Hybrid D&C Model

The hybrid D&C model first makes use of an estimation on the compositionality of phrases.

This estimation then serves as a constraint on the combined use of the distributional com-

ponent of SGNS and the compositional component.
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Since learning include both words and phrases, the candidate term set VT “ VW Y VM

is first constructed and then the corresponding context set VC is built based on the window

size L. For a word w, its representation can be learned according to Formula 4.5. For a

phrase m, the proposed D&C model can be modeled as:

JS “
ÿ

mPVM

ÿ

cPVC

#pm, cq
´

logσp~m ¨ ~cq `k ¨ EcN„PD
rlogσp´~m ¨ ~cNqs

` λhptm, ~m, ~w
1
m, ~w

2
mq

¯

.

(5.1)

In Formula 5.1, the first two parts forms the SGNS model, namely the distributional

component. The third part is the compositional component. The hyper-parameter λ is a

weight to balance the overall contributions of the two components. The compositional

component h is defined as

hptm, ~m, ~w
1
m, ~w

2
mq “ tmlogσ

`

~m ¨ fp~w1
m, ~w

2
mq
˘

, (5.2)

where fp~w1
m, ~w

2
mq can be any compositional model defined by Formula 2.9. σ p~m ¨ fp~w1

m, ~w
2
mqq

defines the correlation between the learned phrase representation ~m and the composed

phrase representation. The more they are correlated, the larger contribution the compo-

sitional component is to JS . tm is the compositionality of m, which is dependent on the

phrase in questions. Formula 5.2 has the following properties:

1. If the compositionality tm is low (m is more non-compositional), the weight of the

correlation between the phrase representation ~m and the composed representation

fp~w1
m, ~w

2
mq from its component words should be low. It means ~m should be based

mainly on SGNS, namely its external context.

2. If the compositionality tm is high (m being more compositional), the weight of the

correlation between ~m and fp~w1
m, ~w

2
mq should be high and the objective function
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will force ~m to be similar to the composed fp~w1
m, ~w

2
mq. It means ~m should consider

both the external context and component words.

By setting λ to zero, the model degrades to the SGNS model. By setting tm to a constant,

the model changes to a fix-weighted model.

Compositionality prediction

One of the most important elements of D&C is the compositionality value t. The com-

positionality prediction model aims to predict the compositionality of a phrase. Phrase

compositionality has the property of continuum [124]. For example, the compositionality

of phrase bus driver is 1.0, which means this phrase is compositional and the meaning of

it can be composed from the component words bus and driver. The compositionality of

phrase coach potato is 0, which means this phrase is non-compositional and the meaning

of it cannot be inferred from the component words coach and potato. The compositional-

ity of the phrase silver screen is 0.6, which indicates that its semantics cannot be totally

obtained from the component words because the first word silver loses its original mean-

ing in the phrase while the second word screen can reflect the phrase’ meaning. In this

section, we introduce two models for predicting individual compositionality of phrases.

The first model is from [128], which computes the compositionality of a phrase based

on the consine similarity between the distributional embedding and the compositional em-

bedding of the phrase defined as:

tm “ cosine
`

~m, ~w1
m ` ~w2

m

˘

, (5.3)

where ~m, ~w1
m and ~w2

m are obtained by SGNS in advance. Formula 5.3 means that the more

similar between ~m and ~w1
m ` ~w2

m, the more compositional the phrase is. We label this

compositionality prediction model as C1.

The second model is inspired by the work from [43] which is based on the geometry of

word embedding. They find that the semantic space of larger text units (such as phrases and
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sentences) is spanned by the subspace of the consisting word vectors and the subspace can

be obtained through dimension reduction such as Principle Component Analysis (PCA).

Inspired by this, we propose to compute phrase compositionality by computing the cosine

similarity between the distributional embedding and the projected vector on the subspace

spanned by the component word embeddings. The process is shown in Figure 5.3. Given

a phrase m consisting of two words w1
m and w2

m, ~m is the distributional phrase embedding

and ~v1m and ~v2m are the distributional component word embedding, obtained by distribu-

tional methods. ~mp is the projected vector of ~m on the space spanned by ~v1m and ~v2m. Let

A “ r~v1Tm , ~v2Tm s. ~mp is computed as:

~mp “ ApATAq´1AT ~m. (5.4)

The compositionality is computed as:

tm “ cosinep~m, ~mpq. (5.5)

D&C Distributional component= Compositional component+ 𝜆 ∙ 𝑡 ∙

𝑚

 𝑣𝑚
1

 𝑣𝑚
2

𝑚𝑝

Figure 5.3: The C2 model for compositionality prediction.

This compositionality prediction model is denoted as C2. Compared to C1, C2 as-

sumes that if a phrase is compositional, its phrase representation is the subspace spanned

by its component words. The more the distributional embedding is close to the subspace,
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the more compositional of the phrase. If the distributional embedding is perpendicular to

the subspace, the phrase is non-compositional.

Theoretically speaking, any phrase compositionality model can be used in our pro-

posed framework. Note that the compositionality values of phrases are computed based

on the distributional embedding before training the model.

Our model can be trained through stochastic gradient descent (SGD) by maximizing

Formula 5.1 suggested by [94]. The gradient can be directly calculated for each training

sample. Both the word embeddings and phrase embeddings are randomly initialized as

what is used by Mikolov et al [94].

5.2.3 Experiments and Analysis

The list of phrases used in the evaluation are from 5 sources: (1) the set of 2,180 phrases

in the Noun-Modifier Composition dataset [159], (2) the DISCo set of 349 phrases for

the 2011 shared task in Distributional Semantics and Compositionality [14], (3) the set

of 8,105 phrases from the SemEval 2013 Task 5A [65], (4) the set of 1,042 phrases from

[34], and (5) the set of 56,850 phrases from [181]. The consolidated phrase list contained

has a total of 60,315 after removal of duplication.

The training corpus used is the Wikipedia August 2016 dump.3 In pre-processing, pure

digits and punctuations are removed, and all English words are converted to lowercase.

The final corpus consists of about 3.2 billion words. During training, only words that

occur more than 100 times are kept, resulting in a vocabulary of 204,981 words.

Evaluation Tasks

The representation of phrases is evaluated on four evaluation tasks. The first task is called

the SemEval 2013 Task 5. The dataset for this task, denoted as SemEval, is prepared

to judge whether a given bigram-unigram pair is semantically related or not [65]. For

3 https://dumps.wikimedia.org/enwiki/latest/
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example, the bigram newborn infant is semantically related to the unigram neonate. So,

the gold answer for this pair is (newborn infant, neonate, 1), where the label 1 indicates

their relatedness. On the other hand, the bigram stable condition is not related to the

unigram interview, so in the gold answer the entry is (stable condition, interview, 0). The

officially released data contains 7,814 test samples and 11,722 training samples.4 Since

some of the bigrams/unigrams are not contained in the Wikipedia training corpus, only

15,973 samples contained in Wikipedia are used for evaluation. Since SemEval 2013 Task

5 is a binary classification problem, cosine similarity between learned bigram embedding

and the unigram embedding is used as the feature. SVM is used to learn the threshold for

the classification based on 5-fold cross-validation. Accuracy, precision, recall and F-score

are used in the evaluation metrics.

The second task is called Phrase Similarity, denoted as PS. This task provides a

phrase pair similarity dataset with 324 samples5 constructed using manually rated scores

from 1 to 7 with 7 being the most similar [97]. For example, the phrase pair (hot weather,

cold air) has a similarity score 2.22. The dataset contains three types of phrases: adjective-

nouns, noun-nouns, and verb-objects with 108 samples for each type. All 324 samples

are used in evaluation. Cosine similarity is used to compare different phrase vectors and

Spearman’s ρ correlation coefficient is used to evaluate the performance.

The third task is called Turney-5, denoted as T-5. The dataset in this task is a 7-

choice Noun-Modifier Question dataset built from WordNet [159] with 2,180 question

groups. For example, in the sample (small letter, lowercase, small, letter, little, missive,

ploughman, debt), the first bigram small leter is the question and the latter 7 unigrams

are the candidate answers. The task is to select the most similar unigram as the answer,

which should be lowercase in this sample. To remove the bias towards component words

by following Yu’s suggestion [185], the two component words are removed to construct a

4 https://www.cs.york.ac.uk/semeval-2013/task5.html.
5 http://homepages.inf.ed.ac.uk/mlap/index.php?page=resources
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5 choice single word question to form the evaluation dataset. Again, by removing samples

that are not contained in the Wikipedia training corpus, the final evaluation data contains

669 questions. Cosine similarity is used to measure the semantic closeness of a bigram

phrase and the unigrams. The one with the highest similarity score is chosen as the answer.

Accuracy is used as the evaluation metric.

The fourth task predicts the sentiment of phrases, the same task conducted as in Section

5.1. The used corpus are the phrases extracted from the Stanford Sentiment Treebank

(SST) with each phrase annotated with a sentiment score from 0 to 1. The overlapping set

of the phrases in SST and the phrases in phrase embedding is 772. The target is to predict

the sentiment score of the 772 phrases, which is a regression problem. This corpus is

denoted as SST. The evaluation metrics include Root Mean Square Error (RMSE), Mean

Absolute Error (MAE) and the Kendall rank correlation coefficient (τ ). For RMSE and

MAE, the smaller of the value is, the better of the performance is, vice versa for τ . Similar

to Chapter 4, the Ridge Regression model is used to predict the sentiment score of the

phrases from the phrase embedding.

Baselines and Experiment Settings

The D&C model is compared to the following baselines:

1. SGNS: the original vector representation model to take a phrase as a non-divisible

unit [94, 181];

2. SEING: a modified SGNS model by treating component words as morphemes of the

phrase with a constraint that the phrase vector should be similar to both the vectors

of its the component words regardless of the compositionality of the phrase [147];

3. Comp-Add: a simple addition compositional model to use the sum of the vectors of

the component words as the phrase’s vector.
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4. Comp-Mul: a simple multiplication compositional model to use the multiplication

of the two component vectors to obtain the phrase’s vector.

5. Comp-W1: a compositional model to use the vector of the first component word

directly as the vector of a phrase.

6. Comp-W2: a compositional model to use the vector of the second component word

directly as the vector of a phrase.

The proposed D&C model has three settings for compositionality tm. The first one di-

rectly sets tm as a constant, tm “ 1, denoted as D&C-C. This means the compositionality

of all phrases is set fixed as an identical and fixed number. The second one uses automat-

ically computed tm by model C1, denoted as D&C-C1. The third one uses automatically

obtained tm by model C2, denoted as D&C-C2. Both D&C-C1 and D&C-C2 estimate

compositionality for each phrase individually.

The size of the context window for all the models is set to 5, negative samples size is

5, and the vector dimension is 300. λ is empirically set to 8. For the compositional model,

we empirically evaluate several kinds of combinations such as the addition model with α

and β as 1, or the multiplication model. Experiments show that the addition compositional

model achieves the best, so only the results using the addition model are reported here. To

obtain the compositionality tm, firstly the representation of phrases is learned using SGNS

and its compositionality is computed based on C1 and C2, respectively.

The evaluation result on the four datasets under different evaluation metrics is shown

in Table 5.3. In this table, the first two models are distributional methods, the middle

four models are compositional methods and the last three models are three variants of

the proposed model. The percentage after each dataset name is the proportion of non-

compositional phrases in that dataset. The percentage is obtained by randomly sample

30 phrases in each data set and then manually verify their compositionality. We can see
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Model SemEval (2.5%) PS (2.5%) T-5 (10%) SST (30%)
Acc Pre Rec F ρ Acc rmse mae τ

SGNS .629 .728 .412 .526 .155 .535 .094 .063 .218
SEING .586 .562 .773 .651 .056 .576 .089 .061 .269

Comp-Add .795 .826 .748 .785 .622 .603 .090 .066 .283
Comp-Mul .506 .506 .483 .494 410 .227 .098 .063 .219
Comp-W1 .737 .771 .672 .718 .450 .499 .092 .065 .211
Comp-W2 .759 .796 .697 .743 .500 .463 .100 .071 .113

D&C-C .779 .808 .731 .767 .595 .683 .089 .061 .301
D&C-C1 .764 .794 .711 .750 .580 .681 .087 .060 .310
D&C-C2 .776 .841 .681 .753 .623 .677 .088 .061 .293

Table 5.3: Performance of different phrase representation learning models. The top two
performers are in bold and the best performer is also underlined.

that different datasets do have different proportions of non-compositional phrases and this

should have effects to the performance of different methods.

General Analysis

Comparison between distributional methods and compositional methods shows that com-

positional methods achieve much better result than distributional methods. For example,

on SemEval, Comp-Add achieves a relative improvement of 49.2% under F-score com-

pared to SGNS. In other words, the semantics of phrase expressions are not fully recog-

nized by using only external context. Treating phrases as a non-divisible units obviously

loses some semantic information carried by the component words. This also indicates that

in a real application, compositional models are a better choice compared to a distributional

approach for phrase embedding learning. Comparing between distributional models, SE-

ING performs better than SGNS on SemEval, T-5 and SST. But, SEING performs worse

than SGNS on PS. Further analysis of SEING on PS indicates that the cosine similarities

of many phrase pairs in PS are negative. Among the four baseline compositional methods,

Comp-Add performs much better than other compositional methods. Comp-Mul performs

the worst. This means that element-wise multiplication can introduce more noise than
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information. Comp-W1 and Comp-W2 have similar performance with Comp-W2 per-

forming slightly better on SemEval and PS and Comp-W1 performing better on T-5 and

SST. Among all the models, Comp-Add performs the best on the SemEval dataset while

our proposed model D&C performs the best on PS, T-5 and SST. Specifically, on T-5, the

best performer D&C achieves a relative improvement of 13.3% over Comp-Add. This in-

dicates the effectiveness of our proposed model. Among the three variants of D&C, no one

is overall best. D&C-C performs the best on SemEval and T-5, while D&C-C2 performs

the best on PS. D&C-C1 performs the best on SST under rmse, mae and τ . Overall, our

proposed model achieves the most robust result since D&C is always the top two performer

on all datasets and in fact top performer in three out of four datasets.

Further analysis indicates that the performances of different models are dataset depen-

dent, especially dependent on the proportion of non-compositional phrases. As shown in

Table 5.3, the proportions of non-compositional phrases are 2.5%, 2.5%, 10%, and 30%

in SemEval, PS, T-5 and SST, respectively. Because compositional models are more suit-

able for compositional phrases, Comp-Add performs much better than SGNS on SemEval.

However, the gap decreases on T-5 between SGNS and Comp-Add as the proportion of

non-compositional phrases increases. Performance of Comp-Add indicates that the com-

bined use of the vectors of two component words is more comprehensive than using ex-

ternal contexts for compositional phrases. On T-5 and SST datasets, the proportions of the

non-compositional phrases are larger than in the other two sets. So, there are more phrases

which would not work using compositional methods. That is why the performance of

SGNS increases and D&C outperforms Comp-Add.

Compositionality Analysis

To further explore the effects of compositionality on different methods, the proportion of

non-compositional phrases are further analyzed based on the SemEval semantic relation

task. 20 non-compositional phrases are manually selected from Farahmand’s list which
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has 1,042 phrases manually annotated with compositionality values [34]. Each phrase

is annotated by four annotators with 1 indicating non-compositional and 0 as composi-

tional. Based on the 20 phrases, 20 positive (semantically related) bigram-unigram pairs

and 20 negative (not semantically related) bigram-unigram pairs are constructed to form

a balanced non-compositional sample set for the SemEval task, denoted as N-Sem. 60

samples from the original SemEval dataset are also taken to form a compositional sam-

ple set, denoted as C-Sem. In the evaluation, the non-compositional phrases from N-Sem

are added to C-Sem to increase the proportion of non-compositional phrases until all the

non-compositional phrases are used up (total of 100 samples). Then the compositional

portion is reduced so that the non-compositional proportion reaches about 70% of the to-

tal set (57 samples). The two distributional models, SGNS and SEING, are selected for

evaluation. Since Comp-Add performs much better than the other three compositional

models, only Comp-Add is included for comparison. For comparison, I introduce another

variant of D&C, D&C-M, which uses manually annotated compositionality as tm, which

is obtained as follows. I first obtain the sum the four annotation values as a and convert a

by tm “ p4 ´ aq{4 to obtain tm as the gold compositionality value. tm is in the range of

[0,1] and is consistent with our definition of compositionality (namely 1 indicates compo-

sitional, 0 indicates non-compositional). F-score is used as the evaluation metric. Because

of the limited data size, each model is run 10 times and the average is used.

The result is shown in Figure 5.4. This figure shows that when the proportion of non-

compositional phrases is small, Comp-Add performs much better than SGNS, consistent

with the result in Table 5.3. As the non-compositional portion increases, the performance

of Comp-Add degrades gradually whereas in contrast, the performance of SGNS increases

gradually. This indicates that external context is indeed useful for non-compositional

phrases and the compositional model is ill-suited for non-compositional phrases. The

performance of SEING indicates that the constraint to force a phrase’s vector to be sim-

ilar to both of its components can actually bring adverse effect for non-compositional
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Figure 5.4: Performance of increasing the proportion of non-compositional phrases.

phrases. Over the whole spectrum, D&C gives a much more stable performance and is

the overall top performer in all the automatic methods. D&C-M, which uses manually an-

notated compositionality, gives the best performance. The better performance of D&C-M

over D&C-C1 and S&C-C2 indicates that there is still room for improvement on com-

positionality estimation. To validate this, a selected group of phrases are evaluated from

Farahmand’s list [34]. The overlapping of the phrase list with our phrase list is 408. The

408 phrases is used to evaluate the performance of the two compositionality prediction

models. The estimated compositionality values by model D&C-C1 and D&C-C2 are com-

pared with the gold compositionality by calculating Spearman’s ρ correlation between the

gold compositionality and the estimated compositionality. The result shows that ρ only

achieves 0.227 and 0.200 for compositionality prediction model C1 and C2 respectively,

which means the current method for compositionality estimation still has much room for

improvement.
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Hyper-parameter Analysis

To investigate the effects of the hyper-parameter λ, Figure 5.5 shows the effects of the

weight λ on different tasks, which indicates that D&C-C achieves the best performance

when λ equals 8.
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Figure 5.5: Performance of D&C-C with different λ values.

Case Study

To examine the performance of each model more closely, we select four phrases, (swim-

ming pool, game plan, melting post, rat run) to extract the top 5 most similar words by

different models. The phrases are selected based on their occurrence frequencies and the

compositionality values. According to [124], their compositionality values are in the two

ends of spectrum from 0 to 5 with 0 indicating the most non-compositional and 5 indi-

cating the most compositional. The statistics of the four phrases are shown in Table 5.4.

Frequency is their occurrence frequency in the Wikipedia corpus and Compositionality
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is the annotated value by [124]. As shown in Table 5.4, the first phrase, swimming pool is

highly compositional with high frequency of occurrence. The second phrase, game plan,

is highly compositional but low in frequency. The third phrase, melting pot, is low in

compositionality yet high in frequency. The last phrase, rat run, is low both in composi-

tionality and in frequency. Top 5 most similar words/phrases are listed based on the cosine

similarity between the phrase embedding and the word/phrase embedding. The result of

selected words/phrases based on different models is shown in Table 5.5. Overall, Comp-

Mul gives the most unreasonable results. Comp-W1 and Comp-W2 give results similar to

the first component word and the second component word, respectively. So they are put

aside in the following discussion.

swimming pool game plan melting pot rat run

Frequency 17794 116 6119 4
Compositionality 4.87 3.83 0.54 0.79

Table 5.4: Statistics of the selected example phrases.

For the phrase swimming pool, which has the high compositionality and high fre-

quency, all the models give reasonable results that are semantically similar to swimming

pool. For the phrase game plan, which is high in compositionality and low in frequency,

the results from SGNS are not reasonable. For example, all the result phrases fool up, run

book, make book luck out, and times sign are not closely related to game plan. This is

obviously consistent with our claim that SGNS cannot perform well when the occurrence

frequency is low. SEING gives reasonable results because it constrains a phrase to be

semantically related to its component words. Comp-Add also gives semantically related

words/phrases although most of the them are related to the word game. The three variants

of the proposed D&C model all give similar results including the most reasonable phrase

game plans. For the phrase melting pot, which is low in compositionality and high in fre-

quency, SGNS gives reasonable results, which are all related to politics. On the contrary,
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both SEING and Comp-Add give unreasonable results as they are related to either the

component word pot or melting but not related to melting pot. Again, the three variants of

our proposed D&C model give reasonable results as they are all related to melting pot. For

the phrase rat run, which is low in compositionality and low in frequency, results given

by all the models are not quite suitable. This is because all the distributional models fail

under low frequency. On the other hand, all the compositional models fail because the

phrase is non-compositional. However, our proposed models still gives one semantically

related phrase rat running.

In conclusion, this case study validates that distributional models will fail when the

occurrence frequency of a phrase is low and compositional models will fail when a phrase

is non-compositional. Our proposed model gives the most robust answers. However,

none of the models perform well when a phrase is non-compositional with low occurrence

frequency.

Obviously, a distributional model performs better than a compositional model when

the proportion of non-compositional phrases is large and a compositional model performs

better when the proportion of non-compositional phrases is small. However, in practice,

we do not have prior knowledge on the proportion of non-compositional phrases. This is

why our proposed method has its advantage over both models individually as our method

learns compositionality for individual phrases. Consequently, D&C is less sensitive to

datasets, especially the proportion of non-compositional phrases. This is the reason that

D&C has an overall better performance and more robust no matter what proportion of non-

compositional phrases an application has. In addition, the fact that D&C-M gives better

performance than D&C-C1 and D&C-C2 indicates that manually annotated composition-

ality is more reliable than predicted compositionality. This highlights the need for a more

accurate compositionality estimation method.

Models swimming pool game plan melting pot rat run
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SGNS

swimming
pools, squash
courts, tennis
courts,
climbing wall,
basketball
courts

fool up, run
book, make
book, luck out,
times sign

diasporic,
middle
eastern,
mestizaje,
caribbeans,
ethnicities

holds true,
faster
computers,
improve un-
derstanding,
fuzzy set,
molecular
entity

SEING

swimming
pools, pool
hall, pool
halls, tennis
courts,
wading pool

strategy game,
arcade game,
saved game,
strategy
games, game
board

cooking pot,
pot luck, pot
roast, coffee
pot, pot shots

hog line,
hoosier state,
blade roast, w
byrd, running
dog

Comp-Add

swimming,
swimming
pool, squash
courts, pools,
swimming
pools

game, the
game, plans, a
game, strategy
game

pot, melt,
cooking pot,
saucepan,
boiling

rat, brown rat,
roof rat, black
rat, giant
kangaroo

Comp-Mul

weberian,
individuation,
apparatuses,
cope,
internalization

negatives,
barb, stag,
andersons,
smallville

pot, cooking
pot, talgai,
pocket knife,
pinfold

controversially,
sion,
furthered,
controversy,
tahiti

Comp-W1

swimming
pool, aquatics,
swim,
synchronized
swimming,
squash courts

the game,
games, card
game, video
game, wiiware

melt, melts,
melted,
melting point,
eutectic

rats, rodent,
rattus, mole
rat, muridae

Comp-W2

pools,
swimming
pool, squash
courts,
wading pool,
swimming
pools

plans,
planning,
master plan,
planned,
proposal

pots, cooking
pot, saucepan,
pourri, ladle

running, runs,
ran, run in,
run on

D&C-C

swimming
pools, tennis
courts, squash
courts,
basketball
courts, fitness
center

game plans, a
game, saved
game, end
game, waiting
game

diasporic,
mestizaje,
caribbeans,
middle
eastern, folk
culture

rat running,
rat through,
rat on, rat
trap, young
rat

D&C-C1

swimming
pools, squash
courts, tennis
courts,
basketball
courts, fitness
center

game plans,
end game,
waiting game,
saved game,
game board

diasporic,
mestizaje,
caribbeans,
diasporas, folk
culture

rat running,
rat through,
rat on, rat
race, rat trap
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D&C-C2

swimming
pools, tennis
courts, squash
courts,
basketball
courts, indoor
pool

game plans,
the game, a
game, strategy
game, board
game

diasporic,
mestizaje,
caribbeans,
ethnicities,
diasporas

rat running,
rat through,
rat on, rat, rat
trap

Table 5.5: The top 5 similar words of four kinds of phrases.

5.3 Chapter Summary

In this chapter, two pieces of work are conducted for phrase level emotion analysis. The

first work investigate the performance of combinations of different word representations

and composition models. The experiment result shows that multi-dimensional affective

lexicons do not have advantages over automatic word embedding. The second work is

based on phrase embedding learning to infer the emotional information. A hybrid model,

D&C, is proposed to learn the embedding representation of phrases from their external

context and component words with the compositionality constraint. This model can make

use of both the external context and component words of phrases. Instead of a simple

combination of the two kinds of information, compositionality measures from lexical se-

mantics are used to serve as a constraint. Evaluations on four phrase semantic analysis

tasks show that the proposed model performs better than both compositional methods and

distributional method regardless of the proportion of non-compositional phrases in the

dataset. As compositionality measure is introduced, the proposed hybrid model is the

most robust on both compositional and non-compositional phrases, which also indicates

that incorporating more semantic information brings benefits for representation learning.

The D&C model performs much better than the baselines on the phrase sentiment score

prediction task. Even though the model gives a theoretically sound solution, the composi-

tionality estimation method still has room for improvement. In the future, more study on

appropriate compositionality estimation model can be investigated.
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Chapter 6

Event Role Level Emotion Analysis

So far, three pieces of research works are presented on different aspects of emotion anal-

ysis, namely emotion corpus construction, emotion lexicon construction, and phrase level

emotion analysis. In this chapter, a more fine-grained EA task is proposed. Due to limited

resources, studies on EA mainly focus on recognizing emotions expressed in a whole piece

of text [105, 20]. Sometimes, the emotion expressed by an author is not necessarily linked

to either the emotion of the subject or the object in the text. However, for human machine

interaction, a machine needs to know the emotion state of a particular agent or a patient in

a descriptive text about an event. For example , the text “The mother hit the boy” describes

an event. Obviously, the emotion state of the agent “mother” expressed in the sentence

“The mother hit the boy” is different from the emotion state of the agent “mother” in the

sentence “The mother touched the baby”. Furthermore, the emotion states of the patient

“boy” should also be different under the two events.

This chapter studies more fine-grained emotion analysis of agent, patient, and act in an

event context. The term event role is used as a general term to refer to either an agent, a

patient or an act in an event. Grammatically speaking, an agent and a patient in a sentence

are likely to be noun phrases serving as the subject and object, respectively. The act itself

is likely to be the verb of the sentence.

The research work called the Affect Control Theory (ACT) [53] and related extensions
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[56] do provide a good social psychological basis. Since ACT also uses the three dimen-

sional EPA model to represent every concept (or word), ACT is computational suited to

handle emotion analysis of event roles. In ACT, every concept is represented by the multi-

dimensional EPA model and every concept has a fundamental EPA representation in a

specific language or culture environment. According to ACT, the EPA representation of

a concept that people normally perceives without any context can change under different

events. The same word “mother” in the previous two examples can give people different

affective feelings when used in the two different contexts. Furthermore, ACT suggests

that the current EPA values under a particular event, can be inferred through a regression

model based on the fundamental EPA representation of a concept. One fatal drawback of

ACT is that the EPA model is conceptually very difficult to understand. When all three

dimensions are used to represent emotions, it is very difficult to obtain an annotated EPA

lexicon with reasonable size. In other words, manual annotation is not scalable. Further-

more, using regression models cannot capture the complex semantic interaction of all the

event roles involved in a particular event.

In this chapter, the Long Short-Term Memory (LSTM) network is proposed to infer

the emotion of an event role in its context. The lexicon knowledge is based on automati-

cally obtained word embeddings through unsupervised learning rather than using manually

constructed EPA lexicon.

6.1 Affect Control Theory

ACT is a social psychological theory of human social interaction. ACT offers a rigorous

methodology for modeling emotions in social interactions, namely events. The models

can be applied to human-computer interaction leading to the design of “socially intelli-

gent” systems that optimize user experience and outcomes [53]. In ACT, every concept

is annotated under three-dimensional evaluation-potency-activity (EPA) model with the
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range of [-4.3,4.3], which has been introduced for lexicon construction in Chapter 4.

Since the annotation is based on concept level words, the same word under differ-

ent social environment may have different affective measures. For example, the concept

“dragon” represents something good, powerful in Chinese while it represents something

evil and powerful in English. Thus their corresponding EPA values may be different. ACT

is also used in sociology to study the culture differences and EPA lexicons from different

languages and culture environments are annotated separately and have proven to be indeed

different. In general, within-cultural agreement about EPA meanings of social concepts is

high even with consideration of across subgroups of society, and cultural-average EPA

ratings from as little as a few dozen survey participants have been shown to be extremely

stable over extended periods of time [54]. This means that under the same language/culture

environment, the same EPA based lexicon can be used.

In ACT, every event has at least three event roles: subject (S), act or behavior (verb,

V), and object (O). Each role is represented by an EPA vector. For example, “mother” is

represented as p2.9, 1.6, 0.5q, “enemy” is represented as p´2.1, 0.8, 0.2q under a common

culture environment, which is called the fundamental impression. Fundamental impres-

sions are those values given in an EPA lexicon. Let us use C to denote the context of an

event, and the roles of the event S, V , and O are used to denote the subject, the act (which

is a transitive verb to indicate the action) and object. Thus, the fundamental impression of

an event can be represented as a nine-dimensional vector:

~fc “ rSe, Sp, Sa, Ve, Vp, Va, Oe, Op, Oas, (6.1)

where the subscripts e, p, and a correspond to the fundamental E, P, A values, respectively.

An event can cause the emotion of a role to change from its fundamental impression to a

transient impression, namely the context specific emotion state in an event. For example,

in the event of “The mother hit the boy”, most readers would agree that the mother appears

less nice (E), more powerful (P) and more active (A), which is the transient impression of
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the subject “mother” in this event. An event can cause a transient impression, denoted by

~τ , based on the fundamental impressions of the subject, the act, and the object in the event.

The transient impression of an event C can then be expressed as:

~τc “ rS
1
e, S

1
p, S

1
a, V

1
e , V

1
p , V

1
a, O

1
e, O

1
p, O

1
as, (6.2)

where each element is the transient impression of the corresponding subject, act and object.

In ACT, a feature set ~tc is constructed from the fundamental impression of the event as:

~tc “ r1, Se, Sp, Sa, Ve, Vp, Va, Oe, Op, Oa, SeVe,

SeVp, SeVa, SpVe, SpVp, SpOa, SaVa, VeOe,

VeOp, VpOe, VpOp, VpOa, VaOe, VaOp,

SeVeOe, SeVpOp, SpVpOp, SpVpOa, SaVaOas.

(6.3)

Then the ACT model obtains the transient impression ~τc of C from the fundamental im-

pressions of event roles by a mapping function defined by

~τc “M~tc, (6.4)

where M is a parameter matrix. This is actually a linear regression model where the

features of the transient impression are constructed from the fundamental impressions ~fc.

Annotation under different languages and cultures can lead to different coefficients M .

For example, the transient impression of the subject’s evaluation using the US male (based

on the data annotated by US males) coefficients:

S 1e “ `.98` .48Se ´ .015Sp ´ .015Sa ` .425Ve

´.069Vp ´ .106Va ` .055Oe ` ¨ ¨ ¨

(6.5)

The learned weights can be interpreted as how much it is affected by the correspond-

ing dimensions. The above equation shows that the transient evaluation of the subject is
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mainly affected by the fundamental evaluation dimension of the subject and the evaluation

dimension of the act, reflected by the positive large coefficients .48 and .425 for Se and Ve.

Even though such kind of tasks have been widely researched in sociology, they do not

attract much attention from the natural language processing community. This task can be

paraphrased as: predicting the emotions of different roles in an event.

As discussed earlier, ACT is hard to scale. Even if dimensional lexicons can be ex-

tended by the proposed RoWE method in Chapter 4, dimensional affective lexicons do

not show any advantage over the automatically obtained word embedding under different

compositional models for phrase sentiment analysis according to the conclusion in Chap-

ter 5. Inspired by this conclusion, a new framework is proposed to use word embedding

and LSTM as the prediction model for emotion analysis of different event roles.

6.2 LSTM Based Emotion Analysis for Event Roles

Since ACT only performs prediction on events which are in the form of subject-act/behavior-

object (SVO). The text used for this work are assumed to fit this pattern. Given a word

sequence consists of three parts for an event C in the form of SVO, the objective is to

predict the emotion of the subject, the act and the object in this event. The emotion can

either be sentiment, an emotion category or multi-dimensional emotional representations

such as VAD and EPA.

Inspired by the result in Chapter 5, the LSTM network is proposed for emotion predic-

tion of different event roles using word embedding as word representations. The proposed

framework is shown in Figure 6.1 using the example sentence “mother hit boy”. The

LSTM framework consists of three layers: the input word representation layer, the hidden

LSTM layer and the output emotion layer. The input is word vector representations ~xt

(t P r1, 2, 3s), which can either be word embedding or a multi-dimensional word affective

vector. Each LSTM cell takes the current word representation ~xt and the previous output
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~ht´1 of the LSTM cell as the input and outputs a hidden representation ~ht. The final pre-

diction is performed on the last hidden representation (which is ~h3 in this case) based on

the output type y. Similar to ACT, the output type y is in EPA format in this study, so the

output layer beyond LSTM layer is a regression model.

... ......

hit boymother

LSTM

cell

LSTM

cell

LSTM

cell

x1

h1 h2

x2

h3

x3

y

Figure 6.1: The LSTM model for emotion prediction of event roles.

For each emotion dimension (E, P, A) of each role in an event, one LSTM model is

trained. The hidden dimension size is set to 4 empirically. The stochastic gradient descent

method is used to train the model and the code is implemented based on Keras1.

6.3 Experiments and Analysis

Evaluation of the proposed method is conducted using the ACT corpus from [53] as the

gold answer. In this corpus, every sample consists of three words which describe an event

in the form of SVO, such as ”vampire enslave heroine”. The total size of the corpus is

515 sentences in SVO form with a vocabulary size of 106. Every word under an event

is annotated with the EPA values as ~τ , the transient impressions. The annotation was

conducted by about 25 females and 25 males of Americans using the semantic differential

1 https://keras.io
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scheme. The average of the annotations from both male and female annotators is used as

the final representation. The fundamental EPA values of the 106 words are also provided

by [53]. This can be used to train models such as Formula 6.4. Table 6.1 shows some

examples of ACT corpus and annotated EPA values of SVO.

Table 6.1: Example samples of ACT corpus.

Sample Subject Act Object
E P A E P A E P A

vampire enslave heroine -2.31 2.0 0.73 -2.57 2.33 0.77 0.92 -1.3 1.03
daughter love baby 2.19 1.0 1.25 2.34 1.96 0.96 2.17 -1.66 2.25
daughter oppress son -1.41 0.66 1.56 -1.42 1.16 1.45 0.48 -1.17 0.85

For word embedding, the experiment uses the available Glove 840B word embedding

which is trained on a corpus of 840 billion tokens based on matrix factorization [119]. The

embedding dimension is 300, denoted as EMB. Note that only 99 out of the 106 words

in the ACT corpus appear in Glove 840B collection. To focus on the effectiveness of

representation and eliminate the effect of coverage problem, only the overlap vocabulary

set of the embedding and the ACT corpus is used. So, the final evaluation corpus size is

actually 408 event sentences.

The performance of the predicted transient impressions of the subjects, act and object

is evaluated against the gold answer set. 5-fold cross validation is performed and the best

parameters obtained through manually tuning are used. The evaluation metric is the Mean

Absolute Error (MAE).

The proposed method, denoted as EMB-LSTM, is compared with the following five

baseline methods:

1. VAD-LR: This is a linear regression based method using the VAD emotion model.

The features include the concatenation of the VAD values of S, V, and O. The VAD

lexicon is from [167] which includes about 13K words annotated in the three dimen-

sions of VAD. This lexicon has been introduced in Chapter 4.
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2. VAD-LSTM: This is LSTM based method using the VAD lexicon as word represen-

tation. The VAD data is the same as that of VAD-LR.

3. EPA-LR: This is a linear regression based method using the EPA affective model

as word representation. The EPA lexicon is provided by [53]. The features use the

concatenation of the EPA values of S, V, and O.

4. EPA-LSTM: This is an LSTM based method using EPA as word representation.

5. ACT-LR: This is a linear regression based method. The input features are ~t defined

in Equation 6.3 constructed from the EPA values.

Feature VAD VAD EPA EPA ACT EMB
Model LR LSTM LR LSTM LR LSTM

Subject E .682(.059) 1.078(.039) .556(.051) .485(.045) .385(.030) .363(.036)
P .728(.031) .751(.031) .326(.011) .372(.011) .325(.020) .353(.015)
A .539(.023) .692(.032) .309(.006) .341(.029) .313(.010) .274(.009)

Act E .601(.093) 1.047(.229) .467(.048) .410(.044) .315(.033) .348(.035)
P .630(.053) .637(.063) .263(.014) .322(.027) .267(.014) .241(.024)
A .496(.041) .710(.055) .256(.009) .289(.011) .257(.009) .261(.041)

Object E .478(.030) .561(.139) .301(.033) .282(.029) .263(.036) .255(.035)
P .791(.062) .913(.043) .357(.027) .352(.037) .355(.027) .277(.032)
A .658(.015) .754(.038) .349(.020) .318(.019) .360(.023) .265(.039)

Table 6.2: Emotion prediction of event roles based on different word representations and
prediction models.

The evaluation result is shown in Table 6.2 with the best result shown in bold. The

numbers in parenthesis are standard deviations of MAE of five runs. Comparing between

the manual VAD and EPA representations, EPA performs much better than VAD under

both the linear regression model and the LSTM model. This is expected because the pre-

dicted emotion is represented by the EPA model in which the training data is more relevant.

This, however, may also be because the VAD lexicon data is obtained through crowdsourc-

ing, which has lower quality than the EPA lexicon. ACT features perform better than EPA
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features on the evaluation (E) dimension while they perform comparatively on potency (P)

and activity (A). The difference between ACT and EPA is only the additional features on

the interaction of the EPA values in ACT.

Overall, the proposed EMB-LSTM has the best performance in 6 rows out of 9 as

shown in bold in Table 6.1. ACT-LR using regression performs slightly better on three

rows. One is the P dimension of the subject and the other is the E and A dimension of

the act. Comparing between EPA-LSTM and EMB-LSTM, EMB-LSTM has much better

performance. This clearly indicates the advantage of using word embedding than using

a manually annotated lexicon. This analysis validates the effectiveness of the proposed

model of using both LSTM and word embedding. Most importantly, experimental result

indicates that automatically obtained word embedding outperforms manually annotated

EPA and VAD lexicon for EA, which is consistent with the conclusion of Chapter 5. It

should be pointed out that this experiment does not consider the coverage issue because of

the limited size of the ACT corpus. If coverage issue is considered, the advantage of word

embedding should be even more obvious.

6.3.1 Effects of Data Size

Machine learning methods normally require a certain amount of training data to learn suf-

ficient information, especially for the complex LSTM model. In the next experiment, the

effects of training data size to the performance of different models are further examined.

The experiment is performed on the same ACT corpus by varying the training data size

starting from 40 sentences to the whole dataset of 408 sentences and run 5-fold cross val-

idation for each affective dimension. Results in Figure 6.2 and Figure 6.3 show that as

the training data size increases, the performance of all the models improves. However, as

the data size increases, EMB-LSTM shows its better learning ability as its performance

continues to improve. Overall, when the sample number reaches about 285 to 300, EMB-

LSTM performs the best on most dimensions. Due to the limitation of dataset size, the
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Figure 6.2: The performance on different affective dimensions of subject and act when
varying the training data size.
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(b) P dimension of subject.
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(c) A dimension of subject.
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(d) E dimension of act.
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(e) P dimension of act.
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(f) A dimension of act.

performance on larger data size cannot be validated. However, the trend of performance in

this experiment clearly indicates that LSTM with word embedding performs the best and
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Figure 6.3: The performance on different affective dimensions of object when varying the
training data size.
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(b) P dimension of object.
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(c) A dimension of object.

more training data will likely to show even more advantages of EMB-LSTM. On the other

hand, the linear regression model using EPA has very steady performance when varying

the training data size. This also suggests that regression model can be useful if training

data size is small.

6.3.2 Case Study

Table 6.3 lists four example events with their fundamental EPA values and their transient

EPA values by different models. The column Event lists events in SVO form as a three

word event. Column M shows the three models where F means the fundamental EPA val-
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Table 6.3: Predicted transient EPA values of some example events.

Event M Subject Act Object
E P A E P A E P A

mother hit boy
F 1.66 1.41 -0.11 -0.8 1.2 0.9 1.06 0.29 2.13
L -0.01 0.16 1.13 -0.92 1.15 1.60 0.94 -0.84 1.40
B -0.08 1.22 0.37 -0.58 1.28 0.80 0.54 -0.52 1.53

mother touch boy
F 1.66 1.41 -0.11 1.72 0.93 0.55 1.06 0.29 2.13
L 1.33 0.06 0.94 0.47 0.70 0.74 1.29 -0.72 1.51
B 1.69 1.02 -0.01 1.35 0.85 0.38 1.12 0.09 1.68

teacher beat student
F 1.3 0.5 0.6 -1.17 0.78 1.39 1.49 0.18 1.87
L 0.54 0.45 0.77 -1.36 1.11 1.04 0.76 -0.14 0.76
B -0.58 0.62 1.06 -1.03 0.83 1.33 0.66 -0.53 1.41

teacher teach student
F 1.3 0.5 0.6 1.6 1.1 0.9 1.49 0.18 1.87
L 1.14 0.58 0.56 0.24 0.90 1.07 1.02 -0.65 0.79
B 1.41 0.61 0.70 1.18 0.82 0.88 1.30 0.05 1.58
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Figure 6.4: The illustration of the example SVO event mother hit boy.

ues, namely EPA values without context. L indicates the values predicted by the proposed

EMB-LSTM model. B indicates the values predicted by the baseline ACT model. The
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Figure 6.5: The illustration of the example SVO event mother touch boy.

corresponding values for the four examples are also shown from Figure 6.4 to Figure 6.7,

respectively, for better illustration. In Figure 6.4 to Figure 6.7, the red bar shows the fun-

damental EPA values. The blue bar shows the values predicted by the EMP-LSTM model

and the green bar shows the values predicted by the ACT model. Take the event mother hit

boy shown in Figure 6.4 as an example, the E value of mother is almost reduced to zero

by EMB-LSTM. This indicates that mother becomes less nice under the event mother hit

boy. Note that the P dimension of boy also becomes quite negative in the event predicted

by EMB-LSTM. This is quite reasonable because boy becomes powerless in this event.

The proposed model can correctly predict the transient EPA values of different event roles

under a specific event.

However, EMB-LSTM may not always give reasonable predictions. For example, in

Figure 6.7 for the event teacher teach boy, the E value of teach predicted by EMB-LSTM
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Figure 6.6: The illustration of the example SVO event teacher beat student.

is smaller than the fundamental E value, which contradicts common sense. In such an

event, the evaluation of teach should be nicer. This may be the result of under-training by

the LSTM model and the availability of more training data may give more insight to this

result in the future.

6.4 Chapter Summary

In this chapter, a novel emotion analysis task is proposed to predict the emotions of differ-

ent event roles, including subject, act and object involved in a described event, which is in-

spired by the research in sociology. The emotions are represented using three-dimensional

EPA model instead of using discrete sentiment or emotion labels. The main idea of the pro-

posed approach is to use automatically obtained word embedding as word representation

and to use the Long Short-Term Memory network as the prediction model. Performance
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Figure 6.7: The illustration of the example SVO event teacher teach student.

evaluation is conducted using an event corpus with each subject, act and object anno-

tated with EPA values under event context. Compared to the linear model used in ACT

which uses a manually annotated EPA lexicon, the proposed LSTM with word embedding

outperforms the linear model on most affective dimensions. Most importantly, the result

indicates that automatically obtained word embedding outperforms manually constructed

affective lexicons. In fact, the experiments indicate that a seemingly sound model in the-

ory, may not work well computationally. One limitation of this study is the limited corpus

size and one future direction can be on how to build such kind of corpus in large scale.

Another limitation of current work is that the proposed model can only handle structured

sequence with the form of subject-act-object. Additional information in sentences such

as time, place and other descriptive features are not being used. Extending the proposed

model to more complex event descriptions will be a future direction.
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Chapter 7

Conclusions and Future Work

Emotion analysis is a very important research area in artificial intelligence to enhance com-

puter systems, as well as autonomous agents and robots to recognize and express emotions

like human beings. One of the key elements in this area of research is the understanding

of emotions expressed in text. This thesis studies emotion analysis from text. The focus

is on how to use emotion models defined in dimensional space for emotion prediction

at different levels of text units. This chapter reserves to conclude this thesis. The main

contributions of this thesis will be summarized first, followed by limitations and future

work.

7.1 Contributions

This thesis covers a comprehensive range of studies on emotion analysis from emotion

corpus construction, emotion lexicon construction to emotion analysis model. The main

conclusions and contributions are summarized as follows:

1. Emotion corpus construction.

A general framework is proposed to automatically or semi-automatically filter out

noisy data in a naturally annotated corpus. This framework enhances the current

distant supervision based corpus acquisition method by introducing two additional

steps to automatically identify high-quality data, followed by an optional manual
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step to obtain more data further. Based on this proposed framework, a high-quality

emotion corpus of size 43,300 for Chinese social network data of microblogs are

made available for public access. This framework can also be used to build other

corpora that are based on distant supervision method.

2. Dimensional emotion lexicon construction.

This work proposes an effective method to build dimensional emotion lexicons in

large scale. The proposed method uses a regression model to infer the affective

meanings of words from word embeddings learned in the general domain. This

method achieves the state-of-the-art result on inferring different affective mean-

ings under different emotion models, including the sentiment, Valence-Arousal-

Dominance (VAD), Evaluation-Potency-Activity (EPA), Evaluation-Activation-Imagery

(EAI). The method is not only proven to be effective in prediction of affective mean-

ings but also effective in other meaning dimensions. In addition, this method also

has computation advantage over the other baseline methods. As a result of this work,

several extended multi-dimensional emotion lexicons with size of million scale are

made available publicly. In addition, experiments on different word embeddings

show that incorporating multiple semantic evidence, such as knowledge base, can

lead to better word embedding and better predictions of affective meanings.

3. Phrase level emotion analysis. This part consists of two pieces of work. The first

work explores effective word representations to be applied to compositional mod-

els to obtain affective representation of phrases. Results indicate that domain spe-

cific dimensional emotion representations do not have an advantage over represen-

tations using word embeddings although domain specific affective representations

are based on sound psychological foundations. This indicates that automatically ob-

tained word embeddings which encode more semantic information, are more suit-

able for compositional models to obtain the representation of phrases. Affective
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meanings of words alone cannot capture all semantic information during the com-

position process to infer the affective meanings of larger text units. As we know,

compositional methods can fail when a phrase is non-compositional. Thus, in the

second work, I attempt to directly learn embedding representations of phrases. A

new phrase embedding learning model is proposed by taking into consideration of

both the distributional hypothesis and the principle of compositionality. The pro-

posed hybrid model combines the distributional component, which takes care of the

external context, with the context of the component words with a compositionality

constraint. Evaluation on four phrase semantic tasks shows that the proposed model

is more robust than both the compositional methods and the distributional methods.

The directly learned phrase embedding performs much better than the baselines on

a phrase sentiment prediction task.

4. Fine-grained emotion analysis for event roles.

A novel emotion analysis task is proposed to predict the emotions at fine-grained

level. Rather than focusing on emotions expressed by a whole piece of text, this

task aims to predict the emotions of the subject and object involved in an event

in the form of subject-verb-object. Thus, we refer to it as emotion analysis at the

event role level. The main idea is to use automatically obtained word embedding as

word representation and use the LSTM as the prediction model. Most importantly,

separate LSTM networks are built for different event roles and different affective

meanings. Compared to the linear model used in Affect Control Theory (ACT)

from sociology which uses a manually annotated EPA lexicon, the proposed LSTM

with word embedding outperforms the linear model on most affective dimensions.

This novel task focuses on fine-grained event role level emotion prediction, which

has many potential applications. For instance, in an emotion-aware dialog system,

this work can help to produce responses based on the emotions of the event roles
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involved in the conversation.

7.2 Limitations and Future Work

Some limitations of this thesis are summarized here. Firstly, in emotion corpus construc-

tion, the proposed framework does not use samples that have no naturally annotated emo-

tion labels such as hashtags to indicate its affective meaning. Also, the lack of affect-linked

hashtags does not imply the sample is neutral. Thus, even though the obtained emotion

corpus is much larger than other resources available, the corpus does not contain neutral

samples. Secondly, for multi-dimensional affective lexicons construction, the current work

cannot distinguish the words that have multiple senses. This results from the fact that word

embedding cannot distinguish different word senses effectively. The scope of this thesis is

under the assumption that each lexical word is associated with one emotion label (or one

set of values in a multi-dimensional space. However, some words may be associated with

mixed emotion labels. For example, ”tragicomedy”, can be associated with both sadness

emotion or happiness emotion. The same is true in Chinese, such as the Chinese word

”悲喜交加(mixed feelings of grief and joy)”, which have emotions of sadness and happi-

ness. This cannot be directly predicted from a single word embedding. Thirdly, for phrase

embedding learning, the proposed method requires pre-computed compositionality of the

phrases and the performance relies on the accuracy of the compositionality measures of

the phrases. The current method for calculating compositionality is not quite accurate,

and thus the performance of the proposed D&C method still has room for improvement.

Fourthly, for fine-grained emotion analysis of event roles, the gold answer has only 480

samples, which is too small under the framework of deep learning. Such small dataset

cannot make full use of the complex models that are data eager, such as LSTM.

Future directions include: 1) Exploring methods to include neutral samples into an-

notated emotion corpus. One of the possible solutions may crawl the microblogs that do
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not have naturally annotated labels and employ classifier to classify those samples. Those

with low classification confidence can be considered as the candidates of neutral samples.

2) Obtain better word embedding, including word embedding for multiple senses. The

work in Chapter 4 indicates that incorporating multiple semantic evidences can lead to

better word embeddings. One future direction is to explore ways to incorporate different

semantic evidences to learn better word embeddings. The semantic evidences can include

knowledge base, images of concepts, concept definitions, morphemes of concepts, etc. 3)

Incorporate common sense reasoning in the composition process to learn representations

of larger text units. When people read a sentence, common sense reasoning is naturally

used by us for simultaneous associations. If this can be incorporated, we would be one step

closer to true intelligence by computers. 4) Explore better methods for estimating com-

positionality. One potential direction is to merge the compositionality prediction process

into the embedding learning model and learn compositionality and the phrase embedding

simultaneously as done in [50].
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Appendix A

Samples of the Annotated Emotion
Corpus Using the 6 Step Approach

The following table lists some samples of the emotion corpus constructed using the 6 step

approach given in Chapter 3. The complete corpus can be downloaded.1

Table A.1: Samples of built emotion corpus.

Label Text
sadness 经历了一些事情，你就更不愿意把悲伤说给别人听。

sadness
你说最害怕女孩子哭，所以我偷偷地在你不在的时候轻轻哭着，低着
头将声音压到最低，就算身边再多人也不会有人发现，让你看见我哭
了好几次，对不起，我真的没忍住。

sadness 可以触摸的痛苦是什么？就是觉得肚子都饿扁了，一摸还是有一坨
肉。

sadness 住院的日子真难熬！
sadness 经历了一些事情，你就更不愿意把悲伤说给别人听。
sadness 无端端又被shoot
sadness 雨一直下，人一直在

sadness 昨天乐妈辛苦写好的一篇微博，放在浏览器里没来及发布，就被乐爸
玩手机时关闭了浏览器，全没了，白写了！！哭！！

sadness 为啥么我一买泡面就买到叉子活动不结实的？？？？[抓狂][抓狂]神
啊！敢告诉我是神马情况不？？？？？[抓狂]

sadness 疯了！买个蛋糕的功夫车竟然打不着了！作啊～

sadness 其实我也是个很自私，很小心眼的人。有些事，有些话，你做给我了
说给我了就别再给别人。

sadness 至始至终，只能把对你的相思寄托，只有寄托才能让我的内心不再寂
寞。

sadness 事实上我也蛮佩服自己的笑点，同一个梗我大概听上几千遍都还会
笑，并且还会在心里想怎么这么好笑啦！！

1 https://yunfeilongpoly.github.io/Team_resource.html
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sadness 早上泡牛奶，找很久都没看不到亲耐滴勺子，突然想起昨晚吃宵夜后
好象把它和饭盒一块打包扔了. . .

sadness = =。不越狱真是. . .除了输入法其他什么都能下. . .
sadness 妈一口喝完了我花了两小时纯手工榨的雪梨汁！[bm哭诉]

sadness
[bm抓狂]下周忙死的节奏，好不容易逮到机会可以去南航玩，结果发
现那天被抽到体测，我去，让不让人活了！我只想放松下，我容易
吗！[泪流满面]

sadness 我还是忘不了你。
like 第一天，晚安～
like 我想和你度过每一个晨昏。

like
我于千万人之中，见过你的发，你的眼，却始终不是你的脸。亲爱的
少年，原谅我没有勇气走到你身边。不过这样也好，我可以有很多的
时间来想念你，就算你不在，我还是爱。

like 开始筹备创业的事情，愿上帝带领我，让我能在工作中去荣耀他的
名。

like 那种友情，那种亲密，那种什么什么，都让我不可及。

like
“赞”这个字的实际含义已经被各类社交平台剥离它本身，肢解得体无
完肤，延伸的个中意义耐人寻味，暧昧得不可仔细琢磨，常用来表达
含糊不清的态度，这一手法被广泛使用逐渐形成一个强大的组
织——点赞党！

like

元丰六年十月十二日夜，解衣欲睡，月色入户，欣然起行。念无与为
乐者，遂至承天寺，寻张怀民。怀民亦未寝，相与步于中庭。庭下如
积水空明，水中藻荇交横，盖竹柏影也。何夜无月？何处无竹柏？但
少闲人如吾两人者耳。（930年前的夜。心平，景美。930年后的今
夜，四一很想吃烧烤. . .）

like 妈，你怎么这么可爱嘞，哇哈哈哈哈哈哈哈哈哈[哈哈]

like 每天都在做作业啊. . . . . .还有额外任务. . . . . .奋斗吧，坚持一下就
好[赞][呵呵]

like 不知道你梦见的会不会是我、哈哈

happiness 所谓猪一样的室友，应该就是我感冒了，让他回来给我带一盒白加
黑，他给我带了一包奥利奥。

happiness 点点滴滴。特别是来自部长，sosweet！2014-819
happiness 钟芮在昆明买给我的

happiness 首页上怎么全是汉化本子啊，大家都约好了发的么，都连下5、6本
了. . . . . .

happiness 就是刚想早睡却突然发现明天是周二不用上班 [嘻嘻]
happiness 老公，今晚做的饭好香啊。馋嘴. . .
happiness “你唱歌的声音最迷人”[亲亲]
happiness 聊了一个小时，最后感动一句话：君以国士待我，我当以国士报之！

happiness
周末加油站第一站幸福大讲堂接近尾声！王老师寄语：用心爱身体，
每天做好四件事：1、吃饭；2、睡觉；3、工作；4、锻炼。幸福的载
体是你自己，想要幸福先得健康！感谢全体参加TCL大讲堂的同事

happiness
今天是元宵节，虽不能和家人一起过，但朋友为了我也没有回家和家
人过，请我吃饭，聊天，看韩剧。原来自己从不孤独。身边时刻会有
人陪着。[爱你]
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happiness 这个秋天，这个国庆，苹果小超人来袭，准备好了嘛，准备好一起和
我们一起飞啦嘛[可爱][可爱][太开心][太开心]

happiness
快乐无处不在，只要你每天保持好的心态、好的心情去过好每一天，
你的生活会变得很美好，每天给予自己一个微笑，告诉自己前方是一
片光明的。

happiness [语录]人活着无非是一种状态，如果不能去做自己喜欢的是而留下遗
憾，这就是老，心理的老比身体的老更可怕。[阳光]早上好

happiness 就是，坚持了应该坚持的，放弃了应该放弃的，珍惜现在拥有的，不
后悔已经决定的。

happiness 被一个笑话戳中笑点：养的小仓鼠生病了，不过没关系，家里有老鼠
药，希望它吃过以后能好起来。恩恩恩！

happiness 友人问我为何你每天开心，好像没有忧愁。我答，我想与别人不一
样。

happiness 飞得更高现场版，赞！！！
disgust 爆吧有何意义？一群神经病。
disgust 看完金粉世家看奋斗，下一步是不是只有甄传了[懒得理你][懒得理你]
disgust 微博越来越没有意思了有木有！！！！！！！
anger 取钱光排队排一个多小时，前面的人都不动！！！！

anger 动力什么的都去死吧，看半个小时的书，居然睡2个小时。死的惨也都
是自己活该[蜡烛]

anger 某某某，某某，你们再不还钱，我真的要拖家带口去你们家过年了，
有意思不，有意思不！！！！！！

anger 刚保安阿姨冲上图书馆四楼，对着对讲机大喊一声‘没有！’震惊全场，
把人吓尿，随后踩着将近10厘米的高跟鞋跑走了

anger 说起手头这个作孽的项目，大暴斯说“一定要把这个大腿抱住!”
anger [衰]久久遇着堵堵真是跳进黄河也洗不清无语. . . . . . [睡觉]
anger 昨天晚上做梦梦到把贞子好一顿调戏。。。
anger 我草泥马，身体给我好起来啊！今天同学聚会给我撑过去啊！

anger [怒][怒]死了这么多人，家里的妻儿老小他们不哭吗[泪]。为了祖国的
建设不要哭[泪][泪]。

anger 新浪你敢不敢在我每次登陆网页版的时候不给我推荐那些逗B让我关
注？

surprise 饭后睡前宜有氧运动，不宜看球造成情绪波动。

surprise
看到伐，说有一种软件是预约出租车的，就是和出租车司机谈价钱，
比如要到某地去你愿意比原价多出50元，司机与你一拍即合的话，那
就预约成功。

surprise 奇怪。。。怎么发微博输入一个微话题马上吸引两位僵尸粉。。。

surprise

【大四女生丢钱包后与小偷对视小偷不停擦汗最终还包】西安一高校
的大四女生小崔在公交上，发现钱包没了，然后她看到旁边一年轻男
子正紧张的看着自己，感觉他是小偷，于是直直地盯着他的眼睛，对
方被她盯的不停擦汗、咽口水，一分钟后，小崔叹了口气伸出手，小
偷就把钱包还给她了[吃惊]

surprise 拜托，我有女朋友了好不好，还是个射手座的，要是被她知道你这
样，我该怎么说啊，射手座那么不好哄，你还是走远点吧

fear 我突然觉得有点怕爱跟生活的一切
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Appendix B

Examples of Extended
Multi-dimensional Lexicons

The following tables list sampled words1 of the extended multi-dimensional lexicons in

Chapter 4 based on the CVNE word embedding (except for the Chinese CVAW lexicon

which is based on the word embedding learned from Baidu Baike corpus). In each table,

the samples are selected by top, middle and bottom n words in each affective dimension

based on the predicted values. For example, in Table B.1, words from number 1 to 5

all have high valence values, words from number 6 to 10 all have middle valence values

and words from 11 to 15 all have low valence values. Subsequent tables follow the same

pattern. The complete lexicons based on different word embeddings can be downloaded.2

Table B.1: Examples of extended ANEW lexicon (dimensions of Valence-Arousal-
Dominance) based on CVNE word embedding.

Num Word Valence Arousal Dominance
1 happiness 9.13 5.86 6.62
2 enjoy 9.17 5.61 6.77
3 enjoying 9.19 5.61 6.68
4 felicific 9.35 5.34 6.83
5 gifts 9.35 6.64 6.71
6 reattend 4.74 4.92 4.68

1 CVNE also contains many phrases because CVNE is based on ConceptNet, which contains many phrase
level concepts. Here only single words are selected.

2 https://yunfeilongpoly.github.io/Team_resource.html
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7 physiographer 4.74 4.65 4.34
8 aberginian 4.74 5.15 5.15
9 crawfordite 4.74 4.71 4.68

10 brumously 4.74 3.97 4.5
11 plague 0.21 5.55 3.22
12 plaguer 0.24 5.4 3.2
13 hagridden 0.49 6.77 3.07
14 parasitophobia 0.51 6.03 3.15
15 thanatophobia 0.51 6.54 2.74
16 enraged 2.46 7.97 6.33
17 thrill 8.05 8.02 6.54
18 rollercoaster 8.02 8.06 5.1
19 orgasm 8.32 8.1 6.83
20 rage 2.41 8.17 5.68
21 incorruptibly 5.36 4.76 4.77
22 corporosity 5.49 4.76 5.1
23 asynchronously 3.85 4.76 4.13
24 cuzco 5.23 4.76 4.79
25 adenodiastasis 3.01 4.76 3.93
26 relaxed 7.0 2.39 5.55
27 paper 5.2 2.5 4.47
28 unfigured 4.81 2.61 4.47
29 fatigued 3.28 2.64 3.78
30 footstall 4.41 2.64 4.67
31 king 7.26 5.51 7.38
32 win 8.38 7.72 7.39
33 admired 7.74 6.11 7.53
34 confident 7.98 6.22 7.68
35 leader 7.63 6.27 7.88
36 postcoded 4.31 4.42 4.65
37 medifixed 4.84 3.53 4.65
38 pleck 4.19 5.49 4.65
39 nicad 4.63 4.2 4.65
40 accuminate 4.28 3.68 4.65
41 helpless 2.2 5.34 2.27
42 insecure 2.36 5.56 2.33
43 failure 1.7 4.95 2.4
44 indisposing 0.85 5.22 2.51
45 loneliness 1.61 4.56 2.51
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Table B.2: Examples of extended CVAW (dimensions of Valence-Arousal, Chinese) lexi-
con based on Baidu Baike word embedding.

Num Word Valence Arousal
1 狂喜 8.6 8.8
2 尚美 8.63 4.11
3 品尚 8.65 5.0
4 同辉 8.69 5.98
5 大风车 8.72 5.47
6 预祝 8.83 5.89
7 共绘 9.04 5.55
8 万事如意 8.58 5.52
9 操碎了心 4.36 6.14
10 连接轴 4.36 4.99
11 邀您 8.6 6.12
12 通道式 4.36 5.44
13 青伊湖 4.36 6.41
14 挖眼 0.82 7.62
15 刑讯 0.86 7.16
16 株连 0.89 7.83
17 逼供 0.91 7.78
18 非法拘禁 0.92 7.29
19 弑君 0.94 7.81
20 狂暴 1.8 8.8
21 狂喜 8.6 8.8
22 怒骂 1.8 8.8
23 怒吼 2.0 8.8
24 干 1.0 8.8
25 热血沸腾 5.12 8.82
26 狂潮 4.8 8.94
27 寻来寻 4.03 5.94
28 前十 5.5 5.94
29 创味 4.46 5.94
30 寒从脚下起 3.38 5.94
31 酷客 6.71 5.94
32 郭家崖 4.31 5.94
33 宁静 6.2 1.6
34 镇静 5.4 1.8
35 放松 6.2 2.0
36 闲散 4.6 2.2
37 轻松 6.0 2.2
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Table B.3: Examples of extended EPA (dimensions of Evaluation-Potency-Activity) lexi-
con based on CVNE word embedding.

Num Word Evaluation Potency Activity
1 saint 3.15 2.22 -0.3
2 honeymoon 3.22 2.05 1.49
3 angel 3.3 2.22 0.59
4 blessings 3.35 1.65 0.12
5 heaven 3.49 3.01 -0.5
6 circumforanean 0.28 -0.44 0.28
7 cybernationalism 0.28 0.43 0.95
8 brassart 0.28 0.87 0.28
9 chinesely 0.28 0.29 0.31

10 rapist -3.94 -0.22 0.59
11 rape -3.53 0.69 1.55
12 murder -3.51 0.86 1.07
13 hell -3.49 1.95 1.12
14 heaven 3.49 3.01 -0.5
15 pope 2.85 3.05 -1.62
16 christ 2.81 3.14 0.57
17 ceo 0.63 3.16 -0.56
18 god 2.97 3.34 0.07
19 scrotum -0.39 0.32 0.1
20 aulonemia 0.64 0.32 0.37
21 felts 0.64 0.32 -0.01
22 ethoxybutamoxane -0.54 0.32 0.62
23 powerless -1.85 -2.7 -0.99
24 slave -0.4 -2.3 -0.19
25 coward -1.14 -2.29 -0.63
26 weakling -0.43 -2.29 -0.85
27 nightclub 1.6 1.37 2.68
28 fighter -0.51 2.29 2.75
29 gunfight -2.92 1.86 2.81
30 riot -1.93 2.27 2.83
31 raver 0.65 -0.54 3.08
32 oxidopamine 0.13 0.33 0.38
33 echinococcosis -0.36 0.68 0.38
34 ardea 1.6 0.78 0.38
35 contemporary 1.62 0.86 0.38
36 graveyard -0.87 0.14 -2.68
37 mummy -1.19 1.0 -2.4
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Table B.4: Examples of extended DAL (dimensions of Evaluation-Activity-Imagery) lex-
icon based on CVNE word embedding.

Num Word Evaluation Activity Imagery
1 beautifully 3.0 1.33 2.0
2 softly 3.0 2.25 1.0
3 happyness 3.01 2.25 2.12
4 lovewende 3.01 2.07 1.84
5 happines 3.08 2.52 2.16
6 allosteric 1.69 1.76 1.51
7 sayer 1.69 1.86 1.53
8 unrug 1.69 1.68 2.05
9 accelerationist 1.69 2.13 1.28

10 plaguer 0.61 2.06 1.72
11 nidder 0.61 2.19 2.24
12 plague 0.63 2.0 2.02
13 mommick 0.67 1.57 1.49
14 arrested 1.0 3.0 2.4
15 energy 2.0 3.0 2.4
16 victor 2.5 3.0 2.0
17 speed 1.83 3.0 1.6
18 travel 2.57 3.0 1.6
19 rereinforce 1.98 1.8 1.14
20 stenopelmatidae 1.65 1.8 2.17
21 mavens 1.62 1.8 1.54
22 lakesha 1.72 1.8 1.69
23 oxgang 1.72 0.99 2.07
24 unconscious 1.38 1.0 2.2
25 mm 1.8 1.0 1.4
26 housed 2.0 1.0 1.6
27 heraldiccharge 1.63 1.27 3.36
28 kitten 2.18 1.95 3.42
29 skibob 2.04 2.12 3.45
30 sandboard 2.04 2.13 3.49
31 petshop 2.1 1.97 3.52
32 nonclient 1.86 1.87 1.75
33 gathers 1.89 2.02 1.75
34 prediastolic 1.98 1.83 1.75
35 ritters 1.84 1.94 1.75
36 inhere 1.71 1.6 0.12
37 risibility 1.92 1.59 0.15
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Table B.5: Examples of extended VADER lexicon (dimension of Sentiment) based on
CVNE word embedding.

Num Word Sentiment
1 superfabulous 3.34
2 wealful 3.35
3 douth 3.36
4 gustoso 3.37
5 excellenter 3.37
6 resplend 3.37
7 ily 3.4
8 magnificently 3.4
9 concinnity 3.46
10 snazztastic 3.47
11 goodful 3.51
12 felicitations 3.55
13 excellentness 3.73
14 confuciusornithid 0.1
15 superoperon 0.1
16 pressurizer 0.1
17 groundation 0.1
18 bryanthus 0.1
19 dargin 0.1
20 glyoxysome 0.1
21 sedation 0.1
22 jamil 0.1
23 polymignyte 0.1
24 splurges 0.1
25 velverd 0.1
26 hagride -4.25
27 hagridden -4.09
28 rapist -3.9
29 parasitophobia -3.82
30 slavery -3.8
31 raping -3.8
32 nithing -3.8
33 crybully -3.78
34 necrophobia -3.77
35 plague -3.75
36 rape -3.7
37 kill -3.7
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Table B.6: Examples of extended Perceptual lexicon (dimensions of Hearing-Tasting-
Touching-Smelling-Seeing) based on CVNE word embedding.

Num Word Hearing Tasting Touching Smelling Seeing
1 noises 5.77 0.52 0.73 0.98 2.17
2 heard 5.85 1.06 0.64 0.76 1.77
3 shouts 5.98 -0.03 0.36 0.31 2.89
4 devolatilizer 1.65 1.57 1.85 1.55 3.35
5 simolean 1.65 0.61 1.36 0.9 2.99
6 gules -1.47 0.73 0.37 0.25 3.95
7 torteau -1.34 0.83 1.15 0.44 4.06
8 saporous 0.38 5.96 0.96 4.76 2.3
9 sipid 0.22 5.97 0.88 4.39 2.11

10 savorsome 0.29 5.97 0.96 4.45 2.5
11 reebless 0.92 0.93 2.81 0.67 3.55
12 laune 1.13 0.93 0.74 1.38 3.38
13 decameter 1.45 -1.16 1.47 -0.41 3.71
14 petavolt 1.85 -1.14 1.25 -0.72 3.55
15 calloused 1.52 0.87 5.42 0.2 3.88
16 callused 1.48 0.43 5.69 0.19 3.85
17 wristwarmer 0.52 -0.12 5.94 0.62 4.65
18 nonreligious 2.13 1.03 1.61 0.71 3.0
19 inobedient 2.48 1.09 1.61 0.69 3.04
20 nox 1.38 0.38 -1.13 1.59 2.63
21 millilux 0.94 -0.39 -1.08 0.86 2.64
22 kukumakranka 0.11 4.3 1.88 5.46 2.96
23 empyreuma 1.31 4.11 2.46 5.55 3.3
24 smells 1.32 3.28 0.79 5.62 1.56
25 bullier 2.71 0.89 1.21 1.07 3.38
26 subadult 1.71 1.19 2.14 1.07 4.12
27 aposiopesis 2.95 -0.84 0.39 -1.17 2.4
28 cataphora 2.7 -0.64 -0.34 -1.07 2.26
29 optigraph -0.1 -0.03 2.59 0.2 5.58
30 eumelanic 0.4 0.26 2.67 0.84 5.58
31 oroheliograph 0.22 0.07 2.03 0.29 5.61
32 groupe 1.88 0.83 1.13 1.09 3.4
33 acclimates 2.09 1.21 2.1 1.55 3.4
34 perfumed 0.1 2.29 0.19 4.9 0.48
35 echoing 4.71 0.0 0.33 0.0 0.52
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Table B.7: Examples of extended Concreteness lexicon (dimension of Concreteness) based
on CVNE word embedding.

Num Word Concreteness
1 landsailor 5.58
2 refridgerator 5.59
3 chamfron 5.59
4 gugelhupf 5.6
5 fingerstall 5.6
6 hallstand 5.6
7 alvus 5.62
8 topek 5.63
9 pileable 5.63

10 vesre 5.67
11 skibob 5.77
12 petshop 5.8
13 heraldiccharge 6.12
14 streisand 2.99
15 dihydroquinoline 2.99
16 aurist 2.99
17 respins 2.99
18 proteobacterium 2.99
19 unserdeutsch 2.99
20 endura 2.99
21 thuris 2.99
22 gynecologists 2.99
23 euronesian 2.99
24 defects 2.99
25 bandera 2.99
26 istically 0.35
27 hypostatize 0.51
28 confessedly 0.52
29 undownable 0.63
30 affectual 0.63
31 hypostatise 0.65
32 ostensively 0.66
33 infelicitously 0.67
34 apodeictic 0.67
35 declaredly 0.7
36 affectioned 0.75
37 superlation 0.76
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